
Comparing ACO Algorithms for Solving the

Bi-criteria Military Path-Finding Problem�

Antonio M. Mora1, Juan J. Merelo1, Cristian Millán2, Juan Torrecillas2,
Juan L.J. Laredo1, and Pedro A. Castillo1

1 Departamento de Arquitectura y Tecnoloǵıa de Computadores.
University of Granada (Spain)

{amorag,jmerelo,juanlu,pedro}@geneura.ugr.es
2 Mando de Adiestramiento y Doctrina. Spanish Army

{cmillanm, jtorrelo}@et.mde.es

Abstract. This paper describes and compares mono- and multi-objec-
tive Ant Colony System approaches designed to solve the problem of
finding the path that minimizes resources while maximizing safety for a
military unit in realistic battlefields. Several versions of the previously
presented CHAC algorithm, with two different state transition rules are
tested. Two of them are extreme cases, which only consider one of the
objectives; these are taken as baseline. These algorithms, along with the
Multi-Objective Ant Colony Optimization algorithm, have been tested
in maps with different difficulty. hCHAC, an approach proposed by the
authors, has yielded the best results.

1 Introduction and Problem Description

The commander of a military unit in the battlefield must consider two main
criteria before deciding on the best path to a destination point: the speed (im-
portant if the unit mission requires arriving as soon as possible to the target)
and the safety (important when the enemy forces are not known or when the unit
effectives are very valuable). However, in any situation, both objectives must be
considered. This problem is called military unit path-finding problem and can be
formally defined as: finding the best path for a military unit, from an origin to a
destination point in the battlefield, keeping a balance between route speed and
safety, considering the presence of enemies (which can shoot against the unit)
and taking into account realistic properties and restrictions.

We model this problem considering that the unit has a level of energy (health)
and a level of resources, which are consumed when it moves through the path,
so the problem objectives are adapted to minimize the consumption of resources
and energy.

The battlefield is also modelled as a grid of hexagonal cells where every one
has assigned a cost in resources which represents the difficulty of going through
it, and a cost in energy which means that the unit depletes its human resources or
� Supported by NadeWeb (TIC2003-09481-C04-01) and PIUGR (9/11/06) projects

F. Almeida e Costa et al. (Eds.): ECAL 2007, LNAI 4648, pp. 665–674, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

666 A.M. Mora et al.

that vehicles suffer damage when crossing over the cell (no combat casualties).
Both costs depend on the cell type. In addition there are other costs: one in
resources if the unit moves between cells with different heights (more if it goes
uphill) and other in energy, lethality, which is the damage that a cell could
produce due to enemy weapons impact. These features are resumed in Table 1.

Table 1. Energy and Resources description.

Composed by Consumed by

Energy global soldiers health, ’no combat’ casualties (injuries, tiredness),
global vehicles status lethality

Resources food, fuel, medicines, going through difficulty,
general supplies, moral height difference

We consider fast paths (if speed is constant) when the total cost in resources
is low (it is not very difficult to travel through the cells, so it takes little time).
Safe paths, on the other hand, have a low cost in energy.

The cells also have a type, subtype and height associated, plus some proper-
ties (for instance, whether they are or not inside the realistic line of sight of the
enemy) and restrictions (such as visible distance or maximum height difference
that the unit can go trough).

Initially, we solved the problem by implementing the CHAC algorithm [1],
and later we improved it with Hexa-CHAC [2]. More details about the problem
definition, restrictions and description and test of the algorithms are shown in
these articles.

In this work, we have implemented some new algorithms and tested them in
the same maps (battlefields) which will allow us to check which algorithm works
the best in each circumstance, and to establish baselines for the performance in
each of the objectives we are going to optimize. These algorithms are described
in the next section.

2 Algorithms Tested in This Paper

In this work, we have tested two MOACOs (Multi-Objective Ant Colony Opti-
mization algorithms [3]): hCHAC [2] (with two different state transition rules
-STRs from now on-, and extreme values of λ) and MOACS [4]. Additionally,
we also test a mono-objective approach which combines both objectives in a
single aggregative function. So, there are six algorithms in all. All of them are
Ant Colony System algorithms [5,6], so the problem is transformed into a graph
where each node corresponds to a cell in the map and an edge between two
nodes is the connection between neighbour cells in the map. Every edge has
two weights associated which are the costs in resources and energy that going
through that edge causes to the unit.

Every iteration, ants separately build a complete path (solution), between
origin and destination points (if possible), by travelling through the graph. To

Comparing ACOs for Solving the Bi-criteria Path-Finding Problem 667

guide this movement ants use a STR which combines two kinds of information:
pheromone trails and heuristic knowledge. We use ACSs to have better control
in the balance between exploration and exploitation by using the characteristic
parameter q0.

The problem we want to solve is a multi-objective (MO) one (see a descrip-
tion of MO problems and algorithms in [7]) with two independent objectives
to minimize. These objectives are named f , minimization of the resources con-
sumed in the path (fast path or speed maximization) and s, minimization of the
energy consumed in the path (safe path or safety maximization). That is why
hexa-CHAC (hCHAC from now on)[2] is an ACS adapted to deal with two ob-
jectives, and uses two pheromone matrices (τf ,τs) and heuristic functions (ηf ,ηs)
(one per objective), a single colony, and two STRs: (Combined State Transition
Rule, CSTR), similar to the one proposed in [8], which combines the pheromone
and heuristic information for each objective weighted using α, β and λ param-
eters; and (Dominance State Transition Rule, DSTR), which ranks neighboring
cells according to how many they dominate [1]. These rules use the parameter λ
∈ (0,1), which is user-defined, and sets the importance of the objectives in the
search (which one has the highest priority and how much). If the user decides
to search for a fast path, λ will take a value close to 1, on the other hand, if
he wants a safe path, it has to be close to 0. This value is constant during the
algorithm for all ants, so hCHAC searches always in the same zone of the space
of solutions (the zone related to the chosen value for λ).

The local and global pheromone updating formulae [1] are based in the
MACS-VRPTW algorithm proposed in [9,4], with some changes due to the use
of two pheromone matrices. Finally, there are two evaluation functions (used to
assign a global cost value to every solution found) named Ff (minimization of
resources consumption) and Fs (minimization of energy consumption).

On the other hand, Mono-hCHAC is an ACS that combines the two pre-
vious objectives in one. It uses formulae similar to those of hCHAC (heuristic,
pheromone updating and evaluation function (see in [1])), but only one in each
case and adapted to consider only one objective (by including specific terms for
each objective).

The Heuristic Function is as follows:

η(i, j) =
ωr

Cr(i, j)
+

ωe

Ce(i, j)
+

ωd

Dist(j, T)
+ (ωzo · ZO(j)) (1)

Where Cr and Ce are respectively the cost in resources and energy when
moving from node i to node j, Dist is the Euclidean distance between two nodes
(T is the target node of the problem) and ZO is a score (between 0 and 1)
for a cell, being 1 when the cell is hidden to all the enemies (or to all the cells
in a radius when there are no enemies) and decreasing exponentially when it
is seen. ωr, ωe, ωfd and ωfo are weights that assign relative importance to the
terms in the formula. The values for the two first are the same as in the hCHAC
formulas, and the values for the two last have been calculated as an average of
the correspondent parameters in those formulas. So, all terms are important.

668 A.M. Mora et al.

The STR which guides the search is the typical formula in mono-objective
ACSs:
If (q ≤ q0)

j = arg max
j∈Ni

{
τ (i, j)α · η(i, j)β

}
(2)

else

P (i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

τ (i, j)α · η(i, j)β

∑
u∈Ni

τ (i, u)α · η(i, u)β
if j ∈ Ni

0 otherwise

(3)

where q0 ∈ [0,1] is the standard ACS parameter, q is a random value in [0,1]. τ is
the pheromone trails matrix and η is the heuristic function (Equation 1). α and β
are the usual weighting parameters and Ni is the current feasible neighbourhood
for the node i.

This STR works as follows: when an ant is building a path and is placed at
one node i, a random number q in [0,1] is generated, if q ≤ q0 the best neighbour
j is selected as the next node in the path (Equation 2). Otherwise, the algorithm
decides the next one by using a roulette wheel considering P(i,j) as probability
for every feasible neighbour j (Equation 3).

The Local Pheromone Updating is performed when a new node j is added to
the path that an ant is building:

τ(i, j) = (1− ρ) · τ(i, j) + ρ · τ0 (4)

where ρ in [0,1] is the common evaporation factor and τ0 is the initial amount
of pheromone in every edge:

τ0 =
1

nc · ((MAXR + MAXE)/2)
(5)

with nc as the number of cells in the map to solve, MAXR as the maximum
amount of resources going through a cell may require, and MAXE as the maxi-
mum cost in energy that going through a cell may produce.

The Global Pheromone Updating is performed at the end of every iteration
of the algorithm, once all the ants have built a solution path:

τ(i, j) = (1 − ρ) · τ(i, j) +
ρ

Ffs
(6)

Ffs is the Evaluation Function which assigns a global cost value to every
solution found by each ant. It considers the cost in resources, the cost in energy,
and the visibility of each node (cell) in the path:

Ffs(Psol) =
∑

n∈Psol

[Cr(n − 1, n) + Ce(n− 1, n) + ωF
zo · (1− ZO(n))] (7)

Comparing ACOs for Solving the Bi-criteria Path-Finding Problem 669

where Psol is the solution path to evaluate and ωF
zo is the weight which sets the

importance of visibility of the cells in the path. The other terms are the same
as in Equation 1.

MOACS was proposed by Baran et al. [4], as a variation of the MACS-
VRPTW introduced by Gambardela et al. in [9], the main difference being the
use of a single pheromone matrix for both objectives (instead of one per objec-
tive). We have adapted it to solve this problem, so we use the same heuristic and
evaluation functions (see in [1]), but different STR and pheromone updating for-
mulas. The STR is similar to the hCHAC CSTR, but using only one pheromone
matrix (as we previously said). It is defined as follows:
If (q ≤ q0)

j = arg max
j∈Ni

{
τ (i, j) · ηf (i, j)β·λ · ηs(i, j)

β·(1−λ)
}

(8)

else

P (i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

τ (i, j) · ηf (i, j)β·λ · ηs(i, j)
β·(1−λ)

∑
u∈Ni

τ (i, u) · ηf (i, u)β·λ · ηs(i, u)β·(1−λ)
if j ∈ Ni

0 otherwise

(9)

where τ is the pheromone matrix, ηf and ηs are the heuristic functions for the
objectives, and the rest of terms and parameters are the same as in Equation
3. This rule also uses λ to set the importance of the objectives in the search
and takes a constant value during the algorithm for all ants, unlike the original
proposal of Baran et al. [4] in which the parameter takes a value of 0 for the first
ant, and it grows for every ant until it takes a value of 1 for the last one. The
reason is that the algorithm must yield solutions following the user desires (like
hCHAC), which means solutions in a concrete zone of the solutions space. The
rule works as we previously explain.

Since MOACS is an ACS, there are two levels of pheromone updating, local
and global. The equation for Local Pheromone Updating is:

τ(i, j) = (1− ρ) · τ(i, j) + ρ · τ0 (10)

considering:

τ0 =
1

nc ·MAX λ
R ·MAX

(1−λ)
E

(11)

with the same parameters and terms as in Equations 4,5, but also weighted using
λ parameter to consider again the relative importance of each objective set by
the user.

There is a reinitialization mechanism, so the value of τ0 is not fixed during
the algorithm run, as usual in ACS, but it undergoes adaptation. Every time an
ant h builds a complete solution, it is compared to the Pareto set P generated
until now to check if the former is a non-dominated solution. At the end of each
iteration, τ ′

0 is calculated following the formula:

τ ′
0 =

1
nc · C̄r(PS) λ · C̄e(PS) (1−λ)

(12)

670 A.M. Mora et al.

where C̄r and C̄e are respectively the average consumption of resources and
energy for the solution paths currently included in the Pareto set.

Then, if τ ′
0 > τ0, the current initial pheromone value, the pheromone trails

are reinitialized considering the new value for τ0 ← τ ′
0. It means a better Pareto

Set has been found.
Otherwise the Global Pheromone Updating is made for every solution in the

Pareto Set:
τf (i, j) = (1− ρ) · τf (i, j) +

ρ

Ff · Fs
(13)

where Ff and Fs are the evaluation functions for each objective.
We will also introduce what we call Extreme hCHAC (in two versions,

extremely fast and extremely safe) in this section to include them as baseline for
comparison with the other algorithms. And both of them have been tested using
CSTR and DSTR.

The extremely fast hCHAC only considers the minimization of resources con-
sumption objective (speed), so λ is set to 1 and all the weights related to safety
objective, such as visibility of cells or energy consumption, take values equal to
0. On the other hand, the extremely safe hCHAC only takes into account the
minimization of energy consumption objective (safety), so λ is set to 0 and all
the weights related to speed objective, such as distance to target point or re-
sources consumption, also take values equal to 0. From now on, we will refer to
both approaches as extr-hCHAC.

3 Experiments and Results

We have performed experiments in two of the same 45x45 cell realistic maps used
in a previous paper [2], which are part of 2 Panzer GeneralTM game maps. All the
algorithms presented in the previous section have been run in these maps using
the same parameter values (except in extreme approaches, of course), namely:
α=1, β=2, ρ=0.1 and q0=0.4. We have used different values for λ parameter:
0.9 and 0.1 to consider one objective with higher priority than the other, and 1
and 0 in extreme approaches. The mono-objective implementation does not use
this parameter.

All the MOACOs yield a set of non-dominated solutions, but less than usual
in this kind of algorithms since it only searches in the region of the ideal Pareto
front determined by the λ parameter. In addition, we only consider one (cho-
sen by the military staff considering their own criteria and the features of each
problem). The mono-objective approach yields a single solution which is evalu-
ated using the same functions as in hCHAC and MOACS in order to obtain a
multi-objective valuation which can be compared with the solutions of the other
algorithms and methods.

We have made 30 runs per scenario, using each algorithm or method (STRs)
and using each value for λ: 0.9 and 0.1 for hCHAC-CSTR, hCHAC-DSTR, mono-
hCHAC and MOACS, to find the fastest and safest path (but considering the
other criteria too); and 0 and 1 for extr-hCHAC-CSTR and extr-hCHAC-DSTR

Comparing ACOs for Solving the Bi-criteria Path-Finding Problem 671

Fig. 1. Best results yielded by all algorithms for Map 1: speed (right) and safety (left)

optimization.

Table 2. Results for Map 1. (1500 iterations, 50 ants)

Fastest (λ=0.9) Safest (λ=0.1)
Ff Fs Ff Fs

hCHAC-CSTR
Best 68.50 295.40 80.50 7.30
Mean 75.20 ±7.87 184.54 ±132.49 85.00 ±3.32 8.10 ±0.49

hCHAC-DSTR
Best 76.00 306.10 95.50 9.40
Mean 81.63 ±3.02 271.11 ±39.98 108.00 ±5.70 10.40 ±0.52

MOACS
Best 75.00 306.00 88.50 8.10
Mean 82.95 ±5.13 256.20 ±90.02 103.52 ±5.56 9.50 ±0.70

Extreme Fast (λ=1) Extreme Safe (λ=0)
Ff Fs Ff Fs

extr-hCHAC-CSTR
Best 55.03 285.50 80.50 7.30
Mean 58.73 ±1.79 309.53 ±27.63 84.07 ±3.56 7.89 ±0.56

extr-hCHAC-DSTR
Best 57.54 375.60 93.00 8.40
Mean 63.63 ±2.45 329.29 ±38.09 106.90 ±5.85 10.22 ±0.65

mono-hCHAC
Best 78.00 7.50
Mean 85.63 ±3.68 8.41 ±0.43

in order to find the fastest and safest path respectively (without consider the
other objective in each case).

Finally, statistical t-Student tests have been used to evaluate obtained results
and to test whether differences among means are significant.

In the first map there is a single unit on watch between the origin and target
point of the unit. There are some hidden zones, but the enemy controls the
area the unit must pass in order to get to the target as soon as possible. It has
associated a medium difficulty from the military point of view. Results for this
map are shown in Table 2 and Fig. 1.

Fig. 1 shows that extreme approaches results can be taken as reference, being
always the best in the objective which the highest priority, because they do not
consider the other objective at all (they have a high cost value for that objective).
We can see that extr-hCHAC-CSTR also yields a good result for cost in the
non-considered objective, even better than those of the other approaches. The
reason is that, in this map, a fast solution can be also a safe one (if the path

672 A.M. Mora et al.

Fig. 2. Best results yielded by all the approaches for Map 2 searching for fastest (left)

and safest (right) path.

moves hidden to the enemy) and vice versa. DSTR implementations yield worse
results than CSTR ones, because this STR needs a higher exploitation factor (is
more explorative) to get similar results. So, even the extreme extr-hCHAC-DSTR
approach yields worse best solution than some others for the main objective. In
the analysis of the main algorithms, it can be seen that hCHAC-CSTR yields
very good solutions, close to the extreme ones (even equal in the safest case) and,
considering the dominance concept, it always yields solutions only dominated
by extreme CSTR. DSTR approach is worse for the reason we explain above.
MOACS also yields good solutions, better than DSTR methods ones (except in
fastest path search), but worse than hCHAC-CSTR results.

mono-hCHAC is a special case, because it only yields one solution which
combines speed and safety. We have represented this solution considering the
same costs yielded by it in both searches. Both cost are quite good (low), but
they are not the best in comparing with the other approaches, when they search
for the fastest or the safest path.

Table 2 shows that all approaches yield results with a low standard deviation
in the prioritary objective, which implies robustness (its solutions are similar
between runs). Best, mean and standard deviation in the secondary objective are
logically worse, because it has little importance. But in this case the differences
between the security cost (Fs) when it is prioritary and secondary objective are
enormous. The reason is fast paths are usually unsafe due to visibility of the
cells, and in this experiments we penalize much the term of visibility in the
cost function. Results were verified using t-Student statistical tests. Significant
differences were found and the confidence level is 99%.

In Map 2 there are two enemy units between the origin and target point of
the unit. One of them is just watching over and the other one, which is nearer
to the target point and in the middle of the straight path, is watching over and
firing to some strategic points (some bridges) and in a zone surrounding itself.
There are little zones where the unit can hide (slight patches of forest). It has

Comparing ACOs for Solving the Bi-criteria Path-Finding Problem 673

Table 3. Results for Map 2. (1500 iterations, 50 ants)

Fastest (λ=0.9) Safest (λ=0.1)
Ff Fs Ff Fs

hCHAC-CSTR
Best 61.00 244.90 74.00 27.30
Mean 66.42 ±3.29 225.19 ±90.26 84.68 ±4.89 28.36 ±0.48

hCHAC-DSTR
Best 67.50 235.60 82.50 28.00
Mean 72.92 ±2.63 236.97 ±42.74 95.93 ±7.25 29.43 ±0.72

MOACS
Best 64.00 304.90 77.00 27.60
Mean 70.77 ±2.43 294.66 ±79.44 93.60 ±6.93 29.23 ±0.68

Extreme Fast (λ=1) Extreme Safe (λ=0)
Ff Fs Ff Fs

extr-hCHAC-CSTR
Best 46.04 654.60 72.00 27.20
Mean 49.92 ±2.29 467.30 ±172.03 80.64 ±4.52 28.05 ±0.45

extr-hCHAC-DSTR
Best 47.04 674.70 80.00 28.00
Mean 53.02 ±2.58 403.61 ±130.55 96.35 ±8.16 29.60 ±0.79

mono-hCHAC
Best 72.00 27.10
Mean 78.33 ±4.24 52.23 ±42.97

associated a medium-hard difficulty from the military point of view. The results
for the different approaches are show in Table 3 and Figure 2.

Fig. 2 shows that extr-hCHAC-CSTR yields the best results in both searches,
but only in the main objective. In fact, in the fastest path search there is an
overwhelming increase of the cost in energy (or safety) Fs, since that path goes
through cells affected by enemy weapons. hCHAC-CSTR yields solutions do-
minated only by those of extr-hCHAC-CSTR and mono-CHAC (see below) in
the safest case. DSTR approach is again bad for the reason we explain above.
MOACS again yields good solutions, better than DSTR methods ones (except
in fastest path search), but worse than hCHAC-CSTR results.

mono-CHAC results yield the best safety result this time, which might seem
odd, however, due to the stochastic nature of these approaches, it is possible
to find a very good solution sometimes; average solutions are not as good, as
shown by the high standard deviation. As a result, the cost in resources Ff is
high, which happen sometimes in difficult maps like this one.

Table 3 shows results similar to the previous experiment, with a higher in-
creasing of cost in Fs in the search for fastest path, due to the lethality of the
cells. Again, significant differences were found applying t-Student tests, obtai-
ning a confidence level of 95 or 99%.

4 Conclusions and Future Work

In this work we have tested and compared six different ACS approaches to
solve the bi-criteria military path-finding problem (find the best path considering
speed and safety as objectives), finding that hCHAC-CSTR is the best approach,
maintaining a good balance between speed and safety in all cases, and conside-
ring always both objectives (with different priorities, depending on the search).
It yields better results than extreme cases (where only one of the objectives is
considered); even more so in difficult maps, where the cost for the objective not
being minimized can increase dramatically. MOACS and mono-objective algo-
rithms yield good solutions too, generally better than hCHAC-DSTR approach,

674 A.M. Mora et al.

but worse than those obtained by hCHAC-CSTR. Differences between methods
have been proved significant after the application of t-Student tests.

As future work and following the same researching line, we are going to
implement some other algorithms in order to include them in the comparison
and in the study of the best approach for this problem. We also are going to
make other studies (statistical, for instance) to have more criteria to evaluate the
performance of every approach. Besides, we will also try to separate completely
all objectives: speed, safety, visibility, and distance to objective (in each step),
using more pheromone matrices, but taking into account each problem separately
into a truly multi-objective approach.

References

1. Mora, A.M., Merelo, J.J., Millán, C., Torrecillas, J., Laredo, J.L.J.: CHAC. a
MOACO algorithm for computation of bi-criteria military unit path in the bat-
tlefield. In: Pelta, D.A., Krasnogor, N. (eds.) Proceedings of the Workshop on
Nature Inspired Cooperative Strategies for Optimization. NICSO’2006, June 2006,
pp. 85–98 (2006)

2. Mora, A.M., Merelo, J.J., Millán, C., Torrecillas, J., Laredo, J.L.J., Castillo, P.A.:
Enhancing a MOACO for solving the bi-criteria pathfinding problem for a mil-
itary unit in a realistic battlefield. In: Giacobini, M. (ed.) EvoWorkshops 2007.
Applications of Evolutionary Computing. LNCS, vol. 4448, pp. 712–721. Springer,
Heidelberg (2007)

3. Garćıa-Mart́ınez, C., Cordón, O., Herrera, F.: An empirical analysis of multiple
objective ant colony optimization algorithms for the bi-criteria TSP. In: Dorigo,
M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.)
ANTS 2004. LNCS, vol. 3172, pp. 61–72. Springer, Heidelberg (2004)

4. Barán, B., Schaerer, M.: A multiobjective ant colony system for vehicle routing
problem with time windows. In: IASTED International Multi-Conference on Ap-
plied Informatics. Number 21 in IASTED IMCAI, 97–102 (2003)

5. Dorigo, M., Stützle, T.: The ant colony optimization metaheuristic: Algorithms,
applications, and advances. In: Glover, F., Kochenberger, G. (eds.) Handbook of
Metaheuristics, pp. 251–285. Kluwer Academic Publishers, Dordrecht (2002)

6. Dorigo, M., Di Caro, G.: The ant colony optimization meta-heuristic. In: Corne, D.,
Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 11–32. McGraw-Hill,
New York (1999)

7. Coello, C.A.C., Veldhuizen, D.A.V., Lamont, G.B.: Evolutionary Algorithms for
Solving Multi-Objective Problems. Kluwer Academic Publishers, Dordrecht (2002)

8. Iredi, S., Merkle, D., Middendorf, M.: Bi-criterion optimization with multi colony
ant algorithms. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W.
(eds.) EMO 2001. LNCS, vol. 1993, pp. 359–372. Springer, Heidelberg (2001)

9. Gambardella, L., Taillard, E., Agazzi, G.: Macs-vrptw: A multiple ant colony sys-
tem for vehicle routing problems with time windows. In: Corne, D., Dorigo, M.,
Glover, F. (eds.) New Ideas in Optimization, pp. 73–76. McGraw-Hill, New York
(1999)

	Comparing ACO Algorithms for Solving the Bi-criteria Military Path-Finding Problem
	Introduction and Problem Description
	Algorithms Tested in This Paper
	Experiments and Results
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.03500
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.20000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

