
Lower Bounds for Hit-and-Run Direct Search

Jens Jägersküpper�

Universität Dortmund, Informatik 2, 44221 Dortmund, Germany
JJ@Ls2.cs.uni-dortmund.de

Abstract. “Hit-and-run is fast and fun” to generate a random point in
a high dimensional convex set K (Lovász/Vempala, MSR-TR-2003-05).
More precisely, the hit-and-run random walk mixes fast independently
of where it is started inside the convex set. To hit-and-run from a point
x ∈ Rn, a line L through x is randomly chosen (uniformly over all
directions). Subsequently, the walk’s next point is sampled from L ∩ K
using a membership oracle which tells us whether a point is in K or not.

Here the focus is on black-box optimization, however, where the
function f : Rn → R to be minimized is given as an oracle, namely a
black box for f -evaluations. We obtain in an obvious way a direct-search
method when we substitute the f -oracle for the K-membership oracle to
do a line search over L, and, naturally, we are interested in how fast such
a hit-and-run direct-search heuristic converges to the optimum point x∗

in the search space Rn.
We prove that, even under the assumption of perfect line search, the

search converges (at best) linearly at an expected rate larger (i. e. worse)
than 1−1/n. This implies a lower bound of 0.5 n on the expected number
of line searches necessary to halve the approximation error. Moreover,
we show that 0.4 n line searches suffice to halve the approximation error
only with an exponentially small probability of exp(−Ω(n1/3)). Since
each line search requires at least one query to the f -oracle, the lower
bounds obtained hold also for the number of f -evaluations.

1 Introduction

Finding an optimum of a given function f : S → R is one of the fundamental
problems—in theory as well as in practice. The search space S can be discrete
or continuous, like N or R. If S has more than one dimension, it may also be
a mixture. Here the optimization in “high-dimensional” Euclidean space is con-
sidered, i. e., the search space is Rn. What “high-dimensional” means is usually
anything but well defined. A particular 10-dimensional problem in practice may
already be considered “high-dimensional” by the one who tries to solve it. Here
the crucial aspect is how the optimization time scales with the dimensionality of
the search space Rn, i. e., we consider the optimization time as a function of n.
In other words, here we are interested in what happens when the dimensionality
� Supported by the German Research Foundation (DFG) through the collaborative

research center “Computational Intelligence” (SFB 531).

J. Hromkovič et al. (Eds.): SAGA 2007, LNCS 4665, pp. 118–129, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Lower Bounds for Hit-and-Run Direct Search 119

of the search space gets higher and higher. This viewpoint is typical for analyses
in computer science. In the domain of operations research and mathematical
programming, however, focusing on how the optimization time scales with the
search space’s dimension seems not that common. Usually, the performance of
an optimization method is described by means of convergence theory. As an ex-
ample, let us take a closer look at “Q-linear convergence” (we drop the “Q” in
the following): Let x∗ denote the optimum search point of a unimodal function
and x[k] the approximate solution after k optimization steps. Then we have

dist(x∗, x[k+1])
dist(x∗, x[k])

→ r ∈ R<1 as k → ∞

where dist(·, ·) denotes some distance measure, most commonly the Euclidean
distance between two points (when considering convergence towards x∗ in the
search space Rn, as we do here), or the absolute difference in function value
(when considering convergence towards the optimum function value in the ob-
jective space). Apparently, there seems to be no connection to n, the dimension
of the search space. Yet only if r is an absolute constant, there is actual indepen-
dence of n. In general, however, the convergence rate r depends on n. When we
are interested in, say, the number of steps necessary to halve the approximation
error (given by the distance from x∗), the order of this number with respect to n
precisely depends on how r depends on n. For instance, if r = 1 − 0.5/n, we
need Θ(n) steps; if r = 1 − 0.5/n2, we need Θ(n2) steps, and if r = 1 − 2−n, we
need 2Θ(n) steps. For any fixed dimension, however, in any of the three cases we
actually have linear convergence. Thus, the order of convergence tells us some-
thing about the “speed” of the optimization, but in general nothing about the
n-dependence of the number of steps necessary to ensure a certain approxima-
tion error (unless r is an absolute constant, i. e. independent of n). So, in case of
linear convergence, we want to know how the convergence rate depends on the
dimensionality of the search space.

Methods for solving optimization problems in continuous domains, essentially
S = Rn, are usually classified into first-order, second-order, and zeroth-order
methods, depending on whether they utilize the gradient (first derivative) of
the objective function, the gradient and the Hessian (second derivative), or
neither of both. A zeroth-order method is also called derivative-free or direct
search. Newton’s method is a classical second-order method; first-order meth-
ods can be (sub)classified into Quasi-Newton, conjugate gradient, and steepest
descent methods. Classical zeroth-order methods try to approximate the gradi-
ent and to then plug this estimate into a first-order method. Finally, amongst
the modern zeroth-order methods, randomized direct-search heuristics like simu-
lated annealing and evolutionary algorithms come into play, which are supposed
general-purpose search heuristics.

When information about the gradient is not available, for instance if f re-
lates to a property of some workpiece and is given by computer simulations or
even by real-world experiments, then zeroth-order methods are the only option
(unless simulations allow for algorithmic/automatic differentiation). As the ap-
proximation of the gradient usually involves at least n f -evaluations (forward

120 J. Jägersküpper

finite differences; 2n for symmetric finite differences), a single optimization step
of a classical zeroth order-method is computationally expensive, in particular if
f is given implicitly by complex simulations. In practical optimization, especially
in mechanical engineering, this is often the case, and particularly in this field
randomized search heuristics (especially evolutionary algorithms) are becom-
ing more and more popular. However, the enthusiasm in practical optimization
heuristics has led to an unclear variety of very sophisticated and problem-specific
algorithms. Unfortunately, from a theoretical point of view, the development of
such algorithms is solely driven by practical success, whereas the aspect of a
theoretical analysis is left aside.

In such situations f is given to the optimization algorithm as a black box
for f -evaluations (zeroth-order oracle) and the cost of the optimization (the
runtime) is defined as the number of queries to this oracle, and we are in the
so-called black-box optimization scenario. Nemirovsky Yudin (1983, p. 333) state
(w. r. t. optimization in continuous search spaces) in their book Problem Com-
plexity and Method Efficiency in Optimization: “From a practical point of view
this situation would seem to be more typical. At the same time it is objectively
more complicated and it has been studied in a far less extent than the one [with
first-order oracles/methods] considered earlier.” After more than two decades
there still seems to be some truth in their statement, though to a smaller extent.
For discrete black-box optimization, a complexity theory has been successfully
started, cf. Droste, Jansen, Wegener (2006). Lower bounds on the number of
f -evaluations (the black-box complexity) are proved with respect to classes of
functions when an arbitrary(!) optimization heuristic knows about the class F
of functions to which f belongs, but nothing about f itself. The benefits of such
results are obvious: They can prove that an allegedly poor performance of an
apparently simple black-box algorithm on f is due to F ’s inherent black-box
complexity rather than due to the algorithm’s simpleness.

As already discussed above, the situation for heuristic optimization in con-
tinuous search spaces is different, especially with respect to randomized (direct)
methods. The results to be presented here contribute to this emerging field of
optimization theory.

2 The Framework for the Randomized Methods

As already noted above, classical zeroth-order methods (i. e. black-box optimiz-
ers) for continuous search spaces usually try to approximate the gradient of the
function f to be minimized at the current search point x. Subsequently, a line
search along gradient direction is performed to find the next search point, which
replaces x. Usually, the line search aims at locating the best (with respect to
the f -value) point on the line through x, and various strategies for how to do
the line search exist (Armijo/Goldstein, Powell/Wolfe, etc.; cf. Nocedal Wright
(2006, Ch. 3) for instance). As the approximation of the gradient usually in-
volves at least n f -evaluations, and as the (approximate) gradient’s direction
may significantly differ from the direction pointing directly to the optimum x∗

Lower Bounds for Hit-and-Run Direct Search 121

anyway (cf. ill-conditioned quadratics), more and more direct-search heuris-
tics have been proposed which abandon gradient approximation. Among the
first and most prominent ones are the pattern search by Hooke Jeeves (1961) and
the (downhill) simplex method by Nelder Mead (1965);
cf. Kolda, Lewis, Torczon (2004) for a comprehensive review. Surprisingly, also
already in the 1960s randomized direct-search methods were proposed, one is
the so-called evolution strategy by Rechenberg (1965) and Schwefel (1965). For
some obscure reason, however, there has been resentment against randomized
algorithms in these early years. This started to change with the randomization
of quicksort and randomized testing for primality. At the latest by the time when
Dyer, Frieze, Kannan (1989) came up with a randomized approximation algo-
rithm for the computation of the volume of a convex body in high dimensional
space, the (potential) benefits of randomization have won recognition. Though
the polynomial expected runtime of this algorithm was not very practical, it
showed in principle the power of randomization since for any deterministic algo-
rithm there is a convex set for which the relative approximation error is nΩ(n)

after any polynomial number of steps. At the core of this algorithm was a ran-
dom walk on a (sufficiently fine) lattice. This algorithm was further improved,
in particular by substituting the so-called ball walk for the original lattice walk.
One step of this ball walk consists in uniformly choosing a point from the hyper-
ball of radius δ around the current point. If this point lies in the convex set, then
it becomes the next point of the walk. Obviously, one has to choose the parame-
ter δ appropriately. Moreover, when the ball walk is started very close (w. r. t. δ)
to the corner of a hypercube, just for instance, it may need an exponential num-
ber of steps to leave this corner, making a so-called warm start necessary (i. e. a
preprocessing). As recently shown by Lovász Vempala (2006), using the hit-and-
run walk instead of the ball walk avoids these two issues. Hit-and-run mixes fast
even when started close to the boundary of the convex set, and moreover, no
“step size” needs to be appropriately predefined. Also an optimization algorithm
based on random walks in convex sets has been proposed (Bertsimas Vempala,
2004).

As already noted in the abstract, to hit-and-run from a point x ∈ Rn within
a convex set K ⊂ Rn, a line L through x is randomly chosen (uniformly over
all directions). Subsequently, the walk’s next point is sampled from L ∩ K (as
uniformly as possible) using a membership oracle which tells us whether a sample
from L lies in K or not. As also already noted in the abstract, we obtain in
an obvious way a hit-and-run direct-search method for black-box optimization
of f : Rn → R when we substitute the f -oracle for the K-membership oracle.
Thus, the framework of the heuristics for black-box optimization we consider is
as follows: For a given initialization of x ∈ Rn the following loop is performed:

1. Randomly choose a line L through x (uniformly over all directions).
2. By some kind of a line search (using the f -oracle), find a point x′ ∈ L.
3. Set x := x′ and GOTO 1 (unless stopping is requested; then output x).

Naturally, we are interested in how fast such a heuristic converges to the optimum
point x∗ ∈ Rn (we assume that there is a unique global optimum), in particular:

122 J. Jägersküpper

How fast can it converge in principle? That is, we are interested in a general lower
bound which is universal for the class of hit-and-run direct-search heuristics.

Note that there are no assumptions on how the line search is performed. In
particular, for the line search in the ith iteration, the algorithm may use all the
information gathered from all the samples drawn during the preceding i − 1 line
searches. Naturally, in each step the choice of how to do the line search may
additionally depend on the actual direction of L. All in all, a large variety of
adaptive strategies for black-box optimization is covered by our framework.

3 The Lower Bounds

Since any reasonable strategy for the line search implies at least one query to
the f -oracle, in our scenario the number of f -evaluations is bounded below by
the number of line searches. Thus, we focus on the number of line searches in the
following and aim at a general lower bound. Therefore, we need an upper bound
on the gain of a single line search. We consider the best case: When we want the
heuristic to approach the unique optimum point x∗ as fast as possible, we may
optimistically assume that x′ was chosen from the line L such that the distance
between x′ and x∗ is minimum. Call this a perfect line search. The situation is
depicted in the figure below.

g

d

x∗
L∗

d′
�

x

x′′x′

L

α

α

H

It is well known that the distance between x∗ and x′ is minimum when x′ ∈
L ⊃ {x} is such that the line passing through x′ and x∗ is perpendicular to
the line L (given that x∗ /∈ L, which is the case with probability one, unlike
already x coincides with the optimum point x∗, because L’s direction is chosen
uniformly over all directions).

Let d := dist(x, x∗) denote the current approximation error in the search space
and let d′ := dist(x′, x∗). Furthermore, let L∗ denote the line through x and x∗.
Now consider the hyper-plane H which contains x and is perpendicular to L∗.
Let x′′ := argminy∈H dist(x′, y) denote the unique point in H with smallest
distance from x′. Then the angle α between L and L∗ equals the angle between
L and the line through x′ and x′′ (which is parallel to L∗ since it is perpendicular
to H just as L∗). Consequently, we have

d′ = d · sin α and dist(x′, H) = dist(x′, x) · cosα.

Lower Bounds for Hit-and-Run Direct Search 123

Let g := dist(x′, x′′) denote the distance of x′ from H , and � := dist(x′, x) so
that we have g/� = cosα. Since d′/d = sin α =

√
1 − (cos α)2, we obtain

d′

d
=

√
1 − (g/�)2, (1)

which ranges in [0, 1] since g ∈ [0, �]. Thus, instead of focusing on the distribution
of sin α when the line L is chosen uniformly over all directions, we can focus on
the ratio g/� and concentrate on the distribution of this relative distance of x′

from the hyper-plane H (namely, relative to the distance of x′ from x). (It will
shortly become clear why this makes sense.)

In two dimensions, like in the figure above, for any fixed d′ ∈ (0, d) there
are exactly two (different) lines through x with distance d′ from the optimum
point x∗. (Note that by fixing d′ we also fixed � and g.) In three or more
dimensions, however, there is an infinite number of such lines. In three di-
mensions they form a double cone with its apex at x, and all points of this
cone with a distance of exactly d′ from x∗ (namely all x′) form a circle. This
circle lies in a plane which is parallel to H (a plane in three dimensions).
In general, i. e. in n ≥ 3 dimensions, the potential points x′ form the set
S := {x′ ∈ Rn | dist(x′, x∗) = d′ and dist(x′, x) = �}, which is an (n−1)-sphere
since S is the intersection of two hyper-spheres, namely of the hyper-sphere
with radius d′ centered at x∗ and the hyper-sphere with radius � centered at x.
Moreover, S lies in the hyper-plane H ′ which is parallel to H such that it has
distance g from H and distance d − g from x∗. The situation is depicted below,
where the left sphere consists of all points with distance d′ from the optimum
point x∗, and the right sphere consists of all points with distance � from our
current approximate solution x.

H ′

xx∗

H

L∗

Recall that we fixed d′ ∈ (0, d) for the above discussion, and that this implies
fixed values for � and g = dist(H ′, H). Now consider a randomly chosen line
L through x (uniform over all directions). According to our construction, if L
penetrates the (n−1)-sphere S ⊂ H ′, then the perfect line search on L yields a
point with a distance of exactly d′ from x∗. Now, if L lies inside the double cone,
i. e., L penetrates the open (n−1)-ball whose missing boundary is S, then the
perfect line search yields a point with a distance smaller than d′ from x∗. If L

124 J. Jägersküpper

lies outside the double cone (except for passing through the apex x, of course),
then the perfect line search yields a point with a distance larger than d′ from x∗.
Thus, we are interested in the probability that L is chosen such that it lies inside
the cone, namely the probability that the perfect line search yields a point with
a distance of less than d′ from x∗.

Now, how can we actually pick a line through x such that its direction is
uniformly random? We pick uniformly at random a point y from/over the unit
hyper-sphere centered at x and choose L as the line through y and x. From this
point of view, the perfect line search yields a point with a distance of exactly d′

from x∗ if y’s distance from H is exactly g/�; a point with a distance smaller
than d′ from x∗ if y’s distance from H is larger than g/�; and a point with a
distance larger than d′ from x∗ if y’s distance from H is smaller than g/�.

In other words, we can consider the random variable R := d′/d as a func-
tion of the random variable G defined as y’s distance from the hyper-plane H ,
where the point y is chosen uniformly over the unit hyper-sphere centered
at x. Namely, we have R =

√
1 − G2, cf. Equation 1. (Note that the distri-

bution of y over Rn is spherically symmetric; more precisely, invariant w. r. t.
orthonormal transformations.) For n ≥ 4 the density function of G’s distri-
bution over [0, 1] is given by (1 − x2)(n−3)/2/Ψ (Jägersküpper, 2003), where
Ψ =

∫ 1
0 (1 − x2)(n−3)/2 dx (normalization) and the value of this integral is

Ψ =
√

π/4 · Γ (n/2 − 1/2)/Γ (n/2) =
√

π/n/2 + Θ(n−3/2), where “Γ ” denotes
the well-known gamma function. Consequently, y’s expected distance from H

equals
∫ 1
0 x · (1 − x2)(n−3)/2 dx

/
Ψ = (n − 1)−1/Ψ which turns out to be about

0.8/
√

n. This might appear bewildering (at first) since this implies that, as the
search space’s dimensionality increases, the expected distance from H tends
to zero—although y’s distance form x is fixed to one and H is hit with zero
probability. However, noting that H is an affine subspace with dimension n−1
(i. e. codimension 1), it may become more plausible that getting far away from
H becomes less and less probable as n increases. It might help even more to
recall that an n-hypercube with unit diameter (longest diagonal) has edges of
length 1/

√
n.

Naturally, E[G] does not tell us much about E[R] = E
[√

1 − G2
]
, the expec-

tation in which we are actually interested. We can easily compute it, though:

E[R] =
∫ 1

0

√
1 − x2 · (1 − x2)(n−3)/2/Ψ dx =

∫ 1

0
(1 − x2)n/2−1 dx

/
Ψ.

Since
∫ 1
0 (1 − x2)n/2−1 dx =

√
π/4 · Γ (n/2)/Γ (n/2 + 1/2), we obtain

E[R] =

√
π/4 · Γ (n/2)/Γ (n/2 + 1/2)

√
π/4 · Γ (n/2 − 1/2)/Γ (n/2)

=
Γ (n/2) · Γ (n/2)

Γ (n/2 − 1/2) · Γ (n/2 + 1/2)
. (2)

Using Γ (n/2 + 1/2) = Γ (n/2 − 1/2) · (n/2 − 1/2), we have

E[R] =
n − 1

2
·
(

Γ (n/2)
Γ (n/2 + 1/2)

)2

,

Lower Bounds for Hit-and-Run Direct Search 125

and since Γ (n/2 + 1/2)/Γ (n/2) <
√

n/2, we obtain the following lower bound
on the expected factor by which the approximation error is reduced in each step:

E[R] >
n − 1

2
· 2
n

= 1 − 1
n

.

This lower bound holds for perfect line search and, as a direct consequence, also
for any other line-search strategy. With other words, this bound is universal for
the class of hit-and-run direct-search methods.

To see how good this general lower bound on E[R] actually is, an upper bound
on E[R] under the assumption of perfect line search would be nice. Using that
Γ (n) = (n − 1)!, Γ (n/2) = (n − 2)!! ·

√
π/2(n−1)/2, and Γ (k + 1/2) = (2k − 1)!! ·√

π/2k (where k!! is defined as 2 · 4 · 6 · · ·k for even k, and as 1 · 3 · 5 · · ·k for odd
k), the right-hand side of Equation 2 can be estimated as follows:

E[R] <
2n − 1

2n
= 1 − 1

2n
.

In other words, for perfect line search, the expected factor by which the approx-
imation error is reduced (in each step) is smaller (i. e. better) than 1 − 0.5/n.
This shows that our general lower bound of 1 − 1/n on E[R] is actually pretty
tight. All in all, we have proved the following result:

Theorem 1. Consider the optimization of a function f : Rn → R with a unique
optimum point x∗. Then we have for n ≥ 4:

The (hypothetical) hit-and-run direct-search method which performs a perfect
line search in each step converges linearly towards x∗ at an expected rate of
1 − β/n, where 0.5 < β < 1 (and β depends on n according to Equation 2).

Independently of how a hit-and-run direct-search method performs the line
searches, the expected factor by which the approximation error (i. e. the distance
from x∗) is reduced is larger than 1 − 1/n in each step. That is, if (at all) a
hit-and-run direct-search method converges towards x∗, then at best linearly at
an expected rate larger (i. e. worse) than 1 − 1/n.

The result on the expected factor by which the approximation error is reduced
directly implies a bound on the expected spatial gain towards the optimum
point x∗. Therefore, let d[i] denote the approximation error (i. e. the distance
from x∗) after the ith step, and let d[0] denote the initial approximation error.
For a fixed d[i−1], let Δ[i] := d[i] − d[i−1] be defined as the random variable
corresponding to the spatial gain towards x∗ in the ith step. Then the above
theorem says that in general, i. e. for any hit-and-run direct-search method,
E
[
Δ[i]

]
< d[i−i]/n in each step i. Moreover, for perfect line search, in each step

E
[
Δ[i]

]
= β(n) · d[i−1]/n for some function β : N → (0.5, 1).

Let us stick with perfect line search in the following. Then the approximation
error is non-increasing, i. e., d[0] ≥ d[1] ≥ d[2] . . . (actually, d[i+1] < d[i] with
probability one, since the randomly chosen line lies in H with zero probability).
Thus, in each step Δ[i] < d[i−1]/n ≤ d[0]/n, and consequently, the number
of steps necessary for an expected total gain of at least d[0]/2 is larger than

126 J. Jägersküpper

(d[0]/2)/(d[0]/n) = n/2 (actually, n ln 2). However, in general, maximizing the
expected total gain of a fixed number of steps need not necessarily result in
minimizing the expected number of steps to realize a specified gain. Nevertheless,
n/2 will turn out to be a lower bound on the expected number of steps which
are necessary to halve the approximation error. The proof is a straight-forward
application of the following lemma, which is a modification of Wald’s equation.

Lemma 2. Let X1, X2, . . . denote random variables with bounded range and S
the random variable defined by S = min{ t | X1 + · · · + Xt ≥ g} for a given
g > 0. Given that S is a stopping time (i. e., the event {S = t} depends only on
X1, . . . , Xt), if E[S] < ∞ and E[Xi | S ≥ i] ≤ u �= 0 for all Xi, then E[S] ≥ g/u.

(A proof can be found, e. g., in Jägersküpper, 2007.) We let Xi denote Δ[i]

and choose g := d[0]/2. As we have just seen, 0 ≤ Δ[i] ≤ d[0], and since in
our scenario “S ≥ i ” merely means that the approximation error has not been
halved in the first i−1 steps, actually E

[
Δ[i] | S ≥ i

]
< d[0]/n =: u. Finally, we

note that S is in fact a stopping time so that g/u = n/2 is indeed a lower bound
on the expected number of steps to halve the approximation error (unless E[S]
was infinite, in which case we would not need to prove a lower bound anyway).
Due to the linearity of expectation, the expected number of steps to halve the
approximation error b ∈ N times is lower bounded by (n/2)+ (b − 1) · (n/2− 1),
where the rightmost “−1” emerges because the last step within a halving-phase
is also (and must be counted as) the first step of the following halving-phase.
Thus, we have just proved the following result.

Theorem 3. Let a hit-and-run direct-search method optimize a function in Rn,
n ≥ 4, with a unique optimum. Let b : N → N. For perfect line search, the
expected number of steps until the approximation error in the search space is less
than a 2−b(n)-fraction of the initial one is lower bounded by b(n) · n/2 − b(n) + 1.

Now that we know that at least n/2 steps are necessary in expectation to halve
the approximation error, we would like to know whether there is a good chance
of getting by with considerably fewer steps. In fact, we want to show that there
is almost no chance of getting by with a little fewer steps. Actually, we are
going to prove that 0.4 n steps suffice to halve the approximation error only
with an exponentially small probability. Therefore recall the following notions
and notations, where X and Y denote random variables:

– X stochastically dominates Y , in short “X � Y,” if (and only if) ∀a ∈ R:
P{X ≤ a} ≤ P{Y ≤ a}. Obviously, “�” is a transitive relation.

– If X � Y as well as Y � X , i. e., ∀a ∈ R : P{X ≤ a} = P{Y ≤ a}, then X
and Y are equidistributed and we write “X ∼ Y .”

Theorem 4. Let a hit-and-run direct-search method optimize a function in Rn

with a unique optimum. Let b : N → N such that b(n) = poly(n). For perfect line
search, with a very high probability of 1 − exp(−Ω(n1/3)) more than b(n) · 0.4 n
steps are necessary until the approximation error is less than a 2−b(n)-fraction
of the initial approximation error.

Lower Bounds for Hit-and-Run Direct Search 127

Proof. Assume that x[0] �= x∗. Because in each step perfect line search is per-
formed, Δ[i]/d[i−1] ∼ Δ[j]/d[j−1] for i, j ∈ N (scale invariance) . Since moreover
d[0] ≥ d[1] ≥ d[2] . . . , we have Δ[1] � Δ[2] � . . . for the single-step gains. Let
X1, X2, X3, . . . denote independent instances of the random variable Δ[1]. Then
∀i ∈ N : Xi � Δ[i], and hence

∑k
i=1 Δ[i] ≺ Sk :=

∑k
i=1 Xi. In less formal words:

Adding up k independent instances of the random variable which corresponds
the spatial gain in the first step results in a random variable (namely Sk) which
stochastically dominates the random variable given by the total gain of the first
k steps. The advantage of considering Sk instead of the “true” total gain of these
steps is the following: Sk is the sum of independent random variables so that we
can apply Hoeffding’s bound. Namely, Hoeffding (1963, Theorem 2) tells us:

Let X1, . . . , Xk denote independent random variables with bounded ranges so
that ai ≤ Xi ≤ bi with ai < bi for i ∈ {1, . . . , k}. Let S := X1 + · · · + Xk.
Then P{S ≥ E[S] + x} ≤ exp(−2x2/

∑k
i=1(bi − ai)2) for any x > 0.

If the support of each random variable Xi is contained in [a, b] ⊂ R, Hoeffding’s
bound becomes exp(−2 · (x/(b − a))2/k). So, let k := 0.4n and S := Sk. Then
E[S] = 0.4n · E

[
Δ[1]

]
≤ 0.4d[0], and for the application of Hoeffding’s bound we

choose x := 0.1d[0], which yields an upper bound of exp(−0.05(d[0]/(b − a))2/n)
on the probability that the approximation error is halved in 0.4n steps. We can
choose a := 0 so that we obtain P

{
X1 + · · · + Xk ≥ d[0]/2 | X1, . . . , Xk ≤ b

}
≤

exp(−0.05(d[0]/b)2/n), where b is an upper bound on the gain towards the op-
timum point x∗ in a step. Unfortunately, when substituting the trivial upper
bound of d[0] for b, the upper bound on the probability becomes exp(−0.05/n),
which tends to one as n grows. For b := d[0]/n2/3, however, we obtain (recall
that k was chosen as 0.4n)

P
{
X1 + · · · + Xk ≥ d[0]/2 | X1, . . . , Xk ≤ d[0]/n2/3

}
≤ e−0.05 n1/3

.

Thus, if we can show that P
{
Xi > d[0]/n2/3

}
= e−Ω(n1/3) in each of the 0.4n

steps, we obtain (by an application of the union bound)

P
{
X1 + · · · + Xk ≥ d[0]/2

}
≤ e−0.05 n1/3

+ 0.4n · e−Ω(n1/3) = e−Ω(n1/3).

Finally, by another application of the union bound, we obtain the theorem be-
cause b(n) = poly(n) implies b(n) · e−Ω(n1/3) = e−Ω(n1/3).

In other words, it remains to be shown that P
{
Δ[0] > d[0]/n2/3

}
is actu-

ally bounded above by e−Ω(n1/3). Therefore, recall Equation 1. It tells us that
d − d′ = d · (1 −

√
1 − (g/�)2). As a consequence, P

{
Δ > d/n2/3

}
is equal to

P
{
1 −

√
1 − G2 > 1/n2/3

}
. Solving the inequality 1 −

√
1 − G2 > 1/n2/3 for

G yields G >
√

2/n2/3 + 1/n4/3 so that that Δ > d/n2/3 actually implies
G >

√
2/n1/3. Since G’s density is a non-increasing function in [0, 1],

P
{
G >

√
2/n1/3

}
=

∫ 1

√
2/n1/3

(1 − x2)(n−3)/2 dx <

(
1 − 2

n2/3

)(n−3)/2

.

128 J. Jägersküpper

Since (1−t/k)k < e−t for 0 < t < k > 1, we have (1 − 2/n2/3)n2/3
< e−2, so that

P
{
Δ > d/n2/3

}
< P

{
G >

√
2/n1/3

}
< e−2·((n−3)/2)/n2/3

= e−n1/3+3/n2/3
. ��

4 Discussion and Conclusion

Even though it is clear from intuition that the lower bounds presented in the two
preceding theorems do not only hold for perfect line search but for any line-search
strategy, they are formally proved only for perfect line search. Interestingly,
we can easily show that our theorems do hold independently of how the line
searching is actually done: By induction over the number of steps i we show that
the random variable which corresponds to the approximation error after i steps
for a given line-search strategy stochastically dominates the random variable d[i]

for perfect line search, which we considered in the proofs.
So, hit-and-run direct-search methods converge (at best and if at all) linearly

with an expected rate larger/worse than 1 − 1/n. In simple words, the reason for
this is that in high dimensions the randomly chosen direction is with a high prob-
ability “almost perpendicular” to the direction pointing directly towards the op-
timum point x∗. For the further discussion, consider the simple toy problem of
minimizing a quadratic form x �→ x�Qx, where the matrix Q ∈ Rn×n is posi-
tive definite. For this simple scenario, steepest descent converges at least linearly
at a rate which is independent of the dimension n but which gets worse when the
condition number of Q increases—when assuming a worst-case starting point (cf.
Nocedal Wright (2006, Sec. 3.3) for instance). In the best case, however, steepest
descent needs a single (perfect) line search to determine the optimum. Thus, for
ill-conditioned quadratics, the performance of steepest decent heavily depends on
the starting point. This is one reason why usually preconditioning is applied. Hy-
pothetically assume for a moment the extreme of perfect preconditioning, so that
x�Ix = |x|2 is to be minimized. Interestingly, the original evolution strategy
from 1965 by Rechenberg/Schwefel mentioned in the introduction, a very simple
randomized method which belongs to the class of hit-and-run direct-search meth-
ods (a line search consists in sampling a single point), actually gets by with O(n)
f -evaluations with very high probability to halve the approximation error in this
scenario (Jägersküpper, 2003). This shows that the very general lower bound ob-
tained here can be met at least up to a constant factor. However, in this ideal
scenario steepest descent needs a single (perfect) line search to find the optimum
independently of the starting point. Now, as we consider black-box optimization,
steepest descent must approximate the gradient. Even though the approximation
of the gradient may cost 2n f -evaluations, a single line search in this approximate
direction may yield a significantly larger gain towards the optimum—whereas a
hit-and-run method needs at least 0.5n f -evaluations to halve the approximation
error in any case (in expectation; 0.4n with very high probability). Thus, with a
passable preconditioning, the approximation of the gradient should pay off—even
though it costs a linear (in n) number of f -evaluations per step—so that it will
likely be superior to hit-and-run into a random direction.

Lower Bounds for Hit-and-Run Direct Search 129

As just discussed, for smooth functions we cannot expect hit-and-run direct
search to compete with methods which learn (and then utilize) second-order in-
formation like the well-known BFGS method or (nonlinear) conjugate gradient
methods. Clearly, hit-and-run can make sense in real-world optimization—when
classical/established (nonlinear) methods have turned out to fail. For instance,
when the function to be optimized is non-smooth, or disturbed by noise, or highly
multimodal such that gradient approximation is deceptive. Then, however, as we
have proved here, we should not expect such hit-and-run direct search to be fast.

References

Bertsimas, D., Vempala, S.: Solving convex programs by random walks. Journal of the
ACM 51(4), 540–556 (2004)

Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search
heuristics in black-box optimization. Theory of Computing Systems 39(4), 525–544
(2006)

Dyer, M.E., Frieze, A.M., Kannan, R.: A random polynomial time algorithm for ap-
proximating the volume of convex bodies. In: Proceedings of the 21st Annual ACM
Symposium on Theory of Computing (STOC), pp. 375–381. ACM Press, New York
(1989)

Fogel, D.B. (ed.): Evolutionary Computation: The Fossil Record. Wiley-IEEE Press,
Chichester (1998)

Hoeffding, W.: Probability inequalities for sums of bounded random variables. American
Statistical Association Journal 58(301), 13–30 (1963)

Hooke, R., Jeeves, T.A.: "Direct search” solution of numerical and statistical problems.
Journal of the ACM 8(2), 212–229 (1961)

Jägersküpper, J.: Analysis of a simple evolutionary algorithm for minimization in Eu-
clidean spaces. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, Springer, Heidelberg (2003)

Jägersküpper, J.: Algorithmic analysis of a basic evolutionary algorithm for continuous
optimization. Theoretical Computer Science 379(3), 329–347 (2007)

Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: New perspectives
on some classical and modern methods. SIAM Review 45(3), 385–482 (2004)

Lovász, L., Vempala, S.: Hit-and-run from a corner. SIAM Journal on Computing 35(4),
985–1005 (2006)

Nelder, J.A., Mead, R.: A simplex method for function minimization. The Computer
Journal 7, 308–313 (1965)

Nemirovsky, A.S., Yudin, D.B.: Problem Complexity and Method Efficiency in Opti-
mization. Wiley, Chichester (1983)

Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer, Heidelberg (2006)
Rechenberg, I.: Cybernetic solution path of an experimental problem. Royal Aircraft

Establishment. In: Fogel (ed.) (1965)
Schwefel, H.-P: Kybernetische Evolution als Strategie der experimentellen Forschung in

der Strömungstechnik. Diploma thesis, Technische Universität Berlin (1965)

	Lower Bounds for Hit-and-Run Direct Search
	Introduction
	The Framework for the Randomized Methods
	The Lower Bounds
	Discussion and Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

