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Abstract. Affective reasoning has been the subject of increasing attention in 
recent years.  Because negative affective states such as frustration and anxiety 
can impede progress toward learning goals, intelligent tutoring systems should 
be able to detect when a student is anxious or frustrated.  Being able to detect 
negative affective states early, i.e., before they lead students to abandon 
learning tasks, could permit intelligent tutoring systems sufficient time to 
adequately prepare for, plan, and enact affective tutorial support strategies.  A 
first step toward this objective is to develop predictive models of student 
frustration.  This paper describes an inductive approach to student frustration 
detection and reports on an experiment whose results suggest that frustration 
models can make predictions early and accurately. 

1   Introduction 

Affect has begun to play an increasingly important role in intelligent tutoring systems.  
Recent years have seen the emergence of work on affective student modeling [6], 
detecting frustration and stress [5, 22], modeling agents’ emotional states [1, 9], 
devising affectively informed models of social interaction [10, 13, 19, 21], detecting 
student motivation [7], and diagnosing and adapting to student self-efficacy [3, 14].  
All of this work seeks to increase the fidelity with which affective and motivational 
processes are modeled and utilized in intelligent tutoring systems in an effort to 
increase the effectiveness of tutorial interactions and, ultimately, learning.  One such 
effort is to detect and provide support to students experiencing negative affect. 

Intelligent tutoring systems should provide support that helps students cope with 
emotions such as anxiety and frustration and, if possible, increasing their tolerance for 
frustrating learning situations.  Because feelings of anxiety or frustration can divert 
students’ attention from learning tasks by causing them to become fixated on the 
source of frustration or causing them to worry excessively about failure, it is 
important that learning environments employee mechanisms to diagnosis situations 
that are likely to create anxious or frustrated students.  Early detection of negative 
affective states could permit ITSs sufficient time to enact corrective “affective 
scaffolding” strategies.  In this paper we focus on accurately predicting student 
frustration as early as possible by utilizing established affective computing techniques 
for obtaining student affective state information, including physiological response 
data [5, 6, 14, 22] and student self-reports [6, 7, 14]. 

This paper is structured as follows.  Section 2 discusses affect recognition and the 
role of anxiety and frustration in learning.  The modeling techniques used to detect 
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frustration are described in Section 3.  Section 4 introduces CRYSTAL ISLAND, our 
interactive learning environment test bed and describes the study.  The results of the 
study are presented and discussed in Section 5, followed by concluding remarks and 
directions for future work in Section 6. 

2   Background 

2.1   Affect Recognition 

Affect recognition is the task of identifying the emotional state of a user from a 
variety of physical and behavioral cues, which are produced in response to affective 
changes in the individual [20].  However, because affect is fundamentally a cognitive 
process in which the user appraises the relationship between herself and her 
environment [9, 24], affect recognition models should take into account both 
physiological and environmental information.  For task-oriented and goal-oriented 
learning environments, affect recognition models can leverage knowledge of task 
structure and user goals to effectively reason about users’ affective states.  In 
particular, for such learning environments, affect recognition models can use 
appraisal theory [12] to recognize users’ emotions generated in response to their 
assessment of how their actions and events in the environment relate to their goals. 

2.2   Anxiety and Frustration 

Frustration occurs when something or someone impedes an individual’s progress 
towards a particular goal.  As an emotional response, frustration is not fundamentally 
different from another negative affective response common to a variety of situations, 
anxiety.  Anxiety is often more than merely an emotional response; it also consists of 
behavioral, cognitive, and physiological responses [23].  However, because our work 
focuses on interactive task-oriented learning environments [17], where the 
construction and achievement of goals is critical to student learning episodes, we 
primarily focus on frustration.  Both anxiety and frustration can lead students to fixate 
on the impeding source of frustration, diverting attention from, and in some cases 
causing students to ignore, the task at hand.  Anxiety particularly arises when students 
affectively respond to their focus on planning contingencies for potential future 
events.  Detecting situations that will likely lead to student anxiety or frustration that 
in turn may eventually lead to student impasses would allow learning environments to 
intervene early, i.e., before the emotion is fully realized as the student approaches her 
threshold for the particular emotion. 

Several strategies can be employed to identify levels of anxiety and frustration that 
are not detrimental to learning.  Setting realistic expectations based on a student’s 
abilities and observed past performance can contribute to student successes.  
Encouragement, and specific feedback directed at particular behaviors, not merely 
global performance assessments, may help motivate students and provide them with 
guidance so that they can improve their self-assessment and help them cope with 
frustration and anxiety [18].  The central questions that must be answered are, “How 
can we detect and monitor anxiety and frustration levels so that our learning 
environments have sufficient time to plan and execute appropriate scaffolding?” and, 
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“With what computational mechanisms can we draw inferences about the student, the 
task, and the environment to accurately predict student frustration?” 

3   Modeling Frustration 

To create models that make accurate predictions of student frustration as early as 
possible, we first collect training data by observing students interacting with an 
intelligent tutoring system.  From this training data, we then induce n-gram models to 
make early predictions of student frustration.  Models based on n-grams models are 
useful for early prediction because they are induced from sequences of observations, 
making predictions with each new observation until they arrive at the final 
observation of the sequence.  In the final observation, concrete evidence of student 
affect (used as the class label) is obtained.  Each prediction from an n-gram model is 
attempting to determine the affective state of the student recorded in this final 
observation of the sequence.  In many cases, n-gram model predictions will converge 
on the correct affective state early in a sequence of observations.  The point at which 
an n-gram model first begins making the correct prediction and then continues to 
make a correct prediction for the remainder of the sequence is known as the 
convergence point.   

While sequential models such as n-grams allow us to make early predictions, they 
are not computationally well suited to large multidimensional data.  To address this 
issue, we investigate three non-sequential modeling techniques:  naïve Bayes, 
decision trees, and support vector machines.  To enable non-sequential models to 
make early predictions, we exploit the results of the n-gram models.  Utilizing 
convergence point information, we construct data sets that contain only those 
observations preceding the convergence point.  Thus, models induced from the newly 
constructed datasets are able to make predictions of student affect long before the 
observation in which the student’s affective state was recorded. 

Section 3.1 presents n-gram frustration modeling, followed by Section 3.2’s 
description of naïve Bayes, decision tree, and support vector machine frustration 
modeling techniques.  Section 3.3 then describes the training data, which are 
observations of students interacting with the CRYSTAL ISLAND learning environment. 

3.1   n-Gram Models for Early Prediction of Frustration 

Given an observation sequence O1, O2, …, On, the objective of affect recognition is to 
identify the student’s most likely affective state E* (i.e., frustrated or not frustrated) 
such that: 
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where each Oi is an observation encoding the user’s goals, user’s action, the location 
at which action was performed, and physiological responses such as heart rate and 
galvanic skin responses.  The observation sequence O1, O2, …, On, is denoted by O1:n.  
Applying Bayes rule and the Chain Rule, the equation becomes: 
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However, estimating these conditional probabilities is impractical – it would require 
exponentially large training data sets – so we make a Markov assumption that an 
observation Oi depends only on the affective state E and a limited window of the 
preceding observations. 

We explore two n-gram affect recognition models for detecting student frustration, 
a unigram model and a bigram model.  The unigram model is based on the 
assumption that, given the affective state E, Oi is conditionally independent of all 
other observations.  Thus, the affect recognition formula for the unigram model can 
be simplified to: 
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The bigram model is based on the assumption that, given the affective state E and the 
preceding observation Oi-1, Oi is conditionally independent of all other observations.  
Thus, the affect recognition formula for the bigram model can be simplified to: 
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The resulting formulae for the unigram and bigram models are very efficient because 
updating the affect prediction for each new observation only requires computing the 
product of the probability returned by the previous prediction and the current 
conditional probability. 

During training, we estimate P(E), P(Oi|E), and P(Oi,| Oi-1, E) using training data 
acquired with an interactive learning environment as described below.  Because 
training data is necessarily sparse, i.e., we are unlikely to observe all possible 
combinations of actions, locations, goals, and physiological response levels, the 
unigram and bigram models employ a standard smoothing technique (a flattening 
constant and simple Good-Turing frequency estimation [8] to re-evaluate zero-
probability and low-probability n-grams. 

3.2   Naïve Bayes, Decision Tree, and SVMs for Modeling Frustration 

Naïve Bayes, decision tree, and support vector machine classifiers are effective 
machine learning techniques for generating preliminary predictive models.  Bayes 
classification approaches produce probability tables that can be implemented in 
runtime systems and used to continually update probabilities for predicting student 
affective states, and, in the approach proposed here, for predicting whether students 
are frustrated or not.  Decision trees provide interpretable rules that support runtime 
decision making.  The runtime system monitors the condition of the attributes in the 
rules to determine when conditions are met for diagnosing particular student 
emotions.  Support vector machines (SVM) are also particularly effective at handling 
high-dimensional data.  SVMs search for hyperplanes that linearly separate data into 
classes (affective states).   
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These classification techniques are particularly useful for inducing models with 
large multidimensional data, such as the data gathered in the user study described 
below.  Because it is unclear precisely which runtime variables are likely to be the 
most predictive, naïve Bayes and decision tree modeling provide useful analyses that 
can inform more expressive machine learning techniques (e.g., Bayesian networks) 
that also leverage domain experts’ knowledge.  We have used the WEKA machine 
learning toolkit [25] to analyze naive Bayes, decision tree, and SVM approaches for 
generating models of student affect to predict student frustration as early as possible. 

3.3   Training Data 

Accurately modeling user affect requires a representation of the situational context 
that satisfies two requirements: it must be sufficiently rich to support assessment of 
changes in affect, and it must be encoded with features that are readily observable at 
runtime.  Because affect is fundamentally a cognitive process in which the user 
appraises the relationship between herself and her environment [9, 24] affect 
recognition models should take into account both physiological and environmental 
information.  In task-oriented interactive learning environments, task structure is often 
explicit.  To effectively reason about students’ affect, affect models can leverage this 
knowledge of task structure as well as the state of the student’s progress through a 
learning episode and physiological responses to unfolding events.  In particular, affect 
models can rely on concepts from appraisal theory [12] to recognize student 
emotional responses generated from their assessment of their progress in the learning 
task.  Thus, affect models can leverage representations of the information observable 
in the learning environment – note that this is the same information that students may 
use in their own appraisals – to predict student emotion, particularly frustration.   

Therefore we employ an expressive representation of all activities in the learning 
environment, including those controlled by users and the interactive system, by 
encoding them in an observational attribute vector, which is used in both model 
induction and model usage.  During model induction, the observational attribute 
vector is passed to the affect learner for model generation; during runtime operation, 
the attribute vector is monitored by runtime components that utilize knowledge of 
user affect to inform effective pedagogical decisions.  The observable attribute vector 
represents four interrelated categories of features for making decisions: 

• Temporal Features:  The interactive learning environment continuously tracks 
the amount of time that has elapsed since the student arrived at the current 
location, since the student achieved a goal, and since the student was last 
presented with an opportunity to achieve a goal.  Temporal features are useful 
for measuring the persistence of the student on the current and past tasks. 

• Locational Features: The interactive learning environment continuously 
monitors the location of the student’s character.  It monitors locations visited in 
the past, and locations recently visited.  There are 45 designated locations in the 
interactive learning environment test bed (e.g., the laboratory, the living room of 
the men’s quarters, and the area surrounding the waterfall).  Locational features 
are useful for tracking whether students are in locations where learning tasks 
and current goals are achievable.  When a student arrives in a location where a 
learning objective can be completed, combined temporal attributes and 
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locational features can inform the prediction of students’ learning task 
progression and associated affective responses. 

• Intentional Features: The interactive learning environment continuously tracks 
goals being attempted (in the interactive learning environment described below 
goals are explicitly presented to students by an onscreen textual display), goals 
achieved, the rate of goal achievement, and the effort expended to achieve a 
goal (as inferred from recent exploratory activities and locational features).  
These features enable models to incorporate knowledge of potential and student-
perceived valence (positive and negative perceptions) of a given situation.    
Here we circumvent the problem of goal recognition [4, 16] through explicit 
delivery of student goals.  Integrating goal recognition and affect recognition is 
a promising direction for future work. 

• Physiological Response: The interactive learning environment continuously 
tracks readings from a biofeedback apparatus attached to the student’s hand.  
Blood volume pulse and galvanic skin response readings are monitored at a rate 
of approximately 30 readings/second to accurately track changes in the student’s 
physiological response.  Blood volume pulse readings are used to compute 
student’s heart rate and changes in their heart rate.   

During training sessions later used for model induction, a continuous stream of 
physiological data is collected and logged approximately 30 times per second.  In 
addition, an instance of the observational attribute vector is logged every time a 
significant event occurs, yielding, on average, hundreds of vector instances each 
minute.  We define a significant event to be a manipulation of the environment that 
causes one or more features of the observational attribute vector to take on new 
values. At runtime, the same features are continuously monitored by the respective 
environment. 

4   Evaluation 

4.1   Crystal Island 

To serve as an effective “laboratory” for studying user affect recognition in an 
interactive task-oriented learning environment, a test bed should pose the same kinds 
of challenges that affect recognition modelers are likely to encounter in future runtime 
learning environments.  It should offer users a broad range of actions to perform and 
provide a rich set of tasks and goals in a nontrivial task-oriented virtual learning 
environment.  The goals should exhibit some complexity, and the environment should 
be populated by manipulable artifacts and be inhabited by multiple characters. To this 
end, we have devised CRYSTAL ISLAND, a task-oriented learning environment test bed 
featuring a science mystery in the domain of genetics.  The mystery is set on a 
recently discovered volcanic island where a research station has been established to 
study the unique flora and fauna.  The user plays the role of the daughter (or son) of a 
visiting scientist who is attempting to discover the origins of an unidentified illness at 
the research station. The environment begins by introducing the student to the island 
and the members of the research team for which her father serves as the lead scientist.  
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As members of the research team fall ill, it is her task to discover the cause of the 
outbreak. She is free to explore the world to collect physical evidence and interact 
with other characters.  Through the course of her adventure she must gather enough 
evidence to correctly choose among candidate diagnoses including botulism, cholera, 
salmonellosis, and tick paralysis as well as identify the source of the disease relying 
on her knowledge of microbiology to solve the mystery. 

The task-oriented learning environment of CRYSTAL ISLAND, the semiautonomous 
characters that inhabit it, and the user interface were implemented with Valve 
Software’s Source™ engine, the 3D game platform for Half-Life 2.  In CRYSTAL 

ISLAND, the user can perform a broad range of actions including performing 
experiments in the laboratory, interacting with other characters, reading “virtual 
books” to obtain background information on diseases, and collecting data about the 
food recently eaten by the members of the research team. Throughout the mystery, 
users can walk around the island and visit the infirmary, the lab, the dining hall, and 
the living quarters of each member of the team.  In the current test bed, there are 20 
goals users can achieve, three hundred unique actions the user can carry out, and over 
fifty unique locations in which the actions can be performed. 

4.2   User Study 

There were 5 female and 31 male participants varying in age, race, and marriage 
status.  Approximately 44% of the participants were Asian, 50% were Caucasian, and 
6% were of other ethnicities.  Participants’ average age was 26.0 (SD=5.4). 

After filling out a consent form and demographic survey, participants began 
training sessions by first completing a practice task.  The practice task allowed them 
to become familiar with the keyboard and mouse controls as well as interacting in a 
3D virtual environment.  Following the practice task, participants were presented a 
controlled backstory for CRYSTAL ISLAND situating them on the island and providing 
details about their task.  For reference, participants had access to a cast of agents 
found in the CRYSTAL ISLAND environment as well as an overview map.  Participants 
then interacted with the environment to solve the science mystery.  The training test 
bed provided them with specific goals to focus on, guiding them through the solution 
to the mystery.   

Self-reporting mechanisms are frequently used in studies to obtain information about 
a subject’s affective state [6, 7].  In the study reported here, periodically (every 75 
seconds) a “self-report emotion dialog” box would appear requesting input from 
participants about their affective state.  They were asked to select the emotion, from a 
set of six emotions (excitement, fear, frustration, happiness, relaxation, and sadness), 
that best summarized their own feelings since they were previously asked to assess their 
emotional state.  This set of emotions was chosen to cover the affect space [11] so that 
most subjects would easily be able to relate their feelings during interaction to one of 
the six affective states.  In addition to periodic reports, participants had the ability to 
trigger the self-report emotion dialog if they felt compelled to report a change in their 
affective state.  This functionality proved in practice to be used sparingly. After solving 
the science mystery, participants completed a post-experiment survey before exiting the 
training session. 
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5   Results 

Unigram, bigram, naïve Bayes, decision tree, and SVM affect recognition models for 
detecting student frustration were learned from the collected datasets.   

The n-gram models were evaluated using the following the criteria [4]: 

• Accuracy: Ratio of correct predictions to the total number of observations. 
• Converged: Percentage of observation sequences in which the goal 

recognizer’s final prediction is correct. 
• Convergence Point: For observation sequences which converged, the point 

within the sequence when the affect recognizer started making the correct 
prediction and continued to make the correct prediction for the remainder of 
the sequence. 

• Average Observations of Converged: Average number of observations 
contained in observation sequences in sequences which converged. 

The induced n-gram models were tested using the standard k-fold cross validation 
evaluation methodology [15], with k=10.  (In each fold, nine segments are used for 
training and one, which is held out of training, is used for testing.)  The results of n-
gram affect recognition models are presented in Table 1.  Figure 1 shows a bigram 
convergence graph depicting the amount of data (actions) required by the model to 
converge on the correct affective state and the associated probability of that emotion 
classification.  Note that the bigram model utilizing a flattening constant converged 
after consuming 6.5% of the records leading up to the student self-reported affective 
state (the class label).  In instances where n-gram models converged the models were 
able to correctly classify whether the student was frustrated, on average, 35 seconds 
prior to the self-report. 

The results of the naïve Bayes, decision tree, and support vector machine (SVM) 
affect recognition models are presented in Table 2.  Using the results of the n-gram 
analysis in which bigram models converged after 6.5% of observations contained in a 
defined window, we constructed datasets containing only these records for naïve 
Bayes, decision tree, and SVM model induction.  Let us consider the observations O1, 
O2, …, On, as the observations leading up to a student self-reported affective state used  
by n-gram model induction.  The data set consisting of observations O1, O2, …, Om, 
where m equals n × 0.065, leading to each self-report are then used to induce naïve 
Bayes, decision tree, and SVM affect models.  Thus, all induced models are able to 
 

Table 1. n-gram Results 
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Fig. 1. Bigram convergence graph 

Table 2. Induced model results 

 

predict student affective states (i.e., whether students are frustrated or not) early, i.e., 
long before we receive confirmation of the student’s affective state from self-reports.  
These early prediction datasets contain the same data n-gram models consumed up to 
the convergence point.  The constructed dataset allows induced models to make the 
same early predictions as the n-gram models, approximately 35 seconds prior to the 
self-reported affective state. 

Below ANOVA statistics are presented for results that are statistically significant.  
Because the tests reported here were performed on discrete data, we report Chi-square 
test statistics (χ2), including both likelihood ratio Chi-square and the Pearson Chi-
square values.  To analyze the performance of induced models we first establish a 
baseline level.  Because six affective states were reduced to a two-class predictive  
classifier (frustrated vs. not frustrated), we consider chance as a baseline measure of 
performance.  If our baseline model were to predict the most frequent classifier (not 
frustrated, n=3859), then the model would correctly predict a student’s frustration state 
65% of the time.  Using this model as a baseline, we observe that all induced models 
outperform the baseline model.  The lowest performing induced model, a unigram model 
using a flattening constant accurately predicted 68.5% of instances correctly in testing.  
This performance is statistically significantly better than the baseline (likelihood ratio, χ2 
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= 16.075, p = 6.089 × 10-5, and Pearson, χ2 = 16.067, p = 6.1 × 10-5, df = 1).  Thus, the 
performance of all induced models is a statistically significant improvement over the 
baseline.  On the high performing end, the induced decision tree model performed 
best, accurately predicting 88.8% of all test instances.  This is statistically significant 
compared to the baseline (likelihood ratio, χ2 = 980.87, p = 2.6 × 10-215, and Pearson, 
χ2 = 943.92, p = 2.8 × 10-207, df = 1), and is also statistically significant compared to 
the next highest performing model, the induced SVM model (likelihood ratio, χ2 = 
105.28, p = 1.06 × 10-24, and Pearson, χ2 = 104.49, p = 1.58 × 10-24, df = 1). 

The experiment has two important implications for the design of runtime student 
frustration modeling.  First, by monitoring student physiological response, the 
student’s learning task, and events unfolding in the learning environment, induced 
models can make early, accurate predictions of forthcoming student frustration.  
Second, using models that can make early predictions of student frustration creates a 
significant window of opportunity for the learning environment to take corrective 
action; early-prediction models offer an improvement over traditional approaches that 
predict affective states and self-reports on a moment-by-moment basis. 

6   Conclusion and Future Work 

Recent advances in affective reasoning have demonstrated that emotion plays a 
central role in human cognition and should therefore play an equally important role in 
the human-computer interaction, especially in intelligent tutoring systems.  To 
support effective, enjoyable tutorial interactions, affect-informed systems must be 
able to accurately and efficiently recognize user affect from available resources, 
including negative affect.  Following appraisal theory, representations of users' 
actions and goals enable affect recognition models to consider the same relationship 
that users continually assess in order to predict their affective states. 

This paper has introduced an inductive approach to generating affect recognition 
models for early detection of student frustration.  In this approach, models are induced 
from observations of students interacting within a task-oriented learning environment 
in which student actions, locations, goals, and temporal information are monitored.  
After problem-solving traces have been recorded, affect recognition models are 
induced that are both accurate and efficient.   

The findings reported here contribute to the growing body of work on affective 
reasoning for learning environments.  In the future, it will be useful to investigate the 
issue of individual differences in tolerance levels for anxiety and frustration.  Because 
students can tolerate different levels of anxiety and frustration, in the future, learning 
environments should be equipped to adapt to this variance in students’ negative affect 
thresholds.  To determine how much frustration a student can persist through, it may be 
possible to utilize models of student self-efficacy [14].  Self-efficacy has been identified 
as a predictor of persistence and levels of student effort [2].  Determining frustration 
thresholds may allow learning environments to monitor students’ persistence, 
intervening only when necessary, so that student efficacy and affect are maintained at 
levels that best support effective learning.  Extending early predictive models to a 
broader range of emotions could contribute to more comprehensive models of student 
affect.  Evaluating the resulting models as runtime control components in task-oriented 
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learning environments is a critical next step in investigating affect-informed interactive 
learning. 
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