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Preface

The Annual Conference of the European Association for Computer Science Logic
(EACSL), CSL 2007, was held at the University of Lausanne, September, 11–15
2007. The conference series started as a program of International Workshops on
Computer Science Logic, and then in its sixth meeting became the Annual Con-
ference of the EACSL. This conference was the 21st meeting and 16th EACSL
conference; it was organized by the Western Swiss Center for Logic, History and
Philosophy of Science, and the Information Systems Institute at the Faculty of
Business and Economics at the University of Lausanne.

The first day of the conference was a joint event with the European Research
Training Network GAMES1.

The CSL 2007 Program Committee considered 116 submissions from 30 coun-
tries during a two-week electronic discussion; each paper was refereed by three
to six reviewers. The Program Committee selected 36 papers for presentation at
the conference and publication in these proceedings.

The Program Committee invited lectures from Samson Abramsky, Luca de
Alfaro, Arnold Beckmann, Anuj Dawar, Orna Kupferman, and Helmut Seidl; the
papers provided by the invited speakers appear at the beginning of this volume.

Instituted in 2005, the Ackermann Award is the EACSL Outstanding Dis-
sertation Award for Logic in Computer Science. It was sponsored for the first
time by Logitech S.A., headquartered near Lausanne in Romanel-sur-Morges,
Switzerland2. The award winners for 2007, Dietmar Berwanger, Stéphane Len-
grand, and Ting Zhang, were invited to present their work at the conference.
Citations for the awards, abstracts of the theses, and biographical sketches of
the award winners can be found at the end of the proceedings.

We generously thank the Program Committee and all referees for their work
in reviewing the papers, as well as the members of the local organizing team
(Christian W. Bach, Jérémie Cabessa, Alessandro Facchini, Elisabeth Fournier,
Thomas Strahm, Henri Volken). We also thank the Swiss National Science Foun-
dation, the Swiss Academy of Sciences, and the Western Swiss Center for Logic,
History and Philosophy of Science, which provided financial support.

June 2007 Jacques Duparc
Thomas A. Henzinger

1 Games and Automata for Synthesis and Validation, coordinated by Erich Grädel.
http://www.games.rwth-aachen.de/

2 We would like to thank Daniel Borel, Co-founder and Chairman of the Board of
Logitech S.A., for his support of the Ackermann Award for the years 2007–09. For
a history of this Swiss company, consult http://www.logitech.com.
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Grégoire Sutre
Tony Tan
Eugenia Ternovska
Kazushige Terui
Pascal Tesson
Neil Thapen
Hayo Thielecke
Marc Thurley
Michael Tiomkin
Henry Towsner

Yoshihito Toyama
Mathieu Tracol
Nikos Tzevelekos
Michael Ummels
Tarmo Uustalu
Jacqueline Vauzeilles
Adrien Vieilleribiere
Eelco Visser
Heribert Vollmer
Fer-Jan de Vries
Pascal Weil
Benjamin Werner
Claus-Peter Wirth
Ronald de Wolf
Nicolas Wolovick
Stefan Woltran
James Worrell
Tatiana Yavorskaya
Michael Zacharyaschev
Noam Zeilberger
Florian Zuleger

Local Organizing Committee

Christian W. Bach
Jérémie Cabessa
Jacques Duparc, Chair
Alessandro Facchini
Thomas Strahm
Henri Volken



Table of Contents

Invited Lectures

Full Completeness: Interactive and Geometric Characterizations of the
Space of Proofs (Abstract) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Samson Abramsky

The Symbolic Approach to Repeated Games (Abstract) . . . . . . . . . . . . . . . 3
Luca de Alfaro

Proofs, Programs and Abstract Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 4
Arnold Beckmann

Model-Checking First-Order Logic: Automata and Locality . . . . . . . . . . . . 6
Anuj Dawar

Tightening the Exchange Rates Between Automata . . . . . . . . . . . . . . . . . . 7
Orna Kupferman

Precise Relational Invariants Through Strategy Iteration . . . . . . . . . . . . . . 23
Thomas Gawlitza and Helmut Seidl

Logic and Games

Omega-Regular Half-Positional Winning Conditions . . . . . . . . . . . . . . . . . . 41
Eryk Kopczyński
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Full Completeness: Interactive and Geometric

Characterizations of the Space of Proofs
(Abstract)�

Samson Abramsky

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, U.K.

samson@comlab.ox.ac.uk

Abstract. We pursue the program of exposing the intrinsic mathemat-
ical structure of the “space of a proofs” of a logical system [AJ94b]. We
study the case of Multiplicative-Additive Linear Logic (MALL). We use
tools from Domain theory to develop a semantic notion of proof net for
MALL, and prove a Sequentialization Theorem. We also give an inter-
active criterion for strategies, formalized in the same Domain-theoretic
setting, to come from proofs, and show that a “semantic proof struc-
ture” satisfies the geometric correctness criterion for proof-nets if and
only if it satisfies the interactive criterion for strategies. We also use
the Domain-theoretic setting to give an elegant compositional account
of Cut-Elimination. This work is a continuation of previous joint work
with Radha Jagadeesan [AJ94b] and Paul-André Melliès [AM99].

1 Introduction

One can distinguish two views on how Logic relates to Structure:

1. The Descriptive View. Logic is used to talk about structure. This is the
view taken in Model Theory, and in most of the uses of Logic (Temporal
logics, MSO etc.) in Verification. It is by far the more prevalent and widely-
understood view.

2. The Intrinsic View. Logic is taken to embody structure. This is, implicitly
or explicitly, the view taken in the Curry-Howard isomorphism, and more
generally in Structural Proof Theory, and in (much of) Categorical Logic.
In the Curry-Howard isomorphism, one is not using logic to talk about func-
tional programming; rather, logic is (in this aspect) functional programming.

If we are to find structure in the proof theory of a logic, we face a challenge.
Proof systems are subject to many minor “design decisions”, which does not
impart confidence that the objects being described — formal proofs — have a
robust intrinsic structure. It is perhaps useful to make an analogy with Geometry.
A major concern of modern Geometry has been to find instrinsic, typically

� This research was partly supported by EPSRC Grant EP/D038987/1.

J. Duparc and T.A. Henzinger (Eds.): CSL 2007, LNCS 4646, pp. 1–2, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 S. Abramsky

coordinate-free, descriptions of the geometric objects of study. We may view
the rôle of syntax in Proof Theory as analogous to coordinates in Geometry;
invaluable for computation, but an obstacle to finding the underlying invariant
structure.

A particularly promising line of progress in finding more intrinsic descriptions
of proofs, their geometric structure, and their dynamics under Cut-elimination,
has taken place in the study of proof-nets in Linear Logic [Gir87], and the asso-
ciated study of Geometry of Interaction [Gir89]. On the semantic side, the devel-
opment of Game Semantics and Full Completeness results [AJ94b] has greatly
enriched and deepened the structural perspective.

We build on previous joint work with Radha Jagadeesan [AJ94a] and Paul-
André Melliès [AM99]. We study Multiplicative-Additive Linear Logic. We use
tools from Domain theory to develop a semantic notion of proof net for MALL,
and prove a Sequentialization Theorem for this notion [Abr07]. We also give
an interactive criterion for strategies, formalized in the same Domain-theoretic
setting, to come from proofs, and show that a “semantic proof structure” satisfies
the geometric correctness criterion for proof-nets if and only if it satisfies the
interactive criterion for strategies. We also use the Domain-theoretic setting to
give an elegant compositional account of Cut-Elimination.

References

[AJ94a] Abramsky, S., Jagadeesan, R.: New foundations for the geometry of interac-
tion. Information and Computation 111(1), 53–119 (1994)

[AJ94b] Abramsky, S., Jagadeesan, R.: Games and Full Completeness for Multiplica-
tive Linear Logic. Journal of Symbolic Logic 59(2), 543–574 (1994)

[AM99] Abramsky, S., Melliés, P.-A.: Concurrent games and full completeness. In:
Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science,
pp. 431–444. IEEE Computer Society Press, Los Alamitos (1999)

[Abr07] Abramsky, S.: Event Domains, Stable Functions and Proof-Nets. Electronic
Notes in Theoretical Computer Science 172, 33–67 (2007)

[Gir87] Girard, J.-Y.: Linear Logic. Theoretical Computer Science, 50, 1–102 (1987)
[Gir88] Girard, J.-Y.: Multiplicatives. Rendiconti del Seminario Matematico (Torino),

Universita Pol. Torino (1988)
[Gir89] Girard, J.-Y.: Geometry of Interaction I: Interpretation of System F. In: Ferro,

R., et al. (ed.) Logic Colloquium ’88, pp. 221–260. North-Holland, Amsterdam
(1989)

[Gir95] Girard, J.-Y.: Proof-nets: the parallel syntax for proof theory. In: Logic and
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The Symbolic Approach to Repeated Games

(Abstract)

Luca de Alfaro

Department of Computer Engineering
School of Engineering

1156 High Street MS: SOE3
University of California

Santa Cruz, CA 95064, USA
luca@soe.ucsc.edu

Abstract. We consider zero-sum repeated games with omega-regular
goals. Such hgames are played on a finite state space over an infinite
number of rounds: at every round, the players select moves, either in
turns or simultaneously; the current state and the selected moves deter-
mine the successor state. A play of the game thus consists in an infinite
path over the state space or, if randomization is present, in a probabil-
ity distribution over paths. Omega-regular goals generalize the class of
regular goals (those expressible by finite automata) to infinite sequences,
and include many well-known goals, such as the reachability and safety
goals, as well as the Büchi and parity goals.

The algorithms for solving repeated games with omega-regular goals
can be broadly divided into enumerative and symbolic/ algorithms. Enu-
merative algorithms consider each state individually; currently, they
achieve the best worst-case complexity among the known algorithms.
Symbolic algorithms compute in terms of sets of states, or functions
from states to real numbers, rather than single states; such sets or func-
tions can often be represented symbolically (hence the name of the
algorithms). Even though symbolic algorithms often cannot match the
worst-case complexity of the enumerative algorithms, they are often
efficient in practice.

We illustrate how symbolic algorithms provide uniform solutions of
many classes of repeated games, from turn-based, non-randomized games
where at each state one of the players can deterministically win, to
concurrent and randomized games where the ability to win must be
characterized in probabilistic fashion. We also show that the symbolic
algorithms, and the notation used to express them, are closely related to
game metrics which provide a notion of distance between game states.
Roughly, the distance between two states measures how closely a player
can match, from one state, the ability of winning from the other state
with respect to any omega-regular goal.

J. Duparc and T.A. Henzinger (Eds.): CSL 2007, LNCS 4646, p. 3, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Proofs, Programs and Abstract Complexity

Arnold Beckmann

Department of Computer Science
University of Wales Swansea

Singleton Park, Swansea, SA2 8PP, United Kingdom
a.beckmann@swansea.ac.uk

Axiom systems are ubiquitous in mathematical logic, one famous example being
first order Peano Arithmetic. Foundational questions asked about axiom systems
comprise analysing their provable consequences, describing their class of prov-
able recursive functions (i.e. for which programs can termination be proven from
the axioms), and characterising their consistency strength. One branch of proof
theory, called Ordinal Analysis, has been quite successful in giving answers to
such questions, often providing a unifying approach to them. The main aim of
Ordinal Analysis is to reduce such questions to the computation of so called proof
theoretic ordinals, which can be viewed as abstract measures of the complexity
inherent in axiom systems. Gentzen’s famous consistency proof of arithmetic
[Gen35, Gen38] using transfinite induction up to (a notation of) Cantor’s ordi-
nal ε0, can be viewed as the first computation of the proof theoretic ordinal of
Peano Arithmetic.

Bounded Arithmetic, as we will consider it, goes back to Buss [Bus86].
Bounded Arithmetic theories can be viewed as subsystems of Peano Arith-
metic which have strong connections to complexity classes like the polynomial
time hierarchy of functions. Ever since their introduction, research on Bounded
Arithmetic has aimed at obtaining a good understanding of the three ques-
tions mentioned above for the Bounded Arithmetic setting, with varying suc-
cess. While a lot of progress has been obtained in relating definable functions to
complexity classes, very little can be said about how the provable consequences
are related (this problem is called the separation problem for Bounded Arith-
metic), or how the consistency strength of Bounded Arithmetic theories can be
characterised.

A natural question to ask is whether proof theoretic ordinals can give answers
in the Bounded Arithmetic world. However, results by Sommer [Som93] have
shown that this is not the case, proof theoretic ordinals are useless in the setting
of Bounded Arithmetic. But there are adaptations of proof theoretic ordinals
denoted dynamic ordinals which can be viewed as suitable abstract measures
of the complexity of Bounded Arithmetic theories [Bec96, Bec03, Bec06]. The
simplest definition of a dynamic ordinal is given as follows. Let T be a subsys-
tem of Peano Arithmetic, and T (X) its canonical relativisation using a second
order predicate variable X . The dynamic ordinal of T , denoted DO(T ), can be
defined as the set of those number theoretic functions f : N → N for which the
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sentence ∀xMin(f(x), X) is a provable consequence of T (X). Here, Min(t,X) is
the formula expressing the following minimisation principle:

(∃y < t)X(y)→ (∃y < t)[X(y) ∧ (∀z < y)¬X(z)] .

In my talk I will draw pictures of this situation, starting from Ordinal Analy-
sis for Peano Arithmetic, via their adaptation to dynamic ordinals, leading to
Dynamic Ordinal Analysis for Bounded Arithmetic theories. I will argue that
Dynamic Ordinals can equally be viewed as suitable measures of the proof and
computation strength of Bounded Arithmetic theories, which can be used to give
answers to (some of the) above mentioned questions.
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The satisfaction problem for first-order logic, namely to decide, given a finite
structure A and a first-order formula ϕ, whether or not A |= ϕ is known to
be PSpace-complete. In terms of parameterized complexity, where the length
of ϕ is taken as the parameter, the problem is AW[�]-complete and therefore
not expected to be fixed-parameter tractable (FPT). Nonetheless, the problem
is known to be FPT when we place some structural restrictions on A. For some
restrictions, such as when we place a bound on the treewidth of A, the result
is obtained as a corollary of the fact that the satisfaction problem for monadic
second-order logic (MSO) is FPT in the presence of such restriction [1]. This fact
is proved using automata-based methods. In other cases, such as when we bound
the degree of A, the result is obtained using methods based on the locality of first-
order logic (see [3]) and does not extend to MSO. We survey such fixed-parameter
tractability results, including the recent [2] and explore the relationship between
methods based on automata, locality and decompositions.
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Abstract. Automata on infinite objects were the key to the solution
of several fundamental decision problems in mathematics and logic. To-
day, automata on infinite objects are used for formal specification and
verification of reactive systems. The practical importance of automata
in formal methods has motivated a re-examination of the blow up that
translations among different types of automata involve. For most trans-
lations, the situation is satisfying, in the sense that even if there is a
gap between the upper and the lower bound, it is small. For some highly
practical cases, however, the gap between the upper and the lower bound
is exponential or even larger. The article surveys several such frustrating
cases, studies features that they share, and describes recent efforts (with
partial success) to close the gaps.

1 Introduction

Finite automata on infinite objects were first introduced in the 60’s, and were
the key to the solution of several fundamental decision problems in mathematics
and logic [3,25,31]. Today, automata on infinite objects are used for specification
and verification of reactive systems. The automata-theoretic approach to ver-
ification reduces questions about systems and their specifications to questions
about automata [19,41]. Recent industrial-strength property-specification lan-
guages such as Sugar, ForSpec, and the recent standard PSL 1.01 [7] include
regular expressions and/or automata, making specification and verification tools
that are based on automata even more essential and popular.

Early automata-based algorithms aimed at showing decidability. The com-
plexity of the algorithm was not of much interest. For example, the fundamental
automata-based algorithms of Büchi and Rabin, for the decidability of S1S and
SnS (the monadic second-order theories of infinite words and trees, respectively)
[3,31] are of non-elementary complexity (i.e., the complexity can not be bounded
by a stack of exponentials of a fixed height [26]). Proving the decidability of a
given logic was then done by translating the logic to a monadic second-order
theory, ignoring the fact that a direct algorithm could have been more efficient.
Things have changed in the early 80’s, when decidability of highly expressive
logics became of practical importance in areas such as artificial intelligence and
formal reasoning about systems. The change was reflected in the development
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of two research directions: (1) direct and efficient translations of logics to au-
tomata [43,37,40], and (2) improved algorithms and constructions for automata
on infinite objects [33,10,30].

Both research directions are relevant not only for solving the decidability prob-
lem, but also for solving other basic problems in formal methods, such as model
checking [5] and synthesis [30]. Moreover, input from the industry continuously
brings to the field new problems and challenges, requiring the development of
new translations and algorithms.1 For many problems and constructions, our
community was able to come up with satisfactory solutions, in the sense that
the upper bound (the complexity of the best algorithm or the blow-up in the
best known construction) coincides with the lower bound (the complexity class in
which the problem is hard, or the blow-up that is known to be unavoidable). For
some problems and constructions, however, the gap between the upper bound
and the lower bound is significant. This situation is especially frustrating, as
it implies that not only we may be using algorithms that can be significantly
improved, but also that something is missing in our understanding of automata
on infinite objects.

Before turning to the frustrating cases, let us first describe one “success story”
— the complementation construction for nondeterministic Büchi automata on
infinite words (NBWs). Translating S1S into NBWs, Büchi had to prove the
closure of NBWs under complementation. For that, Büchi suggested in 1962 a
doubly-exponential construction. Thus, starting with an NBW with n states, the
complementary automaton had 22O(n)

states [3]. The lower bound known then
for NBW complementation was 2n, which followed from the complementation
of automata on finite words. Motivated by problems in formal methods, Sistla,
Vardi, and Wolper developed in 1985 a better complementation construction
with only a 2O(n2) blow-up [36]. Only in 1988, Safra introduced a determinization
construction for NBWs that enabled a 2O(n logn) complementation construction
[33], and Michel proved a matching lower bound [28]. The story, however, was not
over. A careful analysis of the lower and upper bounds reveals an exponential gap
hiding in the constants of the O() notations. While the upper bound of Safra is
n2n, the lower bound of Michel is only n!, which is roughly (n/e)n. Only recently,
a new complementation construction, which avoids determinization, has led to
an improved upper bound of (0.97n)n [11], and a new concept, of full automata,
has led to an improved lower bound of (0.76n)n [44]. Thus, a gap still exists,
but it is an acceptable one, and it probably does not point to a significant gap
in our understanding of nondeterministic Büchi automata.

In the article, we survey two representative problems for which the gap be-
tween the upper and the lower bound is still exponential. In Section 3, we con-
sider safety properties and the problem of translating safety properties to non-

1 In fact, the practical importance of automata has lead to a reality in which the
complexity of a solution or a construction is only one factor in measuring its quality.
Other measures, such as the feasibility of a symbolic implementation or the effec-
tiveness of optimizations and heuristics in the average case are taken into an account
too. In this article, however, we only consider worst-case complexity.



Tightening the Exchange Rates Between Automata 9

deterministic automata on finite words. In Section 4, we consider the problem of
translating nondeterministic Büchi word automata to nondeterministic co-Büchi
word automata. Both problems have strong practical motivation, and in both
progress has been recently achieved. We study the problems, their motivation,
and their current status. The study is based on joint work with Moshe Vardi
[16], Robby Lampert [14], and Benjamin Aminof [2].

2 Preliminaries

Word automata. An infinite word over an alphabet Σ is an infinite sequence
w = σ1 ·σ2 · · · of letters in Σ. A nondeterministic Büchi word automaton (NBW,
for short) is A = 〈Σ,Q, δ,Q0, F 〉, where Σ is the input alphabet, Q is a finite
set of states, δ : Q×Σ → 2Q is a transition function, Q0 ⊆ Q is a set of initial
states, and F ⊆ Q is a set of accepting states. If |Q0| = 1 and δ is such that for
every q ∈ Q and σ ∈ Σ, we have that |δ(q, σ)| = 1, then A is a deterministic
Büchi word automaton (DBW).

Given an input word w = σ0 · σ1 · · · in Σω, a run of A on w is a sequence
r0, r1, . . . of states in Q such that r0 ∈ Q0 and for every i ≥ 0, we have ri+1 ∈
δ(ri, σi); i.e., the run starts in one of the initial states and obeys the transition
function. Note that a nondeterministic automaton can have many runs on w. In
contrast, a deterministic automaton has a single run on w. For a run r, let inf(r)
denote the set of states that r visits infinitely often. That is, inf(r) = {q ∈ Q :
ri = q for infinitely many i ≥ 0}. As Q is finite, it is guaranteed that inf(r) �= ∅.
The run r is accepting iff inf(r) ∩ F �= ∅. That is, a run r is accepting iff there
exists a state in F that r visits infinitely often. A run that is not accepting is
rejecting. An NBW A accepts an input word w iff there exists an accepting run
of A on w. The language of an NBW A, denoted L(A), is the set of words that
A accepts. We assume that a given NBW A has no empty states (that is, at
least one word is accepted from each state – otherwise we can remove the state).

Linear Temporal Logic. The logic LTL is a linear temporal logic. Formulas of LTL
are constructed from a set AP of atomic propositions using the usual Boolean
operators and the temporal operators G (“always”), F (“eventually”), X (“next
time”), and U (“until”). Formulas of LTL describe computations of systems over
AP . For example, the LTL formula G(req → Fack ) describes computations in
which every position in which req holds is eventually followed by a position in
which ack holds. For the detailed syntax and semantics of LTL, see [29]. The
model-checking problem for LTL is to determine, given an LTL formula ψ and a
system M , whether all the computations of M satisfy ψ.

General methods for LTL model checking are based on translation of LTL
formulas to nondeterministic Büchi word automata:

Theorem 1. [41] Given an LTL formula ψ, one can construct an NBW Aψ that
accepts exactly all the computations that satisfy ψ. The size of Aψ is exponential
in the length of ψ.
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Given a system M and a property ψ, model checking of M with respect to ψ is
reduced to checking the emptiness of the product of M and A¬ψ [41]. This check
can be performed on-the-fly and symbolically [6,12,38], and the complexity of
model checking that follows is PSPACE, with a matching lower bound [35].

3 Translating Safety Properties to Automata

Of special interest are properties asserting that the system always stays within
some allowed region, in which nothing “bad” happens. For example, we may
want to assert that two processes are never simultaneously in the critical section.
Such properties of systems are called safety properties. Intuitively, a property ψ
is a safety property if every violation of ψ occurs after a finite execution of the
system. In our example, if in a computation of the system two processes are in
the critical section simultaneously, this occurs after some finite execution of the
system.

In this section we study the translation of safety properties to nondeterministic
automata on finite words (NFWs). We first define safety and co-safety languages,
define bad and good prefixes, and motivate the above construction. We then
describe a recent result that describes a construction of an NFW for bad and
good prefixes for the case the safety or the co-safety property is given by means
on an LTL formula.

3.1 Safety Properties and Their Verification

We refer to computations of a nonterminating system as infinite words over an
alphabet Σ. Typically, Σ = 2AP , where AP is the set of the system’s atomic
propositions. Consider a language L ⊆ Σω of infinite words over the alphabet
Σ. A finite word x ∈ Σ∗ is a bad prefix for L iff for all y ∈ Σω, we have x ·y �∈ L.
Thus, a bad prefix is a finite word that cannot be extended to an infinite word
in L. Note that if x is a bad prefix, then all the finite extensions of x are also
bad prefixes. A language L is a safety language iff every infinite word w �∈ L
has a finite bad prefix.2 For a safety language L, we denote by bad-pref (L) the
set of all bad prefixes for L. For example, if Σ = {0, 1}, then L = {0ω, 1ω} is a
safety language. To see this, note that every word not in L contains either the
sequence 01 or the sequence 10, and a prefix that ends in one of these sequences
cannot be extended to a word in L. Thus, bad-pref (L) is the language of the
regular expression (0∗ · 1 + 1∗ · 0) · (0 + 1)∗.

For a language L ⊆ Σω (Σ∗), we use comp(L) to denote the complement of
L; i.e., comp(L) = Σω \L (Σ∗ \L, respectively). We say that a language L ⊆ Σω

is a co-safety language iff comp(L) is a safety language. (The term used in [23]
is guarantee language.) Equivalently, L is co-safety iff every infinite word w ∈ L
has a good prefix x ∈ Σ∗: for all y ∈ Σω, we have x · y ∈ L. For a co-safety

2 The definition of safety we consider here is given in [1], it coincides with the definition
of limit closure defined in [9], and is different from the definition in [20], which also
refers to the property being closed under stuttering.
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language L, we denote by good-pref (L) the set of good prefixes for L. Note
that for a safety language L, we have that good-pref (comp(L)) = bad-pref (L).
Thus, in order to construct the set of bad prefixes for a safety property, one can
construct the set of good prefixes for its complementary language.

We say that an NBW A is a safety (co-safety) automaton iff L(A) is a safety
(co-safety) language. We use bad-pref (A), good-pref (A), and comp(A) to abbre-
viate bad-pref (L(A)), good-pref (L(A)), and comp(L(A)), respectively.

In addition to proof-based methods for the verification of safety properties
[23,24], there is extensive work on model checking of safety properties. Recall
that general methods for model checking of linear properties are based on a
construction of an NBW A¬ψ that accepts exactly all the infinite computations
that violate the property ψ and is of size exponential in ψ [22,41]. Verification
of a system M with respect to ψ is then reduced to checking the emptiness of
the product of M and A¬ψ [39].

When ψ is a safety property, the NBW A¬ψ can be replaced by bad-pref (Aψ)
– an NFW that accepts exactly all the bad prefixes of ψ [16]. This has several ad-
vantages, as reasoning about finite words is simpler than reasoning about infinite
words: symbolic reasoning (in particular, bounded model checking procedures)
need not look for loops and can, instead, apply backward or forward reachability
analysis [4]. In fact, the construction of bad-pref (Aψ) reduces the model-checking
problem to the problem of invariance checking [23], which is amenable to both
model-checking techniques and deductive verification techniques. In addition,
using bad-pref (Aψ), we can return to the user a finite error trace, which is a bad
prefix, and which is often more helpful than an infinite error trace.

Consider a safety NBW A. The construction of bad-pref (A) was studied in
[16]. If A is deterministic, we can construct a deterministic automaton on finite
words (DFW) for bad-pref (A) by defining the set of accepting states to be the
set of states s for which A with initial state s is empty. Likewise, if A is a co-
safety automaton, we can construct a DFW for good-pref (A) by defining the set
of accepting states to be the set of states s for which A with initial state s is
universal.

When A is nondeterministic, the story is more complicated. Even if we are
after a nondeterministic, rather than a deterministic, automaton for the bad
or good prefixes, the transition from infinite words to finite words involves an
exponential blow-up. Formally, we have the following.

Theorem 2. [16] Consider an NBW A of size n.

1. If A is a safety automaton, the size of an NFW for bad-pref (A) is 2Θ(n).
2. If A is a co-safety automaton, the size of an NFW for good-pref (A) is 2Θ(n).

The lower bound in Theorem 2 for the case A is a safety automaton is not
surprising. Essentially, it follows from the fact that bad-pref (A) refers to words
that are not accepted by A. Hence, it has the flavor of complementation, and
complementation of nondeterministic automata involves an exponential blow-up
[27]. The second blow up, however, in going from a co-safety automaton to a
nondeterministic automaton for its good prefixes is surprising. Its proof in [16]
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highlights the motivation behind the definition of a fine automaton for safety
properties, and we describe it below.

For n ≥ 1, let Σn = {1, . . . , n,&}. We define Ln as the language of all words
w ∈ Σω

n such that w contains at least one & and the letter after the first & is
either & or it has already appeared somewhere before the first &. The language
Ln is a co-safety language. Indeed, each word in Ln has a good prefix (e.g.,
the one that contains the first & and its successor). We can recognize Ln with
an NBW with O(n) states (the NBW guesses the letter that appears after the
first &). Obvious good prefixes for Ln are 12&&, 123&2, etc. That is, prefixes
that end one letter after the first &, and their last letter is either & or has
already appeared somewhere before the &. We can recognize these prefixes with
an NFW with O(n) states. But Ln also has some less obvious good prefixes, like
1234 · · ·n& (a permutation of 1 . . . n followed by &). These prefixes are indeed
good, as every suffix we concatenate to them would start with & or with a letter
in {1, . . . , n}, which has appeared before the &. To recognize these prefixes, an
NFW needs to keep track of subsets of {1, . . . , n}, for which it needs 2n states.
Consequently, an NFW for good-pref (Ln) must have at least 2n states.

It is also shown in [16] that the language Ln can be encoded by an LTL formula
of length quadratic in n. This implies that the translation of safety and co-safety
LTL formulas to NFWs for their bad and good prefixes is doubly exponential.
Formally, we have the following.

Theorem 3. [16] Given a safety LTL formula ψ of size n, the size of an NFW
for bad-pref (ψ) is 22Ω(

√
n)

.

3.2 Fine Automata and Their Construction

As described in the proof of Theorem 2, some good prefixes for Ln (the “obvious
prefixes”) can be recognized by a small NFW. What if we give up the non-obvious
prefixes and construct an NFW A′ that accepts only the “obvious subset” of Ln?
It is not hard to see that each word in Ln has an obvious prefix. Thus, while A′
does not accept all the good prefixes, it accepts at least one prefix of every word
in L. This useful property of A′ is formalized below.

Consider a safety language L. We say that a set X ⊆ bad-pref (L) is a trap for
L iff every word w �∈ L has at least one bad prefix in X . Thus, while X need not
contain all the bad prefixes for L, it must contain sufficiently many prefixes to
“trap” all the words not in L. Dually, a trap for a co-safety language L is a set
X ⊆ good-pref (L) such that every word w ∈ L has at least one good prefix in
X . We denote the set of all the traps, for an either safety or co-safety language
L, by trap(L).

An NFW A is fine for a safety or a co-safety language L iff A accepts a trap
for L. For example, an NFW that accepts 0∗ · 1 · (0 + 1) does not accept all the
bad prefixes of the safety language {0ω}; in particular, it does not accept the
minimal bad prefixes in 0∗ · 1. Yet, such an NFW is fine for {0ω}. Indeed, every
infinite word that is different from 0ω has a prefix in 0∗ · 1 · (0 + 1). Likewise,
the NFW is fine for the co-safety language 0∗ · 1 · (0 + 1)ω. In practice, almost
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all the benefit that one obtains from an NFW that accepts all the bad/good
prefixes can also be obtained from a fine automaton. It is shown in [16] that for
natural safety formulas ψ, the construction of an NFW fine for ψ is as easy as
the construction of A¬ψ. In more details, if we regard A¬ψ as an NFW, with
an appropriate definition of the set of accepting states, we get an automaton
fine for ψ. For general safety formulas, the problem of constructing small fine
automata was left open in [16] and its solution in [14] has led to new mysteries
in the context of safety properties. Let us first describe the result in [14].

Recall that the transition from a safety NBW to an NFW for its bad prefixes is
exponential, and that the exponential blow up follows from the fact that a com-
plementing NBW can be construction from a tight NFW. When we consider fine
automata, things are more complicated, as the fine NFW need not accept all bad
prefixes. As we show below, however, a construction of fine automata still has the
flavor of complementation, and must involve an exponential blow up.

Theorem 4. [14] Given a safety NBW A of size n, the size of an NFW fine for
A is 2Θ(n).

We now move on to consider co-safety NBWs. Recall that, as with safety prop-
erties and bad prefixes, the transition from a co-safety NBW to an NFW for its
good prefixes is exponential. We show that a fine NFW for a co-safety property
can be constructed from the NBWs for the property and its negation. The idea
is that it is possible to bound the number of times that a run of A visits the set
of accepting states when it runs on a word not in L(A). Formally, we have the
following:

Lemma 1. [14] Consider a co-safety NBW A. Let F be the set of accepting
states of A and let A be an NBW with n states such that L(A) = comp(L(A)).
If a run of A on a finite word h ∈ Σ∗ visits F more than |F | · n times, then h
is a good prefix for L(A).

Consider a co-safety NBW A with n states, m of them accepting. Let A be an
NBW with n states such that L(A) = comp(L(A)). Following Lemma 1, we can
construct an NFW fine for A by taking (m ·n) + 1 copies of A, and defining the
transition function such that when a run of A′ visits F in the j-th copy of A, it
moves to the (j + 1)-th copy. The accepting states of A′ are the states of F in
the (m · n+ 1)-th copy. This implies the following theorem.

Theorem 5. [14] Consider a co-safety NBW A with n states, m of them ac-
cepting. Let A be an NBW with n states such that L(A) = comp(L(A)). There
exists an NFW A′ with n · (m · n+ 1) states such that A′ is fine for L(A).

Given a safety NBW, its complement NBW is co-safety. Thus, dualizing Theo-
rem 5, we get the following.

Theorem 6. [14] Consider a safety NBW with n states. Let A be an NBW with
n states, m̄ of them accepting, such that L(A) = comp(L(A)). There exists an
NFW A′ with n̄ · (m̄ · n+ 1) states such that A′ is fine for L(A).
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By Theorem 1, given an LTL formula ψ, we can construct NBWs Aψ and A¬ψ
for ψ and ¬ψ, respectively. The number of states in each of the NBWs is at most
2O(|ψ|). Hence, by Theorem 5, we can conclude:

Theorem 7. [14] Consider a safety LTL formula ϕ of length n. There exists an
NFW fine for ϕ with at most 2O(n) states.

It follows from Theorem 7 that the transition from a tight NFW (one that accepts
exactly all bad or good prefixes) to a fine NFW is significant, as it circumvents
the doubly exponential blow-up in Theorem 3.

3.3 Discussion

The work in [14] has answered positively the question about the existence of ex-
ponential fine automata for general safety LTL formulas, improving the doubly-
exponential construction in [16]. Essentially, the construction adds a counter on
top of the NBW for the formula. The counter is increased whenever the NBW
visits an accepting state, and a computation is accepted after the counter reaches
a bound that depends on the size of the formula. For a discussion on the ap-
plication of the result in the context of bounded model checking and run-time
verification see [14]. Here, we discuss the theoretical aspects of the result.

While [14] has solved the problem of constructing exponential fine automata
for LTL formulas, the problem of constructing polynomial fine automata for
co-safety NBW is still open. The challenge here is similar to other challenges
in automata-theoretic constructions in which one needs both the NBW and its
complementing NBW — something that is easy to have in the context of LTL,
but difficult in the context of NBW. More problems in this status are reported
in [18]. For example, the problem of deciding whether an LTL formula ψ can be
translated to a DBW can be solved by reasoning about the NBWs for ψ and
¬ψ. This involves an exponential blow up in the length of ψ, but, as in our case,
no additional blow-up for complementation. The problem of deciding whether
an NBW can be translated to a DBW cannot be solved using the same lines,
as here complementation does involve an exponential blow up. From a practical
point of view, however, the problem of going from a co-safety automaton to a
fine NFW is of less interest, as users that use automata as their specification
formalism are likely to start with an automaton for the bad or the good prefixes
anyway. Thus, the problem about the size of fine automata is interesting mainly
for the specification formalism of LTL, which [14] did solve.

4 From Büchi to co-Büchi Automata

The second open problem we describe is the problem of translating, when possi-
ble, a nondeterministic Büchi word automaton to an equivalent nondeterministic
co-Büchi word automaton (NCW). The co-Büchi acceptance condition is dual
to the Büchi acceptance condition. Thus, F ⊆ Q and a run r is accepting if
it visits F only finitely many times. Formally, inf(r) ∩ F = ∅. NCWs are less
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expressive than NBWs. For example, the language {w : w has only finitely many
0s} ⊆ {0, 1}ω cannot be recognized by an NCW. In fact, NCWs are as expres-
sive as deterministic co-Büchi automata (DCWs). Hence, as DBWs are dual to
DCWs, a language can be recognized by an NCW iff its complement can be
recognized by a DBW.

The best translation of NBW to NCW (when possible) that is currently known
actually results in a deterministic co-Büchi automaton (DCW), and it goes as
follows. Consider an NBW A that has an equivalent NCW. First, co-determinize
A and obtain a deterministic Rabin automaton (DRW) Ã for the complement
language. By [13], DRWs are Büchi type. That is, if a DRW has an equivalent
DBW, then the DRW has an equivalent DBW on the same structure. Let B̃ be
the DBW equivalent to Ã (recall that since A can be recognized by an NCW,
its complement can be recognized by a DBW). By dualizing B̃ one gets a DCW
equivalent to A. The co-determinization step involves an exponential blowup in
the number of states [33]. Hence, starting with an NBW with n states, we end
up with an NCW with 2O(n log n) states. This is particularly annoying as even
a lower bound showing that an NCW needs one more state is not known. As
we discuss below, the translation of NBW to an equivalent NCW is of practical
importance because of its relation to the problem of translating LTL formulas
to equivalent alternation-free μ-calculus (AFMC) formulas (when possible).

It is shown in [17] that given an LTL formula ψ, there is an AFMC formula
equivalent to ∀ψ iff ψ can be recognized by a DBW. Evaluating specifications
in the alternation-free fragment of μ-calculus can be done with linearly many
symbolic steps. In contrast, direct LTL model checking reduces to a search for
bad-cycles and its symbolic implementation involves nested fixed-points, and is
typically quadratic [32]. Hence, identifying LTL formulas that can be translated
to AFMC, and coming up with an optimal translation, is a problem of great prac-
tical importance. The best known translations of LTL to AFMC first translates
the LTL formula ψ to a DBW, which is then linearly translated to an AFMC
formula for ∀ψ. The translation of LTL to DBW, however, is doubly exponen-
tial, thus the overall translation is doubly-exponential, with only an exponential
matching lower bound [17].

The reason that current translations go through an intermediate determin-
istic automaton is the need to run this automaton on all the computations of
the system in a way that computations with the same prefix follow the same
run. A similar situation exists when we expand a word automaton to a tree
automaton [8] — the word automaton cannot be nondeterministic, as different
branches of the tree that have the same prefix u may be accepted by runs of the
word automaton that do not agree on the way they proceed on u. A promising
direction for coping with this situation was suggested in [17]: Instead of trans-
lating the LTL formula ψ to a DBW, one can translate ¬ψ to an NCW. This
can be done either directly, or by translating the NBW for ¬ψ to an equivalent
NCW. Then, the NCW can be linearly translated to an AFMC formula for ∃¬ψ,
whose negation is equivalent to ∀ψ. The fact that the translation can go through
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a nondeterministic rather than a deterministic automaton is very promising, as
nondeterministic automata are typically exponentially more succinct than deter-
ministic ones.3 Nevertheless, the problem of translating LTL formulas to NCWs
of exponential size is still open.4 The best translation that is known today in-
volves a doubly-exponential blow up, and it actually results in a DCW, giving
up the idea that the translation of LTL to AFMC can be exponentially more effi-
cient by using intermediate nondeterministic automata. Note that a polynomial
translation of NBW to NCW will imply a singly-exponential translation of LTL
to AFMC, as the only exponential step in the procedure will be the translation
of LTL to NBW.5

Recall that while the best upper bound for an NBW to NCW translation is
2O(n logn), we do not even have a single example to a language whose NBW is
smaller than its NCW. In fact, it was only recently shown that NBWs are not
co-Büchi-type. That is, there is an NBW A such that L(A) can be recognized
by an NCW, but an NCW for L(A) must have a different structure than A.
We describe such an NBW in the proof below (the original proof, in [15], has a
different example).

Lemma 2. [15] NBWs are not co-Büchi-type.

Proof: Consider the NBW described in Figure 1. Note that the NBW has two
initial states. The NBW recognizes the language L of all words with at least one
a and at least one b. This language can be recognized by an NCW, yet it is easy
to see that there is no way to define F on top of A such that the result is an
NCW that recognizes L.

a b

ab

ba,b a,b a

Fig. 1. An NBW for “at last one a and at least one b”

During our efforts to solve the NBW to NCW problem, we have studied the
related problem of translating NBWs to NFWs. In the next section we describe
3 Dually, we can translate the LTL formula to a universal Büchi automaton and trans-

late this automaton to an AFMC formula. The universal Büchi automaton for ψ is
dual to the nondeterministic co-Büchi automaton for ¬ψ.

4 As mentioned above, not all LTL formulas can be translated to NCWs. When we
talk about the blow up in a translation, we refer to formulas for which a translation
exists.

5 Wilke [42] proved an exponential lower-bound for the translation of an NBW for
an LTL formula ψ to and AFMC formula equivalent to ∀ψ. This lower-bound does
not preclude a polynomial upper-bound for the translation of an NBW for ¬ψ to an
AFMC formula equivalent to ∃¬ψ, which is our goal.
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the problem, its relation to the NBW to NCW problem, and our partial success
in this front.

4.1 From Büchi to Limit Finite Automata

Recall that DBWs are less expressive than NBWs. Landweber characterizes lan-
guages L ⊆ Σω that can be recognized by a DBW as those for which there
is a regular language R ⊆ Σ∗ such that L is the limit of R. Formally, w is
in the limit of R iff w has infinitely many prefixes in R [21]. It is not hard to
see that a DBW for L, when viewed as a DFW, recognizes a language whose
limit is L, and vice versa – a DFW for R, when viewed as a DBW, recognizes
the language that is the limit of R. What about the case R and L are given
by nondeterministic automata? It is not hard to see that the simple transfor-
mation between the two formalisms no longer holds. For example, the NBW A
in Figure 2 recognizes the language L of all words with infinitely many bs, yet
when viewed as an NFW, it recognizes (a + b)+, whose limit is (a + b)ω. As
another example, the language of the NBW A′ is empty, yet when viewed as
an NFW, it recognizes the language (a + b)∗ · b, whose limit is L. As demon-
strated by the examples, the difficulty of the nondeterministic case originates
from the fact that different prefixes of the infinite word may follow different
accepting runs of the NFW, and there is no guarantee that these runs can be
merged into a single run of the NBW. Accordingly, the best translation that was
known until recently for going from an NFW to an NBW accepting its limit,
or from an NBW to a limit NFW, is to first determinize the given automaton.
This involves a 2O(n logn) blow up and gives up the potential succinctness of the
nondeterministic model. On the other hand, no lower bound above Ω(n logn) is
known.

b

a,b a,b

a,b

b

A : A′ :

Fig. 2. Relating NBWs and limit NFWs

In [2] we study this exponential gap and tried to close it. In addition to the
limit operator introduced by Landweber, we introduce and study two additional
ways to induce a language of infinite words from a language of finite words: the
co-limit of R is the set of all infinite words that have only finitely many prefixes
in R. Thus, co-limit is dual to Landweber’s limit. Also, the persistent limit of
R is the set of all infinite words that have only finitely many prefixes not in R.
Thus, eventually all the prefixes are in R. Formally, we have the following.
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Definition 1. Consider a language R ⊆ Σ∗. We define three languages of infi-
nite words induced by R.

1. [limit] lim(R) ⊆ Σω is the set of all words that have infinitely many prefixes
in R. I.e., lim(R) = {w | w[1, i] ∈ R for infinitely many i’s} [21].

2. [co-limit] co-lim(R) ⊆ Σω is the set of all words that have only finitely
many prefixes in R. I.e., co-lim(R) = {w |w[1, i] ∈ R for finitely many i’s}.

3. [persistent limit] plim(R) ⊆ Σω is the set of all words that have only
finitely many prefixes not in R. I.e., plim(R) = {w | w[1, i] ∈ Rfor almost
alli′s}.

For example, forR = (a+b)∗b, the language lim(R) consists of all words that have
infinitely many b’s, co-lim(R) is the language of words that have finitely many b’s,
and plim(R) is the language of words that have finitely many a’s. For an NFW
A, we use lim(A), co-lim(A), and plim(A), to denote lim(L(A)), co-lim(L(A)),
and plim(L(A)), respectively. The three limit operators are dual in the sense
that for all R ⊆ Σ∗, we have comp(lim(R)) = co-lim(R) = plim(comp(R)).

Below we describe the main results of [2], which studies the relative succinct-
ness of NBWs, NCWs, and NFWs whose limit, co-limit, and persistent limit
correspond to the NBW and NCW.

We first need some notations. Consider an NFW A = 〈Σ,Q, δ,Q0, F 〉. For
two sets of states P, S ⊆ Q, we denote by LP,S the language of A with initial set
P and accepting set S. Theorem 8 is a key theorem in beating the “determinize
first” approach. It implies that the transition from an NFW A to an NBW for
lim(A) need not involve a determinization of A. Indeed, we can specify lim(A) as
the union of languages that are generated by automata with a structure similar
to the structure of A. Formally, we have the following.

Theorem 8. [2] For every NFW A = 〈Σ,Q, δ,Q0, F 〉,

lim(A) =
⋃

p∈Q
LQ0,{p} · (L{p},{p} ∩ L{p},F )ω.

Given A with n states, Theorem 8 implies that an NBW accepting lim(A) can be
constructed by intersection, application of ω, concatenation, and union, starting
with NFWs with n states. Exploiting the the similarity in the structure of the
involved NFWs, the resulting NBW has O(n2) states.

Corollary 1. Given an NFW A with n states, there is an NBW A′ with O(n2)
states such that L(A′) = lim(L(A)).

Corollary 1 implies that going from an NFW to an NBW for its limit, it is
possible to do better than determinize the NFW. On the other hand, it is shown
in [2] that going from an NFW to an NCW for its co-limit or persistent limit,
an exponential blow-up cannot be avoided, and determinization is optimal.

Further results of [2] study succinctness among NFWs to which different limit
operators are applied. For example, in Theorem 9 below we prove that going from
a persistent limit NFW to a limit NFW involves an exponential blow up. In other
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words, given an NFW A whose persistent limit is L, translating A to an NFW
whose limit is L may involve an exponential blow up. Note that persistent limit
and limit are very similar – both require the infinite word to have infinitely many
prefixes in L(A), only that the persistent limit requires, in addition, that only
finitely many prefixes are not in L(A). This difference, which is similar to the
difference between NBW and NCW, makes persistent limit exponentially more
succinct. Technically, it follows from the fact that persistent limit NFWs inherit
the power of alternating automata. In a similar, though less surprising way, co-
limit NFWs inherit the power of complementation, and are also exponentially
more succinct.

Theorem 9. [2] For every n ≥ 1, there is a language Ln ⊆ Σω such that there
are NFWs A with O(n) states, and A′ with O(n2) states, such that co-lim(A) =
plim(A′) = Ln but an NFW A′′ such that lim(A′′) = Ln must have at least 2n

states.

Proof: Consider the language Ln ⊆ {0, 1}ω of all words w such that w = uuz,
with |u| = n. We prove that an NFWA′′ such that lim(A′′) = Ln must remember
subsets of size n, and thus must have at least 2n states. In order to construct
small NFW for the co-limit and persistent limit operators, we observe that a
word w is in Ln iff

∧n
i=1(w[i] = w[n + i]). In the case of co-limit, we can check

that only finitely many (in fact, 0) prefixes h of an input word are such that
h[i] �= h[i+n] for some 1 ≤ i ≤ n. The case of persistent limit is much harder, as
we cannot use the implicit complementation used in the co-limit case. Instead,
we use the universal nature of persistence. We define the NFW A′ as a union of n
NFWs A′1, . . . ,A′n. The NFW A′i is responsible for checking that w[i] = w[n+ i].
In order to make sure that the conjunction on all 1 ≤ i ≤ n is satisfied, we
further limit A′i to accept only words of length i mod n. Hence, A′i accepts a
word u ∈ Σ∗ iff u[i] = u[n+ i] ∧ |u| = i mod n. Thus, plim(A′) = Ln.

4.2 Discussion

The exponential gap between the known upper and lower bounds in the transla-
tion of NBW to NCW is particularly annoying: the upper bound is 2O(n logn) and
for the lower bound we do not even have an example of a language whose NCW
needs one more state than the NBW. The example in the proof of Lemma 2
shows an advantage of the Büchi condition. In a recent work with Benjamin
Aminof and Omer Lev, we hope to turn this advantage into a lower bound. The
idea is as follows. NCWs cannot recognize the language of all words that have
infinitely many occurrences of some letter. Indeed, DBWs cannot recognize the
complement language [21]. Thus, a possible way to obtain a lower bound for the
translation of NBW to NCW is to construct a language that is recognizable by
an NCW, but for which an NCW needs more states than an NBW due to its
inability to recognize infinitely many occurrences of a letter. One such candidate
is the family of languages L1, L2, . . . over the alphabet {a, b}, where Lk contains
exactly all words that have at least k occurrences of the letter a and at least k
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occurrences of the letter b. An NBW can follow the idea of the NBW in Figure 1:
since every infinite word has infinitely many a’s or infinitely many b’s, the NBW
for L can guess which of the two letters occurs infinitely often, and count k oc-
currences of the second letter. Thus, the NBW is the union of two components,
one looking for k occurrences of a followed by infinitely many b’s and the other
looking for k occurrences of b followed by infinitely many a’s. This can be done
with 2k + 1 states. We conjecture that an NCW needs more than two counters.
The reason is that an NCW with less than k states accepting all words with
infinitely many a’s, inevitably also accepts a word with less than k a’s.
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Abstract. We present a practical algorithm for computing exact least solutions
of systems of equations over the rationals with addition, multiplication with pos-
itive constants, minimum and maximum. The algorithm is based on strategy im-
provement combined with solving linear programming problems for each se-
lected strategy. We apply our technique to compute the abstract least fixpoint
semantics of affine programs over the relational template constraint matrix do-
main [20]. In particular, we thus obtain practical algorithms for computing the
abstract least fixpoint semantics over the zone and octagon abstract domain.

1 Introduction

Abstract interpretation aims at inferring run-time invariants of programs [5]. Such
an invariant may state, e.g., that a variable x is always contained in the interval
[2, 99] whenever a specific program point is reached. In order to compute such in-
variants, often an abstract semantics is considered which for each program point over-
approximates the collecting semantics at this program point. Technically, the abstract
semantics is given as the least fixpoint of an appropriate system of in-equations over a
complete lattice. Any solution of this system provides safe information while only the
precision of the information returned by the analysis depends on computing as small
solutions as possible. In the example of interval analysis, clearly, the smaller the inter-
val which the analysis returns for a given variable at a program point, the better is the
information.

Thus, any ambitious program analyzer aims at computing least solutions of the sys-
tems of in-equations in question. Since ordinary fixpoint iteration does not provide a
terminating algorithm in general, widening combined with narrowing has been pro-
posed to accelerate fixpoint computation and thus guarantee termination of the analysis
algorithm at a moderate loss of precision [7,8]. Finding useful widening and narrowing
operators, however, is a kind of a black art and it is not a priori clear whether the chosen
heuristics will be sufficient for a given program. As an alternative to the general tech-
nique of widening and narrowing, we are interested in methods which allow to compute
least solutions of in-equations precisely – at least for certain interesting cases.

Here, we are interested in computing precise abstract least fixpoint semantics of
affine programs over a certain relational domain which enables us to describe (certain)
relations between the values of program variables. Our key techniques refer to the tem-
plate constraint matrix (TCMs) abstract domain introduced by Sankaranarayanan et al.
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[20]. Polyhedra of a predefined fixed shape can be represented through elements of this
domain. As a particular case, we obtain practical precise algorithms also for intervals,
the zone abstract domain and octogons [16,15].

The key idea for our precise algorithm for equations over rationals is strategy iter-
ation. Recently, strategy iteration (called policy iteration in [4,10]) has been suggested
by Costan et al. as an alternative method for the widening and narrowing approach
of Cousot and Cousot [7,8] for computing (hopefully small) solutions of systems of
in-equations. Originally, strategy iteration has been introduced by Howard for solving
stochastic control problems [13,19] and is also applied to zero-sum two player games
[12,18,22] or fixpoints of min-max-plus systems [3]. In general, though, naive strategy
iteration will only find some fixpoint — not necessarily the least one [4].

In [4] Costan et al. consider systems of equations over integer intervals. The authors
then generalize their idea in [10] to the zone- and octagon-domain [16,15] as well as
to the TCM domain [20]. Their strategy iteration scheme can be applied to monotone
self maps F satisfying a selection property. This selection property states that the self
map F can be considered as the infimum of a set of simpler self maps. Then the se-
lection property enables to compute a fixpoint of F by successively computing least
fixpoints of the simpler maps. In certain cases, e.g., for non-expansive self maps on R

n
,

this approach returns the least fixpoint. In many practical cases, however, this cannot
be guaranteed. In [11], we provide a practical algorithm for computing least solutions
of (in-)equations over integer intervals. This algorithm crucially exploits the fact that
the interval bounds are integers. Interestingly, it is not applicable to (in-)equations of
intervals with rational bounds or multiplication with fractions such as 0.5.

In contrast to [4,10] and similar to [11] we do not apply strategy iteration di-
rectly to systems of equations over the interval, the zone/octagon or the TCM domain.
Instead, we design just one strategy improvement algorithm for computing least solu-
tions of systems of rational equations. Technically, our algorithm in [11] relies on an
instrumentation of the underlying lattice [11]. This instrumentation is no longer pos-
sible for rationals. Our main technical contribution therefore is to construct a precise
strategy iteration without extra instrumentation. For solving the subsystems selected by
a strategy, we use linear programming [14,21]. Using a similar reduction as in [11] for
integer intervals, systems of rational equations can be used for interval analysis with ra-
tional bounds. Because of lack of space, we do not present this reduction here. Instead,
by additionally allowing a (monotone) linear programming operator in right-hand sides
of equations, we use our techniques for computing abstract least fixpoint semantics of
affine programs over the TCM domain. We emphasize that our methods return precise
answers and do not rely on widening or narrowing. Using the simplex algorithm for
solving the occurring linear programs, our algorithm is even uniform, i.e., the number
of arithmetic operations does not depend on the sizes of occurring numbers.

The paper is organized as follows. Section 2 introduces systems of rational equations
and basic notations. Section 3 presents our strategy improvement algorithm for systems
of rational equations. Affine programs are discussed in section 4. There we show how to
compute the abstract semantics over the TCM domain using systems of rational equa-
tions extended with linear programming operators. Solving these systems is discussed
in section 5. Finally, we conclude with section 6.
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2 Systems of Rational Equations

We are interested in computing least solutions of systems of equations over the ratio-
nals. Since the least upper bound of a bounded set of rationals need not be rational
any longer, we consider the complete lattice R = R ∪ {−∞,∞} of real numbers
equipped with the natural ordering≤ and extended with−∞ as least and∞ as greatest
element. On R we consider the operations addition, multiplication with positive con-
stants, minimum “∧” and maximum “∨” which are extended to operands “−∞” and
“∞” as follows. We set x + (−∞) = y · (−∞) = −∞ for x ∈ R, y ≥ 0; we set
x+∞ = y · ∞ = ∞ for x ∈ R, y > 0; and we set 0 · x = 0 for x > −∞. For c > 0,
the operations + and c· distribute over ∨ and ∧. Moreover + distributes over c·. A sys-
tem of rational equations is a sequence x1 = e1, . . . ,xn = en of rational equations
where x1, . . . ,xn are pairwise distinct variables, and the right-hand sides are expres-
sions e′ built up from constants and variables by means of addition, multiplication with
positive constants, minimum “∧” and maximum “∨”. Thus, an expression is defined by
the grammar

e′ ::= a | xi | e′1 + e′2 | b · e′ | e′1 ∨ e′2 | e′1 ∧ e′2
where a ∈ Q, b ∈ Q>0, xi is a variable and e′, e′1, e

′
2 are expressions. Note that all

occurring constants are rationals. We call a system E of rational equations conjunctive
(resp. disjunctive) iff no right-hand side of E contains the maximum-operator “∨” (resp.
minimum-operator “∧”). A system without occurrences of minimum and maximum
operators is called basic. As usual, every expression e evaluates to a value [[e]]μ ∈ R

under a variable assignment μ : X → R. Thus, e.g., [[e′1 + e′2]]μ = [[e′1]]μ + [[e′2]]μ
where e′1, e

′
2 are expressions. Assume that E denotes the system x1 = e1, . . . ,xn = en

of rational equations. A variable assignment μ which satisfies all equations of E , i.e.,
μ(xi) = [[ei]]μ for i = 1, . . . , n, is called a solution of E . Accordingly, we call a variable
assignment μ a pre-solution of E iff μ(xi) ≤ [[ei]]μ for i = 1, . . . , n and a post-solution
of E iff μ(xi) ≥ [[ei]]μ. A solution of E is a fixpoint of the function given through
the right-hand sides of E . Since every right-hand side ei induces a monotonic function
[[ei]] : (X → R) → R, every system E of rational equations has a least solution. We
write μ � μ′ iff μ(x) < μ′(x) for all variables x. Moreover, we write −∞ (resp. ∞)
for the variable assignment which maps every variable to −∞ (resp.∞).

We remark, that least solutions of systems of rational equations cannot effectively be
computed by performing ordinary Kleene fixpoint iteration. Even if the least solution
is finite, infinitely many iterations may be necessary. A simple example is the equation
x = 0.5 · x + 1 ∨ 0, whose least solution maps x to 2.

As a start, we consider disjunctive systems of rational equations. We recall from [10]
that computing the least solution for such a system can be reduced to solving linear
programs (LPs). For a set S and a matrix A ∈ Sm×n, we write Ai· for the i-th row of
A and A·j for the j-th column of A. AccordinglyAi·j denotes the element in row i and
column j. As usual we identify Sm×1 with Sm. We denote the transposed of A by AT .
For A ∈ Rm×n and c ∈ Rn we define the operator LPA,c : R

m → R by

LPA,c(b) =
∨
{cTx | x ∈ Rn, Ax ≤ b}



26 T. Gawlitza and H. Seidl

for b ∈ Rm. This operator is monotone and represents a linear program. If the program
is infeasible, i.e.,Ax ≤ b for no x, LPA,c(b) returns−∞. If the program is unbounded,
i.e., for all r ∈ R, cTx > r for some x satisfying Ax ≤ b, LPA,c(b) returns∞.

Our goal is to compute the least solution of a system E of disjunctive rational equa-
tions. For simplicity, we assume that all maximum operators in right-hand sides of E
occur on top-level such as in:

x1 = 1
3x2 + 3 ∨ 1 x2 = 2x1 − 6 ∨ 5x2 − 1

Assume that E has n variables and the least solution is given by μ∗. In the first step, we
compute the set of variables xi with μ∗(xi) = −∞. This can be done in timeO(n · |E|)
by performing n rounds of fixpoint iteration which results in a variable assignment μ
with μ(x) = −∞ iff μ∗(x) = −∞ for all variables x. Accordingly, the least solution
of the example system returns values exceeding−∞ for both x1 and x2.

Having determined the set of variables xi with μ∗(xi) = −∞, we can remove these
variables from our system of equations. Therefore, we now w.l.o.g. may assume that
μ∗ � −∞. Also, we may assume that the constant −∞ does not occur in E . For a
moment assume furthermore that μ∗ � ∞. From the set of equations we can extract a
set of constraints (here in-equations) which are satisfied exactly by all post-solutions of
E . In our example these are given by:

x1 ≥ 1
3x2 + 3 x1 ≥ 1 x2 ≥ 2x1 − 6 x2 ≥ 5x2 − 1

Since −∞ � μ∗ � ∞, the least solution μ∗ can be characterized as the (unique)
vector x = (x1·, . . . , xn·) ∈ Rn that represents a solution of the above constraints and
for which −(x1· + · · · + xn·) is maximal. Thus, x can be determined by solving the
appropriate LP. In the example, this results in the vector x = (3, 0).

In general, it might not be the case that μ∗ � ∞. If this is not the case, the LP
corresponding to the system E is not feasible. In order to deal with this case as well, we
consider the variable dependency graphG = (V,→) of E where the set of vertices V is
the set of variables and the set of edges→⊆ V 2 is the smallest set s.t. xj → xi iff xi =
ei ∈ E and xj occurs in ei. Since μ∗ � −∞ and−∞ does not occur as a constant in E ,
[[e]]μ∗ > −∞ for every subexpression occurring in E . Thus, μ∗(xj) = ∞ and xj →∗ xi
implies μ∗(xi) = ∞. In particular if μ∗(xi) = ∞ for some variable xi of a strongly
connected component (SCC), then μ∗(xj) = ∞ for every variable xj of the same SCC.
Therefore, we proceed by processing one maximal SCC after the other. Thereby we start
with a maximal SCC G′ = (V ′,→′) without in-going edges. The least solution of the
subsystem of E described byG′ can be computed using linear programming as sketched
above. If the corresponding LP is infeasible, then μ∗(xi) = ∞ for all variables xi of
the SCC and in fact for all variables xi reachable from this SCC. The corresponding LP
cannot be unbounded, since this would be a contradiction to μ∗ � −∞.

Having computed the values of all variables in the first maximal SCC, we replace all
occurrences of these variables in the remaining equations by their values and proceed
with another maximal SCC without in-going edges. In essence, this is the algorithm of
[10] simplified for systems of rational constraints. Summarizing, we have:

Theorem 1 (Costan et al. 2007). The least solution of a disjunctive system E of ratio-
nal equations can be computed by solving linearly many LPs of polynomial sizes. ��
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This theorem results in a polynomial algorithm if we apply interior point methods for
solving the occurring LPs [14,21,1]. Note, however, that the run-time then crucially
depends on the sizes of occurring numbers. At the danger of an exponential run-time
in contrived cases, we can also rely on the simplex algorithm instead: the advantage
of the latter algorithm is that its run-time is uniform, i.e., independent of the sizes of
occurring numbers (given that arithmetic operations, comparison, storage and retrieval
for numbers are counted forO(1)).

3 Least Solutions of Systems of Rational Equations

In this section we provide techniques for computing least solutions of systems of ratio-
nal equations. Our techniques are based on (max-) strategy improvement. Let M∨(E)
denote the set of all maximum subexpressions occurring in E . A (max-)strategy π is a
function mapping every expression e1∨e2 inM∨(E) to one of the subexpressions e1, e2.
Given a max-strategy π together with an expression e, we write e π for the expression
obtained by recursively replacing every maximum expression in E by the respective
subexpression selected by π. Assuming that E is the system xi = ei, i = 1, . . . , n, we
write E(π) for the system xi = ei π, i = 1, . . . , n. Thus E(π) is extracted from E via
the strategy π. Note that E(π) is conjunctive.

Example 1. Consider the system E of rational equations given by the equation x =
(2 · x− 2 ∧ 10) ∨ 4. Consider the max-strategy π which maps the top-level expression
(2 ·x− 2∧ 10)∨ 4 to the expression 4. Then the system E(π) of conjunctive equations
is given by the equation x = 4. ��
Assume that μ∗ denotes the least solution of the system E of rational equations. Our
goal is to construct a strategy improvement algorithm for computing μ∗. The algorithm
maintains a current max-strategy π and a current variable assignment μ. The current
variable assignment μ is a pre-solution of E which is less than or equal to μ∗. For a
current max-strategy π and a current variable assignment μ, the algorithm performs an
accelerated least fixpoint computation on the system E(π) which starts with μ. This
fixpoint computation results in a variable assignment μ′ which is a a solution of E(π)
and a pre-solution of E and moreover is still less than or equal to μ∗. If μ′ is not a
solution of E , a new improved max-strategy π′ is determined and the algorithm re-starts
with π′ as current max-strategy and μ′ as current variable assignment. These steps are
repeated until the least fixpoint of E is reached.

Given a current max-strategy π and a solution μ of E(π), we pursue the policy to
improveπ at all expressions e′1∨e′2 where [[e′1 ∨ e′2]]μ > [[(e′1 ∨ e′2) π]]μ simultaneously.
Formally, we introduce an improvement operator P∨ by:

P∨(π, μ)(e1 ∨ e2) =

⎧
⎨

⎩

e1 if [[e1]]μ > [[e2]]μ
e2 if [[e1]]μ < [[e2]]μ
π(e1 ∨ e2) if [[e1]]μ = [[e2]]μ

Note that the strategy P∨(π, μ) differs from π only if μ is not a solution of E .

Example 2. Consider the system E and the max-strategy π from example 1. Let μ de-
note the unique solution of E(π), i.e., μ(x) = 4. The variable assignment μ is less than
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Algorithm 1. Least Solution of The System E of Rational Equations
π ← π−∞; μ ← −∞;

while (μ is not a solution of E) {
π ← P∨(π,μ); μ ← least solution of E(π) that is greater than or equal to μ;

}
return μ

or equal to the least solution of E and the max-strategy π′ := P∨(π, μ) �= π leads to the
system E(π′) given by the equation x = (2 · x− 2 ∧ 10). ��
In order to formulate our strategy improvement algorithm, we do not consider the orig-
inal system E . Instead, we replace every equation xi = ei of E by xi = ei ∨ −∞.
For simplicity, we denote the resulting system again by E . Our algorithm starts with the
max-strategy that maps every top-level expression to−∞. We denote this max-strategy
by π−∞. Then, our strategy improvement algorithm is given as algorithm 1.

Clearly, if algorithm 1 terminates, it returns a solution of E . It returns the least one,
since for every strategy π the least solution μ′ of E(π) with μ′ ≥ μ is less than or equal
to the least solution μ′′ of E with μ′′ ≥ μ. Therefore the value of the program variable
μ is always less than or equal to μ∗.

Two things remain to be explained. First, we need an algorithm for computing the
least solution μ′ of a conjunctive system such as E(π) with μ′ ≥ μ for a given variable
assignment μ. Here, we will exploit that every μ to be considered is not arbitrary but a
consistent pre-solution (see below) of E(π). Secondly, we must prove that every strat-
egy π occurs only finitely often during the strategy iteration. Before going further, we
illustrate algorithm 1 by an example.

Example 3. E ≡ x1 = 0.8·x1+x2 ∨ 2 ∨ −∞ x2 = (x2+1 ∧ 100) ∨ x1 ∨ −∞
E(π1) ≡ x1 = −∞ x2 = −∞
E(π2) ≡ x1 = 2 x2 = −∞
E(π3) ≡ x1 = 2 x2 = x1

E(π4) ≡ x1 = 0.8·x1+x2 x2 = x2+1 ∧ 100

Consider the
system E of rational
equations shown on
the right. Algorithm 1
computes the least solution μ∗ using 4 max-strategies π1, . . . , π4. The strategies πi
lead to the systems E(πi) shown on the right. Let us consider the system E(π3). The
only solution maps every variable to 2. Thus, the improvement step leads to the system
E(π4) for which we must compute the least solution which maps every variable to
values greater than or equal to 2. This solution maps x1 to 500 and x2 to 100 and is
also the least solution of E . ��

Assume that E denotes the conjunctive system xi = ei, i = 1, . . . , n and that μ is a
pre-fixpoint of E . We define the set Dμ(E) of derived constraints as the smallest set of
constraints of the form x ≤ e such that

– xi ≤ e′ ∈ Dμ(E) whenever xi = ei with μ(xi) < ∞ can be rewritten (using
distributivity) into xi = e′ ∧ e′′ where e′ does not contain ∧-operators;

– xi ≤ 1
1−c · e ∈ Dμ(E) whenever xi ≤ c · xi + e ∈ Dμ(E) where 0 < c < 1; and

– xi ≤ c · e′+ e ∈ Dμ(E) whenever xi ≤ c ·xj + e ∈ Dμ(E) and xj ≤ e′ ∈ Dμ(E).

Lemma 1. Assume that μ is a pre-solution of the conjunctive system E . Then μ(x) ≤
[[e]]μ for every x ≤ e ∈ Dμ(E). ��
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We call the pre-solution μ of E (E-)consistent iff

– [[e]]μ = −∞ implies e = −∞ for every expression e occurring in E .
– Dμ(E) does not contain a derived constraint xi ≤ c · xi + e ∈ Dμ(E) with c ≥ 1

and μ(xi) = [[c · xi + e]]μ. (We call such a constraint μ-critical).

Example 4. The pre-solution μ = {x1 �→ 2,x2 �→ 2} is not E-consistent for the
conjunctive system E given by the equations x1 = 0.75·x1+0.25·x2 and x2 = 4·x1−6,
because x1 ≤ 1.75 ·x1−1.5 ∈ Dμ(E) and μ(x1) = 2 = [[1.75 · x1 − 1.5]]μ. However,
the pre-solution μ′ = {x1 �→ 3,x2 �→ 4} is E-consistent. ��

We claim that algorithm 1 computes least solutions μ′ of E(π) with μ′ ≥ μ for variable
assignments μ which are consistent pre-solutions of E , only. Since −∞ is a consistent
pre-solution of E(π−∞), this follows inductively using the following two lemmas.

Lemma 2. Let E be a conjunctive system and μ be a consistent pre-solution of E . Every
pre-solution μ′ ≥ μ of E is consistent. ��

Lemma 3. Assume that E is a system, π a max-strategy, μ a consistent pre-solution of
E(π) and π′ = P∨(π, μ). Then μ is a consistent pre-solution of E(π′). ��

It remains to provide a method for computing the least solution μ′ with μ′ ≥ μ of a
conjunctive system E for a consistent pre-solution μ of E .

3.1 Systems of Conjunctive Equations

In this subsection we consider conjunctive systems E of rational equations. Of a par-
ticular interest are feasible systems. We call E feasible iff there exists a consistent pre-
solution μ � ∞ of E . It turns out that feasible systems enjoy the property to have a
least consistent solution. The main challenge and the goal of this section therefore is
to derive a method for computing the least consistent solution of feasible systems. This
method then will be used to compute the least solution μ′ of E with μ′ ≥ μ provided
that μ is a consistent pre-solution of E with μ�∞.

The restriction to consistent pre-solutions with μ � ∞ can be lifted as follows.
Assume that μ denotes an arbitrary consistent pre-solution of E . Let X∞ be the set of
variables x with μ(x) = ∞. Let E ′ denote the system obtained from E by (1) removing
every equation x = e with x ∈ X∞ and (2) replacing every variable x ∈ X∞ by the
constant ∞. Then μ|X\X∞ is a consistent pre-solution of E ′ with μ|X\X∞ � ∞ and
thus the least solution of E ′ with μ′ ≥ μ|X\X∞ is the least consistent solution of E ′.
Finally, the least solution μ∗ of E with μ∗ ≥ μ is then given by μ∗(x) = ∞ for x ∈ X∞

and μ∗(x) = μ′(x) for x /∈ X∞. In the following, we only consider feasible systems of
conjunctive rational equations. Furthermore, we assume that the constant−∞ does not
occur in the systems under consideration. In a first step we consider systems of basic
equations, i.e., systems in which neither ∨ nor ∧ occur. The following lemma implies
that every feasible system of basic equations has a least consistent solution.

Lemma 4. Assume that E is a feasible system of basic equations. Assume that μ�∞
is a pre-solution of E and μ′ a consistent solution of E . Then μ ≤ μ′.
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Proof. Assume that E denotes the system xi = ei, i = 1, . . . , n. We proceed by induc-
tion on the number of variables occurring in right-hand sides of E . If no variable occurs
in a right-hand side of E , then μ′ is the only solution of E . Thus μ ≤ μ′, since otherwise
μwould not be a pre-solution of E . For the induction step, consider an equation xi = ei
of E where xi occurs in a right-hand side ej of E .

Case 1: ei does not contain xi
We obtain a system E ′ from E by replacing all occurrences of xi in right-hand sides
with ei. Since Dμ′(E ′) ⊆ Dμ′(E), μ′ is a consistent solution of E ′. Since μ is also a
pre-solution of E ′ and the system E ′ contains one variable less in right-hand sides we
get μ ≤ μ′ by induction hypothesis.

Case 2: ei contains xi
Using distributivity, we rewrite the equation xi = ei equivalently into

xi = c · xi + e

where c ∈ R>0 and e does not contain xi. Then we obtain the systems E1 and E2 from
E by replacing the equation xi = c · xi + e by xi = ∞ and xi = 1

1−c · e, respectively.
Then we obtain systems E ′1 and E ′2 from E1 and E2 by replacing all occurrences of the
variable xi in right-hand sides with∞ and 1

1−c · e, respectively.
First consider the case c < 1. Since μ′ is consistent we get that μ′(xi) > −∞.

Thus, μ′(xi) ∈ {[[ 1
1−c · e]]μ′,∞}. If μ′(xi) = ∞, we conclude that, since Dμ′(E ′1) ⊆

Dμ′(E1) ⊆ Dμ′(E), μ′ is a consistent solution of E ′1. Since μ is a pre-solution of E ′1 and
E ′1 has at least one variable less in right-hand sides than E , we get μ ≤ μ′ by induction
hypothesis. If μ′(xi) = [[ 1

1−c · e]]μ′, we conclude that since Dμ′(E ′2) ⊆ Dμ′(E2) ⊆
Dμ′(E), μ′ is a consistent solution of E ′2. Since μ is a pre-solution of E ′2 and E ′2 has at
least one variable less in right-hand sides than E , we get μ ≤ μ′ by induction hypothesis.

Now consider the case c ≥ 1. Again, μ′(xi) > −∞, since μ′ is consistent. It follows
μ′(xi) = ∞. Otherwise μ′ would not be consistent, since then μ′(xi) = [[c · xi + e]]μ′

and thus xi ≤ c · xi + e ∈ Dμ′(E) would be μ′-critical. Note that, since Dμ′(E ′1) ⊆
Dμ′(E1) ⊆ Dμ′(E), μ′ is a consistent solution of E ′1. Since μ is a pre-solution of E ′1 and
E ′1 has at least one variable less in right-hand sides than E , we get μ ≤ μ′ by induction
hypothesis. ��

We now extend this result to systems of conjunctive equations.

Lemma 5. Assume that E is a feasible system of conjunctive equations. Assume that
μ � ∞ is a pre-solution of E and μ′ is a consistent solution of E . Then μ ≤ μ′.
Moreover, there exists at most one consistent solution μ′ with μ′ �∞.

Proof. There exists a min-strategy (min-strategies are defined analog to max-strategies)
π s.t. μ′ is a consistent solution of the system E(π) of basic equations. Then μ�∞ is
a pre-solution of E(π) by monotonicity. Thus, μ ≤ μ′ by lemma 4. In order to show the
second statement, assume that μ′ � ∞ and let μ′′ � ∞ denote a consistent solution
of E . Then μ′ ≤ μ′′ and μ′′ ≤ μ′ implying μ′ = μ′′. ��

Using lemma 5 we conclude that every feasible conjunctive system has a least consistent
solution. The following theorem states this fact and moreover observes that the least
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consistent solution is given by the least solution which is bounded below by a consistent
pre-solution μ with μ�∞.

Theorem 2. Assume that E is a feasible conjunctive system, and μ�∞ is a consistent
pre-solution of E . Then there exists a least consistent solution μ∗ of E which equals the
least solution μ′ of E with μ′ ≥ μ. ��

In order to simplify complexity estimations, we state the following corollary explicitly.

Corollary 1. Assume that E denotes a conjunctive system with n variables. Let (μi)i∈N

denote an increasing sequence of consistent pre-solutions of E . Let μ′i denote the least
solution of E with μ′i ≥ μi for i ∈ N. Then |{μ′i | i ∈ N}| ≤ n. ��

We now use the results above in order to compute the least consistent solution μ∗ of the
feasible conjunctive system E . We first restrict our consideration to the case μ∗ � ∞.
Since, by lemma 5, μ∗ is the only solution of E with μ ≤ μ∗ � ∞, μ∗ is in particular
the greatest solution of E with μ∗ � ∞. We compute μ∗ by solving a linear program
which maximizes the sum of the values of the variables occurring in E . Assume w.l.o.g.
that E is given by xi = e

(1)
i ∧ · · · ∧ e(ki)

i for i = 1, . . . , n where e(j)i do not contain
∧-operators, i.e., E is in normal form. (This form can be achieved from a general form
in linear time by introducing at most m∧ auxiliary variables and equations, where m∧
denotes the number of ∧-subexpressions.) We define CE as the following system of
rational constraints:

xi ≤ e
(j)
i for i = 1, . . . , n, j = 1, . . . , ki.

Then we must maximize
∑

x∈X μ(x) under the restriction that μ is a solution of CE .

Lemma 6. Assume that E denotes a feasible conjunctive system and that μ∗ � ∞
denotes the least consistent solution of E . Then there exists a solution μ′ of CE with
μ′ � ∞ which maximizes the sum

∑
x∈X μ

′(x). Furthermore, μ′ = μ∗. Thus, μ∗ can
be computed by solving a single LP which can be extracted from E in linear time. ��

Example 5. Consider the system E(π4) from example 3. Our goal is to compute the
least solution μ′ with μ′ ≥ μ = {x1 �→ 2,x2 �→ 2}. Theorem 2 implies that μ′ is given
as the least consistent solution. Assuming that μ′ � ∞, i.e., μ′ maps all variables to
finite values, lemma 6 implies that μ′ is given as the unique solution of the LP

∨
{x1 + x2 | x1 ≤ 0.8 · x1 + x2, x2 ≤ x2 + 1, x2 ≤ 100}.

Thus, μ′ maps x1 to 500 and x2 to 100. ��

Until now, we can only deal with feasible systems E whose least consistent solution
μ∗ does not map any variable to ∞. In order to lift this restriction, we first have to
determine the set X∗∞ := {x ∈ X | μ∗(x) = ∞}. Given X∗∞ we can remove each
equation xi = ei with xi ∈ X∗∞ and thus obtain a system whose least consistent
solution μ∗′ does not map any variable to ∞. Moreover μ ∗ |X\X∗∞ = μ∗′.

We reduce the problem of determining X∗∞ to the problem of computing the great-
est solution of an abstracted system of rational equations for which we know that the
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greatest solution does not map any variable to ∞ or −∞. Therefore, this abstracted
system can be solved again by linear programming. We first define a transformation
[·]∞ which maps the constant∞ to 1 and every finite constant to 0 while preserving all
multiplicative factors and variable occurrences (recall that −∞ does not occur in the
expressions under consideration):

[x]∞ = x [a]∞ = 0 [∞]∞ = 1
[c · e]∞ = c · [e]∞ [e1 + e2]

∞ = [e1]
∞ + [e2]

∞ [e1 ∧ e2]∞ = [e1]
∞ ∧ [e2]

∞

where a <∞, 0 < c <∞, x is a variable and e, e1, e2 are expressions. Assuming that
E denotes the system x1 = e1, . . . ,xn = en we write [E ]∞ for the system

x1 = [e1]∞ ∧ 1, . . . ,xn = [en]∞ ∧ 1.

The next lemma states that the set X∗∞ can be read off the greatest solution μ∞

of [E ]∞. Thus our problem reduces to computing μ∞. Since by construction 0 ≤
μ∞(x) ≤ 1 for every variable x, this can be done using linear programming, i.e., we
have to compute a solution μ∞ of CE∞ which maximizes the sum

∑
x∈X μ

∞(x). There
exists only one such solution and this solution is the greatest solution of E∞. We have:

Lemma 7. Assume that μ∗ denotes the least consistent solution of the feasible con-
junctive system E . Let μ∞ denote the greatest solution of [E ]∞. Then μ∗(x) = ∞ iff
μ∞(x) > 0 for all variables x. Furthermore, μ∞ and thus {x ∈ X | μ∗(x) = ∞} can
be computed by solving a single LP which can be extracted from E in linear time. ��

Example 6. Consider again the system E(π4) from example 3. As we already know,
the system is feasible and we are interested in computing the least consistent solution
μ∗. In order to compute the set of variables which μ∗ maps to ∞, we construct the
abstracted system x1 = 0.8 · x1 + x2 ∧ 1, x2 = x2 ∧ 0 ∧ 1 for which we must
compute the greatest solution μ∞. Then μ∞ can be computed using linear program-
ming. More exactly, μ∞ is given as the unique determined solution which maximizes
the sum

∑
x∈X μ

∞(x). Here, obviously, μ∞ maps every variable to 0. Thus, accord-
ing to lemma 7, μ∗ maps all variables to finite values — implying that the finiteness
assumption in example 5 is justified. ��

In conclusion, our method for computing the least consistent solution μ∗ of a feasible
conjunctive system E works as follows. Using lemma 7, we first determine the set X∗∞

of variables x with μ∗(x) = ∞. After that we obtain a system E ′ of conjunctive equa-
tions from E by (1) removing all equations x = e with μ∗(x) = ∞ and (2) replacing all
expressions e with [[e]]μ by∞. Then μ∗|X\X∗∞ is the least consistent solution of E ′ and
moreover μ∗|X\X∗∞ �∞. By lemma 6, μ∗|X\X∗∞ and thus μ∗ can be determined by
solving an appropriate LP. We arrive at our result for feasible conjunctive systems:

Theorem 3. The least consistent solution of a feasible conjunctive system E can be
computed by solving two LPs each of which can be extracted from E in linear time. ��
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3.2 The Result

Consider again algorithm 1. Assume w.l.o.g. that E denotes the system xi = ei ∨−∞,
i = 1, . . . , n with least solution μ∗ and m∨ = m + n ∨-expressions. In order to give
a precise characterization of the run-time, let Π(m∨) denote the maximal number of
updates of strategies necessary for systems with m∨ maximum expressions.

Let πi denote the max-strategy π after the execution of the first statement in the i-th
iteration. Accordingly, let μi denote the variable assignment μ at this point and let μ′i
denote the variable assignment μ after the i-th iteration. It remains to show that algo-
rithm 1 always terminates. Lemmas 2 and 3 imply that μi is a consistent pre-solution
of E(πi) with μi ≤ μ∗ for every i. By theorem 3 μ′i can be computed by solving two
appropriate LP problems extracted from E . The sequence (μi) is strictly increasing until
the least solution is reached. Moreover, every strategy π is contained at most n times
in the sequence (πi). Otherwise, there would be more than n least solutions of the con-
junctive system E(π) exceeding some consistent pre-solution contained in (μi). This
would be a contradiction to corollary 1. Therefore, the number of iterations of the loop
executed by algorithm 1 is bounded by n ·Π(m+ n). Summarizing, we have:

Theorem 4. The least solution of a system E of rational equations with n variables and
m maximum expressions can be computed by solving 2n ·Π(m+n) LPs each of which
can be extracted from E in linear time. ��

All practical experiments with strategy iteration we know of seem to indicate that the
number of strategy improvementsΠ(m+n) (at least practically) grows quite slowly in
the number of maximums m and the number of variables n. Interestingly, though, it is
still open whether (or: under which circumstances) the trivial upper bound of 2m+n for
Π(m + n) can be significantly improved [22,2]. For a small improvement, we notice
that for expressions e1∨ e2 in which e2 is an expression without variables, all strategies
considered by algorithm 1 after e1 evaluates to a greater value than e2 will always select
e1. This in particular holds for the n∨-expressions e∨−∞ at the top-level introduced in
order to deal with−∞. Thus,Π(m∨+n) in our complexity estimation can be replaced
with n · 2m∨ .

4 Analyzing Affine Programs

In this section we discuss affine programs, their collecting semantics as well as their
abstract semantics over the template constraint matrix domain [20] which subsumes the
interval as well as the zone- and octagon domains [16,15]. We use similar notations as
in [17]. Let XG = {x1, . . . ,xn} be the set of variables the program operates on and
let x = (x1, . . . ,xn) denote the vector of variables. We assume that the variables take
values in R. Then in a concrete semantics a state assigning values to the variables is
conveniently modeled by a vector x = (x1, . . . , xn) ∈ Rn; xi is the value assigned to
variable xi. Note that we distinguish variables and their values by using a different font.
Statements in affine programs are of the following forms:

(1) x := Ax + b (2) xj :=? (3) Ax + b ≥ 0
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where A ∈ Rn×n, b ∈ Rn. Statements of the form (1), (2) and (3) are called affine as-
signments, non-deterministic assignments and guards, respectively. Non-deterministic
assignments are necessary to model input routines returning unknown values or vari-
able assignments whose right-hand sides are not affine expressions. Such a statement
may update xi in the current state with any possible value. We denote the set of all
statements by Stmt.

As common in flow analysis, we use the program’s collecting semantics which asso-
ciates a set of vectors x = (x1, . . . , xn) ∈ Rn to each program point. Each statement
s ∈ Stmt induces a transformation [[s]] : 2Rn → 2Rn

, given by

[[x := Ax + b]]X = {Ax+b | x ∈ X} [[Ax + b ≥ 0]]X = {x ∈ X | Ax+b ≥ 0}
[[xk :=?]]X = {x+δ1k | x ∈ X, δ ∈ R}

for X ⊆ Rn where 1k denotes the vector whose components are zero beside the k-th
component which is 1. The branching of an affine program is non-deterministic. For-
mally, an affine program is given by a control flow graph G = (N,E, st) that consists
of a set N of program points, a set E ⊆ N × Stmt × N of (control flow) edges and
a special start point st ∈ N . Then, the collecting semantics V is characterized as the
least solution of the constraint system

V[st] ⊇ Rn V[v] ⊇ [[s]](V[u]) for each (u, s, v) ∈ E

where the variables V[v], v ∈ N take values in 2Rn

. We denote the components of the
collecting semantics V by V [v] for v ∈ N .

Example 7. st

1
x1 := 1

2

−x1 + 10 ≥ 0

7

x1 − 11 ≥ 0

3
(x2,x3) := (1, 2 · x1)

4

x3 − 2 · x2 ≥ 0

5

x3 := x3 − x1 − x2

x2 := x2 + 1
6

−x3 + 2 · x2 − 1 ≥ 0

x1 := x1 + 1

Let G = (N,E, st) denote the affine pro-
gram shown on the right and let V denotes the collect-
ing semantics ofG. For simplicity, we do not use matri-
ces in the control-flow graph. However, all statements
can be considered as affine assignments and guards, re-
spectively. The statement (x2,x3) := (1, 2 · x1), for
instance, represents the affine assignment

x :=

⎛

⎝
1 0 0
0 0 0
2 0 0

⎞

⎠x +

⎛

⎝
0
1
0

⎞

⎠

A program analysis could, for instance, aim to answer the question whether at program
point 5 the program variable x3 takes values within the interval [0, 9], only. Formally,
this is the question whether V [5] ⊆ {(x1, x2, x3) | 0 ≤ x3 ≤ 9, x1, x2 ∈ R}— which
is the case here. ��

We now consider an abstract semantics which is an over-approximation of the collect-
ing semantics. We assume that we are given a complete lattice D of abstract values
(with partial ordering �). Assume that we are given a function αD : 2Rn → D (the
abstraction) and a function γD : D → 2Rn

(the concretization) which form a Galois-
connection. The elements in αD(2Rn

) are called open (see e.g. [9]). The best abstract
transformer [[s]]�D : D → D for a statement s (see, e.g., [6]) is given by

[[s]]�D = αD ◦ [[s]] ◦ γD.
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In particular, [[s]]�D always returns open elements. We emphasize that we are concerned
with best abstract transformers only. The abstract semantics V �

D of the affine program
G = (N,E, st) over D is given as the least solution of the system of constraints

V�
D[st] � �D V�

D[v] � [[s]]�(V�
D[u]) for each (u, s, v) ∈ E

where the variables V�
D[v], v ∈ N take values in D and�D denotes the greatest element

of D. We denote the components of the abstract semantics V �
D by V �

D [v] for v ∈ N .
V �

D represents an over-approximation of the collecting semantics V [7], i.e., V �
D [v] �

αD(V [v]) and γD(V �
D [v]) ⊇ V [v] for every v ∈ N . Since every transformer [[s]]�D always

returns open elements, we deduce from the theory of Galois-connections (see e.g. [9])
that V �

D [v], v ∈ N are open.
In this paper we consider the complete lattice introduced in [20]. For that, we con-

sider a fixed template constraints matrix T ∈ Rm×n. Each row in this matrix represents
a linear combination of variables of interest. Special cases of this domain are intervals,
zones and octagons [16,15,20]. All these domains represent subclasses of convex poly-
hedra in the vector space Rn (n the number of variables). Let us w.l.o.g. assume that
T does not contain rows consisting of zeros only. The set TT := R

m
together with

the component-wise partial ordering ≤ forms a complete lattice. The concretization
γTT : TT → 2Rn

and the abstraction αTT : 2Rn → TT are defined by

γTT (c) = {x ∈ Rn | Tx ≤ c} αTT (X) =
∧
{c ∈ R

m | γTT (c) ⊇ X}

for c ∈ R
m
, X ⊆ Rn. As shown in [20], αTT and γTT form a Galois-connection. Thus,

the abstract semantics V �
TT

of an affine programG = (N,E, st) is well-defined.
In [20] the author allows one template constraint matrix for each program point. For

simplicity and similar to [10], we consider one global template constraint matrix only.
Note also that open elements of TT are called canonical in [20].

We now show how to compute the abstract semantics V �
TT

of the affine program
G = (N,E, st) which uses variables XG = {x1, . . . ,xn}. First of all we have to
describe the abstract effect [[s]]�TT

for each statement s by a linear program. We have:

Lemma 8. Let c ∈ TT , A ∈ Rn×n, b ∈ Rn, x = (x1, . . . ,xn)T and i = 1, . . . ,m.
Then:

1. ([[x := Ax + b]]�TT
c)i· = Ti·b+ LPT,(Ti·A)T (c)

2. ([[Ax + b ≥ 0]]�TT
c)
i· = LPA′,TT

i·
(c′) where A′ :=

(
T
−A

)
and c′ :=

(
c
b

)
.

3. [[xk :=?]]�TT
c ≤ forgetT,k + c. Moreover [[xk :=?]]�TT

c = forgetT,k + c whenever
c is open. Thereby the vector forgetT,k ∈ TT is defined by

(forgetT,k)i· =
{
∞ if Ti·k �= 0
0 if Ti·k = 0. ��

Note that the post operator in [20] combines an affine assignment and a guard. In or-
der to compute the abstract semantics V �

TT
of G over TT , we rely on our methods for
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systems of rational equations presented in section 3. We additionally allow the LP oper-
ator to occur in right-hand sides, i.e., we additionally allow subexpressions of the form:
LPA,b(e1, . . . , em) where A ∈ Rm×n, b ∈ Rn and ei are expressions. We call such
expressions and equations with LP. We define:

[[LPA,b(e1, . . . , em)]]μ = LPA,b (([[e1]]μ, . . . , [[em]]μ)T )

Since again all operators in expressions with LP are monotone, every system of rational
equations with LP has a least solution. For the computation of V �

TT
, we construct a

system CG of rational constraints with LP which uses variables X = {xv,i | v ∈ N, i =
1, . . . ,m} (m is the number of rows of T ) as follows. For the start point st of the
affine program we introduce the constraints xst,i ≥ ∞ for i = 1, . . . ,m. According to
lemma 8 we introduce a constraint for every control flow edge (u, s, v) ∈ E and every
i = 1, . . . ,m as shown in the following table.

control flow edge constraint

(u, x := Ax + b, v) xv,i ≥ Ti·b+ LPT,(Ti·A)T (xu,1, . . . ,xu,m)
(u, Ax + b ≥ 0, v) xv,i ≥ LP⎛

⎝ T
−A

⎞

⎠ , TT
i·

(xu,1, . . . ,xu,m, b1·, . . . , bn·)

(u, xk :=?, v) xv,i ≥ (forgetT,k)i· + xu,i

The correctness follows from lemma 8 and the fact that V �
TT

[v], v ∈ N are open.

Theorem 5. Let V �
TT

be the abstract semantics of the affine program G = (N,E, st)
over TT and let μ∗ be the least solution of the corresponding system CG of rational
constraints with LP. Then (V �

TT
[v])

i· = μ∗(xv,i) for v ∈ N, i = 1, . . . ,m. ��
Example 8.

set of constraints:
x1 ≤ c1

−x1 ≤ c2
2x2 ≤ x3 + c3
−x2 ≤ c4
x3 ≤ 2x1 + c5

−x3 ≤ −2x1 + c6
x3 ≤ c7

−x3 ≤ c8

T =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
−1 0 0

0 2 −1
0 −1 0
−2 0 1

2 0 −1
0 0 1
0 0 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A =

⎛

⎝
−1 0 0

0 1 0
0 0 1

⎞

⎠

b =

⎛

⎝
10
0
0

⎞

⎠

Let V denote the collecting se-
mantics of the affine program
G = (N,E, st) of example 7.
For our analysis we choose the
set of constraints shown on the
right which lead to the template
constraint matrix T . Our goal is
to determine for every program point v a vector (c1, . . . , c8) which is as small as possi-
ble and for which every vector (x1, x2, x3) ∈ V [v] fulfills the constraints. Let us con-
sider the edge (1,−x1+10 ≥ 0, 2) ∈ E which is an abbreviation for (1, Ax+b ≥ 0, 2)
(using the matrices above). This edge leads amongst others to the constraint

x2,1 ≥ LP⎛

⎝ T
−A

⎞

⎠ ,

⎛

⎜⎜⎝

1
0
0

⎞

⎟⎟⎠

(x1,1,x1,2, . . . ,x1,8, 10, 0, 0)

Here, for instance, evaluating the right-hand side of the constraint above under the vari-
able assignment∞ results in the value 10. Finally, the whole system CG describes the
abstract semantics V �

TT
. Here, in particular, (V �

TT
[5])7· = 9 and (V �

TT
[5])8· = 0 which

means that the value of the program variable x3 is between 0 and 9 at program point 5.
This result is optimal and could not be established using interval analysis. ��
By theorem 5, our problem reduces to computing least solutions of systems of rational
equations with LP. Such systems will be discussed in the next section.
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5 Systems of Rational Equations with LP

Our goal is to apply algorithm 1 also for computing the least solution μ∗ of a system E
of rational equations with LP. In order to use the results from section 3, we state the fol-
lowing lemma which can be shown using the duality theorem for linear programming.

Lemma 9. Let A ∈ Rm×n with Ai· �= (0, . . . , 0) for i = 1, . . . ,m and b ∈ Rn.
There exists a finite (possibly empty) set mult(LPA,b) = {y1, . . . , yk} ⊆ Rm with
y1, . . . , yk ≥ 0 and AT y1 = · · · = AT yk = b such that for every c ∈ R

m
with

LPA,b(c) > −∞ it holds that LPA,b(c) =
∧

y∈mult(LPA,b)
cT y. ��

We also extent the definition of E(π) for a strategy π and the definition of the improve-
ment operator P∨ in the natural way. Moreover, for a conjunctive system E , we extend
the notion of consistency to a notion of LP-consistency.

In order to define LP-consistency let us, for every LPA,b-operator, fix a finite set
mult(LPA,b) of vectors which satisfies the claims of lemma 9. Let E denote a conjunc-
tive system of rational equations with LP. We first define the transformation [·] by:

[a] = a [x] = x [e1 + e2] = [e1] + [e2] [c · e] = c · [e] [e1 ∧ e2] = [e1] ∧ [e2]
[LPA,b(e1, . . . , em)] =

∧
y∈mult(LPA,b)

([e1], . . . , [em])y

where a ∈ R, c ∈ R>0, x is a variable and ei are expressions. Thereby ([e1], . . . , [em])y
denotes the expression y1· · [e1]+ · · ·+ym· · [em] and we assume that an expression 0 ·ei
is simplified to 0 (This is correct, since ei does not evaluate to −∞ in the cases which
have to be considered). Assuming that E denotes the system xi = ei, i = 1, . . . , n,
we write [E ] for the system xi = [ei], i = 1, . . . , n. Then, we call a pre-solution
μ of E LP-consistent iff [[LPA,b(e1, . . . , em)]]μ > −∞ for every subexpression
LPA,b(e1, . . . , em) and μ is a consistent pre-solution of [E ].

We have to ensure that μ will be a LP-consistent pre-solution of E whenever algo-
rithm 1 computes the least solution μ′ of [E ] with μ′ ≥ μ. This is fulfilled, since lemmas
2 and 3 can be formulated literally identical for LP-consistency instead of consistency.

Assume that μ is a LP-consistent pre-solution of E . It remains to compute the
least solution μ′ of E with μ′ ≥ μ. Since E is LP-consistent and thus in particular
[[LPA,b(e1, . . . , em)]]μ > −∞ for every subexpression LPA,b(e1, . . . , em), lemma 9
implies that μ′ is the least solution of [E ] with μ′ ≥ μ. Since [E ] denotes a conjunc-
tive system without LP, we can compute it and moreover corollary 1 implies that every
conjunctive system E is considered at most n times in algorithm 1. We find:

Lemma 10. Assume that E denotes a conjunctive system with LP which uses n vari-
ables andm ∨-expressions. Algorithm 1 computes at most n ·Π(m+n) times the least
solution μ′ of E(π) with μ′ ≥ μ for some π and some LP-consistent pre-solution μ of
E(π). After that, it returns the least solution of E . ��

We want to compute the least solution μ′ of E with μ′ ≥ μ which is also the least
solution of [E ] with μ′ ≥ μ. Recall from section 3 that for this purpose we essentially
have to compute least consistent solutions of feasible systems of conjunctive equations.
Writing down the system [E ] explicitly and solving it after this would be too inefficient.



38 T. Gawlitza and H. Seidl

Therefore we aim at computing the least consistent solution of the feasible system [E ]
without explicit representation. For that purpose, assume w.l.o.g. that E is given by

xi = e
(1)
i ∧ · · · ∧ e(ki)

i for i = 1, . . . , n′

xi = LPAi,bi(x′1, . . . ,x′mi
) for i = n′ + 1, . . . , n

where the e(j)i do neither contain ∧- nor LPA,b-operators. This form can be achieved
by introducing variables. Recall from section 3 that the system C[E] is given by

xi ≤ [e(j)i ] for i = 1, . . . , n′, j = 1, . . . , ki
xi ≤

∧
y∈mult(LPAi,bi

)(x
′
1, . . . ,x

′
mi

)y for i = n′ + 1, . . . , n

We define the system CLP
E of rational constraints as the system:

xi ≤ e
(j)
i for i = 1, . . . , n′, j = 1, . . . , ki

xi ≤ LPAi,bi(x′1, . . . ,x
′
mi

) for i = n′ + 1, . . . , n

Using lemma 9 we conclude that the sets of solutions μ′ with μ′ ≥ μ of CLP
E and of

C[E] are equal. In particular, the sets of solutions μ′ with μ′ ≥ μ which maximize the
sum

∑
x∈X μ

′(x) are equal.
As in section 3 we first assume that the least consistent solution μ∗ of E does not map

any variable to∞. In this situation, the above considerations and lemma 6 implies, that
μ∗ is the uniquely determined solution of CLP

E which maximizes the sum
∑

x∈X μ
∗(x).

In order to compute it using linear programming, we have to eliminate all occurrences
of LPA,b-operators. Therefore, consider a constraint

x ≤ LPA,b(x1, . . . ,xm)

occurring in CLP
E . Using the definition of the LPA,b-operator we can conceptually re-

place the right-hand side with
∨
{bTy | y ∈ Rn, Ay ≤ (x1, . . . ,xm)T }. Since we

are interested in maximizing the value of the variable x anyway we replace the above
constraint with the constraints

x ≤ b1· · y1 + · · ·+ bn· · yn, Ai·1 · y1 + · · ·+Ai·n · yn ≤ xi for i = 1, . . . ,m

where y1, . . . ,yn are fresh variables. This replacement step preserves the solution μ∗

which maximizes the sum
∑

x∈X μ
∗. Doing this for every LPA,b-expression in E we

obtain a system of constraints without LPA,b-expressions. Thus, we can compute μ∗

by linear programming. We have:

Lemma 11. Assume that μ � ∞ is a LP-consistent pre-solution of the conjunctive
system E with LP. Assume that μ∗ �∞ is the least consistent solution of [E ]. Then μ∗

can be computed by solving one LP which can be extracted from E in linear time. ��

Until now we have assumed that the least consistent solution μ∗ of [E ] maps every
variable to values strictly smaller then∞. As in section 3, we have to identify the vari-
ables x with μ∗(x) = ∞ in order to lift this restriction. For that, by lemma 7, we must
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compute the greatest solution μ∞ of the system [ [E ] ]∞. For this purpose we extend
the abstraction [·]∞ by setting [LPA,b(e1, . . . , em)]∞ = LPA,b([e1]

∞
, . . . , [em]∞). It

turns out that μ∞ is also the greatest solution of [E ]∞. Since μ∞ maps every variable
to a finite value, μ∞ is the only solution finite solution of C[E]∞ which maximizes the
sum

∑
x∈X μ

∞(x). Thus, μ∞ can again be computed using linear programming. Since
we can identify the set {x ∈ X | μ∗(x) = ∞} in this way, we can lift the restriction to
systems with finite least consistent solutions in lemma 11. We have:

Lemma 12. Assume that μ�∞ denotes a LP-consistent pre-solution of the conjunc-
tive system E with LP. Let μ∗ denote the least consistent solution of [E ]. Then μ∗ can be
computed by solving two LP problems which can be extracted from E in linear time. ��

In conclusion, we obtain our main result for systems of rational equations with LP:

Theorem 6. The least solution of a system E of rational equations with LP which uses
n variables and m maximum expressions can be computed by solving 3n ·Π(m + n)
LPs each of which can be extracted from E in linear time. ��

Finally, combining theorem 5 and 6, we derive our main result for the analysis of affine
programs:

Theorem 7. Assume that G = (N,E, st) denotes an affine program. Let T ∈ Rm×n,
indeg(v) := {(u, s, v′) ∈ E | v′ = v} and m∨ := m ·

∑
v∈N max (indeg(v) −

1, 0). The abstract fixpoint semantics ofG over TT can be computed by solving at most
3m|N | ·Π(m∨ +m|N |) LPs. ��

It remains to emphasize that all least solutions (resp. abstract semantics) computed by
our methods are rational whenever all numbers occurring in the input are rational.

6 Conclusion

We presented a practical strategy improvement algorithm for computing exact least so-
lutions of systems of equations over the rationals with addition, multiplication with
positive constants, maximum and minimum. The algorithm is based on strategy im-
provement combined with LP solving for each selected strategy where each strategy
can be selected only linearly often. We extended the method in order to deal a special
LP-operator in right-hand sides of equations. We applied our techniques to compute the
abstract least fixpoint semantics of affine programs over the template constraint matrix
domain. In particular, we thus obtain practical algorithms for dealing with zones and
octagons. It remains for future work to experiment with practical implementations of
the proposed approaches.

References

1. GNU Linear Programming Kit, http://www.gnu.org/software/glpk
2. Bjorklund, H., Sandberg, S., Vorobyov, S.: Complexity of Model Checking by Iterative Im-

provement: the Pseudo-Boolean Framework. In: Broy, M., Zamulin, A.V. (eds.) PSI 2003.
LNCS, vol. 2890, pp. 381–394. Springer, Heidelberg (2004)

http://www.gnu.org/software/glpk


40 T. Gawlitza and H. Seidl

3. Cochet-Terrasson, J., Gaubert, S., Gunawardena, J.: A Constructive Fixed Point Theorem for
Min-Max Functions. Dynamics and Stability of Systems 14(4), 407–433 (1999)

4. Costan, A., Gaubert, S., Goubault, E., Martel, M., Putot, S.: A Policy Iteration Algorithm for
Computing Fixed Points in Static Analysis of Programs. In: Etessami, K., Rajamani, S.K.
(eds.) CAV 2005. LNCS, vol. 3576, pp. 462–475. Springer, Heidelberg (2005)

5. Cousot, P., Cousot, R.: Static Determination of Dynamic Properties of Recursive Procedures.
In: Neuhold, E.J. (ed.) IFIP Conf. on Formal Description of Programming Concepts, pp.
237–277. North-Holland, Amsterdam (1977)

6. Cousot, P., Cousot, R.: Systematic Design of Program Analysis Frameworks. In: 6th ACM
Symp. on Principles of Programming Languages (POPL), pp. 238–352 (1979)

7. Cousot, P., Cousot, R.: Static Determination of Dynamic Properties of Programs. In: Second
Int. Symp. on Programming, Dunod, Paris, France, pp. 106–130 (1976)

8. Cousot, P., Cousot, R.: Comparison of the Galois Connection and Widening/Narrowing Ap-
proaches to Abstract Interpretation. In: JTASPEFL ’91, Bordeaux. BIGRE, vol. 74, pp. 107–
110 (1991)
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Abstract. We study infinite games where one of the players always
has a positional (memory-less) winning strategy, while the other player
may use a history-dependent strategy. We investigate winning conditions
which guarantee such a property for all arenas, or all finite arenas. Our
main result is that this property is decidable in single exponential time
for a given prefix independent ω-regular winning condition. We also ex-
hibit a big class of winning conditions (XPS) which has this property.

Keywords: automata, infinite games, omega-regular languages, posi-
tional strategies, winning condtions.

1 Introduction

The theory of infinite games is relevant for computer science because of its po-
tential application to verification of interactive systems. In this approach, the
system and environment are modeled as players in an infinite game played on a
graph (called arena) whose vertices represent possible system states. The play-
ers (conventionally called Eve and Adam) decide which edge (state transition, or
move) to choose; each edge has a specific color. The desired system’s behavior is
expressed as a winning condition of the game — the winner depends on the se-
quence of colors which appear during an infinite play. If a winning strategy exists
in this game, the system which implements it will behave as expected. Positional
strategies, also called memoryless — ones that depend only on the current po-
sition, not on the history of play — are of special interest here, because of their
good algorithmic properties which can lead to an efficient implementation.

Infinite games are strongly linked to automata theory. An accepting run of an
alternating automaton (on a given tree) can be presented as a winning strategy
in a certain game between two players. Parity games are related to automata on
infinite structures with parity acceptance condition. For example, positional de-
terminacy of parity games ([Mos91], [EJ91], [McN93]) is used in modern proofs
of Rabin’s complementation theorem for finite automata on infinite trees with
Büchi or parity acceptance condition. See [GTW02] for more links between infi-
nite games, automata, and logic.
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An interesting question is, what properties of the winning condition are suf-
ficient for the winning condition to be positionally determined, i.e. guarantee
positional winning strategies independently on the arena on which the game is
played. Note that although the parity condition gives such strategies for both
players, often we need it only for one player (say, Eve). This is true both for
interactive systems (we need a simple strategy for ourselves only, we do not
care about the environment) and for automata theoretic applications mentioned
above (like Rabin’s complementation theorem). We call winning conditions with
such property half-positional, to make it clear that we require a positional strat-
egy for only one of the players.

Recently some interesting characterizations of positional winning conditions
have been found ([CN06], [GZ04], [GZ05], [GW06]; see also [Gra04] for a sur-
vey of results on positional determinacy). Our work attempts to obtain similar
characterizations and find interesting properties (e.g. closure and decidability
properties) of half-positional winning conditions. In this paper we concentrate
on winning conditions which are ω-regular.

We show that finite half-positional determinacy of such winning conditions
is decidable in singly exponential time. This is done by showing that if a win-
ning condition is not half-positional then there exists a simple arena witnessing
this. Then it is possible to check all of such simple arenas. We also show some
constructions which lead to half-positional ω-regular winning conditions, such as
extended positional/suspendable conditions, concave conditions, and monotonic
automata.

This work is a continuation of [Kop06]. Also see the draft [Kop07], which is a
superset of both this paper and [Kop06] and contains full proofs which had to
be omitted from here due to space limitations.

2 Preliminaries

We consider perfect information antagonistic infinite games played by two play-
ers, called conventionally Adam and Eve. Let C be a set of colors (possibly
infinite).

An arena over C is a tuple G = (PosA,PosE ,Mov), where:

– Elements of Pos = PosE ∪ PosA are called positions; PosA and PosE are
disjoint sets of Adam’s positions and Eve’s positions, respectively.

– Elements of Mov ⊆ Pos × Pos × (C ∪ {ε}) are called moves; (v1, v2, c)
is a move from v1 to v2 colored by c. We denote source(v1, v2, c) = v1,
target(v1, v2, c) = v2, rank(v1, v2, c) = c.

– ε denotes an empty word, i.e. a colorless move. There are no infinite paths
of such colorless moves.

A game is a pair (G,W ), where G is an arena, and W is a winning condition.
A winning condition W over C is a subset of Cω which is prefix independent,
i.e., u ∈ W ⇐⇒ cu ∈ W for each c ∈ C, u ∈ Cω. We name specific winning
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conditions WA, WB , . . . . For example, the parity condition of rank n is the
winning condition over C = {0, 1, . . . , n} defined with

WPn = {w ∈ Cω : lim sup
i→∞

wi is even}. (1)

The game (G,W ) carries on in the following way. The play starts in some
position v1. The owner of v1 (e.g. Eve if v1 ∈ PosE) chooses one of the moves
leaving v1, say (v1, v2, c1). If the player cannot choose because there are no moves
leaving v1, he or she loses. The next move is chosen by the owner of v2; denote
it by (v2, v3, c2). And so on: in the n-th move the owner of vn chooses a move
(vn, vn+1, cn). If c1c2c3 . . . ∈ W , Eve wins the infinite play; otherwise Adam
wins.

A play in the arena G is any sequence of moves π such that source(πn+1) =
target(πn). By source(π) and target(π) we denote the initial and final position
of the play, respectively. The play can be finite (π ∈ Pos ∪ Mov+, where by
π ∈ Pos we represent the play which has just started in the position π) or
infinite (π ∈Movω; infinite plays have no target).

A strategy for player X (i.e. X ∈ {Eve,Adam}) is a partial function s :
Pos∪Mov+ → Mov. Intuitively, s(π) for π endining in PosX says what X should
do next. We say that a play π is consistent with strategy s for X if for each
prefix π′ of π such that target(π′) ∈ PosX the next move is given by s(π′).

A strategy s is winning (for X) from the position v if s(π) is defined for
each finite play π starting in v, consistent with s, and ending in PosX , and each
infinite play starting in v consistent with s is winning for X .

A strategy s is positional if it depends only on target(π), i.e., for each finite
play π we have s(π) = s(target(π)).

A game is determined if for each starting position one of the players has a
winning strategy. This player may depend on the starting position in the given
play. Thus if the game is determined, the set Pos can be split into two sets
WinE and WinA and there exist strategies sE and sA such that each play π
with source(π) ∈ WinX and consistent with sX is winning for X . All games
with a Borel winning condition are determined [Mar75], but there exist (exotic)
games which are not determined. A winning condition W is determined if for
each arena G the game (G,W ) is determined.

We are interested in games and winning conditions for which one or both of
the players have positional winning strategies. A determinacy type is given by
three parameters: admissible strategies for Eve (positional or arbitrary), admis-
sible strategies for Adam (positional or arbitrary), and admissible arenas (finite
or infinite). We say that a winning condition W is (α, β, γ)-determined if for
every γ-arena G the game (G,W ) is (α, β)-determined, i.e. for every starting
position either Eve has a winning α-strategy, or Adam has a winning β-strategy.
Clearly, there are 8 determinacy types in total. For short, we call (positional, po-
sitional, infinite)-determined winning conditions positionally determined or
just positional, (positional, arbitrary, infinite)-determined winning conditions
half-positional, (arbitrary, positional, infinite)-determined winning conditions
co-half-positional. If we restrict ourselves to finite arenas, we add finitely,
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e.g. (positional, arbitrary, finite)-determined conditions are called finitely half-
positional. For a determinacy type D = (α, β, γ), D-arenas mean γ-arenas, and
D-strategies mean α-strategies (if they are strategies for Eve) or β-strategies (for
Adam).

It can be easily proven that a determined game (G,W ) is half-positionally
determined (i.e. (positional, arbitrary)-determined) iff Eve has a single positional
strategy which is winning from each starting position v ∈ WinE(G,W ) (see e.g.
Lemma 5 in [CN06]).

Note that if a game (G,W ) is (α, β)-determined, then its dual game obtained
by using the complement winning condition and switching the roles of players is
(β, α)-determined. Thus,W is (α, β, γ)-determined iff its complement is (β, α, γ)-
determined.

We also need following definitions from automata theory.

Definition 1. A deterministic finite automaton on infinite words with
parity acceptance condition is a tuple A = (Q, qI , δ, rank), where Q is a finite
set of states, qI ∈ Q the initial state, rank : Q→ {0, . . . , d}, and δ : Q×C → Q.
We extend the definition of δ to δ : Q × C∗ → Q by δ(q, ε) = q, δ(q, wu) =
δ(δ(q, w), u) for w ∈ C∗, u ∈ C. For w ∈ Cω, let q0(w) = qI and qn+1(w) =
δ(qn, wn+1) = δ(qI , w0 . . . wn+1). We say that the word w ∈ Cω is accepted
by A iff lim supn→∞ rank(qn(w)) is even. The set of all words accepted by A
is called language accepted by A and denoted LA. We say that a language
L ⊆ Cω is ω-regular if it is accepted by some automaton.

3 Types of Arenas

In the games defined above the moves are colored, and it is allowed to have
moves without colors. In the literature, several types of arenas are studied.

– ε-arenas (C), like the ones described above.
– Move-colored arenas (B). In this setting each move needs to be assigned a

color. Moves labelled with ε are not allowed.
– Position-colored arenas (A). In this setting, colors are assigned to positions

instead of colors. Instead of Mov ⊆ Pos×Pos×C we have Mov ⊆ Pos×Pos
and a function rank : Pos → C. Again, each positions needs to be assigned
a color. The winner of a play in such games is defined similarly.

If we take a position-colored arena and color each move m with the color rank
(source(m)), we obtain an equivalent move-colored arena. Therefore position-
colored arenas are a subclass of move-colored arenas. Obviously, move-colored
arenas are also a subclass of ε-colored arenas. When speaking about a determi-
nacy type where we restrict arena to position-colored or move-colored arenas, or
we want to emphasize that we allow ε-arenas, we add the letter A, B or C (e.g.
A-half-positional conditions when we restrict to position-colored arenas).

Hence C-half-positional conditions are a subclass of B-half-positional condi-
tions, and B-half-positional conditions are a subclass of A-half-positional con-
ditions. In the first case the inclusion is proper: there is no way to transform a
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move-colored arena into a position-colored one such that nothing changes with
respect to positional strategies (we can split a position into several new positions
according to colors of moves which come into them, but then we obtain new po-
sitional strategies which were not positional previously). We know examples of
winning conditions which are A-positional but not B-positional. One of them is
C∗(01)∗; for position-colored arenas we know from our current position to which
color we should move next, but not for edge-colored arenas. Another example is
min-parity [GW06]. B-positional determinacy has been characterized in [CN06];
this result can be easily generalized to ε-arenas. ε-arenas have been studied in
[Zie98].

In the second case the question whether the inclusion is proper remains open.
Note that when we allow ε labels there is no difference whether we label positions
or moves: we can replace each move v1 → v2 colored with c in an ε-arena with
v1 → v → v2, color v with c, and leave all the original positions colorless.

In this paper we concentrate on ε-arenas since we think that this class gives the
least restriction on arenas. As shown by the example above, C∗(01)∗, positional
strategies for move-colored games are ,,more memoryless” than for position-
colored games since they do not even remember the last color used, although
winning conditions for position-colored games (like min-parity) may also be in-
teresting. As we will see, it is natural to allow having colorless moves (or equiv-
alently positions).

4 Simplifying the Witness Arena

To show that finite half-positional determinacy of winning conditions which are
prefix independent ω-regular languages is decidable, we will first need to show
that if W is not finitely half-positional, then it is witnessed by a simple arena.

Theorem 1. Let W be a winning condition accepted by a deterministic finite
automaton with parity acceptance condition A = (Q, qI , δ, rank : Q → {0 . . . d})
(see Definition 1). If W is not finitely half-positional then there is a witness arena
(i.e. such that Eve has a winning strategy, but no positional winning strategy)
where there is only one Eve’s position, and only two moves from this position.
(There is no restriction on Adam’s moves and positions.)

Proof. Let G be any finite witness arena. First, we will show how to reduce
the number of Eve’s positions to just one. Then, we will show how to remove
unnecessary moves.

Let G0 = (PosA×Q,PosE ×Q,Mov0) and G1 = (PosA×Q,PosE ×Q,Mov1)
where for each move (v1, v2, c) in G and each state q we have corresponding moves
((v1, q), (v2, δ(q, c), c)) in Mov0 and ((v1, q), (v2, δ(q, c), rank(q))) in Mov1. One
can easily see that the three games (G,W ), (G0,W ) and (G1,WPd) are equiv-
alent: each play in one of them can be interpreted as a play in each another,
and the winner does not change for infinite plays. The games G0 and G are
equivalent because in G0 we just replace each position with a set, and G0 and
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G1 are equivalent because A’s acceptance parity condition in (G0,W ) uses the
same ranks as the parity condition in (G1,WPd).

Since Eve has a winning strategy in (G,W ), she also has a winning strategy
in (G1,WPd). This game is positionally determined, so she also has a positional
strategy here. She can use it in (G0,W ) too.

Let s be Eve’s positional winning strategy in G0. Let

N(s) = {v : ∃q1∃q2 π1(target(s(v, q1))) �= π1(target(s(v, q2)))},

i.e. the set of positions where s is not positional as a strategy in G. Since the
arena is finite, we can assume without loss of generality that there is no positional
winning strategy s′ in G0 such that N(s′) � N(s).

Obviously, the set N(s) is non-empty. Let v0 ∈ N(s). We construct a new
arena G2 from G0 in two steps.

First, merge {v0} × Q into a single position v0. Eve can transform s into a
winning strategy s1 in this new game — the only difference is that in v0 she needs
to remember in what state q she is currently, and move according to s(v0, q).

Then, remove all Eve’s moves which are not used by s from all Eve’s posi-
tions except v0, and transfer these positions to Adam. Eve still wins, because s1
remains a winning strategy after this operation. Thus, we obtained an arena G2

with only one Eve’s position v0 where she has a winning strategy from v0.
Eve has no positional strategy in G2. Otherwise this strategy could be sim-

ulated without changing the winner (in the natural way) by a strategy s1 in G
which is positional in all positions except N(s) − {v0}. This means that there
is a positional strategy s2 in G0 for which N(s2) ⊆ N(s) − {v0}. (We obtain
s2 by removing from G moves which are not used by s1 (s1 remains a winning
strategy) and repeating the construction of G0 on the result arena (obtaining a
positional strategy on the new arena), and bringing the removed moves back (so
our strategy is on G0).) This contradicts our assumption that N(s) is minimal.

Hence, we found a witness arena where |PosE | = 1. To see that we can assume
that Eve has at most |Q| moves here, it is enough to see that Eve’s finite memory
strategy cannot use more than |Q| different moves from this position, hence we
can remove the ones which she does not use.

Now, suppose that G is a witness arena with only one Eve’s position. We will
construct a new arena with only two possible moves for Eve. The construction
goes as follows:

– We start with G3 = G0. Let s be Eve’s winning strategy in G3.
– For each of Eve’s |Q| positions, we remove all moves except the one which is

used by s.
– (*) Let v1 and v2 be two Eve’s positions in G3.
– We merge Eve’s positions v1 and v2 into one, v0.
– Eve still has a winning strategy everywhere in this new game (by reasoning

similar to one we used for G2). We check if Eve has a positional winning
strategy.

– If yes, we remove the move which is not used in v0, and go back to (*).
(Two distinct Eve’s positions in G3 must still exist — if we were able to
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merge all Eve’s positions into one, it would mean that G3 was positionally
determined.)

– Otherwise we transfer all Eve’s positions other than v0 to Adam. There was
only one move from each of these positions, hence G3 still is a witness arena.

– In G3 we have now only one Eve’s position (v0) and only two Eve’s moves
— one inherited from v1 and one inherited from v2.

��

5 Decidability

Theorem 2. Let W be a (prefix independent) ω-regular winning condition recog-
nized by a DFA with parity acceptance condition A = (Q, qI , δ, rank : Q →
{0 . . . d}) with n states. Then finite half-positional determinacy of W is decid-
able in time O(nO(n2)).

Proof. It is enough to check all possible witness arenas which agree with the
hypothesis of Theorem 1. Such arena consists of (the only) Eve’s position E
from which she can move to A1 by move m1 or to A2 by move m2. (In general
it is possible that A1 or A2 is equal to E. However, this is a simple case and we
will concentrate on the one where A1 and A2 are Adam’s positions.) Adam has a
choice of word w by which he will return to E from Ai. (In general it is possible
that Adam can choose to never return to E. However, if such infinite path would
be winning for Eve he would not choose it, and if it would be winning for Adam
Eve would never hope to win by choosing to move to Ai.) Let Li be the set of
all possible Adam’s return words from Ai to E.

Let T (w) : Q→ {0, . . . , d} ×Q be the function defined as follows: T (w)(q) =
(r, q′) iff δ(q, w) = q′ and the greatest rank visited during these transitions is r.
The function T (w) contains all the information about w ∈ Li which is important
for our game: if T (w1) = T (w2) then it does not matter whether Adam chooses
to return by w1 or w2 (the winner does not change). Thus, instead of Adam
choosing a word w from Li, we can assume that Adam chooses a function t from
T (Li) ⊆ T (C∗) ⊆ P ((Q×Q){0,...,d}).

For non-empty R ⊆ {0, . . . , d}, let bestA(R) be the priority which is the best
for Adam, i.e. the greatest odd element of R, or the smallest even one if there
are no odd priorities in R. We also put bestA(∅) = ⊥.

For T ⊆ P ((Q×Q){0,...,d}), let

U(T ) = bestA({d : ∃t ∈ T t(q1) = (d, q2)}).

Again, the function Ui = U(T (Li)) : Q × Q → {⊥, 0, . . . , d} contains all the
information about Li which is important for our game — if Adam can go from
q1 to q2 by one of two words w1 and w2 having the highest priorities d1 or d2,
respectively, he will never want to choose the one which is worse to him.

Our algorithm will check all possible functions Ui. For this, we need to know
whether a particular function U : Q × Q → {⊥, 0, . . . , d} is of form U(T (Li))
for some Li. This can be done in the following way. We start with V (q, q) = ⊥.
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Generate all elements of T (Li). This can be done by doing a search (e.g. breadth
first search) on the graph whose vertices are T (w) and edges are T (w)→ T (wc)
(T (wc) obviously depends only on T (w)). For each of these elements, we check
if it does not give Adam a better option than U is supposed to give — i.e. for
some q1 we have T (wc)(q1) = (q2, d) and d = bestA(d,U(q1, q2)). If it does not,
we add T (w) to our set T and update V : for each q1, T (wc)(q1) = (q2, d), we set
V (q1, q2) := bestA(d,V(q1, q2)). If after checking all elements of T (Li) we get
V = U , then U = U(T ). Otherwise, there is no L such that U = U(T (L)).

The general algorithm is as follows:

– Generate all possible functions U of form U(T (L)).
– For each possible function U1 describing Adam’s possible moves after Eve’s

move m1 such that Eve cannot win by always moving with m1:
– For each U2 (likewise):
– Check if Eve can win by using a non-positional strategy. (This is done

easily by constructing an equivalent parity game which has 3|Q| vertices:
{E,A1, A2} ×Q.) If yes, then we found a witness arena.

Time complexity of the first step is O(dO(|Q|2)(d|Q|)|Q||C|) (for each of dO(|Q|2)

functions, we have to do a BFS on a graph of size (d|Q|)|Q|). The parity game in
the fourth step can be solved with one of the known algorithm for solving parity
games, e.g. with the classical one in time O(O(|Q|)d/2). This is done O(dO(|Q|2))
times. Thus, the whole algorithm runs in time O(dO(|Q|2)|Q||Q||C|). ��

In the proof above the witness arena we find is an ε-arena: we did not assign any
colors to moves m1 and m2. If we want to check whether the given condition
is A-half-positional or B-half-positional, similar constructions work. For B-half-
positional determinacy, we need to not only choose the sets U1 and U2, but also
assign specific colors c1 and c2 to both moves m1 and m2 in the algorithm above.
For A-half-positional determinacy, we need to assign specific colors for targets
of these two moves, and also a color for Eve’s position E.

6 Examples of ω-Regular Half-Positional Winning
Conditions

In this section we give some examples of ω-regular half-positional winning con-
ditions. First, we show a class of half-positional winning conditions which gen-
eralizes the well known Rabin conditions (see [Kla92, Gra04]) and positional/
suspendable conditions ([Kop06]), and also has some nice closure properties.
Note that most of these examples are not restricted to finite arenas. The only
exception are the concave conditions, which are only finitely half-positional.

Definition 2. For S ⊆ C, WBS is the set of infinite words where elements of
S occur infinitely often, i.e. (C∗S)ω. Winning conditions of this form are called
Büchi conditions. Complements of Büchi conditons, WB ′S = C∗(C − S)ω are
called co-Büchi conditions.
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Theorem 3 ([Kop06]). Let D be a determinacy type. Let W ⊆ Cω be a win-
ning condition, and S ⊆ C. If W is D-determined, then so is W ∪WBS.

Note that, by duality, Thm 3 implies that if W is D-determined, then so is W ∩
WB ′S . This yields an easy proof of positional determinacy of parity conditions.
It is enough to start with an empty winning condition (which is positionally
determined) and apply Thm 3 and its dual n times.

Definition 3 ([Kop06]). A suspendable winning strategy for player X is
a pair (s,Σ), where s : Pos ∪Mov+ → Mov is a strategy, and Σ ⊆ Mov∗, such
that:

– s is defined for every finite play π such that target(π) ∈ PosX .
– every infinite play π that is consistent with s from some point t 1 has a prefix

longer than t which is in Σ;
– Every infinite play π that has infinitely many prefixes in Σ is winning for
X.

We say that X has a suspendable winning strategy in WinX when he has
a suspendable winning strategy in the arena (PosA∩WinX ,PosE ∩WinX ,Mov∩
WinX ×WinX × C).

A winning condition W is positional/suspendable if for each arena G in
the game (G,W ) Eve has a positional winning strategy in WinE and Adam has
a suspendable winning strategy in WinA.

Intuitively, if at some moment X decides to play consistently with s, the play will
eventually reach Σ; Σ is the set of moments when X can temporarily suspend
using the strategy s and return to it later without a risk of ruining his or her
victory.

A suspendable winning strategy is a winning strategy, because the conditions
above imply that each play which is always consistent with s has infinitely many
prefixes in Σ, and thus is winning for X .

The parity condition WP2 is positional, but not positional/suspendable, be-
cause a suspendable strategy cannot be winning for Adam — it is possible that
the play enters state 2 infinitely many times while it is suspended. However, we
will now extend the class of positional/suspendable conditions to include also
parity (and Rabin) conditions.

Definition 4. The class of extended positional/suspendable (XPS) con-
ditions over C is the smallest set of winning conditions that contains all Büchi
and positional/ suspendable conditions, is closed under intersection with co-
Büchi conditions, and is closed under finite union.

Theorem 4. All XPS conditions are half-positional.

1 That is, for each prefix u of π which is longer than t and such that target(u) ∈ PosX ,
the next move is given by s(u).
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The proof is a modification and generalization of proof of half-positional deter-
minacy of Rabin conditions from [Gra04].

Proof. We use the following lemma:

Lemma 1 ([Kop06]). Let D be a determinacy type. Let W ⊆ Cω be a winning
condition. Suppose that, for each non-empty D-arena G over C, there exists a
non-empty subset M ⊆ G such that in game (G,W ) one of the players has a
D-strategy winning from M . Then W is D-determined.

Let W be an XPS condition. The proof is by induction over construction of W.
We know that Büchi conditions and positional/suspendable conditions are

half-positional.
If W is a finite union of simpler XPS conditions, and one of them is a Büchi

condition WBS , then W = W ′ ∪WBS . Then W ′ is half-positional since it is a
simpler XPS condition, and from Theorem 3 we get thatW is also half-positional.

Otherwise, W = W ′ ∪
⋃n

k=1(Wk ∩ WB ′Sk
), where W ′ is a positional/ sus-

pendable condition, Wk is a simpler XPS condition, and WB ′Sk
is a co-Büchi

condition. (It is also possible that there is no W ′, but it is enough to consider
this case since it is more general. A union of several positional/suspendable con-
ditions is also positional/suspendable [Kop06].) To apply Lemma 1 we need to
show that either Eve has a positional winning strategy from some position in
the arena, or Adam has a winning strategy everywhere.

For m = 1, . . . , n let W (m) = W ′ ∪Wm ∪
⋃

k 
=m(Wk ∩WB ′Sk
). We know that

W (m) is half-positional since it is a simpler XPS condition.
Let G be an arena. Let Hm be the greatest subgraph of G which has no moves

colored with any of the colors from Sm, Adam’s positions where he can make a
move not in Hm, and moves which lead to positions which are not in Hm (i.e. it
is the subgraph where Adam is unable to force doing a move colored with a color
from Sm). If Eve has a positional winning strategy from some starting position
v in (Hm,W

(m)), then she can use the same strategy in (G,W ) and win (Eve
has more options in G hence she can use the same strategy, and this strategy
forces moves colored with Sm to never appear).

Assume that Eve has no positional strategy for any starting position and m.
Then Adam has a following winning strategy in (G,W ):

– Adam uses his suspendable strategy (s,Σ) for the game (G,W ′), until the
play reaches Σ.

– For m = 1, . . . , n:
• Let v be the current position.
• If v ∈ Hm then Adam uses his winning strategy s′m in (Hm,W

(m)).
(Adam forgets what has happened so far in order to use s′m.) If Eve
never makes a move which does not belong to Hm then Adam wins.
Otherwise, he stops using s′m in some position v.

• If v /∈ Hm then Adam performs a sequence of moves which finally lead
to a move colored with Sm. (He does not need to do that if Eve made a
move which is not in Hm, since it is already colored with Sm.)

– Repeat.
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If finally the game remains in some Hm, then Adam wins since he is using a
winning strategy in (Hm,W

(m)). Otherwise, Adam wins W ′ and all the co-Büchi
conditions WB ′Sk

for k = 1, . . . , n, hence he also wins W ⊆W ′ ∪
⋃n

k=1 WB ′Sk
.
��

Among positional/suspendable (and thus XPS) conditions we have monotonic
conditions and geometrical conditions, introduced in [Kop06]. For convenience,
we have included the definition of monotonic conditions since they are ω-regular.
Monotonic conditions are closed under finite union and include co-Büchi condi-
tions. Another example of a monotonic condition is the complement of the set
of words containing an (alternatively ban or anb) infinitely many times.

Definition 5. A monotonic automaton A = (n, δ) over an alphabet C is a
deterministic finite automaton where:

– the set of states is Q = {0, . . . , n};
– the initial state is 0, and the accepting state is n;
– the transition function δ : Q× C → Q is monotonic in the first component,

i.e., q ≤ q′ implies δ(q, c) ≤ δ(q′, c).

The language accepted by A (LA) is the set of words w ∈ C∗ such that
δ(0, w) = n. A monotonic condition is a winning condition of form WMA =
Cω − Lω

A for some monotonic automaton A.

Another interesting class of finitely half-positional winning conditions are the
concave conditions, also introduced in [Kop06]. This class is closed under union
and includes parity conditions, and ω-regular concave conditions have nice al-
gorithmic properties. Note that concave conditions do not need to be infinitely
half-positional (although counterexamples known to us are not ω-regular).

Definition 6. A word w ∈ Σ∗ ∪ Σω is a (proper) combination of words
w1 and w2, iff for some sequence of words (un), un ∈ Σ∗, w =

∏
k∈N uk =

u0u1u2u3u4u5u6u7u8 . . ., w1 =
∏

k∈N u2k+1 = u1u3u5u7 . . ., w2 =
∏

k∈N u2k =
u0u2u4u6 . . .. A winning condition W is convex if as a subset of Cω it is closed
under combinations, and concave if its complement is convex.

Proposition 6.1 ([Kop06]) Suppose that a winning condition W is given by
a deterministic parity automaton on infinite words using s states and d ranks.
Then there exists a polynomial algorithm determining whether W is concave (or
convex). If W is concave and G is an arena with n positions, then the winning
sets and Eve’s positional strategy can be found in time O(n(ns)d/2 log s).

7 Conclusion and Future Work

The main result of this paper is decidability of finite half-positional determinacy
of ω-regular conditions (Theorem 2). We also have introduced a large class of
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half-positionally determined conditions (XPS). This is a generalization of Ra-
bin conditions which includes positional/suspendable ones, such as monotonic
conditions introduced in [Kop06].

There are still many questions open. Is our algorithm optimal? Showing lower
complexity bounds by reducing other known hard problems (e.g. solving parity
games) seems difficult in this case. We would have to construct a relevant winning
condition (do not forget about prefix independence!), but not the arena — our
winning condition is required to have the desired properties for all arenas. It is
still possible that simpler characterizations of ω-regular half-positional winning
conditions exist.

We have only shown that finite half-positional determinacy is decidable. What
about infinite arenas? We conjecture that the classes of finitely half-positional
and half-positional conditions coincide for ω-regular languages, since all examples
of finitely half-positional conditions which are not half-positional known to us
are not ω-regular. However, a proof is required.

There was also an interesting question raised in section 3. In this paper we
assume that not all moves need to be colored. Does this assumption in fact
reduce the class of half-positional conditions? The algorithm given in Theorem 2
is more natural when we allow colorless moves, which motivates our opinion that
C-half-positional determinacy is a natural notion.

XPS is a very big class, since it generalizes both Rabin conditions and po-
sitional/suspendable conditions (including monotonic conditions). This class is
closed under finite union; however, we would also like to know whether the whole
class of (finitely) half-positional conditions is closed under finite and countable
union. In [Kop06] we have shown some more cases where union is also half-
positional, and also that it is not closed under uncountable union.
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[Kop07] Kopczyński, E.: Half-positional determinacy of infinite games. Draft.
http://www.mimuw.edu.pl/∼erykk/papers/hpwc.ps

[Mar75] Martin, D.A.: Borel determinacy. Ann. Math. 102, 363–371 (1975)
[McN93] McNaughton, R.: Infinite games played on finite graphs. Annals of Pure

and Applied Logic 65, 149–184 (1993)
[Mos91] Mostowski, A.W.: Games with forbidden positions. Technical Report 78,
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Faculty of Informatics, Masaryk University, Brno, Czech Republic
obdrzalek@fi.muni.cz

Abstract. The question of the exact complexity of solving parity games
is one of the major open problems in system verification, as it is equiva-
lent to the problem of model-checking the modal μ-calculus. The known
upper bound is NP∩co-NP, but no polynomial algorithm is known. It was
shown that on tree-like graphs (of bounded tree-width and DAG-width) a
polynomial-time algorithm does exist. Here we present a polynomial-time
algorithm for parity games on graphs of bounded clique-width (class of
graphs containing e.g. complete bipartite graphs and cliques), thus com-
pleting the picture. This also extends the tree-width result, as graphs of
bounded tree-width are a subclass of graphs of bounded clique-width.
The algorithm works in a different way to the tree-width case and relies
heavily on an interesting structural property of parity games.

1 Introduction

Parity games are infinite two-player games of perfect information played on
directed graphs where the vertices are labelled by priorities. The players take
turns in pushing token along the edges of the graph. The winner is determined
by the parity of the highest priority occurring infinitely often in this infinite
play. The significance of parity games comes from the area of model-checking
and system verification. The modal μ-calculus, a fixed-point logic of programs,
was introduced by Kozen in [13] and subsumes most of the used modal and
temporal logics. The problem of determining, given a system A and a formula
ϕ of the modal μ-calculus, whether or not A satisfies ϕ can be translated to the
problem of solving a parity game – see e.g. [9,16] (the converse is also true).

The exact complexity of solving parity games is a long-standing open prob-
lem which received a large amount of attention. The best known upper bound is
NP∩co-NP (more precisely UP∩co-UP [10]), but no polynomial-time algorithm
is known. Up till recently the best known deterministic algorithm was the small
progress measures algorithm [11] with time complexity O(dm · (2n/d)d/2), where
n is the number of vertices, m the number of edges and d the number of pri-
orities. The first truly sub-exponential algorithm was the randomised algorithm
by Björklund et al. [3], with the complexity bounded by 2O(

√
n logn). Recently

Jurdziński et al. [12] came with a very simple deterministic sub-exponential

� Supported by the Institute of Theoretical Computer Science, project 1M0545.
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algorithm of complexity roughly matching the upper bound of the randomised
algorithm. Finally there is the strategy improvement algorithm of Vöge and
Jurdziński [19] (and some others - e.g. [16]) which behaves extremely well in
practice, but for which we do not have better than exponential upper bound.

Since so far we have not been able to find a polynomial-time algorithm for
solving parity games on general graphs, the question is whether we can do better
for some restricted classes of graphs. In [15] the author showed that there is
a polynomial-time algorithm for solving parity games on graphs of bounded
tree-width. (Tree-width, introduced by Robertson and Seymour in [18], is a well
known and phenomenally successful connectivity measure for undirected graphs.
Check [16] for a more elegant proof.) The result of [15] does not follow from the
general result of Courcelle [4] which states that for a fixed formula ϕ of MSO
and a graph of bounded tree-width the model-checking problem can be solved in
linear time in the size of the graph. The important difference is that [4] considers
the formula to be fixed, whereas in parity games the size of the formula describing
the winning condition depends on the number of priorities, which can be as high
as the number of vertices. (The constant factor of the algorithm presented in [4]
depends on both n and k, and it is not even elementary [8]).

The way the concept of tree-width is applied to directed graphs is that we
forget the orientation of the edges. That unfortunately means that tree-width can
be high even for a very simple directed graphs (e.g. directed cliques). Therefore a
new connectivity measure called DAG-width has been developed [17,1] to better
describe the connectivity of directed graphs. In the latter paper it was shown that
on graphs of bounded DAG-width parity games can be solved in polynomial time.
Another class of directed graphs for which we have a polynomial-time algorithm
are graphs of bounded entanglement [2].

Both tree-width and DAG-width measure how close a graph is to a relatively
simple/sparse graph (e.g. tree, DAG). Clique-width, defined in [6], stands on the
opposite end of the spectrum – it measures how close is a graph to a complete
bipartite graph (e.g. complete bipartite graphs and cliques have clique-width
2). In [6] it was also shown that bounded tree-width implies bounded clique-
width, and so clique-width can be seen both as a generalisation and as a “dual
notion” to tree-with. In this paper we present a polynomial-time algorithm for
solving parity games on graphs of bounded clique-width. As argued above this
both extends and complements our understanding of the complexity of solv-
ing parity games. As is the case for tree-width (see above), the result is not
a consequence of a general result saying that MSO logic is decidable in linear
time on graphs of bounded clique-width [5]. The reasons are the same as for
tree-width.

The work is organised as follows: In Section 2 we present parity games, and
prove a general property of parity games which is in the core our algorithm (but
can be likely of use elsewhere). In Section 3 we present the definition of clique-
width and some extra notation. Section 4 then contains the main result – the
algorithm for solving parity games on graphs of bounded clique-width.
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2 Parity Games

A parity game G = (V,E, λ) consists of a finite directed graph G = (V,E), where
V is a disjoint union of V0 and V1 (we assume that this partition is implicit), and
a parity function λ : V → N (we assume 0 �∈ N). As it is usually clear from the
context, we sometimes talk about a parity game G – i.e. we identify the game
with its game graph. For technical reasons we also assume that the edge relation
E : V ×V is total: that is, for all u ∈ V there is v ∈ V such that (u, v) ∈ E. The
game G is played by two players P0 and P1 (also called even and odd), who
move a single token along edges of the graph G. The game starts in an initial
vertex and players play indefinitely as follows: if the token is on a vertex v ∈ V0

(v ∈ V1), then P0 (P1) moves it along some edge (v, w) ∈ E to w. As a result, a
play of G is an infinite path π = π1π2 . . ., where ∀i > 0.(πi, πi+1) ∈ E.

Let Inf (π) = {v ∈ V | v appears infinitely often in π}. Player P0 wins the
play π if max{λ(v) | v ∈ Inf (π)} is even, and otherwise player P1 wins. A (total)
strategy σ (τ) for P0 (P1) is a function σ : V ∗V0 → V (τ : V ∗V1 → V ) which
assigns to each play π.v ∈ V ∗V0 (∈ V ∗V1) a vertex w such that (v, w) ∈ E. A
player uses a strategy σ in the play π = π1π1 . . . πk . . ., if πk+1 = σ(π1 . . . πk) for
each vertex πk ∈ Vi. A strategy σ is winning for a player and a vertex v ∈ V if
she wins every play that starts from v using σ.

If we fix an initial vertex v, then we say player Pi wins the game G(v) if he has
a strategy σ such that using σ he wins every play starting in v. Finally we say
that player wins the game G if he has a strategy σ such that using σ he wins the
game G(v) for each v ∈ V . By solving the game G we mean finding the winner
of G(v) for each vertex v ∈ V .

A memoryless strategy σ (τ) for Pi (i ∈ {0, 1}) is a function σ : V0 → V
(τ : V1 → V ) which assigns each v ∈ Vi a vertex w such that (v, w) ∈ E. I.e.
memoryless strategies do not consider the history of the play so far, but only
the vertex the play is currently in. We use Σi to denote the set of memoryless
strategies of player Pi, and Σi the sets of all strategies. For a strategy σ ∈ Σ0

and (v, w) ∈ V0 × V we define a strategy σ[v → w] which agrees with σ on all
vertices except for v by the prescription

σ[v → w](x) =

{
w if x = v

σ(x) otherwise

Parity games are memorylessly determined. By that we mean the following
theorem.

Theorem 1 ([7,14]). For each parity game G = (V,E, λ) we can partition the
set V into two sets W0 and W1 such that the player Pi has a memoryless winning
strategy for all vertices in Wi.

Example 1. Fig. 1 shows a parity game of six vertices. Circles denote the vertices
of player P0 and boxes the vertices of player P1. Priorities are written inside
vertices. In this game player P0 can win from the shaded vertices by forcing a
play to the vertex with priority four. Player P1 has no choice in that vertex and
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Fig. 1. A parity game

must play to the vertex with priority three. The play will stay in the cycle with
the highest priority four and therefore P0 wins.

Definition 1 (Gσ). For game G = (V,E, λ) and a strategy σ ∈ Σ0 we define
Gσ to be the subgraph of G induced by σ - i.e. Gσ = (V,Eσ), where Eσ =
E \ {(v, w) ∈ E | v ∈ V0 and σ(v) �= w}.

An immediate observation is that σ ∈ Σ0 is winning for P0 from v iff no cycle
such that the highest priority on this cycle is odd is reachable from v in Gσ.

In addition to the standard ordering of priorities (by the relation “<”), it is
often useful to have priorities ordered from the point of their “attractiveness”
for one of the players. I.e. for player P0 a high even priority is more attractive
than a low even one, which is still more attractive than any odd priority. We
define the order � in the following way:

Definition 2 (�). For two priorities p, q ∈ N we write p � q if p is odd and v
is even, or p > q and p, q are odd, or p < q and p, q are even. We write p � q if
p � q or p = q.

We need a way of describing partial results for plays. More specifically we need
to know the result for all paths between two specified vertices within a subgraph
G′ of G when a strategy σ of P0 is fixed. Let Πσ(v, w,G′) be the set of all paths
in G′σ from v to w. If Πσ(v, w,G′) �= ∅ we define

resultσ(v, w, G′)=min
�
{max{λ(πi) | 0 ≤ i ≤ j} | v=π0, π1, . . . , πj = w ∈ Πσ(v, w, G′)}

If G′ = G we write just resultσ(v, w). We also write x→σ y if (x, y) ∈ E(Gσ),
and use →∗

σ to denote the reflexive and transitive closure of →σ.

2.1 Joint Choice Property

The following theorem is in the core of the proof of the main result of this paper.
It basically says that if we have a set U ⊆ V0 of vertices of P0 such that they
have the same sets of successors and a memoryless strategy σ winning for at
least one of these vertices, then there is a memoryless strategy σ′ which assigns
to each u ∈ U the same successor and is winning for all the vertices of U and all
the vertices for which σ is a winning strategy for P0.
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Theorem 2. Let G = (V,E, λ) be a parity game, U ⊆ V0 a set of vertices of P0

and σ ∈ Σ0 a strategy of P0. Also denote σ(U) =
⋃

u∈U σ(u) and require that
∀u ∈ U ∀v ∈ σ(U).(u, v) ∈ E. If σ is a winning strategy for some vertex w ∈ U
and P0, then there exists a vertex u in σ(U) such that the strategy σ′ defined as

σ′(v) =

{
u if v ∈ U
σ(v) otherwise

is a winning strategy for P0 from all vertices of U . Moreover for all v ∈ V (G) if
σ is winning for v and P0, so is σ′.

Proof. First note that we can assume that σ is winning for all vertices of U . If it
is not, we can simply switch the strategy into any winning successor. Let σ ∈ Σ0

be fixed and let us take a set U ⊆ V0 satisfying the requirements above. We will
proceed by induction on the size of U . If U is a set with a single vertex u, then
we just put σ′ = σ as σ must be a winning strategy for P0 and u.

Therefore assume |U | = k + 1 for some k ∈ N. Let U = X ∪ {x′}, where
X ⊂ U has k elements. By induction hypothesis there exists y ∈ σ(X) such that
the strategy σ defined as σ(x) = y for x ∈ X and identical with σ on all other
vertices is winning for P0 from all vertices of X .

If σ(x′) = σ(x′) = y we put σ′ = σ and we are done, since σ is also winning
from x′ and satisfies the requirements. Otherwise y′ = σ(x′) �= y and there are
three cases to be considered (see Fig. 2):

1. If y �→∗
σ x

′ we can safely set σ′ = σ[x′ → y], as this change of strategy cannot
introduce a new cycle to Gσ. Obviously σ′ is winning for x′ as σ is winning
for y.

2. If y →∗
σ x

′ but y′ �→∗
σ x for all x ∈ X we can similarly put σ′ = σx∈X [x→ y′].

3. The last case is there are both a path from y to x′ and a set of paths
from y′ to X in the graph Gσ. As in the previous case σ is winning for
both y and y′, and therefore no odd cycle is reachable from y and y′ in
Gσ. Let us put p1 = resultσ(y, x′) and p2 = min�

⋃
x∈X resultσ(y′, x). Note

that p = max(p1, p2) must be even, otherwise there would be an odd cycle
through x′ in Gσ, which is not possible since σ is winning for all x ∈ X . Now
if p = p1 put σ′ = σ[x′ → y], otherwise σ′ = σx∈X [x→ y′].
Let us assume the first case (p = p1). Then all newly created cycles must
use the edge (x, y′), and for the highest priority p on such a cycle it must
be the case that p1 � p. By definition of p1 all the newly created cycles are
winning for P0. The case p = p2 is similar.

3 Clique Width

The notion of clique-width was first introduced by Courcelle and Olariu in [6].
There are actually two definitions of clique-width in that paper, one for directed
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Fig. 2. Illustration of the proof of Theorem 2

graphs and one for undirected graphs. We will present the former definition, as
it is more suitable for parity games, graphs of which are directed.

Let k be a positive integer. We call (G, γ) a k-graph if G is a graph and
γ : V (G)→ {1, 2, . . . , k} is a mapping. (As γ is usually fixed, we often write just
G for the k-graph (G, γ).) We call γ(v) for v ∈ V (G) the label of a vertex v (also
the colour of v). We also define the following operators:

1. For i ∈ {1, 2, . . . , k} let [i] denote an isolated vertex labelled by i.
2. For i, j ∈ {1, 2, . . . , k} with i �= j we define a unary operator αi,j which adds

edges between all pairs of vertices with label i and j. Formally

αi,j(G, γ) = (G′, γ)

where V (G′) = V (G) and E(G′) = E(G) ∪ {(v, w) | v, w ∈ V, γ(v) =
i and γ(w) = j}.

3. For i, j ∈ {1, 2, . . . , k} let ρi→j be the unary operator which relabels every
vertex labelled by i to j. Formally

ρi→j(G, γ) = (G, γ′)

where

γ′(v) =

{
j if γ(v) = i

γ(v) otherwise

4. Finally ⊕ is a binary operation which makes a disjoint union of two k-graphs.
Formally

(G1, γ1)⊕ (G2, γ2) = (G, γ)

where V (G) = V (G1) # V (G2), E(G) = E(G1) #E(G2) and

γ(v) =

{
γ1(v) if v ∈ V (G1)
γ2(v) if v ∈ V (G2)
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A k-expression is a well formed expression t written using the operators de-
fined above. The k-graph produced by performing these operations in order
therefore has as a vertex set the set of all occurrences of the constant symbols in
t, and this k-graph (or any k-graph isomorphic to it) is called the value val(t) of
t. If a k-expression t has value (G, γ) we say that t is a k-expression correspond-
ing to G. The clique-width of G, written as cwd(G), is the minimum k such that
there is a k-expression corresponding to G.

Example 2. α1,2(ρ1→2(α1,2(ρ1→2(α1,2([1] ⊕ [2])) ⊕ [1])) ⊕ [1]) is a 2-expression
corresponding to a directed clique of size 4. See Fig. 3.

E = D ⊕ [1] F = α1,2(E)

2 2

121

22

2

22

2

B=ρ1→2(α1,2(A)) C = B ⊕ [1]

12

22

21

2

D = ρ1→2(α1,2(C))

A = [1]⊕ [2]

Fig. 3. Construction of the directed clique of size 4

Note aside: For undirected graphs the clique-width is defined in just the same
way, except for the operator αi,j . In undirected case it is replaced by an operator
ηi,j which creates undirected edges between all vertices with colours i and j.

It is quite natural to view a k-expression tG corresponding to G as a tree T
with nodes labelled by subterms of tG (tG is the root), together with a bijection
between the leaves of the tree and vertices of G. In this setting the type of each
node t ∈ V (T ) is the top-level operator of t, so we have four different node types.

In the rest of this paper we will always have G and a k-term tG (and therefore
also its tree T ) corresponding to G fixed. We will also use the following notation:
For a node t ∈ V (T ) let G[t] be the subgraph of G given by t, and V [t] (E[t]) the
set of its vertices (edges). Slightly abusing the notation we use γ(v, t) to denote
the colour of v in the node t, γ(i, t) to denote the set of vertices of G which
have the colour i at the node t, and γ(t) to denote the set of all colours whose
associated vertex sets for t contain at least one vertex.
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3.1 k-Expressions and t-Strategies

For the purposes of our algorithm we have to consider a special kind of memo-
ryless strategies, called t-strategies. Such strategies assign to all free (see below)
even vertices of the same colour the same successor. Let G = (V,E, λ) be a
parity game, where G = (V,E) is of clique-width k and t is the corresponding
k-expression (and T its associated tree). A vertex v ∈ γ(i, t) is free for σ ∈ Σ0

if (v, σ(v)) �∈ E[t]. A strategy σ ∈ Σ0 is called a t-strategy if for each t′ ∈ V (T )
of type αi,j(t′′) we have that for all free v, w ∈ γ(i, t′′) ∩ V0 it is true that
σ(v) = σ(w). We use Σt

0 to denote the set of all t-strategies.

Theorem 3. Let G = (V,E, λ) be a parity game, and t the corresponding k-
expression to G = (V,E). Let σ ∈ Σ0 be a strategy winning for P0 from W ⊆ V .
Then there is a t-strategy σ′ ∈ Σt

0 such that σ′ is winning from W .

Proof (sketch). By repeated application of Theorem 2 at nodes of type αi,j(t′)
following the structure of t from the leaves upwards. Let X ⊆ γ(i, t′) be the set
of all free vertices for σ. Then from now on they can only be connected to the
same common successors. Note that edges from X to σ(X) must be added either
in this node or somewhere higher up the tree T . If σ is winning for some x ∈ X ,
then we can apply the Theorem 2 to find the common winning successor u, and
change the strategy σ. If this u is in γ(j, t′) we are done for this node. Otherwise
we deal with X higher up in T . If σ is not winning for any vertex of X , we select
a common successor at random.

4 Algorithm

In this section we present the main result – that parity games can be solved in
polynomial time on graphs of bounded clique-width. The algorithm described
here is in spirit similar to the one for graphs of bounded tree-width [15] and
bounded DAG-width [1,16]. However there are many conceptual differences, as
there is no small set of vertices forming an interface between an already processed
subgraph and the rest of the graph. To the contrary, in one step we can connect
an unbounded number of edges of G. The problem is we cannot keep the results
for all the individual vertices of one colour. This is the main obstacle we have to
deal with.

For the rest of this section let us fix a parity game G = (V,E, λ), where
G = (V,E) is of clique-width k and tG is the corresponding k-expression (and
T its associated tree). In addition we will assume that G is bipartite - i.e. that
E ⊆ (V0 × V1)∪ (V1 × V0). This requirement implies that for each t ∈ V (T ) and
each colour i we have that either γ(i, t) ⊆ V0 or γ(i, t) ⊆ V1. (If vertices of both
players have the same colour, then there cannot be any edge added to or from
this colour.) We therefore talk about even colours – containing the vertices from
V0, and similarly of odd colours. This will allow us to simplify our construction.
At the end of this section we discuss how we can modify the construction so it
does not require this assumption.
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In the previous section we have seen the definition of resultσ for the set of
all paths between two vertices in a subgraph G′ of G. We need to extend this
definition to colours and subgraphs G[t] for t ∈ V (T ).

For a vertex v ∈ V [t] and strategy σ ∈ Σ0 we want to find the best result
the player P1 can achieve against this strategy for a play starting from v within
G[t]. If there is a winning cycle of P1 (i.e. the highest priority on this cycle is
odd) reachable from v in the game G[t] when P0 uses σ, then we know P1 can
win against the strategy σ if starting in v in the game G. Falling short of this
objective the player P1 can force a play to some vertex w ∈ γ(i, t), with the hope
of extending this play to a winning play as more edges and vertices are added.
The ‘value’ of such play is the highest priority of a vertex on this path. However
note that there can be more paths starting in v which lead to a vertex of a given
colour i. In that case it is in the player P1’s interest to choose the one with the
lowest score w.r.t. the ‘�’ ordering. For each colour in γ(t) we remember the
best such result. But not all vertices w can be used to extend a play. As σ is
fixed, only vertices from V1 and those vertices of V0 at the end of a maximal
finite path (i.e. free vertices) qualify.

To formalise the description above, we need to extend the ‘�’ ordering to pairs
(i, p). For two such pairs (i, p),(j, q) we put (i, p) � (j, q) iff i = j and p � q.
Specifically if i �= j then the two pairs are incomparable. We extend the ordering
� by adding the minimal element ⊥. For a set X ⊆ ({1, . . . , k} × N) ∪ {⊥} we
denote min�X to be the set of �-minimal elements of X . Note that min�X =
{⊥} iff ⊥∈ X . Moreover for Z = min�X if Z �= {⊥} then Z contains at most k
pairs (i, p), one for each colour i.

We consider the maximal plays first. Starting from a vertex v ∈ V [t] and given
a strategy σ ∈ Σ0 let Π be the set of maximal paths in G[t] using σ. For a finite
path π = π0, . . . , πj we define the operator r(π) = (γ(πj),max{λ(πi) | 0 ≤ i ≤
j}). Then we put

resultσ(v, G[t]) =

�
⊥ if ∃π ∈ Π s.t. π is infinite and winning for P1

min�
�

π∈Π r(π) otherwise

To the set defined above we add also the results of all finite plays in G[t]
starting in v and ending in a vertex in V1 (the set X). Finally we take only the
minimal elements.

resultσ(v, t) = min�(X ∪ Y )
X = {(γ(w), resultσ(v, w,G[t])) | w ∈ V1 ∩ V [t]}
Y = resultσ(v,G[t])

Note: The set resultσ(v, t) will never be empty for v ∈ V [t]. Even when all the
reachable cycles are won by P0, there must be vertices in V1 ∩ V [t] reachable
from v since the game is bipartite.

Finally we want to say what happens when the play is restricted to G[t] and
starts in any vertex of colour i. The definition of resultσ(i, t) depends on whether
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i is odd or even colour. The reason for this is the following: if i is an odd colour,
then all edges to vertices of colour i are from even vertices. Using a memoryless
strategy the player P0 chooses one vertex of colour i as a successor. On the other
hand if i is an even colour, then the player P1, playing against σ, can choose any
vertex of colour i in the next step. This is formalised as follows:

resultσ(i, t) =

{
{resultσ(v, t) | v ∈ γ(i, t)} if i is odd colour in t
min�

⋃
v∈γ(i,t) resultσ(v, t) if i is even colour in t

For t ∈ V (T ) and i ∈ γ(t) we define the set Result(i, t) as the set of all possible
results when starting in a (vertex of) colour i and restricted to G[t].

Result(i, t) = {resultσ(i, t) | σ ∈ Σ0}

Note that in the definition above we do not require σ to be memoryless.
In our algorithm we use dynamic programming on T to compute sets R(i, t)

for each node t of T from the bottom up. We distinguish four cases (as we have
four types of nodes). For each node we have to prove (by induction from the
leaves) that the following two properties hold:

P1. ∀i ∈ γ(t).R(i, t) ⊆ Result(i, t)
P2. {resultσ(i, t) | σ ∈ Σt

0} ⊆ R(i, t)

The property P1 states that each member ofR(i, t) is a result for some strategy
σ ∈ Σ0. The property P2 then means that the results for all t-strategies are
included.

The following lemma states that if the sets R(i, t) satisfy properties P1 and
P2, then we can effectively solve the game G(v). Here we assume that v is the
only vertex of colour i, it is created by the [i] operator, and keeps its colour all
the time till the end of the construction. It is not difficult to modify t (by adding
an extra colour) so it satisfies this requirement.

Lemma 1. Let G = (V,E, λ) be a parity game where G = (V,E) is of clique-
width k and t is the associated k-expression corresponding to G. Let R(i, t) be a
set satisfying P1 and P2, and γ(i, t) = {v}. Then P0 wins the game starting in
v iff R(i, t) �= {⊥}.
Proof. Let σ ∈ Σ0 be a winning strategy of P0 from v. By Theorem 3 there must
be σ′ ∈ Σt

0 such that σ′ is also winning from v. By P2 resultσ′ (i, t) ∈ R(i, t) and
by definition of resultσ′(i, t) we must have resultσ′(i, t) �= {⊥}.

On the other hand if R(i, t) �= {⊥}, then by P1 there must be a strategy σ
s.t. resultσ(i, t) = resultσ(v, t) �= {⊥}. By definition of resultσ(v, t) there is no
odd cycle reachable from v if P0 is using σ and therefore P0 wins the game G
for v.

4.1 Algorithms for Operators

Here we present the algorithms for all four types of nodes. Once the algorithm is
given the proof is just a simple, if tedious, work and follows from the definition of
resultσ. To keep the presentation clear and tidy we only sketch some of the proofs.
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t is of type [i]. Let v be the corresponding vertex of G. Then we put R(i, t) =
{(i, λ(v))}. In this case obviously R(i, t) = Result(i, t) and therefore both P1
and P2 hold.

t is of type ρi→j(t′). We have to deal with two separate issues: choose the
“better” result (for P1) for paths ending in i and j and “join” R(i, t′) and R(j, t′).
To address the first issue we define the operation mod which takes α ∈ R(l, t)
and works as follows: If α contains both (i, pi) and (j, pj), it replaces these two
pairs by a single pair (j,min�(pi, pj)) (and if α contains only a pair (i, p), it is
replaced by (j, p)).

mod(α) =

{
min� ((α ∪ {(j, p)}) \ {(i, p)}) if (i, p) ∈ α for some p
α otherwise

The sets R(l, t) for l �= i, j are then defined in a straightforward way:

R(l, t) = {mod(α) | α ∈ R(l, t′)}
That R(l, t) satisfies P1 and P2 follows from the fact that R(l, t′) does and

the definition of resultσ(l, t).
Now it remains to show how to compute the set R(j, t). Let Si = {mod(α) |

α ∈ R(i, t′)} and Sj = {mod(β) | β ∈ R(j, t′)} the sets modified as above. To
produce the set R(j, t) we have to merge Si and Sj . The way we do this depends
on whether i, j are even or odd colours (by definition they must be either both
odd or both even).

R(j, t) =

{
{min�(α ∪ β) | α ∈ Si, β ∈ Sj} if i, j are even
Si ∪ Sj if i, j are odd

Proposition 1. R(j, t) satisfies P1 and P2.

Proof. For odd colours i, j P1 follows from the definition of resultσ. For P2 let
σ ∈ Σt

0. By P2 for t′ we have resultσ(i, t′) ∈ R(i, t′) and resultσ(j, t′) ∈ R(j, t′).
The rest follows from the fact that γ(j, t) = γ(i, t′) ∪ γ(j, t′).

For even i, j take α ∈ Si and β ∈ Sj . Then by induction hypothesis α =
mod(resultσ1(i, t′)) for some σ1 and β = mod(resultσ2(j, t′)) for some σ2. Let σ
be a strategy which behaves like σ1 if we start in a vertex of γ(i, t′) and behaves
like σ2 if we start in a vertex of γ(j, t′). Then resultσ(j, t) = min�(α ∪ β). This
proves P1.

For P2 and a strategy σ ∈ Σt
0 take α = resultσ(i, t′) and β = resultσ(j, t′).

By P2 for t′ we have α ∈ R(i, t′) and β ∈ R(j, t′). The rest follows from the
definition of resultσ.

t is of type αi,j(t′). We are adding edges between colours i and j in this step.
We start with computing the set R(j, t) first. For each α ∈ R(j, t′) we construct
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α′ by taking α′ = α and looking for any new winning cycles for P1: If there is
a pair (i, p) ∈ α we put ⊥ into α′ if p is odd. We then chose the minimal pairs
in α′ – the set min�(α′) – and call the result mod1(α). This works well for odd
i. However for even i if we prolong the path through i we have in addition to
remove the pair (i, p) (as there is not now any free vertex of colour i) – and we
call such set mod2(α). The last case is we do not add the edges between the
vertices of colour i, j. Altogether:

R(j, t) =

{
{mod1(α) | α ∈ R(j, t′)} if i is odd
{mod2(α) | α ∈ R(j, t′)} ∪R(j, t′) if i is even

Note: We do not add the set R(j, t′) if there is no w ∈ V \ V [t] such that
(u,w) ∈ E for u ∈ γ(i, t). The reason is that we cannot postpone the choice of
strategy for free vertices in γ(i, t) as there is no choice left.

Proposition 2. P1 and P2 hold for R(j, t)

Proof. For i odd (implies j is even) and P1 take α ∈ R(j, t′). By P1 for t′ α =
resultσ(j, t′) for some σ. But then mod1(α) = resultσ(j, t) from the definition of
resultσ.

So let i be even (this implies j is odd) and α ∈ R(j, t′). By P1 for t′ α =
resultσ(v, t′) for some σ and v ∈ γ(i, t′). For the first part of the union take σ′

to be the strategy which behaves like σ until the play reaches a vertex in i, then
goes to v and then continues again as σ. Then resultσ′(i, t) = mod2(α). Finally
for the second part consider σ′ which behaves like σ and to free v ∈ γ(i, t) it
assigns a successor not in V [t]. Then resultσ′(i, t) = α.

For P2 the proofs are very similar, the difference being that for each σ ∈ Σt
0

we take α = resultσ(i, t′) to start with.

Once the set R(j, t) is computed, the sets R(l, t) for l ∈ γ(t) \ {j} are computed
in the following way. Take an element α ∈ R(l, t′). If α contains a pair (i, p)
for some p, then consider all possibilities of extending a path from l to i by an
element of R(j, t). The way of combining R(l, t′) and R(j, t) is defined using the
operator weld :

Definition 3 (weld). Let α ∈ R(l, t′), β ∈ R(j, t) and l �= j. Then

weld i,j(α, β) =

{
min� ((α ∪ βp)) if (i, p) ∈ α for some p
α otherwise

where βp = {(k,max{p, q}) | (k, q) ∈ β}.

Let weld ′i,j be defined in exactly the same way, except for it removes the pair
(i, p) from α. Finally we put

R(l, t) =

{
{weld i,j(α, β) | α ∈ R(l, t′), β ∈ R(j, t)} if i is odd
{weld ′i,j(α, β) | α ∈ R(l, t′), β ∈ R(j, t)} ∪R(l, t′) if i is even
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Note: We do not add the set R(l, t′) if i is an even colour and there is no
w ∈ V \ V [t] such that (u,w) ∈ E for u ∈ γ(i, t). The reason is that we cannot
postpone the choice of strategy for free vertices in γ(i, t) as there is no choice
left.

Proposition 3. P1 and P2 hold for R(l, t)

Proof (sketch). Similar to the proof of Proposition 2. For P1 let α ∈ R(l, t′)
and β ∈ R(j, t). By P1 and the construction for R(j, t) above we have α =
resultσ1(l, t

′) and β = resultσ2(j, t) for some σ1, σ2. For the proof we take σ to
be the strategy that behaves like σ1 until it reaches i and like σ2 afterwards.

For P2 and each σ ∈ Σt
0 we take α = resultσ(l, t′) and β = resultσ(j, t), which

must be in R(l, t′) and R(j, t) by induction hypothesis and construction. The
rest follows from the definition of resultσ.

t is of type t1 ⊕ t2. This node type is pretty straightforward. What we do
depends on the colour – for a colour i we put

R(i, t) =

�
R(i, t1) ∪R(i, t2) if i is an odd colour

{min�(α1 ∪ α2) | α1 ∈ R(i, t1), α2 ∈ R(i, t2)} if i is an even colour

The proof that both P1 and P2 hold is follows immediately from the definition
of resultσ(i, t).

4.2 Complexity

Let us have a look at the size of the sets R(i, t). First note that the set min�X
for X ⊆ ({1, . . . , k} × N) can have at most k elements, each chosen from the
set of available priorities, size of which can be bounded by n = |V |. Therefore
the set R(i, t) can contain at most (n + 1)k + 1 different elements. As we have
k different colours, the size of the data computed in each step is bounded by
k · (n+ 1)k + 1.

The number of steps is equal to the size (the number of operators) of the k-
expression t corresponding to G (without loss of generality we can assume that
|t| is linear in |V |). Finally we see that the running time of the algorithms for
different operators is at most the square of |R(i, t)|, as in some cases we have
to take all pairs of members of R(i, t). This, together with Lemma 1, proves the
main result:

Theorem 4. Let G = (V,E, λ) be a parity game where G = (V,E) is of clique-
width k and t is the associated k-expression corresponding to G. Then there is
an algorithm which solves the parity game G in time polynomial in n.

4.3 Dropping the Restriction on Colours

In the algorithm above we restricted ourselves to bipartite parity games, where
players alternate their moves. Here we briefly discuss how to drop this restriction.
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The first step is to split each colour i into two colours i0 and i1. The colour
i0 will will be used only vertices from V0, and the colour i1 similarly for vertices
from V1. This at most doubles the number of colours. The second difference is
that for each colour ix we will keep two sets R0(ix, t) and R1(ix, t). One will be
computed like it was a set for an even colour, and the other one as a set for odd
colour. This again at most doubles the amount of information we need to keep.
Altogether we store four times more information that in the basic algorithm.

The algorithms for the different node types are modified as follows. A vertex
v created by the operator [i] is added to the set it belongs to. For the ⊕ operator
we join separately the sets for even and odd versions of the same colour. For
renaming ρi→j we again rename separately. Finally we have to deal with the αi,j
operator. The odd and even version of the i colour are treated separately. For
i0 we connect first to R1(j0, t) and then to R1(j1, t). Similarly for i1 we connect
first to R0(j0, t) and then to R0(j1, t).

Altogether the number of steps and the size of the sets we have to remember
is within a constant factor of the original algorithm, so the running time remains
polynomial.
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2. Berwanger, D., Grädel, E.: Entanglement – a measure for the complexity of directed
graphs with applications to logic and games. In: Baader, F., Voronkov, A. (eds.)
LPAR 2004. LNCS (LNAI), vol. 3452, pp. 209–223. Springer, Heidelberg (2005)

3. Björklund, H., Sandberg, S., Vorobyov, S.: A discrete subexponential algorithm
for parity games. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp.
663–674. Springer, Heidelberg (2003)

4. Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: van Leeuwen,
J. (ed.) Handbook of Theoretical Computer Science: Volume B: Formal Models
and Semantics, pp. 193–242. Elsevier, Amsterdam (1990)

5. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150
(2000)

6. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Appl. Math. 101(1-3), 77–114 (2000)

7. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: Proc.
5th IEEE Foundations of Computer Science, pp. 368–377. IEEE Computer Society
Press, Los Alamitos (1991)

8. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic
revisited. In: LICS 2002, pp. 215–224. IEEE Computer Society Press, Los Alamitos
(2002)
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Abstract. Church’s Problem (1962) asks for the construction of a pro-
cedure which, given a logical specification ϕ on sequence pairs, realizes
for any input sequence X an output sequence Y such that (X, Y ) satisfies
ϕ. Büchi and Landweber (1969) gave a solution for MSO specifications
in terms of finite-state automata. We address the problem in a more
general logical setting where not only the specification but also the solu-
tion is presented in a logical system. Extending the result of Büchi and
Landweber, we present several logics L such that Church’s Problem with
respect to L has also a solution in L, and we discuss some perspectives
of this approach.

1 Introduction

An influential paper in automata theory is the address of A. Church to the
Congress of Mathematicians in Stockholm (1962) [3]. Church discusses systems
of restricted arithmetic, used for conditions on pairs (X,Y ) of infinite sequences
over two finite alphabets. As “solutions” of such a condition ϕ he considers
“restricted recursions” (of which the most natural example is provided by finite
automata with output), which realize letter-by-letter transformations of input
sequences X to output sequences Y , such that ϕ is satisfied by (X,Y ). By
“Church’s Problem” one understands today the question whether a condition in
MSO (the monadic second-order theory of the structure (N, <)) can be realized
in this sense by a finite automaton with output, and in this case to synthesize
it. Büchi and Landweber solved this problem, and in recent years many authors
took up the question in various applications of the algorithmic theory of infinite
games (see e.g. [6]).

In the original problem, a precise relation between a specification and its solu-
tion was not addressed, maybe due to the fact that specifications and solutions
were considered to be in different domains. However, by a well-known corre-
spondence between finite automata and monadic second-order logic (established
by Büchi, Elgot, and Trakhtenbrot), the Büchi-Landweber solution for MSO-
specifications can again be presented as MSO-formulas. In this paper we analyze
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this view and generalize the result to a number of sublogics of MSO. We ex-
hibit natural logics L such that Church’s Problem for conditions in L is solvable
again in L. Moreover, a slightly sharpened statement holds: If a condition is not
solvable, then again a procedure definable in L exists to prohibit satisfaction
of the condition. In shorter words one says that infinite games defined in L are
determined with L-definable winning strategies.

We shall show the result for the following logics:

1. MSO, monadic second-order logic over (N, <).
2. FO(<), first-order logic over (N, <) (with free set variables, similarly for the

logics below).
3. FO(<)+MOD, the extension of FO(<) by modular counting quantifers,
4. FO(S), first-order logic over (N, S) with successor relation S,
5. strictly bounded logic, which is quantifier-free logic over (N, 0,+1).

The first three are treated in one proof, the last two handled separately.
We also exhibit examples of logics where the statement of the theorem fails,

among them the extension of FO(S) by the quantifier ∃ω (“there exist infinitely
many”) and Presburger arithmetic.

The study of the Büchi-Landweber Theorem for subsystems of MSO was
started in a recent paper by Selivanov [15]. He showed that specifications given
by aperiodic regular ω-languages can be solved with aperiodic transducers, which
is a setting semantically equivalent to FO(<) but relying on different techniques.
The present paper uses a different concept of definability and a general proof
method based on Ehrenfeucht-Fraissé type equivalences of the logics under con-
sideration. The essential proof ingredients for the logics 1. - 4. above are the
following:

1. A normal form of L-formulas in the form of Boolean combinations of formulas
∃ωxϕ(x), respectively ∃xϕ(x), where ϕ(x) is an L-formula bounded in x,

2. a refinement of these normal forms corresponding to parity automata, respec-
tively weak parity automata, whose states are L-definable equivalence types
of finite words (the equivalence typically based on the undistinguishability
by L-formulas of a given quantifier rank),

3. the construction of (weak) parity games over game graphs whose vertices
are essentially the mentioned equivalence classes, and the application of the
positional determinacy of (weak) parity games.

These results motivate a closer study of refined uniformization problems that
already have a tradition in recursion theory and descriptive set theory (however,
there in the context of degrees of unsolvability). We mention some perspectives
in the Conclusion.

In the subsequent Section 2 we introduce the terminology and state the main
result, adding a discussion of the possible concepts of definability for solutions
of Church’s Problem. In Section 3 we recall the prerequisites on (weak) parity
games, and in Section 4 we develop the above-mentioned normal forms. The
proof of the main result follows in Section 5.
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2 Preliminaries and Main Result

2.1 Church’s Problem, Games, and Strategies

Church’s Problem deals with sequence pairs over alphabets of the form {0, 1}n.
An instance is (the formal definition of) a set S of pairs (α, β) where say
α ∈ ({0, 1}m1)ω and β ∈ ({0, 1}m2)ω . We identify this set with the ω-language
over {0, 1}m1+m2 which contains for each pair (α, β) the ω-word α(0)̂ β(0),
α(1)̂ β(1) . . . (where u v̂ denotes the concatenation of the vectors u and v).

In the original form of Church’s Problem, the set S is defined in a restricted
system of arithmetic. In this context, it is convenient to use the standard cor-
respondence between a sequence α ∈ ({0, 1}n)ω and an m-tuple (P1, . . . , Pm) of
predicates Pi over the natural numbers, with i ∈ Pj iff the j-th component of
α(i), short (α(i))j , is equal to 1. The underlying mathematical model is (N, <).
We assume that the reader is acquainted with MSO logic over this structure (see
[6]). We indicate first-order variables by x, y . . . and monadic second-order vari-
ables by X,Y, . . . Then an instance of Church’s Problem is a formula ϕ(X,Y )
with tuples of free set variables X = (X1, . . . , Xm1) and Y = (Y1, . . . , Ym2),
interpreted by tuples P and Q of predicates. For simplicity we write the ω-word
associated with P as P (0)P (1) . . ., each letter being a bit vector of length m1,
similarly for Q.

A solution of Church’s problem for the formula ϕ(X,Y ) is an operator F
mapping an m1-tuple P of predicates to an m2-tuple Q, subject to the im-
portant restriction that F should be causal, i.e. Q(n) should only depend on
the segment P (0), . . . , P (n) of P . 1 This corresponds to the view that ϕ(X,Y )
defines an infinite two-person game in which a play is built up as a sequence
P (0), Q(0), P (1), Q(1) etc., where the players 1 and 2 supply their choices P (i),
respectively Q(i), in alternation. A strategy for Player 2 is given by a causal
operator F , and a strategy for Player 1 by a strongly causal operator G : Q �→ P
(where P (n) only depends on the prefix Q(0), . . . , Q(n − 1)) of Q. The causal
operator F is a winning strategy for Player 2 in the game defined by ϕ (in
Church’s words: a solution to the condition ϕ) if ∀Xϕ(X,F (X)) holds, similarly
the strongly causal operator G is a winning strategy for Player 1 if we have
∀Y ¬ϕ(G(Y ), Y ). holds. All games considered in this paper are determined, i.e.
either Player 1 or Player 2 has a winning strategy.

We define a causal operator F : P �→ Q in terms of a word function f that
assigns to any finite sequence

(
P (0)
Q(0)

)
. . .

(
P (n− 1)
Q(n− 1)

)(
P (n)
∗

)

a vector from {0, 1}m2 (which is then taken as Q(n)). By F (P ) we denote the
sequence Q that is generated by applying f successively to

(
P (0)
∗
)
, to

(P (0)

Q(0)

)(
P (1)
∗
)

etc. Similarly, a strongly causal operator G is presented as a word function g

1 So F is a special kind of continuous operator in the Cantor topology over infinite
sequences.
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which assigns to a sequence as above, with the last column letter missing, a
vector from from {0, 1}m1 (which is then taken as P (n)).

For the definability of an operator F in a logical system L, we assume that
L-formulas can be interpreted in finite word models of the form displayed above.
Formally, we consider structures ([0, n], <, (P ∩ [0, n]), (Q ∩ [0, n− 1]), n) for
causal operators F : P �→ Q, and ([0, n], <, (P ∩ [0, n− 1]), (Q ∩ [0, n− 1]), n)
for strongly causal operators G : Q �→ P . (For the latter case we have to provide
means to cover the case n = 0, in order to fix P (0). This is done by a Boolean
combination of formulas Xi(x) and the statement that x has no predecessor.)
We say that a function f over finite words is L-definable if there are L-formulas
ψ1(X,Y , x), . . . , ψm2(X,Y , x) such that

([0, n], <, (P ∩ [0, n]), (Q ∩ [0, n− 1]), n) |= ψj(X,Y , z)

iff the j-component of f applied to
(P (0)

Q(0)

)
. . .
(P (n−1)

Q(n−1)

)(
P (n)
∗
)

is equal to 1, and
we call then also the associated causal operator F L-definable. Similarly the
definability of strongly causal operators is defined.

We say that an L-defined game is determined with L′-definable winning strate-
gies if for each L-formula ϕ(X,Y ), there is either an L′-definable causal operator
as winning strategy of Player 2, or an L′-definable strongly causal operator as
winning strategy for Player 1.

2.2 Fragments of MSO and Main Result

The systems MSO, FO(<), and FO(S) are all well-known from the literature. In
the first two cases, the underlying model is (N, <), in the third case (N, S) with
the successor relation S. We use free predicate variables X,Y, . . . (for monadic
predicates) in all cases; in MSO we allow also quantification over them. We write
atomic formulas in the form x = y (equality is included), x < y, S(x, y), and
X(y), and use the standard connectives ¬,∨,∧,→,↔ and quantifiers ∃, ∀. MSO
is strictly more expressive than FO(<) (as exemplified by the formula saying “the
minimum of X is even”), and FO(<) is strictly more expressive than FO(S) (as
exemplified by “there is a Y element between two X-elements”).

The logic FO(<)+MOD is obtained from FO(<) by adjoining the quantifiers
∃r,qx, for q > 1 and 0 ≤ r < q, meaning “there is a finite number n of elements
x with n ≡ r(mod q)”. FO(<)+MOD is a system located in expressive power
strictly between FO(<) and MSO (see [17]). Note that over N, the quantifier
allows to express ∃ωx (“there exist infinitely many x”) by negating ∃r,q for all
r = 0, . . . , q − 1. Denote by FO(S)+∃ω the extension of FO(S) by ∃ωx.

By strictly bounded logic mean the quantifier-free fragment of FO(0,+1). This
logic characterizes the properties of sequences that are determined by their pre-
fixes of fixed given length (or, in other words, are both open and closed in the
Cantor topology). Corresponding formulas are called “bounded specifications”
in [9].
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Theorem 1. (Main Theorem)
Let L be any of the logics MSO, FO(<), FO(<)+MOD, FO(S), or strictly
bounded logic. Then each L-definable game is determined with L-definable win-
ning strategies.

Theorem 2. If L is FO(S)+∃ω or FO(S)+MOD, then there are L-definable
games that are determined, however not with L-definable winning strategies.

2.3 On Definability of Causal Operators

It is useful to discuss the (in general non-equivalent) options for defining causal
and strictly causal operators.

An operator F : Σω
1 → Σω

2 is implicitly defined by a formula ψ(X,Y ) over
the structure (N, . . .) if for any P ,Q we have

F (P ) = Q iff (N, . . .) |= ψ[P ,Q]

and F is said implicitly L definable iff it is defined by a formula in the logic
L. An operator F is explicitly defined by the formulas ϕ1(X1, . . . , Xm1 , x), . . . ,
ϕm2(X1, . . . Xm1 , x) over the structure (N, . . .) if for every P̄ = (P1, . . . , Pm1) ∈
P(N)m1 and Q̄ = (Q1, . . . , Qm2) ∈ P(N)m2 the following holds:

Q = F (P ) iff (N, . . .) |=
∧

i ∀x(Qi(x) ↔ ϕi(P , x)).

Note that F is implicitly MSO-definable iff F is explicitly MSO-definable.
However, for the fragments of MSO considered here, implicit L-definability is
(in general: strictly) more general than L-explicit definability. As an example
consider a constant operator G : {0, 1}ω → {0, 1}ω defined as G(a0, . . . ai . . .) =
b0 . . . bi . . ., where bi = 1 iff i is even. It is definable in FO[<] implicitly but not
explicitly.

Both notions are not adequate for our purpose since non causal and even
non-continous functions can be definable (e.g. F : P �→ Q with Q = N if P is
infinite and else Q = ∅).

An operator F is explicitly definable by bounded formulas in L if there are
L-formulas ψi(X,x) where atomic formulas X(t) are only allowed for t ≤ x such
that

F (P ) = Q iff (N, . . .) |=
∧

i

∀x(Qi(x) ↔ ψi(P , x))

Let L be one of the following logics MSO, FO[<] and for FO[<]+MOD.
Clearly, if an operator is L-definable by bounded formulas, then it is causal.

However, this notion is insufficient for weak logics such as FO(<), due to a
lack of reference to previous values; note that in MSO a sequence of values Q(y)
for y < x is accessible by an auxiliary second-order quantification. An option
to implement this reference is to use the full play prefix P (0)Q(0)P (1)Q(1) . . .
P (n−1)Q(n−1)P (n) when defining Q(n). But this does not allow (in FO(<) and
FO(S)) to determine the origin of, say, a single bit 1 (assuming 0 elsewhere),
namely whether this bit belongs to the P (i) or to the Q(i). Thus we use the
vector representation for the pairs (P (i), Q(i)).
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Finally, we remark that the notion of bounded formula is meaningful only
when the order relation < (or ≤) is in the signature. In order to cover also
the successor logic FO(S), we pass to finite prefixes of infinite sequences as the
models of formulas that define strategies, shifting boundedness from the syntactic
to the semantic level. We thus arrive at the concept of definability for causal and
strongly clausal operators as used above in Theorem 1.

3 Preliminaries on Games and Automata

3.1 Muller and Parity Games and Their Weak Versions

A directed bipartite graphG = (V1, V2, E) is called a game arena if the outdegree
of every vertex is at least one. We assume in this paper that V := V1 ∪ V2 is
finite. If G is an arena, a game on G is defined by an initial node vinit ∈ V1 and
a winning condition (by convention for Player 2). A play over G is an infinite
sequence ρ ∈ V ω starting in vinit, built up by two agents called player 1 and
2 that choose edges in alternation (player i from vertices in Vi). By Inf(ρ),
respectively Occ(ρ) we denote the set of vertices from V which occur infinitely
often, respectively just occur, in ρ. A winning condition decides who wins a
play; we declare Player 2 to be the winner iff it is satisfied. (Here we follow the
convention above that the “good” player is the second, having to react move
by move to Player 1.) First we consider two winning conditions, called Muller
condition, respectively weak Muller condition (the latter is also called Staiger-
Wagner-condition in the literature). In both cases, the condition is specified by
a family F of subsets of V . A play ρ satisfies the Muller (resp. weak Muller)
condition F if Inf(ρ) ∈ F (resp. if Occ(ρ) ∈ F).

As usual, a strategy f for Player 1 (Player 2) is a function which assigns to
every path of odd (positive even) length a node adjacent to the last node of the
path. (We assume that the inital vertex is given, and that player 1 starts from
there.) A play vinitv1v2 . . . is played according to a strategy f1 of Player 1 (strat-
egy f2 of Player 2) if for every prefix π = vinitv1 . . . vn of odd (even) length we
have vn+1 = f1(π) (respectively, vn+1 = f2(π)). A strategy is winning for Player
2 (respectively, for Player 1) if all the plays played according to this strategy
satisfy the winning condition under consideration. A strategy is memoryless if
it depends only on the respective last node in the path.

In a parity game (resp. weak parity game), the winning condition refers to a
coloring c : V1∪V2 → {0, 1, . . .m} of the game graph. For a play ρ = v0v1 . . . let
Cω(ρ), resp. C(ρ), be the maximal color occurring infinitely often, resp. occurring
at all, in the sequence c(v0)c(v1) . . .. A play ρ is won according to the parity
condition, resp. weak parity condition, if Cω(ρ), resp. C(ρ), is even.

The following theorem, due to Emerson/Jutla and Mostowski, is fundamental
(see [6,11] and e.g. [21] for the weak case):

Theorem 3 (Memoryless Determinacy for (Weak) Parity Games)
In a parity game, one of the two players has a winning strategy which moreover
is memoryless. The same statement holds for weak parity games.
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3.2 From (Weak) Muller to (Weak) Parity Conditions

There are well-known reductions of Muller games and weak Muller games to
parity games, respectively weak parity games. We recall these constructions here
as a background to the next section. The idea is to transform an infinite sequence
(e.g., an infinite play) ρ over the set V into a new sequence ρ′ over a larger
alphabet, which results from V by adding a “memory component”. A coloring
is associated with each of the new letters, making use of the state-set collection
F that defines the (weak) Muller condition under consideration. The aim is
to obtain the following equivalence: The sequence ρ satisfies the (weak) Muller
condition iff ρ′ satisfies the (weak) parity condition.

First we treat the case of weak Muller conditions, say for a collection F ⊆ 2V .
We associate with each sequence ρ = v0v1 . . . over V a sequence over V × 2V ,
where the first components give a copy of ρ and a second component P ⊆ V
indicates the set of previously visited V -elements. We thus speak of the data
structure appearence record, short AR. So the sequence ρ′ starts with (v0, ∅),
and for a step from v to v′ in ρ we pass in ρ′ from (v, P ) to (v′, P ∪ {v}). The
sequence ρ′ will have, from some point onwards, a constant second component,
which equals Occ(ρ). If we attach to (v, P ) the color 2|P | when P ∈ F and
2|P | − 1 when p �∈ F , then we have that Occ(ρ) ∈ F iff C(ρ) is even (which
means that the weak parity condition is satisfied).

A similar reduction is known for the Muller condition (see [19]). Consider again
F ⊆ 2V , where V = {v1, . . . , vn}. Now not only the visited V -elements but also
the order of their visits is recorded (latest appearance record, short LAR [7]). Let
ρ = v0v1 . . . vj . . . be a sequence over V . The associated latest appearance record
at time point j is a sequence (vj , vi1 , . . . , vik ) where S = {vi1 , vi2 , . . . , vik} is the
appearance record at j, i.e., the set of states visited before j. We list them in the
order of latest appearance before vj (most recently visited vertices listed first):
Every state from S appears exactly once in the sequence vi1 , vi2 , . . . , vik , and we
have a sequence j > j1 > j2 > . . . > jk such that: (1) vim appears at jm in ρ
(m = 1, . . . k); (2) There is no occurrence of vim between positions jm and j in
ρ (m = 1, . . . k).

If in the LAR (v, vi1 , . . . vim), v occurs as entry vih , we call h the “index” of
the LAR (otherwise let h = 0). Using the index we equip a LAR with a color
as follows. Assign to (v, vi1 , . . . vim) of index h the color 2h if {vi1 , . . . , vih} ∈ F
and otherwise 2h− 1. Then the sequence ρ satisfies the Muller condition w.r.t.
F iff the induced sequence ρ′ satisfies the parity condition with respect to the
defined coloring.

Two observations are of interest in the sequel:

1. The description of the LAR structure requires the order relation of the un-
derlying model, while this is irrelevant for the AR structure.

2. Together with the positional determinacy of (weak) parity games, the reduc-
tions yield finite-state automata that execute winning strategies in (weak)
Muller games; the state set (consisting of LAR’s, respectively AR’s) and the
transition function of a strategy automaton depend only on the game graph,
whereas for the output function the winning condition is also used.
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4 Normal Forms

As a tool to analyze logical formulas we recall well-known equivalences between
models based on indistinguishability by formulas up to some quantifier depth k.
We call these equivalence classes “k-types”. The models under consideration are
expansions of finite orderings (A,<) or of (N, <) by tuples P of unary predicates.
For m-tuples P we speak of m-chains.

The logics L to be considered below are MSO, FO(<), FO(<)+MOD, and
FO(S).

4.1 Types

Two m-chains M,M ′ are k-equivalent for L (written: M ≡Lk M ′) if M |= ϕ ⇔
M ′ |= ϕ for every L-formula ϕ(X) of quantifier depth k. This is an equivalence
relation between m-chains; its equivalence classes are called k-types for L (and
for the considered signature and m unary predicates). We denote the (finite) set
of k-types by Hk, usually suppressing an index for the logic under consideration.
(In the case of FO[<]+MOD, we assume that also a maximal divisor q is fixed in
advance.) If a formula ϕ is true in every model of type t we say that “t implies
ϕ”.

Let us list some fundamental and well-known properties of k-types for any of
the mentioned logics L above; we suppress the reference to L for simplicity of
notation.

Proposition 4. 1. For every m and k there are only finitely many k-types of
m-chains.

2. For each k-type t there is a “characteristic formula” which defines t (i.e., is
satisfied by an m-chain iff it belongs to t). For given k and m, a finite list
of characteristic formulas for all the possible k-types can be computed.

3. Each formula ϕ(X) is equivalent to a (finite) disjunction of characteristic
formulas; moreover, this disjunction can be computed from ϕ.

The proofs of these facts can be found in several sources, we mention [8,16,20]
for MSO and FO(<), [17] for FO(S) and FO(<)+MOD.

Given m-labelled chains M0,M1 we write M0 + M1 for their concatenation
(ordered sum). In our context, M0 will always be finite and M1 finite or of order
type ω. Similarly, if for i ≥ 0 the chainMi is finite, the model Σi∈NMi is obtained
by the concatenation of all Mi in the order given by the index structure (N, <).

We need the following composition theorem on ordered sums ([16]):

Proposition 5. (Composition Theorem)
Let L be any of the logics considered above.

(a) The k-types of m-chains M0,M1 for L determine the k-type of the ordered
sum M0 + M1 for L, which moreover can be computed from the k-types of
M0,M1.

(b) If the m-chains M0,M1, . . . all have the same k-type for L, then this k-type
determines the k-type of Σi∈NMi, which moreover can be computed from the
k-type of M0.
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Part (a) of the theorem justifies the notation s+ t for the k-type of an m-chain
which is the sum of two m-chains of k-types s and t, respectively.

4.2 Strong Normal Forms

In this subsection we deal with the logics MSO, FO(<)+MOD, and FO(<), and
we denote here by L any of these three logics.

A formula ψ(x) with at most one free individual variable x is (syntactically)
bounded if all its first-order quantifiers are of the form ∃≤xy . . . (short for ∃y(y ≤
x ∧ . . .) and ∀≤xy . . . (short for ∀y(y ≤ x→ . . .)).

We use a normal form proved in [18] for MSO and FO(<) which easily extends
to FO(<)+MOD. For all logics that satisfy the Composition Theorem and ex-
tends FO(<), it provides a first-order description of the fact (for given k) that the
infinite m-chain under consideration can be cut into a sequence w0, w1, w2, . . .
such that all wi for i > 0 share the same k-type t. (The fact that such a de-
composition exists is clear from Ramsey’s Theorem; the obvious formalization,
however, uses a second-order quantifier.)

Proposition 6 ([18]). Every L-formula ϕ(Z) is equivalent (over the class of
m-chains with domain N) to a formula in bounded normal form, more specifically
of the form

n∨

i=1

(∃ωzψi(Z, z) ∧ ¬∃ωzψ′i(Z, z))

where the ψi, ψ′i are bounded.

In a next step we sharpen this normal form to a “parity normal form”.
Formulas in parity normal form involve a coloring of a certain finite set of

bounded formulas Δ = {ϕ1(Z, x), . . . , ϕn+1(Z, x)} such that an m-chain can
satisfy at most one of them. We denote the color of ϕi by col(ϕi) and call Δj

the formulas from Δ of color ≤ j.

Lemma 7. (Parity Normal Form)
Every L-formula ϕ(Z) is equivalent (over the class of m-chains with domain N)
to a formula in parity normal form:

n/2∨

i=0

( ∨

ϕ∈Δ2i

∃ωx ϕ(Z, x) ∧
∧

ϕ∈Δ2i+1

¬∃ωx ϕ(Z, x))
)

where Δ is a finite set of bounded formulas, such that an ω-chain satisfies at
most one of them, and Δ0 ⊆ . . . ⊆ Δn+1 = Δ . (This formula will be denoted
Parityϕ(Δ, col).)

Proof. The proof follows the mentioned transformation from Muller automata to
parity automata. The only important observation is that the latest appearance
record LAR can be formalized in FO(<).
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We let ϕ(Z) be a formula and let ψi, ψ′i be formulas as in Proposition 6. Let k
be the maximal quantifier depth of the formulas ψi(Z, x), ψ′i(Z, x) of the above
bounded normal form of ϕ(Z). Again, let Hk be the set of k-types over Z.

Let us define the following Muller acceptance condition F ⊆ P(Hk): We in-
clude a subset R of Hk in the set F iff for some j, R contains some type implying
ψj but contains no type implying ψ′j . Note that a structure M = (N, . . .) sat-
isfies ϕ iff the set of k-types that are satisfiable cofinally often on the initial
substructures of M is in F .

For every latest appearance record lar = (t, ti1 , . . . , tim) overHk, we can write
a formula ϕlar(Z, x) such that (N, <) |= ϕlar(P , j) iff lar is the latest appearance
record of the sequence t1 . . . tj , where ti is the k-type of of the submodel of
(N, <, P ) over the interval [0, i]. For every k-type t one can write in these logics
a formula expressing that the k-type of an interval [0, x] is t (We denote this
formula by T k(x) = t, suppressing Z). Then ϕlar can be easily expressed as
explained in Subsection 3.2. For example, if lar = (t, ti1 , t, ti2), then ϕlar is the
conjunction of the following formulas:

T k(x) = t ∧ ∀y < x(T k(y) = t ∨ T k(y) = ti1 ∨ T k(y) = ti2)

∃y1y2y(y2 < y < y1 < x) ∧(T k(y1) = ti1 ∧ T k(y2) = ti2 ∧ T k(y) = t = T k(x)
∧∀z

(
(x > z > y)→ ¬T k(z) = t

)

∧∀z
(
(x > z > y1) → ¬T k(z) = ti1

)

∧∀z
(
(x > z > y2) → ¬T k(z) = ti2

)

Now let F be the acceptance Muller conditions over Hk which corresponds
to presentation of ϕ in bounded normal form. We transform Muller conditions
into a coloring of LAR over Hk exactly like explained in Section 3.2, and for
lar ∈ LAR will assign to ϕlar the color of lar. Let Δ be the set of formulas
{ϕlar : lar is a latest appearance record over Hk}. It is easy to verify that ϕ is
equivalent to the formula Parityϕ(Δ, col).

4.3 Weak Normal Forms

For the logic FO(S), we consider models M = (N, S, P ) and M = ([0, n], S, P )
with an m-tuple P . We first recall the model theoretic analysis of FO(S) which
relies on the first-order model theory of finite graphs (due to Hanf, see e.g. [5]).

By the r-sphere around the element x we mean the submodel, pointed at x,
consisting of x with its next k neighbours to the left and to the right (as far as
these neighbors exist). We call a sphere right-complete (left-complete) if these k
elements exist to the right (left) of x, and complete if both properties apply. By
σ we denote an isomorphism type of an r-sphere; the set of all possible r-sphere
isomorphism types is denoted Sr.

A (r,K)-type of a model M is given, for each σ ∈ Sr, by the numbers nσ of
occurrences of σ counted up to threshold K. So it is a vector (nσ)σ∈Sr of values
in [0,K+1] and defined by a conjunction of FO(S)-formulas “there are precisely
k elements x with: “r-sphere type of x = σ” where k < K, and “there are K +1
elements x with “r-sphere type of x = σ”.
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We need the following known facts which give a rather direct description of
k-types for FO(S):

Lemma 8. (Hanf, see [5])
For each k, there are r,K such that each (r,K)-type implies a fixed k-type (so
(r,K)-types refine k-ypes), or in other words: Truth of a FO(S)-formula of quan-
tifier depth k over a model M as considered here is determined by the (r,K)-type
of M .

Now we consider models with domain N. Then only right-complete spheres are
relevant. We use this fact to introduce a restricted version of type for the fi-
nite prefixes (ignoring the right-incomplete spheres of prefixes), which induces a
monotonicity property when we let the prefixes increase. For the initial segment
Ms of a model M = (N, S, P ) up to number s we denote by π(s) = (nσ)σ the
vector of natural numbers in [0,K + 1] which lists, in some fixed order of the
r-sphere types σ that are right-complete, the numbers of their occurrences in
Ms counted up to threshold value K (again representing any number > K by
K+1). Call π(s) the “(r,K)-profile” of Ms, and π the (r,K)-profile of the whole
structure M . ¿From the lemma it follows (under the given conventions for the
parameters k, r,K) that the (r,K)-profile π determines truth of formulas ϕ(Z)
in M up to quantifier depth k.

When s increases, the profiles π(s) can only increase as well (componentwise).
At some point s0, the value π(s0) = (ns0σ )σ is equal to the M -profile π and
stays constant. Let us write π′ > π if for all components the π′-value is ≥ the
corresponding π-value, and for some component we have a strict inequality >.
We can write down FO(S)-formulas ϕτ , ϕ>τ expressing in a segment model Ms

that its (r,K)-profile is τ , respectively > τ .
We obtain the following “normal form” for FO(S)-formulas; note that we

write it down on the semantical level since bounded formulas are not available
in FO(S).

Lemma 9. (“Weak Normal Form”)
Let ϕ(Z) be a FO(S)-formula. Then for each model M = (N, S, P ), we have
M |= ϕ(Z) iff

∨

τ∈Π(ϕ)

(
∃s Ms |= ϕτ ∧ ¬∃s Ms |= ϕ>τ

)

where Π(ϕ) is the set of (r,K)-profiles that imply ϕ.

A small further step gives us a parity normal form. For this we consider an
extension of the partial order of (r,K)-profiles to a linear order, giving each
profile an index h. We associate now colors with the formulas ϕτ , ϕ>τ above, by
giving a profile of index h the color 2h if it belongs to Π(ϕ), otherwise 2h− 1.
Assume the colors range from 0 to n + 1. Then we obtain the following, using
again the notation of Δj for the formulas of color ≤ j:
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Lemma 10. (“Weak Parity Normal Form”)
Let ϕ(Z) be a FO(S)-formula. For each model M = (N, S, P ), M |= ϕ(Z) iff

n/2∨

i=0

( ∨

ϕτ∈Δ2i

∃s Ms |= ϕτ ∧
∧

ϕσ∈Δ2i+1

¬∃s Ms |= ϕσ
)

5 Proof of Theorems 1 and 2

5.1 Logics with Strong or Weak Normal Form

Let L be any of the logics MSO, FO(<), FO(<)+MOD. In the previous section
we have shown that each L-formula ϕ(Z) can be transformed into an equivalent
parity automaton Aϕ whose states are k-types for the logic L, for suitable k. (In
order to include the empty model as initial state, the state space of Aϕ is Hk ∪
{ε}.) After scanning an initial segment P (0) . . . P (n), the automaton assumes
just the k-type (for L) of the model ([0, n], <, (P ∩ [0, n])). By construction (and
by the properties of k-types), each state is L-definable.

This transformation of a specification (game definition) ϕ(Z) into an automa-
ton is independent of the game theoretical context. Now we emphasize this aspect
again. The m-tuple Z is split into two blocksX,Y of length m1,m2, respectively,
the specification reads ϕ(X,Y ), and predicates P ,Q used for the interpretation
of X,Y are built up step by step in alternation.

Following this splitted construction, we introduce a game graph, where the
vertices from Hk∪{ε} are accompanied by extra vertices in (Hk∪{ε})×{0, 1}m1,
which serve to represent the “intermediate steps” reached by Player 1 after his
choice of a m1-tuple P (n).

Formally, we define the game graph Gϕ = (V1, V2, E) by

– V1 = Hk ∪ {ε}, V2 = V1 × {0, 1}m1

– the edge set E with an edge from t ∈ V1 to (t, a) for each t ∈ V1 and each
a ∈ {0, 1}m1, and an edge from each (t, a) to the k-type t + (a, b) for each
b ∈ {0, 1}m2. (Recall that t + (a, b) is the k-type of a model which results
from a model of type t by concatenating the m-tuple (a, b).)

In order to obtain a parity game, we have to define a coloring c. For this, we
associate to both t and each (t, a) the same color as given for t in the automaton
Aϕ. Then it is obvious that a sequence (P ,Q) satisfies ϕ iff Player 2 wins the
parity game over Gϕ with the coloring c. Assume that Player 2 wins. Then we
can fix a winning strategy by choosing one m2-tuple b for each vertex (t, a) in V2.
Denote the i-th component of this vector b by bi(t, a). We show that this strategy
is L-definable. For this, recall that we can express by an L-formula ψt(X,Y , x)
that “the k-type of ([0, x− 1], (X ∩ [0, x− 1]), (Y ∩ [0, x− 1], x) is t”. We define
the winning strategy by the following L-formulas ψi(X,Y , x):

∨

(t,a)∈V2

(ψt(X,Y , x) ∧X(x) = a ∧ “bi(t, a) = 1”)
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Here X(x) = a stands for
∧

j[¬]Xj(x) with negations inserted for those j where
aj = 0, and bi(t, a) = 1 for “true” or “false” depending on the value of bi. The
proof for definability of a winning strategy for Player 1 works similarly.

For the logic FO(S), we proceed in exact analogy, invoking the weak parity
normal form, constructing a weak parity game consisting of FO(S)-definable
states, and using positional determinacy of weak parity games. Since composi-
tionality of types is needed in the definition of the game graph, one uses (r,K)-
types as vertices, but the induced (r,K)-profiles for the winning condition.

5.2 Strictly Bounded Logic

For a specification ϕ(X,Y ) of strictly bounded logic (the quantifier-free fragment
of FO(0,+1)) with an m1-tuple X and a m2-tuple Y , let k be the maximal
nesting of the function symbol +1 in ϕ. It is easy to show that satisfaction
of ϕ in (N, 0,+1, P ,Q) only depends on the prefix of (P ,Q) up to position k.
Collect the finite set L0 of these prefixes (of length k + 1) such that all their
extensions to ω-sequences satisfy ϕ. We consider the game graph with vertices
w ∈ {0, 1}m1+m2 of length ≤ k + 1 (for Player 1) and (w, a) for these w and
a ∈ {0, 1}m1 (for Player 2). The standard attractor construction (see [6]) yields a
positional winning strategy for either of the two players which is clearly definable
in strictly bounded logic.

5.3 Proof of Theorem 2

We consider a game due to Dziembowski, Jurdziński, and Walukiewicz [4]. For
better readability we use the alphabet {a, b, c} for X and {0, 1, 2} for Y . Let
ϕ(X,Y ) be the following condition: “If a, b occur infinitely often in X , then 2
occurs infinitely often in Y ; if only one of a, b occurs infinitely often, then 1, but
not 2, occurs infinitely often in Y ; otherwise Y is ultimately 0”. This condition
is expressible in FO(S)+∃ω (even without S).

The game is solvable by means of the LAR over {a, b, c}. The output is 0 if c
is the current X-value, it is 1 if a is the current value with b occurring after a
in the current LAR-list, and otherwise 2 (dually for letter b).

Assume that a winning strategy is definable in FO(S)+∃ω. Since the un-
derlying models are finite words, it is easy to transform the definition into an
equivalent FO(S)-definition. Choose (r,K) as in the weak normal form theorem
and consider the word u = (c2rac2rb)Kc2r over {a, b, c}. Now we apply a case
distinction concerning the output values of the strategy for words in uac∗ after
u. If the maximum is 0 or 2, we obtain a contradiction to the assumption that
the strategy wins, by considering P = u(ac2r)ω ; namely, the strategy will yield
0, respectively 2, as the maximal output repeated infinitely often but should do
this with value 1. Similarly, one argues for the case of words in ubc∗. It remains
to consider the situation that for both cases the maximum output is 1. Then we
obtain a contradiction for u(ac2rbc2r)ω; the strategy yields 1 as maximal output
repeated infinitely often but should produce value 2.
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The proof for FO(S)+MOD works similarly (since again the quantifier ∃ω
is implicitly present), however with a more involved case distinction which is
omitted here.

6 Discussion and Perspectives

Based on a natural concept of logical definability of winning strategies in infinite
games, we exhibited several fragments L of MSO logic such that the L-definable
games are determined with L-definable winning strategies.

Let us add remarks on possible extensions of these results.
Our formulation of Church’s Problem can be viewed as a task to transform

ω-languages (specifications) to tuples of standard languages (defining the out-
put functions, essentially by descriptions of mutually disjoint languages of play
prefixes for the different output letters). This study can be pursued in language
theory, and further types of properties can be considered, like “locally testable”
or “piecewise testable” (see [12]). These properties are not captured by logics but
can be analyzed in a very similar way by approriate equivalence relations. We
leave a more detailed treatment (which involves some extension of the method
of the present work) to a future paper.

In [14] the Church problem for MSO over expansions of ω by monadic
predicates (i.e., over structures (N, <,P1, . . . ,Pn) with fixed subsets Pi as
“parameters”) was investigated. It was shown that for every MSO formula
ψ(X,Y, P1, . . . , Pn) and structure M = (N, <,P1, . . . ,Pn) there is either an
MSO-definable (in M) causal operator, as winning strategy of Player 2, or an
MSO-definable (in M) strongly causal operator, as winning strategy for Player
1. There, similarly to our paper, for an instance of Church’s problem a parity
game graph is constructed. However, unlike the case considered here, this graph
is infinite. The finiteness of the game graph is crucial to our proof of definability
of the winning strategy (see section 5.1). So it remains an open question whether
the results of our paper can be extended to the expansions of (N, <) by monadic
predicates.

Let us consider Church’s Problem in the framework of another decidable
theory: Preburger arithmetic, the first-order theory of addition over N. Here
Theorem 1 fails:2 It is easy to write down in Presburger arithmetic a formula
ϕ(Y0) which says that Y0 is the set Squ of squares (use the fact that the dis-
tances of successive squares increase by 2). The strategy to generate Squ is
also Presburger definable. Invoking the fact that multiplication is FO-definable
in (N,+, Squ) ([13]), the FO(+)-specifications are the arithmetical relations in
(X,Y0, Y ) where Y0 = Squ. On the other hand, it is known ([10]) that there are
specifications ∃ωxR(X,Y , x) even with recursive R which (are determined but)
do not allow an arithmetical winning strategy. This leads us to the question: Are
2 The short abstract [2] of Büchi, Elgot, and Wright (without a corresponding paper)

claims that specifications in Presburger arithmetic do not have, in general, MSO-
definable solutions; the reference to [13] given in [2] seems to point to a similar
argument as sketched here.
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there natural logics L which are not covered by the proof method of this paper
and still satisfy Theorem 1?
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2. Büchi, J.R., Elgot, C.C., Wright, J.B.: The nonexistence of certain algorithms of
finite automata theory. Notices of the AMS 5, 98 (1958)

3. Church, A.: Logic, arithmetic, and automata. In: Proc. Int. Congr. Math. 1962,
Inst. Mittag-Lefler, Djursholm, Sweden, pp. 23–35 (1963)
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al. (eds.) DLT 2007. LNCS, vol. 4588, Springer, Heidelberg (2007)
16. Shelah, S.: The monadic theory of order. Ann. of Math. 102, 349–419 (1975)
17. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity, Birk-
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Abstract. Although Cai, Fürer and Immerman have shown that fixed-
point logic with counting (IFP + C) does not express all polynomial-
time properties of finite structures, there have been a number of results
demonstrating that the logic does capture P on specific classes of struc-
tures. Grohe and Mariño showed that IFP + C captures P on classes
of structures of bounded treewidth, and Grohe showed that IFP + C
captures P on planar graphs. We show that the first of these results is
optimal in two senses. We show that on the class of graphs defined by a
non-constant bound on the tree-width of the graph, IFP + C fails to cap-
ture P. We also show that on the class of graphs whose local tree-width
is bounded by a non-constant function, IFP + C fails to capture P. Both
these results are obtained by an analysis of the Cai–Fürer–Immerman
(CFI) construction in terms of the treewidth of graphs, and cops and
robber games; we present some other implications of this analysis. We
then demonstrate the limits of this method by showing that the CFI
construction cannot be used to show that IFP + C fails to capture P on
proper minor-closed classes.

1 Introduction

The central open problem in descriptive complexity theory is whether there ex-
ists a logic that can express exactly the polynomial-time decidable properties
of unordered structures. For some time it was conjectured that the extension of
fixed-point logic with counting (IFP + C) would be such a logic, but this was
shown not to be the case by a construction due to Cai, Fürer and Immerman
[4], which we refer to below as the CFI construction. Nonetheless, IFP + C pro-
vides a natural level of expressiveness within the complexity class P which has
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been explored in its own right [20]. It has also been shown that, on certain re-
stricted classes of structures, IFP + C is indeed powerful enough to express all
polynomial-time properties. In particular, Immerman and Lander have shown
that IFP + C defines exactly the polynomial-time properties of trees [16] and
Grohe and Mariño [14] extended this to show that on any class of structures
of bounded tree-width, IFP + C captures P. Grohe also showed that IFP + C
captures P on the class of planar graphs [12] and, more generally, on classes
of embeddable graphs [13]. In particular, these results imply that the CFI con-
struction cannot be carried out when restricting ourselves to such classes of
structures.

There is a growing body of work studying the finite model theory of restricted
classes of structures, where the restrictions are essentially borrowed from graph
structure theory. Such graph-theoretic restrictions, such as bounding the tree-
width of a graph or restricting to planar graphs (or, more generally, proper
minor-closed classes of graphs), often yield classes with good algorithmic prop-
erties and there has been an effort to explore whether these also correspond to
interesting model-theoretic properties which may be tied to the good algorith-
mic behaviour. In many cases, the logical or model-theoretic view provides a
clean general “explanation” of the algorithmic properties of a class. Examples of
such meta-theorems are Courcelle’s theorem [5], which shows that any property
definable in monadic second-order logic is decidable in linear time on classes
of bounded tree-width, and the result of Dawar et al. [7] that first-order defin-
able optimization problems admit polynomial-time approximation schemes on
proper minor-closed classes. At the same time, ever more expansive (i.e., less re-
stricted) classes of structures have been studied such as classes of bounded local
tree-width [11], classes that locally exclude a minor [6] and classes of bounded
expansion [18]. Our aim in this paper is to explore the boundary of the classes
where IFP + C captures P. In particular, we wish to determine on which of these
various classes the CFI construction can be carried out.

The CFI construction relies on the fact that every formula of IFP + C is
equivalent to one of Cω∞ω, the infinitary logic with counting. A separator of a
graph G = (V,E) is a set S ⊆ V of vertices whose deletion from the graph leaves
no connected component with more than |V |/2 vertices. Cai et al. show that
for each graph G, we can construct two graphs X(G) and X̃(G) such that, if
G has no separator of size k, then X(G) and X̃(G) cannot be distinguished by
any formula of Ck∞ω, the k-variable fragment of Cω∞ω. Since X(G) and X̃(G) are
distinguished by a polynomial-time algorithm, it follows that IFP + C does not
capture P on any class of graphs that includes both X(G) and X̃(G) for graphs
G with arbitrarily large minimal size separators. As Cai et al. already noted, this
includes the class of graphs with degree bounded by 3. We show (in Section 3)
that the assumption that G has no separator of size k can be replaced by the
weaker requirement that the tree-width of G is at least k. This is established by
a game construction that combines the cops-and-robber game of Seymour and
Thomas [24] with the bijection game of Hella [15] (see [1] for another application
of the same idea).



86 A. Dawar and D. Richerby

An immediate consequence is that IFP + C does not capture P on any class
of graphs that includes X(G) and X̃(G) for graphs of unbounded tree-width.
As a corollary, we show that the result of Grohe and Mariño is, in a sense,
optimal. For a function f : N → N, let TWf be the class of all graphs G such
that the tree-width of G is at most f(|G|). Grohe and Mariño show that, if
f is bounded above by a constant, then IFP + C captures P on TWf . On the
other hand, we show that, no matter how slowly f grows, if it is unbounded,
then IFP + C does not capture P on TWf . Note that this does not show that
IFP + C fails to capture P on any class of graphs of unbounded tree-width.
Indeed, planar graphs have unbounded tree-width but IFP + C capture P on
this class. However, if the class contains all graphs of tree-width bounded by f ,
we show that the CFI construction applies.

Instead of restricting tree-width as a function of the order of the graph, we
can consider graphs where tree-width grows as a function of the diameter. Recall
that the r-neighbourhood of a vertex v in a graph is the subgraph induced by
the vertices within distance r of v. For a non-decreasing function f : N → N,
let LTWf be the class of graphs G such that, for all r � 1, the r-neighbourhood
of every vertex in G has tree-width at most f(r). (Eppstein introduces these
classes as graphs with the ‘diameter-treewidth property’ [10] and the restric-
tion is termed bounded local tree-width in [11]). For any such graph, we have
tw(G) � f(|G|) so LTWf ⊆ TWf . We show, in Section 4 that, analogous
to the case for global tree-width, IFP + C captures P on LTWf if, and only
if, f = O(1). Thus, the result of Grohe and Mariño is optimal in a stronger
sense.

Grohe [13] has conjectured that IFP + C captures P on any proper minor-
closed class of finite graphs. We show, in Section 5 that the CFI construction
cannot be used to refute this conjecture. That is, we show that for any graph G
and any graph H of sufficient tree-width G is a minor of both X(H) and X̃(H).
Thus, if a class of graphs forbids G as a minor, it excludes X(H) and X̃(H) for
all graphs H except those of some fixed tree-width.

There are several generalizations of the concept of tree-width to directed
graphs including that of directed tree-width [17], DAG-width [2,19] and en-
tanglement [3]. In each of these measures, the class of directed acyclic graphs
(DAGs) has width 1. Since the CFI construction works in the class of DAGs (see
Section 3) it follows that our results do not extend to these measures.

2 Background

The notion of a relational structure A = (A,RA
1 , . . . , R

A
s ) over vocabulary σ =

(Rr1
1 , . . . , R

rs
s ) is standard. All structures and graphs in this paper are finite; we

treat graphs as structures with a single binary relation symbol E, interpreted by
an irreflexive relation that, in the case of undirected graphs, is also symmetric.
All graphs mentioned in this paper are undirected unless specifically stated to
be directed.
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2.1 Counting Logics

IFP + C is the extension of first-order logic with inflationary fixed-points and
a mechanism for counting. For formal definitions, which we will not need in
this paper, we refer the reader to [9]. It is known that every class of structures
definable in IFP + C is decidable in polynomial time.

The formulas of the logic C∞ω are obtained from the atomic formulas using
negation, infinitary conjunction and disjunction, and counting quantifiers (∃ixϕ
for every integer i � 0). The fragment Ck∞ω consists of those formulas of C∞ω in
which only k distinct variables appear and Cω∞ω =

⋃
k∈ω Ck∞ω. The significance

of Cω∞ω for our purposes is every formula of IFP + C is equivalent to one of Cω∞ω.
Hella shows that definability in Ck∞ω is characterized by the k-pebble bijection

game [15]. The game is played on structures A and B by two players, the spoiler
and the duplicator, using pebbles a1, . . . , ak on A and b1, . . . , bk on B. If |A| �=
|B|, the spoiler wins immediately; otherwise, each move is made as follows:

– the spoiler chooses a pair of pebbles ai and bi;
– the duplicator chooses a bijection h : A → B such that for pebbles aj and
bj (j �= i), h(aj) = bj; and

– the spoiler chooses a ∈ A and places ai on a and bi on h(a).

If, after this move, the map a1 . . . ak �→ b1 . . . bk is not a partial isomorphism
A → B, the game is over and the spoiler wins; the duplicator wins all infinite
plays. Hella shows that the duplicator has a winning strategy in the k-pebble
bijection game on A and B if, and only if, the two structures agree on every
formula of Ck∞ω, in which case, we write A≡Ck

∞ω B. In order to show that a class
Q of structures is not definable in Cω∞ω (and, hence, not definable in IFP + C),
it suffices to demonstrate, for each k � 1, structures Ak ∈ Q and Bk /∈ Q on
which the duplicator has a winning strategy in the k-pebble bijection game.

By a result of Otto [20, Theorem 4.22] we have the following:

Theorem 1 (Otto). If IFP + C captures P on a class C of structures that is
closed under disjoint unions, then there is a k such that ≡Ck

∞ω coincides with
isomorphism on C.

Thus, to show that IFP + C does not capture P on a class of structures C, it
suffices to show that for every k C contains a pair of non-isomorpic structures
H and H ′, such that H ≡Ck

∞ω H ′.

2.2 Tree-Width

Tree-width was introduced by Robertson and Seymour [21] as a key component
of the proof of the Graph Minor Theorem. A tree decomposition of a graph
G = (V,E) is a pair (T, {Bt : t ∈ T }), where T is a tree, Bt ⊆ V and

–
⋃

t∈T Bt = V ;
– if there is an edge uv ∈ E then { u, v } ⊆ Bt for some t; and
– for each v ∈ V , the set { t : v ∈ Bt } is connected in T .
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The width of a tree decomposition is max { |Bt| : t ∈ T } − 1 and the tree-width
of G is tw(G), the least k for which G has a tree decomposition of width k.

We will use the following game-theoretic characterization of tree width, due
to Seymour and Thomas [24]. The k cops and robber game is played by two
players, the cops and the robber, on a graph G = (V,E). At each move, the cops
player either removes a cop from the graph or takes a cop not currently on the
graph and places him on some vertex v. The robber may then move along any
cop-free path in the graph. If the cops’ move was to place a cop on v, that vertex
counts as cop-free for this turn. If a cop moves to the vertex occupied by the
robber and the robber has no non-trivial legal move, the cops win; the robber
wins if he can stay on the run indefinitely. Seymour and Thomas show that the
cops have a winning strategy in the k cops and robber game on G if, and only
if, tw(G) � k − 1.

For a positive integer k, we write TWk for the class of graphs of tree width at
most k. For a function f : N → N, TWf denotes the class of all graphs G such
that the tree-width of G is at most f(|G|).

Given a graph G and r � 0, for each vertex v ∈ G, let N r
G(x) be the subgraph

of G induced by the vertices at distance at most r from v. The local tree-width
of a graph [11] is the function

ltwG(r) = max { tw(N r
G(v)) : v ∈ G } .

A class G of graphs is said to have bounded local tree-width if there is a (non-
decreasing) function f : N → N such that, for all G ∈ G and all r � 0, ltwG(r) �
f(r). Classes of graphs of bounded local tree-width are introduced by Eppstein
[10], who refers to such classes as having the ‘diameter-treewidth property’.

2.3 Graph Minors

We say that a graph G is a minor of H , and write G � H , if there is a map that
associates with each vertex v of G a non-empty, connected subgraph Hv of H
such that Hu and Hv are disjoint for u �= v and if there is an edge between u and
v in G then there is an edge in H between some vertex in Hu and some vertex in
Hv. We refer to the sets Hv as the branch sets witnessing that G is a minor of H .
An equivalent characterization (see [8]) states that G is a minor of H if G can
be obtained from a subgraph of H by contracting edges. The contraction of an
edge consists of identifying its two endpoints into a single vertex and removing
the resulting loop.

We collect here a few facts about graph minors that we will need. All of these
can be found in [8]. Note that if G � H then tw(G) � tw(H). By the well-known
Kuratowski–Wagner theorem, a graph G is planar if, and only if, neither K5 nor
K3,3 is a minor of G. Robertson and Seymour [23] showed that any class of
graphs that is closed under taking minors and is not the class of all graphs is
characterized by a finite set of forbidden minors. We call such a class of graphs
a proper minor-closed class.

For any n > 1, let Gn be the n× n grid graph, i.e., the graph with vertex set
{ 1, . . . , n }2 and all edges of the form { (i, j), (i+ 1, j) } and { (i, j), (i, j + 1) }.
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Δ(Gn) = 4 (where Δ(G) denotes the maximum degree of any vertex in G) and
it is easy to see from the cops and robber game that tw(Gn) = n. Also, it can
be shown that for any planar graph G, there is an n such that G � Gn.

2.4 CFI Graphs

The graphs we describe in this section are a minor variation on the graphs used
by Cai et al. to separate IFP + C from P [4] and proofs of all the results we
quote here can be found there. The difference is that Cai et al. do not have the
‘c’ and ‘d’ vertices but, instead, colour the vertices on the understanding that
the colours can be replaced by appropriate gadgets. The gadgets are simple and
we will use some of their properties later on so we prefer to make them explicit.

Let G = (V,E) be a graph in which every vertex has degree at least two. In
the following discussion, we will assume that G is connected but there are easy
component-wise extensions in the case where G is not connected. For each v ∈ V
let Γ (v) = { u : uv ∈ E } and let v̂ be the set of new vertices,

v̂ = { avw, bvw, cvw, dvw : w ∈ Γ (v) }
∪
{
vX : X ⊆ Γ (v) and |X | ≡ 0 (mod 2)

}
.

Call the vX inner vertices and the other members of v̂ outer vertices. Let
X∅(G) be the graph with vertices

⋃
v∈V v̂ and edges as follows:

– edges avwcvw, bvwcvw and cvwdvw for each edge vw ∈ E;
– an edge avwvX whenever w ∈ X ;
– an edge bvwvX whenever w ∈ Γ (v) \X ; and
– edges avwawv and bvwbwv for each edge vw ∈ E.

The subgraph of X∅(G) induced by v̂ for a vertex v of G with three neigh-
bours w1, w2, w3 is illustrated in Fig. 1, where the dashed lines indicate edges
connecting this subgraph to the rest of X∅(G).

For any S ⊆ E, let XS(G) be X∅(G) with the edges avwawv and bvwbwv
deleted and edges avwbwv and bvwawv added, for every edge vw ∈ S. We say
that the edges in S have been twisted. Cai et al. show that XS(G) ∼= XT (G) if,
and only if, |S| ≡ |T | (mod 2). This being the case, we write X(G) for the graph
X∅(G) and write X̃(G) for X{ e }(G) for any edge e and call these, respectively,
the untwisted and twisted CFI graphs of G.

For distinct edges e and f of G, we can obtain an isomorphism between
X{ e }(G) and X{ f }(G) as follows. Note that, for each v ∈ V and N ⊆ Γ (v)
with |N | ≡ 0 (mod 2), there is an automorphism ηv,N of the subgraph of XS(G)
induced by v̂ that exchanges avw and bvw, for each w ∈ N (and there is no such
automorphism if |N | ≡ 1 (mod 2)). Let e be the edge uv and f be the edge xy.
If v = x, then the required isomorphism is just the map ηv,{ u,y }. Otherwise, if
the four vertices are distinct then, by the assumption that G is connected, there
is a simple path from one endpoint of e to an endpoint of f that does not pass
through the other endpoints. Without loss of generality let v1 . . . v be a simple
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Fig. 1. The graph on the vertices �v in X∅(G)

path with v = v1 and x = v such that neither u nor y occurs on the path. Then,
the required isomorphism from X{ e }(G) to X{ f }(G) is

η = ηv1,{u,v2 } ◦ ηv2,{ v1,v3 } ◦ · · · ◦ ηv�−1,{ v�−2,vk } ◦ ηv�,{ v�−1,y } .

3 Tree-Width

A separator of a graph G = (V,E) is a set S ⊆ V such that every connected
component of G−S has at most |V |/2 vertices. Cai, Fürer and Immerman prove
that, if G is connected, has minimal degree δ(G) � 2 and has no separator
of size k, then X(G)≡Ck

∞ω X̃(G). It follows that IFP + C does not define all
polynomial-time queries on graphs, for instance by Theorem 1.

The following lemma on the relationship between separators and tree-width
is a special case of [21, Theorem 2.5].

Lemma 2. Every graph G of tree-width k has a separator of size at most k+1.

So, any graph that has no separator of size k must have tree-width at least k. On
the other hand, for all k there are connected graphs of tree-width k that have
separators of size one (and, of course, disconnected graphs of tree-width k with ∅
as a separator): take any order-n graph G of tree-width k, choose a vertex v ∈ G
and add n new vertices and an edge from each new vertex to v. The resulting
graph still has tree-width k but { v } is a separator. Therefore, requiring that G
have tree-width at least k − 1 is weaker than requiring it to have no separator
of size k.
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Theorem 3. Let G be any connected graph with δ(G) � 2 and tw(G) � k.
X(G)≡Ck

∞ω X̃(G).

Proof. We exhibit a winning strategy for the duplicator in the k-pebble bijection
game on X(G) and X̃(G).

Given u, v ∈ V (G), let σ[u, v] be the permutation of V (G) that exchanges u
and v and fixes every other vertex. For a vertex u of G, we say that a bijection
h : X(G)→ X̃(G) is good except at u if it satisfies the following conditions:

– for every vertex v of G, hv̂ = v̂;
– h maps inner vertices to inner vertices and outer vertices to outer vertices;
– h is an isomorphism between the graphs X(G) \ uI and X̃(G) \ uI, where uI

is the set of inner vertices in û; and
– for every pair auv, buv in û, h ◦ σ[auv, buv] is an isomorphism from X(G)[û]

to X̃(G)[û], where X(G)[û] is the subgraph of X(G) induced by û.

For concreteness, say X̃(G) is the graphX{uv }(G). Then σ[auv, buv] is a bijection
that is good except at u; similarly, σ[avu, bvu] is good except at v. Note that if
η is an automorphism of X̃(G) that fixes v̂ (set-wise) for every v ∈ G and h is a
bijection that is good except at u, then h ◦ η is also good except at u. We claim
that, if h is a bijection that is good except at u and there is a simple path P
from u to v, then there is a bijection h′ that is good except at v such that for
all vertices w not in P and all x ∈ ŵ, h′(x) = h(x).

To prove the claim, let the path P be v1 . . . v with u = v1 and v = v. Let
ηP be the permutation

ηP = σ[auv1 , buv1 ] ◦ ηv2,{ v1,v3 } ◦ · · · ◦ ηvl−1,{ vl−2,vl } ◦ σ[av,vl−1 , bv,vl−1 ] .

The properties of the graphsX(G) and X̃(G) then ensure that taking h′ = h◦ηP
satisfies the claim.

The duplicator’s strategy can now be described as always playing a bijection
that is good except at u for some u. The vertex u is given by the position of the
robber in the cops and robber game played on G where the positions of the cops
are v1 . . . vk when the pebbles in the bijection game are in the sets v̂1 . . . v̂k.

Initially, the duplicator plays a bijection that is good except at u for one of
the endpoints u of the twisted edge in X̃(G). At the same time, she initiates a
cops and robber game on G with the robber initially at u. At each subsequent
move, when the spoiler moves one of the pebbles, the duplicator moves the
corresponding cop in the cops and robber game. This yields a path P for the
robber to move along to a vertex v. By the claim, this yields a bijection h′ that
the duplicator can play. Since P , by definition, does not go through any of the
cop positions, this means that h′ agrees with h on all currently pebbled positions
in the bijection game as required. Also, since h is, at all times, an isomorphism
everywhere except at the inner vertices of v̂, for the current robber position
v, it follows that it must be a partial isomorphism on the pebbled vertices, as
required. ��
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The following corollary is immediate from Theorem 3 and Theorem 1.

Corollary 4. IFP + C does not capture P on any class of graphs containing
X(G) and X̃(G) for graphs G of unbounded tree width.

Let Δ(G) be the maximal degree of any vertex in a given graph G. The following
lemma shows that tw(X(G)) can be bounded in terms of tree-width and maximal
degree of G. The same bounds apply to tw(X̃(G)).

Lemma 5. tw(G) � tw(X(G)) � (4Δ(G) + 2Δ(G)−1)tw(G).

Proof. The first inequality holds because G � X(G): contracting along every
edge in each v̂ in X(G) gives G. The second holds because if (T, {Bt : t ∈ T }) is
a tree decomposition of G then (T, { (

⋃
v∈Bt

v̂) : t ∈ T }) is a tree decomposition
of X(G). ��

For any function f : N → N, let TWf = {G : tw(G) � f(|G|) }. Grohe and
Mariño show that, if f is any constant function, IFP + C captures P on TWf

[14]. We show that this result is, in a sense, optimal: if f is unbounded then
IFP + C does not capture P on TWf .

Recall that Gn is the n × n grid graph and that tw(Gn) = n. For n � 3,
Δ(Gn) = 4.

Theorem 6. IFP + C captures P on TWf if, and only if, f = O(1).

Proof. The ‘if’ direction is the Grohe–Mariño theorem. Conversely, if f �= O(1)
then, for any n, there is some k > |X(Gn)| such that f(k) � 24n. Since
tw(X(Gn)) � 24n (Lemma 5), it follows that TWf contains X(G) and X̃(G)
(possibly padded with some number of isolated vertices) for graphs of arbitrary
tree width and so, by Corollary 4, IFP + C does not capture P on TWf . ��

Notice that we do not claim that IFP + C fails to capture P on any class of
graphs containing graphs of unbounded tree-width. For example, the complete
graph on n vertices has tree-width n − 1 so the class of all complete graphs
contains graphs of arbitrarily high tree-width but IFP + C does capture P on
this class. Similarly, the class of planar graphs contains graphs of unbounded tree-
width (it contains Gn for all n), but Grohe has shown that IFP + C captures P
on this class [12]. However, if C contains all graphs whose tree-width is bounded
by the function f , then the CFI construction applies.

Lemma 7. If G is bipartite, X(G) and X̃(G) are bipartite.

Proof. Let G = (V,E) with bipartition V0, V1. Then X(G) and X̃(G) have bi-
partition W0,W1, where Wi consists of all inner and ‘c’ vertices corresponding
to elements of Vi and all ‘a’, ‘b’ and ‘d’ vertices from V1−i. ��

Corollary 8. IFP + C does not capture P on the class of bipartite graphs.

Proof. For any n, Gn is bipartite so, by Lemmata 5 and 7, the class of bipartite
graphs contains X(G) and X̃(G) for graphs of unbounded tree width. ��
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Moreover, IFP + C does not capture P on the class of graphs of chromatic num-
ber k, for any fixed k � 2, as the disjoint union of X(Gn) and Kk has chromatic
number k but no formula of IFP + C can distinguish it from X̃(Gn)∪Kk if n is
large enough.

One might hope that Theorem 6 could be extended to measures of graph
connectivity on directed graphs such as directed tree-width [17], DAG-width [2]
or entanglement [3] but this is not the case. All directed acyclic graphs (DAGs)
have low width in all of these measures (directed tree-width zero, DAG-width
one and entanglement zero) but there are polynomial-time queries on DAGs not
definable in IFP + C.

Theorem 9. IFP + C does not capture P on the class of DAGs.

Proof. Let D be a directed graph. Define X ′(D) and X̃ ′(D) in the same way as
for undirected graphs but with the following directions on the edges:

– edges from inner vertices to outer vertices are directed that way;
– edges between outer vertices in the same v̂ are directed ac, bc and dc;
– any edges between auv or buv, and avu or bvu have the same direction as the

corresponding edge in D between u and v.

Note that, if D contains edges uv and vu then û will contain two sets of outer
vertices associated with v: one for each edge. Observe that X ′(D) and X̃ ′(D) are
DAGs. Clearly, there is a polynomial-time algorithm that distinguishes X ′(D)
from X̃ ′(D) — just forget the orientation of the edges and use the algorithm
that distinguishes X(G) from X̃(G). Suppose the query {X ′(D) : D is a DAG }
is defined by some sentence ϕ ∈ IFP + C for DAGs.

Fix any vertex v ∈ Gn. There are no edges in Gn between vertices at the same
distance from v so the orientation D(Gn, v) of Gn that orients every edge from
its end further from v to the end nearer v is a DAG. There is an IFP formula
ψ(xy, v) that, given some vertex v ∈ X(Gn) (respectively, X̃(Gn)) as a parame-
ter, defines the edge relation of X ′(D(Gn, v)) (respectively, X̃ ′(D(Gn, v))). Let
χ ≡ ∃v ϕ[ψ(xy, v)/E(xy)], where ϕ[· · · ] is the result of replacing every subfor-
mula E(xy) with ψ(xy, v). Then χ distinguishes X(Gn) from X̃(Gn) for all n,
contradicting Theorem 3. ��

Corollary 8 and Theorem 9 are to be expected. The relation ≡Ck
∞ω can be tested

in polynomial time by means of a colour-refinement algorithm (see, e.g., [20]).
Therefore, by Theorem 1, it follows that if, IFP + C captures P on a class of
structures C (closed under disjoint unions), then C admits a polynomial-time
isomorphism test. It is not difficult to see that bipartite graphs and DAGs admit
such a test if, and only if, all graphs do. Indeed, given an undirected graph
G = (V,E), let G′ be the directed graph whose vertex set is V ∪ E and with a
directed edge from v ∈ V to e ∈ E exactly when v is one of the ends of e in G.
Clearly, G is acyclic and G ∼= H if, and only if, G′ ∼= H ′. The undirected version
of G′ (known as the incidence graph of G) is bipartite.
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4 Bounded Local Tree-Width

Given a non-decreasing function f : N → N, let LTWf be the class of graphs
whose local tree-width is bounded by f . In this section, we extend the results of
Section 3 to show that IFP + C captures P on LTWf if, and only if, f = O(1).

For a graph G = (V,E) and a positive integer r, we define the graph r(G) to
have vertex set V ∪ {(u, v, i) : u, v ∈ V, 1 � i � r} and edges:

– { u, (u, v, 1) } for all u, v ∈ V ;
– { (u, v, i), (u, v, i+ 1) } for all u, v ∈ V and 1 � i < r; and
– { (u, v, r), (v, u, r) } for all edges uv ∈ E.

Recall that a subdivision of a graph G is any graph H formed by replacing
each edge uv ∈ G with a u–v path, such that the paths in H corresponding to
distinct edges in G are internally disjoint. We can think of r(G) as a graph that
is obtained from a subdivision of G (where each edge is replaced by a path of
length 2r) by further adding, for each pair u, v that is not an edge in G, two
simple paths of length r — one originating at u and one at v — that do not
meet.

The properties of the graphs r(G) that we need are established in the following
lemmata.

Lemma 10. tw(r(G)) = tw(G).

Proof. tw(G) � tw(r(G)) because G � r(G). For the converse, if tw(G) = 1,
then G is a forest and r(G) is a forest as well, so tw(H) = 1, as required. Now,
suppose tw(G) = k > 1. Let (T, {Bt : t ∈ T }) be a width-k tree decomposition
of G. We construct a width-k tree decomposition of H as follows. For each edge
uv ∈ G there must, by definition, be some t ∈ T such that { u, v } ⊆ Bt. Add
to T a path tt1 . . . t2r and set Bt1 = { u, v, (u, v, 1) }; for 2 � i � r set Bti =
{ v, (u, v, i− 1), (u, v, i) }; Btr+1 = { v, (u, v, r), (v, u, r) }; and for r + 2 � i � 2r
set Bti = { v, (v, u, 2r − i+ 2), (v, u, 2r − i+ 1) }. Finally, if uv is not an edge
in G, choose any t ∈ T such that u ∈ Bt and add a path tt1 . . . tr−1 to T with
Bti = { u, (u, v, i), (u, v, i+ 1) }. ��

For any vertex w in r(G), we write πw = w, if w ∈ V (G), and π(u, v, i) = u.

Lemma 11. If G≡Ck
∞ω H, then r(G)≡Ck

∞ω r(H).

Proof. By the assumption G≡Ck
∞ω H , the duplicator has a winning strategy in

the k-pebble bijection game played on these two graphs. This winning strategy
is easily adapted to a winning strategy on the pair of graphs r(G) and r(H).
For any bijection h between the vertices of G and the vertices of H , consider the
extension hr of h to the vertices of of r(G) given by

hr(w) =

{
h(w) if w ∈ V G

(h(u), h(v), i) if w = (u, v, i).
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The duplicator’s strategy is to maintain the condition that, at any point in the
game, if the pebbles are on the vertices s1, . . . , sk in r(G) and t1, . . . , tk in r(H),
then πs1, . . . , πsk and πt1, . . . , πtk is a winning position in the game played on
G and H . It is now easily verified that, if the duplicator’s strategy called for
playing the bijection h in the latter game, then the bijection hr will maintain
this condition in the game on r(G) and r(H). ��

We are now ready to prove the strengthening of Theorem 6.

Theorem 12. Let f : N → N be any non-decreasing function. IFP + C captures
P on LTWf if, and only if, f = O(1).

Proof. LTWf ⊆ TWf so, if f = O(1), then IFP + C defines all polynomial-time
properties over LTWf by the Grohe–Mariño theorem.

Suppose f �= O(1). For any k, let G by a graph with tw(G) � k and δ(G) � 2.
Now, there is some r such that f(2r) � tw(X(G)) = tw(X̃(G)). Let H =
r(X(G)) and H ′ = r(X̃(G)). By Lemma 10, tw(H) = tw(H ′) = tw(X(G)).
Notice that ltwH and ltwH′ are bounded by the function

h(x) =

{
1 if x < 2r
tw(X(G)) otherwise,

and that this function is, in turn, bounded by f . Therefore, H,H ′ ∈ LTWf .
Since, tw(G) � k we have (by Theorem 3) that H ≡Ck

∞ω H ′. The result now
follows from Theorem 1, ��

5 Graph Minors

Grohe has conjectured that IFP + C captures P on any proper minor-closed class
of graphs [13], i.e., any minor-closed class except the class of all graphs. In this
section, we show that this conjecture cannot be refuted by the CFI construction.
Specifically, we show that any class C of graphs containing at least one of X(G)
and X̃(G) for graphs G of unbounded tree-width has no forbidden minors. Since
any proper minor-closed class must have at least one forbidden minor, it follows
that C is either the class of all graphs or is not minor-closed. Note that the
requirement that C contain CFI graphs derived from graphs of unbounded tree-
width is crucial here: it does not suffice to require merely that C contain graphs
of unbounded tree-width. For example, the class of planar graphs does not have
bounded tree-width.

We wish to show that, for any graph G, if H is a graph with tw(H) large
enough, relative to G, then X(H) and X̃(H) contain G as a minor. To do this,
we will first produce a planar graph G′ such that G′ � H . The graph G′ is
obtained from a plane drawing of G by inserting new vertices at crossing points
of edges. The assumption on the tree-width ofH will ensure that any such planar
graph is a minor of H . The paths in G′ corresponding to distinct edges in G will
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be edge-disjoint but not necessarily independent: two of the paths may cross at
some vertex. To show that X(H) and X̃(H) contain G as a minor, we need to
show that, even if edge-disjoint paths P1 and P2 meet at a vertex u, X(H) and
X̃(H) contain corresponding independent paths.

Lemma 13. Let u ∈ G be a vertex of degree 4, with neighbours w, x, y, z. For
each v ∈ {w, x, y, z }, choose v′ ∈ { auv, buv }. û contains vertices v1 and v2 such
that X(G) and X̃(G) contain disjoint paths w′v1x′ and y′v2z′.

Proof. Note that X(G) and X̃(G) have the same edges within each û. The values
of v1 and v2 are given in the following table.

w′ x′ y′ z′ v1 v2
auw aux auy auz v{w,x } v{ y,z }

auw aux auy buz v
{w,x,y,z } v{x,y }

auw bux auy buz v{w,z } v{x,y }

The other cases are symmetric, either by permutations of {w, x, y, z } or the
automorphisms of û that exchange the ‘a’ and ‘b’ vertices for even-cardinality
subsets of {w, x, y, z }. ��

We first restrict attention to minors of CFI graphs of grids. Recall that Gr is
the r × r grid graph.

Theorem 14. Let G be any graph. For sufficiently large grids Gr, G � X(Gr)
and G � X̃(Gr).

Proof. Let V (G) = { v1, . . . , vn } and E(G) = { e1, . . . , em }. We first produce
a drawing G∗ of G. Choose a set V ∗ = { v∗1 , . . . , v∗n } of distinct points in R2

to represent the vertices of G and a set E∗ = { e∗1, . . . , e∗m } of distinct, simple,
piecewise-linear curves to represent the edges, such that:

– if ei = vjvk then the endpoints of e∗i are v∗j and v∗k;
– no e∗i contains any v∗j except its endpoints;
– for i �= j, e∗i ∩ e∗j is finite; and
– no point in R2 \ V ∗ appears in more than two of the e∗i .

We can now produce a planar graph G′ whose vertices are the points of intersec-
tion of the e∗i (i.e., V (G′) =

⋃
1�i<j�m(e∗i ∩ e∗j ), including V ) and whose edges

are precisely those pairs { x, y } such that G∗ contains an x–y curve that passes
through no other points in V (G′).

Since G′ is planar, we have G′ � Gr for large enough r. Unless G is, itself,
planar, we cannot have G � Gr; however, we claim that G � X(Gr) and G �
X̃(Gr). To this end, let H be X(Gr) or X̃(Gr).

Let {Vx : x ∈ G′ } be the branch sets witnessing that G′ is a minor of Gr. For
each x ∈ G′, let V̂x =

⋃
y∈Vx

ŷ ⊆ V (H). To show that G � H , we proceed as
follows. First, for each x ∈ G, contract all the edges in the subgraph induced
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by V̂x, calling the resulting vertex vx. We now show that there is a system of
independent paths Pxy, from vx to vy, for each edge xy ∈ G.

For each xy ∈ G, let Qxy be the x–y path in G′ corresponding to the edge
xy ∈ G∗. These paths are not necessarily independent: in particular, they share
the vertices of V (G′) \ V (G). Lemma 13 shows that, even if Qwx and Qyz meet
at vertex u, H contains paths ŵ–x̂ and ŷ–ẑ that are independent. This completes
the proof. ��

The significance of grids is given by the following theorem of Robertson and
Seymour. (Note that the tree-width required grows rapidly with r: Diestel shows
that r4r

4(r+2) suffices [8].)

Theorem 15 ([22]). For every r > 1, every graph of sufficiently high tree-width
contains Gr as a minor.

Theorem 16. The only minor-closed class of graphs that contains X(G) or
X̃(G) for graphs G of unbounded tree-width is the class of all graphs.

Proof. Let C be a minor-closed class of graphs containing X(G) or X̃(G) for
graphs G of unbounded tree-width and let H be any graph. By Theorem 14,
X(Gr) and X̃(Gr) contain H as a minor, for large enough grids Gr. By Theo-
rem 15, any graph of large enough tree-width contains Gr as a minor. Therefore,
C contains a graph X ∈ {X(G), X̃(G) } for some graph G containing Gr as a
minor, so H � X . But C is minor-closed so H ∈ C. ��

A consequence of this theorem is that any attempt to refute Grohe’s conjecture
that IFP + C captures P on all non-trivial minor-closed classes of graphs cannot
rely on Cai–Fürer–Immerman graphs. For, to use the CFI construction (in the
form in Theorem 3), we need precisely to find for each k, a graph G of tree-width
at least k such that X(G) and X̃(G) are both in the class.

Acknowledgment. We would like to thank Stephan Kreutzer for fruitful dis-
cussions, especially in connection with the construction in Section 5.
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Abstract. We compare the expressive power of a class of well-structured
transition systems that includes relational automata, Petri nets, lossy
channel systems, and constrained multiset rewriting systems. For each
one of these models we study the class of languages generated by labelled
transition systems describing their semantics. We consider here two types
of accepting conditions: coverability and reachability of a given configu-
ration. In both cases we obtain a strict hierarchy in which constrained
multiset rewriting systems is the the most expressive model.
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1 Introduction

The theory of well-structured transition systems [1,13] is a powerful tool for
studying the decidability of verification problems of infinite-state systems. A
system is well-structured when its transition relation is monotonic with respect
to a well-quasi ordering defined over configurations. A well-known example of
well-structured system is that of Petri nets [19] equipped with marking inclusion
[1,13]. For a well-structured transition system, the coverability problem can be
decided by the symbolic backward reachability algorithm scheme proposed in
[1]. Since checking safety properties can be translated into instances of the cov-
erability problem, an algorithm for coverability like that proposed in [1] can be
used for automatic verification of an infinite-state system. This connection has
been exploited in order to develop automatic verification procedures for Petri
nets and their extensions [10,11], for abstract models of imperative programs
called relational automata [9], for abstract models of unreliable communication
systems called lossy (FIFO) channel systems [5,8], and for constrained multiset
rewriting systems [2]. The latter model is an extension of Petri nets in which to-
kens are colored with natural numbers and in which transitions have numerical
conditions defined over variables representing colors. The resulting model can
� Research fellow supported by the FNRS.

J. Duparc and T.A. Henzinger (Eds.): CSL 2007, LNCS 4646, pp. 99–114, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



100 P.A. Abdulla, G. Delzanno, and L. Van Begin

be applied to model parameterized systems in which individual processes have
local data that range over an infinite domain.

Although several efforts have been spent in studying the expressive power of
variations of Petri nets (see e.g. [10,12,14]), a comparison of the relative expres-
siveness of the class of well-structured transition systems is still missing. Such a
comparison is a challenging research problem with a possible practical impact.
Indeed, it can be useful to extend the applicability of a verification method (e.g.
a particular instance of the scheme of [1]) to an entire class of models.

In this paper we apply tools of language theory to formally compare the
expressive power of a large class of well-structured infinite-state systems that
includes constrained multiset rewriting systems, lossy channel systems, (exten-
sions of) Petri nets, and relational automata. To achieve this goal, for each one
of these models we study the class of languages generated by labeled transition
systems describing their semantics. We consider here two types of accepting con-
ditions: coverability (with respect to a fixed ordering) and reachability of a given
configuration. Two models are considered to be equivalent if they generate the
same class of languages.

For coverability accepting conditions, we obtain the following classification.
We first prove that lossy channel systems are equivalent to a syntactic fragment
of constrained multiset rewriting, we named Γ0. The fragment Γ0 is obtained by
restricting conditions of a rule in such a way that equalities cannot be used as
guards. Furthermore, we prove that lossy channel systems are strictly less ex-
pressive than the full model of constrained multiset rewriting systems. We then
show that Petri nets are equivalent to a syntactic fragment of constrained multi-
set rewriting systems, we named Γ1, obtained by considering nullary predicates
only. We also prove that Petri nets are strictly less expressive than lossy channel
systems. We then prove that relational automata are equivalent to a syntactic
fragment of constrained multiset rewriting, we named Γ2, obtained by imposing
an upper bound on the size (number of predicates) of reachable configurations.
Finally, we prove that Γ2 generates the class of regular languages. This implies
that relational automata are strictly less expressive than Petri nets. In the paper
we also extend the comparison to extensions of Petri nets like transfer/reset nets
and broadcast protocols [10,11] and to lossy vector addition systems [18]. Specifi-
cally, we prove that all these models are strictly less expressive than constrained
multiset rewriting systems.

For reachability accepting conditions, we obtain a slightly different classifi-
cation. First, we prove that Γ0 is equivalent to constrained multiset rewriting
systems and two counter machines. Thus, with reachability acceptance, Γ0 and
constrained multiset rewriting systems turn out to be strictly more expressive
than lossy channel systems. On the contrary, Γ1 is still equivalent to Petri nets
and strictly less expressive than Γ0 and Γ2 is still equivalent to relational au-
tomata and to finite automata. Finally, we show that lossy channel systems and
Petri nets define incomparable classes of languages.

Concerning related work, the relative expressiveness of well-structured sys-
tems has been investigated for a limited number of extensions of Petri nets with
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reset, transfer, and non-blocking arcs in [12,14]. Classical results on finite and
infinite languages generated by Petri nets can be found, e.g., in [15]. A classifi-
cation of infinite-state systems in terms of structural properties and decidable
verification problems is presented in [16]. The classification is extended to well-
structured systems in [7]. A classification of the complexity of the decision pro-
cedures for coverability is studied in [17]. In contrast with the aforementioned
work, we provide here a strict classification of the expressive power of several
well-structured transition systems built with the help of tools of language theory.
An extended version of the present paper is available as technical report [3].

Outline. In Section 2, we give some preliminary notions on well-structured tran-
sition systems. In Section 3, we give some first results on the class of languages
accepted by constrained multiset rewriting systems. In Section 4, 5, and 6,
we compare the class of languages recognized by constrained multiset rewrit-
ing systems and, respectively, lossy channel systems, Petri nets, and relational
automata. Finally, in Section 7 we discuss some final remarks.

2 Preliminaries on Well-Structured Transition Systems

In this section we recall some definitions taken from [1]. A transition system is
a tuple T = (S,R) where S is a (possibly infinite) set of configurations, R is
a finite set of transitions where each σ−→∈ R is a binary relation over S, i.e.
σ−→⊆ S × S. We use γ σ−→ γ′ to denote (γ, γ′) ∈ σ−→, and γ

ρ1...ρk−→ γ′ to denote
that there exist γ1, . . . , γk−1 such that γ

ρ1−→ γ1 . . .
ρk−1−→ γk−1

ρk−→ γ′. A quasi-
ordering (S,') is a well-quasi ordering if for any infinite sequence s1s2 . . . si . . .
there exist indexes i < j such that si ' sj . A transition system T = (S,R) is
well-structured with respect to a quasi-order ' on S iff: (i) ' is a well-quasi
ordering; (ii) for any σ−→∈ R and γ1, γ

′
1, γ2 s.t. γ1 ' γ′1 and γ1

σ−→ γ2, there
exists γ′2 s.t. γ′1

σ−→ γ′2 and γ2 ' γ′2, i.e., T is monotonic. We use T = (S,R,')
to indicate a well-structured transition system (wsts for short).

To formalize the comparison between models, a wsts T = (S,R,') can be
viewed as a language acceptor. For this purpose, we assume a finite alphabet
Σ and a labelling function λ : R �→ Σ that associates to each transition of R
a symbol of Σ ∪ {ε}, where ε denotes the empty sequence (w · ε = ε · w = w

for any w ∈ Σ∗). In the following, we use γ1
w−→ γ2 with w ∈ Σ∗ to denote

that γ1
ρ1···ρk−→ γ2 and λ(

ρ1−→) · · ·λ( ρk−→) = w. Furthermore, we associate to T an
initial configuration γinit ∈ S and a final configuration γacc ∈ S and assume
an accepting relation ��: S × S. For a fixed accepting relation ��, we define the
language accepted (generated) by T = (S,R,', γinit , γacc) as:

L(T ) = {w ∈ Σ∗ | γinit
w−→ γ and γacc �� γ}

In this paper we consider two types of accepting relations:
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– Coverability: the accepting relation �� is defined as γacc ' γ.
– Reachability: the accepting relation �� is defined as γacc = γ.

Let M be a wsts model (e.g. Petri nets) and let T be one of its instances (i.e.
a particular net). We define Lc(T ), resp Lr(T ), as the language accepted by
T with accepting relation ��c, resp. ��r. We say that L is a c-language, resp.
r-language, of M if there is an instance T of M such that L = Lc(T ), resp.
L = Lr(T ). We use Lc(M), resp. Lr(M), to denote the class of c-languages,
resp. r-languages, of M. Finally, we use L1 �∼ L2 to denote that L1 and L2 are
incomparable classes of languages.

3 Constrained Multiset Rewriting Systems

In this section we recall the main definitions and prove the first results for
constrained multiset rewriting systems [2]. Let us first give some preliminary
definitions. We use N to denote the set of natural numbers and n to denote the
interval [0, . . . , n] for any n ∈ N. We assume a set V of variables which range
over N, and a set P of unary predicate symbols. For a set A, we use A∗ and A⊗

to denote the sets of (finite) words and (finite) multisets over A respectively.
Sometimes, we write multisets as lists, so [1, 5, 5, 1, 1] represents a multiset with
three occurrences of 1 and two occurrences of 5; [ ] represents the empty multiset.
We use the usual relations and operations such as ≤ (inclusion), + (union), and
− (difference) on multisets. For a set V ⊆ V, a valuation Val of V is a mapping
from V to N. A condition is a finite conjunction of gap order formulas of the
forms: x <c y, x ≤ y, x = y, x < c, x > c, x = c, where x, y ∈ V and c ∈ N. Here
x <c y stands for x+c < y. We often use x < y instead of x <0 y. Sometimes, we
treat a condition ψ as a set, and write e.g. (x <c y) ∈ ψ to indicate that x <c y
is one of the conjuncts in ψ. We use true to indicate an empty set of conditions.
A term is of the form p(x) where p ∈ P and x ∈ V. A ground term is of the
form p(c) where p ∈ P and c ∈ N. We sometimes say that a predicate symbol is
nullary to mean that its parameter is not relevant (hence may be omitted).

A constrained multiset rewriting system (CMRS) S consists of a finite set of
rules each of the form L � R : ψ, where L and R are multisets of terms, and
ψ is a condition. We assume that ψ is consistent (otherwise, the rule is never
enabled). For a valuation Val , we use Val(ψ) to denote the result of substituting
each variable x in ψ by Val(x). We use Val |= ψ to denote that Val(ψ) evaluates
to true. For a multiset T of terms we define Val(T ) as the multiset of ground
terms obtained from T by replacing each variable x by Val(x). A configuration
is a multiset of ground terms. Each rule ρ = L � R : ψ ∈ S defines a relation
between configurations. More precisely, γ

ρ−→ γ′ if and only if there is a valuation
Val s.t. the following conditions are satisfied: (i) Val |=ψ, (ii) γ≥Val(L), and
(iii) γ′ = γ−Val(L)+Val(R). As an example, consider the rule:

ρ = [p(x) , q(y)] � [q(z) , r(x) , r(w)] : {x <2 y , x <4 z , z <0 w}

A valuation which satisfies the condition is Val(x) = 1, Val(y) = 4, Val(z) = 8,
Val(w) = 10, Therefore, we have that [p(1), p(3), q(4)]

ρ−→ [p(3), q(8), r(1), r(10)].
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A run σ is a sequence of transitions γ0
ρ1−→ γ1

ρ2−→ . . .
ρn−→ γn; where λ(ρ1) ·

. . . λ(ρn) is the word associated to σ for some labelling function λ.
Let us fix a CMRS S operating on a set of predicate symbols P. Let cmax

be the maximal constant which appears in the rules of S; cmax is equal to 0
if there are no constant in S. We now define an ordering 'c on configurations
extracted from the ordering defined in [2] to solve the coverability problem.

Definition 1. Given a configuration γ, we define the index of γ, index (γ), to
be a word of the form D0 · · ·Dcmax d0 B0 d1 B1 d2 · · · dn Bn where

– D0, . . . , Dcmax , B0, . . . , Bn ∈ P⊗ and d0, d1, . . . , dn ∈ N \ {0};
– Bi must not be empty for 0 ≤ i ≤ n;
– for each p ∈ P, Di contains k occurrences of predicate p iff p(i) occurs k

times in γ for 0 ≤ i ≤ cmax;
– given v0 = cmax+d0, for each p ∈ P, B0 contains k occurrences of predicate
p iff p(v0) occurs k times in γ;

– given vi+1 = vi + di+1, for each p ∈ P, Bi+1 contains k occurrences of
predicate p iff p(vi+1) occurs k times in γ for all 0 ≤ i < n;

– for all p(v) ∈ γ with v > cmax, there exists i : 0 ≤ i ≤ n such that
v = cmax+ d0 + d1 + . . .+ di.

The ordering 'c is defined as follows.

Definition 2. Let D0 D1 · · · Dcmax d0 B0 d1 B1 d2 · · · dn Bn be the index
of a configuration γ1 and D′0 D′1 · · · D′cmax d′0 B′0 d′1 B′1 d′2 · · · d′m B′m be
the index of a configuration γ2. Then, γ1 'c γ2 iff Di ≤ D′i for 0 ≤ i ≤ cmax
and there exists a strictly monotone injection h : n �→ m such that B0 ≤ B′h(0),

Bi ≤ B′h(i), d0 ≤
∑h(0)

k=0 d
′
k, and di ≤

∑h(i)
k=h(i−1)+1 d

′
k for 1 ≤ i ≤ n.

In the rest of the paper we assume that the values appearing in the initial
configuration γinit and in the accepting configuration γacc are smaller or equal
than cmax. The ordering 'c is obtained by composing string embedding and
multiset inclusion. From standard properties of orderings, it follows that 'c

is a well-quasi ordering. Furthermore, a CMRS is monotonic with respect to
corresponding ordering 'c. The following property then holds.

Proposition 1. A CMRS S equipped with 'c is well-structured.

We now define a restriction � of the relation 'c in which we require that the
distribution of predicates in two configurations has the same structure but larger
gaps. Formally, under the assumptions of Def. 2, γ1 � γ2 iff n = m, Di = D′i
for 0 ≤ i ≤ cmax, Bj = B′j for 0 ≤ j ≤ n, and dk ≤ d′k for 0 ≤ k ≤ n. A CMRS
S satisfies then the following property (the proof is given in [3]).

Proposition 2. Let γ0
ρ0−→ γ1

ρ1−→ . . .
ρk−1−→ γk

ρk−→ γ be a run of S. For any
γ′ s.t. γ � γ′ there exist γ′1, . . . , γ

′
k such that γi � γ′i for i : 1 ≤ i ≤ k and

γ0
ρ1−→ γ′1

ρ1−→ . . .
ρk−1−→ γ′k

ρk−→ γ′ is still a run of S.
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In other words, with coverability accepting conditions a CMRS S can recognize
a word w passing through configurations where gaps between parameters strictly
greater than cmax can be arbitrarily large. As discussed in the rest of the paper
this property is very important to compare c-languages accepted by (fragments
of) CMRS with those accepted by other wsts.

We are ready now to give a first characterization for the expressive power of
CMRS. In [14, Prop. 4], the authors show that there exists a recursively enu-
merable (RE) language that cannot be recognized by any wsts with coverability
acceptance. Hence, the following proposition holds.

Theorem 1. Lc(CMRS) ⊂ RE.

With reachability as accepting condition, CMRS recognize instead the class of
recursively enumerable languages (RE).

Theorem 2. Lr(CMRS) = RE.

Proof. We prove that CMRS can weakly simulate 2-counter machines. A 2-
counter machine (CM) operates on two counters and on a finite set Q of control
states. A transition updates the control state and executes either an increment,
a decrement, or a zero-test of one of the two counters. Operations and tests
on counters have their usual semantics, assuming that the values of counters
are natural values. In the initial configuration the counters are set to zero. A 2-
counter machine accepts an execution if it ends into the control state qf . Assume
a CM M. The CMRS S that weakly simulates M operates in a sequence of
phases indexed by natural numbers. Counters are represented as a multiset of
terms of the form cnt1(c) and cnt2(c) where c denotes the current phase. During
each phase, S simulates increment and decrement transitions of M. As soon
as M performs a zero-test of a counter, S enters an intermediate stage. After
conclusion of the intermediate stage, a new phase is started and the index phase
is increased. Transitions from q1 to q2 that update the current value of a counter
are encoded by Γ0 rules of the following form (they have the same labels as the
corresponding CM transitions):

(q1, cnt i :=cnt i+1, q2) ⇒ [q1, phase(x)] � [q2, phase(x), cnt i(x)] : true
(q1, cnt i :=cnt i−1, q2) ⇒ [q1, phase(x), cnt i(x)] � [q2, phase(x)] : true

In these rules we update the value of the i-th counter by adding or deleting one
occurrence of the term cnt i(c). Notice that the parameter c must be equal to the
current phase index. A transition (q1, cnt1 = 0?, q2) labeled with a is encoded
by the following Γ0 rules (the two first labeled with ε, the last one with a):

[q1, phase(x), phase ′(x)] � [q′2, phase(y), phase ′(x)] : {x < y}
[q′2, cnt2(x), phase(y), phase ′(x)] � [q′2, cnt2(y), phase(y), phase ′(x)] : true

[q′2, phase(y), phase ′(x)] � [q2, phase(y), phase ′(y)] : true

(The Γ0 rules encoding the test on cnt2 are obtained from the previous ones by
replacing predicate cnt2 with cnt1.) In the first rule we store the current index
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using phase ′, and generate a new index which is strictly larger than the current
one. This resets counter cnt1 since all ground terms in its encoding will now
have too small arguments for other rules in S to modify them. With the second
rule, we change the arguments of (some of) the ground terms encoding cnt2 to
the new index. The third rule terminates the simulation of the zero-test.

Finally, we add to S the following rules (all labeled by ε) for i ∈ {1, 2}:

[qfin ] � [q′′fin ] : true
[q′′fin , phase(x) , cnt i(x)] � [q′′fin , phase(x)] : true

[q′′fin , phase(x) , phase ′(y)] � [q′′fin ] : true

By means of these additional rules, when we reach state qfin we can move to q′′fin
and erase the ground terms corresponding to the counters. The key observation
here is that ground terms with parameters strictly less than the current phase
are not removed during the simulation procedure described above. This implies
that there exists an execution where S recognizes a word w that reaches [qf ]
iff there exists an execution where CM recognizes the word w that reaches qf .
Finally, the class of languages accepted by 2-counter machines with reachability
accepting condition is RE. ��

4 Lossy FIFO Channel Systems

In this section we study the relationship between a fragment of CMRS, we named
Γ0, and lossy (FIFO) channel systems (LCS) [5].

In the fragment Γ0 of CMRS every rule L � R : ψ satisfies the follow-
ing conditions: every variable x occurs at most once in L and at most once in
R, and ψ does not contain equality constraints. As an example, [p(x), r(y)] �

[q(x), r(z)] : x < y, y < z is a rule in Γ0, whereas [p(x), q(x)] � [q(y)] : true and
[p(x)] � [q(y), r(y)] : true are not in Γ0.

A Lossy FIFO Channel System (LCS) consists of an asynchronous parallel
composition of finite-state machines that communicate through sending and re-
ceiving messages via a finite set of unbounded lossy FIFO channels (in the sense
that they can non-deterministically lose messages). Formally, an LCS F is a
tuple (Q,C,N, δ) where Q is a finite set of control states (the Cartesian prod-
uct of those of each finite-state machine), C is a finite set of channels, M is a
finite set of messages, δ is a finite set of transitions, each of which is of the form
(q1, Op, q2) where q1, q2 ∈ Q, and Op is a mapping from channels to channel
operations. For any c ∈ C and a ∈ M , an operation Op(c) is either a send op-
eration !a, a receive operation ?a, the empty test ε?, or the null operation nop.
A configuration γ is a pair (q, w) where q ∈ Q, and w is a mapping from C
to M∗ giving the content of each channel. The initial configuration γinit of F
is the pair (q0, ε) where q0 ∈ Q, and ε denotes the mapping that assigns the
empty sequence ε to each channel. The (strong) transition relation (that defines
the semantics of machines with perfect FIFO channels) is defined as follows:
(q1, w1)

σ−→ (q2, w2) if and only if σ = (q1, Op, q2) ∈ δ such that if Op(c) =!a,
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then w2(c) = w1(c) · a; if Op(c) =?a, then w1(c) = a · w2(c); if Op(c) = ε?
then w1(c) = ε and w2(c) = ε; if Op(c) = nop, then w2(c) = w1(c). Now let 'l

be the quasi ordering on LCS configurations such that (q1, w1) 'l (q2, w2) iff
q1 = q2 and ∀c ∈ C : w1(c) 'w w2(c) where 'w indicates the subword relation.
By Higman’s theorem, we know that 'l is a well-quasi ordering. We introduce
then the weak transition relation σ=⇒ that defines the semantics of LCS: we have
γ1

σ=⇒ γ2 iff there exists γ′1 and γ′2 s.t. γ′1 'l γ1, γ′1
σ−→ γ′2, and γ2 'l γ

′
2. Thus,

γ1
σ=⇒ γ2 means that γ2 is reachable from γ1 by first losing messages from the

channels and reaching γ′1, then performing a transition, and, thereafter losing
again messages from channels. As shown in [5], an LCS is well-structured with
respect to 'l. Furthermore, as shown in [6], in presence of transitions labeled
with ε, we can restrict our attention to systems with only one channel. As a
last remark, notice that for any model with lossy semantics like LCS, e.g. lossy
vector addition systems [18], the class of c-languages coincide with the class of
r-languages, i.e., Lr(LCS) = Lc(LCS).

Our first result is that Γ0 and LCS define the same class of c-languages.

Theorem 3. Lc(Γ0) = Lc(LCS).

Proof. The proof is based on encodings of LCS into Γ0 and of Γ0 into LCS. We
next sketch the main ideas behind the two encodings (the complete proof is in
[3]). In the encoding of an LCS in Γ0, we represent the content a1 . . . an of a
channel c as a multiset Mc = [hc(x), a1(x1), . . . , an(xn), tc(y)] where x < x1 <
. . . < xn < y. The predicates hc (head) and tc (tail) are used as sentinels to
mark the two ends of the queue. The operation !a on channel c is implemented
by adding a new ground term with predicate a to Mc and by moving the tail
to the right. The operation ?a on channel c is implemented by consuming an
element with predicate a chosen non-deterministically from the multiset Mc and
moving the head to the right. This operation simulates a lossy channel in the
sense that when we update hc we forget all elements to the left of the deleted
element. Finally, the empty test is simulated by a reset of the channel. Formally,
we encode LCS transitions operating on channel c into the following Γ0 rules
with the same labels:

(q1, !a, q2) ⇒ [q1, tc(x)] � [q2, a(x), tc(y)] : {x < y}
(q1, ?a, q2) ⇒ [q1, hc(x), a(y)] � [q2, hc(y)] : {x < y}
(q1, ε?, q2) ⇒ [q1, hc(x), tailc(y)] � [q2, hc(x′), tail(y′)] : {y < x′, x′ < y′}

It is easy to verify that the resulting Γ0 model accepts the same language as the
original LCS.

The encoding of Γ0 into LCS is more complicate and exploits special proper-
ties of Γ0. We first exploits Prop. 2 to observe that for any CMRS S with initial
and accepting configuration γinit and γacc if we replace each gap order formula
x <c y in S by x < y we obtain a CMRS S′ such that Lc(S) = Lc(S′). Hence,
we assume w.l.o.g. that there is no gap order formula x <c y with c > 0 in S.
Secondly, when considering c-languages of a Γ0 model, we can always restrict
our attention to configurations in which ground terms (with parameter greater
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than cmax) are totally ordered with respect to <, i.e. in which there cannot be
two ground terms (with parameter greater than cmax) with the same parame-
ter. The proof of this property requires some attention. A Γ0-rule may produce
indeed a configuration containing two or more ground terms with the same pa-
rameter (e.g. when the right-hand side contains unconstrained variables as in
[ ] � [p(x), p(y)] : true). We notice however that Γ0-rules cannot use equality
as guard in a condition. Thus, we can always choose a different evaluation for
the variables in a condition such that ground terms assume distinct values and
such that the word accepted by the corresponding execution remains the same.
As a consequence, a Γ0 configuration can be represented as a word of predicate
symbols (We recall that CMRS configurations are words of multisets of predi-
cate symbols as shown by the definition of index (·)). Thus, a Γ0-rule operates on
configurations as a transformation of words. With these properties in mind, it
comes natural to build an LCS that uses a lossy channel to encode a configura-
tion and operations on (auxiliary) channels to simulate the transformations on
words defined by a Γ0-rule with lossy semantics. The thesis follows by noticing
that, as for any other wsts, a version of Γ0 with lossy semantics recognizes the
same c-languages as those accepted by Γ0. �

We show next that CMRS are strictly more expressive than LCS and Γ0.

Theorem 4. Lc(LCS) ⊂ Lc(CMRS).

Proof. We define a language Lent which is accepted by a CMRS and that cannot
be accepted by any LCS. Assume a finite alphabet Σ such that {$,#} �⊆ Σ.
For each w = a1 · · · ak ∈ Σ∗, we interpret w in the following as the multiset
[a1, . . . , ak]. Hence, we do not distinguish words in Σ∗ from the multiset they
represent, and vice versa. In particular, we will use the notation a1 · · · ak ≤
a′1 · · · a′l to denote that [a1, . . . , ak] ≤ [a′1, . . . , a′l]. Define V to be the set of words
of the form w1#w2# · · ·#wn where wi ∈ Σ∗ for each i : 1 ≤ i ≤ n. Consider
v = w1#w2# · · ·#wm ∈ V and v′ = w′1#w

′
2# · · ·#w′n ∈ V . We write v � v′ to

denote that there is an injection h :{1, . . .,m} �→{1, . . ., n} such that

1. 1 ≤ i < j ≤ m implies h(i) < h(j) (h is monotonic) and
2. wi ≤ w′h(i) (≤ is multiset inclusion) for each i : 1 ≤ i ≤ m.

We now define the language Lent = {v$v′ | v′ � v} ⊆ (Σ ∪ {#, $})∗. As an
example, given Σ = {a, b}, we have that [a, b, b]#[a, b, b]#[a, a]$[b, a]#[a, a] is in
Lent, whereas [a, b, b]#[b, a, b]#[a, a]$[a, a]#[a, b] is not in Lent.

We now exhibit a CMRS S with Lc(S) = Lent. The set of predicate symbols
which appear in S consists of (i) a predicate symbol a for each a ∈ Σ, and (ii)
the symbols guess , check , sep# and ok . The initial configuration γinit is defined
as [guess(0)]. Furthermore, we have the following rules:
(1) For each a ∈ Σ, we have a rule labelled with a and which is of the form

[guess(x)] � [guess(x) , a(x)] : true
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Rules of this form are used to guess the letters in wi in the first part of a word
in Lent. We keep track of the symbols inside wi through their argument. These
arguments are all the same by definition of the rule.
(2) A rule labelled with # of the form:

[guess(x)] � [sep#(x) , guess(y)] : {x < y}

This rule is used to switch from the guessing of the part wi to the guessing of
the next part wi+1. sep#(x) remembers the parameter on which the switch has
been executed.
(3) A rule labelled with $ of the form:

[guess(x) ] � [check (y) , sep#(x)] : {y = 0}

This rule is used to switch from the guessing of the part w1# . . .#wn to the
selection of the second part of the word. The parameter of check is equal to the
initial value of guess , i.e. to 0. This way, we can scan the word stored in the
first phase from left-to-right, i.e., working on the argument order we define a
monotonic injective mapping h.
(4) For each a ∈ Σ, we have a rule labelled with a which is of the form

[check(y) , a(y)] � [check(y)] : true

This rule is used to read a word (multiset) ui contained in wh(i).
(5) A rule labelled with # of the form:

[check (x) , sep#(x) , sep#(y) ] � [check (y) , sep#(y)] : {x < y}

This rule is used to pass from ui to ui+1 for i ≥ 1.
(6) A rule labelled with ε of the form:

[check (x) ] � [ok (y)] : {y = 0}

This rule is used to non-deterministically terminate the checking phase. The
accepting configuration γacc is defined as [ok (0)].

Assuming that Σ = {a, b}, we now show that Lent is not an LCS language.
Suppose that Lc(F) = Lent for some LCS F = (Q, {c},M, δ). We show that this
leads to a contradiction. Let γinit be the initial global state in F and γacc be the
accepting global state. We use a binary encoding enc : Q ∪M �→ Σ∗ such that
enc(m) �≤ enc(m′) if m �= m′. We will also use a special word vinit ∈ Σ∗ such
that vinit �≤ enc(m) for each m ∈ Q ∪M . It is clear that such enc function and
vinit exist. As an example, if |Q∪M | = n then we define enc as an injective map
from Q∪M to multisets of n+ 1 elements with i+ 1 occurrences of a and n− i
occurrences of b for 0 ≤ i ≤ n, and we use the multiset with n + 1 occurrences
of b for vinit . For instance, for n = 2 we use [a, a, a], [a, a, b], [a, b, b] for control
states and messages and [b, b, b] for vinit . We extend enc to global states such
that if γ = (q,m1m2 · · ·mn) then

enc(γ) = enc(q)#enc(m1)#enc(m2)# · · ·#enc(mn)
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Observe that (i) enc(γ) ∈ V ; (ii) for global states γ1 and γ2, it is the case that
γ1 'l γ2 iff enc(γ1) � enc(γ2); and (iii) vinit �� enc(γ) for each global state γ.

Since Lent = Lc(F) and v$v ∈ Lent for each v ∈ V , it follows that for each

v ∈ V , there is a global state γ such that γinit
v−→ γ

$v−→ γ′ with γacc 'l γ
′.

We use reach(v) to denote γ. We define two sequences γ0, γ1, γ2, . . . of global
states, and v0, v1, v2, . . . of words in V such that v0 = vinit , γi = reach(vi), and
vi+1 = enc(γi) for each i ≥ 0. By Higman’s theorem we know that there is a j
such that γi 'l γj for some i < j. Let j be the smallest natural number satisfying
this property. First, we show that vi �� vj . There are two cases: if i = 0 then
vi �� vj by (iii); if i > 0 then we know that γi−1 �'l γj−1 and hence, following
(ii), vi = enc(γi−1) �� enc(γj−1) = vj . Since γj = reach(vj), we know that

γinit
vj−→ γj . By monotonicity, γi

$vi−→ γ′i, γacc 'l γ
′
i, γi 'l γj implies γj

$vi−→ γ′j

with γacc 'l γ
′
i 'l γ

′
j . We conclude that γinit

vj−→ γj
$vi−→ γ′j with γacc 'l γ

′
j .

Hence, vj$vi ∈ Lc(F) = Lent which is a contradiction since vi �� vj . ��

Let us now consider r-languages. As mentioned at the beginning of the section,
the expressive power of LCS remains the same as for coverability accepting
conditions, However, this property does not hold anymore for Γ0.

Proposition 3. Lc(Γ0) ⊂ Lr(Γ0) = Lr(CMRS) = RE.

Proof. It is well known that perfect FIFO channel systems with reachability ac-
cepting condition recognize the class RE. We prove that perfect channel systems
accept the same languages as Γ0 with reachability accepting condition. Given an
LCS F , let S be the Γ0 used to encode an LCS in the proof of Theorem 3. In
each step of a run σ in S the head and tail delimiters are moved to the right of
their current positions. Thus, a “lost” ground term to left of the head delimiter,
i.e. with parameter smaller than that of hc, can never be removed in succes-
sive steps of σ. This implies that an accepting configuration in which all ground
terms have parameters strictly greater than the parameter of the head delimiter
characterize reachable configurations of a perfect FIFO channel system. ��

Hence, we have the following property.

Corollary 1. Lr(LCS) ⊂ Lr(CMRS).

5 Petri Nets and Their Extensions

Petri nets (PN), a well-known model of concurrent computation [19], can natu-
rally be reformulated in a multiset rewriting system operating on nullary pred-
icates only (i.e. predicates with no parameters). Let us call Γ1 this fragment of
CMRS. It is easy to see that, if we associate a predicate symbol to each place of
a net, configurations and rules of a Γ1 model are just alternative representations
of markings and transitions of a Petri net. As an immediate consequence of this
connection, we have that Lc(Γ1) = Lc(PN) and Lr(Γ1) = Lr(PN). To formally
compare Γ1 with the other models, we use some known results on languages
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accepted by extensions of Petri nets. A lossy Petri net with inhibitor arcs (LN)
is a Petri net in which it is possible to test if a place has no tokens and in which
tokens may get lost before and after executing a transition. A transfer net [10]
(TN) is a Petri net extended with transfer arcs. A transfer arc specifies an atomic
transfer of all tokens in a given set of source places to a given target place. Fi-
nally, a reset net [10] is a Petri net in which it is possible to atomically remove
all tokens from a given place. LN, TN, and RN are well-structured with respect
to the inclusion ordering of markings (see, e.g., [10,11]). For these models, it is
simple to verify that Lc(LN) = Lc(RN) = Lc(TN), Lc(LN) ⊆ Lc(LCS), and,
as for LCS, Lr(LN) = Lc(LN) (see for [3] for formal proofs). Furthermore, in
[14] the authors proved that Lc(PN) ⊂ Lc(TN). From all these properties, we
obtain the following result.

Theorem 5. Lc(Γ1) ⊂ Lc(Γ0).

For r-languages, the classification changes as follows.

Theorem 6. Lr(Γ1) �∼ Lr(LCS), Lr(Γ1) �∼ Lr(LN), and Lr(Γ1) ⊂ Lr(Γ0).

Proof. We first prove that Lr(Γ1) = Lr(PN) �⊆ Lc(LCS) = Lr(LCS), hence
Lr(Γ1) �⊆ Lc(LN) = Lr(LN) since Lc(LN) ⊆ Lc(LCS) = Lr(LCS). Consider
the language L = {anbn | n ≥ 0}. It is easy to verify that there exists a Petri
net N such that Lr(N ) = L. We now prove that L �∈ Lr(LCS). Per absurdum,
suppose there exists an LCS F such that Lc(F) = L. For any k ≥ 1, let γk
and γ′k be two global states s.t. γinit leads to γk by accepting the word ak, γk
leads to γ′k by accepting the word bk, and γacc 'l γ

′
k. Since 'l is a well-quasi

ordering, there exists i < j such that γi 'l γj . By monotonicity of F , we have
γj leads to γ′′ by accepting the word bi and γacc 'l γ

′
i 'l γ

′′. We conclude that
ajbi ∈ Lc(F) with i < j, which gives us a contradiction.

We now prove that Lc(LN) �⊆ Lr(Γ1), hence Lc(LCS) �⊆ Lr(Γ1). Let Σ =
{a, b} and let Lpar be the language over the alphabet Σ ∪ {#} that contains all
the words w1# . . .#wn with n ≥ 0 such that wi ∈ Σ∗ and there is no prefix
of wi that contains more occurrences of symbol b than those of symbol a, for
i : 1 ≤ i ≤ n. Notice that the number of occurrences of symbols a and b in
wi may be different. The language can be accepted by a LN defined as follows.
When we accept the symbol a we add one token in a special place pa. To accept
the symbol b, we remove one token from pa. To pass from wi to wi+1, we accept
symbol # whenever pa is empty (in LN the empty test is just a reset).

We now show that Lpar cannot be recognized by a Petri net. Suppose that
there exists a Petri net N such that Lr(N ) = Lpar. Starting from N , we build
a net N1 by adding a new place d that keeps track of the difference between
the number of occurrences of symbols a and b in the prefix of the word that is
being processed in N . Furthermore, we add the condition that d is empty to
the accepting marking of N . It is easy to verify that N1 accepts the language
Lbal consisting of words of the form w = w1# · · ·#wn where wi belongs the the
language of balanced parentheses on the alphabet Σ for i : 1 ≤ i ≤ n. We exploit
now [15, Lemma 9.8] that states that Lbal cannot be recognized by a Petri net
with reachability accepting condition, which gives us a contradiction.
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Finally, the property Lr(Γ1) = Lr(PN) ⊂ Lr(Γ0) follows from [15, Lemma
9.8] and Prop. 3, Indeed, we have that Lbal ∈ Lr(Γ0) = RE and Lbal �∈ Lr(Γ1).

��

Finally, we observe that we can use an argument similar to that used in the
proof of Theorem 6 to show that Lr(PN) �∼ Lc(CMRS).

6 (Integral) Relational Automata

In this section we compare the class of languages accepted by a fragment of
CMRS, called Γ2, with those accepted by relational automata [9].

The fragment Γ2 is defined as follows. Let us first use |B| to denote the
cardinality of a multiset B. Γ2 is the fragment of CMRS in which a rule L �

R : ψ satisfies the condition |R| ≤ |L|. In other words, in Γ2 the cardinality
of a reachable configuration is always bounded by the cardinality of the initial
configuration.

An (integral) relational automaton (RA) operates on a finite set X of positive
integer variables, and is of the form (Q, δ) where Q and δ are finite sets of con-
trol states and transitions respectively. A transition is a triple (q1, op, q2) where
q1, q2 ∈ Q and op is of one of the following three operations: (i) reading: read(x)
reads a new value of variable x (i.e. assigns a non-deterministically chosen value
to x), (ii) assignment: x := y assigns the value of variable y to x; (ii) testing:
x < y, x = y, x < c, x = c, and x > c are guards which compare the values
of variables x, y and the natural constant c. Assume a RA A = (Q, δ). A valu-
ation v is a mapping form X to N. A configuration is of the form (q, v), where
q ∈ Q and v is a valuation. We define γinit to be (qinit , vinit ) where qinit ∈ Q
and vinit (x) = 0 for all x ∈ X . For a transition ρ ∈ δ of the form (q1, op, q2), we
let γ1

ρ−→ γ2 if and only if γ1 = (q1, v1), γ2 = (q2, v2), and one of the following
holds: op = read(x) and v2(y) = v1(y) for each y ∈ X − {x}; op = (y := x),
v2(z) = v1(z) for each z ∈ X − {y}, and v2(y) = v1(x); op = (x < y), v2 = v1,
and v1(x) < v1(y). Other testing operations are defined in a similar manner. In
[9] Cerans has shown that RA equipped with the sparser-than order of tuples
of natural numbers are well-structured. In the case of RA with that order, the
coverability accepting condition is equivalent to the control state acceptance,
i.e., a word is accepted if it is recognized by an execution ending in a particular
control state qacc ∈ Q.

As stated in the following propositions, RA and Γ2 define the same class of
c- and r-languages.

Proposition 4. Lc(Γ2) = Lc(RA).

Proof. Given an RA A = (Q, δ) over the set of variables X , we can build the Γ2

S defined below. The set of predicate symbols in S consists of the following: (i)
for each q ∈ Q, there is a predicate symbol q in S; and (ii) for each variable x
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in X , there is a predicate symbol qx in S. Transitions in δ are encoded via the
following CMRS rules (with the same labels)

(q1, read(x), q2) ⇒ [q1, px(z)] � [q2, px(w)] : true
(q1, x := y, q2) ⇒ [q1, px(z), py(w)] � [q2, px(w), py(w)] : true
(q1, x < y, q2) ⇒ [q1, px(z), py(w)] � [q2, px(z), py(w)] : {z < w}

For X = {x1, . . . , xn}, the initial configuration is γinit = [q0, px1(0), . . . , pxn(0)].
The accepting configuration γacc is the multiset [qacc].

For the other inclusion, by using Prop. 2, we assume w.l.o.g. that there is no
gap order formula x <c y with c > 0 in S and that γacc = [ok]. To justify the
second assumption, notice that we can always introduce new predicate symbols
ko and ok and a new rule that can be executed only on a configuration γ with
γacc 'c γ and that replace ko with ok. All other rules are modified to be enabled
only at configurations containing ko. Finally, we also observe that we can assume
that all configurations of S have the same size (the size of the initial configuration
of the Γ2 model). Thus, we associate a variable of X to each ground term of
the initial CMRS configuration and compose the predicate symbols in a CMRS
configuration to form a single control state. CRMS rules can then be simulated
in several steps by operations on variables and updates of control states. To each
control state containing ok, we add a transition labeled with ε to the accepting
control state qacc. ��

Theorem 7. Lc(Γ2) = Regular Languages.

To prove this claim, we define a finite state automaton where states are abstrac-
tions of configurations in which we only keep the order on parameters and not
their exact values (when parameters are greater than cmax). The relation tran-
sition of the symbolic graph mimics the transition relation of S. Then, we show
(by using Prop. 2) that the symbolic graph contains exactly the information
we need to characterize the language recognized by S. Finiteness of the graph
allows us to conclude that Γ2 corresponds to the class of regular languages. The
complete construction is given in [3].

We are ready now to compare Γ2 (hence RA) with the other models studied in
this paper. For this purpose, we first observe that Petri nets can accept regular
languages (finite automata can be encoded as Petri nets). Furthermore, it is
straightforward to build a Petri net that accepts a non-regular language like
L = {an#bm | n ≥ m}. As a consequence of this observation and of Theorem 7,
we have the following result.

Corollary 2. Lc(Γ2) ⊂ Lc(Γ1).

Let us now consider the reachability accepting condition. We first notice that
Lc(Γ2) = Lr(Γ2) = Lc(RA) = Lr(RA). Indeed, in both cases of Γ2 and RA
we can encode the reachability acceptance into the coverability acceptance by
adding transitions (labelled with ε) that can be fired only from the accepting
configuration and leads to a configuration with control state qacc in the case of
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RA and a configuration containing a special accepting predicate symbol in the
case of Γ2. Thus, we have the following property.

Theorem 8. Lr(Γ2) ⊂ Lr(Γ1).

7 Conclusions

In this paper we have compared the class of languages recognized with cover-
ability and reachability as accepting conditions by relational automata (RA),
Petri nets (PN), lossy channel systems (LCS), and constrained multiset rewrit-
ing systems (CMRS). With both accepting conditions, CMRS turns out to be
the most expressive model among the different well-structured systems consid-
ered in the paper. Indeed, with coverability as accepting condition we have that
FA = RA < PN < LCS < CMRS < CM , whereas with reachability we have
that FA = RA < PN,LCS < CMRS = CM and PN and LCS are incom-
parable models. Here FA and CM denote resp. finite automata (they recognize
regular languages) and counter automata (they recognize recursively enumer-
able languages), and < means “strictly less expressive than”. We also prove that
transfer nets, reset nets, broadcast protocols and lossy vector addition systems
are strictly less expressive than CMRS. CMRS can thus be viewed as a unified
model for analysis and verification of a large class of infinite-state models.
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Abstract. The operation V → V ω is a fundamental operation over finitary lan-
guages leading to ω-languages. Since the set Σω of infinite words over a finite
alphabet Σ can be equipped with the usual Cantor topology, the question of the
topological complexity of ω-powers of finitary languages naturally arises and has
been posed by Niwinski [Niw90], Simonnet [Sim92] and Staiger [Sta97a]. It has
been recently proved that for each integer n ≥ 1, there exist some ω-powers of
context free languages which are Π0

n-complete Borel sets, [Fin01], that there ex-
ists a context free language L such that Lω is analytic but not Borel, [Fin03], and
that there exists a finitary language V such that V ω is a Borel set of infinite rank,
[Fin04]. But it was still unknown which could be the possible infinite Borel ranks
of ω-powers.

We fill this gap here, proving the following very surprising result which shows
that ω-powers exhibit a great topological complexity: for each non-null countable
ordinal ξ, there exist some Σ0

ξ-complete ω-powers, and some Π0
ξ-complete ω-

powers.

Keywords: Infinite words; ω-languages; ω-powers; Cantor topology; topological
complexity; Borel sets; Borel ranks; complete sets.

1 Introduction

The operation V → V ω is a fundamental operation over finitary languages leading to
ω-languages. It produces ω-powers, i.e. ω-languages in the form V ω , where V is a
finitary language. This operation appears in the characterization of the class REGω of
ω-regular languages (respectively, of the class CFω of context free ω-languages) as the
ω-Kleene closure of the family REG of regular finitary languages (respectively, of the
family CF of context free finitary languages) [Sta97a].

Since the set Σω of infinite words over a finite alphabet Σ can be equipped with
the usual Cantor topology, the question of the topological complexity of ω-powers of
finitary languages naturally arises and has been posed by Niwinski [Niw90], Simonnet
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[Sim92], and Staiger [Sta97a]. A first task is to study the position of ω-powers with
regard to the Borel hierarchy (and beyond to the projective hierarchy) [Sta97a, PP04].

It is easy to see that the ω-power of a finitary language is always an analytic set
because it is either the continuous image of a compact set {0, 1, . . . , n}ω for n ≥ 0 or
of the Baire space ωω.

It has been recently proved, that for each integer n ≥ 1, there exist some ω-powers
of context free languages which are Π0

n-complete Borel sets, [Fin01], and that there
exists a context free language L such that Lω is analytic but not Borel, [Fin03]. Notice
that amazingly the language L is very simple to describe and it is accepted by a simple
1-counter automaton.

The first author proved in [Fin04] that there exists a finitary language V such that
V ω is a Borel set of infinite rank. However the only known fact on their complexity is
that there is a context free language W such that Wω is Borel above Δ0

ω, [DF06].
We fill this gap here, proving the following very surprising result which shows that

ω-powers exhibit a great topological complexity: for each non-null countable ordinal
ξ, there exist some Σ0

ξ-complete ω-powers, and some Π0
ξ-complete ω-powers. For that

purpose we use a theorem of Kuratowski which is a level by level version of a theorem
of Lusin and Souslin stating that every Borel setB ⊆ 2ω is the image of a closed subset
of the Baire space ωω by a continuous bijection. This theorem of Lusin and Souslin
had already been used by Arnold in [Arn83] to prove that every Borel subset of Σω,
for a finite alphabet Σ, is accepted by a non-ambiguous finitely branching transition
system with Büchi acceptance condition and our first idea was to code the behaviour of
such a transition system. This way, in the general case, we can manage to construct an
ω-power of the same complexity as B.

The paper is organized as follows. In Section 2 we recall basic notions of topology
and in particular definitions and properties of Borel sets. We proved our main result in
Section 3.

2 Topology

We first give some notations for finite or infinite words we shall use in the sequel,
assuming the reader to be familiar with the theory of formal languages and of ω-
languages, see [Tho90, Sta97a, PP04]. Let Σ be a finite or countable alphabet whose
elements are called letters. A non-empty finite word over Σ is a finite sequence of let-
ters: x = a0.a1.a2 . . . an where ∀i ∈ [0;n] ai ∈ Σ. We shall denote x(i) = ai the
(i+ 1)th letter of x and x((i+ 1) = x(0) . . . x(i) for i ≤ n, is the beginning of length
i + 1 of x. The length of x is |x| = n + 1. The empty word will be denoted by ∅ and
has 0 letters. Its length is 0. The set of finite words overΣ is denotedΣ<ω. A (finitary)
language L over Σ is a subset of Σ<ω. The usual concatenation product of u and v
will be denoted by u�v or just uv. If l ∈ω and (ai)i<l ∈ (Σ<ω)l, then �

i<l ai is the
concatenation a0 . . . al−1.

The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence a0a1 . . . an . . .,
where for all integers i ≥ 0 ai ∈ Σ. When σ is an ω-word over Σ, we write σ =
σ(0)σ(1) . . . σ(n) . . . and σ((n + 1) = σ(0)σ(1) . . . σ(n) the finite word of length
n + 1, prefix of σ. The set of ω-words over the alphabet Σ is denoted by Σω. An
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ω-language over an alphabetΣ is a subset ofΣω. If ∀i∈ω ai∈Σ<ω, then �
i∈ω ai is

the concatenation a0a1 . . .. The concatenation product is also extended to the product
of a finite word u and an ω-word v: the infinite word u.v or u�v is then the ω-word
such that: (uv)(k) = u(k) if k < |u| , and (u.v)(k) = v(k − |u|) if k ≥ |u|.

The prefix relation is denoted ≺: the finite word u is a prefix of the finite word v
(respectively, the infinite word v), denoted u ≺ v, if and only if there exists a finite
word w (respectively, an infinite word w), such that v = u�w.

If s≺α=α(0)α(1)..., then α−s is the sequence α(|s|)α(|s|+1)...
For a finitary language V ⊆ Σ<ω, the ω-power of V is the ω-language

V ω = {u1 . . . un . . . ∈ Σω | ∀i ≥ 1 ui ∈ V }

We recall now some notions of topology, assuming the reader to be familiar with
basic notions which may be found in [Kur66, Mos80, Kec95, LT94, Sta97a, PP04].

There is a natural metric on the set Σω of infinite words over a countable alphabet
Σ which is called the prefix metric and defined as follows. For u, v ∈ Σω and u �= v
let d(u, v) = 2−lpref(u,v) where lpref(u,v) is the first integer n such that the (n + 1)th

letter of u is different from the (n + 1)th letter of v. The topology induced on Σω by
this metric is just the product topology of the discrete topology on Σ. For s ∈ Σ<ω,
the set Ns :={α∈Σω | s≺α} is a basic clopen (i.e., closed and open) set of Σω. More
generally open sets of Σω are in the form W�Σω, where W ⊆ Σ<ω.

The topological spaces in which we will work in this paper will be subspaces of Σω

where Σ is either finite having at least two elements or countably infinite.
When Σ is a finite alphabet, the prefix metric induces onΣω the usual Cantor topol-

ogy and Σω is compact.
The Baire space ωω is equipped with the product topology of the discrete topology

on ω. It is homeomorphic to P∞ :={α∈2ω | ∀i∈ω ∃j≥ i α(j)=1}⊆2ω, via the map
defined on ωω by H(β) :=0β(0)10β(1)1 . . .

We define now the Borel Hierarchy on a topological space X :

Definition 1. The classes Σ0
n(X) and Π0

n(X) of the Borel Hierarchy on the topologi-
cal space X are defined as follows:

Σ0
1(X) is the class of open subsets of X .

Π0
1(X) is the class of closed subsets of X .

And for any integer n ≥ 1:
Σ0

n+1(X) is the class of countable unions of Π0
n-subsets of X .

Π0
n+1(X) is the class of countable intersections of Σ0

n-subsets of X .
The Borel Hierarchy is also defined for transfinite levels. The classes Σ0

ξ(X) and
Π0

ξ(X), for a non-null countable ordinal ξ, are defined in the following way:
Σ0

ξ(X) is the class of countable unions of subsets of X in ∪γ<ξΠ0
γ .

Π0
ξ(X) is the class of countable intersections of subsets of X in ∪γ<ξΣ0

γ .

Suppose now that X⊆Y ; then Σ0
ξ(X)={A ∩X | A∈Σ0

ξ(Y )}, and similarly for Π0
ξ ,

see [Kec95, Section 22.A]. Notice that we have defined the Borel classes Σ0
ξ(X) and

Π0
ξ(X) mentioning the spaceX . However when the context is clear we will sometimes

omit X and denote Σ0
ξ(X) by Σ0

ξ and similarly for the dual class.
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The Borel classes are closed under finite intersections and unions, and continuous
preimages. Moreover, Σ0

ξ is closed under countable unions, and Π0
ξ under countable

intersections. As usual the ambiguous class Δ0
ξ is the class Σ0

ξ ∩Π0
ξ .

The class of Borel sets is Δ1
1 :=

⋃
ξ<ω1

Σ0
ξ =

⋃
ξ<ω1

Π0
ξ , where ω1 is the first

uncountable ordinal.
The Borel hierarchy is as follows:

Σ0
1 =open Σ0

2 . . . Σ0
ω . . .

Δ0
1 =clopen Δ0

2 Δ0
ω Δ1

1

Π0
1 =closed Π0

2 . . . Π0
ω . . .

This picture means that any class is contained in every class to the right of it, and the
inclusion is strict in any of the spaces Σω.

For a countable ordinal α, a subset ofΣω is a Borel set of rank α iff it is in Σ0
α∪Π0

α

but not in
⋃

γ<α(Σ0
γ ∪Π0

γ).
We now define completeness with regard to reduction by continuous functions. For a

countable ordinal α ≥ 1, a set F ⊆ Σω is said to be a Σ0
α (respectively, Π0

α)-complete
set iff for any set E ⊆ Y ω (with Y a finite alphabet): E ∈ Σ0

α (respectively,E ∈ Π0
α)

iff there exists a continuous function f : Y ω → Σω such that E = f−1(F ). Σ0
n

(respectively, Π0
n)-complete sets, with n an integer ≥ 1, are thoroughly characterized

in [Sta86].
Recall that a set X ⊆ Σω is a Σ0

α (respectively Π0
α)-complete subset of Σω iff it is

in Σ0
α but not in Π0

α (respectively in Π0
α but not in Σ0

α), [Kec95].
For example, the singletons of 2ω are Π0

1-complete subsets of 2ω. The set P∞ is a
well known example of a Π0

2-complete subset of 2ω.
If Γ is a class of sets, then Γ̌ :={¬A | A∈Γ} is the class of complements of sets in

Γ. In particular, for every non-null countable ordinal α, Σ̌0
α= Π0

α and Π̌0
α= Σ0

α.
There are some subsets of the topological space Σω which are not Borel sets. In par-

ticular, there exists another hierarchy beyond the Borel hierarchy, called the projective
hierarchy. The first class of the projective hierarchy is the class Σ1

1 of analytic sets. A
set A ⊆ Σω is analytic iff there exists a Borel set B ⊆ (Σ × Y )ω, with Y a finite
alphabet, such that x ∈ A↔ ∃y ∈ Y ω such that (x, y) ∈ B, where (x, y) ∈ (Σ× Y )ω

is defined by: (x, y)(i) = (x(i), y(i)) for all integers i ≥ 0.
A subset of Σω is analytic if it is empty, or the image of the Baire space by a con-

tinuous map. The class of analytic sets contains the class of Borel sets in any of the
spaces Σω. Notice that Δ1

1 = Σ1
1 ∩Π1

1, where Π1
1 is the class of co-analytic sets, i.e.

of complements of analytic sets.
The ω-power of a finitary language V is always an analytic set because if V is finite

and has n elements then V ω is the continuous image of a compact set {0, 1, . . . , n−1}ω
and if V is infinite then there is a bijection between V and ω and V ω is the continuous
image of the Baire space ωω, [Sim92].

3 Main Result

We now state our main result, showing that ω-powers exhibit a very surprising topolog-
ical complexity.
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Theorem 2. Let ξ be a non-null countable ordinal.

(a) There is A⊆2<ω such that Aω is Σ0
ξ-complete.

(b) There is A⊆2<ω such that Aω is Π0
ξ-complete.

To prove Theorem 2, we shall use a level by level version of a theorem of Lusin and
Souslin stating that every Borel set B ⊆ 2ω is the image of a closed subset of the Baire
space ωω by a continuous bijection, see [Kec95, p.83]. It is the following theorem,
proved by Kuratowski in [Kur66, Corollary 33.II.1]:

Theorem 3. Let ξ be a non-null countable ordinal, and B ∈Π0
ξ+1(2

ω). Then there is
C ∈Π0

1(ωω) and a continuous bijection f : C → B such that f−1 is Σ0
ξ-measurable

(i.e., f [U ] is Σ0
ξ(B) for each open subset U of C).

The existence of the continuous bijection f : C → B given by this theorem (without
the fact that f−1 is Σ0

ξ-measurable) has been used by Arnold in [Arn83] to prove that
every Borel subset of Σω, for a finite alphabet Σ, is accepted by a non-ambiguous
finitely branching transition system with Büchi acceptance condition. Notice that the
sets of states of these transition systems are countable.

Our first idea was to code the behaviour of such a transition system. In fact this can
be done on a part of ω-words of a special compact set K0,0. However we shall have
also to consider more general sets KN,j and then we shall need the hypothesis of the
Σ0

ξ-measurability of the function f .
We now come to the proof of Theorem 2.

Let Γ be the class Σ0
ξ , or Π0

ξ . We assume first that ξ≥3.

Let B ⊆ 2ω be a Γ-complete set. Then B is in Γ(2ω) but not in Γ̌(2ω). As B∈Π0
ξ+1,

Theorem 3 givesC ∈Π0
1(P∞) and f . By Proposition 11 in [Lec05], it is enough to find

A⊆4<ω. The language A will be made of two pieces: we will have A=μ ∪ π. The set
π will code f , and πω will look like B on some nice compact sets KN,j . Outside this
countable family of compact sets we will hide f , so that Aω will be the simple set μω.

• We set Q := {(s, t) ∈ 2<ω×2<ω | |s|= |t|}. We enumerate Q as follows. We start
with q0 := (∅, ∅). Then we put the sequences of length 1 of elements of 2×2, in the
lexicographical ordering: q1 := (0, 0), q2 := (0, 1), q3 := (1, 0), q4 := (1, 1). Then we
put the 16 sequences of length 2: q5 := (02, 02), q6 := (02, 01), . . . And so on. We will
sometimes use the coordinates of qN := (q0N , q

1
N ). We put Mj :=Σi<j 4i+1. Note that

the sequence (Mj)j∈ω is strictly increasing, and that qMj is the last sequence of length
j of elements of 2×2.

•Now we define the “nice compact sets”. We will sometimes view 2 as an alphabet, and
sometimes view it as a letter. To make this distinction clear, we will use the boldface
notation 2 for the letter, and the lightface notation 2 otherwise. We will have the same
distinction with 3 instead of 2, so we have 2 = {0, 1}, 3 = {0, 1,2}, 4 = {0, 1,2,3}.
Let N, j be non-negative integers with N≤Mj . We set

KN,j := { γ = 2N � [ �
i∈ω mi 2Mj+i+1 3 2Mj+i+1 ]∈4ω | ∀i ∈ ω mi ∈ 2 = {0, 1}}.
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As the map ϕN,j :KN,j→ 2ω defined by ϕN,j(γ) := �
i∈ωmi is a homeomorphism,

KN,j is compact.

• Now we will define the sets that “look like B”.

- Let l∈ω. We define a function cl :B→Q by cl(α) := [f−1(α), α](l. Note that Q is
countable, so that we equip it with the discrete topology. In these conditions, we prove
that cl is Σ0

ξ-measurable.

If l �= |q0| = |q1| then c−1
l (q) is the empty set. And for any q ∈ Q, and l =

|q0| = |q1|, it holds that c−1
l (q) = {α ∈ B | [f−1(α), α](l = q} = {α ∈ B |

α(l = q1 and f−1(α)(l = q0}. But α(l = q1 means that α belongs to the basic open
set Nq1 and f−1(α)(l = q0 means that f−1(α) belongs to the basic open set Nq0 or
equivalently that α = f(f−1(α)) belongs to f(Nq0) which is a Σ0

ξ-subset of B. So

c−1
l (q) = Nq1 ∩ f(Nq0) is a Σ0

ξ-subset of B and cl is Σ0
ξ-measurable.

- Let N be an integer. We put

EN :={ α∈2ω | q1Nα∈B and c|q1N |(q
1
Nα)=qN }.

Notice that E0 = { α∈2ω | α∈ B and c0(α) = ∅} = B.

As c|q1N | is Σ0
ξ-measurable and {qN}∈Δ0

1(Q), we get c−1
|q1N |

({qN})∈Δ0
ξ(B)⊆Γ(B).

Therefore there is G ∈ Γ(2ω) with c−1
|q1N |

({qN}) =G ∩ B. Thus c−1
|q1N |

({qN}) ∈ Γ(2ω)

since Γ is closed under finite intersections. Note that the map S associating q1Nα with
α is continuous, so that EN =S−1[c−1

|q1N |
({qN})] is in Γ(2ω).

• Now we define the transition system obtained from f .

- If m∈2 and n, p∈ω, then we write n
m→ p if q0n≺q0p and q1p=q1nm.

- As f is continuous on C, the graph Gr(f) of f is a closed subset of C×2ω. As C
is Π0

1(P∞), Gr(f) is also a closed subset of P∞×2ω. So there is a closed subset F
of 2ω×2ω such that Gr(f) = F ∩ (P∞×2ω). We identify 2ω×2ω with (2×2)ω, i.e.,
we view (β, α) as [β(0), α(0)], [β(1), α(1)], ... By [Kec95, Proposition 2.4], there is
R⊆ (2×2)<ω, closed under initial segments, such that F = {(β, α) ∈ 2ω×2ω | ∀k ∈
ω (β, α)(k ∈ R}; notice that R is a tree whose infinite branches form the set F . In
particular, we get

(β, α)∈Gr(f) ⇔ β∈P∞ and ∀k∈ω (β, α)(k∈R.

- Set Qf := {(t, s)∈R | t �= ∅ and t(|t|−1)=1}. Notice that Qf is simply the set of
pairs (t, s)∈R such that the last letter of t is a 1.

We have in fact already defined the transition system T obtained from f . This transition
system has a countably infinite set Q of states and a set Qf of accepting states. The
initial state is q0 := (∅, ∅). The input alphabet is 2 = {0, 1} and the transition relation
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δ ⊆ Q × 2 × Q is given by: if m ∈ 2 and n, p ∈ ω then (qn,m, qp) ∈ δ iff n
m→ p.

Recall that a run of T is said to be Büchi accepting if final states occur infinitely often
during this run. Then the set of ω-words over the alphabet 2 which are accepted by the
transition system T from the initial state q0 with Büchi acceptance condition is exactly
the Borel set B.

• Now we define the finitary language π.

- We set

π :=

������������������
�����������������

s∈4<ω | ∃j, l∈ω ∃(mi)i≤l∈2l+1 ∃(ni)i≤l, (pi)i≤l, (ri)i≤l∈ωl+1

n0≤Mj

and
∀i≤ l ni

mi→ pi and pi+ri = Mj+i+1

and
∀i<l pi = ni+1

and
qpl ∈Qf

and
s = �

i≤l 2ni mi 2pi 2ri 3 2ri

������������������
�����������������

.

• Let us show that ϕN,j[πω ∩KN,j]=EN if N≤Mj .

Let γ∈πω ∩KN,j, and α :=ϕN,j(γ). We can write

γ = �
k∈ω [ �i≤lk 2n

k
i mk

i 2p
k
i 2r

k
i 3 2r

k
i ].

As this decomposition of γ is in π, we have nki
mk

i→ pki if i≤ lk, pki =nki+1 if i< lk, and
qpk

lk

∈Qf , for each k∈ω. Moreover, pklk =nk+1
0 , for each k∈ω, since γ∈KN,j implies

that pklk + rklk = rklk + nk+1
0 = Mj+1+m for some integer m. So we get

N
α(0)→ p0

0

α(1)→ . . .
α(l0)→ p0

l0

α(l0+1)→ p1
0

α(l0+2)→ . . .
α(l0+l1+1)→ p1

l1 . . .

In particular we have

q0N ≺ q0p0
0
≺ . . . ≺ q0p0

l0
≺ q0p1

0
≺ . . . ≺ q0p1

l1
. . .

because n
m→ p implies that q0n ≺ q0p. Note that |q1

pk
lk

|= |q1N |+Σj≤k (lj+1) because

n
m→ p implies that |q1p| = |q1n|+1, so that the sequence (|q0

pk
lk

|)k∈ω is strictly increasing

since |q0n| = |q1n| for each integer n. This implies the existence of β ∈ P∞ such that
q0
pk

lk

≺ β for each k ∈ ω. Note that β ∈ P∞ because, for each integer k, qpk
lk

∈ Qf .

Note also that (β, q1Nα)(k ∈ R for infinitely many k’s. As R is closed under initial
segments, (β, q1Nα)(k∈R for every k∈ω, so that q1Nα=f(β)∈B. Moreover,
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c|q1N |(q
1
Nα)=(β(|q1N |, q1N )=(q0N , q

1
N )=qN ,

and α∈EN .

Conversely, let α∈EN . We have to see that γ :=ϕ−1
N,j(α)∈ πω. As γ ∈KN,j , we are

allowed to write γ = 2N � [ �
i∈ω α(i) 2Mj+i+1 3 Mj+i+1 ]. Set β := f−1(q1Nα).

There is a sequence of integers (kl)l∈ω such that qkl
=(β, q1Nα)(l. Note that N

α(0)→
k|q1N |+1

α(1)→ k|q1N |+2 . . . As N ≤Mj we get k|q1N |+i+1 ≤Mj+i+1. So we can define
n0 := N , p0 := k|q1N |+1, r0 := Mj+1−p0, n1 := p0. Similarly, we can define p1 :=
k|q1N |+2, r1 :=Mj+2−p1. We go on like this until we find some qpi in Qf . This clearly
defines a word in π. And we can go on like this, so that γ∈πω.

Thus πω ∩KN,j is in Γ(KN,j)⊆Γ(4ω). Notice that we proved, among other things,
the equality ϕ0,0[πω ∩K0,0]=B. In particular, πω ∩K0,0 is not in Γ̌(4ω).

Notice that πω codes on K0,0 the behaviour of the transition system accepting B.
In a similar way πω codes on KN,j the behaviour of the same transition system but
starting this time from the state qN instead of the initial state q0. But some ω-words
in πω are not in K0,0 and even not in any KN,j and we do not know what is exactly
the complexity of this set of ω-words. However we remark that all words in π have the
same form 2N � [ �i≤l mi 2Pi 3 2Ri ].

•We are ready to define μ. The idea is that an infinite sequence containing a word in μ
cannot be in the union of the KN,j’s. We set

μ0:=

����������
���������

s∈4<ω | ∃l∈ω ∃(mi)i≤l+1∈2l+2 ∃N ∈ω ∃(Pi)i≤l+1, (Ri)i≤l+1∈ωl+2

∀i≤ l+1 ∃j∈ω Pi =Mj

and
Pl =Rl

and
s = 2N � [ �

i≤l+1 mi 2Pi 3 2Ri ]

����������
���������

,

μ1:=

����������
���������

s∈4<ω | ∃l∈ω ∃(mi)i≤l+1∈2l+2 ∃N ∈ω ∃(Pi)i≤l+1, (Ri)i≤l+1∈ωl+2

∀i≤ l+1 ∃j∈ω Pi =Mj

and
∃j∈ω (Pl =Mj and Pl+1 =Mj+1)

and
s = 2N � [ �

i≤l+1 mi 2Pi 3 2Ri ]

����������
���������

,

μ :=μ0 ∪ μ1.

All the words in A will have the same form 2N � [ �
i≤l mi 2Pi 3 2Ri ]. Note

that any finite concatenation of words of this form still has this form. Moreover, such a
concatenation is in μi if its last word is in μi.
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• Now we show that μω is “simple”. The previous remarks show that

μω ={ γ∈4ω | ∃i∈2 ∀j∈ω ∃k, n∈ω ∃t0, t1, . . . , tn∈μi n≥j and γ�k=�
l≤n tl }.

This shows that μω∈Π0
2(4

ω).

Notice again that all words in A have the same form 2N � [ �i≤l mi 2Pi 3 2Ri ]. We
set

P :={2N � [ �i∈ω mi 2Pi 3 2Ri ]∈4ω | N ∈ω and ∀i ∈ ω mi∈2, Pi, Ri ∈ ω

and ∀i∈ω ∃j∈ω Pi=Mj}.

We define a map F :P \μω→ ({∅} ∪ μ)×ω2 as follows.
Let γ := 2N � [ �

i∈ω mi 2Pi 3 2Ri ] ∈ P \μω, and j0 ∈ ω with P0 = Mj0 . If
γ∈KN,j0−1, then we put F (γ) := (∅, N, j0). If γ /∈KN,j0−1, then there is an integer l
maximal for which Pl �=Rl or there is j∈ω with Pl=Mj and Pl+1 �=Mj+1. Let j1∈ω
with Pl+2 =Mj1 . We put

F (γ) :=(2N � [ �i≤l mi 2Pi 3 2Ri ] � ml+1 2Pl+1 3, Rl+1, j1).

• Fix γ∈Aω . If γ /∈μω, then γ∈P \μω, F (γ) :=(t, S, j) is defined. Note that t 2S≺γ,
and that j>0. Moreover, γ−t 2S ∈K0,j−1. Note also that S≤Mj−1 if t=∅, and that
t 2S γ(|t|+S) 2Mj 3 /∈μ. Moreover, there is an integer N ≤min(Mj−1, S) (N =S if
t=∅) such that γ−t 2S−N ∈πω∩KN,j−1, since the last word in μ in the decomposition
of γ (if it exists) ends before t 2S .

• In the sequel we will say that (t, S, j)∈({∅} ∪μ)×ω2 is suitable if S≤Mj if t=∅,
t(|t|−1)=3 if t∈μ, and t 2S m 2Mj+1 3 /∈μ if m∈2. We set, for (t, S, j) suitable,

Pt,S,j :=
{
γ∈4ω | t 2S≺γ and γ−t 2S∈K0,j

}
.

Note that Pt,S,j is a compact subset of P \μω, and that F (γ)=(t, S, j+1) if γ∈Pt,S,j .
This shows that the Pt,S,j’s, for (t, S, j) suitable, are pairwise disjoint. Note also that
μω is disjoint from

⋃
(t,S,j) suitable Pt,S,j .

•We set, for (t, S, j) suitable and N≤min(Mj, S) (N=S if t=∅),

At,S,j,N :=
{
γ∈Pt,S,j | γ−t 2S−N ∈πω ∩KN,j

}
.

Note that At,S,j,N ∈Γ(4ω) since N≤Mj .

• The previous discussion shows that

Aω =μω ∪
⋃

(t,S,j) suitable

⋃

N ≤ min(Mj, S)
N = S if t = ∅

At,S,j,N .
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As Γ is closed under finite unions, the set

At,S,j :=
⋃

N ≤ min(Mj , S)
N = S if t = ∅

At,S,j,N

is in Γ(4ω). On the other hand we have proved that μω ∈Π0
2(4ω)⊆Γ(4ω), thus we get

Aω∈Γ(4ω) if Γ=Σ0
ξ .

Consider now the case Γ=Π0
ξ . We can write

Aω =μω\

⎛

⎝
⋃

(t,S,j) suitable

Pt,S,j

⎞

⎠ ∪
⋃

(t,S,j) suitable

At,S,j ∩ Pt,S,j.

Thus

¬Aω =¬

⎡

⎣μω ∪

⎛

⎝
⋃

(t,S,j) suitable

Pt,S,j

⎞

⎠

⎤

⎦ ∪
⋃

(t,S,j) suitable

Pt,S,j\At,S,j.

Here ¬
[
μω ∪

(⋃
(t,S,j) suitable Pt,S,j

)]
∈ Δ0

3(4
ω) ⊆ Γ̌(4ω) because μω is a Π0

2-

subset of 4ω and (
⋃

(t,S,j) suitable Pt,S,j) is a Σ0
2-subset of 4ω as it is a countable union

of compact hence closed sets. On the other hand Pt,S,j\At,S,j∈Γ̌(4ω), thus ¬Aω is in
Γ̌(4ω) and Aω∈Γ(4ω). Moreover, the set Aω ∩P∅,0,0 =πω ∩P∅,0,0 =πω ∩K0,0 is not
in Γ̌. This shows that Aω is not in Γ̌. Thus Aω is in Γ(4ω)\Γ̌.

We can now end the proof of Theorem 2.

(a) If ξ = 1, then we can take A := {s ∈ 2<ω | 0 ≺ s or ∃k ∈ ω 10k1 ≺ s} and
Aω=2ω\{10ω} is Σ0

1\Π0
1.

• If ξ = 2, then we will see in Theorem 4 the existence of A ⊆ 2<ω such that Aω is
Σ0

2\Π0
2.

• So we may assume that ξ≥3, and we are done.

(b) If ξ=1, then we can take A :={0} and Aω ={0ω} is Π0
1\Σ0

1.

• If ξ=2, then we can take A :={0k1 | k∈ω} and Aω =P∞ is Π0
2\Σ0

2.

• So we may assume that ξ≥3, and we are done. �

As we have said above it remains a Borel class for which we have not yet got a complete
ω-power: the class Σ0

2. Notice that it is easy to see that the classical example of Σ0
2-

complete set, the set 2ω \ P∞, is not an ω-power. However we are going to prove the
following result.
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Theorem 4. There is a context-free languageA⊆2<ω such that Aω∈Σ0
2\Π0

2.

Proof. By Proposition 11 in [Lec05], it is enough to findA⊆3<ω. We set, for j<3 and
s∈3<ω,

nj(s):= Card{i< |s| | s(i)=j},

T := {α∈3≤ω | ∀l<1+|α| n2(α(l)≤n1(α(l)}.

•We inductively define, for s∈T ∩ 3<ω, s←↩∈2<ω as follows:

s←↩ :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∅ if s=∅,

t←↩ε if s= tε and ε<2,

t←↩, except that its last 1 is replaced with 0, if s= t2.

• We will extend this definition to infinite sequences. To do this, we introduce a notion
of limit. Fix (sn)n∈ω a sequence of elements in 2<ω. We define lim

n→∞
sn ∈ 2≤ω as

follows. For each t∈2<ω,

t≺ lim
n→∞

sn ⇔ ∃n0∈ω ∀n≥n0 t≺sn.

• If α ∈ T ∩ 3ω, then we set α←↩ := lim
n→∞

(α(n)←↩. We define e : T ∩ 3ω → 2ω by

e(α) :=α←↩. Note that T ∩ 3ω∈Π0
1(3

ω), and e is a Σ0
2-measurable partial function on

T ∩ 3ω, since for t∈2<ω we have

t≺e(α) ⇔ ∃n0∈ω ∀n≥n0 t≺(α(n)←↩.

• We set E :={s∈T ∩ 3<ω | n2(s)=n1(s) and s �=∅ and 1≺ [s((|s|−1)]←↩}. Note
that ∅ �= s←↩≺0ω, and that s(|s|−1)=2 changes s(0)= [s((|s|−1)]←↩(0)=1 into 0 if
s∈E.

• If S⊆3<ω, then S∗ :={�i<l si∈3<ω | l∈ω and ∀i < l si ∈ S}. We put

A :={0}∪E∪{�
j≤k (cj1)∈3<ω | [∀j≤k cj ∈({0}∪E)∗] and [k>0 or (k=0 and c0 =∅)]}.

• In the proof of Theorem 2.(b) we met the set {s∈2<ω | 0≺s or ∃k∈ω 10k1≺s}.
We shall denoted it by B in the sequel. We have seen that Bω =2ω\{10ω} is Σ0

1\Π0
1.

Let us show that Aω =e−1(Bω).

- By induction on |t|, we get (st)←↩ = s←↩t←↩ if s, t ∈ T ∩ 3<ω. Let us show that
(sβ)←↩=s←↩β←↩ if moreover β∈T ∩ 3ω.

Assume that t≺(sβ)←↩. Then there is m0≥|s| such that, for m ≥ m0,

t≺ [(sβ)(m]←↩=[sβ((m−|s|)]←↩=s←↩[β((m−|s|)]←↩.
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This implies that t ≺ s←↩β←↩ if |t|< |s←↩|. If |t|≥ |s←↩|, then there is m1∈ω such that,
for m≥m1, β←↩((|t|−|s←↩|)≺ [β((m−|s|)]←↩. Here again, we get t≺ s←↩β←↩. Thus
(sβ)←↩=s←↩β←↩.

Let (si)i∈ω be a sequence such that for each integer i ∈ ω, si ∈ T ∩ 3<ω. Then
�

i∈ω si∈T , and (�i∈ω si)←↩=�
i∈ω s

←↩
i , by the previous facts.

- Let (ai)i∈ω be a sequence such that for each integer i ∈ ω, ai ∈ A\{∅} and α :=
�

i∈ω ai. As A⊆T , e(α)=(�i∈ω ai)←↩=�
i∈ω a

←↩
i .

If a0∈{0} ∪ E, then ∅ �=a←↩0 ≺0ω, thus e(α)∈N0⊆2ω\{10ω}=Bω.
If a0 /∈{0} ∪ E, then a0 =�

j≤k (cj1), thus a←↩0 =�
j≤k (c←↩j 1).

If c0 �=∅, then e(α)∈Bω as before.
If c0 =∅, then k>0, so that e(α) �=10ω since e(α) has at least two coordinates
equal to 1.

We proved that Aω⊆e−1(Bω).

- Assume now that e(α)∈Bω . We have to find (ai)i∈ω⊆A\{∅}with α=�
i∈ω ai. We

split into cases:

1. e(α)=0ω.
1.1. α(0)=0.
In this case α−0∈T and e(α−0)=0ω. Moreover, 0∈A. We put a0 :=0.

1.2. α(0)=1.
In this case there is a coordinate j0 of α equal to 2 ensuring that α(0) is replaced with
a 0 in e(α). We put a0 :=α((j0+1), so that a0∈E⊆A, α−a0∈T and e(α−a0)=0ω.

Now the iteration of the cases 1.1 and 1.2 shows that α∈Aω.

2. e(α)=0k+110ω for some k∈ω.

As in case 1, there is c0 ∈ ({0} ∪ E)∗ such that c0 ≺ α, c←↩0 = 0k+1, α−c0 ∈ T and
e(α−c0) = 10ω. Note that α(|c0|) = 1, α−(c01) ∈ T and e[α−(c01)] = 0ω. We put
a0 :=c01, and argue as in case 1.

3. e(α)=(�j≤l+1 0kj 1)0ω for some l∈ω.

The previous cases show the existence of (cj)j≤l+1, where for each j ≤ l + 1 cj ∈
({0} ∪ E)∗ such that :
a0 :=�

j≤l+1 cj1≺α, α−a0∈T and e(α−a0)=0ω. We are done since a0∈A.

4. e(α)=�
j∈ω 0kj 1.

An iteration of the discussion of case 3 shows that we can take ai of the form
�

j≤l+1 cj1.
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• The previous discussion shows that Aω = e−1(Bω). As Bω is an open subset of 2ω

and e is Σ0
2-measurable, the ω-powerAω = e−1(Bω) is inΣ0

2(3
ω).

It remains to see that Aω = e−1(Bω) /∈Π0
2. We argue by contradiction.

Assume on the contrary that e−1(Bω) ∈Π0
2(3

ω). We know that Bω = 2ω \{10ω} so
e−1({10ω}) = (T ∩ 3ω) \ e−1(Bω) would be a Σ0

2-subset of 3ω since T ∩ 3ω is closed
in 3ω. Thus e−1({10ω}) would be a countable union of compact subsets of 3ω.

Consider now the cartesian product ({0} ∪ E)N of countably many copies of ({0} ∪
E). The set ({0} ∪ E) is countable and it can be equipped with the discrete topology.
Then the product ({0} ∪ E)N is equipped with the product topology of the discrete
topology on ({0}∪E). The topological space ({0}∪E)N is homeomorphic to the Baire
space ωω.

Consider now the map h : ({0} ∪ E)N→e−1({10ω}) defined by h(γ) :=1[�i∈ω γi]
for each γ = (γ0, γ1, . . . , γi, . . .) ∈ ({0} ∪ E)N. The map h is a homeomorphism by
the previous discussion. As ({0} ∪ E)N is homeomorphic to the Baire space ωω, the
Baire space ωω is also homeomorphic to the space e−1({10ω}), so it would be also a
countable union of compact sets. But this is absurd by [Kec95, Theorem 7.10].

It remains to see that A is context-free. It is easy to see that the language E is in fact
accepted by a 1-counter automaton: it is the set of words s∈3<ω such that :

∀l∈ [1;|s|[ n2(s(l)<n1(s(l) and n2(s)=n1(s) and s(0)= 1 and s(|s|−1)=2.

This implies that A is also accepted by a 1-counter automaton because the class of 1-
counter languages is closed under concatenation and star operation. In particular A is
a context-free language because the class of languages accepted by 1-counter automata
form a strict subclass of the class of context-free languages, [ABB96]. �

Remark 5. The operation α → α←↩ we have defined is very close to the erasing op-
eration defined by Duparc in his study of the Wadge hierarchy, [Dup01]. However we
have modified this operation in such a way that α←↩ is always infinite when α is infinite,
and that it has the good property with regard to ω-powers and topological complexity.

4 Concluding Remarks and Further Work

It is natural to wonder whether the ω-powers obtained in this paper are effective. For
instance could they be obtained as ω-powers of recursive languages ?

In the long version of this paper we prove effective versions of the results presented
here. Using tools of effective descriptive set theory, we first prove an effective version
of Kuratowski’s Theorem 3. Then we use it to prove the following effective version of
Theorem 2, where Σ0

ξ and Π 0
ξ denote classes of the hyperarithmetical hierarchy and

ωCK
1 is the first non-recursive ordinal, usually called the Church-kleene ordinal.
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Theorem 6. Let ξbe a non-null ordinal smaller than ωCK
1 .

(a) There is a recursive languageA⊆2<ω such that Aω∈Σ0
ξ \Π0

ξ.

(b) There is a recursive languageA⊆2<ω such that Aω∈Π 0
ξ \Σ0

ξ .

The question, left open in [Fin04], also naturally arises to know what are all the pos-
sible infinite Borel ranks of ω-powers of finitary languages belonging to some natural
class like the class of context free languages (respectively, languages accepted by stack
automata, recursive languages, recursively enumerable languages, . . . ).
We know from [Fin06] that there are ω-languages accepted by Büchi 1-counter au-
tomata of every Borel rank (and even of every Wadge degree) of an effective analytic
set. Every ω-language accepted by a Büchi 1-counter automaton can be written as a
finite union L =

⋃
1≤i≤n U

�
i V ω

i , where for each integer i, Ui and Vi are finitary lan-
guages accepted by 1-counter automata. And the supremum of the set of Borel ranks
of effective analytic sets is the ordinal γ1

2 . This ordinal is defined by A.S. Kechris, D.
Marker, and R.L. Sami in [KMS89] and it is proved to be strictly greater than the or-
dinal δ12 which is the first non Δ1

2 ordinal. Thus the ordinal γ1
2 is also strictly greater

than the first non-recursive ordinal ωCK
1 . From these results it seems plausible that there

exist some ω-powers of languages accepted by 1-counter automata which have Borel
ranks up to the ordinal γ1

2 , although these languages are located at the very low level in
the complexity hierarchy of finitary languages.

Another question concerns the Wadge hierarchy which is a great refinement of the
Borel hierarchy. It would be interesting to determine the Wadge hierarchy of ω-powers.
In the full version of this paper we give many Wadge degrees of ω-powers and this
confirms the great complexity of these ω-languages.
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Satisfiability of a Spatial Logic with Tree Variables
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Abstract. We investigate in this paper the spatial logic TQL for querying semi-
structured data, represented as unranked ordered trees over an infinite alphabet.
This logic consists of usual Boolean connectives, spatial connectives (derived
from the constructors of a tree algebra), tree variables and a fixpoint operator for
recursion. Motivated by XML-oriented tasks, we investigate the guarded TQL
fragment. We prove that for closed formulas this fragment is MSO-complete. In
presence of tree variables, this fragment is strictly more expressive than MSO
as it allows for tree (dis)equality tests, i.e. testing whether two subtrees are iso-
morphic or not. We devise a new class of tree automata, called TAGED, which
extends tree automata with global equality and disequality constraints. We show
that the satisfiability problem for guarded TQL formulas reduces to emptiness
of TAGED. Then, we focus on bounded TQL formulas: intuitively, a formula is
bounded if for any tree, the number of its positions where a subtree is captured
by a variable is bounded. We prove this fragment to correspond with a subclass
of TAGED, called bounded TAGED, for which we prove emptiness to be decid-
able. This implies the decidability of the bounded guarded TQL fragment. Fi-
nally, we compare bounded TAGED to a fragment of MSO extended with subtree
isomorphism tests.

1 Introduction

In this paper, we consider the spatial logic TQL [7]. Spatial logics have been used to
express properties of structures such as trees [7], graphs [6,12] and heaps [19]. The main
ingredients of spatial logics are spatial connectives: roughly speaking, these connectives
are derived from operators that can be used to generate the domain of interpretation.

The logic we consider here is interpreted over hedges (i.e. unranked ordered trees)
labelled over an infinite alphabet. The logic integrates Boolean connectives, spatial con-
nectives (derived from the constructors of an unranked ordered tree algebra), tree vari-
ables and a fixpoint operator for recursion.

We focus on the satisfiability problem of TQL. It is quite simple to prove that the
full TQL logic over unranked ordered trees even without tree variables is undecidable.
We then focus on the guarded fragment which ensures that recursive variables have to
be guarded by tree extension. We show that guarded TQL logic without tree variables
is equivalent to the monadic second order logic (MSO).

However, when tree variables are considered, things are getting more complicated.
Indeed, we can express that two non-empty paths starting from a node of a tree lead to
two isomorphic subtrees, which goes beyond regularity over unranked trees.

J. Duparc and T.A. Henzinger (Eds.): CSL 2007, LNCS 4646, pp. 130–145, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Satisfiability of a Spatial Logic with Tree Variables 131

Still about expressiveness of this logic, an infinite alphabet and the ability to test
for tree equality allow us to consider some data values. We can write formulas whose
models are hedges which violate some key constraints or some functional dependencies.

We focus on bounded TQL formulas: intuitively, a formula is bounded if for any
tree, the number of equalities and disequalities that have to be tested – to check non-
deterministically that the tree is a model of the formula – is bounded.

We introduce a new class of tree automata, called tree automata with global equali-
ties and disequalities (TAGED for short), which extends unranked tree automataAwith
an equality relation =A and a disequality relation �=A on states. Subtrees of some tree
t which evaluates by A to states which are in relation by =A (resp. by �=A) have to be
isomorphic (resp. non isomorphic). Naturally, =A induces an equivalence relation on a
subset of nodes of t, but the number of classes of this relation is bounded. E.g., TAGED
can express that all subtrees of height n, for some fixed natural n, are equal, but not that
for each node of the tree, all the subtrees rooted at its sons are equal. Although it is a
natural extension of tree automata, this extension has never been considered.

We show that satisfiability of guarded TQL formulas reduces to emptiness of TAGED.
We define a subclass of TAGED, called bounded TAGED, for which we can decide
emptiness. Intuitively, boundedness ensures that the cardinality of every equivalence
class is bounded, which may not be the case for full TAGED. We show emptiness de-
cidability of bounded TAGED.

We complete our proof by constructing a TAGED from a guarded and bounded TQL
formula. This construction extends the one from [4] with tree variables. This extension
is non-trivial as the automata we have to consider are non-deterministic.

Finally, we define an extension of MSO with a binary relation ∼ between nodes;
two nodes are in relation if they are roots of two isomorphic subtrees. We consider
MSO formulas extended with the predicate ∼. It is easy to see that this extension
renders MSO undecidable. However, we prove that if the relation ∼ concerns only
variables belonging to a prefix of existentially quantified first-order variables, then
this extension is decidable. The proof works by reduction to emptiness of bounded
TAGED.

Automata dealing with data values have been studied in [18,3]. However, our moti-
vations are different and we obtain the capability to manage data values as a side-effect.
In [3], the authors study two-variables FO logic extended with an equality relation on
data values. The expressiveness of this formalism and the one presented here are not
comparable: we can test tree isomorphisms while they can test data value equality only,
but restricting our logic to data-value equality is strictly less expressive, as we do not
have quantifiers.

The paper is organised as follows: in Section 2 we recall definitions for hedges,
hedge automata and monadic second order logic. Section 3 describes the TQL logic
and results we obtain concerning its satisfiability. Section 4 is dedicated to the tool
we use to solve the satisfiability problem, namely tree automata with global equalities
and disequalities (TAGED). In Section 5 we relate satisfiability of TQL formulas and
emptiness of TAGED. Finally, in Section 6 we propose an extension of MSO with
isomorphism tests whose satisfiability problem is decidable.
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2 Preliminaries

We consider an infinite set of labels Λ.

Hedges - Trees. Let Σ be the signature {0, |} ∪ {a | a ∈ Λ}, where 0 is a constant,
| a binary symbol and as unary symbols. We call hedge an element of the Σ-algebra
Hedge obtained by quotienting the free Σ-algebra by the following three axioms:

0|h = h h|0 = h (h|h′′)|h′′′ = h|(h′′|h′′′)
0 will be the empty hedge. We call respectively trees and leaves hedges of the form

a(h) and a(0). We may omit | and write a(h)b(h′)c(h′′) instead of a(h)|b(h′)|c(h′′).
We define roots(h) as the word from Λ∗ defined recursively as : (i) roots(0) = ε, (ii)
roots(a(h′)) = a and, (iii) roots(h1|h2) = roots(h1)roots(h2).

We will also adopt the graph point of view and consider hedges as a set of vertices
V , two disjoint sets of directed edges Ec, Es and a mapping λ from V to Λ. In a hedge
h, one associates a vertex with each occurrence of elements of Λ. There is an edge from
Ec (resp. from Es) from an occurrence a1 to an occurrence a2 if the hedge contains a
pattern of the form a1(h1|a2(h)|h2) for some hedges h1, h2 (resp. a1(h1)|a2(h2) for
some hedges h1, h2).

For every hedge h = (V,Ec, Es, λ), we denote by nodes(h) the set V and by
labh(u) the label λ(u), for u ∈ V . We denote h|u the subtree of h rooted at u, and by
≤ the reflexive-transitive closure of Ec. E.g., the root is minimal for ≤ in a tree.

For a set of labels L, we denote HL (resp. TL) the set of hedges (resp. trees) with
nodes labelled by elements in L.

Hedge automata [17]. A hedge automaton A is a 4-tuple (Λ,Q, F,Δ) where Δ is a
finite set of rules α(L) → q where α is a finite or cofinite set of labels, L ⊆ Q∗ is a
regular language over states from Q, and F ⊆ Q∗ is an accepting regular language.

Definition 1 (runs). Let h be a hedge and A be a hedge automaton. The set of runs
RA(h) ⊆ HQ of A on h is the set of hedges over Q inductively defined by:

RA(h1|h2) = {r1|r2 | r1 ∈ RA(h1), r2 ∈ RA(h2)} RA(0) = {0}
RA(a(h)) = {q(r) | ∃α(L) → q ∈ Δ, a ∈ α, r ∈ RA(h), roots(r) ∈ L}

Let q be a word of states, we denote by RA,q(h) ⊆ RA(h) the set of runs r such that
roots(r) = q, and often say that h evaluates to q by A. The set of accepting runs of A
on h, denoted by Racc

A (h), is defined by {r | ∃q ∈ F, r ∈ RA,q(h)}.
The language accepted by A, denoted L(A), is defined by {h | Racc

A (h) �= ∅}.
Testing emptiness of the language accepted by a hedge automaton is decidable [5].

MSO . The logic MSO (Monadic Second Order logic) is the extension of the first-order
logic FO with the possibility to quantify over unary relations, i.e. over sets.

Let σ be the signature {laba | a ∈ Λ}where labas are unary predicates. We associate
with a hedge h = (V,Ec, Es, λ) a finite σ-structure Sh = 〈V, {ch, ns} ∪ {labha |
a ∈ Λ}〉, such that labha(v) (resp. ch(v, v′), ns(v, v′)) holds in Sh if λ(v) = a (resp.
(v, v′) ∈ Ec, (v, v′) ∈ Es).

We assume a countable set of first-order variables ranging over by x, y, z, . . . and a
countable set of second-order variables ranging over by X,Y, Z, . . ..
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φ ::= 0 empty hedge
� truth
α[φ] extension
φ|φ composition
¬φ negation
φ ∨ φ disjunction
X tree variable
ξ recursion variables
μξ.φ least fixpoint
φ∗ iteration

(a) Syntax

�0�ρ,δ = {0}
���ρ,δ = HΛ

�α[φ]�ρ,δ = {a(h) | h ∈ �φ�ρ,δ, a ∈ α}
�φ|φ′�ρ,δ = {h|h′ | h ∈ �φ�ρ,δ, h

′ ∈ �φ′�ρ,δ}
�¬φ�ρ,δ = HΛ\�φ�ρ,δ

�φ ∨ φ′�ρ,δ = �φ�ρ,δ ∪ �φ′�ρ,δ

�X�ρ,δ = {ρ(X)}
�ξ�ρ,δ = δ(ξ)
�μξ.φ�ρ,δ =

�
{S ⊆ HΛ | �φ�ρ,δ[ξ �→S] ⊆ S}

�φ∗�ρ,δ = 0 ∪
�

i>0 �φ�ρ,δ| . . . |�φ�ρ,δ� �� �
i times

(b) Semantics

Fig. 1. TQL logic

MSO formulas are given by the following syntax:

ψ ::= laba(x) | ch(x, y) | ns(x, y) | x ∈ X | ψ ∨ ψ | ¬ψ | ∃x.ψ | ∃X.ψ
Let S be a σ-structure with domain V . Let ρ be a valuation mapping first-order

variables to elements from V and second-order variables to subsets of V . We write
S |=ρ ψ when the structure S is a model of the formula ψ under the valuation ρ; this
is defined in the usual Tarskian manner and we have in particular, (i) ψ |=ρ laba(x)
if laba(ρ(x)) holds in S, (ii) ψ |=ρ ch(x, y) if ch(ρ(x), ρ(y)) holds in S, (iii) ψ |=ρ

ns(x, y) if ns(ρ(x), ρ(y)) holds in S.
A set of hedges S is MSO -definable if there is an MSO sentence ψ such that S =

{h | h |= ψ}. It is well-known that a language is accepted by some hedge automata iff
it is MSO-definable.

3 The Tree Query Logic

We consider here a fragment of the TQL logic defined in [7] and adapt it to unranked
ordered trees.

Syntax. We assume a countable set T of tree variables ranging over by X,Y , and a
countable set R of recursion variables ranging over by ξ. Let α be a finite or co-finite
set of labels from Λ. Formulas φ from TQL are given by the syntax on Figure 1(a). We
allow cofinite sets in extensions, otherwise we could not express formula Λ[0].

We assume that μ is the binder for recursion variables and the notions of bound
and free variables are defined as usual. To ensure the existence of fixpoint, we will
assume that in formulas μξ.φ, the recursion variable ξ occurs under an even number of
negations. A formula is said to be recursion-closed if all the occurrences of its recursion
variables are bound. A TQL sentence is a recursion-closed formula that does not contain
tree variables. A TQL formula φ is guarded if for any of its subformula μξ.φ′, the
variable ξ occurs in the scope of some extension operator α[ ] in φ′.
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We assume from now on that recursion variables are bound only once in formulas
and denote recvar(φ) (resp. var(φ)) the set of recursion variables (resp. tree variables)
occurring in φ. We may write a[φ] instead of {a}[φ].

Semantics. Interpretation maps a TQL formula to a set of hedges. Let ρ be an assign-
ment of tree variables into TΛ and δ be an assignment of the recursion variables into
sets of hedges. The interpretation of the formula φ under ρ and δ, denoted by �φ�ρ,δ is
inductively defined and given on Figure 1(b).

Examples. Let us consider the following formulas:

φ = a[�]|� (1)
φs = μξ.(a[�]|ξ ∨ 0) (2)

φdtd = (employee[name[Λ[0]] | dpt[Λ[0]] |manager[Λ[0]]])∗ (3)
φdd = φdtd ∧ � | employee[X ] | � |employee[X] | � (4)

φpath(a),0 = μξ.((�|a[ξ]|�) ∨ 0) (5)

The above formula φ is interpreted as the set of hedges of length at least 1, such that
the root of the first tree is labelled a. The formula φs is interpreted as the set of hedges
{a[h1]| . . . |a[hn] | hi ∈ HΛ, n ≥ 0}. The formula φdtd is interpreted as the set of
hedges defining employees by their name, the department they work in, and their man-
ager whereas the formula φdd expresses that an employee occurs twice in the database.
Finally, the models of the formula φpath(a),0 are hedges with a path labelled by as from
one of the roots to some leaf (i.e. the empty hedge 0).

The formula φodd is interpreted as the set of hedges having an odd number of nodes:

φodd = μξo.(Λ[0] ∨ Λ[φeven(ξo)]|φeven(ξo) ∨ Λ[ξo]|ξo
where φeven(ξo) = μξe.(0 ∨ (Λ[ξo]|ξe ∨ Λ[ξe]|ξo))

Let us denote φpath(L),ψ = μξ.((�|L[ξ]|�) ∨ ψ) the formula whose models are
hedges containing a path labelled by elements from L from one of the roots to a hedge
satisfyingψ. The models of the following formula are the hedges having two non-empty
paths labelled respectively by as and by bs from two of the top-level nodes, those two
paths leading to some identical subtrees

� | (a[φpath(a),X ]|�|b[φpath(b),X ] ∨ b[φpath(b),X ]|�|a[φpath(a),X ])| �

T

T

T

T

T
S

Fig. 2. A tree with T = S

The formula φid not key is interpreted as the set of hedges
for which two nodes labelled id have identical subtrees
(roughly speaking “the (data) value of the element id can
not be used as a key in this XML document”)

φid not key = �|Λ[φpath(Λ),id[X]]|�|Λ[φpath(Λ),id[X]]|�

The following formula states that two trees employee
have identical subtrees rooted by dpt but different subtrees
rooted by manager

φdtd ∧ � | employee[� |dpt[X ]|manager[Y ]] | �
| employee[� |dpt[X ]|manager[¬Y ]] | �
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A hedge satisfying this formula may be considered as ill-formed assuming the existence
of some functional dependency stating that department has only one manager.

Models of the formula φbranch are the trees whose shapes are described on Figure 2.

φbranch = a[X |μξ.(a[X | ξ] ∨ ¬X ∧ Λ[�])]

φs and φodd are the only two formulas that are not guarded; however, φs is equivalent
to a[�]∗, which is guarded and φodd to the following guarded formula

φodd = μξo.Λ[φeven(ξo) ∨ (ξo|φeven(ξo)∗|ξo)∗]
φeven(ξo) = μξe.Λ[ξ∗eξo|(φeven(ξo) ∨ (ξo|φeven(ξo)∗|ξo)∗) ∨ 0

But the formula μξ.(a[0]|ξ|b[0] ∨ 0) is neither guarded nor equivalent to any guarded
formula.

Definition 2 (satisfiability). A recursion-closed TQL formula φ is satisfiable if there
exists a hedge h and an assignment ρ such that h ∈ �φ�ρ.
TQL sentences. It is easy to prove that TQL sentences can describe sets of hedges that
are not MSO-definable; for instance, the TQL sentence μξ.(a[0]|ξ|b[0] ∨ 0) describes
a “flat” hedge of the form (a[0]nb[0]n) for n ∈ N.

Theorem 1. For any set of hedges S, there exists a guarded TQL sentence φ such that
�φ� = S iff S is MSO-definable.

As a consequence of Theorem 4, satisfiability is decidable for guarded TQL sentences.
This restriction is crucial, since, by reduction of emptiness problem for the intersection
of two context-free grammars, one can prove that:

Theorem 2. Satisfiability for TQL sentences is undecidable.

Adding quantification As in [7], one could also consider quantification over tree vari-
ables ∃X and ∀X with the following semantics:

�∃X.φ�ρ,δ =
⋃

t∈T

�φ�ρ[X→t],δ �∀X.φ�ρ,δ =
⋂

t∈T

�φ�ρ[X→t],δ

where ρ[X → t] is the assignment identical to ρ except that it associates t with X .
Hence, the satisfiability problem from Definition 2 is equivalent to the one of closed

formulas of the form ∃X1 . . .∃Xnφ where φ is a recursion-closed TQL formula, i.e.
the existence of a tree satisfying this formula.

For more complicated alternation of quantifiers, one can easily adapt the proof from
[8] about the undecidability of the fragment of TQL without iteration, recursion and
tree variable but with quantification over labels to prove that

Theorem 3. Satisfiability for recursion-closed TQL formulas with quantification is un-
decidable (this holds even for recursion-free formulas).

Bounded TQL formulas. In bounded formulas, variables can occur in recursion only
in a restricted manner: intuitively a formula is bounded if there exists a bound on the
number of equality test performed to (non-deterministically) verify that a hedge is a
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model of the formula. Boundedness appears naturally in unification problems and in
pattern languages (where variables appears a bounded number of times in terms or
patterns). But defining boundedness in the presence of recursion is a bit more technical.

In the examples we have given so far, the only formula that is not bounded is φbranch.
The following formula is also not bounded as it asks each subtree of the hedge to be
different from X : ¬(μξ.�|(X ∨ Λ[ξ])|�)

We let β be a recursion-closed formula s.t. no recursion variable is bound twice,
and denote by φξ the formula s.t. μξ.φξ is a subformula of β. To define boundedness
formally, we introduce, for every subformula φ of β, the generalized free variables of
φ, denoted var∗β(φ), as the least solution of the following (recursive) equations:

var∗
β(0) = var∗

β(�) = ∅ var∗
β(a[φ]) = var∗

β(¬φ) = var∗
β(μξ.φ) = var∗β(φ∗) = var∗

β(φ)
var∗

β(ξ) = var∗β(φξ) var∗
β(X) = {X} var∗β(φ ∨ φ) = var∗

β(φ|φ′) = var∗β(φ) ∪ var∗β(φ′)

Note that the least solution of these equations is computable. An operator occurs
positively (resp. negatively) in a formula if it occurs under an even (resp. odd) number
of negations.

A formula β is bounded if it satisfies the following properties:

1. for any subformula φ∗, var∗β(φ) = ∅;
2. for any subformula φ|φ′ where | occurs negatively, var∗β(φ) = var∗β(φ′) = ∅.
3. each formula φ|φ′ where | occurs positively and each formula φ ∨ φ′ where ∨

occurs negatively satisfy ∀ξ ∈ recvar(φ), var∗β(ξ) ∩ var∗β(φ′) = ∅, and ∀ξ′ ∈
recvar(φ′), var∗β(ξ′) ∩ var∗β(φ) = ∅.

As a consequence of Theorem 1, this fragment is strictly more expressive than
guarded TQL sentences, as it allows for tree isomorphism tests. Combining Theorems
6 and 5 of the next two sections proves our main result:
Theorem 4. Satisfiability is decidable for bounded guarded TQL formulas.

Remarks Our logic can be seen as an extension of the (recursive) pattern-language of
XDuce [13]. The main difference here is that we allow Boolean operators and drop the
linear condition for variables of XDuce. The pattern-matching mechanism of CDuce
[1] extends the one from XDuce with Boolean operations and weaker conditions on
variables. However, no equality tests between terms can be performed making our logic
more powerful. Since we consider an infinite alphabet and we allow equality tests be-
tween trees, we can, as a side effect, simulate data values as done in some of the exam-
ples we gave.

4 Tree Automata with Global Equalities and Disequalities

In this section, we present a new extension of hedge automata (called TAGED) with the
ability to test tree equalities or disequalities globally on the run. We prove decidability
of emptiness for a particular class of TAGED, called bounded TAGED, which we use
to decide satisfiability of bounded TQL formulas.

4.1 Definitions

Definition 3 (TAGED). A tree automaton with global equalities and disequalities
(TAGED) is a 6-tuple A = (Λ,Q, F,Δ,=A, �=A) such that:
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• (Λ,Q, F,Δ) is a hedge automaton;
• =A is an equivalence relation on a subset of Q;
• �=A is a non-reflexive symmetric binary relation on Q;

A TAGED is positive if �=A= ∅, and is simply denoted by A = (Λ,Q, F,Δ,=A). The
set {q | ∃q′ ∈ Q, q =A q′} is denoted by E, and for all states q ∈ E, we denote by [q]
its equivalence class. The set {q | ∃q′ ∈ Q, q �=A q′} is denoted by D. The notion of
run differs from hedge automata as we add equality and disequality constraints.

Definition 4 (runs). Let A = (Λ,Q, F,Δ,=A, �=A) be a TAGED. A run r of the hedge
automaton (Λ,Q, F,Δ) on a hedge h satisfies the equality constraints if the following
holds: ∀i ∈ {1, . . . , n}, ∀u, v ∈ nodes(h), labr(u) =A labr(v) =⇒ h|u = h|v.

Similarly, the run r on h satisfies the disequality constraints if the following
holds: ∀i ∈ {1, . . . , n}, ∀u, v ∈ nodes(h), labr(u) �=A labr(v) =⇒ h|u �= h|v.

The set of accepting runs of A on h, denoted Racc
A (h), is the set of accepting runs

r of (Λ,Q, F,Δ) which satisfy the equality and disequality constraints. The language
accepted by A, denoted L(A), is the set of hedges h such that Racc

A (h) �= ∅.

Remark that L(A) is not necessarily regular, as illustrated by Example 1.

Example 1. LetΛ be an infinite alphabet. LetQ = {q, qX , qf}, F = {qf}, and letΔ be
defined as the set of following rules: Λ(q∗) → q Λ(q∗) → qX a(qXqX) → qf
Let A1 be the positive TAGED (Λ,Q, F,Δ, {qX =A1 qX}). Then L(A1) is the set
{a(t|t) | a ∈ Λ, t ∈ TΛ}, which is known to be non regular [10].

Example 2. Let Q = {q, qX , qX , qf}, F = {qf}, and let Δ defined as the set of fol-
lowing rules:

Λ(q∗) → qX Λ(q∗)→ q Λ(q∗)→ qX a(qX(qX + qf ))→ qf

Let A2 be the TAGED (Λ,Q, F,Δ, {qX =A2 qX}, {qX �=A2 qX}). Then L(A2) is the
set of hedges whose shapes are described on Figure 2.

Remarks. Extensions of tree automata which allow for syntactic equality and dise-
quality tests between subterms have already been defined by adding constraints to au-
tomaton rules. E.g., adding the constraint 1.2 = 2 to a rule means that one can apply
the rule at position π only if the subterm at position π.1.2 is equal to the subterm at
position π.2. Testing emptiness of the recognized language is undecidable in general
[16] but two classes with a decidable emptiness problem have been emphasised. In the
first class, automata are deterministic and the number of equality tests along a path is
bounded [11] whereas the second restricts tests to sibling subterms [2]. This latter class
has recently been extended to unranked trees [15], the former one has been extended to
equality modulo equational theories [14]. But, contrarily to TAGED, in all these classes,
tests are performed locally, typically between sibling or cousin subterms. Finally, au-
tomata with local and global equality tests, using one memory, have been considered
in [9]. Their emptiness problem is decidable, and they can simulate positive TAGEDs
which use at most one state per runs to test equalities, but not general positive TAGEDs.
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Definition 5 (bounded TAGED). A bounded TAGED is a 7-tuple A =
(Λ,Q, F,Δ,=A, �=A, k) where A′ = (Λ,Q, F,Δ,=A, �=A) is a TAGED and k ∈ N

is a natural. An accepting run r of A on a tree t is an accepting run ofA′ on t such that
the following is true: |{u | labr(u) ∈ E ∪D}| ≤ k.

We say that A and its accepting runs are k-bounded and may write (A′, k) instead
of A. We say that a TAGED B is equivalent to a bounded TAGED A if L(A) = L(B).

The TAGED of Example 1 is equivalent to the 2-bounded TAGED (A1, 2), whereas one
can prove that the one of Example 2 is not equivalent to any bounded TAGED.

Theorem 5 (emptiness of bounded TAGED). Let A be a bounded TAGED. It is de-
cidable to know whether L(A) = ∅ holds or not.

The rest of this subsection is dedicated to the proof of this theorem, first for positive
bounded TAGED, then for full bounded TAGED.

4.2 Configurations

We define a tool called configurations used to decide emptiness of positive bounded
TAGED. In this subsection, the 6-tuple A = (Λ,Q, F,Δ,=A, k) always denotes a
positive bounded TAGED. We suppose that A accepts trees only, i.e. F ⊆ Q. It is not
difficult to adapt the decidability result to hedge acceptors. Moreover, we suppose that
for any run r -even non accepting- on a tree, the cardinal of the set of nodes labelled
by states of E is at most k. Indeed, it is easy to transform A to ensure this property by
enriching states with a counter up to k. We show how to decompose a positive TAGED
into an equivalent and computable finite set of configurations. Since testing emptiness
of configurations is easily decidable, we get the decidability result for positive TAGED.
Informally, configurations are (non-regular) tree acceptors which make explicit parent
or ancestor relations between nodes for which equality tests are performed by A. These
are DAG-like structures labelled by sets of states of A. A tree t is accepted by some
configuration c if the unfolding of c can be embedded into a run r of A on t, such that
labels of r belong to labels of c. By putting suitable rules on how sets of states occur as
labels of c, we can enforce r to respect equality constraints.

Definition 6 (configurations). A configuration c of A is a rooted directed acyclic
graph such that: (i) every node carries a symbol from 2Q, (ii) outgoing edges of a
node are ordered, and (iii) for every equivalence class [q] of =A, there is at most one
set P ⊆ Q such that [q] ∩ P �= ∅ and P is a label of c.

Fig. 3. A configuration (nat-
urals represent the order on
edges)

Nodes of c are denoted by nodes(c). For every node u ∈
nodes(c), we denote by c|u the subgraph of c induced by
the nodes reachable from u in c, and by u1, . . . , un the n
successor nodes of u given in order. Note that it might be
the case that ui = uj for some i, j ∈ {1, . . . , n}. Finally,
we always denote by labc(u) ⊆ Q the label of node u in
c. Fig. 3 illustrates a configuration whose nodes are labelled
either by set of states {q, q′}, {s}, {p} or {r}. Note that the
second successor of the root is the node labelled {r}, while
its first and third successor is the node labelled {q, q′}.
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In order to define semantics of configurations, we first introduce some useful notions
about contexts. For n ≥ 0, we define n-ary contexts Cs as usual, and the hole sub-
stitution with trees t1, . . . , tn is denoted by C[t1, . . . , tn]. Note that 0-ary contexts are
just trees. See [10] for a formal definition. Given n states p1, . . . , pn ∈ Q and an n-ary
context C, we denote by C[p1, . . . , pn] the tree over Λ ∪ Q, where each pi is viewed
as a constant symbol. We let A∗ be the TAGED over alphabet Λ ∪ Q which is just A
with additional rules q(ε) → q, for every q ∈ Q. We say that C[p1, . . . , pn] evaluates
to p, denoted C[p1, . . . , pn] →A p if there is a run r of A∗ on C[p1, . . . , pn] such that
roots(r) = p. For any set S ⊆ Q, we write C[p1, . . . , pn]→Q\S q if states from S does
not occur in r, except at the root and at the leaves labelled p1, . . . , pn.

We now view configurations as a way to combine contexts to form trees t, with addi-
tional requirements which enforce existence of a run r ofA on t. Condition (iii) of Def-
inition 6 ensures r satisfies the equality constraints. This motivates the semantics of con-
figurations. More formally, let c be a configuration of A. A mapping λ from nodes(c)
into contexts over Λ is an interpretation of c if for every node u ∈ nodes(c), if u
has exactly n successor nodes u1, . . . , un in c, then λ(u) is an n-ary context. More-
over, λ must satisfy the following: for every node u ∈ nodes(c) and every nodes
u1, . . . , un ∈ nodes(c), if u1, . . . , un are the successor nodes of u then the following
holds (called condition (P )):

∀p ∈ labc(u), ∃p1 ∈ labc(u1) . . . ∃pn ∈ labc(un), λ(u)[p1, . . . , pn]→Q\(E∪D) p

AsA is positive, the setD is empty, but we keep this definition for uniformity reasons
when dealing with disequalities. Every node u ∈ nodes(c), together with the mapping
λ, define a tree t(u, λ) over Λ as follows: t(u, λ) = λ(u)[t(u1, λ), . . . , t(un, λ)], where
n ∈ N and u1, . . . , un are the successor nodes of u in c. Note that this definition is
well-founded since c is a DAG. As we will see, condition (P ) ensures the existence of
a run of A on t(u0, λ), where u0 is the root of c.

Definition 7 (tree language recognized by a configuration). Let c be a configuration
of A. The tree language recognized by c, denoted L(A, c), is defined by the set of trees
t(u0, λ), where u0 is the root of c, and λ is an interpretation of c.

Trees accepted by configuration of Fig. 3 are necessarily of form C[C′[t], t′, C′[t]], for
some contexts C,C′, C′′ and trees t, t′. As already said, the constraints on the contexts
and the configuration ensure the existence of a run on the trees ofL(A, c) which satisfies
the equality constraints. In particular, we can prove the following:

Proposition 1. Let c be a configuration of A such that L(A, c) is nonempty. Let t be a
tree of L(A, c), and u0 ∈ nodes(c) be the root of c. For every p ∈ labc(u0), there is
a run r ∈ RA,p(t) which respects the equality constraints.

The converse holds too, and we can bound the size of configurations:

Proposition 2. Let t ∈ TΛ be a tree such that t ∈ L(A). Then there is a configuration
c of size at most |Q|.k|Q| such that t ∈ L(A, c).

Sketch of proof We start from an accepting run r of A on t and define an equiva-
lence relation on a subset of nodes(t). Informally, two nodes u, v are equivalent if an
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equality test between t|u and t|v is performed in r. This is the case for instance when
labr(u) =A labr(v). Each equivalence class will represent a node of c, to enforce
equalities. �
Hence, we can finitely represent the language recognized by A as a computable set of
configurations of A, as stated below:

Corollary 1. Let A be a k-bounded positive TAGED. We let D(A) be the set of config-
urations of A whose sizes are bounded by |Q|.k|Q|. The following holds:

L(A) =
⋃

c∈D(A)

L(A, c)

Moreover, we can decide emptiness of the language recognized by any configuration.

Lemma 1. Given a configuration c, it is decidable to know whetherL(A, c) = ∅ holds.

Proof (Sketch). For all nodes u, u1, . . . , un s.t. u1, . . . , un are the successors of u, it
suffices to test whether there is an n-ary context C s.t. for all state p ∈ labc(u), there
are p1 ∈ labc(u1),. . . ,pn ∈ labc(un) s.t. C[p1, . . . , pn] →Q\E p. We can represent
the set of contexts C such that C[p1, . . . , pn] →Q\E p by a tree automaton A(pi)i,p.
Then, it suffices to test emptiness of

⋂
p∈P

⋃
(pi)i∈

�
i labc(ui)

L(A(pi)i,p), which is de-
cidable, since regular languages are closed by Boolean operations.

As a corollary of Lemma 1 and Corollary 1, we get the following:

Proposition 3. Emptiness of positive bounded TAGED is decidable.

4.3 Adding Disequalities to Positive Bounded TAGED

In the previous section, we have shown that emptiness of positive bounded TAGED
is decidable. In this section, we extend this result to full bounded TAGED. A always
denotes a k-bounded TAGED. The definition of configurations ofA remains unchanged,
and the set D(A) still denotes the set of configurations of A whose size is bounded by
|Q|.k|Q|. We have the following inclusion: L(A) ⊆

⋃
c∈D(A) L(A, c), but the other one

does not hold in general, since configurations do not require disequality constraints to
be satisfied. We show how an additional test on configurations c allows us to decide
whether L(A) ∩ L(A, c) is empty, which will be sufficient to decide whether L(A) is
empty. Informally, let c be a configuration and λ be an interpretation of c. We say that λ
satisfies the disequalities of c if for all nodes u, v ∈ nodes(c), if there are p ∈ labc(u)
and q ∈ labc(v) such that p �=A q, then t(u, λ) �= t(v, λ).

We now relate the problem of finding such an interpretation to context disunification.
For all nodes u ∈ nodes(c), we let cxtc(u) be the set of contexts satisfying condition
(P ) of the definition of interpretation. We define the notion of partial interpretation
β of c, as a mapping from nodes(c) into contexts, such that it maps every node u
such that cxtc(u) is finite into a context of cxtc(u), and every other node v to a context
@v(•, . . . , •) with n holes (if v has n successors), where @v is a fresh symbol such that
@v �∈ Λ. Note that trees t(u, β) are trees over alphabet Λ ∪ {@v | v ∈ nodes(c)}.
We can show the following, by using context disunification (symbols @v are viewed as
context variables):
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Lemma 2. Let A be a bounded TAGED. We have L(A) �= ∅ iff there exist a configu-
ration c ∈ D(A) and a partial interpretation β of c such that β satisfies the disequality
constraints of c. Moreover, it is decidable to know whether such an interpretation β
exists.

As a corollary, by combining Lemma 2 and Lemma 1, we get the proof of Theorem 5.

5 From TQL to Automata

In this section, φ denotes a recursion-closed and guarded TQL formula over tree vari-
ables X1, . . . , Xn. We sketch the construction of a TAGED Aφ such that for all hedges
h ∈ HΛ, we have h ∈ L(Aφ) iff there exists a valuation ρ : var(φ) → TΛ such that
h ∈ �φ�ρ. Moreover, we prove Aφ to be equivalent to a computable bounded TAGED
whenever φ is bounded.

In a first step, we transform φ into an equivalent system of fixpoint equations, and
then sketch the construction of Aφ starting from this system. This construction extends
the construction of [4]. This extension is non-trivial, since it manages tree variables,
which induce non-determinism in the produced tree automaton. Moreover, even for
sentences, this construction is different, since trees are ordered.

System of equations. We define dual connectives for parallel composition and Kleene
star. We let φ1||φ2 as a shortcut for¬(¬φ1|¬φ2), φ�1 for¬(¬φ1)∗ andX for¬X∧Λ[�].
A system of fixpoint equationsΣ is a sequence of equations ξ1 = rhs1, . . . , ξn = rhsn
where every rhsi has one of the following form:

0 0 ξ ∨ ξ′ ξ ∧ ξ′ α[ξ] ξ|ξ′ ξ||ξ′ X X ξ∗ ξ�

The last fixpoint variable, ξn, is denoted by last(Σ). The set of tree variables occur-
ring in Σ is denoted by var(Σ). Systems of equations are interpreted over the complete
lattice (2HΛ ,

⋃
,
⋂

), modulo an assignment ρ : var(Σ) → TΛ. We consider the follow-

ing monotonic operations over 2HΛ , modulo ρ: 0 is interpreted as {0HΛ}, 0 as {0HΛ}
(the overline denotes the complement in HΛ), ∨ by∪, ∧ by ∩, α[.] as the unary operator
which maps any set of hedges H ⊆ HΛ into {a[h] | a ∈ α, h ∈ H}, .|. as the binary
operator which maps two sets of hedgesH,H ′ into H |H ′ = {h|h′ | h ∈ H,h′ ∈ H ′},
its dual .||. maps H,H ′ into H ||H ′ = H |H ′. The Kleene star .∗ and its dual .� are
interpreted similarly. Finally, X is interpreted by ρ(X) and X by TΛ\{ρ(X)}.

The solution ofΣ over (2HΛ ,
⋃
,
⋂

) modulo ρ is a mapping from fixpoint variables of
Σ into 2HΛ , and is denoted by SolH(Σ, ρ). We can push down the negations to the leaves
of φ, using the dual connectives, and introduce fixpoint variables for every position in
φ, which allow to construct a system of equations Sφ such that var(Sφ) = var(φ) and
the following holds:

Lemma 3. For all valuations ρ : var(Sφ) → TΛ, we have �φ�ρ =
SolH(Sφ, ρ)(last(Sφ))

E.g., the equation system associated with the formula μξ.(a[ξ] ∨ (μξ′.(b[ξ′] ∨X))) is
{ξ′ = ξ2 ∨ ξ3; ξ2 = b[ξ′]; ξ1 = a[ξ]; ξ3 = X ; ξ = ξ1 ∨ ξ′}.
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Ideas of automaton construction for sentences. In this paragraph, we assume that φ
is a sentence. Checking whether a hedge h is a solution of Sφ is similar to a run of
some hedge automaton on h. Let us consider the system S = {ξ = ξ1 ∨ ξ2; ξ1 =
a[ξ]; ξ2 = 0}, where the last variable is ξ. Solutions of S are chains labelled by as. To
check whether hedge a(0) is a solution of ξ, first verify that a(0) is a solution of ξ1 or
a solution of ξ2. One can easily see that a(0) is not a solution of ξ2. It remains to verify
whether a(0) is a solution of ξ1 = a[ξ], by verifying that 0 is a solution of ξ, etc... This
can be done by an automaton with transition rules a(ε + qa[ξ]) → qa[ξ], where qa[ξ] is
a final state. We define the set of (final) states by Q = F = {qa[ξ]}. Let us interpret
S over 2Q

∗
, where Q∗ is the set of words over Q. We interpret ∨ by ∪, 0 by {ε}, and

a[ξ] by {qa[ξ]}. Solutions of ξ are denoted by s(ξ) (and similarly for other variables).
Hence we get s(ξ2) = {ε}, s(ξ1) = {qa[ξ]}, and s(ξ) = {ε, qa[ξ]}. Which trees evaluate
to qa[ξ] ? Trees of the form a(h) where h evaluates to some word of states from s(ξ).
Hence, we can define transition a(s(ξ)) → qa[ξ].

Things get more complicated when adding intersection. For instance, consider the
system S′ = {ξ1 = a[ξ]; ξ2 = a[ξ′]; ξ′ = 0; ξ = ξ1 ∧ ξ2}. If we interpret this system as
before, with states qa[ξ] and qa[ξ′], we would get s(ξ) = ∅. Hence, states should carry
enough information to know if the current tree is a solution of a[ξ], a[ξ′], or both. In
the construction we provide, every state is a tuple of atoms of the form α[ξ], α[�], or
α[¬ξ], for every right-hand side of the form α[ξ] occuring in the system. If some tree
t evaluates to a tuple which has a component equal to α[ξ], it means that t is of the
form a(h), where a ∈ α and h is solution of ξ. If the component is α[�] or α[¬ξ], it
means that a(h) is not a solution of α[ξ], because, in the first case, a �∈ α, and in the
second one, a ∈ α, but h is not a solution of ξ. Knowing this complete information, i.e.
which right-hand sides of the form α[ξ] are satisfied or not by the current tree, we are
able to construct exactly one rule per state, by solving the system on sets of words of
states, with suitable interpretations. As the formula is guarded, solutions of the system
are regular state word languages. We then get a deterministic hedge automaton whose
accepted trees are the solutions of the system.

Adding tree variables. When adding variables, we cannot keep the automaton deter-
ministic, since subtrees will be captured non-deterministically. For instance, consider
the system S = {ξ′′ = X ; ξ′ = ξ′′|ξ′′; ξX = a[ξ′]; ξ2 = 0; ξ3 = ξ∗�; ξ1 = Λ[ξ3]; ξ� =
ξ1 ∨ ξ2; ξ = ξ� ∧ ξX}, where the last variable is ξ. Given a valuation ρ : var(S)→ TΛ,
the system S has a unique solution, modulo ρ, which is a(ρ(X)|ρ(X)). A TAGED
accepting the solutions of S is the TAGED of Example 1 of Section 4. It is non-
deterministic, since it has to choose to go in a state qX which will enforce the TAGED
to test whether the two sons of the root are equal.

(Λ[ξ3], {a[ξ′]},∅)

(Λ[ξ3],∅, {X}) (Λ[ξ3],∅, {X})

Fig. 4. Run of Aφ on a(a(0)a(0))

As tree variables induce a kind of non-
determinism, we emphasize two kinds of recur-
sion variables: deterministic recursion variables,
for which the problem of checking whether a
given hedge is a solution does not involve tree
variables, such as ξ�, ξ1, ξ2 and ξ3 in our exam-
ple; and non-deterministic one: ξ,ξX ,ξ′ and ξ′′.
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States of the automaton we construct have three components. The first component is
induced by deterministic recursion variables and simulate a classical hedge automaton,
as for the case of sentences. The second component is induced by non-deterministic
recursion variables, and collects atoms of the form α[ξ], where ξ is non-deterministic,
for which the current tree is the solution. In other words, it guesses the positions in the
tree under which capture variables occur. Third components are sets of variables X or
X , meaning that equality or disequality tests are performed on the current tree.

Transition rules are obtained by suitable interpretation of the system over words
of states. Finally, two states are equivalent for the automaton if their third component
shares a tree variable. Disequalities are defined similarly. For instance, an accepting
run of the automaton for S, on the tree a(a(0)a(0)), is represented in Fig. 4. The state
(Λ[ξ3],∅, {X}) is equivalent to itself.

Theorem 6. Let φ be a guarded TQL formula. There is a computable TAGED Aφ such
that for all hedges h, we have h ∈ L(Aφ) iff there exists a valuation ρ : var(φ) → TΛ

such that h ∈ �φ�ρ.
Moreover, if φ is bounded, the TAGED Aφ is equivalent to the bounded TAGED

(Aφ, B), for some computable bound B ∈ N.

To compute the bound B, we interpret the system Sφ on naturals, with suitable inter-
pretations (for instance, X is interpreted by 1, ∧ by +, and ∨ by max).

6 Extending MSO with Tree Isomorphism Tests
In this section, we propose an extension of MSO for unranked trees with isomorphism
tests between trees.

Let ∼ be a binary predicate s.t. for a structure Sh associated with a hedge h and a
mapping ρ from {x, y} to nodes of h, Sh |=ρ x ∼ y holds if the two subtrees rooted at
respectively ρ(x) and ρ(y) in h are isomorphic. We consider sentences of the form

Q1x1Q2x2 . . .Qnxnψ

where Qi ∈ {∃, ∀} and ψ is an MSO formula extended with atoms xi ∼ xj
(1 ≤ i, j ≤ n). We call MSO∼ this logic. We will also consider the fragmentMSO∃∼
for which formulas satisfy Q1 = Q2 = . . . = Qn = ∃. Remark that ψ can again
contain quantifiers. Hence, since tree isomorphism cannot be expressed in MSO [10],
MSO∼ and MSO∃∼ are stricly more expressive than MSO. By reduction of the Post
correspondence problem, we can prove that:

Theorem 7. Satisfiability for MSO∼ is undecidable.

However, MSO∃∼ and bounded TAGED are equally expressive: for any formula ϕ in
MSO∃∼, one can compute a bounded TAGED, whose size is non-elementary in the
size of ϕ, accepting the models of ϕ. The converse holds too. As a consequence of
decidability of emptiness for bounded TAGED, we have:

Theorem 8. Satisfiability is decidable for MSO∃∼.
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7 Conclusion

In this paper, we have considered the spatial logic TQL with tree variables. We have
proved that for the guarded fragment when variables appear in a bounded way then the
satisfiability problem is decidable. To do so, we have introduced a new class of tree
automata, called TAGED, permitting to test global equalities and disequalities on the
accepted trees. Finally, we have used TAGED to prove decidability for an extension of
MSO with isomorphism tests interpreted over unranked trees.

We speculate that the boundedness condition is not required for the decidability of
emptiness of TAGED, as pumping technics dealing with constraints may be applica-
ble. However, it is non-trivial, since TAGED are not determinizable in general. This
would imply that the full guarded TQL with trees variables is decidable. Another ex-
tension would be to consider hedge variables. This problem seems to be non trivial as
the satisfiability problem for such formulas could encode word equations.

We emphasized a correspondence between MSO∃∼ and bounded TAGED. It would
be interesting to exhibit a fragment of MSO∼ equivalent to full TAGED.

The TQL system also includes a transformation language; we aim at using TAGED
automata to type these transformations and more generally, tree transducers.
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Forest Expressions

Miko�laj Bojańczyk�
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Abstract. We define regular expressions for unranked trees (actually,
ordered sequences of unranked trees, called forests). These are compared
to existing regular expressions for trees. On the negative side, our expres-
sions have complementation, and do not define all regular languages. On
the positive side, our expressions do not use variables, and have a syntax
very similar to that of regular expressions for word languages.

We examine the expressive power of these expressions, especially from
a logical point of view. The class of languages defined corresponds to a
form of chain logic [5,6]. Furthermore, the star-free expressions coincide
with first-order logic. Finally, we show that a concatenation hierarchy
inside the expressions corresponds to the quantifier prefix hierarchy for
first-order logic, generalizing a result of Thomas.

1 Introduction

We define a new type of regular expressions for forests, i.e. ordered sequences of
unranked trees. Like word regular expressions and unlike the known tree regular
expressions, our expressions do not use variables. Similar to CTL*, we have two
sorts of expressions: one describing forests, and one describing contexts (forests
with a hole, which can be used for substitution). The two sorts are defined by
mutual recursion, and each allows concatenation, star, and boolean operations
(including complementation and intersection). Forest expressions do not capture
all regular languages of unranked forests (or even trees), but they do have a
characterization in terms of logic:

Theorem 1. Forest expressions have the same expressive power as extended
chain logic. Star-free forest expressions have the same expressive power as first-
order logic.

In the above theorem, the models for the logic are forests. The signature has
label tests, and two partial orders: vertical and horizontal. The vertical order
corresponds to descendants, and the horizontal order is used to say when one
sibling is to the left of another. Extended chain logic is a fragment of MSO, where
set quantification is restricted to two types of sets: chains (sets linearly ordered
by the vertical order) and sibling sets (sets linearly ordered by the horizontal
order). Over binary trees, the second quantification is superfluous, and the logic
collapses to chain logic as defined by Thomas in [5]. The second statement in
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the above theorem can be seen as a tree extension of [3], where it is shown that
star-free word expressions have the same expressive power as first-order logic.

Furthermore, we show that the correspondence between the quantifier alter-
nation hierarchy, and the concatenation hierarchy, which has been shown for
words by Thomas in [4], also works with our expressions:

Theorem 2. A forest language is on level n+ 1/2 if and only if it is defined by
a sentence in Σn.

This result is the second main contribution of this paper.

2 The Regular Expressions

In the formal syntax of expressions, there will be two sorts of expressions, one
for forests and one fo contexts. Before we present this syntax in Definition 1, we
will gradually introduce the operations allowed in the expressions.

We use + to denote concatenation of forests (sequences of trees); while ∨ is
used in the regular expressions for language union (likewise ∧,¬ for intersection
and complement). For instance, both the expressions

a(a+ a) ∨ a(a) a((a+ a) ∨ a)

denote the same language containing two trees:

a

a a

a

a

Concatenation of trees can be iterated using the Kleene star; for instance the
expression

a((a ∨ b)∗)

denotes all trees of depth at most two that have a in the root and a, b in the leaves.
If we want to define languages of unbounded tree depth, we must also have some
form of vertical iteration. Here, we use iteration of contexts, i.e. forests with a
single hole. The hole is denoted by �, and is used for substitution. For instance,
the set of a-labeled trees that have a single leaf is defined by the expression:

(a�)∗a .

Context composition is written multiplicatively, for instance (aa�)∗a denotes
trees with a single path of odd length.

The kind of a subexpression can be determined by the way it is used in the
larger expression: if it is an argument of + then it must be a forest expression, if
it is an argument of the multiplicative context concatenation, then it must be a
context expression. The only possible ambiguity is when the expression does not
contain forest concatenation or context composition, eg. a∨ (¬b); by convention
we assume the expression describes forests and not contexts.
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Even with the two Kleene stars (for forests and contexts); our expressions
cannot define trees with a large amount of branching. In particular, the set of
all trees cannot be defined. Therefore, as in star-free word languages, the key to
success is judicious use of complementation. As usual with complementation, it
is important that an alphabet A is specified beforehand; let us fix A = {a, b} for
the next several examples. For instance, a(¬∅) defines the set of all trees over A
that have a in the root (by convention, ∅ is the empty forest – and not context
– language).

We have already discussed concatenation and Kleene star for forests and con-
texts, and the boolean operations. We have also implicitly attached forests to
contexts, for instance in (a�)∗a we have attached the forest a to the context
(a�)∗. The last remaining operation is one that embeds a forest within a con-
text; we use + to add a context to a forest, with the result being a context. For
instance,

¬∅+ � + ¬∅

denotes all contexts where the hole is at the root. In particular,
(
(a� ∨ b� ∨ (¬∅+ � + ¬∅)

)∗

denotes all contexts. An equivalent expression would be (� ∧ ¬�). Using this
expression and complementation, we can define all contexts where only the letter
a occurs.

Below is the formal definition of the expressions:

Definition 1. The syntax of forest and context expressions over an alphabet A
is defined by the following grammar:

F → ∅ | ε | a | F + F | F∗ | CF | F ∨ F | F ∧ F | ¬F
C → ∅ | � | a� | CC | C∗ | F + C | C + F | C ∨ C | C ∧ C | ¬C

In the above, a stands for any letter in the alphabet A. An expression is called
star-free if it does not use the productions F∗ or C∗.

The semantics have already been defined in the discussion leading to the above
definition. We only omitted ε, which stands for the empty forest. To avoid excess
parentheses, we assume the following binding precedence order: context compo-
sition, +, ¬, ∧ and finally ∨.

Note that Definition 1 contains some redundant rules. For instance, F ∧ G
is equivalent to ((F + �) ∧ (G + �))ε. Using similar methods, we can actually
eliminate all rules on the right-hand side of F →, except F → ε and F → CF .
However, we choose to keep all the rules to have a more convenient notation.

Before continuing with our discussion of these expressions, we would like to
comment on complexity issues. Emptiness of a forest expression is EXPTIME
hard, since emptiness of an alternating polynomial space Turing machine can be
reduced to emptiness of a forest expression. A matching EXPTIME upper bound
can be found by compiling an expression into a bottom-up automaton with an
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exponential state space. Membership, on the other hand, is polynomial: one can
check in polynomial time if a given forest belongs to a given forest expression by
using a dynamic algorithm.

2.1 Comparison with Existing Expressions

The regular expressions usually considered for trees, see eg. Chapter 2 of [2], are
different from our expressions in that:

1. They use arbitrarily many types of hole �1, . . . ,�n (instead of one �).
2. The contexts can have holes of different types, and with multiple copies.
3. There is no negation or intersection.

Another difference is that we consider unranked trees instead of ranked trees,
but the definitions from [2] can be adapted to the unranked setting, with similar
results. The differences 1,2 can be seen as advantages of our expressions, while
the difference 3 is a disadvantage. Another disadvantage is that our expressions
cannot define all regular languages, as opposed to the standard expressions.
For instance, the language “positive boolean formulas that evaluate to true”
is not definable via our forest expressions (otherwise, this language would be
definable in chain logic, which it is not), while it can be done using even with
one type of hole, but with multiple copies of this hole. We present this expression
below, to give the reader a taste of the expressions with many holes. We use the
alphabet {OR,AND, 0, 1} here to avoid confusion with ∨,∧ found in the syntax
of expressions. The expression

E = (OR� ∨ AND� ∨ 0 ∨ 1 ∨ � + �) .

describes forests where a non-leaf node has label OR or AND, while a leaf has
label 0, 1 or possibly �. Note that the hole � may appear in many leaves, or
possibly no leaf at all. The following expression denotes contexts that take 1
to 1 (i.e. forests with many holes that will give a true formula if all holes are
substituted by true boolean formula):

F ∗ where F = AND(�∗) ∨ OR((E ∨�)∗ + � + (E ∨�)∗) .

By induction on formula size, one can show that every true formula can be
decomposed as F ∗1.

It should be remarked here that our forest expressions are not meant to replace
the standard regular expressions with many holes. We only claim that they have
a convenient syntax and, most importantly, disallowing multiple holes gives a
close correspondence to logic, as witnessed by Theorems 1 and 2.

3 Forest Automata

We denote forests by letters s, t, with forest concatenation denoted by s + t.
We denote contexts by letters p, q, r, with context composition written multi-
plicatively as pq. The result of placing a forest s in the hole of a context p is
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denoted by ps. We use the standard relationships of nodes in a forest/context:
descendant, ancestor, child, parent, sibling, leftmost sibling, rightmost sibling,
left neighbor (closest sibling to the left), right neighbor.

Recall that a monoid is a set H along with an associative operation, which
we denote here by + to underline the connection with forest concatenation.
Furthermore, each monoid has a unit element ε ∈ H , which satisfies ε + h =
h+ ε = h for all h ∈ H . We will denote monoids by F,G,H and their elements
by f, g, h (there are two justifications here: first, we want to avoid confusion with
trees s, t, u; second we want to be consistent with notation in forest algebra,
see [1]). A monoid forest automaton is a deterministic word automaton where
the states have a monoid structure. In other words, the automaton has two
components: a finite monoid H and a function δ : A ×H → H , where A is the
label alphabet. The automaton assigns to each forest t a unique element A(t) of
H ; called the value of the forest. The empty forest is assigned the unit of the
monoid, while for larger forests we have:

A(t+ s) = A(t) +A(t) A(a(t)) = δ(a,A(t)) .

In the above, the left + is forest concatenation, while the right + is the monoid
operation. Thanks to associativity, the above definition is nonambiguous. The
automaton recognizes a forest language L if membership in L only depends on
the value of a forest. From now on, we will only be using monoid forest automata;
and we will simply call them forest automata.

LetA = (H, δ) be a forest automaton, and let g, h ∈ H . We say a context p takes
g to h if there is some forest s with value g such that ps has value h. Note that in
the above we could have equivalently written“for any forest with value h”.

Definition 2. We say a forest automaton A = (H, δ) is represented by expres-
sions if for all possible values g, h ∈ H

– There is an forest expression Lh describing forests with value h.
– There is a context expression Lh

g describing contexts p that take h to g.

A forest language L is represented by expressions if some forest automaton recog-
nizing L is. Clearly, a language represented by expressions can be defined by a
forest expression: it suffices to take the union of Lm for all values m of forests
in the language. Furthermore, the proof of Theorem 1 also gives the converse: if
a language is defined by an expression, then its also represented by expressions.

4 Equivalence with First-Order Logic

When speaking of forest languages defined in first-order logic, we refer to the
usual interpretation: a forest is considered as a model for logic, whose universe
consists of nodes in the forest. A given formula can be true in such a model
or not, and therefore each formula naturally induces a forest language. The
signature contains a unary relation for each possible label, and two orders: the
descendant order, and the sibling-to-the-left order. As far as first-order logic and
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extensions are concerned, the latter order could be replaced by the lexicographic
order, without changing expressive power. Later on, in Section 6, we will be
considering fragments where more care is needed when chosing the signature.

It is fairly easy to show the left to right inclusions from Theorem 1: extended
chain logic and first-order logic can capture forest expressions and star-free ex-
pressions, respectively. We only give the proof of the more difficult right to left
inclusions here.

Proposition 1. Forest languages definable in first-order logic can be represented
by expressions.

The proof of this proposition is rather standard and proceeds by induction on
the formula of first-order logic. Later on in the paper, we present a stronger
result, however we include the below proof since it is significantly shorter.

To go through the induction step, we need to prove the statement also for
formulas with free variables. A formula

ϕ(x1, . . . , xn)

with free variables x1, . . . , xn can be seen as a forest language L(ϕ) over an
extended alphabet A× {0, 1}n:

t ∈ L(ϕ) iff t, ν |= ϕ ,

where ν is the valuation that assigns to xi the unique node with 1 on the i-
th {0, 1} coordinate. (If the forest has 0 or at least 2 nodes with 1 on a given
coordinate, the valuation ν is undefined and therefore t, ν |= ϕ cannot hold.)

The proof of Proposition 1 is a rather standard induction on the size of the
formula ϕ. The only nontrivial step is when passing from ϕ to ∃x.ϕ (we eliminate
∀ using negation). Let then A = (H, δ) be an automaton recognizing a forest
language L over an alphabet A×{0, 1}. We need to show that if A is represented
by star-free expressions, then so is an automaton recognizing the language

K = {t : t[x] ∈ L for some node x of t} .

In the above, t[x] is the forest over over A×{0, 1} obtained from t by adding
label 1 on the second coordinate of the node x, and label 0 for the remaining
nodes. We first define a forest automaton B that recognizes the language K;
then we will show star-free expressions that represent this automaton. The value
under B of a forest in t is a pair (h,G). The first coordinate is the value (in A)
of t[∅], while the second coordinate is the set of values (in A) of forests t[x] for
all possible nodes x. The reader will easily fill in the monoid operation on states
of B, and its transition function.

We need to show that the automaton B is represented by star-free expressions.
First, we will define some auxiliary star-free expressions. We begin by describing,
for every g, h ∈ H , the forests and contexts where the node x is not present:
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– Kh is a star-free forest expression describing forests t over A where t[∅] has
value h.

– Kh
g is a star-free context expression describing contexts p over A where p[∅]

takes g to h.

These star-free expressions are easily obtained from the star-free expressions
representing the automaton A, by writing a ∈ A instead of (a, 0), (a, 1) and then
intersecting with a language that forbids labels of the form (a, 1). Next, we write
for each g, h ∈ H star-free expressions that describe forests and context where
the node x is present. These are defined by distinguishing the node x:

– Lh is star-free forest expression describing forests t over A where t[x] has
value h, for some node x of t. This is the union of star-free expressions

Kh
g aKf

over a ∈ A and f, g ∈ H that satisfy δ((a, 1), f) = g
– Lh

g is a star-free context expression describing contexts p overA where p[x](t)
takes g to h. This is the union of star-free expressions

Kh
f aK

f ′

g

over a ∈ A and f, f ′ ∈ H that satisfy δ((a, 1), f ′) = f .

Once the auxiliary star-free expressions have been found, the star-free ex-
pressions defining the automaton B can be easily obtained by using boolean
combinations. The forests that have value (h,G) are described by the star-free
expression:

Lh ∩
⋂

g∈G
Kg \

⋃

g 
∈G
Kg ,

while the contexts that take the automaton from value (f, F ) to value (h,G) are
described by the star-free expression:

Lh
f ∩

⋂

g∈G

(
Kg

f ∪
⋃

g′∈F
Lg
g′

)
\

⋃

g 
∈G

(
Kg

f ∪
⋃

g′∈F
Lg
g′

)
.

5 Equivalence with Chain Logic

Proposition 2. Forest languages definable in extended chain logic can be rep-
resented by expressions.

The proof is similar to the one in the previous section. We only comment on
chain quantification, denoted here by ∃cX ϕ; quantification over sibling sets is
done in a similar manner.

Similar to the notation in Section 4, if t is a forest over A, and X is a set of
nodes in X , then t[X ] is the forest over over A×{0, 1} obtained from t by adding
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label 1 on the second coordinate of nodes in X , and label 0 for the remaining
nodes. If L is a forest language over A × {0, 1}, the chain projection is defined
to be the set of forests t such that t[X ] belongs to L for some chain X . The
language defined by ∃cXϕ is the chain projection of the language defined by ϕ.

The inductive step in Proposition 2 that goes from ϕ to ∃cϕ will follow once
we show that languages represented by expressions are closed under chain pro-
jection. The proof of this closure is similar to the one in Section 4. We only
sketch a key step, leaving the remaining details to the reader. In the following,
A = (H, δ) is a forest automaton over the alphabet A×{0, 1} that is represented
by expressions.

A set of nodes X in a context p is called a p-chain if all of its elements are
ancestors of the hole in p. We say a context over A chains g ∈ H to h ∈ H if
there is some p-chain X such that the context p[X ] takes g to h. The following
statement is the key step in showing closure under chain projection, the rest of
the proof is left to the reader:

Lemma 1. For every g, h ∈ H, the set of contexts over A that chains g to h is
described by context expression.

thmheadfont Proof

The proof proceeds in two steps.
In the first step, we write a forest expression for “small” contexts that chain

g to h. We will denote this language by Kh
g . A “small” context is of the form:

s+ a� + t ,

where a ∈ A is a label and s, t are forests over A. This context chains g to h if
and only if for some i = 0, 1 we have

f + δ((a, i), g) + f ′ = h , (1)

where f, f ′ ∈ H are the values under A of the trees s[∅], t[∅]. Recall that δ :
(A×{0, 1})×H → H is the transition function in the automaton A; therefore the
parameter i specifies whether the chain contains the a node or not. Therefore,
the set of “small” contexts that chain g to h is the (finite) union of context
expressions

Lf + a� + Lf ′

such that for some i = 0, 1, condition (1) is satisfied. Here Lf (likewise for Lf ′)
is the language of forests s such that s[∅] has value f in A; this language has a
forest expression by assumption on A being fully defined by forest expressions.

We now proceed to the second step. We will only describe an expression for
contexts where the hole has no siblings; the more general case can be easily
obtained using techniques as above. Contexts that chain g to h and have no
siblings of the hole can be described by composing small contexts:

⋃
{Kfk

fk−1
K

fk−1
fk−2

· · ·Kf3
f2
Kf2

f1
: g = f1, . . . , h = fk} .

Although the above is an infinite expression, it can be easily rendered finite using
the Kleene star. �
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6 Concatenation Hierarchy

In this section, we show that our expressions admit a hierarchy similar to the
concatenation (Straubing) hierarchy for word languages. Also similar to the word
case, this hierarchy coincides with the quantifier hierarchy of first-order logic with
order.

In the context of forest and context expressions, the name concatenation hi-
erarchy would be confusing, since we have two types of concatenation: forest
concatenation and context composition. To make things even more confusing,
the role of language concatenation in the word concatenation hierarchy is played
here by context composition, and not forest concatenation. Therefore, below we
refrain from using the name concatenation hierarchy.

The definition below is for a hierarchy of context languages. The hierarchy is
extended to forest languages by substituting the empty forest ε for the hole: a
forest language L is said to be on level n (or n+1/2) if there is a context language
K on level n (or n+ 1/2) such that L = {pε : p ∈ K}.

We fix an alphabet A.

– Level 0 of the hierarchy contains two context languages: the set of all contexts
over A, and the empty set.

– Level n+ 1/2 of the hierarchy is defined as follows.
1. Every context language on level n is on level n+ 1/2.
2. Context languages on level n+ 1/2 are closed under finite union.
3. If a ∈ A, K is a context language on level n + 1/2 and L is a context

language on level n, then LaK is a context language on level n+ 1/2.
4. If L is a forest language of level n+ 1/2, and K is a context language of

level n+1/2, then K+L and L+K are context languages of level n+1/2.
– Level n+ 1 is the boolean closure of level n+ 1/2.

The above definition is the same as for word languages, except for clause 4,
which introduces branching into the expressions. Clearly each language in the
hierarchy—both for forests and contexts–can be described by a star-free expres-
sion. The hierarchy for words can be recovered by taking context languages, and
looking at the word that labels the path from root to hole.

Recall that Σn is the class of existential first-order formulas—possibly with
free variables—whose quantifier prefix has n − 1 alternations. For instance, Σ2

are the formulas with quantifier prefix ∃∗∀∗. Over words, a result of Thomas [4]
shows that Σn defines the same languages as level n+ 1/2 (the signature contains
the linear order < on word positions, but not the successor relation x = y + 1).

We want to have the same result. However, we need to be careful about the
picking the correct signature. We cannot have only the descendant order on tree
nodes, since this would give commutative languages; while the forest concatena-
tion K + L gives non-commutative languages already on level 1/2. Furthermore,
the hierarchy is sensitive to slight changes in the signature. For instance, the
language “the root has label a” will be on level Σ1 if the signature contains the
“root” unary relation; however if the “root” relation is dropped this language
moves up to level Σ2.
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We chose two relations: the lexicographic order � and the greatest common
ancestor gca(x, y) = z. The descendant order x ≤ y can be defined in terms
of gca without using quantifiers, since y is a descendant of x if and only if
gca(x, y) = x. However, to define gca in terms of the descendant, we need a
universal quantifier, to enforce minimality. Therefore, the quantifier alternation
hierarchies are different for the signatures {gca,�} and {≤,�}. From now on, we
will be using the signature {gca,�} when talking about the quantifier hierarchy.

We repeat the statement of our result relating the hierarchies in expressions
and logic:

Theorem 2
A forest language is on level n+ 1/2 if and only if it is defined by a sentence in
Σn.

We present the two implications in the next two sections. A consequence of the
above theorem is that expressions on level n+ 1/2 are closed under intersection,
which is not immediately apparent from the syntax. Another consequence is
Proposition 1, since every first-order formula can be found on some level Σn.

It will be convenient to have a notion of formulas describing contexts. Here a
formula for contexts has the same syntax as a formula for forests; except that
there is a free variable x, which corresponds to the hole. The formula describes
those contexts where it holds under the valuation that maps x to the hole. For
instance, the formula ∀y x = y is true only in the empty context, which maps
every forest to itself. The hierarchy Σn is defined for context formulas in the
same way as for forest formulas. The correspondence in Theorem 2 also extends
to contexts.

Level n+ 1/2 is definable in Σn+1. The proof is by induction, first on n and
then on the size of the expression. The induction base of n = 0 is fairly simple,
and we omit the details.

The key step is to show how to construct formulas for the steps LaK and
L+K in the definition of level n+ 1/2.

The step for LaK is a simple relativization technique, and works the same
way as for words. Let then a ∈ A, and let L,K be context languages of levels n
and n+1/2 respectively. We will write a formula of Σn+1 that defines the context
language LaK. By induction assumption, there are formulas ϕ(x) ∈ Σn, ψ(x) ∈
Σn+1 for the languages L,K. The language LaK is defined by the formula

∃y a(y) ∧ ϕ′(y) ∧ ψ′(x) ∈ Σn+1 .

Here ϕ′ is obtained from ϕ by relativizing every quantifier ∃z to ∃z �≥ y; similarly
for ψ′ and z > y. Note that the descendant order ≤ is definable in terms of gca
without quantifiers, so this relativization does not change the position in the
hierarchy.

The case of L + K requires a little more attention. Let then L be a forest
language defined by Σn+1 formula ϕ, and let K be a context language defined
by a Σn+1 formula ψ. We will write a formula for L +K (the case of K + L is
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done the same way), and we also want to use relativization. However, the node
that divides L from K must be on the root: we use the leftmost root node x of
K here (this node is lexicographically the first one in K). The formula is:

∃x (∀y gca(x, y) = y ⇒ x = y) ∧ ϕ′ ∧ ψ′ ∈ Σn+1 .

The first conjunct says that x is one of the roots; the universal quantifier in this
conjunct does not increase the hierarchy level of the larger formula, since we
are working at or above level Σ2 (recall that the base case of n = 0 was done
separately). The relativized formulas are defined as in the previous case, only
this time we use the lexicographic order.

Formulas in Σn+1 are captured by level n + 1/2. As a warm-up, we do
the case of n = 0. Let then

ϕ = ∃x1, . . . , xkψ

be a formula, with ϕ quantifier-free. By choice of signature, ϕ can only say what
is the lexicographic order on the nodes x1, . . . , xk, and which quantified nodes
are greatest common ancestors of other quantified nodes. The basic idea is that
in a forest of the form pa(s + t), with p a context, a a label, and s, t forests,
the greatest common ancestor of a node from s and a node from t must be the
node a. The lexicographic order can also be expressed, since the expressions are
ordered. We only present the construction on an example:

∃x, y, z a(x) ∧ b(y) ∧ c(z) ∧ gca(x, y) = z

Since the labels a, b, c are different, the nodes x, y, z are different. The appropriate
expression is:

Kc((KaKε) + (KbKε)) ∪ Kc((KbKε) + (KaKε)) .

In the above, K is the level 0 expression describing all contexts.
We would like to continue along these lines for the classes Σ2, Σ3, etc. Unfor-

tunately we run across a technical problem, which does not occur for words, and
makes the proof rather tedious. If we have nodes x1, . . . , xk in a word w (say,
ordered from left to right), then these partition the word into words of the form
w[0..x1], w[x1 + 1..x2], . . . , w[xk−1 + 1..xk]. Unfortunately, this is no longer the
case for forests.

A first obstacle is how to use two nodes x, y to cut out a piece from a larger
forest. If we want to cut out a forest, it would be reasonable to expect the two
nodes x, y to be siblings; but the sibling relationship is not quantifier-free in our
signature. A second problem is that a given set of nodes may not partition a
forest: for this the set must satisfy certain closure properties (such as containing
greatest common ancestors).

We write x ' y to denote that x is a sibling to the right of y; this formula needs
a universal quantifier (to say that all ancestors of x are also ancestors of y) and
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therefore is a negation of a Σ1 formula. Note that this is not the lexicographic
order. A formula x ' y is called a forest link. The ideas that the nodes x, y
can be used to induce a subforest. If x = y then the induced subforest contains
proper descendants z of x; if x ≺ y then the induced subforest contains nodes
z that lexicographically between x, y, but are not descendants of x. A formula
x < y is called a context link. Similarly to forest links, the nodes x, y induce a
context: the nodes of this context are nodes z with x < z and y �≤ z, and the
hole is in y. We will use letters α, β to refer to links, be they context or forest.
In either case, the property that z belongs to to the induced forest/context of a
link α is expressed by a quantifier-free formula in x, y, z.

Types
Let X be set of variables. A pre-type over X is a conjunction, which for every
variables x, y, z ∈ X specifies the label of this variable, and which of the following
hold, and which do not hold: x is a leftmost sibling, x is a rightmost sibling, x ≤ y,
x ' y, x is a child of y, x is the left neighbor of y, z is the greatest common
ancestor of x, y. Since a pre-type specifies all this information, it makes sense to
write “a node x ∈ τ has a child in τ”—likewise for the other relations described
in a pre-type—with the meaning being that x ∈ X and for some node y ∈ X ,
the pre-type τ specifies that y is the child of x. Note that a pre-type is a boolean
combination of Σ1 formulas, since universal quantification is necessary to talk
about left/right siblings, etc.

Take a link α—either a forest link x ' y or a context link x < y. A type local
to α is a type τ * x, y where every variable z ∈ τ distinct from x, y is in the
(forest/context) induced by α. Furthermore, we require the saturation properties
listed below; these ensure that the nodes induced by α can be partitioned into
links (both context and forest) given by variables from τ .

– If z1, z2 ∈ τ are distinct siblings, but not siblings of x and y (possible only
when α is a forest link), then the parent of z1, z2 belongs to τ .

– If z ∈ τ has its parent in τ , then its leftmost, rightmost siblings are in τ .
– If z1, z2 ∈ τ are not related by the descendant relation, then there are siblings
z′1, z

′
2 ∈ τ that are ancestors of z1, z2, respectively.

A consequence of the properties above is that nodes described by a type τ are
closed under greatest common ancestor, as long as this greatest common ancestor
stays within the link α.

Below we define the joints of type τ . The idea is that these are context/forest
links that are closest to each other and contain some nodes in their induced
forest/context.

– Let x, y ∈ τ be such that y is a descendant of x, and minimal for this
property. If y is not a child of x, then x < y is called a (context) joint of τ .

– There are two kinds of forest joints. If x, y ∈ τ are distinct siblings, with no
sibling from τ strictly between them, then x ≺ y is a forest joint of τ . Also,
if x ∈ τ has no proper descendants in τ , then x ' x is a joint of τ .

The saturation properties in the definition of a type are chosen so that the
joints partition a type, i.e.:



158 M. Bojańczyk

Lemma 2. Let τ be a type local to a link α. The type τ entails that any node in
the (context/forest) induced by α is either one of the nodes from τ , or in exactly
one (context/forest) induced by a joint of τ .

thmheadfont Proof
Using the saturation properties. We consider here the case when α = x ' y. Let
then z be a node not in the forest induced by the link x ' y. Assume furthermore
that z is not equal to one of the nodes from τ . Consider two cases:

– There are siblings of z in τ . We claim that there are nodes z1, z2 ∈ τ with
z1 ≺ z ≺ z2. If x ≺ z ≺ y then we are done. Otherwise, since z has siblings
in τ , then the parent of z belongs to τ thanks to the saturation properties.
This entails that also the leftmost and rightmost siblings of z belong to τ .
Let then z1, z2 ∈ τ be such that z1 ≺ z ≺ z2, and chosen closest to z for this
property. Therefore, z1 ' z2 is a joint of τ , and its induced forest contains z.

– There are no siblings of z in τ . First we claim that z has an ancestor in τ . If
x is an ancestor of z, we are done. Otherwise, x and z are incomparable by
the descendant relation, and therefore by the saturation properties, τ must
contain siblings that are ancestors of x, z, which concludes the claim. Let
z′ be the ancestor in τ that is closest to z. If z has a descendant z′′ in τ ,
then z belongs to the context induced by z′ < z′′, if z′′ is taken closest to z.
Otherwise, we show that z′ has no descendants in τ , and hence z belongs to
the forest induced by the link z′ ' z′. Assume for the sake of contradiction
that τ contains a descendant z′′ of z′ that is not a descendant of z. By
definition of z′, z′′ must be incomparable with z. Using the last saturation
property, we get a node in τ that is strictly between z′ and z, a contradiction.

�
Let X be a set of variables, and let α be a link (using variables from X). A type
local to α generated by X is defined to be any type τ local to α over variables
Y ⊇ X that is minimal for this property: i.e. there is no type σ local to α over
variables Z, with X ⊆ Z � Y such that τ and σ are consistent. If τ is generated,
then Y \ X is called the set of auxiliary variables of τ , and is denoted by Yτ .
The idea is that the variables in Yτ are used to add the saturation properties
required in a type. Since the saturation properties require adding at most a
linear number of additional nodes, there are finitely many nonequivalent types
generated by a given set X and a link α; furthermore any two nonequivalent
ones are inconsistent.

Normal Form
A formula is said to be local to a link α if its quantified and free variables are
relativized to nodes induced by the link α. Let α be a link. We define two types
of normal form: (n−1/2, α)-normal form, which corresponds to Σn formulas local
to α, and (n, α)-normal form, which corresponds to boolean combinations of the
former. We define (0, α)-normal form to be all quantifier-free formulas local to
α. For n ≥ 1, a formula is said to be in (n− 1/2, α) normal form if it is a positive
boolean combination of formulas ∃x1, . . . , xkψ, with ψ in (n−1, α) normal form.
A formula—with free variables X—is in (n, α)-normal form if it is of the form
∃y1, . . . , yk τ ∧ ψ, where
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– τ is a type local to α generated by X with auxiliary variables y1, . . . , yk. To
abbreviate the notation, we write ∃y1, . . . , yk as ∃Yτ .

– For some joint β of τ , the formula ψ is either in (n− 1/2, β)-normal form, or
a negation thereof.

Lemma 3. For n ≥ 1, every formula in Σn local to α is equivalent to a formula
in (n− 1/2, α) normal form.

thmheadfont Proof
The proof is a by induction on n. The only nontrivial part is showing that
positive boolean combinations of formulas in (n, α)-normal form are closed under
negation. By De Morgan laws, we only need to do the negation of a single formula:

¬(∃Yτ τ ∧ ψ) ⇔ (∃Yτ τ ∧ ¬ψ) ∨
∨

σ

(∃Yσ σ ∧ true) ,

where the disjunction above ranges over the—finitely many—types σ generated
by X that are inconsistent with τ .

The case of existential quantification, which corresponds to going from (n, α)
normal form to (n + 1/2, α)-normal form, is a straightforward consequence of
Lemma 2. �

From Normal Form to Expressions
We will now rewrite a formula in (n+ 1/2, α) normal form into an expression on
level n+ 1/2. The expression will be a context or forest expression, depending on
the kind of link α. It will be convenient to use an intermediate form, where logical
formulas and regular expressions can be mixed. For this purpose we extend first-
order logic with the following type of formulas as follows. Let α = x < y be
a context link. If K is a context expression, then Kα(x, y) is a formula. This
formula holds if K contains the context induced by α. The definition for a forest
link x ' y and a forest expression L is analogous. Together with Lemma 3, the
following result concludes the “if” part of Theorem 2.

Lemma 4. Let n ≥ 0. Let α = x < y be a context link, and let ϕ be a formula
in (n+ 1/2, α) normal form. There is a context expression K of level n+ 1/2 such
that ϕ and Kα(x, y) are equivalent. Likewise for forests.

thmheadfont Proof (Sketch)
Induction on n, with plenty case analysis. The base case n = 0 is done as in the
beginning of this section. We only do the induction step for a context link x < y,
leaving the proof for forests to the reader. Let then n ≥ 1. Since the expressions
are closed under union, and types are either equal or inconsistent, we only need
consider a formula ϕ be of the form:

ϕ = ∃x1, . . . , xk τ ∧ ψ ,

with τ a type over variables x1, . . . , xk, x, y and ψ a conjunction of formulas in
(n− 1/2, β) normal form (or their negations), with β ranging over joints of τ .
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Using the induction assumption, we may replace ψ be a conjunction
∧

βKβ ,
where β ranges over joints of τ , and each Kβ is a forest or context expression
of level n, depending on the kind of β. (Recall that expressions of level n are
closed under boolean combinations, so we need not bother with the negations in
conjuncts in ψ.)

The proof then proceeds via a second induction, this time on the number of
variables k. Recall the link α = x < y to which the formula ϕ is local. The proof
is a case analysis. We only consider here the case when τ contains the parent
of y, but not the grandparent of y. Let then x1 ∈ τ be the parent of y, and let
x2 < x1 be the closest ancestor of x1 that is in τ . We leave to the reader the
special cases when x1 = x, and therefore x2 is undefined, and also when y is
either a leftmost or rightmost sibling. Let then

z1 ≺ · · · ≺ zi ≺ y ≺ z′1 ≺ · · · ≺ z′j (2)

be all the distinct siblings of y given in the type τ . Using the induction assump-
tion, we may assume that i, j = 1, and that the links z1 ' z1, z1 ≺ y, y ≺ z′1,
and z′1 ' z′1 are described by expressions L,M,L′,M ′ respectively. Finally, let
K be the context expression describing the joint x2 < x1, and let a be the label
of the node x1, which can be read from τ . We can now lose all the variables
from (2), by describing the context link x2 < y via the expression

Ka(L+M + � + L′ +M ′) .

The above is a level n + 1/2 expression, since n ≥ 1 and �—an expression that
describes only the empty context �—is a level 1 + 1/2 context expression. �
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RWTH Aachen, Informatik 7, 52056 Aachen, Germany
{carayol,loeding}@i7.informatik.rwth-aachen.de

Abstract. We give a new proof showing that it is not possible to define
in monadic second-order logic (MSO) a choice function on the infinite
binary tree. This result was first obtained by Gurevich and Shelah us-
ing set theoretical arguments. Our proof is much simpler and only uses
basic tools from automata theory. We discuss some applications of the
result concerning unambiguous tree automata and definability of winning
strategies in infinite games. In a second part we strengthen the result of
the non-existence of an MSO-definable well-founded order on the infinite
binary tree by showing that every infinite binary tree with a well-founded
order has an undecidable MSO-theory.

1 Introduction

Our main purpose is to present a simple proof for the fact (first shown by Gure-
vich and Shelah in [GS83]) that on the infinite binary tree there is no choice
function that can be defined in monadic second-order logic (MSO), i.e., in the
extension of first-order logic by quantification over sets of elements. A choice
function on the infinite binary tree is a mapping assigning to each nonempty set
of nodes one element from this set, i.e., the function chooses for each set one of
its elements. Such a function is MSO-definable if there is an MSO-formula with
one free set variable X and one free element variable x such that for each non-
empty set U of nodes there is exactly one element u ∈ U such that the formula
is satisfied if X is interpreted as U and x is interpreted as u.

The question of the existence of an MSO-definable choice function over the
infinite binary tree can be seen as a special instance of the more general uni-
formization problem, which asks, given a relation that is defined by a formula
with free variables, whether it is possible to define by another formula a function
that is compatible with this relation. More precisely, given a formula φ(X̄, Ȳ )
with vectors Ȳ , X̄ of free variables, such that ∀X̄∃Ȳ φ(X̄, Ȳ ) is satisfiable, uni-
formization asks for a formula φ∗(X̄, Ȳ ) such that

1. φ∗ implies φ (each interpretation of Ȳ , X̄ making φ∗ true also makes φ true),
2. and φ∗ defines a function in the sense that for each interpretation of X̄ there

is exactly one interpretation of Ȳ making φ∗ true.
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The question of the existence of a choice function is the uniformization problem
for the formula φ(X, y) = X �= ∅ → y ∈ X .

The infinite line, i.e., the structure (ω, succ) of the naturals with the successor
function is known to have the uniformization property for MSO [Sie75]. On the
infinite binary tree MSO is known to be decidable [Rab69] but it does not have
the uniformization property. This was conjectured in [Sie75] and proved in [GS83]
where it is shown that there is no MSO-definable choice function on the infinite
binary tree.

The reason for the present paper is that the proof in [GS83] uses complex
set theoretical arguments, whereas it appears that the result can be obtained
by much more basic techniques. We show that this is indeed true and present
a proof that only relies on the equivalence of MSO and automata over infinite
trees and otherwise only uses basic techniques from automata theory. Besides its
simplicity, another advantage of the proof is that we provide a concrete family
of sets (parameterized by natural numbers) such that each formula will fail to
make a choice for those sets with the parameters chosen big enough. We use this
fact when we discuss two applications of the result concerning unambiguous tree
automata (as presented in [NW]) and the definability of strategies in infinite
games.

The subject of MSO-definability of choice functions on trees has been studied
in more depth in [LS96], where the authors consider more general trees not
only the infinite binary tree. They show the following dichotomy: for a tree it is
either not possible to define a choice function in MSO, or it is possible to define
a well-ordering on the domain of the tree.

We strengthen this result by showing that extending the infinite binary tree
by any well-ordering leads to a structure with undecidable MSO-theory. As a
consequence we obtain that each structure in which we can MSO-define a well-
ordering and MSO-interpret the infinite binary tree must have an undecidable
MSO-theory.

The article is structured as follows. In the next section we introduce some
notations and basic terminology. In Section 3 we give the proof that there is
no MSO-definable choice function on the infinite binary tree and discuss appli-
cations of the result. In Section 4 the undecidability of the MSO-theory of the
infinite binary tree augmented by any well-ordering is shown.

2 Preliminaries

Words. For a finite alphabet Σ, we write Σ∗ for the set of all words over Σ.
The length of a word u ∈ Σ∗ is denoted by |u| and ε is the empty word. For
all words u, v ∈ Σ∗, u is a prefix of v (written u � v) if there exists w ∈ Σ∗

such that v = uw. If w ∈ Σ+ then u is a strict prefix of v (written u � v). The
greatest common prefix of two words u and v (written u∧ v) is the longest word
which is a prefix of u and v.

Relational structures. A signature is a ranked set of symbol S, where for all
R ∈ S, |R| denotes the arity (which is ≥ 1) of the symbol R. A relational
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structure R over the signature S is given by a tuple (U, (RR)R∈S) where U
is the universe of R and where for all R ∈ S, RR (which is also called the
interpretation of R in R) is a subset of U |R|. When R is clear from the context,
we will simply write R instead of RR.

Monadic second-order logic. We adopt the definition of monadic second-order
logic (MSO) over relational structures with the standard syntax and semantics
(see e.g. [EF95] for a detailed presentation). We write ϕ(X1, . . . , Xn, y1, . . . , ym)
to denote that the free variables of the formula ϕ are amongX1, . . . , Xn (monadic
second-order) and y1, . . . , ym (first-order) respectively. A formula without free
variables is called a sentence.

For a relational structure R and a sentence ϕ, we write R |= ϕ if R sat-
isfies the formula ϕ. The MSO-theory of R is the set of sentences satisfied
by R. For every formula ϕ(X1, . . . , Xn, y1, . . . , ym), all subsets U1, . . . , Un of
the universe of R and all elements v1, . . . , vm of the universe of R, we write
R |= ϕ[U1, . . . , Un, v1, . . . , vm] to express that ϕ holds in R when Xi is inter-
preted as Ui for all i ∈ [1, n] and yj is interpreted as vj for all j ∈ [1,m].

Infinite binary labelled trees. An (infinite binary) tree labeled by a finite alphabet
Σ is a mapping t : {0, 1}∗ → Σ. We denote by TΣ the set of all trees labeled
by Σ. For a set U ⊆ {0, 1}∗, we write t(U) ∈ T{0,1} for the characteristic tree
of U , i.e., the tree which labels all nodes in U with 1 and all the other nodes
with 0. This notation is extended to the case of several sets. The characteristic
tree of U1, . . . , Un ⊆ {0, 1}∗ is the tree labeled by {0, 1}n written t(U1, . . . , Un)
and defined for all u ∈ {0, 1}∗ by t(U1, . . . , Un)(u) := (b1, . . . , bn) where for all
i ∈ [1, n], bi = 1 if u ∈ Ui and bi = 0 otherwise.

To every tree t labeled by Σ = {a1, . . . , an}, we associate a canonical struc-
ture over the signature {E0, E1, Pa1 , . . . , Pan} where E0 and E1 are binary sym-
bols and the Pai are predicates. The universe of this structure is {0, 1}∗. The
symbols E0 and E1 are respectively interpreted as {(w,w0) | w ∈ {0, 1}∗}
and {(w,w1) | w ∈ {0, 1}∗}. Finally for all i ∈ [1, n], Pai is interpreted as
{u ∈ Σ∗ | t(u) = ai}. In the following, we will not distinguish between a tree
and its canonical relational structure.

In particular, for a formula ϕ(X1, . . . , Xn) and sets U1, . . . , Un ⊆ {0, 1}∗, we
write t(U1, . . . , Un) |= ϕ to indicate that the infinite binary tree satisfies ϕ when
Xi is interpreted by Ui.

3 Choice

As described in the introduction, an MSO-definable choice function is given by
an MSO-formula φ(X,x) such that

∀X∃x. X �= ∅ → (x ∈ X ∧ φ(X,x) ∧ ∀y. φ(X, y)→ x = y)

is true over the infinite binary tree. This section is mainly devoted to the proof
of the following theorem of Gurevich and Shelah.
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Theorem 1 ([GS83]). There is no MSO-definable choice function on the infi-
nite binary tree.

The technical formulation of the result we prove is given in Theorem 3, where
we concretely provide counter examples for which a given formula cannot choose
a unique element. As a machinery for the proof we use tree automata, which are
easier to manipulate (at least for our purpose) than formulas. In the following
we give some basic definitions. More details on automata for infinite trees can
be found in [Tho97].

In this section we take the view of labeled trees as mappings from {0, 1}∗ to
the label alphabet (which usually is {0, 1}n for some number n).

A parity automaton on Σ-labeled trees is a tuple A = (Q,Σ, q0, Δ,Ω) with a
finite set Q of states, initial state q0 ∈ Q, transition relation Δ ⊆ Q×Σ×Q×Q,
and a priority function Ω : Q → N. A run of A on a tree t ∈ TΣ from a state
q ∈ Q is a tree ρ ∈ TQ such that ρ(ε) = q, and for each u ∈ {0, 1}∗ we have
(ρ(u), t(u), ρ(u0), ρ(u1)) ∈ Δ. We say that ρ is accepting if on each path the
minimal priority appearing infinitely often is even. If we only speak of a run of
A without specifying the state at the root, we implicitly refer to a run from q0.

We extend this model to automata that do not only accept or reject trees
but also mark some of the nodes with special marking states. A marking parity
automaton (MPA) is a tuple A = (Q,Σ, q0, Δ,Ω, P ) with an additional set of
marking states P ⊆ Q. A run ρ of such an automaton defines a set Uρ ⊆ {0, 1}∗
as the set of those nodes that are labeled by a marking state, i.e., Uρ = ρ−1(P ).

Given a set U ⊆ {0, 1}∗ and an MPA A on {0, 1}-labeled trees, we define

T (A, U) = {Uρ | ρ is an accepting run of A on t(U)}.

That is, the set of all sets that are marked by A in an accepting run on t(U).

Theorem 2 ([Rab69]). For each MSO-formula φ(X,Y ) there is an MPA Aφ

such that T (Aφ, U) = {U ′ ⊆ {0, 1}∗ | t(U,U ′) |= φ} for each U ⊆ {0, 1}∗.

For a set U ⊆ {0, 1}∗ we say that A marks an element u of U if u ∈ U and there
is an accepting run ρ of A on t(U) such that Uρ = {u}. Note that with other
runs A might mark other elements or sets of elements.

For two trees t, t′ we say that they are A-equivalent, written as t≡A t′, if for
each state q of A there is an accepting run from q on t iff there is an accepting
run from q on t′. Intuitively, this means that A cannot distinguish the two trees.

3.1 Undefinability of Choice Functions

We now define a family (UM,N )M,N of sets such that for each MPA we can find
M andN such that this MPA cannot mark a unique element of UM,N . To achieve
this, we “hide” the elements from the set very deep in the tree such that MPAs
up to a certain size are not able to uniquely choose an element that they can
mark.

For M,N ∈ N the set UM,N ⊆ {0, 1}∗ is defined by the following regular
expression UM,N = {0, 1}∗(0N0∗1)M{0, 1}∗. Let tM,N = t(UM,N). This tree can
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be obtained by unfolding the finite graph GM,N depicted in Figure 1 from xM .
In this picture, the dashed arrows represent 1-labeled edges leading back to the
node xM . The chains of 0-edges between xk+1 and xk have length N . All nodes
in this graph are labeled 0 except x0, which is labeled by 1.

xM 1

•
0

•
0

· · ·
•

•
0

0

xM−1

1

• 0

· · ·
•

•
0

0

xM−2

1

...

•
0

x1

1

•
0

•
0

· · ·
•

•
0

0

x0

1

0,1

Fig. 1. A representation of the regular tree tM,N by the graph GM,N

It is easy to verify that x0 is reachable from xM by exactly those paths whose
sequence of edge labels is in the set UM,N . So GM,N can be viewed as the minimal
DFA accepting the language UM,N where x0 is the only final state. Let tk,M,N

denote the tree that we obtain by unfolding the graph GM,N from the node xk.
We now fix an MPA A = (Q, {0, 1}, q0, Δ,Ω, P ) on {0, 1}-labeled trees and

take M = 2|Q| + 1 and N = |Q|+ 1. For these fixed parameters we simplify the
notation by letting tk = tk,M,N . In particular, tM = tM,M,N = tM,N .

We say that a subtree (of some tree t) that is isomorphic to tk for some k is
of type tk.

Our aim is to trick the automaton A to show that it cannot choose a unique
element from the set UM,N . This is done by modifying a run that marks an
element u of UM,N such that we obtain another run marking something different.

To understand the general idea, consider the path between xk+1 and xk for
some k. If we take a 1-edge before having reached the end of the 0-chain, i.e., if
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we take a dashed edge in the picture, then we reach a subtree of type tM . But
if we walk to the end of the 0-chain and then move to the right using a 1-edge,
then we arrive at a subtree of type tk. If we show that there is � < M such that
tM and t are A-equivalent, then this means that A has no means to identify
when it enters the part where taking a 1-edge leads to subtree of type t. We
then exploit this fact by pumping the run on this part of the tree such that we
obtain another run marking something different.

Lemma 1. There exists � < M such that tM ≡A t.

Proof. We consider for each tree t ∈ T{0,1} the function ft : Q → {a, r} with
ft(q) = a if there is an accepting run from q on t, and ft(q) = r otherwise.
By definition, two trees t, t′ are A-equivalent if ft = ft′ . There are at most 2|Q|

different such functions. By the choice of M there are 1 ≤ k1 < k2 ≤ M such
that tk1 ≡A tk2 . Let k = k2 − k1 and � = M − k.

We show that we can obtain t from tM by substituting some of the subtrees
of type tk2 in tM by subtrees of type tk1 . As we have seen that tk1 and tk2 are
A-equivalent, this suffices to show that tM and t are also A-equivalent.

We know that tM is obtained by unraveling the graph GM,N (Figure 1) from
xM . One way to obtain t is the following. We take a second copy of GM,N and
denote in this copy the vertices corresponding to x0, . . . , xM by x′0, . . . , x

′
M . Now

we redirect the edge leading to xk2 in the first copy to point to x′k1
in the second

copy. It is easy to verify that unravelling this new graph from xM (in the first
copy) yields the tree t. And furthermore, this shows that t can be obtained
by replacing some subtrees of type tk2 in tM by subtrees of type tk1 . Hence,
tM ≡A t. ��

The following lemma states that it is impossible for A to distinguish a unique
element of UM,N , i.e., it is not possible that T (A, UM,N) = {{u}} for some
u ∈ UM,N .

Lemma 2. If A marks an element of UM,N , then |T (A, UM,N)| > 1

Proof. Assume that that there is an accepting run ρ of A on tM = tM,N such
that Uρ = {u} with u ∈ UM,N . From ρ we construct another accepting run
marking a different set of nodes.

For 0 ≤ k ≤ M let uk denote the maximal prefix of u such that the subtree
at uk is of type tk. Let � be as in Lemma 1. For i ≥ 0 we let vi = u+10i and
v′i = vi1. Note that v0 = u+1 and that for 0 ≤ i < N the subtrees at v′i are of
type tM , and for i ≥ N the subtrees at v′i are of type t.

From Lemma 1 we know that t ≡A tM . Hence, for each accepting run ρq of
A from q on tM we can pick an accepting run ρ′q of A from q on t.

By the choice of N there are 0 ≤ j < j′ < N such that ρ(vj) = ρ(vj′ ). For
the moment, consider only the transitions taken in ρ on the sequence v0, v1, . . .,
i.e., on the infinite branch to the left starting from v0. We now simply repeat
the part of the run between vj and vj′ once. The effect is that some of the states
that were at a node v′i for i < N are pushed to nodes v′i for i ≥ N , i.e., the states
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are moved from subtrees of type tM to subtrees of type t. But for those states
q we can simply plug the runs ρ′q that we have chosen above.

More formally, we define the new run ρ′ of A on tM as follows. On the part
that is not in the subtree below v0 the run ρ′ corresponds to ρ. In the subtree
at v0 we make the following definitions, where h = j′ − j.

– For i < j′ let ρ′(vi) = ρ(vi) and ρ′(v′i) = ρ(v′i).
– For i ≥ j′ let ρ′(vi) = ρ(vi−h) and ρ′(v′i) = ρ(v′i−h).
– For the subtrees at v′i for i < j′ we take the subrun of ρ at v′i.
– For the subtrees at v′i for j′ ≤ i < N or i ≥ N + h we take the subrun of
ρ at v′i−h. This is justified because in these cases ρ′(v′i) = ρ(v′i−h) and the
subtrees at v′i and v′i−h are of the same type (both of type tM or both of
type t).

– For the subtrees at v′i for N ≤ i < N +h we take the runs ρ′qi
for qi = ρ′(v′i).

This is justified as follows. From qi = ρ′(v′i) and the definition of ρ′ we know
that ρ(v′i−h) = qi. Hence, there is an accepting run of A from qi on tM .
Thus, ρ′qi

as chosen above is an accepting run of A from qi on t.

This run ρ′ is accepting. Furthermore, the state marking u in the run ρ has
been moved to another subtree: There are n ≥ N and w ∈ {0, 1}∗ such that
u = u+10nw. In ρ′ the state marking u is at u′ = u+10n+hw. Hence, we have
constructed an accepting run marking a set different from {u}. ��

Of course, the statement is also true if we increase the value of M or N , e.g., if
we let N = M = 2|Q|+1. Thus, combining Theorem 2 and Lemma 2 we obtain
the following.

Theorem 3. Let φ∗(X,x) by an MSO-formula. There exists n ∈ N such that
for each u ∈ Un,n with t(Un,n, u) |= φ∗ there is u′ �= u with t(Un,n, u

′) |= φ∗.

A direct consequence is the theorem of Gurevich and Shelah. The advantage of
our proof is that we obtain a rather simple family of counter examples (the sets
UM,N).

An easy reduction allows us to extend the non-existence of an MSO-definable
choice function to the case where we allow a finite number of fixed predicates
as parameters. This result has already been shown in [LS98] in an even more
general context, but again relying on the methods employed in [GS83].

Corollary 1. Let P1, . . . , Pn ⊆ {0, 1}∗ be arbitrary predicates. There is no
MSO-formula φ∗(X1, . . . , Xn, X, x) such that for each nonempty set U there is
exactly one u ∈ U with t(P1, . . . , Pn, U, u) |= φ∗.

Proof. Assume that there are P1, . . . , Pn ⊆ {0, 1}∗ and φ∗(X1, . . . , Xn, X, x)
such that for each set U there is exactly one u ∈ U with t(P1, . . . , Pn, U, u) |= φ∗.
Then the formula

∃X1, . . . , Xn∀X∃x φ∗(X1, . . . , Xn, X, x) ∧ ∀y φ∗(X1, . . . , Xn, X, y)→ x = y
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is satisfiable. Hence, by the Rabin Basis Theorem (cf. [Tho97]), there are regular
predicates P1, . . . , Pn such that

t(P1, . . . , Pn) |= ∀X∃x φ∗(X1, . . . , Xn, X, x) ∧ ∀y φ∗(X1, . . . , Xn, X, y)→ x = y.

Regular predicates are MSO-definable, so let ψ1(X1), . . . , ψn(Xn) be formulas
defining P1, . . . , Pn, respectively. Then the formula φ′(X,x) defined as

∃X1, . . . , Xn φ
∗(X1, . . . , Xn, X, y) ∧

n∧

i=1

ψi(Xi)

describes a choice function, contradicting Theorem 3. ��

We point out here that this method only relies on the fact that the property of
being a choice function is MSO-definable. So this way of reducing the case with
parameters to the parameter free case can be applied whenever the properties of
the object under consideration are MSO-definable (at the end of the last section
we briefly mention another application of this technique).

3.2 Applications of the Result and Its Proof

We now discuss a few applications of the results presented so far in this section.
One immediate application concerns the non-definability of well-founded orders
over the infinite binary tree. We skip this subject here because it is treated in
detail in the next section.

The first application is about unambiguous tree automata. It is well known
that parity automata on infinite trees cannot be determinized. A weaker require-
ment than determinism is unambiguity. An automaton is called unambiguous if
for each object that it accepts there is exactly one accepting run. For example,
it is known that all regular languages of infinite words can be accepted by an
unambiguous Büchi automaton [CM03] (and deterministic Büchi automata do
not suffice to accept all regular ω-languages).

In an unpublished note [NW] Niwiński and Walukiewicz have shown that not
every parity tree automaton is equivalent to an unambiguous one.

Theorem 4 ([NW]). There is no unambiguous parity automaton accepting ex-
actly those {0, 1}-labeled trees in which at least one node is labeled 1.

The underlying idea is that the set of 1-labeled nodes represents the set from
which an element has to be chosen. Now we assume that A is a parity automaton
accepting the language used in Theorem 4. Using a game that is similar to the
emptiness game for tree automata (cf. [Tho97]) one can show that each accepting
run on a tree allows us to pick a unique 1-labeled node from the accepted tree
in an MSO-definable way. If A is unambiguous, then this means that for each
accepted tree there is a unique run and hence we can build an MSO-formula
picking exactly one 1-labeled node for each accepted tree. This yields an MSO-
definable choice function.
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In fact, the proof in [NW] yields a more general result: Assume that A is
a parity tree automaton (over the alphabet {0, 1}) that does not accept the
tree that is completely labeled by 0, i.e., the tree t(∅). Then there is a formula
φA(X,x) such that for each U ⊆ {0, 1}∗ for which there is a unique accepting
run of A on t(U), there is a unique element u ∈ U such that t(U, u) |= φA.

We can use this fact to show the following result.

Theorem 5. There is a regular language T ⊆ T{0,1} and a tree t ∈ T such that
there is no parity automaton accepting T that has a unique accepting run for t.

Proof. Consider the language T of trees with the property that each subtree
rooted at a node of the form 1∗0 contains a node labeled 1. The tree t is defined
to have all nodes of the form 1∗ labeled 0, and as the subtree rooted at the nodes
1n0 we plug the trees tn,n. As each tn,n contains a node labeled 1, we have t ∈ T .

Assume that there is parity automaton A accepting T that has a unique run
on t. Let q be a state of A that occurs at infinitely many nodes of the form 1∗0
in this run. Let A′ be the automaton A with initial state q. As A accepts T it
is clear that A′ does not accept the tree t(∅). Furthermore, as the run of A on
t is unique, there are infinitely many n such that A′ has a unique run on tn,n.
In combination with the result from [NW] that we discussed above, this gives a
contradiction to Theorem 3. ��

Another application of Theorem 1 concerns the definability of winning strategies
in infinite games. In the following we show that there exist game trees that do
not admit the definition of winning strategies in MSO.

A game tree is a tuple Γ = (U1, U2, Ω,W ) where U1, U2 ⊆ {0, 1}∗ form a
partition of {0, 1}∗, Ω : {0, 1}∗ → {0, . . . , n} maps the nodes to a finite set of
natural numbers, and W ⊆ {0, . . . , n}ω is the winning condition. A play of Γ
starts in ε. If the play is currently in u ∈ {0, 1}∗, then Player 1 or Player 2,
depending on whether u ∈ U1 or u ∈ U2, chooses b ∈ {0, 1} and the next game
position is ub. In the limit, such a play forms an infinite word in {0, 1}ω. This
infinite word corresponds to an infinite sequence over {0, . . . , n} by applying Ω to
each prefix. If this sequence is in W , then Player 1 wins, and otherwise Player 2
wins. We identify a play with the corresponding infinite word in {0, 1}ω.

A strategy for Player i is a function fi : Ui → {0, 1} and a play γ is played
according to fi if for each prefix u ∈ Ui of γ, Player 1 uses the strategy to
determine the next move, i.e., if ufi(u) is a prefix of γ. A strategy fi is winning
for Player i if each play γ that is played according to fi is winning for Player i.

If W ⊆ {0, . . . , n}ω is a regular ω-language (i.e. MSO-definable), then for each
game tree Γ = (U1, U2, Ω,W ) one of the players has a winning strategy ([BL69]).
If we represent the mapping Ω by sets Ω0, . . . , Ωn ⊆ {0, 1}∗, each Ωi correspond-
ing to the set of nodes mapped to i by Ω, the set of all trees t(U1, U2, Ω0, . . . , Ωn)
such that Player 1 has a winning strategy in Γ = (U1, U2, Ω,W ) is MSO-
definable.

This raises the question whether it is also possible to define winning strategies
in MSO. Note that we can represent a strategy for Player 1 by a subset of nodes
that contains ε, for each u ∈ U1 one successor u0 or u1, and for each u ∈ U2 both
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successors u0 and u1. The plays according to this strategy are exactly the infinite
paths contained in this set. If the winning condition is MSO-definable, then the
set of all winning strategies for Player 1 is also MSO-definable, i.e., there is a
formula φ(X1, X2, Y0, . . . , Yn, X) such that t(U1, U2, Ω0, . . . , Ωn, U) |= φ iff U is
a winning strategy for Player 1 (for the fixed winning condition W ).

We now look at the case where we want to select a single strategy, i.e., we
are interested in a formula that defines exactly one strategy. We show in the
following that there is even a fixed game tree on which no formula can define
a single winning strategy (this tree is similar to the one used in the proof of
Theorem 5).

Theorem 6. There is a game tree Γ = (U1, U2, Ω,W ) with an MSO-definable
winning condition W such that Player 1 has a winning strategy for Γ but there
is no MSO-definable winning strategy for Player 1.

Proof. Consider the following {0, 1, 2}-labeled tree t such that for each n ∈ N

the subtree at the node 1n0 is isomorphic to tn,n, and all nodes of the form 1n

are labeled by 2. The labeling of t defines the mapping Ω, i.e., Ω(u) = t(u). We
let U2 = {1n | n ∈ N} and U1 = {0, 1}∗ \U2. The winning condition W contains
all infinite words over {0, 1, 2} that do not contain 0 or that contain a 1.

Intuitively, Player 2 can move along the right branch of the game tree. If he
continues like this forever, then he loses because only nodes labeled 2 are visited
during the play. Otherwise, he moves to the left at some position, that is, to the
root of a subtree tn,n. Now Player 1 chooses all the following moves and wins
if a node labeled 1 is reached eventually. As each subtree tn,n contains a node
labeled 1 it is obvious that Player 1 has a winning strategy.

Assume that there is a winning strategy on t that is MSO-definable by a
formula φ(X) (as the game tree is fixed we omit the other free variables). This
formula is equivalent to a parity automaton A that accepts exactly one strategy
labeling of t, corresponding to the winning strategy defined by φ.

Using A we can construct a formula φ∗(X,x) that chooses exactly one u ∈
Un,n for each n ∈ N, contradicting Theorem 3. For this we fix an arbitrary
order on the states of A. For each n there is at least one state q of A such that
A accepts exactly one winning strategy on the subtree tn,n of t (namely the
state assumed at the root of the subtree tn,n in an accepting run for the unique
winning strategy on Γ that is accepted by A). The formula φ∗ picks the smallest
state q with this property and then chooses the element of Un,n that is described
by the unique winning strategy accepted by A from q on tn,n. It is not difficult
to verify that this is indeed possible in MSO. ��

One should note here that the tree constructed in the proof of Theorem 6 (and
also the one from Theorem 5) is not too complicated: it belongs to the Caucal
hierarchy1 ([Cau02]). This means that it can be obtained from a regular tree
by a finite number of applications of MSO-interpretations and unfoldings, or

1 In particular, as all graphs in the Caucal hierarchy have a decidable MSO-theory,
the tree constructed in the proof of Theorem 6 also has a decidable MSO-theory.
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equivalently, it is the transition graph of a higher-order pushdown automaton
([CW03]).

4 Order

A direct consequence of Theorem 1 is that there exists no MSO-definable well-
founded order on the nodes of the infinite binary tree. In fact from an MSO-
formula ϕ≤(x, y) defining a well-founded order on the nodes of the infinite binary
tree, a choice function ϕchoice(x,X) := x ∈ X ∧ ∀y, y ∈ X → x ≤ y is easily
defined by taking the smallest element of the set. In this section, we prove the
following stronger result.

Theorem 7. The MSO-theory of the full-binary tree together with any well-
founded order is undecidable.

As the infinite binary tree has a decidable MSO-theory [Rab69], the existence
of an MSO-definable well-order would contradict Theorem 7. In the particular
case of tllex, the infinite binary tree with length-lexicographic order (formally
defined below), this result is well-known [BG00]. We show that tllex can be
MSO-interpreted in the infinite binary tree with any well-founded order.

Theorem 8. There exists an MSO-interpretation I such that for every well-
ordered infinite binary tree t, I(t) is isomorphic to tllex

As MSO-interpretations preserve the decidability of MSO, Theorem 7 follows
from the undecidability of the MSO-theory of tllex. The rest of this section is
dedicated to the proof of Theorem 8.

4.1 Well-Ordered Trees

We consider structures over the binary signature S = {E0, E1,≤}. We say that
an S-structure t is a well-ordered (infinite binary) tree if it is isomorphic to a well-
ordered tree with universe {0, 1}∗ where E0 and E1 are respectively interpreted
as {(u, u0) | u ∈ {0, 1}∗} and {(u, u1) | u ∈ {0, 1}∗}, and ≤ is interpreted as
a well-founded order on {0, 1}∗. Such an S-structure will be referred to as a
canonical well-ordered tree. Up to isomorphism, a well-ordered tree is entirely
characterized by the well-founded order on the set of words over {0, 1}.

For example, consider the length-lexicographic order ≤llex defined by: u ≤llex

v ⇔ |u| < |v| or (|u| = |v| andu ≤lex v) where ≤lex refers to the standard
lexicographic order. This order is well-founded and we write tllex the canonical
well-ordered tree associated to ≤llex. The key property of tllex is that it is MSO-
definable (up to isomorphism) in the class of well-ordered trees2.

Proposition 1. There exists an MSO-formula ϕllex such that for every well-
ordered tree t, t |= ϕllex ⇔ t ∼= tllex.

2 The class of well-ordered trees is itself MSO-definable in the class of S-structures.
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Proof. Consider the MSO-formula ϕllex over S expressing that: the root ε is
the smallest element for ≤, for all nodes u ∈ {0, 1}∗ and v ∈ 1∗, the successor
of the node u0v is the smallest element for the prefix order of the set u10∗ \
{Succ(u0v′) | v′ � v} where Succ(u) the successor of u for the order ≤ and for
all nodes u ∈ 1∗, the successor of u is the smallest element for the prefix order
of the set 0+ \ {Succ(u′) | u′ � u}.

It is easy to see that tllex satisfies the formula ϕllex. It remains to show that
for every well-ordered tree t, if t satisfies ϕllex then t is isomorphic to tllex.

Let t be a well-founded tree satisfying ϕllex. We can assume w.l.o.g that t is
a canonical well-ordered tree. It is therefore enough to show that t = tllex.

For all nodes u ∈ {0, 1}, we write Succllex(u) for the successor of u for the
order ≤llex. As by condition 1 the root ε of t is the minimal element of ≤, it is
enough to establish that for all u ∈ {0, 1}∗, Succ(u) = Succllex(u).

Assume by contradiction that this property is not satisfied. Let u0 be the
smallest node u for the order ≤llex such that Succ(u) �= Succllex(u) We distin-
guish two cases depending whether u0 contains an occurrence of 0 or not.

If u0 contains an occurrence of 0 then u0 can be uniquely written as u0v with
u ∈ {0, 1}∗ and v ∈ 1∗. The successor of u0 in the order ≤llex is Succllex(u0) =
u10|v|. By condition 2 of the definition of ϕllex, Succ(u0) is the smallest element
for the prefix order of the set u10∗ \ {Succ(u0v′) | v′ � v}.

By minimality (for the order ≤llex) of u0, we have for all v′ � v that
Succ(u0v′) = Succllex(u0v′) = u10|v

′|. Therefore, Succ(u0) is the minimal el-
ement for the prefix order of the set u10∗ \ {u10|v

′| | v′ � v}. This implies that
Succ(u0) = u10|v| = Succllex(u0) which contradicts the definition of u0.

If u0 does not contain an occurrence of 0 then u0 ∈ 1∗. The successor of u0

for the order ≤llex is 0|u0|+1. By condition 3 of the definition of ϕllex, Succ(u0)
is the smallest element for the prefix order of the set 0+ \ {Succ(u) | u � u0}.

By minimality (for the order≤llex) of u0, we have for all u � u0 that Succ(u) =
Succllex(u) = 0|u|+1. Therefore, Succ(u0) is the minimal element for the prefix
order of the set 0+ \ {0|u|+1 | u � u0}. This implies that Succ(u0) = 0|u0|+1 =
Succllex(u0) which contradicts the choice of u0. ��

4.2 Interpreting tllex

We now define the notion of induced well-ordered tree. Consider a canonical
well-ordered tree t and a set U ⊆ {0, 1}∗ of nodes which is closed under greatest
common prefix (i.e. u ∈ U ∧ v ∈ V → u ∧ v ∈ U) and such that for all u ∈ U ,
u0{0, 1}∗ ∩ U �= ∅ and u1{0, 1}∗ ∩ U �= ∅. The well-ordered tree t|U induced
by U in t has universe U and its signature is interpreted as Et|U

i = {(u, v) ∈
U2 | v is the smallest element for � of ui{0, 1}∗ ∩ U} for i ∈ {0, 1} and ≤t|U =
{(u, v) ∈ U2 | u ≤t v}. It is easy to check that t|U is a well-ordered tree.

Lemma 3. For every MSO-formula ϕ over S, there exists a formula ϕ∗(X)
such that for every canonical well-ordered tree t and set U , t |= ϕ∗[U ] if and
only if the set U induces a well-ordered tree t|U on t and t|U |= ϕ.



MSO on the Infinite Binary Tree: Choice and Order 173

Proof. Consider an MSO-formula ϕ over S. Let ϕind(X) be an S-formula ex-
pressing that X satisfies the conditions to induce a full binary tree and let
ϕ′(X) be the formula obtained from ϕ by relativizing the quantifications to X
and by replacing Ei(x, y) with y ∈ xi{0, 1}∗∩X∧∀z, z ∈ xi{0, 1}∗∩X → y � z
for i ∈ {0, 1}. It is easy to check that the formula ϕ∗(X) := ϕind(X) ∧ ϕ′(X)
satisfies the property stated in the lemma. ��

We first show that for every canonical well-ordered tree t, there exists a subset
U ⊆ {0, 1}∗ such that t|U is isomorphic to tllex. To construct such a set we need
the following technical definition. A node u ∈ {0, 1}∗ of a canonical well-ordered
tree t is mixed if for all v � u, v′ � u ∈ {0, 1}∗ there exists a w ∈ {0, 1}∗ such
that v < v′w.

Lemma 4. For every canonical well-ordered tree t, there exists a mixed node.

Proof. Let t be a canonical well-ordered tree. Assume by contradiction that t
does not have any mixed nodes. We construct by induction two sequences of
nodes (ui)i∈N and (vi)i∈N such that for all i ≥ 0, ui > ui+1 and ui ≥ viw for all
w ∈ {0, 1}∗.

As ε is not mixed there exist two nodes u and v such that u ≥ vw for all
w ∈ {0, 1}∗. We take u0 = u and to ensure that u0 > v0w for all w ∈ {0, 1}∗, we
pick as v0 an element of v{0, 1}∗ \ {u′ | u′ � u0}.

Assume that both sequences are constructed up to rank i ≥ 0, we define ui+1

and vi+1. As vi is not mixed, there exists two nodes u � vi and v � vi such
that u ≥ vw for all w ∈ {0, 1}∗. We take ui+1 equal to u and vi+1 an element of
v{0, 1}∗ \ {u′ | u′ � ui+1} thus ensuring that for all w ∈ {0, 1}∗, ui+1 > vi+1w.
By induction hypothesis, we have that ui > ui+1.

The sequence (ui)i∈N is an infinite strictly decreasing sequence which contra-
dicts the fact that ≤ is a well-founded order. ��

Proposition 2. For every canonical well-ordered tree t, there exists a set of
nodes U inducing a well-ordered tree t|U isomorphic to tllex.

Proof. Let t be a canonical well-ordered tree. We construct a sequence of nodes
(uw)w∈{0,1}∗ indexed by the set of words over {0, 1}∗ such that: for all w,w′ ∈
{0, 1}∗, w ≤llex w

′ implies uw ≤ uw′ , and for all w ∈ {0, 1}∗ and i ∈ {0, 1},
uwi ∈ uwi{0, 1}∗.

If we assume that this sequence has been constructed and we take U :=
{uw | w ∈ {0, 1}∗}, it is easy to check that U is closed by greatest common
prefix and hence U induces a full binary tree on t. Furthermore the mapping
from {0, 1}∗ to U associating w to uw is an isomorphism from tllex to t|U .

We now construct the sequence (uw)w∈{0,1}∗ by induction on the length-
lexicographic order ≤llex. By Lemma 4, the tree t has a mixed node. We take uε
to be a mixed node of t. Assume that the sequence has been constructed up to
w0 ∈ {0, 1}∗, we construct the element uw1 where w1 is the successor of w0 for
the length-lexicographic order. From the definition of ≤llex, it follows that the
element w1 is equal to w2i for some i ∈ {0, 1} and w2 ≤llex w0. As uε is mixed,
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there exists a v such that uw0 < uw2 iv. We take uw1 = uw2iv. By induction
hypothesis, for all w ≤llex w1, we have uw ≤ uw1 . ��

Note that Theorem 7 can already be derived from the above proposition. For
every formula ϕ over S, consider the formula ϕ∗(X) obtained from ϕ by Lemma 3
and ϕ∗llex(X) obtained from the formula ϕllex of Proposition 1. By Proposition 2,
for every well-ordered tree t, t |= ∃X, ϕ∗llex(X)∧ϕ∗(X) if and only if tllex |= ϕ. As
the formula ϕ∗(X) can be effectively constructed from the formula ϕ, it follows
that the MSO-theory of tllex is recursive in the MSO-theory of any well-ordered
tree t.

We now strengthen the result of Proposition 2 by showing that in every well-
ordered tree t there exists an MSO-definable set of nodes inducing a well-ordered
tree isomorphic to tllex.

Proposition 3. For every canonical well-ordered tree, there exists an MSO-
definable set of nodes U0 inducing a well-ordered tree isomorphic tllex.

Proof. Consider the following MSO-formula ψ(X) defined by:

ϕ∗llex(X) ∧ ∀x ∈ X, ∀Z, (X<x < Z ∧ ϕ∗llex(X<x ∪ Z)) → x ≤ minZ

where X<x = {x′ ∈ X | x′ < x}, X < Y stands for ∀x ∈ X, ∀y ∈ Y, x < y and
minZ designates the smallest element of the set Z for the order ≤.

Let t be a well-ordered tree. We claim that t |= ∃=1X,ψ(X) (where ∃=1

stands for there exists a unique), which establishes the MSO-definability of a set
of nodes U0 inducing on t a well-ordered tree isomorphic to tllex.

The first step is to show that t |= ∃X,ψ(X). For this, we define a sequence
of nodes (uw)w∈{0,1}∗ of t by induction on the order ≤llex. The node uε is the
smallest element of {minZ | Z ⊆ {0, 1}∗∧t |= ϕ∗llex[Z]}. Proposition 2 guarantees
that this set is not empty. Assume that the sequence has been constructed up
to the element uw0 . We define uw1 where w1 is the successor of w0 for the order
≤llex. We take uw1 as the smallest element for ≤ of the set {minZ | w0 <
Z ∧ ϕ∗llex({uw | w ≤ w0} ∪ Z})}. This set is not empty by definition of uw0 .

Consider the set U0 := {uw | w ∈ {0, 1}∗}. It is straightforward to show that
U0 induces a well-ordered tree on t isomorphic to tllex. It follows that t |= ψ[U0].
Hence t |= ∃X,ψ(X).

We now show that t |= ∃=1X,ψ(X). It is enough to show that for all U1 ⊆
{0, 1}∗, t |= ψ[U1] implies U1 = U0. For all u ∈ U0 (resp. u ∈ U1), we write
Succ0(u) (resp. Succ1(u)) the smallest element of U0 (resp. of U1) strictly greater
than u.

By induction on w for the order ≤llex, it is easy to show that uw ∈ U1 for
all w ∈ {0, 1} and hence U0 ⊆ U1. Assume by contradiction that U0 � U1. Let
u be the smallest element of U1 \ U0. It is easy to see that both sets have the
same minimal element and therefore u �= minU1. As U1 induces a well-ordered
tree isomorphic to tllex and since u �= minU1, there exists v ∈ U1 such that
u = Succ1(v). By minimality of u, v belongs to U0 and for all v′ ≤ v, v′ ∈ U1

implies v′ ∈ U0. Furthermore Succ0(v) which belongs to U0 is different from
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Succ1(v) which belongs to U1. Remarking that U1 is equal to (U1)<u∪ (U1)≥u =
(U0)≤v ∪ (U1)≥uand using the fact that t |= ψ[U0], we obtain that Succ0(v) ≤ u.
Similarly U0 is equal to (U0)<Succ0(v) ∪ (U0)≥Succ0(v) = (U1)≤v ∪ (U0)≥Succ0(v)

and using the fact that t |= ψ[U1], we obtain that u = Succ1(v) ≤ Succ0(v). It
follows that u = Succ0(v) which brings the contradiction. ��

Theorem 8 directly follows from Proposition 3. An immediate consequence of this
result is that the infinite binary tree cannot be MSO-interpreted in (ω, succ),
i.e., the natural numbers with successor. As a well-founded order can be de-
fined in MSO on (ω, succ), one could interpret the full binary tree with a well-
founded order. From Theorem 7, this structure has an undecidable MSO-theory
which would contradict the fact that the MSO-theory of (ω, succ) is decidable
[Büc62]. More generally, we obtain that the infinite binary tree cannot be MSO-
interpreted in any structure having both a decidable MSO-theory and an MSO-
definable well-founded order. Combining the result that the infinite binary tree
cannot be interpreted in (ω, succ) with the same technique as in the proof of
Corollary 1, we can also show that the infinite binary tree cannot be interpreted
in (ω, succ, P1, . . . , Pn) for arbitrary fixed predicates Pi.
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Abstract. This paper considers logical formulas built on the single bi-
nary connector of implication and a finite number of variables. When the
number of variables becomes large, we prove the following quantitative
results: asymptotically, all classical tautologies are simple tautologies. It
follows that asymptotically, all classical tautologies are intuitionistic.
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alytic combinatorics.

1 Introduction

We investigate the proportion between the number of formulas of size n that
are tautologies against the number of all formulas of size n for propositional
formulas built on implication and k variables. Our interest lays in proving the
existence and computing the limit of that fraction when n grows to infinity.
This limit can be called the density of truth for the logic with k variables.
After isolating the special class of formulas called simple tautologies, of density
1/k + O(1/k2), we exhibit some families of non-tautologies whose cumulated
density is 1 − 1/k + O(1/k2). It follows that the fraction of tautologies, for
large k, is very close to the lower bound determined by simple tautologies. A
consequence is that classical and intuitionistic logics are close to each other when
the number of propositional variables is large.

This work is a part of the research in which the likelihood of truth is esti-
mated for the propositional logic with a restricted number of variables. We refer
to Gardy [4] for a survey on probability distribution on Boolean functions in-
duced by random Boolean expressions. For the purely implicational logic of one
variable, and at the same time simple type systems, the exact value of the density
of truth was computed in the paper of Moczurad, Tyszkiewicz and Zaionc [9].
The classical logic of one variable and the two connectors implication and nega-
tion was studied in Zaionc [12]. Over the same language, the exact proportion
between intuitionistic and classical logics has been determined in Kostrzycka and
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Zaionc [6]. Some variants involving formulas with other logical connectives have
also been considered. The case of and/or connectors received much attention
– see Lefmann and Savický [7], Chauvin, Flajolet, Gardy and Gittenberger [1]
and Gardy and Woods [5]. Matecki [8] considered the case of the equivalence
connector.

We next give a couple of definitions. Section 2 briefly presents the use of enu-
meration via generating functions and analytic combinatorics, which constitutes
the main tool we shall use. The different classes of formulas we consider are
described in Section 3, while Section 4 is devoted to the enumeration of these
classes and the computation of their densities.

Definition 1. Let {x1, x2, . . . , xk} a set of Boolean propositional variables. We
define Fk to be the set of all Boolean expressions (or formulas) over these vari-
ables and the implication connector →. Boolean expressions are defined recur-
sively from Boolean variables and the implication connector by the following
grammar: F := x1 | . . . | xk | (F → F ).

Obviously the expressions can be represented by binary planar trees, suitably
labelled: their internal nodes are labelled by the connector→ and their leaves by
some Boolean variables. By ‖φ‖ we mean the size of expression φ which we define
as the total number of occurrences of propositional variables in the expression
(or leaves in the tree representation of the expression). Parentheses which are
sometimes necessary and the implication sign itself are not included in the size
of expression. Formally,

‖xi‖ = 1 and ‖φ→ ψ‖ = ‖φ‖ + ‖ψ‖ .

We denote by Fn
k the set of expressions of Fk of size n.

We can now define the canonical form of an expression. Let T be an expres-
sion. It can be decomposed with respect to its right branch – see Figure 1. Hence
it is of the form

A1 → (A2 → (. . .→ (Ap → r(T )) . . .));

we shall write it
T = A1, . . . , Ap → r(T ).

The formulas Ai are called the premises of T and r(T ), the rightmost leaf of the
tree, is called the goal of T . Of course the expression T = A1 → (A2 → (. . . →
(Ap → r(T )) . . .)) is logically equivalent with A1 ∨A2 ∨ . . . ∨Ap ∨ r(T ), where
Ai stands for negation of Ai.

For a subset A ⊆ Fk we define the density μ(A) as:

μ(A) = lim
n→∞

|{t ∈ A : ‖t‖ = n}|
|{t ∈ Fk : ‖t‖ = n}|

if the limit exists. The number μ(A) if it exists is an asymptotic probability (with
respect to uniform distribution) of finding a formula from the class A among all
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→

A1 →

A2 →

Ap r(T )

Fig. 1. The canonical decomposition of a tree

formulas from Fk; it can be interpreted as the asymptotic density of the set A
in the set Fk. It can be seen immediately that the density μ is finitely additive
so if A and B are disjoint classes of formulas such that μ(A) and μ(B) exist then
μ(A ∪ B) also exists and μ(A ∪ B) = μ(A) + μ(B).

2 Generating Functions

In this paper we investigate the proportion between the number of formulas
of size n that are tautologies against the number of all formulas of size n for
propositional formulas of the language Fk. Our interest lays in finding the limit
of that fraction when n grows to infinity. For this purpose analytic combinatorics
has developed an extremely powerful tool, in the form of generating series and
generating functions. A nice exposition of the method can be found in Wilf [11],
or in Flajolet, Sedgewick [2,3]; see also Gardy [4, 5.2] for a systematic application
of these techniques to densities for Boolean functions. As the reader may now
expect, while working with propositional logic we will be often concerned with
complex analysis, analytic functions and their singularities.

Let A = (A0, A1, A2, . . .) be a sequence of real numbers. The ordinary gener-
ating series for A is the formal power series

∑∞
n=0Anz

n. And, of course, formal
power series are in one-to-one correspondence to sequences. However, considering
z as a complex variable, this series, as known from the theory of analytic func-
tions, converges uniformly to a function fA(z) in some open disc {z ∈ C : |z| < R}
of maximal diameter, and R � 0 is called its radius of convergence. So with the
sequence A we can associate a complex function fA(z), called the ordinary gen-
erating function for A, defined in a neighbourhood of 0. This correspondence
is one-to-one again (unless R = 0), since, as it is well known from the theory
of analytic functions, the expansion of a complex function f(z), analytic in a
neighbourhood of z0, into a power series

∑∞
n=0An(z − z0)n is unique. For F a

function in z analytic in a neighbourhood of 0, we shall denote by [zn]F the
coefficient of zn in the series expansion of F .

Many questions concerning the asymptotic behavior of A can be efficiently
resolved by analyzing the behavior of fA at the complex circle |z| = R. This is
the approach we take to determine the asymptotic fraction of tautologies and
many other classes of formulas among all formulas of a given size.
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Each set of expressions is defined recursively from simpler sets; we build the
generating functions enumerating the elements of these sets by size (number
of leaves), using univariate functions with the variable z marking the leaves,
and obtain a generating function φ(z) for the set under consideration. We then
extract the coefficient [zn]φ(z) and obtain the density of the set under study as
limn→∞[zn]φ(z)/[zn]fk(z), fk(z) being the generating function for the set of all
expressions of Fk.

We now recall three constructions on classes of combinatorial objects, and how
they translate into ordinary generating functions. Let A and B be two classes
of combinatorial objects, with generating functions fA(z) and fB(z). The first
construction, called combinatorial sum, captures the union of disjoint sets. The
generating function of the combinatorial sum of A and B is fA(z) + fB(z). The
second construction called cartesian product forms all possible ordered pairs of
objects from A and B – the size of (a, b) being the sum of the size of a and b. The
generating function enumerating this class is fA(z)fB(z). Finally the sequence
construction builds all sequences of objects from A. Again the size of a sequence
of objects is the sum of their size. The generating function enumerating this class
is 1/(1− fA(z)).

The Catalan number Cn is defined as the number of full binary trees (i.e.
every vertex has either two children or no children) with n internal nodes and
n + 1 leaves. Basic results about Catalan numbers and its generating function
are summarized below.

Proposition 1. Let C(z) be the generating function enumerating full binary
trees with respect to the number of leaves; it satisfies:

C(z) = z + C(z)2,

and is equal to:

C(z) =
1−

√
1− 4z
2

.

Its coefficients are

[zn+1]C(z) = Cn =
1

n+ 1

(
2n
n

)
.

It follows that the number of Boolean expressions of size n over k variables is
knCn−1, since such an expression is obtained by labelling the n leaves with any
of the variables x1, . . . , xk.

As an example, in the rest of this section we show how we can obtain the
generating function fk(z) for the set of all the expressions built on k variables
and the implication connector, before defining several subsets of expressions in
Section 3 and computing their generating functions in Section 4.

Proposition 2. The generating function enumerating the set Fk of all Boolean
expressions over k variables is

fk(z) = kz C(kz) =
1−

√
1− 4kz
2

.



Classical and Intuitionistic Logic Are Asymptotically Identical 181

Proof. Using the canonical form of an expression, we know that a tree is a
(possibly empty) sequence of trees, followed by a leaf – see Figure 1. The function
fk(z) thus satisfies

fk(z) =
kz

1− fk(z)
, ie fk(z) = kz + fk(z)2.

Solving the equation and choosing between the two possibilities (fk(0) = 0) gives
the solution. ��

Proposition 2 gives another way to obtain the number of expressions of size n by
extracting the coefficients from fk(z). In the rest of the paper, fk is abbreviated
to f .

Finally, the following basic computations will be used intensively in the rest
of the paper. First notice that for all j,

lim
i→∞

Ci

Ci+j
=

1
4j
.

Furthermore,

[zn]
√

1− 4kz = (4k)n[zn]
√

1− z = −2knCn−1.

3 Tautologies and Non-tautologies

Let us now define several classes of expressions, all of them being special kinds
of either tautologies or non-tautologies.

Definition 2. We define the following subsets of Fk:

– Clk is the set of all classical tautologies i.e. formulas which are true under
any valuation.

– Intk is the set of all intuitionistic tautologies i.e. formulas for which there
are closed lambda terms (constructive proofs) of type identical with the for-
mula.

– Piercek is the set of all Pierce expressions i.e. classical tautologies which
are not intuitionistic ones.

– SNk is the set of simple expressions which are not classical tautologies,
defined as

T = A1, . . . , Ap → r(T ),

such that for all i, r(Ai) �= r(T ).

– Gk is the set of simple tautologies i.e. expressions that can be written as

T = A1, . . . , Ap → r(T ),

where there exists i such that Ai is a variable equal to r(T ).
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– LNk is the set of less simple expressions that are not classical tautologies,
defined as the set of trees of the form

T = B1, . . . , Bi−1, C,Bi, . . . , Bp → r(T ),

such that
C = C1, C2, . . . , Cq → r(C),

where r(C) = r(T ), q � 1, and

C1 = D1, D2, . . . , Ds → r(D),

where r(D) �= r(T ), s � 0, and the following holds: for all j, r(Bj) �∈
{r(T ), r(D)} and r(Dj) �∈ {r(T ), r(D)}.

Adding a superscript n to the sets we have just defined means that we consider
only expressions of size exactly n (the tree that represents the expression has n
leaves).

Note that simple tautologies are instuitionistic ones since one of the premises is
equal to the goal. The obvious relations between classes above are the following.

SNk ∪ LNk ⊂ Fk \ Clk
SNk ∩ LNk = ∅

Gk � Intk � Clk � Fk \ (SNk ∪ LNk)
Piercek = Clk \ Intk

Our aim in the rest of this paper will be to compute the densities of these sets.
Results are summed up in Figure 2; proofs are given in the following section. As
a consequence, we obtain the following result, giving a positive answer to the
conjecture of [9, page 593].

Theorem 1. Asymptotically (for a large number k of Boolean variables), all
tautologies are simple i.e.

lim
k→∞

μ(Gk)
μ(Clk)

= 1.

Proof. We know that for any k the density of classical logic with k propositional
variables μ(Clk) exists. Such a result is obtained by standard technics in analysis
of algorithms; we skip the details and refer the interested reader to Flajolet and
Sedgewick [3] or to [4].

Since Gk ⊂ Clk ⊂ Fk \ (SNk ∪ LNk), and from the densities obtained in
propositions 3, 4 and 5, we have

4k + 1
(2k + 1)2

= μ(Gk) � μ(Clk) � 1−
(
k(k − 1)
(k + 1)2

+
2k(k − 1)2

(k + 2)4

)
.

The upper and lower bounds are asymptotically identical, equal to 1/k+O(1/k2).
��
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Using the very same argument we can also obtain a result relating the asymptotic
behavior of classical versus intuitionistic logics.

Corollary 1. Asymptotically (for a large number k of Boolean variables), clas-
sical tautologies are intuitionistic i.e.

lim
k→∞

μ−(Intk)
μ(Clk)

= 1

where μ−(Intk) = lim infn→∞
|Intnk |
|Fn

k |
.

Proof. From the fact that Gk ⊂ Intk ⊂ Clk, we have

μ(Gk) = lim
n→∞

|Gn
k |

|Fn
k |

� lim inf
n→∞

|Intnk |
|Fn

k |
� lim sup

n→∞

|Intnk |
|Fn

k |
� lim

n→∞

|Clnk |
|Fn

k |
= μ(Clk).

The result follows from the fact that both μ(Gk) and μ(Clk) are equal to 1/k+
O(1/k2). ��

This result also allows to estimate the size of the difference between classical and
intuitionistic logics (so called Pierce formulas). Details are given in section 4.4.

4 Enumeration of Classes

We now compute the densities of the three sets SNk, Gk and LNk. The compu-
tation of these densities is done in a systematic way. First each set of expressions
is defined recursively from simpler sets; this allows to build the generating func-
tions enumerating the elements of these sets by their size (the number of leaves),
and to obtain a generating function φ for the considered class. Then we ex-
tract the coefficient [zn]φ(z) and obtain the density of the set under study as
limn→∞[zn]φ(z)/[zn]f(z) – we recall that f denotes the generating function of
all formulas.

The last part deals with Pierce formulas. Although we don’t know if this set
of formulas has a density, we give some bounds and show that their order is
Θ(1/k2).

4.1 Simple Non-tautologies

We first consider the set SNk of simple expressions that are non-tautologies. If
T ∈ SNk, then T is of the kind

T = A1, . . . , Ap → r(T ),

such that for all i, r(Ai) �= r(T ). We first check that this is indeed not a
tautology. Just consider the following valuation of propositional variables. Define
r(T ) as false and all r(Ai) as true. Under this valuation the whole expression is
false. Let us next compute the generating function SN(z) associated to SNk.



184 H. Fournier et al.

Fig. 2. Densities of simple tautologies, simple and less simple non-tautologies

First fix a Boolean variable α and consider all trees with r(T ) = α. Such a
tree is a simple non-tautology if and only if all its premises Ai satisfy r(Ai) �= α.
The generating function of all possible premises is k−1

k f(z). As a simple non-
tautology with goal α is a sequence of such premises followed by the leaf α, the
generating function SNα of simple non-tautologies with goal α is equal to

SNα(z) =
z

1− k−1
k f(z)

.

Since α can be chosen arbitrarily among the k literals, we have SN(z) = k ·
SNα(z), which gives

SN(z) =
kz

1− k−1
k f(z)

.

Proposition 3. The density of simple non-tautologies exists and is equal to

μ(SNk) =
k(k − 1)
(k + 1)2

.
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For large k, this density is 1− 3/k +O(1/k2).

Proof. This result was already given in the paper [9, page 586], with a different
proof. We give an alternative proof here. If it exists, the density is given by the
following formula:

μ(SNk) = lim
n→∞

|SNn
k |

|Fn
k |

= lim
n→∞

[zn]SN(z)
[zn]f(z)

.

After modifying the denominator of the generating function SN(z), we obtain :

SN(z) =
k(k + 1)z + kz(1− k)

√
1− 4kz

2(1 + z(k − 1)2)
.

The denominator of the rational fraction SN(z) has a unique zero ρ = −1/(k−
1)2. However this value also cancels the numerator of the expression since

k(k + 1)ρ+ k(1− k)ρ
√

(−ρ)((k − 1)2 + 4k) = 0.

So ρ is not an actual pole. Hence the only singularity that matters asymptotically
is z = 1/4k. Putting aside the error term, we obtain

[zn]SN(z) = −2k2(k − 1)
(k + 1)2

[zn−1]
√

1− 4kz =
4k(k − 1)
(k + 1)2

knCn−2.

This gives

μ(SNk) = lim
n→∞

|SNn
k |

|Fn
k |

=
4k(k − 1)
(k + 1)2

lim
n→∞

Cn−2

Cn−1
=
k(k − 1)
(k + 1)2

,

hence the density of SNk exists and is equal to k(k − 1)/(k + 1)2. ��

4.2 Simple Tautologies

If T is a simple tautology, then T can be written as

T = A1, . . . , Ap → r(T ),

with one of the Ai equal to r(T ). It is straightforward to check that T is indeed
a tautology since it is logically equivalent with

T ∼ A1 ∨ . . . ∨ r(T ) ∨ . . . ∨Ap ∨ r(T ).

which obviously evaluates to true.
Let us now compute the generating function of simple tautologies. A tree

T is not a simple tautology if and only if all its premises are different from
r(T ) – see figure 3. The generating function for Fk \ Gk is therefore equal to
kz/(1− (f(z)− z)). It follows that the generating function of Gk is

G(z) = f(z)− kz

1 + z − f(z)
.
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→

A1 = r(T ) →

A2 = r(T ) →

Ap = r(T ) r(T )

Fig. 3. Trees that are not simple tautologies

Proposition 4. The limit density of simple tautologies on k variables exists and
is equal to

μ(Gk) =
4k + 1

(2k + 1)2
.

For large k, this density is asymptotically equal to 1/k − 3/4k2 +O(1/k3).

Proof. Another, earlier proof of this result is given in the paper [9, page 584].
We give here an alternative proof. The generating function G(z) can be written
as

G(z) =
P (z)− (1 + z)

√
1− 4kz

2(1 + k + z)
,

with P (z) a suitable polynomial. Let ρ be its pole; ρ = −1 − k. But ρ is larger
that the algebraic singularity 1/(4k); hence 1/(4k) is the dominant singularity
of G(z). Finally we obtain (up to the error term)

[zn]G(z) = − 2k
(2k + 1)2

[zn]
√

1− 4kz − 2k
(2k + 1)2

[zn−1]
√

1− 4kz

=
4k

(2k + 1)2
knCn−1 +

4
(2k + 1)2

knCn−2.

Let us prove the existence and compute the value of the density of Gn
k .

μ(Gk) = lim
n→∞

|Gn
k |

|Fn
k |

= lim
n→∞

( 4k
(2k + 1)2

knCn−1 +
4

(2k + 1)2
knCn−2

)
· 1
knCn−1

=
4k

(2k + 1)2
+

4
(2k + 1)2

· lim
n→∞

Cn−2

Cn−1
.

Hence μ(Gk) does exist, and is equal to (4k + 1)/(2k + 1)2. ��

4.3 Less Simple Non-tautologies

In the family SNk of simple non-tautologies, we did not allow any premise to
have a rightmost leaf equal to r(T ). But here we will consider trees with exactly
one such premise.
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We recall that a tree T defines a less simple non-tautology if it is of the kind

T = B1, . . . , Bi−1, C,Bi, . . . , Bp → r(T ),

where C = C1, . . . , Cq → r(C), with r(C) = r(T ), q � 1, and C1 = D1, D2, . . . ,
Ds → r(D) is such that r(D) �= r(T ), s � 0, and the following holds: for all j,
r(Bj) �∈ {r(T ), r(D)} and r(Dj) �∈ {r(T ), r(D)}. See figure 4 for the general
form of the tree and figure 5 for the subtree C; in these figures, if a subtree A is
underlined, it means that it is subject to the constraint r(A) �∈ {r(T ), r(D)}.

→

B1 →

Bi−1 →

C →

Bi →

Bp r(T )

Fig. 4. Less simple non-tautologies

→

→

D1 →

Ds r(D) = r(T )

→

C2 →

Cq r(C) = r(T )

Fig. 5. Subtree C of a less simple non-tautology

Let us first prove that such a tree is not a tautology. For this, consider the
assignement where all the variables are true, except r(T ) and r(D) which are
false; under this assignement, the whole expression evaluates to false – to check
this, just notice that the function computed by such a tree can be developed
into a conjuction of terms, one of them being

∨
i r(Bi)∨ r(T )∨

∨
i r(Di)∨ r(D).

We shall now compute the generating function of LNk. Let us fix α and β
two distinct variables. We shall first compute ψ(z) the generating functions of
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all trees LNα,β
k from LNk such that r(T ) = α and r(D) = β. By symmetry, ψ(z)

is independent of the choice of α and β.
Let b(z) be the generating function of all trees T ∈ Fk such that r(T ) �∈ {α, β}.

Of course b(z) = (k−2)/k·f(z). This generating function enumerates the possible
subtrees Bj but also the possible subtrees Dj. Thus, the generating function of
all possible trees for D is d(z) = z/(1− b(z)), since it is a sequence of trees Dj

such that r(Dj) �∈ {α, β}, followed by the leaf β. In the same way, the generating
function for the subtree C is c(z) = d(z) · 1/(1 − f(z)) · z. Note that a tree of
LNα,β

k is built as a sequence of trees Bj with r(Bj) �∈ {α, β}, then a subtree C as
described as above, another sequence of trees Bj with r(Bj) �∈ {α, β}, followed
by the leaf α. Moreover, this decomposition is unique. The generating function
for LNα,β

k is thus equal to

ψ(z) =
1

1− b(z)c(z)
1

1− b(z)z.

Now it can be easily seen that LNk is the disjoint union of the LNα,β
k . Indeed,

given a tree T ∈ LNk, then α is equal to r(T ) and the premise C of T is uniquely
determined because it is the only premise of T with goal r(T ). Thus, β is uniquely
determined as well since it is the goal of the first premise of C. It follows that
φ(z) = k(k − 1)ψ(z).

Proposition 5. The density of less simple non-tautologies is equal to

μ(LNk) =
2k(k − 1)2

(k + 2)4
.

For large k it is equal to 2/k +O(1/k2).

Proof. After modifying the denominator of the generating function φ(z), we
obtain :

φ(z) =
P (z) + k(k − 1)(−k2 + (2k3 − 6k2 + 8)z)z2

√
1− 4kz

2(2 + (k − 2)2z)3
,

where P (z) is a suitable polynomial. The denominator of the rational fraction
φ(z) has a zero ρ = −2/(k− 2)2. However this value also cancels the numerator
(and its first two derivatives) of the expression, and is not an actual pole of φ.
Hence the only singularity that matters asymptotically is z = 1/4k. Putting
aside the error term, we obtain:

[zn]LN(z) = − k3(k − 1)

2(2 + (k−2)2

4k )3
[zn−2]

√
1− 4kz

+
k(k − 1)(2k3 − 6k2 + 8)

2(2 + (k−2)2

4k )3
[zn−3]

√
1− 4kz

=
kn+1(k − 1)

(2 + (k−2)2

4k )3
Cn−3 −

kn−2(k − 1)(2k3 − 6k2 + 8)

(2 + (k−2)2

4k )3
Cn−4.
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Let us prove the existence and compute the value of the density of LNn
k :

μ(LN) = lim
n→∞

|LNn
k |

|Fn
k |

= lim
n→∞

( kn+1(k − 1)

(2 + (k−2)2

4k )3
Cn−3

knCn−1
− kn−2(k − 1)(2k3 − 6k2 + 8)

(2 + (k−2)2

4k )3
Cn−4

knCn−1

)

=
64k4(k − 1)

(k + 2)6
· lim
n→∞

Cn−3

Cn−1
− 64k(k − 1)(2k3 − 6k2 + 8)

(k + 2)6
· lim
n→∞

Cn−4

Cn−1

=
4k4(k − 1)− k(k − 1)(2k3 − 6k2 + 8)

(k + 2)6
=

2k(k − 1)2

(k + 2)4
.

This density does exist, and is equal to:

2k(k − 1)2/((k + 2)4).

For large k this is asymptotically equal to 2/k +O(1/k2). ��

4.4 Pierce Formulas

We are ready to estimate the number of Pierce formulas. Although we don’t
know if the set of Pierce formulas has a density, we shall give bounds on
lim supn→∞

|Piercen
k |

|Fn
k |

and lim infn→∞
|Piercen

k |
|Fn

k |
. A simple upper bound on Piercek

can be obtained from

Piercek = Clk \ Intk ⊂ Fk \ (SNk ∪ LNk ∪Gk).

Since SNk, LNk and Gk are disjoint we have a simple upper estimation based
on propositions 3, 4 and 5:

lim sup
n→∞

|Piercenk |
|Fn

k |
� 1− k(k − 1)

(k + 1)2
− 2k(k − 1)2

(k + 2)4
− 4k + 1

(2k + 1)2
=

63
4k2

+O(
1
k3

).

However, we can obtain a sharper bound on the number of Pierce formulas.
For this, we next bound the density of tautologies which are not simple – this
density exists since we already know that both the density of all tautologies and
the density of simple tautologies exist. Note that this result gives an alternative
proof for Theorem 1.

Lemma 1. The density of non simple tautologies T such that exactly one premise
has a goal equal to r(T ) is bounded from above by 5/k2 +O(1/k3).

Proof. Let A be a non simple tautology with goal r(A) = α. Let p be the
number of premises of A. We call B the premise of A whose goal is r(A) and
α1, . . . , αp−1 the goal of the premises other than B. By hypothesis, αi �= α for all
i ∈ {1, . . . , p− 1}. Of course B cannot be reduced to a leaf (otherwise A would
be a simple tautology). Let us decompose B = (B1, . . . , Bm, α), with m � 1. As
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B = B1∧. . .∧Bm∧α, by developing the expression A, we obtain that necessarily,
for all j ∈ {1, . . . ,m},

Bj ∨ α1 . . . ∨ αp−1 ∨ α
computes true. Let us denote C(α1,...,αp−1,α) the set of trees such that

C ∨ α1 . . . ∨ αp−1 ∨ α

computes true. Let C ∈ C(α1,...,αp−1,α).

– If C is reduced to a leaf γ then necessarily γ ∈ {α1, . . . , αp−1}.
– Otherwise, let us decompose C = (C1, . . . , Cs, γ) with s � 1. Let γi = r(Ci).

Then
γ1 ∨ . . . ∨ γs ∨ γ ∨ α1 . . . ∨ αp−1 ∨ α

has to evaluate to true. It follows that α ∈ {γ1, . . . , γs} or γ ∈
{γ1, . . . , γs, α1, . . . , αp−1}.

We shall now compute a generating function c(α1,...,αp−1,α) giving an upper bound
on the number of trees of C(α1,...,αp−1,α). Let us define

c(α1,...,αp−1,α)(z) = (p−1)z+
1

1− ((k − 1)/k)f(z)
·f(z)

k
· 1

1− f(z)
·kz+

∞�

s=1

f(z)s·(s+p−1)z

the first term corresponding to the first point above, the second term cor-
responding to the case α ∈ {γ1, . . . , γs} and the third term to the case
γ ∈ {γ1, . . . , γs, α1, . . . , αp−1}. This generating function depends only on p; thus
we shall now denote it by cp. Let us now define

bp(z) =
cp(z)

1− cp(z)
· z.

This function gives an upper bound on the number of trees B (for p � 1 and
α, α1, . . . , αp−1 fixed) such that

B ∨ α1 . . . ∨ αp−1 ∨ α

computes true. Of course

bp(z) � b̃p(z) := cp(z) +
(cp(z))2

1− f(z)
.

We now define

ap(z) = p · ((k − 1)/k · f(z))p−1 · b̃p(z) · z · k.

The generating function ap gives an upper bound on the number of non simple
tautologies A with p premises, exactly one of them having a goal equal to r(A).
Indeed, z corresponds to r(A) = α, k corresponds to the choice of α among the
literals and p corresponds to the position of the unique premise with goal α.

We now define a(z) =
∑∞

p=1 ap(z). This function bounds the number of non
simple tautologies A with only one premise with goal r(A). The computation
based on the generating function defined above leads to an asymptotic density
5/k2 +O(1/k3). ��
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Lemma 2. The density of non simple tautologies T such that exactly two
premises have a goal equal to r(T ) is O(1/k3).

Proof. Let us consider a non simple tautology A with exactly two premises B1

and B2 having a goal equal to r(A). Let α1, . . . , αp−2 the goals of the other
premises. Since A is not simple, both B1 and B2 are not reduced to a leaf. Let
C be the first premise of B1, and D be the first premise of B2. Let γ be the goal
of C and γ1, . . . , γs the goals of its premises (with s � 0). We define δ, δ1, . . . , δt
the corresponding literals for the tree D. Since A is a tautology we can argue as
in the previous lemma and we obtain that necessarily

γ1 ∨ . . . ∨ γs ∨ γ ∨ δ1 ∨ . . . ∨ δt ∨ δ ∨ α1 . . . ∨ αp−2 ∨ α

evaluates to true. The same method as in the previous lemma (not detailed here)
leads to a density O(1/k3). ��

Lemma 3. The asymptotic density of trees T such that at least three premises
have a goal equal to r(T ) is O(1/k3).

Proof. The generating function of this family of trees is equal to
(

1
1− (k/(k − 1))f(z)

· f(z)
k

)3

· 1
1− f(z)

· kz.

We obtain a density O(1/k3). ��

Proposition 6. The asymptotic density of non simple tautologies is bounded
from above by 5/k2 +O(1/k3).

Proof. A tautology is not reduced to a leaf. Moreover, a tautology T has (at
least) a premise with goal r(T ): otherwise, it would be a simple non-tautology.
The density of non simple tautologies is thus bounded from above by the sum
of the three densities obtained in lemmas 1, 2 and 3. Hence it is bounded above
by 5/k2 +O(1/k3). ��

We can obtain a lower bound for Pierce formulas by the following argument.
Consider special formulas from Fk of the form ((a → T ) → a) → a where
T = A1, . . . , Ap → r(T ) is a simple non-tautology taken from Fk (see section 4.1)
and variable a differs from r(T ). We observe that ((a→ T )→ a)→ a must be a
Pierce formula. It is obviously a classical tautology. Suppose ((a→ T )→ a)→ a
is also an intuitionistic tautology. It means that there must exist a closed term
of the type ((a → T ) → a) → a. The long normal form of this term has the
form λp(a→T )→a.p(λqa.t) where t is a term of type T with only free variables
p and q. Consider a closed term λp(a→T )→aλqa.t. The type of this term is the
implicational formula

((a→ T )→ a) → (a→ T ).

But this type is again a simple non-tautology since the variables a and r(T ) are
different. So the formula is unprovable classically and therefore intuitionistically
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too; contradiction. For more details about relation between intuitionistic logic
and lambda calculus consult for example Sørensen, Urzyczyn [10].

Now we have to count this family. The number of such formulas is (k − 1) ·
|SNn−3

k |. Thus the density of this special set of Pierce formulas exists and is
equal to

lim
n→∞

(k − 1) · |SNn−3
k |

|Fn
k |

= lim
n→∞

(k − 1) · |SNn−3
k |

|Fn−3
k |

· |F
n−3
k |
|Fn

k |
=

1
64k2

(k − 1)2

(k + 1)2

since limn→∞ |Fn−3
k |/|Fn

k | = 1/(4k)3.

Proposition 7. We have the following bounds on the number of Pierce formu-
las:

1
64k2

−O
(

1
k3

)
� lim inf

n→∞

|Piercenk |
|Fn

k |
� lim sup

n→∞

|Piercenk |
|Fn

k |
� 5
k2

+O

(
1
k3

)
.

Proof. The lower bound comes from the previous discussion. Since Pierce formu-
las are non simple tautologies, the upper bound is a consequence of proposition 6.

��

5 Final Remarks

We have shown that asymptotically, all tautologies over implication are simple,
i.e. one of the premises is equal to the goal. The method developed in this paper
extends to the logic of implication with both positive and negative literals. In this
new setting again, we can prove that most of the tautologies, when the number
of variables becomes large, exhibit a very simple structure; more precisely, most
of the tautologies have one of their premises equal to the goal (as before), or
have two of their premises which are opposite literals.

Some questions remain about the set of Pierce formulas. We conjecture that
for any k, the densities μ(Intk) and μ(Piercek) exist. If it is the case, it would
be interesting to evaluate the asymptotic densities of these sets.
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Abstract. Establishing local consistency is one of the main algorith-
mic techniques in temporal and spatial reasoning. In this area, one of
the central questions for the various proposed temporal and spatial con-
straint languages is whether local consistency implies global consistency.
Showing that a constraint language Γ has this “local-to-global” property
implies polynomial-time tractability of the constraint language, and has
further pleasant algorithmic consequences.

In the present paper, we study the “local-to-global” property by mak-
ing use of a recently established connection of this property with uni-
versal algebra. Specifically, the connection shows that this property is
equivalent to the presence of a so-called quasi near-unanimity polymor-
phism of the constraint language. We obtain new algorithmic results and
give very concise proofs of previously known theorems. Our results con-
cern well-known and heavily studied formalisms such as the point algebra
and its extensions, Allen’s interval algebra, and the spatial reasoning lan-
guage RCC-5.

1 Introduction

Temporal and spatial reasoning is a subdiscipline in Artificial Intelligence that
developed in the 1990s, and has many applications, for instance in natural lan-
guage processing, geographic information systems, computational biology, and
document interpretation; for references, see the monograph [FGV05] and the
survey [RN07]. A common reasoning task in this field is to decide, given a set
of relationships concerning temporal events or spatial regions, whether or not
there exists a model fulfilling all of the relationships. It is well-acknowledged
that instances of this reasoning task may be modelled using the constraint sat-
isfaction problem (CSP), a computational problem in which the input consists
of a set of constraints on variables, and the question is whether or not there is
an assignment to the variables satisfying all of the constraints. In this vein, a
famous example from temporal reasoning is the CSP for Allen’s Interval Algebra,
where the variables denote intervals in time, and the constraints talk about re-
lationships between intervals such as containment, overlap, and so forth [All83].
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CSPs for temporal and spatial reasoning have been studied from a computa-
tional complexity perspective by restricting the sets of relationships that may
be used. In the CSP formalism, this amounts to restricting the set of predicates
that may be used to form constraints; we call such a restricted predicate set a
constraint language, following the CSP literature.

A primary algorithmic technique for solving CSPs in spatial and temporal
reasoning is the process of establishing k-consistency, an inferential process that
yields a problem that is k-consistent: any partial solution on (k−1) variables can
be extended to any other variable. The notions of consistency that we employ
in this paper are due to [Mac77, Fre82,DvB97]; formal definitions are provided
later (see Section 2). For some constraint languages, it is known that (for some
constant k) establishing k-consistency implies global consistency, the property of
being i-consistent for all i. We refer to this property of constraint languages as
the “local-to-global” property. Showing that a constraint language possesses this
property implies that it is polynomial-time tractable, and has further desirable
algorithmic consequences; for instance, we demonstrate a connection to a quanti-
fier elimination algorithm for the quantified constraint satisfaction problem over
the constraint language. One of the central questions for the various temporal
and spatial constraint languages is to understand which such languages enjoy
the “local-to-global” property.

In this paper, we study this question by making use of algebraic techniques
for studying the complexity of constraint languages that have recently come into
focus (see for instance the surveys [BJK05,CJ06]). Specifically, a fundamental
result [BKJ05] associates to every constraint language an algebra in a way that
permits the use of universal algebraic concepts and methods in the study of the
complexity and algorithmic behavior of constraint languages. Utilizing this alge-
braic perspective, we both derive new algorithmic results and give very concise
proofs of previously known theorems. We thus establish connections between two
research areas–temporal and spatial reasoning, and algebraic techniques for con-
straint languages–that have up to the present seen little interaction, but indeed,
as evidenced by our results, unite quite naturally. We hope that the present work
serves to stimulate further interaction between these two areas.

Before giving more detail on our contributions, we describe how exactly we
view temporal and spatial reasoning problems within the CSP framework, and
which tools from CSP theory we employ. First, it should be pointed out that
much of the work on CSP complexity has focused on constraint languages over
finite domains. For such constraint languages, an exact algebraic characterization
of the “local-to-global” property is known, namely, a constraint language has
this property if and only if it has a so-called near-unanimity polymorphism. This
characterization was presented in [JCC98] and in [FV99], and in part can be
seen as reformulation of a classical result in universal algebra [BP74].

On the other hand, many temporal and spatial reasoning problems are nat-
urally formulated as the CSP over constraint languages with infinite domains.
Fortunately, a number of such problems can be formulated as the CSP over a
language from the class of ω-categorical constraint languages, a class of languages
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that is known to be relatively manageable from the algebraic and logical view-
points [BN06, Bod05]. Formulability in this class is well-known for the Point
Algebra, and for Allen’s interval algebra and all its fragments [Hir96]. More-
over, it has recently been shown that the mentioned algebraic characterization
of the “local-to-global” property essentially remains valid for ω-categorical struc-
tures [BD06]. Precisely, it has been shown that an ω-categorical constraint lan-
guage has this property if and only if it has a so-called quasi near-unanimity
polymorphism.

Contributions and Outline. Sections 2 and 3 recall fundamental facts from
the theory of constraint satisfaction that allow us to study temporal and spa-
tial constraint languages algebraically. In Section 4 we prove results concerning
the existence and properties of quasi near-unanimity polymorphisms for infi-
nite posets. One of the applications of this result is a new and concise proof
of the result of Koubarakis that (2k + 1)-consistency (but not 2k-consistency)
implies global tractability for the Point Algebra with disjunctions of disequal-
ities on at most k variables [Kou97] (discussed in Section 5). In Section 5, we
provide characterizations of the fragments of the point algebra in terms of quasi
near-unanimity polymorphisms. We also show that if we extend the constraint
language for the Point Algebra to contain disjunctions of disequalities, the corre-
sponding (uniform) quantified CSP can be solved in NL, giving a strict extension
of the result of Koubarakis [Kou97].

In Section 6, we study the spatial reasoning formalism RCC-5. We first formu-
late the corresponding CSP with an ω-categorical constraint language, and then
show that the so-called basic relations of RCC-5 possess the “local-to-global”
property. In fact, similarly as we do for Koubarakis’ result on the Point Algebra,
we show that (2k + 1)-consistency (but not 2k-consistency) implies global con-
sistency for the basic relations of RCC-5 with disjunctions of disequalities on at
most k variables.

In the full version of this paper, we also present a general technique for estab-
lishing the “local-to-global” property for various temporal and spatial constraint
languages, which is based on the model-theoretic concept of primitive positive
interpretations. We apply this technique to the pointizable fragment of Allen’s
interval algebra: we show that the basic relations of the rectangular algebra
have a 5-ary quasi near-unanimity polymorphism, and hence that they have the
“local-to-global” property.

2 Preliminaries

Notation. A relational signature τ is a set of relation symbols Ri, each of which
has an associated finite arity ki. A relational structure Γ over the signature τ (also
called τ -structure) is a set DΓ (the domain) together with a relation Ri ⊆ Dki

Γ

for each relation symbol of arity ki from τ . For simplicity, we use the same symbol
for a relation symbol and the corresponding relation. If necessary, we write RΓ to
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indicate that we are talking about the relationR belonging to the structure Γ . If a
relational structure Δ can be obtained from a relational structure Γ by removing
some of the relations from the structure and the signature of Γ , then Δ is called a
reduct of Γ , and Γ is called an expansion of Δ.

For a subset S of DΓ , we write Γ [S] for the substructure of Γ induced by S.
In this paper, substructure always means induced substructure, as in [Hod97].
An embedding of a τ -structure Γ in a τ -structure Δ is a mapping f : DΓ → DΔ

that is an isomorphism between Γ and Δ[f(DΓ )].

The Constraint Satisfaction Problem. A constraint language is simply a
relational structure; we typically refer to a relational structure Γ as a constraint
language when we are interested in the constraint satisfaction or the quantified
constraint satisfaction problem for Γ , which are defined below.

A first-order formula φ is called a τ-formula if all symbols in φ are either the
standard logical symbols {∃, ∀,∧,∨,¬,=}, variable symbols, or from τ . A first-
order τ -formula φ is called a τ -sentence if φ has no free variables. A first-order
τ -formula is called primitive positive (for short, pp) if it is of the form

∃x1, . . . , xn.ψ1 ∧ · · · ∧ ψm ,

where each ψi is an atomic τ -formula (a formula x = y or R(x1, . . . , xk) for
R ∈ τ) that can contain both free variables and quantified variables from
{x1, . . . , xn}. The constraint satisfaction problem (CSP) for Γ is the computa-
tional problem to determine for a given primitive positive τ -sentence Φ whether
Φ is true in Γ .

A first-order τ -formula is conjunctive positive if it has the form

Q1v1 . . .Qnvn(ψ1 ∧ . . . ∧ ψm),

where each Qi is a quantifier from {∀, ∃}, and each ψi is an atomic τ -formula
that can contain both free variables and quantified variables from {v1, . . . , vn}.
The quantified constraint satisfaction problem for Γ , denoted by QCSP(Γ ), is the
problem of deciding for a given conjunctive positive τ -sentence whether or not the
formula is true in Γ . Note that both the universal and existential quantification
is understood to take place over the entire universe of Γ .

Let R be a k-ary relation and let Γ be a τ -structure. We say that R has a
pp-definition (or is pp-definable) in Γ if there exists a pp-formula φ with free
variables x1, . . . , xk such that R(x1, . . . , xk) = φ(x1, . . . , xk). Analogously, we
define the concept of a cp-definition. The constraint language that contains all
pp-definable relations in Γ is denoted by 〈Γ 〉.
Amalgamation. As we have already mentioned in the introduction, it turns out
that many CSPs in temporal and spatial reasoning (in particular, if they con-
cern so-called qualitative formalisms [RN07]) can be formulated with constraint
languages that are ω-categorical. A relational structure Γ is called ω-categorical
if all countable models of the first-order theory1 of Γ are isomorphic to Γ .
1 The first-order theory of a τ -structure Γ is the set of all τ -sentences that are true in Γ .
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To formulate computational problems for temporal and spatial calculi as con-
straint satisfaction problems with ω-categorical constraint languages, the fol-
lowing concept is very powerful. The age of a relational structure Γ is the set
of finite structures that embed into Γ (this is terminology that goes back to
Fräıssé [Fra86]). A class of finite relational structures C is an amalgamation
class if C is nonempty, closed under isomorphisms and taking substructures, and
has the amalgamation property, which says that for all A,B1, B2 ∈ C and em-
beddings e1 : A → B1 and e2 : A → B2 there exists C ∈ C and embeddings
f1 : B1 → C and f2 : B2 → C such that f1e1 = f2e2.

A structure is homogeneous (sometimes called ultra-homogeneous [Hod97])
if every isomorphism between finite substructures of Γ can be extended to an
automorphism.

Theorem 1 (Fräıssé [Fra86]). A countable class C of finite relational struc-
tures with countable signature is the age of a countable homogeneous structure Γ
if and only if C is an amalgamation class. In this case Γ is up to isomorphism
unique and called the Fräıssé-limit of C.

Homogeneous structures provide a rich source of ω-categorical structures.

Proposition 2 (see e.g. [Hod97]). A countable homogeneous structure Γ over
a finite relational signature is ω-categorical.

The following is well-known; a proof can be found in [BD06]. The second part
of the proposition is not proven there, but can be shown analogously.

Proposition 3. Let Δ be a countable structure and let Γ be ω-categorical. Then
Δ homomorphically maps to Γ if and only if all finite (induced, or equivalently
weak) substructures of Δ homomorphically map to Γ . The structure Δ injectively
homomorphically maps to Γ if and only if all finite induced substructures of Δ
injectively homomorphically map to Γ .

Polymorphisms. The (direct-, categorical-, or cross-) product Γ1 × Γ2 of two
relational τ -structures Γ1 and Γ2 is a τ -structure on the domain DΓ1 × DΓ2 .
For all relations R ∈ τ the relation R

(
(x1, y1), . . . , (xk, yk)

)
holds in Γ1 × Γ2 iff

R(x1, . . . , xk) holds in Γ1 and R(y1, . . . , yk) holds in Γ2. Homomorphisms from
Γ k = Γ × . . . × Γ to Γ are called polymorphisms of Γ . If f : Dk → D is a
polymorphism of a relational structure (D,R), we also say that f preserves the
relation R (and otherwise f violates the relation R).

The set of all polymorphisms of Γ gives rise to an algebra Al(Γ ), defined as
follows. The domain of the algebra equals the domain of Γ , and the algebra has
a function (and an associated function symbol) for each polymorphisms of Γ .
For finite domain constraint languages, Bulatov et al. [BKJ05] give a detailed
exposition of this concept. A property of the algebra Al(Γ ) is that it is locally
closed, i.e., if f is a k-ary operation such that for every finite subset A of the
domain there is a k-ary operation g in Al(Γ ) such that f(x) = g(x) for all x ∈ Ak,
then f is also an operation in Al(Γ ). (Note that this property is non-trivial only
in the case that Γ has an infinite domain.)
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We say that a polymorphism f of an ω-categorical structure Γ is oligopotent
if the diagonal of f , that is, the function f(x, . . . , x), is contained in the locally
closed clone generated by the automorphisms of Γ .

The importance of polymorphisms stems from the following powerful preser-
vation theorems that characterize primitive positive and conjunctive positive
definability over ω-categorical structures.

Theorem 4 (of [BN06]). Let Γ be an ω-categorical structure. Then a relation
R is pp-definable in Γ if and only if it is preserved by all polymorphisms of Γ .

Theorem 5 (of [BC07b]). Let Γ be an ω-categorical structure. A relation R
is cp-definable in Γ if and only if it is preserved by all surjective polymorphisms
of Γ .

3 Consistency and QNUFs

Consistency. Establishing 2- and 3-consistency (defined below) are the most
prominent algorithmic techniques for constraint satisfaction, due to their wide
applicability in practical applications. On the other hand, the question whether
a (quantified) constraint satisfaction problem can be solved in polynomial time
by consistency techniques leads to challenging theoretical problems. We first
introduce the basic definitions, and then present the mentioned connection to
universal algebra.

Definition 6. Let Γ be a relational structure. An instance A of CSP(Γ ) is
called strongly k-consistent if for every subset S = {v1, . . . , vl} with l ≤ k of
the elements of A and every homomorphism h from A[{v1, . . . , vl−1}] to Γ there
exists an extension of h that is a homomorphism from A[S] to Γ .

An important feature of k-consistency is that for every fixed k and for every
finite or ω-categorical structure Γ there is an algorithm that establishes strong
k-consistency for a given instance A of CSP(Γ ), i.e., computes a strongly k-
consistent instance B that is logically equivalent to A; to formalize this idea, we
need the following definition.

Definition 7. Let Γ be constraint language, and let Δ be an expansion of Γ
by finitely many primitive positive definable relations of Γ (in particular, Γ and
Δ are defined on the same domain D). We say that an instance B of CSP(Δ)
is a k-consistent variant of an instance A of CSP(Γ ) if B is k-consistent, has
the same set of variables V (A) as A, and every mapping from V (A) to D is a
solution for B if and only if it is a solution for A.

In Proposition 8 below, we state a fact that is well-known for constraint languages
over a finite domain; for ω-categorical constraint languages a proof can be found
in [BD06]. We would like to remark that the algorithms that are used in the proof
of Proposition 8 can be formulated as Datalog programs (Datalog programs can
be seen as Prolog programs without function symbols, and are a well-studied
concept in Database theory and finite model theory; see e.g. [AHV95,EF99]).
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Proposition 8. Let Γ be a finite or an ω-categorical structure over a finite
relational language. Then for every k there is a polynomial-time algorithm that
computes a k-consistent variant of a given instance A of CSP(Γ ).

Proof. This is a well-known fact for constraint languages Γ over a finite domain.
For ω-categorical structures Γ , the statement follows from [BD06]. ��

In artificial intelligence and in the theory of relation algebras, strong 3-consistency
is usually called path-consistency, and the algorithm in Proposition 8 that com-
putes for a given instance of the CSP a strongly 3-consistent variant is called the
path-consistency algorithm.

Note that if a k-consistent variant B of an instance A of CSP(Γ ) contains a
constraint with a relation symbol that denotes the empty relation, then A does
not have a solution. The converse need not be true in general.

Definition 9. A constraint language Γ has width k when: a strongly k + 1-
consistent instance A of CSP(Γ ) has a solution if and only if A does not contain
a constraint with a relation symbol that denotes the empty relation.

Global Consistency. Some constraint languages Γ have the strong property
that every strongly k-consistent instance of CSP(Γ ) is automatically globally
consistent ( [Fre82], see Definition 10 below).

Definition 10. An instance A of CSP(Γ ) is called globally consistent iff it is
k-consistent for all 1 ≤ k ≤ |A|.

It follows easily from Proposition 8 that if Γ has the property that every strongly
k-consistent instance of CSP(Γ ) is globally consistent, then CSP(Γ ) can be
solved in polynomial time.

But note that Γ might have width k, while at the same time strong k-
consistency does not establish global consistency. A well-known example over a
two-element domain are boolean constraint languages that are preserved by the
maximum operation (the relations in such a constraint language can be defined
by Horn clauses). A well-known example over an infinite domain is CSP(Q,≤, �=).
Vilain, Kautz and van Beek [KvBV90] have shown that this CSP has width 2,
but establishing strong 3-consistency does not imply global consistency (how-
ever, establishing strong 5-consistency implies global consistency, due to a result
by Koubarakis [Kou97]).

Quasi Near-Unanimity Functions. We now present the connection of the
“local-to-global” property to universal algebra mentioned in the introduction.

Definition 11. A function f : D → D is called a quasi near-unanimity func-
tion (short, a QNUF), if it satisfies f(x, . . . , x, y) = f(x, . . . , x, y, x) = · · · =
f(y, x, . . . , x) = f(x, . . . , x) for all x, y ∈ D.

As an example, consider the structure (Q,≤), and the operation median , which
is the ternary function that returns the median of its three arguments. More
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precisely, for three elements x, y, z from Q, suppose that {x, y, z} = {a, b, c},
where a ≤ b ≤ c. Then median(x , y, z ) is defined to have value b. It is easy to
verify that median is a ternary quasi near-unanimity function, and that it is a
polymorphism of (Q,≤, <).

The following two results are of central importance in this paper, and they
generalize well-known facts for finite structures Γ [BP74,FV99,JCC98].

Theorem 12 (of [BD06]). An ω-categorical structure Γ has a k-ary oligopo-
tent QNU-polymorphism if and only if every strongly k-consistent instance of
CSP(Γ ) is globally consistent.

There is yet another characterization of constraint languages having a QNU-
polymorphism. We say that a constraint language Γ is k-decomposable if every
relation in Γ can be defined by a conjunction of at most k-ary primitive positive
definable relations in Γ .

Theorem 13 (of [BC07a]). An ω-categorical structure Γ has a (k + 1)-ary
oligopotent QNU-polymorphism if and only if Γ is k-decomposable.

Innermost quantifier elimination. In this section, we show that if an ω-
categorical constraint language has a surjective oligopotent QNU polymorphism,
then QCSP(Γ ) can be solved in polynomial time. This was already known for
constraint languages over finite domains, see e.g. [Che]. The same idea that was
applied there can be applied for ω-categorical constraint languages.

Theorem 14. Let Γ be an ω-categorical constraint language with a surjective
oligopotent QNU polymorphism. Then QCSP(Γ ) is in P.

Proof (Sketch). The algorithm eliminates the variables of a given instance φ of
QCSP(Γ ), starting from the innermost variable vn, and computes a conjunctive-
positive sentence φ′ that is equivalent to φ, without the variable vn. To do so, the
algorithm first establishes k-consistency on the quantifier-free part of φ (viewing
this part as an instance of the CSP; here we use Proposition 8 and the assump-
tion that Γ is ω-categorical). If a constraint for the empty relation was derived
during establishing k-consistency, then the algorithm reports that the instance
is false over Γ . If vn is existentially quantified, the algorithm simply removes all
constraints of arity at least k + 1 that contain vn. This leads to an equivalent
instance, essentially because Theorem 13 implies that Γ is k-decomposable. If
vn is universally quantified, then the universal quantifier distributes over all the
conjunctively combined constraints ψ. Because the QNU polymorphism of Γ is
surjective, it does not only preserve the primitive positive definable relations, but
also the cp-definable relations in Γ (Theorem 5), and in particular it preserves
the relation defined by ∀vn.ψ. So we can without loss of generality assume that
this relation is already a relation of Γ . Then, we replace ψ by a constraint for
this relation.

Clearly, we can then proceed with the next variable vn−1 in the same fashion.
This process can be iterated, and if the algorithm never report that the instance
is false, it eventually shows that the sentence is true. ��
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4 Posets

In this section, we develop some general results on QNU polymorphisms of
posets, which we will utilize in the following sections. We use [k] to denote
the first k natural numbers, {1, . . . , k}.

Definition 15. Relative to a poset (D,≤), we say that b ∈ D is the middle value
of a tuple t = (t1, . . . , tk) (with k ≥ 3) if there exists a permutation π : [k]→ [k]
such that tπ(1) ≤ · · · ≤ tπ(k) and b = tπ(2) = · · · = tπ(k−1). In this situation, we
call tπ(1) the low value of t, and tπ(k) the high value.

Note that not every tuple has a middle value, but when a tuple does have a
middle value, it has a unique middle value.

Definition 16. Relative to a poset (D,≤), we say that b ∈ D is the main value
of a tuple t = (t1, . . . , tk) (with k ≥ 3) if either b is the middle value of the tuple
t, or b occurs in (at least) k − 1 coordinates of t.

Again, not every tuple has a main value, but when a tuple has a main value, it
is unique.

Using the definition of main value, we can now define an equivalence relation
on the set of all tuples of length k. Let (D,≤) be a poset and let t, t′ be two
tuples of length k. We write t ≡m t′ if either t = t′ or t and t′ have the same
main value. We show that any QNUF on a poset must map equivalent tuples to
the same point.

Proposition 17. Let Γ = (D,≤) be a poset, and let f : Γ k → Γ be a QNU
polymorphism of Γ . For two tuples t, t′ of length k, if t ≡m t′, then f(t) = f(t′).
(Here, we assume k ≥ 3).

We now show that, under some mild assumptions, a poset has QNU polymor-
phisms of all arities which only identify together tuples that are equivalent under
our equivalence relation ≡m.

Theorem 18. Let Γ = (D,≤) be an ω-categorical poset such that there is an
injective homomorphism from (N,≤) to Γ . For all k ≥ 3, there exists a k-ary
QNU polymorphism f : Γ k → Γ such that for all tuples t, t′ ∈ Dk, it holds
that t ≡m t′ if and only if f(t) = f(t′). Moreover, if R ⊆ Dm is definable by
a disjunction of disequalities over m variables and k ≥ 2m + 1, the resulting
polymorphism f : Γ k → Γ preserves R.

We say that a relation R ⊆ Dm is definable by a disjunction of disequalities
over m variables if there exists a disjunction of disequalities φ over variables
{v1, . . . , vm} such that R(v1, . . . , vm) ≡ φ(v1, . . . , vm). As an example, consider
the relation R such that R(v1, v2, v3, v4, v5) ≡ (v1 �= v2 ∨ v2 �= v3 ∨ v4 �= v5).
Here, we assume that each of the variables v1, . . . , vm appears in some dise-
quality. Disjunctions of disequalities were studied in the context of temporal
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reasoning by Koubarakis [Kou01], and we may mention also that they appear in
the classification result of [BC07b].

The following proposition complements Theorem 18, showing that the given
arity bound for preserving disjunctions of disequalities is optimal.

Proposition 19. Let (D,≤) be a poset with three distinct values a, b, c ∈ D
such that a ≤ b ≤ c. Let R ⊆ Dm be a relation definable by a disjunction of
disequalities. There is no QNUF of arity 2m preserving R.

5 The Point Algebra, Fragments, and Extensions

The Point Algebra is one of the most fundamental formalisms for temporal
reasoning. The corresponding constraint language is

ΓPA = (Q;≤, <,>,≥, �=,=,Q2, ∅)

with the obvious interpretation to the eight binary relation symbols of this struc-
ture. We would like to remark that formally, the Point Algebra is a relation
algebra [LM94, Due05], which has a natural representation by the relational
structure ΓPA. The notion of relation algebra and representations of relation
algebras are not of importance in this paper, and it suffices to study ΓPA for
our purposes [LM94,Due05].

In this section, we study ΓPA, its fragments, and its extensions from the
algebraic viewpoint. We begin with ΓPA itself. Koubarakis [Kou97] showed that
strong 5-consistency implies global consistency for CSP(ΓPA). In combination
with Theorem 12, this implies the following.

Theorem 20. The point algebra has an oligopotent QNU polymorphism of arity
5, but no oligopotent QNU polymorphism of arity 4.

We observe that we may obtain an alternative proof of this theorem from re-
sults in the previous section. Note that via Theorem 12, this also leads to an
alternative proof of the theorem of Koubarakis.

Proof (Theorem 20). It is clear that all relations of ΓPA have a primitive positive
definition in (Q,≤, �=), and we therefore work with this constraint language
instead of ΓPA. The statement then follows immediately from Theorem 18 and
Proposition 19. ��

It can be shown that the image of the constructed polymorphism is a dense
subset of the rational numbers. It is then not hard to see from local closure
arguments and the homogeneity of ΓPA that ΓPA also has a surjective 5-ary
QNU polymorphism. Therefore, Theorem 14 shows that QCSP(ΓPA) is in P.
We will see a stronger algorithmic result for the QCSP over ΓPA at the end of
this section.
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5.1 Fragments

Here, we give algebraic characterizations of fragments of the point algebra. If
f1, f2, . . . are operations from Qk → Q, then InvQ(f1 , f2 , . . . ) denotes the set
of relations with a first-order definition in (Q, <) that is preserved by all oper-
ations f1, f2, . . . . The three binary relations Q2, ∅, and = are trivial from our
standpoint, as we study pp-definability; other than these relations, there are five
binary first-order definable relations: >, <, ≥, ≤, and �=. Note that the relation
< is the intersection of the relations ≤ and �=.

We first consider two fragments with two binary relations.

Theorem 21. 〈(Q, <,≤)〉 = InvQ(median).

Recall that median (defined in Section 3) is a QNUF and preserves < and ≤.

Theorem 22. There exists a QNUF f : Q3 → Q of arity 3 such that 〈(Q, <, �=
)〉 = InvQ(f ).

Theorem 23. 〈(Q,≤)〉 = InvQ(median , 0 ). Here, 0 denotes the unary operation
always equal to the constant 0.

Theorem 24. 〈(Q, <)〉 = InvQ(median , f ) where f is the operation from The-
orem 22.

Theorem 25. 〈(Q, �=)〉 = InvQ(−f ) where f is the operation from Theorem 22.

5.2 Extensions

Koubarakis [Kou97] showed that establishing strong 2k + 1-consistency implies
global consistency for the extension of ΓPA by disjunctions of disequalities on
at most k variables, but strong 2k consistency is not sufficient. By Theorem 18
and Proposition 19 of Section 4 in combination with Theorem 12, we have a new
proof of this theorem.

Now let us consider the constraint language Γ that is the extension of the
point algebra with all disjunctions of disequalities. This is a constraint language
with infinitely many relations. What is the complexity of Γ ? We can not derive
the tractability of Γ using a QNUF, as it is immediate from Proposition 19 that
Γ has no QNUF polymorphism. We show here that this extension of the point
algebra is in fact tractable2; indeed, we show that the QCSP over this constraint
language is solvable in NL.

Theorem 26. Let Γ be the extension of the point algebra having arbitrary dis-
junctions of disequalities. The problem QCSP(Γ ) is in NL. (Note that we as-
sume that constraints are presented syntactically, for instance, as “x ≤ y” or
“x �= y ∨ y �= z”.)
2 In the constraint satisfaction literature, this form of tractability of the CSP where

the instances might contain arbitrary constraints built from an infinite constraint
language is called uniform tractability.
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6 Spatial Reasoning

In this section, we study constraint satisfaction problems that arise from the
spatial calculus known under the name RCC-5 [RCC92,Ben94, JD97,RN99].

We first introduce the constraint satisfaction problems as in [JD97], and later
discuss how to formulate the same problems with ω-categorical templates. Many
different but equivalent ways to introduce these problems appeared in the lit-
erature, see e.g. [JD97, LM94, Due05, RN99, Ben94]; the formulation with an
ω-categorical template presented here appears to be new.

Let X be a countably infinite set. Consider the relational structure B0 =
(2X \ {∅}, DR, PO, PP, PPI, EQ), whose elements are the non-empty subsets of X ,
and whose relations are defined as follows.

DR(X,Y ) iff X ∩ Y = ∅
PO(X,Y ) iff ∃a, b, c.a ∈ X \ Y, b ∈ X ∩ Y, c ∈ Y \X
PP(X,Y ) iff X ⊂ Y

PPI(X,Y ) iff X ⊃ Y

EQ(X,Y ) iff X = Y

Note that for each pair (U, V ) of elements of B0 exactly one of the relations
DR, PO, PP, PPI, EQ holds.

The structure B0 is not ω-categorical. To formulate the problem CSP(B0)
(and also the CSP for RCC-5) with a countably infinite ω-categorical structure
F , we use Fräıssé’s theorem. The resulting structure is known in model theory
as the ω-categorical countably infinite atomless boolean ring without 1 [Abi72].
The approach to define this structure with Fräıssé-amalgamation is also not new
(this is mentioned, for example, in [Eva94]). However, we give the amalgamation
argument here, because it allows us to prove that the CSP of the resulting struc-
ture is indeed the same problem as CSP(B0); moreover, it shows an interesting
connection between amalgamation problems and solving certain CSPs.

Let C be the set of all finite induced substructures of B0, considered up to
isomorphism. Hence, C is a countable class of relational structures.

Proposition 27. The class C is an amalgamation class.

Corollary 28. There exists an ω-categorical structure B0 such that CSP(B0)
equals CSP(B0).

We can easily obtain an ω-categorical constraint language for all of the RCC-
5 relations by expanding the structure B0 by all binary relations that can be
defined by boolean combinations of DR, PO, PP, and EQ. It is well-known (again,
see [Eva94]) that there exists a countable set such that the elements of B0 can
be seen as subsets of this set, and such that DR denotes disjointness, PO denotes
proper overlap, and PP denotes strict containment between two subsets.

We now show that B0 has a QNU polymorphism.
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Theorem 29. For all k ≥ 5, the structure B0 has an oligopotent QNU poly-
morphism of arity k such that for all t, t′ ∈ Γ k, it holds that t ≡m t′ if and
only if f(t) = f(t′). The polymorphism of arity k preserves any disjunction of
disequalities over m variables with k ≥ 2m+ 1.
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Abstract. We study the enumeration complexity of the natural exten-
sion of acyclic conjunctive queries with disequalities. In this language, a
number of NP-complete problems can be expressed. We first improve a
previous result of Papadimitriou and Yannakakis by proving that such
queries can be computed in time c.|M|.|ϕ(M)| where M is the struc-
ture, ϕ(M) is the result set of the query and c is a simple exponential
in the size of the formula ϕ. A consequence of our method is that, in
the general case, tuples of such queries can be enumerated with a linear
delay between two tuples.

We then introduce a large subclass of acyclic formulas called CCQ=

and prove that the tuples of a CCQ= query can be enumerated with
a linear time precomputation and a constant delay between consecutive
solutions. Moreover, under the hypothesis that the multiplication of two
n× n boolean matrices cannot be done in time O(n2), this leads to the
following dichotomy for acyclic queries: either such a query is in CCQ=

or it cannot be enumerated with linear precomputation and constant
delay. Furthermore we prove that testing whether an acyclic formula is
in CCQ= can be performed in polynomial time.

Finally, the notion of free-connex treewidth of a structure is defined.
We show that for each query of free-connex treewidth bounded by some
constant k, enumeration of results can be done with O(|M|k+1) precom-
putation steps and constant delay.

Introduction

From a complexity theoretical point of view, very few is known about enumera-
tion problems and their complexity classes. In the context of logical or database
query languages, enumeration amounts to produce one by one all the tuples of
the result ϕ(M) of a query ϕ(x̄) over a structure M. Producing solutions of
a query with a regular delay or on user demand makes sense in that area. Al-
though a lot of results are known about the complexity of query evaluation in
the classical sense (from hard cases to islands of tractability) [6,9,12,14,16], only
some recent works have started to investigate complexity issues of enumeration
for query languages [8,10,1,11,2].
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A large and well-studied class of queries is the class ACQ of acyclic con-
junctive queries. A classical result of database theory, proved in [17], is that any
acyclic conjunctive query ϕ can be evaluated in time O(|ϕ|.|M|.|ϕ(M)|). In [16],
an extension ACQ 
= is introduced in which disequalities between variables are
allowed. In full generality, deciding a boolean ACQ 
= query is NP-complete for
combined complexity. However, it is shown in [16] that such a query can be eval-
uated in time f(|ϕ|).|M|.|ϕ(M)|. log2 |M| where f is some exponential function.
Many NP-complete problems can be expressed by ACQ 
= formulas: existence
of some path of a given length k in a graph, multidimensional matching, color
matching, etc.

The main goal of this paper is to revisit the complexity of the evaluation of
conjunctive queries with or without disequalities from a dynamical point of view.
As in [8,10,1,11,2], queries are seen as enumeration problems and the complexity
is measured in terms of delay between two consecutive solutions. We consider
the class of F-ACQ (resp F-ACQ 
=) formulas which are the “equivalent” of
acyclic conjunctive formulas in functional structures. First, we prove that an
elimination of quantifiers can be done on such formulas. More precisely, using
a combinatorial argument, we show that given an F-ACQ 
= formula ϕ and a
structure M one can construct a formula ϕ′ which is a disjunction of quantifier-
free formulas of F-ACQ 
= and a model M′ such that ϕ(M) = ϕ′(M′). As a
consequence, we prove that any query of F-ACQ 
= can be evaluated with a
linear time delay. This immediately implies that a boolean ACQ 
= query can be
evaluated in time f(|ϕ|).|M| and a general ACQ 
= query can be evaluated in
time f(|ϕ|).|M|.|ϕ(M)| where f is a simple exponential function which depends
on the number of variables and the number of disequalities of the formula.

Constant-Delaylin introduced in [10] is the class of enumeration problems
which are solved by algorithms that run in two phases : the first phase performs
a precomputation in linear time and the second phase, using the precomputa-
tion, enumerates all the solutions with a constant delay between two consecu-
tive ones. This class is regarded as the minimal (nontrivial) robust class for the
complexity of enumeration. A natural question addressed is this paper is the fol-
lowing: is there a large subclass of ACQ 
= queries whose enumeration belongs to
Constant-Delaylin ? We introduce the class CCQ 
= of formulas called free-
connex acyclic formulas and defined by a connectivity condition between the
free variables (in particular, it contains the quantifier-free acyclic formulas with
disequalities). We show that such queries can be evaluated with linear precom-
putation and constant delay. Furthermore, it is proved that testing whether a
formula is free-connex acyclic can be performed in polynomial time. This result is
optimal in some sense because we prove the following dichotomy theorem: under
the assumption that any two n×n boolean matrices cannot be multiplied in time
O(n2) (a very reasonable conjecture), each acyclic conjunctive query (with or
without disequalities) which is simple 1 either is free-connex acyclic or cannot be
enumerated with linear precomputation and constant delay. Finally, we introduce

1 This means that we assume that each relation symbol occurs once only in the con-
junction (a slight restriction).
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the notions of free-connex tree-decomposition and free-connex treewidth. We show
that for any fixed query of free-connex treewidth bounded by some constant k,
enumeration of solutions can be done with O(|D|k+1 + |M|) precomputation
steps and constant delay (D is the domain of M).

Notice that essentially all the results of this paper are new, to our knowledge,
even if we consider only conjunctive queries (without disequalities). The paper is
organized as follows. In Section 1, the main definitions about complexity, queries,
hypergraphs and enumeration problems are given. Our results about quantifier
elimination and enumeration are proved respectively in Sections 2 and 3. The
notion of free-connex acyclic formula and the dichotomy theorem are exposed in
Section 4. Finally, in Section 5, results about free-connex treewidth queries are
presented. Note that by lack of space, many proofs are omitted.

1 Preliminaries

1.1 Problems

In order to handle problems in a general and uniform framework, we introduce
the notion of general problem which is merely a binary relation A ⊆ I ×O over
two sets I and O respectively called space of instances (or input space) and
space of solutions (or output space). For each input x ∈ I, the set A(x) = {y ∈
O : (x, y) ∈ A} is assumed to be finite and is called the set of solutions of A
on x. Let < be a strict linear order on the space of solutions of A. For any
input x and A(x) = {y0, . . . , yn−1} with y0 < y1 < . . . < yn−1, we denote by
enum(A, x,<) = y0y1, . . . yn−1 the increasing list of elements of A(x). We are
interested in the following problems.
Eval(A)

Input: An instance x ∈ I
Output: A(x)

Enum(A,<)
Input: an instance x ∈ I
Output: enum(A, x,<)

In the case the order does not matter, we omit it and write Enum(A).

1.2 Complexity Framework

The computation model used in this paper is the random access machine (RAM)
with uniform cost measure and addition and substraction as the basic operations
(see [13]). It has read-only input registers (containing the input x), read-write
work memory registers and write-only output registers. Moreover, register values
and memory addresses are assumed to be bounded by c|x|, for some constant c,
where |x| is the size of the input x (that is the number of registers it occupies).

An algorithmA is said to compute the problem Enum(A,<) if for any input x,
A computes one by one the elements of the sequence enum(A, x,<) and stops im-
mediately after writing the last one. We define delayj(x) = timej(x)−timej−1(x)
where timej(x) denotes the moment when A has completed the writing of the
jth solution (by convention time0(x) = 0). We say that A is a constant de-
lay algorithm if for a constant c and any input x, we have delayj(x) ≤ c



On Acyclic Conjunctive Queries and Constant Delay Enumeration 211

and if furthermore, A uses space c (i.e. at most c memory registers) during its
computation.

Definition 1. A problem Enum(A,<) is computable with constant delay and
linear precomputation, which is written Enum(A,<) ∈ Constant-Delaylin

if there is a function r : x �→ r(x) (precomputation phase) computable in linear
time and a constant delay algorithm A (enumeration phase) which, when applied
to r(x) for any input x, computes enum(A, x,<).

Note that the additional requirement that the enumeration phase uses constant
space (uniform cost measure) appears to be a very strong condition. Nevertheless
we have checked that it holds for all the constant delay algorithms we know (see
[1,10,11,2]). However, this condition is not essential in this paper. We need a
very precise notion of reduction for enumeration problems.

Definition 2. Let A ⊆ IA × OA and B ⊆ IB × OB be two general problems.
An exact reduction from Enum(A) to Enum(B) (resp. from Enum(A,<A) to
Enum(B,<B)) is a pair (r, t) of mappings r : IA → IB and t : IB × OB → OA

which satisfy conditions 1 and 2

1. For every instance x of A, the correspondence y �→ t(r(x), y) is a one-
one (resp. strictly increasing) mapping from the set (resp <B-ordered set)
B(r(x)) onto the set (resp. <A-ordered set) A(x).

2. The instance r(x) of B is computable from x in time and space O(|x|) and the
solution t(r(x), y) is computable from (r(x), y) in constant time and constant
space.

The following results are straightforward consequences of our definitions.

Lemma 3. Assume there exists an exact reduction from Enum(A) to Enum(B).
ThenEnum(B)∈Constant-Delaylin impliesEnum(A)∈Constant-Delaylin.
The similar result holds for Enum(A,<A) and Enum(B,<B).

Lemma 4. Let A,B ⊆ I ×O be two general problems over the same input and
output spaces. Let < be a linear order on O. If both problems Enum(A,<) and
Enum(B,<) belong to Constant-Delaylin, then so does the union problem
Enum(A ∪B,<).

1.3 Logical Framework

The reader is supposed familiar with first-order logic on finite structures (see
[15]). For a signature σ, a (finite) σ-structure consists of a domain D together
with an interpretation of each symbol of σ overD (we do not distinguish between
a symbol and its interpretation). For each σ-formula (or σ-query) ϕ(x̄) with m
variables x̄ = (x1, . . . , xm) and for each σ-structure M of domain D, we denote
by ϕ(M) the set {ā ∈ Dm :M |= ϕ(ā)}. Let < be a linear order on Dm. We are
interested in the evaluation and enumeration problems associated to ϕ(x̄). Note
that in most of our problems formula ϕ is considered as fixed.
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Eval(ϕ)
Input: a σ-structure M
Output: ϕ(M)

Enum(ϕ,<)
Input: a σ-structure M
Output:

an <-ordered enumeration of
ϕ(M)

1.4 Hypergraphs

Let us introduce some definitions on hypergraphs. A hypergraph is a pair (V,E)
where V is a set of elements, called vertices, and E is a set of non-empty subsets
of V called hyperedges. The induced subhypergraph of H = (V,E) on a set of
vertices S ⊆ V is the hypergraph H [S] = (S, {e∩S �= ∅ : e ∈ E}). A hypergraph
is acyclic if there is a tree T , called a tree-structure of H , whose vertices are the
hyperedges of H and having the following connectivity property: for each vertex
v of H , the set of hyperedges that contain v consists of a subtree (connected
subgraph) of T . For two hypergraphs H1 = (V1, E1) and H2 = (V2, E2), let us
denote by H1∪H2 the hypergraph (V1∪V2, E1∪E2). Given a graph G = (V,E),
the neighborhood of x denoted by N(x) is {y ∈ V : {x, y} ∈ E}. For more details
on hypergraphs (in particular, on paths) see [3].

1.5 Acyclic Conjunctive Queries

As usual, let CQ (resp. CQ
=) denote the set of conjunctive queries (resp
conjunctive queries with disequalities), i.e. relational σ-formulas of the form
ϕ(x̄) ≡ ∃ȳψ(x̄, ȳ) where ψ is a conjunction of σ-atoms R(v̄) for v̄ ⊆ {x̄, ȳ}
(resp σ-atoms and disequalities u �= v for u, v ∈ {x̄, ȳ}). A conjunctive query
(or conjunctive formula) ϕ (with or without disequalities) is acyclic or ACQ
(resp. ACQ 
=) if its hypergraph Hϕ = (Vϕ, Eϕ) is acyclic (Recall the set of
vertices and the set of hyperedges of Hϕ are respectively Vϕ = var(ϕ) and
Eϕ = {{v1, . . . , vpi} : Ri(v1, . . . , vpi) is a σ-atom of ϕ}). A tree-structure of Hϕ

is said to be a join-tree of ϕ.
Acyclic conjunctive functional queries: An acyclic conjunctive σ-query can
be naturally translated in the functional framework, i.e., into a σ′-formula for a
signature σ′ that consists of unary fuction symbols and unary predicates.

Formula translation: Introduce for each σ-atom Ai, 1 ≤ i ≤ q, of the formula
a new variable αi.

Translation (1) of a quantifier-free ACQ σ-formula: ψ(x̄) ≡
∧

1≤i≤q Ai. As-
sociate to ψ the following quantifier-free functional σ′-formula:

ψ′(α1, . . . , αq) ≡
∧

1≤i≤q
DRi(αi) ∧

∧

(Ai,Aj)∈Tψ

∧

varh(Ai)=vark(Aj)

fh(αi) = fk(αj)

(1)
where σ′ = {DR : R ∈ σ}∪{f1, . . . , fp}, p = arity(σ) = maxR∈σ(arity(R)), Tψ is
a join-tree of ψ, Ai ≡ Ri(v1

i , . . . , v
h
i , . . . , v

pi

i ), pi is the arity of Ri and varh(Ai)
denotes the variable vhi that occurs at rank h in atom Ai.
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Translation (2) of any ACQ formula ϕ(x̄) ≡ ∃ȳψ(x̄, ȳ) where ψ is quantifier-
free and x̄ = (x1, . . . , xm). Associate to ϕ the following functional σ′-formula:

ϕ′′(x̄) ≡ ∃α1 . . . ∃αq(ψ′(ᾱ) ∧
∧

1≤i≤m
fji(αki) = xi) (2)

where ψ′ is the above translation (1) of the quantifier-free part ψ of ϕ and
Aki (represented by variable αki) is a chosen atom of ϕ in which xi occurs (at
rank ji).

Translation of the structure: Each relational σ-model M = (D;R1, . . . , Rs) is
translated into the functional σ′-model M′ = (D′;D,DR1 , . . . , DRs , f1, . . . , fp):

– D,DR1 , . . . , DRs are disjoint unary relations so that D′ = D ∪ DR1 ∪ . . . ∪
DRs ∪ {⊥} and, for each i = 1, . . . , s, we have DRi = Ri, i.e. DRi is the set
of tuples of Ri, and ⊥ is an extra element.

– Each fj (1 ≤ j ≤ p) is a unary function: D′ → D ∪ {⊥} such that, for every
t = (a1, . . . , api) ∈ DRi , we have fj(t) = aj for 1 ≤ j ≤ pi and fj(t) = ⊥
otherwise.

Example 5. Translation 1 transforms the quantifier-free ACQ formula
ψ(x, y, z) ≡ R(x, y) ∧ S(y, z) into the following (quantifier-free) formula:
ψ′(α1, α2) ≡ DR(α1) ∧DS(α2) ∧ f2(α1) = f1(α2).

Example 6. Translation 2 transforms the ACQ formula ϕ(x, z) ≡ ∃y(R(x, y) ∧
S(y, z)) into the following formula (with the same free variables and the subfor-
mula ψ′ as above): ϕ′′(x, z) ≡ ∃α1∃α2(ψ′(α1, α2) ∧ f1(α1) = x ∧ f2(α2) = z).

Remark 7. Our translations (1) and (2) are easily extended to ACQ 
= formulas.

Let us now introduce the notions of conjunctive and acyclic conjunctive func-
tional queries.

Definition 8. Let F-CQ (resp. F-CQ
=) denote the set of conjunctive func-
tional σ-formulas ( for a unary functional signature σ) of the form ϕ = ∃x̄ψ
where ψ is a conjunction of unary atoms U(v) and equalities τ = τ ′ (resp.
equalities τ = τ ′ and disequalities τ �= τ ′), each τ, τ ′ is a functional term of the
form f(v) or v, where v is a variable.

Definition 9. To each F-CQ or F-CQ 
= formula ϕ, we naturally associate the
undirected graph Gϕ = (Vϕ, Eϕ) defined as follows:

– Vϕ = var(ϕ) and
– for any pair of distinct variables v, v′, set {v, v′} ∈ Eϕ iff an equality involv-

ing both v and v′ occurs as a conjunct 2 in ϕ.

An F-CQ (resp. F-CQ 
=) formula ϕ is acyclic or F-ACQ (resp. F-ACQ
=)
if its graph Gϕ is acyclic.

2 Here again, the disequalities of ϕ are not involved in the definition of Gϕ.
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Without loss of generality we assume that Gϕ is also connex and hence is a tree
T called a join-tree of ϕ . The following results are easy to prove.

Lemma 10. 1. Preservation of acyclicity: Let ϕ be a CQ
= formula. If ϕ is
acyclic then its functional translations 1 (in the case ϕ is quantifier-free)
and 2 are acyclic too.

2. Linearity of the transformations:
– For formulas: The sizes of the transformed formulas 1 and 2 are linear

in the size of ϕ.
– For structures: Our transformation of a relational σ-structure M into a

functional σ′-structure M′ is computable in time O(|M|).
3. Correctness of the reductions:

– Translation 1: Let ψ′ be the quantifier-free translation (F-ACQ
=) of
a (quantifier-free) formula ψ (ACQ
=). There exists an exact reduction
from problem Enum(ψ) to Enum(ψ′).

– Translation 2: We have ϕ(M) = ϕ′′(M′).

2 Quantifier Elimination

2.1 Covers and Representative Sets

In all the definitions and results of this section, E and F are two finite sets and
f̄ = (f1, . . . , fk) is a tuple of k unary functions from E to F .

Definition 11. A cover c̄ of (E, f̄) is a tuple (c1, . . . , ck) ∈ F k such that ∀y ∈
E, ∃i : ci = fi(y). We denote by covers(E, f̄) the set of covers of (E, f̄).

Definition 12. A representative set of (E, f̄) is a subset E′ ⊆ E such that
covers(E, f̄) = covers(E′, f̄).

Lemma 13. There is a representative set E′ of (E, f̄) of cardinality at most
O(k!). Such a set E′ is called a small representative set of (E, f̄) and can be
computed in time O(k!|E|).

2.2 Quantifier Elimination

Lemma 14. Let ϕ(x̄) be an F-ACQ
= σ-formula with a join-tree T and of the
form ϕ(x̄) = ∃zψ(x̄, z) where ψ is quantifier-free and z is a leaf of T . Let k be the
number of disequalities in ϕ(x̄) involving variable z and let M be a σ-structure.
Then we can compute in time O(k!.|ϕ|.|M|) a quantifier-free σ′-formula ϕ′(x̄)
with σ ⊆ σ′ and a σ′-structure M′ that expands M such that

– ϕ(M) = ϕ′(M′);
– ϕ′(x̄) is a disjunction of at most O(k!) formulas ψi of F-ACQ
=;
– for each disjunct ψi of ϕ′, |ψi| ≤ |ϕ|.
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Proof. Formula ϕ(x̄) can be put under the form:

ϕ(x̄) ≡ ψ0(x̄) ∧ ∃z(P (z) ∧
∧

1≤i≤m
gi(z) = g′i(y) ∧

∧

1≤i≤k
fi(z) �= f ′i(x̄))

where ψ0(x̄) is a quantifier-free formula, y ∈ x̄ is the parent of the leaf z in the
tree T , f ′i(x̄) denotes a term f ′i(vi) for vi ∈ x̄ and P (z) is a quantifier-free formula
on z. Let ḡ(x) = (g1(x), . . . gm(x)), ḡ′(x) = (g′1(x), . . . g

′
m(x)). One partitions the

set P = P (M) according to the values of ḡ; more precisely, for each ᾱ ∈ ḡ(D),
one defines the set Pᾱ = P ∩ ḡ−1(ᾱ) and computes a small representative set
of (Pᾱ, f̄) denoted P ′ᾱ (of cardinality at most h = O(k!)). This can be done
globally in time Σᾱ∈ḡ(D)O(k!|Pᾱ|) = O(k!|P |) = O(k!|M|). Clearly, ϕ(x̄) can be
rephrased as

ψ0(x̄) ∧ ∃z ∈ Pḡ′(y)

∧

1≤i≤k
fi(z) �= f ′i(x̄).

By definition of the representative sets, it is also equivalent to the following
formula on M:

ψ0(x̄) ∧ ∃z ∈ P ′ḡ′(y)

∧

1≤i≤k
fi(z) �= f ′i(x̄).

Let M′ be the σ′-expansion of M obtained by introducing the unary pred-
icates Ej and the unary functions vj , for 1 ≤ j ≤ h, defined as follows:
y ∈ Ej ⇔ |P ′

ḡ′(y)
| ≥ j; vj(y) is the jth element of P ′

ḡ′(y)
if |P ′

ḡ′(y)
| ≥ j and

an arbitrary value otherwise. Finally, we obtain ϕ(M) = ϕ′(M′) for the follow-
ing σ′-formula ϕ′ of the required form:

ϕ′(x̄) ≡
∨

1≤j≤h
(ψ0(x̄) ∧ Ej(y) ∧

∧

1≤i≤k
fi(vj(y)) �= f ′i(x̄))

Using the result above, one can eliminate one by one all the variables but one
in a bottom-up approach and derive the two following results. The iterative
treatment of variables is similar in spirit to Yannakakis’ algorithm [17].

Lemma 15. Let ϕ(x) be an F-ACQ
= σ-formula with only one free variable x
and M be a σ-structure. Let l be the number of variables and k be the number of
disequalities of ϕ(x). One can compute in time O(k!l.|ϕ|.|M|) a σ′-expansionM′

of M (σ ⊆ σ′) and a σ′-formula ϕ′ which is a disjunction of O(k!l) F-ACQ
=

quantifier-free formulas ψi where |ψi| ≤ |ψ| so that ϕ(M) = ϕ′(M′).

Theorem 16. Let ϕ be a fixed F-ACQ
= (resp. ACQ
=) query. Then Enum(ϕ)
can be evaluated with delay O(|M|).
In the particular case of boolean queries then, surprisingly, the exponent due to
the number of variables l can be avoided.

Proposition 17. Let ϕ be an F-ACQ 
= σ-formula without free variables andM
be a σ-structure. Testing whether M |= ϕ can be decided in time O(k!.|ϕ|.|M|)
where k is the number of disequalities of ϕ
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3 Constant Delay Enumeration

3.1 Combinatorial Tools

In this section, we will need a convenient notion of two-phase algorithm for a
problem with two inputs : a static input x and a dynamic input y. It is defined
by the following general scheme.

– Static phase (or precomputation phase): it computes some data called r(x)
(only depending on x);

– Dynamic phase: from the input (r(x), y), it computes the output of the
problem.

LeastNonCover

Static input : Two finite ordered sets E and F ,
a k-tuple of unary functions f̄ = (f1, . . . fk) from E to F

Dynamic input : a vector ū ∈ F k, an element x ∈ E
Parameter: k

Output: the least element y ∈ E such that y ≥ x∧
∧

1≤i≤k fi(y) �=
ui if such an element exists, and ⊥ otherwise.

Lemma 18. LeastNonCover is computable with a static phase of linear time
and a dynamic phase of constant time.

Proof. (sketch) In this proof, E, F and f̄ are considered as implicit and we
assume that E = {1, . . . , |E|}. Let x be an element of E, ū be a k-tuple of
elements of F and S be a subset of [1, k]. Then define Find(x, ū, S) as the least
element y ∈ E if it exists (⊥ otherwise) such that y ≥ x ∧

∧
i∈S fi(y) �= ui. For

each list L = (a1, . . . , al) of distinct elements of [1, k], 0 ≤ l ≤ k, we define the
“pointer function” PtrL : E → E ∪ {⊥} useful in the computation of Find as
follows

– Ptrε(x) = x;
– if l ≥ 1 then Ptra1,...,al

(x) is the least element y ∈ E such that y ≥ x∧∀j, 1 ≤
j ≤ l : faj (y) �= faj (Ptra1,...aj−1(x)) if it exists and Ptra1,...al−1(x) �= ⊥, and
is ⊥ otherwise.

We assume that during the precomputation phase, we have computed the
table PTR where PTRL[x] = PtrL(x) for each element x ∈ E and each list L.
We give an algorithm FIND(x, ū, S) which computes Find(x, ū, S). Clearly, the
dynamic phase of LeastNonCover consists in calling FIND with S = [1, k].
FIND(x, ū, S) consists of the call FIND-aux(x, ū, S, ε).

Finally, Algorithm 2 is given which computes the PTR table for the precom-
putation phase.

The more elaborated problem below need to be defined.
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Algorithm 1. FIND-aux(x, ū, S, L)
1: y ← PTRL[x]
2: if y = ⊥ ∨ ∀i ∈ S − L : fi(y) = ui then
3: return y
4: else
5: choose i ∈ S − L such that fi(y) = ui

6: return FIND-aux(x, ū, S, L.i)
7: end if

Algorithm 2. Precomputation phase
1: for x from |E| to 1 do
2: PTRε[x]← x
3: for l from 1 to k do
4: for each list L = (a1, . . . , al) of l distinct elements of [1, k] do
5: if x = |E| or PTRa1,...,al−1 [x] = ⊥ then
6: PTRL[x] ← ⊥
7: else
8: let ū = (u1, . . . , uk) such that ∀j ≤ l : uaj = faj (PTRa1,...,aj−1 [x])
9: PTRL[x] ← FIND(x + 1, ū, {a1, . . . , al})

10: end if
11: end for
12: end for
13: end for

EnumNonCover

Static input: Two finite ordered set E and F
a k-tuple of unary functions f̄ = (f1, . . . fk) from E to F

Dynamic input: a vector ū ∈ F k

Parameter: k
Output: the set {x ∈ E :

∧
1≤i≤k fi(x) �= ui} in increasing order

The following lemma is a consequence of Lemma 18

Lemma 19. EnumNonCover is computable with a static phase in linear time
and a dynamic phase with a constant delay.

3.2 Enumeration of Quantifier-Free and Free-Connex Acyclic
Queries

Definition 20. Let ϕ be a quantifier-free F-ACQ
= formula and T a join-tree
of ϕ. An elimination order (or T-order) of the variables of ϕ is an ordered list
(may be empty) x1, . . . , xp of its p variables such that (if p > 0) xp is a leaf of
T and x1, . . . , xp−1 is an elimination order of the tree T − {xp}.

In the following, we implicity assume that the variables of any quantifier-free
F-ACQ 
= formula are numbered in some fixed T -order.
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Theorem 21. Let ϕ(x1, . . . , xp) be a quantifier-free σ-formula in F-ACQ
=.
Then we have Enum(ϕ,<lex) ∈ Constant-Delaylin for the lexicographical
order <lex.

Proof. The theorem is proved by induction on the number of variables of ϕ.
Without loss of generality, assume that ϕ is of the form ϕ(x̄, y) ≡ ϕ0(x̄)∧Θ(x̄, y)
where

Θ(x̄, y) ≡ P (y) ∧
∧

1≤i≤m
fi(y) = gi(z) ∧

∧

1≤j≤k
hj(y) �= h′j(x̄).

In this formula, the variables y and z ∈ x̄ = (x1, . . . , xp−1) are respectively
the leaf xp and its parent in the join-tree T of ϕ and h′j(x̄) denotes a term
h′j(v) for some variable v ∈ x̄. Trivially, ϕ is logically equivalent to the following
formula ϕ1(x̄, y) ≡ ψ(x̄) ∧ Θ(x̄, y) where ψ(x̄) ≡ ∃yϕ(x̄, y). By Lemma 14, one
can compute in linear time, for each σ-structure M, a new σ′-structure M′ (σ′-
expansion ofM, σ ⊆ σ′) and a quantifier-free disjunction ψ′(x̄) ≡

∨
1≤i≤N ψi(x̄)

of ACQ 
= σ′-formulas ψi (each of join-tree T − {y}) so that we have ψ(M) =
ψ′(M′). This yields ϕ(M) = ϕ′(M′) for the following quantifier-free formula:
ϕ′(x̄, y) ≡ ψ′(x̄) ∧ Θ(x̄, y). ϕ′ is equivalent to the disjunction

∨
1≤i≤N ϕi(x̄, y)

where ϕi is the formula

ϕi(x̄, y) ≡ ψi(x̄) ∧ P (y) ∧ f̄(y) = ḡ(z) ∧
∧

1≤j≤k
hj(y) �= h′j(x̄)

By the induction hypothesis, we have for each i ≤ N , Enum(ψi, <lex) ∈
Constant-Delaylin. By Lemma 4, it is sufficient to prove the same complex-
ity result for Enum(ϕi, <lex), 1 ≤ i ≤ N . (Notice the essential fact that the
linear order <lex is the same for each i.) Here is the required algorithm for
Enum(ϕi, <lex).

Input: A σ′-structure M′

Precomputation phase

– Perform the precomputation phase of Enum(ψi, <lex)
– Set P = {y ∈ D :M′ |= P (y)}
– By sorting the elements y ∈ P according to the values f̄(y), compute a

partition of set P into non empty sets Pᾱ = {y ∈ P : f̄(y) = ᾱ}
– Compute the set A = {ᾱ ∈ Dm : Pᾱ �= ∅}
– For each ᾱ ∈ A, execute the precomputation phase of the algorithm Enum-

NonCover on the (static) input E = Pᾱ and (hj)j≤k.

Enumeration phase
For each ā enumerated by Enum(ψi, <lex) do

– Let ᾱ = ḡ(c) where c is the value of variable z in the tuple ā (if z is the
variable xl, then c = al)

– Let ū = (h′j(ā))j≤k
– For each b enumerated by EnumNonCover(Pᾱ, (hj)j≤k, ū), output (ā, b)



On Acyclic Conjunctive Queries and Constant Delay Enumeration 219

Definition 22. A query of F-ACQ (resp F-ACQ
=) is free-connex acyclic if
ϕ is acyclic and the set of free variables of ϕ is a connex subset of the join-tree
of ϕ. We denote by F-CCQ (resp F-CCQ
=) the class of free-connex acyclic
queries of F-ACQ (resp F-ACQ
=).

Since free variables form a connex part of the tree decomposition, a repeated
use of Lemma 14 permits to eliminate one by one all the quantified variables
until only the free variables remain. Then, one applies Theorem 21 to obtain the
following result.

Theorem 23. For any ϕ of F-CCQ
=, Enum(ϕ) ∈ Constant-Delaylin.

4 A Dichotomy Result

Definition 24. Let H be a hypergraph, we say that H ′ is a P-extension of H if

– V (H) = V (H ′),
– E(H) ⊆ E(H ′),
– ∀e′ ∈ E(H ′) ∃e ∈ E(H) e′ ⊆ e.

Definition 25. Let H = (V,E) be a hypergraph and let S ⊆ V . We say (T,A)
is an S-connex tree-structure of H if T is a tree-structure of H, and A is a
connex subset of the set of vertices of T such that

⋃
e∈A e = S.

- H is S-connex acyclic if there is an S-connex tree-structure (T,A) of H.
- H is e-S-connex acyclic if there is a P-extension H ′ of H such that H ′ is
S-connex acyclic.
- A conjunctive formula ϕ is free-connex acyclic if the hypergraph associed to ϕ
is S-connex acyclic where S is the set free(ϕ) of free variables of ϕ.
We denote by CCQ (resp CCQ
=) the class of free-connex acyclic queries ϕ of
CQ (resp CQ
=).

Lemma 26. Let ϕ be a formula of CCQ
=. Then there exists a formula ϕ′ of
F-CCQ
= and an exact reduction from problem Enum(ϕ) to Enum(ϕ′)

This immediately yields the following Theorem

Theorem 27. Let ϕ be a query of CCQ
=. Then Enum(ϕ) ∈
Constant-Delaylin.

We give now another characterization of S-connex acyclic hypergraphs. We need
to introduce the notion of S-path.

Definition 28. Let H = (V,E) be a hypergraph and let S ⊆ V . An S-path is a
path (x, a1, . . . , ak, y) such that

– x and y belong to S,
– vertices ai, 1 ≤ i ≤ k, belong to V − S, and
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– no hyperedge includes both x and y.

Lemma 29. Let H = (V,E) be a hypergraph. H is e-S-connex acyclic if and
only if H is acyclic and H admits no S-path.

The previous lemma permits to obtain a polynomial (probably linear) algorithm
to recognize CCQ formulas.

Lemma 30. There is a polynomial time algorithm which, given an acyclic hy-
pergraph H = (V,E) and a set S ⊆ V returns a P-extension H ′ of H and an
S-connex tree-structure of H ′ if H is e-S-connex acyclic, and an S-path of H
otherwise.

We aim to show that the evaluation and enumeration problems of any acyclic
query ϕ which is not CCQ are “hard“ in some precise sense. For that purpose,
we want to exhibit an exact reduction from the multiplication problem of n× n
boolean matrices (a problem that is strongly conjectured to be not computable
in O(n2) time) to Enum(ϕ). We need to encode our matrix problem in the first-
order framework. A Two-Matrix structure is a relational σAB-structure M =
(D,A,B) where D = [1, n], σAB = {A,B}, and A, B are binary relations.
Clearly, the multiplication problem of two n×n boolean matrices is expressed by
the following acyclic σAB-query: Π(x, y) ≡ ∃z(A(x, z)∧B(z, y)). More precisely,
Enum(Π) is the problem of enumerating, for each Two-Matrix structure M =
([1, n], A,B) given as input, the ordered pairs of indices (i, j) where 1 occurs in
the matrix product C = A×B, i.e., Ci,j = 1, 1 ≤ i, j ≤ n.

Definition 31. A conjunctive formula is simple if each relation symbol appears
in at most one atom.

Remark 32. Given a formula ϕ of ACQ (resp CCQ, ACQ 
=, CCQ 
=) and a
structure M, one can compute in linear time a simple formula ϕ′ of ACQ (resp
CCQ, ACQ 
=, CCQ 
=) and a structure M′ such that ϕ(M) = ϕ′(M′).

Lemma 33. Let ϕ be a simple formula which is ACQ (resp ACQ
=) but not
CCQ (resp not CCQ
=). Then there exists an exact reduction from the problem
Enum(Π) to Enum(ϕ).

Finally, one obtains the following result

Theorem 34. (Dichotomy Theorem) Let ϕ be a simple ACQ (resp ACQ
=)
query. We have either (1) or (2):

1. ϕ ∈ CCQ (resp CCQ
=) and Enum(ϕ) ∈ Constant-Delaylin (and
Eval(ϕ) is computable in time O(|M|+ |ϕ(M)|))

2. There is an exact reduction from Enum(Π) to Enum(ϕ) and then
Enum(ϕ) /∈ Constant-Delaylin (and Eval(ϕ) is not computable in time
O(|M|+|ϕ(M)|)) under the hypothesis that the product of two n×n matrices
cannot be computed in time O(n2).
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5 Free-Connex Treewidth

In this section, we introduce the notion of free-connex tree-decomposition of
conjunctive queries: this is a variant of the tree-decomposition of graphs

Definition 35. (see [4] for details) A tree-decomposition of a graph G = (V,E)
is a tree T whose vertices are subsets of V and are called the bags of T , so that

– T has the connectivity property (see above),
– each edge of G is included in some bag of T .

The width of a tree-decomposition T is max{|B| : B is a bag of T } − 1. The
treewidth of G denoted by tw(G) is the smallest width of any tree-decomposition
of G.

Definition 36. Let G = (V,E) be a graph and S be a subset of V . A S-connex
tree-decomposition of G is a tuple (T,A) where T is a tree-decomposition of G
and A is a connected subset of V (T ) such that

⋃
B∈AB = S.

Given a graph G = (V,E) and a set S ⊆ V , the S-connex treewidth of G
denoted by ctw(G,S) is the smallest width of any S-connex tree-decomposition
of G.
Let ϕ be a formula of CQ (resp CQ
=). The free-connex treewidth of ϕ is the
S-connex treewidth of the Gaifman graph 3 of ϕ for S = free(ϕ).

Lemma 37. Let ϕ be a CQ (resp CQ
=) formula of free-connex treewidth k over
a structure M of domain D. Then we can compute in time O(|D|k+1 + |M|) a
formula of CCQ (resp CCQ
=) ϕ′ (of size only depending on |ϕ|) and a model
M′ for ϕ′ such that ϕ(M) = ϕ′(M′).

By the previous Lemma and Theorem 27, we obtain the following theorem.

Theorem 38. Given a fixed formula ϕ of CQ
= of free-connex treewidth k, the
problem Enum(ϕ) can be computed with O(|D|k+1 + |M|) precomputation and
constant delay.

We now give a polynomial algorithm to compute the free-connex treewidth of a
formula. We need to introduce the notion of completed graph.

Definition 39. Let G be a graph. The completed graph G′ of (G,S) is built as
follows

– V (G′) = V (G)
– E(G′) = E(G) ∪ {{x, y} : x, y ∈ V and there is an S-path between x and y}

Theorem 40. Let G be a graph, let S ⊆ V (G) and let G′ be the completed graph
of (G,S). It holds
3 The Gaifman graph of ϕ is the graph Gϕ = (V, E) where V = var(ϕ) and E is the

set of pairs of variables {x, y} such that there exists an atom of ϕ that contains both
x and y.
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1. ctw(G,S) = tw(G′);
2. For any fixed k, there is a polynomial time algorithm which returns an S-

connex tree-decomposition of G of width at most k if ctw(G,S) ≤ k and
returns False otherwise.

Notice that the algorithm of point (2) uses the k-tree decomposition procedure
of [5] applied to the completed graph G′.
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Abstract. We present a method of integrating linear rational arithmetic into su-
perposition calculus for first-order logic. One of our main results is completeness
of the resulting calculus under some finiteness assumptions.

1 Introduction

In this paper we consider superposition calculus extended with rules for rational lin-
ear arithmetic such as Gaussian Elimination for reasoning with equality and Fourier-
Motzkin Elimination for reasoning with inequalities. These rules are similar to super-
position and ordered chaining rules in first-order reasoning.

There are a number of approaches to integrate arithmetical reasoning into superpo-
sition calculus. Most of these approaches are based on approximation of arithmetical
reasoning by considering an axiomatisable theory such as Abelian groups or divisible
Abelian groups [4, 12–14]. Although this provides a sound approximation it is generally
not complete w.r.t. reasoning in usual arithmetical structures such as rational numbers
Q. In our approach we consider Q as a fixed theory sort in the signature containing the-
ory symbols +, >,= together with non-theory sorts and function symbols. We present
a sound Linear Arithmetic Superposition Calculus (LASCA) for this language based
on a standard superposition calculus extended with rules for linear arithmetic. As we
show, the validity problem for first-order formulas of linear arithmetic extended with
non-theory function symbols is Π1

1-complete even in the case when there are no vari-
ables over the theory sort. Therefore, there is no sound and complete calculus for this
logic. Nevertheless, one of the main results of this paper is that under some finiteness
assumptions it is possible to show completeness of our calculus. In particular, we can
show that a finite saturated set of clauses (with variables over non-theory sorts) S is sat-
isfiable if and only if S does not contain the empty clause. For this, we need to assume
that a simplification ordering we use in our calculus is finite-based (a notion defined
later in the paper). In this paper we also show how to construct such an ordering.

Our calculus LASCA is closely related to [4, 13], but here we are dealing directly
with the structure Q rather than with axiomatisations. One of the differences with [13]
is that we do not apply abstraction for theory terms. Such abstraction introduces new
variables and can increase the number of inferences. On the other hand, in order to show
our completeness result we impose additional restrictions on the ordering and vari-
able occurrences. In our completeness proof we adapt the model generation technique
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(see [2, 9]). We use some ideas from normalised rewriting, symmetrisation [4, 7, 8] and
many-sorted reasoning [3, 5].

2 Preliminaries

We consider a many-sorted language. LetΣ be a signature consisting of a non-empty set
of sorts S, a set of function symbols F , a set of predicate symbols P and an arity func-
tion arity : F ∪ P → S+, where S+ denotes the set of finite non-empty sequences of
sorts. For a function symbol f with arity arity(f) = 〈s0, . . . , sn〉, we call s0, . . . , sn−1

argument sorts and sn the value sort of f . In this paper we are mainly dealing with
extensions of rational arithmetic. We write ΣQ for a signature such that SQ consists of
a designated theory sort sQ of rationals, theory predicate symbols PQ = {>,=}, and
theory function symbols FQ = {+} ∪ {q, ·q|q ∈ Q} where Q is the set of rationals.
We assume that Σ extends ΣQ with non-theory sorts and non-theory function symbols
(note that non-theory functions can have arguments and values of the theory sort sQ).
We assume that the only non-theory predicates in Σ are equalities on non-theory sorts,
denoted as .s, we also write. if there is no confusion, and we use = for equality over
the theory sort sQ. Variables, terms, atoms, literals, clauses and first-order formulas are
defined in the standard way. We use the standard semantics for many-sorted logic: a Σ-
structure consists of a disjoint union of domains indexed by sorts with defined functions
and predicates respecting their arities. In addition, we always assume that the domain
of the theory sort sQ is the rational numbers Q with the usual interpretation of >,=,+
and where elements of Q are also constants in our language and ·q is a unary function
symbol interpreted as multiplication by q for each q ∈ Q. We use convenient abbrevia-
tions qt for ·q(t) where t is a term of sort sQ and −t for −1t. We use �� to denote one
of theory predicates> or =.

We are interested in the question of whether a given first-order formula is (un)sat-
isfiable in a Σ-structure. This question can be reformulated in a standard way as a
question of (un)satisfiability of sets of clauses in a Herbrand interpretation which is
defined later.

A non-variable term is called a theory term (non-theory term) if its top function
symbol is a theory symbol (non-theory symbol respectively) and similarly for atoms.
We assume that > and = occur only positively in clauses (for example ¬(t > s) can be
replaced by s > t ∨ s = t and ¬(t = s) by t > s ∨ s > t).

Q-Normalised terms. Define a relation =AC on terms, called AC-congruence, as the
least congruence relation generated by associativity and commutativity axioms for +.
We assume + to be variadic and define Q-normalised terms as follows.

Definition 1. A term t is Q-normalised if t is either:

1. a theory constant q, or
2. a non-theory term f(t1, . . . , tn) where t1, . . . , tn are Q-normalised, or
3. q1t1+· · ·+qntn where n ≥ 1, and for each 1 ≤ i ≤ n, the term ti is a Q-normalised

non-theory term, qi �= 0 and ti �=AC tj for i �= j, and
4. q1t1 + · · ·+ qntn + q where n and qi, ti for 1 ≤ i ≤ n are as in 3 above and q �= 0.
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It is not hard to argue that for every ground term t there is a unique, up to AC-congruence,
Q-equivalent term which is Q-normalised. This term is called a Q-normal form of t and
denoted by t ↓Q. We say that s is an AC-subterm of a Q-normalised term t if either: (i)
t =AC s, or (ii) t = f(t1, . . . , tn) and s is an AC-subterm of ti for some 1 ≤ i ≤ n,
where f is a non-theory function symbol, or (iii) t = qt′ and s is an AC-subterm of t′,
or (iv) t =AC u + v and s is an AC-subterm of u or v. For example, 3d + 5a is an
AC-subterm of 4f(5a+ 2b+ 3d).

In this paper we deal with orderings satisfying several properties defined below.

Definition 2. Let 0 be an ordering on Q-normalised terms. It is said to have a subterm
property if s[t] 0 t whenever t is a proper AC-subterm of s[t]. We say that 0 is AC-
compatible if it satisfies the following property: if s 0 t, s =AC s′ and t =AC t′,
then s′ 0 t′. We say that 0 is Q-monotone if for any Q-normal form t[s] where s is a
non-theory term, from s 0 s′, it follows that t[s] 0 (t[s′]) ↓Q.

An ordering 0 is called Q-total, if for all ground Q-normal forms s, t, if s �=AC t,
then either s 0 t or t 0 s.

We say that an ordering 0 has a sum property if for any non-theory term t and any
finite family of non-theory terms s1, . . . , sn of sort Q, such that t 0 si for 1 ≤ i ≤ n,
it follows that t 0 (q1s1 + · · ·+ qnsn + q) ↓Q for any coefficients q1, . . . , qn, q ∈ Q. �

From now on0 will denote an AC-compatible, Q-monotone, Q-total and well-founded
ordering on Q-normal forms which has sum and subterm properties. We show an ex-
ample of such an ordering in Section 5. We use 1 for0 ∪ =AC .

Let t be a Q-normalised ground term of sort Q, then the leading monomial m of t
is defined as follows: if t is a theory constant then m = t, otherwise m is the greatest
w.r.t.0 non-theory subterm of t. Let � denote the literal 0 = 0 and ⊥ the literal 0 > 1.
We call a ground literal L Q-normalised if L is of one of the forms l = s, l > s,
−l > s, l . r, l �. r, �, ⊥ where l is a non-theory term and l 0 r, we also call l the
leading term of L. A clause is Q-normalised if all of its literals are Q-normalised and
the leading term of a clause is the greatest leading term of its literals. It is easy to see
that every ground clause can be Q-normalised into an equivalent clause. From now on
we consider only Q-normalised ground terms, literals and clauses.

In order to extend the ordering 0 to literals we represent literals as multisets as
follows m(t = s) = {t, s},m(t > s) = {t, t, s, s},m(t . s) = {t, s},m(t �. s) =
{t, t, s, s}. Now we define L 0 L′ iff m(L) 0m m(L′) where 0m is the multiset
extension of 0. We compare clauses in the two-fold multiset extension of0.

Herbrand Interpretation. An evaluation function is a mapping from ground non-theory
terms of sort sQ into Q. Let ν be an evaluation function, then define ν̄ to be an extension
of ν to the theory terms as follows: ν̄(q1t1+· · ·+qntn+q) = q1ν(t1)+· · ·+qnν(tn)+q.

In order to define a Herbrand interpretation we need a congruence relation ∼ on
ground Q-normalised terms and an evaluation function ν, such that the following com-
patibility conditions are satisfied.
Compatibility Conditions:

1. If t ∼ s then ν(t) = ν(s), for any non-theory terms t, s of sort sQ.
2. If ν̄(u) = ν̄(v) then u ∼ v, for any terms u, v of sort sQ.
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We call a pair 〈ν,∼〉, satisfying Compatibility Conditions above, a Herbrand interpre-
tation. A theory atom t��s is true in 〈ν,∼〉 if Q � ν̄(t)��ν̄(s), and otherwise false in
〈ν,∼〉. A non-theory atom t . s is true in 〈ν,∼〉 if t ∼ s, and otherwise false in 〈ν,∼〉.

3 The Calculus for Ground Clauses

The inference rules of our Linear Arithmetic Superposition Calculus (LASCA) are pre-
sented in Table 1 (page 237). We assume that all inference rules are applied to Q-
normalised clauses and after application of an inference rule we implicitly Q-normalise
the conclusion. Note that if we write, e.g., C ∨ l = r then implicitly l 0 r, since the
clause is assumed to be Q-normalised. For a term t, we write t 1 C (t 0 C)if t 1 s
(t 0 s) for any term s in C and similarly for literals. For a non-theory term l of sort sQ,
we use ±l to denote l or −l, and assume that the choice of the sign is the same for a
context, e.g., a rule and its conditions (we use ∓ to refer to the opposite sign).

Theorem 1. Linear Arithmetic Calculus is sound: if the empty clause is derivable in
LASCA from S then S is unsatisfiable.

We say that a set of clauses S is saturated (w.r.t. LASCA) if S is closed under all
inferences in LASCA. As we will see in Section 6 there is no sound and complete
calculus for Linear Arithmetic extended with non-theory functions. Hence, our LASCA
calculus is also incomplete in general: a saturated set of clauses S such that � �∈ S can
still be unsatisfiable. Let us characterise some cases when from the fact that the set S is
saturated and � �∈ S it follows that S is indeed satisfiable.

Definition 3. Let M be a set of terms or clauses. We say that M satisfies Finiteness of
Coefficients condition if the following holds. There exists a finite set of coefficients P
such that if a term qt or q is a subterm of a term in M then q ∈ P . �
In the sequel we impose the following assumption on sets of clauses.

Assumption 1 Let S be a set of clauses. We assume that S satisfies Finiteness of Co-
efficients condition.

Let us note that under Assumption 1, the number of occurrences of a non-theory term
(or a theory constant) in S can be infinite. In Section 4 we show that the set of all
ground instances of a finite set of clauses with variables over variable-safe sorts, satisfies
Assumption 1. This will be used to show that if a finite set S of (possibly non-ground
clauses) is saturated, then S is satisfiable if and only if � �∈ S (Theorem 3).

Definition 4. Consider a finite set of coefficients P , then TP denotes the set of all Q-
normalised terms t such that any non-theory subterm of t of sort sQ occurs in t with
coefficients from P . An ordering on Q-normalised terms is called finite-based if for any
finite set of coefficients P and any ground term t the set of all terms in TP less than t
is finite. �
Assumption 2 The ordering 0 is finite-based.

In Section 5 we show how to construct an appropriate ordering satisfying Assumption 2.
Now we will show how to construct a candidate model 〈ν,∼〉 for a set of clauses S such
that under Assumptions (1,2) if S is saturated and � �∈ S then S is true in 〈ν,∼〉.
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Model Construction. For simplicity of exposition we consider the case when all func-
tions have arguments and values in Q. Let S be a set of ground clauses satisfying Finite-
ness of Coefficients Assumption 1. We consider terms modulo AC-congruence, and in
particular all rewrite rules are implicitly applied modulo AC. Denote TS the set of all
AC-subterms of terms occurring in S and T nth

S all non-theory AC-subterms of terms
in S. Note that TS and T nth

S satisfy Finiteness of Coefficients condition. An equation
l = r, where l 0 r and l is a non-theory term, can be seen as a rewrite rule l → r,
replacing l with r (and applying Q-normalisation to the resulting term). Any system
R of such rules is terminating, and if the left-hand sides of any two rules in R are not
overlapping then the system is also convergent. Let us construct a rewriting system R
and an evaluation function ν for all terms in T nth

S . The evaluation function ν will be
represented via a convergent term rewriting system Υ such that the following holds:
(i) Υ consists of rules of type f(q1, . . . , qn) → q, where f is a non-theory function
symbol q1, . . . , qn, q ∈ Q, (ii)R∪Υ is a convergent term rewriting system. We say that
a term t is evaluated by Υ if t ↓Υ∈ Q. We construct R and Υ by induction on terms
in T nth

S ordered by 0 as follows. For each term l ∈ T nth
S we define a set of rewrite

rules εl and a set of evaluation rules δl. We define Rl = ∪l�t∈T nth
S
εt; Rl = Rl ∪ εl;

Υl = ∪l�t∈T nth
S
δt; Υ l = Υl ∪ δl.

Consider a term l in T nth
S . We inductively assume that we have constructed εt, δt for

every t ≺ l, t ∈ T nth
S such that the following invariants hold.

Invariants (Inv):

1. either εt = ∅, or εt = {t→ r} where t 0 r, r ∈ TS , and
2. either δt = ∅, or δt = {f(q1, . . . , qn) → q} and t = f(t1, . . . , tn), where ti ∈
TS , q, qi ∈ Q for 1 ≤ i ≤ n, 0 ≤ n, and

3. Rt, Υ t and Rt ∪ Υ t are convergent term rewriting systems, and
4. t is evaluated by Υ t, and
5. if t is Rt-irreducible then t is not evaluated by Υt, and
6. if t is Rt-irreducible then for any u, v ∈ TS such that t is the leading monomial of
u, u is Rt-irreducible and u 0 v, we have u ↓Υ t �= v ↓Υ t (note u ↓Υ t , v ↓Υ t∈ Q by
Inv 4).

Let us note that since 0 is finite-based, there are only a finite number of terms less
than l in T nth

S . Therefore Rl = Rl′ and Υl = Υ l′ for some l′ ≺ l. We also have that Rl

and Υl are finite. Now we show how to define εl, δl.
Consider the case when l can be reduced byRl. If l is evaluated by Υl then we define

εl = δl = ∅. If l is not evaluated by Υl, then l = f(t1, . . . , tn) for a non-theory symbol
f . We have f(t1 ↓Υl

, . . . , tn ↓Υl
) = f(q1, . . . , qn) for some qi ∈ Q, 1 ≤ i ≤ n, (since

l 0 ti we have that all ti are evaluated by Υl). Let us show that f(q1, . . . , qn) does not
occur in the left-hand sides of rules in Rl. Indeed, otherwise, f(q1, . . . , qn) ∈ T nth

S and
l 0 f(q1, . . . , qn), therefore f(q1, . . . , qn) and l would be evaluated by Υl. Now we
define εl = ∅ and δl = {f(q1, . . . , qn) → q} where q ∈ Q is selected arbitrary. It is
straightforward to check that εl and δl satisfy all invariants above.

Now we assume that l is irreducible by Rl.

Claim. Let us show that l is not evaluated by Υl. Let l = f(t1, . . . , tn), then f(t1 ↓Υl
,

. . . , tn ↓Υl
) = f(q1, . . . , qn). Assume that l is evaluated, then f(q1, . . . , qn) → q ∈ Υl
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for some q ∈ Q. Consider s ∈ T nth
S , such that l 0 s and δs = {f(q1, . . . , qn) → q}.

We have s = f(s1, . . . , sn) for some terms si ∈ TS, 1 ≤ i ≤ n (see Inv 2). Since
l 0 s, from monotonicity of 0 it follows that ti 0 si for some 1 ≤ i ≤ n. Let
ti = α1u1 + . . . + αkuk + αk+1 and si = β1v1 + . . . + βmvm + βm+1 where we
assume summands are ordered in a descending order (w.r.t. 0). Let j be the smallest
index such that αjuj �=AC βjvj . If j = k + 1 then m = k and αk+1 �= βm+1, we
obtain a contradiction: 0 = ti ↓Υl

−si ↓Υl
= α−β �= 0. If j ≤ k then αjuj 0 βpvp for

j ≤ p ≤ m+ 1. Since uj is irreducible w.r.t. Rl (and therefore w.r.t. Ruj ) from Inv 6 it
follows that (αjuj + . . .+αkuk +αk+1) ↓Υuj �= (βjvj + . . .+ βmvm + βm+1) ↓Υuj .
But then ti ↓Υl

�= si ↓Υl
, which is a contradiction.

We say that a literal±l′��t with the leading term l′ ≺ l is true w.r.t. Υl if Q � ±l′ ↓Υl

��t ↓Υl
and false otherwise (note that l′ ↓Υl

, t ↓Υl
∈ Q).

Let Sl be the set of all clauses in S with the leading term l. For a clause C ∈ Sl

define V l
C , D

l
C such that C = V l

C ∨ Dl
C and V l

C consists of all literals in C with the
leading term l (note Dl

C can be empty). We say that a clause C ∈ Sl, C = C′ ∨ l = r
weakly produces a rewrite rule l→ r, if the following holds.

– l = r is a strictly maximal literal in C, and
– Dl

C is false w.r.t. Υl, and
– there is no l = r′ ∈ C′ such that Q � r ↓Υl

= r′ ↓Υl
.

If there is a clause in Sl weakly producing a rewrite rule then we take the smallest
(w.r.t. 0) such clause C. Let l → r be the rewrite rule weakly produced by C, then we
say that l → r is produced by C. We define εl = {l → r} and δl = {l ↓Υl

→ r ↓Υl
}.

Now we check that all Inv are satisfied. It follows immediately from the construction
that Inv (1,2,4,5,6) are satisfied. Let us show that Rl ∪ Υ l is convergent. First we note
that there are no critical pairs between l → r and Rl. Indeed, l is irreducible by Rl and
l is greater (w.r.t. 0) than all left-hand sides of rules in Rl. Likewise, from the Claim
above it follows that that l is not evaluated by Υl and therefore there are no critical pairs
between l ↓Υl

→ r ↓Υl
and rules in Υl. The only new critical pairs possible are between

l→ r and rules in Υ l, but they are joinable since l ↓Υ l= r ↓Υ l .
Now we assume that there is no clause in Sl producing a rewrite rule. We define

εl = ∅, and now we need to find an appropriate evaluation for l. Let us fix a numerical
variable xl. We say that a clause C ∈ Sl, C = C′ ∨ ±l > r weakly produces a bound
±xl > r ↓Υl

, if the following holds.

– ±l > r is a strictly maximal literal in C, and
– Dl

C is false in Υl, and
– there is no literal ±l > r′ in C′, and
– if there is a literal ∓l > r′ in C′, then Q � r ↓Υl

≥ −r′ ↓Υl
.

Let Bl be the set of all bounds weakly produced by clauses in Sl, (Bl can be the
empty set). It is not difficult to see that Assumptions 1 and 2 imply that Bl is finite. Let
Bl
− be the set of lower bounds inBl (i.e. bounds of the type xl > q) anBl

+ be the set of
upper bounds in Bl (i.e. bounds of the type −xl > q). We have Bl = Bl

− ∪Bl
+. Since

Bl is finite we have that each Bl
− and Bl

+ are satisfiable. Let xl > qglb be the greatest
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w.r.t. > lower bound in Bl
−, (since Bl

− is finite such a bound always exists). Let U l be
the set of upper bounds −xl > q in Bl

+ such that −qglb > q. Define Bl
± = Bl

− ∪ U l.
We have Bl

± is satisfiable and the set of solutions to Bl
± is an open interval. Moreover,

if Bl
+ �= U l then Bl

− together with any bound from Bl
+ \ U l is unsatisfiable. Clauses

weakly producing bounds in Bl
± are called productive.

In order to satisfy Inv 6 we impose additional constraints on evaluation of l defined
below. We say that a pair of terms u, v ∈ TS , such that l is the leading monomial of
u and u 0 v produces a disequality constraint duv if the following holds. Assume that
u = αl + u′, α �= 0. If l is not a subterm of v and therefore l 0 v, then duv = {xl �=
(v ↓Υl

−u′ ↓Υl
)/α} (note that u′ ↓Υl

, v ↓Υl
∈ Q). If l is a subterm of v then v = βl+ v′

and we need to consider the following possible cases. Case (i): β = α. Then we have
u′ 0 v′ and we can apply Inv 6 to the leading term of u′, obtaining u′ ↓Υl

�= v′ ↓Υl
. In

this case we have that under any evaluation of l, evaluation of u will be different from
evaluation of v and therefore we define duv = ∅. Case (ii): β �= α. Then we define
duv = {xl �= (v′ ↓Υl

−u′ ↓Υl
)/(α − β)}. We define Dl to be the union of all duv

where u, v ∈ TS, l is the leading monomial of u and u 0 v. From Assumptions (1, 2)
it follows that Dl is finite, therefore Dl is satisfied by all but possible a finite number
of rationals. We have Bl

± ∪Dl is satisfiable. Define δl = {l ↓Υl
→ q}, where q is any

rational satisfying Bl
± ∪ Dl. It is straightforward to check that all Inv are satisfied by

εl, δl.
We have shown how to construct εl, δl for every l ∈ T nth

S . Now we define RS =
∪l∈T nth

S
εl and ΥS = ∪l∈T nth

S
δl. We haveRS ∪ ΥS is a convergent term rewriting system

such that every term in T nth
S is evaluated by ΥS . Finally we need to extend evaluation ΥS

to all non-theory terms. We can do it by induction over all non-theory terms as follows.
For each term t we define a set of evaluation rules κt as follows. Assume, by induction,
that we have defined κs for non-theory terms s ≺ t. Define Λt = ΥS

⋃
∪t�sκs. If t is

evaluated by Λt then we define κt = ∅, otherwise we define κt = {t ↓Λt→ q} where
q ∈ Q is selected arbitrary. Define Λt = Λt ∪ κt and ΛS = ∪Λt. It is not difficult to
check that RS ∪ ΛS is a convergent term rewriting system such that every non-theory
term is evaluated by ΛS .

Let us define a Herbrand interpretation 〈ν,∼〉, where ν(t) = t ↓ΛS and t ∼ s iff
t ↓ΛS = s ↓ΛS . We call 〈ν,∼〉 the candidate model for S. �

Lemma 1. In the Model Construction above if a clause C is productive then C is true
in the candidate model 〈ν,∼〉.

Proof. Immediately follows from the Model Construction. �

Lemma 2. In the Model Construction above if a clause C = C′ ∨ ±l��r produces a
rule or a bound ±l��r then C′ is false in the candidate model 〈ν,∼〉.

Proof. Consider first when ±l��r is l = r and C generates the rule l → r. We have
C′ = V l

C′ ∨Dl
C′ where V l

C′ consists of all literals in C′ with the leading term l. From
the conditions on productiveness of C we have that Dl

C′ is false in 〈ν,∼〉. From the
definition of the ordering on atoms V l

C′ does not contain any atoms with >. If V l
C′

contains an atom l = r′ then we have r ↓ΥS �= r′ ↓ΥS and l ↓ΥS = r ↓ΥS therefore l = r′

is false in 〈ν,∼〉.
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Now we consider the case when ±l��r is ±l > r and C produces the bound ±xl >
r ↓ΥS . We have that Dl

C′ is false in 〈ν,∼〉. If V l
C′ contains an atom l = r′, then by

construction l is irreducible w.r.t. Rl. Since l 0 r′, Inv 6 implies that l ↓ΥS �= r′ ↓ΥS . If
V l
C′ contains an atom ∓l > r′ then we have ±l ↓ΥS> r ↓ΥS≥ −r′ ↓ΥS and therefore
r′ ↓ΥS> ∓l ↓ΥS implying that ∓l > r′ is false. Also, by conditions on productiveness,
there is no atom ±l > r′ in V l

C′ . We have shown that all atoms in V l
C′ , and therefore in

C′, are false in 〈ν,∼〉. �
Theorem 2. LASCA is complete under Assumptions (1,2). Let S be a set of ground
clauses such that Assumptions (1,2) are satisfied. If S is saturated and � �∈ S then S is
true in the candidate model 〈ν,∼〉.
Proof. Let S be a saturated set of clauses satisfying Assumption 1. We apply Model
Construction above to obtain RS , ΥS , ΛS and the candidate model 〈ν,∼〉. In order to
show that 〈ν,∼〉 satisfies all clauses in S it is sufficient to show that ΥS satisfies all
clauses in S. Assume otherwise. Let C be the smallest clause in S that is false under
ΥS . Let C = C′ ∨±l��r, where±l��r be a maximal literal in C. First we show that l is
irreducible by RS . Indeed, assume that l[l′] is reducible by a rule l′ → r′. Consider the
clause D = D′ ∨ l′ = r′ producing l′ → r′. Then, there is an inference by Gaussian
Elimination with the premise C,D and the conclusion G = D′ ∨ C′ ∨ ±l[r′]��r. We
have that C 0 G and from Lemma 2 it follows that G is false in ΥS . This contradicts
minimality of C.

By Lemma 1 all productive clauses are true in ΥS , therefore we assume that C is not
productive. Consider possible cases.

Case (1): C = C′ ∨ l = r. If C is not weakly productive then C′ = C′′ ∨ l = r′ and
r ↓ΥS = r′ ↓ΥS . Therefore, inference rule Theory Equality Factoring is applicable to C
with the conclusion D = C′′ ∨ r > r′ ∨ r′ > r ∨ l = r′. We have C 0 D and D is
false in ΥS , contradicting minimality of C. Now assume that C is weakly productive,
then there is a clause C′ ' C which produces a rule l→ r′ to RS . This contradicts that
l is irreducible by RS , which is shown above.

Case (2): C = C′ ∨−l > r. If C is not weakly productive then either (i) there exists
D = D′ ∨ l = r′ and D produces l → r′, but this contradicts that l is irreducible by
RS , or (ii) there is a literal −l > r′ in C′, or (iii) there is a literal l > r′ in C′ such that
−r′ ↓ΥS> r ↓ΥS .

Case (2.ii). Assume that C′ = C′′ ∨ −l > r′. Then, inference rules InF 1 and
InF 2 are applicable to C with the conclusions D1 = C′′ ∨ r > r′ ∨ −l > r and
D2 = C′′ ∨ r′ > r ∨ −l > r′, respectively. Note that D1 ≺ C and D2 ≺ C. Consider
possible cases. If r′ ≥ r is true in ΥS then D1 is false in ΥS . If r > r′ is true in ΥS then
D2 is false in ΥS . In both cases we obtain a contradiction to the minimality of C.

Case (2.iii). Let us assume that there is a literal l > r′ in C′ such that −r′ ↓ΥS>
r ↓ΥS . Since l > r′ and −l > r are false in ΥS we have r′ ↓ΥS≥ l ↓ΥS and r ↓ΥS≥
−l ↓ΥS , therefore r ↓ΥS≥ −r′ ↓ΥS which is a contradiction.

Case (2.iv). Now we assume that C is weakly productive. Let C weakly produces a
bound (−xl > r ↓ΥS ) ∈ Bl

+. If (−xl > r ↓ΥS ) ∈ U l then (−xl > r ↓ΥS ) ∈ Bl
±

implying C is productive which is a contradiction. If (−xl > r ↓ΥS ) ∈ Bl
+ \ U l then

we have the following. Let D = D′ ∨ l > rglb be the clause producing the greatest
lower bound (w.r.t. >) into Bl

−. Then, the Fourier-Motzkin inference rule is applicable
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to C andD with the conclusionK = C′ ∨D′ ∨−rglb > r. Let us show thatK is false
in ΥS . Indeed, D′ is false since D is productive (see Lemma 2), and −rglb > r is false
in ΥS since (−xl > r ↓ΥS ) �∈ U l (see definition of U l). Now we show that C 0 K .
Indeed, (l > rglb) 0 D′ therefore (−l > r) 0 D′ and (−l > r) 0 (−rglb > r). These
imply that C 0 K , obtaining a contradiction to the minimality of C.

Case (3): C = C′ ∨ l > r. Subcases (3.i-iii) are similar to (2.i-iii).
Case (3.iv). We assume that C is weakly productive. Since C weakly produces a

bound (l > r ↓ΥS ) ∈ Bl
− ⊆ Bl

± we have that C is also productive, which is a
contradiction.

We have considered all possible cases arriving at a contradiction under the assump-
tion that C is false in 〈ν,∼〉. Therefore all clauses in S are true in the candidate model
〈ν,∼〉. �

Let us note that our proof of the completeness theorem is based on the model generation
technique, and therefore it is not difficult to adapt redundancy notions from the standard
superposition calculus. For details we refer to [6].

4 Lifting

We now consider clauses with variables over variable-safe sorts defined below. It is
convenient to define first the set of variable-unsafe sorts Ŝ (w.r.t. Σ) as the minimal
set of sorts such that (i) sQ ∈ Ŝ and (ii) if there is a function symbol f in F with
an argument of a sort in Ŝ then the value sort of f is also in Ŝ. We define the set of
variable-safe sorts as S̄ = S \ Ŝ, (see Examples (1,2)).

Assumption 3 For a set of clauses S, all variables in S are of variable-safe sorts.

It is easy to see that if a finite set of clauses S satisfies Assumption 3, then the set of all
ground instances of S satisfies Finiteness of Coefficients Assumption 1.

Our LASCA calculus for ground clauses works on Q-normalised clauses. In order to
lift LASCA calculus into non-ground case we need additional normalisation rules. In
formulation of Normalisation rule below we assume that non-ground theory literals are
in one-sided form t��0.

For a pair of terms t, t′ let mguAC (t, t′) be a minimal complete set of AC-unifiers.

Normalisation Rule:

C[qt+ q′t′]
C[(q + q′)t]σ

where σ ∈ mguAC (t, t′).

Equality Resolution:

C ∨ t �. t′

Cσ

where σ ∈ mguAC (t, t′).

Now lifting of LASCA calculus is straightforward and we show the corresponding
rules only for Gaussian and Fourier-Motzkin elimination rules. We assume that 0 is
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lifted to non-ground terms, literals and clauses, in such a way that0 is preserved under
substitutions. As in the ground case we assume that before applying the LASCA rules,
literals are represented in one of the form l = r, l > r, −l > r, l . r, l �. r, �,
⊥ where there exists a grounding substitution σ such lσ 0 rσ (there can be several
choices for l and r in one literal).

Gaussian Elimination:

C ∨ l = r L[l′]p ∨D
(C ∨D ∨ L[r]p)σ

(i) σ ∈ mguAC (l, l′),
(ii) (l = r)σθ � Cσθ for some grounding θ.

Fourier-Motzkin Elimination:

C ∨ l > r −l′ > r′ ∨D
C ∨D ∨ −r′ > r

(i) σ ∈ mguAC (l, l′),
and for some grounding substitution θ:

(ii) (l > r)σθ � Cσθ,
(iii) there is no l′′ > r′′ ∈ C such that

l′′σθ =AC lσθ
(iv) (−l′ > r′)σθ � Dσθ,
(v) there is no −l′′ > r′′ ∈ D such that

l′′σθ =AC lσθ.
Note that from the Assumption 3 it follows that l and l′ are not variables in Gaussian

and Fourier-Motzkin elimination rules.

Example 1. Let s be a non-theory sort. Let f : 〈s, sQ〉; e : 〈s, s〉; g, h : 〈sQ, sQ〉,
assume that g(x) 0 h(x). Consider set of clauses:

2g(f(e(x))) + h(f(e(x))) = 0 (1)
g(g(f(x)) + 1/2h(f(x))) > 2g(0) (2)

g(0) > 0 (3)

We can prove unsatisfiability of the set of clauses {(1), (2), (3)} by applying Gaussian
Elimination between (1) and (2) obtaining g(−1/2h(f(e(x))) + 1/2h(f(e(x)))) >
2g(0), then applying Normalisation obtaining−g(0) > 0 and Fourier-Motzkin with (3)
obtaining⊥. Let us note that our next Theorem 3 implies that the set of clauses {(1), (2)}
is satisfiable, since the saturation process terminates.

Now we are ready to prove the following completeness theorem.

Theorem 3. Let 0 be finite-based and S be a finite saturated set of clauses satisfying
Assumption 3. Then S is satisfiable if and only if � �∈ S.

Proof. Let S be a finite saturated set such that � �∈ S. Let us show that S is satisfiable.
Let Sgr be the set of all ground instances of clauses in S which are Q-normalised.
Since S is finite we have that Sgr satisfies Finiteness of Coefficients Assumption 1. Let
〈ν,∼〉 be the candidate model for Sgr (see Model Construction). Assume that 〈ν,∼〉 is
not a model for S and let Cσ be the minimal w.r.t. 0 instance of S false in 〈ν,∼〉. We
can assume that Cσ is normalised. Indeed, if Cσ is not normalised, then we can apply
Normalisation, or Equality Resolution rule to obtain a smaller clause false in 〈ν,∼〉.
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Now we can proceed as in Theorem 2. The only additional case to consider is when
xσ = t is reducible by RSgr for some variable in C. Let l → r in RSgr and t|p = l.
Then t 0 t[r]p. Define σ′ to be a substitution such that xσ′ = t[r]p and yσ′ = yσ for
variables different from x. Then Cσ 0 Cσ′ and Cσ′ is false in 〈ν,∼〉, contradicting
minimality of Cσ. �

Example 2. Let s be a non-theory sort. Consider f : 〈s, s〉, h : 〈s, sQ〉 and c : 〈sQ〉.

h(f(x)) > h(x)
c > h(y)

This set of clauses is saturated and therefore is satisfiable by Theorem 3. Note that after
grounding this set of clauses we obtain an infinite number of inequalities, and the term
c has infinitely many occurrences in different ground inequalities.

5 Finite-Based Ordering

In this section we present an ordering 0 which satisfies all required properties: it is
AC-compatible, Q-monotone, Q-total, finite-based, well-founded and satisfies sum and
subterm properties. Without the condition to be finite-based, such orderings are well-
known to exist by modifying the lexicographic path ordering (see e.g. [11]). Unfortu-
nately these orderings are not finite-based which is a crucial condition for our com-
pleteness theorems. Here we show how to modify the Knuth-Bendix ordering to sat-
isfy all requirements. Let 0c be any well-founded total ordering on rationals such that
q 0c 1 0c 0 for any q different from 0, 1. Let Σnth consists of all non-theory symbols.
For an ordering 0, let 0mul denotes the multiset extension of 0 and 0lex denotes the
lexicographic extension of 0 defined over tuples of the same length.

Denote the set of natural numbers by N. We call a weight function on Σnth any
function w : Σnth → N such that w(e) > 0 for every constant, or unary function
symbol e. A precedence relation on Σnth is any linear order� on Σnth . We call w(g)
the weight of g. The weight of any ground term t over signature Σnth , denoted |t|, is
defined as follows: for any constant c we have |c| = w(c) and for any function symbol
g of a positive arity |g(t1, . . . , tn)| = w(g) + |t1|+ . . .+ |tn|.

First we define the Knuth-Bendix order on terms over Σnth in a usual way. The
Knuth-Bendix order induced by w and � is the binary relation 0KBO on ground
terms over Σnth defined as follows. For any ground terms t = g(t1, . . . , tn) and
s = h(s1, . . . , sk) we have t 0KBO s if one of the following conditions holds:

1. |t| > |s|;
2. |t| = |s| and g � h;
3. |t| = |s|, g = h and (t1, . . . , tn) 0lex

KBO (s1, . . . , sn).

It is known that for every weight function w and precedence relation � compatible
with w, the Knuth-Bendix order induced by w and � is a simplification order total
on ground terms (see e. g. [1]). Let us note that for any term t there are only a finite
number of terms less that t w.r.t. 0KBO . This property is crucial for defining a finite-
based ordering.
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Now we define an abstraction abstr of terms over Σ into terms over Σnth as fol-
lows. Let cm ∈ Σnth be the least constant w.r.t. 0KBO . Then abstr is defined by a
structural induction on terms as follows: (i) abstr(c) = c for a constant c ∈ Σnth , (ii)
abstr(f(t1, . . . , tn)) = f(abstr(t1), . . . , abstr(tn)), for f ∈ Σnth , (iii) abstr(q) =
cm for any constant q ∈ ΣQ, (iv) abstr(q1t1 + . . . + qntn + q) = abstr(tj) where
abstr(tj) is the greatest w.r.t.0KBO term among abstr(t1), . . . , abstr(tn), 1 ≤ n.

Given an ordering 0 on non-theory terms we denote 0′ an ordering extending 0 to
terms of the form qt where t is a non-theory term as follows. For non-theory terms t, s,
we say that qt 0′ q′s iff either (i) t 0 s or (ii) t =AC s and q 0c q

′. Likewise we say
qt 0′ s iff t 1 s, and t 0′ qs iff t 0 s.

Finite-Based Q-KBO. Now we define a Q-Knuth-Bendix ordering (Q-KBO) 0QKBO

on general terms as follows. Define t 0QKBO s if one of the following conditions
holds:

1. abstr(t) 0KBO abstr(s), or
2. abstr(t) = abstr(s) and

(a) t = f(t1, . . . , tn) and s = f(s1, . . . , sn) for f ∈ Σnth and
(t1, . . . , tn) 0lex

QKBO (s1, . . . , sn), or
(b) t = q1t1 + . . .+ qntn + q and s = q′1s1 + . . .+ q′msm + q′, and

i. {t1, . . . , tn} 0mul
QKBO {s1, . . . , sm} or,

ii. {t1, . . . , tn} =AC {s1, . . . , sm} and
{q1t1, . . . , qntn, q} 0′ mul

QKBO {q′1s1, . . . , q′msm, q′}

Theorem 4. Q-Knuth-Bendix ordering is an AC-compatible, Q-monotone, Q-total,
well-founded and finite-based ordering which satisfies sum and subterm properties.

6 Negative Results

In this section we remark on complexity of the first-order theories for Q extended with
non-theory function symbols. First we consider the structure N with theory symbols
〈0, S〉 where S is interpreted as the successor function. Now, if we consider validity of
sentences in an extended signature with non-theory function symbols then we are in the
universal fragment of second-order arithmetic. Indeed, validity of a first-order sentence
ϕ(f̄) is equivalent to whether the second-order universal sentence ∀f̄ϕ(f̄) is true in N.
Therefore checking validity of formulas over N with non-theory function symbols is
of the same complexity as checking validity of second-order universal sentences over
N which is a Π1

1-complete problem [10]. (Usually N is considered in the signature
〈+, ·, 0, 1〉, but + and · can be defined via S using standard inductive definitions.) It is
easy to see that if N can be defined (up to isomorphism) in a language then the validity
problem for such language extended with non-theory symbols is at least Π1

1-hard (we
can relativise formulas to N).

Now we show that even if we consider formulas without quantifiers over variables
of sort sN, still the validity problem is of the same complexity of being Π1

1-complete.
Indeed, consider a non-theory sort s and functions 0s : 〈s〉, Ss : 〈s, s〉, and h : 〈s, sN〉.
Then, ∀xy (h(x) = h(y) → x . y) axiomatises that h is an embedding of the domain
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of sort s into N. Formulas h(0s) = 0 and ∀x (h(Ss(x)) = h(x) + 1), define N in the
non-theory domain. Note that all variables in the above definition are of sort s.

Now we show that N is definable in Q extended with non-theory function symbols.
Indeed, the following axioms define N in Q, (for simplicity we consider N as a non-
theory predicate symbol, but trivially N can be redefined using only function symbols).

N(0)
∀x (N(x) → x = 0 ∨ x > 0)
∀x (N(x) → N(x+ 1))
∀xy ((N(x) ∧N(x+ 1) ∧ x+ 1 > y > x) → ¬N(y))
∀x (S(x) = x+ 1)

Since Q can be trivially coded in N, we conclude that the validity problem for for-
mulas in Q extended with non-theory function symbols is Π1

1-complete.
Similar to the case of N, we show that even if we consider formulas without quanti-

fiers over variables of sort Q, still the validity problem is Π1
1-complete. The functions

h, 0s, Ss are defined in the same way as for N, but now h defines an embedding into
Q rather than into N. In order to define natural numbers Ns in the domain of sort s we
need additional binary predicate >s over sort s and additional axioms:

Ns(0s)
∀xy (x >s y ↔ h(x) > h(y))
∀x (Ns(x) → x . 0s ∨ x >s 0s)
∀x (Ns(x) → Ns(Ss(x)))
∀xy ((Ns(x) ∧Ns(Ss(x)) ∧ Ss(x) >s y >s x) → ¬Ns(y))

It is easy to check that these axioms define N in the domain of sort s. Therefore
the validity problem for formulas without quantifiers over variables of sort Q is Π1

1-
complete. We summarise these results in the following theorem.

Theorem 5. Consider Q in the signature 〈0, 1,+, >〉 and N in the signature 〈0, S〉.
Then, the following problems are Π1

1-complete.

– Unsatisfiability of sets of clauses, in a signature extending Q (N) with non-theory
function symbols.

– Unsatisfiability of sets of clauses with variables ranging over a non-theory sort s,
in a signature extending Q (N) with a non-theory sort s and non-theory function
symbols.

In particular, Theorem 5 implies that there is no sound and complete calculus for linear
arithmetic extended with non-theory function symbols.

7 Conclusions

In this paper we have presented an extension of superposition calculus for first-order
logic with rules for linear arithmetic. One of our main results is completeness of the
resulting calculus under some finiteness assumptions. One of the possible applications
of our results is to obtain new decision procedures for fragments of first-order logic
extended with rational arithmetic.
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Table 1. Linear Arithmetic Superposition Calculus (LASCA) for ground clauses

Ordered Paramodulation:

C ∨ l � r L[l′]p ∨D

C ∨D ∨ L[r]p

(i) l =AC l′,
(ii) (l � r) � C.

Equality Factoring:

C ∨ t′ � s′ ∨ t � s

C ∨ s � s′ ∨ t � s′

(i) t =AC t′,
(ii) (t � s) � C ∨ t′ � s′.

Gaussian Elimination:

C ∨ l = r L[l′]p ∨D

C ∨D ∨ L[r]p

(i) l =AC l′,
(ii) (l = r) � C.

Theory Equality Factoring:

C ∨ l′ = r′ ∨ l = r

C ∨ r > r′ ∨ r′ > r ∨ l = r′

(i) l =AC l′,
(ii) (l = r) � C ∨ l′ = r′.

Fourier-Motzkin Elimination:

C ∨ l > r −l′ > r′ ∨D

C ∨D ∨ −r′ > r

(i) l =AC l′,
(ii) (l > r) � C,

(iii) there is no l′′ > r′′ ∈ C such that l′′ =AC l
(iv) (−l′ > r′) � D
(v) there is no −l′′ > r′′ ∈ D such that l′′ =AC l.

Inequality Factoring (InF1):

C ∨ ±l′ > r′ ∨ ±l > r

C ∨ r > r′ ∨ ±l > r

(i) l =AC l′,
(ii) (±l > r) � C ∨ ±l′ > r′.

Inequality Factoring (InF2):

C ∨ ±l′ > r′ ∨ ±l > r

C ∨ r′ > r ∨ ±l > r′

(i) l =AC l′,
(ii) (±l > r) � C ∨ ±l′ > r′.

⊥-Elimination:

C ∨ ⊥
C

(i) C contains only �,⊥ literals.
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Abstract. Calculi with explicit substitutions (ES) are widely used in different
areas of computer science. Complex systems with ES were developed these last
15 years to capture the good computational behaviour of the original systems
(with meta-level substitutions) they were implementing.

In this paper we first survey previous work in the domain by pointing out the
motivations and challenges that guided the development of such calculi. Then we
use very simple technology to establish a general theory of explicit substitutions
for the lambda-calculus which enjoys fundamental properties such as simulation
of one-step beta-reduction, confluence on metaterms, preservation of beta-strong
normalisation, strong normalisation of typed terms and full composition. The cal-
culus also admits a natural translation into Linear Logic’s proof-nets.

1 Introduction

This paper is about explicit substitutions (ES), an intermediate formalism that - by de-
composing the higher-order substitution operation into more atomic steps - allows a
better understanding of the execution models of complex languages.

Indeed, higher-order substitution is a meta-level operation used in higher-order lan-
guages (such as functional, logic, concurrent and object-oriented programming), while
ES is an object-level notion internalised and handled by symbols and reduction rules
belonging to their own worlds. However, the two formalisms are still very close, this
can be easily seen for example in the case of the λ-calculus whose reduction rule is
given by (λx.t) u →β t{x/u}, where the operation t{x/v} denotes the result of sub-
stituting all the free occurrences of x in t by u, a notion that can be formally defined
modulo α-conversion 1 as follows:

x{x/u} := u (t1 t2){x/u} := (t1{x/u}t2{x/u})
y{x/u} := y (x �= y) (λy.v){x/u} := λy.v{x/u}

Then, the simplest way to specify a λ-calculus with ES is to incorporate substitutions
into the language, then to transform the equalities of the previous specification into re-
duction rules (so that one still works modulo α-conversion), thus yielding the following
reduction system known as λx [36, 37, 44, 10].

1 Definition of substitution modulo α-conversion avoids to explicitly deal with the variable cap-
ture case. Thus, for example (λx.y){y/x} =α (λz.y){y/x} =def λz.y{y/x} = λz.x.
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(λx.t) u → t[x/u]
x[x/u] → u
y[x/u] → y (x �= y)
(t1 t2)[x/u] → (t1[x/u] t2[x/u])
(λy.v)[x/u] → λy.v[x/u]

The λx-calculus corresponds to the minimal behaviour 2 that can be found in most of
the calculi with ES appearing in the literature. More sophisticated treatments of substi-
tutions also consider a composition operator allowing much more interactions between
them. This is exactly the source of the problems that we discuss below.

Related Work. In these last years there has been a growing interest in λ-calculi with
ES. They can be defined either with unary [44, 35] or n-ary [2, 23] substitutions, by
using de Bruijn notation [11, 12, 32, 27], or levels [39], or combinators [20], or director
strings [46], or ... simply by named variables as in λx. Also, a calculus with ES can be
seen as a term notation for a logical system where the reduction rules behave like cut
elimination transformations [22, 29, 16].

In any case, all these calculi were introduced as a bridge between formal higher-
order calculi and their concrete implementations. However, implementing an atomic
substitution operation by several elementary explicit steps comes at a price. Indeed,
while λ-calculus is perfectly orthogonal (does not have critical pairs), calculi with ES
such as λx suffer at least from the following well-known diverging example:

t[y/v][x/u[y/v]] ∗← ((λx.t) u)[y/v]→∗ t[x/u][y/v]

Different solutions were adopted in the literature to close this diagram. If no new
rewriting rule is added to those of λx, then reduction turns out to be confluent on terms
but not on metaterms (terms with metavariables used to represent incomplete programs
and proofs). If naive rules for composition are considered, then one recovers confluence
on metaterms but loses normalisation: there exist terms which are strongly normalisable
in λ-calculus but not in the corresponding ES version. This phenomenon, known as
Melliès’ counter-example [40], shows a flaw in the design of ES calculi in that they are
supposed to implement their underlying calculus (in our case the λ-calculus) without
losing its good properties. More precisely, let us call λZ-calculus an arbitrary set of (λZ-
)terms together with a set of (λZ-)reduction rules. Also, let us consider a mapping toZ
from λ-terms to λZ-terms. The following list of properties can be identified:

(C) The λZ-reduction relation is confluent on λZ-terms: If u ∗λZ
← t →∗

λZ
v, then there

is t′ such that u→∗
λZ
t′ ∗λZ

← v.
(MC) The λZ-reduction relation is confluent on λZ-metaterms.
(PSN) The λZ-reduction relation preserves β-strong normalisation: If the λ-term t is in

SN β , then toZ(t) is in SN λZ .
(SN) Strong normalisation holds for λZ-typed terms: If the λZ-term t is typed, then t is

in SN λZ .
(SIM) Any evaluation step in λ-calculus can be implemented by λZ: If t →β t

′, then
toZ(t) →∗

λZ
toZ(t′).

2 Some presentations replace the rule y[x/u]→ y by the more general one t[x/u] → t (x /∈ t).
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(FC) Full composition can be implemented by λZ: The λZ-term t[x/u] λZ-reduces to
t{x/u} for an appropriate notion of (meta)substitution on λZ-terms.

In particular, (MC) implies (C) and (PSN) usually implies (SN).
The result of Melliès appeared as a challenge to find a calculus having all the prop-

erties mentioned above. There are already several propositions in the literature giving
(partial) answers to this challenge; they are summarised in the following table, where
we just write one representative calculus for each line, even if there are currently many
more references available in the literature (by lack of space we cannot cite all of them).

Calculus C MC PSN SN SIM FC
λx [44] Yes No Yes Yes Yes No
λσ [2] Yes No No No Yes Yes
λσ⇑ [23] Yes Yes No No Yes Yes
λζ [41] Yes Yes Yes Yes No No
λws [14] Yes Yes Yes Yes Yes No
λlxr [29] Yes ? Yes Yes Yes Yes

In other words, there are many ways to avoid Melliès’ counter-example in order to
recover the PSN property. More precisely, one can forbid the substitution operators to
cross lambda-abstractions [38, 18] or avoid composition of substitutions [6]. One can
also impose a simple strategy on the calculus with ES to mimic exactly the calculus
without ES. The first solution leads to weak lambda calculi, not able to express strong
beta-equality (used for example in implementations of proof-assistants). The second
solution is drastic when composition of substitutions is needed for implementations of
HO unification [15] or functional abstract machines [24]. The last one does not take
advantage of the notion of ES because they can be neither composed nor even delayed.

In order to cope with this problem David and Guillaume [14] defined a calculus with
labels called λws, which allows controlled composition of ES without losing PSN and
SN. But the λws-calculus has a complicated syntax and its named version [13] is even
less intelligible. However, the strong normalisation proof for λws given in [13] reveals a
natural semantics for composition of ES via Linear Logic’s proof-nets [19], suggesting
that weakening (explicit erasure) and contraction (explicit duplication) can be added to
the calculus without losing strong normalisation.

Explicit weakening and contraction are the starting points of the λlxr-calculus [29],
which is in some sense a (complex) precursor of the λes-calculus that we present in
this paper. However, while λ-syntax could be seen as a particular case of λes-syntax,
a special encoding is needed to incorporate weakening and contraction operators to
λ-terms in order to verify the so-called linearity constraints of λlxr. Moreover, the
reduction system of λlxr contains 6 equations and 19 rewriting rules, thus requiring
an important amount of combinatorial reasoning. This is notably discouraging when
one needs to check properties by cases on the reduction step; a reason why confluence
on metaterms for λlxr is just conjectured but not still proved.... Also, whereas λlxr
gives the evidence that explicit weakening and contraction are sufficient to verify all the
properties one expects from a calculus with ES, there is no justified reason to think that
they are also necessary.
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We choose here to introduce the λes-calculus by using concise and simple syntax
in named variable notation style (as in λx) in order to dissociate all the renaming de-
tails which are necessary to specify higher-order substitution on first-order terms (such
as for example terms in de Bruijn notation). Even if this choice implies the use of
α-equivalence, we think that this presentation is more appropriate to focus on the fun-
damental computational properties of the calculus. Moreover, this can also be justified
by the fact that it is now perfectly well-understood in the literature how to translate
terms with named variables into equivalent terms in first-order notation. Another im-
portant choice made in this paper is the use of minimal equational reasoning (just one
equation) to specify commutation of independent substitutions. This will turn out to be
essential to obtain a safe notion of (full)composition which does not need the complex
use of explicit operators for contraction and weakening. Also, simultaneous substitution
(also called n-ary substitution), can be simply expressed within our framework.

We thus achieve the definition of a simple language being easy to understand, and
enjoying a useful set of properties: confluence on metaterms (and thus on terms), sim-
ulation of one-step β-reduction, strong normalisation of typed terms, preservation of
β-strong normalisation, simulation of one-step β-reduction and full composition. More-
over, these properties can be proved using very simple proof techniques while this is not
the case for other calculi axiomatising commutation of substitutions. Thus for example,
the calculus proposed in [45] specifies commutation of independent substitutions by a
non-terminating rewriting system (instead of an equation), thus leading to complicated
notions and proofs of its underlying normalisation properties.

The λes-calculus admits a natural translation into Linear Logic’s proof-nets, thus
providing an alternative proof of strong normalisation. Also, a more implementation
oriented calculus based on λes could be specified by means of de Bruijn notation and
n-ary substitutions. These two last topics are however omitted in this paper because of
lack of space, we refer the interested reader to [28].

The rest of the paper is organised as follows. Section 2 introduces syntax for Λes-
terms and appropriate notions of equivalence and reduction. In Section 3 we develop
a proof of confluence for metaterms. Preservation of β-strong normalisation is studied
and proved in Section 4. The typing system for λes is presented in Section 5 as well as
the subject reduction property and the relation between typing derivations in λes and
λ-calculus. Finally, strong normalisation based on PSN is proved in this same section.

We refer the reader to [28] for detailed proofs and to [9, 47] for standard notions
from rewriting that we will use throughout the paper.

2 Syntax

A Λes-term is inductively defined by a variable x, an application t u, an abstraction
λx.t or a substituted term t[x/u], when t and u are Λes-terms. The syntactic object
[x/u], which is not a term itself, is called an explicit substitution.

The terms λx.t and t[x/u] bind x in t. The sets of free and bound variables of a term
t, denoted t and t respectively, can be defined as usual. Thus, the standard notion of α-
conversion on higher-order terms is obtained so that one may assume, when necessary,
that two bound variables have different names, and no variable is free and bound at the
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same time. Indeed, when using different symbols x and y to talk about two nested bound
variables, as for example in the terms (λy.t)[x/u] and t[x/u][y/v], we implicitly mean
x �= y. The use of the same name for bound variables appearing in parallel/disjoint
positions, as for example in t[x/u] v[x/u] or (λx.x) (λx.x) is not problematic.

Besides α-conversion the following equations and reduction rules are considered.

Equations Reduction Rules
t[x/u][y/v] =C t[y/v][x/u] (λx.t) u →B t[x/u]

(y /∈ u & x /∈ v) The (sub)set of rules s:
x[x/u] →Var u
t[x/u] →Gc t (x /∈ t)
(t u)[x/v] →App1

t[x/v] u[x/v] (x ∈ t & x ∈ u)
(t u)[x/v] →App2

t u[x/v] (x /∈ t & x ∈ u)
(t u)[x/v] →App3

t[x/v] u (x ∈ t & x /∈ u)
(λy.t)[x/v] →Lamb λy.t[x/v]
t[x/u][y/v] →Comp1

t[y/v][x/u[y/v]] (y ∈ u & y ∈ t)
t[x/u][y/v] →Comp2

t[x/u[y/v]] (y ∈ u & y /∈ t)

It is appropriate to point out here that α-conversion is necessary in order to avoid
capture of variables. Thus for example the left-hand side of the Lamb-rule (λy.t)[x/v]
implicitly assumes y �= x and y /∈ v. See also Sections 4.2 and 6 for a a discussion
about the minimality of the subset s w.r.t its number of rules.

The higher-order rewriting system containing the rules {B} ∪ s is called Bs. The
equivalence relation generated by the conversions Es = {α, C} is denoted by =Es . The
reduction relation generated by the rewriting rules s (resp. Bs) modulo the equivalence
relation =Es is denoted by →es (resp. →λes), the e means equational and the s sub-
stitution. More precisely,

t→es t
′ iff there are u, u′ s.t. t =Es u→s u

′ =Es t
′

t→λes t
′ iff there are u, u′ s.t. t =Es u→Bs u

′ =Es t
′

The notation→∗
λes (resp.→+

λes) is used for the reflexive and transitive (resp. transi-
tive) closure of→λes.

Remark that any simultaneous (n-ary) substitution can now be thought as a sequence
of consecutive independent unary substitutions representing the same mapping. Thus
for example [x/u, y/v] can be expressed as [x/u][y/v] (or [y/v][x/u]) where y /∈ u and
x /∈ v. The use of the equation C to make a list of independent substitutions behave like
a simultaneous one is essential. We leave to the reader the verification that composition
of simultaneous substitution can be expressed within our λes-reduction relation.

The equivalence relation preserves free variables and the reduction relation either
preserves or decreases them. Thus, t→λes u implies u ⊆ t.

Also, the (sub)calculus es, which is intended to implement (meta-level) substitution,
can be shown to be terminating by associating to each Λes-term t a measure which
does not change by Es but strictly decreases by→s (details can be found in [28]).

We now address the property of full composition. For that, we extend the standard
notion of (meta-level)substitution on λ-terms given in the introduction to all the Λes-
terms by adding the new case t[y/u]{x/v} := t{x/v}[y/u{x/v}], where we implicitly
mean x �= y & y �∈ v. Remark that t{x/u} = t if x /∈ t, thus we can prove:
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Lemma 1 (Full Composition). Let t and u be Λes-terms. Then t[x/u]→∗
λes t{x/u}.

We now establish basic connections between λ and λes-reduction. As expected, β-
reduction can be implemented by the more atomic notion of λes-reduction while this
one can be projected into β.

Lemma 2 (Simulating β-reduction). Let t be a λ-term s.t. t→β t
′. Then t→+

λes t
′.

Proof. By induction on β-reduction using Lemma 1.

Λes-terms are encoded into λ-terms as follows: L(x) := x, L(λx.t) := λx.L(t),
L(t u) := L(t) L(u) and L(t[x/u]) := L(t){x/L(u)}. Thus, projection is obtained:

Lemma 3 (Projecting into β-reduction). If t→λes u, then L(t)→∗
β L(u).

Proof. First prove that t =Es u implies L(t) = L(u) by the well-known substitution
lemma [4] of λ-calculus. Remark that t →s u trivially implies L(t) = L(u). Finally,
prove that t→B u implies L(t)→∗

β L(u) by induction on the reduction step t→B u.

3 Confluence on Metaterms

Metaterms are terms containing metavariables denoting incomplete programs/proofs
in a higher-order unification framework [25]. Metavariables should come with a min-
imal amount of information to guarantee that some basic operations such as instantia-
tion (replacement of metavariables by metaterms) are sound in a typing context. How-
ever, known formalisms in the literature for the specification of higher-order metaterms,
such as Combinatory Reduction Systems (CRS) [30] or Expression Reduction Systems
(ERS) [26], do not allow, at least in a simpler way, to specify the precise set of free vari-
ables which is expected from a (sound)instantiation. Thus for example, a CRS metaterm
like M(x, y) specifies that x and y may occur in the instantiation of M , butM can also
be further instantiated by any other term not containing x and y at all. Another example
is given by the (raw) ERS metaterm t = λy.y X (λz.X) because the instantiation of
X by a term containing a free occurrence of z would be unsound (see [41, 15, 17] for
details).

We thus propose to specify incomplete proofs as follows. We consider a countable
set of raw metavariables X,Y, . . . associated to sets of variables Γ,Δ, . . ., thus yielding
decorated metavariables denoted by XΓ ,YΔ, etc. This decoration says nothing about
the structure of the incomplete proof itself but is sufficient to guarantee that different
occurrences of the same metavariable inside a metaterm are never instantiated by dif-
ferent metaterms.

The grammar for Λes-terms is extended to generate Λes-metaterms as follows:

t ::= x | XΔ | t t | λx.t | t[x/t]

We extend the notion of free variables to metaterms by XΔ = Δ.
Reduction on metaterms must be understood in the same way reduction on terms: the

λes-relation is generated by the Bs-relation on Es-equivalence classes of metaterms.
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In contrast to the ERS notion of metaterm, α-conversion turns out to be perfectly
well-defined on λes-metaterms by extending the renaming of bound variables to the
decoration sets. Thus for example λx.Yx =α λz.Yz .

It is well-known that confluence on metaterms fails for calculi without composition
for ES as for example the following critical pair in λx shows

s = t[x/u][y/v] ∗← ((λx.t) u)[y/v]→∗ t[y/v][x/u[y/v]] = s′

Indeed, while this diagram can be closed in λx for terms without metavariables [10],
there is no way to find a common reduct between s and s′ whenever t is (or contains)
metavariables: no λx-reduction rule is able to mimic composition on raw or decorated
metavariables. This can be fortunately recovered in the case of the λes-calculus.

3.1 The Confluence Proof

This section develops a confluence proof for reduction on λes-metaterms based on
Tait and Martin-Löf’s technique: define a simultaneous reduction relation denoted �es;
prove that �∗

es and →∗
es are the same relation; show that �∗

es is confluent; and finally
conclude. While many steps in this proof are similar to those appearing in other proofs
of confluence for the λ-calculus, some special considerations are to be used here in
order to accommodate correctly the substitution calculus as well as the equational part
of our notion of reduction (see in particular Lemma 6).

A first interesting property of the system es is that it can be used as a function on
Es-equivalence classes:

Lemma 4. The es-normal forms of metaterms are unique modulo Es so that t =Es u
implies es(t) =Es es(u).

The simultaneous reduction relation �es on es-normal forms is now defined in terms
of a simpler relation � working on Es-equivalence classes.

Definition 1 (The relations � and �es). Simultaneous reduction is defined on meta-
terms in es-normal form as follows: t �es t

′ iff ∃ u, u′ s.t. t =Es u � u′ =Es t
′, where

– x � x
– If t � t′, then λx.t � λx.t′

– If t � t′ and u � u′, then t u � t′ u′

– If t � t′ and u � u′, then (λx.t) u � es(t′[x/u′])
– If ui � u′i and xi /∈ uj for all i, j ∈ [1, n], then XΔ[x1/u1] . . . [xn/un] �

XΔ[x1/u
′
1] . . . [xn/u

′
n]

The simultaneous relation is stable in the following sense.

Lemma 5. If t �es t
′ and u �es u

′, then es(t[x/u]) �es es(t′[x/u′]).

It can be now shown that the relation �es has the diamond property.

Lemma 6. If t1 es	 t �es t2, then ∃t3 s.t. t1 �es t3 es	 t2.

Proof. 1. First prove that t 	 u =Es u
′ implies t =Es t

′ 	 u′ for some t′ by induction
on t 	 u. Thus conclude that v es	 v′ =Es u

′ implies v =Es t
′ 	 u′ for some t′.
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2. Prove that t1 	 t � t2 implies t1 �es t3 es	 t2 for some t3 by induction on �
using Lemma 5.

3. Finally prove the diamond property as follows. Let t1 es	 t =Es u � u′ =Es t2.
By point (1) there is u1 such that t1 =Es u1 	 u and by point (2) there is t3 such
that u1 �es t3 es	 u′. Conclude t1 �es t3 es	 t2.

We thus obtain the main result of this section:

Corollary 1. The reduction relation→∗
es is confluent.

Proof. The relation �∗
es enjoys the diamond property (Lemma 6) so that it turns out to

be confluent [9]. Since �∗
es and→∗

λes can be shown (using Lemmas 4 and 5) to be the
same relation, then conclude that→∗

λes is also confluent.

Although this confluence result guarantees that all the critical pairs in λes can be closed,
let us analyse a concrete example being the source of interesting diverging diagrams in
calculi with ES (c.f. Section 1), giving by the following case:

s3
∗
λes← s1 →B s2

? ((λx.t) u)[y/v] t[x/u][y/v]

The metaterm s3 as well as the one used to close the diagram can be determined by
the following four different cases:

y ∈ t y ∈ u s3 Close the diagram by
Yes Yes t[y/v][x/u[y/v]] s3 Comp1← s2
Yes No t[y/v][x/u] s3 =Es s2
No Yes t[x/u[y/v]] s3 Comp2← s2
No No (λx.t) u s3 →B t[x/u] Gc← s2

4 Preservation of β-Strong Normalisation

Preservation of β-strong normalisation (PSN) in calculi with ES received a lot of atten-
tion (see for example [2, 6, 10, 32]), starting from an unexpected result given by Melliès
[40] who has shown that there are β-strongly normalisable terms in λ-calculus that are
not strongly normalisable when evaluated by the reduction rules of an explicit version
of the λ-calculus. This is for example the case for λσ [2] and λσ⇑ [23].

Since then, different notions of safe composition where introduced, even if PSN
becomes more difficult to prove ([8, 14, 1, 29, 31]). This is mainly because the so-
called decent terms are not stable by reduction : a term t is said to be decent in the
calculus λZ if every subterm v appearing in some substituted subterm u[x/v] of t is
λZ-strongly normalising. As an example, the term x[x/(y y)][y/λw.w w] is decent in
λes since y y and λw.w w are both λes-strongly normalising, but its Comp2-reduct
x[x/(y y)[y/λw.w w]] is not.

This section proves that λes preserves β-strong normalisation. For that, we use a
simulation proof technique based on the following steps. We first define a calculus λesw
(Section 4.1). We then give a translation K fromΛes-terms (and thus also from λ-terms)
into λesw s.t. t ∈ SN β implies K(t) ∈ SN λesw (Corollary 4) and K(t) ∈ SN λesw

implies t ∈ SNλes (Corollary 2).



246 D. Kesner

4.1 The λesw-Calculus

A Λesw-term is inductively defined by x, t u, λx.t, t[x/u] orWx(t) (an explicit weak-
ening). We extend the notion of free variables to explicit weakenings by adding the case
Wx(t) = {x} ∪ t. The notion of strict term will be essential: every subterm λx.t and
t[x/u] is such that x ∈ t and every subtermWx(t) is such that x /∈ t.

Besides equations and rules in λes, those in the following table are also considered.

Additional Equations Additional Reduction Rules
Wx(Wy(t)) =WC Wy(Wx(t)) Wx(t)[x/u] → Wu\t(t)
Wy(t)[x/u] =Weak1 Wy(t[x/u]) (x �= y & y /∈ u) Wy(t) u → t u (y ∈ u)
Wy(λx.t) =WAbs λx.Wy(t) (x �= y) Wy(t) u → Wy(t u) (y /∈ u)

t Wy(u) → t u (y ∈ t)
t Wy(u) → Wy(t u) (y /∈ t)
Wy(t)[x/u] → t[x/u] (y ∈ u)
t[x/Wy(u)] → Wy(t[x/u]) (y /∈ t)
t[x/Wy(u)] → t[x/u] (y ∈ t)

Given a set of variables Γ = {x1, . . . , xn}, the use of the abbreviation WΓ (t) for
Wx1(. . .Wxn(t)) in the first reduction rule is justified by the equation WC. In the par-
ticular case Γ = ∅, we define W∅(t) = t. It is suitable again to recall that we work
modulo α-conversion. Thus for example the terms Wy(λx.t) and t[x/Wy(u)] have to
be always understood as x �= y. However, this is not the case for example for λx.Wy(t)
or Wy(t)[x/u] where the variables x and y may be equal or different, that’s the reason
to explicitly add the side-condition x �= y in some of the previous equations and rules.

The rewriting system containing all the reduction rules in the previous table plus
those in system s is called sw. The notation Bsw is used for the system {B} ∪ sw. The
equivalence relation generated by all the equations in the previous table plus those in Es
is denoted by =Esw . The relation generated by the reduction rules sw (resp. Bsw) modulo
the equivalence relation =Esw is denoted by →esw (resp. →λesw). More precisely,

t→esw t
′ iff there are u, u′ s.t. t =Esw u→sw u

′ =Esw t
′

t→λesw t
′ iff there are u, u′ s.t. t =Esw u→Bsw u

′ =Esw t
′

From now on, we only work with strict terms, a choice that is justified by the fact
that λesw-reduction relation preserves strict terms.

In order to infer normalisation of λes from that of λesw, a relation between both
notions of reduction is needed. For that, a translation K from Λes-terms (and thus also
from λ-terms) to (strict) Λesw-terms is defined as follows:

K(x) := x K(u v) := K(u) K(v)
K(λx.t) := λx.K(t) If x ∈ t K(λx.t) := λx.Wx(K(t)) If x /∈ t
K(u[x/v]) := K(u)[x/K(v)] If x ∈ t K(u[x/v]) := Wx(K(u))[x/K(v)] If x /∈ t

Remark that K(t) = t. Also, λesw-reduction can be used to push out useless weak-
ening constructors as follows:
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Lemma 7. If u→λes v, then K(u)→+
λesw Wu\v(K(v)).

Proof. The proof is by induction on →λes and it accurately puts in evidence the fact
that Weak1 and WAbs are needed as equations and not as rewriting rules.

The previous lemma allows us to conclude with the following preservation result:

Corollary 2. If K(t) ∈ SN λesw, then t ∈ SNλes.

4.2 The ΛI -Calculus

The ΛI -calculus is another intermediate language used as technical tool to prove PSN.
The set of ΛI-terms [30] is defined by the grammar:

M ::= x |M M | λx.M | [M,M ]

We consider the extended notions of free variables and (meta)level substitution on
ΛI -terms. We restrict again the syntax to strict terms (every subterm λx.M satisfies
x ∈M ). The following two reduction rules will be used:

(λx.M) N →β M{x/N}
[M,N ] L →π [M L,N ]

Strict ΛI -terms turn out to be stable by reduction since they do not lose free variables
during reduction.

A binary relation (and not a function) I is used to relate λesw and ΛI-terms, this
becauseΛesw-terms are translated intoΛI -syntax by adding some garbage information
which is not uniquely determined. Thus, each Λesw-term can be projected into different
ΛI -terms, and this will be essential in the simulation property (Theorem 1).

Definition 2. The relation I between strict Λesw-terms and strict ΛI -terms is induc-
tively given by the following rules:

x I x
t I T

λx.t I λx.T
t I T u I U
t u I T U

t I T u I U
t[x/u] I T {x/U}

t I T & M strict
t I [T,M ]

t I T & x ∈ T
Wx(t) I T

The relation I enjoys the following properties.

Lemma 8. Let t I M . Then t ⊆ M , M ∈ ΛI and x /∈ t & N ∈ ΛI implies
t I M{x/N}.
Remark however that t I M implies t ⊆ M only on strict terms. This can be seen as
a proof technical argument to exclude from our calculus rewriting rules not preserving
strict terms like

(App) (t u)[x/v] → t[x/v] u[x/v]
(Comp) t[x/u][y/v]→ t[y/v][x/u[y/v]] (y ∈ u)

Reduction in λesw can be related to reduction in ΛI by means of the following
simulation property (proved by induction on the reduction/equivalence step).
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Theorem 1. Let s ∈ Λesw and S ∈ ΛI .

1. If s I S and s =Esw t, then t I S.
2. If s I S and s→sw t, then t I S.
3. If s I S and s→B t, then there is T ∈ ΛI s.t. t I T and S →+

βπ T .

The second preservation result can be now stated as follows:

Corollary 3. If s I S and S ∈ SN βπ, then s ∈ SN λesw.

Proof. Suppose s /∈ SN λesw. As→esw can easily be show to be well-founded (see [28]
for details), then an infinite λesw-reduction sequence starting at s is necessarily pro-
jected by the previous Theorem into an infinite βπ-reduction sequence starting at S.
This leads to a contradiction with the hypothesis.

4.3 Solving the Puzzle

All the parts of the puzzle together give a PSN argument for λes. The starting point is
the following encoding from λ to ΛI -terms:

I(x) := x I(λx.t) := λx.I(t) x ∈ t
I(t u) := I(t) I(u) I(λx.t) := λx.[I(t), x] x /∈ t

Now, starting from a λ-term u, which is also a Λes-term, one computes its K-image
- a λesw-term - so that some ΛI -term will be in I-relation with it. More precisely, a
straightforward induction on u gives:

Theorem 2. For any λ-term u, K(u) I I(u).

Preservation of β-strong-normalisation, which is one of the main results of the paper,
can be finally stated:

Corollary 4 (PSN). If t ∈ SN β , then t ∈ SN λes.

Proof. If t ∈ SN β , then I(t) ∈ WNβπ [34] and thus I(t) ∈ SNβπ [42]. As K(t) I I(t)
by Theorem 2, then K(t) ∈ SN λesw by Corollary 3 so that t ∈ SN λes by Corollary 2.

5 The Typed λes-Calculus

Simply types are built over a countable set of atomic symbols (base types) and the type
constructor → (functional types). An environment is a finite set of pairs of the form
x : A. Two environments Γ and Δ are said to be compatible iff for all x : A ∈ Γ and
y : B ∈ Δ, x = y implies A = B. The union of compatible contexts is written Γ #Δ.
Thus for example (x : A, y : B)#(x : A, z : C) = (x : A, y : B, z : C). The following
properties on compatible environments will be used:

Lemma 9.

1. If Γ ⊆ Γ ′ and Δ ⊆ Δ′, then Γ #Δ ⊆ Γ ′ #Δ′.
2. Γ # (Δ #Π) = (Γ #Δ) #Π .
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Typing judgements have the form Γ 4 t : A where t is a term,A is a type and Γ is an
environment. Derivations of typing judgements, written Γ 4λes t : A, can be obtained
by application of the (multiplicative) rules in the following table.

x : A � x : A
(axiom)

Γ � t : A → B Δ � u : A

Γ � Δ � (t u) : B
(app)

Γ � t : B

Γ \ {x : A} � λx.t : A → B
(abs)

Γ � u : B Δ � t : A

Γ � (Δ \ {x : B}) � t[x/u] : A
(subs)

The axiom rule types a variable in a minimal environment but variables not ap-
pearing free may be introduced by binder symbols by means of the rules abs and subs.
Thus for example starting from the derivable typing judgement x : B 4 x : B one can
derive judgements like 4 λx.x : B → B or x : B 4 λz.x : A → B. Remark that
when Γ # Δ appears in the conclusion of some rule, then by definition, Γ and Δ are
compatible.

The typing rules for λes ensure that every environment Γ contains exactly the set of
free variables of the term t. Thus, Γ 4λes t : A implies Γ = t.

The typed calculus enjoys local subject reduction in the sense that no meta-theorem
stating weakening or thinning is needed to show preservation of types.

Lemma 10 (Subject Reduction). Let Γ 4λes s : A. Then s =Es s
′ implies Γ 4λes s′ :

A and s→λes s
′ implies Π ′ 4λes s′ : A for some Π ′ ⊆ Π .

The connexion between typed derivations in λ-calculus (written 4λ) and typed der-
ivations in λes-calculus is stated as follows, where Γ |S denotes the environment Γ
restricted to the set of variables S.

Lemma 11. If Γ 4λ t : A, then Γ |t 4λes t : A and if Γ 4λes t : A, then Γ 4λ L(t) : A.

We now prove strong-normalisation for λes-typed terms by using PSN. Another proof
of strong-normalisation based on a translation of typed λes-terms into Linear Logic’s
proof-nets is also developed in [28].

Theorem 3 (Strong Normalisation). Every typable Λes-term M is in SNλes.

Proof. First define a translation C from λes to λ as follows: C(x) := x, C(t u) :=
C(t) C(u), C(λx.t) := λx.C(t) and C(t[x/u]) := (λx.C(t)) C(u). Thus for example,
C((x[x/y] z)[w/(w1 w2)]) = (λw.((λx.x) y) z)(w1 w2).

We remark that for every Λes-term one has C(t) →∗
λes t. Also, when t is typable in

λes, then also C(t) is typable in λes (just change the use of subs by abs followed by
app). By Lemma 11 the term L(C(t)) = C(t) is also typable in simply typed λ-calculus
and thus C(t) ∈ SNβ [5]. We get C(t) ∈ SNλes by Corollary 4 so that t ∈ SNλes.

This proof technique, which is very simple in the case of the λes-calculus, needs some
additional work to be applied to other (de Bruijn) calculi [43, 3].
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6 Conclusion

In this paper we survey some properties concerning ES calculi and we describe work
done in the domain during these last 15 years. We propose simple syntax and simple
equations and rewriting rules to model a formalism enjoying good properties, specially
confluence on metaterms, preservation of β-strong normalisation, strong normalisation
of typed terms and implementation of full composition.

We believe however that some of our proofs can be simplified. In particular, PSN
might be proved directly without using translations of λes to other formalisms. We
leave this for future work.

Another interesting issue is the extension of Pure Type Systems (PTS) with ES in
order to improve the understanding of logical systems used in theorem-provers. Work
done in this direction is based on sequent calculi [33] or natural deduction [41]. The
main contribution of λes w.r.t the formalisms previously mentioned would be our safe
notion of composition.

It is also legitimate to ask whether λes is minimal w.r.t. the number of rewriting rules.
Indeed, it is really tempted to gather the rules{App1, App2, App3} (resp.{Comp1, Comp2})
into the single rule App for application (resp. Comp for composition) given just after
Lemma 8. While this change seems to be sound w.r.t. the properties of the calculus3,
the translation ofΛes-terms intoΛI -terms (c.f. Section 4.2), respectively into proof-nets
(c.f. [28]), does not work anymore. We thus leave this question as an open problem. Note
however that λes-reduction can be translated to the correspondent notion of reduction in
this calculus : thus for example App1 can be obtained by App followed by Gc.

As far as implementation is concerned, it would be preferable from a practical point
of view to avoid the systematic use of the equivalence classes generated by the axioms
α and C. In other words, it would be more efficient to work with a pure rewriting system
(without equations) verifying the same properties than λes. We believe that simulta-
neous substitutions will be needed to avoid axiom C while some technology like de
Bruijn notation will be needed to avoid axiom α (as in the λσ⇑ -calculus). We leave this
topic for future investigations, but we refer the interested reader to [28] for a concrete
proposition of such a calculus.
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[38] Lévy, J.-J., Maranget, L.: Explicit substitutions and programming languages. In: Pandu
Rangan, C., Raman, V., Ramanujam, R. (eds.) Foundations of Software Technology and
Theoretical Computer Science. LNCS, vol. 1738, Springer, Heidelberg (1999)

[39] Lescanne, P., Rouyer-Degli, J.: Explicit substitutions with de Bruijn levels. In: Hsiang, J.
(ed.) Rewriting Techniques and Applications. LNCS, vol. 914, Springer, Heidelberg (1995)

[40] Melliès, P.-A.: Typed λ-calculi with explicit substitutions may not terminate. In: Dezani-
Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, Springer, Heidelberg
(1995)
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Abstract. Soft Linear Logic (SLL) is a subsystem of second-order lin-
ear logic with restricted rules for exponentials, which is correct and
complete for PTIME. We design a type assignment system for the λ-
calculus (STA), which assigns to λ-terms as types (a proper subset of)
SLL formulas, in such a way that typable terms inherit the good com-
plexity properties of the logical system. Namely STA enjoys subject re-
duction and normalization, and it is correct and complete for PTIME and
FPTIME.

1 Introduction

The light logics, Light Linear Logic (LLL) [1] and Soft Linear Logic (SLL)
[2], were both introduced as logical counterpart of the polynomial complex-
ity. Namely proofs of both logics normalize in a polynomial number of cut-
elimination steps, if their depth is fixed, and moreover they are complete for
FPTIME and PTIME respectively. So they can be used for the design of pro-
gramming languages with an intrinsically polynomial computational bound. This
can be done in a straightforward way by a complete decoration of the logical
proofs, but for both these logics, since the presence of modalities, the resulting
languages have a very complex syntactical structure, and they cannot be rea-
sonably proposed for programming (an example of complete decoration of SLL
is in [3]). A different approach is to fix as starting points:

1. The use of λ-calculus as an abstract paradigm of programming languages.
2. The use of types to characterize program properties.

In this line, the aim becomes the design of a type assignment system for λ-
calculus, where types are formulae of a light logic, in such a way that the logical
properties are inherited by the well typed terms. Then types can be used for
checking, beside the usual notion of correctness, also the property of having
polynomial complexity. A type assignment for λ-calculus correct and complete
with respect to polynomial time computations has been designed by Baillot and
Terui [4], using as types formulae of Light Affine Logic (LAL), a simplified ver-
sion of LLL defined in [5,6]. The aim of this paper is to design a type assignment
system for λ-calculus, enjoying the same properties, but using as types formulae
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of SLL. The motivation for doing it is twofold. The design of λ-calculi with im-
plicit complexity properties is a very new research line, and so exploring different
approaches is necessary in order to compare them. In particular, SLL formulas
look simpler than LAL ones, since they have just one modality while LAL has
two modalities, and this could in principle give rise to a system easier to deal
with. Moreover, SLL has been proved to be complete just for PTIME, while we
want a type assignment system complete for FPTIME: so we want to explore at
the same time if it is possible, when switching from formulae to types, to prove
this further property.

We start from the original version of second order SLL with the only connec-
tives 
 and ! and the quantifier ∀, given in sequent calculus style. The principal
problem in designing the desired type assignment system is that, in general, in
a modal logic setting, the good properties of proofs are not easily inherited by
λ-terms. In particular, there is a mismatch between β-reduction in the λ-calculus
and cut-elimination in logical systems, which makes it difficult both getting the
subject reduction property and inheriting the complexity properties from the
logic, as discussed in [4]. To solve this problem we exploit the fact that, in the
decorated sequent calculus, there is a redundancy of proofs, in the sense that the
same λ-term can arise from different proofs. So we propose a restricted system,
called Soft Type Assignment (STA), where the set of derivations corresponds to
a proper subset of proofs in the affine version of SLL. Types are a subset of SLL
formulae, where, in the same spirit of [4], the modality ! is not allowed in the
right hand of an arrow, and the application of some rules (in particular the cut
rule) is restricted to linear types. STA enjoys subject reduction, and the set of
typable terms characterizes PTIME. Moreover we prove that the language of ty-
pable terms is complete both for PTIME and FPTIME. The completeness we are
speaking about is a functional completeness, in the sense that we prove (through
a simulation of polynomial time Turing Machines) that all polynomial functions
can be computed by terms typable in STA. The algorithmic expressivity of the
language has been not studied here.

This paper is a first step: we are actually working on a natural deduction
version of STA, and on the type inference problem. The type inference problem
for STA seems undecidable, but we think it is possible to build decidable re-
strictions that do not lose the complexity completeness. Moreover a comparison
with respect to DLAL, the type assignment system in [4], is in order. The two
systems have incomparable typability power, in the sense that there exist terms
typable in STA but not in DLAL and vice versa. STA has an easier treatment
of contexts, and no notion of discharged assumptions. This, together with the
fact that types in STA have just one modality, can help in designing a simpler
natural deduction and a more efficient type inference algorithm.

The paper is organized as follows. In Section 2 SLL is introduced and a discus-
sion is made about the problem of subject reduction. In Section 3 STA is defined,
and the proof of subject reduction is given. Section 4 contains the results about
the complexity bound: polynomial bound is proved in Subsection 4.1, and the
completeness for both PTIME and FPTIME is proved in Subsection 4.2.
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2 Soft Linear Logic and λ-Calculus

In [7] a decoration of SLL by terms of λ-calculus has been presented, as technical
tool for studying the expressive power of the system. The decoration is presented
in Table 1, where Γ#Δ denotes the fact that the domain of contexts Γ and Δ
are disjoint sets of variables. In such system, which we call SLLλ, we have the
failure of subject reduction. Let us give a detailed analysis of the problem. In a
decorated sequent calculus system, β-reduction is the counterpart, in terms, of
the cut rule of the logic. The cut rule in Table 1 can be split into three different
rules, according to the shape of U , of the contexts and of the derivation:

Γ 4l M : U Δ, x : U 4l N : V U not modal
Γ,Δ 4l N [M/x] : V

(L cut)

Π�!Γ 4l M :!U Δ, x :!U 4l N : V Π duplicable
!Γ,Δ 4l N [M/x] : V

(D cut)

Π�Γ 4l M :!U Δ, x :!U 4l N : V Π not duplicable
Γ,Δ 4l N [M/x] : V

(S cut)

where Π�!Γ 4l M :!U is duplicable if it corresponds to a !-box in the respective
proof-net of SLL [2], and L,D, S are short for Linear, Duplication and Sharing.
The problem is that, while (L cut) and (D cut) both correspond to β-reduction,
(S cut) is not necessarily reflected into a β-reduction.
Let us show it by an example. Consider the term M ≡ y((λz.sz)w)((λz.sz)w)
and let Z = U 
 U 
 V, S = V 
!U . It has the typing y : Z, s : S,w : V 4l
y((λz.sz)w)((λz.sz)w) : V as proved by the following (incomplete) derivation:

s : S 4l λz.sz : S t : S,w : V 4l tw :!U
s : S,w : V 4l (λz.sz)w :!U

(cut)
y : Z, r : U, l : U 4l yrl : V
y : Z, x :!U 4l yxx : V

(m)

y : Z, s : S,w : V 4l y((λz.sz)w)((λz.sz)w) : V
(cut)

Table 1. SLLλ

x : U �l x : U
(Id)

Γ �l M : U x : V, Δ �l N : Z Γ#Δ y fresh

Γ, y : U 
 V, Δ �l N [yM/x] : Z
(
 L)

Γ �l M : U Δ, x : U �l N : V Γ#Δ

Γ, Δ �l N [M/x] : V
(cut)

Γ, x : U �l M : V

Γ �l λx.M : U 
 V
(
 R)

Γ �l M : U

!Γ �l M :!U
(sp)

Γ, x0 : U, ..., xn : U �l M : V

Γ, x :!U �l M [x/x0, ..., x/xn] : V
(m)

Γ �l M : U

Γ �l M : ∀α.U
(∀R)

Γ, x : U [V/α] �l M : Z

Γ, x : ∀α.U �l M : Z
(∀L)
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where the cut is clearly a (S cut). It is easy to check that
y((λz.sz)w)((λz.sz)w) →β y(sw)((λz.sz)w) but unfortunately there is no
derivation with conclusion: y : Z, s : S,w : V 4l y((sw)((λz.sz)w) : V .

The technical reason is that, in the previous derivation, there is a mismatch
between the term and the derivation: in M there are two copies of (λz.sz)w,
while in the derivation there is just one subderivation with subject (λz.sz)w,
and this subderivation is not duplicable, since in particular S is not modal.
Then the two copies of this subterm cannot be treated in a non uniform way.

The problem is not new, and all the type assignment systems for λ-calculus
derived from Linear Logic need to deal with it. Until now the proposed solutions
follow three different paths, all based on a natural deduction definition of the
type assignment. The first one, proposed in [8], explicitly checks the duplicability
condition before to perform a normalization step. So in the resulting language
(which is a fully typed λ-calculus) the set of redexes is a proper subset of the set
of classical β-redexes. In the light logics setting, in [9], a type assignment for the
λ-calculus, based on EAL, is designed. There the authors use the call-by-value
λ-calculus, where the restricted definition of reduction corresponds exactly
to linear substitution and duplication. In the type assignment for λ-calculus
based on LAL, made in [4], a syntax of types is used, where the modality !
is no more present, and there are two arrows, a linear and an intuitionistic
one, whose elimination reflects the linear and the duplication cut respectively.
The set of types corresponds to a restriction of the set of logical formulas. All
the approaches need a careful control of the context, which technically has
been realized by splitting it in different parts, collecting respectively the linear
and modal assumptions (in case of [9] a further context is needed). Here we
want to explore a different approach. A type derivation for λ-calculus based
on sequent calculus is in some sense redundant, since the same typing can
be proved by a plethora of different derivations, corresponding to different
ways of building the term. A (cut) rule and a (
 L) rule both correspond to
a modification of the subject through a substitution. Our key observation is
that a term can always be built using linear substitutions. As example, take
the term before y((λz.sz)w)((λz.sz)w). It can be seen as yxx[(λz.sz)w/x] but
also as yx1x2[(λz.s1z)w1/x1, (λz.s2z)w2/x2][s/s1, s/s2, w/w1, w/w2], where all
substitutions are linear. Then we want to restrict the set of proofs, in such a
way that both sharing and duplication are forbidden, and terms are built by
means of linear substitutions only. Such restriction preserves subject reduction
since duplication is a derived rule. In order to do this, we start from an affine
version of SLL and restrict the formulae, using as types just a subset of the
SLL formulae which are, in some sense, recursively linear. The gain is that the
splitting of the context is no more necessary.

3 The Soft Type Assignment System

In this section we will present a type assignment system, which assigns to λ-
terms a proper subset of SLL formulae, and we will prove that it enjoys subject
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Table 2. Soft Type Assignment system

x : A � x : A
(Id)

Γ �M : τ x : A, Δ � N : σ Γ#Δ y fresh

Γ, y : τ 
 A, Δ � N [yM/x] : σ
(
 L)

Γ, x : σ � M : A

Γ � λx.M : σ 
 A
(
 R)

Γ �M : A Δ, x : A � N : σ Γ#Δ

Γ, Δ � N [M/x] : σ
(cut)

Γ �M : σ
Γ, x : A �M : σ

(w)
Γ �M : σ
!Γ �M :!σ

(sp)
Γ, x : A[B/α] � M : σ

Γ, x : ∀α.A �M : σ
(∀L)

Γ, x1 : τ, ..., xn : τ � M : σ

Γ, x :!τ � M [x/x1, ..., x/xn] : σ
(m) Γ �M : A

Γ � M : ∀α.A
(∀R)

reduction. Types correspond in some sense to “recursively linear” formulae and
quantification can be applied only to linear types. The type assignment system
is such that all rules dealing with substitution ((
 L) and (cut)) are applicable
only if the type of the replaced variable is linear. So all terms are built through
linear substitutions.

Definition 1. i) The syntax of λ-terms is the usual one. Let α range over a
countable set of type variables. The set T of soft types is defined as follows:

A ::= α | σ 
 A | ∀α.A (Linear Types)
σ ::= A |!σ

Type variables are ranged over by α, β, linear types by A,B,C, and types by
σ, τ, ζ. ≡ denotes the syntactical equality both for types and terms (modulo
renaming of bound variables).

ii) A context is a set of assumptions of the shape x : σ, where all variables are
different. Contexts are ranged over by Γ,Δ. dom(Γ ) = {x | ∃x : σ ∈ Γ} and
Γ#Δ means dom(Γ ) ∩ dom(Δ) = ∅.

iii) STA proves sequents of the shape Γ 4 M : σ where Γ is a context, M is a
λ-term, and σ is a soft type. The rules are given in Table 2, where as usual
the rule (∀R) has the side condition that α must not be free in Γ .

iv) Derivations are denoted by Π,Σ,Φ, Ψ,Θ. Π�Γ 4M : σ denotes a derivation
Π with conclusion Γ 4M : σ. 4M : σ is short for ∅ 4M : σ.

We will use the following:

Notation. FV (M) denotes the set of free variables of M , no(x,M) the number
of free occurrences of the variable x in M . M{z} (M{zQ}) denotes that z (zQ)
occurs once in M . !nσ is an abbreviation for !...!σ n-times. !0σ ≡ σ. As usual 

associates to the right and has precedence on ∀, while ! has precedence on every-
thing else. σ[A/α] denotes the capture free substitution in σ of all occurrences
of the type variable α by the linear type A: note that this kind of substitution
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preserves the correct syntax of types. σ denotes a sequence of types, and σ[A/α]
denotes the replacement of the i-th type variable in α by the i-th type in A. |σ|
denotes the length of the sequence σ. Γ [A/α] is the context Γ , where all type τ
has been replaced by τ [A/α]. ∀α.A is an abbreviation for ∀α1....∀αn.A, for some
n ≥ 0. Note that each type is of the shape !n∀α.A

Some comments on STA are needed. The (cut) is a linear cut, according to the
classification given in the previous section, and rule (
 L) requires that the type
of the replaced variable is linear, so in particular all substitutions in the subject
act on a variable occurring at most once (as we will see in the following lemma).
Moreover both the (Id) rule and (w) rule can introduce only linear types.

Note for example that the term M considered in Section 2. is typable with
typing: y : A 
 A 
 B, s :!(A 
 A), w :!A 4 y((λz.sz)w)((λz.sz)w) : B

Lemma 2. i) Γ, x : A 4M : ν implies no(x,M) ≤ 1.
ii) Γ, x : A 4M :!σ implies x �∈ FV (M).

The system enjoys the classical substitution properties.

Lemma 3. i) Γ 4M : σ implies Γ [ζ/α] 4M : σ[ζ/α].
ii) Γ 4M : ∀α.A implies Γ 4M : A.

Let Π�Γ, x : τ 4M : σ. The notion of chain of x in Π will be used to remember
the successive renaming of the assumptions which give rise to the assumption
x : τ . The notion of s-chain is necessary for dealing with the particular case of
the replacements of a variable by another one in a cut rule.

Definition 4. Let Π�Γ, x : τ 4M : σ.

– A chain of x in Π is a sequence of variables inductively defined as follows:
• Let the last applied rule of Π be:

x : A 4 x : A ,
Γ ′ 4 P : σ

Γ ′, x : A 4 P : σ or
Δ 4 P : τ z : A,Γ 4 N : σ

x : τ 
 A,Γ,Δ 4 N [xP/z] : σ

Then the only chain of x is x itself.
• Let the last applied rule of Π be:

Π ′�Γ ′, x1 : τ, ..., xk : τ 4 N : σ
Γ ′, x :!τ 4 N [x/x1, ..., x/xk] : σ

(m)

Then a chain of x in Π is every sequence xc, where c is a chain of xi
in Π ′ for 1 ≤ i ≤ k.

• In every other case there is an assumption with subject x both in the
conclusion of the rule and in one of its premises Σ. Then a chain of x
in Π is every sequence xc, where c is a chain of x in Σ.

– Let c be a chain of x in Π and let xk be the last variable of c. Then xk is
an ancestor of x in Π. na(x,Π) denotes the number of ancestors of x in Π.
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– y is an effective ancestor of x if and only if it is an ancestor of x, and
moreover every variable z in the chain of x ending with y occurs in sequent
where z belongs to the free variable set of the subject of the sequent. ne(x,Π)
denotes the number of effective ancestors of x in Π.

– A s-chain of x in Π is inductively defined analogously to the chain of x in
Π but the (cut) case:

Γ 4M : A Σ�Δ, z : A 4 N : σ
Γ,Δ 4 N [M/z] : σ

(cut)

If M �≡ x then an s-chain of x in Π is defined as a chain of x in Π, otherwise
an s-chain of x in Π is every sequence zc, where c is a chain of z in Σ.
An s-ancestor is defined analogously to ancestor, but with respect to s-chains.

The following lemma follows easily from the previous definition.

Lemma 5. Let Π�Γ 4M : σ. Then ∀x : no(x,M) ≤ ne(x,Π) ≤ na(x,Π).

The notion of effective ancestor will be used in Section 4. The Generation Lemma
connects the shape of a term with its possible typings, and will be useful in the
sequel. Let Π and Π ′ be two derivations in STA, proving the same conclusion:
Π � Π ′ denotes the fact that Π ′ is obtained from Π by commuting some rule
applications, by erasing m rule applications, by inserting n ≤ m applications of
rule (w), for some n,m ≥ 0, and by renaming some variables.

Lemma 6 (Generation Lemma)

1. Γ 4 λx.M : σ implies σ ≡!i(∀α.τ 
 A), for some τ , A and i, |α| ≥ 0;
2. Π�Γ 4 λx.P : σ 
 A implies Π � Π ′, whose last rule is (
 R).
3. Π�Γ, x : ∀α.τ 
 A 4 M{xQ} : σ implies that Π is composed by a sub-

derivation Σ, followed by a sequence δ of rules not containing rule (sp), and
the last rule of Σ is:

Γ ′ 4 Q′ : τ ′ Γ ′′, z : A′ 4 P{z} : σ′

Γ ′, Γ ′′, t : τ ′ 
 A′ 4 P{z}[tQ′/z] : σ′
(
 L)

where τ ′ ≡ τ [B/α], A′ ≡ A[B/α], t is the only s-ancestor of x in Π, for
some P,Q′, Γ ′, Γ ′′,B,α, σ′.

4. Π�Γ 4 M :!σ implies Π � Π ′ where Π ′ is composed by a subderivation,
ending with the rule (sp) proving !Γ ′ 4M :!σ, followed by a sequence of rules
(w), (
 L), (m),(∀L), (cut), all dealing with variables not occurring in M .

5. Π�!Γ 4M :!σ implies Π � Π ′, whose last rule is (sp).
6. Π�Γ 4 λx.M : ∀α.A implies Π � Π ′ where the last rule of Π ′ is (∀R).

3.1 Subject Reduction

STA enjoys the subject reduction property. The proof is based on the fact that,
while formally the (cut) rule in it is linear, the duplication cut is a derived rule.
To prove this, we need a further lemma.
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Lemma 7. Π�Γ, x :!n∀α.A 4M : σ where A �≡ ∀β.B and y is an ancestor of x
in Π imply that y has been introduced with type ∀α′.A[B/α′′], for some α′,α′′

(possible empty) such that α = α′′,α′

Lemma 8. The following rule is derivable in STA:

Π�!nΓ 4M :!nB Σ�x :!nB,Δ 4 N : σ !nΓ#Δ
!nΓ,Δ 4 N [M/x] : σ

(dup)

Proof. In case n = 0 the proof is obvious, since (dup) coincides with the (cut)
rule. Otherwise let B ≡ ∀α.A. By Lemma 6.5, Π can be transformed into a
derivation Π ′′, which is Π ′�Γ 4 M : A followed by n applications of rule (sp).
Let the ancestors of x in Σ be x1, ..., xm. By Lemma 7, xj has been introduced
with type ∀α′

j .A[Cj/α
′′
j ], for some Cj ,α

′
j ,α

′′
j (1 ≤ j ≤ m). By Lemma 3, there

are disjoint derivations Π ′j�Γj 4Mj : ∀α′
j .A[Cj/α

′′
j ], where Mj and Γj are fresh

copies of M and Γ (1 ≤ j ≤ m). Then, for every xj introduced by an (Id) rule,
replace such rule by Π ′j . For every xj introduced by a (
 L) rule as:

Γ ′ 4 R : τ [Cj/α
′′
j ] Δ′, z : B′[Cj/α

′′
j ] 4 T : σ

Γ ′, xj : (τ 
 B′)[Cj/α
′′
j ], Δ′ 4 T [xjR/z] : σ

(
 L)

where ∀α′
j .A[Cj/α

′′
j ] ≡ (τ 
 B′)[Cj/α

′′
j ], |α′

j | = 0, after this insert the rule:

Π ′j Γ ′, xj : A[Cj/α
′′
j ], Δ′ 4 T [xjR/z] : σ

Γ ′, Δ′, Γj 4 T [MjR/z] : σ
(cut)

.

For every xj introduced by a (w) rule, just erase the rule. Moreover arrange the
context and the subject in all rules according with these modifications. Then
replace every application of a rule (m), when applied on variables in a chain of x
in Σ, by a sequence of rules (m) applied to the free variables of the corresponding
copy of M . So the resulting derivation Φ proves !nΓ,Δ 4 N [M/y] : σ. ��
Note that the rule (dup) cannot represent a (S cut) since by Lemma 6.4 a
derivation where both the context and the type are modal always corresponds
to a !-box. The above lemma allow us to freely use (dup) rule in what follows.

Theorem 9 (Subject Reduction). If Γ 4 M : σ and M →β M ′ then Γ 4
M ′ : σ

Proof. By induction on the derivation. The only interesting case is when the last
rule is (cut), creating the redex (λy.P )Q reduced in M .

Ψ�Γ 4 λy.P : A Σ�Δ, x : A 4 N{xQ} : σ Γ#Δ
Γ,Δ 4 N{xQ}[λy.P/x] : σ

(cut)
.

By Lemma 6.1, and by the constraint on the (cut) rule, A ≡ ∀α.τ 
 B. By
Lemma 6.3, Σ is composed by a subderivation Σ2, followed by a sequence δ of
rules not containing (sp). Σ2 is:

Θ1�Δ
′′ 4 Q′ : τ ′ Θ2�Δ

′, z : B′ 4 N ′{z} : σ′

Δ′, t : τ ′ 
 B′, Δ′′ 4 N ′{z}[tQ′/z] : σ′
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where τ ′ = τ [C/α], B′ = B[C/α], t is the only s-ancestor of x, for some
Δ′, Δ′′, N ′, Q′, σ′,C . By Lemma 6.2,6, Ψ � Ψ ′ ending as:

Γ, y : τ 4 P : B
Γ 4 λy.P : τ 
 B

(
 R)

Γ 4 λy.P : ∀α.τ 
 B
(∀R)∗

hence by Lemma 3.ii), there is a derivation Φ�Γ, y : τ ′ 4 P : B′, since α are not
free in Γ .

Let τ ′ ≡!nA′ (n ≥ 0) for some A′. By Lemma 6.4,5, Θ1 can be transformed
in a derivation composed by a subderivation Θ4�!nΔ′′′ 4 Q′ :!nA′, followed by a
sequence δ′ of applications of rules (w), (
 L),(m), (∀L), (cut), all dealing with
variables not occurring in Q. So we can apply the derived rule (dup) obtaining:

Θ4 :!nΔ′′′ 4 Q′ :!nA′ Φ�Γ, y :!nA′ 4 P : B′

Γ, !nΔ′′′ 4 P [Q′/y] : B′

Then, by applying δ′ we have Θ3�Γ,Δ
′′ 4 P [Q′/y] : B′. Hence,

Θ3 Θ2

Γ,Δ′, Δ′′ 4 N ′{z}[P [Q′/y]/z] : σ
(cut)

and by applying δ the desired derivation can be built. ��

The proof of subject reduction gives evidence to the fact that β-reduction, while
corresponding to the cut elimination in case the bound variable occurs at most
once, is reflected into a global transformation of the derivation, in case a dupli-
cation of the argument is necessary.

4 Complexity

In this section we will show that STA is correct and complete for polynomial
complexity. Namely, in Subsection 4.1, we will prove that, if a term M can be
typed in STA by a derivation Π , then it reduces to normal form in a number
of β-reduction steps which is bounded by |M |d(Π)+1, where |M | is the number
of symbols of M and d(Π) is the number of nested applications of rule (sp) in
Π . So working with terms typed by derivations of fixed degree assures us to
keep only a polynomial number of computation steps. Then we show that this
polystep result extends to a polytime result. In the Subsection 4.2, we prove
that STA is complete both for PTIME and FPTIME, using a representation of
Turing machine working in polynomial time by λ-terms, typable in STA through
derivations obeying suitable constraints. The key idea is that data can be repre-
sented by terms typable by linear types using derivations of degree 0. Obviously
programs can duplicate their data, so a derivation typing an application of a
program to its data can have degree greater than 0, but this degree depends
only on the program, so it does not affect the complexity measure.
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4.1 Complexity of Reductions in STA

SLL enjoys a polynomial time bound, namely the cut-elimination procedure is
polynomial in the size of the proof. This result holds obviously also for STA.
But we need something more, namely to relate the polynomial bound to the size
of the λ-terms. So we prove this result by defining measures of both terms and
proofs, which are an adaptation of those given by Lafont, but they do not take
into account the subderivations that do not contribute to the term formation
(which we will call “erasing”).

Definition 10.

– The size |M | of a term M is defined as |x| = 1, |λx.M | = |M |+1, |MN | =
|M |+ |N |+ 1. The size |Π | of a proof Π is the number of rules in Π.

– In the rules (
 L) and (cut), the subderivation proving Γ 4 M : τ and
Γ 4M : A respectively is erasing if x /∈ FV (N)(using notation of Table 2).

– The rank of a rule (m), as defined in Table 2, is the number k ≤ n of
variables xi such that xi ∈ FV (M) (1 ≤ i ≤ n ). Let r be the the maximum
rank of a rule (m) in Π, not considering erasing subderivations. The rank
rk(Π) of Π is the maximum between 1 and r.

– The degree d(Π) of Π is the maximum nesting of applications of rule (sp)
in Π, not considering erasing subderivations;

– The weight W(Π, r) of Π with respect to r is defined inductively as follows.
• If the last applied rule is (Id) then W(Π, r) = 1.
• If the last applied rule is (
 R) with premise a derivation Σ, then
W(Π, r) = W(Σ, r) + 1.

• If the last applied rule is (sp) with premise a derivation Σ, then W(Π, r) =
rW(Σ, r).

• If the last applied rule is:

Σ�Γ 4M : A Φ�x : A,Δ 4 N : σ
Γ,Δ 4 N [M/x] : σ

(cut)

then W(Π, r) = W(Σ, r) + W(Φ, r) − 1 if x ∈ FV (N), W(Π, r) = W(Φ, r)
otherwise.

• In every other case W(Π, r) is the sum of the weights of the premises with
respect to r, not counting erasing subderivations.

Lemma 11. Let Π�Γ 4M : σ. Then:
1. rk(Π) ≤ |M | ≤ |Π |. 2. W(Π, 1) ≤ |M |. 3. W(Π, r) ≤ rd(Π)W(Π, 1)
4. x :!qA ∈ Γ implies no(x,M) ≤ ne(x,Π) ≤ rk(Π)q.
5. Π � Π ′ implies W(Π ′, r) ≤ W(Π, r).

The normalization of proofs is based on the notion of substitution. The following
lemma extends the weight definition to the derived rule (dup) by taking into
account the weight of the involved proofs.

Lemma 12. Let Φ be a derivation ending with the rule (dup), with premises Σ
and Π. Then, if r ≥ rk(Φ), W(Φ, r) ≤ W(Σ, r) + W(Π, r).
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Proof. It suffices to verify how the weights are modified in the proof of Lemma
8, using Lemma 11. We will use exactly the same notations as in the lemma.

The transformation of Π in Π ′′ leaves the weight unchanged. In particular
W(Π, r) = rnW(Π ′, r) and W(Π ′j , r) = W(Π ′, r).

By Lemma 6.4 and Lemma 6.5 Σ can be transformed in a derivation Σ′

followed by k ≤ n applications of rule (sp) and by a sequence of rules dealing
with variables not occurring in N . In particular W(Σ, r) = rkW(Σ′, r).

Then, for every ancestor xj in Σ the replacement by Π ′j increases the weight
W(Σ′, r) of at most a quantity W(Π ′, r). By definition of weight we are interested
only in effective ancestors, hence by Lemma 11.4:

W(Φ, r) = rk(W(Σ′, r) + ne(x,Σ′)W(Π ′, r)) ≤ rkW(Σ′, r) + rkrn−kW(Π ′, r)
≤ rkW(Σ′, r) + rnW(Π ′, r) = W(Σ, r) + W(Π, r). ��
Now we can show that the weight decreases when a β-reduction is performed.

Lemma 13. Let Π�Γ 4 M : σ and M →β M
′. There is a derivation Π ′�Γ 4

M ′ : σ, with rk(Π) ≥ rk(Π ′), such that if r ≥ rk(Π ′) then W(Π ′, r) < W(Π, r).

Proof. It suffices to verify how the weights are modified in the proof of Theorem
9, using Lemma 11. We will use exactly the same notations as in the theorem.
Note that if a derivation Φ̃ is composed by a derivation Φ̃1, followed either by
the sequence δ or δ′, then either W(Φ̃, r) = W(Φ̃1, r) + c or W(Φ̃, r) = W(Φ̃1, r),
where c is a constant depending only on δ, since δ does not contain rule (sp).
Then looking at the definition of weight and to the theorem we can state the
following (in)equalities:

W(Π ′, r) = W(Θ3, r) + W(Θ2, r) + c− 1 ≤ W(Φ, r) + W(Θ4, r) + W(Θ2, r) + c− 1
= W(Φ, r) + W(Θ1, r) + W(Θ2, r) + c− 1 = W(Φ, r) + W(Σ, r)− 1
< W(Ψ, r) + W(Σ, r)− 1 = W(Π, r). ��
Finally the desired results can be obtained.

Theorem 14 (Strong Polystep Soundness). Let Π�Γ 4 M : σ, and M
β-reduces to M ′ in m steps. Then:

(1) m ≤ |M |d(Π)+1 (2) |M ′| ≤ |M |d(Π)+1

Proof. (1) By repeatedly using Lemma 13 and by Lemma 11.3, since |M | ≥
rk(Π). (2) By repeatedly using Lemma 13 and by Lemma 11.2. ��
Theorem 15 (Polytime Soundness). Let Π�Γ 4 M : σ, then M can be
evaluated to normal form on a Turing Machine in time O(|M |3(d(Π)+1)).

Proof. Clearly, as pointed in [10], a β reduction step N →β N
′ can be simulated

in time O(|N |2) on a Turing Machine. Let M ≡ M0 →β M1 →β · · · →β Mn

be a reduction of M to normal form Mn. By Theorem 14.2 |Mi| ≤ |M |d(Π)+1

for 0 ≤ i ≤ n, hence each step in the reduction takes time O(|M |2(d(Π)+1)).
Furthermore since by Theorem 14.1 n is O(|M |d(Π)+1), the conclusion follows.

��
Clearly Theorem 15 implies that a strong polytime soundness holds, considering
Turing Machine with an oracle for strategies.
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4.2 Polynomial Time Completeness

In order to prove polynomial time completeness of STA we need to encode Turing
Machines (TM) configurations, transitions between configurations and iterators.
We achieve such results considering the usual notion of lambda definability, given
in [11], generalized to different kinds of data. We encode input data in the usual
way, TM configurations and transitions following the lines of [7] and iterators
as usual by Church numerals. We stress that we allow a liberal typing, the only
constraint we impose in order to respect Theorem 14 is that each input data
must be typable through derivations with degree 0.
Some syntactic sugar. To keep notation concise we add some syntac-
tic sugar. Let M ◦ N stand for λz.M(Nz), M1 ◦ M2 ◦ · · · ◦ Mn stand for
λz.M1(M2(· · · (Mnz))). As usual I stands for λx.x, and 4 I : ∀α.α 
 α.

Tensor product is definable by second order as σ⊗τ .= ∀α.(σ 
 τ 
 α) 
 α.
The constructors and destructors for this data type are 〈M,N〉 .= λx.xMN ,
let z be x, y in N

.= z(λx.λy.N). n-ary tensor product can be easily defined
through the binary one and we use σn to denote σ ⊗ · · · ⊗ σ n-times.

Note that, since STA is an affine system, tensor product enjoys some proper-
ties of the additive conjunction, as to allow the projectors.
Polynomials To encode natural numbers we will use Church numerals, i.e.
n
.= λs.λz.sn(z). Successor, addition and multiplication are λ-definable in the

usual way: succ .= λpsz.s(psz), add .= λpqsz.ps(qsz) and mul .= λpqs.p(qs).
Note that the above terms are not typable by using the usual type for natural
numbers N .= ∀α.!(α 
 α) 
 α 
 α. For this reason we define indexed types,
one for each i ∈ N: Ni

.= ∀α.!i(α 
 α) 
 α 
 α in particular we have N1 ≡ N.
Clearly for each Church numerals n and for each i > 0 ∈ N it holds 4 n : Ni.
Using indexed type it is easy to derive the following typing: 4 succ : Ni 
 Ni+1,
4 add : Ni 
 Nj 
 Nmax(i,j)+1, 4 mul : Nj 
!jNi 
 Ni+j .

Note that Church numerals behave as iterators only on terms typable with
type μ 
 μ for some linear type μ. For this reason the above terms cannot be
iterated. Nevertheless they can be composed. In fact, if we want to multiply two
natural numbers we can use mul typed as 4 mul : N 
!N 
 N2 while if we
want to multiply three natural numbers, through the term λxyz.mul(mulxy)z,
the two occurrences of mul in it need to be typed by different types, for example
N 
!N 
 N2 the innermost one and N2 
!!N 
 N3 the outermost. Such
change of type, in particular on the number of modalities, does not depend on
the values of data.

Lemma 16. Let P be a polynomial in the variable X and deg(P ) its degree.
Then there is a term P λ-defining P typable as x :!deg(P )N 4 P : N2deg(P )+1.

Proof. Consider P in Horner normal form, i.e., P = a0 +X(a1 +X(· · · (an−1 +
Xan) · · · ). By induction on deg(P ) we show something stronger, i.e., for i > 0, it
is derivable x0 : Ni, x1 :!iNi, . . . , xn :!i(deg(P

∗)−1)Ni 4 P ∗ : Ni(deg(P∗))+deg(P∗)+1

where P ∗ = a0 +X0(a1 +X1(· · · (an−1 +Xnan) · · · ) so conclusion follows using
(m) rule and taking i = 1.
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Base case is trivial, so consider P ∗ = a0 +X0(P ′). By induction hypothesis
x1 : Ni, . . . , xn :!i(deg(P

′)−1)Ni 4 P ′ : Ni(deg(P ′))+deg(P ′)+1.
Take P ∗ ≡ add(a0,mul(x0, P

′)), clearly we have x0 : Ni, x1 :!iNi, . . . , xn :
!i(deg(P

′)−1)+iNi 4 P ∗ : Ni(deg(P ′)+1)+deg(P ′)+1+1. Since deg(P ∗) = deg(P ′) + 1:
it follows x0 : Ni, x1 :!iNi, . . . , xn :!i(deg(P

∗)−1)Ni 4 P ∗ : Ni(deg(P∗))+deg(P∗)+1.
Now by taking i = 1 and repeatedly applying (m) rule we conclude x :!deg(P )N 4
P ≡ P ∗[x/x1, · · · , x/xn] : N2deg(P )+1 ��
Booleans. Let us encode booleans, as usual, by: 0 .= λxy.x, 1 .= λxy.y and
if x then M else N

.= xMN . They can be typed in STA using as type for
booleans: B .= ∀α.α 
 α 
 α. In particular it holds 4 b : B for b ∈ {0,1}.
Moreover assuming Γ 4 M : σ and Δ 4 N : σ and Γ#Δ it follows Γ,Δ, x : B 4
if x then M else N : σ.

With the help of the conditional we can define all the usual boolean functions
4 And : B 
 B 
 B, 4 Or : B 
 B 
 B, 4 Not : B 
 B. In particular we
have contraction on booleans: 4 Cnt .= λb. if b then 〈0,0〉 else 〈1,1〉 : B 

B⊗B. The above functions and weakening are useful to prove the following.
Lemma 17. Each boolean total function f : Bn → Bm, where n,m ≥ 1, can be
λ-defined by a term f typable in STA as 4 f : Bn 
 Bm.
Strings String of booleans can be encoded by: [ ] .= λcz.z and [b0, b1, . . . , bn] .=
λcz.cb0(· · · (cbnz) · · · ) where bi ∈ {0,1}. Boolean strings are typable in STA
with the indexed type Si

.= ∀α.!i(B 
 α 
 α) 
 (α 
 α). In particular
for each n, i > 0 ∈ N it holds b0 : B, ..., bn : B 4 [b0, . . . , bn] : Si. The term
len .= λcs.c(λxy.sy) λ-defines the function returning the length of an input
string and is typable in STA with typing 4 len : Si 
 Ni.

Turing Machine. We can λ-define Turing Machine configurations by terms of
the shape λc.〈cbl0 ◦ · · · ◦ cbln, cbr0 ◦ · · · ◦ cbrm, Q〉 where cbl0 ◦ · · · ◦ cbln and cbr0 ◦
· · · ◦ cbrm represent respectively the left and the right part of the tape, while
Q ≡ 〈b1, · · · , bn〉 is a n-ary tensor product of boolean values representing the
current state. We assume without loss of generality that by convention the left
part of the tape is represented in a reversed order, that the alphabet is composed
of only the two symbols 0 and 1, that the scanned symbol is the first symbol
of the right part and that states are divided in accepting and rejecting. The
indexed type of a Turing Machine configuration in STA is TMi

.= ∀α.!i(B 

α 
 α) 
 ((α 
 α)2⊗Bq). In fact, 4 λc.〈cbl0◦· · ·◦cbln, cbr0◦· · ·◦cbrm, Q〉 : TMi.
The term Init .= λtc.〈λz.z, λz.t(c0)z, q0〉 λ-defines the function that, taking as
input Q, defining a polynomial Q, gives as output a Turing Machine with tape
of length Q filled by 0’s in the initial state q0 and with the head at the beginning
of the tape. As expected 4 Init : Ni 
 TMi. In what follows IDi will denote:

∀α.!i(B 
 α 
 α) 
 ((α 
 α)2⊗(B 
 α 
 α)⊗B⊗(B 
 α 
 α)⊗B⊗Bq)

Following [7], the work of showing that Turing Machine transitions are λ-
definable can be decomposed in two steps. Firstly we have a term

Dec .= λsc. let s(F (c)) be l, r, q in let l〈I, λx.I,0〉
be tl, cl, bl0 in let r〈I, λx.I,0〉 be tr, cr, br0 in 〈tl, tr, cl, bl0, cr, br0, q〉
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where F (c) .= λbz. let z be g, h, i in 〈hi ◦ g, c, b〉. Such a term is typable as
4 Dec : TMi 
 IDi and its behaviour is to decompose a configuration as:

Dec(λc.〈cbl0 ◦ · · · ◦ cbln, cbr0 ◦ · · · ◦ cbrm, Q〉)→∗
β

λc.〈cbl1 ◦ · · · ◦ cbln, cbr1 ◦ · · · ◦ cbrm, c, bl0, c, br0, Q〉

Then we can define a term

Com .= λsc. let sc be l, r, cl, bl, cr, br, q in
let δ〈br, q〉 be b′, q′,m in (if m then R else L)b′q′〈l, r, cl, bl, cr〉

where R .= λb′q′s. let s be l, r, cl, bl, cr in 〈crb′ ◦ clbl ◦ l, r, q′〉 and L .=
λb′q′s. let s be l, r, cl, bl, cr in 〈l, clbl ◦ crb′ ◦ r, q′〉. Such a term is typable as
4 Com : IDi 
 TMi and depending on the δ transition function, it combines
the symbols returning a configuration as:

Com (λc.〈cbl1 ◦ · · · ◦ cbln, cbr1 ◦ · · · ◦ cbrm, c, bl0, c, br0, Q〉)
→∗

β λc.〈cb′ ◦ cbl0 ◦ cbl1 ◦ · · · ◦ cbln, cbr1 ◦ · · · ◦ cbrm, Q′〉 if δ(br0, Q) = (b′, Q′,Right)
or
→∗

β λc.〈cbl1 ◦ · · · ◦ cbln, cbl0 ◦ cb′ ◦ cbr1 ◦ · · · ◦ cbrm, Q′〉 if δ(br0, Q) = (b′, Q′,Left)

Checking the typing and the behavior for Dec and Com is boring but easy.
By combining the above terms we obtain the term Tr .= Com ◦Dec which

λ-defines a Turing Machine transition and as expected admits the typing 4 Tr :
TMi 
 TMi.

Let the open term T(b) be λsc. let sc be l, r, cl, bl, cr, br, q inRbq〈l, r, cl, bl, cr〉
where R is defined as above. Such term is typable as b : B 4 T(b) : IDi 
 TMi,
and it is useful to define the term In .= λsm.s(λb.T(b) ◦ Dec)m that, when
supplied by a boolean string and a Turing Machine, writes the input string on the
tape of the Turing Machine. Such a term is typable as 4 In : S 
 TMi 
 TMi.

The term Ext .= λs. let s(λb.λc.c) be l, r, q in f(q) permits to extract the
information that the machine is in an accepting or non-accepting state. Since
Lemma 17 assures the existence of f , it holds 4 Ext : TMi 
 B. Now we can
finally show that STA is complete for PTIME.

Theorem 18 (PTIME Completeness). Let a decision problem P be decided
in polynomial time P , where deg(P ) = m, and in polynomial space Q, where
deg(Q) = l, by a Turing Machine M. Then it is λ-definable by a term M typable
in STA as s :!max(l,m,1)+1S 4M : B.

Proof. By Lemma 16: sp :!mS 4 P [lensp/x] : N2m+1 and sq :!lS 4
Q[lensq/x] : N2l+1. Furthermore by composition: s : S, q : N2l+1, p : N2m+1 4
Ext(pTr(Ins(Init(q)))) : B so by (cut) and some applications of (m) rule the
conclusion follows. ��

Without loss of generality we can assume that a Turing machine stops on
accepting states with the head at the begin of the tape. Hence the term
ExtF

.= λsc. let sc be l, r, q in r extracts the result from the tape. It is easy to
verify that the typing 4 ExtF : TMi 
 Si holds. So we can conclude that STA
is also complete for FPTIME.
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Theorem 19 (FPTIME Completeness). Let a function F be computed in
polynomial time P , where deg(P ) = m, and in polynomial space Q, where
deg(Q) = l, by a Turing Machine M. Then it is λ-definable by a term M typable
in STA as !max(l,m,1)+1S 4M : S2m+1.

In the work of Lafont [2], in the proof of PTIME completeness of SLL, an im-
portant role is played by the notions of generic and homogeneous proofs, being
respectively proofs without multiplexors (rule (m)) and with multiplexors of a
fixed rank. Lafont uses homogeneous proofs for representing data and generic
proofs for representing programs. We do not use this classification for proving
the completeness of STA.
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Abstract. A longstanding open problem is whether there exists a non-
syntactical model of the untyped λ-calculus whose theory is exactly the
least λ-theory λβ. In this paper we investigate the more general ques-
tion of whether the equational/order theory of a model of the untyped
λ-calculus can be recursively enumerable (r.e. for brevity). We intro-
duce a notion of effective model of λ-calculus, which covers in particular
all the models individually introduced in the literature. We prove that
the order theory of an effective model is never r.e.; from this it follows
that its equational theory cannot be λβ, λβη. We then show that no
effective model living in the stable or strongly stable semantics has an
r.e. equational theory. Concerning Scott’s semantics, we investigate the
class of graph models and prove that no order theory of a graph model
can be r.e., and that there exists an effective graph model whose equa-
tional/order theory is the minimum one. Finally, we show that the class
of graph models enjoys a kind of downwards Löwenheim-Skolem theorem.

Keywords: Lambda calculus, Effective lambda models, Recursively enu-
merable lambda theories, Graph models, Löwenheim-Skolem theorem.

1 Introduction

Lambda theories are equational extensions of the untyped λ-calculus closed un-
der derivation. They arise by syntactical or semantic considerations. Indeed, a
λ-theory may correspond to a possible operational (observational) semantics of
λ-calculus, as well as it may be induced by a model of λ-calculus through the
kernel congruence relation of the interpretation function. Although researchers
have mainly focused their interest on a limited number of them, the class of
λ-theories constitutes a very rich and complex structure (see [1,4,5]).

Topology is at the center of the known approaches to giving models of the
untyped λ-calculus. After the first model, found by Scott in 1969 in the category
of complete lattices and Scott continuous functions, a large number of mathe-
matical models for λ-calculus, arising from syntax-free constructions, have been
introduced in various categories of domains and were classified into semantics
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according to the nature of their representable functions, see e.g. [1,4,19]. Scott
continuous semantics [22] is given in the category whose objects are complete
partial orders and morphisms are Scott continuous functions. The stable seman-
tics (Berry [7]) and the strongly stable semantics (Bucciarelli-Ehrhard [8]) are
refinements of the continuous semantics, introduced to capture the notion of “se-
quential” Scott continuous function. In each of these semantics it is possible to
build up 2ℵ0 models inducing pairwise distinct λ-theories [16,17]. Nevertheless,
all are equationally incomplete (see [15,2,20,21]) in the sense that they do not
represent all possible consistent λ-theories. It is interesting to note that there are
very few known equational theories of λ-models living in these semantics that
can be described syntactically: namely, the theory of Böhm trees and variants
of it. None of these theories is r.e.

Berline has raised in [4] the natural question of whether, given a class of mod-
els of λ-calculus, there is a minimum λ-theory represented by it. This question
relates to the longstanding open problem proposed by Barendregt about the ex-
istence of a continuous model or, more generally, of a non-syntactical model of
λβ (λβη). Di Gianantonio, Honsell and Plotkin [12] have shown that Scott con-
tinuous semantics admits a minimum theory, at least if we restrict to extensional
models. Another result of [12], in the same spirit, is the construction of an ex-
tensional model whose theory is λβη, a fortiori minimal, in a weakly-continuous
semantics. However, the construction of this model starts from the term model of
λβη, and hence it cannot be seen as having a purely non syntactical presentation.
More recently, Bucciarelli and Salibra [9,10] have shown that the class of graph
models admits a minimum λ-theory different from λβ. Graph models, isolated
in the seventies by Plotkin, Scott and Engeler (see e.g. [1]) within the continu-
ous semantics, have proved useful for showing the consistency of extensions of
λ-calculus and for studying operational features of λ-calculus (see [4]).

In this paper we investigate the related question of whether the equational
theory of a model can be recursively enumerable (r.e. for brevity). As far as we
know, this problem was first raised in [5], where it is conjectured that no graph
model can have an r.e. theory. But we expect that this could indeed be true for
all models living in the continuous semantics, and its refinements.

We find it natural to concentrate on models with built-in effectivity proper-
ties. It seems indeed reasonable to think that, if effective models do not even
succeed to have an r.e. theory, then the other ones have no chance to succeed.
Another justification for considering effective models comes from a previous re-
sult obtained for typed λ-calculus. Indeed, it was proved in [3] that there exists
a non-syntactical model of Girard’s system F whose theory is λβη. This model
lives in Scott’s continuous semantics, and can easily be checked to be “effective”
in the same spirit as in the present paper (see [3, Appendix C] for a sketchy
presentation of the model).

Starting from the known notion of an effective domain, we introduce a general
notion of an effective model of λ-calculus and we study the main properties
of these models. Effective models are omni-present in the continuous, stable
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and strongly stable semantics. In particular, all the models which have been
introduced individually in the literature can easily be proved effective1.

The following are the main results of the paper:

1. Let D be an effective model of λ-calculus. Then:
(i) The order theory Ord(D) of D is not r.e.
(ii) The equational theory Eq(D) of D is not the theory λβ (λβη).
(iii) If for some λ-term M there are only finitely many λ-definable elements

below the interpretation of M (e.g. if ⊥ ∈ D is λ-definable), then Eq(D)
is not r.e.

Concerning the existence of a non-syntactical effective model with an r.e. equa-
tional theory, we are able to give a definite negative answer for all (effective)
stable and strongly stable models:

2. No effective model living in the stable or strongly stable semantics has an
r.e. equational theory.

Concerning Scott continuous semantics, the problem looks much more difficult.
We concentrate here on the class of graph models (see [5,6,9,10,11] for earlier
investigation of this class) and show the following results:

3. Let D be an arbitrary graph model. Then:
(i) The order theory Ord(D) of D is not r.e.
(ii) If D is freely generated by a finite “partial model”, then the equational

theory Eq(D) of D is not r.e.

4. There exists an effective graph model whose equational/order theory is min-
imal among all theories of graph models.

5. (Löwenheim-Skolem theorem for graph models) Every equational/order
graph theory (where “graph theory” means “theory of a graph model”) is
the theory of a graph model having a carrier set of minimal cardinality.

The last result positively answers Question 3 in [4, Section 6.3] for the class of
graph models.

The central technical device used in this paper is Visser’s result [25] stating
that the complements of β-closed r.e. sets of λ-terms enjoy the finite intersection
property (see Theorem 2).

2 Preliminaries

To keep this article self-contained, we summarize some definitions and results
concerning λ-calculus that we need in the subsequent part of the paper. With
regard to the lambda calculus we follow the notation and terminology of [1].

1 As far as we know, only Giannini and Longo [13] have introduced a notion of an
effective model; but their definition is ad hoc for two particular models (Scott’s Pω

and Plotkin’s Tω) and their results depend on the fact that these models have a very
special (and well known) common theory.
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We denote by � the set of natural numbers. A set A ⊆ � is recursively
enumerable (r.e. for short) if it is the domain of a partial recursive function.
The complement of a recursively enumerable set is called a co-r.e. set. If both
A and its complement are r.e., A is called decidable. We will denote by RE the
collection of all r.e. subsets of �.

A numeration of a set A is a map from � onto A. W : � → RE denotes
the usual numeration of r.e. sets (i.e., Wn is the domain of the n-th computable
function φn).

2.1 Lambda Calculus and Lambda Models

Λ and Λo are, respectively, the set of λ-terms and of closed λ-terms. Concerning
specific λ-terms we set:

I ≡ λx.x; T ≡ λxy.x; F ≡ λxy.y; Ω ≡ (λx.xx)(λx.xx).

A set X of λ-terms is trivial if either X = ∅ or X = Λ.
We denote αβ-conversion by λβ. A λ-theory T is a congruence on Λ (with

respect to the operators of abstraction and application) which contains λβ. We
write M =T N for (M,N) ∈ T . If T is a λ-theory, then [M ]T denotes the set
{N : N =T M}. A λ-theory T is: consistent if T �= Λ × Λ; extensional if it
contains the equation I = λxy.xy; recursively enumerable if the set of Gödel
numbers of all pairs of T -equivalent λ-terms is r.e. Finally, λβη is the least
extensional λ-theory.

Solvable λ-terms can be characterized as follows: a λ-term M is solvable if,
and only if, it has a head normal form, that is, M =λβ λx1 . . . xn.yM1 . . .Mk for
some n, k ≥ 0 and λ-terms M1, . . . ,Mk. M ∈ Λ is unsolvable if it is not solvable.

The λ-theory H, generated by equating all the unsolvable λ-terms, is con-
sistent by [1, Theorem 16.1.3]. A λ-theory T is sensible if H ⊆ T , while it is
semi-sensible if it contains no equations of the form U = S where S is solv-
able and U unsolvable. Consistent sensible theories are semi-sensible (see [1,
Cor. 4.1.9]) and are never r.e. (see [1, Section 17.1]).

It is well known [1, Chapter 5] that a model of λ-calculus (λ-model, for short)
can be defined as a reflexive object in a ccc (Cartesian closed category) C, that
is to say a triple (D,F , λ) such that D is an object of C and F : D → [D → D],
λ : [D → D]→ D are morphisms such that F◦λ = id[D→D]. In the following we
will mainly be interested in Scott’s ccc of cpos and Scott continuous functions
(continuous semantics), but we will also draw conclusions for Berry’s ccc of DI–
domains and stable functions (stable semantics), and for Ehrhard’s ccc of DI-
domains with coherence and strongly stable functions between them (strongly
stable semantics). We recall that DI-domains are special Scott domains, and
that Scott domains are special cpos (see, e.g., [24]).

Let D be a cpo. The partial order of D will be denoted by �D. We let EnvD
be the set of environments ρ mapping the set V ar of variables of λ-calculus into
D. For every x ∈ V ar and d ∈ D we denote by ρ[x := d] the environment ρ′

which coincides with ρ, except on x, where ρ′ takes the value d. A reflexive cpo
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D generates a λ-model D = (D,F , λ) with the interpretation of a λ-term defined
as follows:

xDρ = ρ(x); (MN)Dρ = F(MD
ρ )(NDρ ); (λx.M)Dρ = λ(f),

where f is defined by f(d) = MD
ρ[x:=d] for all d ∈ D. We write MD for MD

ρ if M
is a closed λ-term. In the following F(d)(e) will also be written d · e or de.

Each λ-model D induces a λ-theory, denoted here by Eq(D), and called the
equational theory of D. Thus, M = N ∈ Eq(D) if, and only if, M and N have
the same interpretation in D. A reflexive cpo D induces also an order theory
Ord(D) = {M � N : MD

ρ �D NDρ for all environments ρ}.

2.2 Effective Domains

A triple D = (D,�D, d) is called an effective domain if (D,�D) is a Scott
domain and d is a numeration of the set K(D) of its compact elements such that
the relations “dm and dn have an upper bound” and “dn = dm � dk” are both
decidable (see, e.g., [24, Chapter 10]).

We recall that an element v of an effective domain D is said r.e. (decidable)
if the set {n : dn�Dv} is r.e. (decidable); we will write Dr.e. (Ddec) for the set
of r.e. (decidable) elements of D. The set K(D) of compact elements is included
within Ddec. Using standard techniques of recursion theory it is possible to get
in a uniform way a numeration ξ : �→ Dr.e. which is adequate in the sense that
the relation dk �D ξn is r.e. in (k, n) and the inclusion mapping ι : K(D)→ Dr.e.

is computable w.r.t. d, ξ.
The full subcategory ED of the category of Scott-domains with effective do-

mains as objects and continuous functions as morphisms is a ccc.
A continuous function f : D → D′ is an r.e. element in the effective domain of

Scott continuous functions (i.e., f ∈ [D → D′]r.e.) if, and only if, its restriction
f �: Dr.e. → D′r.e. is computable w.r.t. ξ, ξ′, i.e., there is a computable map
g : �→ � such that f(ξn) = ξ′g(n). In such a case we say that g tracks f .

2.3 Graph Models

The class of graph models belongs to Scott continuous semantics (see [5] for a
complete survey on this class of models). Historically, the first graph model was
Scott’s Pω, which is also known in the literature as “the graph model”. “Graph”
referred to the fact that the continuous functions were encoded in the model via
(a sufficient fragment of) their graph.

As a matter of notation, for every set G, G∗ is the set of all finite subsets of
G, while P(G) is the powerset of G.

Definition 1. A graph model G is a pair (G, cG), where G is an infinite set,
called the carrier set of G, and cG : G∗ ×G→ G is an injective total function.

Such pair G generates the reflexive cpo (P(G),⊆, λ,F), where λ and F are
defined as follows, for all f ∈ [P(G) → P(G)] and X,Y ⊆ G: λ(f) = {cG(a, α) :
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α ∈ f(a) and a ∈ G∗} and F(X)(Y ) = {α ∈ G : (∃a ⊆ Y ) cG(a, α) ∈ X}. For
more details we refer the reader to Berline [4].

The interpretation of a λ-term M into a λ-model has been defined in Sec-
tion 2.1. However, in this context we can make explicit the interpretation MG

ρ
of a λ-term M as follows:

(MN)G
ρ = {α : (∃a ⊆ NG

ρ ) cG(a, α) ∈ MG
ρ }; (λx.M)G

ρ = {cG(a,α) : α ∈ MG
ρ[x:=a]}.

We turn now to the interpretation of Ω in graph models (the details of the
proof are, for example, worked out in [6, Lemma 4]).

Lemma 1. α ∈ ΩG if, and only if, there is a ⊆ (λx.xx)G such that cG(a, α) ∈ a.

In the following we use the terminology “graph theory” as a shorthand for “theory
of a graph model”. It is well known that the equational graph theories are never
extensional and that there exists a continuum of them (see [16]). In [9,10] the
existence of a minimum equational graph theory was proved and it was also
shown that this minimum theory is different from λβ.

The completion method for building graph models from “partial pairs” was
initiated by Longo in [18] and developed on a wide scale by Kerth in [16,17].

Definition 2. A partial pair A is given by a set A and by a partial, injective
function cA : A∗ ×A→A.

A partial pair is finite if A is finite, and is a graph model if cA is total.
The interpretation of a λ-term in a partial pair A is defined in the obvious

way: (MN)Aρ = {α ∈ A : (∃a ⊆ NAρ ) [(a, α) ∈ dom(cA) ∧ cA(a, α) ∈ MA
ρ ]};

(λx.M)Aρ = { cA(a, α) ∈ A : (a, α) ∈ dom(cA) ∧ α ∈MA
ρ[x:=a] }.

Definition 3. Let A be a partial pair. The completion of A is the graph model
EA = (EA, cEA) defined as follows:

– EA =
⋃

n∈� En, where E0 = A and En+1 = En ∪ ((E∗n×En)− dom(cA)).
– Given a ∈ E∗A, α ∈ EA,

cEA(a, α) =
{
cA(a, α) if cA(a, α) is defined
(a, α) otherwise

A notion of rank can be naturally defined on the completion EA of a partial pair
A. The elements of A are the elements of rank 0, while an element α ∈ EA −A
has rank n if α ∈ En and α �∈ En−1.

Let A and B be two partial pairs. A morphism from A into B is a map
f : A → B such that (a, α) ∈ dom(cA) implies (fa, fα) ∈ dom(cB) and, in
such a case f(cA(a, α)) = cB(fa, fα). Isomorphisms and automorphisms can be
defined in the obvious way. Aut(A) denotes the group of automorphisms of the
partial pair A.

Lemma 2. Let G,G′ be graph models and f : G → G′ be a morphism. If M ∈ Λ
and α ∈MG

ρ , then fα ∈MG′

f◦ρ.
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2.4 Co-r.e. Sets of Lambda Terms

In this section we recall the main properties of recursion theory concerning λ-
calculus that will be applied in the following sections.

An r.e. (co-r.e.) set of λ-terms closed under β-conversion will be called a β-r.e.
(β-co-r.e.) set.

The following theorem is due to Scott (see [1, Thm. 6.6.2]).

Theorem 1. A set of λ-terms which is both β-r.e. and β-co-r.e. is trivial.

Definition 4. A family X = (Xi : i ∈ I) of sets has the FIP (finite intersection
property) if Xi1 ∩ · · · ∩Xin �= ∅ for all i1, . . . , in ∈ I.

Visser (see [1, Ch. 17] and [25, Thm. 2.5]) has shown that the topology on Λ
generated by the β-co-r.e. sets of λ-terms is hyperconnected (i.e., the intersection
of two non-empty open sets is non-empty). In other words:

Theorem 2. The family of all non-empty β-co-r.e. subsets of Λ has the FIP.

Corollary 1. Every non-empty β-co-r.e. set of λ-terms contains a non-empty
β-co-r.e. set of unsolvable λ-terms.

Proof. The set of all unsolvable λ-terms is β-co-r.e. The conclusion follows from
Theorem 2.

3 Effective Lambda Models

In this section we introduce the notion of an effective λ-model and we study the
main properties of these models. We show that the order theory of an effective
λ-model is not r.e. and that its equational theory is different from λβ, λβη. Ef-
fective λ-models are omni-present in the continuous, stable and strongly stable
semantics (see Section 4). In particular, all the λ-models which have been in-
troduced individually in the literature, to begin with Scott’s D∞, can easily be
proved effective.

The following natural definition is enough to force the interpretation function
of λ-terms to be computable from Λo into Dr.e.. However, other results of this
paper will need a more powerful notion. That is the reason why we only speak
of “weak effectivity” here.

Definition 5. A λ-model is called weakly effective if it is a reflexive object
(D,F , λ) in the category ED and, F ∈ [D → [D → D]] and λ ∈ [[D → D] → D]
are r.e. elements.

In the following a weakly effective λ-model (D,F , λ) will be denoted by D.
We fix bijective effective numerations νΛ : � → Λ of the set of λ-terms and

νvar : � → V ar of the set of variables of λ-calculus. In particular this gives to
the set EnvD of all environments a structure of effective domain. Λ⊥ = Λ∪{⊥}
is the usual flat domain of λ-terms. The element ⊥ is always interpreted as ⊥D

in a cpo (D,�D).
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Proposition 1. Let D be a weakly effective λ-model. Then the function f map-
ping (ρ,M) �→MD

ρ is an element of [EnvD × Λ⊥ → D]r.e..

Proof. (Sketch) By structural induction on M it is possible to show the exis-
tence of a partial computable map tracking f . The only difficult case is M ≡
λx.N . Since λ is r.e. it is sufficient to prove that the function g : e �→ NDρ[x:=e]

is also r.e. Once shown that h : (ρ, x, e) �→ ρ[x := e] is r.e., from the induction
hypothesis it follows that the function g′(ρ, x, e) = f(h(ρ, x, e), N) is r.e. Then
by applying the s-m-n theorem of recursion theory to the computable function
tracking g′ we obtain a computable function tracking g, which is then r.e.

Notation 1 We define for any e ∈ D and M ∈ Λo:
(i) e− ≡ {P ∈ Λo : PD �D e};
(ii) M− ≡ {P ∈ Λo : PD �D MD}.

Corollary 2. If e ∈ Ddec, then e− is a β-co-r.e. set of λ-terms.

Proof. Let ρ ∈ (EnvD)r.e. be an environment. By Proposition 1 there is a com-
putable map φ tracking the interpretation function M �→ MD

ρ of λ-terms from
Λ into Dr.e. with respect to the effective numeration νΛ of Λ and an adequate
numeration ξ of Dr.e.. From e ∈ Ddec it follows that the set X = {n : ξn �D e}
is co-r.e. This implies that the set φ−1(X), which is the set of the codes of the
elements of {M ∈ Λ : MD

ρ �D e}, is also co-r.e. We get the conclusion because
Λo is a decidable subset of Λ.

Definition 6. A weakly effective λ-model D is called effective if it satisfies the
following two further conditions:

(i) If d ∈ K(D) and ei ∈ Ddec, then de1 . . . en ∈ Ddec.
(ii) If f ∈ [D → D]r.e. and f(e) ∈ Ddec for all e ∈ K(D), then λ(f) ∈ Ddec.

An environment ρ is compact in the effective domain EnvD (i.e., ρ ∈ K(EnvD))
if ρ(x) ∈ K(D) for all variables x and {x : ρ(x) �= ⊥D} is finite.

Notation 2 We define: Λdec
D ≡ {M ∈ Λ : MD

ρ ∈ Ddec for all ρ ∈ K(EnvD)}.

Theorem 3. Suppose D is an effective λ-model. Then the set Λdec
D is closed

under the following rules:

1. x ∈ Λdec
D for every variable x.

2. M1, . . . ,Mk ∈ Λdec
D ⇒ yM1 . . .Mk ∈ Λdec

D .
3. M ∈ Λdec

D ⇒ λx.M ∈ Λdec
D .

In particular, Λdec
D contains all the β-normal forms.

Proof. Let ρ ∈ K(EnvD). We have three cases.
(1) xDρ = ρ(x) is compact, hence it is decidable.
(2) By definition (yM1 . . .Mk)Dρ = ρ(y)(M1)Dρ . . . (Mk)Dρ . Hence the result fol-
lows from Definition 6(i), ρ(y) ∈ K(D) and (Mi)Dρ ∈ Ddec.
(3) By definition we have that (λx.M)Dρ = λ(f), where f(e) = MD

ρ[x:=e] for all
e ∈ D. Note that ρ[x := e] is also compact for all e ∈ K(D). Hence the conclusion
follows from MD

ρ[x:=e] ∈ Ddec (e ∈ K(D)), Definition 6(ii) and f ∈ [D → D]r.e..
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Recall that Eq(D) and Ord(D) are respectively the equational theory and the
order theory of D.

Theorem 4. Let D be an effective λ-model, and let M1, . . .Mk ∈ Λdec
D (k ≥ 1)

be closed terms. Then we have:

(i) M−
1 ∩ · · · ∩M−

k is a β-co-r.e. set, which contains a non-empty β-co-r.e. set
of unsolvable terms.

(ii) If e ∈ Ddec and e− is non-empty and finite modulo Eq(D), then Eq(D) is
not r.e. (in particular, if ⊥−D �= ∅ then Eq(D) is not r.e.).

(iii) Ord(D) is not r.e.
(iv) Eq(D) �= λβ, λβη.

Proof. (i) By Theorem 3, Corollary 1, Corollary 2 and the FIP.
(ii) By Corollary 2 we have that e− is a β-co-r.e. set of closed λ-terms. The

conclusion follows because e− is non-empty and finite modulo Eq(D).
(iii) Let M ∈ Λdec

D be a closed term. If Ord(D) were r.e., then we could
enumerate the set M−. However, by (i) this set is non-empty and β-co-r.e. By
Theorem 1 it follows that M− = Λo. By the arbitrariness of M , it follows that
T− = F−. Since F ∈ T− and conversely we get F = T in D, contradiction.

(iv) Because of (iii), if Eq(D) is r.e. then Ord(D) strictly contains Eq(D).
Hence the conclusion follows from Selinger’s result stating that in any partially
ordered λ-model, whose theory is λβ, the interpretations of distinct closed terms
are incomparable [23, Corollary 4]. Similarly for λβη.

4 Can Effective λ-Models Have an r.e. Theory?

In this section we give a sufficient condition for a wide class of graph models
to be effective and show that no effective graph model generated freely by a
partial pair, which is finite modulo its group of automorphisms, can have an r.e.
equational theory. Finally, we show that no effective λ-model living in the stable
or strongly stable semantics can have an r.e. equational theory.

In Section 5 we will show that every equational/order graph theory is the
theory of a graph model G whose carrier set is the set � of natural numbers. In
the next theorem we characterize the effectivity of these models.

Theorem 5. Let G be a graph model such that, after encoding, G = � and cG
is a computable map. Then G is weakly effective. Moreover, G is effective under
the further hypothesis that cG has a decidable range.

Proof. It is easy to check, using the definitions given in Section 2.3, that F , λ are
r.e. in their respective domains and that condition (i) of Definition 6 is satisfied.
Then G is weakly effective. Moreover, Definition 6(ii) holds under the hypothesis
that the range of cG is decidable.

Completions of partial pairs have been extensively studied in the literature. They
are useful for solving equational and inequational constraints (see [4,5,10,11]). In
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[11] Bucciarelli and Salibra have recently proved that the theory of the comple-
tion of a partial pair which is not a graph model is semi-sensible. The following
theorem shows, in particular, that the theory of the completion of a finite partial
pair is not r.e.

Theorem 6. Let A be a partial pair such that A is finite or equal to � after
encoding, and cA is a computable map with a decidable domain. Then we have:

(i) The completion EA of A is weakly effective;
(ii) If the range of cA is decidable, then EA is effective;
(iii) If A is finite modulo its group of automorphisms (in particular, if A is

finite), then Eq(EA) is not r.e.

Proof. Since A is finite or equal to � we have that EA is also decidable (see
Definition 3). Moreover, the map cEA : E∗A × EA → EA is computable, because
it is an extension of a computable function cA with decidable domain, and it is
the identity on the decidable set (E∗A×EA)−dom(cA). Then (i)-(ii) follow from
Theorem 5.

Clearly A is a decidable subset of EA; then by Corollary 2 the set A− is
a β-co-r.e. set of λ-terms. We now show that this set is non-empty because
ΩEA ⊆ A. By Lemma 1 we have that α ∈ ΩEA implies that cEA(a, α) ∈ a
for some a ∈ E∗A. Immediate considerations on the rank show that this is only
possible if (a, α) ∈ dom(cA), which forces α ∈ A.

The orbit of α ∈ A modulo Aut(A) is defined by O(α) = {θ(α) : θ ∈ Aut(A)}.
We now show that, if the set of orbits of A has cardinality k for some k ∈ �,

then the cardinality of A− modulo Eq(EA) is less than or equal to 2k. Assume
p ∈ MEA ⊆ A. Then by Lemma 2 the orbit of p modulo Aut(A) is included
within MEA . By hypothesis the number of the orbits is k; hence, the number of
all possible values for MEA cannot overcome 2k.

In conclusion, A− is non-empty, β-co-r.e. and modulo Eq(EA) is finite. Then
(iii) follows from Theorem 4.

All the material developed in Section 3 could be adapted to the stable semantics
(Berry’s ccc of DI–domains and stable functions) and strongly stable semantics
(Ehrhard’s ccc of DI-domains with coherence and strongly stable functions).
We recall that the notion of an effectively given DI-domain has been introduced
by Gruchalski in [14], where it is shown that the category having effective DI-
domains as objects and stable functions as morphisms is a ccc. There are also
many effective models in the stable and strongly stable semantics. Indeed, the
stable semantics contains a class which is analogous to the class of graph models
(see [4]), namely Girard’s class of reflexive coherent spaces called G-models in
[4]. The results shown in Theorem 5 and in Theorem 6 for graph models could
also be adapted for G-models, even if it is more delicate to complete partial pairs
in this case (see [17]). It could also be developed for Ehrhard’s class of strongly
stable H-models (see [4]) even though working in the strongly stable semantics
certainly adds technical difficulties.

Theorem 7. Let D be an effective λ-model in the stable or strongly stable se-
mantics. Then Eq(D) is not r.e.
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Proof. Since ⊥D ∈ Ddec and the interpretation function is computable, then
⊥−D = {M ∈ Λo : MD = ⊥D} is co-r.e. If we show that this set is non-empty,
then Eq(D) cannot be r.e. Since D is effective, then by Theorem 4(i) F−∩T− is
a non-empty and co-r.e. set of λ-terms. Let N ∈ F−∩T− and let f, g, h : D → D
be three (strongly) stable functions such that f(x) = TD · x, g(x) = FD · x and
h(x) = ND · x for all x ∈ D. By monotonicity we have h ≤s f, g in the stable
ordering. Now, g is the constant function taking value ID, and f(⊥D) = TD ·⊥D.
The first assertion forces h to be a constant function, because in the stable
ordering all functions under a constant map are also constant, while the second
assertion together with the fact that h is pointwise smaller than f forces the
constant function h to satisfy h(x) = TD ·⊥D for all x. Then an easy computation
provides that (NPP )D = ⊥D for every closed term P . In conclusion, we have
that {M ∈ Λo : MD = ⊥D} �= ∅ and the theory of D is not r.e.

5 The Löwenheim-Skolem Theorem

In this section we show that for each graph model G there is a countable graph
model P with the same equational/order theory. This result is a kind of down-
wards Löwenheim-Skolem theorem for graph models which positively answers
Question 3 in [4, Section 6.3]. Note that we cannot apply directly the classical
Löwenheim-Skolem theorem since graph models are not first-order structures.

Let A,B be partial pairs. We say that A is a subpair of B, and we write A ≤ B,
if A ⊆ B and cB(a, α) = cA(a, α) for all (a, α) ∈ dom(cA).

As a matter of notation, if ρ, σ are environments and C is a set, we let σ = ρ∩C
mean σ(x) = ρ(x) ∩ C for every variable x, and ρ ⊆ σ mean ρ(x) ⊆ σ(x) for
every variable x.

The proof of the following lemma is straightforward. Recall that the definition
of interpretation with respect to a partial pair is defined in Section 2.3.

Lemma 3. Suppose A ≤ B, then MA
ρ ⊆ MB

σ for all environments ρ : V ar →
P(A) and σ : V ar→ P(B) such that ρ ⊆ σ.

Lemma 4. Let M be a λ-term, G be a graph model and α ∈ MG
ρ for some

environment ρ. Then there exists a finite subpair A of G such that α ∈MA
ρ∩A.

Proof. The proof is by induction on M .
If M ≡ x, then α ∈ ρ(x), so that we define A = {α} and dom(cA) = ∅.
If M ≡ λx.P , then α ≡ cG(b, β) for some b and β such that β ∈ PGρ[x:=b].

By the induction hypothesis there exists a finite subpair B of G such that β ∈
PBρ[x:=b]∩B. We define another finite subpair A of G as follows: A = B∪b∪{β, α};
dom(cA) = dom(cB) ∪ {(b, β)}. Then we have that B ≤ A and ρ[x := b] ∩ B ⊆
ρ[x := b] ∩ A. From β ∈ PBρ[x:=b]∩B and from Lemma 3 it follows that β ∈
PAρ[x:=b]∩A = PA(ρ∩A)[x:=b]. Then we have that α ≡ cA(b, β) ∈ (λx.P )Aρ∩A.

If M ≡ PQ, then there is a = {α1, . . . , αn} such that cG(a, α) ∈ PGρ and
a ⊆ QGρ . By the induction hypothesis there exist finite subpairs A0,A1, . . . ,An
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of G such that cG(a, α) ∈ PA0
ρ∩A0

and αk ∈ QAk

ρ∩Ak
for k = 1, . . . , n. We define

another finite subpair A of G as follows: A = ∪0≤k≤nAk∪a∪{α} and dom(cA) =
(∪0≤k≤ndom(cAk

)) ∪ {(a, α)}. The conclusion follows from Lemma 3.

Proposition 2. Let G be a graph model, and suppose α ∈ MG −NG for some
M,N ∈ Λo. Then there exists a finite A ≤ G such that: for all pairs C ≥ A, if
there is a morphism f : C → G such that f(α) = α, then α ∈MC −NC.

Proof. By Lemma 4 there is a finite pair A such that α ∈MA. By Lemma 3 we
have α ∈ MC . Now, if α ∈ NC then, by Lemma 2 α = f(α) ∈ NG , which is a
contradiction.

Corollary 3. Let G be a graph model, and suppose α ∈ MG − NG for some
M,N ∈ Λo. Then there exists a finite A ≤ G such that: for all pairs B satisfying
A ≤ B ≤ G we have α ∈MB −NB.

Let G be a graph model. A graph model P is called a sub graph model of G if
P ≤ G. It is easy to check that the class of sub graph models of G is closed under
(finite and infinite) intersection. If A ≤ G is a partial pair, then the sub graph
model generated by A is defined as the intersection of all graph models P such
that A ≤ P ≤ G.

Theorem 8. (Löwenheim-Skolem Theorem for graph models) For every graph
model G there exists a sub graph model P of G with a countable carrier set and
such that Ord(P) = Ord(G), and hence Eq(P) = Eq(G).

Proof. We will define an increasing sequence of countable subpairs An of G, and
take for P the sub graph model of G generated by A ≡ ∪An.

First we define A0. Let I be the countable set of inequations between closed
λ-terms which fail in G. Let e ∈ I. By Corollary 3 there exists a finite partial
pair Ae ≤ G such that e fails in every partial pair B satisfying Ae ≤ B ≤ G.
Then we define A0 = ∪e∈IAe ≤ G. Assume now that An has been defined.
We define An+1 as follows. For each inequation e ≡ M � N which holds in G
and fails in the sub graph model Pn ≤ G generated by An, we consider the set
Le = {α ∈ Pn : α ∈MPn−NPn}. Let α ∈ Le. Since Pn ≤ G and α ∈MPn , then
by Lemma 3 we have that α ∈MG . By G |= M � N we also obtain α ∈ NG . By
Lemma 4 there exists a partial pair Fα,e ≤ G such that α ∈ NFα,e. We define
An+1 as the union of the partial pair An and the partial pairs Fα,e for every
α ∈ Le.

Finally take for P the sub graph model of G generated by A ≡ ∪An. By
construction we have, for every inequation e which fails in G: Ae ≤ Pn ≤ P ≤ G.
Now, Ord(P) ⊆ Ord(G) follows from Corollary 3 and from the choice of Ae.

Let now M � N be an inequation which fails in P but not in G. Then there is
an α ∈MP −NP . By Corollary 3 there is a finite partial pair B ≤ P satisfying
the following condition: for every partial pair C such that B ≤ C ≤ P , we have
α ∈ MC −NC . Since B is finite, we have that B ≤ Pn for some n. This implies
that α ∈ MPn − NPn . By construction of Pn+1 we have that α ∈ NPn+1 ; this
implies α ∈ NP . Contradiction.
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6 The Minimum Order Graph Theory

In this section we show one of the main theorems of the paper: the minimum
order graph theory exists and it is the theory of an effective graph model. This
result has the interesting consequence that no order graph theory can be r.e.

Lemma 5. Suppose A ≤ G and let f : EA → G be defined by induction over
the rank of x ∈ EA as follows:

f(x) =
{
x if x ∈ A
cG(fa, fα) if x /∈ A and x ≡ (a, α).

Then f is a morphism from EA into G.

Lemma 6. Suppose α ∈ MG − NG for some M,N ∈ Λo. Then there exists a
finite A ≤ G such that: for all pairs B satisfying A ≤ B ≤ G, we have α ∈
MEB −NEB .

Proof. By Proposition 2 and Lemma 5.

Theorem 9. There exists an effective graph model whose order/equational the-
ory is the minimum order/equational graph theory.

Proof. It is not difficult to define an effective bijective numeration N of all finite
partial pairs whose carrier set is a subset of �. We denote by Nk the k-th finite
partial pair with Nk ⊆ �. We now make the carrier sets Nk (k ∈ �) disjoint.
Let pk be the k-th prime natural number. Then we define another finite partial
pair Pk as follows: Pk = {px+1

k : x ∈ Nk} and cPk
({pα1+1

k , . . . , pαn+1
k }, pα+1

k ) =

p
cNk

({α1,...,αn},α)+1

k for all ({α1, . . . , αn}, α) ∈ dom(cNk
). In this way we get

an effective bijective numeration of all finite partial pairs Pk. Finally, we take
P ≡ ∪k∈�Pk. It is an easy matter to prove that P is a decidable subset of �
and that, after encoding, cP = ∪k∈�cPk

is a computable map with a decidable
domain and range. Then by Theorem 6(ii) EP is an effective graph model. Notice
that EP is also isomorphic to the completion of the union ∪k∈�EPk

, where EPk

is the completion of the partial pair Pk.
We now prove that the order theory of EP is the minimum one. Let e ≡M �N

be an inequation which fails in some graph model G. By Lemma 6 e fails in the
completion of a finite partial pair A. Without loss of generality, we may assume
that the carrier set ofA is a subset of �, and then thatA is one of the partial pairs
Pk. For such a Pk, e fails in EPk

. Now, it was shown by Bucciarelli and Salibra in
[9, Proposition 2] that, if a graph model G is the completion of the disjoint union
of a family of graph models Gi, then QGi = QG∩Gi for any closed λ-termQ. Then
we can conclude the proof as follows: if the inequation e holds in EP , then by [9,
Proposition 2] we get a contradiction:MEPk = MEP∩EPk

⊆ NEP∩EPk
= NEPk .

Theorem 10. Let Tmin and Omin be, respectively, the minimum equational
graph theory and the minimum order graph theory. We have:
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(i) Omin is not r.e.
(ii) Tmin is an intersection of a countable set of non-r.e. equational graph theo-

ries.

Proof. (i) follows from Theorem 9 and from Theorem 4(iii), because Omin is the
theory of an effective λ-model.

(ii) By the proof of Theorem 9 we have that Tmin is an intersection of a
countable set of graph theories, which are theories of completions of finite partial
pairs. By Theorem 6(iii) these theories are not r.e.

Corollary 4. For all graph models G, Ord(G) is not r.e.

Proof. If Ord(G) is r.e. and M is closed and β-normal, then M− = {N ∈ Λo :
NG ⊆ MG} is a β-r.e. set, which contains the β-co-r.e. set {N ∈ Λo : Omin 4
N � M}. By the FIP M− = Λo. By the arbitrariness of M , it follows that
T− = F−. Since F ∈ T− and conversely we get F = T in G, contradiction.

Corollary 5. Let G be the class of all graph models. For any finite sequence
M1, . . . ,Mn of closed β-normal forms, there exists a non-empty β-closed co-r.e.
set U of closed unsolvable terms such that

(∀G ∈ G)(∀U ∈ U) UG ⊆MG
1 ∩ · · · ∩MG

n .

Proof. By Theorem 4(i) applied to any effective graph model with minimum
theory, we have (∀U ∈ U) Omin 4 U � M1 ∧ · · · ∧ Omin 4 U � Mn. The
conclusion follows.

The authors do not know any example of unsolvable satisfying the above condition.
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Abstract. Normal form bisimulation is a powerful theory of program
equivalence, originally developed to characterize Lévy-Longo tree equiv-
alence and Boehm tree equivalence. It has been adapted to a range of un-
typed, higher-order calculi, but types have presented a difficulty. In this
paper, we present an account of normal form bisimulation for types, in-
cluding recursive types. We develop our theory for a continuation-passing
style calculus, Jump-With-Argument (JWA), where normal form bisimi-
larity takes a very simple form. We give a novel congruence proof, based
on insights from game semantics. A notable feature is the seamless treat-
ment of eta-expansion. We demonstrate the normal form bisimulation
proof principle by using it to establish a syntactic minimal invariance
result and the uniqueness of the fixed point operator at each type.

1 Introduction

1.1 Background

Normal form bisimulation—also known as open (applicative) bisimulation—
originated as a coinductive way of describing Lévy-Longo tree equivalence for
the lazy λ-calculus [1], and has subsequently been extended to call-by-name,
call-by-value, nondeterminism, aspects, storage, and control [2–7].

Suppose we have two functions V, V ′ : A→ B. When should they be deemed
equivalent? Here are two answers:

– when VW and V ′W behave the same for every closed W : A
– when V y and V ′y behave the same for fresh y : A.

The first answer leads to the theory of applicative bisimulation [8, 9], the second
to that of normal form bisimulation. The first answer requires us to run closed
terms only, the second to run non-closed terms.

To illustrate the difference1, let G(p, q) be the following function

λx.if (x p) then x q else not(x q)

and let V be G(true, false) and V ′ be G(false, true), both of type (bool→
bool) → bool. Assuming the language is free of effects besides divergence,
1 This example works in both call-by-value and call-by-name.

J. Duparc and T.A. Henzinger (Eds.): CSL 2007, LNCS 4646, pp. 283–297, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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they cannot be distinguished by applying to closed arguments. But let us ap-
ply them to a fresh identifier y and evaluate the resulting open terms, sym-
bolically. Then the first begins by applying y to true with the continuation
if − then x false else not(x true). The second applies y to false with the
continuation if − then x true else not(x false).

Normal form bisimilarity requires that two (nondivergent) programs end up
either applying the same identifier to equivalent arguments with equivalent con-
tinuations, or returning equivalent values. In our example, the arguments are
different (true and false respectively) and so are the continuations. Therefore
V and V ′ are not normal form bisimilar.

This is a situation where normal form bisimulation gives an equivalence that
is finer than contextual equivalence, in contrast with applicative bisimulation.
However, the addition of state and suitable control effects makes normal form
bisimulation coincide with contextual equivalence [2, 7].

Compared to applicative bisimulation, the absence of the universal quantifi-
cation over closed arguments to functions in the definition of normal form bisim-
ulation makes certain program equivalence proofs possible that have not been
accomplished using applicative bisimulation. An example is our proof of syntac-
tic minimal invariance in Section 4. See also the examples in [2, 4, 7].

But all the results on normal form bisimulation are in untyped settings only.
The adaptation to typed calculi has presented difficulties. For example, in call-
by-value, if A is an empty type, such as μX.(bool×X), then all functions of type
A → B should be equivalent—without appealing to the absence of any closed
arguments, as we would for applicative bisimulation.

Another problem that has slowed progress on normal form bisimulation is that
the congruence proofs given in the literature (especially [7]) are complicated: they
establish congruence for η-long terms, and separately prove the validity of the
η-law.

1.2 Contributions

This paper makes three important contributions to the development of normal
form bisimulation. First, we extend normal form bisimulation to types, inclusive
product, sum, and higher-order types, empty types and recursive types. Second,
we give a new, lucid congruence proof that highlights connections with game
semantics. Third, we present a seamless treatment of η-expansion—we do not
need to mention it in our definitions or proofs.

To illustrate the power of our theory, we use it to prove

– uniqueness of the fixpoint operator at each type
– syntactic minimal invariance.

It is not known how to prove the latter using applicative bisimulation, so this
shows a definite advantage of normal form bisimulation as an operational rea-
soning technique.

Our work is part of a larger programme to explore the scope of normal form
bisimulation, both (1) as a syntactic proof principle for reasoning about program
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equivalence and (2) as an operational account of pointer game semantics. Space
constraints prevent us from giving a formal account of the second point but we
mention some connections in our discussion of related work below and in the
technical exposition of our theory we give some hints to the benefit of readers
familiar with game semantics.

For simplicity, we develop our theory in a continuation-passing style calculus,
called Jump-With-Argument (JWA), where it takes a very simple form. It is then
trivial to adapt it to a direct-style calculus (with or without control operators),
by applying the appropriate CPS transform. The pointer game semantics for
JWA, and the relationship with direct-style programs, is given in [10, 11]; but
here we do not assume familiarity with pointer games.

In this paper, we look at JWA without storage. In game terminology, the
strategies we are studying are innocent. It is clear from the game literature that,
when we extend JWA with storage, normal form bisimilarity will coincide with
contextual equivalence, but we leave such an analysis to future work.

1.3 Related Work

In Section 1.1 we descibed the origins of and previous work on normal form
bisimulation.

We refer the reader to [7] for a survey of other syntactic theories for reason-
ing about program equivalence: equational theories, context lemmas, applicative
bisimulation, environmental bisimulation, and syntactic logical relations. Given
that our calculus, JWA, is a CPS calculus, note that applicative bisimulation
has been studied recently in a CPS setting by Merro and Biasi [12].

On the other hand, let us discuss some relevant literature on game semantics,
because its relationship with normal form bisimulation has not been surveyed
before.

Pointer game semantics is a form of denotational model in which a term
denotes a strategy for a game with pointers between moves. It was introduced
in [13], and has been used to model typed and untyped languages, call-by-name,
call-by-value, recursion, storage, control operators and much more [14–19]. In
general, denotational equality is finer than contextual equivalence, but in the
presence of storage and control, they coincide [20]. The simplest models, for
terms without local state, use innocent strategies, which correspond to Böhm
trees [21], or variants thereof such as PCF trees, Nakajima trees and Lévy-Longo
trees.

Pointer games are analyzed operationally in [22, 10], relating a term’s deno-
tation to its behaviour in an abstract machine. But these abstract machines are
complex to describe and reason about. Moreover, the only terms studied in these
accounts are η-long: thus [22] states “in the sequel, we will consider terms up to
η-equality”. This is a limitation, especially in the presence of recursive types at
which terms cannot be fully η-expanded.

In [23], Sect. 1–2, a quite different operational account of a game model is
given, without abstract machines or η-expansion—albeit in the limited setting
of a first-order language. It is defined in terms of an operational semantics for
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open terms (unlike traditional operational semantics, defined on closed terms
only).

Clearly there are many similarities between normal form bisimulation and
pointer game semantics: the connection with Böhm trees and Lévy-Longo trees,
the completeness in the presence of storage and control, the use of operational
semantics for open terms. Readers familiar with game semantics will immediately
see that V and V ′ in the example in Section 1.1 denote different strategies.

An immediate precursor for our definition of typed normal form bisimulation
is the labelled transition system and pointer game semantics in [24]. This work
also describes an extension to mutable references, which is something we plan
to explore in future work. Recently and independently, Laird [25] developed a
very similar labelled transition system semantics for a typed functional language
with mutable references.

The representation of strategies as π-calculus processes by Hyland, Ong, Fiore,
and Honda [26, 27] leads to a bisimulation approach to equality of strategies that
is analogous to normal form bisimulation. However, because of the detour via
π-calculus encodings, the resulting π-calculus-based bisimulation proof princi-
ples for program equivalence are not as direct as normal form bisimulation, for
proving specific program equivalences between terms.

2 Jump-With-Argument

2.1 Syntax and Semantics

Jump-With-Argument is a continuation-passing style calculus, extending the
CPS calculus in [28]. Its types are given (including recursive types) by

A ::= ¬A |
∑

i∈IAi | 1 | A×A | X | μX.A

where I is any finite set. The type ¬A is the type of functions that take an
argument of type A and do not return. JWA has two judgements: values written
Γ 4v V and nonreturning commands written Γ 4n M . The syntax2 is shown in
Fig. 1. We write pm as an abbreviation for “pattern-match”, and write let to
make a binding. We omit typing rules, etc., for 1, since 1 is analogous to ×.

From the cpo viewpoint, a JWA type denotes an (unpointed) cpo. In partic-
ular, ¬A denotes [[A]] → R, where R is a chosen pointed cpo.
Operational semantics. To evaluate a command Γ 4n M , simply apply the
transitions (β-reductions) in Fig. 2 until a terminal command is reached. Every
command M is either a redex or terminal; by determinism, either M �∗ T
for unique terminal T , or else M �∞. This operational semantics is called the
C-machine.

We define a fixed point combinator Y as follows

Y
def= Φ(fold λ〈x, 〈u, f〉〉.f〈u, λv.Φ(x)〈v, f〉〉)

Φ(x) def= λz.pm x as fold y.y〈fold y, z〉
2 In earlier works e.g. [10], γx.M was written for λx.M and W ↗ V for V W .



Typed Normal Form Bisimulation 287

(x : A) ∈ Γ
Γ �v

x : A

Γ �v V : A Γ, x : A �n M

Γ �n
let V be x. M

ı̂ ∈ I Γ �v V : Aı̂

Γ �v 〈̂ı, V 〉 : i∈IAi

Γ �v V : i∈IAi

Γ, xi : Ai �n Mi (∀i ∈ I)

Γ �n
pm V as {〈i, xi〉.Mi}i∈I

Γ �v V : A Γ �v V ′ : A′

Γ �v 〈V, V ′〉 : A×A′

Γ �v V : A×A′

Γ, x : A, y : A′ �n M

Γ �n
pm V as 〈x, y〉.M

Γ, x : A �n M

Γ �v λx.M : ¬A

Γ �v V : ¬A Γ �v W : A

Γ �n V W

Γ �v V : A[μX.A/X]

Γ �v
fold V : μX.A

Γ �v V : μX.A
Γ, x : A[μX.A/X] �n M

Γ �n
pm V as fold x. M

Fig. 1. Syntax of JWA, with type recursion

Transitions Terminal Commands

pm 〈̂ı, V 〉 as {〈i, x〉.Mi}i∈I � Mı̂[V/x] pm z as {〈i, x〉. Mi}i∈I

pm 〈V, V ′〉 as 〈x, y〉.M � M [V/x, V ′/y] pm z as 〈x, y〉. M
(λx.M)V � M [V/x] zV
pm fold V as fold x. M � M [V/x] pm z as fold x. M
let V be x.M � M [V/x]

Fig. 2. C-machine

where notation λ〈x, 〈u, f〉〉.M is short for λt.pm t as 〈x, p〉.pm p as 〈u, f〉.M .
Using type recursion, we assign type ¬(A× ¬(A×¬A)) to Y , for every type

A, by giving the argument to Φ type μX.¬(X × (A× ¬A)).
Let V = λ〈x, 〈u, f〉〉.f〈u, λv.Φ(x)〈v, f〉〉, then we calculate:

Y 〈u, f〉 � pm fold V as fold y.y〈fold y, 〈u, f〉〉
� V 〈fold V, 〈u, f〉〉
�3 f〈u, λv.Φ(fold V )〈v, f〉〉
= f〈u, λv.Y 〈v, f〉〉
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That is, Y is a solution to the fixed point equation

4v Y =β λ〈u, f〉.f〈u, λv.Y 〈v, f〉〉 : ¬(A × ¬(A× ¬A))

2.2 Ultimate Pattern Matching

To describe normal form bisimulation, we need to decompose a value into an
ultimate pattern (the tags) and a value sequence (the rest). Take, for example,
the value

〈i0, 〈〈〈λw.M, x〉, y〉, 〈i1, x〉〉〉
Provided x and y have ¬ type, we can decompose this as the ultimate pattern

〈i0, 〈〈〈−¬A,−¬B〉,−¬C〉, 〈i1,−¬B〉〉〉

(for appropriate types A, B, C), where the holes are filled with the value sequence

λw.M, x, y, x

As this example shows, an ultimate pattern is built up out of tags and holes;
the holes are to be filled by values of ¬ type. For each type A, we define the set
ultv(A) of ultimate patterns of type A, by mutual induction:

– −¬A ∈ ultv(¬A)
– if p ∈ ultv(A) and p′ ∈ ultv(A′) then 〈p, p′〉 ∈ ultv(A×A′)
– if ı̂ ∈ I and p ∈ ultv(Aı̂) then 〈̂ı, p〉 ∈ ultv(

∑
i∈IAi)

– if p ∈ ultv(A[μX.A/X]) then fold p ∈ ultv(μX.A).

For p ∈ ultv(A), we write H(p) for the list of types (all ¬ types) of holes of p.
Given a value sequence Γ 4v −→V : H(p), we obtain a value Γ 4v p(

−→
V ) : A by

filling the holes of p with
−→
V . We can now state our decomposition theorem.

Proposition 1. Let
−−−−→
x : ¬A 4 V : B be a value. Then there is a unique ultimate

pattern p ∈ ultv(B) and value sequence
−−−−→
x : ¬A 4v −→W : H(p) such that V = p(

−→
W ).

Proof. Induction on V .

3 Normal Form Bisimulation

In this section, we define normal form bisimulation. Some readers may like to
see this as a way of characterizing when two terms have the same Böhm tree3, or
3 The Böhm trees for JWA are given by the following classes of commands and values,

defined coinductively:

M ::= diverge | xip(
−→
V )

V ::= λ{p(−→y ).Mp}p∈ultv(A)

These trees are not actually (infinite) JWA terms, because ultimate pattern matching
is not part of the syntax of JWA.
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(equivalently) denote the same innocent strategy, but neither of these concepts
will be used in the paper.
Notation. For any n ∈ N, we write $n for the set {0, . . . , n−1}. For a sequence
−→a , we write |−→a | for its length.

Any terminal command
−−−−→
x : ¬A 4n M must be of the form xip(

−→
V ). The core

of our definition is that we regard (i, p) as an observable action, so we write

M �ip −−−−→
x : ¬A 4v −→V : H(p)

(This action is called a “Proponent move”. Interchangeably, we write it as xip
when it is more convenient to name the identifier than its index.) Thus, for any
command

−−→
x : A 4 N , we have either

N �∗ �ip −→
V

for unique i, p,
−→
V , or else N �∞.

Suppose we are given a value sequence
−−−−→
x : ¬A 4v −−−−→V : ¬B. For each j ∈ $|−→¬B|

and q ∈ ultv(Bj), we define (
−−−−→
V : ¬B) : jq to be the command

−−−−→
x : ¬A,−→y : H(q) 4n Vjq(−→y )

where −→y are fresh. (We call this operation an “Opponent move”.)

Definition 1. Let R be a set of pairs of commands
−−−−→
x : ¬A 4n M,M ′.

1. Let
−−−−→
x : ¬A 4v −→V ,

−→
V ′ :

−→¬B be two value sequences. We say
−→
V Rv −→V ′ when for

any j ∈ $|−→¬B| and q ∈ ultv(Bj), we have (
−→
V : jq)R (

−→
V ′ : jq).

2. R is a normal form bisimulation when
−−−−→
x : ¬A 4n N RN ′ implies either

– N �∞ and N ′ �∞, or
– N �∗ �ip −→

V and N ′ �∗ �ip
−→
V ′ and

−→
V Rv−→V ′.

We write � for normal form bisimilarity, i.e. the greatest normal form
bisimulation.

Proposition 2. (preservation under renaming)

For any renaming −−−−→
x : ¬A

θ �� −−−−→y : ¬A , we have
−−−−→
x : ¬A 4 M � M ′ implies

Mθ � M ′θ, and
−−−−→
x : ¬A 4v −→V �v −→V ′ : −→¬C implies

−→
V θ �v −−→V ′θ.

Proof. Let R be the set of pairs (Mθ,M ′θ) where
−−−−→
x : ¬A 4 M � M ′ and

−−−−→
x : ¬A

θ �� −−−−→y : ¬A is a renaming. Then, for such θ, (
−→
V θ,

−−→
V ′θ) ∈ Rv whenever

−−−−→
x : ¬A 4v −→V �v −→V ′ : −→¬C. It is easy to show R is a normal form bisimulation.

Proposition 3. (preservation under substitution)
Suppose

−−−−→
y : ¬B 4v −→W �v −→W ′ :

−→¬A. Then
−−−−→
x : ¬A 4n M � M ′ implies M [

−−→
W/x] �

M ′[
−−−→
W ′/x] and

−−−−→
x : ¬A 4v −→V �v −→V ′ : −→¬C implies

−−−−−→
V [
−−→
W/x] �v

−−−−−−→
V ′[
−−−→
W ′/x].
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This is proved in the next section.
Next we have to extend normal form bisimilarity to arbitrary commands and

values (conceptually following the categorical construction in [14]).

Definition 2. – Given commands
−−→
x : A 4n M,M ′, we say M � M ′ when for

each
−−−−−−−→
p ∈ ultv(A) we have

−−−−−−→−→y : H(p) 4n M [
−−−−−→
p(−→y )/x] � M ′[

−−−−−→
p(−→y )/x]

– Given values
−−→
x : A 4v V, V ′ : B, we say V � V ′ when for each

−−−−−−−→
p ∈ ultv(A),

decomposing V [
−−−−−→
p(−→y )/x] as q(

−→
W ) and V ′[

−−−−−→
p(−→y )/x] as q′(

−→
W ′), we have q = q′

and −−−−−−→−→y : H(p) 4v −→W �v −→W ′ : H(q)

It is easy to see that normal form bisimilarity for JWA is an equivalence relation
and validates all the β and η laws [10].

Proposition 4. � is a substitutive congruence.

Proof. Substitutivity follows from Prop. 3. For each term constructor, we prove
it preserves � using substitutivity, as in [7].

As a corollary, we get that normal form bisimilar terms are contextually equiva-
lent, for any reasonable definition of contextual equivalence. The opposite is not
true. For example, this equation holds for contextual equivalence:

x : ¬¬1, y : ¬1 4n x y ∼=ctx x (λz.x y) (1)

The intuition is that either x ignores its argument, and then the equivalence
holds trivially, or else x invokes its argument at some point, and from that
point onward x (λz.x y) emulates x y from the beginning.4 But x y and x (λz.x y)

are not normal form bisimilar: x y
x(−¬1)� y and x (λz.x y)

x(−¬1)� λz.x y but y
and λz.x y are clearly not bisimilar since, given an argument z, the labelled

transitions y z
y(−1)� z and (λz.x y) z

x(−¬1)� y mismatch.

3.1 Alternating Substitution

To prove Prop. 3, it turns out to be easier to show preservation by a more general
operation on terms, alternating substitution, which is applied to an alternating table
of terms. They are defined in Fig. 3. A table provides the following information:

– the context of each term is the identifiers to the left of it
– the type of each identifier, and of each term, is given in the top row.

4 We omit both the definition of contextual equivalence and the proof of (1) but the
reasoning is analogous to Thielecke’s proof of Filinski’s equation M ∼=ctx M ; M in a
direct-style calculus with exception and continuations but without state [29]. Indeed,
(1) is essentially derived from Filinski and Thielecke’s example by a CPS transform.
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For example, the table

−→¬Aout
−→¬Bout

−→¬A0
−→¬B0

−→¬A1
−→¬B1 4n

−→x out
−→
V 0

−→x 0
−→
V 1

−→x 1 M
−→z out

−→z 0
−→
W 0

−→z 1
−→
W 1

consists of the following value-sequences and commands:

−→x out :
−→¬Aout 4v −→V 0 :

−→¬A0

−→z out :
−→¬Bout,

−→z 0 :
−→¬A0 4v −→W 0 :

−→¬B0

−→x out :
−→¬Aout,

−→x 0 :
−→¬B0 4v −→V 1 :

−→¬A1

−→z out :
−→¬Bout,

−→z 0 :
−→¬A0,

−→z 1 :
−→¬A1 4v −→W 1 :

−→¬B1

−→x out :
−→¬Aout,

−→x 0 :
−→¬B0,

−→x 1 :
−→¬B1 4n M

We define transitions between tables in Fig. 4. The key result is the following:

A command table T is a collection of terms, either

of the form

−→¬Aout
−→¬Bout

−→¬A0
−→¬B0 · · ·

−→¬An−1
−→¬Bn−1 �n

−→x out
−→
V 0

−→x 0 · · ·
−→
V n−1

−→x n−1 M
−→z out

−→z 0
−→
W 0 · · · −→z n−1

−→
W n−1

(2)

or of the form

−→¬Aout
−→¬Bout

−→¬A0
−→¬B0 · · ·

−→¬An−1
−→¬Bn−1

−→¬An �n

−→x out
−→
V 0

−→x 0 · · ·
−→
V n−1

−→x n−1
−→
V n

−→z out
−→z 0

−→
W 0 · · · −→z n−1

−→
W n−1

−→z n M

(3)

We define the command −→x out :
−→¬Aout,

−→z out :
−→¬Bout �n subst T to be

M [−→x n−1\
−→
W n−1][

−→z n−1\
−→
V n−1] · · · [−→x 0\

−→
W 0][

−→z 0\
−→
V 0] in case (2)

M [−→z n\
−→
V n][−→x n−1\

−→
W n−1][

−→z n−1\
−→
V n−1] · · · [−→x 0\

−→
W 0][

−→z 0\
−→
V 0] in case (3)

A value-sequence table R is a collection of terms, either

of the form

−→¬Aout
−→¬Bout

−→¬A0
−→¬B0 · · ·

−→¬An−1
−→¬Bn−1 �v −→¬C

−→x out
−→
V 0

−→x 0 · · ·
−→
V n−1

−→x n−1
−→
U

−→z out
−→z 0

−→
W 0 · · · −→z n−1

−→
W n−1

(4)

or of the form

−→¬Aout
−→¬Bout

−→¬A0
−→¬B0 · · ·

−→¬An−1
−→¬Bn−1

−→¬An �v −→¬C
−→x out

−→
V 0

−→x 0 · · ·
−→
V n−1

−→x n−1
−→
V n

−→z out
−→z 0

−→
W 0 · · · −→z n−1

−→
W n−1

−→z n
−→
U

(5)

We define the value-sequence −→x out :
−→¬Aout,

−→z out :
−→¬Bout �v subst R :

−→¬C just as
for command tables.

Fig. 3. Alternating tables and substitution
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Proposition 5. 1. There is no infinite chain of consecutive switching transi-
tions T0 �switch T1 �switch T2 �switch · · ·

2. If T0 �inner T1, then subst T0 � subst T1.
3. If T0 �switch T1, then subst T0 = subst T1.
4. If T0 �ip T1 then subst T0 �ip subst T1.
5. Let R be a value-sequence table of type

−→¬C (in the rightmost column), and
let j ∈ $|−→¬C| and q ∈ ultv(Cj). Then subst (R : jq) = (subst R) : jq.

Proof. (1) In a command-table T that is inner-terminal (i.e. the command is
terminal), the command will be of the form xp(

−→
U ), where x is declared in some

column of T . We call this column col(T ). If T0 �switch T1, and T1 is itself inner-
terminal, then col(T1) must be to the left of col(T0). To see this, suppose that T0

is of the form (2). Then the command of T0 is xm,ip(
−→
V n), and the command of

T1 is Wm,ip(−→z n). Since T1 is inner-terminal,Wm,i must be an identifier, declared
in the context of Wm,i i.e. somewhere to the left of column col(T0). Similarly if
T0 is of the form (3).

Hence, if there are N columns to the left of col(T0) (counting the two “outer”
columns as one) then there are at most N switching transitions from T0.

(2)–(5) are trivial.

We say that two tables are componentwise bisimilar when they have the same
types and identifiers, the corresponding value sequences are related by �v, and
the commands (if they are command tables) are related by �.

Proposition 6. If T, T ′ are command tables that are componentwise bisimilar,
then subst T � subst T ′. If R,R′ are value-sequence tables that are component-
wise bisimilar, then subst R �v subst R′.

Proof. Let R be the set of pairs (subst T, subst T ′), where T, T ′ are command
tables that are componentwise bisimilar. Then (subst R, subst R′) ∈ Rv when-
ever R,R′ are value-sequence tables that are componentwise bisimilar. We wish
to show that R is a normal form bisimulation.

We show, by induction on n, that if subst T �n �ip U , then T (�inner

∪ �switch)∗ �ip R where subst R = U . For this, Prop. 5 gives us T �∗
switch

T1 ��switch with subst T = subst T1 and the rest is straightforward.
We next show, by induction on n, that if (subst T, subst T ′) ∈ R and

T (�∗
inner�switch)n �∗

inner �ip R then T ′(�∗
inner�switch)n �∗

inner �ip R′ for
some R′ componentwise bisimilar to R; and hence subst T ′ �∗ �ip subst R′.
The inductive step uses Prop. 2.

These two facts give us the required property of R.
The first part of Prop. 3 is now given by

M [
−−→
W/x] = subst

ε
−→¬B −→¬A 4n

−→x M
−→y −→

W

� subst
ε
−→¬B −→¬A 4n

−→x M ′

−→y
−→
W ′

= M ′[
−−−→
W ′/x]

and the second part is similar.
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Let T be of the form (2). There are 3 possibilities for M :

– If M � M ′, we have an inner transition

T �inner

−→¬Aout
−→¬Bout

−→¬A0
−→¬B0 · · ·

−→¬An−1
−→¬Bn−1 �n

−→x out
−→
V 0

−→x 0 · · ·
−→
V n−1

−→x n−1 M ′

−→z out
−→z 0

−→
W 0 · · · −→z n−1

−→
W n−1

– If M = xm,ip(
−→
U ), we have a switching transition

T �switch

−→¬Aout
−→¬Bout

−→¬A0
−→¬B0 · · ·

−→¬An−1
−→¬Bn−1 H(p) �n

−→x out
−→
V 0

−→x 0 · · ·
−→
V n−1

−→x n−1
−→
U

−→z out
−→z 0

−→
W 0 · · · −→z n−1

−→
W n−1

−→z n Wm,ip(−→z n)

– If M = xout,ip(
−→
U ), we have an outer Proponent move

T �ip
−→¬Aout

−→¬Bout
−→¬A0

−→¬B0 · · ·
−→¬An−1

−→¬Bn−1 �v H(p)
−→x out

−→
V 0

−→x 0 · · ·
−→
V n−1

−→x n−1
−→
U

−→z out
−→z 0

−→
W 0 · · · −→z n−1

−→
W n−1

The case where T is of the form (3) is similar, with T �ip replaced by T �(|
−→x |+ i)p

.

Let R be of the form (4). For j ∈ $|−→¬C| and q ∈ ultv(Ej), we define

R : jq
def
=

−→¬Aout, H(q)
−→¬Bout

−→¬A0
−→¬B0 · · ·

−→¬An−1
−→¬Bn−1 �n

−→x out,
−→y −→

V 0
−→x 0 · · ·

−→
V n−1

−→x n−1 Ujq(
−→y )

−→z out
−→z 0

−→
W 0 · · · −→z n−1

−→
W n−1

where −→y is fresh (this is called an outer Opponent move). The case where R is of
the form (5) is similar.

Fig. 4. Transitions between alternating tables

4 Examples

4.1 Fixed Point Combinators Are Unique

To illustrate the use of normal form bisimulation, we now prove that at each
type, there is a unique fixpoint combinator up to normal form bisimilarity. The
proof is similar to the classical result that all λ-calculus fixed point combinators
have the same Böhm tree [30].

Theorem 1. All solutions 4v U : ¬(A×¬(A×¬A)) to the fixed point equation

4v U �v λ〈u, f〉.f〈u, λv.U〈v, f〉〉 : ¬(A× ¬(A× ¬A))

are normal form bisimilar.
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Proof. Suppose U1 and U2 are both solutions. We show they are bisimilar

4v U1 �v U2 : ¬(A× ¬(A× ¬A)) (6)

by exhibiting a bisimulation relation that relates

−→y : H(q) 4n U1q(−→y ), U2q(−→y ) (7)

for all q ∈ ultv(A× ¬(A× ¬A)), that is, all q = 〈p,−¬(A×¬A)〉 where p ∈ ultv(A).
We define R to be the relation between all commands Γ 4n M1,M2 where

Γ 4n Mi � Ui〈p(−→x ), f〉, for i ∈ {1, 2},

and p ∈ ultv(A) and Γ = −→x : H(p), f : ¬(A × ¬A),
−−−−→
y : ¬B. Then R ∪ � is a

normal form bisimulation. To see this, let p′ = 〈p,−¬A〉 and observe that since
Γ 4n Mi � Ui〈p(−→y ), f〉 and Ui is a fixed point, there exist

−→
Wi, Vi such that

Mi �∗ f〈p(−→Wi), Vi〉 = fp′(
−→
Wi, Vi) �fp

′ −→
Wi, Vi

Γ 4v −→Wi �v −→x : H(p)
Γ 4v Vi �v λv.Ui〈v, f〉 : ¬A

for i ∈ {1, 2}. Hence Γ 4v −→W1 �v −→W2 : H(p) and Γ 4v V1 Rv V2 : ¬A. We
conclude that R∪� is a bisimulation and thus (6), since R relates (7).

4.2 Syntactic Minimal Invariance

Finally, we prove a syntactic version of the domain-theoretic minimal invariance
property [31] for JWA. Our proof is greatly facilitated by the normal form bisim-
ulation proof principle and is simpler than other syntactic minimal invariance
proofs in the literature for typed and untyped calculi [32, 33].

For every closed type A, we define the type A† def= A× ¬A and we will define
a closed term 4v h(A) : ¬A†. More generally, to deal with recursive types, we
define in Figure 4.2, by structural induction on A, open terms:

Γ 4v h(Γ 4 A) : ¬A[Γ]†,

where

– Γ =
−−−−−→
X : ¬B† (we take the liberty to use −→X as term identifiers in Γ and

h(Γ 4 A) and as type identifiers in A),
– the types in

−→
B are closed,

– A is an open type:
−→
X 4 A type, and

– [Γ] denotes the type substitution [
−−→
B/X].

When A is closed, h(A) def= h(4 A).
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h(Γ � ¬A0) = λ〈x, k〉.kλx0.h(Γ � A0)〈x0, x〉
h(Γ �

�
i∈IAi) = λ〈x, k〉.pm x as {〈i, xi〉.h(Γ � Ai)〈xi, λyi.k〈i, yi〉〉}i∈I

h(Γ � 1) = λ〈x, k〉.k x
h(Γ � A1 × A2) = λ〈x, k〉.pm x as 〈x1, x2〉.

h(Γ � A1)〈x1, λy1.h(Γ � A2)〈x2, λy2.k〈y1, y2〉〉〉
h(Γ � X) = X

h(Γ � μX.A) = λu.Y 〈u, λ〈v, X〉.
pm v as 〈x, k〉.
pm x as fold x0.

h(Γ, X : ¬(μX.A)† � A)〈x0, λy0.k(fold y0)〉〉

Fig. 5. Definition of h(Γ � A)

Proposition 7. h(A[Γ]) = h(Γ 4 A)[
−−−−→
h(B)/X], if Γ =

−−−−−→
X : ¬B†.

Proof. By structural induction on A.

In particular, if μX.A is closed,

h(A[μX.A/X]) = h(X : ¬(μX.A)† 4 A)[h(μX.A)/X] (8)

Lemma 1. Let g(V : ¬A) = λy.h(A)〈y, V 〉 and, by extension, let g(
−−−−→
V : ¬A) be

the value sequence where g(
−−−−→
V : ¬A)i = g(Vi : ¬Ai). Then, for all closed A and

p ∈ ultv(A), h(A)〈p(−→V ), k〉�∗ k(p(g(
−−−−−−→
V : H(p)))).

Proof. By structural induction on p. For illustration, we show the induction step
for the case when A = μX.A0 and p = fold p0. Let K = λy0.k(fold y0).

h(A)〈p(−→V ), k〉 �∗ h(X : ¬A† 4 A0)[h(A)/X]〈p0(
−→
V ),K〉

= h(A0[h(A)/X])〈p0(
−→
V ),K〉, by (8)

�∗ K(p0(
−−−−−−→
V : H(p0))), by the induction hypothesis

� k(fold p0(
−−−−−−→
V : H(p0))) = k(p(

−−−−−−→
V : H(p)))

Theorem 2 (Syntactic minimal invariance). For all closed types A,
4v h(A) �v λ〈x, k〉.k x : ¬A†.

Proof. We need to show, for all p ∈ ultv(A),

k : ¬A,
−−−−−→
x : H(p) 4n h(Γ 4 A)〈p(−→x ), k〉 � (λ〈x, k〉.k x)〈p(−→x ), k〉
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By Lemma 1, the left hand side β-reduces to k(p(g(
−−−−−→
x : H(p)))) and the right

hand side β-reduces to k(p(−→x )). It remains to show that

k : ¬A,
−−−−−→
x : H(p) 4v g(

−−−−−→
x : H(p)) �v −→x : H(p)

This follows because the relation that relates, for all closed A and p ∈ ultv(A),

−−−−→
z : ¬B, x : ¬A,

−−−−−→
y : H(p) 4n g(x : ¬A)(p(−→y )), x(p(−→y ))

is a bisimulation, which is immediate from the calculation (using Lemma 1)

g(x : ¬A)(p(−→y )) � h(A)〈p(−→y ), x〉 �∗ x(p(g(
−−−−−→
y : H(p))))
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Abstract. Models of the untyped λ-calculus may be defined either as
applicative structures satisfying a bunch of first-order axioms (λ-models),
or as reflexive objects in cartesian closed categories (categorical models).
In this paper we show that any categorical model of λ-calculus can be
presented as a λ-model, even when the underlying category does not
have enough points. We provide an example of an extensional model
of λ-calculus in a category of sets and relations which has not enough
points. Finally, we present some of its algebraic properties which make
it suitable for dealing with non-deterministic extensions of λ-calculus.

Keywords: λ-calculus, cartesian closed categories, λ-models, relational
model, non-determinism.

1 Introduction

In 1969 Scott constructed the first mathematical model of the untyped λ-calculus
[24], but only at the end of the seventies, researchers were able to provide gen-
eral definitions of λ-calculus model. Barendregt, inspired by proof theoretical
considerations such as ω-incompleteness [22], introduced two classes of models:
the λ-algebras and the λ-models [4, Ch. 5].

Taking for granted the definition of combinatory algebra (A, ·,k, s), we recall
that:

– A λ-algebra is a combinatory algebra satisfying the five combinatory axioms
of Curry [4, Thm. 5.2.5].

– A λ-model is a λ-algebra satisfying the Meyer-Scott (or weak extensionality)
axiom: ∀x (a·x = b·x)⇒ ε·a = ε·b where ε is the combinator s·(k·((s·k)·k)).

All the other known notions of model coincide essentially with λ-models ex-
cept for categorical models which have been proved equivalent to λ-algebras.
More precisely, given a λ-model, it is always possible to define a cartesian closed
category (ccc, for short) where its carrier set is a reflexive object with enough
points [3, Sec. 9.5]. On the other side, by applying a construction due to Koy-
mans [19] and based on work of Scott, arbitrary reflexive objects in ccc’s give rise
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to λ-algebras and to all of them. Moreover, using this method, the λ-models are
exactly those λ-algebras that come from reflexive objects with enough points.

The class of λ-algebras is not sound for λ-theories since, with the failure of
the Meyer-Scott axiom, it is no longer guaranteed that (under the interpreta-
tion) M = N implies λx.M = λx.N . Nevertheless, λ-algebras can be desirable
since they satisfy all the provable equations of λ-calculus and constitute an equa-
tional class. Hence, Koymans had as aim to provide λ-algebras, but this led to
a common belief that only the reflexive objects having enough points give rise
to λ-models.

The point of our paper, in its first part, is to describe a simple method for
turning any reflexive object U of a ccc into a λ-model in such a way that one
can easily switch from categorical to algebraic interpretation of λ-terms and
vice versa. It turns out that the resulting λ-model is isomorphic to the λ-model
obtained by freely adjoining the variables of λ-calculus as indeterminates to the
λ-algebra associated with U by Koymans’ construction. See [25] for more details.

Our approach asks for countable products. In practice, this hypothesis does not
seem to be very restrictive. Nevertheless, we do claim full generality for this method
and in Section 3.2 we sketch an alternative, but less simple and natural, construc-
tion which does not need this additional hypothesis. Before going further, let us re-
mark thatour constructiondoesnot give anythingnew for the categoriesof domains
generally used to solve the domain inequality U⇒U  U (see, e.g., [24,23,18]),
which do have enough points. Once set up the framework allowing to associate a
reflexive object (without enough points) of a ccc with a λ-model, we discuss in Sec-
tion 5 a paradigmatic example to which it can be applied.

In denotational semantics, ccc’s without enough points arise naturally when
morphisms are not simply functions, but carry some “intensional” information,
like for instance sequential algorithms or strategies in various categories of games
[6,1,16]. The original motivation for these constructions was the semantic char-
acterization of sequentiality, in the simply typed case. As far as we know, most
often the study of reflexive objects in the corresponding ccc’s has not been under-
taken. Notable exceptions are [11] and [17], where reflexive objects in categories
of games yielding the λ-theories H∗ and B, respectively, are defined.

This probably deserves a short digression, from the perspective of the present
work: there is of course no absolute need of considering the combinatory algebra
associated with a reflexive object, in order to study the λ-theory thereof; it is
often a matter of taste whether to use categorical or algebraic notations. What
we are proposing here is simply an algebraic counterpart of any categorical model
which satisfies weak extensionality.

A framework simpler than game semantics, where reflexive objects cannot
have enough points is the following: given the category Rel of sets and relations,
consider the comonad Mf (−) of “finite multisets”. MRel, the Kleisli category
ofMf (−), is a ccc which has been studied in particular as a semantic framework
for linear logic [12,2,7].

An even simpler framework, based on Rel, would be provided by the functor
“finite sets” instead of “finite multisets”. The point is that the former is not
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a comonad. Nevertheless, a ccc may eventually be obtained in this case too,
via a “quasi Kleisli” construction [15]. Interestingly, from the perspective of
the present work, these Kleisli categories over Rel are advocated in [15] as the
“natural” framework in which standard models of the λ-calculus like Engeler’s
model, and graph models [5] in general, should live.

In Section 5 we define a relational version, in MRel, of another classical model:
Scott’s D∞. Instead of the inverse limit construction, we get our reflexive object
D by an iterated completion operation similar to the canonical completion of
graph models. In this case D is isomorphic to D⇒D by construction.

Finally, in Section 6 we show that the λ-model MD associated with D by our
construction has a rich algebraic structure. In particular, we define two operations
of sum and product making the carrier set ofMD a commutative semiring, which
are left distributive with respect to the application. This opens the way to the in-
terpretation of conjunctive-disjunctive λ-calculi [9] in the relational framework.

2 Preliminaries

To keep this article self-contained, we summarize some definitions and results
used in the paper. With regard to the λ-calculus we follow the notation and
terminology of [4]. Our main reference for category theory is [3].

2.1 Generalities

Let S be a set. We denote by P(S) (resp. Pf(S)) the collection of all subsets (resp.
finite subsets) of S and we write A ⊂f S to express that A is a finite subset of
S. A multiset m over S can be defined as an unordered list m = [a1, a2, . . .] with
repetitions such that ai ∈ S for all i. For each a ∈ S the multiplicity of a inm is the
number of occurrences of a in m. Given a multiset m over S, its support is the set
of elements of S belonging tom. A multisetm is called finite if it is a finite list, we
denote by [] the empty multiset. Given two multisets m1 = [a1, a2, . . .] and m2 =
[b1, b2, . . .] the multiset union ofm1,m2 is defined bym1#m2 = [a1, b1, a2, b2, . . .].
We will writeMf (S) for the set of all finite multisets over S.

We denote by � the set of natural numbers. A �-indexed sequence σ =
(m1,m2, . . . ) of multisets is quasi-finite if mi = [] holds for all but a finite
number of indices i; σi stands for the i-th element of σ. If S is a set, we denote
by Mf (S)(ω) the set of all quasi-finite �-indexed sequences of multisets over
S. We write ∗ for the �-indexed family of empty multisets, i.e., ∗ is the only
inhabitant of Mf (∅)(ω).

2.2 Cartesian Closed Categories

Throughout the paper, C is a small cartesian closed category (ccc, for short).
Let A,B,C be arbitrary objects of C. We denote by A&B the product1 of A
1 We use the symbol & instead of × because, in the example we are interested in, the

categorical product is the disjoint union. The usual notation is kept to denote the
set-theoretical product.
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and B, by π1 ∈ C(A&B,A), π2 ∈ C(A&B,B) the associated projections and,
given a pair of arrows f ∈ C(C,A) and g ∈ C(C,B), by 〈f, g〉 ∈ C(C,A&B) the
unique arrow such that π1 ◦〈f, g〉 = f and π2 ◦〈f, g〉 = g. We write A⇒B for the
exponential object and evAB ∈ C((A⇒B)&A,B) for the evaluation morphism2.
Moreover, for any object C and arrow f ∈ C(C &A,B), Λ(f) ∈ C(C,A⇒B)
stands for the (unique) morphism such that evAB ◦ (Λ(f)× IdA) = f . Finally,
� denotes the terminal object and !A the only morphism in C(A,�).
We recall that in every ccc the following equalities hold:

(pair) 〈f, g〉 ◦ h = 〈f ◦ h, g ◦ h〉 Λ(f) ◦ g = Λ(f ◦ (g × Id)) (Curry)
(beta) ev ◦ 〈Λ(f), g〉 = f ◦ 〈Id, g〉 Λ(ev) = Id (Id-Curry)

We say that C has enough points if, for all f, g ∈ C(A,B), whenever f �= g,
there exists a morphism h ∈ C(�, A) such that f ◦ h �= g ◦ h.

2.3 The Untyped λ-Calculus and Its Models

The set Λ of λ-terms over a countable set Var of variables is constructed as usual:
every variable is a λ-term; if P and Q are λ-terms, then also are PQ and λz.P
for each variable z. As a matter of notation, given a λ-term M , we will denote
by FV (M) the set of its free variables. A λ-term M is closed if FV (M) = ∅.

It is well known [4, Ch. 5] that there are, essentially, two tightly linked notions
of λ-calculus models. The former is connected with category theory (categorical
models) and the latter is related to combinatory algebras (λ-models).

Categorical Models. A categorical model of λ-calculus is a reflexive object in
a ccc C, that is, a triple U = (U,Ap, λ) such that U is an object of C, and
λ ∈ C(U ⇒ U,U) and Ap ∈ C(U,U ⇒ U) satisfy Ap ◦ λ = IdU⇒U . In this
case we write U⇒U  U . When moreover λ ◦Ap = IdU , the model U is called
extensional.

In the sequel we suppose that x = (x1, . . . , xn) is a finite ordered sequence of
variables without repetitions of length n. Given an arbitrary λ-term M and a
sequence x, we say that x is adequate for M if x contains all the free variables
of M . We simply say that x is adequate whenever M is clear from the context.

Given a categorical model U = (U,Ap, λ), for all M ∈ Λ and for all adequate
x, the interpretation of M (in x) is a morphism |M |x ∈ C(Un, U) defined by
structural induction on M as follows:

– If M ≡ z, then |z|x = πi, if z occurs in i-th position in the sequence x.
– If M ≡ PQ, then by inductive hypothesis we have defined |P |x, |Q|x ∈

C(Un, U). So we set |PQ|x = ev ◦ 〈Ap ◦ |P |x, |Q|x〉 ∈ C(Un, U).
– If M ≡ λz.P , then by inductive hypothesis we have defined |P |x,z ∈ C(Un&
U,U), where we assume that z does not occur in x. So we set |λz.P |x =
λ ◦ Λ(|P |x,z).

It is routine to check that, if M and N are β-equivalent, then |M |x = |N |x
for all x adequate for M and N . If the reflexive object U is extensional, then
|M |x = |N |x holds as soon as M and N are βη-equivalent.
2 We simply write ev when A and B are clear from the context.
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Combinatory Algebras and λ-Models. An applicative structure A = (A, ·)
is an algebra where · is a binary operation on A called application. We may write
it infix as s · t, or even drop it and write st. Application associates to the left.

A combinatory algebra C = (C, ·,k, s) is an applicative structure with distin-
guished elements k and s satisfying kxy = x and sxyz = xz(yz) for all x, y, and
z. See, e.g., [8] for a full treatment.

We call k and s the basic combinators. In the equational language of com-
binatory algebras the derived combinators i and ε are defined as i ≡ skk and
ε ≡ s(ki). It is not hard to verify that every combinatory algebra satisfies the
identities ix = x and εxy = xy.

We say that c ∈ C represents a function f : C → C (and that f is repre-
sentable) if cz = f(z) for all z ∈ C. Two elements c, d ∈ C are extensionally
equal when they represent the same function in C. For example, c and εc are
always extensionally equal.

The axioms of an elementary subclass of combinatory algebras, called λ-
models, were expressly chosen to make coherent the definition of interpretation
of λ-terms (see [4, Def. 5.2.1]). The Meyer-Scott axiom is the most important
axiom in the definition of a λ-model. In the first-order language of combinatory
algebras it becomes: ∀x∀y(∀z(xz = yz)⇒ εx = εy).

The combinator ε becomes an inner choice operator, that makes coherent
the interpretation of an abstraction λ-term. A λ-model is said extensional if,
moreover, we have that ∀x∀y(∀z(xz = yz)⇒ x = y).

3 From Reflexive Objects to λ-Models

In the common belief, a reflexive object U in a ccc C may be turned into a
λ-model only when U has enough points, i.e., for all f, g ∈ C(U,U), if f �= g
then there exists a morphism h ∈ C(�, U) such that f ◦ h �= g ◦ h. This holds a
fortiori if C has enough points.

In the main result of this section we show that this hypothesis is unnecessary
if we choose appropriately the associated λ-model and in Section 5 we will also
provide a concrete example.

3.1 Building a Syntactical λ-Model

We give now the definition of “syntactical λ-models” [13]. Recall that, by [4,
Thm. 5.3.6], λ-models are equal to syntactical λ-models, up to isomorphism.

Given an applicative structure A, we let EnvA be the set of environments ρ
mapping the set Var of variables of λ-calculus into A. For every x ∈ Var and
a ∈ A we denote by ρ[x := a] the environment ρ′ which coincides with ρ, except
on x, where ρ′ takes the value a.

Definition 1. A syntactical λ-model is a pair (A, �− �) where, A is an applica-
tive structure and �− � : Λ× EnvA → A satisfies the following conditions:

(i) �z�ρ = ρ(z),
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(ii) �PQ�ρ = �P �ρ · �Q�ρ,
(iii) �λz.P �ρ · a = �P �ρ[z:=a],
(iv) ρ�FV (M)= ρ′�FV (M)⇒ �M �ρ = �M �ρ′ ,
(v) ∀a ∈ A, �M �ρ[z:=a] = �N �ρ[z:=a] ⇒ �λz.M �ρ = �λz.N �ρ

A syntactical λ-model is extensional if, moreover, ∀a∀b(∀x(a·x = b·x)⇒ a = b).

Let us fix a categorical model U = (U,Ap, λ) living in a ccc C having countable
products3. The set C(UVar, U) can be naturally seen as an applicative structure
whose application is defined by u•v = ev ◦〈Ap ◦ u, v〉. Moreover, the categorical
interpretation |M |x of a λ-term M , can be intuitively viewed as a morphism in
C(UVar, U) only depending from a finite number of variables.

In order to capture this informal idea, we now focus our attention on the set
AU whose elements are the “finitary” morphisms in C(UVar, U).

A morphism f ∈ C(UVar, U) is finitary if there exist a finite set J of variables
and a morphism fJ ∈ C(UJ , U) such that f = fJ ◦ πJ , where πJ denotes the
canonical projection from UVar onto UJ . In this case we say that the pair (fJ , J)
is adequate for f , and we write (fJ , J) ∈ Ad(f).

Given two finitary morphisms f, g it is easy to see that f •g is also finitary and
that, if (fJ , J) ∈ Ad(f) and (gI , I) ∈ Ad(g), then ((fJ ◦ πJ ) • (gI ◦ πI), J ∪ I) ∈
Ad(f • g). Hence, we can define the following applicative structure.

Definition 2. Let U be a reflexive object in a ccc C having countable products.
The applicative structure associated with U is defined by AU = (AU , •), where:

– AU = {f ∈ C(UVar, U) : f is finitary },
– a • b = ev ◦ 〈Ap ◦ a, b〉.

We are going to define a syntactical λ-model MU = (AU , � − �). In order to
prove that �− � satisfies conditions (i)− (v) of Definition 1 we need the technical
lemma below. As a matter of fact, in this presentation we use Lemma 1 to define
� − � itself (since our proof of Lemma 2 relies on Lemma 1). We remark that
this is just a shortcut: indeed, the definition of �− � is sound independently from
Lemma 1.

Lemma 1. Let f1, . . . , fn ∈ AU and (f ′k, Jk) ∈ Ad(fk) for all 1 ≤ k ≤ n. Given
z ∈ Var such that z /∈

⋃
k≤n Jk, and ηz ∈ C(UVar&U,UVar) defined by:

ηxz =
{
π2 if x = z,
πx ◦ π1 otherwise,

the following diagram commutes:

UVar
〈Id,πz〉�� UVar&U

〈f1,...,fn〉×Id �� Un&U

UVar&U

ηz

��

Id

������������

3 Note that all the underlying categories of the models present in the literature, in-
cluding those without enough points, satisfy this requirement.
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Proof. Starting by (〈f1, . . . , fn〉× Id)◦ 〈Id, πz〉◦ηz , we get 〈〈f1, . . . , fn〉 ◦ ηz, π2〉
via easy calculations. Hence, it is sufficient to prove that 〈f1, . . . , fn〉 ◦ ηz =
〈f1, . . . , fn〉◦π1. We show that this equality holds componentwise. By hypothesis,
we have that, for all 1 ≤ k ≤ n, fk ◦ηz = f ′k ◦πJk

◦ηz. Since z �∈ Jk, we have that
πJk

◦ηz = πJk
◦π1 (computing componentwise in πJk

and applying the definition
of ηz). To conclude, we note that f ′k ◦ πJk

◦ ηz = f ′k ◦ πJk
◦ π1 = fk ◦ π1. �

As a matter of notation, given a sequence x of variables and an environment
ρ ∈ EnvAU , we denote by ρ(x) the morphism 〈ρ(x1), . . . , ρ(xn)〉 ∈ C(UVar, Un).

Lemma 2. For all λ-terms M , environments ρ and sequences x, y adequate for
M , we have that |M |x ◦ ρ(x) = |M |y ◦ ρ(y).

Proof. The proof is by structural induction on M .
If M ≡ z, then z occurs in, say, i-th position in x and j-th position in y. Then
|z|x ◦ ρ(x) = πi ◦ ρ(x) = ρ(z) = πj ◦ ρ(y) = |z|y ◦ ρ(y).
If M ≡ PQ, then |PQ|x ◦ ρ(x) = ev ◦ 〈Ap ◦ |P |x, |Q|x〉 ◦ ρ(x). By (pair), this
is equal to ev ◦ 〈Ap ◦ |P |x ◦ ρ(x), |Q|x ◦ ρ(x)〉 which is, by inductive hypothesis,
ev ◦ 〈Ap ◦ |P |y ◦ ρ(y), |Q|y ◦ ρ(y)〉 = |PQ|y ◦ ρ(y).
IfM ≡ λz.N , then |λz.N |x◦ρ(x) = λ◦Λ(|N |x,z)◦ρ(x) and by (Curry), we obtain
λ ◦ Λ(|N |x,z ◦ (ρ(x) × Id)). Let (ρ1, J1) ∈ Ad(ρ(x1)), . . . , (ρn, Jn) ∈ Ad(ρ(xn)).
By α-conversion we can suppose that z /∈

⋃
k≤n Jk, hence by Lemma 1 we obtain

λ◦Λ(|N |x,z◦(ρ(x)×Id)◦〈Id, πz〉◦ηz) = λ◦Λ(|N |x,z◦ρ[z := πz ](x, z)◦ηz). This is
equal, by inductive hypothesis, to λ◦Λ(|N |y,z ◦ρ[z := πz ](y, z)◦ηz) = |λz.N |y. �

As a consequence of Lemma 2 we have that the following definition is sound.

Definition 3. MU = (AU , �− �), where �M �ρ = |M |x ◦ ρ(x) for some adequate
sequence x.

We are going to prove that MU is a syntactical λ-model, which is extensional
exactly when U is an extensional categorical model.

For this second property we need another categorical lemma. Remark that the
morphism ιJ,x ∈ C(UJ∪{x}, UVar) defined below is a sort of canonical injection
and that, in particular, the morphism λ ◦Λ(IdU )◦!UJ∪{x} does not play any role
in the rest of the argument.

Lemma 3. Let f ∈ AU , (fJ , J) ∈ Ad(f), x /∈ J and ιJ,x defined as follows:

ιzJ,x =
{
πz if z ∈ J ∪ {x},
λ ◦ Λ(IdU )◦!UJ∪{x} otherwise.

Then the following diagram commutes:

UVar&U
f×Id

�����������������������������
πJ×Id�� UJ&U . UJ∪{x}

ιJ,x �� UVar

〈f,πx〉
��

U&U
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Proof. Since by hypothesis f = fJ◦πJ , this is equivalent to ask that the following
diagram commutes, and this is obvious from the definition of ιJ,x.

UVar&U
πJ×Id�� UJ &U . UJ∪{x}

fJ×Id

��������������
ιJ,x �� UVar

〈πJ ,πx〉

�����������

U&U UJ∪{x}
fJ×Id
		 �

Theorem 1. Let U be a reflexive object in a ccc C having countable products.
Then:

1) MU is a syntactical λ-model,
2) MU is extensional if, and only if, U is.

Proof. 1) In the following x is any adequate sequence and the items correspond
to those in Definition 1.
(i) �z�ρ = |z|x ◦ ρ(x) = πz ◦ ρ(x) = ρ(z).
(ii) �PQ�ρ = |PQ|x ◦ ρ(x) = (|P |x • |Q|x) ◦ ρ(x) = ev ◦ 〈Ap ◦ |P |x, |Q|x〉 ◦ ρ(x).
By (pair) this is equal to ev ◦ 〈Ap ◦ |P |x ◦ ρ(x), |Q|x ◦ ρ(x)〉 = �P �ρ • �Q�ρ.
(iii) �λz.P �ρ • a = (|λz.P |x ◦ ρ(x)) • a = ev ◦ 〈Ap ◦ λ ◦ Λ(|P |x,z) ◦ ρ(x), a〉. Since
Ap◦λ = IdU⇒U and by applying the rules (Curry) and (beta) we obtain |P |x,z ◦
(ρ(x)× Id) ◦ 〈Id, a〉. Finally, by (pair) we get |P |x,z ◦ 〈ρ(x), a〉 = �P �ρ[z:=a].
(iv) Obvious since, by Lemma 2, �M �ρ = |M |x ◦ ρ(x) where x are exactly the
free variables of M .
(v) �λz.M �ρ = |λz.M |x ◦ ρ(x) = λ ◦ Λ(|M |x,z ◦ (ρ(x) × Id)). Let (ρ1, J1) ∈
Ad(ρ(x1)), . . . , (ρn, Jn) ∈ Ad(ρ(xn)). Without loss of generality we can suppose
that z /∈

⋃
k≤n Jk. Hence, by Lemma 1 we obtain λ ◦ Λ(|M |x,z ◦ (ρ(x) × Id) ◦

〈Id, πz〉◦ηz). By (pair), this is λ◦Λ(|M |x,z ◦〈ρ(x), πz〉◦ηz) = λ◦Λ(�M �ρ[z:=πz] ◦
ηz) which is equal to λ ◦ Λ(�N �ρ[z:=πz] ◦ ηz) since, by hypothesis, �M �ρ[z:=a] =
�N �ρ[z:=a] for all a ∈ AU . It is, now, routine to check that λ◦Λ(�N �ρ[z:=πz]◦ηz) =
�λz.N �ρ.
2) (⇒) Let x ∈ Var and πx ∈ C(UVar, U). For all a ∈ AU we have (λ◦Ap◦πx)•a =
ev ◦ 〈Ap ◦ λ ◦Ap ◦ πx, a〉 = ev ◦ 〈Ap ◦ πx, a〉 = πx • a. If MU is extensional, this
implies λ ◦Ap ◦ πx = πx. Since πx is an epimorphism, we get λ ◦Ap = IdU .
(⇐) Let a, b ∈ AU , then there exist (aJ , J) ∈ Ad(a) and (bI , I) ∈ Ad(b) such
that I = J . Let us set ϕ = ιJ,x ◦ (πJ × Id) where x /∈ J and ιJ,x is defined in
Lemma 3. Suppose that for all c ∈ AU we have (a • c = b • c) then, in particular,
ev ◦ 〈Ap ◦ a, πx〉 = ev ◦ 〈Ap ◦ b, πx〉 and this implies that 〈Ap ◦ a, πx〉 ◦ ϕ =
〈Ap ◦ b, πx〉 ◦ ϕ. By applying Lemma 3, we get 〈Ap ◦ a, πx〉 ◦ ϕ = (Ap ◦ a) × Id
and 〈Ap ◦ b, πx〉 ◦ ϕ = (Ap ◦ b) × Id. Then Ap ◦ a = Ap ◦ b which implies
λ ◦Ap ◦ a = λ ◦Ap ◦ b. We conclude since λ ◦Ap = IdU . �

Note that, by using a particular environment ρ̂, it is possible to “recover” the
categorical interpretation |M |x from the interpretation �M �ρ in the syntactical
λ-model. Let us fix the environment ρ̂(x) = πx for all x ∈ Var. Then
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�M �ρ̂ = |M |x ◦ 〈πx1 , . . . , πxn〉,

i.e., it is the morphism |M |x “viewed” as element of C(UVar, U).

3.2 Working Without Countable Products

The construction provided in the previous section works if the underlying cat-
egory C has countable products. We remark, once again, that this hypothesis
is not really restrictive since all the categories used in the literature in order
to obtain models of λ-calculus satisfy this requirement. Nevertheless, the dis-
cussions on the relation between categorical and algebraic models of λ-calculus
in [20,21,25] can help us get rid of this additional hypothesis. We give here the
basic ideas of this approach.

In [25], Selinger implicitly suggests that every λ-algebra A can be embedded
into a λ-model A[Var], which is obtained from A by freely adjoining the vari-
ables of λ-calculus as indeterminates. More precisely, he shows that, under the
interpretation in A[x1, . . . , xn], M = N implies λz.M = λz.N holds as soon as
M,N are λ-terms with free variables among x1, . . . , xn. Moreover, if A is the
λ-algebra associated with a categorical model U by Koymans’ construction, then
for all I ⊂f Var the free extension A[I] is isomorphic (in the category of combi-
natory algebras and homomorphisms between them) to C(U I , U) endowed with
the natural structure of combinatory algebra.

Since there exist canonical homomorphisms A[I] �→ A[J ] and C(U I , U) �→
C(UJ , U) which are one-to-one if I ⊆ J ⊂f Var, we can construct the inductive
limit of both Pf(Var)-indexed diagrams.

From one side we obtain a λ-model isomorphic to A[Var] and from the other
side we get A′ =

⋃
I⊂fVar C(U I , U)/∼, where∼ is the equivalence relation defined

as follows: if f ∈ C(UJ , U) and g ∈ C(U I , U), then f ∼ g if, and only if, f ◦πJ =
g ◦ πI where πJ ∈ C(U I∪J , UJ) and πI ∈ C(U I∪J , U I). The above isomorphism
is obviously preserved at the limit; hence A′, endowed with a suitable application
operator on the equivalence classes, is also a λ-model. This approach, although
less simple and natural, also works in the case that the underlying category C
does not have countable products. Finally, it is easy to check that if C does
have countable products then A′ is isomorphic to the set of finitary morphisms
in C(UVar, U).

4 A Cartesian Closed Category of Sets and Relations

It is quite well known [12,2,15,7] that, by endowing the monoidal closed category
Rel with a suitable comonad, one gets a ccc via the co-Kleisli construction. In
this section we present the ccc MRel obtained by using the comonad Mf (−),
without explicitly going through the monoidal structure of Rel.

Hence we directly define the category MRel as follows:
– The objects of MRel are all the sets.
– Given two sets S and T , a morphism from S to T is a relation from Mf(S)

to T . In other words, MRel(S, T ) = P(Mf(S)× T ).
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– The identity morphism of S is the relation:

IdS = {([a], a) : a ∈ S} ∈MRel(S, S) .

– Given two morphisms s ∈MRel(S, T ) and t ∈MRel(T, U), we define:
t ◦ s = {(m, c) : ∃(m1, b1), . . . , (mk, bk) ∈ s such that

m = m1 # . . . #mk and ([b1, . . . , bk], c) ∈ t}.
It is easy to check that this composition law is associative, and that the

identity morphisms defined above are neutral for this composition.

Theorem 2. The category MRel is cartesian closed.

Proof. The terminal object � is the empty set ∅, and the unique element of
MRel(S, ∅) is the empty relation.

Given two sets S1 and S2, their categorical product S1&S2 in MRel is their
disjoint union:

S1&S2 = ({1} × S1) ∪ ({2} × S2)
and the projections π1, π2 are given by:

πi = {([(i, a)], a) : a ∈ Si} ∈MRel(S1&S2, Si), for i = 1, 2.

It is easy to check that this is actually the categorical product of S1 and S2 in
MRel; given s ∈ MRel(U, S1) and t ∈ MRel(U, S2), the corresponding mor-
phism 〈s, t〉 ∈MRel(U, S1&S2) is given by:

〈s, t〉 = {(m, (1, a)) : (m, a) ∈ s} ∪ {(m, (2, b)) : (m, b) ∈ t} .
We will consider the canonical bijection between Mf (S1) × Mf(S2) and

Mf (S1 & S2) as an equality, hence we will still denote by (m1,m2) the cor-
responding element of Mf (S1&S2).

Given two objects S and T the exponential object S⇒T is Mf (S) × T and
the evaluation morphism is given by:

evST = {(([(m, b)],m), b) : m ∈Mf (S) and b ∈ T } ∈MRel((S⇒T )&S, T ) .

Again, it is easy to check that in this way we defined an exponentiation. Indeed,
given any set U and any morphism s ∈ MRel(U &S, T ), there is exactly one
morphism Λ(s) ∈MRel(U, S⇒T ) such that:

evST ◦ (Λ(s)× IdS) = s.

where Λ(s) = {(p, (m, b)) : ((p,m), b) ∈ s}. �
Here, the points of an object S, i.e., the elements of MRel(�, S), are relations

between Mf (∅) and S. These are, up to isomorphism, the subsets of S.
In the next section we will present an extensional model of λ-calculus living

in MRel, which is a “strongly” non extensional ccc: not only it has not enough
points but there exists no object U �= � of MRel having enough points.

Indeed, we can always find t1, t2 ∈MRel(U,U) such that t1 �= t2 and, for all
s ∈MRel(�, U), t1 ◦s = t2 ◦s. Recall that, by definition of composition, t1 ◦s =
{([], b) : ∃a1, . . . , an ∈ U ([], ai) ∈ s ([a1, . . . , an], b) ∈ t1} ∈ MRel(�, U), and
similarly for t2 ◦ s. Hence it is sufficient to choose t1 = {(m1, b)} and t2 =
{(m2, b)} such that m1 and m2 are different multisets with the same support.
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5 An Extensional Relational Model of λ-Calculus

In this section we build a reflexive object in MRel, which is extensional by
construction.

5.1 Constructing an Extensional Reflexive Object

We build a family of sets (Dn)n∈� as follows4:

– D0 = ∅,
– Dn+1 = Mf(Dn)(ω).

Since the operation S �→ Mf (S)(ω) is monotonic on sets, and since D0 ⊆ D1,
we have Dn ⊆ Dn+1 for all n ∈ �. Finally, we set D =

⋃
n∈�Dn.

So we have D0 = ∅ and D1 = {∗} = {([], [], . . . )}. The elements of D2 are
quasi-finite sequences of multisets over a singleton, i.e., quasi-finite sequences of
natural numbers. More generally, an element of D can be represented as a finite
tree which alternates two kinds of layers:

– ordered nodes (the quasi-finite sequences), where immediate subtrees are
indexed by a possibly empty finite set of natural numbers,

– unordered nodes where subtrees are organised in a non-empty multiset.

In order to define an isomorphism in MRel between D and D⇒D (which is
equal to Mf (D)×D) just remark that every element σ ∈ D stands for the pair
(σ0, (σ1, σ2, . . .)) and vice versa. Given σ ∈ D and m ∈ Mf (D), we write m · σ
for the element τ ∈ D such that τ1 = m and τi+1 = σi. This defines a bijection
between Mf (D)×D and D, and hence an isomorphism in MRel as follows:

Proposition 1. The triple D = (D,Ap, λ) where:
– λ = {([(m,σ)],m · σ) : m ∈Mf (D), σ ∈ D} ∈MRel(D⇒D,D),
– Ap = {([m · σ], (m,σ)) : m ∈Mf (D), σ ∈ D} ∈MRel(D,D⇒D),

is an extensional categorical model of λ-calculus.

Proof. It is easy to check that λ ◦Ap = IdD and Ap ◦ λ = IdD⇒D. �

5.2 Interpreting the Untyped λ-Calculus in D

In Section 2.3, we have recalled how a λ-term is interpreted when a reflexive ob-
ject is given, in any ccc. We provide the result of the corresponding computation,
when it is performed in the present structure D.

Given a λ-term M and a sequence x of length n, which is adequate for M , the
interpretation |M |x is an element of MRel(Dn, D), where Dn = D & . . . & D,
i.e., a subset of Mf (D)n ×D. This set is defined by structural induction on M .

4 Note that, in greater generality, we can start from a set A of “atoms” and take:
D0 = ∅, Dn+1 = Mf (Dn)(ω) × A. Nevertheless the set of atoms A is not essential
to produce a non-trivial model of λ-calculus.
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– |xi|x = {(([], . . . , [], [σ], [], . . . , []), σ) : σ ∈ D}, where the only non-empty
multiset stands in i-th position.

– |NP |x = {((m1, . . . ,mn), σ) : ∃k ∈ �

∃(mj
1, . . . ,m

j
n) ∈ Mf(D)n for j = 0, . . . , k

∃σ1, . . . , σk ∈ D such that
mi = m0

i # . . . #mk
i for i = 1, . . . , n

((m0
1, . . . ,m

0
n), [σ1, . . . , σk] · σ) ∈ |N |x

((mj
1, . . . ,m

j
n), σj) ∈ |P |x for j = 1, . . . , k}.

– |λz.P |x = {((m1, . . . ,mn),m · σ) : ((m1, . . . ,mn,m), σ) ∈ |P |x,z}, where we
assume that z does not occur in x.

Since D is extensional, if M =βη N then M and N have the same interpretation
in the model. Note that if M is a closed λ-terms then it is simply interpreted, in
the empty sequence, by a subset of D. If M is moreover a solvable term, i.e., if
it is β-convertible to a term of the shape λx1 . . . xn.xiM1 · · ·Mk (n, k ≥ 0), then
its interpretation is non-empty. Indeed, it is quite clear that [] · · · [] · [∗] · ∗ ∈ |M |
(where [∗] stands in i-th position).

6 Modelling Non-determinism

Since MRel has countable products, the construction given in Subsection 3.1
provides an applicative structure AD = (AD, •), whose elements are the finitary
morphisms in MRel(DVar, D), and the associated λ-model MD = (AD , � − �).
This λ-model is extensional by Theorem 1(2).

We are going to define two operations of sum and product on AD; in order to
show easily that these operations are well defined, we provide a characterization
of the finitary elements of MRel(DVar, D).

Proposition 2. Let f ∈ MRel(DVar, D) and J ⊂f Var. Then there exists fJ
such that (fJ , J) ∈ Ad(f) if, and only if, for all (m,σ) ∈ f and for all x �∈ J ,
πx(m) = [].

Proof. Straightforward.

Hence, the union of finitary elements is still a finitary element. As a matter of
notation, we will write a⊕ b for a ∪ b.

We now recall the definition of semilinear applicative structure given in [10].

Definition 4. A semilinear applicative structure is a pair ((A, ·),+) such that:

(i) (A, ·) is an applicative structure.
(ii) + : A2 → A is an idempotent, commutative and associative operation.
(iii) ∀x, y, z ∈ A (x + y) · z = (x · z) + (y · z).

Straightforwardly, the union operation makes AD semilinear.

Proposition 3. (AD,⊕) is a semilinear applicative structure.
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Moreover, the syntactic interpretation of Definition 1 may be extended to the
non-deterministic λ-calculus Λ⊕ of [10], by stipulating that �M ⊕N �ρ = �M �ρ⊕
�N �ρ. Hence, we get that (AD,⊕, �− �) is an extensional syntactical model of Λ⊕
in the sense of [10]. The operation⊕ can be seen intuitively as a non-deterministic
choice.

We define another binary operation on AD, which can be thought of as parallel
composition.

Definition 5.

– Given σ, τ ∈ D, we set σ 6 τ = (σ1 # τ1, . . . , σn # τn, . . .).
– Given a, b ∈ AD, we set a6b = {(m1#m2, σ6τ) : (m1, σ) ∈ a, (m2, τ) ∈ b}.

Once again, it is easy to see that 6 produces finitary elements when applied to
finitary elements.

Note that AD, equipped with 6, is not a semilinear applicative structure,
simply because the operator 6 is not idempotent. Nevertheless, the left distrib-
utivity with respect to the application is satisfied.

Proposition 4. For all a, b, c ∈ AD, (a6 b) • c = (a • c)6 (b • c).

Proof. Straightforward.

The units of the operations ⊕ and 6 are 0 = ∅ and 1 = {([], ∗)}, respectively;
(AD,⊕, 0) and (AD ,6, 1) are commutative monoids. Moreover 0 annihilates 6,
and multiplication distributes over addition. Summing up, the following propo-
sition holds.

Proposition 5. 1. (AD,⊕,6, 0, 1) is a commutative semiring.
2. ⊕ and 6 are left distributive over •.
3. ⊕ is idempotent.

7 Conclusions and Further Works

We have proposed a general method for getting a λ-model out of a reflexive
object of a ccc, which does not rely on the fact that the object has enough
points. We have applied this construction to an extensional reflexive object D
of MRel, the Kleisli category of the comonad “finite multisets” on Rel, and
showed some algebraic properties of the resulting λ-model MD. A first natural
question about MD concerns its theory. We know that it is extensional, and
that MD can be “stratified” following the construction of D =

⋃
n∈�Dn given

in Subsection 5.1. Not surprisingly, the theory of MD turns out to be H∗, the
maximal consistent sensible λ-theory. In a forthcoming paper, we show how the
proof method based on the approximation theorem, due to Hyland [14], can be
adapted to all suitably defined “stratified λ-models” in order to prove that their
theory is H∗.

Proposition 5 shows that MD has a quite rich algebraic structure. In order to
interpret conjunctive-disjunctive λ-calculi, endowed with both “non-deterministic
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choice” and “parallel composition”, a notion of λ-lattice has been introduced in [9].
It is interesting to notice that our structure (AD,⊆, •,⊕,6) does not give rise to
a real λ-lattice essentially because 6 is not idempotent. Roughly speaking, this
means that in the model MD of the conjunctive-disjunctive calculus �M ||M � �=
�M �, i.e., that the model is “resource sensible”. We aim to investigate full abstrac-
tion results for must/may semantics inMD.

A concluding remark: for historical reasons, most of the work on models of
untyped λ-calculus, and its extensions, has been carried out in subcategories of
CPO. A posteriori, we can propose two motivations:

(i) because of the seminal work of Scott, the Scott-continuity of morphisms has
been seen as the canonical way of getting U⇒U  U ;

(ii) the classic result relating algebraic and categorical models of untyped λ-
calculus asks for reflexive objects with enough points.

Our proposal allows to overcome (ii). It remains to be proved that working in
categories like MRel allows to get interesting classes of models.
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Abstract. We show how to extract classical programs expressed in
Krivine λc-calculus from proof-terms built in a proof-irrelevant and clas-
sical version of the calculus of constructions with universes. For that, we
extend Krivine’s realisability model of classical second-order arithmetic
to the calculus of constructions with universes using a structure of Π-
set which is reminiscent of ω-sets, and show that our realisability model
validates Peirce’s law and proof-irrelevance. Finally, we extend the ex-
traction scheme to a primitive data-type of natural numbers in a way
which preserves the whole compatibility with the classical realisability
interpretation of second-order arithmetic.

Introduction

Program extraction has been a major concern from the early development of
the calculus of constructions (CC) [3] to its more recent extensions [13,17] im-
plemented in proof assistants such as Coq [18], LEGO or Plastic. The first ex-
traction scheme implemented in Coq [16] was based on the dependency erasing
translation from CC to Fω [4], with a facility allowing to distinguish computa-
tionally relevant parts of the proof from the purely logical parts. (This facility
relied on a distinction between two impredicative sorts Prop and Set.) However,
as the system grew up, the initial mechanism became obsolete, so that in 2002
the extraction mechanism of Coq was completely redesigned [11]. The currently
implemented mechanism now extracts the constructive skeleton of terms (corre-
sponding to the parts built in the predicative universes Typei) while removing
their purely logical part (corresponding to the parts built in Prop).

In this paper we present another extraction mechanism, that extends the
extraction mechanism used in system AF2 [6] to the whole type system of Coq.
Moreover, this mechanism is able to extract programs from classical proofs (using
the control operator call/cc), and it is actually compatible with Krivine’s recent
results about realising different forms of the axiom of choice [9,10].

The richness of the type system of CC naturally raises difficulties which do
not exist when program extraction is performed in second-order arithmetic only.
The first difficulty comes from the fact that in CC, types (and propositions) may
depend on proofs. The traditional way to solve this problem is to add an axiom
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of proof-irrelevance (or to modify the conversion rule) in order to make all the
proofs of a given proposition equal. For a long time it has been believed that
proof-irrelevance was incompatible with an extraction à la AF2, where programs
are extracted from purely logical proofs (i.e. built in Prop).1 As we shall see, this
is not the case. Proof-irrelevance is not only compatible with classical program
extraction, but it also removes the need of introducing an equational theory for
each constant implementing classical reasoning, simply because such constants
become transparent in the conversion rule.

From ω-sets to Π-sets. The classical extraction presented here is based on a re-
alisability model constructed with Π-sets, a structure which is directly inspired
from ω-sets [5,12], D-sets [19] and saturated λ-sets [2,14]. Historically, ω-sets
(and their generalisation to all partial combinatory algebras: D-sets) have been
used to define a realisability model of CC that provides a non-trivial interpreta-
tion of the impredicative sort Prop. (Such a model is extended to ECC in [13].)
The next improvement came with Altenkirch [2], who noticed that by adding
saturation conditions to λ-sets, the λ-set model of CC could be turned into a
strong normalisation model. (The structure of saturated λ-set was later reused
to extend this construction to a larger class of systems [14].)

However, recent works about normalisation stressed on the importance of de-
finitions by orthogonality in the design of reducibility candidates. Since classical
realisability [8,9,10] also deeply relies on definitions by orthogonality, it is nat-
ural to shift the point of view of realisability from the player (the λ-term) to
the opponent (the stack it is applied to). In this move, the realisability relation
becomes an orthogonality relation, and the structure of λ-set is turned into a
new structure: the structure of Π-set which is described in section 3.

Which target (classical) λ-calculus?. Since the beginning of the 90’s, many λ-
calculi have been designed to extend the Curry-Howard correspondence to clas-
sical logic. Although we are convinced that most (if not all) of them could be
used successfully as the target calculus of classical extraction, we focus here to
the λc-calculus for several reasons.

The first reason, which is pedagogical, is that it illustrates the combination
of two formalisms that are technically very different: on one side the calculus
of constructions, whose conversion rule is based on strong evaluation and whose
meta-theory deeply relies on the Church-Rosser property; on the other side the
λc-calculus, that only performs weak head evaluation and for which the notion
of normal form and the notion of confluence are simply irrelevant.

The second reason, and actually the main reason, is that λc can be extended
with extra instructions allowing several forms of the axiom of choice to be
realised—and in particular the axiom of dependent choice [9,10].2 By taking
λc as the target calculus—and provided we ensure that the full realisability
model of CC is compatible with Krivine’s realisability model of second-order

1 Notice that since the currently extraction of Coq erases all proof-terms (in Prop), it
is de facto compatible with proof-irrelevance.

2 These results have not been ported yet to other classical calculi.
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arithmetic—we thus allow the extraction mechanism to deal with axioms such
as the axiom of the dependent choice (now expressed in CC) and more generally
to benefit from the most advanced results of classical realisability.

1 A Proof-Irrelevant Calculus of Constructions

1.1 Syntax

The proof-irrelevant calculus of constructions with universes (CCirr
ω ) is built from

the same syntax as the calculus of constructions with universes (CCω):

Sorts

Terms

s ∈ S ::= Prop | Typei (i ≥ 1)

M,N, T, U ::= x | s | Πx :T . U | λx :T .M | MN

Here, Prop denotes the sort of propositions (seen as the types of their proofs)
whereas Typei (i ≥ 1) denotes the ith predicative universe.

The set S of sorts is equipped with a set of axioms A ⊂ S 2 and with a set
of rules R ⊂ S 3 defined by

A = {(Prop : Type1); (Typei : Typei+1) | i ≥ 1}
R = {(Prop,Prop,Prop); (Typei,Prop,Prop);

(Prop,Typei,Typei); (Typei,Typei,Typei) | i ≥ 1}

as well as a (total) order s1 ≤ s2 (the cumulative order) which is generated from
the relations Prop ≤ Type1 and Typei ≤ Typei+1 (i ≥ 1).

In both constructions λx : T .M and Πx :T . U , the symbols λ and Π are
binders, which bind all the free occurrences of the variable x in M and U , but
no occurrence of x in T . The set of free variables of M is written FV (M). As
usual we write T → U ≡ Πx :T . U (when x /∈ FV (U)) the non-dependent
product. The external operation of substitution, written M{x := N}, is defined
as expected (taking care of renaming bound variables to avoid variable capture).
In what follows, we work with terms up to α-conversion.

Terms of CCirr
ω come with an untyped notion of β-reduction (defined as ex-

pected) which is confluent and enjoys Church and Rosser’s property. However,
we will not consider the untyped notion of β-reduction of CCirr

ω in what follows,
since we will identify β-equivalent terms (and more) in the conversion/subsum-
ption rule using a typed equality judgement Γ 4 M = M ′ : T à la Martin-Löf.

1.2 Typing

A typing context (for short: a context) is a finite list of declarations of the form

Γ ≡ x1 : T1, . . . , xn : Tn

where x1, . . . , xn are pairwise distinct variables and where T1, . . . , Tn are ar-
bitrary terms. The domain of a context Γ = x1 : T1, . . . , xn : Tn is written
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dom(Γ ) and defined by dom(Γ ) = {x1; . . . ;xn}. Given two contexts Γ and Γ ′,
we write Γ ⊆ Γ ′ when all the declarations that appear in Γ also appear in Γ ′,
not necessarily in the same order.

The type system of CCirr
ω is defined from four forms of judgements, namely:

4 Γ ctx ‘Γ is a well-formed context’
Γ 4 M : T ‘in the context Γ , the term M has type T ’
Γ 4 T1 ≤ T2 ‘in the context Γ , T1 is a subtype of T2

Γ 4 M1 = M2 : T ‘in Γ , M1 and M2 are equal terms of type T ’

The corresponding rules of inference are given in Fig. 1.
The main syntactic properties of this type system are the following (writing

J any of M : T or T1 ≤ T2 or M1 = M2 : T ). We do not indicate the proofs,
that all proceed by induction on the suitable derivation.

Lemma 1 (Context well-formedness). From any derivation of Γ 4 J , one
can extract a sub-derivation of 4 Γ ctx.

Lemma 2 (Weakening). If Γ 4 J and Γ ⊆ Γ ′ and 4 Γ ′ ctx, then Γ ′ 4 J .

Lemma 3 (Substitutivity). If Γ, x : T,Δ 4 J and Γ 4 N : T , then
Γ,Δ{x := N} 4 J{x := N}.

Lemma 4 (Type of types).

– If Γ 4 M : T or Γ 4 M1 = M2 : T , then Γ 4 T : s for some s ∈ S .
– If Γ 4 T ≤ T ′, then Γ 4 T : s and Γ 4 T ′ : s′ for some s, s′ ∈ S .

2 The Language of Realisers

2.1 Terms, Stacks and Processes

Terms of λc [7,10] are simply the pure λ-terms enriched with infinitely many
constants taken in a denumerable set C:

Terms t, u ::= x | λx . t | tu | c (c ∈ C)

The notion of free and bound variable is defined as usual, as well as the external
operation of substitution. In what follows, we will only consider closed terms,
and write Λ for the set of all closed terms.

Stacks are built from a denumerable set B of stack constants (a.k.a. stack
bottoms). Formally, stacks are defined as lists of closed terms terminated by a
stack constant:

Stacks π ::= b | t · π (b ∈ B, t ∈ Λ)

(writing t · π the ‘consing’ operation). The set of stacks is written Π .
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Context formation rules

� [] ctx
Γ � T : s x /∈ dom(Γ )

� Γ, x : T ctx

Typing rules

� Γ ctx
Γ � x : T

(x:T )∈Γ
� Γ ctx

Γ � s1 : s2

(s1,s2)∈A
Γ � M : T Γ � T ≤ T ′

Γ � M : T ′

Γ � T : s1 Γ, x : T � U : s2

Γ � Πx : T . M : s3

(s1,s2,s3)∈R

Γ � Πx : T . U : s Γ, x : T � M : U

Γ � λx : T . M : Πx : T . U
Γ � M : Πx : T . U Γ � N : T

Γ � MN : U{x := N}

Subtyping rules

Γ � T = T ′ : s

Γ � T ≤ T ′
Γ � T ≤ T ′ Γ � T ′ ≤ T ′′

Γ � T ≤ T ′′

� Γ ctx s1 ≤ s2

Γ � s1 ≤ s2

Γ � T = T ′ : s Γ � U ≤ U ′

Γ � Πx : T . U ≤ Πx : T ′ . U ′

Equality rules

Γ � M : T
Γ � M = M : T

Γ � M = M ′ : T Γ � M ′ = M ′′ : T

Γ � M = M ′′ : T

Γ � M = M ′ : T

Γ � M ′ = M : T

Γ � M = M ′ : T Γ � T ≤ T ′

Γ � M = M ′ : T ′

Γ � T = T ′ : s1 Γ, x : T � U = U ′ : s2 (s1, s2, s3) ∈ R

Γ � Πx : T . U = Πx : T ′ . U ′ : s3

Γ � T = T ′ : s Γ, x : T � M = M ′ : U

Γ � λx : T . M = λx : T ′ . M ′ : Πx : T . U

Γ � M = M ′ : Πx : T . U Γ � N = N ′ : T

Γ � MN = M ′N ′ : U{x := N}
Γ � Πx : T . U : s Γ, x : T � M : U Γ � N : T

Γ � (λx : T . M)N = M{x := N} : U{x := N}

Γ � T : Prop Γ � M : T Γ � M ′ : T

Γ � M = M ′ : T

Fig. 1. Typing rules of CCω
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To each stack π ∈ Π we associate a constant kπ ∈ C in such a way that (1)
the correspondence π �→ kπ is injective, and (2) the set of all c �= kπ (for all
π ∈ Π) is still a denumerably infinite subset of C.

In what follows, we call a quasi-proof any closed term containing none of the
constants kπ (π ∈ Π). Finally, we take a fresh constant cc ∈ C (‘call/cc’)3 such
that cc �= kπ for all π ∈ Π , which we reserve to realise Peirce’s law.

Processes are then defined as pairs formed by a closed term and a stack:

Processes p, q ::= t � π (t ∈ Λ, π ∈ Π)

2.2 Evaluation and Realisability

Processes are equipped with a binary relation of one step evaluation, written
p 0 p′, which is defined by the following rules:

λξ . t � u · π 0 t{ξ := u} � π cc � t · π 0 t � kπ · π
tu � π 0 t � u · π kπ � t · π′ 0 t � π

The definition of a realisability model based on the language λc (for second-
order arithmetic or for CCω) is parameterised by a fixed set of processes ⊥⊥ that
we assume to be saturated, in the sense that:

p 0 p′ and p′ ∈ ⊥⊥ imply p ∈ ⊥⊥ (for all p, p′)

Intuitively, ⊥⊥ represents a set of accepting processes (w.r.t. some correctness
criterion), and the condition of saturation expresses that each processes that
evaluates to an accepting process is itself an accepting process. A typical candi-
date for ⊥⊥ is the set ⊥⊥0 of all terminating processes defined by:

⊥⊥0 = {p | ∃p′ (p 0∗ p′ ∧ p′ �0)} .

In classical realisability, sets of stacks are used as falsity values (that is, as
sets of potential refutations). Each falsity value S ⊂ Π defines by orthogonality
a truth value written S⊥⊥ and defined by

S⊥⊥ = {t ∈ Λ | ∀π ∈ S t � π ∈ ⊥⊥} .

In section 4, we will construct a model where all the objects are annotated with
falsity values, using a structure of Π-set.

3 The Π-Set Structure

3.1 Definition

Definition 1 (Π-set). A Π-set is a pair X = 〈|X |,⊥X〉 formed by a set |X |
(called the carrier of X) equipped with a binary relation ⊥X ⊂ |X | ×Π (called
the local orthogonality relation of X).
3 From the Scheme operator ‘call-cc’ (call with current continuation).
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Intuitively, the binary relation x ⊥X π expresses that the stack π is an attempt
to refute (or to attack, or to falsify) the denotation x ∈ |X |. Given an element
x ∈ |X |, we write x⊥X = {π | x ⊥X π} the orthogonal of x w.r.t. X . From this
we define the local realisability relation t �X x by setting

t �X x iff ∀π (x ⊥X π ⇒ t � π ∈ ⊥⊥)
iff t ∈ (x⊥X )⊥⊥

for all t ∈ Λ and x ∈ |X |.

Remark. Unlike ω-sets, we do not require that each element ofX is realised by at
least a quasi-proof—we do not even require that each element ofX has a realiser.
However, all the elements of the carrier have realisers as soon as the set ⊥⊥ is
inhabited: given a fixed process t0 � π0 ∈ ⊥⊥, it is easy to check that the term
kπ0t0 is orthogonal to any stack (w.r.t. ⊥⊥), and thus realises any denotation.

Coarse Π-sets. We say that a Π-set X is coarse when ⊥X= ∅ (i.e. when the
orthogonality relation on X is empty). By duality, we get t �X x for all t ∈ Λ
and x ∈ |X |, which means that any term realises any element of the carrier of X .

Notice that any set X can be given the structure of a coarse Π-set simply by
taking |X | = X and 4X= ∅.

Pointed Π-sets. In many situations, it is desirable to exclude the empty Π-set
and to work only with Π-sets whose carrier is inhabited. To avoid the cost of
introducing the axiom of choice in the meta-theory (typically to ensure that the
Cartesian product of a family of inhabited Π-sets is inhabited), we will only
consider Π-sets with a distinguished element of the carrier, that is: pointed Π-
sets. Formally, a pointed Π-set is a triple X = 〈|X |,⊥X , εX〉 where 〈|X |,⊥X〉 is
a Π-set and where εX ∈ |X |.

3.2 Cartesian Product of a Family of Π-Sets

Let (Yx)x∈|X| be a family of Π-sets indexed by the carrier of a Π-set X . The
Cartesian product of the family (Yx)x∈|X| is the Π-set written Πx :X .Yx and
defined by:

|Πx :X .Yx| =
∏

x∈|X|
|Yx| and f⊥Πx:X.Yx =

⋃

x∈|X|

(
(x⊥X )⊥⊥ · (f(x)⊥Yx )

)

for all f ∈ |Πx :X .Yx|. Moreover if Yx is a pointed Π-set for all x ∈ |X |, then
the product Πx :X .Yx can be given the structure of a pointed Π-set by setting

εΠx :X .Yx = (x ∈ |X | �→ εYx) .

Fact 1. If Yx is a coarse Π-set (resp. a coarse pointed Π-set) for all x ∈ |X |,
then Πx :X .Yx is a coarse Π-set (resp. a coarse pointed Π-set).

In section 4 we will interpret the sorts Prop, Typei by coarse pointed Π-sets;
hence the fact above will automatically imply that more generally, all types of
predicates will be interpreted by coarse pointed Π-sets.
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3.3 Degenerated Π-Sets

A Π-set is said to be degenerated when its carrier is a singleton: |X | = {εX}.
(In this case we can always consider X as a pointed Π-set by taking εX as the
unique element of its carrier.) A degenerated Π-set X is characterised by its
unique element εX and by the set of stacks ε⊥X

X that are orthogonal to this
element, which set of stacks will be written X⊥ (= ε⊥X

X ).

Fact 2 (Product of degenerated Π-sets). If Yx is a degenerated Π-set for
all x ∈ |X |, then the Π-set Πx :X .Yx is degenerated too, and we have

(Πx :X .Yx)⊥ =
⋃

x∈|X|

(
(x⊥X )⊥⊥ · Y ⊥x

)

Moreover, if the Π-set X is degenerated, then the Cartesian product Πx :X .Yx
is non-dependent and (Πx :X .Yx)⊥ = (X → Y )⊥ = (X⊥)⊥⊥ · Y ⊥.

In what follows, degenerated Π-sets will be used to interpret propositions.

3.4 Subtyping

Given two Π-sets X and X ′, we write X ≤ X ′ (X is a subtype of X ′) when

|X | ⊆ |X ′| and x⊥X ⊇ x⊥X′ for all x ∈ |X | .

(Notice that the reverse inclusion above is necessary to ensure that t �X x
implies t �X′ x for all t ∈ Λ and x ∈ |X |.) When both X and X ′ are pointed
Π-sets, we also require that: εX′ = εX .

4 Constructing the Model

In what follows, we work in ZF set theory extended with an axiom expressing
the existence of infinitely many inaccessible cardinals to interpret the hierarchy
of predicative universes.

4.1 An Alternative Encoding of Functions

To achieve proof-irrelevance in the model, we will interpret all proof-objects by
a single value written • and all propositions by degenerated Π-sets based on the
singleton {•}. Since we want to keep the property of closure under Cartesian
products (Fact 2), it is necessary to identify all constant functions (x ∈ D �→ •)
for the proof-object • itself. For that, we adopt a set-theoretic encoding of func-
tions (proposed by [1] and inspired from the notion of trace in domain theory)
in which functions are represented not as set of pairs 〈x, y〉 such that y = f(x),
but as set of pairs 〈x, z〉 such that z ∈ f(x).



Classical Program Extraction in the Calculus of Constructions 321

Formally, we introduce the following abbreviations:

f function ≡ ∀p∈ f ∃x ∃y p = 〈x, y〉
(x ∈ D �→ Ex) = {〈x, z〉 | x ∈ D ∧ z ∈ Ex}

f(x) = {z | ∃x 〈x, z〉 ∈ f}

This encoding is sound in the sense that given a function f = (x ∈ D �→ Ex),
we have f(d) = Ed for all d ∈ D. However, the domain information is partially
lost since the encoding keeps no track of elements of the domain mapped to the
empty set. We can only define the support of a function

supp(f) = {x | ∃z 〈x, z〉 ∈ f} .

Apart from this (minor) difference, this alternative encoding of functions can be
used the same way as the traditional encoding. From now on we consider that
functions in the model are represented in this way, and we take • = ∅ so that
the equality (x ∈ D �→ •) = • now holds for all D.

4.2 Interpreting Sorts

Let (λi)i≥1 be an increasing sequence of inaccessible cardinals and set:

U0 = {{•}} ×P({•} ×Π)× {•}

Ui =
⋃

S∈Vλi
s0∈S

{S} ×P(S ×Π)× {s0} (⊂ Vλi)

By definition, U0 is the set of all degenerated pointed Π-sets based on the sin-
gleton {•} whereas Ui (i ≥ 1) is the set of all pointed Π-sets whose (nonempty)
carrier belongs to Vλi (i.e. the ith ZF-universe). Each set of Π-sets Ui (i ≥ 0)
can be given in turn the structure of a coarse pointed Π-set U ′i by setting:

U ′0 =
〈
U0, ∅, 〈{•}, ∅, •〉

〉
and U ′i = 〈Ui, ∅, U ′i−1〉 for i ≥ 1 .

Finally, the domain of all denotations M is taken as the union of all carriers of
the Π-sets in the universes Ui: M =

⋃
i∈ω

⋃
X∈Ui

|X |.

Fact 3 (Closure under Cartesian product). For all i ≥ 1:

1. If X ∈ Ui and Yx ∈ U0 for all x ∈ |X |, then Πx :X .Yz ∈ U0;
2. If X ∈ Ui and Yx ∈ Ui for all x ∈ |X |, then Πx :X .Yz ∈ Ui.

4.3 The Interpretation Function

A valuation in M is a partial function ρ : X → M (writing X the set of all
variables) whose domain dom(ρ) ⊂ X is finite. (Here, it is more convenient to
keep the traditional set-theoretic encoding of functions to represent valuations.)
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The set of all valuations is written ValM. Given a valuation ρ, a variable x ∈ X
and a value v ∈ M, we write (ρ, x← v) the valuation defined by

(ρ, x← v)(x) = v and (ρ, x← v)(y) = ρ(y) (y ∈ dom(ρ) \ {x})
To each term M we associate a partial function �M� : ValM ⇀M which is

inductively defined on M by the equations:

�x�ρ = ρ(x) �Πx : T . U�ρ = Πv : �T �ρ . �U�ρ;x←v (product of Π-sets)
�Prop�ρ = U ′0 �λx : T .M�ρ = (v ∈ |�T �ρ| �→ �M�ρ;x←v)

�Typei�ρ = U ′i �MN�ρ = �M�ρ(�N�ρ)
Since the function ρ �→ �M�ρ is partial, it is important to precise when the
denotation �M�ρ is defined:

– �x�ρ is defined when x ∈ dom(ρ);
– �Prop�ρ and �Typei�ρ are always defined;
– �Πx :T . U�ρ is defined when

• �T �ρ is defined, and it is a pointed Π-set,
• For all v ∈ |�T �ρ|, �U�ρ,x←v is defined, and it is a pointed Π-set,
• Πv : �T �ρ . �U�ρ;x←v is an element of M;

– �λx : T .M�ρ is defined when
• �T �ρ is defined, and it is a pointed Π-set,
• For all v ∈ |�T �ρ|, �M�ρ,x←v is defined,
• (v ∈ |�T �ρ| �→ �U�ρ;x←v) is an element of M;

– �MN�ρ is defined when
• �M�ρ and �N�ρ are defined,
• �M�ρ is a function, and �M�ρ(�N�ρ) is an element of M.

The interpretation function is extended to all contexts by setting:

�Γ � =
{
ρ ∈ ValM | ∀(x : T ) ∈ Γρ(x) ∈ |�T �ρ|

}

4.4 Soundness

Definition 2 (Soundness conditions).

1. A typing judgement Γ 4 M : T is sound w.r.t. M if for all ρ ∈ �Γ �:
– The denotations �M�ρ and �T �ρ are defined;
– �T �ρ is a Π-set; and
– �M�ρ ∈ |�T �ρ|.

2. A subtyping judgement Γ 4 T ≤ T ′ is sound w.r.t. M if for all ρ ∈ �Γ �:
– The denotations �T �ρ and �T ′�ρ are defined;
– �T �ρ and �T ′�ρ are Π-sets;
– �T �ρ ≤ �T ′�ρ.

3. An equality judgement Γ 4 M = M ′ : T is sound w.r.t. M if for all ρ ∈ �Γ �:
– The denotations �M�ρ, �M ′�ρ and �T �ρ are defined;
– �T �ρ is a Π-set; and
– �M�ρ = �M ′�ρ ∈ |�T ′�ρ|.

Proposition 1 (Soundness). If a typing judgement, a subtyping judgement or
an equality judgement is derivable (Fig. 1), then it is sound w.r.t. M.

Proof. By induction of the derivation of the judgement. ��
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4.5 Adequacy

The basic extraction scheme To each (raw-)term M of CCω we associate a
term M∗ of λc which is inductively defined from the equations

x∗ = x s∗ = (Πx :T . U)∗ = λz . z (or any quasi-proof)
(λx : T .M)∗ = λx .M∗ (MN)∗ = M∗N∗

Intuitively, this extraction function erases all non-computational information
related to types, but preserves all the computational contents of proof-terms.

Substitutions. A substitution is a partial function σ : X �→ Λ whose domain
dom(σ) ⊂ X is finite. Given an open term t of the λc-calculus and a substitu-
tion σ, we write t[σ] the result of applying the substitution σ to t.

Let Γ be a context, ρ a valuation and σ a substitution. We say that σ realises
ρ in Γ and write σ �Γ ρ when

1. dom(σ) = dom(Γ )
2. ρ ∈ �Γ �
3. For all (x : T ) ∈ Γ : σ(x) ��T �ρ

ρ(x)

We can now extend the property of adequacy of second-order arithmetic [10]
to CCω as follows:

Proposition 2 (Adequacy). If Γ 4 M : T , then for all valuations ρ ∈ Γ and
for all substitutions σ such that σ �Γ ρ, we have

M∗[σ] ��T �ρ
�M�ρ .

Proof. By induction of the derivation of the judgement. ��

In particular, when the judgement 4 M : T is derivable in the empty context,
the extracted term M∗ realises the denotation of M : M∗ ��T � �M�.

5 Extensions of the Formalism

5.1 Peirce’s Law and the Excluded Middle

Let us now extend CCirr
ω with a new constant

peirce : ΠA,B : Prop . (((A→ B)→ A) → A)

that we interpret in the model M as �peirce�ρ = •. We then extend the basic
extraction scheme by setting peirce∗ = λ . λ . cc and check that this extension
is adequate in the sense of Prop. 2:

Fact 4. peirce∗ ∈ (�ΠA,B : Prop . (((A→ B)→ A) → A)�⊥)⊥⊥.

From this extension of the calculus, it is easy to derive the law of excluded
middle ΠA : Prop . (A ∨ ¬A) at the level of propositions (defining disjunction
and negation by the mean of standard second-order encodings).
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Remark. In the source calculus (CCirr
ω ), it is not necessary to endow the extra

constant peirce with specific equality rules, since the rule of proof-irrelevance
already performs all possible identifications at the level of proof-terms. In the
target calculus (λc), the constant peirce is extracted to the λc-term λ . λ . cc that
evaluates as expected, by consuming two computationally irrelevant arguments
(corresponding to types) before capturing the current continuation.

5.2 Decomposing the Propositional Dependent Product

In intuitionistic and classical realisability [10], (non relativised) first- and second-
order quantification is usually interpreted parametrically, that is, as an intersec-
tion (or as a union on the side of stacks). In CCirr

ω , universal quantification is
represented by a dependent-product Πx :T . U(x), that is, by a type of functions
taking a value x : T and returning a proof of U(x).

To bridge both interpretations of universal quantification, we first extend the
formalism with three new syntactic constructs, namely:

– An intersection type binder ∀x : T . U corresponding to the parametric in-
terpretation of the universal quantification. This construction is exactly the
implicit dependent product of the implicit calculus of constructions [15], but
here restricted to propositions.

– A construction M ∈ T representing the propositional contents of the typing
judgement M : T . As we shall see, the construction M ∈ T represents the
proposition whose proofs are the realisers of the term M in the type T .

– A constant � representing the proposition realised by all λ-terms.

Terms T, U ::= · · · | ∀x :T . U | M ∈ T | �

These new syntactic constructs that we interpret in M by

�∀x :T . U�ρ =
〈
{•}, {•} ×

⋃

v∈�T �ρ

�U�⊥ρ,x←v, •
〉

�M ∈ T �ρ =
〈
{•}, {•} × �M�⊥�T �ρ

ρ , •
〉 ���ρ = 〈{•}, ∅, •〉

come with typing, subtyping and equality rules that are given in Fig. 2.

Fact 5. The typing rules, subtyping rules and equality rules of Fig. 2 are sound
w.r.t. the interpretation of the constructs ∀x :T . U , M ∈ T and � in M.

In the extended formalism, the propositional dependent product can now be
decomposed in terms of ∀ and ∈ as

Πx :T . U = ∀x :T . ((x ∈ T )→ U)

using the decomposition rule of Fig. 2. Intuitively, this equality rule expresses
that in CCirr

ω , the propositional dependent product corresponds exactly to the
relativised universal quantification in the sense of AF2. In subsection 5.3, we
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Typing rules

Γ, x : T � U : Prop

Γ � ∀x : T . U : Prop
Γ � M : T

Γ � M ∈ T : Prop
� Γ ctx

Γ � � : Prop

Subtyping rules

Γ � T = T ′ : s Γ � U ≤ U ′ Γ � U ′ : Prop

Γ � ∀x : T . U ≤ ∀x : T ′ . U ′

Γ � M : T Γ � T ≤ T ′

Γ � (M ∈ T ) ≤ (M ∈ T ′)

Γ � T : Prop

Γ � T ≤ �

Equality rules

Γ � T = T ′ : s Γ, x : T � U = U ′ : Prop

Γ � ∀x : T . U = ∀x : T ′ . U ′ : Prop

Γ � M = M ′ : T Γ � T = T ′ : s

Γ � (M ∈ T ) = (M ′ ∈ T ′) : Prop

(Decomposition of Π)

Γ, x : T � U : Prop

Γ � Πx : T . U = ∀x : T . (x ∈ T → U) : Prop

Γ � T : s
Γ � Πx : T .� = � : Prop

(Simplification of ∈)

Γ � T : s
Γ � (T ∈ s) = � : Prop

Γ � M : �
Γ � (M ∈ �) = � : Prop

Γ � M : Πx : T . U
Γ � (M ∈ Πx : T . U) = ∀x : T . ((x ∈ T ) → Mx ∈ U) : Prop

Γ � M : ∀x : T . U
Γ � (M ∈ ∀x : T . U) = ∀x : T . (M ∈ U) : Prop

Fig. 2. Typing, subtyping and equality rules of ∀, ∈ and �

will exploit this fact in order to recover the usual interpretation of the numeric
quantification in classical realisability.
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5.3 Adding a Primitive Type of Natural Numbers

Let us now extend CCirr
ω with the following set of typed constants (i ≥ 1):

nat : Type1 0 : nat s : nat→ nat

nat ind : ΠX : nat→Prop . (X0 → Πy : nat . (Xy → X(s y))→ Πx : nat . Xx)
nat reci : ΠX : nat→Typei . (X0→ Πy : nat . (Xy → X(s y))→ Πx : nat . Xx)

The constants nat ind and nat reci (i ≥ 1) respectively implement the induction
principle and (dependently-typed) recursion in Typei.

Interpreting nat. The constant nat is interpreted as the pointed Π-set defined
by |�nat�| = N, ε�nat� = 0, and whose orthogonality relation is given by

n⊥�nat� = �∀X : nat→Prop . (X0→ ∀y : nat . (Xy → X(s y))→ Xx)�⊥x←n

for all n ∈ N. Notice that the definition above is not circular, since the r.h.s.
only depends on the definition of the carrier of nat, but not on its orthogonality
relation. The constants 0 and s are then interpreted as expected.

The interest of this definition is that the proposition x ∈ nat is interpreted
exactly as the relativisation predicate which is traditionally used in second-order
arithmetic to define numeric quantification:

Nat(x) ≡ ∀X : nat→Prop . (X0→ ∀y : nat . (Xy → X(s y))→ Xx)

Fact 6. The following equality rule is sound in M:

Γ 4 M : nat
Γ 4 (M ∈ nat) = Nat(M) : Prop

Combining the latter with the decomposition of the dependent product (cf sub-
section 5.2) we get the equality Πx : nat . P (x) = ∀x : nat . (Nat(x) → P (x))
expressing that the PTS-style quantification Πx : nat . P (x) is interpreted in M
exactly the same way as the numeric quantification in classical realisability [10].

Interpreting nat ind and nat reci. The constant nat ind is interpreted as the proof
object • whereas the constants nat reci are interpreted the obvious way (i.e. as
the corresponding set-theoretic recursors in the universes Ui). From the latter
definition, it is immediate that:

Fact 7. The following equality rules are sound in M:

Γ 4 P : nat→ Typei Γ 4 N : nat
Γ 4 M0 : P 0 Γ 4 M1 : Πp : nat . P p→ P (s p)

Γ 4 nat reci P M0M1 0 = M0 : P 0
Γ 4 nat reci P M0M1 (sN) = M1N (nat reci P M0M1N) : P (sN)
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Extraction. We finally extend the extraction mechanism to the new constants
nat, 0, s, nat ind and nat reci by setting:

nat∗ = λz . z (or any quasi-proof)
0∗ = λxf . x s∗ = λnxf . f(nxf) nat rec∗i = nat ind∗

nat ind∗ = λ xfn . n (λz . z 0∗x) (λp . p (λmyz . z (s∗m) (fmy))) (λxy . y)

Proposition 3. The extraction scheme extended to the constants nat, 0, s,
nat ind and nat reci is adequate w.r.t. M (in the sense of Prop. 2).
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Background. It is commonly agreed that the success of future proof assistants
will rely on their ability to incorporate computations within deduction in order
to mimic the mathematician when replacing the proof of a proposition P by
the proof of an equivalent proposition P’ obtained from P thanks to possibly
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The proof-checker, also called the kernel of the proof assistant, implements the
inference and deduction rules of the logic on top of a term manipulation layer.
Trusting the kernel is vital since the mathematical correctness of a proof devel-
opment relies entirely on the kernel.

The (intuitionist) logic on which Coq is based is the Calculus of Constructions
(CC) of Coquand and Huet [2], an impredicative type theory incorporating poly-
morphism, dependent types and type constructors. As other logics, CC enjoys
a computation mechanism called cut-elimination, which is nothing but the β-
reduction rule of the underlying λ-calculus. But unlike logics without dependent
types, CC enjoys also a powerful type-checking rule, called conversion, which in-
corporates computations within deduction, making decidability of type-checking
a non-trivial property of the calculus.

The traditional view that computations coincide with β-reductions suffers
several drawbacks. A methodological one is that the user must encode other
forms of computations as deduction, which is usually done by using appropriate,
complex tactics. A practical one is that proofs become much larger than neces-
sary, up to a point that they cannot be type-checked anymore. These questions
become extremely important when carrying out complex developments involv-
ing a large amount of computation as the formal proof of the four colour (now
proof-checked) theorem completed by Gonthier and Werner using Coq [3].

The Calculus of Inductive Constructions of Coquand and Paulin was a first
attempt to solve this problem by introducing inductive types and the associated
elimination rules [4]. The recent versions of Coq are based on a slight general-
ization of this calculus [5]. Besides the β-reduction rule, they also include the
so-called ι-reductions which are recursors for terms and types. While the kernel
of CC is extremely compact and simple enough to make it easily readable -hence
trustable-, the kernel of CIC is much larger and quite complex. Trusting it would
require a formal proof, which was done once [6]. Updating that proof for each
new release of the system is however unrealistic. CIC does not solve our prob-
lem, though, since such a simple function as reverse of a dependent list cannot
be defined in CIC because a :: l and l :: a, assuming :: is list concatenation and
the element a can be coerced to a list of length 1, have non-convertible types
list(n+ 1) and list(1 + n).

A more general attempt was carried out since the early 90’s, by adding user-
defined computations as rewrite rules, resulting in the Calculus of Algebraic
Constructions [7]. Although conceptually quite powerful, since CAC captures
CIC [8], this paradigm does not yet fulfill all needs, because the set of user-
defined rewrite rules must satisfy several strong assumptions. No implementation
of CAC has indeed been released because making type-checking efficient would
require compiling the user-defined rules, a complex task resulting in a kernel too
large to be trusted anymore.

The proof assistant PVS uses a potentially stronger paradigm than Coq by
combining its deduction mechanism1 with a notion of computation based on the

1 PVS logic is not based on Curry-Howard and proof-checking is not even decidable
making both frameworks very different and difficult to compare.
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powerful Shostak’s method for combining decision procedures [9], a framework
dubbed little proof engines by Shankar [10]: the little proof engines are the de-
cision procedures, required to be convex, combined by Shostak’s algorithm. A
given decision procedure encodes a fixed set of axioms P . But an important ad-
vantage of the method is that the relevant assumptions A present in the context
of the proof are also used by the decision procedure to prove a goal G, and
become therefore part of the notion of computation. For example, in the case
where the little proof engines is the congruence closure algorithm, the fixed set
of axioms P is made of the axioms for equality, A is the set of algebraic ground
equalities declared in the context, while the goal G is an equality s = t between
two ground expressions. The congruence closure algorithm will then process A
and s = t together in order to decide whether or not s = t follows from P ∪A.
In the Calculus of Constructions, this proof must be constructed by a specific
tactic called by the user, which applies the inference rules of CC to the axioms
in P and the assumptions in A, and becomes then part of the proof term being
built. Reflexion techniques allow to omit checking this proof term by proving
the decision procedure itself, but the soundness of the entire mechanism cannot
be guaranteed [11].

Two further steps in the direction of integrating decision procedures into the
Calculus of Constructions are Stehr’s Open Calculus of Constructions OCC [12]
and Oury’s Extensional Calculus of Constructions [13]. Implemented in Maude,
OCC allows for the use of an arbitrary equational theory in conversion. ECC
can be seen as a particular case of OCC in which all provable equalities can
be used in conversion, which can also be achieved by adding the extensionality
and Streicher’s axiom [14] to CIC, hence the name of this calculus. Unfortu-
nately, strong normalization and decidability of type checking are lost in ECC
(and OCC), which shows that we should look for more restrictive extensions.
In a preliminary work, we also designed a new, quite restrictive framework, the
Calculus of Congruent Constructions (CCC), which incorporates the congruence
closure algorithm in CC’s conversion [15], while preserving the good properties
of the calculus, including the decidability of type checking.

Problem. The main question investigated in this paper is the incorporation of
a general mechanism calling a decision procedure for solving conversion-goals
in the Calculus of Inductive Constructions which uses the relevant information
available from the current context of the proof.

Contributions. Our main contribution is the definition and the meta-theoretical
investigation of the Calculus of Congruent Inductive Constructions (CCIC),
which incorporates arbitrary first-order theories for which entailment is decid-
able into deduction via an abstract conversion rule of the calculus. A major
technical innovation of this work lies in the computation mechanism: goals are
sent to the decision procedure together with the set of user hypotheses available
from the current context. Our main result shows that this extension of CIC does
not compromise its main properties: confluence, strong normalization, coherence
and decidability of proof-checking are all preserved. Unlike previous calculi, the
main difficulty here is confluence, which led to a complex definition of conversion
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as a fixpoint. As a consequence of this definition, decidability of type checking
becomes itself difficult.

Finally, we explain why the new system is still trustable, by leaving decision
procedures out of its kernel, assuming that each procedure delivers a checkable
certificate which becomes part of the proof. Certificate checkers become them-
selves part of the kernel, but are usually quite small and efficient and can be
added one by one, making this approach a good compromise between CIC and
the aforementioned extensions.

We assume some familiarity with typed lambda calculi [16] and the Calculus
of Inductive Constructions.

2 The Calculus

For ease of the presentation, we restrict ourselves to CCN, a calculus of construc-
tions with a type nat of natural numbers generated by its two constructors 0
and S and equipped with its weak recursor RecWN . The calculus is also equipped
with a polymorphic equality symbol =̇ for which we use here a mixfix notation,
writing t =̇T u (or even t =̇ u when T is not relevant) instead of =̇ T t u.

Let S = {�,�,7} the set of CCN sorts. For s ∈ {�,�},X s denotes a countably
infinite set of s-sorted variables s.t. X � ∩ X� = ∅. The union X � ∪ X� will be
written X . For x ∈ X , we write sx the sort of x. Let A = {u, r} a set of two
constants called annotations, totally ordered by u ≺A r, where r stands for
restricted and u for unrestricted. We use a for an arbitrary annotation.

Definition 1 (Pseudo-terms of CCN). We define the pseudo-terms of CCN

by the grammar rules:

t, T := x ∈ X | s ∈ S | nat | =̇ | 0 | S | +̇ | Eq(t) | t u
| λ[x :a T ]t | ∀(x :a T ). t | RecWN (t, T ){t0, tS}

We use FV(t) for the set of free variables of t.

Definition 2 (Pseudo-contexts of CCN). The typing environments of CCN

are defined as Γ,Δ := [] | Γ, [x :a T ] s.t. a variable cannot appear twice. We use
dom(Γ ) for the domain of Γ and xΓ for the type associated to x in Γ .

Remark that in our calculus, assumptions stored in the proof context always
come along with an annotation used to control whether they can be used (in
case the annotation is r) or not in a conversion goal. We will later point out why
this is necessary.

Definition 3 (Syntactic classes). The pairwise disjoint syntactic classes of
CCN, called objects (O), predicates or types (P), kinds (K), externs (E) and
7 are defined in Figure 1.

This enumeration defines a postfixed successor function +1 on classes (O+1 =
P, P + 1 = K, . . . Δ + 1 =⊥) . We also define Class(t) = D if t ∈ D and
D ∈ {O,P ,K, E ,7} and Class(t) =⊥ otherwise.
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O := X � | 0 | S | +̇ | OO | OP | [λX � :a P ]O |
:= [λX� :a K]O | RecW

N (O, ·){O,O}

P := X� | nat | P O | P P | [λX � :a P ]P | =̇ |
:= [λX� :a K]P | (∀X � :a P)P | (∀X� :a K)P

K := � | KO | KP | [λX � :a P ]K |
:= [λX� :a K]K | (∀X � :a P)K | (∀X� :a K)K

E := � | (∀X � :a P)E | (∀X� :a K)E
� := �

Fig. 1. CCN terms classes

Our typing judgments are classically written Γ 4 t : T , meaning that the
well formed term t is a proof of the proposition T under the assumptions in
the well-formed environment Γ . Typing rules are those of CIC restricted to the
single inductive type of natural numbers, with one exception, [Conv], based on
an equality relation called conversion defined in section 2.1.

Definition 4 (Typing). Typing rules of CCN are defined in Figure 2.

2.1 Computation by Conversion

Our calculus has a complex notion of computation reflecting its rich structure
made of three different ingredients, the typed lambda calculus, the type nat with
its weak recursor and the Presburger arithmetic.

Our typed lambda calculus comes along with the β-rule. The η-rule raises
known technical difficulties, see [17].

The type nat is generated by the two constructors 0 and S whose typing rules
are given in Figure 2. We use RecWN for its weak recursor whose typing rule is
given in Figure 2 as well. Following CIC’s tradition, we separate their arguments
into two groups, using parentheses for the first two, and curly brackets for the
two branches. The computation rules of nat are given below:

Definition 5 (ι-reduction). The ι-reduction is defined by the following rewrit-
ing system:

RecWN (0, Q){t0, tS} →ι t0

RecWN (S t, Q){t0, tS} →ι tS t (RecWN (t, Q){t0, tS})
where t0, tS ∈ O.

These rules are going to be part of the conversion ∼Γ . Of course, we do not want
to type-check terms at each single step of conversion, we want to type-check only
the starting two terms forming the equality goal in [Conv]. But intermediate
terms could then be non-typable and strong normalization be lost.
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[Axiom-1]

� � : �
[Axiom-2]

� � : �

[=̇-Intro]

� =̇ : ∀(T :u �). T → T → �

[Product]

Γ � T : sT Γ, [x :a T ] � U : sU

Γ � ∀(x :a T ). U : sU

[Lamda]

Γ � ∀(x :a T ). U : s Γ, [x :a T ] � u : U

Γ � λ[x :a T ]u : ∀(x :a T ). U

[Weak]

Γ � V : s Γ � t : T s ∈ {�, �} x ∈ X s − dom(Γ )

Γ, [x :a V ] � t : T

[Var]

x ∈ dom(Γ ) Γ � xΓ : sx

Γ � x : xΓ

[App]

Γ � t : ∀(x :a U). V Γ � u : U
if a = r and U →∗

β t1 =̇T t2 with t1, t2 ∈ O
then t1 ∼Γ t2 must hold

Γ � t u : V {x �→ u}

[0-Intro]

� 0 : nat
[S-Intro]

� S : nat → nat

[Nat]

� nat : �
[+̇-Intro]

� +̇ : nat → nat→ nat

[Eq-Intro]

Γ � t1 : T Γ � t2 : T
Γ � p : ∀(P : T → �). P t1 → P t2

Γ � Eq(p) : t1 =̇T t2

[ι-Elim]

Γ � t : nat Γ � Q : nat → � Γ � f0 : nat
Γ � fS : ∀(n :u nat). Q n → Q (Sn)

Γ � RecW
N (t, Q){f0, fS} : Q t

[Conv]

Γ � t : T Γ � T ′ : s′ T ∼Γ T ′

Γ � t : T ′

Fig. 2. Typing judgment of CCN

The constructors 0 and S, as well as the additional first-order constant +̇ are
also used to build up expressions in the algebraic world of Presburger arithmetic,
in which function symbols have arities. We therefore have two different possible
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views of terms of type nat, either as a term of the calculus of inductive construc-
tions, or as an algebraic term of Presburger arithmetic. We now define precisely
this algebraic world and explain in detail how to extract algebraic information
from arbitrary terms of CCN.

Let T be the theory of Presburger arithmetic defined on the signature Σ =
{0, S( ), + } and Y a set of variables distinct from X . Note that we syntactically
distinguish the algebraic symbols from the CCN symbols by using a different font
(0 and S for the algebraic symbols, 0 and S for the constructors).

We write T � F if F is a valid formula in T , and T , E � F for T � E ⇒ F .

Definition 6 (Algebraic terms). The set Alg of CCN algebraic terms is the
smallest subset of O s.t. i) X � ⊆ Alg, ii) 0 ∈ Alg, iii) ∀t ∈ CCN.S t ∈ Alg,
iv) ∀t, u ∈ CCN. t +̇ u ∈ Alg.

Definition 7 (Algebraic cap and aliens). Given a relation R on CCN, let R
be the smallest congruence on CCN containing R, and πR a function from CCN

to Y ∪ X � such that t R u ⇐⇒ πR(t) = πR(u).

The algebraic cap of t modulo R, capR(t), is defined by:

– capR(0) = 0, capR(Su) = S(capR(u)), capR(u +̇ v) = capR(u) + capR(v),
– otherwise, capR(t) = t if t ∈ X ∗ and else πR(t).

We call aliens the subterms of t abstracted by a variable in Y.

Observe that a term not headed by an algebraic symbol is abstracted by a
variable from our new set of variables Y in such a way that R-equivalent terms
are abstracted by the same variable.

We can now glue things together to define conversion.

Definition 8 (Conversion relation). The family {∼Γ}Γ of Γ -conversions is
defined by the rules of Figure 3.

This definition is technically complex.
Being a congruence,∼Γ includes congruence rules. However, all these rules are

not quite congruence rules since crossing a binder increases the current context Γ
by the new assumption made inside the scope of the binding construct, resulting
in a family of congruences. More questions are raised by the three different kinds
of basic conversions.

First, ∼Γ includes the rules →β and →ι of CCN. Unlike the beta rule, →ι

interacts with first-order rewriting, and therefore the Conv rule of Figure 2
cannot be expressed by T ↔∗

βι∼Γ↔∗
βι T

′ as one would expect.
Second, ∼Γ includes the relevant assumptions grabbed from the context, this

is rule Eq. These assumptions must be of the form [x :r T ], with the appropri-
ate annotation r, and T must be an equality assumption or otherwise reduce to
an equality assumption. Note that we use only →β here. Using ∼Γ recursively
instead is indeed an equivalent formulation under our assumptions. Without
annotations, CCN does not enjoy subject reduction. Generating appropriate an-
notations is discussed in section 4.
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[βι]
t ↔∗

βι u

t ∼Γ u
[Eq]

[x :r T ] ∈ Γ T →∗
β t1 =̇ t2 t1, t2 ∈ O

t1 ∼Γ t2

[Ded]

t1, t2 ∈ O
T , {cap∼Γ

(u1) = cap∼Γ
(u2) | u1 ∼Γ u2} � cap∼Γ

(t1) = cap∼Γ
(t2)

t1 ∼Γ t2

[Sym]

t ∼Γ u

u ∼Γ t
[Trans]

t ∼Γ u u ∼Γ v

t ∼Γ v

[CCN-Eq]

t ∼Γ u

Eq(t) ∼Γ Eq(u)
[App]

t1 ∼Γ t2 u1 ∼Γ u2

t1 u1 ∼Γ t2 u2

[Prod]

T ∼Γ U t ∼Γ,[x:aT ] u b � a

∀(x :b T ). t ∼Γ ∀(x :b U). u
[Lam]

T ∼Γ U t ∼Γ,[x:aT ] u b � a

λ[x :b T ]t ∼Γ λ[x :b U ]u

[Elim-W]

t ∼Γ u P ∼Γ Q t0 ∼Γ u0 tS ∼Γ uS

RecW
N (t, P ){t0, tS} ∼Γ RecW

N (u, Q){u0, uS}

Fig. 3. Conversion relation ∼Γ

Third, with rule [Ded], we can also generate new assumptions by using Pres-
burger arithmetic. This rule here uses the property that two algebraic terms are
equivalent in ∼Γ if their caps relative to ∼Γ are equivalent in ∼Γ (the converse
being false). This is so because the abstraction function π∼Γ abstracts equivalent
aliens by the same variable taken from Y. It is therefore the case that deductions
on caps made in Presburger arithmetic can be lifted to deductions on arbitrary
terms via the abstraction function. As a consequence, the two definitions of the
abstraction function π∼Γ and of the congruence ∼Γ are mutually inductive: our
conversion relation is defined as a least fixpoint.

2.2 Two Simple Examples

More automation - smaller proofs. We start with a simple example illustrating
how the equalities extracted from a context Γ can be use to deduce new equalities
in ∼Γ .

Γ = [x y t :u nat], [f :u nat→ nat],
[p1 :r t =̇ 2], [p2 :r f (x +̇ 3) =̇ x +̇ 2],
[p3 :r f (y +̇ t) +̇ 2 =̇ y], [p4 :r y +̇ 1 =̇ x +̇ 2]

From p1 and p4 (extracted from the context by [Eq]), [Ded] will deduce that
y +̇ t ∼Γ x +̇ 3, and by congruence, f (y +̇ t) ∼Γ f (x +̇ 3). Therefore, π∼Γ will
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abstract f(x +̇ 3) and f(y +̇ t) by the same variable z, resulting in two new
equations available for [Ded]: z = x+2 and z+2 = y. Now, z = x+2, z+2 = y
and y+1 = x+ 2 form a set of unsatisfiable equations and we deduce 0 ∼Γ 1 by
the Ded rule: contradiction has been obtained. This shows that we can easily
carry out a proof by contradiction in T .

More typable terms. We continue with a second example showing that the new
calculus can type more terms than CIC. For the sake of this example we assume
that the calculus is extended by dependent lists on natural numbers. We denote
by list (of type nat → �) the type of dependent lists and by nil (of type list 0)
and cons (of type ∀(n : nat). listn → nat → list (Sn)) the lists constructors.
We also add a weak recursor RecWL such that, given P : ∀(n : nat). listn → �,
l0 : P 0nil and lS : ∀(n : nat)(l : listn). P n l → ∀(x : nat). P (Sn) (consnx l),
then RecWL (l, P ){l0, lS} has type P n l for any list l of type listn.

Assume now given a dependent reverse function (of type ∀(n : nat). listn →
listn) and the list concatenation function @ (of type ∀(nn′ : nat), listn →
listn′ → list (n +̇ n′)). We can simply express that a list l is a palindrome: l is
a palindrome if reverse l =̇ l.

Suppose now that one wants to prove that palindromes are closed under sub-
stitution of letters by palindromes. To make it easier, we will simply consider a
particular case: the list l1l2l2l1 is a palindrome if l1 and l2 are palindromes. The
proof sketch is simple: it suffices to apply as many times as needed the lemma
reverse(ll′) = reverse(l′)@ reverse(l) (∗). What can be quite surprising is that
Lemma (∗) is rejected by Coq. Indeed, if l and l′ are of length n and n′, it is
easy to check that reverse(ll′) is of type list (n +̇ n′) and reverse(l′) :: reverse(l)
of type list (n′ +̇ n) which are clearly not βι-convertible. This is not true in our
system: n +̇ n′ will of course be convertible to n′ +̇ n and lemma (∗) is therefore
well-formed. Proving the more general property needs of course an additional
induction on natural numbers to apply lemma (∗) the appropriate number of
times, which can of course be carried out in our system.

Note that, although possible, writing a reverse function for dependent lists in
Coq is not that simple. Indeed, a direct inductive definition of reverse will define
reverse(consn a l), of type list (1+̇n), as reverse(l) @ a, of type list (n+̇1). Coq
will reject such a definition since list (1 +̇n) and list (n +̇ 1) are not convertible.
Figure 4 shows how reverse can be defined in Coq.

3 Metatheorical Properties

Most basic properties of Pure Type Systems (see [18]) are not too difficult. Those
using substitution instances are more delicate. They rely on the annotations dec-
orating the abstractions and products which were introduced for that purpose.

3.1 Stability by Substitution

Assume that Γ is a typing environment of the form Γ1, [p :r a =̇ b], Γ2 (a and b
being two variables of type nat in Γ ). The stability by substitution claims that if
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Coq < Definition reverse: forall (n: nat), (list n) -> (list n) .

Coq < assert (reverse acc : forall (n m : nat),

Coq < list n -> list m -> list (m+n)) .

Coq < refine (fix reverse acc (n m : nat) (from : list n) (to : list m)

Coq < {struct from} : list (m+n) := ) .

Coq < destruct from as [ | n’ v rest ] .

Coq < rewrite <- plus n 0 transparent; exact to .

Coq < rewrite <- plus n Sm transparent;

Coq < exact (reverse acc n’ (S m) rest (cons v to)) .

Coq < intros n l . exact (reverse acc l nil) .

Coq < Defined .

Fig. 4. reverse function is Coq

we have a typing derivation Γ 4 t : T , then we can substitute p by a term P (of
type a =̇ b under Γ1) in this derivation and obtain a proof of Γ1, Γ2θ 4 tθ : Tθ,
where θ is the substitution {p �→ P}. This property can easily be proved for Pure
Type Systems as soon as the conversion relation is itself stable by substitution.
In our example one can easily check that a ∼Γ b, but a ∼Γ1,Γ2θ b will not hold in
general: the assumption a =̇ b has been inlined and thus is no more extractable
by the conversion relation. As a result, we need to strengthen the formulation
of stability by substitution:

Lemma 1. Let Γ = Γ1, [z :a W ], Γ2 and assume that i) T ∼Γ T ′, ii) if a = r
and W →∗

β t1 =̇ t2 then t1 ∼Γ1 t2. Then, Tθ ∼Δ T ′θ where θ = {z �→ w} and
Δ = Γ1, Γ2θ

Corollary 1 (Stability by substitution). Let Γ = Γ1, [z :a W ], Γ2 and as-
sume that i) T ∼Γ T ′ ii) if a = r and W →∗

β t1 =̇ t2 then t1 ∼Γ1 t2. Then,
Δ 4 tθ : Tθ where θ = {z �→ w}, Γ1 4 w : W and Δ = Γ1, Γ2θ.

As usual, the substitutivity lemma is to be used in the proof of subject reduction
(for →βι) to come later. Because it requires a specific typing property for the
equality assumptions annotated by r, we need to ensure this property in the
application case of the coming subject reduction proof. This is indeed the origin
of the similar condition arising in the typing rule [App].

3.2 Conversion as Rewriting

We now turn conversion into a rewriting relation in order to prove that our
system is logically consistent by analyzing a proof in normal form of ∀(x :u �). x.
The notion of a normal proof is of course more complicated than in CIC, since
we must account for the congruence ∼Γ associated with an arbitrary context
Γ . The difficulty is that the set of equalities assumed in a given environment Γ
together with the axioms of the theory T may be inconsistent, making all first-
order terms equal in ∼Γ which could break strong normalization of our rewriting
relation.
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Definition 9 (T -consistent environment). A typing environment Γ is T -
consistent if there exist two terms t, u ∈ O s.t. ¬(t ∼Γ u).

Lemma 2. If Γ is T -consistent then ¬(0 ∼Γ S t) for any term t.

Definition 10 (Weak conversion). We inductively define a family of weak
conversion relations {∼=Γ }Γ as the smallest congruent relation s.t. t ∼=Γ u if
T ,Eq(Γ ) � cap∅(t) = cap∅(u), where Eq(Γ ) = {cap∅(w1) = cap∅(w2) | w1, w2 ∈
O, [x :r w1 =̇ w2] ∈ Γ}.

Definition 11. We inductively define a family {→Γ }Γ of rewriting relations
modulo weak-conversion as the smallest rewriting relations satisfying the rules
of Figure 5.

The first rule shows that rewriting is modulo weak conversion in a consistent
environment. The second equates all object terms when the environment is in-
consistent, replacing them by the new constant •. The others are as expected.

[Rw-Mod]

Γ is T -consistent t ∼=Γ t′ →Γ u′ ∼=Γ u

t →Γ u

[Rw-•]
Γ is T -inconsistent t ∈ O t = •

t →Γ •

[Rw-βι]
t →βι u

t→Γ u
[Rw-Fwd]

t →Δ u Γ →β Δ

t →Γ u

[W-∀]
t →Γ,[x:aT ] u b � a

∀(x :b T ). t →Γ ∀(x :b T ). u

[W-λ]

t →Γ,[x:aT ] u b � a

λ[x :b T ]. t →Γ λ[x :b T ]. u

Fig. 5. Conversion as a rewriting system

Lemma 3. 1. The rewriting relation →Γ is confluent.
2. If t ∼Γ u then t↔∗

Γ u.
3. If t↔∗

Γ u with • �∈ t and • �∈ u then t ∼Γ u.
4. If Γ 4 t : T with Γ T -consistent and t ∼=Γ u, then Γ 4 u : T .

Lemma 4. If Γ 4 t : T and t→Γ u with • �∈ u, then Γ 4 u : T .

Proof. The proof is standard, by induction on the type derivation of the left-
hand side. The interesting case is when a β-reduction applies to the top of a
term of the form (λ[x :a U ]v) w and the typing rule is [App]: we then conclude
by using Lemma 1. Note that the side condition of rule [App] provides us with
the property needed for using Lemma 1.
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Lemma 5. The rewriting relation →Γ is strongly normalizing for well formed
terms.

Proof. The proof is a direct application of proof irrelevance [19], because ∼Γ

is a congruence generated by equalities between object terms, apart from beta-
reduction. What makes this true is that RecWN is a weak recursor, working at the
object level. Including strong elimination rules invalidates this argument. ��

We finally conclude that CCN is consistent:

Theorem 1. There is no proof of 4 t : ∀(x :u �). x.

Proof. Assume that 4 t : 0 =̇ S0 where t is →Γ -normal. Since 0 =̇ S0 is not
convertible to a sort, t cannot be equal to nat, or a sort, or a product. Since
t is necessarily closed, t is not a variable. Moreover, t cannot be of the form
RecWN (u,Q){t0, tS} since t is closed and in →ι-normal form.

If t is an application, it is necessarily of the form c #«u with c ∈ {0,S, +̇, =̇}. By
using inversion it suffices to check that in all these cases, t has a type T which
is not convertible to 0 =̇ S0.

If t = Eq(u), then t has type u =̇ u with u of type nat and u =̇ u convertible
to 0 =̇ S0. Thus 0 ∼[] S0, and T � 0 = 1, which is impossible. ��

3.3 Decidability of Type Checking

Theorem 2. Type checking of CCN is decidable.

Decidability of type checking needs two ingredients. First-of-all, eliminating
[Conv], which is non-structural, by incorporating it to [App]. This is clas-
sical, and it is easy to prove decidability of the transformed set of rules for
type-checking, assuming ∼Γ is decidable.

Deciding ∼Γ is more complex. We cannot use the rewrite system →Γ for that
purpose since the first two rules use the T -consistency of Γ as a prerequisite.
We use instead a saturation based algorithm. The method resembles very much
the one used for combining first-order decision procedures operating on disjoint
alphabets [20,21]. Basic ingredients are: purification of formulas (here equations)
by abstracting aliens by new variables; deriving new equalities among variables
by using the appropriate decision procedure for pure formulas; propagating these
new equalities to the other formulas.

4 Conclusion and Discussion

CCN is an extension of CIC (restricted to the weak elimination rules of the induc-
tive type nat) by a fragment of Presburger arithmetic (without the natural strict
order N) in which conversion incorporates Presburger arithmetic, β-reduction
and higher-order primitive recursion into a single mechanism. We now discuss
in more details how this can be generalized to full CIC, how this can be used in
practice, how useful that is, and whether the obtained kernel is trustable.
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Relevance. Our second example shows very clearly the expressivity of our cal-
culus with respect to CIC. However, what is done here by a typing rule could
be done alternatively in CIC by a tactic. Besides, if one wants to avoid building
a proof term which can be quite large and slow down the type-checker, it is
possible to prove the tactic and then use a reflexion mechanism in order to avoid
type-checking the proof each time the tactic is called. In both cases, however, the
user must call the tactic explicitly. In our approach, this is completely transpar-
ent, and would remain transparent in case of a succession of uses of the decision
procedure separated by eliminations, since conversion incorporates both, or in
case of different decision procedures called successively.

Extension to CIC. Building decision procedures in a type-theoretic framework is
not that easy. The main difficulty lies in the adequate definition of the congruence
∼Γ . Once the definition is obtained, carrying out the technical development is
not too difficult in the case of the pure Calculus of Constructions (the congruence
becomes quite simpler in this case), difficult in the present case of CCN (because
of the presence of the weak recursors for nat), no more difficult when other
decidable theories are introduced such as lists with their associated recursors,
but much harder when including strong elimination rules which interact with the
first-order theories. In this case, it is necessary to block the congruence below
the strong recursor in order to avoid lifting an incoherence from the object level
to the predicate level, which would immediately yield paradoxes [22].

Annotations restriction. One may wonder how annotations can be handled in
practice. As seen, annotations are used to forbid inlining (when a β-redex is
contracted) of equational assumptions which are used by conversion. This could
be seen as a restriction since our calculus, in order to avoid the creation of
problematic β-redexes, forbids in most cases applications of symbols of type
∀(p :r t =̇ u). T .

This restriction can be removed by using the notion of opaque definitions
(as opposed to transparent definitions) of Coq which allows the user to define
symbols that the system cannot inline. In most cases, definitions having a com-
putational behavior (like +̇) are transparent whereas definitions representing
lemmas (like the associativity of +̇) are opaque. This convention is used in the
standard library of Coq.

Returning to our previous example, if the user needs to prove a lemma of
the form ∀(p :r t =̇ u). T , he or she should declare it as an opaque definition
P := λ[p :r t =̇ u]q. The application of P to a term v should then be allowed: the
term P v cannot reduce to q{p �→ v}. Of course, if P is defined transparently,
the application P v has to be forbidden.

Moreover, this gives us a simple heuristic to automatically tag products and
abstractions: r annotation should by used by default when the user is defining
an opaque symbol, whereas u annotation should be used everywhere else.

Arbitrary decision procedures. So far, we have considered only decidable equa-
tional theories. But it is well-known that a decidable theory can always be trans-
formed into a decidable equational theory over the type Bool of truth values
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equipped with its usual operations. This is so because of the decidability as-
sumption.

Type levels equalities. One may wonder whether the conversion relation of CCN

could use type level equalities (or hypotheses of the form P ↔ Q). The answer
seems to be negative: extracting type levels equalities breaks subject reduction
and β-strong normalization (see [13]), two properties needed for the decidability
of our calculus.

Trusting the kernel. Decision procedures require complex coding. It took a lot
of time to get a correct tactic for Presburger arithmetic in Coq. Including a
tactic into the kernel of the system is therefore unrealistic, unless it is itself
proved correct with a trustable proof assistant. On the other hand, most decision
procedures can provide a certificate that is quite compact and can be verified
by a certificate-checker which is usually small, and easy to write and read, and
is therefore a trustable piece of code. The reason is that the procedure searches
for a proof while the certificate-checker verifies that the certificate is correct. A
certificate checker looks indeed like a proof-checker. It is then easy to modify
the conversion rule so as to output a certificate each time a decision procedure
is used. The kernel of CCN should therefore include a certificate-checker for
Presburger arithmetic. In case of CCIC with several decision procedures, the
kernel would include one proof-checker for each decision procedure. Besides, the
process is incremental: the procedures and the associated proof-checkers can be
included one by one, because decision procedures for different inductive types
operate on disjoint vocabularies, hence can be combined [20,21].

An implementation of CCIC has started and should be available soon as a
prototype in a version without certificate generation and checking.
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Abstract. It is well-known that every first-order property on words
is expressible using at most three variables. The subclass of properties
expressible with only two variables is also quite interesting and well-
studied. We prove precise structure theorems that characterize the exact
expressive power of first-order logic with two variables on words. Our
results apply to FO2[<] and FO2[<, Suc], the latter of which includes
the binary successor relation in addition to the linear ordering on string
positions.

For both languages,our structuretheorems show exactlywhatis express-
ible using a given quantifier depth, n, and using m blocks of alternat-
ing quantifiers, for any m ≤ n. Using these characterizations, we prove,
among other results, that there is a strict hierarchy of alternating quanti-
fiers for both languages. The question whether there was such a hierarchy
had been completely open. As another consequence of our structural re-
sults, we show that satisfiability for FO2[<], which is NEXP-complete
in general, becomes NP-complete once we only consider alphabets of a
bounded size.

1 Introduction

It is well-known that every first-order property on words is expressible using at
most three variables [7, 8]. The subclass of properties expressible with only two
variables is also quite interesting and well-studied (Fact 1).

In this paper we prove precise structure theorems that characterize the exact
expressive power of first-order logic with two variables on words. Our results ap-
ply to FO2[<] and FO2[<,Suc], the latter of which includes the binary successor
relation in addition to the linear ordering on string positions.

For both languages, our structure theorems show exactly what is expressible
using a given quantifier depth, n, and using m blocks of alternating quantifiers,
for any m ≤ n. Using these characterizations, we prove that there is a strict
hierarchy of alternating quantifiers for both languages. The question whether
there was such a hierarchy had been completely open since it was asked in [3,
? Supported in part by NSF grant CCF-0514621.
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As another consequence of our structural results, we show that satisfiability
for FO2[<], which is NEXP-complete in general [4], becomes NP-complete once
we only consider alphabets of a bounded size.

Our motivation for studying FO2 on words comes from the desire to un-
derstand the trade-off between formula size and number of variables. This is
of great interest because, as is well-known, this is equivalent to the trade-off
between parallel time and number of processors [6]. Adler and Immerman in-
troduced a game that can be used to determine the minimum size of first-order
formulas with a given number of variables needed to express a given property.
These games, which are closely related to the communication complexity games
of Karchmer and Wigderson [9], were used to prove two optimal size bounds
for temporal logics [1]. Later Grohe and Schweikardt used similar methods to
study the size versus variable trade-off for first-order logic on unary words [5].
They proved that all first-order expressible properties of unary words are already
expressible with two variables and that the variable-size trade-off between two
versus three variables is polynomial whereas the trade-off between three versus
four variables is exponential. They left open the trade-off between k and k + 1
variables for k ≥ 4. While we do not directly address that question here, our
classification of FO2 on words is a step towards the general understanding of the
expressive power of FO needed for progress on such trade-offs.

Our characterization of FO2[<] and FO2[<,Suc] on words is based on the
very natural notion of n-ranker (Definition 5). Informally, a ranker is the position
of a certain combination of letters in a word. For example, .a and /b are 1-rankers
where .a(w) is the position of the first a in w (from the left) and /b(w) is the
position of the first b in w from the right. Similarly, the 2-ranker r2 = .a.c
denotes the position of the first c to the right of the first a, and the 3-ranker,
r3 = .a .c /b denotes the position of the first b to the left of r2. If there is no
such letter then the ranker is undefined. For example, r3(cababcba) = 5 and
r3(acbbca) is undefined.

Our first structure theorem (Theorem 11) says that the properties expressible
in FO2

n[<], i.e. first-order logic with two variables and quantifier depth n, are
exactly boolean combinations of statements of the form, “r is defined”, and
“r is to the left (right) of r′” for k-rankers, r, and k′-rankers, r′, with k ≤ n
and k′ < n. A non-quantitative version of this theorem was previously known
[13].1 Furthermore, a quantitative version in terms of iterated block products of
the variety of semilattices is presented in [16], based on work by Straubing and
Thérien [14].

Surprisingly, Theorem 11 can be generalized in almost exactly the same form
to characterize FO2

m,n[<] where there are at most m blocks of alternating quan-
tifiers, m ≤ n. This second structure theorem (Theorem 17) uses the notion of
(m,n)-ranker where there are m blocks of .’s or /’s, that is, changing direction
in rankers corresponds exactly to alternation of quantifiers. Using Theorem 17
we prove that there is a strict alternation hierarchy for FO2

n[<] (Theorem 20)

1 See item 7 in Fact 1: a “turtle language” is a language of the form “r is defined”,
for some ranker, r.
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but that exactly at most |Σ|+ 1 alternations are useful, where |Σ| is the size of
the alphabet (Theorem 18).

The language FO2[<,Suc] is more expressive than FO2[<] because it allows
us to talk about consecutive strings of symbols2. For FO2[<,Suc], a straightfor-
ward generalization of n-ranker to n-successor-ranker allows us to prove exact
analogs of Theorems 11 and 17. We use the latter to prove that there is also
a strict alternation hierarchy for FO2

n[<,Suc] (Theorem 26). Since in the pres-
ence of successor we can encode an arbitrary alphabet in binary, no analog of
Theorem 18 holds for FO2[<,Suc].

The expressive power of first-order logic with three or more variables on
words has been well-studied. The languages expressible are of course the star-
free regular languages [10]. The dot-depth hierarchy is the natural hierarchy
of these languages. This hierarchy is strict [2] and identical to the first-order
quantifier alternation hierarchy [18, 19].

Many beautiful results on FO2 on words were also already known. The main
significant outstanding question was whether there was an alternating hierarchy.
The following is a summary of the main previously known characterizations of
FO2[<] on words. For a nice survey that discusses all of these characterizations,
and even more, see [15].

Fact 1 [3, 4, 11, 12, 17, 13] Let R ⊆ Σ?. The following conditions are equivalent:

1. R ∈ FO2[<]
2. R is expressible in unary temporal logic
3. R ∈ Σ2 ∩Π2[<]
4. R is an unambiguous regular language
5. The syntactic semi-group of R is a member of DA
6. R is recognizable by a partially-ordered 2-way automaton
7. R is a boolean combination of “turtle languages”

The proofs of our structure theorems are self-contained applications of Ehren-
feucht-Fräıssé games. All of the above characterizations follow from these results.
Furthermore, we have now exactly connected quantifier and alternation depth
to the picture, thus adding tight bounds and further insight to the above results.

For example, one can best understand item 4 above – that FO2[<] on words
corresponds to the unambiguous regular languages – via Theorem 15 which states
that any FO2

n[<] formula with one free variable that is always true of at most
one position in any string, necessarily denotes an n-ranker.

In the conclusion of [13], the authors define the subclasses of rankers with
one and two blocks of alternation. They write that, “. . . turtle languages might
turn out to be a helpful tool for further studies in algebraic language theory.”
We feel that the present paper fully justifies that prediction. Turtle languages
— aka rankers — do provide an exceptionally clear and precise understanding
of the expressive power of FO2 on words, with and without successor.
2 With three variables we can express Suc(x, y) using the ordering: x < y ∧ ∀z(z ≤

x ∨ y ≤ z).

.

Structure Theorem and Strict Alternation Hierarchy for FO2 on Words 345



In summary, our structure theorems provide a complete classification of the
expressive power of FO2 on words in terms of both quantifier depth and al-
ternation. They also tighten several previous characterizations and lead to the
alternation hierarchy results.

We begin the remainder of this extended abstract with a brief review of
logical background including Ehrenfeucht-Fräıssé games, our main tool. In Sect. 3
we formally define rankers and present our structure theorem for FO2

n[<]. The
structure theorem for FO2

m,n[<] is covered in Sect. 4, including our alternation
hierarchy result that follows from it. Sect. 5 extends our structure theorems and
the alternation hierarchy result to FO2[<,Suc]. Finally, we discuss applications
of our structural results to satisfiability for FO2[<] in Sect. 6. The full version
[20] of this paper includes all proofs that had to be left out here due to space
constraints.

2 Background and Definitions

We recall some notation concerning strings, first-order logic, and Ehrenfeucht-
Fräıssé games. See [6] for more details, including the proof of Facts 2 and 3.

Σ will always denote a finite alphabet and ε the empty string. For w ∈ Σ`

and i ∈ [1, `], let wi be the i-th letter of w; and for [a, b] a subinterval of [1, `],
let w[a,b] be the substring wa . . . wb. We identify a word, w ∈ Σ` with the logical
structure, w = ({1, . . . , `}, Qσ, σ ∈ Σ), where (w, i/x) |= Qσ(x) iff wi = σ.

We use FO[<] to denote first-order logic with a binary linear order predicate
<, and FO = FO[<,Suc] for first-order logic with an additional binary succes-
sor predicate. FOk

n refers to the restriction of first-order logic to use at most k
distinct variables, and quantifier depth n. FOk

m,n is the further restriction to for-
mulas such that any path in their parse tree has at most m blocks of alternating
quantifiers, and FOk–ALT [m] =

⋃
n≥m FOk

m,n. We write u ≡2
n v to mean that

u and v agree on all formulas from FO2
n, and u ≡2

m,n if they agree on FO2
m,n.

We assume that the reader is familiar with our main tool: the Ehrenfeucht-
Fräıssé game. In each of the n moves of the game FO2

n(u, v), Samson places
one of the two pebbles pairs, x or y on a position in one of the two words and
Delilah then answers by placing that pebble’s mate on a position of the other
word. Samson wins if after any move, the map from the chosen points in u to
those in v, i.e., x(u) 7→ x(v), y(u) 7→ y(v) is not an isomorphism of the induced
substructures; and Delilah wins otherwise. The fundamental theorem of Ehren-
feucht-Fräıssé games is the following:

Fact 2 Let u, v ∈ Σ?, n ∈ N. Delilah has a winning strategy for the game
FO2

n(u, v) iff u ≡2
n v.

Thus, Ehrenfeucht-Fräıssé games are a perfect tool for determining what
is expressible in first-order logic with a given quantifier-depth and number of
variables. The game FO2

m,n(u, v) is the restriction of the game FO2
n(u, v) in

which Samson may change which word he plays on at most m− 1 times.

.
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3 Structure Theorem for FO2[<]

We define boundary positions that point to the first or last occurrences of a
letter in a word, and define an n-ranker as a sequence of n boundary positions. In
terms of [13], boundary positions are turtle instructions and n-rankers are turtle
programs of length n. The following three lemmas show that basic properties
about the definedness and position of these rankers can be expressed in FO2[<],
and we use these results to prove our structure theorem.

Definition 4. A boundary position denotes the first or last occurrence of a
letter in a given word. Boundary positions are of the form da where d ∈ {., /} and
a ∈ Σ. The interpretation of a boundary position da on a word w = w1 . . . w|w| ∈
Σ? is defined as follows.

da(w) =

{
min{i ∈ [1, |w|] | wi = a} if d = .

max{i ∈ [1, |w|] | wi = a} if d = /

Here we set min{} and max{} to be undefined, thus da(w) is undefined if a
does not occur in w. A boundary position can also be specified with respect to a
position q ∈ [1, |w|].

da(w, q) =

{
min{i ∈ [q + 1, |w|] | wi = a} if d = .

max{i ∈ [1, q − 1] | wi = a} if d = /

Definition 5. Let n be a positive integer. An n-ranker r is a sequence of n
boundary positions. The interpretation of an n-ranker r = (p1, . . . , pn) on a
word w is defined as follows.

r(w) :=


p1(w) if r = (p1)
undefined if (p1, . . . , pn−1)(w) is undefined
pn(w, (p1, . . . , pn−1)(w)) otherwise

Instead of writing n-rankers as a formal sequence (p1, . . . , pn), we often use
the simpler notation p1 . . . pn. We denote the set of all n-rankers by Rn, and the
set of all n-rankers that are defined over a word w by Rn(w). Furthermore, we
set R?n :=

⋃
i∈[1,n]Ri and R?n(w) :=

⋃
i∈[1,n]Ri(w).

Definition 6. Let r be an n-ranker. As defined above, we have r = (p1, . . . , pn)
for boundary positions pi. The k-prefix ranker of r for k ∈ [1, n] is rk :=
(p1, . . . , pk).

Definition 7. Let i, j ∈ N. The order type of i and j is defined as

ord(i, j) =


< if i < j

= if i = j

> if i > j
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Fact 3 Let u, v ∈ Σ? and let m,n ∈ N with m ≤ n. Delilah has a winning
strategy for the game FO2

m,n(u, v) iff u ≡2
m,n v.

.



Lemma 8 (distinguishing points on opposite sides of a ranker). Let n
be a positive integer, let u, v ∈ Σ? and let r ∈ Rn(u) ∩ Rn(v). Samson wins the
game FO2

n(u, v) where initially ord(x(u), r(u)) 6= ord(x(v), r(v)).

Proof. We only look at the case where x(u) ≥ r(u) and x(v) < r(v) since all
other cases are symmetric to this one. For n = 1 Samson has a winning strategy:
If r is the first occurrence of a letter, then Samson places y on r(u) and Delilah
cannot reply. If r marks the last occurrence of a letter in the whole word, then
Samson places y on r(v). Again, Delilah cannot reply with any position and thus
loses.

u

v

rrn−1

x

x

S : y

D : y

The case rn−1(u) < r(u)

For n > 1, we look at the
prefix ranker rn−1 of r. One of
the following two cases applies.

(1) rn−1(u) < r(u), as shown in
Fig. 1. Samson places peb-
ble y on r(u), and Delilah
has to reply with a position
to the left of x(v). She can-
not choose a position in the
interval (rn−1(v), r(v)), be-
cause this section does not contain the letter ur(u). Thus she has to choose a
position left of or equal to rn−1(v). By induction Samson wins the remaining
game.

(2)

u

v

r rn−1

x

x S : y

D : y

The case r(u) < rn−1(u)

r(u) < rn−1(u), as shown in
Fig. 2. Samson places y on
r(v), and Delilah has to re-
ply with a position right of
x(u) and thus right of r(u).
She cannot choose any posi-
tion in (r(u), rn−1(u)), be-
cause this interval does not
contain the letter vr(v), thus
Delilah has to choose a po-
sition right of or equal to rn−1(u). By induction Samson wins the remaining
game. ut

Lemma 9 (expressing the definedness of a ranker). Let n be a positive
integer, and let r ∈ Rn. There is a formula ϕr ∈ FO2

n[<] such that for all
w ∈ Σ?, w |= ϕr ⇐⇒ r ∈ Rn(w).

Proof. Let u, v ∈ Σ? such that r ∈ Rn(u) and r /∈ Rn(v). We show that Samson
wins the game FO2

n(u, v). If r1, the shortest prefix ranker of r, is not defined
over v, the letter referred to by r1 occurs in u but does not occur in v. Thus
Samson easily wins in one move.

Fig. 1.

Fig. 2.
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u

v

ri ri−1

S : x

D : x

ri(v) is undefined

Otherwise we let ri = (p1, . . . , pi) be the
shortest prefix ranker of r that is undefined
over v. Thus ri−1 is defined over both words.
Without loss of generality we assume that
pi = /a. This situation is illustrated in Fig. 3.
Notice that v does not contain any a’s to the
left of ri−1(v), otherwise ri would be defined
over v. Samson places x in u on ri(u), and
Delilah has to reply with a position right of
or equal to ri−1(v). Now Lemma 8 applies
and Samson wins in i− 1 more moves. ut

Lemma 10 (position of a ranker). Let n be a positive integer and let r ∈ Rn.
There is a formula ϕr ∈ FO2

n[<] such that for all w ∈ Σ? and for all i ∈ [1, |w|],
(w, i/x) |= ϕr ⇐⇒ i = r(w).

Proof. Let u, v ∈ Σ?. We show that Samson wins the game FO2
n(u, v) where

initially x(u) = r(u) and x(v) 6= r(v). If r(v) is defined over v, then we can
apply Lemma 8 immediately to get the desired strategy for Samson. Otherwise
we use the strategy from Lemma 9. ut
Theorem 11 (structure of FO2

n[<]). Let u and v be finite words, and let
n ∈ N. The following two conditions are equivalent.

(i) (a) Rn(u) = Rn(v), and,
(b) for all r ∈ R?n(u) and r′ ∈ R?n−1(u), ord(r(u), r′(u)) = ord(r(v), r′(v))

(ii) u ≡2
n v

Notice that condition (i)(a) is equivalent to R?n(u) = R?n(v). Instead of prov
Theorem 11 directly, we prove the following more general version on words
with two interpreted variables.

Theorem 12. Let u and v be finite words, let i1, i2 ∈ [1, |u|], let j1, j2 ∈ [1, |v|],
and let n ∈ N. The following two conditions are equivalent.

(i) (a) Rn(u) = Rn(v), and,
(b) for all r ∈ R?n(u) and r′ ∈ R?n−1(u), ord(r(u), r′(u)) = ord(r(v), r′(v)),

and,
(c) (u, i1/x, i2/y) ≡2

0 (v, j1/x, j2/y), and,
(d) for all r ∈ R?n(u), ord(i1, r(u)) = ord(j1, r(v)) and ord(i2, r(u)) =

ord(j2, r(v))
(ii) (u, i1/x, i2/y) ≡2

n (v, j1/x, j2/y)

Proof. For n = 0, (i)(a), (i)(b) and (i)(d) are vacuous, and (i)(c) is equivalent to
(ii). For n ≥ 1, we prove the two implications individually using induction on n.

We first show “¬(i)⇒ ¬(ii)”. Assuming that (i) holds for n ∈ N but fails for
n+1, we show that (u, i1/x, i2/y) 6≡2

n (v, j1/x, j2/y) by giving a winning strategy
for Samson in the FO2

n game on the two structures. If (i)(c) does not hold, then
Samson wins immediately. If (i)(d) does not hold for n + 1, then Samson wins
by Lemma 8. If (i)(a) or (i)(b) do not hold for n + 1, then one of the following
three cases applies.

ing

Fig. 3.
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(1) There are two n-rankers that don’t agree on their ordering in u and v.
(2) There is an (n + 1)-ranker that is defined over one word but not over the

other.
(3) There is an (n+ 1)-ranker that does not appear in the same order on both

structures with respect to a k-ranker where k ≤ n.
We first look at case (1) where there are two rankers r, r′ ∈ R?n(u) such that

ord(r(u), r′(u)) 6= ord(r(v), r′(v)). Without loss of generality we assume that
r(u) ≤ r′(u) and r(v) > r′(v), and present a winning strategy for Samson in the
FO2

n+1 game. In the first move he places x on r(u) in u. Delilah has to reply
with r(v) in v, otherwise she would lose the remaining n-move game as shown in
Lemma 8. Let r′n−1 be the (n − 1)-prefix-ranker of r′. We look at two different
cases depending on the ordering of r′n−1 and r′.

u

v

r′n−1
r r′ r

S : x

D : xS : y

D : y

Two n-rankers appear in different order
and r′ ends with .

For r′n−1(u) < r′(u), the sit-
uation is illustrated in Fig. 4. In
his second move, Samson places
y on r′(v). Delilah has to re-
ply with a position to the left
of x(u), but she cannot choose
any position from the interval
(r′n−1(u), r′(u)) because it does
not contain the letter vy(v). So
she has to reply with a position
left of or equal to r′n−1(u), and
Samson wins the remaining FO2

n−1 game as shown in Lemma 8.

u

v

r′n−1
r r′ r

S : x

D : x

S : y

D : y

Two n-rankers appear in different order
and r′ ends with /

For r′n−1(u) > r′(u), the sit-
uation is illustrated in Fig. 5. In
his second move, Samson places
pebble y on r′(u), and Delilah
has to reply with a position to
the right of x(v), but she cannot
choose anything from the inter-
val (r′(v), r′n−1(v)) because this
section does not contain the let-
ter uy(u). Thus she has to reply
with a position right of or equal
to r′n−1(v), and Samson wins the remaining FO2

n−1 game as shown in Lemma 8.

Fig. 4 .

Fig. 5 .

If (i) fails but all n-rankers agree on their ordering, then there are two con-
secutive n-rankers r, r′ ∈ Rn(u) with r(u) < r′(u) and a letter a ∈ Σ such
that without loss of generality a occurs in the segment u((r(u),r′(u)) but not in
the segment v(r(v),r′(v)). We describe a winning strategy for Samson in the game
FO2

n+1(u, v). He places x on an a in the segment (r(u), r′(u)) of u, as shown in
Fig. 6. Delilah cannot reply with any- thing in the interval (r(v), r′(v)). If she
replies with a position left of or equal to r(v), then x is on different sides of the
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u

v

r r′

S : x

a

A letter a occurs between n-
rankers r, r ′ inu but not in v

To show (i) ⇒ (ii), we assume (i) for
n + 1, and present a winning strategy
for Delilah in the FO2

n+1 game on the two structures. In his first move Samson
picks up one of the two pebbles, and places it on a new position. Without loss of
generality we assume that Samson picks up x and places it on u in his first move.
If x(u) = r(u) for any ranker r ∈ R?n+1(u), then Delilah replies with x(v) = r(v).
This establishes (i)(c) and (i)(d) for n, and thus Delilah has a winning strategy
for the remaining FO2

n game by induction.
If Samson does not place x(u) on any ranker from R?n+1(u), then we look at

the closest rankers from R?n(u) to the left and right of x(u), denoted by r` and
rr, respectively. Let a := ux(u) and define the (n + 1)-ranker s = (r`, .a). On u
we have r`(u) < s(u) < rr(u). Because of (i)(a) s is defined on v as well, and
because of (i)(b), we have r`(v) < s(v) < rr(v). If y(u) is not contained in the
interval (r`(u), rr(u)), then Delilah places x on s(v), which establishes (i)(c) and
(i)(d) for n. Thus by induction Delilah has a winning strategy for the remaining
FO2

n game.

u

v

r` s rr

y

y

S : x

x and y are in the same section

If both pebbles x(u) and y(u)
are in the interval (r`(u), rr(u)),
then we have to be more care-
ful. Without loss of generality
we assume y(u) < x(u) as illus-
trated in Fig. 7. Thus Delilah
has to place x somewhere in the
segment (y(v), rr(v)) and at a
position with letter a := ux(u).
We define the n+ 1-ranker s =
(rr, /a). From (i)(d) we know that s appears on the same side of y in both struc-
tures, thus we have y(v) < s(v) < rr(v). Delilah places her pebble x on s(v),
and thus establishes (i)(c) and (i)(d) for n. By induction, Delilah has a winning
strategy for the remaining FO2

n game. ut

n-ranker r in the two words. Thus Lemma
8 applies and Samson wins the remaining
n-move game. If Delilah replies with
a position right of or equal to r′(v), then
we can apply Lemma 8 to r′ and get
a winning strategy for the remaining
game as well. This concludes the proof
of “¬(i)⇒ ¬(ii)”.

Fig. 6 .

Fig. 7.

A fundamental property of an n-ranker is that it uniquely describes a position
in a given word. Now we show that the converse holds as well: any unique position
in a word can be described by a ranker.

Definition 13 (unique position formula). A formula ϕ ∈ FO2[<] with x as
a free variable is a unique position formula if for all w ∈ Σ? there is at most
one i ∈ [1, |w|] such that (w, i/x) |= ϕ.
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Lemma 14. Let n be a positive integer and let ϕ ∈ FO2
n[<] be a unique position

formula. Let u ∈ Σ? and let i ∈ [1, |u|] such that (u, i/x) |= ϕ. Then i = r(u)
for some ranker r ∈ R?n.

Theorem 15. Let n be a positive integer and let ϕ ∈ FO2
n[<] be a unique po-

sition formula. There is a k ∈ N, and there are mutually exclusive formulas
αi ∈ FO2

n[<] and rankers ri ∈ R?n such that

ϕ ≡
∨

i∈[1,k]

(αi ∧ ϕri
)

where ϕri
∈ FO2

n[<] is the formula from Lemma 10 that uniquely describes the
ranker ri.

We define alternation rankers and prove our structure theorem (Theorem 17)
for FO2

m,n[<]. Surprisingly the number of alternating blocks of / and . in the
rankers corresponds exactly to the number of alternating quantifier blocks. The
main ideas from our proof of Theorem 11 still apply here, but keeping track of
the number of alternations does add complications.

Definition 16 (m-alternation n-ranker). Let m,n ∈ N with m ≤ n. An m-
alternation n-ranker, or (m,n)-ranker, is an n-ranker with exactly m blocks of
boundary positions that alternate between . and /.

We use the following notation for alternation rankers.

Rm,n(w) := {r | r is an m-alternation n-rankers and defined over the word w}
Rm.,n(w) := {r ∈ Rm,n(w) | r ends with .}

R?m,n(w) :=
⋃

i∈[1,m],j∈[1,n]

Ri,j(w)

R?m.,n(w) := R?m−1,n(w) ∪
⋃

i∈[1,n]

Rm.,i(w)

Theorem 17 (structure of FO2
m,n[<]). Let u and v be finite words, and let

m,n ∈ N with m ≤ n. The following two conditions are equivalent.

(i) (a) Rm,n(u) = Rm,n(v), and,
(b) for all r ∈ R?m,n(u) and for all r′ ∈ R?m−1,n−1(u), we have

ord(r(u), r′(u)) = ord(r(v), r′(v)), and,
(c) for all r ∈ R?m,n(u) and r′ ∈ R?m,n−1(u) such that r and r′ end with

different directions, ord(r(u), r′(u)) = ord(r(v), r′(v))
(ii) u ≡2

m,n v

4 Alternation Hierarchy for FO2[<]
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Using Theorem 17, we show that for any fixed alphabet Σ, at most |Σ| + 1
alternations are useful. Intuitively, each boundary position in a ranker says that



a certain letter does not occur in some part of a word. Alternations are only
useful if they visit one of these previous parts again. Once we visited one part of
a word |Σ| times, this part cannot contain any more letters and thus is empty.

Theorem 18. Let Σ be a finite alphabet, let u, v ∈ Σ? and n ∈ N. If u ≡2
|Σ|+1,n

v, then u ≡2
n v.

In order to prove that the alternation hierarchy for FO2 is strict, we define
example languages that can be separated by a formula of a given alternation
depthm, but that cannot be separated by any formula of lower alternation depth.
As Theorem 18 shows, we need to increase the size of the alphabet with increasing
alternation depth. We inductively define the example words um,n and vm,n and
the example languages Km and Lm over finite alphabets Σm = {a0, . . . , am−1}.
Here i, m and n are positive integers.

u1,n := a0 v1,n := ε

u2,n := a0(a1a0)2n v2,n := (a1a0)2n

u2i+1,n := (a0 . . . a2i)n u2i,n v2i+1,n := (a0 . . . a2i)n v2i,n
u2i+2,n := u2i+1,n (a2i+1 . . . a0)n v2i+2,n := v2i+1,n (a2i+1 . . . a0)n

Notice that um,n and vm,n are almost identical – if we delete a0 in the center of
um,n, we get vm,n. Finally, we set Km :=

⋃
n≥1{um,n} and Lm :=

⋃
n≥1{vm,n}.

Definition 19. A formula ϕ separates two languages K,L ⊆ Σ? if for all w ∈
K we have w |= ϕ and for all w ∈ L we have w 6|= ϕ or vice versa.

Our example words are constructed such that for m ≥ 3, um,n and vm,n can
be distinguished by the ordering of two (m − 1)-rankers. In the case m = 3 for
example, we can use the two rankers r3 := /a2.a0 and s3 := /a2.a1 . A formal
argument for all m is given in [20]. There we also argue that the example words
um,n and vm,n agree on the definedness of all (m− 1, n)-rankers, and that these
rankers appear in exactly the same order with respect to shorter rankers. Thus
the two languages Km and Lm cannot be separated by any FO2[<]–ALT [m− 1]
formula. Thus we have the following theorem.

Theorem 20 (alternation hierarchy for FO2[<]). For any positive integer
m, there is a ϕm ∈ FO2[<]–ALT [m] and there are two languages Km, Lm such
that ϕm separates Km and Lm, but no ψ ∈ FO2[<]–ALT [m− 1] separates Km

and Lm.

Theorem 20 resolves an open question from [3, 4].

5 Structure Theorem and Alternation Hierarchy for
FO2[<, Suc]

We extend our definitions of boundary positions and rankers from Sect. 3 to
include the substrings of a given length that occur immediately before and after
the position of the ranker.
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Definition 21. A (k, `)-neighborhood boundary position denotes the first or
last occurrence of a substring in a word. More precisely, a (k, `)-neighborhood
boundary position is of the form d(s,a,t) with d ∈ {., /}, s ∈ Σk, a ∈ Σ and
t ∈ Σ`. The interpretation of a (k, `)-neighborhood boundary position p = d(s,a,t)

on a word w = w1 . . . w|w| is defined as follows.

p(w) =

{
min{i ∈ [k + 1, |w| − `] | wi−k . . . wi+` = sat} if d = .

max{i ∈ [k + 1, |w| − `] | wi−k . . . wi+` = sat} if d = /

Notice that p(w) is undefined if the sequence sat does not occur in w. A (k, `)-
neighborhood boundary position can also be specified with respect to a position
q ∈ [1, |w|].

p(w, q) =

{
min{i ∈ [max{q + 1, k + 1}, |w| − `] | wi−k . . . wi+` = sat} if d = .

max{i ∈ [k + 1,min{q − 1, |w| − `}] | wi−k . . . wi+` = sat} if d = /

Observe that (0,0)-neighborhood boundary positions are identical to the
boundary positions from Definition 4. As before in the case without successor,
we build rankers out of these boundary positions.

Definition 22. An n-successor-ranker r is a sequence of n neighborhood bound-
ary positions, r = (p1, . . . , pn), where pi is a (ki, `i)-neighborhood boundary po-
sition and ki, `i ∈ [0, (i − 1)]. The interpretation of an n-successor-ranker r on
a word w is defined as follows.

r(w) :=


p1(w) if r = (p1)
undefined if (p1, . . . , pn−1)(w) is undefined
pn(w, (p1, . . . , pn−1)(w)) otherwise

We denote the set of all n-successor-rankers that are defined over a word w by
SRn(w), and set SR?

n(w) :=
⋃
i∈[1,n] SRi(w).

Because we now have the additional atomic relation Suc, we need to extend
our definition of order type as well.

Definition 23. Let i, j ∈ N. The successor order type of i and j is defined as

ordS(i, j) =



� if i < j − 1
−1 if i = j − 1
= if i = j

+1 if i = j + 1
� if i > j + 1

With this new definition of n -successor-rankers, our proofs for Lemmas 8,
9, 10 and Theorem 11 go through with only minor modifications. Instead of
working through all the details again, we simply point out the differences.

First we notice that 1-successor-rankers are simply 1-rankers, so the base case
of all inductions remains unchanged. In the proofs of Lemmas 8, 9 and 10, and
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in the proof of (ii) ⇒ (i) from Theorem 11, we argued that Delilah cannot reply
with a position in a given section because it does not contain a certain ranker
and therefore it does not contain the symbol used to define this ranker. Now we
need to know more – we need to show that Delilah cannot reply with a certain
letter in a given section that is surrounded by a specified neighborhood, given
that this section does not contain the corresponding successor-ranker. Whenever
Samson’s winning strategy depends on the fact that an n-successor-ranker does
not occur in a given section, he has n − 1 additional moves left. So if Delilah
does not reply with a position with the same letter and the same neighborhood,
Samson can point out a difference in the neighborhood with at most (n − 1)
additional moves.

For the other direction of Theorem 11, we need to make sure that Delilah
can reply with a position that is contained in the correct interval, has the same
symbol and is surrounded by the same neighborhood. Where we previously de-
fined the n-ranker s := (r`, .a) or s := (rr, /a), we now include the (n − 1)-
neighborhood of the respective positions chosen by Samson. Thus we make sure
that Samson cannot point out a difference in the two words, and Delilah still has
a winning strategy. Thus we have the following three theorems for FO2[<,Suc].
Theorem 24 (structure of FO2

n[<,Suc]). Let u and v be finite words, and let
n ∈ N. The following two conditions are equivalent.

(i) (a) SRn(u) = SRn(v), and,
(b) for all r ∈ SR?

n(u) and for all r′ ∈ SR?
n−1(u),

ordS(r(u), r′(u)) = ordS(r(v), r′(v))
(ii) u ≡2

n v

Theorem 25 (structure of FO2
m,n[<,Suc]). Let u and v be finite words, and

let m,n ∈ N with m ≤ n. The following two conditions are equivalent.
(i) (a) SRm,n(u) = SRm,n(v), and,

(b) for all r ∈ SR?
m,n(u) and for all r′ ∈ SR?

m−1,n−1(u),
ordS(r(u), r′(u)) = ordS(r(v), r′(v)), and,

(c) for all r ∈ SR?
m,n(u) and r′ ∈ SR?

m,n−1(u) such that r and r′ end with
different directions, ordS(r(u), r′(u)) = ordS(r(v), r′(v))

(ii) u ≡2
m,n v

Theorem 26 (alternation hierarchy for FO2[<,Suc]). Let m be a posi-
tive integer. There is a ϕm ∈ FO2[<,Suc]–ALT [m] and there are two lan-
guages Km, Lm ⊆ Σ? such that ϕm separates Km and Lm, but there is no
ψ ∈ FO2[<,Suc]–ALT [m− 1] that separates Km and Lm.

The proof of Theorem 26 is given in [20], and mostly identical to the proof
of Theorem 20. We use n copies of an extra letter between any two letters in our
example words, and thus ensure that the successor predicate is not useful.

6 Small Models and Satisfiability for FO2[<]

The complexity of satisfiability for FO2[<] was investigated in [4]. There it is
shown that any satisfiable FO2

n[<] formula has a model of size at most exponen
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inn. It follows that satisfiability for FO2[<] is in NEXP , and a reduction from
TILING shows that satisfiability for FO2[<] is NEXP-complete. Using our char-
acterization of FO2[<], Wilke observed that satisfiability becomes NP-complete
if we look at binary alphabets only [21]. We generalize this observation and
show that satisfiability for FO2[<] is NP-complete for any fixed alphabet size. In
contrast to this, satisfiability for FO2[<,Suc] is NEXP-complete even for binary
alphabets [4], since in the presence of a successor predicate we can encode an
arbitrary alphabet in binary.

Theorem 27. Let n ∈ N and let ϕ ∈ FO2
n[<] be a formula over a k-letter

alphabet. If ϕ is satisfiable, then ϕ has a model of size O(nk).

The proof of Theorem 27 is presented in [20]. We argue that any fixed word
has as most O(nk) positions that can be reached with n-rankers, and thus we
have a word of size O(nk) that satisfies the given formula.

Theorem 28. Satisfiability for FO2[<] where the size of the alphabet is bounded
by some fixed k ≥ 2 is NP-complete.

Proof. Membership in NP follows immediately from Theorem 27 – we nonde-
terministically guess a model of size O(nk) where n is the quantifier depth of
the given formula, and verify that it is a model of the formula. Now we give a
reduction from SAT. Let α be a boolean formula in conjunctive normal form over
the variables X1, . . . , Xn. We construct a FO2[<] formula ϕ = ϕn ∧ α[ξi/Xi],
where ϕn says that every model has size exactly n, and where we replace every
occurrence of Xi in α with a formula ξi of length O(n) which says that the
i-th letter is a 1. The total length of ϕ is O(|α| · n), and ϕ is satisfiable iff α is
satisfiable. ut

7 Conclusion

We proved precise structure theorems for FO2, with and without the successor
predicate, that completely characterize the expressive power of the respective
logics, including exact bounds on the quantifier depth and on the alternation
depth. Using our structure theorems, we show that the quantifier alternation hi-
erarchy for FO2 is strict, settling an open question from [3, 4]. Both our structure
theorems and the alternation hierarchy results add further insight to and sim-
plify previous characterizations of FO2. We also hope that the insights gained in
our study of FO2 on words will be useful in future investigations of the trade-off
between formula size and number of variables.
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14. Straubing, H., Thérien, D.: Weakly iterated block products. In: 5th Latin American

Theoretical Informatics Conference (2002)
15. Tesson, P., Thérien, D.: Diamonds are forever: the variety DA. In Semigroups,

Algorithms, Automata and Languages (2001)
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On the Complexity of Reasoning About Dynamic
Policies
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Abstract. We study the complexity of satisfiability for DLP+
dyn , an expressive

logic introduced by Demri that allows to reason about dynamic policies. DLP+
dyn

extends the logic DLPdyn of Pucella and Weissman, which in turn extends van der
Meyden’s Dynamic Logic of Permission (DLP). DLP+

dyn generously enhances
DLP and DLPdyn by allowing to update the policy set by adding or removing
policy transitions, which are defined as a direct product of two sets, each spec-
ified by a formula of the logic itself. It is proven that satisfiability for DLP+

dyn

is complete for deterministic exponential time. Our results close the complex-
ity gap of satisfiability for DLP+

dyn from 2EXP, and for DLPdyn from NEXP,
to EXP respectively, matching the EXP lower bound both inherit from Proposi-
tional Dynamic Logic (PDL). To prove the EXP upper bound for DLP+

dyn, we first
proceed by accurately identifying a suitable generalization of PDL, which allows
to use compressed programs and then find a satisfiability preserving translation
from DLP+

dyn to this extension of PDL. To finally show the EXP upper bound for
DLP+

dyn , we prove that satisfiability of our extension of PDL lies in EXP .

1 Introduction

Numerous applications contain a set of policies that, roughly speaking, describe what
is prohibited and what is permitted. Policies arise in many contexts. For one, they
can comprise control policies, thus specifying which agents are permitted to access
resources. They can as well be legal policies, describing actions that are legally per-
mitted. In the course of time, the policies of an application may change. This dynamic
behaviour originates from the interaction between the application and its user(s). When
changing policies, the system has to guarantee that unintentional side-effects do not oc-
cur. Furthermore, it is often not straightforward to decide whether to modify the current
policy set or not, not to mention the duty of creating it. Various examples of typical
practical scenarios are given in [10]. In order to allow comparison of different policies
and reasoning about them, a variety of languages have been introduced, an overview is
given in [15]. Van der Meyden’s Dynamic Logic of Permission (DLP) is an example of
an expressive logic that allows to reason about dynamic policies. Formally, it extends
test-free Propositional Dynamic Logic (PDL) and allows to reason about a fixed policy
set that describes the set of all permitted transitions of a system which is in turn modeled
by a Kripke structure. In addition to test-free PDL, the logic DLP allows to ask queries
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J. Duparc and T.A. Henzinger (Eds.): CSL 2007, LNCS 4646, pp. 358–373, 2007.
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of the kind ‘does there exist a sequence of solely permitted transitions to some world
where the propertyϕ holds’ and ‘does every sequence of transitions to worlds satisfying
ϕ solely consist of permitted transitions’. Extending DLP, the logic DLPdyn of Pucella
and Weissman [10] additionally allows to update the policy set by removing and adding
transitions. These removed or added transitions are defined as the direct product of two
sets of worlds, each specified by boolean combinations of atomic propositions. In [10],
numerous applications are stated that demand for the possibility to update the policy
set within the logic. The even more general logic DLP+

dyn , introduced by Demri [3],
allows to update the policy set by adding (via the grant-operator) and removing (via
the revoke-operator) a direct product of world sets, but each specified by an arbitrary
formula of the logic itself. In this paper, we focus on the computational complexity of
an important algorithmic problem for DLP+

dyn , namely satisfiability. For its fragment
DLPdyn , it is pointed out in [10] that the complexity of satisfiability is in NEXP. Focus-
ing on naturalness, Demri gives a satisfiability preserving translation from DLP+

dyn to
PDL [3]. By the presence of an exponential blowup in formula size in this translation,
a 2EXP upper bound for satisfiability of DLP+

dyn was derived. However, if the depth
of applied grant and revoke operators is bounded by some constant, an EXP upper
bound was shown. Since the latter is the case for formulas of DLP, satisfiability for DLP
was shown to be in EXP as a corollary. In this paper, we close the complexity gap for
DLP+

dyn from 2EXP, and for DLPdyn from NEXP, to EXP respectively, matching the
EXP lower bound both inherit from PDL. An approach proposed in [3] to improve the
complexity status of full DLP+

dyn is a polynomial time computable reduction to PDL
enhanced with an operator⊕ on programs (we call the resulting logic PDL⊕ from now
on) and then proving that satisfiability of PDL⊕ lies in EXP. A program ⊕(π, ϕ1, ϕ2),
where π is a program and both ϕ1 and ϕ2 are formulas, relates pairs of worlds (x, y) of
a Kripke structure, that are related via π such that additionally ϕ1 holds in x or ϕ2 holds
in y. As we will remark later, PDL⊕ is definable in PDL, but the size of the programs
of the resulting PDL formula may grow exponentially in the size of the programs of
the original PDL⊕ formula. Alas, it turns out that a translation from DLP+

dyn to PDL⊕
will not lead to an improvement of the complexity of DLP+

dyn – we prove that PDL⊕
is 2EXP-complete. Thus, PDL⊕ identifies a translatable fragment of both PDL with
intersection [2] and of PDL, where programs are represented as dags, that is already
hard for 2EXP. Yet to prove an EXP upper bound for DLP+

dyn , we accurately identify a

fragment PDL⊕[A] of PDL⊕, into which we translate DLP+
dyn and that we prove to lie

in EXP. Our translation from DLP+
dyn to PDL⊕[A] consists of a concise examination of

how applied grant and revoke operators influence the truth of subformulas. For prov-
ing that PDL⊕[A] lies in EXP, we translate an input formula of PDL⊕[A] ϕ into an
alternating Büchi tree automaton over infinite trees A(ϕ) and check the tree language
of A(ϕ) for non-emptiness.

Firstly, our main contribution is to prove that DLP+
dyn and thus DLPdyn is EXP-

complete, which solves two open problems stated in [3]. The various applications of
DLP and DLPdyn , as listed in [12,10], and the technical difficulties of reasoning about
dynamic policies that arise, motivate an exact examination of the complexity of satis-
fiability of the more general DLP+

dyn. Secondly, we believe that PDL with (restrictions
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on) the operator ⊕ is an interesting logic to study w.r.t. complexity, situated between
EXP and 2EXP.

The paper is organized as follows. After introducing preliminaries in Section 2, we
formally define DLP+

dyn and related logics in Section 3. Known complexity results for

comparable logics and the difficulty of handling DLP+
dyn are summarized and discussed

in Section 4. In Section 5, we give a satisfiability preserving translation from DLP+
dyn

to PDL⊕[A]. An EXP upper bound for satisfiability of PDL⊕[A] is proven in Section
6. Finally, in Section 7, we show that satifiability for PDL⊕ is 2EXP-complete.

2 Preliminaries

If A and B are sets and f : A → B is a mapping, then for every subset C ⊆ A,
we define f(C) = {f(c) | c ∈ C}. If w = a1a2 · · · an is a string over the alphabet
Σ and ai ∈ Σ for each 1 ≤ i ≤ n, then w(j) = a1 · · · aj denotes the j-th prefix of
w for every 0 ≤ j ≤ n, where w(0) = ε. For a string w, let |w| denote the length
of w. If X is a set, R ⊆ X × X is a binary relation over X and A,B ⊆ X , then
⊕(R,A,B) = R ∩ ((A×X) ∪ (X ×B)) . If X and Y are sets with X ∩ Y = ∅,
thenX#Y denotes the union ofX and Y and recalls the fact thatX and Y are disjoint.
For every l, k ∈ N, define [k] = {1, . . . , k}, and [l, k] = {l, l + 1, . . . , k}. Let us
introduce NFAs. An NFA is a tuple A = (Q,Σ, q0, δ, F ), where (i) Q is a finite set
of states, (ii) Σ is a finite alphabet, (iii) q0 ∈ Q is an initial state, (iv) F ⊆ Q is a
set of final states, and (v) δ : Q × Σ → 2Q is a transition function. We abbreviate
q′ ∈ δ(q, a) by q

a⇒A q′. Next, we extend ⇒A to words over Σ. For all q ∈ Q we
have q

ε⇒A q. If w ∈ Σ∗, a ∈ Σ, q
w⇒A q′, and q′

a⇒A q′′, then q
wa⇒A q′′. Let

L(A) = {w ∈ Σ∗ | q0 w⇒A q for some q ∈ F} denote the language of A.

3 Logic

For the rest of the paper, fix some countable set of atomic propositions P and some
countable set of atomic programs A.

3.1 DLP+
dyn and Its Fragments DLPdyn and DLP

Formulas ϕ and programs π of the logic DLP+
dyn are given by the following grammar,

where p ranges over P and a ranges over A:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈π〉 ϕ | perm(π)ϕ | fperm(π)ϕ |
grant(ϕ1, ϕ2)ϕ3 | revoke(ϕ1, ϕ2)ϕ3

π ::= a | π1 ∪ π2 | π1 ◦ π2 | π∗ | ϕ?

We introduce the following abbreviations:ϕ1∧ϕ2 = ¬(¬ϕ1∨¬ϕ2), true = p∨¬p for
some p ∈ P, false = ¬true, and [π]ϕ = ¬〈π〉¬ϕ. Let Φ denote the set of all DLP+

dyn

formulas and let Test = {ϕ? | ϕ ∈ Φ} denote the set of all DLP+
dyn test programs.

The logic DLPdyn is the syntactic fragment of DLP+
dyn , where the first two components
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of grant and revoke formulas are restricted to be boolean combinations of atomic
propositions and where test programs do not occur. The logic DLP is the fragment
of DLPdyn , where the operators grant and revoke do not occur. For every DLP+

dyn

program π let L(π) denote the regular language of π interpreted as a regular expression
over some finite subset from A ∪ Test. A Kripke structure is a tuple (X, {→a| a ∈
A}, (), whereX is a set of worlds,→a⊆ X×X is a binary relation for each a ∈ A, and
( : X → 2P assigns to each world x ∈ X a set of atomic propositions ((x). An extended
Kripke structure is a tuple (X, {→a| a ∈ A}, (, P ), where (X, {→a| a ∈ A}, () is
a Kripke structure and P ⊆ X × X is a binary relation that we call policy set. If
op ∈ {∪, \}, K = (X, {→a| a ∈ A}, (, P ) is an extended Kripke structure, and
A,B ⊆ X , then K � (A,B, op) = (X, {→a| a ∈ A}, (, P op (A × B)). Fix some
extended Kripke structure K = (X, {→a| a ∈ A}, (, P ). Then, for each atomic/test
program π, we define a binary relation [[π]]K ⊆ X ×X and for each formula ϕ ∈ Φ we
define a subset [[ϕ]]K ⊆ X inductively as follows, where p ∈ P and a ∈ A:

[[a]]K = →a

[[ϕ?]]K = {(x, x) | x ∈ [[ϕ]]K}
[[p]]K = {x ∈ X | p ∈ ((x)}

[[¬ϕ]]K = X \ [[ϕ]]K
[[ϕ1 ∨ ϕ2]]K = [[ϕ1]]K ∪ [[ϕ2]]K

[[〈π〉ϕ]]K = {x ∈ X | there exist x0, x1, . . . , xn ∈ X with

x = x0, xn ∈ [[ϕ]]K, and there exist

A1 · · ·An ∈ L(π) s.t. for all 1 ≤ i ≤ n

we have (xi−1, xi) ∈ [[Ai]]K}

[[perm(π)ϕ]]K = {x ∈ X | there exist x0, x1, . . . , xn ∈ X with

x = x0, xn ∈ [[ϕ]]K, and there exist

A1 · · ·An ∈ L(π) s.t. for all 1 ≤ i ≤ n

we have (xi−1, xi) ∈ [[Ai]]K and

Ai ∈ A implies (xi−1, xi) ∈ P}

[[fperm(π)ϕ]]K = {x ∈ X | there does not exist

x0, x1, . . . , xn ∈ X and A1 · · ·An ∈ L(π) with

x = x0, xn ∈ [[ϕ]]K and (xi−1, xi) ∈ [[Ai]]K
for all 1 ≤ i ≤ n such that Aj ∈ A and

(xj−1, xj) �∈ P for some 1 ≤ j ≤ n}

[[grant(ϕ1, ϕ2)ϕ3]]K = [[ϕ3]]K�([[ϕ1]]K,[[ϕ2]]K,∪)

[[revoke(ϕ1, ϕ2)ϕ3]]K = [[ϕ3]]K�([[ϕ1]]K,[[ϕ2]]K,\)

We abbreviate x ∈ [[ϕ]]K by (K, x) |= ϕ. If for some state x ∈ X we have (K, x) |= ϕ
thenK is a model for ϕ. We say that a formulaϕ is satisfiable if there exists some model
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for ϕ. The size |ϕ| of a DLP+
dyn formula ϕ and the size |π| of a DLP+

dyn program π is
inductively defined as follows: |p| = |a| = 1 for every p ∈ P and for every a ∈ A,
|ϕ1 ∨ ϕ2| = |ϕ1| + |ϕ2| + 1, |¬ϕ| = |ϕ| + 1, |〈π〉ϕ| = |π| + |ϕ| + 1, |perm(π)ϕ| =
|fperm(π)ϕ| = |π| + |ϕ| + 1, |grant(ϕ1, ϕ2)ϕ3| = |revoke(ϕ1, ϕ2)ϕ3| = |ϕ1| +
|ϕ2|+|ϕ3|+1, |π1∪π2| = |π1◦π2| = |π1|+|π2|+1, |π∗| = |π|+1, and |ϕ?| = |ϕ|+1.
The set subf(ϕ) of subformulas of a formula ϕ and the set of subformulas subf(π)
of a program π is inductively defined as follows: (i) subf(p) = {p} for all p ∈ P,
(ii) subf(¬ϕ) = {¬ϕ} ∪ subf(ϕ), (iii) subf(ϕ1 ∨ ϕ2) = {ϕ1 ∨ ϕ2} ∪ subf(ϕ1) ∪
subf(ϕ2), (iv) if ϕ = 〈π〉ψ, ϕ = perm(π)ψ, or ϕ = fperm(π)ψ, then subf(ϕ) =
{ϕ} ∪ subf(π) ∪ subf(ψ), (v) if ϕ = grant(ϕ1, ϕ2)ϕ3 or ϕ = revoke(ϕ1, ϕ2)ϕ3,
then subf(ϕ) = {ϕ} ∪

⋃3
i=1 subf(ϕi), (vi) subf(a) = ∅ for all a ∈ A, (vii) subf(π1 ∪

π2) = subf(π1 ◦ π2) = subf(π1) ∪ subf(π2), subf(π∗) = subf(π), and finally (viii)
subf(ϕ?) = subf(ϕ).

3.2 PDL and Its Compressed Variants PDL⊕ and PDL⊕[A]

Formulas ϕ and programs π of the logic PDL⊕ are given by the following grammar,
where p ranges over P and a ranges over A:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈π〉 ϕ
π ::= a | π1 ∪ π2 | π1 ◦ π2 | π∗ | ϕ? | ⊕(π, ϕ1, ϕ2)

Formulas and programs of PDL⊕ are interpreted in Kripke structures (hence policy
sets do not occur). If K = (X, {→a| a ∈ A}, () is a Kripke structure, then for each
program π, we can assign a binary relation [[π]]K ⊆ X × X , which is defined homo-
morphic for ∪, ◦, and ∗, and where the semantics of the program operator⊕ is defined
as [[⊕(π, ϕ1, ϕ2)]]K = ⊕([[π]]K, [[ϕ1]]K, [[ϕ2]]K). The size of ⊕(π, ϕ1, ϕ2) is defined as
|⊕ (π, ϕ1, ϕ2)| = 1 + |π| + |ϕ1| + |ϕ2|. If π = ⊕(π′, ϕ1, ϕ2), then the set of subfor-
mulas subf(π) is defined as subf(π) = subf(π′) ∪ subf(ϕ1) ∪ subf(ϕ2). Similarly as
above, a Kripke structure (X, {→a| a ∈ A}, () is a model for a PDL⊕ formula ϕ, if for
some state x ∈ X we have (K, x) |= ϕ. A PDL⊕ formulaϕ is satisfiable, if there exists
some model for ϕ. The logic PDL⊕[A] is the syntactic fragment of PDL⊕, where the
program arguments of a ⊕ program must either be an atomic program or a ⊕ program
itself. More formally, formulas ϕ, basic programs α and programs π of PDL⊕[A] are
given by the following grammar, where p ranges over P and a ranges over A:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈π〉 ϕ
α ::= a | ⊕(α, ϕ1, ϕ2)
π ::= α | π1 ∪ π2 | π1 ◦ π2 | π∗ | ϕ?

The logic PDL is the syntactic fragment of PDL⊕ without the ⊕ operator.

Remark 1. A PDL⊕ program ⊕(π, ϕ1, ϕ2) can be translated into an equivalent PDL
program ||⊕ (π, ϕ1, ϕ2)|| as follows, where ||π||, ||ϕ1||, and ||ϕ2|| are inductively the
translations for π, ϕ1, and ϕ2 respectively:

||⊕ (π, ϕ1, ϕ2)|| = (||ϕ1||? ◦ ||π|| ∪ ||π|| ◦ ||ϕ2||?)
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Hence, the logics PDL⊕, PDL⊕[A], and PDL are equi-expressive. However, by the
presence of ⊕ programs, the above translation might cause an exponential blowup.
Thus, the three logics may differ in succintness. In fact, our 2EXP-completeness result
for PDL⊕ shown in Section 7 implies that there does not exist a satisfiability preserving
translation from PDL⊕ to PDL that is computable in polynomial time.

4 Known Results and Difficulties of Reasoning About DLP+
dyn

and Related Logics

In this section, we state known results and explain some difficulties of determining the
complexity of reasoning about DLP+

dyn and logics related to it.
The satisfiability problem asks, given a formula ϕ of any of the logics introduced

above, whether ϕ is satisfiable. By Fischer/Ladner and Pratt it is known:

Theorem 1 ([4,9]). Satisfiability for PDL is EXP-complete.

Focusing on a natural translation from DLP+
dyn to PDL, Demri has recently shown:

Theorem 2 ([3]). There exists a satisfiability preserving reduction from DLP+
dyn to

PDL computable in polynomial time.

Since the size of the resulting PDL formula in the proof of Theorem 2 is exponential in
the size of the original DLP+

dyn formula, the following theorem holds.

Theorem 3 ([3]). Satisfiability for DLP+
dyn is in 2EXP.

For its fragment DLPdyn , the following upper bound is known.

Theorem 4 ([10]). Satisfiability for DLPdyn is in NEXP .

Let us summarize the difficulties of identifying the exact complexity of DLP+
dyn . By

the presence of the operators grant and revoke, the truth of a formula may depend on
the truth of a subformula in some modified extended Kripke structure. This behaviour
is very much in the flavor of sabotage modal logic of van Benthem [11]. The latter is
basically modal logic enhanced with a sabotage operator 〈−〉. A formula 〈−〉ϕ holds
in a world x of a Kripke structure K with state set X , if ϕ holds in x in K′, where K′
is a Kripke structure that emerges fromK by removing some world from X \ {x}. The
decidability status for sabotage modal logic is unknown so far. Yet, a variant of it, in
which the sabotage operator requires to remove some labeled transition instead of some
world, has been proven undecidable by Löding and Rohde [7]. At first glance, one could
think that the situation for DLP+

dyn is even worse, since transitions can be removed
and added and since moreover these transitions can be specified in the logic itself.
Interestingly, it turns out, that precisely the fact that the updated transitions are specified
in the logic itself, allows translations to other logics that are more manageable w.r.t.
satisfiability. So, one promising approch to decide DLP+

dyn in EXP was a translation into
PDL with intersection and negation of atomic programs given in [3]. This translation has
the property that the width of nested intersection of the resulting formulas is bounded
by some constant. Firstly, a precise analysis of [5] yields that satisfiability of PDL with
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the intersection on programs, where formulas have bounded intersection width, is in
EXP. Secondly, a result from [8] states that PDL with negation of atomic programs is
in EXP too. But unfortunately, PDL with intersection and negation of atomic programs
has proven to be undecidable recently [5], even when restricting to formulas of constant
intersection width. A proposal of Demri [3] to improve the 2EXP upper bound for
DLP+

dyn is to give a polynomial translation from DLP+
dyn to PDL⊕ and to try to decide

satisfiability of PDL⊕ in EXP. However, we will prove in Section 7, that PDL⊕ is
complete for 2EXP.

Wrapping up, all mentioned translations have the drawback that either the target
logic was too hard w.r.t. complexity or the translations have a blowup in formula size.
Nevertheless, our solution to decide DLP+

dyn in deterministic exponential time is to
find a tricky translation into PDL⊕’s adequate fragment PDL⊕[A] and to show that
PDL⊕[A] is in EXP. By combining the EXP-hardness DLP+

dyn inherits from PDL [4],
we state the main result of this paper.

Theorem 5. Satisfiability for DLP+
dyn is EXP-complete.

As stated above, for proving Theorem 5, we first give a satisfiability preserving transla-
tion from DLP+

dyn to PDL⊕[A], that can be computed in polynomial time in Section 5.
An EXP upper bound for PDL⊕[A] is proven in Section 6.

5 A Translation from DLP+
dyn to PDL⊕[A]

In this section, we give a satisfiability preserving translation from DLP+
dyn to PDL⊕[A]

that is computable in polynomial time. In this translation, a precise analysis of how ap-
plied grant and revoke operators influence the truth of subformulas, allows to handle
DLP+

dyn. In parts, it combines some ideas from [3] and [6].
First, we introduce a notion of certain modified Kripke structures. Recall that Φ

denotes the set of all DLP+
dyn formulas. Let Σ = (Φ× Φ× {∪, \})∗. For each

σ = (θ1, θ′1, op1) · · · (θk, θ′k, opk) ∈ Σ, where k ≥ 0, let Uσ = {m ∈ [k] | opm = ∪}
and Mσ = {m ∈ [k] | opm = \}. If K is an extended Kripke structure, then for every
σ ∈ Σ define the extended Kripke structure K � σ, by the length of σ, inductively as
follows: K � ε = K and K � σ(ψ1, ψ2, op) = (K � σ) � ([[ψ1]]K�σ, [[ψ2]]K�σ, op) for all
ψ1, ψ2 ∈ Φ and op ∈ {∪, \}.

Remark 2. If K is an extended Kripke structure and σ ∈ Σ, then the extended Kripke
structures K and K � σ can only differ in their policy set. Thus, for all a ∈ A we have
[[a]]K = [[a]]K�σ and for all p ∈ P we have [[p]]K = [[p]]K�σ.

For a formula ϕ ∈ Φ, let Occ(ϕ) denote the set of all occurrences of subformulas of
ϕ and for each ψ ∈ Occ(ϕ), define the unique sequence σ(ψ) ∈ Σ that we get by
considering the grant and revoke operators that occur along the path from ϕ to ψ in
the syntax tree of ϕ. We define, in a top down manner, σ : Occ(ϕ) → Σ as follows:

– σ(ϕ) = ε
– If ψ = ¬χ, then σ(χ) = σ(ψ).
– If ψ = ψ1 ∨ ψ2, then σ(ψ1) = σ(ψ2) = σ(ψ).
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– If ψ = 〈π〉χ, ψ = perm(π)χ, or ψ = fperm(π)χ, then σ(χ) = σ(ψ′) = σ(ψ) for
every test program ψ′? of π.

– If ψ = grant(ψ1, ψ2)χ, then σ(ψ1) = σ(ψ2) = σ(ψ), and σ(χ) =
σ(ψ)(ψ1, ψ2,∪).

– If ψ = revoke(ψ1, ψ2)χ, then σ(ψ1) = σ(ψ2) = σ(ψ), and σ(χ) =
σ(ψ)(ψ1, ψ2, \).

Before giving the translation from DLP+
dyn to PDL⊕[A], the following lemma charac-

terizes the policy set of K � σ, for every σ ∈ Σ. Its proof is by induction on k.

Lemma 1. Let K = (X, {→a| a ∈ A}, (, P ) be an extended Kripke structure, σ =
(θ1, θ′1, op1) · · · (θk, θ′k, opk) ∈ Σ (with k ≥ 0), K � σ = (X, {→a| a ∈ A}, (, Pσ)
and a ∈ A.

Then, for all (x, y) ∈ X × X , we have (x, y) ∈ [[a]]K�σ ∩ Pσ if and only if
there exists some u ∈ {0} # Uσ such that for all m ∈ Mσ ∩ [u, k] we have
(x, y) ∈ [[⊕(a,¬θm,¬θ′m)]]K�σ(m−1) and either (i) u = 0 and (x, y) ∈ P ∩ [[a]]K,
or (ii) u ∈ Uσ and (x, y) ∈ [[a]]K ∩ ([[θu]]K�σ(u−1) × [[θ′u]]K�σ(u−1)).

Conversely, for all (x, y) ∈ X × X , we have (x, y) ∈ [[a]]K�σ \ Pσ if and only if
there exists some m ∈ {0} #Mσ such that for all u ∈ Uσ ∩ [m, k] we have (x, y) ∈
[[⊕(a,¬θu,¬θ′u)]]K�σ(u−1) and either (i) m = 0 and (x, y) ∈ [[a]]K \P , or (ii) m ∈Mσ

and (x, y) ∈ [[a]]K ∩ ([[θm]]K�σ(m−1) × [[θ′m]]K�σ(m−1)).

Let us turn to our translation. For this, fix some DLP+
dyn formula ϕ over atomic pro-

grams A and over atomic propositions P for the rest of this section. Let {ψ1, . . . , ψn}
be an enumeration of Occ(ϕ) and assume ψn = ϕ. Let A′ = A # A and P′ =
P # {p1, . . . , pn}. Below, we also write p(ψi) for pi whenever ψi ∈ Occ(ϕ). If σ =
(θ1, θ′1, op1) · · · (θk, θ′k, opk) ∈ σ(Occ(ϕ)), then for every subset S = {j1, . . . , jl} ⊆
[k], where j1 < j2 < · · · < jl, and every PDL⊕[A] program ζ, define the PDL⊕ pro-
gram ζS = ζSl , where ζS0 = ζ and ζSh = ⊕(ζSh−1,¬p(θjh

),¬p(θ′jh
)) for all 1 ≤ h ≤ l.

We will build a PDL⊕[A] formula ϕ′ over the atomic programs A′ and over the atomic
propositions P′ such that ϕ is satisfiable if and only if ϕ′ is satisfiable. Intuitively, if K
is a model for ϕ with policy set P and K′ is a model of ϕ′, think of the relation [[a]]K′

as [[a]]K ∩ P and of [[a]]K′ as [[a]]K \ P . Let us first, for every ψi ∈ Occ(ϕ), define the
PDL⊕[A] formula ||ψi|| over the atomic propositions P′ and over the atomic programs
A′ inductively as follows:

– If ψi = p for some p ∈ P, then ||ψi|| = p.

– If ψi = ¬ψj , then ||ψi|| = ¬pj .

– If ψi = ψj ∨ ψk, then ||ψi|| = pj ∨ pk.

– If ψi = grant(ψj , ψk)ψl or ψi = revoke(ψj , ψk)ψl, then ||ψi|| = pl.

– If ψi = 〈π〉ψj , then ||ψi|| = 〈T (π)〉pj , where T (π) is homomorphic on ∪, ◦, and
on ∗, T (ψk?) = pk? for every test programψk?, and T (a) = a∪a for every a ∈ A.

– Assume ψi = perm(π)ψj and σ = σ(ψi) = (θ1, θ′1, op1) · · · (θk, θ′k, opk). Recall
that Uσ = {u ∈ [k] | opu = ∪} and Mσ = {m ∈ [k] | opm = \}. Then,
we define ||ψi|| = 〈T ∀(π)〉pj , where T ∀(π) is homomorphic on ∪, ◦, and on ∗,
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T ∀(ψk?) = pk? for every test program ψk?. For every a ∈ A, we define 1:

T ∀(a) = aMσ ∪
⋃

u∈Uσ

p(θu)? ◦ (a ∪ a)Mσ∩[u,k] ◦ p(θ′u)?

Via application of Lemma 1, the intention behind T ∀(a) is to describe the relation
[[a]]K�σ ∩ Pσ , where Pσ is the policy set of K � σ.

– Assume ψi = fperm(π)ψj and σ = σ(ψi) = (θ1, θ′1, op1) · · · (θk, θ′k, opk). Then,
we define ||ψi|| = ¬〈T ∃(π)〉pj , where T ∃(π) is inductively defined as follows:
• T ∃(π1 ∪ π2) = T ∃(π1) ∪ T ∃(π2)
• T ∃(π1 ◦ π2) = T ∃(π1) ◦ T (π2) ∪ T (π1) ◦ T ∃(π2), where T is defined as

above.
• T ∃(π∗) = T (π∗) ◦ T ∃(π) ◦ T (π∗), where T is defined as above.
• T ∃(ψk?) = false?
• For every a ∈ A, we define1:

T ∃(a) = aUσ ∪
⋃

m∈Mσ

p(θm)? ◦ (a ∪ a)Uσ∩[m,k] ◦ p(θ′m)?

Via application of Lemma 1, the intention behind T ∃(a) is to describe the relation
[[a]]K�σ \ Pσ , where Pσ is the policy set of K � σ.

Recall ϕ = ψn. By identifying, for every subset X ⊆ A ∪ A the program X with⋃
x∈X x, we define

ϕ′ = pn ∧ [(A ∪ A)∗]
∧

i∈[n]

(pi ↔ ||ψi||).

Note that expressing↔ with ¬ and ∨ only roughly doubles the size of the formula. The
following upper bound on the size of ϕ′ is not difficult to see.

Lemma 2. |ϕ′| ∈ O(|ϕ|3).

The correctness of the above translation follows from the following lemma.

Lemma 3. The formula ϕ is satisfiable if and only if ϕ′ is satisfiable.

By combining Lemma 2 and Lemma 3, we can deduce the following theorem.

Theorem 6. There exists a satisfiability preserving translation from DLP+
dyn to

PDL⊕[A], which is computable in polynomial time.

1 To avoid lengthy notations, the programs T ∀(a) and T ∃(a) for a ∈ A are not PDL⊕[A]
programs (since the ⊕ operator is applied to a non-atomic programs of the kind a ∪ a, where
a ∈ A). However, the program T ∀(a) can be rewritten as

aMσ ∪
�

u∈Uσ

p(θu)? ◦ aMσ∩[u,k] ◦ p(θ′
u)? ∪

�

u∈Uσ

p(θu)? ◦ aMσ∩[u,k] ◦ p(θ′
u)?

which is a PDL⊕[A] program. We can proceed analogously for T ∃(a).
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6 Satisfiability for PDL⊕[A]

In this section, our goal is to prove that satisfiability of PDL⊕[A] is in EXP. So for the
rest of this section, fix some input PDL⊕[A] formula ϕ over atomic propositions P and
over atomic programs A. To decide satisfiability of ϕ, we translate ϕ into an alternating
Büchi tree automaton A(ϕ) that accepts exactly the set of so called Hintikka trees for
ϕ. Roughly speaking, Hintikka trees for ϕ summarize relevant information of models
of ϕ. So the satisfiability of ϕ reduces to non-emptiness of the tree language of A(ϕ).
We follow a similar approach as in [8]. Although in the following the ¬-operator may
occur in front of non-atomic formulas, we implictly assume w.l.o.g. that every occurring
PDL⊕[A] formula is in negation normal form, i.e. negations occur only in front of
atomic propositions. This can be achieved by introducing the operators∧ and [ ] and by
abbreviating¬(ϕ1 ∨ϕ2) by ¬ϕ1 ∧¬ϕ2 and ¬〈π〉ψ by [π]¬ψ. Thus, we associate ¬¬ψ
with ψ. We call formulas of the kind 〈π〉ψ diamond formulas and formulas of the kind
[π]ψ box formulas. The definition of subf is straightforward. As for DLP+

dyn , for every
program π that occurs in ϕ, we can associate a regular language L(π) over the alphabet
Σ(π), where the latter consists of the basic programs and the test programs that occur in
π. Moreover, we assume that the programs π, that occur in ϕ, are given by NFAs A(π)
over the alphabetΣ(π), i.e. L(A(π)) = L(π). Moreover, if K is a Kripke structure and
w = w1 · · ·wn with wi ∈ Σ(A(π)) for all i ∈ [n], then [[w]]K = [[w1]]K ◦ · · · ◦ [[wn]]K.
If A = (Q,Σ, q0, δ, F ) is an NFA and q ∈ Q, then Aq = (Q,Σ, q, δ, F ) denotes the
same NFA as A, but with initial state q. If we do not explicitly define A, then Q(A)
denotes the state set of A, Σ(A) denotes the alphabet of A, q0(A) denotes the initial
state of A, and F (A) denotes the set of final states of A respectively.
We start by introducing the closure of ϕ analogously as in [8,14,4].

Definition 1. The closure cl(ϕ) of ϕ is the smallest set such that:

– ϕ ∈ cl(ϕ),
– if χ ∈ subf(ψ) for some ψ ∈ cl(ϕ), then χ ∈ cl(ϕ),
– if ψ ∈ cl(ϕ), then ¬ψ ∈ cl(ϕ),
– if 〈A〉ψ ∈ cl(ϕ), then χ ∈ cl(ϕ) for all χ? ∈ Σ(A),
– if 〈A〉ψ ∈ cl(ϕ), α ∈ Σ(A) is a basic program, and χ ∈ subf(α), then χ ∈ cl(ϕ),
– if 〈A〉ψ ∈ cl(ϕ), then for all q ∈ Q(A) we have 〈Aq〉ψ ∈ cl(ϕ),
– if [A]ψ ∈ cl(ϕ), then χ ∈ cl(ϕ) for all χ? ∈ Σ(A),
– if [A]ψ ∈ cl(ϕ), α ∈ Σ(A) is a basic program, and χ ∈ subf(α), then χ ∈ cl(ϕ),

and finally
– if [A]ψ ∈ cl(ϕ), then for all q ∈ Q(A) we have [Aq]ψ ∈ cl(ϕ).

It is straightforward to verify, that the size of cl(ϕ) is polynomial in the size of ϕ. Let
us now introduce Hintikka sets for ϕ. These are subsets of cl(ϕ), that satisfy certain
closure properties.

Definition 2. A subset M ⊆ cl(ϕ) is a Hintikka set for ϕ, if the following five closure
properties are satisfied:
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(C1) if χ1 ∧ χ2 ∈M , then χ1, χ2 ∈M ,
(C2) if χ1 ∨ χ2 ∈M , then χ1 ∈M or χ2 ∈M ,
(C3) ψ ∈M if and only if ¬ψ �∈M for all ψ ∈ cl(ϕ),
(C4) if [A]χ ∈M and q0(A) ∈ F (A), then χ ∈M ,

(C5) if [A]χ ∈ M , then for all q ∈ Q(A) and all χ′? ∈ Σ(A) with q0(A)
χ′?⇒A q, we

have ¬χ′ ∈M or [Aq]χ ∈M .

Recall that in any Hintikka set M for ϕ, by the presence of (C3), for all ψ ∈ cl(ϕ),
we either have ψ ∈ M or ¬ψ ∈ M (but not both). Let B denote the set of all basic
programs that occur in some diamond formula or in some box formula from cl(ϕ). For
each α ∈ B inductively define At(α) = a if α = a ∈ A and At(α) = At(β) if
α = ⊕(β, ϕ1, ϕ2). For handling nestings of applied ⊕-operators in basic programs, we
introduce, for basic programsα ∈ B, an appropriate notion of whether α holds between
two subsets of cl(ϕ).

Definition 3. For all α ∈ B and all subsets S, T ⊆ cl(ϕ) for ϕ, we define the relation
(S, T ) |= α inductively by the syntactic structure of α as follows:

– (S, T ) |= a for all subsets S, T ⊆ cl(ϕ), and all a ∈ A.
– If α = ⊕(β, χ1, χ2), then (S, T ) |= α if and only if (χ1 ∈ S or χ2 ∈ T ) and

(S, T ) |= β.

Let us introduce infinite trees and infinite paths in them. If Γ and Υ are sets, then a
Γ -labeled Υ -tree is a mapping T : D → Γ for some non-empty prefix-closed subset
D ⊆ Υ ∗. An infinite path of T is a mapping τ : ω → Υ such that τ(1) · · · τ(n) ∈ D
for all n ≥ 1. If k ∈ ω, then a Γ -labeled k-tree is a Γ -labeled [k]-tree T : D → Γ such
that D = [k]∗.

Fix an enumeration ψ1, . . . , ψk of all diamond formulas in cl(ϕ). Let us now define
a concrete labeling set Γ , that we will comment on below in more detail. Define the
labeling set Γ = 2cl(ϕ)×(B#{⊥})× [0, k]. Intuitively, each modelK of ϕ corresponds
to some Γ -labeled k-tree T that contains the necessary information about how diamond
formulas are satisfied inK. We can think of it as assigning each u ∈ [k]∗ some state x of
K. The first component of T (u) contains exactly the set of formulas of cl(ϕ) that hold in
x. The second component of T (u) either contains the information by which witnessing
basic program the state xwas reached or whether this information is not important (then
it equals ⊥). If, on the one hand, the third component of T (u) contains the information
i ∈ [k], then u has the obligation, in its subtree, to show that the diamond formula ψi
is true in x. If, on the other hand, the third component of T (u) equals 0, then u is a
witness that some diamond formula ψj = 〈A〉χ ∈ cl(ϕ) holds in some world y ∈ X –
more precisely, we have (K, x) |= χ and (y, x) ∈ [[w]]K for some w ∈ L(A). For every
γ ∈ Γ and every j ∈ {1, 2, 3}, let γj denote the j-th component of γ.

Before defining what a Hintikka tree is, let us first, for Γ -labeled k-trees, introduce
a notion of local consistency of the labeling T (u) ∈ Γ of worlds u ∈ [k]∗. For a string
w over some alphabetΣ let Occ(w) ⊆ Σ denote the set of all letters that occur in w.

Definition 4. If T : [k]∗ → Γ is a Γ -labeled k-tree, and u ∈ [k]∗ is some world, we
say that T is locally consistent in u, if the following two conditions hold:
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(L1) Whenever ψi = 〈A〉χ ∈ T (u)1, then for some sequence of test programs w ∈
(Σ(A)\B)∗ and some state q′ ∈ Q(A) such that θ? ∈ Occ(w) implies θ ∈ T (u)1,
q0(A) w⇒A q

′, and at least one of the following two conditions holds:
(a) – q′ ∈ F (A),

– χ ∈ T (u)1,
– T (ui)2 = ⊥, and
– T (ui)3 = 0, or

(b) there exists some basic program α ∈ Σ(A) ∩ B and some state q ∈ Q(A)
such that

– q′
α⇒A q,

– ψj = 〈Aq〉χ ∈ T (ui)1,
– T (ui)2 = α,
– T (ui)3 = j, and
– (T (u)1, T (ui)1) |= α.

(L2) Whenever [A]χ ∈ T (u)1 and q0(A) α⇒A q for some basic program α ∈ Σ(A)∩B
and some q ∈ Q(A), then the following implication holds for all j ∈ [k] with
T (uj)2 = β ∈ B and At(α) = At(β):

(T (u)1, T (uj)1) |= α ⇒ [Aq]χ ∈ T (uj)1

Let us summarize the intention of local consistency of a Γ -labeled k-tree in a world u ∈
[k]∗. As indicated above, condition (L1) ensures that whenever u obliges to prove some
diamond formula ψi, then this proof is provided in the subtree of u: Either we directly
prove that ψi holds in u ((L1)(a)), or we delay this proof by obliging an appropriate
successor of u to prove an appropriate diamond formula ψj ((L1)(b)). Conditon (L2),
on the other hand, ensures that if u obliges to prove some box formula, then all relevant
successors of u must oblige to prove all relevant box formulas. We call a diamond
formula ψi infinitely delaying in a world u ∈ [k]∗ of some Γ -labeled k-tree T , if there
exists an infinite path τ : ω → [k] such that τ(1) = i and T (uτ(1) · · · τ(n))3 =
τ(n+ 1) for all n ≥ 1.

Definition 5. A Hintikka tree for ϕ is a Γ -labeled k-tree T such that

(H1) ϕ ∈ T (ε)1,
(H2) T (u)1 is a Hintikka set for ϕ for all u ∈ [k]∗,
(H3) T is locally consistent in all u ∈ [k]∗, and
(H4) for all u ∈ [k]∗ and all i ∈ [k] such that ψi ∈ T (u)1, the diamond formula ψi is

not infinitely delaying in u.

The following lemma can be shown.

Lemma 4. The formula ϕ is satisfiable if and only if there exists a Hintikka tree for ϕ.

Let us introduce alternating Büchi tree automata over infinite trees. Our goal is to con-
struct an alternating Büchi tree automaton A(ϕ) which accepts exactly the set of all
Hintikka trees for ϕ. Thus, satisfiability of ϕ reduces to non-emptiness of the tree lan-
guage of A(ϕ). If X is a set, let B+(X) denote the set of all positive boolean for-
mulas over the set X . An alternating Büchi tree automaton over Λ-labeled l-trees is
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a tuple A = (S, s0, δ, F ), where (1) S is a finite set of states, (2) s0 ∈ S is the ini-
tial state, (3) δ : S × Λ → B+(S × ([l] ∪ {ε})) maps every pair (s, λ) ∈ S × Λ
to a positive boolean formula δ(s, λ) over (S × ([l] ∪ {ε})), and (4) F ⊆ S is
a set of final states. Let T : [l]∗ → Λ be a Λ-labeled l-tree. A run of A on T
is an S × [l]∗-labeled ω-tree R : D → S × [l]∗ (i.e. D is a non-empty prefix-
closed subset of ω∗), which satisfies the following: (1) R(ε) = (s0, ε), and (2) for
all u ∈ D such that R(u) = (s, x) and δ(s, T (x)) = θ there exists some set
Y = {(s1, i1), . . . , (sn, in)} ⊆ S×([l]∪{ε}) such that (i) Y satisfies the formula θ, and
(ii) for all 1 ≤ j ≤ n, we have uj ∈ D andR(uj) = (sj , xij). We call a runR ofA on
T accepting, if all infinite paths τ : ω → ω ofR satisfy the Büchi acceptance condition,
i.e. {s ∈ S | R(τ(1) · · · τ(n)) ∈ ({s} × [l]∗) for infinitely many n ∈ ω} ∩ F �= ∅.
Let L(A) = {T | there exists an accepting run of A on T } denote the language ac-
cepted by A. From [13], the following complexity for non-emptiness of the language
of alternating Büchi automata over infinite trees can be derived .

Theorem 7 ([13]). The language non-emptiness for alternating Büchi tree automata
A = (S, s0, δ, F ) over Λ-labeled l-trees is decidable in time exponential in |S| and l,
and in time polynomial in |Λ| and in |δ|.

Note that in several definitions, alternating Büchi tree automata are not allowed to use ε-
transitions. It can easily be verified that Theorem 7 still holds, if we allow ε-transitions.
By translating Definition 1, 2, 3, 4, and 5 into an alternating Büchi tree automaton, we
can derive the following lemma.

Lemma 5. There exists an alternating Büchi tree automatonA = A(ϕ) = (S, s0, δ, F )
over Γ -labeled k-trees that accepts exactly the set of Hintikka trees for ϕ. Moreover,
the size of S is polynomial in |ϕ| and the size of δ is exponential in |ϕ|.

Note that the Büchi acceptance condition suffices to check whether some diamond for-
mula is not infinitely delaying in some world. Clearly, we need alternation to check
(S, T ) |= α for subsets S, T ⊆ cl(ϕ) and α ∈ B and thus for checking local consis-
tency (H3). By Theorem 7 and Lemma 5, the existence of a Hintikka tree for ϕ can be
decided in time exponential in |ϕ|. Thus, by applying Lemma 4, we get the following
theorem.

Theorem 8. Satisfiability for PDL⊕[A] is in EXP.

7 2EXP-Completeness of PDL⊕

In this section, we prove that satisfiability for PDL⊕ is complete for 2EXP. Let us first
introduce alternating Turing machines. An alternating Turing machine (ATM) is a tuple
M = (Q,Σ, Γ, q0, δ,�), where (i) Q = Qacc # Qrej # Q∃ # Q∀ is a finite set of
states, which is partitioned into accepting (Qacc), rejecting (Qrej), existential (Q∃), and
universal (Q∀) states, (ii) Γ is a finite tape alphabet, (iii) Σ ⊆ Γ is the input alphabet,
(iv) q0 ∈ Q is the initial state, (v) � ∈ Γ \Σ is the blank symbol, and (vi) the mapping
δ : (Q∃∪Q∀)×Γ → Moves×Moves with Moves = Q×Γ×{←,→}, assigns to every
pair (q, γ) ∈ (Q∃ ∪ Q∀) × Γ a pair of moves. So we assume that a configuration in a
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current state fromQ∃∪Q∀ has exactly two successors. We call a configurationC ofM
in current state q ∈ Q accepting, if either (i) q ∈ Qacc,(ii) q ∈ Q∃ and there exists an
accepting successor configuration of C, or (iii) q ∈ Q∀ and all successor configurations
of C are accepting. Let L(M) = {w ∈ Σ∗ | configuration q0w is accepting} denote
the language ofM.

Theorem 9. Satisfiability for PDL⊕ is 2EXP-complete.

Proof (sketch). The upper bound follows easily by a translation from PDL⊕ into PDL
with an exponential blowup in formula size (cf. Remark 1) and by the EXP upper bound
of PDL (cf. Theorem 1). The proof of the lower bound is an adaption of the 2EXP lower
bound for PDL with intersection from [6]. Fix some ATM M = (Q,Σ, Γ, q0, δ,�)
with a 2EXP-hard acceptance problem, that, on an input w = w1 · · ·wn ∈ Σ∗ where
wi ∈ Σ for each i ∈ [n], uses at most 2p(n) space, where p is some polynomial. By [1],
such a Turing machineM exists. We will give a reduction, computable in polynomial
time in n, that translates w and M into a PDL⊕ formula ϕ = ϕ(M, w) such that
w ∈ L(M) if and only if ϕ is satisfiable. Let N = p(n) and assume that Q and Γ are

disjoint. A configuration of M is a word from the language
⋃2N−1

i=0 Γ iQΓ 2N−i. Let
C = γ0 · · · γi−1qγi · · ·γ2N−1 be a configuration ofM, where 0 ≤ i ≤ 2N − 1, q ∈ Q,
and γj ∈ Γ for each 0 ≤ j ≤ 2N − 1. Figure 1 illustrates how we will represent C.
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Fig. 1. Representation of a configuration ofM

So each world uj (0 ≤ j ≤ 2N − 1) represents the cell on position j of the
configuration C (starting to count from 0) and the symbols below each world are the
atomic propositions that hold in uj . The atomic propositions cl(0) and cl(1), where
0 ≤ l ≤ N − 1, represent the binary encoding of j. For each 0 ≤ j ≤ 2N − 1, there
exists exactly one γ ∈ Γ such that the atomic proposition pγ holds in uj , expressing
that the content of the cell on position j of C is γ. On the other hand, for exactly one
0 ≤ j < 2N − 1 and exactly one q ∈ Q, the atomic proposition pq holds in uj , express-
ing thatM is currently in state q and scans cell j. Furthermore, worlds uj and uj+1 are
connected by the atomic program s for all 0 ≤ j < 2N −1. Moreover, the world u2N−1

may be connected to the first cell of one or both successor configuration(s) of C via the
atomic program s. Let Λ = Q # Γ . Formally, the formula ϕ will be over the atomic
propositions P = {cj(0), cj(1) | 0 ≤ j ≤ N − 1} ∪ {pλ | λ ∈ Λ} and over the atomic
program set A = {s}. The crucial part of the formula ϕ is to find a program match that
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relates the current cell to the cell of some successor configuration at same positions. Let
ϕfirst =

∧
1≤j≤N−1 cj(0), which expresses that the current world represents some cell

at position 0. The auxiliary program π = (s ◦ ¬ϕfirst?)∗ ◦ s ◦ ϕfirst? ◦ (s ◦ ¬ϕfirst?)∗

relates a cell cwith a cell c′ such that c′ is in some successor configuration of the config-
uration of c, not necessarily at same positions. Let α−1 = π and, for all 0 ≤ i ≤ N −1,
define αi = ⊕(⊕(αi−1, ci(0), ci(1)), ci(1), ci(0)). We put match = αN−1. Since we
enforced that each reachable world in a model of ϕ satisfies exactly one of the atomic
propositions ci(0) and ci(1) for all 0 ≤ i ≤ N − 1, the program match relates only
worlds that agree on the same atomic propositions from {ci(0), ci(1) | 0 ≤ i ≤ N−1}.
Since the program π relates cells in consecutive configurations, we relate cells in con-
secutive configurations at same positions. ��
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stantial comments. Moreover the author thanks Markus Lohrey and Carsten Lutz for
fruitful discussions on the topic as well as Florian Student for reading a draft version of
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Relativizing Small Complexity Classes and Their

Theories

Klaus Aehlig�, Stephen Cook, and Phuong Nguyen

University of Toronto

Abstract. Existing definitions of the relativizations of NC1, L and NL
do not preserve the inclusions NC1 ⊆ L, NL ⊆ AC1. We start by giving
the first definitions that preserve them. Here for L and NL we define their
relativizations using Wilson’s stack oracle model, but limit the height of
the stack to a constant (instead of log(n)). We show that the collapse
of any two classes in {AC0(m),TC0,NC1,L,NL} implies the collapse
of their relativizations. Next we develop theories that characterize the
relativizations of subclasses of P by modifying theories previously defined
by the second two authors. A function is provably total in a theory iff
it is in the corresponding relativized class. Finally we exhibit an oracle
α that makes ACk(α) a proper hierarchy. This strengthens and clarifies
the separations of the relativized theories in [Takeuti, 1995]. The idea is
that a circuit whose nested depth of oracle gates is bounded by k cannot
compute correctly the (k + 1) compositions of every oracle function.

1 Introduction

Oracles that separate P from NP and oracles that collapse NP to P have both
been constructed. This rules out the possibility of proofs of the separation or
collapse of P and NP by methods that relativize. However, similar results have
not been established for subclasses of P such as L and NL. Indeed, prior to this
work there has not been a satisfying definition of the relativized version of NL
that preserves simultaneously the inclusions

NC1 ⊆ L ⊆NL ⊆ AC1 (1)

For example [LL76], if the Turing machines are allowed to be nondeterministic
when writing oracle queries, then there is an oracle α so that NL(α) �⊆ P(α).
Later definitions of NL(α) adopt the requirement specified in [RST84] that the
nondeterministic oracle machines be deterministic whenever the oracle tape (or
oracle stack) is nonempty. Then the inclusion NL(α) ⊆ P(α) relativizes, but
not all inclusions in (1).

Because the nesting depth of oracle gates in an oracle NC1 circuit can be big-
ger than one, the model of relativization that preserves the inclusion NC1 ⊆ L
must allow an oracle logspace Turing machine to have access to more than one or-
acle query tape [Orp83, Bus86, Wil88]. For the model defined by Wilson [Wil88],
� Supported by DFG grant Ae 102/1-1.

J. Duparc and T.A. Henzinger (Eds.): CSL 2007, LNCS 4646, pp. 374–388, 2007.
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the partially constructed oracle queries are stored in a stack. The machine can
write queries only on the oracle tape at the top of the stack. It can start a new
query on an empty oracle tape (thus pushing down the current oracle tape, if
there is any), or query the content of the top tape which then becomes empty
and the stack is popped.

Following Cook [Coo85], the circuits accepting languages in relativized NC1

are those with logarithmic depth where the Boolean gates have bounded fanin
and an oracle gate of m inputs contributes log(m) to the depths of its parents.
Then in order to relativize the inclusion NC1 ⊆ L, the oracle logspace machines
defined by Wilson [Wil88] are required to satisfy the condition that at any time,

k∑

i=1

max{log(|qi|), 1} = O(log(n))

where q1, q2, . . . , qk are the contents of the stack and |qi| are their lengths. For
the simulation of an oracle NC1 circuit by such an oracle logspace machine the
upper bound O(log(n)) cannot be improved.

Although the above definition of L(α) (and NL(α)) ensures that NC1(α) ⊆
L(α), unfortunately we know only that NL(α) ⊆ AC2(α) [Wil88]; the inclusion
NL(α) ⊆ AC1(α) is left open.

We observe that if the height of the oracle stack is bounded by a constant
(while the lengths of the queries are still bounded by a polynomial in the length
of the inputs), then an oracle NL machine can be simulated by an oracle AC1

circuit, i.e., NL(α) ⊆ AC1(α). In fact, NL(α) can then be shown to be the
AC0(α) closure of the Reachability problem for directed graphs. Similarly, L(α)
is the AC0(α) closure of the Reachability problem for directed graphs whose
outdegree is at most one.

The AC0(α) closure of the Boolean Sentence Value problem (which is AC0

complete for NC1) turns out to be the languages computable by uniform oracle
NC1 circuits (defined as before) where the nesting depth of oracle gates is now
bounded by a constant. We redefine NC1(α) using this new restriction on the
oracle gates; the new definition is more suitable in the context of AC0(α) re-
ducibility (the previous definition of NC1(α) seems suitable when one considers
NC1(α) reducibility). Consequently, we obtain the first definition of NC1(α),
L(α) and NL(α) that preserves the inclusions in (1).

Furthermore, the AC0-complete problems for NC1, L, and NL (as well
as AC0(m), TC0) become AC0(α)-complete for the corresponding relativized
classes. Therefore the existence of any oracle that separates two of the men-
tioned classes implies the separation of the respective nonrelativized classes. (If
the non-relativised classes would be equal, their complete problems would be
equivalent under AC0-reductions, hence even more under AC0(α)-reductions
and therefore the relativised classes would coincide as well.) Separating the rel-
ativized classes is as hard as separating their nonrelativized counterparts. This
nicely generalizes known results [Wil88, Sim77, Wil89].

On the other hand, oracles that separate the classes ACk (for k = 0, 1, 2, . . .)
and P have been constructed [Wil89]. Here we prove a sharp separation between
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relativized circuit classes whose nesting depths of oracle gates differ by one. More
precisely, we show that a family of uniform circuits with nesting depth of oracle
gates bounded by k cannot compute correctly the (k + 1) iterated compositions

f(f( . . . f(0) . . . )) (2)

for all oracle function f . (Clearly (2) can be computed correctly by a circuit with
oracle gates having nesting depth (k+ 1).) As a result, there is an oracle α such
that

NL(α) � AC1(α) � AC2(α) � . . . � P(α) (3)

The idea of using (2) to separate relativized circuit classes is already present in
the work of Takeuti [Tak95] where it is used to separate the relativized versions
of first-order theories TLS(α) and TAC1(α). Here TLS and TAC are (single
sorted) theories associated with L and AC1, respectively. Thus with simplified
arguments we strengthen his results.

Finally, building up from the work of the second two authors [CN06, NC05]
we develop relativized two-sorted theories that are associated with the newly
defined classes NC1(α),L(α),NL(α) as well as other relativized circuit classes.

The paper is organized as follows. In Section 2 we define the relativized classes
and prove the inclusions mentioned above. In Section 3 we define the associated
theories. An oracle that separates classes in (3) is shown in Section 4.

2 Definitions of Small Relativized Classes

2.1 Relativized Circuit Classes

Throughout this paper, α denotes a unary relation on binary strings.
A problem is in ACk if it can be solved by a polynomial size family of Boolean

circuits whose depth is bounded by O((log n)k) (n is the number of the inputs),
where ∧ and ∨ gates are allowed unbounded fanin. The relativized class ACk(α)
generalizes this by allowing, in addition to (unbounded fanin) Boolean gates
(¬,∧,∨), oracle gates that output 1 if and only if the inputs to the gates (viewed
as binary strings) belong to α (these gates are also called α gates).

In this paper we always require circuit families to be uniform. Our default
definition of uniform is DLOGTIME, a robust notion of uniformity that has
a number of equivalent definitions [BIS90, Imm99]. In particular, a language
L ⊆ {0, 1}∗ is in (uniform) AC0 iff it represents the set of finite models {1, . . . , n}
of some fixed first-order formula with an uninterpreted unary predicate symbol
and ternary predicates which are interpreted as addition and multiplication.

Recall that TC0 (resp. AC0(m)) is defined in the same way as AC0, except
the circuits allow unbounded fanin threshold (resp. modm) gates.

Definition 1 (ACk(α), AC0(m,α), TC0(α)). For k ≥ 0, the class ACk(α)
(resp. AC0(m,α), TC0(α)) is defined as uniform ACk (resp. AC0(m), TC0)
except that unbounded fan-in α gates are allowed.
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The class NCk is the subclass of ACk defined by restricting the ∧ and ∨ gates to
have fanin 2. Defining NCk(α) is more complicated. In [Coo85] the depth of an
oracle gate with m inputs is defined to be log(m). A circuit is an NCk(α)-circuit
provided that it has polynomial size and the total depth of all gates along any
path from the output gate to an input gate is O((log n)k). Note that if there is
a mix of large and small oracle gates, the number of oracle gates may not be
O((log n)k−1).

Here we restrict the definition further, requiring that the nested depth of
oracle gates is O((log n)k−1).

Definition 2 (NCk(α)). For k ≥ 1, a language is in NCk(α) if it is computable
by a uniform family of NCk(α) circuits, i.e., ACk(α) circuits where the ∧ and
∨ gates have fanin 2, and the nested depth of α gates is O((log n)k−1).

2.2 Relativized Logspace Classes

To define oracle logspace classes, we use a modification of Wilson’s stack model
[Wil88]. An advantage is that the relativized classes defined here are closed under
AC0-reductions. This is not true for the non-stack model.

A Turing machine M with a stack of oracle tapes can write 0 or 1 onto the
top oracle tape if it already contains some symbols, or it can start writing on an
empty oracle tape. In the latter case, the new oracle tape will be at the top of
the stack, and we say that M performs a push operation. The machine can also
pop the stack, and its next action and state depend on α(Q), where Q is the
content of the top oracle tape. Note that here the oracle tapes are write-only.

Instead of allowing an arbitrary number of oracle tapes, we modify Wilson’s
model by allowing only a stack of constant height (hence the prefix “cs” in csL(α)
and csNL(α)). This places the relativized classes in the same order as the order
of their unrelativized counterparts.

In the definition of csNL(α), we also use the restriction [RST84] that the
machine is deterministic when the oracle stack is non empty.

Definition 3 (csL(α), csNL(α)). For a unary relation α on strings, csL(α) is
the class of languages computable by logspace, polytime Turing machines using
an α-oracle stack whose height is bounded by a constant. csNL(α) is defined as
csL(α) but the Turing machines are allowed to be nondeterministic when the
oracle stack is empty.

Theorem 4. NC1(α) ⊆ csL(α) ⊆ csNL(α) ⊆ AC1(α).

Proof. The second inclusion is immediate from the definitions, the first can be
proved as in the standard proof of the fact that NC1 ⊆ L (see also [Wil88]).
The last inclusion can actually be strengthened, as shown in the next theorem.

�
Theorem 5. Each language in csNL(α) can be computed by a uniform family
of AC1(α) circuits whose nested depth of oracle gates is bounded by a constant.

A proof of the theorem is given in the full version of this paper [ACN07].
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2.3 csL(α) Reducibility

A csL(α) function is defined by allowing the csL(α) machine to write on a
write-only output tape. Then the notion of many-one csL(α) reducibility is de-
fined as usual. Using this notion, the next lemma can be used to show that the
Immerman-Szelepcsényi Theorem and Savitch’s Theorem relativize. Recall that
STCONN is the problem: given (G, s, t), where s, t are two designated vertices
of a directed graph G, decide whether there is a path from s to t. A proof of the
next lemma is given in [ACN07].

Lemma 6. A language is in csNL(α) iff it is many-one csL(α) reducible to
STCONN.

Corollary 7 (Relativized Immerman-Szelepcsényi Theorem). csNL(α)
is closed under complementation.

Proof. Any language in co-csNL(α) is csL(α) reducible to STCONN, which is
AC0 reducible to STCONN. So co-csNL(α) ⊆ csNL(α). �

Let csL2(α) denote the class of languages computable by a deterministic oracle
Turing machine in O(log2) space and constant-height oracle stack.

Corollary 8 (Relativized Savitch’s Theorem). csNL(α) ⊆ csL2(α).

Proof. The corollary follows from Lemma 6 and the fact that the composition
of a csL(α) function and a (log2) space function (for STCONN) is a csL2(α)
function. �

3 Relativized Theories

3.1 Two-Sorted Languages and Complexity Classes

Our theories are based on a two-sorted vocabulary, and it is convenient to re-
interpret the complexity classes using this vocabulary [CN06, NC05]. Our two-
sorted language has variables x, y, z, ... ranging over N and variables X,Y, Z, ...
ranging over finite subsets of N (interpreted as bit strings). Our basic two-sorted
vocabulary L2

A includes the usual symbols 0, 1,+, ·,=,≤ for arithmetic over N,
the length function |X | on strings, the set membership relation ∈, and string
equality =2 (where we usually drop mention of the subscript 2). The function
|X | denotes 1 plus the largest element in the set X , or 0 if X is empty (roughly
the length of the corresponding string). We will use the notation X(t) for t ∈ X ,
and we will think of X(t) as the t-th bit in the string X .

Number terms of L2
A are built from the constants 0,1, variables x, y, z, ...,

and length terms |X | using + and ·. The only string terms are string variables
X,Y, Z, .... The atomic formulas are t = u, X = Y , t ≤ u, t ∈ X for any
number terms t, u and string variables X,Y . Formulas are built from atomic
formulas using ∧,∨,¬ and both number and string quantifiers ∃x, ∃X, ∀x, ∀X .
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Bounded number quantifiers are defined as usual, and the bounded string quan-
tifier ∃X ≤ t ϕ stands for ∃X(|X | ≤ t ∧ ϕ) and ∀X ≤ t ϕ stands for ∀X(|X | ≤
t ⊃ ϕ), where X does not occur in the term t.

ΣB
0 is the set of all L2

A-formulas in which all number quantifiers are bounded
and with no string quantifiers. ΣB

1 (corresponding to strict Σ1,b
1 in [Kra95])

formulas begin with zero or more bounded existential string quantifiers, followed
by a ΣB

0 formula. These classes are extended to ΣB
i , i ≥ 2, (and ΠB

i , i ≥ 0) in
the usual way.

We use the notation ΣB
0 (L) to denote ΣB

0 formulas which may have two-
sorted function and predicate symbols from the vocabulary L in addition to the
basic vocabulary L2

A.
Two-sorted complexity classes contain relationsR()x, )X) (and possibly number-

valued functions f()x, )X) or string-valued functionsF ()x, )X)), where the arguments
)x = x1, . . . , xk range over N, and )X = X1, . . . , X range over finite subsets of N.
In defining complexity classes using machines or circuits, the number arguments
xi are presented in unary notation (a string of xi ones), and the argumentsXi are
presented as bit strings. Thus the string arguments are the important inputs, and
the number arguments are small auxiliary inputs useful for indexing the bits of
strings.

As mentioned before, uniform AC0 has several equivalent characterizations
[Imm99], including LTH (the log time hierarchy on alternating Turing machines)
and FO (describable by a first-order formula using predicates for plus and times).
Thus in the two-sorted setting we can define AC0 to be the class of relations
R()x, )X) such that some alternating Turing machine accepts R in time O(log n)
with a constant number of alternations, using the input conventions for numbers
and strings given above. Then from the FO characterization of AC0 we obtain
the following nice connection between AC0 and our two-sorted L2

A-formulas.

Theorem 9 (ΣB
0 Representation Theorem). A relation R()x, )X) is in AC0

iff it is represented by some ΣB
0 formula ϕ()x, )X).

In general, if C is a class of relations (such as AC0) then we want to asso-
ciate a class FC of functions with C. Here FC will contain string-valued func-
tions F ()x, )X) and number-valued functions f()x, )X). We require that these func-
tions be p-bounded; i.e. for each F and f there is a polynomial g(n) such that
|F ()x, )X)| ≤ g(max ()x, | )X |)) and f()x, )X) ≤ g(max()x, | )X|)).

We define the bit graph BF (i, )x, )X) by

BF (i, )x, )X)↔ F ()x, )X)(i) (4)

Definition 10. If C is a two-sorted complexity class of relations, then the cor-
responding function class FC consists of all p-bounded number functions whose
graphs are in C, together with all p-bounded string functions whose bit graphs
are in C.

For example, binary addition F+(X,Y ) = X + Y is in FAC0, but binary multi-
plication F×(X,Y ) = X · Y is not.
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Definition 11. A string function is ΣB
0 -definable from a collection L of two-

sorted functions and relations if it is p-bounded and its bit graph is represented
by a ΣB

0 (L) formula. Similarly, a number function is ΣB
0 -definable from L if it

is p-bounded and its graph is represented by a ΣB
0 (L) formula.

It is not hard to see that FAC0 is closed under ΣB
0 -definability, meaning that if

the bit graph of F is represented by a ΣB
0 (FAC0) formula, then F is already in

FAC0.
In order to define complexity classes such as AC0(m) and TC0, as well as

relativized classes such as AC0(α), we need to iterate ΣB
0 -definability to obtain

the notion of AC0 reduction.

Definition 12. We say that a string function F (resp. a number function f) is
AC0-reducible to L if there is a sequence of string functions F1, . . . , Fn (n ≥ 0)
such that

Fi is ΣB
0 -definable from L ∪ {F1, . . . , Fi−1}, for i = 1, . . . , n; (5)

and F (resp. f) is ΣB
0 -definable from L ∪ {F1, . . . , Fn}. A relation R is AC0-

reducible to L if there is a sequence F1, . . . , Fn as above, and R is represented
by a ΣB

0 (L ∪ {F1, . . . , Fn}) formula.

In other words, F is AC0-reducible to L if there is a uniform constant-depth
polysize circuit family that computes F , where the circuits are allowed gates
(each of depth one) which compute the functions and predicates in L (as well as
the Boolean connectives).

For each class C in

{TC0,AC0(m),NC1,L,NL} (6)

we consider a natural complete relation RC as follows:

– TC0: Numones(k,X) holds iff k is the number of 1 bits in the binary string
X .

– AC0(m): Modm(X) holds iff the number of 1 bits in X is 1 modulo m.
– NC1: Mfvp(X) holds iff X codes a true balanced monotone Boolean sen-

tence. (“Mfvp” stands for “monotone formula value problem”)
– L: Spath(s, t, G) holds iff G codes a directed graph with outdegree at most

1, and s, t are two vertices of G, and there is a path in G from s to t.
– NL: Conn(s, t, G) holds iff G is a directed graph that contains a path from
s to t.

The following result follows easily from the definitions of the complexity
classes and well-known complete problems:

Theorem 13. Each class C in (6) is the class of relations AC0-reducible to
RC.

Recall the relativized classes given in Definitions 1, 2, and 3. A proof of the next
theorem is given in [ACN07].
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Theorem 14. For each class C(α) in

{TC0(α),AC0(m,α),NC1(α), csL(α), csNL(α)}

C(α) is the class of relations AC0-reducible to {RC, α}.

The following corollary is immediate from the two preceding theorems and the
transitivity of AC0-reducibility. It generalizes results in [Wil89].

Corollary 15. For any C1,C2 in (6) C1 = C2 if and only if for all α, C1(α) =
C2(α), where L(α) means csL(α) and NL(α) means csNL(α).

3.2 Nonrelativized Theories

The theory V0 (essentially Σp
0-comp in [Zam96], and IΣ1,b

0 (without #) in
[Kra95]) is the theory over L2

A that is axiomatized by the axioms listed in Figure
1 together with the axiom scheme ΣB

0 (L2
A)-COMP, i.e. the set of all formulas

of the form
∃X ≤ y∀z < y(X(z)↔ ϕ(z)), (7)

where ϕ(z) is any formula in ΣB
0 (L2

A), and X does not occur free in ϕ(z).

B1. x + 1 = 0 B7. (x ≤ y ∧ y ≤ x) ⊃ x = y
B2. x + 1 = y + 1 ⊃ x = y B8. x ≤ x + y
B3. x + 0 = x B9. 0 ≤ x
B4. x + (y + 1) = (x + y) + 1 B10. x ≤ y ∨ y ≤ x
B5. x · 0 = 0 B11. x ≤ y ↔ x < y + 1
B6. x · (y + 1) = (x · y) + x B12. x = 0 ⊃ ∃y ≤ x(y + 1 = x)
L1. X(y) ⊃ y < |X| L2. y + 1 = |X| ⊃ X(y)
SE. [|X| = |Y | ∧ ∀i < |X|(X(i) ↔ Y (i))] ⊃ X = Y

Fig. 1. 2-BASIC

Using the the ΣB
0 Representation Theorem 9, it can be shown that a p-

bounded function is in FAC0 if and only if it is provably total (i.e., ΣB
1 definable)

in V0.
More generally, for various subclasses C of P, a theory VC is developed in

[CN06, Chapter 9] that characterizes C in the sense that the functions in FC
are precisely the provably total functions of VC. (The theory for AC0(m) is
V0(m).) The theory VC is axiomatized by the axioms of V0 together with
an axiom that formalizes a polytime computation of an answer for a complete
problem of C, asuming the parameters as given inputs. For a class C in (6), the
complete problem is RC.

To formulate these axioms we introduce the pairing function 〈y, z〉, which
stands for the term (y + z)(y + z + 1) + 2z. This allows us to interpret a string
X as a two-dimensional bit array, using the notation

X(y, z) ≡ X(〈y, z〉) (8)
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For example, a graph with a vertices can be encoded by a pair (a,E) where
E(u, v) holds iff there is an edge from u to v, for 0 ≤ u, v < a. The theory
VNL is axiomatized by V0 and CONN ≡ ∀a∀E∃Y δCONN (a,E, Y ). The for-
mula δCONN (a,E, Y ) states that for the graph encoded by (a,E), Y encodes
a polytime computation of the nodes that are reachable from nodes 0: Y (z, x)
holds iff there is a path from 0 to x of length ≤ z.

δCONN (a,E, Y ) ≡ Y (0, 0) ∧ ∀x < a(x �= 0 ⊃ ¬Y (0, x)) ∧
∀z < a∀x < a [Y (z + 1, x)↔ (Y (z, x) ∨ ∃y < a, Y (z, y) ∧ E(y, x))] .

The additional axioms for other theories are listed below. Here (Z)x is the
x-th element of the sequence of numbers encoded by Z:

y = (Z)x ↔ (y < |Z| ∧ Z(x, y) ∧ ∀z < y¬Z(x, z))∨
(∀z < |Z|¬Z(x, z) ∧ y = |Z|)

Also, log a, or |a|, denotes the integral part of log2(a). Note that this function
is provably total in V0. The ΣB

0 formulas below contain the functions (Z)x and
|a|, but these functions can be eliminated using their ΣB

0 defining axioms.

– VTC0: NUMONES ≡ ∀X∀x∃Y δNUM (x,X, Y ) where

δNUM (x,X, Y ) ≡ (Y )0 = 0 ∧
∀z < x

[
(X(z) ⊃ (Y )z+1 = (Y )z + 1) ∧ (¬X(z) ⊃ (Y )z+1 = (Y )z)

]

(For z ≥ 1, (Y )z is the number of 1 bits in X(0), X(1), . . . , X(z − 1).)
– V0(m) (the theory for AC0(m)): MODm ≡ ∀X∀x∃Y δMODm

(x,X, Y ) where

δMODm(x,X, Y ) ≡ Y (0, 0) ∧
∀z < x

[
(X(z) ⊃(Y )z+1 =((Y )z + 1) mod m)) ∧ (¬X(z)⊃(Y )z+1 =(Y )z)

]
.

(For z ≥ 1, (Y )z is the number of 1 bits in X(0), X(1), . . . , X(z− 1) modulo
m.)

– VNC1: MFVP ≡ ∀a∀G∀I∃Y δMFVP (a,G, I, Y ) where
δMFVP (a,G, I, Y ) ≡ ∀x < a [Y (x + a) ↔ I(x)∧

0 < x ⊃ [Y (x) ↔ [(G(x) ∧ Y (2x) ∧ Y (2x + 1)) ∨ (¬G(x) ∧ (Y (2x) ∨ Y (2x + 1)))]]]

(For the formula viewed as a balanced binary tree encoded by (a,G)—node
x’s children are 2x and 2x+ 1, and G(x) indicates whether node x is an ∨
or ∧ node— Y (x) is the value of node x when the inputs are given by I.)

– VL: SinglePATH is the axiom

[∀x < a∃!y < aE(x, y)] ⊃ ∃P
[
(P )0 = 0 ∧ ∀v < aE((P )v, (P )v+1)

]

((P )v is the vertex of distance v from 0.)
– VACk: ∀a∀E∀G∀I∃Y δMCVP(a, |a|k, E,G, I, Y ) where
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δMCVP (w, d,E,G, I, Y ) ≡ ∀x < w∀z < d [(Y (0, x) ↔ I(x))∧
(Y (z + 1, x)↔ [[G(z + 1, x) ∧ ∀u < w (E(z, u, x) ⊃ Y (z, u))]∨

[¬G(z + 1, x) ∧ ∃u < w (E(z, u, x) ∧ Y (z, u))]])]

(“MCVP” stands for “monotone circuit value problem”. Here the formula
δMCVP(w, d,E,G, I, Y ) states that given input I to a circuit encoded by
(w, d,E,G)—there are w gates on each of the the d layers, the gate connec-
tion is given by E and the gates are specified by G—Y encodes an evaluation
of the gates.)

– VNCk (for k ≥ 2):

∀a∀E∀G∀I(Fanin2 (a, |a|k, E) ⊃ ∃Y δMCVP(a, |a|k, E,G, I, Y ))

Here Fanin2 (w, d,E) states that the gates have fanin at most 2:

∀z < d∀x < w∃u1, u2 < w∀v < w (E(z, v, x) ⊃ v = u1 ∨ v = u2)

Showing that the functions in FC are precisely the provably total functions
of VC can be done by first developing an universal theory VC whose underly-
ing vocabulary consists of all functions in FC with their defining axioms. The
provably total functions of VC are precisely the functions in FC, so it remains
to show that VC is a conservative extension of VC [CN06, Corollary 9.33].

Our goal for the remainder of this section is to obtain relativized theories
VC(α) that characterize the relativized classes discussed in Section 2. We will
use the results of [CN06, Chapter 9] and the fact that the axioms in VC(α)
encode the polytime computation of corresponding AC0-complete problems of
the classes (cf. Theorem 14).

3.3 Relativized Theories

First note that a sequence of strings can be encoded using the string function
Row , where

Row(x, Z)(i) ↔ i < |Z| ∧ Z(x, i)

(Row(x, Z) will be also written as Z [x].)

Notation. For a predicate α, let ΣB
0 (α) denote the class of ΣB

0 formulas in
L2
A ∪ {Row , α}.

Definition 16. V0(α) = V0 + ΣB
0 (α)-COMP. For each class C in (6), the

theory VC(α) is defined as VC with ΣB
0 -COMP replaced by ΣB

0 (α)-COMP.

Notice that natural relativized versions of the additional axioms of VC, such
as CONN , are already provable in VC(α). For example, let CONN (α) be the
axiom scheme

∀a∃Y [Y (0, 0) ∧ ∀x < a(x �= 0 ⊃ ¬Y (0, x)) ∧
∀z < a∀x < a, Y (z + 1, x) ↔ (Y (z, x) ∨ ∃y < a, Y (z, y) ∧ ϕ(y, x))].

where ϕ is a ΣB
0 (α) formula. Then it is easy to use ΣB

0 (α)-COMP to show that
VNL(α) 4 CONN (α).
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Theorem 17. For a class C in {AC0,AC0(m),TC0,NC1,L,NL}, a function
is in FC(α) if and only if it is provably total in VC(α).

The theorem can be proved using Theorem 14 by induction on n in Definition
12. Details can be found in [ACN07].

Now we present the theories VACk(α) (for k ≥ 1) and VNCk(α) (for k ≥
2). Note that the problem of evaluating uniform ACk(α) (or NCk(α)) circuits
is AC0-complete for the corresponding relativized class. Thus VACk(α) (or
VNCk(α)) will be axiomatized by V0 together with an additional axiom that
formalizes a polytime computation that solves the respective complete problem.

First we formalize a polytime evaluation of an oracle circuit C = (w, d,E,G)
given input I. Since the order of inputs to an oracle gate is important, the edge
relations of the underlying graph is now encoded by a string variable E, where
E(z, t, u, x) indicates that gate u on layer z is the t-th input to gate x on layer
z + 1. The condition we need for E is

Proper (w, d,E)≡∀z < d∀t, x, u1, u2 < w, (E(z, t, u1, x)∧E(z, t, u2, x)) ⊃ u1 =u2

In the formula δαMCVP(w, d,E,G, I,Q, Y ) defined below, Q[z+1,x] encodes the
query to the oracle gate x on layer z + 1. Here the type of gate x on layer z is
specified by (G)〈z,x〉.

Definition 18. The formula δαMCVP(w, d,E,G, I,Q, Y ) is the formula

∀z < d∀x < w

[∀t < w(Q[z+1,x](t) ↔ (∃u < w, E(z, t, u, x) ∧ Y (z, u)))] ∧ [Y (0, x)↔ I(x)]∧
[Y (z + 1, x)↔ (((G)〈z+1,x〉 = “∧” ∧ ∀t, u < w, E(z, t, u, x) ⊃ Y (z, u))∨

((G)〈z+1,x〉 = “∨” ∧ ∃t, u < w, E(z, t, u, x) ∧ Y (z, u))∨
((G)〈z+1,x〉 = “α” ∧ α(Q[z+1,x])))]

Definition 19 (VACk(α)). For k ≥ 1, VACk(α) is the theory over the vocab-
ulary L2

A ∪ {Row , α} and is axiomatized by the axioms of V0 and the following
axiom:

∀w,E,G, I(Proper (w, d,E) ⊃ ∃Q, Y δαMCVP (w, (logw)k, E,G, I,Q, Y ))

To specify an NCk(α) circuit, we need to express the condition that ∧ and ∨
gates have fanin 2. Here we use the following formula Fanin2 ′(w, d,E,G):

∀z < d∀x < w((G)〈z,x〉 = “α” ⊃ ∃u1, u2 < w∀t, v < w, E(z, t, v, x) ⊃ v = u1 ∨ v = u2)

Moreover, the nested depth of oracle gates in circuit (w, d,E,G) needs to be
bounded. The formula OHeight(w, d, h, E,G,H) below states that this nested
depth is bounded by h:

(∀z ≤ d∀x < w∃!s ≤ h H(z, x, s)) ∧ (∀x < wH(0, x, 0))∧
∀z < d∀x < w∃m[m = max{� : ∃t, u < wE(z, t, u, x) ∧H(z, u, �)}∧

[((G)〈z+1,x〉 = “α” ⊃ H(z + 1, x, m + 1)) ∧ ((G)〈z+1,x〉 = “α” ⊃ H(z + 1, x, m))]]
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Definition 20 (VNCk(α)). For k ≥ 2, VNCk(α) is the theory over L2
A ∪

{Row , α} and is axiomatized by V0 and the axiom

∀w∀E,G, I,H, [Proper (w, d,E) ∧ Fanin2 ′(w, |w|k , E,G)∧
OHeight(w, d, |w|k−1, E,G,H)] ⊃ ∃Q, Y δαMCVP(w, (logw)k, E,G, I,Q, Y )

The next theorem can be proved in the same way as Theorem 17.

Theorem 21. For k ≥ 1, the functions in FACk(α) are precisely the provably
total functions of VACk(α). The same holds for FNCk(α) and VNCk(α), for
k ≥ 2.

4 Separation Results

One of the obvious benefits of considering relativized complexity classes is that
separations are at hand. Even though the unrelativized inclusion AC1 ⊆ PH is
strongly conjectured to be strict, no proof is currently known. On the other hand,
relative to an oracle the ACk-hierarchy is strict. Here we reconstruct a technique
used by Takeuti [Tak95] to separate theories in weak bounded arithmetic in a
circuit-theoretic setting. Using the hierarchy result together with the witnessing
theorem we obtain an unconditional separation of our relativized theories.

The idea is that computing the k’th iterate fk(0) = f(f(. . . f(0))) of a func-
tion f is essentially a sequential procedure, whereas shallow circuits represent
parallel computation. So a circuit performing well in a sequential task has to be
deep. To avoid that the sequential character of the problem can be circumvented
by precomputing all possible values, the domain of f is chosen big enough; we
will consider functions f : [2n] → [2n].

Of course with such a big domain, we cannot represent such functions simply
by a value table. That’s how oracles come into play: oracles allow us to provide a
predicate on strings as input, without the need of having an input bit for every
string. In fact, the number of bits potentially accessible by an oracle gate is
exponential in the number of its input wires.

Therefore we represent the i’th bit of f(x) for x ∈ {0, 1}n by whether or not
the string xi belongs to the language of the oracle. Here i is some canonical
coding of the natural number i using log(n) bits.

Our argument can be summarized as follows. We assume a circuit of height
h be given that supposedly computes the �’th iterate of any function f given by
the oracle. Then we construct, step by step, an oracle that fools this circuit, if
� > h. To do so, for each layer of the circuit we decide how to answer the oracle
questions, and we do this in a way that is consistent with the previous layers and
such that all the circuit at layer i knows about f is at most the value of f i(0).
Of course, to make this step-by-step construction possible we have to consider
partial functions during our construction.

If A and B are sets we denote by f : A ⇀ B that f is a partial function from
A to B. In other words, f is a function, its domain dom(f) is a subset of A and
its range rng(f) is a subset of B.
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Definition 22. A partial function f : [2n] ⇀ [2n] is called �-sequential if for
some k ≤ � it is the case that 0, f(0), f2(0), . . . , fk(0) are all defined, but fk(0) �∈
dom(f).

Note that in Definition 22 it is necessarily the case that 0, f(0), f2(0), . . . ,
fk(0) are distinct. For the easy proof of the next lemma, see [ACN07].

Lemma 23. Let n ∈ N and f : [2n] ⇀ [2n] be an �-sequential partial function.
Moreover, let M ⊂ [2n] such that |dom(f) ∪M | < 2n. Then there is a (� + 1)-
sequential extension f ′ ⊇ f with dom(f ′) = dom(f) ∪M .

Definition 24. To any natural number n and any partial function f : [2n] ⇀
[2n] we associate a its bit graph αn,f as a partial function αn,f : {0, 1}n+logn ⇀
{0, 1} in the obvious way. More precisely, αn,f (uv) is the i’th bit of f(x) if f(x)
is defined, and undefined otherwise, where u is a string of length n coding the
natural number x and v is a string of length logn coding the natural number i.

If f : [2n] → [2n] is a total function, we define the set Af = {x | αn,f (x) =
1} ⊆ {0, 1}n+logn.

Immediately from Definition 24 we note that f can be uniquely reconstructed
from Af . If A ⊆ {0, 1}∗ is a set of bitstrings, we denote by A[n] = {x ∈ A | |x| =
n+ logn} the set of all strings in A of length n+ logn.

In what follows, circuits refer to oracle circuits as discussed in Section 2.1. We
are mainly interested in circuits with no Boolean inputs, so the output depends
only on the oracle.

Theorem 25. Let C be any circuit of depth h and size strictly less then 2n. If C
on oracle A computes correctly f (0) for the (uniquely determined) f : [2n]→ [2n]
such that Af = A[n], and this is true for all oracles A, then � ≤ h.

Proof. Assume that such a circuit computes f (0) correctly for all oracles. We
have to find an oracle that witnesses � ≤ h. First fix the oracle arbitrarily on all
strings of length different from n + logn. So, in effect we can assume that the
circuit only uses oracle gates with n+ logn inputs.

By induction on k ≥ 0 we define partial functions fk : [2n] ⇀ [2n] with the
following properties. (Here we number the levels of the circuit 0, 1, . . . , h− 1.)

– f0 ⊆ f1 ⊆ f2 ⊆ . . .
– The size |dom(fk)| of the domain of fk is at most the number of oracle gates

in levels strictly smaller than k.
– αn,fk

determines the values of all oracle gates at levels strictly smaller than
k.

– fk is k-sequential.

We can take f0 to be the totally undefined function, since f0(0) = 0 by definition.
As for the induction step let M be the set of all x of length n such that, for
some i < n, the string xi is queried by an oracle gate at level k and let fk+1 be a
k+1-sequential extension of fk to domain dom(fk)∪M according to Lemma 23.
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For k = h we get the desired bound. As αn,fh
already determines the values

of all gates, the output of the circuit is already determined, but fh+1(0) is still
undefined and we can define it in such a way that it differs from the output of
the circuit. �

Inspecting the proof of Theorem 25 we note that it does not at all use what
precisely the non-oracle gates compute, as long as the value only depends on
the input, not on the oracle. In particular, the proof still holds if we consider
subcircuits without oracle gates as a single complicated gate. Thus we have the
following corollary of Theorem 5.

Corollary 26. csNL(α) can iterate a function given by an oracle only con-
stantly far. In particular, csNL(α) is a strict subclass of AC1(α).

Having obtained a lower bound on the depth of an individual circuit, it is a
routine argument to separate the corresponding circuit classes. In other words,
we are now interested in finding one oracle that simultaneously witnesses that the
ACk(α)-hierarchy is strict. For the uniform classes this is possible by a simple
diagonalization argument; in fact, the only property of uniformity we need is
that there are at most countably many members in each complexity class. So we
will use this as the definition of uniformity. It should be noted that this includes
all the known uniformity notions.

Definition 27. If g : N → N is a function from the natural numbers to the
natural numbers, and A ⊆ {0, 1}∗ an oracle, we define the language

LAg = {x | the last bit of fg(n)(0) is 1,
where n = |x| and f is such that A[n] = Af}

We note that in Definition 27 the f is uniquely determined by A and the length
of x. Also, for logspace-constructible g the language LAg can be computed by
logspace-uniform circuits of depth g(n) and size n · g(n).

Recall that a circuit family is a sequence (Cn)n∈N of circuits, such that Cn

has n inputs and one output. The language of a circuit family (Cn)n∈N is the
set of all strings x ∈ {0, 1}∗ such that the output of C|x| with input x is 1.

Definition 28. A notion of uniformity is any countable set U of circuit families.
Let U be a notion of uniformity, and h, s : N → N functions. The U-uniform

h, s-circuits are those circuit families (Cn)n∈N ∈ U of U such that Cn has depth
at most h(n) and size at most s(n).

By a simple diagonalization argument we obtain the following theorem.

Theorem 29. Let U be a notion of uniformity and hc a family of functions such
that for all c ∈ N the function hc+1 eventually strictly dominates hc. Moreover,
let sc be a family of strictly subexponentially growing functions. Then there is
a single oracle A ⊆ {0, 1}∗ that simultaneously witnesses that LAhc+1

cannot be
computed by U-uniform hc, sc-circuits.
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Corollary 30. There is a single oracle A ⊆ {0, 1}∗ for which the relativized
versions of ACk form a strict hierarchy.

Corollary 31. The theories VACk(α) form a strict hierarchy.
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Abstract. Recently a mapping M , the so-called miniaturization mapping, has
been introduced and it has been shown that M faithfully translates subexponen-
tial parameterized complexity into (unbounded) parameterized complexity [2].
We determine the preimages under M of various (classes of) problems and show
that they coincide with natural reparameterizations which take into account the
amount of nondeterminism needed to solve them.

1 Introduction

The idea of fixed-parameter tractability is to approach hard algorithmic problems by
isolating problem parameters that can be expected to be small in certain applications
and then develop algorithms that are polynomial except for an arbitrary dependence on
the parameter. More precisely: A parameterized problem is a pair (Q, κ), where Q is
a classical problem, say, over the alphabet Σ and κ : Σ∗ → N is a polynomial time
computable function assigning to every x ∈ Σ∗ its parameter κ(x). The problem (Q, κ)
is fixed-parameter tractable if it can be solved by an algorithm the running time of which
is bounded by f (κ(x)) · |x|O(1), where f is an arbitrary computable function. The class
of all fixed-parameter tractable problems is denoted by FPT.

There are natural problems that are fixed-parameter tractable, but require a para-
meter dependence f of the form f (k) := 22k

or even worse. However, even for small

values of the parameter κ(x), a running time such as 222κ(x)

· |x| is prohibitive. Hence,
besides the unbounded fixed-parameter tractability more restrictive notions of tractabil-
ity have been studied obtained by simply putting upper bounds on the growth of the
“parameter dependence” f , the most restrictive one considered so far being f ∈ 2o(k).1

The corresponding class of “tractable” problems has been denoted by SUBEPT and the
corresponding theory by subexponential parameterized complexity.

It is a beautiful aspect of subexponential parameterized complexity theory that it
can be faithfully translated into unbounded parameterized complexity theory via the
miniaturization mapping M : Let (Q, κ) be a parameterized problem over the alphabet
Σ. The miniaturization M (Q, κ) of (Q, κ) is the parameterized problem:

1 In the precise definition given in Section 2 we have to require f ∈ 2oeff(k), an effective version
of f ∈ 2o(k).
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M (Q, κ)
Instance: x ∈ Σ∗ and m ∈ N in unary.

Parameter:
⌈

κ(x)
log m

⌉
.

Question: Is x ∈ Q?

The mapping M strongly preserves reducibilities and every parameterized problem
in XP has a preimage under the miniaturization map. Here XP denotes the class of
parameterized problems (Q, κ) solvable in timeO(|x|f (κ(x))). To state the precise result,
proven in [2], we write (Q, κ) ≤serf (Q′, κ′) and (Q, κ) ≤fpt (Q′, κ′) if there is a serf-
reduction and an fpt-reduction, respectively, from (Q, κ) to (Q′, κ′) (compare Section 2
for the definitions of all concepts introduced informally in this introduction).

Theorem 1 (Miniaturization Theorem). (1) Let (Q, κ) be a parameterized problem.
Then

(Q, κ) ∈ SUBEPT ⇐⇒ M (Q, κ) ∈ FPT.

(2) Let (Q, κ) and (Q′, κ′) be parameterized problems. Then

(Q, κ) ≤serf (Q′, κ′) ⇐⇒ M (Q, κ) ≤fpt M (Q′, κ′).

(3) Let (Q, κ) ∈ XP. Then there exists a problem (Q′, κ′) such that

M (Q′, κ′) ≡fpt (Q, κ).

The class XP comprises the most important classes of intractable parameterized prob-
lems, namely the classes of the W-hierarchy. We recall a property of these classes. For
a set Γ of propositional formulas the parameterized weighted satisfiability problem for
Γ is defined by

p-WSAT(Γ)
Instance: A propositional formula α ∈ Γ and k ∈ N.

Parameter: k.
Question: Does α have a satisfying assignment of weight k?

Then for the classes W[1],W[2], . . . of the W-hierarchy the following holds:

– If t, d ≥ 1 and t+d ≥ 3, then p-WSAT(Γt,d) is W[t]-complete under fpt-reductions.

Here Γt,d contains the propositional formulas that are big conjunctions of big disjunc-
tions of big conjunctions . . . (t alternations) of conjunctions (if t is even) and disjunc-
tions (if t is odd) of d literals (see [5] for the precise definition).

In [2] the authors consider the reparameterization form-WSAT(Γ) of p-WSAT(Γ),
where

form-WSAT(Γ)
Instance: A formula α ∈ Γ and r ≥ 1.

Parameter: r · (log |α|8.
Question: Does α have a satisfying assignment of weight r?
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They show for the Γ’s relevant for the W[t]’s that the problem form-WSAT(Γ) is the
preimage of p-WSAT(Γ) under the miniaturization mapping, that is:

– If t, d ≥ 1 and t + d ≥ 3, then M (form-WSAT(Γt,d)) ≡fpt p-WSAT(Γt,d).

Already an analysis of the proof of part (3) of the Miniaturization Theorem shows that
the preimage of a parameterized problem (Q, κ) under the miniaturization mapping es-
sentially is a reparameterization of (Q, κ). How do we get this reparameterization? Is
there a natural reparameterization that is a preimage? Can we determine the preimage
for a large class of problems? These are the problems we address in this paper. In [2]
the authors prove that the reparameterization of problems obtained by multiplying the
parameter by the logarithm of the size of the instance gives an inverse for the miniatur-
ization mapping for all problems satisfying certain technical conditions. In particular,
form-WSAT(Γ) is this reparameterization of p-WSAT(Γ). We generalize this approach.

Let (Q, κ) be a parameterized problem over the alphabet Σ. Often (the classical prob-
lem) Q has a canonical representation of the form

x ∈ Q ⇐⇒ there is y ∈ {0, 1}g(x) such that (x, y) ∈ Q0 (1)

for some polynomial time computable function g : Σ∗ → N with g(x) ≤ |x| and some
Q0 ∈ PTIME. (We give such a representation for Q := WSAT(Γ) below.) Consider the
nondeterministic algorithm solving x ∈ Q by guessing y ∈ {0, 1}g(x) and then veri-
fying that (x, y) ∈ Q0 in polynomial time. The deterministic procedure simulating all
possible computation paths of this nondeterministic algorithm takes time 2g(x) · |x|O(1).
The question arises whether we can do better and solve the problem x ∈ Q in time

2o(g(x)) · |x|O(1),

thus showing (Q, g) ∈ SUBEPT. We call (Q, g) the canonical parameterization of Q
(more precisely, one should speak of the canonical parameterization induced by the
representation (1) of Q) and sometimes we say that (Q, g) is the canonical reparame-
terization of (Q, κ).

Clearly, the problem (Q, g) is fixed-parameter tractable. Even more, every parame-
terized problem where the parameter increases monotonically with the size of the input
is fixed-parameter tractable (cf. [5, Proposition 1.7]). The proof of this result heavily
relies on the fact that we allow arbitrary computable functions in the definition of FPT.
Indeed, from the point of view of the unbounded theory the parameters of such parame-
terizations are not small. However this is not the case in the subexponential theory.

Let Q be the weighted satisfiability problem WSAT(Γ) for formulas in Γ, that is,
(α, k) ∈ Q if and only if α ∈ Γ and α has a satisfying assignment of weight k. A
canonical representation of Q of the form (1) is

(α, k) ∈ Q ⇐⇒ there is a y ∈ {0, 1}k·#log |var(α)|$ such that ((α, k), y) ∈ Q0,

where var(α) is the set of variables of α and ((α, k), y) ∈ Q0 means that α ∈ Γ, that y
contains the binary representation of k distinct variables of α and that the assignment
setting exactly these variables to TRUE satisfies α. Hence the canonical parameterization
is the problem
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var-WSAT(Γ)
Instance: A formula α ∈ Γ and r ≥ 1.

Parameter: r · (log |var(α)|8.
Question: Does α have a satisfying assignment of weight r?

We show that in addition to form-WSAT(Γt,d) also var-WSAT(Γt,d) is a preimage of
p-WSAT(Γt,d).

The main question we address is: For what other parameterized problems is the
canonical reparameterization a preimage under the miniaturization map?

In Section 3 we show that the answer is positive for the parameterized dominating set
problem. In Section 4 we introduce a general framework that allows us to carry out the
arguments we use for the dominating set problem. We apply this abstract approach in
Section 5 to reprove and extend the results obtained in [2] for the weighted satisfiability
problem. Perhaps the most far-reaching positive answer to our main question is obtained
in Section 6:

If t ≥ 1 and the parameterized problem (Q, κ) is W[t]-complete and Fagin-
definable by a Πt-formula, then the preimage of (Q, κ) under the miniaturiza-
tion mapping is its canonical reparameterization.

To broaden the range of applicability of this result we deal with relativized Fagin-
definable problems. As an application we get:

If one can decide whether a hypergraph H has a hitting set of size r in time
2o(r·log (|V |+|E|)) · ‖H‖O(1), then one can even do it in time 2o(r·log |V |) · ‖H‖O(1).

In the last section we discuss the main question for model-checking problems and give
an application to the homomorphism problem (see Corollary 31).

Due to space limitations we have to defer most proofs to the full version of the paper.

2 Preliminaries

The set of natural numbers (that is, nonnegative integers) is denoted by N. For a natural
number n let [n] := {1, . . . , n}. By log n we mean (log n8 if an integer is expected.
For n = 0 the term log n is undefined. We trust the reader’s common sense to interpret
such terms reasonably.

2.1 Parameterized Complexity

Recall that a parameterized problem is a pair (Q, κ), where Q is a classical problem,
say, over the alphabet Σ and κ : Σ∗ → N is a polynomial time computable function
assigning to every x ∈ Σ∗ its parameter κ(x).

The problem (Q, κ) is fixed-parameter tractable if it can be solved by an algorithm
in time f (κ(x)) · |x|O(1), where f is an arbitrary computable function. The class of all
fixed-parameter tractable problems is denoted by FPT.

Let f, g : N → N be computable functions. Then f ∈ oeff(g) if there is a computable
function h such that for all � ≥ 1 and k ≥ h(�), we have f (k) ≤ g(k)/�. We often
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write f (k) ∈ oeff(g(k)) instead of f ∈ oeff(g). A parameterized problem (Q, κ) is in
SUBEPT if x ∈ Q is solvable in time f (κ(x)) · |x|O(1) for some computable function f
with f (k) ∈ 2o

eff(k).
We assume that the reader is familiar with the notions of (many-one) reductions for

the unbounded and for the subexponential parameterized complexity (cf. [5]), which
we call fpt-reduction and serf-reduction, respectively. For ∗ ∈ {fpt, serf} we write
(Q, κ) ≤∗ (Q′, κ′) if there is a ∗-reduction from (Q, κ) to (Q′, κ′), and we write
(Q, κ) ≡∗ (Q′, κ′) if (Q, κ) ≤∗ (Q′, κ′) and (Q′, κ′) ≤∗ (Q, κ).

2.2 Propositional Logic

Formulas of propositional logic are built as usual. Let PROP be the class of all propo-
sitional formulas. We use the notations from [5] and in particular its definitions of the
classes Γt,d, Δt,d, Γ+

t,d, Δ+
t,d and Γ−t,d and Δ−t,d.

Let V be a set of propositional variables. Often we tacitly identify an assignment
S : V → {TRUE, FALSE} with the set {X ∈ V | S(X) = TRUE}. The weight of an
assignment S is |S|, the number of variables set to TRUE. A propositional formula α is
k-satisfiable (where k ∈ N), if there is an assignment for the set var(α) of variables of α
of weight k satisfying α. Recall from the Introduction the definition of the parameter-
ized weighted satisfiability problem p-WSAT(Γ) for a set Γ of propositional formulas.
We shall use the following well-known result.

Theorem 2. Let t, d ∈ N with t + d ≥ 3.
– If t is even, then p-WSAT(Γ+

t,d) is W[t]-complete under fpt-reductions.
– If t is odd, then p-WSAT(Γ−t,d) is W[t]-complete under fpt-reductions.
– p-WSAT(PROP) is W[SAT]-complete under fpt-reductions.

2.3 First-Order Logic

We assume familiarity with the basic notions of first-order logic: (relational) vocabulary,
structure, size of a structure, first-order formula, and the satisfaction relation (see [5]).

If ϕ is a first-order formula, we write ϕ(x1, . . . , xm) to indicate that the free variables
in ϕ are x1, . . . , xm. If A is τ -structure and ϕ(x1, . . . , xm) a formula, we let

ϕ(A) := {(a1, . . . , am) ∈ Am | A |= ϕ(a1, . . . , am)}.

For t ≥ 0 let Πt denote the class of all first-order formulas of the form

∀x11 . . .∀x1k1∃x21 . . . ∃x2k2 . . . Qxt1 . . .Qxtkt ψ,

where Q = ∃ if t is even and Q = ∀ otherwise, and where ψ is quantifier-free.
For t ≥ 0, u ≥ 1 a formula is in Π0

t,u if it is in Πt and all quantifier blocks have length
bounded by u. For s ≥ 1, Φ[s] denotes the class of formulas in Φ whose vocabulary
has arity ≤ s. The following result is well-known.

Theorem 3. Let t ≥ 0, u ≥ 1, and s ≥ 2. Then p-MC(Π0
t,u) and p-MC(Π0

t,u[s]) are
W[t + 1]-complete under fpt-reductions, where
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p-MC(Φ)
Instance: A structureA and a formula ϕ ∈ Φ.

Parameter: |ϕ|.
Question: Is ϕ(A) �= ∅?

Here Φ is a set of first-order formulas and |ϕ| denotes the length of the formula ϕ.

3 An Example

We consider the parameterized dominating set problem

p-DOMINATING-SET

Instance: A graph G = (V,E) and k ∈ N.
Parameter: k.

Question: Does G have a dominating set of size k?

and its canonical reparameterization

uni-DOMINATING-SET

Instance: A graph G = (V,E) and r ∈ N.
Parameter: r · log |V |.

Question: Does G have a dominating set of size r?

Theorem 4. M (uni-DOMINATING-SET) ≡fpt p-DOMINATING-SET.

Proof. p-DOMINATING-SET ≤fpt M (uni-DOMINATING-SET): Let (G, k) be an in-
stance of p-DOMINATING-SET with G = (V,E). We set r := k and m := ‖(G, k)‖
and consider the instance (G, r,m) of M (uni-DOMINATING-SET). As

⌈
r · log |V |

log m

⌉
≤
⌈
k · log |V |

log |V |

⌉
= k

the mapping (G, k) �→ (G, r,m) is an fpt-reduction.

M (uni-DOMINATING-SET) ≤fpt p-DOMINATING-SET: Let (G, r,m) be an instance of
M (uni-DOMINATING-SET) with G = (V,E). We can assume that

2 ≤ r ≤ |V |. (2)

Recall that the parameter of (G, r,m) is

k :=

⌈
r · log |V |

log m

⌉
. (3)

Now we distinguish two cases. If |V | > m, then k > r by (3). It follows that we can
map (G, r,m) to the equivalent instance (G, r) of p-DOMINATING-SET (its parameter r
is bounded by k). In case |V | ≤ m we have

k ≤ r. (4)
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Moreover, r · log |V | ≤ k · log m and hence

|V |r/k ≤ m. (5)

We want to get from the instance (G, r,m) of M (uni-DOMINATING-SET) in fpt-time a
pair (G′, k′) such that

G has a dominating set of size r ⇐⇒ G′ has a dominating set of size k′

and such that k′ ≤ g(k) for some computable g. The next lemma shows that we can
even get such a (G′, k′) with k′ = k in time polynomial in |V |r/k + ‖G‖, and hence by
(5), in time polynomial in m. Note that by (4) and (2) the assumptions of the lemma are
satisfied. �

Lemma 5. There is an algorithm that assigns to every graph G = (V,E) and r, k ∈ N

with

k ≤ r ≤ |V | and 2 ≤ |V |

a graph G′ such that

G has a dominating set of size r ⇐⇒ G′ has a dominating set of size k

in time polynomial in |V |r/k + ‖G‖.
As p-DOMINATING-SET is W[2]-complete, we get from Theorem 4:

Corollary 6. W[2] = FPT if and only if there is an algorithm deciding whether a graph
G = (V,E) has a dominating set of size k in time 2o

eff(k·log |V |) · |V |O(1).

4 The General Framework

We show that the result obtained in the previous section for the dominating set problem
can be generalized to any parameterized problem satisfying an analogue of Lemma 5.

We start with a simple observation that often will be useful.

Proposition 7. Let (Q, κ) be a parameterized problem over the alphabet Σ and κ′ :
Σ∗ → N a further parameterization of Q such that κ′(x) ≤ O(κ(x) · log |x|). Then:

(Q, κ) ≤fpt M (Q, κ′).

In particular, (Q, κ) ≤fpt M (Q, κ).

Corollary 8. Let (Q, κ) be a parameterized problem over the alphabet Σ and κ′ a
further parameterization such that κ′(x) ≤ O(κ(x) · log |x|). Furthermore let t ≥ 1. If
(Q, κ) is W[t]-complete under fpt-reductions and M (Q, κ′) ∈ W[t], then M (Q, κ′) is
W[t]-complete under fpt-reductions, too.

Now we turn to a generalization of the results of the previous section.
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Definition 9. Let (Q, κ) be a parameterized problem over the alphabet Σ. Let h :
Σ∗ → N be a function computable in polynomial time. We say that (Q, κ) has the
h-condensation property if there is an algorithm that for every x ∈ Σ∗ and k ∈ N with
1 ≤ k ≤ κ(x) computes an x′ ∈ Σ∗ in time polynomial in

h(x)κ(x)/k + |x|

such that κ(x′) ≤ k and (x ∈ Q ⇐⇒ x′ ∈ Q).

In [2] the authors introduce the notion of scalable parameterized problem and prove
Theorem 12 below for scalable problems. The reader familiar with that paper will easily
show that a parameterized problem is scalable if and only if it has the h-condensation
property for h(x) := |x|.
Examples 10. (a) Lemma 5 shows that p-DOMINATING-SET has the h-condensation
property for the function h given by h(G, r) := |V |.2

(b) p-INDEPENDENT-SET has the h-condensation property for the function h given by
h(G, r) := |V |. The verification is similar to the case of the dominating set problem and
is implicit in [2] (note that for r ≤ |V | we have |V | ≤ ‖(G, r)‖ ≤ O(|V |2)).

(c) Let t, d ∈ N with t + d ≥ 3. The problem p-WSAT(Γ) for Γ := Γ+
t,d with even t,

Γ := Γ−t,d with odd t, and Γ := PROP has the h-condensation property for the function
h given by h(α, r) := |var(α)| (= number of variables of α).

Definition 11. Let (Q, κ) be a parameterized problem over the alphabet Σ. Let h :
Σ∗ → N be a function computable in polynomial time. The h-reparameterization
(Q, κh) of (Q, κ) is then given by

κh(x) := κ(x) · log h(x).

Along the lines of the proof of Theorem 4 one can show:

Theorem 12. Let (Q, κ) be a parameterized problem over Σ. Let h : Σ∗ → N be a
function computable in polynomial time such that h(x) ≤ |x| for all x ∈ Σ∗. Further-
more assume that (Q, κ) has the h-condensation property. Then

M (Q, κh) ≡fpt (Q, κ).

Corollary 13. Let (Q, κ) be a parameterized problem over Σ. Let h : Σ∗ → N be
a function computable in polynomial time such that h(x) ≤ |x| for all x ∈ Σ∗. Fur-
thermore assume that (Q, κ) has the h-condensation property. Then (Q, κ) is fixed-
parameter tractable if and only if x ∈ Q is solvable in time 2o

eff(κ(x)·log h(x)) · |x|O(1).

5 Further Applications

Let Γ be a set of propositional formulas. We consider the h-reparameterizations var-
WSAT(Γ) and form-WSAT(Γ) of the parameterized weighted satisfiability problem
p-WSAT(Γ) given by setting h(α, r) := |var(α)| and h(α, r) := |α|, respectively; that is,

2 Lemma 5 only shows that the relevant inequality holds for k = 1. As usual, the failure for
finitely many values is not relevant here and thus we do not mention it in the following.
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var-WSAT(Γ)
Instance: A formula α ∈ Γ and r ≥ 1.

Parameter: r · log |var(α)|.
Question: Does α have a satisfying assignment of weight r?

and

form-WSAT(Γ)
Instance: A formula α ∈ Γ and r ≥ 1.

Parameter: r · log |α|.
Question: Does α have a satisfying assignment of weight r?

As already remarked in [2]:

Lemma 14. Let t, d ∈ N with t + d ≥ 3. Then for even t

var-WSAT(Γt,d) ≡serf var-WSAT(Γ+
t,d)

and for odd t
var-WSAT(Γt,d) ≡serf var-WSAT(Γ−t,d).

Theorem 15. Let t, d ∈ N with t + d ≥ 3. If t is even, then the following problems are
W[t]-complete under fpt-reductions:

(1) M (var-WSAT(Γt,d)); (3) M (form-WSAT(Γt,d));
(2) M (var-WSAT(Γ+

t,d)); (4) M (form-WSAT(Γ+
t,d)).

For odd t one has to replace Γ+
t,d by Γ−t,d.

Similarly one gets:

Corollary 16. The problems M (form-WSAT(PROP)) and M (var-WSAT(PROP)) are
W[SAT]-complete under fpt-reductions.

The previous results have the following surprising consequence. We do not know for
what other sets Γ of propositional formulas the following claim holds.

Corollary 17. Let t, d ∈ N with t + d ≥ 3. Let Γ := Γt,d or Γ := Γ+
t,d for even t or

Γ := Γ−t,d for odd t, or Γ := PROP. Then

var-WSAT(Γ) ≡serf form-WSAT(Γ).

Part (2) of the following result is due to Chen et. al. [1]. Recall the following relation
between the classes of the M-hierarchy and the classes of the W-hierarchy: for every
t ≥ 1, M[t] ⊆ W[t] ⊆ M[t + 1], and M[SAT] = W[SAT] (see [4,5]).

Theorem 18. Let t, d ∈ N with t + d ≥ 3.
(1) If W[t] = FPT, then one can decide WSAT(Γt,d) in time |var(α)|oeff(k) · |α|O(1) for

every instance (α, k).
(2) If M[t] �= FPT, then one cannot decide WSAT(Γt,d) in time |var(α)|oeff(k) · |α|O(1)

for every instance (α, k).

By the same method one gets:

Theorem 19. W[SAT] = FPT if and only if one can decide WSAT(PROP) in time
|var(α)|oeff(k) · |α|O(1) for every instance (α, k).
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6 Fagin-Definable Problems

Let ϕ(X) be any first-order formula with a (second-order) set variable X . Recall that it
Fagin-defines the parameterized problem

p-WDϕ

Instance: A structureA and k ∈ N.
Parameter: k.

Question: Is there a subset S of A such that A |= ϕ(S) and |S| = k?

Its canonical reparameterization is the problem (we denote the universe of a structure
A by A)

uni-WDϕ

Instance: A structureA and r ∈ N.
Parameter: r · log |A|.

Question: Is there a subset S of A such that A |= ϕ(S) and |S| = r?

Our main result reads as follows:

Theorem 20. Let ϕ(X) be a Πt-formula and assume that p-WDϕ is W[t]-complete
under fpt-reductions. Then M (uni-WDϕ) is W[t]-complete under fpt-reductions.

This result has many applications. For example, the problems p-CLIQUE and p-SET-
PACKING are W[1]-complete problems Fagin-definable by Π1-formulas and p-TOUR-
NAMENT-DOMINATING-SET and p-KERNEL are W[2]-complete problems Fagin-de-
finable by Π2-formulas. Thus their canonical reparameterizations are W[1]-complete
and W[2]-complete, respectively (cf. [5] for the definitions of the problems).

Before we turn to a proof of Theorem 20, we consider an example which suggests to
prove a more general result. HITTING-SET is the problem:

HITTING-SET

Instance: A hypergraphH = (V,E) and k ∈ N.
Question: Does there exist a set S ⊆ V of size k such that

S ∩ e �= ∅ for all e ∈ E?

Its canonical parameterization is:

vert-HITTING-SET

Instance: A hypergraphH = (V,E) and r ∈ N.
Parameter: r · log |V |.

Question: Does there exist a set S ⊆ V of size r such that
S ∩ e �= ∅ for all e ∈ E?

In order to rewrite the problem as a Fagin-definable one, we represent a hypergraphH
as a τHG-structureA(H), where

τHG := {VERT,EDGE, I}



Subexponential Time and Fixed-Parameter Tractability 399

with unary relation symbols VERT and EDGE and binary relation symbol I: We let

A(H) := V ∪ E, VERTA(H) := V,

EDGEA(H) := E, IA(H) := {(v, e) | v ∈ V, e ∈ E, and v ∈ e}.

The following formula expresses that X is a hitting set:

hit0(X) := ∀x∃y
(
(Xx→ VERT x) ∧ (EDGE x→ (Xy ∧ Iyx))

)
.

Furthermore, it is not hard to see that there is a Π2-sentence hyp of vocabulary τHG,
which is satisfied exactly by those τHG-structures that, up to isomorphism, have the
formA(H) for some hypergraphH. We set

hit(X) := hyp ∧ hit0(X).

Then hit(X) is (equivalent to) a Π2-formula and

uni-WDhit ≤serf vert-HITTING-SET,

as shown by the mapping (A(H), r) �→ (H, r). However uni-WDhit does not coincide
with vert-HITTING-SET, because the former has the parameter r · log (|V | + |E|) and
the latter the parameter r · log |V |. Note that |E| can be as large as 2|V |.

Therefore, we consider a more general reparameterization of the problem Fagin-
defined by a formulaϕ(X), namely a relativized version, where a subset of the universe
is part of the instance; this subset must contain the solution:

uni-rela-WDϕ

Instance: A structureA, a set U ⊆ A, and r ∈ N.
Parameter: r · log |U |.

Question: Does there exist a set S ⊆ U of size r such that A |= ϕ(S)?

As shown by the reduction (A, r) �→ (A, A, r), we have

uni-WDϕ ≤serf uni-rela-WDϕ;

hence, by the Miniaturization Theorem

M (uni-WDϕ) ≤fpt M (uni-rela-WDϕ). (6)

Furthermore, the reduction (H, r) �→ (A(H), V, r) shows that

vert-HITTING-SET ≤serf uni-rela-WDhit.

The main technical lemma of this section reads as follows:

Lemma 21. Let t ≥ 1 and ϕ(X) ∈ Πt. Then M (uni-rela-WDϕ) ∈ W[t].

Proof of Theorem 20: Proposition 7 and (6) imply

p-WDϕ ≤fpt M (uni-WDϕ) ≤fpt M (uni-rela-WDϕ)

Then, Lemma 21 and the W[t]-hardness of p-WDϕ yield M (uni-WDϕ) ∈ W[t]. �

As an application we get:
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Proposition 22. The miniaturizations of the problem size-HITTING-SET and of the
problem vert-HITTING-SET are W[2]-complete under fpt-reductions, where

size-HITTING-SET

Instance: A hypergraphH = (V,E) and r ≥ 1.
Parameter: r · log (|V | + |E|).

Question: Does there exist a set S ⊆ V of size r such that
S ∩ e �= ∅ for all e ∈ E?

As an immediate consequence, we get:

Corollary 23. If there is an algorithm solving HITTING-SET in time 2o
eff(r·log (|V |+|E|)) ·

‖H‖O(1), then HITTING-SET is solvable in time 2o
eff(r·log |V |) · ‖H‖O(1).

We turn to the clique problem. As the W[1]-complete problem p-CLIQUE is Fagin-
definable by a Π1-formula, by Theorem 20 we see that M (uni-CLIQUE) is W[1]-
complete. Therefore:

Corollary 24. W[1] = FPT if and only if one can decide whether a graph G = (V,E)
has a clique of size k in time 2o

eff(k·log |V |) · |V |O(1).

Now similarly as Theorem 18, one can show:

Theorem 25. (1) If W[1] = FPT, then one can decide whether a graph G = (V,E)
has a clique of size k in time |V |oeff(k).

(2) If M[1] �= FPT, then one cannot decide whether a graph G = (V,E) has a clique of
size k in time |V |oeff(k).

Part (2) is again proved by Chen et. al. [1].

We close this section with two open problems. From Proposition 7 we know that

p-WDϕ ≤fpt M (uni-WDϕ) (7)

holds for every formula ϕ(X). Is there a natural Fagin-definable problem p-WDϕ, for
which ≤fpt cannot be replaced by ≡fpt in (7) (modulo complexity theoretic assump-
tions). We believe that this could be the case for p-CLIQUE-OR-INDEPENDENT-SET,
where

p-CLIQUE-OR-INDEPENDENT-SET

Instance: A graph G and k ∈ N.
Parameter: k.

Question: Does G have a clique or an independent set of size k?

It is known that the problem is fixed-parameter tractable. However, is it solvable in time
2o

eff(k·log |V |) · |V |O(1)?

We come to our second open question. We consider the problem of computing the
Vapnik–Chervonenkis dimension of a hypergraph. We let
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p-VC-DIMENSION

Instance: A hypergraphH = (V,E) and r ∈ N.
Parameter: r.

Question: Is there is a subset Y of V of cardinality r such for
every Z ⊆ Y there is a e ∈ E such that Z = Y ∩ e?

It is known that p-VC-DIMENSION is W[1]-complete. From Proposition 7 we know
that

p-VC-DIMENSION ≤fpt M (uni-VC-DIMENSION).

Again we do not know whether we can replace ≤fpt by ≡fpt. We cannot apply Theo-
rem 12, as we cannot prove the corresponding condensation property and we cannot
apply Theorem 20, as p-VC-DIMENSION is not Fagin-definable by a Π1-formula.

7 Model-Checking Problems

As shown by Theorem 3, model-checking problems of the form p-MC(Φ) for frag-
ments Φ of first-order logic are complete for the classes of the W-hierarchy. In this
section we analyze to what extent this holds for the miniaturization of their canonical
reparameterizations var-MC(Φ), where

var-MC(Φ)
Instance: A structureA and a formula ϕ ∈ Φ.

Parameter: r · log |A|, where r is the number of free variables of ϕ.
Question: Is ϕ(A) nonempty?

By Theorem 3 one might conjecture that for t ≥ 0, u ≥ 1, and s ≥ 2 the prob-
lems M (var-MC(Π0

t,u)) and M (var-MC(Π0
t,u[s])) are W[t + 1]-complete under fpt-

reductions.
However this is unlikely as the next result shows that these problems are W[SAT]-

complete. Recall that PROP denotes the class of all propositional formulas. By defini-
tion, the problem p-SAT(PROP), i.e.,

p-SAT(PROP)
Instance: α ∈ PROP.

Parameter: |var(α)|.
Question: Is α satisfiable?

is S[SAT]-complete under serf-reductions and hence M (SAT(PROP)) is W[SAT]-com-
plete under fpt-reductions (see [5, Definition 16.36 and Exercise 16.43]).

Theorem 26. For t ≥ 0, u ≥ 1, and s ≥ 2

M (var-MC(Π0
t,u)) and M (var-MC(Π0

t,u)[s])

are W[SAT]-complete under fpt-reductions.
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To obtain a W[t + 1]-complete problem we have to consider a subclass of Π0
t,u. Let

t ≥ 0 and u ≥ 1. A Π∗t,u-formula is a Π0
t,u-formula

ϕ = ∀x11 . . . ∀x1k1∃x21 . . .∃x2k2 . . . Qxt1 . . . Qxtktψ

such that

– if t is even (and hence Q = ∃), then ψ is in disjunctive normal form, and
– if t is odd (and henceQ = ∀), then ψ is in conjunctive normal form.

For t ≥ 0 and u, s ≥ 1, we have

p-MC(Π∗t,u[s]) ≡fpt p-MC(Π0
t,u[s]),

as in time allowed by an fpt-reduction, the quantifier-free part of a formula in Π0
t,u[s]

can be transformed into conjunctive or disjunctive normal form. In particular, the same
can be expressed by formulas in Π∗t,u[s] as by formulas in Π0

t,u[s].

Theorem 27. Let t ≥ 0, u ≥ 1 and s ≥ 2. Then M (var-MC(Π∗t,u[s])) is W[t + 1]-
complete under fpt-reductions.

We give an application of the preceding result. Let s ≥ 1. The parameterized homo-
morphism problem p-HOM[s] for structures of arity ≤ s is the following problem:

p-HOM[s]
Instance: StructuresA and B of arity ≤ s.

Parameter: ‖A‖.
Question: Is there a homomorphism fromA to B?

The following is known (cf. [5]):

Theorem 28. Let s ≥ 2. Then p-HOM[s] is W[1]-complete under fpt-reductions.

The canonical reparameterization of p-HOM[s] is the problem

uni-HOM[s]
Instance: StructuresA and B of arity ≤ s.

Parameter: |A| · log |B|.
Question: Is there a homomorphism fromA to B?

A further reparameterization of p-HOM[s] is

size-HOM[s]
Instance: StructuresA and B of arity ≤ s.

Parameter: ‖A‖ · log ‖B‖.
Question: Is there a homomorphism fromA to B?
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By Proposition 7 we have:

p-HOM[s] ≤fpt M (size-HOM[s]) ≤fpt M (uni-HOM[s]).

Using the previous theorem one can show that the three problems are equivalent:

Theorem 29. Let s ≥ 2. Then

p-HOM[s] ≡fpt M (size-HOM[s]) ≡fpt M (uni-HOM[s]).

Corollary 30. Let s ≥ 2. M (size-HOM[s]) and M (uni-HOM[s]) are W[1]-complete
under fpt-reductions.

Corollary 31. Let s ≥ 2. If there is an algorithm solving the problem HOM[s] in time
2o

eff(‖A‖·log ‖B‖) · ‖B‖O(1), then HOM[s] is solvable in time 2o
eff(|A|·log |B|) · ‖B‖O(1).

7.1 Model-Checking on Trees

We have seen that for many natural parameterized problem (Q, κ) whose instances are
of the form (x, y) with κ(x, y) = |y| we have

(Q, κ) is fixed-parameter tractable
⇐⇒ Q is decidable in time 2o

eff(|y|·log |x|) · |x|O(1).
(8)

One can show that the direction from right to left is always true, independent of the
choice of (Q, κ). To establish the converse direction, we mostly needed the condensa-
tion property for each individual problem. There are problems that (apparently) do not
have this property, for example p-WSAT(Γt,d). Nevertheless, the equivalence (8) still
holds for p-WSAT(Γt,d) by Theorem 15 and the Miniaturization Theorem.

It is not hard to construct an artificial parameterized problem not satisfying (8). We
should mention that the parameterized model-checking problem p-MC(TREE,MSO)
for monadic second-order logic (MSO) on trees (see [5] for a definition) is a more
natural example: in fact, by [3,7] the problem p-MC(TREE,MSO) is fixed-parameter
tractable, but one can show that the right side of the equivalence of (8) does not hold
for p-MC(TREE,MSO), unless the exponential time hypothesis fails.

8 Conclusions

We introduce the notion of canonical (re)parameterization of a (parameterized) prob-
lem and show, among others, that this reparameterization is the preimage under the
miniaturization mapping of Fagin-definable problems complete for some level of the W-
hierarchy. One of the main open questions is whether this is true for all Fagin-definable
problems. For every t ≥ 1 we determine a class of first-order formulas such that the
miniaturization of the corresponding parameterized model-checking problem is W[t]-
complete under fpt-reductions.
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Abstract. Probably the most significant result concerning cut-free sequent cal-
culus proofs in linear logic is the completeness of focused proofs. This com-
pleteness theorem has a number of proof theoretic applications — e.g. in game
semantics, Ludics, and proof search — and more computer science applications
— e.g. logic programming, call-by-name/value evaluation. Andreoli proved this
theorem for first-order linear logic 15 years ago. In the present paper, we give
a new proof of the completeness of focused proofs in terms of proof transfor-
mation. The proof of this theorem is simple and modular: it is first proved for
MALL and then is extended to full linear logic. Given its modular structure, we
show how the proof can be extended to larger systems, such as logics with induc-
tion. Our analysis of focused proofs will employ a proof transformation method
that leads us to study how focusing and cut elimination interact. A key compo-
nent of our proof is the construction of a focalization graph which provides an
abstraction over how focusing can be organized within a given cut-free proof.
Using this graph abstraction allows us to provide a detailed study of atomic bias
assignment in a way more refined that is given in Andreoli’s original proof. Per-
mitting more flexible assignment of bias will allow this completeness theorem to
help establish the completeness of a number of other automated deduction proce-
dures. Focalization graphs can be used to justify the introduction of an inference
rule for multifocus derivation: a rule that should help us better understand the
relations between sequentiality and concurrency in linear logic.

1 Introduction

Linear Logic was introduced 20 years ago by Girard and since then it has led to many
developments in proof theory, computational logic, and programming language theory.
Much proof theoretic analyses and applications of linear logic have concentrated on
the nature and dynamics of cut-elimination via the geometry of interactions, game se-
mantics, interactions, etc. Less has been studied about the structure of cut-free proofs
themselves: the main result in that area is probably the completeness of focused proofs
due to Andreoli [3,4]. This completeness theorem has a number of applications in com-
puter science: for example, focused proofs have been used to design and formalize logic
programming languages [2,20], to formalize proof systems that allow for both forward-
chaining and backward-chaining [15,19], and should be behind the dualities between
call-by-name and call-by-value evaluation in the λ-calculus [6]. The structure of fo-
cused proofs is also a key ingredient in the development of Polarized Logic [17,18] and
Ludics [13].

J. Duparc and T.A. Henzinger (Eds.): CSL 2007, LNCS 4646, pp. 405–419, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Andreoli’s result, however, is wrapped up in one theorem about one logic. This seems
an unfortunate situation for a number of reasons.

– Various extensions to linear logic are known (based on higher-order quantification
[11], induction and co-induction [5], different kinds of exponentials [7,12,16], etc.)
and it is likely that one will want to know if focusing can be proved for them.

– When examining the issues behind the assignment of polarity to literals (a neces-
sary annotation step needed to define focused proofs), it is clear that there is a lot
of flexibility allowed in providing such annotations, certainly more than what is
technically allowed in Andreoli’s proof system.

– Other logics exhibit focusing behaviors. In particular, there are focused proof sys-
tems for classical logic, namely LKQ/LKT [8] and LKηp [9], and for intuitionistic
logic, namely, LJT [14], LJQ calculus [14,10], and LJF [19].

– In [4], focusing is not seen as a process. There appears to be advantages to consider
the process of transforming proofs into focused proofs: mixing this process with
the process of doing cut-elimination should also be rather interesting.

These reasons suggest that the notions surrounding the “completeness of focused proofs”
is both more general and more flexible than what is captured in the original theorem and
its proof. Thus, we take on the task in this paper of attempting to develop an approach
to proving focusing results by getting after the essential conditions for “focalization”
to hold and by analyzing those conditions more broadly. By analogy, once the impor-
tance of cut-elimination was appreciated, Gentzen single cut-elimination theorem was
analyzed in ways to uncover the essentially features that now allow researchers to prove
cut-elimination for a number of logics.

This paper is organized as follows. In the next Section, we state some basic defini-
tions and results for linear logic, including the original focused proof system (Figure 3).
In Section 3, we present the key elements of our methodology, in particular, the focal-
ization graph and a flexible bias assignment scheme, on the multiplicative and additive
subset of linear logic (MALL). Section 4 considers how this methodology can account
for additional structure within linear logic, including the exponentials and quantifiers.
In Section 5, we briefly consider adding to the sequent calculus proofs the multifocus
inference rule. Finally, we conclude in Section 6.

2 Linear Logic Preliminaries

The formulas of LL are made from literals which are atoms (a, b, . . . ) or negations of
atoms (a⊥, b⊥, . . . ) and multiplicative (⊗,�, 1,⊥), additive (⊕,�, 0,�) and exponential
(!, ?) connectives as well as (first-order) quantifiers (∃,∀), following the grammar:

F ::= a | F ⊗ F | F ⊕ F | 1 | 0 | ∃x.F | ! F

a⊥ | F � F | F � F | ⊥ | � | ∀x.F | ? F

For notational convenience we will write A⊥ for the negation normal form of A (that is,
where negations have only atomic scope) and we will work with one-sided sequents. We
give in Figure 1 the inference rules for Linear Logic. The initial rule can be restricted to
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	 A, A⊥
initial

	 Γ, A 	 Δ, A⊥
	 Γ, Δ cut

	 1 1
	 Γ, A 	 Δ, B
	 Γ, Δ, A ⊗ B

⊗ 	 Γ,A1

	 Γ, A1 ⊕ A2
⊕1

	 Γ, A2

	 Γ, A1 ⊕ A2
⊕2

	 Γ, A[t/x]
	 Γ,∃x.A ∃

	 Γ
	 Γ,⊥ ⊥

	 Γ, A, B
	 Γ, A � B

�
	 Γ, A 	 Γ, B
	 Γ, A � B

� 	 Γ,� �
	 Γ, A[c/x]
	 Γ,∀x.A ∀ if c is new

	 ?Γ, B
	 ?Γ, ! B

!
	 Γ
	 Γ, ? B

? w
	 Γ, ? B, ? B
	 Γ, ? B

? c
	 Γ, B
	 Γ, ? B

? d

Fig. 1. Inference rules for LL

literals without a loss of completeness. We shall assume this restriction to atomic initial
rules in the following. In Figure 2 we give an example of a sequent proof.

The logical connectives of linear logic can be divided into two sets: the asynchronous
connectives (�,⊥,�,�, ?,∀) and the synchronous connectives (1, 0,⊗,⊕, !,∃) (they are
de Morgan duals of the asynchronous connectives). Reading the rules bottom-up, the
rules for the asynchronous connectives are invertible (their application is independent
from the context) whereas the synchronous have rules for which application depends
on the surrounding context. Formulas built with a topmost asynchronous connective are
also called negative, the ones built with a synchronous connective are positive.

	 q, q⊥ ini 	 r, r⊥ ini

	 q ⊗ r, q⊥, r⊥
⊗

	 q ⊗ r, q⊥ � r⊥
� 	 s, s⊥

ini

	 q ⊗ r, s ⊗ (q⊥ � r⊥), s⊥
⊗

	 p ⊕ (q ⊗ r), s ⊗ (q⊥ � r⊥), s⊥
⊕ 	 1 1

	 p ⊕ (q ⊗ r), s ⊗ (q⊥ � r⊥), s⊥ ⊗ 1
⊗

Fig. 2. Example of a LL proof

The search for a focused proof can
utilize this division of inference rules.
If we read inference rules from con-
clusion to premiss, we can apply in-
vertible rules in any order (no need for
backtracking) and when only synchro-
nous rules are available we can focus
on a certain formula and its positive
subformulas. Such a chain of synchro-
nous rules, usually called a focused
phase, terminates when it reaches an
asynchronous formula. Proof search can then alternate between applications of asyn-
chronous rules and chains of synchronous rules.

A second aspect of focused proofs is that the synchronous/asynchronous classifica-
tion of non-atomic formulas must be extended to atomic formulas. The arbitrary assign-
ment of positive (synchronous) and negative (asynchronous) bias to atomic formulas
must be made before the notion of focused proof is complete. How this bias is assigned
does not affect the existence of a focused proof but does impact the size and shape of
the resulting focused proofs. We shall sometimes think of such an assignment of bias to
atomic formulas as an annotation of the atoms in the formula.

The focusing proof system for linear logic, presented in Figure 3, contains two kinds
of sequents. In the sequent Ψ : Δ ⇑ L, the “zones” Ψ and Δ are multisets and L is a
list. This sequent encodes the usual one-sided sequent 	 ?Ψ, Δ, L (here, we assume the
natural coercion of lists into multisets). This sequent will also satisfy the invariant that
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Ψ : Δ ⇑ L
Ψ : Δ ⇑ ⊥, L ⊥

Ψ : Δ ⇑ F,G, L
Ψ : Δ ⇑ F � G, L

�
Ψ,F : Δ ⇑ L
Ψ : Δ ⇑ ? F, L

?

Ψ : Δ ⇑ �, L �
Ψ : Δ ⇑ F, L Ψ : Δ ⇑ G, L
Ψ : Δ ⇑ F � G, L

�
Ψ : Δ ⇑ B[y/x], L
Ψ : Δ ⇑ ∀x.B,L

∀

Ψ : · ⇓ 1 1
Ψ : Δ1 ⇓ F Ψ : Δ2 ⇓ G
Ψ : Δ1, Δ2 ⇓ F ⊗ G

⊗ Ψ : · ⇑ F
Ψ : · ⇓ ! F

!

Ψ : Δ ⇓ F1

Ψ : Δ ⇓ F1 ⊕ F2
⊕1

Ψ : Δ ⇓ F2

Ψ : Δ ⇓ F1 ⊕ F2
⊕2

Ψ : Δ ⇓ B[t/x]
Ψ : Δ ⇓ ∃x.B

∃

Ψ : Δ, F ⇑ L
Ψ : Δ ⇑ F, L

R ⇑
Ψ : K⊥ ⇓ K

I1
Ψ : Δ ⇓ F
Ψ : Δ, F ⇑ · D1

Ψ : Δ ⇑ F
Ψ : Δ ⇓ F

R ⇓
Ψ,K⊥ : · ⇓ K

I2
Ψ,F : Δ ⇓ F
Ψ, F : Δ ⇑ · D2

Fig. 3. The Σ3 focused proof system of [4] for linear logic. The provisos on the rules are the
following: In the ∀-rule variable y is not free in the conclusion. In R ⇑ F is not asynchronous
while in R ⇓ F is either asynchronous or a negative literal. In I1 and I2, K is a positive literal. In
D1 and D2, F is not a negative literal.

requires Δ to contain only literals and synchronous formulas. In the sequent Ψ : Δ ⇓ F,
the zone Ψ is a multiset of formulas and Δ is a multiset of literals and synchronous
formulas, and F is a single formula.

The main result about focused proofs is that they are complete for linear logic. The
following theorem was proved in [4].

Theorem 1. Given Ψ a set of formulas, Γ a multiset of non-asynchronous formulas
and Δ an arbitrary list of formulas, 	?Ψ, Γ, Δ is provable in LL if and only if the sequent
Ψ : Γ ⇑ Δ is provable in the Σ3 proof system (given in figure 3).

3 Focalization in MALL

In this part we will prove Focalization for MALL only in order to deal with a smaller
system when introducing our proof technique. We will later extend the result to full LL.
In doing so, we are driven by the will for simplicity but also by the particular interest
for focalization in MALL for it is the system on which are built the basic objects of
Ludics [13], the designs. It is actually the initial motivation of our work: finding a
simpler and shorter proof of Focalization for MALL for Ludics purpose.

But still, our main concern is simplicity and that is why we first consider cut-free
MALL proofs and we intend to demonstrate that Focalization is actually a fairly simple
result, although the size of Σ3 often makes it difficult to grasp.

3.1 Permutation of Rules in LL

The sequential structure of sequent calculus proofs records the precise ordering of the
application of inference rules, even when that ordering is not particularly important
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or when other orders result in similar proofs. Such sequentialization is responsible for
not only an explosion in the space of proofs but also for the possibility of providing a
precise analysis of the relationship between proof rules. In other words, what makes it
difficult to determine if two sequent proofs are essentially the same or different is what
provides us with powerful analysis tools for developing an approach to “causation” a
la focalization. Systems like proof nets which get rid of the first difficulty have trouble
when it comes to checking whether a proof structure is a proof net or whether a link in
a proof net depends on another link.

Definition 1 (Permutation of inference rules). We define two notions of permutabil-
ity: (i) α/β-permutability: there is an α/β-permutability if, given a sequent S con-
taining two formulas A and B, then for any proof Π of S starting with the α rule (on
formula A) right before the β rule (on formula B) is applied, there exists a proof Π ′
of S in which the two rules have been exchanged: the β rule comes first, immediately
followed by the α rule (there is of course a degenerate case for rules with no premiss,
like �). (ii) α|β-permutability: we speak of α|β-permutability when there is both α/β-
permutability and β/α-permutability.

Given two sets of inference rules N and P, we say that, with respect to those two
sets, P has weak permutability if given two rules α, β of P we have α|β-permutability.
We say that N has full permutability when it has weak permutability and when in
addition for any pair of rules (α, β) ∈ P × N , we have α/β-permutability.

Proposition 1 (Permutabilities of linear logic inference rules). Let N be the set of
inference rules attached to the MALL asynchronous connectives and P be the set of
inference rules attached to the MALL synchronous connectives.N has full permutability
while P has weak permutability.

The proof is trivial either by introducing cuts and then reducing them or by doing small
step permutations. Notice that the synchronous connectives do not have full permutabil-
ity: sequent 	 a⊥ � b⊥, a ⊗ b has no cut-free proof that begins with a ⊗-rule.

3.2 Focalization Graph

The introduction of the Focalization Graph structure brings us to the heart of our result.
The acyclicity of the graph will be crucial in establishing focalization.

Definition 2. A MALL sequent containing at least a negative non-literal formula is
negative. It is positive when it contains no negative non-literal formula and at least
one positive non-literal formula. Otherwise it is atomic.

Definition 3 (Positive Trunks). Given a MALL proof Π of a positive sequent S we
define the Positive Trunk Π+ as the maximal prefix of the tree Π containing only pos-
itive rules, that is the tree starting at the root of Π and whose leaves are the bottom
sequents of the first non-positive rules encountered on every branch of the tree, if such
a rule exists. The Border of a Positive Trunk is the set of its leaves. The border contains
only negative or atomic sequents. The Active Formulas of a Positive Trunk Π+ are
the formulas of the base that are decomposed into subformulas within the considered
Trunk.
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Remark 1. When addressing the case of the exponentials, we will see that we can add
a condition to shorten a branch in the positive trunk, this condition can also be regarded
as expressing the fact that the rule for ! is bipolarized, being both positive and negative.

	 q ⊗ r, q⊥ � r⊥ 	 s, s⊥

	 q ⊗ r, s ⊗ (q⊥ � r⊥), s⊥
⊗

	 p ⊕ (q ⊗ r), s ⊗ (q⊥ � r⊥), s⊥
⊕ 	 1 1

	 p ⊕ (q ⊗ r), s ⊗ (q⊥ � r⊥), s⊥ ⊗ 1
⊗

Fig. 4. Positive Trunk associated to figure 2

We now define a relation on oc-
currences of formulas involved in Π :
F ≺ G iff G is a subformula (or sub-
occurrence) of F in the precise sense
that occurrence G is obtained from the
decomposition of F along a branch
of Π .

Definition 4 (≺-relation). The suboccurrence relation (written ≺) on occurrences of
formulas appearing in Π is the reflexive and transitive closure of the binary relation ≺1

defined by F ≺1 G if there exists in Π a rule α with conclusion sequentS and premisses
(Si)i∈I such that F is the principal formula of S and G is a subformula of F produced
by the rule α in some of the Si.

If F ≺ G we will say that G is a ≺-subformula of F or a descendent of F.

The following lemma will help us proving our main result:

Lemma 1. Let Π+ be a Positive Trunk with root S and border B. For any S′ ∈ B the
relation ≺ defines a one-to-one function from S′ to S.

Proof. We actually prove a stronger result: the result holds for any sequent appearing
in the trunk, not only for sequents in B.

The result is proved by induction on the height of the considered sequent in Π+:

• The base case is trivial since the considered sequent is S itself (recall ≺ is reflexive).
• Suppose the result is true for a given height n ≤ h(Π+) and suppose n+1 ≤ h(Π+). Let
Sn+1 be a sequent of height n+1 and let α be the rule of which Sn+1 is a premiss and call
Sn its conclusion. By induction hypothesis Sn satisfies the condition. We can define a
one-to-one function ιn from Sn+1 (as set of occurences of formulas) to Sn as follows: let
G be a formula of Sn+1. if F ≺1 G for some F ∈ Sn then fix F to be the image of G by
ιn. If no such formula exists, then an occurrence of G is also present in Sn then associate
the two occurrences of G. The function built in this way is one-to-one thanks to the fact
that every MALL positive rule produces at most (and actually exactly) one subformula
of the principal formula in every premiss of the rule. Composing the function we just
defined with the one-to-one function provided by the induction hypothesis we see that
Sn+1 satisfies the condition.

By induction we get the result we expected. ��
Lemma 2. A formula which is not active in the Positive Trunk appears in exactly one
sequent of the border.

An active formula F to which no branching rule is applied in Π+ (nor to its ≺-
subformulas) – speak of a non-branching formula wrt. Π+ – is such that there exists
exactly one formula G in one of the sequents of the border such that F ≺ G.

To a Positive Trunk we associate a graph as follows:
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Definition 5 (Focalization graph). Given a Positive Trunk Π+ we define the Focaliza-
tion Graph G to be the graph whose vertices are the active formulas of the Trunk and
such that there is an edge from F to G iff there is a sequent S′ in the border containing
a negative ≺-subformula F′ of F and a positive ≺-subformula G′ of G.

Example 1. The Focalization graph associated with our example proof is:

s⊥ ⊗ 1 s ⊗ (q⊥ � r⊥) −→ p ⊕ (q ⊗ r)

This graph is acyclic. In the following we will show that it is true in general and this
will be crucial for focalization.

Lemma 3. If S′ and S′′ are sequents occurring in different branches of Π+, then there
is at most one formula in the root of Π+ which has ≺-subformulas in both S′ and S′′.
Proof. If this was not the case, let S′ ∧S′′ be their highest predecessor in the tree. This
sequent would necessarily have at least two formulas that would be ≺-subformulas of
the same formula in the root which is impossible thanks to lemma 1. ��
Proposition 2. The Focalization Graphs are acyclic.

Proof. We prove the result by reductio ad absurdum.
Let S be a positive sequent with a proof Π . Let Π+ be the corresponding positive trunk
and G the associated Focalization Graph. Suppose that G has a cycle and consider such
a cycle of minimal length (F1 → F2 → · · · → Fn → F1) in G and let us consider
S1, . . . ,Sn sequents of the border justifying the arrows of the cycle.

Thanks to lemma 3 these sequents are actually uniquely defined. With the same idea
we can immediately notice that the cycle is necessarily of length n ≥ 3: thanks to lemma
1 two ≺-subformulas of the same formula can never be in the same sequent in the border
of the positive trunk and by lemma 3 there cannot be a cycle of length 2.

Let S0 be
∧n

i=1 Si be the highest sequent in Π such that all the Si are leaves of the
tree rooted in S0. We will obtain the contradiction by studying S0 and we will reason
by case on the rule applied to this sequent S0:

• the rule cannot be a 1 rule since this rule produces no premiss and thus we would
have an empty cycle which is nonsense. Any rule with no premiss would lead to
the same contradiction.
• If the rule is one of the ⊕-rules, then the premiss S′0 of the rule would also satisfy

the condition required for S0 (all the Si would be part of the proof tree rooted in
S′0) contradicting the maximality of S0. If the rule is any other non-branching rule,
maximality of S0 would also be contradicted.
• Thus the rule shall be branching: it shall be a ⊗-rule. Write SL and SR for the left

and right premisses of S0. Let G = GL ⊗ GR be the principal formula in S0 and let
F be the active formula of the Trunk such that F ≺ G. There are two possibilities:

(i) either F ∈ {F1, . . . , Fn} and F is the only formula of the cycle having at the same
time ≺-subformulas in the left premiss and in the right premiss,
(ii) or F � {F1, . . . , Fn} and no formula of the cycle has ≺-subformulas in both pre-
misses.
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Let thus IL (resp. IR) be the set of indices of the active formulas of the root S having
(≺-related) subfomulas only in the left (resp. right) premiss. Clearly neither IL nor IR

is empty since it would contradict the maximality of S0. Indeed if IL = ∅, then SR

satisfies the condition of being dominated by all the Si, 1 ≤ i ≤ n and S0 is not maximal
anymore. By definition of the two sets of indices we have of course IL ∩ IR = ∅ and the
only formula of the cycle possibly not in IL ∪ IR is F if we are in the case (i): all other
formulas in the cycle have their index either in IL or in IR.

As a consequence there must be an arrow in the cycle (and thus in the graph) from a
formula in IL to a formula in IR (or the opposite). Let i ∈ IL and j ∈ IR be such indices
(say for instance Fi → F j in G) and let S′ be the sequent of the border responsible for
this edge. S′ contains F′i and F′j and by definition of the sets IL and IR, S′ cannot be in
the tree rooted in S0 which is in contradiction with the way we constructed S0.

Then there cannot be any cycle in the graph. ��

3.3 Pre-focalization Process

What the previous result actually tells us is that the Focalization Graph has a source,
a formula that is not pointed to by any other formula in the graph, that is a formula
such that whenever a sequent of the border contains one of its ≺-subformulas F, the
subformula is not positive or the sequent is positive. To put things in other terms, there
is a positive active formula in the root sequent whose positive layer of connective is
completely decomposed during the Positive Trunk, independentely of any focusing dis-
cipline. This can be regarded as a kind of implicit focusing result. In some sense that
tells us there is a formula which is already implicitely focused in the positive trunk.

Thanks to full permutability of the negatives, weak permutability of the positives
and the acyclicity of the focalization graphs we know that, given a MALL proof Π of a
sequent S, we can transform it to another proof satisfying the following conditions:

Pre-Focalization Process:

1. Asynchronous phase: thanks to full permutability of negatives, if S is negative
then we can permute down all the negative rules so that Π is transformed to a proof
Π ′ where the bottom part of the proof tree is made only of negative rules up to the
point where the branches of the tree reach positive or atomic sequents;

2. Synchronous phase: if S is positive, the associated Focalization Graph allows us
to select a source of the graph, let us say P, as a focus and thanks to weak per-
mutability, we can have the positive rules on ≺-subformulas of P permuted down
so thatΠ is transformed into a treeΠ ′ for which the maximal prefix containing only
rules applied to P and its positive ≺-subformulas decomposes P up to its negative
or literal subformulas. We are thus left with negative or atomic sequents, or positive
sequents where the subformulas of P are literals.

3. if S is atomic, we can only apply an initial rule and thus close the tree.

This process is clearly terminating thanks to easy arguments on the complexity/size of
the considered sequents in terms of number of polarity layers, for instance.
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3.4 Dealing with Bias Assignments

The method described in the previous section shows a proof transformation technique
that results almost in focused proofs but not exactly. Indeed we will now see that An-
dreoli’s system forces more cosntraints on the proofs in that the use of the initial rule is
more constrained. We shall now generalize our technique to capture exactly Andreoli’s
focusing disciplin as well as a more general focusing disciplin with a different manage-
ment of the atoms. The freedom we get on Bias Assignment can be crucial for several
applications in proof search.

In Σ3, the initial rule has two versions, I1 and I2 (see figure 3). The initial rule can
be applied only during a focusing phase on positive literals. In particular, the sequent
	 a⊥ ⊕ 0, a ⊕ 0 would have only one focused proof whereas the technique of the
Focalization Graph presented previously would have led to two different focused proofs.
Andreoli system adds more constraints to the proof search while remaining complete.
We now introduce Bias Assignments in order to treat this.

Definition 6. Given a provable sequent S, we call PS (for available positions for S)
the set containing all the branches of all possible proof trees for S. We write OS for the
set of occurrences of literals occurring in S.

Definition 7 (Bias assignment BS). A bias assignment for a provable sequent S, writ-
ten BS, is a partial function from PS × OS to {−;+}
Example 2. We give here some examples of typical bias assignments:[3pt]

• The bias assignment which is defined nowhere corresponds to the previous situa-
tion.
• Andreoli’s bias assignment. BΣ3 is the function defined as: for any atom a,
BΣ3( , a) = + and BΣ3( , a⊥) = −. More generally the bias assignments may not
be sensitive to their first component and give the same polarity to different occur-
rences of the same litteral. In that case, we speak of an atom-based bias assignment.
• We can consider bias assignments which are sensitive to the position in the tree

where the considered literal is. For such assignments b, b(p, a) may be different
from b(q, a). In this case we speak of an occurrence-based bias assignment. We can
consider coherence conditions on the assignments. For instance, moving upwards
on a branch, we may want to ensure that the polarity won’t change once it is set: if
p and q are two branches, p being an extension of q and if b(q, a)↘ then b(p, a)↘
and b(p, a) = b(q, a). But on the other hand we may also want to consider totally
arbitrary assignments.

Definition 8 (B-Focalization Graphs). Given a positive sequentS, a proofΠ of S and
a bias assignment B for S, we define the B-Focalization Graph GBS as in the previous
subsection but considering as negative formulas the literals which are assigned polarity
− in a sequent S′ of the border and as positive formulas the literals which are assigned
polarity +. The literals for which B is not defined in S′ are treated as before: they do
not contribute to the graph.

The bias assignment results in more arcs in the Focalization Graph. For instance, with
BΣ3 our example of figure 2 has the following focalization graph:
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s⊥ ⊗ 1 −→ s ⊗ (q⊥ � r⊥) −→ p ⊕ (q ⊗ r)

This might also produce cycles. The following proposition ensures it does not:

Proposition 3. Given a positive sequent S and a proof Π of S, whatever bias assign-
ment B we choose, the B-Focalization Graph GBS is acyclic.

	 q, q⊥ ini 	 r, r⊥ ini

	 q ⊗ r, q⊥, r⊥
⊗

	 p ⊕ (q ⊗ r), q⊥, r⊥
⊕

	 p ⊕ (q ⊗ r), q⊥ � r⊥
� 	 s, s⊥

ini

	 p ⊕ (q ⊗ r), s ⊗ (q⊥ � r⊥), s⊥
⊗ 	 1 1

	 p ⊕ (q ⊗ r), s ⊗ (q⊥ � r⊥), s⊥ ⊗ 1
⊗

Fig. 5. focalized proof of figure 2

It is essentially sufficient to notice
that adding these arcs will have no
effect on the arguments we used
previously since they were only
concerned with the splitting struc-
ture of the branching rules. We can
now state our main results con-
cerning Focalization:

Theorem 2 (B-Focalization for MALL). Let S be a MALL sequent. To any proof Π
of S and bias assignment B, we can associate a new proof satisfying the following
constraints depending on the sequent S:

(i) if it is a negative sequent starts by decomposing negative formulas;
(ii) when a positive sequent is encountered, a positive formula is chosen as a focus
and is hereditarily decomposed until its negative or literal subformulas are found. if
the subformula is negative we use the previous item, if the formula is a litteral, the
behaviour depends on the bias which is assigned to the literal.

Theorem 3 (Andreoli’s Focalization for MALL). If we consider the bias assignment
BΣ3 , the focalization process produces proofs which are focused in Andreoli’s Σ3 sense.

4 Focalization for Full LL and Larger Extensions

Our analysis was first restricted to the case of cut-free propositional MALL, mainly for
simplicity purposes. We now extend the result to richer fragments of Linear Logic and
present how to treat the cut, the exponentials and the quantifiers.

4.1 Quantifiers

The proof in the previous section can be directly adapted to the quantifiers: they are
connectives with non-branching rules and with the appropriate permutabilities (full-
permutabilities for the ∀ which is negative and weak-permutability for the ∃ which is
positive). The first-order case is thus treated trivially. The higher-order case requires
some additional care for Bias Assignments in order to verify that bias assignments are
still meaningful in this case but our abstract definition of Bias Assignments allows us
to define the needed constraints on bias assignments. The details are beyond the scope
of this paper.
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4.2 MALL with Cut

Dealing with the cut-rule in an analysis of focusing is not critical when one is dri-
ven by completeness purposes only. But since we want to study a dynamic process of
focalization, adressing the cut becomes important and even crucial. For instance, we may
be interested in studying how the cut-reduction and the focalization process interact.

Our solution is inspired by what Andreoli does [4] but is slightly simplified. The
basic idea is to notice that the cut-rule is very similar to a ⊗ rule: replacing a cut rule on
A in a proof Π of 	 Γ results in an object which is almost1 a proof of 	 Γ, A ⊗ A⊥.

In fact we do not even need to use the proof itself. We will simply use this analogy
in order to find how to adapt the Focalization graph to proofs with cuts. Our analogy
simply suggests to treat the cut rule as a positive and, as a consequence, positive trunks
may contain cut rules and the Focalization Graph will have new vertices of the form
Cut(A). The relation ≺ is extended in a straightforward way (A ≺ Cut(A) and A⊥ ≺
Cut(A)) and the edges are created with the same conditions as we did in the previous
section.

As before, we can prove that the Focalization graph is acyclic and then:

Theorem 4. The Focalization Graph method produces focused proofs from MALL
proofs with cuts.

Π � ΠCF

�
ΠFoc

CF�ΠFoc
�

Fig. 6.

We think that the difference between our approach and An-
dreoli’s starts really to make sense at this point: we always
stayed in the same proof system, LL, and we worked by proof
transformation. In our mind Focalization is really a process for
transforming proofs. The interaction between this process and
other transformation processes, like cut-reduction for instance
shall now be studied.

Pushing this discussion further would be beyond the scope of this paper, but we
would like to give an idea of the kind of question we can now try to adress: Given a
proofΠ in MALL with cuts, two processes are available: focalization and cut-reduction.
Do the two processes commutes? Are we in the situation described by figure 6 where
vertical arrows correspond to Focalization process while horizontal arrows correpond
to the cut-reduction?

4.3 Exponentials

As it comes to exponentials we cannot carry our construction as straightforwardly as
we did for the cut since it is not possible to attribute a polarity to the exponentials in a

1 It is only almost a proof since the �-rule, the ! rule and the ∀-rule may cause trouble. Andreoli
fixes this by considering the formula ? A ⊗ A⊥ instead of A ⊗ A⊥ which is fine for � and ! but
inefficient for the ∀ quantifier...

In our setting, we will get a proof of 	 Γ, A ⊗ A⊥: we are only interested in the cut rules
which are performed within the positive trunk. We can easily check that if Π+ is a positive
trunk for 	 Γ containing a cut rule on A then replacing the cut rule with a tensor rule on
A ⊗ A⊥ leads straightforwardly to a positive trunk Π ′+ on 	 Γ, A ⊗ A⊥.
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simple way: they do not have the right permutation rules in order to have full or weak
permutability. In order to extend our result we have to adapt the sequent calculus in a
way which is pretty similar to what is done by Andreoli with his dyadic sequents [4].
For this change not to seem too ad hoc we quickly justify this by considering the !-
rule (see figure 1). This rule has a peculiar shape because, contrarily to other inference
rules, it depends on the toplevel structure of every formula in the context: one formula
has to be banged while all the other shall be question-marked. This indicates a special
level of knowledge about the sequent structure which is not the usual one we use in
sequent calculus. This is reflected in the way the !-rule is implemented in linear logic
programming systems or by the boxing construction in Proof Nets.

We actually see two kinds of operations performed with the !-rule: (i) classifying
F as a question-marked formula on the one hand and removing the ! on ! G when ! G
is the only non-question-marked formula in the sequent. This can be reflected by the
paradoxical example following: considering 	 ?Γ, F, !G, can you apply the !-rule to
this sequent? There could be two answers: “it depends on F” or “no, at least not yet”.
Both answers carry the same idea that ! can be applied only if F is ? F′ but they are
different from the operational point of view: the second answer suggests that there is
some more work to do in order to apply the !-rule: F should first be recognized as ? F′.
This remark suggests to introduce a separate context that will store those formulas that
have been recognized as having a “?”: 	 Γ | Δ. The two operations discussed earlier and
dereliction now become the following rules:

	 Γ, A | Δ
	 Γ | ? A, Δ

?
	 Γ | A
	 Γ | ! A

!
	 Γ, A | A, Δ
	 Γ, A | Δ der

We then have to adapt all the usual MALL rules in the obvious way.
?-rule will be considered as negative whereas ! and dereliction will be considered as

positive. We can now extend the positive trunks to LL proofs with exponentials:

Definition 9 (Exponential Positive Trunk). Given a positive sequent S and a proofΠ
of S, an exponential positive trunk (or positive trunk for short) for a positive sequent
is a maximal subtree of Π containing only positive rules and such that !-rules produce
leaves of the tree (the branches are cut as soon as a !-rule is applied).

The reader may be surprised by the fact that the branches of the positive trunk are cut
as soon as a ! rule is encoutered. This is reminiscent of the bipolar character of the
exponentials: the ? is decomposed into two rules (one negative, the other positive) and
for its dual connective, the !, the rule is positive but the focusing phase is stopped.

In order to build the Focalization graph, we first notice that each der-rule in the
positive trunk produces an occurrence of a formula, say A, that might be chosen as a
focus. We have to distinguish such occurrences and to do so we will index them as (A, i).
The index i will refer to the place in the tree where the dereliction rule has been applied.
Notice also the ≺-relation is straightforwardly extended to exponential sequents.

Definition 10. Let 	 Γ | Δ be a positive sequent2, Π be a proof of the sequent and Π+

be the associated (Exponential) Positive Trunk. The Exponential Focalization Graph
extends the definition of standard Focalization graphs as follows:

2 Straightforward extension of the one for MALL sequents.
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(i) The vertices of the graph are the active formulas of Δ and the active occurrence of
formulas in Γ, ie. of the form (A, i).
(ii) The arcs are given by the sequents of the border in the same way as usually (includ-
ing the bias assignment if any)3.

The following allows us to extend our Focalization result to the exponential setting:

Proposition 4. The Exponential Focalization Graphs are acyclic.

4.4 Further Extensions

The proof we presented is modular in the sense that it relies on a series of simple results
which can be adapted to richer settings. It is what is done in [5] in order to extend
Focalization to an extension to LL with Fixpoints. We shall consider in future works
other extensions. In particular, non-commutative logics and light logics should be good
candidates to test the methodology of this paper.

5 Multi-focalization

The question of Multi-Focalization naturally arises from the structure of Focalization
Graphs. Indeed, the only two ingredients needed in our proof are (i) appropriate per-
mutability properties (full and weak permutabilities) and (ii) the acyclicity of the Fo-
calization Graph G which ensures us of the existence of a source which can be taken as
a focus in the proof we are building.

In this last section we consider briefly this question of multi-focalization although
most details on an analysis on Multi-Focalization are beyond the scope of this paper and
will be postponed to future work. We only intend to introduce this notion and outline
what could be the first step to a general theory of multifocalization.

We know thatG has a source, but nothing forbidsG to have multiple sources. In such
a case, we would have several formulas (say F1, . . . , Fk) for which the topmost positive
layer of connectives is totally decomposed within the positive trunk. Weak permutabil-
ity allows to conclude that the proof Π can be transformed to a proof where the bottom
part of the tree is made only of positive rules on the Fi’s and their subformulas up to a
point where all the Fi’s are turned to negative formulas (or literals).

This is enough to consider a notion of multifocalization and this leads us to asso-
ciated sequent rules that we are currently investigating with Kaustuv Chaudhuri and
which can be presented in a Σ3 inspired sequent presentation as

Ψ, F1, . . .Fk : Δ ⇓ Fi1
1 , . . .F

ik
k , F

′
1, . . .F

′
l

Ψ, F1, . . .Fk : Δ, F′1, . . . F
′
l ⇑ · MultiFoc

with the proviso that during a multifocusing section, only positive rules can be applied:
the negative rules that could be present would be frozen until all the positive formulas
under focus have been decomposed.

3 We do not need to take care of the premisses of !-rules since these sequents contain exactly
one subformula of an active formula of the root: A is the only formula in the linear part of this
sequent of the border.
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There is much to do in order to understand precisely this notion of Multi-Focalization
but we can already draw some comments:

– completeness is not an issue for multi-focalization since it extends focalization;
– more interesting would be to understand how to obtain proofs which have been

multifocalized as much as possible. In particular, is there such an interesting notion
of maximality in the world of multi-focused proofs?

– clearly, multi-focused proofs have a taste of concurrency: having F and G as foci
actually means that we are focussing on the two formulas at the same time, even
though we keep the sequent syntax. It would thus be pretty interesting to compare
this with works on concurrent or asynchronous games [1];

– This notion of Multifocalization might have interesting consequences for proof
search allowing, for instance, to detect failures of the proof search earlier.

6 Conclusion and Future Works

We have presented a new proof of the completeness of focused proofs for linear logic.
We first focused on MALL fragment in which rather elementary considerations of the
permutability of inference rules allowed us to define a focalization graph. The fact that
such a graph is acyclic allows us to build sequent calculus proofs. There are many pos-
sibilities for building such proof: a flexible bias assignment mechanism allows edges to
be added to the focalization graph, which, in turn, constrains the space of sequent cal-
culus proofs that can be produced. The techniques developed for MALL can be lifted
directly to providing focusing results much stronger logics, in particular, full first-order
and higher-order linear logic and linear logic with fixed points. Given the centrality of
the focalization graph and since such graphs may have more than one source, we have
also considered adding to a focused proof system the multifocusing inference rule that
can capture such multiplicity of foci.

The structure of Focalization Graph we introduced in this paper and the consider-
ation of Focalization as a process for transforming proofs suggest we study several
developments for future works:

– The interaction between Focalization process and cut-reduction shall be made clear;
– We would like to extend our results to richer logics such as non-commutative logics

or light logics as a test for our methodology;
– We would be interested in adapting focalization result directly to logics such as LJ;
– The study of Multi-Focalization is a direction that seems to be fruitful and to relate

focalization with interesting topics of concurrent view of proofs;
– In a more applied setting, we should pursue the classification of Bias Assignments

since it seems to be meaningful for applications in proof search and other settings;
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de lambda-termes et comme calcul de stratégies gagnantes. PhD thesis, Université Paris 7
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Abstract. We define a notion of relational linear combinatory algebra
(rLCA) which is a generalization of a linear combinatory algebra de-
fined by Abramsky, Haghverdi and Scott. We also define a category of
assemblies as well as a category of modest sets which are realized by
rLCA. This is a linear style of realizability in a way that duplicating
and discarding of realizers is allowed in a controlled way. Both categories
form linear-non-linear models and their coKleisli categories have a nat-
ural number object. We construct some examples of rLCA’s which have
some relations to well known PCA’s.

1 Introduction

A category of realizability with respect to a partial combinatory algebra (PCA)
A, for example assemblies Ass(A) or modest sets Mod(A), is a category of
sets and functions that are implemented by the calculating system A. For com-
puter science, these categories are models of the (second order) lambda calculus
and PCF [Jac99],[Lon95]. Moreover, a realizability model provides a strong nor-
malization proof of the second order lambda calculus [HO93]. In this paper we
develop a linear variant of realizability by using another algebra in place of PCA,
anticipating models of (2nd order) linear lambda calculus.

Properties of these categories, for example being cartesian closed categories
(CCC), mainly come from the combinatory completeness of PCA. The combi-
natory completeness is informally stated as “for any lambda term t, there is
an element which works like t”, which allows arbitrary copying and discarding
of terms. For our purpose of giving a linear variant of realizability, we should
consider an algebra in which we can restrict this copying or discarding.

First, such an algebra should at least have elements b,i which satisfy bxyz =
x(yz) and ix = x since when we use this algebra as a realizer of a category of
assemblies, this algebra must realize identity and composition of two realizers of
some functions.

An algebra which is called BCI algebra if it is applied with the above two
elements and also an element c satisfying cxyz = (xz)y is called BCI algebra,
has combinatory completeness for the untyped pure linear lambda calculus. In
the untyped pure linear lambda calculus, no terms are copied or discarded and
in fact a category of assemblies of the untyped pure linear lambda calculus forms
a symmetric monoidal closed category (SMCC). So a category of assemblies of
a BCI algebra is a model of the typed pure linear lambda calculus.

J. Duparc and T.A. Henzinger (Eds.): CSL 2007, LNCS 4646, pp. 420–434, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The pure linear lambda calculus is too simple, however. We seek for a category
of assemblies that is a model of the typed linear lambda calculus which has an
exponential comonad !, so we should add some structures corresponding to the
exponential comonad to BCI algebras. One algebra that has such a structure
is linear combinatory algebra(LCA) in [AHS02]. This algebra is a BCI algebra
which has an operator ! and some elements which work like natural transforma-
tions for the exponential comonad ! of a linear category [Bie95]. LCA’s have good
relations to SK algebras and there are many important examples of LCA’s. For
example, Abramsky and Lenisa used an LCA constructed from a set of partial
involutions to show that the PER model of this algebra is fully complete w.r.t
the fragment of System F consisting of ML-types [AL05].

In [Lon95], Longley introduced applicative morphisms, which are morphisms
between applicative structures. Using applicative morphisms, we define relational
LCA (rLCA) which is a generalization of LCA. Although the notion of rLCA
seems slightly strange as a combinatory algebra, the definition of rLCA seems
suitable because there are examples of rLCA’s that have an adjoint pair (defined
in Def 10) between important PCA’s (cf. Sect 5.4, Sect 5.5) and no LCA has an
adjoint pair between them (cf. Proposition 11).

The structure of this paper is as follows. In the Sect. 2, we recall the notions
of combinatory algebras, applicative morphisms and categories of assemblies and
modest sets. In Sect. 3 we show assemblies and modest sets realized by a BCI
algebra form SMCC’s. In Sect. 4 we show assemblies and modest sets realized
by an rLCA form adjoint models. Sect. 5 is for some examples of rLCA’s.

2 Background

2.1 Combinatory Algebras

In this section we recall some notions such as partial combinatory algebra, BCI
algebra and their combinatory completeness.

Definition 1. Let (A, ·) be a pair of a set A and a partial binary application
· : A×A ⇀ A. (A, ·) is a partial combinatory algebra (PCA) if A has elements
s, k which satisfy:

s · x ↓, s · x · y ↓, s · x · y · z . (x · z) · (y · z)
k · x ↓, k · x · y . x

where x ·y ↓ means that the value of x ·y is defined and . means that if one side
of the equation is defined then the other side is also defined and are equal.

If the application of a PCA is total then we call this PCA an SK algebra.

Definition 2. Let (A, ·) be a pair of a set A and a total binary application · :
A×A→ A. (A, ·) is a BCI algebra when A has elements b, c, i satisfying:

b · x · y · z = x · (y · z) c · x · y · z = (x · z) · y i · x = x

for all x, y, z ∈ A.
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In the following we write b, c, i for elements of a BCI algebra as above and s, k
for such elements of an SK algebra.

Let A be a PCA or a BCI algebra, a polynomial overA is a syntactic expression
generated by variables, elements of A and applications. The applicative structure
of A induces an evident denotational relation between polynomials and elements
of A.

Proposition 1. Let (A, ·) be a PCA and M be a polynomial over A. Then there
exists a polynomial λ∗x.M whose free variables are just those of M excluding x,
which is defined as a polynomial over A and (λ∗x.M)a .M [a/x] for all a ∈ A.

Proposition 2. Let (A, ·) be a BCI algebra and M be a polynomial over A in
which x appears exactly once. Then there exists a polynomial λ∗x.M whose free
variables are just those of M excluding x such that (λ∗x.M)a = M [a/x].

In the following, for elements p, q, r, · · · , s of a BCI algebra or a PCA, we write
p · q · r · · · s for (· · · ((p · q) · r) · · · s), and we write [p, q] for λ∗x.xpq, and

let [u, v] = x in r(u, v)

for x(λ∗u.λ∗v.r(u, v)) where r(u, v) is a polynomial containing u,v as its free vari-
ables and having exactly one occurrence of each u and v. From these definitions,
we have

let [u, v] = [p, q] in r(u, v) = r(p, q) .

Remark 1. Although it is natural to define “partial BCI algebra” which may be
defined in a similar way of PCA, we consider only total ones in this paper: we
can construct a total BCI algebra from a partial one by adding ⊥ and define a
new application by

a • b =
{
a · b a and b are not ⊥ and a · b is defined
⊥ else

and a category of assemblies, defined in Sect 2.3, realized by the partial BCI
algebra is a full subcategory of a category of assemblies realized by the new
total BCI algebra.

2.2 Applicative Morphisms

In [Lon95], applicative morphisms and a preorder between them are defined for
PCA’s. Here, the same definitions of applicative morphisms and preorder are
given for BCI algebras and PCA’s.

Definition 3. Let A,B be BCI algebras or PCA’s. An applicative morphism γ
from A to B is a total relation from A to B such that :

∃r ∈ B, ∀p, q ∈ A, pq is defined ⇒ ∀s ∈ γ(p), t ∈ γ(q) rst ∈ γ(pq) .

If the domain A is a BCI algebra, “pq is defined ” is not necessary since BCI
algebra is total. This r is called a realizer for γ and we say γ is realized by r.



Linear Realizability 423

We say an applicative morphism γ is functional when γ(p) is always a singleton
and we say an adjoint pair δ 9 γ is functional when both δ and γ are functional.
If γ is functional and γ(p) = {q}, we write γ(p) = q and γ(p) for q in equations.

Definition 4. Let A,B be BCI algebras or PCA’s and γ, δ : A→ B be applica-
tive morphisms. We write γ ' δ if there exists r ∈ B such that:

∀p ∈ A, q ∈ γ(p). rq ∈ δ(p) .

We say that two applicative morphisms γ, δ are equivalent if γ ' δ and δ ' γ. It
is proved in [Lon95] that PCA’s, applicative morphisms and preorder between
them form a preorder enriched category. This is also the case for BCI algebras.
We have to check that the constructions of realizers in the proof of [Lon95] can
also be carried out for BCI algebras. In fact all “lambda term”s in the proof are
linear. Notice that an identity on a BCI algebra or a PCA A is {(a, a)|a ∈ A}.

Proposition 3. BCI algebras, PCA’s and applicative morphisms and preorder
between them form a preorder enriched category.

2.3 Assemblies, Modest Sets

Categories of assemblies and modest sets are defined for PCA’s in [Lon95]. We
can also define these categories for BCI algebras.

Definition 5. Let A be a BCI algebra. The category of assemblies Ass(A) con-
sists of

– objects : (X, || − ||X) where X is a set and || − ||X is a map from X to a
set of non empty subsets of A.

– arrows : f : (X, || − ||X)→ (Y, || − ||Y ) where f is a realizable map from X
to Y .

Here a realizable map is a map such that there exists r ∈ A which satisfies for
all a ∈ ||x||X , ra ∈ ||fx||Y . We say r is a realizer of f or f is realized by r.

Modest sets Mod(A) is a full subcategory of Ass(A) whose object (X, || − ||X)
satisfies:

x �= y ⇒ ||x||X
⋂
||y||X = φ .

We sometimes omit ||− ||X and write X for an object of assemblies or modest
sets. We write |X | for the underlying set ofX , and we write |f | for the underlying
map of f .

2.4 Categorical Models of Intuitionistic Linear Logic

We recall some models of intuitionistic linear logic.

Definition 6. [Bie95] A linear category is an SMCC with a monoidal comonad
(!, ε, δ,mA,B,mI) such that
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– There are two distinguished monoidal natural transformations with compo-
nents eA :!A → I and dA :!A →!A⊗!A for every free !-coalgebra (!A, δA)
which form a commutative comonoid and are coalgebra morphisms,

– Whenever f : (!A, δA) → (!B, δB) is a coalgebra morphism between free
coalgebras, then it is also a comonoidal morphism.

Definition 7. [Ben94] A linear-non-linear model is a symmetric monoidal ad-
junction F 9 G : L → C where C is a CCC and L is an SMCC.

3 Realizability of BCI Algebras

3.1 Assemblies and Modest Sets Realized by BCI Algebras

Proposition 4. Let A be a BCI algebra, then Ass(A) is a symmetric monoidal
closed category.

Proof. (outline) We may take for objects X ,Y in Ass(A),

– |I| = {∗} and || ∗ ||I = {i}
– |X ⊗ Y | = |X | × |Y | and ||(x, y)||X⊗Y = {[p, q]|p ∈ ||x||X , q ∈ ||y||Y }
– |X −◦Y | = {f : |X | → |Y | |f is realizable. } and ||f ||X−◦Y = {r|r realize f}.

For example, an isomorphism ρX : X ⊗ I → X is (x, ∗) �→ x realized by
λ∗x.let [p, q] = x in qp and an evaluation evX,Y : (X −◦Y ) ⊗ X → Y is
(f, x) �→ fx realized by λ∗x.let [p, q] = x in pq ��

Proposition 5. Inclusion functor J : Mod(A)→ Ass(A) has a left adjoint Δ.
Hence Mod(A) is a reflective full subcategory of Ass(A).

Proof. Let X be an object of Mod(A). We define . as a transitive closure of
x ∼ y where x ∼ y iff ||x||X

⋂
||y||X �= φ and |ΔX | = |X |/ ., ||[x]||ΔX =⋃

y&x ||y||X where [x] is an equivalence class of x. If f is a morphism of X →
Y then |Δf |([x]) = [fx] realized by a realizer r of f . If a ∈ ||x||

⋂
||y|| then

ra ∈ ||fx||
⋂
||fy|| hence this is well defined. Let η : 1→ JΔ be ηX(x) = [x] and

ε : ΔJ → 1 be the identity; both are realized by i. These natural transformations
form unit and counit of the adjunction. ��

Lemma 1. Let X be an object in Mod(A) and Y be an object in Ass(A). Then
ηY−◦JX : Y −◦JX → JΔ(Y −◦JX) is an isomorphism.

Proof. We show Y −◦JX is a modest set. Let f, g ∈ |Y −◦JX |. If r ∈ ||f ||
⋂
||g||

then for any a ∈ ||y||Y , ra ∈ ||fx||JX and ra ∈ ||gx||JX . Since X is a modest
set, this implies fx = gx. Hence if f �= g then ||f ||Y−◦JX

⋂
||g||Y−◦JX = φ. ��

In general, if a reflective full subcategory Δ 9 J : C → D of an SMCC D satisfies
that for any object X of C and Y of D, ηY−◦JX : Y −◦JX . JΔ(Y −◦JX) then
C forms an SMCC, whose monoidal product is Δ(JX⊗JY ), the unit is ΔI, the
exponential is Δ(JX −◦JY ) and Δ 9 J is a monoidal adjunction.

Therefore Mod(A) is an SMCC and J ,Δ are monoidal functors. Moreover if
Ass(A) has (co)limits then Mod(A) also has (co)limits.
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3.2 Functors from Applicative Morphisms

In this section, we use A and B for a BCI algebra or a PCA. If γ is an applicative
morphism from A to B, we can construct a functor γ∗ : Ass(A) → Ass(B). This
definition is the same as the one in [Lon95]

Definition 8. Let γ : A→ B be an applicative morphism. The functor γ∗ sends
(X, ||− ||X) in Ass(A) to (X, γ(||− ||X)) in Ass(B) and a morphism f : X → Y
to f : γ∗X → γ∗Y whose underlying map is |f |.

If f : X → Y is realized by s ∈ B then γ∗(f) is realized by λ∗x.rs′x where r is
a realizer of γ and s′ is an element of γ(s).

Proposition 6. Let γ : A → B be an applicative morphism. Then γ∗ is a lax
monoidal functor from Ass(A) → Ass(B).

Proof. Underlying maps of two natural transformationsmX,Y : γ∗(X)⊗γ∗(Y ) →
γ∗(X ⊗ Y ) and mI : I → γ∗(I) are both identity. If we choose an element
a ∈ γ(λ∗xy.[x, y]) and a realizer r of γ, λ∗pq.r(rap)q realizes mX , Y . A realizer
of mI is λ∗x.xi′ where i′ is an element of γ(i). It is easy to see that these natural
transformations satisfy coherence diagrams. ��

If γ ' δ are applicative morphisms related by the preorder between them, then
there is a monoidal natural transformation from γ∗ to δ∗.

Definition 9. If γ ' δ : A → B are applicative morphisms related by the
preorder, α∗ : γ∗ → δ∗ : Ass(A) → Ass(B) is a natural transformation such
that an underlying map of α∗X is identity.

From the definition of preorder, we can see that a realizer of γ ' δ realizes
α∗X : γ∗(X) → δ∗(X). For any morphism f : X → Y , |α∗Y γ∗(f)| is |f | and
|δ∗(f)α∗X | is also |f |. Hence, α∗Y γ∗(f) = δ∗(f)α∗X . It is easy to see that this is
a monoidal natural transformation.

This construction is a 2-functor from a 2-category of BCI algebras and PCA’s
to a 2-category of categories of assemblies realized by BCI algebras and PCA’s.

4 Realizability of Relational Combinatory Algebras

4.1 Relational Linear Combinatory Algebras

In Sect. 2.2 we recalled the definitions of applicative morphisms and preorder
between them. In this section we define adjoint pair and comonadic applicative
morphism. The same definition of adjoint pair for PCA’s is given in [Lon95].

Definition 10. Let A,B be BCI algebras or PCA’s. δ 9 γ : A→ B is an adjoint
pair if δ : B → A and γ : A → B are applicative morphisms satisfying δγ ' 1A
and 1B ' γδ.
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Definition 11. Let A be a BCI algebra or a PCA. γ : A → A is a comonadic
applicative morphism if γ is an applicative morphism satisfying γ ' 1A and
γ ' γγ. Notice that any comonadic applicative morphism γ is equivalent to γγ
and γ∗ is idempotent.

Just as a comonad functor can be constructed from an adjunction, we can con-
struct a comonadic applicative morphism from an adjoint pair.

Proposition 7. Let A,B be BCI algebras or PCA’s and δ 9 γ : A → B is an
adjoint pair. Then ε = δγ : A→ A is a comonadic applicative morphism.

Proof. Since δ 9 γ, δγ ' 1A and 1B ' γδ. Hence ε ' 1A and ε = δγ ' δγδγ = εε.
��

We define ’relational LCA’, which is an analogue of linear category.

Definition 12. A relational linear combinatory algebra (rLCA) (A, !) consists
of a BCI algebra A and a comonadic applicative morphism ! : A→ A such that

! ' [!, !] ! ' ki

where [!, !] is an applicative morphism such that [!, !](p) = {[u, v]|u, v ∈!(p)} which
is realized by

λ∗pq.let [p1, p2] = p in let [q1, q2] = q in [rp1q1, rp2q2]

using a realizer r of !; and ki is an applicative morphism such that ki(a) = {i}
which is realized by i.

In the same way as we can construct a linear category from a linear-non-linear
model, we can construct an rLCA from an adjoint pair between a BCI algebra
and a PCA.

Proposition 8. Let A be a BCI algebra, B be a PCA and δ 9 γ : A→ B be an
adjoint pair. Then (A, !) is an rLCA where ! = δγ : A→ A.

Proof. From Proposition 7, ! is a comonadic applicative morphism. Let s be a
realizer for δγ ' 1A, t be a realizer for 1B ' γδ, rδ a realizer for δ and rγ a
realizer for γ.

Choose u ∈ γ(λ∗xy.[x, y]) and v ∈ δ(λ∗x.rγ(rγu(tx))(tx)) and we will show
that ! ' [!, !] is realized by λ∗x.s(rδvx); let p′ ∈ δγ(p). Then (λ∗x.s(rδvx))p′ .
s(rδvp′). There exists p′′ ∈ γ(p) such that p′ ∈ δ(p′′) and rδvp

′ is an element
of δ(rγ(rγu(tp′′))(tp′′)) if rγ(rγu(tp′′))(tp′′) is defined. Since tp′′ ∈ γδγ(p) there
exists q, q′ ∈ δγ(p),

rγ(rγu(tp′′))(tp′′) ∈ γ((λ∗xy.[x, y])qq′)

if (λ∗xy.[x, y])qq′ is defined. Since a BCI algebra A is total, this (λ∗xy.[x, y])qq′

is defined and is equal to [q, q′]. Hence, rδvp′ is an element of δγ([q, q′]) and
t(rδvp′) ∈ {[q, q′]} ⊆ [!, !](p).
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! ' ki is realized by λ∗x.t(rδhx) where h is an element of δ(λ∗x.i′) taking an
element i′ ∈ γ(i): If p′ ∈ δγ(p), there exists q ∈ γ(p) and rδhp

′ ∈ δ((λ∗x.i′)q)
if (λ∗x.i′)q is defined. In fact this is defined and equal to i′. Hence rδhp′ is an
element of δγ(i), t(rδhp′) is an element of {i}. ��

It seems not the case in general that we can construct a PCA from an rLCA.
However if we restrict applicative morphisms to be functional, we can construct
a PCA. We recall the notion of linear combinatory algebra (LCA) which appears
in [AHS02].

Definition 13. A BCI algebra (A, ·) is a linear combinatory algebra if it has a
map ! : A→ A and k, w, d, δ, f ∈ A satisfying:

kx!y = x δ!x =!!x d!x = x wx!y = x!y!y f !x!y =!(xy)

If we define γ as γ(p) = {!p}, this is a comonadic applicative morphism. ! ' 1
is realized by d, ! '!! is realized by δ and a realizer of γ is f . Hence (A, γ) is an
rLCA since ! ' [!, !] is realized by λ∗z.w(λ∗xy.[x, y])z and ! ' ki is realized by
λ∗x.kix. Hence we can think LCA as a special case of rLCA whose ! is functional.

Proposition 9. Let δ 9 γ : A → B be a functional adjoint pair from a BCI
algebra A to a PCA B. Then (A, !) is an LCA where !p = p′ iff δγ(p) = {p′}.

Proof. From Proposition 8 and since LCA is a special case of rLCA. ��

If we have an LCA then we can construct a functional adjoint pair.

Lemma 2. Let (A, !) be an LCA then an applicative structure (A!, •) is an SK
algebra where |A!| = A and p • q = p·!q.

Proof. Let s and k′ be elements of A! such that s = λ∗xyz.w(λ∗uv.dxu(fy(δv)))z
and k′ = λ∗xy.k(dx)y. Then s and k′ satisfy s!x!y!z = x(!z)!(y(!z)) and k′!x!y =
k(d(!x))(!y) = x. ��

Proposition 10. Let (A, !) be an LCA. Then there is a functional adjoint pair
between A and A!.

Proof. Let ρ : A → A! and σ : A! → A be applicative morphisms such that
ρ(p) = p and σ(p) =!p. ρ and σ are realized by λ∗xy.(dx)(dy) and λ∗xy.fx(δy)
respectively and 1A! ' ρσ is realized by i, σρ ' 1A is realized by d. ��

The next lemma can be proved as Theorem 3.1.8 and Corollary 3.1.9 of [Lon95].

Lemma 3. There is no SK algebra which has a decidable equality.

Here a PCA A has a decidable equality when there is an element d ∈ A such
that

dxy =
{
λ∗uv.u if x = y
λ∗uv.v if x �= y

The generalization of LCA to rLCA enables us to treat PCA which has a decid-
able equality.
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Proposition 11. If a PCA A has a decidable equality then there is no functional
adjoint pair from any BCI algebra to A.

Proof. We suppose there is a functional adjoint pair δ 9 γ : B → A where B is
a BCI algebra. By Proposition 10, we have a SK algebra Bδγ . We show Bδγ has
decidable equality. Then by the above lemma, we obtain contradiction.

Let c be an element of A which decide the equality of A. Then

λ∗xy.d((((δ(c) ∗ x) ∗ y) ∗ δγ(true)) ∗ δγ(false))
decides the equality of Bδγ where x∗y = rδxy for a realizer rδ of δ, d is a realizer
of δγ ' 1, true and false is λ∗uv.u and λ∗uv.v of Bδγ and λ∗xy. · · · is a lambda
abstraction of B. ��

4.2 Assemblies and Modest Sets Realized by rLCA’s

Let (A, !) be an rLCA. As we have seen in the previous section, we have a
monoidal comonad !∗ : Ass(A) → Ass(A) with natural transformations wX :
!∗X → I which sends x to ∗ and cX :!∗X →!∗X⊗!∗X which sends x to (x, x).

Proposition 12. Let A be an rLCA then Ass(A) is finitely complete and co-
complete and there are natural isomorphisms !∗X⊗!∗Y .!∗(X × Y ) and I .!∗1.

Proof. Definitions of terminal, initial, equalizer and coequalizer are the same in
[Lon95].

For products, let X ,Y be objects of Ass(A). Then we define X × Y as

|X × Y | = |X | × |Y |
||(x, y)||X×Y = {[a, [p, q]]|∃r, s.p ∈!r, q ∈!s, ra ∈ ||x||X , sa ∈ ||y||Y }

First projection π : X × Y → X which sends (x, y) to x and is realized by

λ∗x.let [t, u] = x in let [v, w] = u in (kw)(dv)t

where k is a realizer of ! ' ki and d is a realizer of ! ' 1A. Second projection
π′ is similar. Let f : Z → X and g : Z → Y be morphisms realized by m,n
respectively. Then we have a map h : Z → X×Y which sends z to (fz, gz). This
morphism is realized by λ∗x.[x, [m′, n′]] where m′ ∈!m and n′ ∈!n. h satisfies
πh = f , π′h = g and we can see uniqueness from underlying maps of these
morphisms.

!∗(〈θ(dX ⊗ wY ), θ′(wX ⊗ dY )〉)mX,Y (δX ⊗ δY ) and (!∗π⊗!∗π′)cX×Y form an
isomorphism of !∗X⊗!∗Y .!∗(X × Y ), !∗(u)mI and w1 form an isomorphism of
I .!∗1 since underlying maps of those morphisms are identity. Here θ : X⊗I . X
and θ′ : I⊗Y . Y , m is a natural transformation of !∗ and u : I → 1 is a unique
morphism.

For coproducts, let X ,Y be objects of Ass(A). If k realizes ! ' ki and d
realizes ! ' 1A then

|X + Y | = |X |+ |Y |
||(0, x)||X+Y = {[p, r]|r ∈ ||x||X}
||(1, y)||X+Y = {[q, s]|s ∈ ||y||Y }
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where p is λ∗xy.(ky)(dx) and q is λ∗xy.(kx)(dy). Inclusion in1 : X → X + Y
sends x to (0, x). This morphism is realized by λ∗x.[p, x]. Inclusion in2 : Y →
X + Y is similar. Let m,n realize f : X → Z and g : Y → Z respectively. Then
a morphism h : X + Y → Z which sends (0, x) to fx and (1, y) to gy is realized
by λ∗x.let [u, v] = x in (um′n′)v where m′ ∈!m and n′ ∈!n. For example, if we
apply [p, a] ∈ ||(0, x)|| to this realizer then we get pm′n′a. From definition of p,
this is (kn′)(dm′)a = ma ∈ ||fx|| since kn′ = i , dm′ = m. ��

Hence the coKleisli category Ass(A)!∗ is a CCC and Ass(A)!∗ also has finite
coproducts since !∗ is an idempotent comonad on Ass(A). Initial object is the
same one of Ass(A) and a coproduct of X and Y is !∗X+!∗Y .

Proposition 13. Let (A, !) be an rLCA. Ass(A) and Ass(A)!∗ form a linear-
non-linear model.

Proof. By Proposition 12, Ass(A)!∗ is a CCC. We show the left adjoint G is
strong monoidal since if the left adjoint is strong monoidal then the adjunction
is monoidal. G is a strong monoidal functor since α :!∗X⊗!∗Y →!∗(X × Y ) and
β : I →!∗1 where α and β are isomorphisms given in Proposition 12. Required
diagrams commute since underlying maps of these morphisms are identity. ��

Since there is a monoidal adjunction Δ 9 J : Mod(A) → Ass(A), Δ!∗J is a
monoidal comonad on Mod(A). If X is a modest set and a ∈ ||x||!∗X ∩ ||y||!∗X
then ra ∈ ||x||X ∩ ||y||X where r is a realizer of ! ' 1A, hence x = y. Hence if X
is a modest set then !∗JX is a modest set and !∗JX . JΔ!∗JX .

From Proposition 5, Mod(A) is also finite complete and cocomplete. For any
object X,Y in Mod(A), Δ!∗J(X × Y ) . Δ!∗(JX × JY ) . Δ(!∗JX⊗!∗JY ) .
Δ!∗JX⊗̄Δ!∗JY and Δ!∗J1 . Δ!∗1 . ΔI . Ī since Δ is a left adjoint and
especially strong monoidal where we write the monoidal product of Mod(A) as
⊗̄ and the unit of Mod(A) as Ī. This means Mod(A) satisfies Proposition 12 and
its coKleisli category Mod(A)!∗ is a CCC. Mod(A)!∗ also has finite coproducts
since Δ!∗J is idempotent and Mod(A) has finite coproducts.

Let G′ 9 J ′ be an adjunction of Mod(A) → Mod(A)!∗ . Then G′ = ΔGL
where L : Mod(A)!∗ → Ass(A)!∗ is a comparison functor of comonad Δ!∗J . L
is a strong monoidal functor since LX is JX for any object X of Mod(A)!∗ and
a product of X and Y in Mod(A)!∗ is the product of Mod(A) and J preserves
finite products. Δ and G are also strong monoidal functors by Proposition 13
and since Δ is a left adjoint. Hence G′ is a strong monoidal functor and G′ 9 J ′
is a monoidal adjunction.

Proposition 14. Let (A, !) be an rLCA. Mod(A) and its coKleisli category
Mod(A)!∗ form a linear-non-linear model.

4.3 Natural Number Object in Ass(A)

Let A be an rLCA. We construct a natural number object of Ass(A)!∗ . First we
define some notations.
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Definition 14. Let P be a polynomial over A. If P has a variable x which
appears in P exactly once. Then λ∗x.P is defined as

λ∗x.x = i

λ∗x.PQ = b · (λ∗x.P ) ·Q (if P has x)
λ∗x.PQ = c · P · (λ∗x.Q) (if Q has x)

For any polynomial P over A, λ∗!x.P is defined as

λ∗!x.x = d

λ∗!x.a = k · a
λ∗!x.y = k · y (if y �= x)

λ∗!x.PQ = w · (λ∗xy.((λ∗!x.P ) · x) · ((λ∗!x.Q) · y))

When free variables of a polynomial P are only x, λ∗!x.P has no free variables.
Then we treat λ∗!x.P as an element of A. By induction of the definition, we can
see for any a′ ∈!a, (λ∗!x.P )a′ = P [a/x].

Let n̄ be λ∗!fx.

n︷ ︸︸ ︷
f(· · · (f x) · · ·). We define |N | as a set of natural numbers

and ||n||N = {n̄}. 0 : 1 → N which sends ∗ to 0 ∈ |N | is realized by λ∗!x.0̄.
S : N → N is realized by λ∗!n.w(λ∗xy.((λ∗!f.cf)x)(ny)) since

n+ 1 = λ∗!f.

n+1︷ ︸︸ ︷
(cf)(· · · ((cf i) · · ·) = w(λ∗xy.((λ∗!f.cf)x)(n̄y))

In Ass(A)!∗ , given x : 1 → X and f : X → X , a morphism h : N → X
which sends n to fn(x) is realized by λ∗!n.nra where r is an element of !s for
a realizer s of f and a is an element of ||x||X . By an induction of the definition
of n̄, we can show h is well defined and uniqueness follows from that |N | is a
natural number object of Set. Notice that N is a modest set if A has more than
two elements: Let a, b are two different elements of A and B be an object such
that |B| = 2 and ||0||B = {a}, ||1||B = {b}. For any n < m ∈ N , since N is a
natural number object, f : N → B which sends i to 0 if i ≤ n and 1 if i > n is
realizable. Hence n̄ �= m̄.

We have !∗(1) . I since !∗ : Ass(A)!∗ → Ass(A) is a left adjoint. Hence
for any x : I → X ,f : X → X in Ass(A), there exists a unique morphism
h :!∗N → X such that h!∗(0) = x and h!∗S = fh.

5 Examples of rLCA

5.1 Linear Lambda Calculus

The untyped linear lambda calculus is defined in [Sim05]. Terms of the untyped
linear lambda calculus is defined as

t = x|tt|λx.t|λ!x.t|!t

t of λx.t is required to have exactly one x which is not in any scope of !. A set
of closed terms up to reductions given in [Sim05] forms an LCA.
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5.2 BCK Algebra with a Structure of ω-cppo

This is inspired by examples in [AHS02]. A BCK algebra is a BCI algebra which
also has an element k which satisfies kxy = x. for all x, y. Let A be a BCK algebra
with a structure of ω-complete pointed poset (ω-cppo) and the application of A
is continuous with this structure, and ⊥x = ⊥ for all x ∈ A. We define ! : A→ A
as !a = μx.[a, [x, x]] where μx.fx is the least fixed point of f . Then (A, !) is an
LCA.

It is easy to see ! ' 1A, ! ' ki and ! ' [!, !] and by the following propositions,
! is an applicative morphism and ! '!!.

If t is constructed from a variable x and elements of A and λ abstractions then
t is a continuous function from A to A since the application of A is continuous.

Proposition 15. ! is realized by

f = μz.λ∗xy. let [p, [q, r]] = x in let [u, [v, w]] = y in [pu, [zqv, zrw]]

Proof. Let Ta = [a, [x, x]] for a ∈ A. We have f⊥⊥ = ⊥ since ⊥x = ⊥ for all
x ∈ A, and for a, b ∈ A, fT n+1

a (⊥)T n+1
b (⊥) is equal to

let [p, [q, r]] = T n+1
a (⊥) in let [u, [v, w]] = T n+1

b (⊥) in [pu, [fqv, frw]]

which is, by induction, Tab(fT n
a (⊥)T n

b (⊥)) = T n+1
ab (⊥). Hence by continuity of

the application,

f !a!b =
∨

n

fT n
a (⊥)T n

b (⊥) =
∨

n

T n
ab(⊥) =!(ab)

��

Proposition 16. ! '!! is realized by

δ = μz.λ∗x.let [p, [q, r]] = x in let [u, [v, w]] = r in [w, [zq, zv]] .

Proof. From properties of the least fixed point,

!a = μx.μy.[a, [x, y]] · · · (∗)
= μx.[a, [x, [a, [x, μy.[a, [x, y]]]]]]
= μx′.μx.[a, [x, [a, [x, μy.[a, [x′, y]]]]]]
= μx.[a, [x, [a, [x, μy.[a, [!a, y]]]]]]

From (∗), !a = μx.[a, [!a, x]] and hence !a = μx.[a, [x, [a, [x, !a]]]]. Let Sa(x) =
[a, [x, [a, [x, !a]]]] then !a =

∨
n S

n
a (⊥). By induction we can see δSna (⊥) = T n

!a(⊥).
Hence we have

δ!a =
∨

n

δSna (⊥) =
∨

n

T n
!a(⊥) =!!a

��
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For example, let C be Rel(sets and relations) or Pfn(sets and partial functions).
Then C has an object IN(set of natural numbers) which satisfies IN × IN � IN.
Since C is a traced monoidal category whose monoidal product is coproduct, we
can construct a new category by the GoI construction [AHS02], [JSV96]. Let
this GoI-category be G(C). In G(C), (IN, IN) is a reflexive object as

(IN, IN)∗ −◦(IN, IN) . (IN, IN)⊗ (IN, IN) � (IN, IN) .

Since G(C) is an SMCC, G(C)(I, (IN, IN)) forms a BCI algebra. However in fact
this is a BCK algebra and G(C)(I, (IN, IN)) = C(IN, IN) forms ω-cppo by inclusion
order whose application is continuous and for any f ∈ C(IN, IN), φ ·f = φ. Hence
this is an LCA.

By Lemma 2, we can construct an SK algebra from this algebra. If C is Rel
then this algebra is isomorphic to P(ω).

These examples are already in [AHS02]. However the LCA’s we obtain are a
little bit different. Comonoidal applicative morphisms of examples in [AHS02]
are different from ours. Although, comonads constructed from these applicative
morphisms are equivalent and we can think examples of here and ones in [AHS02]
are the same.

5.3 P(ω)lin

P(ω)lin is an LCA defined as

P(ω)lin = P(IN) α · β = {n|〈m,n〉 ∈ α,m ∈ β}
!α = {n|en ⊆ α}
d = {〈n,m〉|m ∈ en} δ = {〈n,m〉|

⋃
i∈em

ei ⊆ en}
w = {〈l, 〈m,n〉〉|l = 〈i, 〈j, n〉〉 ∧ ei

⋃
ej ⊆ em} f = {〈l, 〈m,n〉〉|en ⊆ el · em}

here 〈−,−〉 is a bijection from IN × IN to IN and e is a bijection from IN to
the set of finite subsets of IN. If an object X of a compact closed category C
satisfies X∗ = X and X ⊗X �X then C(I,X) form a BCI algebra, especially IN
of Rel. Hence this P(ω)lin is a BCI algebra and forms an LCA with above ! and
d, δ, w, f . It is easy to see the SK algebra obtained from this LCA is P(ω). This
example can be modified to recursive enumerable subsets of IN and we write this
rLCA as P(ω)lin,re.

5.4 Kleene’s First Algebra K1

In [Lon95] it is proved that there is an adjoint pair ϕ 9 ψ : P(ω)re → K1. Let
δ 9 γ be an adjoint pair from P(ω)lin,re to P(ω)re then δϕ 9 ψγ is an adjoint
pair from P(ω)lin,re to K1 and (P(ω)lin,re, δϕψγ) is an rLCA. Notice that there
is no adjoint pair between any BCI algebra and K1 by Proposition 11.

5.5 Kleene’s Second Algebra K2

Definition 15. K2 is a set of functions from IN to IN whose application is

f · g =
{
f ∗ g (if f ∗ g is a total function)
undefined (else)
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where f ∗ g(n) = m iff

∃k.∀i < k.f([n, g(0), · · · , g(i)]) = 0 ∧ f([n, g(0), · · · , g(k)]) = m+ 1

here [−, · · · ,−] is a bijection from a set of finite lists of natural numbers to IN.
For details, see [KV65].

Let APfn be an LCA constructed from Pfn in Sec 5.2 and write (APfn)!
for the SK algebra constructed as in Lemma 2. Then there is an adjoint pair
γ 9 δ : (APfn)! → K2. Since there is an adjoint pair from APfn to (APfn)!
we obtain an adjoint pair from APfn to K2. γ : K2 → (APfn)! is defined as
γ(f) = {f} and δ : (APfn)! → K2 is defined as

δ(f) = {g|〈g0〉 ≤ 〈g1〉 ≤ · · · ≤ f,
∨

n

〈gn〉 = f}

where 〈−〉 is bijection from IN to a set of partial functions of IN to IN whose
domain is finite. The order ≤ is an inclusion order of its graph and

∨
is a union

of graphs. Notice that K2 is another example of PCA that has no adjoint pair
between any BCI algebra.

Acknowledgement. I am grateful to Masahito Hasegawa and anonymous re-
viewers for their valuable advice.

6 Concluding remarks

– In order to model second order linear lambda calculus, we can use a category
of partial equivalence relation (PER). By a similar argument of PER realized
by PCA, PER realized by an rLCA provides a model of the second order
linear lambda calculus.

– We can restrict the modality of ! of rLCA to only ! ' [

n︷ ︸︸ ︷
id, id, · · · , id] for n ≥ 0.

These modalities are what soft linear logic [Laf04] has. One example is the
untyped soft linear lambda calculus whose terms are

t = x|tt|λx.t|λ!x.t|!t

where t of λx.t is required to have exactly one appearance of x which is not
in any scope of ! and t of λ!x.t is required to have exactly one appearance
of x which is in a scope of at most one ! or to have no x which is in a
scope of !. Then the untyped soft linear lambda calculus strongly normalizes
in polynomial steps in “weight” of a term and morphisms of a category of
assemblies realized by the untyped soft linear lambda calculus is computable
in polynomial time in some sense.

Some further considerations are found in the author’s MSc thesis [Hos07].
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Abstract. We provide a new correctness criterion for unit-free MLL
proof structures and MELL proof structures with units. We prove that
deciding the correctness of a MLL and of a MELL proof structure is NL-
complete. We also prove that deciding the correctness of an intuitionistic
multiplicative essential net is NL-complete.

Introduction

The proof nets [Gir87, DR89] of Linear logic (LL) are a parallel syntax for logical
proofs without all the bureaucracy of sequent calculus. They are a non-sequential
graph-theoretic representation of proofs, where the order in which some rules are
used in a sequent calculus derivation, when irrelevant, is neglected. The unit-
free multiplicative proof nets are inductively defined from sequent calculus rules
of unit-free Multiplicative Linear Logic (MLL). A proof structure is freely built
on the same syntax as proof nets, without any reference to a sequent calculus
derivation.

In LL we are mainly interested in the following decision problems: Deciding
the provability of a given formula, which gives the expressiveness of the logic; de-
ciding if two given proofs reduce to the same normal form, i.e. the cut-elimination
problem which corresponds to program equivalence using the Curry-Howard iso-
morphism; and deciding the correctness of a given proof structure, i.e. whether
it comes from a sequent calculus derivation. For this last decision problem, one
uses a correctness criterion to distinguish proof nets among proof structures.
We recall the following main results [Kan92, Mai] and we complete (in bold) the
correctness cases:

fragment decision problem
units provability cut-elimination correctness

MLL no NP -complete P -complete
NL-completeMELL yes open (at most non-elementary)

� Work supported by project NO-CoST (ANR).

J. Duparc and T.A. Henzinger (Eds.): CSL 2007, LNCS 4646, pp. 435–450, 2007.
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Correctness is equivalent to provability for unit only MLL because proof nets
are formulae syntactic trees. However it is not so obvious for the propositional
case as one can observe following the long story of correctness criteria:

– Long-trip [Gir87] is based on travels and was the first one.
– Acyclic-Connected [DR89] is a condition is based on switchings i.e. the choice

of one premise for each � connective. The condition is that all the associ-
ated graphs are trees. A naive implementation of Acyclic-Connected uses
exponential time.

– Contractibility [Dan90] is done in quadratic time by repeating two graph
rewriting rules until one obtains a simple node.

– Graph Parsing [Laf95] is a strategy for Contractibility which is implemented
in linear time as a sort of unification [Gue99].

– Dominator Tree [MO00, MO06] is a linear time correctness criterion for
essential nets, to which proof structures correctness reduces in linear time.

– Ribbon [Mel04] is a topological condition requiring homeomorphism to the
disk.

For other fragments of Linear Logic, some of these criteria apply or are extended
as for MELL1 [Dan90, GM01].

A feature of these criteria is that they successively lower the complexity of se-
quential, deterministic algorithms deciding correctness for MLL. Switching from
proof structures to paired graphs, that is undirected graphs with a distinguished
set of edges, we give a new correctness criterion for MLL and more generally
for MELL. This new correctness criterion gives us a lower bound for the cor-
rectness decision problem for both MLL and MELL. This lower bound yields an
exact characterization of the complexity of this problem, and induces naturally
efficient parallel and randomized algorithms for it.

The paper is organized as follows: we recall preliminary definitions and results
in linear logic and complexity theory in Section 1. Section 2 is devoted to the
exposition of a new correctness criterion for unit-free MLL and MELL with
units. We prove its NL-completeness in Section 3, and the NL-completeness of
the criterion for IMLL in Section 4.

1 Background

1.1 MLL and Proof Structures

Roman capitals A,B stand for MLL formulae, which are given by the following
grammar, where � and � are duals for the negation ⊥, accordingly to De Morgan
laws:

F::=A | A⊥ | F � F | F�F
1 As usual M, A and E denote respectively for Multiplicative, Additive and Exponen-

tial fragments of LL.
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Greek capitals Γ,Δ stand for sequents, which are multiset of formulae, so that
exchange is implicit. The MLL sequent calculus is given by the following rules:

4 A,A⊥
(ax) 4 Γ,C 4 Δ,C⊥

4 Γ,Δ (cut)
4 Γ,A 4 Δ,B
4 Γ,Δ,A�B

� 4 Γ,A,B
4 Γ,A�B �

Definition 1. A MLL proof structure is a finite directed acyclic graph (DAG)2

whose nodes, called links, are defined together with an arity and a coarity, i.e.
a given number of incident edges called the premises of the node and a given
number of emergent edges called the conclusions of the node. Moreover the proof
structure edges are labelled by formulae and every edge is conclusion of exactly
one link and premise of at most one link. The links of are the following:

nodes ax cut � �
arity edge labels 0 ∅ 2 A,A⊥ 2 A,B 2 A,B

coarity edge labels 2 A,A⊥ 0 ∅ 1 A�B 1 A�B

We allow edges with a source but no target (i.e pending or dandling edges),
they are called the conclusions of the proof-structure.

A MLL proof net is a MLL proof structure inductively defined as follows:

– an ax-link is a proof net with conclusions A,A⊥,
– if P is a proof net with conclusions Γ,A,B then P extended with a �-link

of premises A and B is a proof net with conclusions Γ,A�B.
– if P1 and P2 are disjoint proof nets with respective conclusions Γ,A and Δ,B

then P1 ∪P2 extended with a �-link of premises A and B is a proof net with
conclusions Γ,A�B,Δ.

It follows from the definition that MLL proof structures and proof nets have a
non-empty set of conclusions, which corresponds to a MLL sequent. The induc-
tive definition of MLL proof nets corresponds to a graph theoretic abstraction
of the derivation rules of MLL; any proof net is sequentializable, i.e. corresponds
to a MLL derivation: given a proof net P of conclusion Γ , there exists a sequent
calculus proof of 4 Γ which infers P .

Definition 2. A paired graph is an undirected graph G = (V,E) with a set
of pairs C(G) ⊆ E × E which are pairwise disjoint couples of edges with the
same target, called a pair-node, and two (possibly distinct) sources called the
premise-nodes.

A switching S of G is the choice of an edge for every pair of C(G). With each
switching S is associated a subgraph S(G) of G: for every pair of C(G), erase
the edges which are not selected by S. When S selects the (abusively speaking)
left edge of each pair, S(G) is denoted as G[∀ �→∵\ ]. Also, G[∀ �→∵] stands for
G \ {e, e′| (e, e′) ∈ C(G)}.
2 For convenience the edges are oriented up-down, so we do not mention the

orientation.
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Fig. 1. Paired graph constructors associated to MLL proof nets: ax-link, �-link and
�-link

Let R = (V,E) be a MLL proof structure. To R, we naturally associate the
paired graph GR = (V,E′) where E′ is the set of non-pending edges of E and
C(GR) contains the premises of each �-link of R (Figure 1). For a pair of edges
(v, x), (w, x), we adopt the representation of Figure 1, where the two edges of
the pair are joined by an arc.

We define the following graph rewriting rules �c of Figure 2 on paired graphs
where all the nodes are distinct and rule �R2 applies only for a non-pair edge:

�

�

−→R1

�

�

−→R2 �

Fig. 2. Contraction rules →c

We denote by G →c • the fact that G contracts to a single vertex with no
edge.

Definition 3. A MLL proof structure R is DR-correct if for all switching S of
GR, the graph S(GR) is acyclic and connected.

A MLL proof structure R is contractile if GR �∗c •.
Theorem 1. [DR89, Dan90] A MLL proof structure R is a MLL proof net iff
R is DR-correct iff R is contractile3.

We define the following decision problem MLL-corr:
Given: A MLL proof structure R
Problem: Is R a MLL proof net?

1.2 MELL and Proof Structures

The definition of MELL formulae follows that of MLL formulae in Section 1.1,
with ! and ? duals for the negation ⊥, as well as the neutral elements 1 and ⊥:

MELL: F::= A | A⊥ | F � F | F�F | !F | ?F | 1 | ⊥
3 The criteria in [DR89, Dan90] are expressed for switchings and contraction rules for

proof structures only. The equivalence with Definition 3 is left to the reader.
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The MELL sequent calculus contains the rules of the MLL sequent calculus, as
well as the following rules:

4 Γ
4 Γ,⊥ ⊥ 4 1 1 4 Γ

4 Γ, ?A ?W
4 Γ, ?A, ?A
4 Γ, ?A ?C

4 Γ,A
4 Γ, ?A ?D

4?Γ,A
4?Γ, !A !P

Definition 4. MELL structures are defined similarly to MLL proof structures
(Definition 1), with the additional links, where the ?W -link subsumes both ?W
and ⊥rules:

nodes 1 ?W ?C ?D !P
arity edge labels 0 ∅ 0 ∅ 2 ?A, ?A 1 A 1 A
coarity edge labels 1 1 1 ⊥ or ?A 1 ?A 1 ?A 1 !A

Definition 5. An exponential box is a MELL structure whose conclusions are
all ?-formulae but one, its principal door, which is conclusion of a !P -link. Sim-
ilarly, a weakening box is a MELL structure with a distinguished conclusion, its
principal door, which is conclusion of a ?W -link. A box is either an exponential
or a weakening box.

Definition 6. A MELL proof structure (R,B) is given by a MELL structure R
and a box mapping B, which associates to any link l of R a box bl or R. More-
over, boxes may nest but may not partially overlap, and a unique exponential
(respectively weakening) box is associated to each !P -(resp. ?W -)link. By con-
vention, when a link belongs to several boxes, the mapping returns the innermost
box to which it belongs, otherwise it returns R.

It follows from the definition that, for any !P (respectively ?W )-link, the box
mapping associates the exponential (resp. weakening) box to which it naturally
corresponds. The whole proof structure R is treated as a particular box, and is
associated to all links that do not belong to any exponential or weakening box.

Let (R,B) be a MELL proof structure, with boxes b1, . . . , bn. Let b0 = R. We
define as follows the family G(R,B) = {Gi

(R,B)}i=0...n of paired-graphs:

– Gi
(R,B) contains a node l for every link l of R \ {?W -links} with B(l) = bi,

and an edge (l, l′) for all links l, l′ of R \ {?W -links} with B(l) = B(l′) = bi.
C(Gi

(R,B)) contains the premises of each �-link and ?C-link l of R with
B(l) = bi.

– Assume bj is an outermost box included in bi. A node bj ∈ Gi
(R,B) is associ-

ated to bj , and an edge (bj , l) ∈ Gi
(R,B) for all link l conclusion of a link in

bj and such that B(l) = bi.

Essentially, Gi
(R,B) is the paired graph corresponding to the box bi, where all

inner boxes are considered contracted to a single node. Moreover, for the sake
of connectivity, the ?W -link (if there is any) corresponding to bi is removed.

Definition 7. A MELL proof structure (R,B) with boxes b1, . . . , bn is contrac-
tile if ∀i ∈ {0, . . . , n}, Gi

(R,B) �∗c •.
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As for MLL, one may inductively define particular MELL proof structures, called
MELL proof nets, which exactly correspond to derivations in MELL sequent cal-
culus. Theorem 2 allows to distinguish MELL proof nets among proof structures:

Theorem 2. [GM01] A MELL proof structure (R,B) is a MELL proof net iff
(R,B) is contractile4.

We define the following decision problem MELL-corr:
Given: A MELL proof structure (R,B)
Problem: Is (R,B) a MELL proof net?

1.3 Intuitionistic Multiplicative Linear Logic and Essential Nets

The intuitionistic fragment of MLL (IMLL) is the (�, 
)-fragment of Linear
logic, where linear implication is no more defined by A 
 B = A⊥�B but is a
connective. The sequent calculus corresponds to the MLL sequent calculus but
with two-sided sequents (using linear negation) and at most one (distinguished)
formula on the right.

For this sub-logic, Lamarche has proposed a version of proof structures called
essential nets. They are built on the links given in Figure 3 where, to each �+-
labelled node, one associates a negatively-labelled node (left premise) called the
sink of p. They also have a distinguished link called the root.
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Fig. 3. Essential net links: �+, �−, �+, �− and Axiom

Definition 8. An essential net of a linearly balanced5 IMLL sequent is L-correct
if it is acyclic, every node is reachable from the root, and every �+-node p
satisfies the L-condition: every path from the root that reaches the sink of p
passes through p.

Lamarche has shown that the essential net of an IMLL sequent denotes a IMLL
sequent derivation if and only if it is L-correct. For additional information on
essential net correction, including translation to proof structures, we refer the
reader to [MO06].

We define the following decision problem IMLL-corr:
Given: A multiplicative essential net N of a linearly balanced IMLL sequent
Problem: Is N correct?
4 The criterion in [GM01] uses contraction rules for MELL proof structures only. As

for Theorem 1, the proof of the equivalence with Definition 7 is left to the reader.
5 I.e. every atom that occurs in the sequent does so exactly twice, once positively and

once negatively
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1.4 Complexity Classes and Related Problems

We will mention several major complexity classes below P , some of which having
natural complete problems that we will use in this paper. Let us briefly recall
some basic definitions and results.

Definition 9. Complexity classes:

– AC0 (respectively AC1) is the class of problems solvable by a uniform family
of circuits of constant (resp. logarithmic) depth and polynomial size, with
NOT gates and AND, OR gates of unbounded fan-in.

– L is the class of problems solvable by a deterministic Turing machine which
only uses a logarithmic working space.

– NL (respectively coNL) is the class of problems solvable by a non-deterministic
Turing machine which only uses a logarithmic working space, such that:
1. If the answer is ”yes,” at least one (resp. all) computation path accepts.
2. If the answer is ”no,” all (resp. at least one) computation paths reject.

Theorem 3. [Imm88, Sze87] NL = coNL.

The following inclusion results are also well known:

AC0 ⊂ L ⊂ NL ⊂ AC1 ⊂ P, (1)

where it remains unknown whether any of these inclusions is strict.
It is important to note that Theorems 6 and 7 give NL-completeness results

under constant-depth (actually AC0) reductions. From (1) above, it should be
clear to the reader that the reductions lie indeed in a class small enough for being
relevant. For a good exposition of constant-depth reducibility, see [CSV84].

In the sequel, we will often use the notion of a path in a directed -or undirected-
graph. A path is a sequence of vertices such that there is an edge between any
two consecutive vertices in the path. A path will be called elementary when any
node occurs at most once in the path.

Let us now list some graph-theoretic problems that will be used in this paper.

Is Tree (IT): Given an undirected graph G = (V,E), is it a tree?
IT is L-complete under constant-depth reductions [JLM97].

Source-Target Connectivity (STCONN): Given a directed graph G =
(V,E) and two vertices s and t, is there a path from s to t in G ?
STCONN is NL-complete under constant-depth reductions [JLL76].

Undirected Source-Target Connectivity (USTCONN):
Given an undirected graph G = (V,E) and two vertices s and t, do s and t
belong to the same connected component of G ?
USTCONN is L-complete under constant-depth reductions [Rei05].

Universal Source DAG (SDAG):
Given a directed graph G = (V,E), is it acyclic and does there exist a source
node s such that there is a path from s to each vertex ?
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Proposition 1. SDAG ∈ NL.
Proof. Given G = (V,E) a directed graph, its acyclicity can be expressed as
follows:

∀(x, y) ∈ V 2 : ¬STCONN(G, x, y) ∨ ¬STCONN(G, y, x).

Since NL = coNL (Theorem 3) and STCONN ∈ NL, acyclicity is clearly in NL.
Checking whether each vertex can be reached from a vertex s can also be done
with STCONN subroutines, therefore SDAG is in NL. �

Proposition 2. SDAG is coNL-hard under constant-depth reductions.
Proof. Let L be any language in coNL. L is then decided by a non-deterministic
Turing machine M in space less than k log(n) on inputs of size n, for some k ≥ 0.

Let Cn be the set of configurations of M of size less or equal to k log(n),
and define T = |Cn|. Clearly, T ≤ nk is an upper bound for the computation
time of M on inputs of size n. Without loss of generality, we assume that every
configuration of M has at least one outgoing transition, possibly towards itself,
and that the result of the computation is given by the state reached by M
after exactly T computation steps. A configuration is thus either accepting or
rejecting.

Let us consider the following directed graph Gn = (Vn, En), where:

Vn =
⋃

c∈Cn,t∈[0,T ]{(c, t)} ∪ {cA} ∪ {cR} ∪ {s}.
For (c, t), (c′, t + 1) ∈ Vn, ((c′, t + 1) � (c, t)) ∈ En if and only if c � c′ is a

transition of M.
For c ∈ Cn, (cA � (c, T )) ∈ En iff c is an accepting configuration of M.
For c ∈ Cn, (cR � (c, T )) ∈ En iff c is a rejecting configuration of M.
(s � cA) ∈ En, (s � cR) ∈ En.

A path (c1, t1) � ·· � (ck, tk) in Gn follows by construction a sequence
t1, . . . , tk that is strictly decreasing. Since there is no edge (c, t) � cA, (c, t) � cR
nor (c, t) � s, it is then clear that Gn is acyclic.

Moreover, since every configuration of M has at least one outgoing transition,
every vertex (c, t), t < T in Gn has at least one parent node (c′, t + 1). By
induction on t, it follows that every vertex in Gn is reachable from s. Therefore
Gn satisfies SDAG.

Let x be an input of size n to M. An initial configuration cx ∈ Cn of M is
naturally associated to this input x. Consider now the directed graph Hx

n =
Gn ∪ {(cx, 0) � cR}.

Then, Hx
n satisfies SDAG if and only if x ∈ L. Indeed, by Definition 9, x ∈ L

if and only if there exists no computation path cx � ·· � cr of length T in
M , where cr is a rejecting configuration. By construction of Gn, such a path
corresponds to a path (cr, T ) � ·· � (cx, 0) in Gn. Then x ∈ L if and only if
there exists no path cR � ·· � (cx, 0) in Gn, if and only if Hx

n is acyclic. Since
Gn satisfies SDAG, it follows that Hx

n satisfies SDAG if and only if x ∈ L.
Moreover, it is well known that the configuration graph of a Turing machine

can be computed with constant-depth circuits. Computing Hx
n from the config-

uration graph of M requires only purely local rewriting rules, that can all be
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performed in parallel. Therefore, Hx
n can also be computed with constant-depth

circuits. �
Propositions 1 and 2, and Theorem 3 yield the following result:

Theorem 4. SDAG is NL-complete under constant-depth reductions.

2 New Correctness Criteria for MLL and MELL

For a given proof net, the following notion of dependency graph provides a par-
tial order among its �-nodes corresponding to some valid contraction sequences
accordingly to rule R1.

Definition 10. Let G be a paired graph. The dependency graph D(G) of G is
the directed graph (VG, EG) defined as follows:
– VG = {v | v is a pair-node in G} ∪ {s}.
– Let x be a pair-node in G, with premise-nodes xl and xr. The edge (s � x)

is in EG if and only if:
1. There exists an elementary path px = xl, . . . , xr in G[∀ �→∵\ ],
2. x �∈ px, and for all pair-node y in G, y �∈ px.

– Let x be a pair-node in G, with premise-nodes xl and xr, and let y �= x be
another pair-node in G. The edge (y � x) is in EG if and only if:
1. There exists an elementary path px = xl, . . . , xr in G[∀ �→∵\ ],
2. x �∈ px, and for every elementary path px = xl, . . . , xr in G[∀ �→∵\ ] with
x �∈ px, y ∈ px.
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Fig. 4. Dependency graph examples: source is needed!

Remark 1. Other definitions of dependency graph are possible:
- One may choose to consider not only elementary paths, but any path, which
yields a stronger contraction order. Surprisingly enough, Theorem 6 holds also
for this relaxed version of dependency.
- One may also consider the dependency graph only for a paired graph G where
G[∀ �→∵\ ] is a tree. In that case, if there exists an elementary path px = xl, . . . , xr
which does not contain x, this elementary path is unique. The results of Section 3
hold also for this version of dependecy, yet Lemma 4 does not rely on [Rei05], but
rather on the fact that checking reachability in a forest is L-complete [CM87].

Lemma 1. Let G and H be paired graphs, with G →c H. Then, G[∀ �→∵\ ] →∗
c

H [∀ �→∵\ ], and G[∀ �→∵\ ] is a tree if and only if H [∀ �→∵\ ] is a tree.
Proof. If G→R1 H denote by v the redex pair-node in G, with premise w. The
reduced pattern in H is the non-pair edge (v, w), therefore G[∀ �→∵\ ] = H [∀ �→∵\ ].

If G→R2 H , it is clear that G[∀ �→∵\ ]→R2 H [∀ �→∵\ ] with the same redex. It
is also clear that rule →R2 preserves connectivity and acyclicity. �
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Lemma 2. If G �∗c • then D(G) satisfies SDAG.
Proof. Since •[∀ �→∵\ ] is a tree, by Lemma 1 so is G[∀ �→∵\ ]. Therefore, for any
pair-node x with premise-nodes xl and xr in G, there exists a unique elementary
path px = xl−· ·−xr in G[∀ �→∵\ ]. It follows by construction of D(G) that x has
at least one parent node in D(G). Moreover, a path x � ·· � y in D(G) induces
by construction an elementary path xl − · · −y in G[∀ �→∵\ ]. Therefore a cycle
x � ·· � y, y � ·· � x in D(G) induces a cycle xl − · · −y, yl− · · −x in G[∀ �→∵\ ].
Since G[∀ �→∵\ ] is a tree, D(G) is acyclic. Since every vertex of D(G) but s has
at least one parent node and D(G) is acyclic, D(G) satisfies SDAG. �

Lemma 3. Let G be a paired graph such that G[∀ �→∵\ ] is a tree. If the depen-
dency graph D(G) of G satisfies SDAG then G �∗c •.
Proof. let d(v), the depth of a pair-node v ∈ G, be the length of the longest
path from the source s of D(G) to the vertex v ∈ D(G). Assume that D(G)
satisfies SDAG, and let Xd = {x pair-node in G|d(x) = d} and Y d = ∪d′�dX

d′
.

By induction on the depth we prove that there exists a sequence of contrac-
tions Cd such that G→Cd Gd satisfies:

Each pair-node y ∈ G s.t. d(y) � d is contracted in Gd. (2)

The proof by induction is as follows:

– For d = 1, let x ∈ X1, with premise-nodes xl and xr. By definition of X1,
there exists an elementary path px = xl − · · −xr in G[∀ �→∵\ ] such that
x �∈ px and for any pair-node y in G[∀ �→∵\ ], y �∈ px. The same holds for the
path px = xl − · · −xr in G, with respect to any pair-node y ∈ G.

Let E1
x = {e edge of px | x ∈ X1}. The set of contractions R1

x = {e →c

• | e ∈ E1
x} contracts the edges of px, and let R1 = ∪x∈X1R1

x. Clearly,
xl = xr �= x in the contracted paired graph obtained from G by R1

x. Since
x �∈ py for any y ∈ X1, the same holds for the paired graph obtained from
G by R1.

Let C1 be the sequence R1, followed by the set of contraction rules of
the pair-nodes x ∈ X1. Define G1 such that G →C1 G1. It is clear that G1

satisfies (2).
– Assume by induction that there exists a sequence of contractions Cd such

that G→Cd Gd satisfies (2).
Let x ∈ Xd+1, with premise-nodes xl and xr.
Since G→Cd Gd and G[∀ �→∵\ ] is a tree, Lemma 1 applies:

G[∀ �→∵\ ]→C′
d Gd[∀ �→∵\ ], and Gd[∀ �→∵\ ] is a tree. (3)

By definition of Xd+1, there exists an elementary path px = xl − · · −xr in
G[∀ �→∵\ ] such that x �∈ px and, for every pair-node y ∈ G of depth d(y) > d,
y �∈ px.
Define pdx such that px →C′

d pdx. By (3), pdx is an elementary path in Gd[∀ �→∵\ ]
such that x �∈ pdx and, for every pair-node y ∈ Gd[∀ �→∵\ ] of depth d(y) > d,
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y �∈ pdx. The same holds for pdx in Gd, with respect to any pair-node y ∈ Gd,
since, by induction, for any pair-node y ∈ Gd, d(y) > d.

Let Ed+1
x = {e edge of px | x ∈ Xd+1}. The set of contractions Rd+1

x =
{e→c • | e ∈ Ed+1

x } contracts the edges of pdx, and letRd+1 = ∪x∈Xd+1Rd+1
x .

Clearly, xl = xr �= x in the contracted paired graph obtained from G by
Rd+1

x . Since x �∈ py for any y ∈ Xd+1, the same holds for the contracted
paired graph obtained from G by Rd+1.
Let Cd+1 be the sequence Cd, followed by Rd+1, and followed by the set
of contraction rules of the pair-nodes x ∈ Xd+1. Define Gd+1 such that
G→Cd+1 Gd+1. Gd+1 satisfies (2).

Since D(G) satisfies SDAG, the maximal depth m = max{d(x)|x ∈ D(G)} is
well-defined and every pair-node x of G belongs to Xm. Therefore, G→Cm Gm

andGm satisfies (2). SinceG[∀ �→∵\ ] is a tree, by Lemma 1 so is Gm[∀ �→∵\ ] = Gm.
It follows that G �∗c •. �
Lemmas 2 and 3 and Theorems 1 and 2 imply the Theorem:

Theorem 5 (Correctness Criteria).
A MLL proof structure R is a MLL proof net if and only if:

1. D(GR) satisfies SDAG, and
2. GR[∀ �→∵\ ] is a tree.

A MELL proof structure (R,B) with boxes b1, . . . , bn is a MELL proof net if and
only if:

1. ∀i ∈ {0, . . . , n}, D(Gi
(R,B)) satisfies SDAG, and

2. ∀i ∈ {0, . . . , n}, Gi
(R,B)[∀ �→∵\ ] is a tree.

3 NL-Completeness of the Criteria for MLL and MELL

Let DepGRAPH be the function: G �→ D(G), which associates its dependency
graph to a paired graph G.

Lemma 4. DepGRAPH ∈ FL.
Proof. The following functions can easily be computed in FL:

– G, x ∈ G �→ (G[∀ �→∵\ ]) \ {x}
– G, x ∈ G �→ (G[∀ �→∵]) \ {x}
– G, x ∈ G, y ∈ G �→ (G[∀ �→∵\ ]) \ {x, y}

Consider now the following algorithm for DepGRAPH:

INPUT (G)
FOR ALL x pair-node in G, with premise-nodes xl and xr DO

IF USTCONN((G[∀ �→∵]) \ {x}, xl, xr) THEN OUTPUT (s � x) ∈ D(G)
FOR ALL ( x pair-node in G, with premise-nodes xl and xr, y pair-node in G) DO

IF ¬USTCONN((G[∀ �→∵\ ]) \ {x, y}, xl, xr)
AND USTCONN((G[∀ �→∵\ ]) \ {x}, xl, xr) THEN

OUTPUT (y � {x}) ∈ D(G).
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– USTCONN((G[∀ �→∵]) \ {x}, xl, xr) tests whether there exists an elemen-
tary path px = xl − · · −xr such that x �∈ px and, for all pair-node y in G,
y �∈ px.

– ¬ USTCONN((G[∀ �→∵\ ]) \ {x, y}, xl, xr) tests whether any elementary
path px = xl − · · −xr such that x �∈ px contains y.

– USTCONN((G[∀ �→∵\ ]) \ {x}, xl, xr) tests whether there exists a path
px = xl − · · −xr in G′ such that x �∈ px. From the previous point, if such a
path px exists, y ∈ px.

It follows that this algorithm computes DepGRAPH. Since USTCONN ∈ L,
this algorithm belongs to FLL (the class of functions computable in logarithmic
space, with oracles in L). Since FLL = FL, DepGRAPH ∈ FL. �

Proposition 3. MELL− corr ∈ NL.
Proof. Let (R,B) be a MELL-proof structure with boxes b1, . . . , bn. Each
function (R,B), i ∈ {0, . . . , n} �→ Gi

(R,B) can be easily be computed in FL.
Checking that Gi

(R,B)[∀ �→∵\ ] is a tree is doable in L since IT ∈ L. Checking
that D(Gi

(R,B)) satisfies SDAG can be done in NL, by composing the function
DepGRAPH in FL (Lemma 4) with an NL algorithm for SDAG (Theorem 4).

Since the number of paired graphs Gi
(R,B) is linearly bounded, it suffices to

sequentially perform these tasks for i = 0, . . . , n, with a counter i of logarithmic
size. �
Note that the previous best algorithms [Laf95, Gue99] are not likely to be im-
plemented in logarithmic space, since they require on-line modification of the
structure they manipulate. The purpose of our criterion of Theorem 5 is pre-
cisely that it allows a space-efficient implementation.

Proposition 4. MLL-corr is NL-hard under constant-depth reductions.
Proof. We actually reduce SDAG to MLL-corr. Let G be a directed graph,
and consider the proof structure SG defined as follows (see Figure 5), and let
GSG be its associated paired graph:

1. To any vertex v of G, we associate a �-link v with parent links vin and vout.
2. If there are i > 0 in-going edges to v, vin is a �-link of arity i, with parent

links v1
in, . . . , v

i
in. If v has no in-going edge, vin is one conclusion of an axiom-

link Axvin, the other conclusion of Axvin being a conclusion of Sxn.
3. If there are j > 0 outgoing edges from v, vout is a �-link of arity j, with

parent links v1
out, . . . , v

j
out. If v has no outgoing edge, vout is one conclusion

of an axiom-link Axvout, the other conclusion of Axvout being a conclusion of
Sxn.

4. To an edge v � w of G, we associate an axiom-link Ax(v�w) with conclusions
Ax

(v�w)
in and Ax(v�w)

out . Moreover, if v � w is the kth outgoing edge from v,
Ax

(v�w)
in is vkout. If v � w is the lth in-going edge to w, Ax(v�w)

out is wl
in.

It is quite clear that this reduction can be computed by constant-depth cir-
cuits. We now claim that SG is correct if and only if G satisfies SDAG.
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Fig. 5. Construction of SG and GSG

Assume G contains a cycle. There exists then an elementary path p = x1 �
·· � xl, with xl � x1 ∈ G. Then, for any edge xt � xt+1 ∈ p, there exists a
switching of the pair-node xt+1in in GSG , which connects xt and xt+1. Similarly
for the edge xl � x1 ∈ G. Since p is elementary, these pair-nodes are all different;
therefore there exists cyclic switching of GSG and SG is not correct.

It is clear that if G is acyclic, it has at least one node of arity 0. Moreover, if
G is acyclic and has only one node of arity 0, a proof by induction shows that
G satisfies SDAG.

Assume therefore that G is acyclic and has at least two nodes, r and s, of arity
0. Let S′ be any switching of GSG , and assume that there exists an elementary
path p from r to s in S′. Let p′ = r, x1, . . . , xk, s be the sequence of non pair-
nodes of p corresponding to vertices of G. p′ follows by construction edges of G,
accordingly to their orientation or not. Since r and s have arity 0, there exist
three nodes xt, xt+1, xt+2 in p′ such that (xt � xt+1) and (xt+2 � xt+1) are edges
of G. By construction of GSG , xt and xt+2 are then premise-nodes of the same
pair-node xt+1in in GSG , which contradicts that p is a path in S′. Therefore, S′

is not connected, and SG is not correct.
Assume now that G satisfies SDAG and let d(v), the depth of a vertex v of

G, be the length of the longest path from the source s of G to v. Denote by Gd

the subgraph of G consisting only in the vertices of depth less than d, and by
GSd

G
the corresponding paired graph. It is easy to see that the rules of Figure 1

can be turned in a n-ary version, and that GSd+1
G

can be obtained from GSd
G

by
these n-ary rules. By induction on d, it follows that SG is correct. �

Since MLL is a subsystem of MELL, Propositions 3 and 4 immediately yield the
following result:

Theorem 6. MLL-corr and MELL-corr are NL-complete under constant-
depth reductions.

4 NL-Completeness of the Criterion for IMLL

Proposition 5. IMLL− corr ∈ NL.
Proof. For a given essential net N , denote by r(N) its root. For a given �+-
link x in N , denote by s(x) its sink. Consider now the following algorithm for
IMLL-corr:
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INPUT (N)
IF ¬SDAG(N, r(N)) THEN REJECT
FOR ALL x �+-link in N DO

IF STCONN(N \ {x}, r(N), s(x)) THEN REJECT
ELSE ACCEPT.

This algorithm checks that N satisfies SDAG, and that the L-condition applies.
Since SDAG ∈ NL and STCONN ∈ NL, and NL = coNL (Theorem 3), this
algorithm belongs clearly to NL. �

Proposition 6. IMLL-corr is NL-hard under constant-depth reductions.
Proof. We actually reduce SDAG to IMLL-corr. Let G be a directed graph,
and consider the essential net NG defined as follows (see Figure 6):

1. To any vertex v of G of arity i > 0, we associate a �−-node v, with parent
node (right premise) vin of polarity − and child node (left premise) vout of
polarity +. To v of arity 0 we associate a node v = vout of polarity +.

2. If there are i > 0 in-going edges to v , vin is a �−-node of arity i, with
parent nodes v1

in, . . . , v
i
in of polarity −.

3. If there are j > 0 outgoing edges from v, vout is a �+-node of arity j, with
child nodes v1

out, . . . , v
j
out of polarity +.

4. If there is no outgoing edge from v, vout is a �+-node with child node (right
premise) v1

out of polarity +, and sink node (left premise) vsinkout , of polarity
−. There is moreover an axiom-edge v1

out � vsinkout .
5. Let v � w be an edge of G. Assume v � w is the kth outgoing edge from v,

and the lth in-going edge to w. To v � w, we associate an axiom-edge from
vkout of polarity + to wl

in of polarity −.
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Fig. 6. Construction of NG

It is clear that the reduction is constant-depth. Since the only �+-links of NG

correspond to leaves of G, NG satisfies the L-condition by construction. There-
fore, it is L-correct if and only if G satisfies SDAG. �
Propositions 5 and 6 immediately yield the following result:

Theorem 7. IMLL-corr is NL-complete under constant-depth reductions.

Note that [MO06] provides a linear-time reduction from MLL-corr to IMLL-
corr, whichyields a linear-timealgorithm forMLL-corr. This reduction actually
occurs to be linear-space, and cannot be used for directly proving Proposition 6.
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5 Conclusion and Acknowledgments

Deciding the correctness of unit-free MLL proof structures, MELL proof struc-
tures, and unit-free IMLL essential nets where problems known to be decidable
in deterministic, sequential linear time. We have shown their NL-completeness,
thus establishing that it would be most unlikely to find better sequential de-
terministic algorithms. As a byproduct, we obtain efficient parallel algorithms
for both problems, namely AC1 algorithms. Moreover, since NL = RL = ZPL,
we also naturally obtain Monte-Carlo and Las-Vegas logarithmic space random
algorithms, by simply using random walks for our graph reachability procedures.
It remains to be checked whether our approach can be extended to MALL.

We are grateful to Harry Mairson for raising the question of the exact com-
plexity of the correctness problems, and to the members of the No-Cost project
for useful discussions and comments. We also thank the anonymous referees for
their comments.
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Abstract. A focused proof system provides a normal form to cut-free
proofs that structures the application of invertible and non-invertible
inference rules. The focused proof system of Andreoli for linear logic
has been applied to both the proof search and the proof normalization
approaches to computation. Various proof systems in literature exhibit
characteristics of focusing to one degree or another. We present a new,
focused proof system for intuitionistic logic, called LJF, and show how
other proof systems can be mapped into the new system by inserting
logical connectives that prematurely stop focusing. We also use LJF to
design a focused proof system for classical logic. Our approach to the
design and analysis of these systems is based on the completeness of
focusing in linear logic and on the notion of polarity that appears in
Girard’s LC and LU proof systems.

1 Introduction

Cut-elimination provides an important normal form for sequent calculus proofs.
But what normal forms can we uncover about the structure of cut-free proofs?
Since cut-free proofs play important roles in the foundations of computation,
such normal forms might find a range of applications in the proof normalization
foundations for functional programming or in the proof search foundations of
logic programming.

1.1 About Focusing

Andreoli’s focusing proof system for linear logic (the triadic proof system of [1])
provides a normal form for cut-free proofs in linear logic. Although we describe
this system, here called LLF, in more detail in Section 2, we highlight two
aspect of focusing proofs here. First, linear logic connectives can be divided into
the asynchronous connectives, whose right-introduction rules are invertible, and
the synchronous connectives, whose right introduction rules are not (generally)
invertible. The search for a focused proof can capitalize on this classification by
applying (reading inference rules from conclusion to premise) all invertible rules
in any order (without the need for backtracking) and by applying a chain of
non-invertible rules that focus on a given formula and its positive subformulas.
Such a chain of applications, usually called a focus, terminates when it reaches
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an asynchronous formula. Proof search can then alternate between applications
of asynchronous introduction rules and chains of synchronous introduction rules.

A second aspect of focusing proofs is that the synchronous/asynchronous clas-
sification of non-atomic formulas must be extended to atomic formulas. The ar-
bitrary assignment of positive (synchronous) and negative (asynchronous) bias
to atomic formulas can have a major impact on, not the existence of focused
proofs, but the shape of focused proofs. For example, consider the Horn clause
specification of the Fibonacci series:

fib(0, 0) ∧ fib(1, 1) ∧ ∀n∀f∀f ′[fib(n, f) ∧ fib(n+ 1, f ′) ⊃ fib(n+ 2, f + f ′)].

If all atomic formulas are given negative bias, then the only focused proofs of
fib(n, fn) are those that can be classified as “backward chaining” (the size of the
smallest one being exponential in n). On the other hand, if all atomic formulas are
given positive bias, then the only focused proofs are those that can be classified
as “forward chaining” (the size of the smallest one being linear in n).

1.2 Results

The contributions of this paper are the following. First, we introduce in Sec-
tion 5 a new focusing proof system LJF and show that it is sound and complete
for intuitionistic logic. Notable features of LJF are that it allows for atoms of
different bias and it contains two versions of conjunction: while these conjunc-
tions are logically equivalent, they are affected by focusing differently. Second,
in Section 6, we show how several other focusing proof systems can be captured
in LJF, in the sense of full completeness (one-to-one correspondence between
proofs in different systems). One should note that while there are many focusing
proof systems for intuitionistic logic in the literature, we appear to be the first to
provide a single (intuitionistic) framework for capturing many of them. Third,
in Section 7, we use LJF to derive LKF, a focusing system for classical logic.

1.3 Methodology and Related Work

There are a number of sequent calculus proof systems known to be complete for
intuitionistic logic that exhibit characteristics of focusing. Some of these proof
systems are based on fixing globally on either forward chaining or backward
chaining. The early work on uniform proofs [17] and the LJT proof system [11]
are both backward chaining calculi (all atoms have negative bias). The LJQ
calculus [11,7] similarly selects the global preference to be forward chaining (all
atoms have positive bias). Less has been published about systems that allow
for mixing bias on atoms. The λRCC proof system of Jagadeesan, Nadathur,
and Saraswat [13] allows for both forward chaining and backward chaining in
a superset of the hereditary Harrop fragment of intuitionistic logic. Chaudhuri,
Pfenning, and Price in [3] observed that focusing proofs with mixed biases on
atoms can form a declarative basis for mixing forward and backward chaining
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within Horn clauses. The PhD theses of Howe [12] and Chaudhuri [2] also ex-
plored various focusing proof systems for linear and intuitionistic logic.

We are interested in providing a flexible and unifying framework that can
collect together important aspects of many of these proof systems. There are
several ways to motivate and validate the design of such a system. One approach
stays entirely within intuitionistic logic and works directly with invertibility
and permutability of inference rules. Such an approach has been taken in many
papers, such as [17,18,7]. Our approach uses linear logic, with its exponential
operators ! and ?, as a unifying framework for looking at intuitionistic (and
classical) logic. The fact that Andreoli’s focused system was defined for full
linear logic provides us with a convenient platform for exploring the issues around
focusing and polarity. We translate intuitionistic logic into linear logic, then show
that proof systems for intuitionistic logic match focused proofs of the translated
image (Section 3). A crucial aspect of understanding focusing in intuitionistic
logic is provided by identifying the precise relationship between Andreoli’s notion
of polarity with Girard’s notion of polarity found in the LC [9] and LU [10]
systems (Section 4).

Another system concerning polarity and focusing is found in the work of
Danos, Joinet and Schellinx [5,6]. Many techniques that they developed, such as
inductive decorations, are used throughout our analysis. Our work diverges from
theirs in the adaptation of Andreoli’s system (LLF) as our main instrument of
construction. The LKη

p system of [6] describes focused proofs for classical logic.
Its connections to polarization and focusing were further explored and extended
by Laurent, Quatrini and de Falco [14] using polarized proof nets. It may be
tempting to speculate that the best way to arrive at a notion of intuitionistic
focusing is by simple modifications to these systems, such as restricting them to
single-conclusion sequents. Closer examination however, reveal intricate issues
concerning this approach. For example, the notion of classical polarity appears
to be distinct from and contrary to intuitionistic polarity, especially at the level
of atoms (see Sections 4 and 7). Resolving this issue would be central to find-
ing systems that support combined forward and backward chaining. Although
the relationship between LKη

p and our systems is interesting, we chose for this
work to derive intuitionistic focusing from focusing in linear logic as opposed to
classical logic.

Much of the research into focusing systems has been motivated by their appli-
cation. For example, the papers [13,17,12,2] are motivated by foundational issues
in logic programming and automated deduction. The papers [11,5,6,14] are mo-
tivated by foundational issues in functional programming and the λ-calculus.
Also, Levy [15] presents focus-style proof systems for typing in the λ-calculus
and Curien and Herbelin [4] (among others) have noted the relationship between
forward chaining and call-by-value evaluation and between backward chaining
and call-by-name evaluation.

Our work can be extended to second order logic, although this paper is con-
cerned mainly with first-order quantification.

Many details missing from this paper can be found in the report [16].
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2 Focusing in Linear Logic

We summarize the key results from [1] on focusing proofs for linear logic.
A literal is either an atomic formula or the negation of an atomic formula. A

linear logic formula is in negation normal form if it does not contain occurrences
of −◦ and if all negations have atomic scope. If K is literal, then K⊥ denotes its
complement: in particular, if K is A⊥ then K⊥ is A.

Connectives in linear logic are either asynchronous or synchronous. The asyn-
chronous connectives are ⊥, .................................................

............
.................................. , ?, �, &, and ∀ while the synchronous connectives

are their de Morgan dual, namely, 1, ⊗, !, 0, ⊕, and ∃. Asynchronous connec-
tives are those where the right-introduction rule is always invertible. Formally, a
formula in negation normal form is of three kinds: literal, asynchronous (i.e., its
top-level connective is asynchronous), and synchronous (i.e., its top-level con-
nective is synchronous).

Ψ : Δ ⇑ L

Ψ : Δ ⇑ ⊥, L
[⊥]

Ψ : Δ ⇑ F, G, L

Ψ : Δ ⇑ F
..................................................

............
................................. G, L

[
..................................................

............
................................. ]

Ψ, F : Δ ⇑ L

Ψ : Δ ⇑ ? F, L
[?]

Ψ : Δ ⇑ �, L
[�]

Ψ : Δ ⇑ F, L Ψ : Δ ⇑ G, L

Ψ : Δ ⇑ F & G, L
[&]

Ψ : Δ ⇑ B[y/x], L

Ψ : Δ ⇑ ∀x.B,L
[∀]

Ψ : Δ, F ⇑ L

Ψ : Δ ⇑ F, L
[R ⇑] provided that F is not asynchronous

Ψ : · ⇓ 1
[1]

Ψ : Δ1 ⇓ F Ψ : Δ2 ⇓ G

Ψ : Δ1, Δ2 ⇓ F ⊗G
[⊗]

Ψ : · ⇑ F

Ψ : · ⇓ ! F
[!]

Ψ : Δ ⇓ F1

Ψ : Δ ⇓ F1 ⊕ F2
[⊕l]

Ψ : Δ ⇓ F2

Ψ : Δ ⇓ F1 ⊕ F2
[⊕r]

Ψ : Δ ⇓ B[t/x]

Ψ : Δ ⇓ ∃x.B
[∃]

Ψ : Δ ⇑ F

Ψ : Δ ⇓ F
[R ⇓] provided that F is either asynchronous or a negative literal

If K a positive literal:
Ψ : K⊥ ⇓ K

[I1]
Ψ, K⊥: · ⇓ K

[I2]

If F is not a negative literal:
Ψ : Δ ⇓ F

Ψ : Δ, F ⇑ · [D1]
Ψ, F :Δ ⇓ F

Ψ, F : Δ ⇑ · [D2]

Fig. 1. The focused proof system LLF for linear logic

As mentioned in Section 1.1, the classification of non-atomic formulas as asyn-
chronous or synchronous is pushed to literals by assigning a fixed but arbitrary
bias to atoms: an atom given a negative bias is linked to asynchronous behavior
while an atom given positive bias is linked to synchronous behavior. In Andreoli’s
original presentation of LLF [1] all atoms were classified as “positive” and their
negations “negative.” Girard made a similar assignment for LC [9]. In a clas-
sical setting, such a choice works fine since classical negation simply flips bias.
In intuitionistic systems, however, a more natural treatment is to assign an ar-
bitrary bias directly to atoms. This bias of atoms is extended to literals: negating
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Table 1. The 0/1 translation used to encode LJ proofs into linear logic

B B1 B0 (B0)⊥

atom Q Q Q Q⊥

true 1 � 0

false 0 0 �
P ∧Q !(P 1&Q1) ! P 0& ! Q0 ?(P 0)⊥ ⊕ ?(Q0)⊥

P ∨Q ! P 1 ⊕ ! Q1 ! P 0 ⊕ ! Q0 ?(P 0)⊥& ?(Q0)⊥

P ⊃ Q !(?(P 0)⊥ .................................................
............
.................................. Q1) ! P 1 −◦ ! Q0 ! P 1 ⊗ ?(Q0)⊥

¬P !(0
..................................................

............
................................. ?(P 0)⊥) ! P 1 −◦ 0 ! P 1 ⊗�

∃xP ∃x ! P 1 ∃x ! P 0 ∀x ?(P 0)⊥

∀xP !∀xP 1 ∀x ! P 0 ∃x ?(P 0)⊥

a negative atom yields a positive literal and negating a positive atom yields a
negative literal.

The focusing proof system LLF for linear logic, presented in Figure 1, contains
two kinds of sequents. In the sequent Ψ :Δ ⇑ L, the “zones” Ψ andΔ are multisets
and L is a list. This sequent encodes the usual one-sided sequent − ?Ψ,Δ,L
(here, we assume the natural coercion of lists into multisets). This sequent will
also satisfy the invariant that requiresΔ to contain only literals and synchronous
formulas. In the sequent Ψ :Δ ⇓ F , the zone Ψ is a multiset of formulas and Δ is
a multiset of literals and synchronous formulas, and F is a single formula. Notice
that the bias of literals is explicitly referred to in the [R ⇑] and initial rules: in
particular, in the initial rules, the literal on the right of the ⇓ must be positive.

Changes to the bias assigned to atoms does not affect provability of a linear
logic formula: instead it affects the structure of focused proofs.

3 Translating Intuitionistic Logic

Table 1 contains a translation of intuitionistic logic into linear logic. This trans-
lation induces a bijection between arbitrary LJ proofs and LLF proofs of the
translated image in the following sense. First notice that this translation is
asymmetric: the intuitionistic formula A is translated using A1 if it occurs on
the right-side of an LJ sequent and as A0 if it occurs on the left-side. Since this
translation is used to capture cut-free proofs, such distinctions are not problem-
atic. Since the left-hand side of a sequent in LJ will be negated when translated
to a one-sided linear logic sequent, (B0)⊥ is also shown. The following Proposi-
tion essentially says that, via this translation, linear logic focusing can capture
arbitrary proofs in LJ. Here, 4I denotes an intuitionistic logic sequent.

Proposition 1. Let (Γ 0)⊥ be the multiset {(D0)⊥ | D ∈ Γ}. The focused proofs
of 4 (Γ 0)⊥ :⇑ R1 are in bijective correspondence with the LJ proofs of Γ 4I R.
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For a detailed proof, see [16]. We simply illustrate one case in constructing the
mapping from a collection of LLF rules to an LJ inference rule.

4 (Γ 0)⊥, (D0
i )
⊥ : R1 ⇑

4 (Γ 0)⊥ : R1 ⇑ ?(D0
i )
⊥ [?]

4 (Γ 0)⊥ : R1 ⇓ ?(D0
i )
⊥ [R ⇓]

4 (Γ 0)⊥ : R1 ⇓ ?(D0
1)
⊥ ⊕ ?(D0

2)
⊥ [⊕]

�−→ Γ,Di 4I R
Γ,D1 ∧D2 4I R

[∧L]

The liberal use of ! in this translation throttles focusing. This translation is
reminiscent of the earliest embedding of classical into intuitionistic logic of Kol-
mogorov, which uses the double negation in a similarly liberal fashion.

The 0/1 translation can be used as a starting point in establishing the com-
pleteness of other proof systems. These systems can be seen as induced from
alternative translations of intuitionistic logic.

F F q (right) F j (left)

atom C C C

false 0 0
A ∧B Aq ⊗Bq !Aj ⊗ !Bj

A ∨B Aq ⊕Bq !Aj ⊕ !Bj

A ⊃ B (!Aj−◦Bq)⊗ 1 Aq−◦ !Bj

Consider, for example, the LJQ′ proof
system presented in [7]. The translation
for this system is given here using the
“q/j” mapping. The “⊗1” device is an-
other way to control focusing, or the lack
thereof. All atoms must be given positive
bias for this translation.

With minor changes, Girard’s original
(non-polarized) translation of intuitionis-
tic logic [8] induces the complement to
LJQ′ called LJT [11], which is itself de-
rived from LKT [5] (where this connection
was noted implicitly.) All atoms must be given negative bias for this translation.

Given a translation such as that of LJQ′, one can give a completeness proof
for the system using a “grand tour” through linear logic as follows:

1. Show that a proof under the 0/1 translation can be converted into a proof
under the new translation. This usually follows from cut-elimination.

2. Define a mapping between proofs in the new system (such as LJQ) and LLF
proofs of its translation.

3. Show soundness of the new system with respect to LJ. This is usually trivial.
The “tour” is now complete, since proofs in LJ map to proofs under the 0/1
translation.

An intuitionistic system that contains atoms of both positive and negative bias
is λRCC [13]. Two special cases of the⊃L rule are distinguished involving E ⊃ D
for positive atom E and G ⊃ A for negative atom A. Each rule requires that the
complementary atom (E on the left, A on the right) is present when applied,
thus terminating one branch of the proof. One can translate these special cases
using forms E −◦ !D′ and !G′ −◦ A, respectively, in linear logic. The strategy
outlined above can then be used to not only prove its completeness but also
extend it with more aggressive focusing features.
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Our interest here is not the construction of individual systems but the building
of a unifying framework for focusing in intuitionistic logic. Such a task requires
a closer examination of polarity and its connection to focusing.

4 Permeable Formulas and Their Polarity

Focused proofs in linear logic are characterized by two different phases: the in-
vertible (asynchronous) phase and the non-invertible (synchronous) phase. These
two phases are characterized by introduction rules for dual sets of formulas. In
order to construct a general focusing scheme for intuitionistic logic, the non-
linear (exponential) aspects of proofs need special attention, especially in light
of the fact that the [!] rule stops a bottom-up construction of focused application
of synchronous rules (the arrow ⇓ in the conclusion flips to ⇑ in the premise).

For our purposes here, a particularly flexible way to deal with the exponentials
in the translations of intuitionistic formulas is via the notion of permeation that
is used in LU [10]. In particular, there are essentially three grades of permeation.
The formula B is left-permeable if B ≡ !B, is right-permeable if B ≡ ?B, and
neutral otherwise. Within sequent calculus proofs, a formula is left-permeable if
it admits structural rules on the left and right-permeable if it admits structural
rules on the right. An example of a left-permeable formula is ∃x !A. All left-
permeable formulas are synchronous and all right-permeables asynchronous. In
the LU system, both the left and right sides of sequents contain two zones —
one that treats formulas linearly and one that permits structural rules. A left-
permeable (resp., right-permeable) formula is allowed to move between both
zones on the left (right). In addition, LU introduces atoms that are inherently
left or right-permeable or neutral. Although they appear to properly extend
linear logic, one can simulate LU in “regular” linear logic by translating left-
permeable atoms A as !A and right-permeable ones as ?A.

To preserve the focusing characteristics of permeable atoms as positively or
negatively biased atoms, we use the following LU-inspired asymmetrical transla-
tion. The superscript −1 indicates the left-side translation and +1 indicates the
right-side translation:

P−1 = !P and P+1 = P , for left-permeable (positive) atom P .
N−1 = N and N+1 = ?N , for right-permeable (negative) atom N .
B−1 = B+1 = B, for neutral atom B.

The ! rule of LLF causes a loss of focus in all circumstances, and is the main
reason why we use an asymmetrical translation. The translation of positive atoms
above preserves permeation on the left while allowing for focus on the right. That
is, left-permeable atoms can now be interpreted meaningfully as positively biased
atoms in focused proofs, and dually for right-permeable atoms. Furthermore, the
permeation of positive atoms is “one-way only:” they cannot be selected for focus
again once they enter the non-linear context.

Intuitionistic logic uses the left-permeable and neutral formulas and atoms.
LU defines a translation for intuitionistic logic so that all synchronous formulas
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are left-permeable. For example, ∨ is translated as follows (here, P , Q are positive
and N , M are negative): (P ∨ Q)−1 = P−1 ⊕ Q−1, (P ∨ N)−1 = P−1 ⊕ !N−1,
(N ∨ P )−1 = !N−1 ⊕ Q−1, and (N ∨M)−1 = !N−1 ⊕ !M−1. The final element
of intuitionistic polarity is that neutral atoms should be assigned negative bias
in focused proofs. Neutral atoms that are introduced into the left context (e.g.
by a ⊃ L rule) must immediately end that branch of the proof in an identity
rule. Otherwise, the unique stoup is lost when multiple non-permeable atoms
accumulate in the linear context.

The LU and LLF systems serve as a convenient platform for the unified char-
acterization of polarity and focusing in all three logics. We can now understand
the terminology of “positive” and “negative” formulas in each logic as follows:

Linear logic: Positive formulas are synchronous formulas and positively biased
neutral atoms. Negative formulas are asynchronous formulas and negatively
biased neutral atoms.

Intuitionistic logic: Positive formulas are left-permeable formulas and nega-
tive formulas are asynchronous neutral formulas and negatively biased neu-
tral atoms.

Classical logic: Positive formulas are left-permeable formulas.Negative formu-
las are right-permeable formulas.

5 The LJF Sequent Calculus

Since the polarities of intuitionistic logic observe stronger invariances, intuition-
istic focused proofs are more well-structured than LLF proofs. The non-linear
context of LLF contains both synchronous and asynchronous formulas, whereas
in intuitionistic logic sequents can be clearly divided into zones respecting po-
larity. That is, when translating an intuitionistic sequent into a LLF sequent,
synchronous formulas on the left are placed in the linear context.

We also make an adjustment on the LU translation of intuitionistic logic.
Instead of using & or ⊗ depending on the polarities of the subformulas, we con-
struct two versions of intuitionistic conjunction, which has the following meaning
in linear logic (P , Q for positives, N , M for negatives, A, B arbitrary):

(P ∧+ Q)−1 = P−1 ⊗Q−1 (A ∧+ B)+1 = A+1 ⊗B+1

(P ∧+ N)−1 = P−1 ⊗ !N−1

(N ∧+ P )−1 = !N−1 ⊗ P−1 (A ∧− B)−1 = A−1&B−1

(N ∧+ M)−1 = !N−1 ⊗ !M−1 (A ∧− B)+1 = A+1&B+1

The connectives ∧− and ∧+ are equivalent in intuitionistic logic in terms of
provability but differ in their impact on the structure of focused proofs. The use
of two conjunctions means that the top-level structure of formulas completely
determines their polarity. Polarity in intuitionistic logic is defined as follows.

Definition 1. Atoms in LJF are arbitrarily positive or negative. Positive for-
mulas are among positive atoms, true, false, A ∧+ B, A ∨B and ∃xA. Negative
formulas are among negative atoms, A ∧− B, A ⊃ B and ∀xA.
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[N, Γ ]
N−→ [R]

[N, Γ ] −→ [R]
Lf

[Γ ] −P→
[Γ ] −→ [P ]

Rf
[Γ ], P −→ [R]

[Γ ]
P−→ [R]

Rl
[Γ ] −→ N

[Γ ] −N→
Rr

[C, Γ ], Θ −→ R
[Γ ], Θ, C −→ R

[]l
[Γ ], Θ −→ [D]

[Γ ], Θ −→ D
[]r

[P, Γ ] −P→
Ir, atomic P

[Γ ]
N−→ [N ]

Il, atomic N

[Γ ], Θ, false −→ R
falseL

[Γ ], Θ −→ R
[Γ ], Θ, true −→ R trueL

[Γ ] −true→
trueR

[Γ ]
Ai−→ [R]

[Γ ]
A1∧−A2−→ [R]

∧−L [Γ ], Θ, A,B −→ R
[Γ ], Θ, A ∧+ B −→ R ∧+L

[Γ ], Θ −→ A [Γ ], Θ −→ B

[Γ ], Θ −→ A ∧− B
∧−R

[Γ ] −A→ [Γ ] −B→
[Γ ] −A ∧+B→

∧+R

[Γ ], Θ, A −→ R [Γ ], Θ, B −→ R
[Γ ], Θ, A ∨B −→ R ∨L

[Γ ] −Ai→
[Γ ] −A1∨A2→

∨R

[Γ ] −A→ [Γ ]
B−→ [R]

[Γ ]
A⊃B−→ [R]

⊃ L [Γ ], Θ, A −→ B

[Γ ], Θ −→ A ⊃ B
⊃ R

[Γ ], Θ, A −→ R
[Γ ], Θ, ∃yA −→ R ∃L

[Γ ] −A[t/x]→
[Γ ] −∃xA→

∃R
[Γ ]

A[t/x]−→ [R]

[Γ ]
∀xA−→ [R]

∀L [Γ ], Θ −→ A

[Γ ], Θ −→ ∀yA
∀R

Fig. 2. The Intuitionistic Sequent Calculus LJF. Here, P is positive, N is negative,
C is a negative formula or positive atom, and D a positive formula or negative atom.
Other formulas are arbitrary. Also, y is not free in Γ , Θ, or R.

The above translation induces the sequent calculus LJF for intuitionistic logic,
shown in Figure 2. Sequents in LJF can be interpreted as follows:

1. [Γ ], Θ −→ R (end sequent): this is an unfocused sequent. Γ contains nega-
tive formulas and positive atoms. R represents either a formula R or [R].

2. [Γ ] −→ [R]: this represents a sequent in which all asynchronous formulas
have been decomposed, and is ready for a formula to be selected for focus.

3. [Γ ] A−→ [R]: this is a left-focusing sequent, with focus on formula A. The
meaning of this sequent remains Γ,A 4I R.

4. [Γ ] −A→: this is a right-focusing sequent on formula A, with the meaning
Γ 4I A.

Theorem 1. LJF is sound and complete with respect to intuitionistic logic.

Proof. Using the “grand tour” strategy. See [16, Section 6] for details.
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Given the different forms of sequents, the cut rule for LJF takes many forms:

[Γ ], Θ −→ P [Γ ′], Θ′, P −→ R
[ΓΓ ′], ΘΘ′ −→ R Cut+

[Γ ], Θ −→ C [C, Γ ′], Θ′ −→ R
[ΓΓ ′], ΘΘ′ −→ R Cut−

[Γ ] B−→ [P ] [Γ ′], P −→ [R]

[ΓΓ ′] B−→ [R]
Cut←1

[Γ ] −→ N [N,Γ ′] B−→ [R]

[ΓΓ ′] B−→ [R]
Cut←2

[Γ ] −C→ [C, Γ ′] −R→
[ΓΓ ′] −R→

Cut→

Notice that the last three cut rules retain focus in the conclusion. These rules
extend those of LJQ’ [7], which were shown to be useful for studying term-
reduction systems. See [16] for a proof of the admissibility of these rules.

Like LLF, a key characteristic of LJF is the assignment of arbitrary polarity
to atoms. To illustrate the effect of these assignments on the structure of focused
proofs, consider the sequent a, a ⊃ b, b ⊃ c 4 c where a, b and c are atoms. This
sequent can be proved either by forward chaining through the clause a ⊃ b, or
backward chaining through the clause b ⊃ c. Assume that atoms a and b are as-
signed positive polarity and that c is assigned negative polarity. This assignment
effectively adopts the forward chaining strategy, reflected in the following LJF
proof segment (here, Γ is the set {a, a ⊃ b, b ⊃ c}):

[Γ ] −a→
Ir

[b, Γ ] −b→
Ir [b, Γ ] c−→ [c]

Il

[b, Γ ] b⊃c−→ [c]
⊃L

[b, Γ ] −→ [c]
Lf

[Γ ], b −→ [c]
[]l

[Γ ] b−→ [c]
Rl

[Γ ] a⊃b−→ [c]
⊃L

The polarities of a and c do not fundamentally affect the structure of the proof
in this example. However, assigning negative polarity to atom b would restrict
the proof to use the backward chaining strategy:

[Γ ] −a→
Ir [Γ ] b−→ [b]

Il

[Γ ] a⊃b−→ [b]
⊃L

[Γ ] −→ [b]
Lf

[Γ ] −→ b
[]r

[Γ ] −b→
Rr [Γ ] c−→ [c]

Il

[Γ ] b⊃c−→ [c]
⊃L
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6 Embedding Intuitionistic Systems in LJF

The LJF proof system can be used to “host” other focusing proof system for
intuitionistic logic. One obvious restriction to LJF is its purely negative frag-
ment, which essentially corresponds to LJT. In the negative fragment one also
finds uniform proofs, where the right “goal” formula is always fully decomposed
before any left rule is applied. Various other proof systems can be embedded into
LJF by mapping intuitionistic formulas to intuitionistic formulas in such a way
that focusing features in LJF are stopped by the insertion of delay operators.
In particular, if we define ∂−(B) = true ⊃ B and ∂+(B) = true ∧+ B, then B,
∂−(B), and ∂+(B) are all logically equivalent but ∂−(B) is always negative and
∂+(B) is always positive.

Proofs in the LJQ’ system can be embedded into LJF by translating all left-
side formulas (l) as negatives and all right-side formulas (r) as positives: in
particular, for atom B, Bl = Br = B, falsel = ∂−(false) , falser = false,
(A ∧ B)l = ∂−(Al ∧+ Bl), (A ∧ B)r = Ar ∧+ Br, (A ∨ B)l = ∂−(Al ∨ Bl),
(A ∨B)r = Ar ∨Br, (A ⊃ B)l = Ar ⊃ ∂+(Bl), (A ⊃ B)r = ∂+(Al ⊃ Br).

F F l (left) F r (right)

atom C C C

false ∂−(false) false
true ∂−(true) true
A ∧B ∂+(Al) ∧− ∂+(Bl) ∂+(Ar ∧− Br)
A ∨B ∂−(Al ∨Bl) ∂−(Ar) ∨ ∂−(Br)
A ⊃ B ∂−(Ar) ⊃ ∂+(Bl) ∂+(Al ⊃ Br)
∃xA ∂−(∃xAl) ∃x∂−(Ar)
∀xA ∀x∂+(Al) ∂+(∀xAr)

Arbitrary LJ proofs can be
embedded within LJF by in-
serting sufficient delaying oper-
ators. The table here provides
the translation (redefining the
superscripts l and r, for con-
venience). Together with cut-
elimination, the embedding also
suggests a completeness proof
for LJF independently of lin-
ear logic. The following example
embeds the ∧R rule in LJF:

[Γ ] −→ [Ar]
[Γ ] −→ Ar []r

[Γ ] −→ [Br]
[Γ ] −→ Br []r

[Γ ] −→ Ar ∧− Br ∧−R

[Γ ] −Ar∧−Br→ Rr [Γ ] −true→
trueR

[Γ ] −(Ar∧−Br)∧+true→
∧+R

[Γ ] −→ [∂+(Ar ∧− Br)]
Rf

The system λRCC also presents interesting choices. In particular, it may not
always be the best choice to focus maximally. Forward chaining may generate a
new formula or “clause” that may need to be used multiple times. In a ⊃L rule
on formulas E ⊃ D where E is a positive atom, one may not wish to decompose
the formula D immediately. This is accomplished in the linear translation with
a !. It can also be accomplished by using formulas E ⊃ ∂+(D) in case D is
negative, and E ⊃ ∂+(∂−(D)) in case D is positive. Note that unlike the l/r
translations for LJQ and LJ above, these simple devices do not hereditarily alter
the structure of D.
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7 Embedding Classical Logic in LJF

We can use LJF to formulate a focused sequent calculus for classical logic that
reveals the latter’s constructive content in the style of LC. While it is possible to
derive such a system again using linear logic, classical logic can also be embed-
ded within intuitionistic logic using the double-negation translations of Gödel,
Gentzen, and Kolmogorov. These translations do not, however, yield significant
focusing features. Girard’s polarized version of the double negation translation
for LC approaches the problem of capturing duality in a more subtle way. Fol-
lowing the style of LJF, we wish to define dual versions of each propositional
connective, which leads to a more usable calculus. We thus modify the LC trans-
lation in a natural way, which is consistent with its original intent. The proof
system we derive is called LKF.

We must first separate classical from intuitionistic polarity since these are
different notions (see the end of Section 4).

Definition 2. Atoms are arbitrarily classified as either positive or negative. The
literal ¬A has the opposite polarity of the atom A. Positive formulas are among
positive literals, T , F , A∧+B, A∨+B, A ⊃+ B and ∃xA. Negative formulas are
among negative literals, ¬T , ¬F , A ∧− B, A ∨− B, A ⊃− B and ∀xA. Negation
¬A is defined by de Morgan dualities ¬A/A, ∧+/∨−, ∧−/∨+ and ∀/∃. Negative
implication A ⊃− B is defined as ¬A ∨− B and A ⊃+ B is defined as ¬A ∨+ B.
Formulas are assumed to be in negation normal form (that is, formulas that do
not contain implications and negations have atomic scope).

The constants T , F , ¬T and ¬F are best described, respectively, as 1, 0,⊥ and�
in linear logic. Just as we have dual versions of each connective, we also have dual
versions of each identity. But this is not linear logic as the formulas are polarized
in the extreme. The distinction between the positive and negative versions of each
connective affects only the structure of proofs and not provability.

Let ∼A represent the intuitionistic formula A ⊃ φ where φ is some unspecified
positive atom. The “≈” embedding of classical logic is found in Table 2. Vari-
ations are possible on the embedding. Note that the classical ∧− is not defined
in terms of the intuitionistic ∧−. The embeddings are selected to enforce the
dualities ∧−/∨+ and ∧+/∨−. Alternatives may also work, but will increase the
complexity of the derivation. Here, the cases all follow the pattern P or ∼ P
where P is a positive intuitionistic formula. In particular, negative intuitionistic
atoms are not used in the embedding.

The ≈ embedding induces the LKF sequent calculus in Figure 3 from the
image of LJF proofs, analogous to how LJF was derived from LLF. Here is one
sample correspondence between a LJF rule and a LKF rule:

[Δ], Ψ, A,B −→ [φ]
[Δ], Ψ, A ∧+ B −→ [φ] ∧

+L �−→
4 [Θ], Γ, A,B
4 [Θ], Γ, A ∨− B ∨−

Sequents of the form 4 [Θ], Γ are unfocused while those of the form �→ [Θ], A
focus on the stoup formula A.
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Table 2. Polarized embedding of classical logic. The (·)≈ translation on compound
formulas is given above (there, A, B represent formulas not preceded by∼). For positive
classical atom P , P ≈ = P ; for negative classical atom N , N≈ =∼N ; (where both P and
N are assigned positive intuitionistic polarity), and for the logical constants T ≈ = true,
F≈ = false, (¬T )≈ =∼ true, (¬F)≈ =∼ false.

A≈ B≈ (A∧+ B)≈ (A∧− B)≈ (A∨+ B)≈ (A∨− B)≈ (¬A)≈

A B A ∧+ B ∼ (∼A∨ ∼B) A ∨B ∼ (∼A∧+ ∼B) ∼A

A ∼B A∧+ ∼B ∼ (∼A ∨B) A∨ ∼B ∼ (∼A ∧+ B) ·
∼A B ∼A ∧+ B ∼ (A∨ ∼B) ∼A ∨B ∼ (A∧+ ∼B) A

∼A ∼B ∼A∧+ ∼B ∼ (A ∨B) ∼A∨ ∼B ∼ (A ∧+ B) ·
A≈ B≈ (A ⊃+ B)≈ (A ⊃− B)≈ (∀xA)≈ (∃xA)≈

A B ∼A ∨ B ∼ (A∧+ ∼B) ∼ (∃x ∼A) ∃xA

A ∼B ∼A∨ ∼B ∼ (A ∧+ B) · ·
∼A B A ∨B ∼ (∼A∧+ ∼B) ∼ (∃xA) ∃x ∼A

∼A ∼B A∨ ∼B ∼ (∼A ∧+ B) · ·

The following correctness theorem for LKF can be proved by relating it to
the Gödel-Gentzen translation (see [16, Section 9] for more details).

Theorem 2. LKF is sound and complete with respect to classical logic.

We have constructed this embedding of classical logic as a further demonstration
of the abilities of LJF as a hosting framework. The embedding also revealed
interesting relationships between classical and intuitionistic polarity. It is also
possible to derive LKF from linear logic: each connective needs to be defined as
either wholly positive or negative. For example, the translation of (A ∨− B)p is
Ap .................................................

............
.................................. Bp if Ap and Bp are both negative; is Ap .................................................

............
.................................. ?Bp if only Ap is negative;

is ?Ap ..................................................
...........
.................................. Bp if only Bp is negative; and is ?Ap ..................................................

...........
.................................. ?Bp, if Ap and Bp are both

positive. This translation is called the “polaro” translation in [6], where it was
used to formulate LKη

p , the first focused proof system for classical logic. Like
the ≈ translation, the polaro translation is a derivative of the LC/LU analysis
of polarity. Except for the treatment of atoms, LKF is derivable from LLF using
the polaro translation in the same manner that LJF is derived.
LKη

p was extended to LKη,ρ
pol in [14]. These systems were formulated indepen-

dently of Andreoli’s results. The authors of [6] opted not to present LKη
p as a

sequent calculus because they feared that it will have the cumbersome size of LU.
Such cumbersomeness can, in fact, be avoided by adopting LLF-style reaction
rules.

Given our goals, the choice in adopting Andreoli’s system is justified in that
LKF and LJF have the form of compact sequent calculi ready for implementa-
tion. More significantly perhaps, LKη

p and LKη,ρ
pol define focusing for classical

logic. They map to polarized forms of linear logic (LLP and LLpol). LLF is de-
fined for full classical linear logic. LKF is embedded within LLF in the same way
that LC is embedded within LU. LLF is well suited for hosting other logics.
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� [Θ, C], Γ

� [Θ], Γ, C
[]

�→ [P, Θ], P

� [P, Θ]
Focus

� [Θ], N

�→ [Θ], N
Release

�→ [¬P, Θ], P
ID+, atomic P �→ [N, Θ],¬N

ID−, atomic N

�→ [Θ], T indeed � [Θ], Γ,¬F absurd
� [Θ], Γ

� [Θ], Γ,¬T trivial

� [Θ], Γ, A � [Θ], Γ, B

� [Θ], Γ, A ∧− B
∧−

� [Θ], Γ, A, B

� [Θ], Γ, A ∨− B
∨−

� [Θ], Γ, B,¬A

� [Θ], Γ, A ⊃− B
⊃− � [Θ], Γ, A

� [Θ], Γ,∀xA
∀

�→ [Θ], A �→ [Θ], B

�→ [Θ], A ∧+ B
∧+

�→ [Θ], Ai

�→ [Θ], A1 ∨+ A2
∨+

�→ [Θ], A[t/x]

�→ [Θ], ∃xA
∃

�→ [Θ],¬A

�→ [Θ], A ⊃+ B
⊃+

�→ [Θ], B

�→ [Θ], A ⊃+ B
⊃+

Fig. 3. The Classical Sequent Calculus LKF. Here, P is positive, N is negative, C is
a positive formula or a negative literal, Θ consists of positive formulas and negative
literals, and x is not free in Θ, Γ . End-sequents have the form � [], Γ .

8 Conclusion and Future Work

We have studied focused proof construction in intuitionistic logic. The key to
this endeavor is the definition of polarity for intuitionistic logic. The LJF proof
system captures focusing using this notion of polarity. We illustrate how systems
such as LJ, LJT, LJQ, and λRCC can be captured within LJF by assigning
polarity to atoms and by adding to intuitionistic logic formulas annotations on
conjunctions and delaying operators. We also use LJF to derive and justify the
LKF focusing proof system for classical logic.

It remains to examine the impact of these focusing calculi on typed λ-calculi,
logic programming, and theorem proving. Given the connections observed be-
tween LJQ/LJT and call-by-name/value, the LJF system could provide a frame-
work for λ-term evaluations that combine the eager and lazy evaluation strate-
gies. In the area of theorem proving, there are a number of completeness theorems
for various restrictions to resolution: it would be interesting to see if any of these
are captured by an appropriate mapping into LKF.

Acknowledgments. We would like to thank the reviewers of an earlier version of
this paper for their comments. The work reported here was carried out while the
first author was on sabbatical leave from Hofstra University to LIX. The second
author was supported by INRIA through the “Equipes Associées” Slimmer and
by the Information Society Technologies program of the European Commission,
Future and Emerging Technologies under the IST-2005-015905 MOBIUS project.



Focusing and Polarization in Intuitionistic Logic 465

References

1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. of Logic
and Computation 2(3), 297–347 (1992)

2. Chaudhuri, K.: The Focused Inverse Method for Linear Logic. PhD thesis, Carnegie
Mellon University,Technical report CMU-CS-06-162 (December 2006)

3. Chaudhuri, K., Pfenning, F., Price, G.: A logical characterization of forward and
backward chaining in the inverse method. In: Furbach, U., Shankar, N. (eds.) IJ-
CAR 2006. LNCS (LNAI), vol. 4130, pp. 97–111. Springer, Heidelberg (2006)

4. Curien, P.-L., Herbelin, H.: The duality of computation. In: ICFP ’00. Proceedings
of the fifth ACM SIGPLAN international conference on Functional programming,
New York, NY, USA, pp. 233–243. ACM Press, New York (2000)

5. Danos, V., Joinet, J.-B., Schellinx, H.: LKQ and LKT: sequent calculi for sec-
ond order logic based upon dual linear decompositions of classical implication. In:
Girard, Lafont, Regnier (eds.) Workshop on Linear Logic. London Mathematical
Society Lecture Notes 222, pp. 211–224. Cambridge University Press, Cambridge
(1995)

6. Danos, V., Joinet, J.-B., Schellinx, H.: A new deconstructive logic: Linear logic.
Journal of Symbolic Logic 62(3), 755–807 (1997)

7. Dyckhoff, R., Lengrand, S.: LJQ: a strongly focused calculus for intuitionistic logic.
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Abstract. We consider the problem of automating and checking the
use of previously proved lemmas in the proof of some main theorem. In
particular, we call the collection of such previously proved results a table
and use a partial order on the table’s entries to denote the (provability)
dependency relationship between tabled items. Tables can be used in au-
tomated deduction to store previously proved subgoals and in interactive
theorem proving to store a sequence of lemmas introduced by a user to
direct the proof system towards some final theorem. Tables of literals
can be incorporated into sequent calculus proofs using two ideas. First,
cuts are used to incorporate tabled items into a proof: one premise of the
cut requires a proof of the lemma and the other branch of the cut inserts
the lemma into the set of assumptions. Second, to ensure that lemma is
not reproved, we exploit the fact that in focused proofs, atoms can have
different polarity. Using these ideas, simple logic engines that do focused
proof search (such as logic programming interpreters) are able to check
proofs for correctness with guarantees that previous work is not redone.
We also discuss how a table can be seen as a proof object and discuss
some possible uses of tables-as-proofs.

1 Introduction

A sequence of well chosen lemmas is often an important part of presenting a
proof in, at least, informal mathematics. In some situations, one might feel that
the sequence of lemmas itself could constitute an actual proof, particularly if the
reader of the proof has significant mathematical means to fill in the gaps between
the lemmas. Of course, as lemmas at the beginning of the list are proved, they
can be used to help prove lemmas later in the list.

Although generating lemmas is a well known and critical activity in mathe-
matical proof, producing and using such lemmas can be important in, say, logic
programming, deductive databases, and model checking. In such settings, the
underlying proofs that such systems attempt to build are usually cut-free (that
is, they lack the use of lemmas). That does not mean, however, that lemmas
(and, hence, the cut-inference rule) do not have a role in improving the search
for or the presentation of proofs.

Consider attempting to prove the conjunctive query B ∧ C from a logic pro-
gram Γ . This attempt can be reduced to first attempting to prove B from Γ and
then C from Γ . It might well be the case that during the attempt to prove C,
many subgoals might need to be proved that were previously established during

J. Duparc and T.A. Henzinger (Eds.): CSL 2007, LNCS 4646, pp. 466–480, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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the attempt to proveB. Of course, if proved subgoals can be remembered from the
first conjunct to the second, then it might be possible to build smaller proofs and
these might be easier to find and to check for correctness. Some implemented logic
programming systems already use tables in this fashion: for example, in XSB [16]
and in Twelf [15], it is possible to specify that some predicates should be tabled:
that is, whenever an atomic formula with such a predicate is successfully proved,
that atomic formula is remembered, so that, any other time a proof of that atom
is attempted, the proof process can be stopped with a success.

In this paper, we consider a general notion of table and attempt to show how
proof theory can account for the following two salient aspects of tables.
(i) Entering tabled formulas into the proof context. Proofs will be sequent cal-
culus proofs, and tables will be partially ordered collections of formulas. In a
straightforward fashion, the cut-inference rule is used to state the obligation to
prove a tabled lemma as well as insert it into the main proof context.
(ii) Avoiding reproving of tabled formulas. It is easy to provide algorithmic means
for making certain that formulas are not reproved (for example, prior to attempt-
ing a proof of a formula, check if that formula is in the table). More challenging is
to find a purely proof theoretic solution in which the only proofs that can be built
are those in which reproving cannot happen. We achieve this by first restricting
tables to be literals (a typical assumption in implementations of tabling). Sec-
ond, we exploit some recent developments in the understanding of focused proofs
in intuitionistic logic that allow literals to be given different polarity. Polarity
can be used to signal that a literal is in or out of the table. Focused proof search
can then be organized so that a tabled literal is not reproved.

This paper is structured as follows. Section 2 presents a couple of examples
that help to motivate particular connections between tables and proofs. Section 3
illustrates how tables can be inserted into proofs by using the multicut inference
rule (a simple generalization of the cut rule). Section 4 presents the main tech-
nical background of our approach: namely, the notions of focusing and polarity
in intuitionistic logic. In Section 5, we show how focusing and polarity can be
exploited to ensure that reproving already proved atoms is avoided, and later,
in Section 6, we extend this result to literals. Section 7 discusses the possible
merits of considering tables as proof objects themselves.

2 Two Motivating Examples

Consider the graph depicted in Figure 1, and assume that its arcs are represented
by atomic facts of the form (arr N1 N2), where N1 and N2 are adjacent nodes
in the graph. Consider also the following two Horn clauses for describing a path
in this graph: ∀x(path xx) and ∀x∀y∀z(arr x z ∧ path z y ⊃ path x y),

Now consider attempting a proof of the conjunctive query path a1 a4 ∧
path a2 a4. The usual goal-directed logic interpreter will attempt to prove the
two conjuncts independently. After making suitable backward chaining steps,
both independent attempts will give rise to the same subgoal path a3 a4. The
logic interpreter will then proceed to construct two (possibly identical) proofs of
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. . .

a0 a1

a2

a3 a4

a5

1

2

Fig. 1. A directed graph used to illustrate how tables can be included in proofs. The
ellipses represent a section of the graph with a large number of paths from a3 to a4.

this subgoal. Clearly, a superior approach to proving this conjunctive goal would
be to first prove the “lemma” path a3 a4, and then make that lemma available
to the proof of the original conjunctive goal.

A basic problem still persists: how does one ensure that the assumed lemma
is not reproved? If there are special algorithmic connections between the logic
interpreter and the tabling mechanism, as exist in, say, XSB [16] and Twelf
[15], then there are simple solutions to this problem of reproving lemmas. The
question we are concerned with here, however, is whether or not there is an
implementation independent and proof-theoretic solution to this problem.

For a second example, consider the following possible approach to memoiza-
tion that one could attempt to use in logic programming languages (such as
λProlog) that contain implicational goals [10]. Assume that the formula A is
atomic and that we wish to prove the conjunction A ∧G, for some general goal
formula G. Since the attempt to prove G can reduce to several attempts to
prove A, one might be tempted to rewrite the original conjunctive goal as the
logically equivalent goal A ∧ (A ⊃ G). During the attempt to prove G, the as-
sumption A is available to establish any subgoal A immediately. Unfortunately,
when moving from A ∧ G to A ∧ (A ⊃ G), one is making proof search more
non-deterministic since for every proof that proves A by matching with the as-
sumed version of A, there is another proof where A is, in fact, reproved. As a
result, this naive approach to memoization has never been successfully used in
λProlog.

This example also allows us to notice that our concern for not reproving
previously proved formulas is different from the concerns of relevance logic [2],
a logic in which the nature of implication is changed so that hypotheses are
necessary for the proof of conclusions. In the example above, if the attempt to
prove G succeeds without using the assumption A, the implication is still true
even if the assumption A is not “relevant” to the conclusion G. The logic of this
paper is intuitionistic.

Both of these examples illustrate a need for not only making proved atoms
available for reuse but also enforcing that they are not reproved.
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3 Tables as Multicut Derivations

In its most general form, we consider a table as a partially ordered finite set of
formulas.

Definition 1. A table is a tuple T = 〈A,'〉, where A is some finite set of
formulas, and ' is a partial order relation over the elements of A.

The intended meaning of a table is that it is a structured collection of provable
formulas (from some assumed context, say, Γ ). The order relationship B ' C
denotes the fact that the proof of the formula B is available for reuse during a
proof attempt of C: that is, if an attempt to prove the formula C results in the
subgoal B then proof search can stop immediately since B has a proof.

The following inference rule, called the multicut rule, is often used as a tech-
nical generalization to the cut rule to help prove cut-elimination theorems (see,
for example, [5,19]).

Δ1 −→ B1 · · · Δn −→ Bn B1, . . . , Bn, Γ −→ C

Δ1, . . . , Δn, Γ −→ C
mc (n ≥ 0)

Notice that if n = 1, this rule reduces to the usual cut-rule (for a single conclusion
calculus), and if n = 0, this rule is essentially a simple “repetition.” If n ≥ 1,
then this rule can be seen as encoding n separate applications of the cut-rule.

The following definition describes how a table can be translated to a collection
of multicut inference rules.

Definition 2. Let T = 〈A,'〉 be a table. The multicut derivation for T and the
sequent S = Γ −→ G, written as mcd(T ,S), is defined inductively as follows: if
A is empty, then mcd(T ,S) is the derivation containing just the sequent Γ −→
G. Otherwise, if {A1, . . . , An} is the collection of '-minimal elements in A and
if Π is the multicut derivation for the smaller table 〈A \ {A1, . . . , An},'〉 and
the sequent Γ,A1, . . . , An −→ G, then mcd(T ,S) is the derivation

Γ −→ A1 · · · Γ −→ An

Π
Γ,A1, . . . , An −→ G

Γ −→ G
mc

Multicut derivations are always open derivations (that is, they contain leafs that
are not proved). A proof of a multicut derivation is any (closed) proof that
extends this open derivation.

To illustrate this definition, consider the graph example in Section 2: let Γ
contain the encoding of the original adjacency information as well as the spec-
ification of the path predicate, and consider the table that contains just the
atomic formula path a3 a4. The following is the multicut derivation for Γ −→
path a1 a4 ∧ path a2 a4:

Γ −→ path a3 a4 Γ, path a3 a4 −→ path a1 a4 ∧ path a2 a4

Γ −→ path a1 a4 ∧ path a2 a4
mc
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By using the cut, it was possible to introduce the lemma path a3 a4 in the
context of the rightmost branch. The left premise requires showing that there
is, in fact, a path from a3 to a4 while the right branch attempts to show the
original conjunctive goal under the assumption that the existence of that path
is granted. Unfortunately, there are proofs of this right-most premise where this
lemma is not used but is reproved. In the next section, we introduce the notions
of focusing and polarity in order to provide means for enforcing reuse.

4 Focusing and Polarities

In order to present a focused proof system, we first classify the connectives ∧, ∃,
true and ⊥ as synchronous (their right introduction is not necessarily invertible)
and the connectives ⊃, and ∀ as asynchronous (their right introduction rules are
invertible). This dichotomy must also be extended to atomic formulas: some
atoms are considered asynchronous and the rest are considered synchronous.
Since the terms “asynchronous” and “synchronous” do not apply well to atomic
formulas, we shall instead use the slightly more general notions of polarity for a
formula. In particular, a formula is positive if its main connective is synchronous
or it is a positive atom and is negative if its main connective is asynchronous
or it is a negative atom. The polarity of atoms is not necessarily fixed: we shall
assign different polarities to atoms to achieve different purposes.

Although the notion of focused proof was originally given by Andreoli for
linear logic [3], we shall use the recently designed LJF focused proof system
for intuitionistic logic [7] displayed in Figure 2. This system has four types of
sequents.

1. The sequent [Γ ]−A→ is a right-focusing sequent (the focus is A);
2. The sequent [Γ ] A−→ [R]: is a left-focusing sequent (with focus on A);
3. The sequent [Γ ], Θ −→ R is an unfocused sequent. Here, Γ contains negative

formulas and positive atoms, and R is either in brackets, written as [R], or
without brackets;

4. The sequent [Γ ] −→ [R] is an instance of the previous sequent where Θ is
empty.

As an inspection of the inference rules of LJF reveals, the search for a focused
proof is composed of two alternating phases, and these phases are governed by
polarities. The asynchronous phase applies invertible (asynchronous) rules until
exhaustion: no backtracking during this phase of search is needed. The asynchro-
nous phase uses the third type of sequent above (the unfocused sequents): in that
case, Θ contains positive or negative formulas. If Θ contains positive formulas,
then an introduction rule (either ∧l, ∃l, truel, or falsel) is used to decompose
it; if it is negative, then the formula is moved to the Γ context (by using the
[]l rule). The end of the asynchronous phase is represented by the fourth type
of sequent. Such a sequent is then established by using one of the decide rules,
Dr or Dl. The application of one of these decide rules then selects a formula for
focusing and switches proof search to the synchronous phase or focused phase.
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[N, Γ ]
N−→ [R]

[N, Γ ] −→ [R]
Dl

[Γ ]−P→
[Γ ] −→ [P ]

Dr

[Γ ], P −→ [R]

[Γ ]
P−→ [R]

Rl
[Γ ] −→ N

[Γ ]−N→
Rr

[Γ, Na], Θ −→ R
[Γ ], Θ, Na −→ R

[]l
[Γ ], Θ −→ [Pa]

[Γ ], Θ −→ Pa
[]r

[Γ ]
An−→ [An]

Il

[Γ, Ap]−Ap→
Ir

[Γ ], Θ,⊥ −→ R falsel

[Γ ], Θ −→ R
[Γ ], Θ, true −→ R

truel
[Γ ]−true→

truer

[Γ ], Θ, A, B −→ R
[Γ ], Θ, A ∧B −→ R

∧l

[Γ ]−A→ [Γ ]−B→
[Γ ]−A∧B→

∧r

[Γ ]−A→ [Γ ]
B−→ [R]

[Γ ]
A⊃B−→ [R]

⊃l
[Γ ], Θ, A −→ B

[Γ ], Θ −→ A ⊃ B
⊃r

[Γ ], Θ, A −→ R
[Γ ], Θ,∃yA −→ R ∃l

[Γ ]−A[t/x]→
[Γ ]−∃xA→

∃r

[Γ ]
A[t/x]−→ [R]

[Γ ]
∀xA−→ [R]

∀l
[Γ ], Θ −→ A

[Γ ], Θ −→ ∀yA
∀r

Fig. 2. The LJF system [7] originally has one disjunction and two conjunctions,
∧+,∧−. In this paper, we only need one conjunction: we will drop ∧− and write ∧
for ∧+. Here An denotes a negative atom, Ap a positive atom, P a positive formula,
N a negative formula, Na a negative formula or an atom, and Pa a positive formula or
an atom. All other formulas are arbitrary and y is not free in Γ, Θ or R.

This focused phase then proceeds by applying sequences of inference rules on
focused formulas: in general, backtracking may be necessary in this phase of
search. The focusing phase ends with one of the release rule Rl or Rr.

As is pointed out in [7], if all atoms are given negative polarity, the resulting
proof system models backward chaining proof search and uniform proofs [11].
If positive atoms are permitted as well, then forward chaining steps can also be
accommodated.

We now present the LJF t proof system that extends LJF by adding a multicut
rule and by allowing atoms to have different polarity on the different branches
of the multicut rule. In particular, occurrences of atoms in LJF t proofs are
assigned polarities in the following fashion: all atoms are initially given negative
polarity: thus proof search with such atoms is the usual goal-directed search.
When an atom is inserted into a proof context via a multicut inference rule,
that atom’s occurrences on the right-most branch will have positive polarity: in
principle, a forward chaining discipline is used on that atom on that branch, and
it is this discipline that is used to implement the reuse policy on that part of the
multicut derivation.

The sequents in LJF t are the same four kinds of sequents except that we add
a polarity declaration, P , to all of them: if an atom appears in the set of atoms



472 D. Miller and V. Nigam

P , then it is considered positive; otherwise it is considered negative. Recall also
that literals are either atomic formulas or negated atomic formulas (and that
¬A is encoded as A ⊃ ⊥). The multicut rule is the only rule that can change the
declaration P . In particular, the polarized version of the multicut rule is given
as
P ; [Γ ] −→ [L1] · · · P ; [Γ ] −→ [Ln] P ∪ΔP ; [Γ ∪ΔL] −→ [R]

P ; [Γ ] −→ [R]
mc.

Here,ΔL = {L1, . . . , Ln} is a set of literals andΔP = {A | A ∈ ΔL or ¬A ∈ ΔL}
is the set of all atoms in ΔL. Notice that the literals in ΔL are cut-formulas and
that the atoms in ΔP switch their polarity from negative in the conclusion of
this rule to positive in the right-most premise. Whenever we use this multicut
inference rule, we shall arrange things so that the sets ΔP and P are disjoint.

As the notion of polarity of an atom is now declared via P instead of being
globally fixed as in LJF , the inference rules in LJF t must be adapted accord-
ingly from LJF : for example, the LJF t rule Itr will be derived from the LJF
rule Ir as follows:

P ; [Γ,Ap]−Ap→
Itr, where Ap ∈ P .

In general, if the name of a rule is R in LJF , the corresponding rule in LJF t is
Rt. The following proposition can be proved by a simple induction on the depth
of the cut free proofs.

Proposition 1. LJF t is sound and complete with respect to LJF .

5 Tables of Finite Successes

In this section, we restrict our attention in two directions. First, we shall only
consider tables containing atomic formulas. Such a restriction is familiar from
such implemented tabling systems as [16,15] where the only items placed in a
table are atomic formulas. Second, we shall only allow logic specifications to be
Horn clauses, which are defined as D-formulas in the following grammar.

G := true | A | G1 ∧G2 | ∃xG D := A | G ⊃ A | D1 ∧D2 | ∀xD

As a consequence of these restrictions, we shall only be tabling atoms if they
are proved by “finite success”: this contrasts with the situation addressed in the
next section where tables can contain negated atoms if “finite failure” is suc-
cessful to prove them. The restriction to Horn clause formulas is critical for the
results here since such clauses ensure that the goal-reduction phase can be seen
as completely synchronous. Goals with implications and universal quantifiers
causes goal-reduction to mix synchronous and asynchronous phases. Therefore,
allowing them can cause the focus of proof search to be broken before positive
atomic formulas are encountered.

The following proposition states that a multicut derivation of a provable se-
quent (using the polarized version of the multicut rule) can be extended to a
valid focused proof.
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Proposition 2. Let Γ be a collection of Horn clauses, G be a G-formula, and
let T be a table of atoms, all of which are provable from Γ (the partial order is
not restricted). The sequent Γ −→ G is intuitionistically provable if and only if
the open derivation mcd(T , Γ −→ G) can be extended to a proof in LJF t.

Proof. The proof in the forward direction is by induction on the length of the
longest path in the table’s partial order. The converse is proved by forgetting
the polarity information and using cut-elimination. ��
The next proposition shows that polarities can be used to guarantee that any
tabled atomic formula that has been proved once (and, hence, has positive polar-
ity) will not be reproved. This proposition is proved by induction on the depth
of the proof tree.

Proposition 3. Let Γ be a set of Horn clauses, A ∈ P ∩ Γ , and Ξ be an
arbitrary LJF t proof tree for P ; [Γ ]−G→. Then every occurrence of a sequent
with right-hand side the atom A is the conclusion of an Itr rule.

Since all the lemmas of a table are included as positive atoms in the right branch
of its multicut derivation, all the proofs of any lemma in this branch will be
composed of a single rule Itr.

Consider again the example in Section 2, where the subgoal path a3 a4 is
tabled. Any proof of the rightmost branch of the multicut derivation obtained,
will never reprove the lemma path a3 a4:

path a3 a4; [Γ, path a3 a4]
arr a1 a3−→ [arr a1 a3]

It
l

path a3 a4; [Γ, path a3 a4] −→ [arr a1 a3]
Dt

l

path a3 a4; [Γ, path a3 a4]−arr a1 a3→
Rt

r path a3 a4; [Γ, path a3 a4]−path a3 a4
→

It
r

path a3 a4; [Γ, path a3 a4]−arr a1 a3∧path a3 a4
→

∧t
r

path a3 a4; [Γ, path a3 a4] −→ [path a1 a4]
Dt

l , ∀t
l , ∀t

l , ∀t
l ,⊃t

l

The memoization example of Section 2 can be addressed similarly: instead of do-
ing the goal reduction illustrated on the left below, use a multicut as is illustrated
on the right:

Γ −→ A Γ −→ G
Γ −→ A ∧G =⇒

P ; [Γ ] −→ [A] P ∪ {A}; [Γ,A] −→ [A ∧G]
P ; [Γ ] −→ [A ∧G]

mc.

In this way, all attempts to prove A on the right will be trivial applications of
the initial rule.

When the asynchronous phase of proof search ends, that is, when all the
invertible rules have been applied, the decide rules, namely Dt

l and Dt
r, chose

a formula on which search should focus. Since logic programs generally contain
many formulas, the choice made by these decide rules is a form of don’t know
non-determinism, which is a potential source of backtracking. For example, while
the sequent [A1, A1 ⊃ A0, A2 ⊃ A0] −→ [A0] has four formulas on which to focus,
a valid LJF proof can be built on by focusing on the formula A1 ⊃ A0 (here,
A0, A1, A2 are atomic formulas).
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While we are mainly interested in the use of tables and not with their discov-
ery, we consider briefly one example of how a table can be built. In particular,
a cut-free LJF proof Ξ of Γ −→ G can be made into a table as follows. The
table consists of all atoms that are on the right-hand side of some sequent in Ξ.
The occurrences of proved atoms in Ξ can be ordered using postorder traversal
(i.e., process a node’s premises before processing the node). The final order used
for the table (which is on atomic formulas and not their occurrences) is then
obtained from this postorder traversal by retaining only the first occurrence of
any repeated atomic formula. The following proposition shows that it is trivial
to extend a multicut derivation that is built in this way from a complete proof:
the following definition helps to formalize what we mean as trivial here.

Definition 3. The decide-depth of an LJF t proof Ξ is the maximum number
of occurrences of decide rules (i.e., Dr and Dl) on any path from the root to a
leaf in Ξ.

Proposition 4. Let Ξ be a LJF proof of Γ −→ G and let T be a table obtained
from Ξ using the postorder traversal described above. There exists a proof for
mcd(T , [·]Γ −→ G) such that all of its added subproofs have decide-depth of at
most one.

Proof. Proof by induction on the length of the table’s longest chain. ��

Given that it is simple to check if a table is derived from a cut-free proof,
one might consider that the table is, in fact, a legitimate proof object. Within
the proof carrying code framework [12], it might be more interesting to send an
ordered collection of atoms to represent a proof than to send some more complex
representation of a sequent calculus proof tree. We will return to this aspect of
tables in Section 7.

6 Tables of Finite Failures

We now generalize LJF t by including a proof theoretic notion of fixed points that
is treated technically using a notion of definitions. A definition is a countable
set of clauses, written as ∀x̄[p t̄ Δ= B]: here p is a predicate, every free variable
of B (the body of the clause) is also free in the atom p t̄ (the head of the clause),
and all variables free in p t̄ are contained in the list x̄ of variables. The symbol
Δ= is not a logical connective but is used to indicate a definitional clause. The
left and right introduction rules for defined atoms, namely Defl and Defr , are
shown in Figure 3. Notice that all free variables in a sequent are eigenvariables
(no logical variables appear here). We shall call LJΔ the result of adding to
Gentzen’s LJ calculus the unpolarized versions of Defl and Defr (this logic is a
first-order version of the logic FOλΔ in [8,9]). The polarized version of this proof
system LJFΔt results from adding the inference rules in Figure 3 to LJF t.

As is shown in [18,6], this notion of definition can yield a proof theoretic
approach to negation-as-failure. We shall use this aspect of definitions to extend
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{P ; [Γθ], Θθ, Bθ −→ Rθ | θ = mgu(H,A) for some clause H
Δ
= B}

P ; [Γ ], Θ, A −→ R Defl, A /∈ P

P ; [Γ ]−Bθ→
P ; [Γ ]−An→ Defr, An /∈ P , where H

Δ
= B, and Hθ = An

P ; [Γ ]−Pa→
P ; [Γ ] −→ [Pa]

Dt
r

Fig. 3. The rules for introducing atomic formulas and for selecting a formula on the
right. Remember that An denotes a negative atom and that Pa denotes a positive
formula or an atom (positive or negative).

the notion of table of finite success in Section 5 to also contain finite failures.
As a consequence, tables will now contain both atoms and negated atoms (i.e.
literals). The literal ¬A is always of negative polarity since it is defined by the
asynchronous formula A ⊃ ⊥: notice that the atom A can be either of positive
or negative polarity.

The proof theoretic characterization of negation-as-failure is obtained by the
Defl rule. When this rule is used to introduce the atom A on the left of a sequent,
a premise for each possible way that the definition could entail A is created in
one step. Since all possible instances must be considered, this rule is part of
the asynchronous phase of proof search. On the other hand, the Defr rule’s
behavior is similar to that of the backward chaining rule of a logic interpreter
and, therefore, is applied only in the synchronous phase. We extend the idea
of the previous section and consider that backward chaining (that is the Defr
rules) is applied only to negative atoms and forward chaining to positive atoms.
Hence, we allow focusing on negative atoms, but do not allow Defr to be applied
on positive atoms.

Proposition 5. LJFΔt is sound and complete with respect to LJΔ.

Proof. Soundness follows simply by dropping polarity information from se-
quents and by using cut-elimination. To prove completeness, assume that a se-
quent Γ −→ B is provable in LJΔ. All we need to show is that [·]Γ −→ B
(an unfocused sequent with no classified formulas) has an LJFΔt proof with
an empty table (that is, without any occurrence of the multicut inference rule).
As a result, completeness is proved by showing that any cut-free proof in LJΔ

can be made into a focused proof by permutations of inference rules following
standard argument lines, such as those in [7,9]. ��

Assume again here that all definitions are based on Horn clauses: in particular,
all definition clauses are of the form ∀x̄[A Δ= G] where G is a goal formula defined
as at the start of Section 5. For example, the specification of the path predicate
in Section 2 is written as the two-clause definition

∀x∀y[path x y Δ= ∃z(arr x z ∧ path z y)] and ∀x[path x x Δ= true].
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Since definitions are considered to be global, they are not included in sequents: as
a consequence, the left-hand side of sequents contains only the formulas inserted
by multicuts.

In the previous section, we used decide-depth as a measure of proof complexity
(from the point-of-view of discovering the proof). In the logic considered in this
section, it seem more sensible to use the following measure instead.

Definition 4. The Defr-depth of an LJF t proof Ξ is the maximum number of
occurrences of the Defr rule on any path from the root to a leaf in Ξ.

The next proposition, which can be proved by induction on proof trees, guar-
antees that a sequent that does a right-hand focusing on a literal built from a
positive polarity atom yields proofs with small Defr-depth. Notice that a proof
with small Defr-depth is not necessarily small since the Defl inference rule can
be used without bound: uses of the Defl, however, are always invertible.

Proposition 6. Let D be a set of definitions, Γ be a set of literals built on
positive polarity atoms, and L ∈ Γ . If Ξ is an LJFΔt proof of P ; [Γ ]−G→ then
all occurrences of sequents in Ξ that have L as their right-focus formula are the
conclusion of a proof with Defr-depth at most 1.

In particular, if L is ¬A and Γ ′ is Γ with L removed, then an attempt to prove
P ; [¬A,Γ ′]−¬A→ can only yield an “immediate” proof: the proof of this sequent
reduces to P ; [¬A,Γ ′, A] −→ ⊥ and this sequent is provable if and only if there
is an atomic B such that B ⊃ ⊥ and B are in Γ ∪{A} (given that B has positive
polarity).

If we know that a certain atom A is not intuitionistically provable from a set
of assumptions Γ (using finite-failure, for example) then it is possible to organize
focused proof search to fail immediately when an attempt to prove A is made.
The following proposition, which is proved by induction on the depth of the
proof tree, provides that conclusion since it states that such attempts on A are
not the conclusion of any LJFΔt inference rule.

Proposition 7. Let A be an atom such that Γ −→ A is not provable in LJΔ

and let A ∈ P. Let Ξ be an arbitrary LJFΔt derivation for P ; [Γ ]−G→. Then
all sequents in Ξ with right-hand side A are open leafs.

To illustrate this proposition, assume that we have proved the lemma ¬A from
Γ . On the right premise of the cut-rule used to insert ¬A as an additional
assumption, the atom A is given positive polarity. If one attempts to prove A
(with left-hand side Γ ) then Defr cannot be applied. Similarly, the only other way
to prove such a sequent is the Itr rule, but this implies that the positive atom A
is in Γ , which is only possible if A was, in fact, proved from Γ , which is explicitly
ruled out. Thus, using polarity, it is possible to “immediately” recognize a failure
to prove A.

We can transplant the graph example in Section 2 to this section by mapping
the Horn clause specifications for the path-atoms and arr-atoms into the corre-
sponding definitions. Assume that the table contains only the literal ¬path a1 a5.
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The proof of the multicut derivation for the query ¬path a0 a5 is illustrated be-
low. Here, P is the set {path a1 a5} and A is an eigenvariable of the proof. (The
� annotation indicates that two identical premises have been replaced by one.)

P ; [Γ, path a1 a5]−path a1 a5
→ Itr

P ; [Γ, path a1 a5],⊥ −→ [⊥]
falsetl

P ; [Γ, path a1 a5]
⊥−→ [⊥]

Rt
l

P ; [Γ, path a1 a5]
¬path a1 a5−→ [⊥]

⊃t
l

P ; [Γ,¬path a1 a5], path a1 a5 −→ ⊥ []tl , D
t
l

P ; [Γ,¬path a1 a5], arr a0 A, path A a5 −→ ⊥ Defl �

P ; [Γ,¬path a1 a5], ∃z[arr a0 z ∧ path z a5] −→ ⊥ ∃l,∧tl

P ; [Γ,¬path a1 a5], path a0 a5 −→ ⊥ Defl

P ; [Γ,¬path a1 a5] −→ ¬path a0 a5
⊃t
r

7 Table as Proof Objects

We have illustrated how tables can be incorporated into proofs. To what extent
can we think of tables as proofs themselves? Of course, this question is best
addressed when one knows what one will do with a proof.

In the proof carrying code setting [12], proof objects are transmitted together
with mobile code to assure that some (safety) properties are satisfied by these
programs. Before a client executes the transmitted code the client checks that
the proof that that code is carrying proves the program’s safety. Thus, proof
objects must be engineered so that they are not too large (in order to reduce
transmission costs) and not too complex to check (in order to reduce resource
requirements on client proof checkers).

Tables might well be a good format for proofs in this setting for several rea-
sons. First, tables represent declarative information and not procedural infor-
mation: in particular, tables only describe what is provable and does not go into
detail about how things are proved. Proof checking can then be organized around
simple proof search engines that implement, for example, LJF . The trade-offs
between proof size and proof checking time are fairly clear: if the producer of a
proof tables all successfully proved atoms (as in Proposition 4) then tables can
be large but proof checking can be simple (only proofs of decide-depth 1 must
be considered in extending a multicut derivation). On the other hand, if some
atomic formulas are not tabled, then the client may have to reprove them: clearly,
reproving some atomic formulas might be rather straightforward and something
that a client might be willing to do to help reduce the size of a transmitted proof.

In [17], Roychoudhury et.al. propose using tables to build justifications that
can be seen as a kind of proof. In their setting, these proof objects serve to
explain why a logic program can or cannot prove a given atom. They argue that
their justification can be used within model checkers and parsers. It seems likely
that our use of tables as proofs can be used in these settings as well.
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We now consider two examples where tables relate to more than just proofs:
they can also be simulations (Example 1) and winning strategies (Example 2).
These examples also illustrate that non-Horn examples can also be used in the
framework that was described above.

Example 1. Encode a noetherian abstract labeled transition system as a defi-
nition by writing the transition P

A−→ P ′ as the clause one(p, a, p′) Δ= true.
McDowell et.al. showed in [9] that the additional definition clause

∀P,Q[sim(P,Q) Δ= ∀A,P ′.one(P,A, P ′) ⊃ ∃Q′.one(Q,A,Q′) ∧ sim(P ′, Q′)]

can be used to compute the simulation relation. In particular, processes P is
simulated by Q if and only if the atomic formula sim(P,Q) is provable. (Bisim-
ulation can be encoded using a slightly more complex definition.) Moreover, if
Ξ is a cut-free proof of that atomic formula and if S is the set of all pairs
〈t, s〉 such that Ξ contains a subproof of sim(t, s), then S is a simulation. Fur-
thermore, let ' be the postorder relation on S derived from Ξ as described
in Section 5. Notice that it is now a simple matter to check that S is, in fact,
a simulation by treating it as a table and considering extending its induced
multicut derivation to a complete proof. In particular, let 〈p, q〉 ∈ S and let
P = {sim(t, s) | 〈t, s〉 ∈ S, and sim(t, s) ≺ sim(p, q)}. An attempt to extend
the sequent P ; [P ] −→ sim(p, q) yields a proof of the form

· · ·

P ; [P ]−true→
truetr

P ; [P ]−one(q,a,q′)→
Defr P ; [P ]−sim(p′,q′)→

Itr

P ; [P ]−one(q,a,q′)∧sim(p′,q′)→
∧tr

P ; [P ]−∃Q′.one(q,a,p′)∧sim(p′,Q′)→
∃tr

P ; [P ] −→ [∃Q′.one(q, a,Q′) ∧ sim(p′, Q′)]
Dr · · ·

P ; [P ], one(p,A, P ′) −→ [∃Q′.one(q, A,Q′) ∧ sim(P ′, Q′)]
Defl

P ; [P ] −→ ∀A,P ′. one(p,A, P ′) ⊃ ∃Q′. one(q, A,Q′) ∧ sim(P ′, Q′)
∀tl ,⊃t

l , []
t
r

The ellipses represents that there are other premises generated by the Defl rule
that introduces the atom one(p,A, P ′): there is one premise for each pair 〈a′, p′〉
such that p a′

−→ p′ (if there is none, then the proof is completed at this point).
Notice that the only Defr rule in this proof is on the one-step transition and

since these are given via a simple list of clauses, finding a q′ such that q a′
−→ q′

is a simple computation.

Example 2. Consider a game between two players, named 1 and 2, who alternate
in playing (consider tic-tac-toe) and that one player wins when the other player
cannot move. We assume that the state of the game is encoded as a term in
the logic and that the binary predicate move(P,Q) encodes the fact that there
is move from position P to Q. Furthermore, assume that there are no infinite
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plays. Then there is a winning strategy from the position P if and only if the
atom win(P ) is provable from a definition that includes the clause

∀P [win(P ) Δ= ∀P ′. move(P, P ′) ⊃ ∃Q. move(P ′, Q) ∧ win(Q)]

as well as the (Horn clause) definition of move(P,Q). As with the previous
example, let Ξ be a proof of the atom win(p), let W be the set of atoms of
the form win(P ) that are proved in subproofs of Ξ, and let ' be the postorder
traversal ordering of W based on Ξ. It is now a simple matter to verify that W
encodes a winning strategy: simply build the multicut derivation associated to
the table W and extend it to a complete proof. This later step is essentially the
same kind of restricted proof search that is presented for the previous example
based on simulation.

8 Conclusions and Future Work

This paper is part of a project to use focused proofs as a framework for relating
a variety of proof representations. Here we showed a connection between tables
and sequent calculus proofs. We expect that similar results will also allow us to
relate sequent calculus proofs to other proof objects, e.g., the oracles of Necula
and Rahul [13] and the fixpoints in the Abstraction Carrying Code [1].

Clearly, it should be possible to put more in tables than literals: for example,
it seems easy to account for universally quantified literals in table. The Twelf
system [14,15] and the Bedwyr system [4] are two examples of implementations of
logics in which tables of atoms are used to improve proof search but where goals
can be much richer, including specifically universal quantifiers and implications.
It would be interesting to find a way to extend our work here to allow such goal
formulas to be tabled as well.

In this paper, we investigated the problem of automating and checking the
use of previously proved lemmas (or table) in the proof of some main theorem.
After motivating the use of focusing and the polarity of atoms, we presented
two focused systems; one involving Horn clauses, and another adding negation-
as-failure. We also showed that by using a partial ordering relation over the
elements of the table, we could define a multicut derivation which could be easily
extended to a proof. With these systems, we were also able to give a declarative
interpretation to the memoization procedure. And finally, we proposed to use
tables as a proof objects and illustrated this with some examples.

Acknowledgments. We thank David Baelde and the anonymous reviewers for
their comments on an earlier draft of this paper. This work has been supported
in part by INRIA through the “Equipes Associées” Slimmer and by the Infor-
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Abstract. Sequent calculi usually provide a general deductive setting that uni-
formly embeds other proof-theoretical approaches, such as tableaux methods, res-
olution techniques, goal-directed proofs, etc. Unfortunately, in temporal logic,
existing sequent calculi make use of a kind of inference rules that prevent the
effective mechanization of temporal deduction in the general setting. In particu-
lar, temporal sequent calculi either need some form of cut, or they make use of
invariants, or they include infinitary rules. This is the case even for the simplest
kind of temporal logic, propositional linear temporal logic (PLTL). In this pa-
per, we provide a complete finitary sequent calculus for PLTL, called FC, that
not only is cut-free but also invariant-free. In particular, we introduce new rules
which provide a new style of temporal deduction. We give a detailed proof of
completeness.

1 Introduction

The development of automated deduction systems for temporal logic has followed two
main proof-theoretical approaches: tableaux (see [12]) and resolution (see [1]), which
are both refutational proof methods. Sequent calculi are usually used to provide a gen-
eral deductive setting that uniformly embeds refutational methods and other deduction
techniques such as goal-directed proofs or natural deduction. In temporal logic, tableaux
methods generate graphs instead of the classical trees and resolution methods require
more involved normal forms and inference rules than the classical clausal form and the
classical resolution rule. This complicates the association of a sequent calculus proof to
each tableaux graph or each resolution proof. In addition, existing sequent calculi for
temporal logic (cf. [6,8,11]) make use of a kind of inference rules that prevents this cor-
respondence and complicates the implementation of temporal deduction in the general
setting. In particular, temporal sequent calculi either need some form of cut (classical
cut or invariant-based cut) or they include infinitary rules. Cut rules imply the “inven-
tion” of lemmata, called cut formula, for their application. Invariants are particular cut
formulas for proving temporal eventualities. This is the case even for the simplest kind
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of temporal logic, propositional linear temporal logic (PLTL). In this sense, the formu-
lation of a cut-free, invariant-free finitary sequent calculus, can be considered a relevant
open problem that is solved in this paper.

More precisely, in [6] and [11], two sequent calculi for PLTL with invariant-based
rules are presented. In fact, in both approaches, they present a system including also
a cut rule and then prove cut elimination. However, invariant-based rules for temporal
connectives cannot be avoided. In [8] various sequent calculi are presented for PLTL
without the until operator (this means that the logic considered has a limited expressive
power). He provides completeness and cut-elimination proofs, together with various in-
teresting reductions among the various calculi. However, every calculus includes either
some infinitary rule or some invariant-based rule. Other proof-theoretic approaches for
PLTL include its first axiomatization á la Hilbert presented in [2], and the first detailed
description of a tableaux method for deciding the satisfiability of any PLTL-formula
presented in [12]. The satisfiability problem for PLTL is PSPACE-complete (cf. [10]).
See [9] for a good survey about theorem-proving in PLTL and its extensions.

In this paper, we provide a complete finitary sequent calculus for PLTL, called FC,
that not only is cut-free but also invariant-free. In particular, we introduce a new rule
for the until operator that provides a new style of temporal deduction for eventualities.
Moreover, deduction for ”always”-formulas is also affected by this new style.

In order to show completeness, we have not followed the standard approach of, first,
proving completeness including a cut rule in the calculus and, then, showing a cut elim-
ination result (cf. [3]). Actually, the first part of that approach, proving completeness of
FC plus the cut rule, is quite easy. In particular, just with the rules in FC it is easy to
derive every axiom (except the modus ponens rule) in the system proved complete in
[5]. Obviously, with the addition of the cut rule one can easily derive modus ponens.
Unfortunately, we have been unable to directly prove cut elimination. Instead, we have
directly proved the completeness of FC, which indirectly means that the cut rule is not
needed. The proof is partially inspired by the tableaux method proposed in [5]. In par-
ticular their notion of maximal strongly connected components has been very useful in
our proof. However, unlike [5], we use a filtration technique for constructing models
from saturated consistent sets of formulas (as states).

The paper is organized as follows. Section 2 is a basic introduction to PLTL. In sec-
tions 3 and 4 we introduce our calculus FC, proving its soundness. More precisely, in
section 3 we describe the basic rules for describing the next (◦) and until (U ) connec-
tives, while in section 4 we present some useful derived rules describing, in particular,
the rest of the temporal connectives. Section 5 presents the completeness proof of FC.
Finally, in section 6 we draw some concluding remarks.

2 PLTL: Language and Model Theory

A PLTL-formula is built using the constant proposition F, propositional variables (de-
noted by lowercase letters p, q, . . .) from a set Prop, the classical connectives ¬ and
∨, and the temporal connectives ◦ and U . A lowercase Greek letter (ϕ, ψ, χ, γ, . . .)
denotes a formula and an uppercase one (Φ,Δ, Γ, Ψ,Ω, . . .) denotes a finite set of
PLTL-formulas. PLTL-formulas of the form p and ¬p, where p ∈ Prop, are called
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literals and PLTL-formulas that do not begin with the connective ¬ are called posi-
tive. As usual other connectives can be defined in terms of the previous ones: T ≡ ¬F,
ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ), =ϕ ≡ TU ϕ, �ϕ ≡ ¬=¬ϕ. PLTL-formulas of the form ϕU ψ
and =ϕ are called eventualities. In the rest of this paper, we simply say formula in-
stead of PLTL-formula. The operator next translates any set of formulas into another
(possibly empty) set of formulas next(Φ) = {ϕ | ◦ϕ ∈ Φ}.

It is well known that PLTL is a non-compact logic. As a consequence, strong com-
pleteness requires an infinitary proof system, whose deduction rules may require infi-
nitely many premises. Our calculus is finitary, hence, as usual (see, e.g. [6], [2] and
[11]), our completeness result is in this sense, weak. Therefore, along this paper, every
set of PLTL-formulas is assumed to be finite. Given any (finite) set Φ = {ϕ1, . . . , ϕn}
we will use Φ¬ to denote the formula ¬ϕ1 ∨ . . .∨¬ϕn. In particular, Φ¬ is the constant
F when Φ is empty.

Definition 1. A PLTL-structureM is a pair (SM, VM) such that SM is a denumerable
sequence of states s0, s1, s2, . . . and VM is a map VM : SM → 2Prop.

Intuitively, VM specifies which atomic propositions are (necessarily) true in each state.

Definition 2. The truth of a formula ϕ in the state sj of a PLTL-structureM, which is
denoted by 〈M, j〉 |= ϕ, is inductively defined as follows:

– 〈M, j〉 �|= F

– 〈M, j〉 |= p iff p ∈ VM(sj) for p ∈ Prop
– 〈M, j〉 |= ¬ϕ iff 〈M, j〉 �|= ϕ
– 〈M, j〉 |= ϕ ∨ ψ iff (〈M, j〉 |= ϕ or 〈M, j〉 |= ψ)
– 〈M, j〉 |= ◦ϕ iff 〈M, j + 1〉 |= ϕ
– 〈M, j〉 |= ϕU ψ iff 〈M, k〉 |= ψ for some k ≥ j and 〈M, i〉 |= ϕ for every
j ≤ i < k.

This is extended to sets in the usual way: 〈M, j〉 |= Φ iff 〈M, j〉 |= ϕ for all ϕ ∈ Φ.
We say that M is a model of Φ, in symbols M |= Φ, iff 〈M, 0〉 |= Φ. A satisfiable
set of PLTL-formulas has at least one model, otherwise it is unsatisfiable. The logical
consequence relation between a set of formulas Φ and a formula χ, denoted as Φ |= χ,
is defined in the following way:

Φ |= χ iff for every PLTL-structureM and every j ∈ IN :
if 〈M, j〉 |= Φ then 〈M, j〉 |= χ

3 The Sequent Calculus FC

In this section, we introduce a sound and complete sequent calculus, called FC, that is
fully free of cut. That is, in FC there are neither classical cut rules nor invariant-based
rules for temporal connectives. The calculusFC uses asymmetric sequents, i.e. sequents
formed by a set of assumptions and a single conclusion. The former set is called the
antecedent of the sequent and the latter formula is called the consequent. We write
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Classical connectives rules

(¬L)
Δ � ϕ

Δ,¬ϕ � χ
(R¬)

Δ,ϕ � F

Δ � ¬ϕ
(∨L)

Δ,ϕ � χ
Δ,ψ � χ

Δ,ϕ ∨ ψ � χ
(R∨)

Δ � ϕ

Δ � ϕ ∨ ψ

Δ � ψ

Δ � ϕ ∨ ψ

Temporal connectives rules

(R◦L)
next(Δ) � ϕ

Δ � ◦ϕ
(¬◦L)

Δ,◦¬ϕ � χ

Δ,¬◦ϕ � χ
(R◦¬)

Δ � ¬◦ϕ
Δ � ◦¬ϕ

(U L)i

Δ,ψ � χ
Δ,ϕ,¬ψ,◦(δi U ψ) � χ

Δ,ϕU ψ � χ
:

⎧⎨
⎩

δ1 = ϕ

δ2 = ϕ ∧ (Δ¬ ∨ χ)
(RU )

Δ,¬ϕ � ψ
Δ,ϕ,¬◦(ϕU ψ) � ψ

Δ � ϕU ψ

Structural rules

(As) Δ,ϕ � ϕ (Wk)
Δ � χ

Δ,Δ′ � χ
(Cd)

Δ,¬ϕ � F

Δ � ϕ
(◦F)

Δ � ◦F

Δ � χ

Fig. 1. The sequent calculus FC

Δ 4 χ to represent a sequent whose antecedent is Δ and whose consequent is χ. We
have preferred to formulate the calculus by means of asymmetric (or one-conclusion)
sequents, instead of symmetric (multiple-conclusioned) sequents, because the former
are closer to natural deduction and captures better our intuition in logical reasoning. A
multiple-conclusioned system can be easily obtained from FC. For getting rid of some
rules and giving a more compact presentation, we could also take the one-sided sequent
approach (also known as Tait-style). However, it requires to keep formulas in negation
normal form and results a bit more unusual and unnatural at first sigth.

The calculus FC consists of the primitive rules that are summarized in Fig. 1. We
have split these rules into three packages. Two of them consist of rules for classical and
temporal connectives, respectively. These rules follow the traditional style of introduc-
tion of the connective in the left/right part of the sequent. In addition we need some
structural rules which form the third package.

The rules for classical connectives are classical. With respect to the temporal connec-
tives, the three rules for the next operator, (R◦L), (¬◦L) and (R◦¬), are well known
in the literature of PLTL. Besides, by means of (U L)i we represent two rules for two
different δi where i = 1 or i = 2. The rules (U L)1 and (RU ) are also well known.
Both are included in the existing Gentzen systems where other invariant-based rules
for the until operator are given (cf.[6,11]). Instead, we add a rule (U L)2 which does
not require invariant generation. This rule (U L)2, which up to our knowledge is com-
pletely new, can be considered quite peculiar, since the second premise includes a for-
mula which depends on the whole conclusion of the rule.1 In addition (U L)2 leads to
a new deduction style that is opposite, in some sense, to the invariant-based reasoning.

1 Remember that Δ is always assumed to be a finite set and that Δ¬ is F whenever Δ is empty.
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The underlying idea in the rule (U L)2 is that the sequences of states along which the
satisfaction of an eventuality is delayed should be ever-changing sequences. In the proof
of the soundness theorem, we show in detail that the rule (U L)2 is correct. We believe
that this correctness proof reflects the intuition behind the rule.

Regarding structural rules, (◦F) is the only rule that is not a classical rule. At first
sight, the introduction of the weakening rule (Wk) in the structural package could be
surprising since very commonly (Wk) is an elementary property and an admissible
rule. However, the form of the rule (U L)2 prevents that traditional methods for prov-
ing admissibility (cf. [7]) could be applied to the calculus FC. Although experimental
work (see Example 6) indicates that (Wk) could be admissible in FC, this is still an
interesting open problem. This work is mainly focused in completeness, the minimality
of the calculus remains as future work.

AnFC-proof is a tree (written right side up, with its root on the bottom) labelled with
sequents. The sequent to be proved labels its root, the leaves are labelled with axioms
(which are rules without premises), and all the local subtrees must be accepted by some
inference rule in FC. In the Examples 4 and 5, we give a sequence of sequents that
ends with the root (the proved sequent) and add additional information for describing
the structure of the tree.

The expression Γ 4FC χ is used to denote that there exists an FC-proof of the
sequentΓ 4 χ. We say that a set of formulasΓ isFC-consistent if and only if Γ �4FC F.
The soundness of FC means that every FC-provable sequent, namely Γ 4 χ, is correct
regarding to logical consequence. In particular, every satisfiable set of formulas is FC-
consistent.

Theorem 3. For any set of formulas Γ ∪ {χ}, if Γ 4FC χ then Γ |= χ.

Proof. By induction on the length of theFC-proof, it suffices to prove that every primi-
tive rule of FC (see Fig. 1) is correct in the sense of preserving the logical consequence
relation between the antecedent and the consequent.

Now, the correctness proof of most rules is just routine. Actually, the only correctness
proof that poses some difficulties is the proof of the rule (U L)2. Hence, we only give
the details for this rule.

We will show that, if we assume that Δ ∪ {ϕUψ,¬χ} is satisfiable, then we would
build a countermodel for some of the two premises of the rule (U L)2. Let 〈M, i〉 |=
Δ ∪ {ϕUψ,¬χ} and s1 the least s ≥ i such that 〈M, s〉 |= ψ. If s1 = i then 〈M, i〉
serves as countermodel for the first premise. Otherwise, if s1 > i, let s2 be the greatest
s such that i ≤ s < s1 and 〈M, s〉 |= Δ ∪ {ϕUψ,¬χ}. As a consequence of the
choice of s1 and s2, it holds 〈M, s2〉 |= ◦((ϕ ∧ (Δ¬ ∨ χ))Uψ). Then, 〈M, s2〉 is a
countermodel of the second premise.

4 Derived Rules and Proofs

In this section we present some derived rules that can be used as a shortcut for several
lines of primitive-rules-only proofs. Actually, some of these rules are used below in the
proof of the completeness theorem.
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The first group of derived rules, including the contraposition rules (Cp1) and (Cp2),
can be derived in a standard way from the classical primitive rules in FC.

(Cp1)
Δ,¬ϕ 4 ψ
Δ,¬ψ 4 ϕ (Cp2)

Δ,ϕ 4 ψ
Δ,¬ψ 4 ¬ϕ (FL) Δ,F 4 χ

(CdL) Δ,ϕ,¬ϕ 4 χ (¬¬L)
Δ,ϕ 4 χ
Δ,¬¬ϕ 4 χ (¬ ∨ L)

Δ,¬ϕ,¬ψ 4 χ
Δ,¬(ϕ ∨ ψ) 4 χ

For the temporal connectives, the following derived rules will be used later:

(◦L)
next(Δ) 4 F

Δ 4 χ (¬ U L)

Δ,¬ϕ,¬ψ 4 χ
Δ,ϕ,¬ψ,¬◦(ϕU ψ) 4 χ

Δ,¬(ϕU ψ) 4 χ

It is easy to check that (◦L) is derived by (R◦L) and (◦F) and (¬ U L) by (Cp1)
and (RU ).

Other derived rules allow us to reason about the rest of the classical or temporal
connectives, which have been introduced as a shorthand to abbreviate some formulas.
For instance, since ϕ ∧ ψ stands for ¬(¬ϕ ∨ ¬ψ), the classical sequent rules for ∧ can
be derived:

(∧L)
Δ,ϕ, ψ 4 χ
Δ,ϕ ∧ ψ 4 χ (R∧)

Δ 4 ϕ Δ 4 ψ
Δ 4 ϕ ∧ ψ

Likewise, using the abbreviations =ϕ and �ϕ for TU ϕ and ¬=¬ϕ, respectively, we are
also able to derive the following useful rules:

(=L)i

Δ,ϕ 4 χ
Δ,¬ϕ,◦(δi U ϕ) 4 χ

Δ,=ϕ 4 χ :

{
δ1 = T

δ2 = Δ¬ ∨ χ
(R=) Δ,¬◦=ϕ 4 ϕ

Δ 4 =ϕ

(�L)
Δ,ϕ,◦�ϕ 4 χ
Δ,�ϕ 4 χ (R�)i

Δ 4 ϕ
Δ,◦(δi U ¬ϕ) 4 ¬ϕ

Δ 4 �ϕ
:

{
δ1 = T

δ2 = Δ¬

Note also that, by (�L) and (¬◦L), the following contradiction rule is also derivable:

(Cd�) Δ,�ϕ,¬◦�ϕ 4 χ.

It is well known that the until operator U is not expressible in temporal logic with only
◦, �, and = as temporal operators (cf. [4,2]). As a consequence a complete calculus for
the sublogic that uses = instead of U cannot be derived (by abbreviation) from FC,
since the rule (=L)2 needs the until operator for expressing its second premise.

Let us now illustrate the FC-style of natural reasoning by means of some examples
of FC-proofs. In order to allow easier reading, we have underlined, at each step, the
formulas that are related with the applied deduction rule.
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Example 4. The following proof shows that p,�(¬p ∨ ◦p) 4FC �p. This is a typical
property of induction on time. We have used �ϕ to abbreviate �(¬p ∨ ◦p).

1.− p,�ϕ 4 p by (As)

2.− p,�ϕ,¬p,¬¬p,◦((¬p ∨ ¬�ϕ)U ¬p) 4 F by (CdL)

3.− p,�ϕ,¬�ϕ,¬¬p,◦((¬p ∨ ¬�ϕ)U ¬p) 4 F by (CdL)

4.− p,�ϕ,¬p 4 F by (CdL)

5.− p,�ϕ,¬p ∨ ¬�ϕ,¬¬p,◦((¬p ∨ ¬�ϕ)U ¬p) 4 F by 2, 3 and (∨L)

6.− p,�ϕ, (¬p ∨ ¬�ϕ)U ¬p 4 F by 4, 5 and (U L)1

7.− p,¬p,◦�ϕ,◦((¬p ∨ ¬�ϕ)U ¬p) 4 ¬p by (As)

8.− p,◦p,◦�ϕ,◦((¬p ∨ ¬�ϕ)U ¬p) 4 ¬p by 6 and (◦L)

9.− p,¬p ∨ ◦p,◦�ϕ,◦((¬p ∨ ¬�ϕ)U ¬p) 4 ¬p by 7, 8 and (∨L)

10.− p,�ϕ,◦((¬p ∨ ¬�ϕ)U ¬p) 4 ¬p by 9 and (�L)

11.− p,�ϕ 4 �p by 1, 10 and (R�)2.

It is worthy to note that {�β,◦((ϕ ∨ ¬�β)U ψ)} and {�β,◦(ϕU ψ)} are equivalent
sets of formulas. As a consequence, the above proof could be simplified if the sequent
to be derived at step 10 were p,�ϕ,◦(¬pU ¬p) 4 ¬p instead of

p,�ϕ,◦((¬p ∨ ¬�ϕ)U ¬p) 4 ¬p.
A practical implementation of FC should apply the rules (U L)2 (and also (�L)2 and
(=L)2) yielding as subgoal ◦(ϕU ψ) instead of ◦((ϕ∨¬�β)U ψ). In general, the rule
(U L)2 should take into account the equivalence of the following two sets of formulas:

{�α,¬(αU β),◦((ϕ ∨ (αU β))U ψ)} and {�α,¬(αU β),◦(ϕU ψ)}.
Note that the former pair of equivalent sets is a particular case of the latter one.

Example 5. The following is an FC-proof of the sequent pU q,¬q 4 ◦=q:

1.− q,¬q 4 ◦=q by (CdL)

2.− q,¬◦=q 4 q by (As)

3.− p,◦=q,¬q,◦((p ∧ (¬¬q ∨ ◦=q))U q),¬◦=q 4 q by (CdL)

4.− p,¬¬q,¬q,◦((p ∧ (¬¬q ∨ ◦=q))U q),¬◦=q 4 q by (CdL)

5.− p,¬¬q ∨ ◦=q,¬q,◦((p ∧ (¬¬q ∨ ◦=q))U q),¬◦=q 4 q by 3, 4 and (∨L)

6.− p ∧ (¬¬q ∨ ◦=q),¬q,◦((p ∧ (¬¬q ∨ ◦=q))U q),¬◦=q 4 q by 5 and (∧L)

7.− (p ∧ (¬¬q ∨ ◦=q))U q,¬◦=q 4 q by 2, 6 and (U L)1

8.− (p ∧ (¬¬q ∨ ◦=q))U q 4 =q by 7 and (R=)
9.− p,¬q,◦((p ∧ (¬¬q ∨ ◦=q))U q) 4 ◦=q by 8 and (R◦L)

10.− pU q,¬q 4 ◦=q by 1, 9 and (U L)2
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It is easy to check that using only the rule (U L)1 we cannot prove the sequent.

Example 6. Consider the sequent q, pU F 4 F. It is easy to give an FC-proof of pU F 4
F since by (U L)2 it should be proved F 4 F and p,¬F,◦(p ∧ (F ∨ F))U F 4 F. The
latter is easily proved by (R◦L) and (U L)1. Finally, by (Wk), q, pU F 4 F is derived
from pU F 4 F.

It could be believed that (Wk) is essential for proving this kind of sequents, where
some part of the antecedent is unnecessary for entailing the consequent. However, the
following is a scketch of an FC-proof of the sequent q, pU F 4 F that does not use the
rule (Wk):
The first two main goals are: q,F 4 F and q, p,¬F,◦((p ∧ (¬q ∨ F))U F) 4 F. The
former is an instance of (As), while the latter reduces to

(p ∧ (¬q ∨ F))U F 4 F

by (◦F) and (R◦L). From this, by (U L)2 and (∧L), we obtain two new goals. The
first is F 4 F, which is an (As). The second goal is

p,¬q ∨ F,◦((p ∧ (¬q ∨ F) ∧ (F ∨ F))U F) 4 F

Then,
(p ∧ (¬q ∨ F) ∧ (F ∨ F))U F 4 F

is obtained by (◦F) and (R◦L). Finally, (U L)1, (∧L) and (As) suffice.

This (Wk)-free deduction style can be easily generalized to any sequent of the form
Δ,ϕU F 4 F, since the maximum number of nested next operators in Δ,ϕ is finite. In
fact, we conjecture that (Wk) is admissible in FC.

5 The Completeness of FC

In this section, we prove thatFC is a complete calculus using the technique of filtration.
In particular, we define a notion of saturated set of formulas that enables the construc-
tion of a model for any set of formulasΦ such that Φ �4FC F. To this end, we first build a
nondeterministic structure in which this model is embedded. The idea of using maximal
strongly connected components, inspired by [5], is crucial in handling eventualities in
this nondeterministic structure.

In the first subsection, we introduce a notion of saturation for sets of formulas which
preserves FC-consistency. In the second subsection, we show how to associate a non-
deterministic structure to anyFC-consistent set of formulas. Finally, we prove the com-
pleteness of the calculus FC.

5.1 Saturated Sets of Formulas

The closure of a set of formulas Φ consists of all formulas that we may use for con-
structing a model of Φ.
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Definition 7. Let Φ be a set of formulas. Let subform(Φ) be the set of all the subformu-
las of the formulas in Φ. Let basic(Φ) = subform(Φ) ∪ {¬ϕ | ϕ ∈ subform(Φ)}. The
closure set of Φ, denoted clo(Φ), is the extension of basic(Φ) with the following two sets
of formulas:

{◦(ϕU ψ),¬◦(ϕU ψ),◦¬(ϕU ψ) | ϕU ψ∈ basic(Φ)}
{◦¬ϕ | ¬◦ϕ ∈ basic(Φ)}.

For example, if Φ is the singleton {p ∧ (pU ¬◦q)} then clo(Φ) consists of the union of
the following four sets:

{p ∧ (pU ¬◦q), p, pU ¬◦q,¬◦q,◦q, q}
{¬(p ∧ (pU ¬◦q)),¬p,¬(pU ¬◦q),¬¬◦q,¬q}
{◦(pU ¬◦q),¬◦(pU ¬◦q),◦¬(pU ¬◦q)}

{◦¬q}

where the first set is subform(Φ), whose joint with the second set constitutes basic(Φ).
The last two sets respectively correspond with the two final extensions in the above
definition.

Now, we define a successor relation on sets of formulas.

Definition 8. Let Ω1 and Ω2 be two subsets of clo(Φ) for some set Φ. We say that Ω2

is a Φ-successor of Ω1 iff ϕ ∈ Ω2 for all ◦ϕ ∈ Ω1. The set of Φ-successors of a given
set of formulas Ω is

succΦ(Ω) = {Ω′ ⊆ clo(Φ) | Ω′ is a Φ-successor of Ω}.

Definition 9. We say that a set Ω of formulas is saturated iff it satisfies the following
conditions:

1. If ϕ ∨ ψ ∈ Ω then ϕ ∈ Ω or ψ ∈ Ω
2. If ¬(ϕ ∨ ψ) ∈ Ω then ¬ϕ ∈ Ω and ¬ψ ∈ Ω
3. If ϕU ψ ∈ Ω then ψ ∈ Ω or {ϕ,¬ψ,◦(ϕU ψ)} ⊆ Ω
4. If ¬(ϕU ψ) ∈ Ω then {¬ψ,¬ϕ} ⊆ Ω or {ϕ,¬ψ,¬◦(ϕU ψ)} ⊆ Ω
5. If ¬¬ϕ ∈ Ω then ϕ ∈ Ω.
6. If ¬◦ϕ ∈ Ω then ◦¬ϕ ∈ Ω.

Given a set Φ, we denote by satur(Φ) the set of all saturated subsets of clo(Φ). For
any Γ ⊆ clo(Φ), we denote by saturΓ (Φ) the subset of satur(Φ) that includes all the
supersets of Γ . In particular, satur(Φ) = satur∅(Φ) where ∅ denotes the empty set.

For the additionally defined connectives, the saturation conditions are easily deduced
from Definition 9.

Proposition 10. The saturation conditions for ∧, = and � are:

– If ϕ ∧ ψ ∈ Ω then ϕ ∈ Ω and ψ ∈ Ω
– If ¬(ϕ ∧ ψ) ∈ Ω then ¬ϕ ∈ Ω or ¬ψ ∈ Ω
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– If =ϕ ∈ Ω then ϕ ∈ Ω or {¬ϕ,◦=ϕ} ⊆ Ω
– If ¬=ϕ ∈ Ω then {¬ϕ,¬◦=ϕ} ⊆ Ω
– If �ϕ ∈ Ω then {ϕ,◦�ϕ} ⊆ Ω
– If ¬�ϕ ∈ Ω then {ϕ,¬◦�ϕ} ⊆ Ω or ¬ϕ ∈ Ω.

Note that if Φ is finite so is clo(Φ). As a consequence, everyΩ ∈ satur(Φ) is also finite.
The following lemma states that any subset of a FC-consistent set can be extended

to a saturated set while preserving the consistency of the whole set.

Lemma 11. For all sets of formulas Φ, Ψ, Γ such that Γ ⊆ clo(Φ) and Γ, Ψ �4FC F,
there exists at least one Γ̂ ∈ saturΓ (Φ) such that Γ̂ , Ψ �4FC F.

Proof. Suppose that Γ̂ , Ψ 4FC F for all Γ̂ ∈ saturΓ (Φ). Then, a FC-proof of Γ, Ψ 4 F

can be easily built using these sequents as leaves and the rules (∨L), (¬ ∨ L), (U L)1,
(¬ U L), (¬¬L) and (¬◦L).

Note that Ψ (in the above lemma) is not required to be a subset of the closure of Φ. It
could be seen as the context of Γ and, in particular, it could be empty.

Corollary 12. If Φ �4FC F then there exists Ω ∈ saturΦ(Φ) such that Ω �4FC F.

5.2 Nondeterministic Models of FC-Consistent Sets

We are going to build a model whose states are FC-consistent saturated sets. We use
the following notion of nondeterministic PLTL-structure for representing collections of
PLTL-structures. In fact, each infinite path in a nondeterministic PLTL-structure is a
PLTL-structure.

Definition 13. A nondeterministic PLTL-structure (nd-PLTL-structure, for short) G is
a triple (SG , RG , VG) such that:

– SG is a finite non-empty set of states
– RG ⊆ SG × SG is called reachability relation
– VG is a map VG : SG → 2Prop.

A path π in a nd-PLTL-structure G is a non-empty sequence of states s0, s1, . . . ∈ SG
and si ∈ RG(si−1) for all i ≥ 1.

We denote by R+
G and R∗G the transitive closure and the reflexive-transitive closure of

the reachability relation RG , respectively.

Definition 14. The truth of a formula ϕ in a state s of a nd-PLTL-structure G, denoted
by 〈G, s〉 |= ϕ, is defined as in the Definition 2, except for the temporal operators:

– 〈G, s〉 |= ◦ϕ iff for all s′ ∈ RG(s) 〈G, s′〉 |= ϕ
– 〈G, s〉 |= ϕU ψ iff there exists a finite path s0, s1, . . . , sn in SG such that s = s0,
〈G, sn〉 |= ψ and 〈G, si〉 |= ϕ for every 0 ≤ i ≤ n− 1.
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Note that, the above satisfaction definition of U only requires the existence of a path be-
cause nd-PLTL-structures could contain infinite paths that repeat infinitely many times
a subsequence of states and do not reach some other finitely reachable states.

Now, we associate a nondeterministic structure to any consistent set.

Definition 15. For any given FC-consistent set of formulas Φ, GΦ = (SGΦ , RGΦ , VGΦ)
is the nd-PLTL-structure where

– SGΦ = {Ω | Ω ∈ satur(Φ) and Ω �4FC F}
– Ω′ ∈ RGΦ(Ω) iff Ω′ ∈ succΦ(Ω) for all Ω,Ω′ ∈ SGΦ

– VGΦ(Ω) = {p | p ∈ Ω and p ∈ Prop}.

Note that, according to Corollary 12, SGΦ cannot be empty. In the rest of this section we
will assume that Φ is always an FC-consistent set of formulas and GΦ is its associated
nd-PLTL-structure. Now, we will show how the notion of maximal strongly connected
components [5] yields a partition in SGΦ .

Definition 16. A strongly connected component (scc, for short) is a subset S of SGΦ

such that every pair formed by two different states Ω1, Ω2 ∈ S satisfies that Ω2 ∈
R+
GΦ

(Ω1) and Ω1 ∈ R+
GΦ

(Ω2).
A maximal scc (mscc, for short) is an scc S such that there is no scc S′ ⊆ SGΦ that

satisfies S � S′.
We will denote by [Ω] the mscc where Ω is included and �⇒ is the binary relation

induced by RGΦ as follows:
[Ω1] �⇒ [Ω2] iff there exist Ω′1 ∈ [Ω1], Ω′2 ∈ [Ω2] such that Ω′2 ∈ RGΦ(Ω′1).

Note that an mscc [Ω] could consist just of the state Ω. In such case [Ω] can represent
(on its own) a model only when Ω ∈ RGΦ(Ω). An mscc that consists of exactly one
state Ω such that Ω �∈ RGΦ(Ω) is called trivial. Otherwise, we say that it is a nontrivial
mscc (nt-mscc, for short).

Definition 17. A path π = Ω0, Ω1, . . . in SGΦ is fulfilling if for everyΩi ∈ π and every
ϕU ψ ∈ Ωi there exists some j ≥ i such that ψ ∈ Ωj and for every i ≤ k ≤ j − 1,
ϕ ∈ Ωk.
An scc S in SGΦ is self-fulfilling if for every Ω ∈ S and every formula ϕU ψ ∈ Ω,
there exists a finite path Ω0, Ω1, . . . , Ωn in S such that Ω0 = Ω, ψ ∈ Ωn and ϕ ∈ Ωi

for every 0 ≤ i ≤ n− 1.

Lemma 18. For every Ω ∈ SGΦ the set RGΦ(Ω) is non-empty.

Proof. If Ω ∈ SGΦ then Ω �4FC F. Hence next(Ω) �4FC F holds by rules (R◦L) and
(◦F). From Lemma 11 there exists at least oneΩ′ ∈ SGΦ such that Ω′ ∈ succΦ(Ω).

Corollary 19. For every Ω ∈ SGΦ there is at least one infinite path Ω0, Ω1, . . . such
that Ω = Ω0.

Now, we will show that GΦ satisfies, by construction, the adequate properties for han-
dling eventualities. In particular, in the next proposition we show that non-satisfied
eventualities are kept in paths at least until they are fulfilled.
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Proposition 20. Let Ω ∈ SGΦ such that ϕU ψ ∈ Ω. For every finite path Ω0, Ω1, . . . ,
Ωn in SGΦ such that Ω0 = Ω and every 1 ≤ i ≤ n: if ϕU ψ �∈ Ωi then ψ ∈ Ωk for
some 0 ≤ k < i and ϕ ∈ Ωj for all 0 ≤ j ≤ k − 1.

Proof. By induction on n. The case n = 0 trivially holds. For n ≥ 1, we distinguish the
following cases. First, if either i = n and there exists j ≤ n− 1 such that ϕU ψ �∈ Ωj

or 1 ≤ i < n, then the property holds by the induction hypothesis. Second, if i = n and
ϕU ψ ∈ Ωj for all 0 ≤ j ≤ n − 1, then ψ ∈ Ωj or {ϕ,¬ψ,◦(ϕU ψ)} ⊆ Ωj , since
eachΩj is saturated. This implies that ψ ∈ Ωn−1 because otherwise ◦(ϕU ψ) ∈ Ωn−1

which would mean ϕU ψ ∈ Ωn.

The next proposition shows how negated eventualities propagate in GΦ.

Proposition 21. Let Ω ∈ SGΦ such that ¬(ϕU ψ) ∈ Ω. Then, every finite path π =
Ω0, Ω1, . . . , Ωn in SGΦ such thatΩ0 = Ω satisfies one of the two following properties:

(a) {ϕ,¬ψ,¬(ϕU ψ)} ⊆ Ωi for any i ∈ {0..n}
(b) There exists 0 ≤ j ≤ n such that {¬ϕ,¬ψ} ⊆ Ωj and {ϕ,¬ψ,¬(ϕU ψ)} ⊆ Ωi

for any i ∈ {0..j − 1}.

Proof. By induction on n. SinceΩ is saturated, the case n = 0 is trivial. For n ≥ 1, the
induction hypothesis guarantees that the path π′ = Ω0, Ω1, . . . , Ωn−1 satisfies one of
the properties (a) or (b). If π′ satisfies (b), so does π. If π′ satisfies (a) then by definition
of SGΦ we have {ϕ,¬ψ,¬(ϕU ψ)} ⊆ Ωn or {¬ϕ,¬ψ} ⊆ Ωn. Hence, π verifies (a) or
(b) respectively.

Now we will prove that for anyΩ ∈ SGΦ , either the mscc [Ω] is a self-fulfilling nt-mscc
or there exists a self-fulfilling nt-mscc that is reachable from [Ω].

Lemma 22. For any non-self-fulfilling mscc [Ω] in SGΦ , there exists (at least) oneΩ′ ∈
SGΦ such that Ω′ �∈ [Ω] and [Ω] �⇒ [Ω′].

Proof. For a trivial mscc, this is an easy consequence of Lemma 18. Hence, we assume
[Ω] to be a nt-mscc which is not self-fulfilling. That is, there is some Ω0 ∈ [Ω] and
some formula ϕU ψ ∈ Ω0 such that there does not exist a finite path Ω0, Ω1, . . . , Ωn

in [Ω] such that ψ ∈ Ωn and ϕ ∈ Ωi for every 0 ≤ i < n . Then, for all Δ ∈ [Ω]:

{ϕ,¬ψ, ϕU ψ,◦(ϕU ψ)} ⊆ Δ

Let us consider the subset of SGΦ formed by all the states that are successors of some
state in [Ω]:

S([Ω]) =
⋃

Δ∈[Ω]

RGΦ(Δ)

Since [Ω] is a nt-mscc it must verify [Ω] ⊆ S([Ω]). If [Ω] � S([Ω]) the lemma holds
trivially. On the contrary, if [Ω] = S([Ω]) we show that there is a contradiction as
follows. Consider any state Δ ∈ [Ω] ⊆ SGΦ . Since Δ is FC-consistent, then Δ �4FC F.
Hence, by rules (U L)2 and (¬L), we have that

Δ,◦((ϕ ∧Δ¬)U ψ) �4FC F
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Hence, by (R◦L), the set next(Δ) ∪ {(ϕ ∧ Δ¬)U ψ} is also FC-consistent. Then,
by Lemma 11, there exists at least one set Δ′ ∈ saturnext(Δ)(Φ) such that Δ′, (ϕ ∧
Δ¬)U ψ �4FC F. By (Wk), Δ′ is also FC-consistent. Hence, Δ′ ∈ SGΦ and, by con-
struction Δ′ ∈ RGΦ(Δ) ⊆ S([Ω]). Therefore, Δ′ ∈ [Ω], since we are supposing that
[Ω] = S([Ω]). It is worthy to note that RGΦ(Δ) should be non-empty by Lemma 18.
Besides, since ¬ψ ∈ Δ′ (by construction) and Δ′, (ϕ ∧ Δ¬)U ψ �4FC F, the rules
(U L)2 and (CdL) allow us to conclude that

Δ′, ϕ ∧Δ¬,◦((ϕ ∧Δ¬ ∧ (Δ′)¬)U ψ) �4FC F

Hence, by (Wk), we have obtained from Δ an FC-consistent set Δ′ such that Δ′ ∪
{◦((ϕ ∧ Δ¬ ∧ (Δ′)¬)U ψ)} is also FC-consistent. Starting with any Δ0 ∈ [Ω] and
repeating the above procedure we can construct a path π = Δ0, Δ1, . . . of states in [Ω]
such that for every i ≥ 1

Δi, (ϕ ∧Δ¬0 ∧Δ¬1 ∧ . . . ∧Δ¬i−1)U ψ �4FC F

By finiteness of [Ω], there must exist n ≥ 1 such thatΔn = Δi for some 0 ≤ i ≤ n−1.
In particular, for such n we have that

Δn, (ϕ ∧Δ¬0 ∧Δ¬1 ∧ . . . ∧Δ¬n−1)U ψ �4FC F

But this is a contradiction, by (U L)1, (∧L) and (Wk), because Δn, Δ
¬
n 4FC F can be

easily derived using (∨L) and (CdL).

Corollary 23. For anyΩ ∈ SGΦ , either the mscc [Ω] is a self-fulfilling nt-mscc or there
exists Ω′ ∈ SGΦ such thatΩ′ �∈ [Ω], Ω′ ∈ R+

GΦ
(Ω) and [Ω′] is a self-fulfilling nt-mscc.

Proof. By finiteness of SGΦ , if [Ω] is not a self-fulfilling non-trivial mscc, then Lemma
22 guarantees the existence of [Ω′]. In the case of a trivial mscc, also Lemma 18 should
be used.

Lemma 24. (Nondeterministic Model Existence) For every Ω ∈ SGΦ it holds that if
ϕ ∈ Ω then 〈GΦ, Ω〉 |= ϕ.

Proof. By structural induction on ϕ. The case of literals is trivial by definition of GΦ.
For formulas of the form ¬¬ϕ, ϕ ∨ ψ, ¬(ϕ ∨ ψ), ◦ϕ and ¬◦ϕ it holds by defin-

ition of GΦ and the induction hypothesis on {ϕ}, {ϕ, ψ}, {¬ϕ,¬ψ}, {ϕ} and {¬ϕ},
respectively.

For ϕU ψ, by the above Proposition 20 and Corollary 23 there exists a finite path
Ω0, Ω1 . . . Ωn in SGΦ such that Ω0 = Ω,ψ ∈ Ωn and ϕ ∈ Ωi for every 0 ≤ i ≤ n− 1.
By the induction hypothesis, 〈GΦ, Ωn〉 |= ψ and 〈GΦ, Ωi〉 |= ϕ for every 0 ≤ i ≤ n− 1
and consequently 〈GΦ, Ω〉 |= ϕU ψ.

For ¬(ϕU ψ) formulas, by the above Proposition 21 and the induction hypothesis
there does not exist any finite pathΩ0, Ω1 . . . Ωn in SGΦ such thatΩ0 = Ω, 〈GΦ, Ωn〉 |=
ψ and 〈GΦ, Ωi〉 |= ϕ for every 0 ≤ i ≤ n − 1. Consequently 〈GΦ, Ω〉 �|= ϕU ψ and
hence 〈GΦ, Ω〉 |= ¬(ϕU ψ).
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5.3 Model Existence and Completeness

Using the nondeterministic structure GΦ (which was defined in the previous subsection),
we are now able to build a model of any FC-consistent set.

Lemma 25. (Path Existence) For every Ω ∈ SGΦ there exists at least one infinite
fulfilling path π = Ω0, Ω1, . . . where Ω0 = Ω.

Proof. Let us show how to build the path π depending on the mscc to whichΩ belongs.
If [Ω] is a self-fulfilling mscc, then choose π′ to be any finite path that covers all the
states in [Ω]. Then, the infinite path π = π′, π′, π′, . . . is fulfilling. Otherwise, if [Ω] is
not a self-fulfilling mscc, by Corollary 23, there exists Ω′ ∈ SGΦ such that Ω′ �∈ [Ω],
Ω′ ∈ R+

GΦ
(Ω) and [Ω′] is a self-fulfilling mscc. Let π1 be any finite path from Ω to

Ω′ and let π2 be the infinite path in [Ω′] constructed as in the previous case. Then,
π = π1, π2 is an infinite fulfilling path.

Lemma 26. (Model Existence) Let π = Ω0, Ω1 . . . an infinite fulfilling path in SGΦ .
Then, the PLTL-structureMπ defined by

– SMπ = Ω0, Ω1, . . .
– VMπ (Ωi) = {p | p ∈ Ωi}

satisfies that 〈Mπ , i〉 |= ϕ for every i ∈ IN and every ϕ ∈ Ωi.

Proof. Immediate consequence of Lemma 24.

Finally, we are able to prove the completeness of FC.

Theorem 27. (Completeness of FC) For any set of formulas Γ ∪ {χ}, if Γ |= χ then
Γ 4FC χ.

Proof. Suppose that Γ �4FC χ. Then, by rule (Cd), Γ,¬χ �4FC F. Hence, by Corollary
12, Lemma 25 and Lemma 26 there exists a model of Γ ∪ {¬χ}. Therefore, Γ �|= χ.

6 Concluding Remarks

We have introduced a sound and complete (finitary) sequent calculus FC for the logic
PLTL. The calculus FC is cut-free and invariant-free and it leads to a new deduction
style in temporal logic. We are working on the mechanization of the calculus FC in the
generic proof-assistant Isabelle (cf. http://isabelle.in.tum.de) in order to
allow the interactive formalization of FC-proofs for temporal properties. Tableaux and
resolution methods are better suited for completely automatic theorem proving. In this
regard, the rules (U L)2 and (=L)2 give rise to new ideas for improving the existing
methods of temporal tableaux and temporal resolution. Following these ideas, we are
also working on avoiding the construction of the whole states-graph in the tableaux
framework and the construction of invariants in the resolution setting. These methods
should manage formulas of the form (Δ¬ ∧ ϕ)U ψ such that Δ is also part of the
set of formulas to be processing. Hence, from the point of view of efficiency, shared
formulas would be very useful for practical implementation. Additional future work
includes the extension of this ideas to the branching case, the first-order case (in spite
of its incompleteness) or its complete fragments.
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Abstract. In 1973, Parikh proved a speed-up theorem conjectured by
Gödel 37 years before: there exist arithmetical formulæ that are provable
in first order arithmetic, but whose shorter proof in second order arith-
metic is arbitrarily smaller than any proof in first order. On the other
hand, resolution for higher order logic can be simulated step by step in
a first order narrowing and resolution method based on deduction mod-
ulo, whose paradigm is to separate deduction and computation to make
proofs clearer and shorter.

We prove that i+1-th order arithmetic can be linearly simulated into
i-th order arithmetic modulo some confluent and terminating rewrite
system. We also show that there exists a speed-up between i-th order
arithmetic modulo this system and i-th order arithmetic without mod-
ulo. All this allows us to prove that the speed-up conjectured by Gödel
does not come from the deductive part of the proofs, but can be ex-
pressed as simple computation, therefore justifying the use of deduction
modulo as an efficient first order setting simulating higher order.

Keywords: proof theory, rewriting, higher order logic, arithmetic.

1 Introduction

Even if two logical systems are shown to be expressively equivalent, i.e. they
can prove exactly the same formulæ, they can lead to very different proofs, in
particular in terms of length. For instance, it is shown that Frege systems have
an exponential speed-up over resolution for propositional logic [5]. However in
mechanized theorem proving, the length of proofs has an importance: First,
computers have limited capacities, and this can lead to a difference between the
practical expressiveness of theoretically equivalent systems. Even if computing
power is always increasing, so that one is no longer afraid to use SAT-solvers
within verification tools (mainly because worst cases do not often occur in prac-
tice), it is not conceivable to build an automated theorem prover that produces
proofs of non-elementary length. Second, the length of a proof is one (among oth-
ers) criterion for defining the quality of a proof. Indeed, a smaller proof is often
more readable and, in the case for instance of software certification and proof
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engineering, more communicable and often also more maintainable. In [10,2],
this notion of “good proofs” is translated through a proof ordering, which of
course may correspond to the comparison of proof lengths.

Obtaining a speed-up can also have a theoretical interest, because, as re-
marked by Parikh in the introductory paragraph of [16], “the celebrated P=NP?
question can itself be thought of as a speed-up question.” (See [7].) All this ex-
plains the research for new formalisms whose deductive systems provide smaller
proofs, such as for instance the calculus of structures w.r.t. the sequent
calculus [17].

In this paper, the length of a proof will correspond to its number of steps
(sometimes called lines), whatever the actual size of the formulæ appearing in
them is. Considering only the minimal length of proofs, the definition of a speed-
up is the following: given some function h over natural numbers, a system has a
speed-up for h over another one, if there exists an infinite set of formulæ provable
in both of them, such that, if the length of the proofs in the first system is l and
the length in the second system is k, then k > h(l).

In 1936, Gödel [16] conjectured that there exists such a speed-up for all re-
cursive functions between i-th order and i + 1-th order arithmetic, no matter
the formal system actually used. In other words, he stated that for all recursive
functions h, it is possible to find an infinite set of formulæ such that, for each
of them, denoted by P , if k is the minimal number of steps in the proofs of P
in the i-th order arithmetic (k is assumed to exist, so that P is provable in it),
and l is the minimal number of steps in the proofs of P in the i + 1-th order
arithmetic, then k > h(l).

This result was proved for first-order arithmetic by Parikh [21], who actually
proved a stronger theorem: this proof-length speed-up exists in fact also for non-
recursive functions. This was generalized to all orders by Kra j́ıček , and was
proved for the true language of arithmetic by Buss [6] (the former results used
an axiomatization of arithmetic using ternary predicates to represent addition
and multiplication). The theorem proved by Buss is stated as follow:

Theorem 1 ([6, Theorem 3]). Let i ≥ 0. Then there is an infinite family F
of

∏0
1-formulæ such that

1. for all P ∈ F , Zi � P
2. there is a fixed k ∈ N such that for all P ∈ F , Zi+1 k steps P
3. there is no fixed k ∈ N such that for all P ∈ F , Zi k steps P .

Zi corresponds to the i+1-th order arithmetic (so Z0 is in fact first order arith-
metic), and Zi k steps P means that P can be proved in at most k steps within a
schematic system —i.e. a Hilbert-type (or Frege) system with a finite number of
axiom schemata and inference rules— for i+1-th order arithmetic. (In fact, Buss
proved this theorem also for weakly schematic systems, i.e. schematic systems
in which every tautology can be used as an axiom, as well as generalizations of
axioms, but we will not use this fact here.)

Because this theorem is concerned in arithmetic, an intuitive notion of com-
putation take place in the proofs. Indeed, as remarked by Poincaré, establishing
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that 2+2 = 4 using the definition of the addition is just a verification, and not a
demonstration, so that in a proof occur in fact not only pure deduction but also
computation. Therefore, the question arises whether this speed-up comes from
the deductive or the computational part of the proofs, or both of them. Of course,
the difference between computation and deduction cannot be clearly determined.
Because of the Curry-Howard correspondence, the whole content of the proofs
could be considered as computation. Here, this difference must be thought of as
the distinction between what is straightforward (at least decidable), and what
must be reasoned out.

Deduction modulo [12] is a presentation of a given logic —and the formalisms
associated with it— identifying what corresponds to computation. The compu-
tational part of a proof is put in a congruence between formulæ modulo whom
the application of the deduction rules takes place. This leads to the sequent
calculus modulo and the natural deduction modulo. The congruence is better
represented as a set of rewrite rules that can rewrite terms but also atomic propo-
sitions : indeed, one wants for instance to consider the definition of the addition
or multiplication using rewrite rules over terms as part of the computation, but
also the following rewrite rule:

x× y = 0 → x = 0 ∨ y = 0

which rewrites an atomic proposition to a formula, so that the following simple
proof of t× t = 0 can be deduced from a proof π of t = 0:

π
t = 0∨-i t× t = 0 −→ t = 0 ∨ t = 0

t× t = 0

Deduction modulo is logically equivalent to the considered logic [12, Propo-
sition 1.8], but proofs are often considered as simpler, because the computation
is hidden, letting the deduction clearly appear. Proofs are also claimed to be
smaller for the same reason. Nevertheless, this fact was never quantified. This
paper answers this issue. Of course, if there are no restriction on the rewrite
rules that are used (for instance if it is allowed to use a rewrite system semi-
deciding the validity of formulæ), it is not surprising that the length of the proofs
can be unboundedly reduced. Notwithstanding, we will consider in this paper
only very simple rewrite systems: they will be finite, terminating, confluent (i.e.
deterministic) and linear (variables in the left-hand side only appear once).

Besides, it is possible, in deduction modulo, to build proofs of Higher Order
Logic using a first order system [11]. Using this, a step of higher order resolution
is completely simulated by a step of ENAR, the resolution and narrowing method
based on deduction modulo. Therefore, it seems reasonable to think that deduc-
tion modulo is able to give the same proof-length speed-ups as the ones occurring
between i+1-th and i-th order arithmetic. This paper therefore investigates how
to relate proof-length speed-ups in arithmetic with the computational content
of the proofs.

To prove that the speed-up theorem of Buss comes from the computational
part of the proofs, we first define a linear translation between proofs in i+1-th
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order arithmetic and i-th order arithmetic modulo some rewrite system Ri.
Second, using this translation and Buss’ theorem, we prove that there is no
proof-length speed-up between i+1-th order arithmetic and i-th order arithmetic
modulo, whereas there exists such a speed-up between i-th order arithmetic
modulo and i-th order arithmetic without modulo. Therefore, we conclude that
the speed-up between i+ 1-th order arithmetic and i-th order arithmetic lies in
the modulo, i.e. the computational part of the proofs.

In the next section, we will recall the definition of a schematic system, and
we will present such a system for i-th order arithmetic. The section 3 will define
formally what deduction modulo, and in particular natural deduction modulo
consists of. In Section 4 we will give the exact translations between a proof in
the schematic system for i-th order arithmetic and a proof in natural deduction,
modulo or not, as well as the simulation in natural deduction of i + 1-th order
arithmetic in i-th order arithmetic modulo. An upper bound of the increase
in the length of the proofs due to these translations will be given. Finally, in
Section 5 we will use these translations to determine the origin of the speed-up
in arithmetic, and we will conclude about the interest of working within a first-
order system modulo to simulate higher order. All the details can be found in
the full version of this paper [4].

2 A Schematic System for i-th Order Arithmetic

2.1 Schematic Systems

We recall here, using Buss’ terminology [6], what a schematic system consists
in. It is essentially an Hilbert-type (or Frege) proof system, i.e. valid formulæ
are derived from a finite number of axiom schemata using a finite number of
inference rules. Theorem 1 is true on condition that proofs are performed using
a schematic system.

First, we recall how to build many-sorted first order formulæ, mainly to in-
troduce the notations we will use. A (first order) many-sorted signature consists
in a set of function symbols and a set of predicates, all of them with their arity
(and co-arity for function symbols). We denote by T (Σ, V ) the set of terms built
from a signature Σ and a set of variables V . An atomic proposition is given by
a predicate symbol A of arity [i1, . . . , in] and by n terms t1, . . . , tn ∈ T (Σ, V )
with matching sorts. It is denoted A(t1, . . . , tn). Formulæ can be built using the
following grammar1:

P != ⊥ | A | P ∧ P | P ∨ P | P ⇒ P | ∀x. P | ∃x. P

where A ranges over atomic propositions and x over variables. P ⇔ Q will
be used as a syntactic sugar for (P ⇒ Q) ∧ (Q⇒ P ). Positions in a term or
a formula, free variables and substitutions are defined as usual (see [1]). The
replacement of a variable x by a term t in a formula P is denoted by {t/x}P , the

1 !
= is used for definitions.
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restriction of a term or proposition t at the position p by t|p, and its replacement
in t by a term or proposition s by t[s]p.

Then, given a many-sorted signature of first order logic, we can consider infi-
nite sets of metavariables αi for each sort i (which will be substituted by vari-
ables), of term variables τ i for each sort i (which will be substituted by terms)
and proposition variables A(x1, . . . , xn) for each arity [i1, . . . , in] (which will be
substituted by formulæ).

Metaterms are built like terms, except that they can contain metavariables
and term variables. Metaformulæ are built like formulæ, except that they can
contain proposition variables (which play the same role as predicates) and
metaterms.

A schematic system is a finite set of inference rules, where an inference rule
is a triple of a finite set of metaformulæ (the premises), a metaformulæ (the
conclusion), and a set of side conditions of the forms αj is not free in Φ or s is
freely substitutable for αj in Φ where Φ is a metaformula and s a metaterm of
sort j. It is denoted by

Φ1 · · · Φn (R)
Ψ

An inference with an empty set of premises will be called an axiom schema.

2.2 i-th Order Arithmetic

i-th order arithmetic (Zi−1) is a many-sorted theory with the sorts 0, . . . , i− 1
and the signature

0 : 0 + : [0; 0]→ 0 = : [0; 0]
s : [0]→ 0 × : [0; 0]→ 0 ∈j : [j; j + 1] .

The schematic system we use can be found in its totality in the full version [4].
The most representative inference rules are given here as examples:

14 + 2× i axiom schemata of classical logic. We take the one used by
Gentzen [15, Chapter 5] to prove the equivalence of his formalisms with an
Hilbert-type proof system:

(A⇒ A⇒ B)⇒ A⇒ B (1)
(A⇒ B)⇒ (B ⇒ C)⇒ A⇒ C (2)

(A ∧B)⇒ A (3)
A(τ j)⇒ ∃αj . A(αj)

(
τ j is freely substitutable for αj in A(αj)

)
(4)

A ∨ (A⇒ ⊥) (5)

1 + 2× i inference rules of classical logic. Again, we consider the one of [15]:

A A⇒ B
B

(6)
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B(βj)⇒ A
(βj is not free in (∃αj . B(αj))⇒ A)

(∃αj . B(αj))⇒ A
(7)

7 identity axiom schemata. They define the particular relation =:

∀α0. α0 = α0 (8)
∀α0β0γ0. α0 = β0 ⇒ α0 + γ0 = β0 + γ0 (9)
∀α0β0. α0 = β0 ⇒ A(α0)⇒ A(β0) (10)

7 Robinson’s axioms. They are the axioms defining the function symbols of
arithmetic [19]:

∀α0β0. s(α0) = s(β0)⇒ α0 = β0 (11)
∀α0. α0 × 0 = 0 (12)

∀α0β0. α0 × s(β0) = α0 × β0 + α0 (13)

i + 1 induction and comprehension axiom schemata.

A(0)⇒
(
∀β0. A(β0)⇒ A(s(β0))

)
⇒ ∀α0. A(α0) (14)

For all 0 ≤ j < i− 1,

∃αj+1. ∀βj . βj ∈j αj+1 ⇔ A(βj) (αj+1 is not free in A) (15)

From this point on, we will denote by Zi−1
S
k P the fact that there exists a

proof of P of length at most k in this schematic system, i.e. P can be derived
using at most k instances of these inference rules.

3 Deduction Modulo

3.1 Rewriting Formulæ

In this section, we recall the definition of deduction modulo, as can be found in
[12,13]. In deduction modulo, formulæ are considered modulo some congruence
defined by some rules that rewrite not only terms but also formulæ. We use
standard definitions, as can be found in [1], and extend them to proposition
rewriting [12].

A term rewrite rule is the pair of terms l, r such that all free variables of r
appear in l. It is denoted l → r. A term rewrite system is a set of term rewrite
rules. A term s can be rewritten to a term t by a term rewrite rule l → r if
there exists some substitution σ and some position p in s such that σl = s|p and
t = s[σr]p. An atomic proposition A(s1, . . . , si, . . . , sn) can be rewritten to the
atomic proposition A(s1, . . . , ti, . . . , sn) by a term rewrite rule l→ r if si can be
rewritten to ti by l→ r. This relation is extended by congruence to all formulæ.
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[A]

B⇒-i if C
∗←→
R

A⇒ B
C

A C⇒-e if C
∗←→
R

A⇒ B
B

A B∧-i if C
∗←→
R

A ∧ B
C

C∧-e if C
∗←→
R

A ∧ B or C
∗←→
R

B ∧ A
A

A∨-i if C
∗←→
R

A ∨B or C
∗←→
R

B ∨ A
C C

[A]

D

[B]

D∨-e if C
∗←→
R

A ∨ B
D

{y/x}A
∀-i

if B
∗←→
R
∀x. A and y is not

free in A nor in the assump-
tions of the proof above

B

A∀-e if A
∗←→
R
∀x. C and B

∗←→
R
{t/x}C

B

B∃-i if A
∗←→
R
∃x. C and B

∗←→
R
{t/x}C

A B

[{y/x}A]

C∃-e

if B
∗←→
R
∃x. A and y is

not free in C nor in the
assumption of the proof
above except {y/x}AC

classical if A
∗←→
R

B ∨ (B ⇒ ⊥)
B

A⊥-e if A
∗←→
R
⊥

B

Fig. 1. Inference Rules of Natural Deduction Modulo

A proposition rewrite rule is the pair of an atomic proposition A and a formula
P , such that all free variables of P appear in A. It is denoted A → P . A
proposition rewrite system is a set of proposition rewrite rules. A formula Q
can be rewritten to a formula R by a proposition rewrite rule A → P if there
exists some substitution σ and some position p in Q such that σA = Q|p and
R = Q[σP ]p. Semantically, this proposition rewrite relation must be seen as a
logical equivalence between formulæ.

A rewrite system is the union of a term rewrite system and a proposition
rewrite system. The fact that P can be rewritten to Q either by a term or by a
proposition rewrite rule of a rewrite system R will be denoted by A−→

R
P . The

transitive (resp. reflexive transitive) closure of this relation will be denoted by
∗−→
R

(resp. ∗←→
R

).

3.2 Natural Deduction Modulo

Using some equivalence ∗←→
R

defined by a rewrite systemR, we can define natural

deduction modulo as in [13]. Its inference rules are represented in Fig. 1. They
are the same as the one introduced by Gentzen [15], except that we work modulo
the rewrite relation. Leaves of a proof that are not introduced by some inference
rules (contrary to A in ⇒-i for instance) are the assumptions of the proof. Note
that if we do not work modulo, ⇒-e is exactly the same as (6).

The length of a proof is the number of inferences used in it. We will denote by
T N

k R P the fact that there exists a proof of P of length at most k using a finite
subset of T (T can be infinite) as assumptions. In the case where R = ∅, we are
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back to pure natural deduction, and we will use T N
k P . Abusing notations, we

will write Zi
N
k R P to say that there is a proof of P of length at most k using

as assumptions a finite subset of instances of the axiom schemata (8) to (15).

4 Translations

4.1 From Zi
S to Zi

N

We want to translate a proof in the schematic system of Zi into a proof in pure
natural deduction using as assumptions instances of the axiom schemata (8)
to (15).

For the axiom schemata and inference rules of classical logic, we use the same
translation as Gentzen, for instance the axiom schema (4) is translated into the
natural deduction proof

A(τ j) (i)
∃-i ∃αj . A(αj)

⇒-i (i)
A(τ j)⇒ ∃αj . A(αj)

and the inference rule (7) into

∃αj . B(αj) (i)

B(βj) (ii) B(βj)⇒ A⇒-e
A

∃-e (ii)
A⇒-i (i)

∃αj . B(αj)⇒ A

(note that the side condition ensures that it is possible to consider that what
will be substituted for βj is free in A and the assumptions of the proof above
B(βj)⇒ A). All these inference rules have a translation whose length does not
depend on the formulæ finally substituted in the proof.

In a schematic system proof, there is also a finite number of instances of the
axioms schemata for identity, Robinson’s axioms and induction and comprehen-
sion schemata. We keep these instances as assumptions in natural deduction,
so that we obtain a proof in natural deduction using as assumptions a finite
subset of instances of the axiom schemata (8) to (15), and whose length is linear
compared to the schematic system proof:

Proposition 1. It is possible to translate a proof of length n in the schematic
system for Zi into a proof of length O(n) in (pure) natural deduction using
assumptions in Zi.

Zi
S
k P � Zi

N
O(k) P

4.2 From Zi
N to Zi

S

In this section, we consider a proof of P in natural deduction, using as assumption
finite instances of (8) to (15) in the language of Zi. We translate it into a proof
in the schematic system for Zi.
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This is essentially a generalization of the translation from the λ-calculus to
combinatory logic (see [9]). We define mutually recursively two functions by
induction on the inference rules: T transforms a proof of P in natural deduction
using assumptions Γ into a proof of P in the schematic system (1) to (7) plus
Γ . TA transform a proof of P in natural deduction using assumptions Γ,A into
a proof of A⇒ P in the schematic system (1) to (7) plus Γ .

Due to lack of space, the definition of T and TA is given here only for the ex-
istential quantifier, but can be entirely found in the full version of this paper [4].

T

�
�

π

{t/x}A
∃-i ∃x. A

�
� !

=

T (π)

{t/x}A {t/x}A ⇒ ∃x. A (4)
(6) ∃x. A

T

�
� π1

∃x. A

[{y/x}A]
π2{

B∃-e
B

�
� !

=
T (π1)

∃x. A

TA (π2)

{y/x}A ⇒ B
(7)

(∃x. A) ⇒ B
(6)

B

TA

�
�

[A]
π{

{t/x}B
∃-i ∃x. B

�
� !

=

{t/x}B ⇒ ∃x. B (4)

TA (π)

A ⇒ {t/x}B · · · (2)
(6)

({t/x}B ⇒ ∃x. B) ⇒ A ⇒ ∃x. B
(6)

A ⇒ ∃x. B

TA

�
� [A]

π1{ ∃x. B

[A, {y/x}B]
π2{

C∃-e
C

�
� !

=

T{y/x}B

�
TA (π2)
A ⇒ C

�

{y/x}B ⇒ A ⇒ C
(7) ∃x. B ⇒ A ⇒ C

TA (π1)

A ⇒ ∃x. B · · · (2)
(6)

(∃x. B ⇒ A ⇒ C) ⇒ A ⇒ A ⇒ C
(6)

A ⇒ A ⇒ C · · · (1)
(6)

A ⇒ C

It can be verified that this definition transforms a proof of size n into a
proof of size O(3n). Due to [7, Corollary 3.4], we could have found, at least
for the propositional part, a polynomial translation. Nevertheless all we need in
this paper is the fact that the increase of the proof length in the translation is
bounded.

Proposition 2. It is possible to translate a proof of length n in the (pure)
natural deduction using assumptions in Zi into a proof of length O(3n) in the
schematic system for Zi.

Zi
N
k P � Zi

S
O(3k)

P
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4.3 From Zi+1
S and Zi+1

N to Zi
N

Ri

This time, we translate a proof in the schematic system for Zi+1 into a proof in
natural deduction modulo using as assumption instances of the axiom schemata
(8) to (15), but in the language of Zi. The point is that, using modulo, it is
possible to downshift an order.

We follow the translation of Section 4.1, except for the axiom schemata (10),
(14) and (15) that are instantiated by formulæ that are in the language of Zi+1

but not in the language of Zi. To translate these schemata, we will use the work
of F. Kirchner [18] which permits to express first-order theories using a finite
number of axioms. The idea is to transform some metaformula A(t1, . . . , tn) used
in an axiom schema into a formula of the form 〈t1, . . . , tn〉 ε γ where γ will be
some term representing what formula will be actually substituted for A.

Following F. Kirchner’s method, we add new sorts � for lists and c for classes,
as well as new function symbols and predicate

1j : j
Sj : [j]→ j
·[·]j : [j; �]→ j

nil : �
::j : [j; �]→ �
.= : [0; 0]→ c

∈̇j : [j; j + 1]→ c

∪ : [c; c]→ c
∩ : [c; c]→ c
⊃ : [c; c]→ c

∅ : c
Pj : [c]→ c
Cj : [c]→ c
ε : [�; c]

.

〈α1, . . . , αn〉 will be syntactic sugar for α1 ::j1 · · · :: αn ::jn nil for the appropriate
jm. We change the axiom schemata (10), (14) and (15) into the following axioms :

∀γc. ∀α0β0. α0 = β0 ⇒ 〈α0〉 ε γc ⇒ 〈β0〉 ε γc (16)
∀γc.〈0〉 ε γc ⇒

(
∀β0. 〈β0〉 ε γc ⇒ 〈s(β0)〉 ε γc

)
⇒ ∀α0. 〈α0〉 ε γc (17)

For all 0 ≤ j < i,

∀γc. ∃αj+1. ∀βj . βj ∈j αj+1 ⇔ 〈βj〉 ε γc (18)

The rewrite system Ri is then the following:

t[nil]j → t
1j [t ::j l]j → t

Sj(n)[t ::j l]j → n[l]j

s(n)[l]0 → s(n[l]0)
(t1 + t2)[l]0 → t1[l]0 + t2[l]0

(t1 × t2)[l]0 → t1[l]0 × t2[l]0
l ε

.= (t1, t2) → t1[l]0 = t2[l]0

l ε ∈̇j(t1, t2) → t1[l]j ∈j t2[l]j+1

l ε A ∪B → l ε A ∨ l ε B
l ε A ∩B → l ε A ∧ l ε B
l ε A ⊃ B → l ε A⇒ l ε B

l ε ∅ → ⊥
l ε Pj(A) → ∃x. x ::j l ε A
l ε Cj(A) → ∀x. x ::j l ε A

Note that this system is finite, terminating (either the size of a list decreases, or
else a ·[·] or an ε goes more inside or disappears), confluent (the only critical pairs,
of the form: f(t1, . . . , tn)←−

Ri

f(t1, . . . , tn)[nil]−→
Ri

f(t1[nil], . . . , tn[nil]), are eas-

ily joinable), and linear (variables appears only once in the left hand side of the
rewrite rules).

Proposition 2 of [18] says that it is possible, for any formula P of the lan-
guage of i-th order arithmetic, to prove ∃E. ∀x1 · · ·xn. 〈x1, . . . , xn〉 ε E ⇔ P .
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∀γc. ∀α0β0. α0 = β0 ⇒ 〈α0〉 ε γc ⇒ 〈β0〉 ε γc
(16)

∀-e
〈α0〉 ε Ex

A ⇒ 〈β0〉 ε Ex
A

∗−→
Ri

A(α0) ⇒ A(β0)∀α0β0. α0 = β0 ⇒ A(α0) ⇒ A(β0)

∀γc.〈0〉 ε γc ⇒
�
∀β0. 〈β0〉 ε γc ⇒ 〈s(β0)〉 ε γc

�
⇒ ∀α0. 〈α0〉 ε γc

(17)
∀-e

for all t,
〈t〉 ε Ex

A
∗−→

Ri
A(t)A(0) ⇒

�
∀β0. A(β0) ⇒ A(s(β0))

�
⇒ ∀α0. A(α0)

∀γc. ∃αj+1. ∀βj . βj ∈j αj+1 ⇔ 〈βj〉 ε γc
(18)

∀-e 〈βj〉 ε Ex
A

∗−→
Ri

A(βj)

∃αj+1. ∀βj . βj ∈j αj+1 ⇔ A(βj)

Fig. 2. Translations of the axiom schemata (10), (14) and (15)

Moreover, the proof of this proposition shows us how to construct the witness E.
We will denote it by Ex1,...,xn

P . Then, one can prove that 〈t1, . . . , tn〉 ε Ex1,...,xn

P
∗−→
Ri

{t1/x1, . . . , tn/xn}P . For instance, consider the formula x = 0 ∨ ∃y. x ∈0 y,

which will be denoted by P . Then Ex
P equals .= (1, S(0)) ∪ P1

(
∈̇0(S(1), 1)

)

and 〈t〉 ε Ex
P can be rewritten to t = 0 ∨ ∃x. t ∈0 x.

Consequently, the axiom schemata (10), (14) and (15) for formulæ of the
language of Zi+1 but not in the language of Zi are replaced by the proofs in Fig. 2.
In these translations, we need to instantiate γc with some Ex

A. It is well-known
that the instantiations are the most problematic rules in deductive systems,
at least for automated provers (e.g. they are what leads to nondeterminism
and/or nontermination of tableaux methods for first order logic), because the
instantiated term must be somehow guessed. Nevertheless, the instantiation here
is entirely and automatically determined by the formula used in the schema, so
that no harm is done.

Using this, a proof in the schematic system for Zi+1 can be translated into
a proof of P in natural deduction modulo Ri using as assumptions the axioms
(10), (14) and (15) as well as a finite subset of instances the axiom schemata (8)
to (15) for i-th order arithmetic, and whose length is linear compared to the
schematic system proof:

Proposition 3. It is possible to translate a proof of length n in the schematic
system for Zi+1 into a proof of length O(n) in the natural deduction modulo Ri

using assumptions in Zi, (16), (17) and (18).

Zi+1
S
k P � Zi, (16), (17), (18) N

O(k) Ri
P

This result can also be stated entirely in natural deduction

Theorem 2. For all i ≥ 0, there exists a (finite) rewrite system Ri and a finite
set of axioms Γ such that for all formulæ P , if Zi+1

N
k P then Zi, Γ

N
O(k) Ri

P .

Proof. Let Γ be {(16), (17), (18)}. We replace the instance of the axiom schemata
(10), (14) and (15) by the axioms (16), (17) and(18) as indicated in Fig. 2. ��
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Note that, contrarily to HOL-λσ which permits to simulate Higher Order Logic,
the rewrite system purposed here is finite and terminating.

The fact to add the finite set of axioms Γ could be seen as some deceit, because
we do not work really in Zi, but in a theory strictly stronger. By the way, due
to Theorem 2, it is possible to prove the consistency of Zi in Zi, Γ modulo Ri.
Nevertheless, the point here is that it is possible, by working modulo Ri, to
simulate Zi+1 using a finite set of axioms, and not axiom schemata, without
exploding the length of the proofs. If we were not working modulo this rewrite
system, but using a finite theory compatible with it (i.e. proving exactly the
same formulæ), then it would not be possible to give a bound to the translation:

Proposition 4. For all i ≥ 0, for all finite theories Ti compatible with Ri, there
is an infinite family F such that

1. for all P ∈ F , Zi, Γ, Ti
S P

2. there is a fixed k ∈ N such that for all P ∈ F , Zi+1
S
k steps P

3. there is no fixed k ∈ N such that for all P ∈ F , Zi, Γ, Ti
S
k steps P .

It could also have been possible to translate the formulæ that one wants to
prove, as is done in [14], where a formula of first order arithmetic is transformed
by adding the information that some variable n is an integer using some predicate
N(n) which can be rewritten into an axiom corresponding to the induction
schema for first order arithmetic. Here, P could be translated into (16)⇒ (17)⇒
(18)⇒ P .

5 Application to Speed-Ups in Arithmetic

5.1 Bypassing Buss’ Speed-Up Using Modulo

The goal of this section is to prove that one can work in Zi modulo some rewrite
systemRi to be able to build proof as small as the one of Zi+1. Indeed, Theorem 2
permits to show that Gödel’s theorem does not extend if one works modulo Ri

(what is formulated here in a positive way):

Corollary 1 (of Theorem 2). For all i ≥ 0, there exists a (finite) rewrite
system Ri and a finite set of axioms Γ such that for all infinite family F of∏0

1-formulæ, if

– for all P ∈ F , Zi
N P

– there is a fixed k ∈ N such that for all P ∈ F , Zi+1
N
k steps P

then there is a fixed k′ ∈ N such that for all P ∈ F , Zi, Γ
N
k′ steps Ri

P .

5.2 Speed-Up Due to Computation

On the contrary, we want to show that it is possible to achieve the same speed-
up as the one between i-th order and i+ 1-th order arithmetic just by working
modulo some rewrite system in i-th order arithmetic:
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Theorem 3. For all i ≥ 0, there is a rewrite system Ri such that there is an
infinite family F such that

1. for all P ∈ F , Zi
N P

2. there is a fixed k ∈ N such that for all P ∈ F , Zi
N
k steps Ri

P

3. there is no fixed k ∈ N such that for all P ∈ F , Zi
N
k steps P .

Proof. The rewrite systemRi is the one defined in Section 4.3. Let F be the fam-
ily of formulæ obtained by Theorem 1. Let F ′ != {(16)⇒ (17)⇒ (18)⇒ P :
P ∈ F}. Then:

1. For all P ′ ∈ F ′, Zi
N P ′: we know that Zi

S P , therefore using Proposition 1,
Zi

N P and, adding to this proof 2 + i times ⇒-i, Zi
N P ′.

2. There is a k such that for all P ′ ∈ F ′, Zi
N
k Ri

P ′: there exists some k such
that for all P ∈ F , Zi+1

S
k P . Using Proposition 3, there exists some K

such that for all P ∈ F , we have Zi, (16), (17), (18) S
K Ri

P and one can add
2 + i times ⇒-i to obtain a proof of P ′.

3. There is no k such that for all P ′ ∈ F ′, Zi
N
k P ′: Suppose by contradiction

that there is a k such that for all P ′ ∈ F ′, Zi
N
k P ′, then using 2 + i

times ⇒-e, we have Zi, (16), (17), (18) N
k+2+i P . But (16), (17) and (18) use

function symbols not appearing in P nor Zi (for instance ε). Therefore they
cannot be used in a proof of P in Zi, so that in fact Zi

N
k+2+i P . Then,

using Proposition 2, Zi
S
O(3k)

P , and that will be in contradiction with the

fact that there is no K such that for all P , Zi
S
K P .

Schematically,

Zi+1
S
k P

Prop. 3� Zi, (16), (17), (18) N
K Ri

P � Zi
N
K+2+i Ri

P ′

Theo. 1 �

Zi
S

3k P

Prop. 1��

Prop. 2

Zi, (16), (17), (18) N

k P � Zi

N

k P ′ ��

Note that it is possible to get speed-ups in deduction modulo w.r.t pure natural
deduction with systems much more simpler than for higher order arithmetic.
(Take for instance the rule s(x)+y → x+s(y) and consider the formulæ n+n =
n+ n where n denotes the usual representation of the natural number n using
0 and s, for all natural numbers n.) Our last result however, combined with
Corollary 1, permits to conclude that proof-length speed-ups in arithmetic result
from the computational part of the proofs, which is expressed by the rewrite
systems Ri.

6 Conclusion and Perspectives

We have first proved that it is possible to use some rewrite system to simulate
the difference between i-th and i+1-th order arithmetic at the condition to add
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three extra axioms which replace the missing axiom schemata. This simulation
is linear in terms of proof length, which permits to prove that there is no proof-
length speed-up between i + 1-th order arithmetic and its simulation, on the
contrary to without modulo as it is expressed in Buss’ theorem. Furthermore,
this simulation allows to get the same proof speed-up for deduction modulo
over non modulo systems than the one of Buss’ theorem. Together with the
first result, this proves that the gap between i-th and i+ 1-th order arithmetic
is in fact due to the computational part of the proofs. In this particular case,
we also clearly identify the computation occurring in the proofs with a finite,
terminating and confluent (so, in a sense, deterministic) rewrite system. This
is not surprising, because, if one looks carefully, the proof of Theorem 1 given
by Buss in [6] deeply relies on the fact that it is possible to define some truth
predicate for the formulæ of the preceding order. Therefore, in a sense, it is
possible, in i + 1-th order arithmetic, to compute the validity of a formula in
i-th order arithmetic.

Speed-ups in deduction modulo must not be considered as cheating, by hiding
part of the proofs in the congruence. This must be thought of as a way to sep-
arate what is deduced and what is computed. To find a proof, both parts need
to be built. To check the proof however, only the deductive part is necessary,
because the rest can be effectively computed during the verification (hence the
need to have a decidable congruence, even better if it is determined by simple
deterministic algorithm). This can be applied to automated and interactive the-
orem proving, as well as in representation of proofs in natural language (where
all computational details are often implicitly left the reader).

These results are encouraging indicators that it is as good to work directly in
higher order logics, as is done in the current interactive theorem provers, such
as Coq [22] or Isabelle/HOL [20], or using a first order implementation of these
logics, as could be done in a proof assistant based on deduction modulo (or
on its sequel named superdeduction, see [3]). This paper gives clues to answer
positively this question, although we were interested in the step between i-th
order and i+1-th order arithmetic, and not between first order and higher order
logic. The fact that higher order resolution can be simulated step by step by
ENAR [11] is not a solution, because there may exist some other higher order
proof system that produce proofs that cannot be conveniently translated in a first
order system modulo. So, our next challenge will be, starting from the current
results, to investigate how exactly higher order logic prevails or not over first
order logic, by studying more closely the simulation of higher order logic.

A first direction to do so will be to prove that it is possible to apply transitivity
between the simulation of Zi+1 in Zi and the one of Zi+2 in Zi+1, in order to get
a simulation of Zi+2 in Zi, for instance by combiningRi andRi+1. In addition to
the expression of first order arithmetic as a theory modulo [14], this would lead
to the linear simulation of higher order arithmetic entirely as a theory modulo. It
should however be noted that one of the main advantage of our rewrite systems
w.r.t. HOL-λσ, i.e. its finiteness, will be lost because of the need for a rule to
decompose ∈̇i for all orders i.
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Another direction would be to look directly at the difference of the lengths of
proofs in the expression of HOL in the sequent calculus modulo [11], or of every
PTS in λΠ modulo [8].

Acknowledgments. The author wishes to thank G. Dowek, T. Hardin, C. Kir-
chner and the anonymous referees for many discussions and comments about this
paper.
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Abstract. By introducing a parallel extension rule that is aware of inde-
pendence of the introduced extension variables, a calculus for quantified
propositional logic is obtained where heights of derivations correspond
to heights of appropriate circuits. Adding an uninterpreted predicate on
bit-strings (analog to an oracle in relativised complexity classes) this
statement can be made precise in the sense that the height of the most
shallow proof that a circuit can be evaluated is, up to an additive con-
stant, the height of that circuit.

The main tool for showing lower bounds on proof heights is a variant
of an iteration principle studied by Takeuti. This reformulation might be
of independent interest, as it allows for polynomial size formulae in the
relativised language that require proofs of exponential height.

1 Introduction and Related Work

In systems like “extended Frege” there is a rule that allows one to introduce a
new variable by a defining clause p↔ A. If several variables are to be introduced,
several instances of this rule have to be used. This holds regardless of the presence
or absence of dependencies between these variables.

However, such dependencies are known to make a big difference in the world
of computation. Both, uniform AC0 and polynomial time can be described by
families of polynomial size circuits. Nevertheless, AC0 has much smaller compu-
tational power. The reason is that the nodes in AC0 circuits are constrained to
be arranged in a finite number of layers.

Even though various propositional calculi are known for small complexity
classes, none reflects correctly the height of circuits. We suggest a calculus that
has this property and can serve as a framework for investigating the “circuit
strength” of various propositional calculi and small complexity classes; the lat-
ter come in via propositional translations of appropriate theories of Bounded
Arithmetic [4,6].
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We consider relativised circuit classes [15]. That is, our circuits will not only
contain logical gates but also gates that query an oracle. There are several mo-
tivations for doing so. Hardly any separations of unrelativised small complexity
classes are known, but separating relativised circuit classes is straightforward.
So, in order to precisely state that the calculus adequately reflects the differences
between different circuit classes, we need to consider the relativised forms; an
absolute separation of the levels of the ACk hierarchy seems out of reach at the
moment. Moreover, this calculus is intended as a target for propositional trans-
lations of theories of Bounded Arithmetic. Following standard proof theoretical
practise [11], a better classification of theories can be obtained for the variants
relativised to an uninterpreted predicate.

Quantified propositional logic in relation to complexity classes and bounded
arithmetic has been studied by Kra j́ıček and Pudlák [9]. They introduced vari-
ous dag-like (G1, G2,. . . , G) and tree-like systems (G∗1, G

∗
2,. . . , G

∗). Cook and
Morioka (in a slightly modified setting) identified [5] G0 and G∗0 which relate to
NC1. One motivation for the study of restricted propositional proof systems is
the relation to (weak) theories of bounded arithmetic [4,6]. For various complex-
ity classes, corresponding proof systems [10,12] have been identified. However,
a unifying framework for the propositional systems still seems to be missing.
We suggest a calculus which is flexible enough to allow for embedding of vari-
ous theories, but is still strict enough that the height of proofs is a meaningful
measure.

Studying the height of proofs is a standard approach in ordinal informative
proof theory [11] and has been adopted to the Bounded Arithmetic setting by
Beckmann [1]. It was also implicitly used by Kra j́ıček [8].

Our research presented here investigates a particular form of the iteration
principle. An important source for this has been Takeuti’s investigations [14]
where he obtained separations of some versions of bounded arithmetic theories [3]
related to circuit complexity classes. A different form of the iteration principle
has been introduced and studied by Buss and Kra j́ıček [2] to obtain separations
between bounded arithmetic theories related to (relativised) polynomial time
and polynomial local search (PLS).

This article is organized as follows. In Section 2 we define our calculus AC0-
Tait. In Section 3 we consider the formula expressing that a circuit of height h
can be evaluated. We note that this formula can be proven by a proof of height
h+O(1). For the other direction we need a few preparations, that are interesting
results in their own right. First we study in Section 4 a formula expressing that
a function can be iterated � times; we show that a proof of this formula requires
height at least �. As the iteration formula is a polynomial size Σq

1(α)-formula
and can express exponentially long iterations, this establishes an exponential
lower bound for the calculus with cuts on arbitrary quantifier-free formulae. In
Section 5 we study a version of the calculus, extended with cuts, and prove cut-
elimination. The cut-lemma will allow us to transform a proof that a particular
circuit can be evaluated into a proof of the iteration principle without increasing
the height by more than a constant. Putting things together in Section 6 shows
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that there are circuits of height h where a proof that they can be evaluated
requires height at least h−O(1).

2 Quantified Propositional Logic and Definition of the
Calculus

In this section we will introduce our calculus. It will be in the style of Tait [13],
that is, roughly, one-sided sequent calculus. Following standard simplifications,
a sequent is a set of formulae, and negation is an operation on formulae, not a
logical symbol.

Definition 1. The atoms of propositional logic are variables p, q, r, . . ., their
negations p̄, q̄, r̄, . . ., as well as the constants T and F for truth and falsity.

The set of all propositional atoms is denoted by A and we use ℘ to range over
elements of A.

The set of quantified propositional formulae A,B,C, . . . is built up from the
atoms of propositional logic and parameter αk℘1 . . . ℘k and negated parameter
ᾱk℘1 . . . ℘k where ℘1, . . . , ℘k are propositional atoms, by conjunctions∧

k A1 . . . Ak and disjunctions
∨

k A1 . . . Ak, and universal ∀kp1 . . . pkA and exis-
tential ∃kp1 . . . pkA quantification.

Here k ≥ 1 is a natural number on the meta level. The variables p1, . . . , pk
and their negations p̄1, . . . , p̄k are bound in ∀kp1 . . . pkA and ∃kp1 . . . pkA.

Syntactical equality is denoted by ≡. A quantified propositional formula without
any quantifications is called a propositional formula. We use the expression purely
propositional formula for a propositional formula, if we want to emphasise that
it is not quantified.

We write ∧ and ∨ for
∧

2 and
∨

2, respectively. We use A ∧ B and A ∨ B as
abbreviations for ∧AB and ∨AB, respectively, if there is no danger of confusion.
Also, parentheses may be used to facilitate reading or to disambiguate these
abbreviations.

By induction on A a formula ¬A is defined according to the de Morgan
rules in the obvious way, e.g., ¬p ≡ p̄, ¬p̄ ≡ p, ¬(αk℘1 . . . ℘k) ≡ ᾱk℘1 . . . ℘k,
¬(

∧
k A1 . . . Ak) ≡

∨
k(¬A1) . . . (¬Ak), and so on. A simple induction on A shows

that ¬¬A ≡ A.
If A is a quantified propositional formula, )p are pairwise disjoint propositional

variables, and )B are quantified propositional formulae, then by A[ )B/)p ] we denote
the simultaneous capture-free substitution of all pi by Bi and of all p̄i by ¬Bi.

We use the notation A()p ) to distinguish certain variables of A, in order to
be able to use A( )B) as a shorthand for the substitution A[ )B/)p ]. This notation
does not imply that these variables actually do occur free and the list )p does not
necessarily exhaust all the free variables of A.

We use Γ,Δ, . . . to denote finite sets of formulae.
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Definition 2. The propositional rules are the following rules.

Γ, p, p̄ Γ,T Γ, αk(℘1, . . . , ℘k), ᾱk(℘1, . . . , ℘k)

Γ,Ai

Γ,
∨

k A1 . . . Ak

. . .Γ,Ai . . . (1 ≤ i ≤ k)
Γ,

∧
k A1 . . . Ak

Definition 3. The rules of parameter extensionality are the following rules.

Γ, αk(℘1, . . . , ℘k) . . .Γ, ℘i ↔ ℘′i . . . (1 ≤ i ≤ k)
Γ, αk(℘′1, . . . , ℘′k)

Γ, ᾱk(℘1, . . . , ℘k) . . .Γ, ℘i ↔ ℘′i . . . (1 ≤ i ≤ k)
Γ, ᾱk(℘′1, . . . , ℘

′
k)

Definition 4. The rules of quantification are the following rules.

Γ,A()a)
Γ, ∀k)pA()p)

Γ,A()℘)
Γ, ∃k)pA()p)

Here )a have to be pairwise distinct eigenvariables. The )℘ may be arbitrary
propositional atoms.

Definition 5. The cut rule is the following rule.

Γ,A Γ,¬A
Γ

The formula A in the cut rule is called the “cut formula”.

One of the problems that can be solved in AC0 is the following:

Given truth values p1, . . . , pn and q1, . . . , qn, output qi if i is the smallest
index such that pi is true.

A similar task in standard calculi of propositional logic would require a sequence
of cuts, thus artificially increasing the height. As our investigations are essentially
based on differences like constant versus logarithmic height, we cannot afford this
increase. We therefore introduce a new rule allowing multiple cuts at once.

The presence of this rule will be essential in Corollary 44 where it is used to
obtain a proof of constant height.

Definition 6. The multi-cut rule is the rule

. . . Γ,Δi . . .
Γ

where the Δi are sets of purely propositional formulae such that from the col-
lection of the Δi the empty sequent can be derived by cuts only. The weight of
the multi-cut rule is

∑
i |Δi|, where |Δi| is the cardinality of the set Δi.
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In other words, if from an arbitrary number of sequents, a sequent Γ can be
derived by cuts on only purely propositional formulae, then this derivation of Γ
counts as a single application of the multi-cut rule. For the calculus obtained
to be a proof system in the sense of Cook and Reckhow [7] we require that the
sequence of cuts be annotated in notations for proofs. However, as we are only
interested in the number of rules applied we will never deal with notations for
proofs.

Remark 7. Using the multi-cut rule it is possible to prove purely propositional
induction in constant depth. In fact, from proofs of Γ,¬Ai, Ai+1 for all i, we can
conclude by a single inference Γ,¬A0, Ak.

Next we will define the comprehension rule. It is motivated by the extension
rule of extended Frege calculus. There, a new propositional variable may be
introduced by the axiom p ↔ ϕ, if p is new, that is, does not occur anywhere
earlier in the derivation. The extension rule says that if Γ can be derived from
the assumption ∃p(p ↔ ϕ), then it can also be derived without. Note that
¬(∃p(p ↔ ϕ)) ≡ ∀p¬(p ↔ ϕ). As usual, the universal quantifier is expressed
by the eigenvariable condition. As discussed in the introduction, we allow the
introduction of several extension variables at the same time.

Definition 8. The F-comprehension rule of width k is the rule

Γ,¬(p1 ↔ ϕ1), . . . ,¬(pk ↔ ϕk)
Γ

where ϕ1, . . . , ϕk ∈ F and p1, . . . , pk are pairwise distinct eigenvariables, that is,
variables that do not occur (free) in Γ or any of the ϕi’s.

The variables pi are also called “extension variables” and the ϕi “extension
formulae”.

The name “F -Comprehension Rule” is justified by the fact, that it allows simple
proofs of (propositional translations of) the comprehension axiom for formulae
in F . Consider the following derivation (where we omit some side formulae; note
that weakening is admissible).

. . . (pi ↔ ϕi),¬(pi ↔ ϕi) . . . ∧
k∧

k(pi ↔ ϕi),¬(p1 ↔ ϕ1), . . . ,¬(pk ↔ ϕk) ∃k∃k)p
∧

k(pi ↔ ϕi),¬(p1 ↔ ϕ1), . . . ,¬(pk ↔ ϕk) F -comprehension
∃k)p

∧
k(pi ↔ ϕi)

It should be noted that the height of this derivation only depends on the ϕi and
is independent of k. Proposition 13 will provide the needed proofs of the first
sequents and will actually show that the heights depend only on the depths of
ϕi’s.

Note that in all the rules we may always assume without loss of generality that
the conclusion is already contained in the premise (i.e., is an element of the context
Γ already). For example, a typical instance of the or-rule would in fact be



Propositional Logic for Circuit Classes 517

Γ,A0 ∨A1, Ai

Γ,A0 ∨A1

Definition 9. The AC0-Tait calculus is given by the rules considered so far,
that is, it is given by the propositional rules, the parameter extensionality rule,
the rules of quantification, the cut rule with cut-formulae restricted to purely
propositional formulae, the multi-cut rule, and the comprehension rule for purely
propositional formulae.

We assume all our proofs to be tree-like. This is not a restriction, as we only
look at the height (not the size) of proofs.

Immediately by inspection of the rules, we note that weakening is admissible.
This will be used tacitly in the sequel.

Definition 10. An AC0-Tait proof is called w, c-slim, if all formulae occurring
in the proof have size at most w, each multi-cut rule has weight at most c, and
each comprehension rule has at most c extension variables.

We write �hw,c Γ to denote that Γ has an AC0-Tait proof of height h that is
w, c-slim.

The calculus AC0-Tait is our analogue to what in usual proof theoretic investi-
gations corresponds to cut-free proofs. So we also consider a variant with proper
cuts. In Section 5 we will show how they can be eliminated.

Definition 11. If C is a set of formulae that contains all the purely propositional
formulae and is closed under substitution of propositional atoms for propositional
atoms we define the calculus “AC0-Tait with C-cuts” to be AC0-Tait, but with
the cut rule liberalised to formulae in C.

We write d �hC;w,c Γ to denote that d is an AC0-Tait with C-cuts proof of Γ
of height h that is w, c-slim.

Definition 12. The size sz(A) and depth dp(A) of a formula A are defined to
be the number of occurrences of atoms and connectives in A, and the length
of a longest path in the syntax tree of A, respectively. In particular, dp(T) =
dp(p) = dp(αk )℘) = 1, dp(

∨
k
)A) = 1 + max{dp(Ai) | 1 ≤ i ≤ k}, sz(T) = sz(p) =

sz(αk )℘) = 1, sz(
∨

k
)A) = 1 +

∑
1≤i≤k sz(Ai).

By a simple induction on A one shows

Proposition 13. �O(dp(A))
sz(A),0 A,¬A

A reader familiar with theories [4] like V 0 will note that proofs in V 0 translate
into families of AC0-Tait proofs of constant height. In fact, ΔB

0 -comprehension
in V 0 can be translated using the comprehension rule in AC0-Tait as discussed
after Definition 8. The induction implicit in the | · |-function can be handled by
the multi-cut rule, compare Remark 7. “Wide” conjunction and disjunction and
quantifying blocks of propositional variables with their corresponding rules are in
one-to-one correspondence with first and second order quantifiers in two-sorted
Bounded Arithmetic.
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3 On Evaluating Circuits

We consider the problem of proving that a circuit, possibly with oracle gates,
can be evaluated.

Definition 14. Let C be a circuit with nodes n1, . . . , nk. Then we define the
evaluation formula associated with C as the formula ΨC()p) where p1, . . . , pk are
propositional variables associated with nodes n1, . . . , nk, respectively. ΨC is the
conjunction of the conditions for each node. If the node i is an ∧-gate, then the
associated condition is

pi ↔
∧



pi1 . . . pi�

where ni1 , . . . , ni� are the inputs for node i; the condition for an ∨-gate is similar.
In the special cases of an ∧ or ∨-gate without inputs, we use the constants T
and F, respectively.

For an oracle gate, the condition is

pi ↔ α(pi1 , . . . , pi�)

where, again, ni1 , . . . , ni� are, in that order, the inputs to node i. Similarly for
a negated oracle gate.

It shouldbenoted thatΨC is a formula of constant depth, irrespectively of the shape
of the circuit. However, as we shall see, the height of the proof needed to prove that
this circuit can be evaluated depends on the actual structure of the circuit.

Lemma 15. If C is a circuit of height h, then there is a proof of height h+O(1)
for ∃k)p ΨC()p ).

Proof. For 0 ≤ � < h let p()
i1
, . . . , p

()
ik�

be the variables associated with the nodes

of level �. So a variable p()
i depends only on variables p(′)

j for some �′ < �. We

write C()
i for the condition associated with p()

i . Then the derivation

. . . p
()
i ↔ C

()
i ,¬(p()

ij
↔ C

()
ij

) . . .
(1 ≤ � < h)
(0 ≤ j < k) ∧

ΨC ,¬()p (h) ↔ )C (h)), . . . ,¬()p (2) ↔ )C(2)),¬()p (1) ↔ )C(1))
(∃k)

∃k)p ΨC ,¬()p (h) ↔ )C(h)), . . . ,¬()p (2) ↔ )C(2)),¬()p (1) ↔ )C (1))
(comp)

∃k)pΨC ,¬()p (h) ↔ )C(h)), . . . ,¬()p (2) ↔ )C(2))
(comp)

. . .
(comp)

∃k)p ΨC ,¬()p (h) ↔ )C(h))
(comp)

∃k)pΨC

is as desired.
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4 Sequential Iteration in Quantified Propositional Logic

For n a natural number we write [n] for the set {0, 1, . . . , n− 1}. That is, in set
theoretic terms, [n] = n. If A and B are sets we denote by f : A ⇀ B that f is a
partial function from A to B. In other words, f is a function, its domain dom(f)
is a subset of A and its range rng(f) is a subset of B.

By abuse of notation we identify a list 〈℘0, . . . , ℘n−1〉 ∈ {T,F}n of n boolean
values with an element of [2n] in the following way, assuming the n is understood
from the context. 〈℘0, . . . , ℘n−1〉 =

∑n−1
i=0 χ℘i · 2i, where we set χT = 1 and

χF = 0.
For the rest of this section we assume that n is big enough, so that n+ log(n)

and 2n are different. Note that this is the case if n ≥ 1. The intended meaning
of αn+log n and α2n is that they fix the values of a function f : [2n] → [2n] in
the following way: αn+logn(i, x) is true iff the i-th bit of f(x) is 1, and α2n(i, x)
is true iff f i(0) = x, where f i(0) is the result of computing the ith iterative of
f on 0. Storing f by its bitgraph αn+logn automatically guarantees that a total
function of [n] is described, a property which would otherwise require adding
more complex quantification to our principle.

Definition 16. We write “f(p1, . . . , pn ) = q1, . . . , qn ” for
∧

i<n(qi ↔ αñ(i, )p ))
where ñ = n+ log(n). We write “)p = )q ” for

∧
i<n(pi ↔ qi)

Definition 17. We write “fp1,...,pn(0) = q1, . . . , qn ” for α2n()p, )q).

It should be noted that “f(0 ) = )q ” and “f1(0) = )q ” are not only different
formulae, but are not even logically equivalent.

Definition 18. We write “p0, . . . , pn−1 = q0, . . . , qn−1 +1” for the obvious AC0-
formulation of the successor relation, that is, for

∨

i

(
∧

j<i

pj ∧ ¬pi ∧
∧

j<i

¬qj ∧ qi ∧
∧

j>i

(pj ↔ qj)) .

Fix � ≤ n. Our iteration principle will express that α2n stores the graph of
i �→ f i(0) for i = 0, . . . , �. Using the common idea that ∃x.f i(0) = x expresses
that f i(0) can be computed, we can argue as follows. If f0(0) can be computed
but f (0) cannot, then there must be some i such that f i(0) can be computed
but f i+1(0) cannot. The crux is now that this can be expressed using existential
quantifiers only, which makes use of the trick that we are storing f by it’s bit-
graph. If f0(0) = 0 and no m exists with f (0) = m, then there are m,m′, i, i′

with i′ = i+ 1 and f i(0) = m and f(m) = m′ and not f i
′
(0) = m′. Prenexing

this description and identifying the two independent occurrences of m gives us
the following iteration formula and principle.

Definition 19. The n, �-iteration formula Φn, is the following purely proposi-
tional formula

Φn,()p, )p ′, )q, )q ′) ≡
“f (0) = )p ” ∨ ¬“f0(0) = 0 ”
∨ (“)q ′ = )q + 1” ∧ “f'q(0) = )p ” ∧ “f()p ) = )p ′ ” ∧ ¬“f'q ′

(0) = )p ′ ”)
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The n, �-iteration principle is the formula

∃4n)p)p ′)q)q ′. Φn,()p, )p ′, )q, )q ′) .

Definition 20. A partial propositional assignment is a finite partial mapping
from the propositional variables to {T,F}.

A partial parameter assignment is any partial mapping (not necessarily finite)
from atomic parameters αk()℘), with ℘i ∈ {T,F}, to {T,F}.

In the context of propositional logic, we use “valuation” as another word for par-
tial (propositional or parameter) assignment. We use η to range over valuations.
In accordance with set theoretic notions we write the empty valuation as ∅.

Definition 21. A quantified propositional formula is α-free, if it does not con-
tain any propositional parameter αn, for any n. It is called closed, if it does not
contain any free propositional variables.

Note that any closed, α-free quantified propositional formula has a standard
truth value T of F in the obvious way.

Definition 22. If A is a quantified propositional formula and η a partial propo-
sitional assignment, we define Aη by induction on A. For p a propositional vari-
able with p ∈ dom(η) we set pη ≡ η(p) and p̄η ≡ ¬η(p). For p �∈ dom(η) we
set pη ≡ p and p̄η ≡ p̄. The remaining cases are defined homomorphically, e.g.,
(
∧

k
)A)η ≡

∧
k
)Aη. In particular αk(℘1, . . . , ℘k)η ≡ αk(℘1η, . . . , ℘kη).

If A is a closed purely propositional formula and η a partial parameter assign-
ment, we define Aη by induction on A. For αk()℘) with αk()℘) ∈ dom(η) we set
(αk )℘)η ≡ η(αk()℘)) and (ᾱk )℘)η ≡ ¬η(αk()℘)). Otherwise we set (αk )℘)η ≡ αk()℘)
and (ᾱk )℘)η ≡ ᾱk()℘). The remaining cases are defined homomorphically.

If Γ = {A1, . . . , Ak} is a set of formulae we write Γη for {A1η, . . . , Akη}.

Lemma 23. If η ⊂ η′ are partial propositional assignments and A is a quantified
propositional formula such that Aη is closed, then Aη ≡ Aη′.

If η ⊂ η′ are partial parameter assignments and A is a closed purely proposi-
tional formula such that Aη is α-free, then Aη ≡ Aη′.

Definitions 24 and 26 encode the crucial idea of our proof of the boundedness
theorem (Theorem 32). Eventually we will be working upwards through a single
path of a given proof, and partially define a function f : [2n] ⇀ [2n] in order to
falsify all quantifier free formulae on this path. We want to do this in such a
way, that, at level h, only 0, f(0), . . . , fh−1(0) are defined. But, to assign a truth
value to a quantifier free formula, we not only have to set the parameter bits
that encode the relation “f(x ) = y ”, but also those that encode the iterations
of f of the form “fk(0) = y ”.

The idea is to assign them values consistent with what we have so far and also
consistent with our strategy on how we plan to extend f . As we want to keep
fh(0) undefined, all the values in dom(f) are “forbidden” anyway for the next
extension of f . Note that, if f i(0) is defined and f i(0) = f j(0) for some i < j,
then all the values fk(0) are already defined.
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Definition 24. A partial function f : [2n] ⇀ [2n] is called �-sequential if for
some k ≤ � it is the case that 0, f(0), f2(0), . . . , fk(0) are all defined, but fk(0) �∈
dom(f).

Example 25. The empty function is �-sequential for any � ∈ N. If f is a partial
function with f(0) = 0 then f is not �-sequential for any �.

Definition 26. If n ∈ N is a natural number and f : [2n] ⇀ [2n] a partial
function, we associate to f , or actually to the pair n, f , a partial parameter
assignment ηf as follows.

For j ∈ [n], x ∈ [2n] with f(x) defined, say f(x) = 〈)r 〉 ∈ [2n], we set
ηf (αn+log(n)(j, x)) = rj . Otherwise ηf (αn+log(n)(j, x)) is undefined.

For x, � ∈ [2n] we set α2n(�, x) = T if f (0) is defined and equal to x; otherwise
we set α2n(�, x) = F if x ∈ dom(f); otherwise α2n(�, x) is undefined.

For k �∈ {2n, n + log(n)} we set ηf (αk()℘)) arbitrarily, say F. Also, if )p ∈
{T,F}logn \ [n], we set αn+log n()p, )q) arbitrarily, say F.

“Good extensions” of partial functions are those that comply with the above
idea, that is, those that do not assign new values that are already in the domain.

Definition 27. If f, f ′ : [2n] ⇀ [2n] are partial functions, and f ⊂ f ′ then f ′ is
called a good extension of f , if ∀x ∈ dom(f ′)(x ∈ dom(f) ∨ f ′(x) �∈ dom(f)).

Remark 28. If f ⊂ f ′ and f ′ ⊂ f ′′ are good extensions, then so is f ⊂ f ′′.

Proposition 29. If f ⊂ f ′ is a good extension, then ηf ⊂ ηf ′ .

Lemma 30. Let n ∈ N and f : [2n] ⇀ [2n] be an �-sequential partial function.
Moreover, let M ⊂ [2n] such that |dom(f) ∪M | < 2n. Then there is an (�+ 1)-
sequential good extension f ′ of f with dom(f ′) = dom(f) ∪M .

Proof. Let a ∈ [2n] \ (M ∪ dom(f)). Such an a exists by our assumption on the
cardinality of M ∪ dom(f). Let f ′ be f extended by setting f ′(x) = a for all
x ∈M \ dom(f). This f ′ is as desired.

Indeed, assume that 0, f ′(0), . . . , f ′+1(0), f ′+2(0) are all defined. Then, since
a �∈ dom(f ′), all the 0, f ′(0), . . . , f ′+1(0) have to be different from a. Hence these
values have already been defined in f . But this contradicts the assumption that
f was �-sequential. ��

Lemma 31. For every closed, purely propositional, formula A of size � there is
a set M ⊂ [2n] such that |M | ≤ � and for every function f with M ⊂ dom(f) it
holds that Aηf is α-free.

Proof. LetM be the set of allx ∈ [2n] such that an atom of the formαn+log(n)(j, x)
or α2n(k, x) occurs in A.

Note that x ∈ dom(f) forces ηf (α2n(k, x)) to have a definite value (F unless
fk(0) = x, in which case it would be T). ��
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Theorem 32. Let k, n, w, c be natural numbers with c · w ≥ 2. Assume �hw,c Γ
with Γ = Δ, ∃4n)rΦn,()r), where Φn, is the n, �-iteration formula. Let η be a
partial propositional assignment and f : [2n] ⇀ [2n] be k-sequential. Assume
|dom(f)| + cwh < 2n. If Δηηf is purely propositional, closed, α-free, and false
then � ≤ k + h.

The special case Δ = ∅, η = ∅, f = ∅ and k = 0 yields

Corollary 33. If �hw,c ∃4n)rΦn,()r) and cwh < 2n for some c, w with cw ≥ 2
then h ≥ �.

Proof (of the theorem). We argue by induction on h with case distinction ac-
cording to the last rule of the proof.

The last rule cannot be a propositional axiom, as axioms cannot have
∃4n)rΦn,()r) as a main formula; however, all the formulae in Δηηf are false so
Δ cannot be a tautology, as it would have to be, as the calculus is sound. In
the case of an

∨
k-inference apply the induction hypothesis, in the case of an∧

k-inference, the induction hypothesis is applicable to at least one of the sub-
derivations. The last rule cannot be an ∀j -rule as this would require a quantified
formula in Δ.

If the last rule is a multi-cut rule

. . .Γ,Δi . . .
Γ

we know, since the proof is w, c-slim, that
⋃

iΔi contains at most c formulae of
size at most w. Let η′ ⊃ η such that all Δiη

′ are closed. Let M be the union of
the sets asserted by Lemma 31 for the formulae in

⋃
iΔiη

′. Then |M | ≤ c ·w. We
extend f in a good way to some (k + 1)-sequential f ′ with dom(f ′) = dom(f) ∪
M . Noting that all the Δiη

′ηf ′ are sets of α-free, closed, purely propositional
formulae we can assign them truth values. Since, by cuts we can derive the
empty sequent from the sets Δi, and hence also from the sets Δiη

′ηf ′ , one of
them has to contain only false formulae. Apply the induction hypothesis to this
subderivation.

The case of a cut rule is similar, but easier.
Assume that the last rule was a parameter extensionality rule as follows.

Γ, αk(℘1, . . . , ℘j) . . .Γ, ℘i ↔ ℘′i . . . (1 ≤ i ≤ j)
Γ, (αk(℘′1, . . . , ℘′k))

Extend η to some η′ assigning values to all the )℘. If for some 1 ≤ i ≤ j we
have ℘η′ �= ℘′η′ we can apply the induction hypothesis to the corresponding
subderivation. Otherwise (αk()℘ ))η′ηf ≡ (αk()℘ ′))η′ηf and we can apply the
induction hypothesis to the first subderivation.

Assume that the last inference rule was an ∃j-rule.

Γ, Φn,()℘, )℘ ′, )℘ ′′, )℘ ′′′) ∃4n
Γ
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We can extend η to η′ such that there are natural numbers m,m′, i, i′ such that
)℘η′ = m, )℘ ′η′ = m′, )℘ ′′η′ = i and )℘ ′′′η′ = i′. If � ≤ k there is nothing to show.
Otherwise, we will argue as follows that Φn,(m,m′, i, i′)ηf ′ can be falsified by
choosing an appropriate (k+1)-sequential good extension f ′ of f . Since � > k,
for every good (k+1)-sequential extension f ′ of f we have f ′(+1)(0) undefined.
Hence for any such f ′ with m ∈ dom(f ′) we know that f ′() is either undefined
or different from m (for otherwise f ′(+1)(0) would be defined). In either case
ηf ′(α2n(�,m)) = F. Recall that adding a valuem to the domain of f ′ ensures that
ηf ′(α2n(�,m)) has a definite value. The second disjunct ¬“f0(0) = 0 ” is falsified
by ηf ′ for any f ′. For the last disjunct “i′ = i + 1” ∧ “f i(0) = m ” ∧ “f(m ) =
m′ ” ∧ ¬“f i′(0) = m′ ”, we may assume that i′ = i + 1, for otherwise it is
falsified anyway. For any f ′ with m,m′ ∈ dom(f ′) we know that ηf ′ assigns
definite truth values to “f i(0) = m ”, “f(m ) = m′ ”, and “f i

′
(0) = m′ ”. If

the first two conjuncts are assigned T, than this can only be if f ′i(0) = m and
f ′(m) = m′. But in this case f ′i+1(0) = m′, so ¬“f i+1(0) = m′ ” is assigned
F. Altogether we can take any (k+1)-sequential good extension f ′ of f with
dom(f ′) = dom(f) ∪ {m,m′}. Then Φn,()℘, . . .)η′ηf ′ is α-free, closed, purely
propositional and false and we can apply the induction hypothesis (recalling
that we assumed wc ≥ 2).

The last remaining case is that the last rule was a comprehension rule

Γ,¬(p1 ↔ ϕ1), . . . ,¬(pj ↔ ϕj)
Γ

where the ϕi are purely propositional, the )p are eigenvariables, and, since the
proof is w, c-slim, j ≤ c. Let η′′ ⊃ η be such that all ϕiη′′ are closed. Let
Mi be the set asserted by Lemma 31 for ϕiη′′. Extend in a good way f to a
(k+1)-sequential f ′ with dom(f ′) = dom(f) ∪

⋃
iMi. Due to the eigenvariable

condition we can assume without loss of generality that )p �∈ dom(η′′). Extend η′′

to η′ by setting pi to the truth value of ϕiη′′ηf ′ . We then can apply the induction
hypothesis.

This finishes the proof. ��

As a proof complexity consequence of the above theorem we can make the fol-
lowing observation.

Corollary 34. There is a family of polynomial size Σq
1(α)-formulae, i.e., for-

mulae of the shape of existentially quantified purely propositional formulae, such
that every AC0-Tait proof with polynomially branching rules and polynomial size
formulae requires exponential height.

Any proof of this family requires exponential size.

Proof. As Corollary 33 shows, the family (∃4n)rΦn,2n−1()r))n∈N is as desired. It
should be noted that these formuale indeed only grow polynomially, as, of course,
the number 2n − 1 can be represented by n bits. ��
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5 Cut-Elimination

We now show how cuts on more complicated formulae can be reduced to
quantifier-free cuts. We will obtain the typical increase in height occurring in
proof-theoretic cut-elimination.

Definition 35. A substitution σ is called an atomic substitution, if for every
propositional variable p we have σ(p) ∈ A. In other words, a substitution is
atomic, if the range only contains propositional atoms.

Lemma 36. If �hC;w,c Γ then �hC;w,c Γσ for every atomic substitution σ.

Lemma 37. If �hC;w,c Γ, ∀k)pA()p), then �hC;w,c Γ,A()℘) for arbitrary propositional
atoms )℘.

Proof. Induction on the derivation. We can identically reproduce any rule that
does not have ∀k)pA()p) as main formula.

In case Δ, ∀k)pA()p) was concluded from Δ, ∀k)pA()p), A()a) with pairwise dis-
tinct eigenvariables )a, we may, by Lemma 36, assume without loss of general-
ity that the )a are disjoint from )℘. First apply the induction hypothesis to the
premise, obtaining Δ,A()℘), A()a) and then apply Lemma 36 to obtain Δ,A()℘).
Note that the eigenvariable property ensures that Δ is not affected by this
substitution. ��

Lemma 38. Assume A ∈ C. If �hC;w,c Γ, ∀k)pA()p) and �h′

C;w,c Γ, ∃k)p¬A()p) then
�h+h′

C;w,c Γ .

Proof. Let )q be new and pairwise distinct variables. By Lemma 37 we get
�hC;w,c Γ,A()q). Now argue by Induction on the second derivation, or, equiva-
lently, by induction on h′. Every rule of the second derivation can be reproduced
identically, except for an ∃k-introduction with conclusion ∃k)p¬A()p).

So assume that �h
′′+1
C;w,c Γ, ∃k)p¬A()p) was concluded from �h′′

C;w,c
Γ, ∃k)p¬A()p),¬A()℘) with the )℘ necessarily propositional atoms, by the re-
striction of the quantification rules (Definition 4). First apply the induction
hypothesis to �h′′

C;w,c Γ, ∃k)p¬A()p),¬A()℘) and obtain �h
′′+h
C;w,c Γ,¬A()℘). Also,

apply Lemma 36 to �hC;w,c Γ,A()q) and obtain �hC;w,c Γ,A()℘) using that the )q
are fresh, i.e., in particular not free in Γ . Then conclude �h

′′+h+1
C;w,c Γ by a cut on

A()℘) which is allowed as A ∈ C and C is closed under atomic substitutions. ��

Corollary 39. If �h∃C;w,c Γ then �2h

C;w,c Γ where ∃C = C∪{∃k)pA()p) | A()p) ∈ C}.

6 Circuit Evaluation and Iteration

We now have all the preparations needed to show the following lower bound.
Consider a proof that a circuit can be evaluated. If the circuit has height h, then
the proof has to have height at least h−O(1).
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Obviously, a circuit of height h can compute the h’th iterate of the function
given by α. From the fact that this circuit can be evaluated, we can conclude
that the h-iteration principle holds.

In the following let Ch be the circuit canonically iterating the function given
by the oracle. We also assume the size parameter n to be understood; we set
ñ = n+ logn. Immediately from the definition we get

Proposition 40. ΨCh
()w) is the conjunction of the clauses w(0)

j ↔ F and the

conjuncts “f()w() ) = )w(+1) ”. The latter is built of the formulae w
(+1)
j ↔

αñ(j, )w()) of 0 ≤ � < h− 1 and 0 ≤ j < n.

Proposition 41. sz(ΨCh
) ∈ O(n · h) and dp(ΨCh

) ∈ O(1).

For 1 ≤ � < n we set Δ ≡ ¬“f −1(0) = )w(−1) ”, “f (0) = )w() ”. Recall
that “f 'p(0) = )q ” is a shorthand for α2n()p, )q). So, by resolution the Δ imply
¬“f0(0) = )w(0) ”, “fh(0) = )w(h) ”.

Proposition 42. If i ∈ [n−1] and )p = i and )q = i + 1 then �O(1)
O(logn),1 “)q =

)p+ 1”.

Lemma 43. �O(1)
O(nh),1 Δ, ∃4n)uΦn,h()u), ∀h·n )w¬ΨCh

()w) with Φn,h()u) the n, h-
iteration Formula, as defined in Definition 19.

Proof. First note, that there are constant height proofs of the following sequents.

– “f()w(−1) ) = )w() ”,¬ΨCh
()w)

– “f −1(0) = )w(−1) ”,¬“f −1(0) = )w(−1) ”
– “f (0) = )w() ”,¬“f (0) = )w() ”
– “(�+ 1) = �+ 1”

Therefore applications of an
∧

4-rule followed by an ∨-rule and an ∃4n-rule gives
us ∃4n)uΦn,h()u),¬ΨCh

()w), Δ from where we get the desired derivation by an
∀nh-rule.

Corollary 44. �O(1)
O(nh),O(h) ∃4n)uΦn,h()u), ∀h·n )w¬ΨCh

Proof. Apply a mutli-cut rule to the derivations of Lemma 43 to obtain¬“f0(0) =
)w(0) ”, “fh(0) = )w(h) ”, ∃4n)uΦn,h()u), ∀h·n )w¬ΨCh

()w). Two∨-rules and an ∃4n-rule
finish the proof.

Theorem 45. There are natural numbers c, C such that forall sufficiently large
n, h whenever c2 · h2n < 2n and �h′

c·nh,ch ∃nh )wΨCh
()w) then h′ ≥ h− C.

Proof. Assume �h′

w̃,c̃ ∃nh )wΨCh
. By Corollary 44 we have (for sufficiently large

n) a derivation �c2c1nh,c1h ∃4n)uΦn,h()u), ∀hn )w¬ΨCh
. Therefore, by Lemma 38, we

get �h
′+c2

max{w,c1nh},max{c̃,c1h} ∃4n)uΦn,h()u). So, by Corollary 33, we get h′+c2 ≥ h,
provided max{w̃, c1nh} ·max{c̃, c1h} < 2n.

An immediate consequence of Theorem 45 is that a proof of ΨCh
requires height

h−O(1), for h growing sub-exponentially with n.
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Abstract. The Prover/Delayer game is a combinatorial game that can
be used to prove upper and lower bounds on the size of Tree Resolution
proofs, and also perfectly characterizes the space needed to compute
them. As a proof system, Tree Resolution forms the underpinnings of all
DPLL-based SAT solvers, so it is of interest not only to proof complexity
researchers, but also to those in the area of propositional reasoning. In
this paper, we prove the PSPACE-Completeness of the Prover/Delayer
game as well as the problem of predicting Tree Resolution space require-
ments, where space is the number of clauses that must be kept in memory
simultaneously during the computation of a refutation. Since in practice
memory is often a limiting resource, researchers developing SAT solvers
may wish to know ahead of time how much memory will be required for
solving a certain formula, but the present result shows that predicting
this is at least as hard as it would be to simply find a refutation.

1 Introduction and Motivation

The Tree Resolution (T-RES) proof system has been studied extensively, and
is understood quite well. Its algorithmic incarnation, DPLL, forms the basis
of many SAT-solvers including clause learning algorithms. Any lower bounds
proved for T-RES immediately imply lower bounds for real-world DPLL algo-
rithms. However, compared with Resolution proof size, the amount of space
needed to compute a proof has not been studied nearly as extensively. The usual
definition of a Resolution proof is that it is a simple sequence of clauses, but we
can redefine this so that only a small number of clauses are stored in a working
memory space, typically much smaller than the size of the proof itself.

The problem of determining the space required for Resolution proofs seems
to have been suggested for the first time by Armin Haken in 1998, and was
explored in a paper by Alekhnovich, Ben-Sasson, Razborov and Wigderson [1]
and independently by Esteban and Torán [7]; Ben-Sasson proved an important
tradeoff between Resolution size and space in [3]. In addition, a number of other
results relating Resolution space and width are known [2,11].

� The authors gratefully acknowledge the support of NSERC and the University of
Toronto Department of Computer Science.

J. Duparc and T.A. Henzinger (Eds.): CSL 2007, LNCS 4646, pp. 527–541, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



528 A. Hertel and A. Urquhart

From a practical point of view, DPLL and clause learning algorithms have
been highly successful at solving SAT and SAT-related problems. The main
limiting factor on these algorithms is space, namely the size of the cache used
for memoization. This has inspired much research into methods for pruning space
in a Resolution search. Thus there are both practical and theoretical motivations
for understanding Resolution space as a resource.

In this paper we prove that for T-RES, determining clause space requirements
is PSPACE-Complete, which unfortunately implies that computing the T-RES
space requirements for a formula is at least as hard as actually refuting it, and
shows that it is therefore probably not feasible for researchers working with
DPLL-based SAT solvers to predict a formula’s memory needs. In addition, there
are many formulas on which these SAT solvers fail, and it would be very useful
to be able to tell ahead of time if this will be the case. If there was any hope
of using T-RES space bounds to predict this, then the present result casts some
serious doubt on that plan.

The key to our main theorem is the intimate connection between Resolution
space and games, and we combine three previous results and ideas in order
to prove that both the Prover/Delayer game and T-RES clause space problem
are PSPACE-Complete. The high-level idea behind this paper is as follows:
From [7], Prover/Delayer number is known to equal T-RES clause space, and
from [10], pebbling Lingas circuits is known to be PSPACE-Complete. But the
former deals with formulas, and the latter uses circuits, so we use pebbling
contradiction formulas to bridge this gap. Specifically, we give tight bounds
relating the black pebbling number of any Lingas circuit C to the Prover/Delayer
number of the formula Peb2(C), thereby proving the PSPACE-Completeness of
the Prover/Delayer game (and T-RES clause space by the equivalence from [7]).

2 Definitions

We assume that the reader is familiar with basic proof complexity, circuit com-
plexity, general complexity theory, and use [5] as our standard reference. By a
DAG we mean a directed acyclic graph in which all nodes except source nodes
have fan-in two, but unbounded fan-out, and there is a unique node (the sink,
target or output node) with fan-out zero. A monotone circuit is defined as a DAG
in which all nodes except the sources are labelled with AND or OR.

2.1 Resolution Space

The definition of T-RES clause space requires a non-standard definition of T-RES
proof that depends on the notion of configuration:

Definition 1 (Configuration-Style T-RES Proof). A configuration C is a
set of clauses. The sequence of configurations π = C0,C1, ...,Ck is a T-RES
proof of C from the formula F if C0 = ∅, C ∈ Ck, and for each i < k, Ci+1 is
obtained from Ci by deleting one or more of its clauses, adding the resolvent of
two clauses of Ci and deleting both parent clauses, or adding one or more
of the clauses of F (initial clauses).
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This leads us to our definition of space. Intuitively, space is the amount of mem-
ory required in order to compute π:

Definition 2 (Clause Space). Let F be a set of clauses and π be a configuration-
style T-RES proof of clause C from F . The tree clause space of π, denoted TCS(π)
is the maximum number of clauses in any configuration of π. The tree clause space
of resolving C from F , denoted TCS(F �T-RES C), is the minimum TCS(π) over
all T-RES proofs π of C from F .

2.2 Pebbling Circuits and Games

The investigation of Resolution space is closely associated with the well-known
pebbling game and pebbling number of a DAG, originally explored in [6] as a
means of investigating bounds on storage requirements.

We define the generalized black pebbling game as a single-player game in which
the goal is to ‘pebble’ the target node of a monotone circuit C. The game has the
following rules: It starts with no pebbles on the circuit. At any point, the player
may place a pebble onto any source node, or remove a pebble from any node. For
any AND gate v, if both of v’s immediate predecessors have pebbles on them,
then the player may place a pebble on v, or slide a pebble from a predecessor to
v. Similarly, for any OR gate v, if at least one of v’s immediate predecessors has
a pebble on it, then the player may place a pebble on v, or slide a pebble from
a predecessor to v. The game ends once the target node has a pebble on it.

Most of the black pebble games found in the literature can be viewed as
restricted versions of this generalization. In particular, if all gates in the circuit
are AND gates, then this game is equivalent to the original pebbling game on
DAGs defined by Cook and Sethi [6].

Definition 3 (Black Pebbling Number of a Monotone Circuit). The
‘black pebbling number’ of a monotone circuit C, denoted B-Peb(C), is the min-
imum number of pebbles needed in order to pebble C’s target node using the above
rules.

Each version of the pebbling game can either be defined with or without sliding;
for the purposes of this paper, we shall always allow sliding.

2.3 Pebbling Contradictions

The formulas we call ‘pebbling contradictions’ are based on the various forms of
the pebbling game. Ben-Sasson gives a brief history of these formulas in [3]. The
particular contradictory formulas we employ here are a generalization of those
used by Ben-Sasson, Impagliazzo and Wigderson to give a near-optimal separa-
tion of tree-like and general resolution [4]. They can be interpreted as making
the following contradictory claim: “The input nodes of a monotone circuit C are
all set to true, but the output node is set to false.”, where we represent “node v
is set to true” by the disjunction v0 ∨ v1.
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Definition 4 (Pebbling Contradictions Based on Circuits). Let C be a
monotone circuit. The set of clauses Peb2(C) contains the following clauses:

1. For each source node s, the clause {s0, s1};
2. For each AND node c with immediate predecessors a and b, four prop-

agation clauses {¬a0,¬b0, c0, c1}, {¬a0,¬b1, c0, c1}, {¬a1,¬b0, c0, c1}, and
{¬a1,¬b1, c0, c1};

3. For each OR node c with immediate predecessors a and b, four propagation
clauses {¬a0, c0, c1}, {¬b0, c0, c1}, {¬a1, c0, c1}, and {¬b1, c0, c1};

4. For the target node t, two singleton clauses {¬t0} and {¬t1}.

2.4 The Prover/Delayer Game

The Prover/Delayer game (P/D game), described in [4,12], is a combinatorial
game between two players, the ‘Prover’, and the ‘Delayer,’ and is played on an
unsatisfiable CNF formula F . The goal of the Prover is to falsify some initial
clause of F . Since the formula is unsatisfiable, this is inevitable.

The game proceeds in rounds. Each round starts with the Prover querying the
value of a variable. The Delayer can give one of three answers: ‘True’, ‘False’, or
‘You Choose’. If the Delayer says ‘You Choose’, then the Prover gets to decide
the value of that variable, and the Delayer wins one point. This is the only way in
which points can be scored. The game finishes when any clause has been falsified.
The Delayer’s aim is to win as many points as possible, while the Prover aims
to minimize this quantity.

Definition 5. Let F be an unsatisfiable CNF formula. The Prover/Delayer
number of F , denoted PD(F ), is the greatest number of points the Delayer can
score on F with the Prover playing optimally.

3 Results Related to Resolution Space

3.1 Space and Games

The pebbling game is closely related to Resolution clause space. Let F be any
arbitrary unsatisfiable formula, π a configuration-style RES refutation of F , and
G the DAG underlying the structure of π. The clause space used in computing
π is exactly equal to B-Peb(G). More specifically, CS(F �RES ∅) is equal to the
pebbling number of the DAG with the smallest pebbling number of all DAGs
underlying valid RES refutations of F . Of course, the analogous idea holds for
T-RES and tree clause space.

Esteban & Torán proved that the tree clause space of any unsatisfiable formula
is essentially the same as its Prover/Delayer number:

Theorem 1 ([8]). For any unsatisfiable CNF formula F , TCS(F �T-RES ∅) =
PD(F ) + 1.
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In addition to doing some of the pioneering research in the area of Resolution
space, Esteban & Torán also showed that an upper bound on tree clause space
yields an upper bound on the size of T-RES proofs [7]. Combining this with
Theorem 1 and a little extra work shows that an upper bound on the number of
points scored by the Prover immediately gives an upper bound on T-RES size:

Corollary 1. If F is a contradictory formula with PD(F ) ≤ k, then F has a
T-RES proof of size ≤

(
n

k+1

)
.

The P/D game can also be used to give a lower bound on T-RES size; in [4],
Ben-Sasson, Impagliazzo and Wigderson prove that lower bounds on PD(F ) can
be used to prove lower bounds on the size of T-RES proofs:

Theorem 2 ([4]). If the Delayer has a strategy guaranteed to win > k points
on F , then every T-RES refutation of F has size > 2k.

In other words, upper and lower bounds on PD(F ) not only immediately imply
tightly corresponding upper and lower bounds on TCS(F �T-RES ∅), but they
also imply upper and lower bounds for T-RES proof size, showing not only that
the P/D game is intimately connected to the T-RES proof system, but also that
T-RES size and space are closely related.

3.2 Complexity of Pebbling

A number of complexity results involving pebbling are known. In 1978, Andrzej
Lingas proved the following:

Theorem 3 ([10]). Given a monotone circuit C and an integer k, the problem
of determining if C can be black-pebbled with k pebbles is PSPACE-Complete.

Gilbert, Lengauer and Tarjan extended this result to DAGs in 1980:

Theorem 4 ([9]). Given a DAG G and an integer k, the problem of determining
if G can be black-pebbled with k pebbles is PSPACE-Complete.

These results are particularly interesting because the pebbling game only has
one player, whereas most PSPACE-Complete games have two.

4 Main Results

4.1 An Easy Case of the Pebbling Game

Although pebbling circuits is PSPACE-Complete in general, in this section we
define an interesting set of binary DAGs whose pebbling numbers can be com-
puted in polynomial time. To this end, we first need to define the concept of the
pebbling number of a vertex in a graph:

Definition 6 (Pebbling Number of a Vertex). In a DAG, the pebbling num-
ber of a vertex x, Peb(x), is the pebbling number of the subgraph rooted at x, with
x set to be the target node.
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A source node has a pebbling number of 1, while if c has predecessors a and b,
then Peb(c) ≤ max(Peb(a),Peb(b)) + 1. This is because we can always pebble c
with the following strategy: Assuming that Peb(a) ≤ Peb(b), first pebble b using
Peb(b) pebbles, then remove all the pebbles except the one on b, next pebble a
using Peb(a) extra pebbles, then slide the pebble on a to c.

Definition 7 (Increasing DAGs). GI = {G | G is a DAG such that there
is no c ∈ V (G) with predecessors a and b with a, b, and c all having the same
pebbling number}

Although the pebbling game on binary DAGs is PSPACE-Complete in general,
when we restrict ourselves to inputs from GI , the problem becomes much easier:

Theorem 5. Given a binary DAG G ∈ GI and integer k, the problem of deter-
mining if G can be pebbled using at most k pebbles is in P.

Proof: Since the pebbling number of each node in G is uniquely determined by
those of its predecessors, simply start at the source nodes and set their pebbling
numbers to 1. Then find a vertex x for which the pebbling numbers of both
predecessors have been determined (sinceG is a DAG, such a node always exists),
and set x’s pebbling number. Repeat until the target node’s number has been
determined. Clearly this can be done in polynomial time. ��

This gives some insight into why the pebbling game is so difficult. An inspection
of the constructions from both [9] and [10] shows that the graphs resulting from
the reductions contain a large number of vertices that have the same pebbling
numbers as their predecessors, so the obvious algorithm above fails.

4.2 Prover Strategy for the GI DAGs

In this section we describe an efficient Prover strategy for the GI graphs:

Lemma 1. For any binary DAG G ∈ GI with pebbling number k, the Prover
has a strategy limiting the Delayer to at most k = B-Peb(G) points playing on
the formula Peb2(G).

Proof: In the interests of concision, we omit a detailed proof, and instead pro-
vide the following proof sketch: The Prover first labels each node in G with its
pebbling number, and first queries the variables associated with the target. The
Delayer must set them both to False, or else the game is over. The Prover then
follows a path towards the source nodes, forcing the Delayer to set both variables
c0 and c1 associated with each node c on the path to False.

Given any node c on the path, let us suppose that it has both variables c0
and c1 set to False, and that the predecessors of c are a and b. In all cases, it is
possible for the Prover to query the variables associated with a and b in such a
way that sets both a0 and a1, or b0 and b1 to False while giving up at most one
point every time the pebbling number decreases. Eventually the path will reach
a node with two source nodes as its children, in which case it is easy to see that
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the Delayer can win at most 2 more points. Since the Delayer wins at most 1
point every time the pebbling number decreases, and since only 2 points can be
won in the base case, the Prover limits the Delayer to at most B-Peb(G) points,
as required. ��

4.3 Prover Strategy for the Lingas Circuits

Lingas’ 1978 paper [10] shows that the black pebbling game on monotone circuits
is PSPACE-Complete by reducing from the 3-QBF problem with alternating
quantifiers. This is done by taking a formula F and outputting a binary circuit
C and integer k such that F is true if and only if C has a pebbling number of
at most k.

The reduction builds a number of ‘widgets’ based on F . The original example
from [10] can be seen below in Figure 1. The construction includes one widget
for each quantifier, literal, and clause, as well as one pyramid graph that acts as
a conjunction between the clauses. Each clause widget is incident on the widgets
corresponding to the literals contained in the clause. The literal widgets are
shown using shorthand notation; they are the pyramid graphs from [6], and an
example is given in the upper corner of the diagram.

The pebbling number output by the reduction is k = 2U + E + M , where U ,
E, and M are the respective number of universal quantifiers, existential quanti-
fiers, and clauses in F . Intuitively, the reduction works by forcing any pebbling
to simulate a brute force QBF proof system. For each universal quantifier, the
pebbling must travel up both sides, requiring that the entire circuit below that
point be re-pebbled, thereby ensuring that F is true.

We refer to the circuits corresponding to true QBF formulas as the ‘Lingas
circuits’, defined formally as follows:

Definition 8 (Lingas Circuits). CL = {C | ∃ a true 3-QBF formula F with
alternating quantifiers such that applying Lingas’s reduction to F yields the cir-
cuit C}

We shall make use of the PSPACE-Completeness of the Lingas circuits to prove
the PSPACE-Completeness of the P/D game as well as the T-RES clause space
problem. To this end we must first prove that for any Lingas circuit C, when
playing on Peb2(C), the Prover has a strategy limiting the Delayer to at most
B-Peb(C) points. The strategy is quite simple: the Prover first forces the Delayer
to admit that both variables associated with the target node must be False. As
with the GI DAGs, the Prover then proceeds to propagate this ‘Double False’
setting downwards.

We show that it is possible to traverse each existential widget while giving up
at most one point, each universal widget while giving up at most two, and finally
that it is possible to traverse the conjunctive pyramid and derive the ultimate
contradictions while giving up at most M points, where M is the number of
clauses in the formula underlying the circuit.

Each of these steps shall be proven by giving a decision tree showing the order
in which the Prover queries variables. Each branch in this tree shall terminate
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is indicated in the shorthand version.
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Fig. 1. The monotone circuit resulting from applying Lingas’s reduction to the true
formula F = ∃x0∀x1∃x2∀x3∃x4 (x0 ∨ x1 ∨ ¬x2)∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x0 ∨ ¬x3 ∨ ¬x4) ∧
(¬x2 ∨ x3 ∨ x4). An example of a pyramid graph is shown in the upper corner. In this
case k = 2 × 2 + 3 + 4 = 11, but if F were false, then the circuit would require k + 1
pebbles and could not be pebbled using only k.

with the Delayer scoring no more than B-Peb(C) points. A contradiction can be
obtained (thereby ending the game) by falsifying an initial clause of Peb2(C).

The Prover’s strategy is interesting in that whenever the Delayer responds
‘You Choose’ to a query, the Prover shall always respond with ‘True’. Note that
the Delayer has the choice of three different responses after each variable is
queried, but our decision tree only needs to be binary, because if the Prover is
willing to give the Delayer one point by responding to the Delayer’s ‘You Choose’
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answer, then there is no sense in exploring the path in which the Delayer gives
the same answer without winning a point.

Theorem 6. For any binary circuit C ∈ CL with pebbling number k, when play-
ing on the formula Peb2(C), the Prover has a strategy limiting the Delayer to at
most k = B-Peb(C) points.

Proof. The Prover’s strategy proceeds as follows: first query t0 and then t1.
The Delayer must set these variables to False, or else the game is over. The
Delayer has therefore scored no points, and we enter the first quantifier widget
with k points remaining. Next the Prover inductively traverses the quantifier
widgets in order, propagating the ‘Double False’ setting downwards towards the
conjunctive pyramid. The Prover has a strategy that gives up at most one point
while traversing an existential widget, and at most two points when traversing
a universal widget.

The existential widget and the Prover’s strategy for traversing it are shown
in Figure 2. We assume that we have j points remaining before the Delayer
reaches k points, and that both variables associated with either the node di−1

or d′i−1 have been set to False. Decision tree edges are labelled with the different
possibilities at each step during the P/D game; ‘YC,T’ represents the case when
the Delayer says ‘You Choose’, and the Prover replies ‘True’, and ‘F’ represents
the case when the Delayer says ‘False’. Leaves are labelled in the P/D game
outcomes which they lead to; those labelled with numbers represent situations
in which the game is over since an initial clause has been falsified, and the number
indicates how many points were scored. Although we said that the Prover may
give up at most 1 point while traversing this widget, some leaves end with the
Delayer scoring 2 points. This is not a problem because even if this is the final
quantifier widget, the formula has at least one clause, so we have at least one
extra point’s leeway.

The leaf corresponding to both of bi’s variables being set to False corresponds
to the game entering the pyramid graph associated with variable bi that has
pebbling number j. Since each pyramid graph belongs to the GI family, the
Delayer can score at most j points on it by Lemma 1. The remaining leaf is
the one in which the widget has been traversed with only 1 point scored. Note
that this decision tree corresponds to the strategy in which the Prover traversed
the widget while setting one of the variables associated with bi to True and
both of the variables associated with di+1 to False, thereby leading to the next
widget. The case in which the Prover traverses the widget while setting one of the
variables associated with ¬bi to True and both of the variables associated with
d′i+1 to False is completely symmetrical. In other words, the Prover has complete
control over which of the literal widgets is set to True. This is important because
it allows the Prover to set the literal widgets in such a way so as to make the
formula underlying the circuit true.

The universal widget and the Prover’s strategy for traversing it are shown in
Figure 2. We have j points remaining before the Delayer reaches k points, and
both variables associated with either the node di or d′i have been set to False.
Once again, some paths lead to the Delayer scoring 3 points, but this is all right
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Fig. 2. The different widgets from Lingas’s construction together with the decision trees
showing the prover’s strategies for traversing them. Duplicate subtrees are indicated
by having multiple parents.

even if this is the final quantifier widget, since we have at least one point’s leeway.
Also as before, the pyramid graphs corresponding to both the literal widgets and
the oi widget belong to the GI family, so by Lemma 1, the Delayer can score
at most j − 1, j − 1, and j points on them, respectively. Note the two leaves in
which the widget has been traversed with only 2 points scored. In one case, one
of the variables associated with bi is set to True and both variables associated
with di+1 are set to False, and in the other case one of the variables associated
with ¬bi is set to True, and both of the variables associated with d′i+1 are set to
False, thereby leading to the next widget.
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We now show how the Prover traverses the conjunctive pyramid graph. The
apex of the conjunctive pyramid is part of the final quantifier widget, so both
of its variables have been set to False. Since the formula underlying the Lingas
circuit has M clauses and we have successfully traversed all of the clause widgets
while giving up only the minimum number of points, we still have M points
remaining. The conjunctive pyramid required to join M clauses has M −1 AND
gates on its base, and therefore has pebbling number M −1. Let us assume for a
moment that the leaves of the conjunctive pyramid have no children. Since the
pyramid belongs to the GI family, the Prover has a strategy limiting the Delayer
to at most M − 1 points. However, since each of the conjunctive pyramid’s
leaves does have two children, we must explore the decision tree rooted at the
possibility that the two variables associated with a leaf l are both set to False.
Since the Delayer did not say ‘You Choose’ on either of l’s variables, the number
of points scored in setting them both to False is at most M − 2. This is the
worst-case scenario branching down the conjunctive pyramid, so the number of
points scored on all other paths to leaves is strictly less than M − 2.

We therefore have at least 2 points left with which to derive a contradiction
within the clause widgets, and shall show how to force a contradiction given a
conjunction pyramid leaf l that has had both of its associated variables set to
False. This strategy is shown in Figure 2.

A key observation to make is that it is possible for the Prover to traverse
the quantifier widgets such that the literal widgets that are attached to the
existential widgets are set to True in any arbitrary way. Since the formula which
the overall circuit is based on is a true QBF formula F , it is therefore possible
to set them so that each clause widget is incident on at least one literal widget
that has been set to True. This ensures that the Prover’s strategy given by the
decision tree in Figure 2 will always work. Note that the subtrees in the Prover’s
strategy labelled with ∗ may or may not be necessary, depending on which literal
widgets were set to True.

Since each existential and universal widgets can be traversed while only giving
up 1 and 2 points respectively, the conjunctive pyramid can be traversed while
only giving up M − 2 points, and a final contradiction can always be derived
within the clause widgets while giving up at most 2 points, it follows that all of
the above decision trees can be combined to show that the Prover has a strategy
limiting the Delayer to at most B-Peb(C) points, as required. ��

4.4 Delayer Strategy for Monotone Circuits

We now show that for any binary monotone circuit C, when playing the P/D
game on Peb2(C), the Delayer has a strategy that will always win at least B-
Peb(C) points. In [4] the authors give a Delayer strategy that wins at least
B-Peb(G) − 3 points, where B-Peb(G) is defined without sliding. We improve
this argument to show that the Delayer has a strategy that is guaranteed to win
at least B-Peb(G) points, defined with sliding.

In [4], the Delayer maintains a DAG G, with certain nodes marked as source
nodes, and other nodes marked as target nodes. In the improved strategy, which
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applies to the more general case of monotone circuits, the Delayer also maintains
such a marked monotone circuit C, but in addition, certain source nodes have
pebbles on them. Thus at each stage of the game, the Delayer maintains a
structure of the form 〈C, S, T, P 〉, where C is a monotone circuit, S and T are
disjoint subsets of C, and P ⊆ S. By Peb(C, S, T, P ), we mean the pebbling
number of the marked, pebbled circuit 〈C, S, T, P 〉, where the pebbles on the
nodes in P can be used as ‘free pebbles’.

The Delayer’s strategy proceeds as follows: at the start of the game, P is
empty, S is the set of source nodes of the circuit C, and T contains the unique
target node of C. At the start of each round in the game, the Prover queries a
variable vi, associated with a vertex v in the circuit C. The Delayer’s strategy
consists of two stages. In the first stage, the Delayer updates the sets S and T ;
in the second stage, the Delayer answers the Prover’s query, and updates P .

In the first stage, assume that the marked, pebbled circuit at the start of the
round is 〈C, S, T, P 〉; the Delayer updates S and T to S′ and T ′ as follows:

Case 1a: If v ∈ S ∪ T , then set S′ := S, and T ′ := T .

Case 1b: If v �∈ S ∪ T , and Peb(C, S, T, P ) = Peb(C, S, T ∪ {v}, P ), then set
S′ := S and T ′ := T ∪ {v}.

Case 1c: If v �∈ S ∪ T , and Peb(C, S, T, P ) > Peb(C, S, T ∪ {v}, P ), then set
S′ := S ∪ {v} and T ′ := T .

In the second stage of the Delayer’s strategy, the Delayer updates P to P ′,
and responds to the Prover’s query.

Case 2a: If v ∈ S′, and v has no pebble on it, then respond ‘You Choose’, and
place a pebble on v (i.e. P ′ := P ∪ {v}). If v has a pebble on it, then set the
queried variable the value True.

Case 2b: If v ∈ T ′, then set the queried variable to False, and set P ′ := P .

Lemma 2. When the game terminates, Peb(C, S, T, P ) = 0.

Proof. When the game terminates, an initial clause is falsified. Because of the
strategy followed by the Delayer in the second stage of each round, this clause
cannot be a clause associated with one of the initial source nodes of C, nor can
it be the clause associated with the target node of C. Consequently, it must be
a propagation clause associated with a vertex v and its immediate predecessors
u1, u2 if v is an ∧ gate, or just one of its immediate predecessors if v is an ∨ gate.
Let us assume that v is an ∧ gate. Then both variables associated with v must
be set to False, from which it follows that v ∈ T , by Case 2a. If ui is one of the
immediate predecessors of v, one of the two variables associated with ui must
be set to True. By Case 2b, ui cannot be in T , so ui ∈ S. It follows from this
that there must be a pebble on ui. Hence, we can pebble 〈C, S, T, P 〉 by sliding
the pebble on ui to v, showing that Peb(C, S, T, P ) = 0. The second case, where
v is an ∨ gate, proceeds by essentially the same argument. ��
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Lemma 3. If 〈C, S, T, P 〉 is a marked, pebbled circuit, and v a vertex in C, then
Peb(C, S, T, P ) ≤ max{Peb(C, S, T ∪ {v}, P ),Peb(C, S ∪ {v}, T, P ∪ {v}) + 1}.

Proof. We employ the following strategy to pebble T from S, using only the
free pebbles in P . First, pebble T ∪ {v} from S, using Peb(G,S, T ∪ {v}, P )
pebbles. If the result is a pebble in T , then we are through, otherwise the final
configuration has a pebble on v. Simply remove the other pebbles, then pebble
T from S ∪ {v}; this final step uses a total of Peb(C, S ∪ {v}, T, P ∪ {v}) + 1
pebbles. ��

Theorem 7. If at the beginning of a round in the game, the marked, pebbled
circuit is 〈C, S, T, P 〉, then the Delayer can score at least Peb(C, S, T, P ) more
points in the game.

Proof: We argue by induction on the depth of the game tree. Lemma 2 settles
the base case. Assume that the theorem holds for a subtree in which the marked,
pebbled circuit is 〈C, S′, T ′, P ′〉; we wish to show that it holds also for its im-
mediate supertree, associated with the marked, pebbled circuit 〈C, S, T, P 〉. If
Peb(C, S, T, P ) = Peb(C, S′, T ′, P ′), then there is nothing to prove, so we can as-
sume that Peb(C, S, T, P ) > Peb(C, S′, T ′, P ′). By Lemma 3, Peb(C, S, T, P ) =
Peb(C, S′, T ′, P ′)+1. Now consider the round of the game in which the Delayer’s
initial circuit is 〈C, S, T, P 〉, and the final circuit is 〈C, S′, T ′, P ′〉, and the vari-
able queried was vi. If v were in T ′, or if v had a pebble on it at the start of the
round, then Peb(C, S, T, P ) = Peb(C, S′, T ′, P ′). It follows from this that v is in
S′, but does not have a pebble on it at the start of the round, so the Delayer
scores a point during this round. This proves that the condition of the Theorem
also holds for the supertree. ��

Corollary 2. For any monotone circuit C, when playing on the formula
Peb2(C), the Delayer has a strategy that wins at least B-Peb(C) points.

4.5 PSPACE-Completeness of TCSP and P/D Game

This section contains our main result, namely the PSPACE-Completeness of
the T-RES clause space problem as well as the P/D game. The T-RES clause
space problem (TCSP ) asks: Given a formula F and integer k, does F have
a T-RES refutation with clause space at most k? The Prover Delayer game
Problem (PDGAME) asks: Given a formula F and integer k, is PD(F ) at
most k?

The results from the previous sections allow us to prove the PSPACE-
Completeness of TCSP and PDGAME via a straightforward reduction from
the PSPACE-Complete problem of pebbling Lingas circuits. However, before
proving this result we must first give a PSPACE algorithm for them these prob-
lems which uses following Lemma:
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Lemma 4. Every unsatisfiable CNF formula F has a T-RES refutation with
clause space at most n+ 1, where n is the number of distinct variables in F .

Proof. Let F be any arbitrary unsatisfiable CNF formula. Simply take F and
choose some ordering for its n variables. Build a complete DPLL tree for F ,
branching on this ordering. This tree can be viewed as a T-RES proof that can
be pebbled with at most n + 1 pebbles, since any binary tree can be pebbled
with h+ 1 pebbles, where h is the height of the tree. These pebbles correspond
to which clauses need to be kept in memory in order to verify the proof, showing
that for any unsatisfiable F , TCS(F �T-RES ∅) ≤ n+ 1, as required. ��

Lemma 5. TCSP ∈ PSPACE and PDGAME ∈ PSPACE

Proof: Given an input (F, k) we first determine if F is satisfiable. Since SAT ∈
NP andNP ⊆ PSPACE , this is not a problem. If F is satisfiable, then we reject.
If it is unsatisfiable, then we look at k. If k ≥ n + 1, where n is the number of
distinct variables in F , then by Lemma 4 we simply accept. Otherwise F is
unsatisfiable and k ≤ n, so if F has a (configuration style) T-RES refutation π
with TCS(F �T-RES ∅) ≤ k, then each configuration contains at most k clauses.
Since k ≤ n and each clause contains at most n variables, each configuration in
π requires only polynomial space. Although we don’t have access to π, we verify
it as follows: Using a non-deterministic algorithm, start with a configuration
C0 = ∅. Guess configuration C1, check to ensure that it follows from C0 by a
legal tree resolution step, and erase configuration C0. Next, guess configuration
C2, check to make sure that it follows from C1, and erase configuration C1.
Continue this way until Ck has been derived. At any time, there are only two
configurations in memory, but since each configuration uses at most quadratic
space, our computation is inNPSPACE . Finally, we appeal to Savitch’s theorem
to show that the problem of determining whether or not F has T-RES refutation
π with TCS(F �T-RES ∅) ≤ k is in PSPACE, thereby completing our PSPACE
algorithm. By Theorem 1, this immediately implies that PDGAME ∈ PSPACE
as well. ��

We are now ready to prove our main result:

Theorem 8. PDGAME and TCSP are both PSPACE-Complete.

Proof: By Lemma 5, we know that PDGAME ∈ PSPACE . Next we show
that PDGAME is PSPACE-Hard by reducing from black pebbling the Lingas
circuits CL, which proceeds by simply taking the input (C, k), and outputting
(Peb2(C), k). Clearly this is a polytime reduction, and it is easy to see that it
is correct by showing that (C, k) ∈ CL if and only if (Peb2(C), k) ∈ PDGAME:
If (C, k) ∈ CL, then B-Peb(C) ≤ k, so by Theorem 6, PD(Peb2(C)) ≤ k, and
(Peb2(C), k) ∈ PDGAME. On the other hand, if (C, k) /∈ CL, then B-Peb(C) >
k, so by Corollary 2, PD(Peb2(C)) > k, and (Peb2(C), k) /∈ PDGAME.

Therefore PDGAME is PSPACE-Complete, and by Theorem 1 it is easy to
design a PSPACE-Hardness reduction from PDGAME to TCSP as well. ��



Game Characterizations and the PSPACE-Completeness 541

References

1. Alekhnovich, M., Ben-Sasson, E., Razborov, A.A., Wigderson, A.: Space Complex-
ity in Propositional Calculus. SIAM J. of Comp. 31(4), 1184–1211 (2001)

2. Atserias, A., Dalmau, V.: A Combinatorial Characterization of Resolution Width.
In: Proc. of the 18th IEEE Conference on Computational Complexity (2003)

3. Ben-Sasson, E.: Size Space Tradeoffs For Resolution. In: Proceedings of the 34th
ACM Symposium on the Theory of Computing, pp. 457–464 (2002)

4. Ben-Sasson, E., Impagliazzo, R., Wigderson, A.: Near Optimal Separation of Tree-
like and General Resolution. Combinatorica 24(4), 585–604 (2004)

5. Clote, P., Kranakis, E.: Boolean Functions and Computation Models. Springer,
Heidelberg (2001)

6. Cook, S., Sethi, R.: Storage Requirements for Deterministic Polynomial Time
Recognizable Languages. J. of Computer & System Sciences, 25–37 (1976)

7. Esteban, J., Torán, J.: Space Bounds for Resolution. Information and Computa-
tion 171, 84–97 (2001)

8. Esteban, J., Torán, J.: A Combinatorial Characterization of Treelike Resolution
Space. Information Processing Letters 87, 295–300 (2003)

9. Gilbert, J.R., Lengauer, T., Tarjan, R.E.: The Pebbling Problem is Complete in
Polynomial Space. SIAM Journal of Computing 9(3), 513–524 (1980)

10. Lingas, A.: A PSPACE-Complete Problem Related to a Pebble Game. In: Proceed-
ings of the Fifth Colloquium on Automata, Languages and Programming, London,
UK, pp. 300–321. Springer, Heidelberg (1978)

11. Nordström, J.: Narrow Proofs May Be Spacious: Separating Space and Width in
Resolution. In: Proc.of the 38th ACM Symposium on the Theory of Computing
(2006)

12. Pudlák, P., Impagliazzo, R.: Lower Bounds for DLL Algorithms for k-SAT. In:
Proceedings of SODA 2000 (2000)



Continuous Previsions�

Jean Goubault-Larrecq

LSV, ENS Cachan, CNRS, INRIA Futurs
61, avenue du président-Wilson, 94235 Cachan, France

goubault@lsv.ens-cachan.fr

Abstract. We define strong monads of continuous (lower, upper) previsions, and
of forks, modeling both probabilistic and non-deterministic choice. This is an el-
egant alternative to recent proposals by Mislove, Tix, Keimel, and Plotkin. We
show that our monads are sound and complete, in the sense that they model ex-
actly the interaction between probabilistic and (demonic, angelic, chaotic) choice.

1 Introduction

Moggi’s computational λ-calculus [17] has proved useful to define various notions of
computations on top of the lambda-calculus: side-effects, input-output, continuations,
non-determinism [27], probabilistic computation [20] in particular. But mixing monads
is hard, and finding the “right” monad that would combine both non-determinism and
probabilistic choice has taken quite some effort. (We review recent progress below.)

The purpose of this paper is to introduce simple monads that do the job well. These
are monads of continuous previsions, which can be seen as continuation-style monads.
The idea of considering previsions comes from economics and statistics [4,12].

Outline. After stating some required preliminaries in Section 2, we recall the notion
of game introduced in [5], arguing why these are natural extensions of notions of
continuous valuations (∼ measures) that also accommodate demonic and angelic non-
deterministic choice. These notions induce functors on TopTopTop,CpoCpoCpo,PcpoPcpoPcpo (pointed cpos),
but fail to yield monads. We analyze this failure in Section 4 by moving, through a
Riesz-like representation theorem, to the new notions of collinear previsions, and pre-
visions. We then show that indeed previsions yield strong monads, giving a simple se-
mantics to a rich λ-calculus [17] with both probabilistic and non-deterministic choice.
Finally, we show in Section 5 that our monad model is not only sound but complete.

This work is a summary of most of Chapters 10-12 of [6].

Related Work. Finding a monad combining both probabilistic and non-deterministic
choice can be done by using general monad combination principles. The right way to
combine monads in general is open to discussion. Lüth [11] proposes to combine mon-
ads by taking their coproduct in the category of monads. This coproduct exists under
relatively mild assumptions [10]. However, in general the coproduct of two monads is
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an inscrutable object. A simpler, explicit description can be found in specific cases. For
example, when taking coproducts of two ideal monads [2]. In particular, combining
non-blocking non-determinism and probabilistic choice falls into this case. The result-
ing monad is relatively unenlightening, though: it is the monad of all sequences of
choices, both probabilistic and non-deterministic [2, exemple 4.3].

Varacca [25,26] also proposed a monad combining non-determinism with proba-
bilistic choice. Ghani and Uustalu [2] note that the above coproduct monad is close to
Varacca’s synchronization trees. The works closer to ours in computer science are those
of Mislove [16] and Tix [23,24]. While this won’t be entirely obvious from our defini-
tions, we will establish a formal connection between their models and ours (Section 5).
Outside computer science, previsions have their roots in economics and statistics [28].
However, we consider previsions on topological spaces, not just on sets.

This paper can be seen also be seen as a followup to [5], inasmuch as previsions
are strongly tied to notions of convex and concave games. Our previsions can also be
seen as predicate transformers; as such, and modulo minor details, they were discovered
independently by Keimel and Plotkin [9] (K. Keimel, personal communication).

2 Preliminaries

We assume the reader to be familiar with (point-set) topology, in particular topology of
T0 but not necessarily Hausdorff spaces, as encountered in domain theory. See [3,1,15]
for background. Let int(A) denote the interior of A, cl(A) its closure. The Scott topol-
ogy on a poset X , with ordering ≤, has as opens the upward-closed subsets U (i.e.,
x ∈ U and x ≤ y imply y ∈ U ) such that for every directed family (xi)i∈I hav-
ing a least upper bound supi∈I xi inside U , some xi is already in U . The way-below
relation  is defined by x  y iff for any directed family (zi)i∈I with a least up-
per bound z such that y ≤ z, then x ≤ zi for some i ∈ I . A poset is continuous iff
↓↓y = {x ∈ X |x y} is directed, and has y as least upper bound. Then every open U
can be written

⋃
x∈U ↑↑x, where ↑↑x = {y ∈ X |x y}, and each of these sets is open.

Every topological space X has a specialization quasi-ordering≤, defined by: x ≤ y
iff every open that contains x contains y. X is T0 iff ≤ is a (partial) ordering. The spe-
cialization ordering of the Scott topology of a quasi-ordering≤ is ≤ itself. Every open
is upward-closed, and a subsetA ⊆ X is saturated if and only ifA is the intersection of
all opens that contain it; equivalently, iff A is upward-closed in ≤. Let ↑ A denote the
upward-closure of A under a quasi-ordering≤, ↓ A its downward-closure. A T0 space
is sober iff every irreducible closed subset is the closure cl{x} =↓ x of a (unique)
point x. The Hofmann-Mislove Theorem implies that every sober space is well-filtered
[8]: given any filtered family of saturated compacts (Qi)i∈I in X , and any open U ,⋂

i∈I Qi ⊆ U iff Qi ⊆ U for some i ∈ I . In particular,
⋂

i∈I Qi is saturated compact.
X is locally compact iff whenever x ∈ U (U open) there is a saturated compact Q
such that x ∈ int(Q) ⊆ Q ⊆ U . Every continuous cpo is sober and locally compact
in its Scott topology. X is coherent iff the intersection of any two saturated compacts
is compact. (Some authors take X to be coherent iff finite intersections of saturated
compacts are compact. This would imply compactness, which we don’t assume.) A
coherent, well-filtered locally compact space is called stably locally compact. Stably
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compact spaces are those that are additionally compact, and have a wonderful theory
(see, e.g., [8]). We consider the space R of all reals with the Scott topology of its natural
ordering ≤. Its opens are ∅, R, and the intervals (t,+∞), t ∈ R. Any closed interval
of R, e.g., [0, 1], is a stably locally compact, continuous cpo with the Scott topology.
Because we equip R with the Scott topology, our continuous functions f : X → R are
those usually called lower semi-continuous in the mathematical literature.

By a capacity onX , we mean any function ν from O(X), the set of all opens ofX , to
R+, such that ν(∅) = 0 (a.k.a., a set function). A game ν is a monotonic capacity, i.e.,
U ⊆ V implies ν(U) ≤ ν(V )1. A valuation is a modular game ν, i.e., one such that
ν(U ∪ V ) + ν(U ∩ V ) = ν(U) + ν(V ) for every opens U, V . A game is continuous iff
ν(

⋃
i∈I Ui) = supi∈I ν(Ui) for every directed family (Ui)i∈I of opens, and normalized

iff ν(X) = 1. Continuous valuations have a nice theory that fits topology well [7,8].
The Dirac valuation δx at x ∈ X is the continuous valuation mapping each open U

to 1 if x ∈ U , to 0 otherwise. Continuous valuations are canonically ordered by ν ≤ ν′
iff ν(U) ≤ ν′(U) for every open U of X .

A monad on a category C may be presented in several different ways. One is based
on triples (TTT ,ηηη,μμμ) of an endofunctor on C, a unit, and a multiplication natural trans-
formation. A presentation that is easier to grasp is in terms of Kleisli triples [14]. A
Kleisli triple is a triple (TTT ,ηηη, _†), where TTT maps objects X of C to objects TTTX of C,
ηηηX is a morphism fromX toTTTX for eachX , and f † (the extension of f ) is a morphism
from TTTX to TTTY for each morphism f : X → TTTY , satisfying: (1) ηηηX† = idTTTX ; (2) for
every f : X → TTTY , f † ◦ ηηηX = f ; (3) for every g : X → TTTY , f : Y → TTTZ , then

f † ◦ g† = (f † ◦ g)†. Kleisli triples and monads are equivalent.

3 Continuous Games, Convexity, Concavity

We follow [5]. A game ν on X is convex iff ν(U ∪ V ) + ν(U ∩ V ) ≥ ν(U) + ν(V )
for every opens U, V . It is concave if the opposite inequality holds. Convex games are
a cornerstone of economic theory [4,18].

One fundamental example of a game that is not a valuation is the unanimity game
uA (A �= ∅), defined by uA(U) = 1 if A ⊆ U , uA(U) = 0 otherwise. As we argue in
[5], uA is a natural “probability-like” description of demonic non-deterministic choice,
in the sense that drawing “at random” according to uA means that some malicious
adversary C will choose an element of A for you. This is perhaps best conveyed by
a thought experiment. You, the honest player P, would like to draw some element x
from X with distribution ν (a game). Imagine you would like to know your chances
of getting one from some (open) subset U of X . If ν is a probability distribution, then
your chances will be equal to ν(U). This is standard. For general ν, continue to define
your chances as ν(U). If ν = uA, and U does not contain A, then ν(U) = 0, and your
chances are zero: intuitively, C will pick an element in A, but outside U—on purpose.
The only case where C is forced to pick an element in A which will suit P (i.e., be in
U , too), is when A ⊆ U—and then P will be pleased with probability one.

1 The name “game” is unfortunate, as there is no obvious relationship between this and games as
they are usually handled in computer science, in particular with stochastic games. The notion
stems from (cooperative) games in economics, where X is the set of players, not of states.
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It is clear that uA is convex. It is in fact more. Call a game ν totally convex iff:

ν

(
n⋃

i=1

Ui

)
≥

∑

I⊆{1,...,n},I 
=∅
(−1)|I|+1ν

(
⋂

i∈I
Ui

)
(1)

for every finite family (Ui)
n
i=1 of opens (n ≥ 1), where |I| denotes the cardinality of I .

A belief function is a totally convex game. The dual notion of total concavity is obtained
by replacing

⋃
by

⋂
and conversely in (1), and turning ≥ into ≤. A plausibility is

a totally concave game. If ≥ is replaced by = in (1), then we retrieve the familiar
inclusion-exclusion principle from statistics. In particular any (continuous) valuation is
a (continuous) belief function. Any belief function is a convex game, but not conversely
[4,5].

Every game of the form
∑n

i=1 aiuQi , with ai ∈ R+, and Qi compact saturated and
non-empty, is a continuous belief function, which we call simple belief function in [5].
When

∑n
i=1 ai = 1, drawing an element from X “at random” (in the sense illustrated

above) according to the simple belief function ν =
∑n

i=1 aiuQi intuitively corresponds
to drawing one compact Qi at random with probability ai, then to let the malicious
adversary C draw some element, demonically, from Qi [5].

Let us turn to integration. Let ν be a game onX , and f be continuous fromX to R+

(i.e., lower semi-continuous: R+ comes with the Scott topology). Assume f bounded,
too, i.e., supx∈X f(x) < +∞. The Choquet integral of f along ν is:

C

∫

x∈X
f(x)dν =

∫ +∞

0

ν(f−1(t,+∞))dt (2)

where the right hand side is an improper Riemann integral. This is well-defined, since
f−1(t,+∞) is open for every t ∈ R+ by assumption, and ν measures opens. Also,
since f is bounded, the improper integrals above really are ordinary Riemann integrals
over some closed intervals. The function t �→ ν(f−1(t,+∞)) is decreasing, and every
decreasing (even non-continuous, in the usual sense) function is Riemann-integrable,
therefore the definition makes sense.

Alternatively, any step function
∑n

i=0 aiχUi , where a0 ∈ R+, a1, . . . , an ∈ R+,
X = U0 ⊇ U1 ⊇ . . . ⊇ Un is a decreasing sequence of opens, and χU denotes the
indicator function of U (χU (x) = 1 if x ∈ X , χU (x) = 0 otherwise) is continuous: its
integral along ν then equals

∑n
i=0 aiν(Ui)—for any game ν. It is well-known that every

bounded continuous function f can be written as the least upper bound of a sequence

of step functions fK = a + 1
2K

∑)(b−a)2K*
k=1 χf−1(a+ k

2K ,+∞)(x), K ∈ N, where a =
infx∈X f(x), b = supx∈X f(x). Then the integral of f along ν is the least upper bound
of the increasing sequence of the integrals of fK along ν.

The main properties of Choquet integration are as follows. First, the integral is in-
creasing in its function argument: if f ≤ g then the integral of f along ν is less than or
equal to that of g along ν. If ν is continuous, then integration is also Scott-continuous in
its function argument. The integral is also monotonic and Scott-continuous in the game
ν. Integration is linear in the game, too, so integrating along

∑n
i=1 aiνi is the same

as taking the integrals along each νi, and computing the obvious linear combination.
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However, Choquet integration is not linear in the function integrated, unless the game
ν is a valuation. Still, it is positively homogeneous: integrating αf for α ∈ R+ yields α
times the integral of f . And it is additive on comonotonic functions f, g : X → R (i.e.,
there is no pair x, x′ ∈ X such that f(x) < f(x′) and g(x) > g(x′)).

Returning to the example of a simple belief function ν =
∑n

i=1 aiuQi , the proper-
ties above imply that the integral of f along ν is

∑n
i=1 ai minx∈Qi f(x) [5, Proposi-

tion 1]. (Note that f(x) indeed attains its minimum over Qi, which is compact.) An-
other way to read this is as follows. Imagine P publishes how much money, f(x), she
would earn if you picked x. When

∑n
i=1 ai = 1, it is legitimate to say that the inte-

gral of f along ν should be some form of expected income. The formula above states
that, when ν is a simple belief function, your expected income is exactly what you
would obtain on average by drawing Qi at random with probability ai, then letting
the malicious adversary C pick some element of Qi for you—minimizing your earn-
ings f(x). In other words, integrating along a simple belief function computes average
min-payoffs.

This can be generalized to all continuous, not just simple, belief functions [5, Theo-
rem 4]. More precisely, the space Cd≤1(X) of all continuous belief functions ν on X
such that ν(X) ≤ 1 is isomorphic to the space V≤1(Q(X)) of continuous valuations ν∗

(of total mass at most 1) over the Smyth powerdomain Q(X) of X , providedX is well-
filtered and locally compact. Q(X) is the cpo of non-empty compact saturated subsets
of X , ordered by reverse inclusion ⊇, and is a model of demonic non-determinism. (A
similar result holds for normalized games and valuations ν, i.e., such that ν(X) = 1:
ν �→ ν∗ is again an isomorphism from Cd1(X) to V1(Q(X)).) The construction of ν∗

from ν is relatively difficult, however it is noteworthy that when ν =
∑n

i=1 aiuQi is
simple, then ν∗ is exactly the simple valuation

∑n
i=1 aiδQi , which describes the choice

of an element Qi at random with probability ai, as intuition would have it.
Similarly, the space Pb≤1(X) of all continuous plausibilities ν with ν(X) ≤ 1 is

isomorphic to V≤1(Hu(X)) when X is stably locally compact, and where Hu(X) is
the topological Hoare powerspace, defined as the set of non-empty closed sets of X ,
with topology generated by the sub-basic open sets �U = {F closed|F ∩ U �= ∅},
U open in X . (This is the upper topology of ⊆, which in general does not coincide
with the Scott topology, unless e.g. X is a continuous cpo.) Hu(X) is used to model
angelic non-determinism. We do not develop this here (see [6]). However, we mention
that the corresponding simple plausibilities are of the form

∑n
i=1 aieFi , where Fi is a

non-empty closed subset of X (an element of Hu(X)), and the example game eF is
defined so that eF (U) = 1 if F meets U , eF (U) = 0 otherwise: in this case C tries to
help you, by finding some element in U that would also be in F , if possible.

Recall that every belief function is convex. One may show that Choquet integration
along ν is super-additive (the integral of f + g is at least that of f plus that of g) when
ν is convex, and sub-additive (the integral of f + g is at most that of f plus that of
g) when ν is concave. See [4] for the finite case, [6, chapitre 4] for the topological
case.

In the sequel, let J(X),
	

J(X),



J(X) be the spaces of plain, convex and concave
continuous games respectively (“plain” meaning with no added property).
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4 Continuous Previsions

For any space X , let 〈X → R+〉 be the space of all bounded continuous functions
from X to R+, with the Scott topology. Each continuous game ν on X gives rise to a
functional αC(ν) from 〈X → R+〉 to R+, mapping f to its Choquet integral along ν.

Think of f(x) again as defining how much money you would earn when x is chosen
from X , by some computation process. We intentionally leave the notion of computa-
tion process undefined. This may be the process of drawing “at random” along a game
ν, as in Section 3. In the sequel, we shall explore the view that x is the output of an arbi-
trary program, defined in some non-deterministic and probabilitic functional language.
I.e., any program returns a value x (⊥ on non-termination, say), and if so P earns f(x).
For purely probabilistic programs (no non-deterministic choice), a prevision F is es-
sentially a function mapping earning functions f to their average value F (f), over all
possible executions. Slightly more generally, for any belief function ν, there is a previ-
sion αC(ν) that maps each f ∈ 〈X → R+〉 to the average min-payoff we get when our
final earnings are given by f . Milking out the properties of αC(ν), we arrive at:

Definition 1 (Prevision). A prevision is a functional F from 〈X → R+〉 to R+ such
that F is positively homogeneous (for every α ≥ 0, F (αf) = αF (f)), and monotonic
(if f ≤ g [pointwise], then F (f) ≤ F (g)).
F is a lower prevision if moreover F is super-additive, i.e., F (f+g) ≥ F (f)+F (g).

F is an upper prevision iff F is sub-additive: F (f + g) ≤ F (f) + F (g). F is collinear
iff F is additive on comonotonic pairs, i.e., if whenever f and g are comonotonic, then
F (f + g) = F (f) + F (g). A prevision F is linear iff F (f + g) = F (f) + F (g) for
every f, g ∈ 〈X → R+〉.

Finally, F is continuous iff it is Scott-continuous: for every directed family (fi)i∈I of
bounded continuous functions with least upper bound f , F (supi∈I fi) = supi∈I F (fi).

We write P(X),
	

P(X),



P(X) respectively the spaces of all continuous previsions,
of continuous lower previsions, of continuous upper previsions equipped with the Scott
topology of the pointwise ordering ≤. The spaces P∗+(X),

	
P∗+(X),



P∗+(X) will

be the subspaces of those that are collinear.
We do not quite follow standard naming conventions. Standardly [28], a lower previ-

sion is just a real-valued functional. Coherent lower previsions (taking a more readable
definition from [13]) are those F such that F (f) ≥

∑n
i=1 λiF (fi) + λ0 whenever

f ≥
∑n

i=1 λifi +λ0, λi > 0, λ0 ∈ R. In our case, we reserve the “lower” adjective, so
as to have a dual notion of upper prevision.

It is clear that any continuous game ν defines a continuous collinear previsionαC(ν).
Moreover, if ν is convex, then αC(ν) is lower, and if ν is concave, then αC(ν) is upper.
The following isomorphism result, akin to Riesz’ Representation Theorem, is known
as Schmeidler’s Theorem for convex games on discrete topologies. Let γC(F ), for any
prevision F , be the capacity ν such that ν(U) = F (χU ) for every open U of X . Order
previsions pointwise, then:

Theorem 1. αC & γC is a Galois connection from (plain, convex, concave) games into
(plain, lower, upper) collinear previsions, with αC injective. That is, αC and γC are
monotonic, αC(γC(F )) ≤ F for every collinear prevision F , and γC(αC(ν)) = ν for
every game ν.
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Moreover, when restricted to continuous previsions and games, αC and γC define an
isomorphism between J(X) and P∗+(X), between

	
J(X) and

	
P∗+(X), between


J(X) and



P∗+(X).

Proof. That γC(F ) is a game for any prevision is easy. When F is lower, note that
χU∪V and χU∩V are comonotonic, and χU∪V + χU∩V = χU + χV . So γC(F )(U ∪
V ) + γC(F )(U ∩ V ) = F (χU∪V + χU∩V ) (since F is collinear) = F (χU + χV ) ≥
F (χU ) + F (χV ) (since F is super-additive) = γC(F )(U) + γC(F )(V ). Similarly,
γC(F ) is concave if F is upper.

For the converse, we first show that: (A) for any collinear prevision F on X , for any
step function f , written a +

∑m
i=1 aiχUi with U1 ⊇ . . . ⊇ Um, a ∈ R, a1, . . . , am ∈

R+, then the Choquet integral of f along γC(F ) equalsF (f). This is an easy exercise as
soon as one realizes that

∑k−1
i=0 aiχUi and akχUk

are comonotonic for every k, 1 ≤ k ≤
m. The equality γC(αC(ν))(U) = ν(U) is obvious, αC and γC are clearly monotonic.
To show that αC(γC(F )) ≤ F , we must show that the Choquet integral of f along
γC(F ) is less than or equal to F (f). Using the step functions fK , K ∈ N, by (A) the
Choquet integral of fK is less than or equal to F (fK). The least upper bound of the
Choquet integrals of fK , K ∈ N is that of f , and the least upper bound of F (fK) is at
most F (f). So αC(γC(F ))(f) ≤ F (f). When F is continuous, the least upper bound
of F (fK) is exactly F (f), whence αC(γC(F )) = F . ��
One easy, well-known consequence of this is that αC and γC define an order isomor-
phism between the space V(X) of continuous valuations and that P+(X) of contin-
uous linear previsions ([7, Theorem 6.2], [22, Satz 4.16]). Intuitively, any continuous
game ν gives rise to a continuous collinear previsionαC(ν) that computes a generalized
form of expectation along ν, and every continuous collinear prevision arises this way.

It is easy to check that J,
	

J,



J, V, P∗+,
	

P∗+,



P∗+, P+ define functors TTT
from TopTopTop to TopTopTop, where TopTopTop is the category of topological spaces.

To define a monad structure onTTT , we need a unit ηηηX : X → TTTX , natural inX . This
is defined by ηηηX(x) = δx. However, there is in general no extension f † of f : X →
TTTY . The natural candidate is:

f †(ν)(V ) = C

∫

x∈X
f(x)(V )dν

when TTT is a game functor (J,
	

J,



J, V), or f †(F )(h) = F (λx ∈ X · f(x)(h))
whenTTT is a prevision functor (P∗+,

	
P∗+,



P∗+, P+). While this indeed works when

TTT = V [7, Section 4.2], or when TTT = P+ using the isomorphism between V and
the latter, it fails for the other functors. To understand why, take TTT =

	
P∗+, and

consider X = {1, 2}, Y = {∗11, ∗12, ∗21, ∗22} (with their discrete topologies), F =
αC(u{1,2}), i.e., F (h) = min(h(1), h(2)) for every h : Y → R+, f : X → TTTY
defined by f(1) = αC(3/4δ∗11 + 1/4δ∗12) and f(2) = αC(1/3δ∗21 + 2/3δ∗22), so that
f(1)(h) = 3/4h(∗11) + 1/4h(∗12) and f(2)(h) = 1/3h(∗21) + 2/3h(∗22) for every
h : Y → R+. Let h and h′ be defined by: h(∗11) = 0.3, h(∗12) = h(∗22) = 0.1,
h(∗21) = 0.7, h′(∗11) = 0.5, h′(∗12) = h′(∗22) = 0, h′(∗21) = 0.7, then f †(F )(h) =
0.25, f †(F )(h′) = 0.233 . . ., f †(F )(h+h′) = 0.533 . . ., but f †(F )(h)+f †(F )(h′) =
0.4833 . . . �= f †(F )(h + h′), although h and h′ are comonotonic. In other words, _†

does not preserve collinearity.
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In everyday terms, collinear previsions, or more specifically belief functions repre-
sent a process where P draws at random first, then C chooses non-deterministically [5].
The example above is a non-deterministic choice (among {1, 2}) followed by proba-
bilistic choices. In other words, the non-deterministic player C plays first, followed by
the probabilistic player P. But it is well-known that you cannot permute non-determin-
istic and probabilistic choices, and the example above only serves to restate this.

Our cure is simple: drop the collinearity condition. We shall therefore consider mon-
ads of continuous (plain, lower, upper) previsions. Let PoscPoscPosc be the category of posets
with Scott-continuous maps, CpoCpoCpo its full subcategory of cpos. We consider posets
equipped with their Scott topology, whence these two categories are full subcategories
of TopTopTop. Note that P(X),

	
P(X),



P(X) are only posets, not cpos.

Theorem 2. Define TTTX as P(X), resp.
	

P(X), resp.



P(X). Let ηηηX(x) = λh ∈
〈X → R+〉 · h(x), and f †(F )(h) = F (λx ∈ X · f(x)(h)) for every f : X → TTTY .
Then TTT is a monad on TopTopTop, i.e., (TTT ,ηηη, _†) is a Kleisli triple. On PoscPoscPosc, TTT is a strong
monad: tttX,Y : X×TTTY → TTT (X×Y ) defined as tttX,Y (x, F )(h) = F (λy ∈ Y ·h(x, y))
is a tensorial strength.

Proof. We must first show that, for every f : X → TTTY , f † is indeed a continuous map
fromTTTX to TTTY . Foremost, we must make sure that for every continuous (plain, lower,
upper) prevision F on X , f †(F ) is a continuous (plain, lower, upper) prevision on Y .
This is easy, but relatively tedious verification. Now note that the formulae defining ηηη ,
_†, ttt are exactly the formulae defining the continuation monad [17]. It follows that the
Kleisli triple axioms also hold in our case.

Contrarily to what might be expected, tttX,Y is not defined on all of TopTopTop—it may fail
to be continuous. On PoscPoscPosc, this is repaired by the fact that a function of two arguments
is continuous iff it is continuous in each argument separately (a fact that fails in TopTopTop).
The tensorial strength equations [17] are checked as for the continuation monad. ��

That the formulae for unit, extension, and tensorial strength are the same as for the con-
tinuation monad is no accident. Imagine F ∈ TTTX is the semantics of a (probabilistic
and non-deterministic) program expected to return a result x of type X . As we have
already argued, when F = αC(P ), with P a continuous valuation, then F (h) is the av-
erage payoff, defined as the (Choquet) integral of h(x) along P . When F = αC(ν) with
ν a continuous belief function, then F (h) is the average min-payoff, where minima are
taken over (demonically) non-deterministic choices. When F is not collinear, then more
complicated “averaging” processes are involved. In particular, we allow taking means
of mins of means of mins. . . representing plays where P, C, P, C, . . . take turns. That
arbitrarily many turns can be chained in a (not necessarily collinear) prevision will be
a consequence of the fact that prevision functors define monads, and in particular have
a well-defined multiplication. This is standard in the monadic approach to side-effects
[17]: multiplication is the key to defining sequential composition—here, of plays.

More explicitly, take n continuous functions f1 : X0 → TTTX1, f2 : X1 → TTTX2, . . . ,
fn : Xn−1 → TTTXn. Then, when TTT is a monad, f †n ◦ f

†
n−1 ◦ . . . ◦ f

†
2 ◦ f1 : X0 → TTTXn

is the sequential composition f1; f2; . . . ; fn of f1, f2, . . . , fn−1, fn in this order: given
x0 ∈ X0, the process f1(x0) computes some element x1 ∈ X1 (in our case, by drawing
it “at random”, say; deterministic computations are of course allowed, too), then f2(x1)



550 J. Goubault-Larrecq

computes some x2 ∈ X2, etc. The monad laws then say that composing with the idle
process ηηηX : X → TTTX does nothing, and that sequential composition is associative.

While Theorem 2 then establishes a form of soundness (which we shall make more
precise below), the goal of the next sections will be to show that the prevision axioms are
complete, in the sense that there is no junk: every continuous (lower, upper) prevision
is a mix of (demonic, angelic) non-deterministic and probabilistic choices.

One may wonder what the equivalent of normalized games (ν(X) = 1) and sub-
normalized games (ν(X) ≤ 1) would be through the correspondence of Theorem 1.
Requiring F (χX) to be equal (resp. less than or equal) to 1 is the obvious choice.
However, this is not preserved by _† when F is not collinear. So we define:

Definition 2. A prevision F on X is normalized, resp. sub-normalized, iff for every
f ∈ 〈X → R+〉, for every a ∈ R+, F (a+f) = a+F (f) (resp. F (a+f) ≤ a+F (f)).

We let J1(X),
	

P∗+1 (X),
	

P1(X), . . . , be the subspaces of normalized games/
previsions, and J≤1(X),

	
P∗+≤1(X),

	
P≤1(X), . . . , those of sub-normalized games/

previsions.

Proposition 1. Theorem 1 again holds for normalized (continuous) games and previ-
sions, and for sub-normalized (continuous) games and previsions.

Now the spaces of sub-normalized and normalized continuous previsions are cpos. The
spaces of sub-normalized continuous previsions are pointed, i.e., they have a least el-
ement ⊥, the constant 0 function. If X is itself pointed, then the spaces of normalized
continuous previsions are pointed, too, with least element αC(δ⊥) (a continuous linear
prevision). The latter maps h ∈ 〈X → R+〉 to h(⊥). Let CpoCpoCpo the category of cpos,
PcpoPcpoPcpo that of pointed cpos. It follows:

Proposition 2. Let TTTX be P≤1(X),
	

P≤1(X),



P≤1(X), P1(X),
	

P1(X), or

P1(X). (TTT ,ηηη,μμμ, ttt) is a strong monad onCpoCpoCpo and on PcpoPcpoPcpo.

Theorem 2 allows us to give a semantics to a λ-calculus with both probabilistic and
non-deterministic choices. Consider the syntax of terms and types:

M, N, P ::= x variable
| c constant
| MN application
| λx · M abstraction
| () empty tuple
| (M, N) pair
| fst M first projection
| snd M second projection
| valM trivial computation
| let val x = M in N let-expression

τ ::= α base types
| u type of ()
| τ × τ product
| τ → τ function types
| Tτ computation types

The typing rules, as well as the categorical semantics in a let-CCC, are standard [17].
Note that CpoCpoCpo and PcpoPcpoPcpo are Cartesian-closed. Together with the strong monads of
Proposition 2, they form let-CCCs. The typing rules for computation types are: if Γ �
M : τ then Γ � valM : Tτ ; and if Γ � M : Tτ1 and Γ, x : τ1 � N : Tτ2 then
Γ � let valx = M inN : Tτ2.
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As should be expected, the semantics has a strong continuation flavor. For each term
M of type τ in context Γ = x1 : τ1, . . . , xn : τn, �M� is a morphism (a contin-
uous map) from �Γ � = �τ1� × . . . × �τn� to �τ�. The cases for val and let are
given by: �valM� (v1, . . . , vn) = λh ∈ 〈�τ� → R+〉 · h(�M� (v1, . . . , vn)), and
�let valx = M inN� (v1, . . . , vn) = λh ∈ 〈�τ2� → R+〉 · �M� (v1, . . . , vn)(λv ∈
�τ1� · �N� (v1, . . . , vn, v)(h)). Let bool be a base type, with �bool� = S, where
S = {0, 1} is Sierpiński space (0 < 1). Constants cmay include a least fixpoint operator
inPcpoPcpoPcpo, the Boolean constants false, true, a case construct case : bool×τ×τ → τ
with �case� (0, v0, v1) = v0 and �case� (1, v0, v1) = v1. The interpretation of T as a
monad of previsions allows us, additionally, to give meaning to a coin-flipping op-
erator flip : Tbool, with �flip� = αC(1/2δ0 + 1/2δ1) = λh ∈ 〈S → R+〉 ·
1/2(h(0) + h(1)), and a non-deterministic choice operator amb : Tbool. When TTT
is

	
P1, amb is the demonic choice (of a Boolean): �amb� = αC(u{0,1}) = λh ∈

〈S → R+〉 · min(h(0), h(1)) (the chosen Boolean x is the one that minimizes payoff
h(x)). When TTT is



P1, we get angelic choice: �amb� = αC(e{0,1}) = λh ∈ 〈S →

R+〉 ·max(h(0), h(1)) (maximize payoff).
One might think that letting TTT be P1 would lead to chaotic choice. This certainly

accommodates both demonic (min) and angelic choice (max). However, P1 is a very
large space, and seems to contain objects that do not correspond to any mixture of prob-
abilistic and non-deterministic choice. The right notion is suggested by [6, section 7.5].

Definition 3 (Fork). A fork on X is any pair F = (F−, F+) where F− is a lower
prevision, F+ is an upper prevision, and for any h, h′ ∈ 〈X → R+〉,

F−(h+ h′) ≤ F−(h) + F+(h′) ≤ F+(h+ h′) (3)

F is continuous, resp. normalized, sub-normalized, collinear, whenever both F− and
F+ are.

While the above definition was found from purely mathematical arguments, Walley [28,
Section 2] defines essentially the same notion in finance. However, we allow any pair
(F−, F+) satisfying these conditions to be a fork. Walley only observes that whenever
F− is a coherent prevision (in his sense), on a discrete space, then letting F+(h) =
−F−(−h) yields a fork (F−, F+).

One may think ofF− as the pessimistic part ofF , which will give us the least expected
payoff, while F+ is the optimistic part, yielding the greatest expected payoff. Taking
h′ = 0 in (3) shows indeed that F−(h) ≤ F+(h) for each h. Let F(X) be the space
of continuous forks on X , ordered by ≤ × ≤. The subspaces F1(X) and F≤1(X) of
normalized and sub-normalized forks are cpos. The latter is pointed (with least element
(0, 0)) and the former is as soon asX is (with least element (αC(δ⊥), αC(δ⊥))). The se-
mantics is essentially the pairing of two continuation semantics, e.g., �valM� (v1, . . . ,
vn) = (F−, F+), where F− = F+ = λh ∈ 〈�τ�→ R+〉 · h(�M� (v1, . . . , vn)) (a lin-
ear prevision); �let valx = M inN� (v1, . . . , vn) = (λh ∈ 〈�τ2�→ R+〉·F−(λv ∈
�τ1� · F−v (h)), λh ∈ 〈�τ2� → R+〉 · F+(λv ∈ �τ1� · F+

v (h))), where (F−, F+) =
�M� (v1, . . . , vn) and (F−v , F+

v ) = �N� (v1, . . . , vn, v). The constants with the most in-
teresting semantics are amb, where �amb� = (λh ∈ 〈S→ R+〉 ·min(h(0), h(1)), λh ∈
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〈S → R+〉 · max(h(0), h(1))) (i.e., it computes both pessimistic and optimistic out-
comes), and flip, where �flip� = (F−, F+) with F− = F+ = λh ∈ 〈S →
R+〉 · 1/2(h(0) + h(1)). For the rest of the language, we rely on [17] and:

Proposition 3. Let TTTX be defined as F(X), F≤1(X), or F1(X). Let ηηηX(x)
= (F−, F+) with F− = F+ = λh ∈ 〈X → R+〉 · h(x), and for every f : X → TTTY ,
let f †(F−, F+) = (λh ∈ 〈Y → R+〉 · F−(λx ∈ X · f−(x)(h)), λh ∈ 〈Y →
R+〉 · F+(λx ∈ X · f+(x)(h))), where by convention f(x) = (f−(x), f+(x)). Then
(TTT ,ηηη,μμμ) is a monad on TopTopTop. Together with tttX,Y : X × TTTY → TTT (X × Y ) defined
by tttX,Y (x, (F−, F+)) = (λh ∈ 〈Y → R+〉 · F−(λy ∈ Y · h(x, y)), λh ∈ 〈Y →
R+〉 · F+(λy ∈ Y · h(x, y))), it forms a strong monad onCpoCpoCpo and PcpoPcpoPcpo.

Proof. That the strong monad laws are satisfied is obvious. The core of the proof is
in showing that unit, extension, and tensorial strength are well-defined. We deal with
extension. Recall that f †(F−, F+) = (F ′−, F ′+), where F ′− = λh ∈ 〈Y → R+〉 ·
F−(λx ∈ X · f−(x)(h)) and F ′+ = λh ∈ 〈Y → R+〉 · F+(λx ∈ X · f+(x)(h))).
Then F ′−(h+ h′) = λh ∈ 〈Y → R+〉 · F−(λx ∈ X · f−(x)(h+ h′)) ≤ λh ∈ 〈Y →
R+〉 · F−(λx ∈ X · f−(x)(h) + f+(x)(h′)) (since f(x) = (f−(x), f+(x)) ∈ TTTY
and F− is monotonic) ≤ λh ∈ 〈Y → R+〉 · F−(λx ∈ X · f−(x)(h)) + F+(λx ∈
X · f+(x)(h′)) (since (F−, F+) ∈ TTTX) = F ′

−(h) + F ′
+(h′). Similarly, F ′−(h) +

F ′
+(h′) ≤ F ′+(h+ h′). ��

5 Hearts and Skins: Completeness

One of the fundamental theorems of the theory of cooperative games is Shapley’s The-
orem, which states that every convex game ν has a non-empty core (on finite discrete
X)—the core Core(ν) being the set of measures p such that ν ≤ p and ν(X) = p(X).
A refinement of this is Rosenmuller’s Theorem, which states that a game ν is convex
iff its core is non-empty and for every function f : X → R+, the integral of f along
ν is the minimum of all integrals of f along p, p ∈ Core(ν). In particular, there is a
measure p such that ν ≤ p, ν(X) = p(X), and integrating f along p gives the same
result as integrating it along ν [4].

We show that the same results hold in the continuous case in [6, chapitre 10]. Re-
member that games correspond to collinear previsions. Our purpose here is to show that
similar theorems hold on previsions that need not be collinear (see [6, chapitre 11] for a
more complete development). The analogue of measures will be linear previsions. We
drop the analogue of the ν(X) = p(X) condition, however we concentrate on normal-
ized games and previsions, because the technical treatment is slightly easier. We call
the analogue of cores hearts, and the dual notion skin.

Definition 4 (Heart, Skin). For any function F from 〈X → R+〉 to R+, its heart
Coeur(F ) is the set of linear functionals G such that F ≤ G. Its continuous heart
CCoeur(F ) is the subset of those Gs that are continuous. Its skin Peau(F ) is the set
of linear functionals G such that G ≤ F . Its continuous skin CPeau(F ) is the subset
of those functionalsG that are continuous.
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Again, we let Coeur1(F ), CCoeur1(F ), . . . , be the subsets of the corresponding
spaces consisting of normalized previsions only, and similarly Coeur≤1(F ), . . . , for
those consisting of sub-normalized previsions.

Most of the developments below rest on Roth’s Sandwich Theorem ([21], [24, Theo-
rem 3.1]), which states that on every ordered coneC, for every positively homogeneous

super-additive function q : C → R
+

and every positively homogeneous sub-additive
function p : C → R

+
such that a ≤ b implies q(a) ≤ p(b) (e.g., when q ≤ p and

either q or p is monotonic), then there is a monotonic linear function f : C → R
+

such
that q ≤ f ≤ p. Here R

+
is R+ plus an extra point at infinity +∞. A cone is a set C,

together with a binary operation + turning it into a commutative monoid, and a scalar
multiplication · from R+ ×C to C, such that 1 · a = a, 0 · a = 0, (rs) · a = r · (s · a),
r · (a + b) = r · a+ r · b, and (r + s) · a = r · a+ s · a. An ordered cone is equipped
in addition with a partial ordering ≤ making + and · monotonic. We only use Roth’s
Theorem on ordered cones of the form 〈X → R+〉. Our key result is:

Theorem 3. LetX be a stably locally compact space, F a continuous lower prevision,
and f a bounded continuous function from X to R+. Then there is a continuous linear
functionalG from 〈X → R+〉 to R

+
such that F ≤ G and F (f) = G(f).

Proof. Let F be a lower prevision on X , and f ∈ 〈X → R+〉. Define
0
Ff by

0
Ff (g) =

infλ∈R+

λf≥g

[
F (λf)− suph∈〈X→R+〉

g+h≤λf
F (h)

]
, taking this to be +∞ is there is no λ ∈ R+

such that λf ≥ g. One checks that
0
Ff is monotonic, positively homogeneous, sub-

additive, above F (
0
Ff (g) ≥ F (g) for all g), touches F at f (

0
Ff (f) = F (f)). Roth’s

Sandwich Theorem then gives us a monotonic linear functional G0 such that F ≤ G0

and F (f) = G0(f). However, G0 may fail to be continuous. One now observes that
〈X → R+〉 is a continuous poset, with a basisB consisting of step functions. By Scott’s
Formula, the functionalG defined byG(f) = supg∈B,g,f G0(g) is continuous; in fact,
the largest continuous functional below G0. It follows that F ≤ G and F (f) = G(f).
The most difficult part of the proof is showing that G is linear. This rests on the fact
that is multiplicative i.e., for any a > 0, f  g iff a · f  a · g, and additive, i.e., if
h, f, g ∈ 〈X → R+〉 are such that h  f + g, then h ≤ f ′ + g′ for some f ′, g′ ∈ B
with f ′  f , g′  g; and conversely, f ′  f and g′  g imply f ′ + g′  f + g. ��

Note that G may take the value +∞. We can refine this in the case of normalized
previsions (for sub-normalized previsions, see [6, section 11.4]):

Theorem 4. Let X be a stably locally compact space, F a normalized continuous
lower prevision on X , and f a bounded continuous function from X to R+. Then there
is a normalized continuous linear prevision G such that F ≤ G and F (f) = G(f).

Proof. Similar to Theorem 3. However, it may be that
0
Ff reaches +∞. Refine this by

letting
�0
F f (g) = infε∈R+

0
Ff+ε(g), and using

�0
F f instead of

0
Ff . One checks that, since

F is normalized,
0
Ff+ε is antitone in ε. Then

�0
F f is again monotonic, positively homo-

geneous, sub-additive (using antitony in ε), above F , and touches F at f . Moreover,
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it is easy to see that
�0
F f (χX) = 1. We build G0, then G from

�0
F f , as in Theorem 3.

Additionally, we need X to be compact so as to establish that G(χX) = 1. Since G is
linear, it follows that G is normalized. ��

One can deal with upper previsions instead, see [6, section 11.5], using a notion we call
convex-concave duality to reduce to the above. We then obtain [6, théorème 11.5.22]
that, when X is stably compact, F is a normalized continuous upper prevision on X ,
there is a normalized continuous linear prevision G on X such that G ≤ F . Moreover,
for every f ∈ 〈X → R+〉, F (f) = supG∈CPeau1(F )G(f).

Theorem 4 allows us to state a form of Rosenmuller’s Theorem:

Theorem 5. Let X be stably locally compact, F a continuous normalized prevision
on X . Then F is lower iff CCoeur1(F ) �= ∅ and for every f ∈ 〈X → R+〉, F (f) =
infG∈CCoeur1(F )G(f). In this case, the inf is attained:F (f)=minG∈CCoeur1(F )G(f).

There is, of course, a dual theorem on upper previsions and their skins [6, théorème
11.7.5]; infs are replaced by sups, which need not be attained.

Our completeness results to come are based on another topology on spaces of previ-
sions: the weak topology is the coarsest that makes the function F �→ F (f) continuous,
for each f ∈ 〈X → R+〉. The Scott topology is in general finer. Let

	
P1 wk(X) be	

P1(X) with the weak topology, and similarly for other spaces. Then:

Proposition 4. Let X be stably compact, F a normalized continuous lower prevision,
then CCoeur1(F ) is a non-empty saturated compact convex subset of P+1 wk(X).

Compactness follows from Plotkin’s version of the Banach-Alaoglu Theorem [19], or
using a technique by Heckmann and Jung [8, Section 3.2], while convexity (i.e., αF +
(1 − α)F ′ is in CCoeur1(F ) as soon as F and F ′ are, α ∈ [0, 1]) is clear. That skins
are closed is much easier, while non-emptiness is by the dual Rosenmuller Theorem:

Proposition 5. Let X be a topological space, F a normalized continuous upper previ-
sion, then CPeau1(F ) is a closed convex subset of P+1 wk(X). It is non-empty as soon
as X is stably compact.

Finally, call a lens of a space X any non-empty intersection L = Q ∩ F of a saturated
compact Q and a closed subset F . Then:

Proposition 6. Let X be a stably compact space. The continuous normalized body
CCorps1(F ) = CCoeur1(F−) ∩ CPeau1(F+) of a continuous normalized fork
F = (F−, F+) on X is a lens. Moreover, CCoeur1(F−) = ↑ CCorps1(F ) and
CPeau1(F+) = ↓ CCorps1(F ).

Proof. We show that: (∗) for eachG ∈ CCoeur1(F−), there is aG′ ∈ CCoeur1(F−)
∩ CPeau1(F+) such that G′ ≤ G. Let F ′(h) = inff,g∈〈X→R+〉/f+g≥h(F+(f) +
G(g)). One checks that F− ≤ F ′ ≤ G, that F ′ is an upper prevision, so by Roth’s
Sandwich Theorem, there is a linear monotonic functional G0 such that F− ≤ G0 ≤
F ′. Since G0 ≤ F ′, G0 does not take the value +∞. Build G from G0 using Scott’s
Formula, as before. It is easy to see thatG is a continuous, normalized, linear prevision.
Since F− ≤ G′, G′ ∈ CCoeur1(F−). Since G′ ≤ F ′ ≤ F+, G′ ∈ CPeau1(F+).
Since F ′ ≤ F ′ ≤ G, G′ ≤ G follows.
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By (∗), CCoeur1(F−) ∩ CPeau1(F+) is non-empty. That CCoeur1(F−) =
↑ (CCoeur1(F−) ∩ CPeau1(F+)) is another easy consequence of (∗). Next we show
CPeau1(F+) = ↓ (CCoeur1(F−) ∩ CPeau1(F+)) in a similar way, by defining
F ′′(h) = supf,g∈〈X→R+〉

f+g≤h
(F−(f) + G(g)), where G ∈ CPeau1(F−), and using F ′′

to show that there is someG′ ∈ CCoeur1(F−)∩CPeau1(F+) such thatG ≤ G′. ��

These three propositions state that any normalized continuous lower prevision, resp. up-
per prevision, resp. fork F gives rise to an element CCoeur1(F ), resp. CPeau1(F ),
resp. CCorps1(F ) of the Smyth powerdomain Q(P+1 wk(X)) (demonic non-determin-
istic choice of a probability law—remember that P+1 (X) ∼= V1(X)), resp. the Hoare
powerdomain H(P+1 wk(X)) over P+1 wk(X) (angelic), resp. the Plotkin powerdomain
over P+1 wk(X) (chaotic). This is a form of completeness: spaces of previsions and
of forks contain no junk, and really are no more than mixes of non-deterministic and
probabilistic choice. More explicitly, in the demonic case, let F be any normalized con-
tinuous lower prevision on stably compact X : then F is the sequential composition
f0; f1 = f1

† ◦ f0 (applied to some dummy ∗), where f0(∗) = αC(uCCoeur1(F )) (non-
deterministic choice of some G from the heart of F ), and f1(G) = G (drawing at ran-
dom along γC(G)). We need Proposition 4 for this to be well-defined. F = (f0; f1)(∗)
follows from the definition of the heart and general properties of the Choquet integral.
In the angelic case, any normalized continuous upper previsionF is the sequential com-
position f0; f1, where f0(∗) = αC(eCPeau1(F )), and again f1(G) = G.

In the converse direction, still assuming X stably compact, there is a map
�

:
Q(P+1 wk(X))→

	
P1(X) defined by

�
K(f) = minG∈K G(f), and CCoeur1 &

�
is a Galois connection consisting of continuous maps [6, théorème 11.7.11], while
there is a continuous map

⊔
: H(P+1 wk(X)) →

	
P1(X) defined by

⊔
C(f) =

supG∈C G(f), so that
⊔
& CPeau1 is a Galois insertion.

We conclude by noticing that, when X is a continuous cpo with a least element,
P+1 wk(X) is homeomorphic to V1(X) with the weak topology, and the latter coincides
then with the Scott topology [8]. Apart from spurious details (e.g., we bound our valu-
ations by 1 instead of +∞), there is therefore a strong connection with the models of
Mislove [16] and Tix [23,24]. This is explored, under a different light, in [9].
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Bad Variables Under Control

Andrzej S. Murawski�
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Abstract. We give a fully abstract game model for Idealized Algol with
non-local control flow. In contrast to most previous papers on game se-
mantics, we do not need to include the bad-variable constructor mkvar
to obtain full abstraction. Using the model we show that, unlike in
the “control-free” case, the presence of mkvar does affect observational
equivalence. We conclude by discussing the effect of mkvar on nonde-
terministic and probabilistic variants of Idealized Algol.

1 Introduction

In the computer science classic “The essence of Algol” [1], Reynolds has laid out
a series of principles that, in his opinion, should underlie the contemporary evo-
lution of programming languages. He also defined a prototype language, called
Idealized Algol, whose design was to be their embodiment. Based on a simple im-
perative language extended with the procedural mechanism of the call-by-name
lambda calculus, Idealized Algol has come to be regarded as a canonical proposal
for synthesizing functional and imperative programming. Its elegant definition
has lent itself to a systematic analysis leading to significant progress in the field
of programming language semantics [2].

One of Reynolds’s insights concerned the semantics and type-theoretic treat-
ment of assignable variables. He viewed them as dual in nature: producing values
on the one hand (like expressions) and capable of accepting them on the other.
This idea is reminiscent of the distinction between l- and r-values, but Reynolds
took it much further: he advocated that the variable type be actually identified
with the product of an “acceptor type” and the expression type. This decompo-
sition enabled him to define the meaning of variables without any commitment
to the structure of state, suggesting new abstract approaches to modelling state.
Reynolds himself pursued one, based on functor categories, but alternatives have
also emerged.

A particularly fruitful way of modelling computation turned out to be based
on the idea that programs should be viewed as processes interacting with one
another. Reddy calls this the object-based approach to semantics [3]. From this
point of view, Reynolds’s analysis of variables simply suggests viewing a variable
as an object equipped with a reading- and a writing-method which it uses to
communicate with the environment. Similar philosophy can be found in encod-
ings of imperative programs into process algebras. In denotational semantics this
� Funded by an Advanced Research Fellowship from the UK EPSRC (EP/C539753/1).
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approach was adopted in Abramsky and McCusker’s game model of Idealized
Algol [4] and Reddy’s work on coherence spaces [3].

Game semantics has led to many full abstraction results ever since. These
amount to defining a model such that equality in the model corresponds to
program equivalence, or, in the more general inequational variant, such that ob-
servational approximation coincides with a distinguished preorder on the model.
A general way of proving such results leads through a definability argument,
which demonstrates that all compact elements of the model are definable, i.e.
are denotations of some programs. However, when the variable type is a product
type, definability fails unless an explicit pairing construct is added to the lan-
guage. In the case of [4] this is the so-called “bad-variable constructor” mkvar,
which makes a writing method M and a reading method N into a variable:

Γ � M : exp→ com Γ � N : exp

Γ � mkvar(M,N) : var
.

The reduction rules for mkvar(M,N) simply evaluate N for reading and eval-
uate Mv when the value v is to be written. Because, in absence of mkvar,
definability fails, it seems likely that a game model that is (equationally or in-
equationally) fully abstract for a language with mkvar, will not be fully abstract
in its absence. Thus it is natural to ask how one can repair existing game models
to analyze observational approximation and equivalence in mkvar-free settings
and whether this is really needed in all cases. This direction is also motivated by
the fact that mkvar is not really a conventional programming construct, though
languages incorporating bad variables as a feature do exist in the literature1.

This paper uses a version of Idealized Algol that allows for side-effects in ex-
pressions and variables, to which we shall henceforth refer as IA. A fully abstract
model for IA with mkvar was given in [4], where the preorder for inequational
full abstraction was simply inclusion of complete plays (those in which all ques-
tions have been answered). Subsequently, McCusker [7] has introduced a different
preorder on complete plays which captures observational approximation in IA.
His was actually the only paper so far that has analyzed the game semantics of
an IA-like language without mkvar. The aim of the present paper is to achieve
a full abstraction result for IA enriched with non-local control flow (also without
mkvar), i.e. in a setting where the transfer of control can violate the usual dis-
cipline of block entry and exit. Syntactically, the requisite extension of IA can
be achieved by adding a catch-construct, in the spirit of Reynolds’s escape [1]
and Cartwright and Felleisen’s control operators [8]. It is well known that viola-
tions of the stack discipline can be modelled in game semantics by relaxing the
bracketing condition [9]. However, full abstraction for IA+catch is not merely a
matter of applying McCusker’s preorder in the unbracketed setting and we show

1 In the late 1960s POP-2 [5] was an attempt to define a broad-spectrum language for
both numerical and symbolic computation combining the strengths of FORTRAN
and LISP. The language was based on doublets, which are conceptually the same as
mkvar-objects. Also, Reynolds’s GEDANKEN [6] had support for implicit references
in the spirit of mkvar.
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what further refinements are necessary to accomplish it. Our model can then be
used to demonstrate that, in contrast to McCusker’s result on conservativity of
IA + mkvar (with respect to observational equivalence), IA + catch + mkvar
does not extend IA + catch conservatively. Next we go on to investigate the
impact of mkvar on other important extensions of IA, namely, with nonde-
terminism and probability. It turns out that mkvar does affect observational
equivalence in IA + or, but it does not for IA + coin.

In addition to the already-cited paper by McCusker, techniques based on
nominal sets have recently been proposed as a general approach to handling the
absence of mkvar [10,11]. Because they bring an additional layer of combina-
torial complexity to game semantics (names inside moves, name invariance), it
seems a valuable goal to understand how the same results can still be achieved
by “anonymous” game semantics. This paper explores this direction in the call-
by-name setting of Algol-like languages, leaving call-by-value as a challenge for
future work.

2 IA, IAcatch

We consider Reynolds’s Idealized Algol [1] in which expressions and variables
can produce side-effects. Its syntax is given in Figure 1. The types T are formed
from the base types

B ::= com | exp | var

using the → constructor: T ::= B |T → T . The base types represent com-
mands, natural-number-valued expressions and variables respectively. The (call-
by-name) operational semantics of the language can be found in [12]. We as-
sume that initially all variables have value 0 and write ΩT for the divergent
term YT (λxT .x) : T . In IA the flow of control can be influenced locally through
sequential composition and conditionals. Non-local flow control can be added,
for example, via the construct:

Γ, x : com � M : com

Γ � catch x inM : com
.

Operationally, catch x inM amounts to encapsulating M in a block so that any
occurrence of x in M will trigger a forward jump out of the block. Some typical
control constructs found in programming languages, e.g. break and continue of
C, can easily be expressed in IA augmented with catch. Using side-effects one
can also detect whether an early exit has taken place. For instance, it is possible
to simulate Cartwright and Felleisen’s control operator catchexp [8]:

Γ, x : exp � M : exp

Γ � catchexp x inM : exp
,

which returns 0 for early exit and n+ 1 if M evaluates to n, by

newX,Y in catch z inX := M [(Y := 1; z; 0)/x]; if !Y then 0 else succ(!X).
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Γ � skip : com

i ∈ N

Γ � i : exp Γ, x : T � x : T

Γ � M : exp

Γ � succ(M) : exp

Γ � M : exp

Γ � pred(M) : exp

Γ � M : exp Γ � M0, M1 : B

Γ � if M thenM1 elseM0 : B

Γ � M : com Γ � N : B

Γ � M ; N : B

Γ, x : T � M : T ′

Γ � λxT .M : T → T ′
Γ � M : T → T ′ Γ � N : T

Γ � MN : T ′

Γ � M : var

Γ � !M : exp

Γ � M : var Γ � N : exp

Γ � M := N : com

Γ, x : var � M : B

Γ � new x inM : B Γ � YT : (T → T ) → T

Fig. 1. IA syntax

catch can be regarded as an atom of non-local control: a minimalistic, yet ex-
pressive, mechanism capable of modelling the effect of more complicated con-
trol constructs such as labelled jumps (goto) and call-with-current-continuation
(callcc) [9].

In the paper we shall consider extensions L = IA+� of IA, written IA�, where
� ⊆ {catch,mkvar,or}. The operational semantics of each of these languages
induces a notion of termination M ⇓L for closed terms � M : com. Then we
can define observational approximation and equivalence as follows.

Definition 1. Suppose Γ � M1,M2 : T are terms of L. Γ � M1 : T approx-
imates Γ � M2 : T (written Γ � M1

�∼ LM2) iff, for all L-contexts C[−] such
that � C[M1], C[M2] : com holds, C[M ] ⇓L implies C[N ] ⇓L. Two L-terms are
equivalent (written Γ � M1

∼=L M2) if they �∼ L-approximate each other.

3 Games

The focus of this section is a full abstraction result for IAcatch+mkvar, which
can readily be synthesized from [12] and [4]. The first to study control operators
in game semantics was Laird [9], who discovered that their presence can be
modelled by relaxing the bracketing condition.

Definition 2. An arena is a triple A = 〈MA, λA,�A 〉, where

– MA is a set of moves;
– λA : MA → {O,P} × {Q,A} is a function indicating to which player (O or
P ) a move belongs and of what kind it is (question or answer);

– �A⊆ (MA + {�})×MA is the so-called enabling relation, which must satisfy
the following conditions.
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• If � enables a move then it is an O-question without any other enabler. A
move like this is called initial and we shall write IA for the set containing
all initial moves of A.
• If one move enables another then the former must be a question and the

two moves must belong to different players.

Product and arrow arenas can be constructed as follows:

MA×B = MA +MB MA⇒B = MA +MB

λA×B = [λA, λB ] λA⇒B = [λA, λB]
�A×B = �A + �B �A⇒B = �B + (IB × IA) + (�A ∩ (MA ×MA))

λA reverses the ownership of moves in A while preserving their kind. Here are
the arenas used interpret the base types of IA (the moves at the bottom are
answer-moves).

Acom Aexp Avar

�

run

done

�

q

0
���

1 · · ·

����

�
���

��
													


























read

����
write(0)

������
write(1) · · ·



0

����
1 · · ·

����
ok

Given an IA-type T , we shall write �T � for the corresponding arena obtained
compositionally from Acom, Aexp and Avar using the ⇒ construction.

A justified sequence s in an arena A is a sequence of moves in which every
move m �∈ IA must have a pointer to an earlier move n in s such that n �A m. n
is then said to be the justifier of m. It follows that every justified sequence must
begin with an O-question. The view �s� of a justified sequence s is defined by

�ε� = ε
�sm� = m if m is initial in A

�s1 m s2 n� = �s� m n

A justified sequence s satisfies the visibility condition iff in any prefix s′m of
s such that m is not initial, the justifier of m lies in �s′�. A justified sequence
satisfies the bracketing condition if any answer-move is justified by the latest
unanswered question that precedes it.

Definition 3. A justified sequence is a play iff O- and P -moves alternate and
the visibility condition is satisfied. We write PA for the set of plays in A.

Note that plays do not satisfy the bracketing condition. This notion of play
suffices to define a game model of IAcatch+mkvar, in which terms are interpreted
as strategies.

Definition 4. A strategy in an arena A, written σ : A, is a non-empty set of
even-length plays in A which is closed under taking even prefixes and satisfies
the determinacy condition: smn1, smn2 ∈ σ entails n1 = n2 (targets of pointers
from n1 and n2 are also required to be the same).
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For any arena A, the strategy on A ⇒ A that copies moves between the two
instances of A is called the identity strategy. Arenas and strategies form a cat-
egory in which a morphism between A and B is a strategy on A⇒ B. In order
to compose two strategies σ : A ⇒ B, τ : B ⇒ C, one first defines interac-
tion sequences on A,B,C, which are sequences of moves from arenas A, B and
C together with justification pointers from all moves except those initial in C.
The set of all such sequences will be denoted by int(A,B,C). Given an interac-
tion sequence u, we write u � A,B for its subsequence consisting of all A- and
B-moves as well as pointers between them (pointers from/to moves of C in u
are erased, though). u � B,C is defined analogously. u � A,C is defined similarly
except that, whenever a pointer from an A-move mA points at a B-move mB

which in turn has a pointer to a C-move mC , we add a pointer from mA to mC .
Then one takes σ; τ : A⇒ C to be

{u � A,C |u ∈ int(A,B,C), u � A,B ∈ σ, u � B,C ∈ τ}.

Arenas and strategies form a category in which identity strategies are indeed the
identity maps.

A play is called single-threaded if it contains just one occurrence of an initial
move. In general, a play may consist of several interleaved single-threaded plays.
Strategies determined completely by their single-threaded plays will be called
single-threaded : they consist of all plays that are interleavings of the single-
threaded plays belonging to the strategy.

Arenas and single-threaded strategies turn out to form a cartesian closed
category, which provides a canonical interpretation of λ-abstraction and appli-
cation. The inclusion relation on strategies enriches the category with the struc-
ture of a complete partial order needed to interpret recursion. Other features of
IAcatch+mkvar can be interpreted by composition with special designated strate-
gies, which we list in Figure 2 along with their single-threaded complete plays.
For illustration, we give the two maximal single-threaded plays of the strategy
catch : �(com2 → com1)→ com0� used to interpret catch:

run0 run1 done1 done0 run0 run1 run2 done0 .

We have used subscripts to indicate the copies of com from which the moves
originate. Then �Γ � catch x inM� = �Γ � λxcom.M�; catch.

Theorem 1. Arenas and single-threaded strategies ordered by inclusion are an
inequationally fully abstract model of IAcatch+mkvar: for any IAcatch+mkvar-
terms Γ � M1,M2 : T :

Γ � M1
�∼ IAcatch+mkvarM2 ⇐⇒ �Γ � M1� ⊆ �Γ � M2�.

To our knowledge, this theorem has not appeared in the literature so far, though
it seems to be known within the community. It can be proved in a similar
way to the characterization of program approximation via complete plays for
IAmkvar [4]. The argument relies on the fact that any finite strategy is definable
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skip : �com� run done

i : �exp� q i

succ : �exp�1 ⇒ �exp�0 q0 q1

�
i∈N

i1 (i + 1)0

pred : �exp�1 ⇒ �exp�0 q0 q1

�
i∈N+ i1 (i − 1)0

ifB : �exp�3 ⇒ �B�2 ⇒ �B�1 ⇒ �B�0
�

m��B�n(m0 q3 03 m1 n1 n0 + m0 q3 (
�

i∈N+ i3) m2 n2 n0)

seqB : �com�2 ⇒ �B�1 ⇒ �B�0
�

m��B�n m0 run2 done2 m1 n1 n0

deref : �var�1 ⇒ �exp�0 q0 read1

�
i∈N

i1 i0

assign : �var�2 ⇒ �exp�1 ⇒ �com�0 run0 q1

�
i∈N

i1 write(i)2 ok2 done0

cellB : (�var�2 ⇒ �B�1) ⇒ �B�0
�

m��B�n m0m1(read2 02 )∗(
�

i∈N
write(i)2 ok2(read2 i2)

∗)∗n1n0

mkvar : �exp → com�2 ⇒ �exp�1 ⇒ �var�0

read0 q1 (
�

i∈N
i1 i0) +

�
i∈N

write(i)0 run2 (q2 i2)
∗ done2 ok0

Fig. 2. Special strategies

by a term of IAcatch+mkvar, which can be shown using the techniques of [12].
Soundness and Adequacy (�� M : com� = �� skip� if and only if M ⇓) can also
be proved in the standard way. The goal of this paper is to show an analogous
theorem for IAcatch, with the inclusion ordering replaced by a different preorder.

4 The Essence of mkvar

Game semantics interprets local variable allocation in Γ � new x inM : com
through composition of �Γ � λxvar.M� with the strategy cellcom : �(var2 →
com1)→ com0�. cellcom itself denotes the term

� λf var→com.new x in fx : (var→ com)→ com.

Single-threaded plays of cellcom are prefixes of plays of the following shape:

run0 run1 (read2 02)∗(
∑

i∈N

write(i)2 ok2 (read2 i2)∗)∗done1done0

i.e. read ’s trigger responses consistent with preceding write ’s. Using mkvar we
can easily violate the discipline, because unrelated methods can be employed for
reading and writing. However, the same effect can also be achieved without it.
Indeed, under call-by-name evaluation, whenever a read follows a write, we can-
not really be sure that they refer to the same variable. Here is a term illustrating
this behaviour

� λf var→com.newX,Y in f(if !X thenY elseX),
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which will produce the play run0 run1 write(1)2 ok2 read2 02 done1done0. Thus
the essence of mkvar does not boil down to breaking the logical link between
read ’s and write ’s. We argue that it lies in uniformity instead: in absence of
mkvar each variable operation, whether a read or a write, produces the same
side-effects while it is being completed. To formalize this intuition it is useful
to observe that, without mkvar, subterms of type var (in β-normal form) al-
ways have “tails” of the shape fM1 · · ·Mk : var, which may be combined using
conditionals, pre-composed with commands and bound with new (if k = 0). In
game semantics, when O plays a move qO in order to explore such a subterm,
the resultant plays will initially correspond to the associated side-effects (if any).
These side-effects will be independent of qO, which could well be read , write(0)
or write(13). Eventually, when the “tail” is reached and f is not bound by new,
P will play a copy qP of qO. Below we introduce new relations on plays and
strategies to express an aspect of the uniformity that will turn out useful in
subsequent technical arguments.

Definition 5. Given an arenaA corresponding to an IA-type and q, q′ ∈ {read}∪
{write(i) | i ∈ N}, the relation )q,q

′

O ⊆ PA × PA is defined as follows: t )q,q
′

O t′

iff t = s1qs2, t′ = s1q
′s2 and q, q′ are O-moves from the same copy of Avar that

have not been answered in t, t′ respectively. )q,q
′

P is defined in an analogous way, by
replacing “O-moves” with “P -moves”. We write )O for the (symmetric) relation⋃

q,q′ )q,q
′

O . )P is defined similarly.

Definition 6. A strategy σ : A is )-closed iff, for any s ∈ σ, t ∈ PA, if there
exist q, q′ such that s )q,q

′

O t, then t ∈ σ or there exists s′ ∈ σ such that t )q,q
′

P s′.

Next we turn to questions that have been answered. If the qP from the above
scenario is eventually answered, say, with aO, P will immediately answer qO with
a copy aP of aO. Afterwards, the play will actually follow independently of the
value of q and a. This is in contrast to the case of k = 0 and f being bound
by new. Here after a series of possible side-effects (independent of qO) P will
answer qO with aP . Because this case corresponds to examining a genuine storage
cell, what happens next could depend on the current value of the variable: if
s1write(0)s1oks2 ∈ σ, it does not have to be the case that s1write(2)s2oks2 ∈ σ.
Similarly, if s1reads20s3 ∈ σ, we do not know whether s1write(2)s2oks2 ∈ σ.
However, if s1reads20s3 ∈ σ, we can be sure that s1write(0)s2oks3 ∈ σ, because
overwriting a variable with its current value does not change the state. Below
we define another closure property of strategies, which unifies the observations
just made about answer-moves. This is essentially a more precise variant of the
∝-closure used in [7], adapted to general plays.

Definition 7. Given an arena A corresponding to an IA-type we define �O ⊆
PA × PA as follows: t �O t

′ iff t = s1 read s2 i s3 and t′ = s1 write(i) s2 ok s3
for some i ∈ N, where read and write(i) are O-moves from the same copy of
Avar. �P is defined in an analogous way.

Definition 8. A strategy σ : A is �-closed iff, for any s ∈ σ, t ∈ PA, if s �O t
then t ∈ σ or there exists s′ ∈ σ satisfying t �P s

′.
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Lemma 1. Strategies denoting IAcatch-terms are )- and �-closed.

Proof. First one shows that )- and �-closure are preserved by composition. Then
it suffices to show that the basic special strategies used to construct the model
satisfy the Lemma.

Note that the strategy corresponding to mkvar satisfies neither )- nor �-closure.

5 What Difference Does mkvar Make?

Because the addition of new syntactic features makes the discriminating power
of contexts stronger, it is natural to expect that some approximations in IAcatch

will no longer hold in IAcatch+mkvar. For IA and IAmkvar, it was shown in [7]
that essentially all examples of IA approximations that fail in IAmkvar are based
on approximating reads with matching writes, as in

x : var � if !x thenΩ else skip �∼ IA x:=0.

The same idea can also be used to demonstrate the difference between IAcatch

and IAcatch+mkvar, but we will also have another class of examples, relying on
variable operations immediately followed by divergence:

x : var � if !x thenΩ elseΩ ∼=IAcatch x:=0;Ω ∼=IAcatch x:=1;Ω.

Because the terms generate different plays, these equivalences do not hold in
IAcatch+mkvar so, in contrast to IAmkvar, IAcatch+mkvar turns out not to extend
IAcatch conservatively even for observational equivalence. In the remainder of
the paper we show how to capture approximation in IAcatch with a preorder
based on )P and �P, which will make it clear that equivalences above do hold.

Definition 9. Suppose σ, τ : A are single-threaded. We define σ + τ to hold iff
for any s ∈ σ there exists t ∈ τ such that s ()P ∪ �P)∗ t.

Because σ and τ are single-threaded, the quantification over s ∈ σ could well
range over single-threaded plays only. In the next section we aim to prove:

Theorem 2 (Full abstraction). For any IAcatch-terms Γ � M1,M2 : T we
have Γ � M1

�∼ IAcatchM2 if and only if �Γ � M1� + �Γ � M2�.

6 Proof of Full Abstraction

The left-to-right direction hinges on the fact that �Γ � M1� + �Γ � M2�
implies �� C[M1]� + �� C[M2]�. Indeed, more generally, one can show that
composition of )- and �-closed strategies is monotone with respect to +, which
implies the above.

Lemma 2. For any �- and )-closed strategies σ1, σ2 : A⇒ B and τ1, τ2 : B ⇒
C: if σ1 + σ2 and τ1 + τ2 then σ1; τ1 + σ2; τ2.
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Proof. By repeated alternate applications of closure rules for σi and τi.

Lemma 3. For any IAcatch-terms Γ � M1,M2 : T if �Γ � M1� + �Γ � M2�
then Γ � M1

�∼ IAcatchM2.

Proof. Suppose � C[M1] : com ⇓. Then, by Soundness (of the game model of
IAcatch+mkvar), �� C[M1] : com� = �� skip�. Because �Γ � M1� + �Γ � M2�,
we have �� skip� = �� C[M1]� + �� C[M2]�. Hence, �� C[M2]� = �� skip�
and, by Adequacy, C[M2] ⇓.
To establish the converse we need a new definability argument. Because the
strategies involved are )- and �-closed, it is no longer impossible to prove de-
finability for single positions. We shall restrict ourselves to plays of the shape
run · · · done, as these suffice for the reconstruction of contexts used in the defi-
nition of �∼ IAcatch .

Proposition 1. Let s = run · · · done be a single-threaded play in �T �. Then
there exists an IAcatch-term � Ms : T such that the set of single-threaded com-
plete plays of �� Ms� equals {t | s ()O ∪ �O)∗ t}.
We will say that an answer-move occurring in a play is well-bracketed, if the
question that justifies it is the most recent unanswered question in the view
calculated right before the answer has been played. A strategy is called well-
bracketed if in each of its plays any P -answer is well-bracketed. Thanks to the
factorization techniques developed in [9,12], which factor out non-well-bracketed
P -answers using catch, it suffices to prove the above Proposition for plays s
in which P -answers are well-bracketed. To that end we first identify a family
of innocent strategies which are definable in IA without new. Innocence, first
defined in [13], guarantees that P ’s responses depend only on the current view
of the play rather than the whole play.

6.1 Innocent Strategies Without mkvar

Let A� = 〈 {�q,�a}, {(�q, (Q,O)), (�a, (A,P ))}, {(�,�q), (�q,�a)} 〉. Given
an IA type T , let �T �sym be the arena obtained compositionally from T using the
× and ⇒ constructions in the same way as �T � except that occurrences of var
are interpreted differently: positive ones by A� and negative ones by Avar ×A�.
Moves of A� will be called generic, while those from Avar will be referred to as
concrete. Thus, only P will have concrete moves at his disposal in �T �sym.

Given plays s1 ∈ P�T �sym and s2 ∈ P�T �, we shall say that s2 matches s1 iff s2
can be obtained from s1 by replacing each occurrence of �q (respectively �a)
with a concrete question (respectively answer) coming from the same copy of var
as the generic move it replaces. Thus, plays in �T �sym can be viewed as specifica-
tions of sets of plays in �T �. Suppose σ : �T �sym. Because σ is deterministic and
�T �sym does not allow concrete O-moves, a play from �T � can match at most one
play from σ. This matching can be used to define strategies σ̂ : �T � that “match”
σ but, in general, such extensions will not be unique. In what follows, we intro-
duce a special class of strategies on �T �sym that can be extended to strategies on
�T � in a canonical way.
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Definition 10. A well-bracketed strategy σ : �T �sym is a tail strategy iff it sat-
isfies the following conditions.

(i) If s�a ∈ σ then the last move of s is a �a-move.
(ii) If s�q ∈ σ then for any s �q s1 �a ∈ P�T �sym such that s�qs1 ∈ σ, we have

s �q s1 �a �a ∈ σ.

Remark 1. Because tail strategies are well-bracketed, the target of the last jus-
tification in clause (ii) is uniquely determined by s�q. We shall call it the mate
of �q. Of course, the mate of �q must also be a �q-move. Similarly, we define
the mate of a P -answer �a in s�a ∈ σ to be the last move of s, which by clause
(i) must be an O-answer of the shape �a.

Definition 11. Let σ : �T �sym be a tail strategy. We define the copy-cat exten-
sion σ̂ : �T � of σ in the following way.

– ε ∈ σ̂.
– If s ∈ σ̂, sm1 ∈ P�σ�, tn1n2 ∈ σ are such that tn1 matches sm1 then:
• if n2 is not generic then sm1n1 ∈ σ̂;
• if n2 is generic, then s′ = sm1m2 ∈ σ̂, where s′ is the unique play

matching tn1n2 and such that n2 is instantiated with the same concrete
move as its mate.

Note that when σ is innocent, so is σ̂. An innocent strategy is compactly innocent
if it depends only on a finite number of views.

Lemma 4. Suppose σ : �T �sym is a compactly innocent tail strategy. Then there
exists a new-free term � M : T of IA such that �� M : T � = σ̂.

Proof. Follows the standard definability argument for PCF [13].

6.2 Knowingness Without mkvar

Now we continue with definability for certain knowing, i.e. not necessarily inno-
cent, strategies.

Lemma 5. Suppose T = vark → · · · → var1 → T ′ and let s be a single-threaded
play in �T �sym such that any generic P -question �q in s comes from vari (i =
1, · · · , k) and no two such questions come from the same vari. Let σ be the least
single-threaded strategy on �T �sym containing s. If σ is a tail strategy, then there
exists a compactly-innocent tail strategy τ : �var → T �sym such that τ ; cellsymT =
σ2. Consequently, τ̂ ; cellT = σ̂.

2 cellT : �(var → T ) → T � works in the same way as cellcom: moves are being copied
from one copy of �T � to another and, when O makes a move in the var component,
P ’s responses reflect the behaviour of a storage cell. cellsymT works analogously except
that it is a strategy in the game (Avar ⇒ �T �sym) ⇒ �T �sym.
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Proof. We modify the factorization argument from [4]. Its key idea is that τ fol-
lows σ except that it uses the additional var component for recording the single-
threaded history of play. Thus, when an O-move from �T �sym is made following
some play t ∈ τ , τ will always play read to find out what the current single-
threaded play looks like. The subsequent O-move is then regarded as the code of
the play. τ is then able to mimic σ in an innocent way, because the code of the
whole single-threaded play will be present in the relevant view. However, before
τ imitates σ, it always writes the code of the resultant single-threaded play to the
var component. Plays of τ thus have the shape · · · mO

T read swrite(sab) ok mP
T ,

i.e. the procedure introduces additional moves between any O-move and the
P -move that follows.

Note that, in our case, we cannot afford to adopt the above-described pro-
cedure after O-moves of the form �a, because we want τ to be a tail strategy.
However, because σ is a tail strategy, we know that, after an O-move �a, P will
also respond with �a. Moreover, because generic P -questions can only come from
some vari, all O-answers �a must also come from there. Consequently, thanks
to the special shape of the arena, the predecessor of any O-answer �a in s must
be the P -question �q that enables it. This opens up the way to modifying the
previous factorization: before P plays �q in τ , τ can already write the code of
s�q�a�a to the var component, because �a�a will follow anyway. When �a is
indeed played by O afterwards, τ will not read or write from var component, but
will immediately reply with the same �a as σ would. Note that this behaviour
is innocent, because no two generic O-answers come from the same vari.

Proposition 2. Suppose s = run · · · done is a single-threaded play of �T � in
which P -moves are well-bracketed. Then there exists an IA-term � Ms : T such
that the set of single-threaded complete plays of �� Ms� is {t | s (�O ∪ )O)∗ t}.

Proof. Note that the shape of the play means that T = Tl → · · · → T1 → com.
Let k be the number of concrete P -answers in s. We will first replace s with s′ ∈
P�T ′�sym such that T ′ = vark → · · · → var1 → T and s′ satisfies the assumptions
of Lemma 5. s′ is obtained from s in the following way.

– Any concrete O-question is replaced by �q from the same copy var as the
question.

– Any concrete P -answer is replaced with �j
q,�j

a �a, �j
q,�j

a come from varj ,
�a comes from the same copy of var as the answer and the answer in question
is the jth concrete P -answer in s.

By Lemma 5 σ̂ = τ̂ ; cellT ′ , where τ is a compactly-innocent tail strategy on
�var→ T ′�sym. By Lemma 4 there exists a IA-term � M : var→ T ′ such that ��
M� = τ̂ . Thus, putting M ′ ≡ λxk · · ·x1yl · · · y1.newX inMXxk · · ·x1yl · · · y1,
we get �� M ′ : T ′� = σ̂. To obtain � M ′′ : T satisfying the current Proposition
it now suffices to take

λyl · · · y1.new x1, · · · , xk in INIT ;M ′xk · · ·x1yl · · · y1;FINIT ,

where INIT ≡ INIT 1; · · · ; INITk,FINIT ≡ FINIT 1; · · · ;FINITk,
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INIT j ≡
{
xj :=i+ 1 jth concrete P -answer in s is ok justified by write(i)
xj :=i jth concrete P -answer in s is i (justified by read)

and FINIT j ≡ if (!xj = i) thenskip elseΩ, where the jth concrete P -answer
is i (justified by read) or or ok justified by write(i).

By previous remarks Proposition 2 implies Proposition 1.

Lemma 6. For any IAcatch-terms Γ � M1,M2 : T , if Γ � M1
�∼ IAcatchM2

then �Γ � M1� + �Γ � M2�.

Proof. W.l.o.g. assume that Γ is empty (other cases can be reduced to this
case by λ-abstraction). Suppose s ∈ �� M1 : T �. Let s′ = run s done. By
Proposition 1 there exists a term � Ms′ : T → com whose set of single-threaded
and complete plays is {t | s′ ()O∪�O)∗ t}. Let C[−] = Ms′([−]). Then �� C[M1]� =
�� skip�, so C[M1] ⇓. Because Γ � M1

�∼ IAcatchM2, we also have C[M2] ⇓.
Hence, �� C[M2]� = �� skip�. But this implies, by definition of composition of
strategies, that there must exists t ∈ �� M2� such that s()P ∪ �P)∗t.

Putting together Lemmas 3 and 6 we obtain Theorem 2.

7 On Conservativity

Harmer and McCusker have investigated the game semantics of nondeterminism
and showed how IAmkvar+or can be modelled by nondeterministic strategies [14].
Analogously to IAcatch+mkvar and IAmkvar, observational approximation (based
on may-convergence) in IAcatch+mkvar+or and IAmkvar+or can be shown to cor-
respond to containment of induced plays and complete plays respectively. So,
in these two cases, extensions by or are conservative both with respective to
observational approximation and equivalence. The same turns out to apply to
IAcatch and IA. Indeed, our argument for IAcatch is immediately applicable to
IAcatch+or: nondeterministic strategies ordered by + form a fully abstract model
of IAcatch+or. Similarly, McCusker’s preorder for IA [7] also gives full abstraction
for IAor. Consequently, IAor and IAcatch+or are conservative extensions of IA and
IAcatch respectively.

In contrast, extensions of IA, IAor, IAor+mkvar by catch are not conservative,
even for observational equivalence. In game semantics this manifests itself in the
reliance of full abstraction results for catch-free languages on complete plays
only.

The inclusion of mkvar also turns out to affect observational approximation
in any of IA, IAcatch, IAor, IAcatch+or. For IA the effect of mkvar was cap-
tured by McCusker [7], IAcatch was examined in this paper and, as we already
mentioned, the two results apply to IAor and IAcatch+or. As for observational
equivalence, mkvar is “conservative” for IA, as shown in [7], but not IAcatch,
as demonstrated in this paper. It is interesting to note that, for program equiv-
alence, IAor+mkvar does not extend IAor conservatively either. Let M1,M2 be



Bad Variables Under Control 571

the terms from Section 5 such that M1
�∼ IAM2 and ¬(M1

�∼ IAmkvarM2). Then
M1 orM2

∼=IAor M2, but the terms are not equivalent in IAor+mkvar.
Finally, let us consider probabilistic game semantics. Probabilistic strategies

were introduced by Danos and Harmer [15] as functions σ : P ev
A → [0, 1] where

P ev
A stands for the set of even-length plays on A. For probabilistic programs,

instead of presence or lack of termination, one talks about the probability of
termination, denoted by ⇓p. Observational approximation can then be defined
as follows.

Definition 12. Suppose Γ � M1,M2 : T are terms of L = IAcoin, IAcoin+mkvar.
Γ � M1 : T approximates Γ � M2 : T iff, for all L-contexts C[−] such that
� C[M1], C[M2] : com holds there exist p, q such that p ≤ q, C[M ] ⇓p and C[N ] ⇓q.
For IAmkvar the above notion can be characterized via complete plays [16]: Γ �
M1

�∼ IAcoin+mkvarM2 iff for all single-threaded complete plays s we have �Γ �
M1�(s) ≤ �Γ � M2�(s). The left-to-right implication depends on the fact that
for any single-threaded complete play s one can construct an IAmkvar-term Γ �
M such that s is the only single-threaded complete play in �Γ � M�. Using
McCusker’s definability result for IA [7], which says that there exists an IA-term
generating exactly the single-threaded complete plays from {t | s �∗O t}3, one can
show the following result.

Lemma 7. For any IAcoin-terms Γ � M1,M2 : T , if Γ � M1
�∼ IAcoinM2 then

for any single-threaded complete play s we have
∑

{t | s(∗
Pt}

�Γ � M1�(t) ≤
∑

{t | s(∗
Pt}

�Γ � M2�(t).

The converse of the Lemma is not true. The conceptual reason for the failure
is that a single complete play can be extended to a )- and �-closed strategy
in a number of ways, while the definability result in [7] (and in this paper)
only explores the simplest one. This approach is fruitful for languages in which
termination requires only a single terminating run, but turns out insufficient
in the probabilistic setting, when termination is quantitative and all evaluation
paths have to be taken into account when comparing programs. We leave the
generalization of the definability results for future research. In any case, although
the above lemma could not be extended to a full abstraction result, it has an
important application in the proof of our last result.

Proposition 3. IAcoin+mkvar is a conservative extension of IAcoin for observa-
tional equivalence.

Proof. Suppose Γ � M1
∼=IAcoin M2. By Lemma 7, for any single-threaded

complete s, we have
∑
{t | s(∗

P t}
�Γ � M1�(t) =

∑
{t | s(∗

Pt}
�Γ � M2�(t). Note

that the set {t | s �∗P t} is finite and partially-ordered by �∗P. By induction with
respect to the reverse order, one can then prove that for all complete s we have
�Γ � M1�(s) = �Γ � M2�(s), from which Γ � M1

∼=IAcoin+mkvar M2 follows.

3 Proposition 1 specializes to it when both O- and P -answers are well-bracketed.
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Thus, for program equivalence, mkvar is conservative for IA and IAcoin, but not
for IAcatch or IAor.
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Abstract. A game semantics of the (−−∗, →)-fragment of the logic of
bunched implications, BI, is presented. To date, categorical models of
BI have been restricted to two kinds: functor category models; and the
category Cat itself. The game model is not of this kind. Rather, it is
based on Hyland-Ong-Nickau-style games and embodies a careful analy-
sis of the notions of resource sharing and separation inherent in BI. The
key to distinguishing between the additive and multiplicative connectives
of BI is a semantic notion of separation. The main result of the paper is
that the model is fully complete: every finite, total strategy in the model
is the denotation of a term of the αλ-calculus, the term language for the
fragment of BI under consideration.

1 Introduction

The logic of bunched implications, BI [10, 9, 11], is a substructural logic which
treats multiplicative and additive versions of its connectives on an equal foot-
ing, and in doing so gives an account of the notions of sharing and separation
of resources. As a result, BI has clear applications to computer science: us-
ing BI as a type system gives rise to elegant approaches to interference-control
in imperative programming [10] improving on Reynolds’s Syntactic Control of
Interference [13]; a particular model of BI has become known as Separation
Logic [14] and is now a widely studied approach to local reasoning about pro-
grams which manipulate memory in challenging ways; and BI has also been de-
veloped into a Hennessy-Milner style logic for specification and reasoning about
resource-sensitive properties of processes and systems [12].

From the outset, BI has enjoyed a rich semantic theory based on the notion
of cartesian doubly-closed category: models of BI are categories possessing two
distinct monoidal-closed structures, one of which is cartesian. To date the only
known instances of this structure are functor category models and the category
of categories, Cat.

Game semantics is an approach to modelling logics and programming lan-
guages which has seen considerable success in the last fifteen years. The first
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major results were the fully-abstract games models of PCF [1,4,7], and subse-
quently a wide variety of programming languages and logics have been modelled,
very often with full abstraction or full completeness properties.

In this paper, we use game semantics to give a new model of a fragment of BI, in
the form of the associated term-language, theαλ-calculus [10,11,9,8]. Our model is
a refinement of the Hyland-Ong-Nickau style model of the λ-calculus. We demon-
strate that the model is fully complete, that is, that every finite, total element of
the model is the denotation of a term of the language, i.e., a proof in BI.

There are many further directions for this work. As well as going on to model
larger fragments of BI, we would like to combine the approach to resource-
sensitivity introduced here with the games models of imperative programming
[2], aiming to arrive at a semantic account of interference control extending that
of [15]. The model given here incorporates a relational, rather than a syntactic,
notion of separation, similar to the language λsep [3] and we conjecture that our
model is also a model for that calculus.

2 Bunched Implications and the αλ-Calculus

We will not present BI directly but instead move straight to the associated
term-language, the αλ-calculus. The types of the αλ-calculus are as follows:

A ::= γ | A−−∗A | A→ A,

where γ ranges over a collection of ground types. Its terms are given by the
grammar

M ::= x | λx.M |MM | αx.M |M @M.

The standard β- and η- reduction apply to both kinds of abstraction and appli-
cation, e.g. (αx.M) @ N → M [N/x] and (λx.M)N → M [N/x], with the usual
notions of free and bound identifiers, capture-free substitution etc.

The typing rules are based on judgements of the form Γ � M : A, where M
is a term, A is a type, and Γ is a bunch: bunches are described by the grammar

Γ ::= I | x : A | Γ, Γ | Γ ;Γ.

I is the empty bunch; x : A is a singleton bunch; and there are two bunch-forming
operations, comma and semicolon. The idea is that in a bunch Γ,Δ there is no
resource sharing between Γ and Δ, while in Γ ;Δ there may be. Formally, this
is achieved by allowing contraction across semicolons but not across commas.

We write Γ (Δ) to indicate a bunch in which Δ appears as a subtree, and then
Γ (Δ′) indicates the similar tree whereΔ is replaced byΔ′. Bunches are identified
up to coherent equivalence: ≡ is the smallest equivalence relation on bunches
including commutative monoid equations for I and ; , commutative monoid
equations for I and , and congruence: if Δ ≡ Δ′ then Γ (Δ) ≡ Γ (Δ′). Note that
in our presentation we do not have separate units for the two bunch-forming
operations. This is because our version of the αλ-calculus and our model will
incorporate weakening for both connectives. That is, we treat the affine version
of BI, so the units are identified.
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The typing rules are as follows:

Γ � M : A
Γ ≡ Δ (coherence)

Δ � M : A
(id)

x : A � x : A

Γ (Δ) � M : A
(weakening for , )

Γ (Δ,Δ′) � M : A

Γ (Δ) � M : A
(weakening for ; )

Γ (Δ;Δ′) � M : A

Γ, x : A � M : B
(λ-abstraction)

Γ � λx.M : A −−∗ B

Γ � M : A −−∗ B Δ � N : A
(

multiplicative
application

)

Γ,Δ � MN : B

Γ ;x : A � M : B
(α-abstraction)

Γ � αx.M : A → B

Γ � M : A → B Δ � N : A
(

additive
application

)

Γ ;Δ � M @ N : B

Γ (Δ;Δ′) � M : B
Δ ∼= Δ′ (contraction)

Γ (Δ) � M [idents(Δ)/idents(Δ′)] : B

In the final rule, Δ ∼= Δ′ means that the bunches Δ and Δ′ are the same up
to renaming of identifiers, and the substitution M [idents(Δ)/idents(Δ′)] simul-
taneously replaces each identifier of Δ′ appearing in M with the corresponding
one from Δ.

The simply-typed λ-calculus is of course the fragment of the αλ-calculus where
only ; is used in bunches, and only α and @ are used as term-formers. Even
though our syntax for this fragment uses α as the binder, we will continue to
call it the λ-calculus! (Note that α and λ are mnemonics for the αdditive and
λinear abstractions respectively.)

We first establish some simple facts about the type system.
If Γ is a bunch containing identifiers x and y, then there is a unique sub-bunch

of the form Γ1, Γ2 or Γ1;Γ2 such that x appears in Γ1 and y in Γ2. We say that
x and y are separated in Γ if this sub-bunch has the form Γ1, Γ2. That is, x
and y are in sub-bunches combined by the comma rather than the semicolon.

Lemma 1. A term Γ � MN : B is typeable if and only if there are typeable
terms Γ � M : A −−∗ B and Γ � N : A, and all the free identifiers of M are
separated from all the free identifiers of N in Γ .

Proof. The only-if direction is a straightforward structural induction on deri-
vations. For the other direction, we show that Γ can be split as Γ = Γ1, . . . , Γn
where each Γi contains identifiers from at most one of M and N , and the result
follows easily. �
The standard additive-style application rule for @ is admissible:

Lemma 2 (Additive application). If Γ � M : A → B and Γ � N : A then
Γ �M @N : B.

Proof. Rename the variables in N to obtain Γ ′ � N ′ : A with Γ ∼= Γ ′, then
use the application and contraction rules. �
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3 A Game Semantics for the αλ-Calculus

In this section, we briefly recall the basic definitions and results in Hyland-Ong-
Nickau style game semantics for the λ-calculus, including the full completeness
argument, before going on to refine the model to handle the subtleties of the
BI. The definitions we use are essentially those of [6], with one or two small
presentational changes to facilitate our later refinements.

3.1 Arenas

A game has two participants: Player (P) and Opponent (O). A play of the game
consists of a sequence of moves, alternately by O and P. In addition, each move
is explicitly justified by an earlier move of the play, unless it is a special kind of
move, called initial, which needs no justification. In the games we consider, O
always moves first.

Before embarking on a formal definition, let us fix notation for sequences and
operations on them. We use s, t, . . . to range over sequences and a, b, . . . , m,
n, . . . over elements of sequences. If s and t are sequences, then st or s · t is their
concatenation; ε is the empty sequence. A move a will often be identified with
the singleton sequence consisting just of a. The sequence s<a is the prefix of s
up to, but not including, an element a, while s≤a does include a.

An arena is specified by a triple A = 〈MA, λA,�A〉 where:

– MA is a set of moves;
– λA : MA → {O,P} is a labelling function which indicates whether a move

is by Opponent (O) or Player (P). The function λA is λA with the O and P
reversed. If λ(a) = O, we call a an O-move; otherwise, a is a P-move;

– �A is a relation between MA+{�} and MA, called enabling , which satisfies
• � �A a⇒ [b �A a ⇐⇒ b = �], and
• a �A b ∧ a �= �⇒ λA(a) �= λA(b).

The enabling relation tells us either that a move a is initial and needs no
justification (� �A a), or that it can be justified by another move b, if b has been
played (b �A a). An arena is called negative if all its initial moves belong to O.

A justified sequence s of moves in an arenaA is a sequence of moves together
with justification pointers: for each move a in s which is not initial, there is
a pointer to an earlier move b of s such that b �A a. We say the move b justifies
a, and extend this terminology to say that a move b hereditarily justifies a if
the chain of pointers back from a passes through b.

Given a justified sequence s, the view view(s) of s is defined as follows:

view(ε) = ε
view(s · a) = a, if a is an initial move

view(s · a · t · b) = view(s) · a · b.

If s is a justified sequence containing a move a, we say that a is visible at s
if a appears in view(s).
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A justified sequence s is a legal position iff:

– O moves first: if s = as′ then λ(a) = O;
– s is alternating : if s = s1abs2 then λ(a) �= λ(b);
– The visibility condition holds: if s = s1as2, and a is not initial, then the

justifier of a is visible at s1.

The set of all legal positions of an arena A is written LA.

3.2 Strategies

A strategy for an arena A is a rule telling Player what move to make in a given
position. Formally, this can be represented as a set σ of legal positions in which
P has just moved, i.e., a nonempty set of even-length positions, such that

sab ∈ σ ⇒ s ∈ σ sab, sac ∈ σ ⇒ sab = sac.

For any arena A, the smallest possible strategy is {ε}, which never makes any
response. It is called the empty strategy and denoted ⊥.

A strategy is innocent if for all sab, t ∈ σ, if ta ∈ LA and view(sa) = view(ta),
then also tab ∈ σ, with b justified by the same element of view(ta) = view(sa) as
in sab.

3.3 Constructions on Arenas

Given negative arenas A and B, the arenas A × B and A � B are defined as
follows:

MA×B = MA-B = MA +MB (disjoint union)
λA×B = [λA, λB] λA-B = [λA, λB ]

� �A×B m ⇐⇒ � �A-B m ⇐⇒ � �A m ∨ � �B m
m �A×B n ⇐⇒ m �A-B n ⇐⇒ m �A n ∨m �B n.

The idea here is that the games A and B are played in interleaved parallel
fashion. In A × B, labelling and enabling are inherited directly from A and B.
In A � B, the O/P roles in A are reversed; one impact this has is that a legal
position in A � B always begins with a move from B. The unit for × is the
empty arena I = 〈∅, ∅, ∅〉. Note that A × B is negative if A and B are, while
A � B is not. In fact the only arenas we will consider which are not negative are
those of the form A � B, where A and B are negative.

3.4 Composition of Strategies

Let A, B and C be negative arenas. An interaction sequence on A,B,C is a
justified sequence u of moves from MA +MB +MC such that

– u � A,B ∈ LA-B,
– u � B,C ∈ LB-C ,
– u � A,C is an alternating sequence of moves in A � C, and
– there is at least one move between any A-move and any C-move in u.
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We write int(A,B,C) for the set of all such sequences.
Given strategies σ on A � B and τ on B � C we define the composite strategy

σ ; τ on A � C by “parallel composition plus hiding”.

σ ; τ = {s | ∃u ∈ int(A,B,C).u � A,B ∈ σ ∧ u � B,C ∈ τ ∧ u � A,C = s}.

Lemma 3. Composition of strategies is well-defined (that is, σ ; τ as defined
above is indeed a strategy on A � C). Moreover, it is associative and has identity
given by the copycat strategy

idA = {s ∈ LA-A′ | ∀t +even s.t � A = t � A′}.

(Here A′ is the same arena as A; we use the prime only to distinguish the two
occurrences. The copycat strategy simply copies O’s moves back and forth from
one occurrence to the other.) Further, the composite of two innocent strategies
is innocent and the identity is itself innocent.

We can now define two categories of games: G has negative arenas as objects and
strategies on A � B as maps from A to B, with composition and identities as
above; Ginn has the same objects but has only innocent strategies as morphisms.

The × operation on arenas gives a categorical product in Ginn; the projections
A1 ×A2 → Ai are given by copycat strategies.

The category Ginn is in fact cartesian closed: exponentials are given by the
arena A⇒ B defined by

MA⇒B = MA + MB � �A⇒B a ⇐⇒ � �B a

λA⇒B = [λA, λB ] m �A⇒B n ⇐⇒ m �A n ∨ m �B n ∨ [� �B m ∧ � �A n]

Compare and contrast with A � B: in creating A ⇒ B we convert initial
moves of A to non-initial moves, justified by initial B-moves. Note that this
means A ⇒ B is always negative if A and B are. Standard presentations use
only negative arenas and use this definition for A � B, but when we come to
refine the category to model BI this will no longer suffice: there is an important
distinction between morphisms and elements of the exponential type(s).

Now that we have a cartesian closed category, we can interpret the simply-
typed λ-calculus in a standard fashion [5]:

– each type A is interpreted as an object [[A]], that is, as an arena, with [[A→
B]] = [[A]]⇒ [[B]]

– a context Γ = x1 : A1; . . . ;xn : An is interpreted as the product [[A1]]×· · ·×
[[An]]

– each term Γ � M : A is interpreted as a map [[Γ � M ]] (often abbreviated
to [[M ]]) with domain [[Γ ]] and codomain [[A]].

The interpretation is fixed as soon as we determine an object [[γ]] for each ground
type: this is done by taking [[γ]] to be a one-move arena, consisting of a single
initial opponent move γ.
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3.5 Full Completeness for the λ-Calculus

We now sketch the proof of the definability result for λ-calculus which forms
the basis of, for example, Hyland, Ong and Nickau’s fully abstract models of
the programming language PCF [4,7]. The key to the result is that an innocent
strategy σ is determined by the set branches(σ) of legal positions s ∈ σ such that
every O-move in s is justified by the immediately preceding P-move, and that
such sequences correspond to branches of Böhm-trees. Hence innocent strategies
correspond to (partial, potentially infinite) Böhm-trees. Thus innocent strategies
which are total, meaning they have a response to every move O can make, and
finite, meaning the set branches(σ) is finite, correspond to ordinary Böhm-trees.

We consider a type A built from a single ground type γ using the→ construc-
tor, and a total, finite innocent strategy σ on the arena [[A]]. Our task is to find
a closed Böhm-tree M such that [[M ]] = σ. Using the uncurrying isomorphisms,
we may consider an arena of the form A1 × · · · × An � γ and search for a term
of the form x1 : A1, . . . , xn : An �M : γ to denote our strategy.

Let Ai = Ai,1 → · · · → Ai,ki → γi, where we use the subscript on γ simply to
distinguish it from other occurrences of the ground type. Since σ is total, it has
a response to the initial move γ, so there is some sequence γγi ∈ branches(σ).
The term denoting σ will then take the form xiM1 . . .Mki for some terms Mj .

Every longer sequence in branches(σ) has the form γγiγi,jt where γi,j is the
initial move of [[Ai,j ]] for some j. The set {γi,jt | γγiγi,jt ∈ S} then determines
(the branches of) a finite, total innocent strategy τj on the arena A1×· · ·×An �
Ai,j . This requires relabelling the moves a little: moves of the sequences t which
are hereditarily justified by γi,j become moves in the right-hand arena Ai,j , while
all others remain in the left-hand side.

The set branches(τj) is strictly smaller than branches(σ), so we can use an in-
ductive argument to find a term Mj such that [[Mj ]] is this strategy. We can then
verify that σ = [[xiM1 . . .Mki ]] thus completing the full completeness argument.

The correspondence between branches of Böhm-trees and plays in branches(σ)
motivates our forthcoming definitions of the model of the αλ-calculus, so we
expand on the accompanying intuition:

– An O-move corresponds to the selection of a subterm to investigate: the
initial move γ commences investigation of the term, and after P responds
with γi, O can choose any of the γi,j , which begins investigation of the
subterm Mj;

– A P-move corresponds to the choice of head-variable for the subterm under
investigation;

– The justifier of a P move is the O-move corresponding to the subterm where
the chosen head-variable was introduced by abstraction. Initial P-moves cor-
respond to free variables;

– Suppose we have an O move m and a later P-move n whose justifier appears
before m. The subterm M corresponding to m contains the use of a variable
x corresponding to n, and this variable appears free in M , since it was
abstracted (justified) outside M .
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To illustrate, consider the λ-term

λf.λx.f(λg.gx) : (((γ1 → γ2)→ γ3)→ γ4)→ γ5 → γ6.

A typical play in the strategy interpreting this term is

γ6 · γ4 · γ3 · γ2 · γ1 · γ5.

The P-moves correspond to head-variables: γ4 picks f ; γ2 picks g; and γ5 picks
x. Note also that move γ5’s justifier is before those of γ1 and γ3, since x is free
in the subterms being investigated, which are x and λg.gx respectively.

3.6 Refining the Model

Armed with intuition about the correspondence between strategies and Böhm-
trees in the λ-calculus, let us investigate how these ideas might be refined to
reflect the αλ-calculus.

Let Γ � M be a Böhm-tree in the λ-calculus. If we replace some of the ;
constructors in Γ with , so that Γ becomes a nontrivial bunch, and replace some
of the → type constructors with −−∗, what constraints do the typing rules of
the αλ-calculus place upon M , and how might these be reflected in the games
model?

For a term fM1 . . .Mn to remain typeable after this refinement of the typing,
we require at least that

– if f appears free in one of the Mi, then Mi is an argument to a →-function,
and

– if Mi and Mi+j share a free variable x, then Mi+j is an argument to a
→-function.

For instance, if f has type A−−∗B → C, then in a term (fM)@N , f may appear
in N but not M ; and M and N may share free variables. However, if f has type
A→ B−−∗C then in a term (f @M)N , f may appear free in M but not N , and
M and N ’s free variables must be distinct.

The constraints run deeper than this: in a subterm fM1 . . .Mn of a closed
Böhm-tree, if Mi+j is an argument to a −−∗-function, then the free variables of
Mi and Mi+j must be separated (Lemma 1). What this means for the term is
that, if Mi contains x and Mi+j contains y:

– whichever of x and y was introduced by abstraction deeper in the term, must
have been introduced by λ-abstraction rather than α-abstraction.

To capture all of this in the games model, we will need:

– a semantic account of the notion of “variable appearing free in a subterm”;
– a semantic account of the distinction between arguments to→-functions and
−−∗-functions;
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– a semantic account of the idea that “the deeper abstraction must be a λ-
abstraction”.

We shall now formalize these ideas in the games setting.
We shall now extend our games model with the appropriate structure to allow

us to incorporate the above ideas. In the next few paragraphs, remarks appearing
in brackets [. . . ] indicate the intuition corresponding to our definitions.

Given moves a and b in a legal position s, with a occurring before b and
λ(a) �= λ(b), we say b is an external move to a, writing b ext a, if the justifier
of b occurs before a (or b is initial), and a is visible at s<b. [This gives us a
semantic account of variables appearing free in subterms.]

Given an arena A, a separation relation on A is an irreflexive, symmetric
binary relation #A on the moves of A, subject to the condition that if a#Ab then
either a �A b, b �A a or there is some c such that c � a, b. That is, separation
exists only between moves which enable one another, or which share a justifier.
[Separation will allow us to distinguish between −−∗ and →: the arenas A−−∗B
and A→ B will differ only in that initial moves from A are separated from those
of B in A−−∗B.]

We refer to an arena A together with a separation relation #A as a sep-
arena , and often refer to it just as A rather than the pair (A,#A).

If s is a legal position in a sep-arena containing two moves a and b, we write
a#s b if a and b have the same justifier in s (or both are initial) and also a#A b.
[In the case where these are O-moves, a#s b tells us that the two subterms being
investigated may not share resources.]

We write a ∗s b if any of the following conditions holds:

– a#s b;
– a is justified by a′, b ext a′ and a#A a

′; or
– b is justified by b′, a ext b′ and b#A b

′.

[In the case where these are P-moves, a ∗s b tells us that the variables being
chosen do not share resources: in a closed term, the more deeply abstracted of
the two variables was λ-abstracted.]

Let A be a sep-arena. A legal position s is separation safe if

– for any O-moves a, b ∈ s with a#s b, if a1 ext a and b1 ext b then a1 ∗s b1,
– for any P-move a such that aext b in s, if b is justified by b′ and b#A b

′ then
a ∗s b′.

Example. Supposing we give BI-types to the example term at the end of Sec-
tion 3.5. In the example play, we have γ5extγ1, and if g is a −−∗-function, we will
have γ1 # γ2, so separation safety will require γ5 ∗ γ2. This will hold if γ2 # γ3,
which will be the case if f is a −−∗-function, so that g is λ-abstracted rather than
α-abstracted.

Given negative sep-arenas A and B, we can define a separation relation on
A � B as the disjoint union of #A and #B . A strategy σ on A � B is called
separation safe if every s ∈ σ is separation safe. [Separation safe strategies are
those which adhere to the typing constraints of the αλ-calculus.]
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The main technical effort of the paper consists in showing that separation-safety
is preserved by composition of strategies. This involves a detailed analysis of
interaction sequences.

A move m in an interaction sequence u necessarily belongs to at least one of
u � A,B and u � B,C. In the case where m is in B, we say that u � A,B is the
P-component of m if m is a P-move there; otherwise it is the O-component.
Similarly for u � B,C.

The view view(u) of an interaction sequence is defined exactly as the view of
an ordinary legal position. We note that view(u) is the same as the view of the
O-component of the last move of u. This is because the justifier of a B-move
which is an O-move in A,B must be a P-move in A,B, and the move immediately
preceding it in u must again be an O-move coming from A,B.

We say that moves m and n in view(u) have opposite polarity if there is an
even number of moves strictly between them in view(u).

Given an interaction sequence u containing moves m and n, with m occurring
before n, we say n is an external move to m, n extum, if m is visible at u<n, m
and n have opposite polarity and n is initial or has its justifier before m. This
is equivalent to saying that n extm in the P-component of n.

The following lemma relates the ext relation in u � A,C to those in the A,B
and B,C components.

Lemma 4. Let u ∈ int(A,B,C). Let n be a P-move in u � A,C and m an
O-move in u � A,C such that n ext m in u � A,C. Then there exist moves
n1, . . . , nk in u, all coming from B, such that n extu n1 extu · · · extu nk extm.

We omit the proof, which involves a careful analysis of views in interaction
sequences, similar to the proof that innocence is preserved by composition of
strategies given in [6].

Having lifted the definition of ext to interaction sequences, the definitions of
# and ∗ on legal positions lift directly to interaction sequences, and we have
m ∗ n in u iff m ∗ n in the P-component of m.

The following lemma is key to our proof that separation-safety is preserved
by composition.

Lemma 5. Let A, B and C be negative sep-arenas. Let u ∈ int(A,B,C) be
such that u � A,B and u � B,C are separation-safe. Let m1 and m2 be moves
in u such that either m1 and m2 are O-moves in u � A,C with m1 # m2, or
they are P-moves in some component with m1 ∗ m2. Suppose there are moves
n1,1, . . . , n1,k1 , n2,1, . . . , n2,k2 such that

– ni,1 ext ni,2 ext · · · ext ni,ki extmi, for i = 1, 2,
– n1,1 and n2,1 are P-moves in u � A,C,
– the intervening moves ni,2, . . . , ni,ki are in B,
– the justifier of n1,1 is visible at u<n2,1 � A,C and vice versa.

Then n1,1 ∗ n2,1 in u � A,C.

Proof. We require an auxiliary definition: the pivot of separation of m1 ∗m2.
According to the definition of ∗, there are four possibilities:
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– m1 and m2 are both initial and m1 #m2: then there is no pivot;
– m1 and m2 have the same justifier j and m1 #m2: then j is the pivot;
– m1 is justified by some j, m1 # j and m2 ext j: then j is the pivot;
– as above with m1 and m2 exchanged: again j is the pivot.

We approach our proof by induction on the length of u≤j , where j is the pivot
of m1 ∗m2; by convention this is zero if there is no pivot.

The base case, therefore, is the case in which the mi are initial and m1 #m2.
If they are initial C-moves, the moves ni,ki must be initial B-moves and by
separation safety of u � B,C, n1,k1 ∗n2,k2 , which is to say n1,k1 #n2,k2 . The only
external moves of initial B-moves are initial A-moves, so we have that n1,k1−1

and n2,k2−1 are initial A-moves and n1,k1−1 ∗ n2,k2−1 by separation safety in
u � A,B. It must be the case that n1,1 = n1,k1−1 and n2,1 = n2,k2−1 completing
the argument in this case.

If the mi are initial B-moves, the second half of the above argument applies.
The inductive step considers the cases where a pivot j exists.
Suppose first that j is the shared justifier of m1 and m2, and m1 # m2. We

first deal with the degenerate case in which one of the ki (wlog k1) is zero, i.e.,
n1,1 = m1. In this case the mi are both P-moves in A or C; suppose wlog they
are in A. But then it must also be that k2 = 0 since no B-move can be an
external of m2 by definition. Thus we need only show that m1 ∗m2 which is true
by hypothesis.

If both k1 and k2 are non-zero, we have ni,ki extmi for i = 1, 2 and m1 #m2

in u � A,B or u � B,C. Hence by separation safety in this component, we have
n1,k1 ∗ n2,k2 , with pivot appearing earlier in u than j. We can therefore apply
the inductive hypothesis to conclude.

Suppose finally that the pivot j is the justifier of m1, where m1 # j and
m2 ext j. (The case with the mi exchanged is handled symmetrically.) If k1 = 0,
then j is in the view at u<n2,1 � A,C and n2,1’s justifier appears before that ofm2

and hence before j, so n2,1extj. Then by definition, n2,1∗m1 = n1,1. Otherwise,
k1 �= 0 so we have n1,k1 ext m1, and separation safety in the P-component of
n1,k1 ensures that n1,k1 ∗ j. The pivot for this separation must appear before j,
so we can apply the inductive hypothesis to this pair to complete the proof. �

Given negative sep-arenas A and B, the sep-arenas A × B and A ∗ B are
defined as follows. Both have the same underlying arena as A × B defined for
ordinary arenas; the difference is in the separation relations:

m#A×B n ⇐⇒ m#A n ∨m#B n

m#A∗B n ⇐⇒ m#A n ∨m#B n ∨ [� �A m ∧ � �B n]

plus a clause symmetric in m and n. That is, in A ∗ B, the initial moves of A
are separated from those of B, which is not the case in A×B.

We can also define A→ B and A−−∗B on negative sep-arenas. The underlying
arenas are as for A⇒ B. The separation relations are defined as follows:

m#A→B n ⇐⇒ m#A n ∨m#B n ∨ [� �A m ∧ � �B b �B n ∧ n#B b]
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m#A−−∗B n ⇐⇒ m#A n ∨m#B n ∨ [� �A m ∧ � �B n]
∨ � �A m ∧ � �B b �B n ∧ n#B b

plus clauses symmetric in m and n. That is, in both A→ B and A−−∗B, initial
A moves are separated from moves of B which are enabled by and separated
from initial moves. Furthermore in A −−∗B, initial A-moves are separated from
the initial B-moves that enable them. Thus for example in A→ (B−−∗C), initial
A-moves are separated from initial B-moves.

To illustrate the impact of separation safety, consider the sep-arenas A × B
and A ∗ B. The identity strategy on the underlying arena is separation-safe on
A∗B � A×B, but not on A×B � A∗B. In the latter case, the initial moves on
the right are related by # but are copied to the initial moves on the left, which
are not. Since the initial moves on the left are external to those on the right,
this violates separation safety.

Similarly, the identity strategy on the underlying arena gives us a valid strat-
egy on A → B � A −−∗ B but not the other way around: to see why consider a
typical play

A −−∗ B � A → B
b1

b2
a1

a2

#

Here we have a2exta1, and a1 is justified by b2 with a1 #b2, so separation safety
would require a2 ∗ b2 which is not the case here. On the other hand if we had
a2 # b1, which we would if the → were −−∗, then indeed a2 ∗ b2.

Proposition 1. The identity strategy on a sep-arena is separation safe.
Proof. Any P-move played by the identity strategy is external only to the
immediately preceding O-move, of which it is a copy. Thus if a1 ext b1 and
a2 ext b2 with b1 # b2, we immediately have a1 ext a2. Similarly if a1 ext b1
and b1 is justified by some b2 with b1 # b2, then a1 is a copy of b1 and hence is
justified by an a2 with a1 # a2. It must also be the case that b2 is the copy of
a2, so b2 ext a2 and hence b2 ∗ a1 as required. �

Proposition 2. The composition of separation-safe innocent strategies is itself
a separation-safe strategy.
Proof. If σ : A � B and τ : B � C are separation-safe strategies and s ∈ σ; τ
then there exists some u ∈ int(A,B,C) such that u � A,B ∈ σ, u � B,C ∈ τ and
u � A,C = s.

Suppose m1 #sm2 and ni extsmi for i = 1, 2. By Lemma 4, there are moves
ni,1, . . . , ni,ki in u coming from B such that ni ext ni,1 ext · · · ext ni,ki extmi.
Note also that, since mi is visible at ni and m1 and m2 share a justifier j, the
justifier of each ni appears in the view view(s<j). Thus n1’s justifier is visible at
s<n2 and vice versa. Thus by Lemma 5, n1 ∗ n2 as required.

Finally suppose m is justified by j with m# j, and some nextsm. Since m is
in view(s<n), by the visibility condition the justifier of j is in view(s<n) and the
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justifier of n is in view(s<j). Again by Lemma 4 we have a sequence of B-moves
in u such that n extn1 ext · · · ext nk extm. By separation safety of σ and τ we
obtain nk ∗ j, and then Lemma 5 tells us that n ∗ j as required. �
We can now define a category Gsep with negative sep-arenas as objects and
separation safe strategies on A � B as maps from A to B.

3.7 Interpreting the αλ-Calculus

In order to give a semantics of the αλ-calculus, we must show that Gsep has
enough structure to interpret both ; and , in contexts, and both → and −−∗ in
types.

Proposition 3. The category Gsep is cartesian closed, with product given by ×
and exponential by →. A second symmetric monoidal structure is provided by ∗
and, if B is a sep-arena with only one initial move and A any sep-arena, then
A−−∗B is an exponential with respect to ∗.

Proof. It is not difficult to check that × is categorical product, just as the cor-
responding construct is on Ginn. Similarly it is easy to check that ∗ is a monoidal
structure: all the structural isomorphisms are given by copycat strategies as
usual, and one just has to verify that they are separation safe. The exponentials
are where the novelty lies.

In Ginn, the fact that ⇒ is the exponential with respect to × follows from
the fact that there is a clear 1-1 correspondence between the legal positions of
A × B � C and A � B ⇒ C: both consist of moves from A, B and C, and
to turn a play in the former arena into one in the latter, one simply alters the
justification structure so that initial B-moves are justified by the unique visible
initial C-move. This lifts to a natural isomorphism of strategies and is standard
in game semantics. We shall argue that the same isomporphism serves for the
two exponentials in Gsep.

Our only additional obligation is to show that separation safety is preserved
when moving across this isomorphism. Let a0, b0, c0 range over initial moves of
A, B and C respectively, and c1 over moves of C such that some c0 �C c1 with
c0 #C c1. The only differences between the separation relations on A × B � C
and A � B → C is that in the latter, b0 # c1 which is not the case in the former.
But if s is a position of A � B → C containing b0 and c1 with the same justifier
c0, so that b0 #s c1, the corresponding position of A×B � C has bo ext c0 and
hence b0 ∗ c1. A similar argument shows that all instances of ∗ in positions of
A � B ⇒ C are retained when moving to A × B � C, so separation safety is
preserved by the isomorphism of positions.

For the correspondence between A ∗ B � C and A � B −−∗ C there are two
differences in #: first, as above, b0 # c1 in the latter but not the former, but this
is handled just as above; second, ao#b0 in the former but not the latter. For the
second, observe that in any position of A ∗ B � C in which a0 # b0 is required
for separation safety, the initial move c0 in view(s<a0) is the same as that in
view(s<b0); this is because C has only one initial move by hypothesis. Therefore
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when moving across the isomorphism we have a0 ext c0 and b0 justified by c0
with b0 # c0, hence a0 ∗ b0. A similar analysis shows that moving in the other
direction across the isomorphism also preserves separation safety. �
The category Gsep is therefore almost a cartesian doubly-closed category, the
notion of categorical model for the αλ-calculus defined in [9, 11, 10]. Gsep lacks
certain exponentials, such as those of the form A−−∗ (B ∗ C), whose right-hand
side arena has multiple initial moves. However, those are not necessary for the
interpretation of the αλ-calculus, so we can define the semantics of the lan-
guage exactly as in [10] using just the structure we have. We briefly sketch the
interpretation below; there are no surprises.

Types are interpreted as sep-arenas:

– [[γ]] is the arena with a single, initial opponent move γ and empty separation
relation;

– [[A−−∗B]] = [[A]] −−∗ [[B]] and [[A→ B]] = [[A]]→ [[B]].

Bunches are also interpreted as sep-arenas:

[[I]] = I [[Γ ;Δ]] = [[Γ ]]× [[Δ]] [[Γ,Δ]] = [[Γ ]] ∗ [[Δ]].

The coherence of symmetric monoidal categories ensures that if Γ ≡ Δ there is
a canonical isomorphism between [[Γ ]] and [[Δ]]. This allows us to interpret the
coherence rule. If Γ ∼= Δ then [[Γ ]] = [[Δ]], so the diagonal map Γ → Γ × Γ can
be used to interpret contraction. Since I is terminal and is the unit for both
× and ∗, there is a canonical projection from any [[Γ (Δ;Δ′)]] or [[Γ (Δ,Δ′)]] to
[[Γ (Δ)]] which can be used to interpret weakening. Finally, the two abstraction
and application rules are interpreted using the currying isomorphisms and the
evaluation maps of the two exponentials.

4 Definability

Theorem 1. Let A be a type of the αλ-calculus and Γ a bunch, both built over
a single ground type γ. Let σ be a finite, total separation-safe innocent strategy
on [[Γ ]] � [[A]]. Then there is a term Γ �M : A such that [[M ]] = σ.

Proof. Forgetting the separation relations, we can treat σ as a strategy on the
underlying arena and using t he argument for full completeness in the λ-calculus
given in Section 3.5, find a term M such that [[M ]] = σ in the model of ordinary
λ-calculus. We must show that this term is typeable in the αλ-calculus.

It is straightforward to establish that, if we start with a separation-safe strat-
egy σ, the substrategies which give rise to argument terms Mi are themselves
separation safe. Thus the inductive hypothesis gives us terms Γ � Mi : Ai and
a candidate application

Γ � xi •M1 • · · · •Mk

where each • may be a linear or additive application, according to the type of xi.
We must show that this application is typeable in the αλ-calculus. We proceed
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by induction on the number of applications. The base case, that of a variable by
itself, is trivial. For the inductive step, by inductive hypothesis we have Γ �Mk

and
Γ � (xi •M1 • · · · •Mk−1).

If the final application is additive, the result follows from Lemma 2. In the
multiplicative case, by Lemma 1 it suffices to show that the free identifiers of Mk

are separated from those of xi, M1, . . . , Mk−1. In the terminology of Section 3.5,
each free identifier of Mk corresponds to a move m in σ such that mextγik . The
xi corresponds to the move γi, while the free identifiers of each Mj corresponds
to a move n such that n ext γi,j . By definition, each γi,j # γi,k and γi,k # γi, so
by separation safety, m ∗ n and m ∗ γi. All these moves are initial moves in [[Γ ]],
so ∗ can only arise from #. Hence the free identifiers of Mk are separated from
those of the Mj and xi as required. �
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The third Ackermann Award is presented at this CSL’07. This is the first year
in which the EACSL Ackermann Award is generously sponsored. Our sponsor
for the next three years is the worlds leading provider of personal peripherals,
Logitech S.A., situated in Romanel, Switzerland1.

Eligible for the 2007 Ackermann Award were PhD dissertations in topics
specified by the EACSL and LICS conferences, which were formally accepted as
PhD theses at a university or equivalent institution between 1.1. 2005 and 31.12.
2006. The Jury received 7 nominations for the Ackermann Award 2007. The
candidates came from 7 different nationalities from Europe, the Middle East and
Asia and received their PhDs in 8 different2 countries in Europe, North America
and Australia.

The topics covered the full range of Logic and Computer Science as repre-
sented by the LICS and CSL Conferences. All the submissions were of very high
standard and contained outstanding results in their particular domain. The Jury
decided finally, to give for the year 2007 three awards, one for work in game log-
ics, one for work in proof theory, one for work in automated theorem proving.
The 2007 Ackermann Award winners are, in alphabetical order,

– Dietmar Berwanger from Germany, for his thesis
Games and logical expressiveness,
issued by the Rheinisch-Westphälische Technische Hochschule Aachen, Ger-
many, in 2005, supervised by Erich Grädel.

– Stephane Lengrand from France, for his thesis
Normalisation and Equivalence in Proof Theory and Type Theory,
issued by the University of St Andrews, Scotland and the University Paris
VII, France, 2006, jointly supervised by Roy Dyckhoff and Delia Kesner.

– Ting Zhang from China, for his thesis
Arithmetic Integration of Decision Procedures,
issued by Stanford University, USA, 2006, jointly supervised by Zohar Manna
and Henny Sipma.

� We would like to thank H. Barendregt, J. van Benthem R. Dyckhoff, Z. Manna, L.
Ong and I. Walukiewicz for their help in preparing the citations.

1 We would like to thank Daniel Borel, Co-founder and Chairman of the Board of
Logitech S.A, for his generous support of the Ackermann Award for the years
2007-2009. For a history of the company, founded in 1981 in Switzerland, consult
http://www.logitech.com.

2 Some of the candidates got their degree from two European institutions.

J. Duparc and T.A. Henzinger (Eds.): CSL 2007, LNCS 4646, pp. 589–597, 2007.
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The Jury wishes to congratulate the recipients of the Ackermann Award for their
outstanding work and wishes them a successful continuation of their career.

The Jury wishes also to encourage all the remaining candidates to continue
their excellent work and hopes to see more of their work in the future.

Dietmar Berwanger

Citation. Dietmar Berwanger receives the 2007 Ackermann Award of the Eu-
ropean Association of Computer Science Logic (EACSL) for his thesis

Games and Logical Expressiveness

in which he substantially advanced our understanding of the connections between
infinite games and logical definability and solved a long standing open problem
by separating Parikh’s dynamic game logic from the modal μ-calculus.

Background of the thesis. Close connections between mathematical logic
and infinite strategic games have been established long ago, but they are still
a topic of active research and bear some deep open problems. The determinacy
of infinite two-person games, that is, the question of whether there is always
a player who has a winning strategy, has been intensely studied in descriptive
set theory. In computer science, a combination of infinite games, logic, and au-
tomata forms the theoretical basis for the synthesis and verification of reactive
systems. The strategic interaction in two-person games can be used as a simple
and elegant model of the interaction between a system and its potentially ad-
verse environment, or the choices of a designer in building a system that reacts
to its environment as specified.

The modal μ-calculus is a logic that plays a central role in the theory of syn-
thesis and verification. Many other logics that are used as specification languages
for reactive systems can be translated into the μ-calculus. A special class of in-
finite two-person games that is closely related to the μ-calculus is the class of
parity games. More precisely, the evaluation of a μ-calculus formula on a transi-
tion system can be reduced to a parity game and, conversely, the winning regions
in parity games are definable in the μ-calculus. It is an important, and still open,
question whether these two problems can be solved in polynomial time. While
much is understood about this elegant system, many questions remain open,
especially concerning the fine-structure that its language provides for analyzing
particular types of recursion.

Dynamic game logic was proposed by Parikh as an extension of propositional
dynamic logic to the game setting. Dynamic logic is a modal logic where modal-
ities are not just single actions but regular expressions over actions standing for
complex games formed using operations of choice, sequential composition, and
iteration. In game logic, modalities describe players’ powers over sets of out-
comes that can be achieved by following different strategies available to them.
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In particular, there is a special dualisation operator, which can be used to de-
scribe alternation between players in complex games. This duality operator is
fundamental for a complete and symmetric treatment of game theoretic state-
ments. Dynamic game logic is intimately related to game-theoretic notions of
strategy and equilibrium, which have a mathematical fixed-point character, and
hence a comparison with the modal μ-calculus is a natural and timely topic of
research.

Berwanger’s thesis. The core results of the thesis Games and Logical Ex-
pressiveness are concerned with the expressive power of fragments of the modal
μ-calculus and game logic. These results are proved in a very innovative and
sometimes surprising way. A notable by-product of the proof of the main theo-
rem is the introduction of a new directed-graph invariant called entanglement,
which turned out to be of independent interest. The thesis is written in a concise
and elegant style.

The technical part of the thesis begins with an investigation of the expres-
sive power of game logic in the framework of the μ-calculus. Berwanger observes
that, as many other modal and temporal logics studied in this context, for exam-
ple CTL∗ or PDL, game logic can be translated into the two-variable fragment
of the μ-calculus. Surprisingly, he then proves that game logic is nevertheless
expressive enough to define the winning regions in parity games, which makes
it much more expressive than the other modal and temporal logics mentioned
above. This also implies that the model checking problem for game logic is algo-
rithmically as hard as that for the full μ-calculus. Thus, understanding essential
aspects of multi-player interaction seems as hard as understanding unlimited
recursion.

The main result of the thesis states that the variable hierarchy of the modal
μ-calculus is strict, that is, more variables induce more expressive fragments of
the logic. As game logic can be embedded into the two-variable fragment, this
implies that the μ-calculus is more expressive than game logic, answering an open
question asked by Parikh in 1985. But also as a stand-alone result, Berwanger’s
theorem provides key new insights into the fine-structure of general fixed-point
logics, of which the following is an example.

An important and innovative step in the proof of the hierarchy theorem is
to “measure” the combinatorial essence of the expressive power of the bounded
variable fragments of the μ-calculus by a new directed-graph invariant called
entanglement. Every finite graph is bisimilar to a tree with back edges. The
entanglement of such a tree measures the number of “open” back edges that
a node in such a tree can have. The entanglement of a structure is the mini-
mal entanglement of a bisimilar tree with back edges. The notion has a natural
characterisation in terms of a search game on directed graphs; similar games
are known to characterise other measures for the “tree-likeness” of graphs and
directed graphs. Besides applying it in the proof of the main result, Berwanger
exploited the connection between entanglement and the μ-calculus in a differ-
ent way by proving that the model checking problem for the μ-calculus is in
polynomial time on structures of bounded entanglement.
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The thesis contains a number of further nice results, in particular about the
positional determinacy and complexity of path games, another family of infinite
two-person games related to the classical Banach-Mazur games.

The results on game logic and the variable hierarchy are lasting results in
the theory of fixed point logics. The notion of entanglement, introduced as a
technical tool in the proof of the hierarchy result, has already turned out to be
of independent interest. The thesis introduces a wealth of new ideas and is a
pleasure to read.

Biographic Sketch. Dietmar Berwanger was born Lugoj, Romania in 1972.
He studied computer science at the RWTH Aachen and Universitá di Roma “La
Sapienza” and received his “Diplom” in Aachen in 2000. He wrote his PhD thesis
under the supervision of Erich Grädel in Aachen and received his Ph.D. in May
2005. Currently, he is a postdoctoral fellow at the EPFL Lausanne.

Stéphane Lengrand

Citation. Stéphane Lengrand receives the 2007 Ackermann Award of the Eu-
ropean Association of Computer Science Logic (EACSL) for his thesis

Normalisation and Equivalence in Proof Theory and Type Theory

in which he profoundly advanced our understanding of the logical under-pinnings
of proof search and programming language semantics.

Background of the thesis. Interactions between logic and computer science
provide formal methods for the development of proof assistant software, au-
tomated reasoning, high-level programming languages and certified software.
Research in this area is concerned with the following key concepts:

– mathematical objects that can formalise the notion of proof,
– computational features of these objects, with notions of normalisation,
– equational theories about these objects, i.e. notions of equivalence, related

to their computational features.

Intellectual direction comes from the Curry-Howard correspondence, relating
proofs to programs and propositions to types. For a logical system, one attempts
first to design an accurate proof-term calculus, and then uses techniques from
rewriting theory to establish the desired proof-theoretic properties. Lengrand’s
wide ranging thesis successfully deploys these ideas in new directions: to versions
of the sequent calculus appealing for proof-search; to powerful type theories; and
to the case of classical reasoning.

Lengrand’s thesis. The thesis lies on the boundary between proof theory,
type theory, λ-calculus and term rewriting. It provides a range of new results
relating to normalization, confluence, consistency and equivalence. Several major
contributions of the thesis stand out:
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– The thesis answers a long-standing challenge arising from the well-known
Melliès’ counterexample by presenting a calculus with explicit substitutions,
erasure and duplication constructors, which refines λ-calculus with an ex-
plicit handling of resources. Improving on results of David and Guillaume
(in particular with the simulation of β-reduction), such a calculus allows the
combination of a full notion of composition of substitutions with the property
of Preservation of Strong Normalisation. In its typed version, the calculus
establishes a Curry-Howard correspondence for multiplicative natural deduc-
tion (with explicit rules of weakening and contraction).

– A sequent calculus framework, giving a clear and natural theoretical ba-
sis to proof-search in type theory, is given. This comes from a formalism,
Pure Type Sequent Calculi (PTCS) yielding for each type theory expressed
in Barendregt’s natural deduction style Pure Type Systems, a corresponding
sequent calculus. Optimised versions of PTSC express, in a natural fashion,
proof-search mechanisms found in proof assistants like Coq, in logic program-
ming, and in algorithms that enumerate the programs of a given type (i.e.
satisfying a given specification).

– The Vorob’ev–Hudelmaier–Dyckhoff sequent calculus G4ip (in which the
proofs of every sequent are bounded in depth) is another long-standing issue
addressed in the thesis. Lengrand gives the first complete analysis of the
computational content of this calculus. This uses rewriting techniques: an
internal cut-elimination process, of which the (strong) termination is shown,
is expressed as a calculus of proof-terms and rewriting rules. Its semantics is
subtle, and capable of eliminating redundancies in proofs to produce proofs
of small depth (below the bound).

– The thesis contains a very careful study of the intuitionistic sequent calculus
LJQ (distinguished by a syntactic restriction on the left rule for implication)
and its relation to call-by-value semantics. The main result is an equational
correspondence with a slight but delicate modification of Moggi’s call-by-
value λ-calculus

– A classical version of the system Fω is shown to be strongly normalising
and consistent; this is achieved in an elegant fashion by allowing a purely
intuitionistic upper layer of types but a lower, classical, layer of terms.

In general terms, the work on PTSC initiates a particularly promising line of
research, in which concepts related to proof-search and logic programming can
fruitfully interact with the expressivity of type theories.

The thesis contains many other ideas: a constructive theory of (weak and
strong) normalisation; extensions of the simulation technique for proving strong
normalisation; notions of proof equality in classical logic relating to compu-
tational representations within the framework of Deep Inference. It is clearly
written, with its many diverse contributions expressed within a general, uniform
and abstract framework. Being unusual both in range and in depth, it shows cre-
ativity and maturity, and gives a high-level view of fields in logic and computer
science.
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Biographical Sketch. Stéphane Lengrand was born in 1980 in Paris. He en-
tered the École Normale Supérieure de Lyon in 2000. He took an M.Sc. in Math-
ematics and the Foundations of Computer Science at Oxford University in 2002.
He took his D.E.A. in 2003 and in the same year completed a Licence d’Anglais
in Medieval English at the Sorbonne.

Stéphane Lengrand studied for his PhD under cotutelle arrangements at the
Université Paris VII and the University of St. Andrews, being supervised jointly
by Delia Kesner (Paris VII) and Roy Dyckhoff (St. Andrews). He received his
doctorate in December 2006. This year he has been teaching at St. Andrews
where he is a Visiting Scholar, and he has been attending the Royal Scottish
Academy of Music and Drama in Glasgow from which he hopes to graduate
with the Postgraduate Diploma in Cello (Performance).

Ting Zhang

Citation. Ting Zhang receives the 2007 Ackermann Award of the European
Association of Computer Science Logic (EACSL) for his thesis

Arithmetic Integration of Decision Procedures.

His thesis constitutes a tour de force in decidability of structures with limited
arithmetic capability, and in particular establishes decidability of the first-order
theory of Knuth-Bendix order, thus solving a long-standing open problem.

Background of the thesis. Algorithmic decidability of formalized mathemat-
ical theories was first studied by Tarski and his students, who discovered that,
in spite of general undecidability of mathematics, several basic structures en-
joy decidable theories, as, e.g., reals, or integers with just addition (Presburger
arithmetics). Whenever it exists, a decision procedure gives us a deeper insight
into the structure.

The search for decision procedures remains an active topic in computer sci-
ence, especially in logic-based verification of programs, where decidable theories
underline the fully automatic methods. Computer science has its own menagerie
of abstract structures, like words, trees (terms), graphs. . . , and much effort has
been put into understanding decidability issues of these structures. But number-
theoretic domains are also needed whenever quantitative questions arrive.

Integration of various discrete structures with arithmetics is a non-trivial task,
appearing in many contexts, as, e.g., verification of memory safety properties.
The thesis of Ting Zhang meets this challenge by developing a series of deci-
sion procedures for first-order theories of algebraic structures integrated with
Presburger arithmetics via some functions of measurement. By an ingenious re-
finement of his method, the author also establishes decidability of the first-order
theory of the Knuth-Bendix ordering of terms, thus solving a long-standing open
problem in term-rewriting.

Deciding combined theories was previously addressed by Nelson and Op-
pen (in 1979). These authors proposed a modular combination method under
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restriction to quantifier-free theories with disjoint signatures. In spite of subse-
quent attempts by several researchers, these assumptions are hard to remove in
general, so the method fails for theories involving measurement functions. In his
thesis, rather than searching for general combination scheme, Zhang focuses on
specific problems and exploits the algebraic properties of the combined domain.

The idea of a well-ordering of first-order terms originated in Don Knuth’s work
on “completion procedure” for algebraic theories in early 1970s. Knuth’s ideas
regarding term inference were subsequently extended by Dershowitz and others,
and applied in design and implementation of automated theorem provers. Here
the order underlines a rewriting strategy, and the inference rules include side
conditions that involve quantified inequalities between terms. The two orderings
mainly used in this context are recursive path ordering and Knuth-Bendix or-
dering. Solving quantified constraints based on the former is however generally
undecidable.

The analogous question for the Knuth-Bendix ordering has been believed a dif-
ficult open problem. First positive results were given by Korovin and Voronkov,
who established NP-completeness of the quantifier-free fragment over arbitrary
signature, and decidability of the first-order fragment restricted to unary func-
tions. The proof of Korovin–Voronkov used a reduction to WS2S, and was hard
to extend to general case. Let us recall that Konstantin Korovin was among the
winners of the Ackermann Award in 2005.

The Knuth-Bendix ordering is of hybrid nature, as it combines a syntactic
precedence of function symbols with a linear weight function in a recursive way.
It has turned out that the methods developed by Ting Zhang for deciding the-
ories of hybrid structures were powerful enough to establish decidability of the
full first-order theory of Knuth-Bendix ordering. As the author remarks: It is
interesting that the combination of term algebra with integer arithmetic can help
an open problem in another quite different field .

Zhang’s thesis. The starting point is integration of term algebra and Pres-
burger arithmetic into a one combined structure, additionally equipped with the
length-of-term function (which can be replaced by another weight function). The
fundamental construction extracts complete integer constraints from term con-
straints, thus transferring the decision task into arithmetics. This construction is
subsequently refined throughout the thesis, yielding the more and more powerful
decidability results.

The main contributions are as follows.

– NP-completeness of the quantifier-free fragment and decidability of the full
theory of the aforementioned combination of term algebra and Presburger
arithmetic. The quantifier elimination procedure involves a block-wise re-
duction of term quantifiers to integer quantifiers, and eliminates a block of
quantifiers of the same kind in one step. This makes the algorithm k-fold
exponential for formulas with k quantifier alternations, regardless of the
number of quantifiers, which also improves elimination procedure for the
pure theory of term algebras.
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– Application of the above method to decidability of a theory of term algebra
with two integer functions which capture precisely the properties of red-black
trees.

– Decision procedure for the first-order theory of queues combined with Pres-
burger arithmetic, and NP-completeness of the quantifier-free fragment ex-
tended with prefix predicate.

– Decidability of the first-order theory of Knuth-Bendix order. This is most
brilliant achievement of the thesis, based on an extremely sophisticated ar-
gument (80 pages), involving many conceptual innovations. The key step
is introduction of boundary functions going in the opposite direction: from
integers to terms, which helps one to bound the terms being quantified over.

The thesis is based on a number of articles presented to IJCAR’04 (Best Pa-
per Award), TPHOLs’04, FSTTCS’05, CADE’05, LFCS’07, and an article in
Information & Computation (joint with H.B.Sipma and Z.Manna).

Biographic Sketch. Ting Zhang received his B.Sc. degree in computer science
from Peking University, Beijing, China, in 1996, and M.Sc. degree in computer
science from the Stanford University, CA, in 2001. He wrote his Ph.D. thesis
under the supervision of professor Zohar Manna (the co-advisor being professor
Henny Sipma) and obtained the Ph.D. degree in computer science from the
Stanford University, in 2006. He is currently a researcher at Microsoft Research
Asia in Beijing, China. He also teaches at Tsinghua University.

The Ackermann Award

The EACSL Board decided in November 2004 to launch the EACSL Outstanding
Dissertation Award for Logic in Computer Science, the Ackermann Award,
The award3. is named after the eminent logician Wilhelm Ackermann (1896-
1962), mostly known for the Ackermann function, a landmark contribution in
early complexity theory and the study of the rate of growth of recursive func-
tions, and for his coauthorship with D. Hilbert of the classic Grundzüge der
Theoretischen Logik, first published in 1928. Translated early into several lan-
guages, this monograph was the most influential book in the formative years of
mathematical logic. In fact, Gödel’s completeness theorem proves the complete-
ness of the system presented and proved sound by Hilbert and Ackermann. As
one of the pioneers of logic, W. Ackermann left his mark in shaping logic and
the theory of computation.

The Ackermann Award is presented to the recipients at the annual confer-
ence of the EACSL. The Jury is entitled to give more than one award per year.
The award consists of a diploma, an invitation to present the thesis at the CSL
conference, the publication of the abstract of the thesis and the citation in the
CSL proceedings, and travel support to attend the conference.
3 Details concerning the Ackermann Award and a biographic sketch of W. Ackermann

was published in the CSL’05 proceedings and can also be found at
http://www.dimi.uniud.it/eacsl/award.html.



The Ackermann Award 2007 597

The Jury for the Ackermann Award consists of eight members, three of
them ex officio, namely the president and the vice-president of EACSL, and
one member of the LICS organizing committee. The current jury consists of
S. Abramsky (Oxford, LICS Organizing Committee), J. van Benthem (Amster-
dam), B. Courcelle (Bordeaux), M. Grohe (Berlin), M. Hyland (Cambridge), J.A.
Makowsky (Haifa, President of EACSL), D. Niwinski (Warsaw, Vice President
of EACSL), and A. Razborov (Moscow and Princeton).

Previous winners of the Ackermann Award were

2005, Oxford:
Miko�laj Bojańczyk from Poland,
Konstantin Korovin from Russia, and
Nathan Segerlind from the USA.

2006, Szeged:
Balder ten Cate from The Netherlands, and
Stefan Milius from Germany

A detailed report on their work appeared in the CSL’05 and CSL’06 proceedings,
and is also available via the EACSL homepage.
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