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Abstract. In this paper we study the support sizes of evolutionary sta-
ble strategies (ESS) in random evolutionary games. We prove that, when
the elements of the payoff matrix behave either as uniform, or normally
distributed independent random variables, almost all ESS have support
sizes o(n), where n is the number of possible types for a player. Our
arguments are based exclusively on the severity of a stability property
that the payoff submatrix indicated by the support of an ESS must sat-
isfy. We then combine our normal–random result with a recent result of
McLennan and Berg (2005), concerning the expected number of Nash
Equilibria in normal–random bimatrix games, to show that the expected
number of ESS is significantly smaller than the expected number of sym-
metric Nash equilibria of the underlying symmetric bimatrix game.

JEL Classification Code: C7 – Game Theory and Bargaining Theory.

Keywords: Bimatrix Games, Evolutionary Games, Evolutionary Stable
Strategies, Nash Equilibria.

1 Introduction

In this work we study the distribution of the support sizes of evolutionary sta-
ble strategies (ESS) in random evolutionary games, whose payoff matrices have
elements that behave as independent, identically distributed random variables.
Arguing about the existence of a property in random games may actually re-
veal information about the (in)validity of the property in the vast majority of
payoff matrices. In particular, a vanishing probability of ESS existence would
prove that this notion of stability is rather rare among payoff matrices, dictating
the need for a new, more widely applicable notion of stability. Etessami and
Lochbihler [2] recently proved both the NP−hardness and coNP−hardness of
even detecting the existence of an ESS for an arbitrary evolutionary game.
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The concept of ESS was formally introduced by Maynard–Smith and Price [14].
Haigh [4] provided an alternative characterization, via a set of necessary and suf-
ficient conditions (called feasibility, superiority and stability conditions), for a
strategy x being an ESS. As will be clear later, the first two conditions imply
that the profile (x,x) is a symmetric Nash equilibrium (SNE) of the underlying
symmetric bimatrix game 〈A, AT 〉.

A series of works about thirty years ago (eg, [3], [9], [6]) have investigated
the probability that an evolutionary game with an n × n payoff A whose ele-
ments behave as uniform random variables in [0, 1], possesses a completely mixed
strategy (ie, assigning positive probability to all possible types) which is an ESS.
Karlin [6] had already reported experimental evidence that the stability condi-
tion is far more restrictive than the feasibility condition in this case wrt1 the
existence of ESS (the superiority condition becomes vague in this case since we
refer to completely mixed strategies).

Kingman [7] also worked on the severity of the stability condition, in a work
on the size of polymorphisms which, interpreted in random evolutionary games,
corresponds to random payoff matrices that are symmetric. For the case of uni-
form distribution, he proved that almost all ESS in a random evolutionary game
with symmetric payoff matrix, have support size less than 2.49

√
n. Consequently,

Haigh [5] extended this result to the case of asymmetric random payoff matrices.
Namely, for a particular probability measure with density φ(x) = exp(−x)/

√
πx,

he proved that almost all ESS have support size at most 1.636n2/3. He also con-
jectured that similar results should also hold for a wide range of probability
measures with continuous density functions.

Another (more recent) line of research concerns the expected number of Nash
equilibria in random bimatrix games. Initially McLennan [10] studied this quan-
tity for arbitrary normal form games and provided a formula for this number.
Consequently, McLennan and Berg [11] computed asymptotically tight bounds
for this formula, for the special case of bimatrix games. They proved that the
expected number of NE in normal–random bimatrix games is asymptotically
equal to exp(0.2816n + O(log n)), while almost all NE have support sizes that
concentrate around 0.316n. Recently Roberts [13] calculated this number in the
case zero sum games 〈A, −A〉 and coordination games 〈A, A〉, when the Cauchy
probability measure is used for the entries of the payoff matrix.

In a previous work of ours [8] we had attempted to study the support sizes
of ESS in random games, under the uniform probability measure. In that work
we had calculated an exponentially small upper bound on the probability of any
given support of size r being the support of an ESS (actually, being the support
of a submatrix that satisfies the stability condition). Nevertheless, this bound
proved to be insufficient for answering Haigh’s conjecture for the uniform case,
due to the extremely large number of supports.

In this work we resolve affirmatively the conjecture of Haigh for the cases of
both the uniform distribution in [0, 1] and the standard normal distribution (ac-
tually, shifted by a positive number). In both cases we prove the crucial probability

1 With respect to.
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of stability for a given support to be significantly smaller than exponential. This
is enough to prove that almost all ESS have sublinear support size. We then pro-
ceed to combine our result on satisfaction of the stability condition in random
evolutionary games wrt the (standard, shifted) normal distribution, with the re-
sult of McLennan and Berg [11] on the expected number of NE in normal–random
bimatrix games. Our observation is that ESS in random evolutionary games are
significantly less than SNE in the underlying symmetric bimatrix games.

The structure of the rest of the paper is the following: In Section 2 we provide
some notation and some elementary background on (symmetric) bimatrix and
evolutionary games. In Section 3 we calculate the probability of the stability
condition holding (unconditionally) for given support sizes, in the case of the
uniform distribution (cf. Subsection 3.2) and in the case of the normal distribu-
tion (cf. Subsection 3.3). We then use these bounds to give concentration results
on the support sizes of ESS for these two random models of evolutionary games
(cf. Subsection 3.4). In Section 4 we prove that the stability condition is more
severe than the (symmetric) Nash property in symmetric games, by showing
that the expected number of ESS in a evolutionary game with a normal–random
payoff matrix A is significantly less than the expected number of Symmetric
Nash Equilibria in the underlying symmetric bimatrix game 〈A, AT 〉.

2 Preliminaries

Notation. IR denotes the set of real numbers, IR�0 is the set of nonnegative reals,
and IN is the set of nonnegative integer numbers. For any k ∈ IN\{0}, we denote
the set {1, 2, . . . , k} by [k]. ei ∈ IRn is the vector with all its elements equal to
zero, except for its i−th element, which is equal to one. 1 =

∑
i∈[n] ei is the

all–one vector, while 0 is the all–zero vector in IRn.
We consider any n × 1 matrix as a column vector and any 1 × n matrix as a

row vector of IRn. A vector is denoted by small boldface letters (eg, x,p, . . .) and
is typically considered as a column vector. For any m × n matrix A ∈ IRm×n,
its i−th row (as a row vector) is denoted by Ai and its j−th column (as a
column vector) is denoted by Aj . The (i, j)−th element of A is denoted by Ai,j

(or, Aij). AT is the transpose matrix of A. For any positive integer k ∈ IN,
Δk ≡ {z ∈ IRk

�0 : 1T z = 1} is the (k − 1)−simplex, ie, the set of probability
vectors over k−element sets. For any z ∈ Δk, its support is the subset of [k] of
actions that are assigned positive probability mass: supp(x) ≡ {i ∈ [k] : zi > 0}.

For any probability space (Ω, F , P) and any event E ∈ F , P {E} is the prob-
ability of this event occurring, while I{E} is the indicator variable of E holding.
For a random variable X , E {X} is its expectation and Var {X} its variance. In
order to denote that a random variable X gets its value according to a proba-
bility distribution F , we use the following notation: X ∈R F . For example, for
a uniform random variable in [0, 1] we write X ∈R U(0, 1), while for a random
variable drawn from the standard normal distribution we write X ∈R N (0, 1).

Bimatrix Games. The subclass of symmetric bimatrix games provides the ba-
sic setting for much of Evolutionary Game Theory. Indeed, every evolutionary
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game implies an underlying symmetric bimatrix game, that is repeatedly played
between randomly chosen opponents from the population. Therefore we provide
the main game theoretic definitions with respect to symmetric bimatrix games.

Definition 1. For arbitrary m × n real matrices A, B ∈ IRm×n, the bimatrix
game Γ = 〈A, B〉 is a game in strategic form between two players, in which the
first (row) player has m possible actions and the second (column) player has n
possible actions. A mixed strategy for the row (column) player is a probability
distribution x ∈ Δm (y ∈ Δn), according to which she chooses her own action,
independently of the other player’s choice. A strategy x ∈ Δm is completely
mixed if and only if supp(x) = [m]. The payoffs of the row and the column
player, when the row and column players adopt strategies ei and ej, are Aij and
Bij respectively. If the two players adopt the strategies p ∈ Δm and q ∈ Δn,
then the (expected) payoffs of the row and column player are pT Aq and pT Bq
respectively. Some special cases of bimatrix games are the zero sum (B = −A),
the coordination (B = A), and the symmetric (B = AT ) games.

Note that in case of a symmetric bimatrix game, the two players have exactly
the same set of possible actions (say, [n]). The standard notion of equilibrium in
strategic games are the Nash Equilibria [12]:

Definition 2. For any bimatrix game 〈A, B〉, a strategy profile (x,y) ∈ Δm ×
Δn is called a Nash Equilibrium (NE in short), if and only if xT Ay �
zT Ay, ∀z ∈ Δm and xT By � xT Bz, ∀z ∈ Δn. If additionally supp(x) = [m]
and supp(y) = [n], then (x,y) is called a completely mixed Nash Equi-
librium (CMNE in short). A profile (x,x) that is NE for 〈A, B〉 is called a
symmetric Nash Equilibrium (SNE in short).

Observe that the payoff matrices in a symmetric bimatrix game need not be
symmetric. Note also that not all NE of a symmetric bimatrix game need be
symmetric. However it is known that there is at least one such equilibrium:

Theorem 1 ([12]). Each finite symmetric bimatrix game has at least one SNE.

When we wish to argue about the vast majority of symmetric bimatrix games,
one way is to assume that the real numbers in the set {Ai,j : (i, j) ∈ [n]} are
independently drawn from a probability distribution F . For example, it can be
the uniform distribution in an interval [a, b] ∈ IR, denoted by U(a, b). Then, a
random symmetric bimatrix game Γ is just an instance of the implied random
experiment that is described in the following definition:

Definition 3. A symmetric bimatrix game Γ = 〈A, AT 〉 is an instance of a
(symmetric 2-player) random game wrt the probability distribution F , if and only
if ∀i, j ∈ [n], the real number Ai,j is an independently and identically distributed
random variable drawn from F .

Evolutionary Stable Strategies. For some A ∈ IRn×n, fix a symmetric game
Γ = 〈A, AT 〉. Suppose that all the individuals of an infinite population are
programmed to play the same (either pure or mixed) incumbent strategy x ∈ Δn,
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whenever they are involved in Γ . Suppose also that at some time a small group
of invaders appears in the population. Let ε ∈ (0, 1) be the share of invaders
in the post–entry population. Assume that all the invaders are programmed to
play the (pure or mixed) strategy y ∈ Δn whenever they are involved in Γ .

Pairs of individuals in this dimorphic post–entry population are now repeat-
edly drawn at random to play always the same symmetric game Γ against each
other. Recall that, due to symmetry, it is exactly the same for each player to be
either the row or the column player. If an individual is chosen to participate, the
probability that her (random) opponent will play strategy x is 1 − ε, while that
of playing strategy y is ε. This is equivalent to saying that the opponent is an
individual who plays the mixed strategy z = (1−ε)x+εy. The post–entry payoff
to the incumbent strategy x is then xT Az and that of the invading strategy y
is just yT Az. Intuitively, evolutionary forces will select against the invader if
xT Az > yT Az. The most popular notion of stability in evolutionary games is
the Evolutionary Stable Strategy (ESS):

Definition 4. A strategy x is evolutionary stable (ESS in short) if for any
strategy y �= x there exists a barrier ε̄ = ε̄(y) ∈ (0, 1) such that ∀0 < ε �
ε̄, xT Az > yT Az where z = (1 − ε)x + εy.

The following lemma states that the “hard cases” of evolutionary games are not
the ones in which there exists a completely mixed ESS:

Lemma 1 (Haigh 1975 [4]). If a completely mixed strategy x ∈ Δ is an ESS,
then it is the unique ESS of the evolutionary game.

Indeed, it is true that, if for an evolutionary game with payoff matrix A ∈ IRn×n

it holds that some strategy x ∈ Δn is an ESS, then no strategy y ∈ Δn such
that supp(y) ⊆ supp(x) may be an ESS as well.

Haigh [4] also provided an alternative characterization of ESS in evolutionary
games, which is the conjunction of the following sentences, and will prove to be
very useful for our discussion:

Theorem 2 (Haigh [4]). A strategy p ∈ Δn in an evolutionary game with
payoff matrix A ∈ IRn×n is an ESS if and only if the following necessary and
sufficient conditions simultaneously hold:

[H1]: Nash Property There is a constant c ∈ IR such that:

[H1.1]: Feasibility
∑

j∈supp(p) Aijpj = Aip = c, ∀i ∈ supp(p).

[H1.2]: Superiority
∑

j∈supp(p) Aijpj = Aip � c, ∀i /∈ supp(p).

[H2]: Stability ∀x ∈ IRn :
IF (x �= 0 ∧ supp(x) ⊆ supp(p) ∧ 1T x = 0) THEN xT Ax < 0

Observe that [H1] assures that (p,p) is a symmetric Nash Equilibrium (SNE) of
the underlying symmetric bimatrix game 〈A, AT 〉. This is because ∀i, j ∈ [n], i ∈
supp(p) ⇒ Aip � Ajp and ∀i, j ∈ [n], i ∈ supp(p) ⇒ pT (AT )i = pT (Ai)T �
pT (Aj)T = pT (AT )j . Since in this work we deal with evolutionary games with
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random payoff matrices (in particular, whose entries behave as independent,
identically distributed continuous random variables), we can safely assume that
almost surely [H1.2] holds with strict inequality. As for [H2], this is the one that
guarantees the stability of the strategy against (sufficiently small) invasions.

3 Probability of Stability

In this section we study the probability of a strategy with support size r ∈ [n]
also being an ESS. In the next section we shall use this to calculate an upper
bound on the support sizes of almost all ESS in a random game.

Assume a probability distribution F , whose density function φ : IR �→ [0, 1]
exists, according to which the random variables {Aij}(i,j)∈[n]×[n] determine their
values. We focus on the cases of: (i) the uniform distribution U(0, 1), with density
function φu(x) = I{x∈[0,1]} and distribution function Φu(x) = x · I{x∈[0,1]} +
I{x>1}, and (ii) the standard normal distribution N (0, 1), with density function

φg(x) =
exp(−x2/2)√

2π
and distribution function Φg(x) =

∫ x

−∞ n(t)dt. Our goal is
to study the severity of [H2] for a strategy being an ESS. We follow Haigh’s
generalization of the interesting approach of Kingman (for random symmetric
payoff matrices) to the case of asymmetric matrices. Our findings are analogous
to those of Haigh [5], who gave the general methodology and then focused on
a particular distribution. Here we resolve the cases of uniform distribution and
standard normal distributions, which were left open in [5].

3.1 Kingman’s Approach

Consider an arbitrary strategy p ∈ Δn, for which we assume (without loss of
generality) that its support is supp(p) = [r]. Since condition [H2] has to hold
for any non-zero real vector x ∈ IRn \ {0} : 1T x = 0 ∧ supp(x) ⊆ [r], we can also
apply it for all vectors x(i, j) = ei − ej : 1 � i < j � r, as was observed in [7].
This immediately implies the following necessary condition for p being an ESS:

∀1 � i < j � r, Aij + Aji > Aii + Ajj (1)

Mimicking Kingman and Haigh’s notation [7,5], we denote by DI the event that
our random matrix A has the property described by inequality (1), if r = |I| and
we rearrange the rows and columns of A so that I = [r]. As was demonstrated
in [5], the probability of this event is expressed by the following form:

P {DI} =
∫ ∞

−∞
· · ·

∫ ∞

−∞

∏

1�i<j�r

[1 − G(aii + ajj)] ·
∏

i∈[r]

[φ(aii)] da11 · · · darr (2)

where G(x) =
∫ x

−∞ g(t)dt is the distribution function of any random variable
Xij = Aij + Aji : 1 � i < j � r (the sum of two iid random variables with
density function φ). Note that the density function g is the convolution of f with
itself. This formula was studied in [5] for the special case φ(x) = exp(−x)/

√
πx.



160 S.C. Kontogiannis and P.G. Spirakis

In the next two subsections we do the same for the uniform and (shifted)
standard normal distribution. Then we bound the support sizes of almost all
ESS in uniformly–random and normal–random evolutionary games.

3.2 The Case of U(0, 1)

If we adopt U(0, 1) as our basic probability distribution, then of course f(x) =
φu(x) = I{x∈(0,1)} and the distribution function G can be easily computed:

∀0 � x � 1, G(x) =
∫ x

0 f(aii)
(∫ x−aii

0 f(ajj)dajj

)
daii = x2

2 and ∀1 � x �

2, G(x) =
∫ 1
0 f(aii)

(∫ min{1,x−aii}
0 f(ajj)dajj

)
daii = 2x− 1− x2

2 . Therefore we
conclude that the following holds (also mentioned in [5]): ∀x ∈ IR,

1 − G(x) =
(

1 − x2

2

)

· I{0�x�1} +
1
2
(2 − x)2 · I{1<x�2} (3)

Observe now that each 1−G(aii +ajj) factor in equation (2) expresses the prob-
ability that the random variable Xij ≡ Aij +Aji is strictly larger than a certain
value aii + ajj . On the other hand, all the f(aii) = φu(aii) factors in equality
(2) assure that each of the diagonal elements in A (ie, the random variables
Aii) get the assumed values (ie, Aii = aii), which have to be nonnegative. We
use the following trivial upper bound on each of the 1 − G(aii + ajj) factors,
which exploits only the fact of non negative values of the elementary random
variables Aij ∈R U(0, 1) that we consider: ∀1 � i < j � r, 1 − G(aii + ajj) =
P {Xij > aii + ajj} � P {Xij > aii} = 1 − G(aii), to get the following from (2):

P {DI} �
∫ 1

0
· · ·

∫ 1

0

∏

1�i<j�r

[1 − G(aii)] da11 · · ·darr

=
∏

i∈[r−1]

(∫ 1

0
[1 − G(aii)]r−i daii

)

(4)

using the facts that f(x) = I{x∈(0,1)} and
∫ 1
0 f(arr)darr = 1. Plugging in the

form of 1−G(x) in case of the uniform distribution (eq. (3)), we get the following:

P {DI} �
∏

i∈[r−1]

(∫ 1

0

[

1 − 1
2
a2

ii

]r−i

daii

)

(5)

Using the trivial bound (1 − x)a � exp(−ax), ∀x > 0, ∀a � 1, we have:

P {DI} �
∏

i∈[r−1]

[∫ 1

0
exp

(

−r − i

2
a2

ii

)

daii

]

�
∏

i∈[r−1]

[
1√

r − i
·
∫ 1

0
exp

(

−
(
aii

√
r − i

)2

2

)
√

r − i daii

]
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=
∏

i∈[r−1]

[
1√

r − i
·
∫ √

r−i

0
exp

(

−β2
i

2

)

dβi

]

<
∏

i∈[r−1]

[
1

2
√

r − i

]

= exp

⎛

⎝−(r − 1) ln 2 − 1
2

r−1∑

j=1

ln j

⎞

⎠

< exp

⎛

⎝−(r − 1) ln 2 − 1
2

⎡

⎣(r − 1) +
r−1∑

j=1

Hj

⎤

⎦

⎞

⎠

= exp
(

−(r − 1) ln 2 − 1
2

[−2(r − 1) + rHr−1]
)

= exp
(
(r − 1)(1 − ln 2) − r

2
− r

2
ln(r − 1)

)
= exp

(

−r ln r

2
+ O(r)

)

(6)

since,
∫√

r−i

0 exp
(
−β2

i

2

)
dβi <

∫ ∞
0 exp

(
−β2

i

2

)
dβi = 1

2 . We used the following

properties of harmonic numbers: If Hr−1 =
∑r−1

i=1
1
i is the (r − 1)−th harmonic

number, then
∑r−1

i=1 Hi = rHr−1 − (r − 1) and ln(r − 1) < Hr−1 < ln(r − 1) + 1.

3.3 The Case of N (ξ, 1)

Assume now, for some ξ > 0 that will be fixed later, that each element of
the payoff matrix behaves as a normally distributed independent random vari-
able with mean ξ and variance 1: ∀(i, j) ∈ [n] × [n], Aij ∈R N (ξ, 1). Then it
also holds that all the Xij variables (for 1 � i < j � r) behave also as nor-
mally distributed random variables, with mean 2ξ and variance 2. That is:
∀(i, j) ∈ [r] × [r] : i �= j, Xij ∈R N (2ξ, 2). Then the following hold: ∀t ∈
IR, f(t) = 1√

2π
exp

(
− (t−ξ)2

2

)
and g(t) = 1

2
√

π
exp

(
− (t−2ξ)2

4

)
. Moreover, ∀x ∈

IR, 1 − F (x) = 1√
2π

∫∞
x

exp
(
− (t−ξ)2

2

)
dt ⇒ 1 − F (x) = 1√

2π

∫∞
x−ξ

exp
(
− z2

2

)
dz

(by the change in variable z = t−ξ) and 1−G(x) = 1
2
√

π

∫ ∞
x

exp
(
− (t−2ξ)2

4

)
dt ⇒

1 − G(x) = 1√
2π

∫∞
x−2ξ√

2
exp

(
− z2

2

)
dz (by setting z = t−2ξ√

2
). The following prop-

erty is useful for bounding the distribution function of a normal random variable
(cf. Theorem 1.4 of [1]): ∀x > 0,

(
1 − x−2

) exp(x2/2)
x �

∫ ∞
x

exp(−z2/2)dz �
exp(x2/2)

x . A simple corollary of this property is the following:

Corollary 1. Assume that F (x), G(x) are the distribution functions of N (ξ, 1)
and N (2ξ, 2) respectively. Then: ∀x > ξ, 1 − F (x) ∈

[(
1 − 1

(x−ξ)2

)
, 1

]
· 1√

2π
·

exp(−(x−ξ)2/2)
x−ξ and ∀x > 2ξ, 1−G(x) ∈

[(
1 − 2

(x−2ξ)2

)
, 1

]
· 1√

π
· exp(−(x−2ξ)2/4)

x−2ξ .

Recall now that

P {DI} =
∫ ∞

−∞
· · ·

∫ ∞

−∞
︸ ︷︷ ︸

r times

∏

1�i<j�r

[1 − G(aii + ajj)] ·
∏

i∈[r]

(f(aii)daii)
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�
r∑

k=0

(
r
k

) k∏

i=1

(∫ 0

−∞
f(aii)daii

)

·
r∏

i=k+1

(∫ ∞

0
[1 − G(aii)]r−if(aii)daii

)

=
r∑

k=0

(
r
k

)

(F (0))k ·
r−k−1∏

i=0

μi

where we have exploited the facts that ∀x ∈ IR, 1 − G(x) = P {X > x} � 1 and
∀y, z � 0, 1 − G(y + z) = P {X > y + z} � P {X > z} = 1 − G(z) and we set
μi ≡

∫ ∞
0 [1 − G(x)]if(x)dx, ∀i ∈ IN. Exploiting Corollary 1 and the symmetry

of the normal distribution, we have: F (0)k = (1 − F (2ξ))k �
(

exp(−ξ2/2)
ξ·√2π

)k

=

exp
(
−k ln(2π)

2 − kξ2

2 − k ln ξ
)
. As for the product of the μi’s, since ∀i � 0, μi =

∫∞
0 [1 − G(x)]if(x)dx � [1 − G(0)]i · (1 − F (0)), we conclude that:

∏r−k−1
i=0 μi �

(1−F (0))r−k(1−G(0))(r−k)(r−k−1)/2 < exp
(
− (r−k)(r−k−1)G(0)

2

)
. Therefore we

get the following bound:

P {DI} � exp
(

−r(r − 1)
2

· G(0)
)

+
r∑

k=1

exp
(

k ln
( r

k

)
− (r − k)(r − k − 1)

2
· G(0) − kξ2

2
− O(k ln ξ)

)

(7)

Assume now that, for some sufficiently small δ > 0, it holds that ξ =√
(1 − δ) ln r. Observe that for some constant ε > 0 and all 0 � k � εr,

∏r−k−1
i=0 μi < exp

(
− (1−ε)2

2 r2 · G(0)
)

= exp
(
− (1−ε)2

2 r ln r · eδ ln r−O(ln ln r)
)

<

exp
(
− (1−ε)2

2 r ln r
)

for δ = Ω
( ln ln r

ln r

)
, exploiting the fact that G(0) =

exp
(
−ξ2 − ln ξ − O(1)

)
(cf. Corollary 1). On the other hand, for all

εr < k � r, observe that F (0)k � exp
(
−kξ2

2 − k ln ξ − O(k)
)

<

exp
(
− 1−δ

2 εr ln r − O(k ln ln r)
)

< exp
(
− (1−δ)ε

2 r ln r
)
. Since for ε = 3−√

5
2 it

holds that (1−ε)2

2 � (1−δ)ε
2 , we conclude that each term in the right hand side

of inequality (7) is upper bounded by exp(−ε(1 − δ)/2 · r ln r + O(r)) and so we
get the following: P {DI} � exp

(
− (1−δ)ε

2 · r ln r + O(r)
)

.

3.4 Support Sizes of Almost All ESS

In the previous subsections we calculated upper bounds on the probability
P {DI} of a size–r subset I ⊂ [n] (say, I = [r]) satisfying [H2] (and thus being a
candidate support for an ESS), for the cases of U(0, 1) and N

(√
(1 − δ) ln r, 1

)
.

We now apply the following counting argument introduced by Kingman and
used also by Haigh: Let dr be the event that there exists a submatrix of the
random matrix A, of size at least r × r, such that DI is satisfied. Then the
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probability of this event occurring is upper by the following formula (cf. [5][eq.
10]): ∀1 � s � r � n, P {dr} = P {∃ submatrix with |I| � r s.t. DI holds} �
(

n
s

)

·P {Ds}·
(

r
s

)−1

. Using Stirling’s formula, k! =
√

2πk·(k/e)k ·(1+Θ(1/k)),

where e = exp(1), we write: ∀1 � s � r � n,
(

n
s

)

·
(

r
s

)−1

=
(

n
r

)s+1/2 ·
(

n
n−s

)n−s

·
(

r−s
r

)r−s ·
(

r−s
n−s

)1/2
· (1 + o(1)) . Assume now that r = Ana >

s = Bnβ, for some 1 > a > β > 0 and A � B. Then:
(

n
s

)

·
(

r
s

)−1

=

(1 + o(1)) ·
(

n1−a

A

)Bnβ+1/2
·
(
1 − B

n1−β

)−nβ(n1−β−B) ·
(
1 − B

Ana−β

)nβ(Ana−b−B) ·
(

A
n1−a · 1−B/(Ana−β)

1−B/n1−β

)1/2
= exp

(
(1 − a)Bnβ ln n + O

(
nβ

))
. We proved for the

uniform distribution U(0, 1) that for any subset I ⊆ [n] such that |I| =
Ana, P {DI} = exp

(
−Aa

2 na ln n + O(na)
)
. Therefore, in this case, P {dAna} �

exp
[
−

(
a
2 − 1 + a

)
Bnβ ln n + O

(
nβ

)]
, which tends to zero for all a > 2/3.

Similarly, we proved for the normal distribution N
(√

(1 − δ) ln(Bnβ), 1
)

that for any I ⊆ [n] : |I| = Bnβ , P {DI} = exp
(
− ε(1−δ)Bβ

2 · nβ ln n + O
(
nβ

))
,

where ε = 3−√
5

2 . Therefore we conclude that: P {dAna} �
exp

[
−

(
ε(1−δ)β

2 − 1 + a
)

Bnβ ln n + O
(
nβ

)]
, which tends to zero for all

a > 4
7−√

5−(3−√
5)δ

∼= 0.8396, since δ = Θ
( ln ln n

lnn

)
= o(1) (for n → ∞). Thus we

conclude with the following theorem concerning the support sizes of ESS in a
random evolutionary game:

Theorem 3. Consider an evolutionary game with a random n×n payoff matrix
A. Fix arbitrary positive constant ζ > 0.

1. If Aij ∈R U(0, 1) , ∀(i, j) ∈ [n] × [n], then, as n → ∞,
it holds that: P

{
∃ ESS with support size at least n(2+2ζ)/3

}
�

exp
(
− 5ζ

6 · n(2+ζ)/3 · ln n + O
(
n(2+ζ)/3

))
→ 0.

2. If Aij ∈R N (ξ, 1) , ∀(i, j) ∈ [n] × [n], where ξ = Θ
(√

ln n
)
, then, as

n → ∞, it holds that: P
{
∃ ESS with support size at least n0.8397+ζ

}
�

exp
(
−1.19ζ · n0.8397+ζ/2 · ln n + O

(
n0.8397+ζ/2

))
→ 0.

Remark: Indeed the above theorem upper bounds the unconditional probabil-
ity of [H2] being satisfied by any submatrix of A that is determined by an index
set I ⊆ [n] : |I| > n2/3 (for the uniform case) or |I| > n0.8397 (for the case of
the normal distribution). We adopt the particular presentation for purposes of
comparison with the corresponding results of Haigh [5] and Kingman [7].



164 S.C. Kontogiannis and P.G. Spirakis

4 An Upper Bound on the Expected Number of ESS

We now combine our result on the probability of [H2] being satisfied in random
evolutionary games wrt N (ξ, 1), with a result of McLennan and Berg [11] on the
expected number of NE in random bimatrix games wrt N (0, 1). The goal is to
show that ESS in random evolutionary games are significantly less than SNE in
the underlying symmetric bimatrix games.

We start with some additional notation, that will assist the clearer presen-
tation of the argument. Let A, B be normal–random n × n (payoff) matrices:
∀(i, j) ∈ [n] × [n], Aij , Bij ∈R N (ξ, 1). Enash

n,r is the expected number of NE with
support sizes equal to r for both strategies, in 〈A, B〉. Esym

n,r is the expected num-
ber of SNE with support sizes equal to r for both strategies, in 〈A, AT 〉. Eess

n,r is
the expected number of ESS of support size r, in the random evolutionary game,
with payoff matrix A. Finally, Estable

n,r is the expected number of strategies with
support size r that satisfy property [H2], in the random evolutionary game, with
payoff matrix A. We shall prove now the following theorem:

Theorem 4. If the n × n payoff matrix A of an evolutionary game is randomly
chosen so that each of its elements behaves as an independent N (ξ, 1) random
variable, then it holds that Eess

n = o(Esym
n ), as n → ∞.

Proof: First of all we should mention that the concept of Nash Equilibrium is
invariant under affine transformations of the payoff matrices. Therefore, we may
safely assume that the results of [11] on the expected number of NE in n × n
bimatrix games, in which the values of both the payoff matrices are treated as
standard normal random variables, are also valid if we shift both the payoff
matrices by any positive number ξ (or equivalently, if we consider the normal
distribution N (ξ, 1) for the elements of the payoff matrices). The main theorem
of the work of McLennan and Berg concerns Enash

n,r in 〈A, B〉 2.
In our work we are concerned about Eess

n,r , the expected number of ESS with
support size r, in a random evolutionary game with payoff matrix A. Our pur-
pose is to demonstrate the severity of [H2] (compared to the Nash Property [H1]
that must also hold for an ESS), therefore we shall compare the expected number
of SNE in 〈A, AT 〉 with the expected number of ESS in the random evolutionary
game with payoff matrix A. Although the main result of [11] concerns arbitrary
(probably asymmetric) normal–random bimatrix games, if one adapts their cal-
culations for SNE in symmetric bimatrix games, then one can easily observe
that similar concentration results hold for this case as well. The key formula

of [11] is the following: ∀1 � r � n, Enash
n,r =

(
n
r

)2

· 22−2r · (R(r − 1, n − r))2,

where, R(a, b) =
∫ ∞
−∞ φg(x) ·

(
Φg

(
x√
a+1

))b

dx is the probability of e0 getting

a value greater than
√

a + 1 times the maximum value among e1, . . . , eb, where
2 In such a random game, strategy profiles in which the two player don’t have the

same support sizes, are not NE with probability asymptotically equal to one. This
is why we only focus on profiles in which both players have the same support size r.
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e0, e1, . . . , eb ∈R N (0, 1). For the case of a random symmetric bimatrix game
〈A, AT 〉, the proper shape of the formula for SNE in 〈A, AT 〉 is the following:

∀1 � r � n, Esym
n,r =

(
n
r

)

· 21−r · (R(r − 1, n − r)).

As for the asymptotic result that the support sizes r of NE are sharply con-
centrated around 0.316n, this is also valid for SNE in symmetric games. The only
difference is that as one increases n by one, the expected number of NE in the
symmetric game goes up, not by an asymptotic factor of exp(0.2816) ≈ 1.3252,
but rather by its square root exp(0.1408) ≈ 1.1512. So, we can state this exten-
sion of the McLennan-Berg result as follows: There exists a constant β ≈ 0.316,
such that for any ε > 0, it holds (as n → ∞) that

∑�(1+ε)βn�
r=�(1−ε)βn	 Esym

n,r �
εEsym

n . From this we can easily deduce that
∑�(1−ε)βn	−1

r=1 Esym
n,r � (1 − ε)Esym

n .
It is now rather simple to observe that for any 1 � Z � n, Eess

n ≡
∑n

r=1 Eess
n,r =

∑Z
r=1 Eess

n,r +
∑n

r=Z+1 Eess
n,r �

∑Z
r=1 Esym

n,r +
∑n

r=Z+1 Estable
n,r ,

since ess = stable ∧ sym. If we set Z = n0.8397+ζ for some ζ > 0,
then:

∑Z
r=1 Esym

n,r � n−0.1603+ζ

β Esym
n and

∑n
r=Z+1 Estable

n,r �
∑n

r=Z+1 Eess
n ·

P {∃ ESS with support � r} <
∑n

Z=r+1 Esym
n · P {∃ ESS with support � r} <

Esym
n ·exp

(
log n − 1.19ζ · n0.8397+ζ/2 · ln n + O

(
n0.8397+ζ/2

))
. Therefore, we con-

clude that Eess
n = O

(
n−0.16 · Esym

n

)
= o(Esym

n ).
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