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Abstract. A minimal perfect hash function h for a set S ⊆ U of size n
is a function h: U → {0, . . . , n−1} that is one-to-one on S. The complex-
ity measures of interest are storage space for h, evaluation time (which
should be constant), and construction time. The talk gives an overview
of several recent randomized constructions of minimal perfect hash func-
tions, leading to space-efficient solutions that are fast in practice. A
central issue is a method (“split-and-share”) that makes it possible to
assume that fully random (hash) functions are available.

1 Introduction

In this survey paper we discuss algorithmic techniques that are useful for the
construction of minimal perfect hash functions. We focus on techniques for man-
aging randomness.

We assume a set U = {0, 1}w (the “universe”) of “keys” x is given. Assume
that S ⊆ U is a (given) set with cardinality n = |S|, and that m ≥ n. A function
h: U → [m] that is one-to-one on S is called a perfect hash function (for S). If in
addition n = m (the smallest possible value), h is called a minimal perfect hash
function (MPHF).1

The MPHF problem for a given S ⊆ U is to construct a data structure Dh

that allows us to evaluate h(x) for given x ∈ U , where h is a MPHF for S. The
parameters of interest are the storage space for Dh and the evaluation time of
h, which should be constant. Clearly, such a data structure Dh can be used to
devise a (static) dictionary that for each key x ∈ S stores x and some data item
dx in an array of size n, with constant retrieval time.

In the past decades, the MPHF problem has been studied thoroughly. For a
detailed survey of the developments up to 1997 see the comprehensive study [9].
To put the results into perspective, one should notice the fundamental space
lower bound of n log e + log w − O(log n) bits2, valid as soon as w ≥ (2 +
ε) log n, proved by Fredman and Komlós [18]. This bound is essentially tight:
Mehlhorn [23, Sect. III.2.3, Thm. 8] gave a construction of a MPHF that takes
n log e + logw + O(log n) bits of space (but has a vast evaluation time). In order
not to have to worry about the influence of the size 2w of U too much, unless
1 [m] denotes the set {0, . . . , m − 1}.
2 All logarithms in this paper are to the base 2. Note that log e ≈ 1.443 . . .
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noted otherwise, we will assume in the following that n > w ≥ (2 + ε) log n, and
subsume the term log w in the space bounds in terms O(log n) and larger.

1.1 Space-Optimal, Time-Efficient Constructions

The (information-)theoretical background settled, the question is how close to
the bound n log e+log w one can get if one insists on constant evaluation time. In
the seminal paper [19] Fredman, Komlós, and Szemerédi constructed a dictionary
with constant lookup time, which can be used to obtain a MPHF data structure
with constant evaluation time and space O(n log n) bits. Based on [19], Schmidt
and Siegel [28] gave a construction for MPHF with constant evaluation time
and space O(n) bits (optimal up to a constant factor). Finally, Hagerup and
Tholey [20] described a method that in expected linear time constructs a data
structure Dh with n + log w + o(n + log w) bits, for evaluating a MPHF h in
constant time. This is space-optimal up to an additive term. It seems hard,
though, to turn the last two constructions into data structures that are space
efficient and practically time efficient at the same time for realistic values of n.

1.2 Practical Solutions

In a different line of development, methods for constructing MPHF were studied
that emphasized the evaluation time and simple construction methods over opti-
mality of space. Two different lines (a “graph/hypergraph-based approach” and
a method called “hash-and-displace”) in principle led to constructions of very
simple structures that offered constant evaluation time and a space requirement
that was dominated by a table of Θ(n) elements of [n] = {0, . . . , n − 1}, which
means Θ(n log n) bits. Very recently, refinements of these methods were proposed
that lead to a space requirement of O(n log log n) bits (and constant evaluation
time) [11,32]. Only in 2007, Botelho, Pagh, and Ziviani [5] managed to devise
a construction for a MPHF that is simple and time-efficient, and gets by with
O(n) bits of storage space, with a constant factor that is only a small factor
away from the information theory minimum log e ≈ 1.44. Crucial steps in this
development will be described in some detail in the rest of this paper.

1.3 Randomness Assumptions

Given a universe U of keys, a hash function is just any function h: U → [m].
Most constructions of MPHF involve several hash functions, which must behave
randomly in some way or the other. There are two essentially different ways to
approach the issue of the hash functions:

The “full randomness” assumption: One assumes that a sequence h0, h1, . . . of
hash functions is available, so that evaluating hi(x) takes constant time, no
storage space is needed for these functions, and such that hi(x), x ∈ S, i ≥ 0,
are fully random values (uniform in [m], independent). The analysis of several
MPHF algorithms is based on this assumption (e. g., [8,22,7,4]).
Randomization: “Universal hashing” was introduced by Carter and Wegman [6]
in 1979. One uses a whole set (“class”) H of hash functions and chooses one such
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function from H at random whenever necessary. Normally, some parameters of
a function with a fixed structure are chosen at random. Storing the function
means storing the parameters; the analysis is carried out on the basis of the
probability space induced by the random choice of the function. Some classical
MPFH algorithm use this approach (e. g., [28,25,20]).

Below, we will explain in detail how in the context of the MPHF problem
one may quite easily work around the randomness issue by using very simple
universal hash classes. To be concrete, we describe two such classes here. We
identify U = {0, 1}w with [2w].

Definition 1. A set H of functions from U to [m] is called 1-universal if for
each pair of different x, y ∈ U and for h chosen at random from H we have

Pr(h(x) = h(y)) ≤ 1
m

.

There are many constructions of 1-universal classes. One is particularly simple
(see [6]): Assume p is a prime number larger than 2w, and m ≤ 2w. For a, b ∈ [p]
define ha,b(x) = ((ax+ b) mod p) mod m, and let Hm = {ha,b | a ∈ [p]−{0}, b ∈
[p]}. Choosing/storing a hash function from Hm amounts to choosing/storing
the coefficients a and b (not much more than 2w bits).

Definition 2. Let k ≥ 2. A set H of functions from U to [m] is called k-wise
independent if for each sequence (x1, . . . , xk) of different elements of U and for
h chosen at random from H we have that the values h(x1), . . . , h(xk) are fully
random in [m]k and each value h(x) is [approximately] uniformly distributed in
[m].

The simplest way of obtaining a k-wise independent class is by using polynomials.
Let p > 2w be a prime number as before, and let m1+ε ≤ 2w for some ε > 0.
The set Hk

m of all functions of the form

h(x) = ((ak−1x
k−1 + · · · + a1x + a0) mod p) mod m, ak−1, . . . , a0 ∈ [p]

(polynomials over the field Zp of degree smaller than k, projected into [m]), is
k-wise independent. Choosing/storing a hash function amounts from this class
amounts to choosing/storing the coefficients (ak−1, . . . , a0). For details see, e. g.,
[15,12]. The evaluation time is Θ(k). For more sophisticated hash function con-
structions see e. g. [29,14,30].

2 Split-and-Share for MPHFs

Let S ⊆ U be fixed, n = |S|. For a hash function h: S → [m] and i ∈ [m] let
Si = {x ∈ S | h(x) = i}, and let ni = |Si|. It is a common idea, used many
times before in the context of perfect hashing constructions (e. g. in [19,20,10]),
to construct separate and disjoint data structures for the “chunks” Si.

The new twist is to “share randomness” among the chunks Si, as follows.
(The approach was sketched, for different applications, in [17,16].) In the static
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setting, with S given, this works as follows: Choose h, and calculate the sets
Si = {x ∈ S | h(x) = i} and their sizes ni, repeating if necessary until the
sizes are suitable. Then devise one data structure that for each i provides one or
several hash functions that behave fully randomly on Si. Each Si may own some
component of this data structure but one essential part (usually a big table of
random words) is used (“shared”) by all Si’s.

We describe the approach in more detail. First, we “split”, and make sure that
none of the chunks is too large. The proof of the following lemma is standard.

Lemma 1. If m ≥ 2n2/3 and h: U → [m] is chosen at random from a 4-
universal class H = H4

m, then Pr(max{|Si| | 0 ≤ i < m} >
√

n) ≤ 1
4 .

Proof. The probability that |Si| >
√

n is bounded by

Pr
((

|Si|
4

)
≥

(√
n

4

))
≤

E(
(|Si|

4

)
)(√

n
4

) ≤
(
n
4

)
/(2n2/3)4(√

n
4

) <
1

8n2/3 ,

for n large enough; hence Pr(∃i: |Si| ≥
√

n) ≤ 2n2/3/(8n2/3) = 1
4 .

Given S, we fix m = 2n2/3 and repeatedly choose h from H4
m until an h with

max{|Si| | 0 ≤ i < m} ≤
√

n is found. We fix this function h and call it h0 from
here on; thus also the Si and the ni are fixed. With ai =

∑
0≤j<i ni we can allocate

indices in the interval [ai, ai+1 − 1] as possible hash values for keys in Si.
Once we have found MPHFs hi, one for each Si, we may let

h(x) = ai + hi(x) for i = h0(x), (1)

thus obtaining an MPHF for all of S. Below, we will describe several methods for
building such a MPHF hi. For this, it is most convenient to have at our disposal
one or several hash functions that behave fully randomly (on each Si separately).
To make this concrete, let K > 1 be some constant, and let L = K log n. We
will argue that when considering Si we may assume that we have a source of
L fully random hash functions h1, . . . , hL from U to {0, 1}k for some k we may
choose, which can be evalutated in (small) constant time. The data structure
that provides the random elements used in these functions will be shared among
the different hi.

Let Hr denote an arbitrary 1-universal class of functions from U to [r].

Lemma 2. Let r = 2n3/4. For an arbitrary given S′ ⊆ U with n′ = |S′| ≤ √
n

we may in expected time O(|S′|) find two hash functions h0, h1 from Hr such
that for any two tables T0[0..r − 1] and T1[0..r − 1], each containing r random
elements from {0, 1}k, we have that h′(x) = T0[h0(x)] ⊕ T1[h1(x)] defines a
function h′ : U → {0, 1}k that is fully random on S′. (⊕ denotes bitwise XOR.)

Proof. Assume h0, h1 are chosen at random from Hr. We call a pair h0, h1 good
if for each x ∈ S′ there is some i ∈ {0, 1} such that hi(x) �= hi(y) for all
y ∈ S′−{x}. For each x ∈ S′, the probability that ∃y0 ∈ S′−{x}: h0(x) = h0(y0)
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and ∃y1 ∈ S′ − {x}: h1(x) = h1(y1) is smaller than (
√

n/r)2 ≤ 1/(4
√

n). This
implies that the probability that (h0, h1) is not good is bounded by 1

4 . We keep
choosing h1, h2 from Hr until a good pair is found — the expected number
of trials is smaller than 4

3 . Checking one pair h1, h2 takes time O(|S′|) when
utilizing an auxiliary array of size r. Once a good pair h1, h2 has been fixed, for
a key x ∈ S′ either table position T0[h0(x)] or table position T1[h1(x)] appears
in the calculation of h(x) but of no other key y ∈ S′. Since this entry is fully
random, and because {0, 1}k with ⊕ is a group, h(x) is random and independent
of the other hash values h(y), y ∈ S′ − {x}.

From here, we proceed as follows: For each i, 0 ≤ i < m, we choose hash functions
hi

0, h
i
1 that are as required in Lemma 2 for S′ = Si. The descriptions of these

2m hash functions as well as the sizes ni and the offsets ai can be stored in (an
array that takes) space O(m) = O(n3/4) (words of length O(w)).

Now we describe the “shared” part of the data structure: Recall that L =
K log n. For each j ∈ [L] we initialize arrays Tj,0[0..r − 1] and Tj,1[0..r − 1] with
random words from {0, 1}k. We let

hi
j(x) = Tj,0[hi

0(x)] ⊕ Tj,1[hi
1(x)], for x ∈ U , 0 ≤ j < L, 0 ≤ i < m.

Since hi
0, h

i
1 satisfy the condition in Lemma 2, for each fixed i we have that the

values hi,j(x), x ∈ Si, j ∈ [L], are fully random. The overall data structure takes
up space 2n3/4 · L words from {0, 1}k plus O(n2/3) words of size log |U |, for the
description of the hi

0, h
i
1. We will see below that with high probability these hash

functions will be sufficient for constructing a MPHF hi for Si, for all i ∈ [m]. If
that construction is not successful, we start all over, with new random entries
in the arrays Tj,0 and Tj,1 .

From here on we assume that we have a fixed set S′ of size n′ ≤ √
n and a

supply of L = K log n fully random hash functions h0, . . . , hL−1 with constant
evaluation time and range {0, 1}k (identified with [2k]).
Goal: Build a MPHF for S′ that has constant evaluation time and requires little
storage space (beyond the functions h0, . . . , hL−1). In the rest of the paper we
discuss various strategies for achieving this.

3 Hash-and-Displace Approach

In this section, we discuss an approach to obtaining a MPHF by splitting S′

into buckets, hashing the buckets into the common range [n′] and adjusting by
offsets.

3.1 Pure Hash-and-Displace

Pagh [25] introduced the following approach for constructing a minimal perfect
hash function for a set S′: Choose hash functions f : U → [n′] and g: U → [m′].
The set [m′]× [n′] may be thought of as an array A with entry at (i, j) equal to 1
if (f(x), g(x)) = 1 for some x ∈ S, and 0 otherwise. Let Bi = {x ∈ S′ | g(x) = i},
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0 ≤ i < m′. We would like to see that f when restricted on Bi distributes the
keys one-to-one into (the ith copy of) [n′]. Technically, we check whether (f, g)
is one-to-one on S′ and whether

∑

0≤i<m′

|Bi|≥2

|Bi|2 < (1 − δ)n′. (2)

for some constant δ > 0. Inequality (2) implies the “harmonic decay property”
which is at the heart of the analysis of Pagh’s algorithm:

s ·
∑

0≤i<m′

|Bi|≥s

|Bi| < (1 − δ)n′, for all s ≥ 2. (3)

If (2) is not satisfied, choose new (f, g) until (2) is satisfied. Pagh showed that
once (2) is guaranteed a simple randomized scheme RFD (“random fit decreas-
ing”) in expected time O(n′) finds “displacements” di ∈ [n′], 0 ≤ i < m′, such
that the function

h(x) = (f(x) + dg(x)) mod n′ (4)

is (minimal) perfect for S′. Here, RFD works as follows: Sort the “rows” Bi

by falling “weight” |Bi|. In this order, treat rows with |Bi| ≥ 2 as follows:
Repeat choosing di at random from [n′] until {(f(x) + di) mod n′ | x ∈ Bi}
is disjoint from {(f(x) + dg(x)) mod n′ | x ∈ Bi′ , Bi′ already placed}. Rows Bi

with |Bi| = 1 are placed in one final deterministic round.
The question is how small m′ may be chosen so that functions f and g as

required can be found. Pagh based his construction on simple 1-universal classes
and showed that to get by with f and g from such classes it is sufficient to
have m′ > (2 + ε)n′. Looking at (3) it is easy to see [13] that in place of (2)
the following conditions are sufficient to make sure that RFD works: (f, g) is
one-to-one on S′ and

2 ·
∑

0≤i<m′

|Bi|≥2

|Bi| < (1 − δ)n′ and
∑

0≤i<m′

|Bi|≥3

|Bi|2 < (1 − δ)n′. (5)

for some constant δ > 0. With α = n′/m′ one may show (with techniques
explained in more detail in [13]) that asymptotically (n′, m′ → ∞)

E
( ∑

0≤i<m′

|Bi|≥2

|Bi|
)

≈ n′ ·(1−e−α) and E
( ∑

0≤i<m′

|Bi|≥3

|Bi|2
)

≈ n′ ·(α+1−e−α−2αe−α).

(6)
Since for suitable ε > 0 and α < ln 2/(1 + ε) we have 2(1 − e−α) < 1 − δ and
α + 1 − e−α − 2αe−α < 0.6 < 1 − δ, this means that for n′, m′ large enough
and m′ > 1.45(1 + ε)n′ > (1 + ε)(log e)n′, inequalities (5) will be satisfied with
high probability. Since the probability that (f, g) is not one-to-one on S′ can be
bounded by

(
n′

2

)
/(n′m′) < 1/(2 ·1.45), a random pair (f, g) will be suitable with
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probability larger than 1/3. If we try (f, g) = (h2t mod n′, h2t+1 mod m′), t =
0, 1, . . . , L/2−1, for being one-to-one on S′ and (5) being satisfied, the expected
number of trials will be not larger than 3, the expected time will be O(|S′|), and
the probability we are not finished after testing L/2 pairs is at most 3−L/2 =
3−(K/2) log n = n−(K log 3)/2. We can make this smaller than n−3 by choosing
K large enough. Thus the probability that for some i no suitable (f, g) is found
among (h2t mod ni, h2t+1 mod mi), t = 0, 1, . . . , L/2−1, is bounded by m·n−3 ≤
n−2. (In this improbable case we choose new random entries for Tj,0 and Tj,1
and start all over.)

The overall data structure Dh for a hash-and-displace MPFH h for the whole
set S consists of the following pieces:

– the splitting hash function h0;
– hi

0, h
i
1, for 0 ≤ i < m;

– values ai (and bi), for 0 ≤ i < m;
– arrays Tj,0[0..r − 1] and Tj,1[0..r − 1], for j ∈ [L];
– an index t ∈ [L/2] for the suitable pair (h2t mod ni, h2t+1 mod mi);
– 1.45(1 + ε)ni offset values in [ni], for 0 ≤ i < m.

The overall space needed is 2m = 4n2/3 words of size log |U | and mL = O(n2/3 ·
log n) words from {0, 1}k and 1.45(1+ε)n offset values in [

√
n] (about 0.78n logn

bits).
As remarked by P. Sanders [27], the space requirements may be lowered further

asymptotically by increasing m to some larger power n(t−1)/t, and increasing the
degree of the splitting hash function h0.

Remark : For the RFD algorithm to work, it is necessary that (f, g) are one-to-
one, but condition (5) is only sufficient, not necessary. It is interesting to note
that in (preliminary) experiments values of m′ down to below 0.3n′ still seem to
work, so in a supervised situation where a MPHF is to be built (and one might
resort to the pure, certified algorithm if not successful) it may save up to two
thirds of the space if one tries to run RFD without checking (5).

3.2 Undo-One

Dietzfelbinger and Hagerup [13] modified Pagh’s approach [25] as follows: Func-
tions (f, g) were chosen to be one-to-one and satisfy the following conditions:

∑
0≤i<m′

|Bi|≥3

|Bi|2 < (1 − δ)n′ and |{i | Bi �= ∅}| + |{i | |Bi| = 1}| ≥ (1 + δ)n′. (7)

Once condition (7) is satisfied, a variant of Pagh’s algorithm can be proved to
find suitable offsets in expected constant time: For sets Bi with |Bi| ≥ 3 run the
RFD algorithm as before; for sets Bi of size 2 it is also checked whether they
can be successfully be placed by moving up to one set that was placed before
(for details see [13]).

It can be shown (using techniques from [13]) that for (f, g) fully random func-
tions and m′ = (1+ ε)n′, for an arbitrary fixed ε > 0, relation (7) holds with high
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probability, as long as n′ is sufficiently large. This means that we may search for
(f, g) just as in the previous section — only checking for (7) to hold. The final data
structure will look the same as in the previous section. In contrast to [13], where for
smaller ε polynomials of larger and larger degree are employed, the evaluation time
for the hash functions described here does not depend on ε anymore. The overall
space needed is 2m = 4n2/3 words of size log |U | and n2/3L = O(n2/3 log n) words
from {0, 1}k and (1 + ε)n offset values in [

√
n] (a little more than 0.5n logn bits).

Again, the constant factor in front of the n logn may be reduced at the expense
of increasing m and the degree of independence of h0.

4 Minimal Perfect Hashing by the Multifunction
Paradigm

A different approach to constructing MPHF uses several hash functions. In that,
it resembles the approach taken in the area of Bloom filters (see [3], and e. g. [7]).

4.1 The Hypergraph Approach

Czech et al. [8] and Majewski et al. [22] introduced the following approach to
constructing a MPHF. To each key x associate a sequence (h1(x), . . . , hd(x)) of
distinct hash values in some range [m]. The structure consisting of V = [m] and
the system of (labeled) sets ex = {h1(x), . . . , hd(x)}, x ∈ S′, may be regarded as
a hypergraph G(S′, h1, . . . , hd) of order (edge size) d. If the elements of S′ can
be arranged in a sequence (x1, . . . , xn′) such that

exj −
⋃
s<j

exs �= ∅ , for j = 1, . . . , n′ (8)

then we say that G(S′, h1, . . . , hd) is acyclic. It is useful to consider the vertex-
edge incidence matrix AG of G(S′, h1, . . . , hd). It has n′ rows, labeled with
x1, . . . , xn′ , where position � in row j is 1 if � ∈ {h1(xj), . . . , hd(xj)}, and is
0 otherwise. Condition (8) entails that in this matrix in row j there is a 1-
entry in some position �j so that column �j has only 0s above row j. Thus the
matrix AG can be transformed into echelon form by exchanging columns. This
immediately implies the following.

Lemma 3. If (8) holds, then for each vector (b1, . . . , bn′) ∈ [n′] we may (even
in linear time) find a set of values g(i) ∈ [n′], i ∈ [m′], such that

(g(h1(xj)) + · · · + g(hd(xj))) mod m′ = bj , for 1 ≤ j ≤ n′.

It can be arranged that g(i) = 0 for i /∈ {�j | 1 ≤ j ≤ n′}. If we choose
(b1, . . . , bn′) as a permutation of (0, 1, . . . , n′ − 1), we obtain a MPHF for S′.

Remark 1. In [7] the approach of the acyclic hypergraph was re-discovered and
utilized in a similar way as in [22] to implement an arbitrary function f : S′ →
{0, 1}q, even including a mechanism to detect (with some probability 1 − ε)
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if a key x /∈ S′ is presented to the data structure. (This problem was called
“retrieval” in [10].) In [7], a naive analysis of the acyclicity property was used,
leading to an estimate O(n′) of the space requirements that is much larger than
the space bounds from [22], as discussed below. However, the bounds from [22]
do apply also in this context.

In [8] and [22] it was assumed that fully random hash functions are available.
This gap in the analysis vanishes if one employs the “split-and-share” trick.

A minor question that remains is how one may find a mapping x �→ (h1(x),
. . . , hd(x)) that attains vectors of d different elements as values, each one with
the same probability, if only given fully random values (h0

1(x), . . . , h0
d(x)) in

{0, 1}k. There are several approaches to this problem, a solution due to Floyd
being discussed in [2]. (A workaround used in some papers (e. g. [5]) is to let
h1, . . . , hd have disjoint ranges of size m′/d each, the slight disandvantage being
that results from the random graphs literature do not apply directly to this
situation of “d-partite hypergraphs”.)

Again, with the “splitting” approach at the basis, we do not have to worry
about space, and can even simplify Floyd’s method, utilizing an idea usually
employed to construct (full) random permutations (see [21, Algorithm P]). Use
an auxiliary array R[0..

√
n−1], initialized so that R[i] = i for all i (this property

is restored after each use). We assume that a fully random sequence h0
1, . . . , h

0
d

of hash functions with range [2k] is available, k ≥ 2 log n.

Algorithm. Hyperedge
Input: x, n′.
Output: (h1(x), . . . , hd(x)) (∗ distinct values ∗)
for � = 1 to d do

j� ← h0
�(x) mod (n′ − � + 1);

exchange R[j�] and R[n′ − �];
(z1, . . . , zd) ← (R[n′ − 1], . . . , R[n′ − d]);
for � = 1 to d do

R[j�] ← j�; R[n′ − �] ← n′ − �;
return (z1, . . . , zd).

It is not hard to check that each d-tuple (z1, . . . , zd) in [n′] that consists of d
distinct values (up to negligibly small rounding errors) has the same probability
to be returned as (h1(x), . . . , hd(x)). Once the edges ex, x ∈ S′, have been
calculated, one may easily in linear time calculate an ordering (x1, . . . , xn′) that
satisfies (8), if such an ordering exists. (For details see [22].) If no such ordering
exists (the hypergraph ([m], {ex}x∈S′) is “cyclic”), we repeat with a new set
h0

1, . . . , h
0
d of fully random hash functions. (If this approach is implemented in

the context of the “split-and-share” approach, for each trial a new segment of d
of the fully random functions h0, . . . , hL−1 are used.)

In [22] it is discussed in detail what the probability for acyclicity is for various
d and quotients c = n′/m′ (assuming the asymptotic case with n′, m′ → ∞). For
d = 2 we must have c > 2 and get an acyclicity probability of e1/c

√
(c − 2)/c > 0.
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For d = 3, 4, 5 one gets threshold values

c3 ≈ 1.222, c4 ≈ 1.295, c5 ≈ 1.425,

meaning that if n′/m′ ≥ c > cd then the probability that the hypergraph is acylic
is high (approaching 1 as n′, m′ grow). Larger values of d have worse threshold
values. The most attractive choice for d obviously is d = 3, where a choice of
m′ = 1.23n′ leads to a good chance for hitting an acyclic hypergraph.

Thus, a data structure for a mapping U � x �→ ex = {h1(x), . . . , hd(x)} so
that ([m′], {ex}x∈S′) forms an acyclic hypergraph can be constructed in expected
time O(|n′|). We have already seen how such a structure can be used to get a
MPHF for S′ that in essence consists of a table of m′ numbers from [

√
n]. If one

uses this construction for each set Si separately, sharing the random entries in
the arrays Tj,0, Tj,1 as before, one obtains a data structure Dh for a MPFH h
for S that has the following components:

– the splitting hash function h0;
– hi

0, h
i
1, for 0 ≤ i < m;

– values ai (and bi), 0 ≤ i < m;
– arrays Tj,0[0..r − 1] and Tj,1[0..r − 1], j ∈ [L];
– an index t ∈ [L/2] for the suitable triple

(h3t mod ni, h3t+1 mod mi, h3t+2 mod mi);
– 1.23ni gi-values in [ni], for 0 ≤ i < m.

The overall space needed is 2m = 4n2/3 words of size log |U | and mL words from
{0, 1}k and 1.23n offset values in [

√
n] (about 0.62n logn bits).

5 Below the Graph Thresholds

Using the approach of Majewski et al. [22] one may not get below the space
bound 1.23n′ given by the requirement that the random hypergraphs be acyclic.
The Undo-Une construction from [13] achieves space (1+ε)n′, but seemingly not
less. However, in [4] and in [31] methods for constructing MPHF are described
that have the potential to get below the threshold of n′ words. Botelho et al. [4] as
well as Weidling [31] independently propose using the hypergraph approach with
d = 2, in which case the hypergraph G(S′, h1, h2) turns into a standard graph.
The central change is to give up the requirement that this graph be acyclic.
Rather, these authors propose studying the 2-core J2 ⊆ [m′] of G(S′, h1, h2),
which is the largest subgraph all of whose nodes having degree 2 or larger.

From graph theory it is well known that the 2-core of a graph G can be found
in linear time by a simple “peeling” process. This process iterates cutting off
nodes of degree 1 (“leaves”) from G; the remaining graph with nodes of degree
at least 2 is the 2-core. If one assumes that the 2-core J2 of G(S′, h1, h2) has
been determined and that values g(i), i ∈ J2, have been calculated such that

the mapping x �→ (g(h1(x)) + g(h2(x))) mod n′ (9)
is one-to-one on the set {x ∈ S′ | h1(x), h2(x) ∈ J2},
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then it is very easy to calculate values g(i) for i ∈ [m′] − J2 such that x �→
(g(h1(x)) + g(h2(x))) mod n′ is one-to-one on S′. (See Section 5.2.) We are left
with the problem of finding a suitable g-labeling of the nodes in J2. Here, the
methods of [4] and [31] differ.

5.1 A Partly Heuristic Approach

Botelho et al. [4] propose a greedy strategy for determining the g-values inside
J2. This strategy assigns g-values to nodes in the order i1, . . . , i|J2| of a breadth-
first-search in the 2-core, where each value g(it) is chosen so that it is bigger
than g(i1), . . . , g(it−1) but minimal so as not to get into conflict with (9). The
authors of [4] conjecture (Conjecture 1, [4, p. 496]) that if

the 2-core of G(S′, h1, h2) has ≤ n′/2 edges, (10)

then this greedy strategy succeeds in the sense that the largest g-value assigned
is not larger than n′ − 1. For this conjecture, experimental evidence is provided.

It remains to estimate the edge density n′/m′ we can afford so that with high
probability the 2-core has no more than n′/2 edges. Referring to results on the
structure of 2-cores of random graphs, in particular to [26], in [4] the following
rule is provided (valid for n′, m′ → ∞): The number of edges in the 2-core is

(1 + o(1))(1 − T/d)2n′,

where d = 2n′/m′ is the average degree of G(S′, h1, h2) and T is the unique
solution in (0, 1) of the equation Te−T = de−d. A simple numeric computation
shows that the threshold value for d is approximately 1.736. This means that
(for n′, m′ large) we can afford d ≈ 1.73, or m′ ≥ 1.152n′, and may expect to
have no more than n′/2 edges in the 2-core.

In [4] experimental evidence is given that the algorithm works well for this
choice of m′. The authors further report that in experiments a variant of their
algorithm (not insisting that the values g(xt) increase with t increasing) makes
it possible to further decrease m′, to some value m′/n′ ≈ 0.93, but not further.

5.2 An Analyzed Approach

We turn to Weidling’s [31] analysis of the strategy based on the 2-core of
G(S′, h1, h2). The lowest edge density we consider in the analysis is never larger
than 1.1, meaning that always m′ > 0.9n′. In this case the probability that
G(S′, h1, h2) has an empty 3-core (i. e., G(S′, h1, h2) does not have a nonempty
subgraph with minimum degree 3) is overwhelming. Further, with high proba-
bility the maximum degree of nodes in G(S′, h1, h2) is O(log(n′)). Finally, with
positive probability G(S′, h1, h2) does not have double edges. For simplicity from
here on we assume that G(S′, h1, h2) satisfies these properties (otherwise this will
turn out at some time of the execution of the algorithm, in which case we choose
new hash functions h1, h2 for S′). The following assumption is crucial for the
analysis of the first algorithm (cf. (10)):

the 2-core of G(S′, h1, h2) has ≤ (1
2 − ε)n′ edges. (11)
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We “peel” G(S′, h1, h2), as follows: Let G1 = G(S′, h1, h2). We disregard nodes
of degree 0.
• Round t = 1, . . . , �1: We choose a node jt of degree 1 in Gt and obtain Gt+1 by
removing jt and the (unique) incident edge {h1(xt), h2(xt)}. — What remains
is a graph G�1 with minimum degree 2, the 2-core.
Round t = �1 + 1, . . . , �2: If all nodes in Gt have degree 2 or larger, we choose a
node jt of degree 2 and obtain Gt+1 by removing jt and its two incident edges
{h1(xt,1), h2(xt,1)}, {h1(xt,2), h2(xt,2)} from Gt. Otherwise we choose a node
jt of degree 1, and obtain Gt by removing it and the (unique) incident edge
{h1(xt), h2(xt)}. This is continued until an empty graph results.

Now the g-values are assigned. Preliminarily, assign g-value 0 to all nodes
j ∈ [m′]. Let H = ∅ (the already assigned hash values). We proceed in the
reverse order of the peeling process.
Round t = �2, . . . , �1 + 1:

Case 1: Node jt has degree 2 in Gt, with two incident edges {h1(xt,1), h2(xt,1)},
{h1(xt,2), h2(xt,2)}. Assume jt = h1(xt,1) = h1(xt,2). (The other cases are
treated analogously.) Let j′ = h2(xt,1) and j′′ = h2(xt,2). What are legal values
for g(jt) so that we do not get stuck on our way to constructing a MPHF? We
must have
(i) (g(jt) + g(j′)) mod n′, (g(jt) + g(j′′)) mod n′ are different and not in H , and
(ii) g(jt) /∈ {g(js) | s > t and js has distance 2 to jt}.
That condition (i) is necessary (and sufficient for carrying out step t) is obvious.
Condition (ii) makes sure that in a later step t′ it will not happen that a common
neighbor of jt and jt′ cannot be labeled because g(jt) = g(jt′). Since by assump-
tion (11) we have |H | ≤ 1

2 (1 − ε)n′, and since graph G(S′, h1, h2) has maximum
degree O(log(n′)), conditions (i) and (ii) exclude at most (1 − ε)n′ − O(log(n′))
values for g(jt). Since there are n′ values to choose from, we may try values from
[n′] at random until a suitable value for g(jt) is found, and will succeed after an
expected number of 1/ε rounds. One still has to prove the simple fact that the
expected number of nodes at distance 1 and 2, averaged over all nodes, is O(1),
to conclude that the overall construction time is expected O(n).

Case 2: Node jt has degree 1 in Gt. Let j′ be its unique neighbor in Gt. In this
case the new value g(jt) just has to satisfy (i)′ (g(jt) + g(j′)) mod n′ /∈ H and
condition (ii); again after an expected constant number of random trials we will
find a suitable value g(jt).
• Round t = �1, . . . , 1:
We know that node jt has degree 1 in Gt. Let j′ be its unique neighbor. De-
terministically choose g(jt) = (i + n′ − g(j′)) mod n′ for one (the next) element
i /∈ H .

This algorithm finishes in expected linear time, if (11) is satisfied. On the
same grounds from random graph theory as noted in Section 5.1 one sees that
for this the condition m′ ≥ 1.152(1 + δ)n′ for some δ > 0 is sufficient. (In [31] a
direct estimate of the number of edges in the 2-core is provided, leading to the
same result.)
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Looking from the point of view of space efficiency, the threshold m′ ≥ 1.152
(1 + δ)n′ is not yet satisfying since the construction from [13] achieves a similar
result with space m′ = (1 + δ)n′.

Weidling [31] investigated the combination of the graph-based construction
with the “Undo-One” strategy from Section 3.2. He proved that m′ ≥ 0.9353(1+
δ)n′ is sufficient to guarantee that an adapted version of this strategy succeeds
in building a graph-based MPHF. For the full data structure in the context of
the split-and-share approach this would lead to the same space requirements as
in Section 4.1, replacing the term “1.23n offset values in [

√
n] (about 0.62n logn

bits)” by “0.94n offset values in [
√

n] (about 0.47n logn bits)”.

6 Below n log n

Using methods different from those described in this paper, based on the ap-
proach of [20], Woelfel [32] provided a MPHF construction that had more prac-
tical evaluation times than the purely theoretical constructions but gets by with
space O(n log log n). A similar result was reported in [11]. This construction is
based on the hash-and-displace approach with the random-fit-decreasing algo-
rithm, see 3.1. However, for each bucket Bi of size 2 or larger a new sequence of
fully random hash functions is employed (instead of one fixed f for all buckets).
Only the index of the successful hash function has to be stored, which will be a
number of size O(log n), hence of log log n + O(1) bits. The buckets Bi of size 1
cause a new subtle problem. To allocate these buckets with a hash function out
of a pool of O(log n) many, one has to construct a perfect matching in the graph
induced by the x’s in such buckets and the respective hash values h0, . . . , hL−1,
for L = Θ(log n). For this, methods for finding matchings in sparse random
graphs are employed ([1,24]). The construction time rises to O(n(log n)2).

7 An Almost Optimal Solution

Very recently, Botelho, Pagh, and Ziviani ([5], WADS’07) described a method
to obtain a MPFH with description size O(n), a constant factor away from the
optimum. We give a brief account of their approach. For the theoretical analysis,
they appeal to the “split-and-share” approach just as we did before, so we may
assume that we have to achieve the goal formulated at the end of Section 1.3:
find a MPHF for S′, n′ = |S′| ≤

√
n, assuming a pool of K log n fully random

functions. Botelho et al. set out from the hypergraph setting of Section 4.1, with
hypergraphs of order d. They use the fact known from random graph theory
that for each d ≥ 2 there is a constant cd such that if m′/n′ ≥ c > cd then the
hypergraph G(S′, h1, . . . , hd) is acyclic (with positive probability for d = 2 and
with high probability as n′, m′ → ∞ for d ≥ 3). They calculate the corresponding
order (x1, . . . , xn′) of the elements of S′ such that (8) is satisfied. The crucial
observation now is that the mapping

xj �→ some element �j of exj −
⋃

s<j exs
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from S′ to [m′] is one-to-one. Thus, for each j we may choose some �j ∈ [d]
(namely, an arbitrary �j ∈ exj −

⋃
s<j exs) such that the mapping

h′: U � x �→ h�j+1(x) ∈ [m′] (12)

is one-to-one on S′. Thus this mapping already represents a hash function that
is perfect on S′, with a range that is a little larger than we would like it to be.

A central idea of [5] now is to provide a data structure for calculating h′. (As
mentioned in Remark 1, this idea was already used in very much the same way by
Chazelle et al. [7] in the context of data structures that represent “half-dynamic”
mappings from S′ to some range X , there called “Bloomier filters”, but without
an attempt to make m′ as small as possible.) This is done as follows: We use the
construction indicated in Lemma 3, but not for [n′] with modular addition, but
for [d]: We may find, in linear time, values g(i) ∈ [d], i ∈ [m′], such that

(g(h1(xj)) + · · · + g(hd(xj))) mod d = �j , for 1 ≤ j ≤ n′.

Moreover, we arrange that g(i) = 0 for i /∈ {�j | 1 ≤ j ≤ n′}. These values g(i),
when stored in a table with m′ entries from [d], form a data structure that makes
it possible to calculate h′(x), x ∈ U , from (12) as follows:

h′(x) = h1+(g(h1(x))+···+g(hd(x))) mod d(x). (13)

Storing the values g(j), j ∈ [m′], takes about m′ blocks of �log d� bits, or, by cod-
ing s numbers into one block of length �log(ds)�, about m′/s blocks of �log(ds)�
bits. For a concrete figure, let d = 3, in which case one may use m′ = 1.23n′,
and s = 5. Then �log(ds)� = �log(243)� = 8, so a block is a byte, and one needs
1.23n′ bytes or approximately 1.97n′ bits. Using this approach for constructing
a perfect hash function for S one obtains a data structure that uses no more
than 2n + O(n2/3 log n) bits, and has an extremely simple structure.

The hash function h′ described so far does not have minimal range [n′]. In [5]
the following approach is proposed. In the table for the g-values positions j ∈
[m′] − {�j | 1 ≤ j ≤ n′} are filled with the entry “d” — indicating that the
index does not belong to the set {�j | 1 ≤ j ≤ n′}, but having no effect on the
arithmetic modulo d. Thus, for d = 3 one has four possible g-values, requiring 2
bits per entry, resulting in a little bit more than 2.46n′ bits.

The MPFH h we aim at is defined as

h(x) = |{�j | 1 ≤ j ≤ n′, �j < h′(x)}|. (14)

A moment’s thought reveals that this function h takes on values in [n′] and is
one-to-one on S′, because the h′(x)-values for the elements x ∈ S′ are just the
n′ elements in {�j | 1 ≤ j ≤ n′}. There are several ways of calculating h(x) using
the table of g-values and some auxiliary data structure — for details see [5].

The authors of [5] report on experiments that indicate that their approach
leads to data structures that are space-efficient as described by the theory as
well as very time-efficient. (The implementations use standard universal hash
classes, which turn out to be sufficient so that it is not necessary to employ the
“split-and-share” trick.)
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8 Conclusion

The study of data structures for the MPHF problem has taken some interesting
steps in the past few years. From the theoretical side, it has been understood
how the full randomness assumption may be justified without resorting to con-
structions with large evaluation times, and — building on earlier work that have
demonstrated the crucial role played by hypergraph structures — a practically
useful construction has been found that approaches the theoretically optimal
space bound of n log e bits up to a small constant factor. A natural question left
open is whether one can get even closer to the space lower bound, while retaining
practicability. Also, it would be interesting to see whether provable randomness
properties remain in the graph and hypergraph structures discussed here if one
does not assume full randomness but only k-wise independence for some k.

References
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