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Preface

The 4th Symposium on Stochastic Algorithms, Foundations and Applications
(SAGA 2007) took place on September 13–14, 2007, in Zürich (Switzerland).
It offered the opportunity to present original research on the design and anal-
ysis of randomized algorithms, complexity theory of randomized computations,
random combinatorial structures, implementation, experimental evaluation and
real-world application of stochastic algorithms. In particular, the focus of the
SAGA symposia series is on investigating the power of randomization in algo-
rithmics, and on the theory of stochastic processes especially within realistic
scenarios and applications. Thus, the scope of the symposium ranges from the
study of theoretical fundamentals of randomized computation to experimental
algorithmics related to stochastic approaches.

Previous SAGA symposia took place in Berlin (2001), Hatfield (2003), and
Moscow (2005). This year 31 submissions were received, and the program com-
mittee selected 9 submissions for presentation. All papers were evaluated by
at least four members of the program committee, partly with the assistance of
subreferees. We thank the members of the program committee as well as all
subreferees for their thorough and careful work. A special thanks goes to Harry
Buhrman, Martin Dietzfelbinger, Rūsiņš Freivalds, Paul G. Spirakis, and Ar-
avind Srinivasan, who accepted our invitation to give invited talks at SAGA
2007 and so to share their insights on new developments in research areas of key
interest.

September 2007 Juraj Hromkovič
Richard Královič
Marc Nunkesser
Peter Widmayer
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Harry Buhrman
Colin Cooper
Josep Diaz
Martin Dietzfelbinger
Oktay M. Kasim-Zade
C. Pandu Rangan
Vijaya Ramachandran
Jose Rolim
Vishal Sanwalani
Martin Sauerhoff
Christian Scheideler
Georg Schnitger
Jiri Sgall
Angelika Steger
Kathleen Steinhöfel
Berthold Vöcking
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On Computation and Communication with

Small Bias

Harry Buhrman

Centrum voor Wiskunde en Informatica (CWI) & University of Amsterdam
The Netherlands

Abstract. Many models in theoretical computer science allow for com-
putations or representations where the answer is only slightly biased in
the right direction. The best-known of these is the complexity class PP,
for “probabilistic polynomial time”. A language is in PP if there is a ran-
domized polynomial-time Turing machine whose acceptance probability
is greater than 1/2 if, and only if, its input is in the language.

Most computational complexity classes have an analogous class in
communication complexity. The class PP in fact has two, a version with
weakly restricted bias called PPcc, and a version with unrestricted bias
called UPPcc. Ever since their introduction by Babai, Frankl, and Simon
in 1986, it has been open whether these classes are the same. We show
that PPcc is strictly included in UPPcc. Our proof combines a query com-
plexity separation due to Beigel with a technique of Razborov that trans-
lates the acceptance probability of quantum protocols to polynomials. We
will discuss some complexity theoretical consequences of this separation.
This presentation is bases on joined work with Nikolay Vereshchagin and
Ronald de Wolf.

J. Hromkovič et al. (Eds.): SAGA 2007, LNCS 4665, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Design Strategies for

Minimal Perfect Hash Functions

Martin Dietzfelbinger

Technische Universität Ilmenau, 98684 Ilmenau, Germany
martin.dietzfelbinger@tu-ilmenau.de

Abstract. A minimal perfect hash function h for a set S ⊆ U of size n
is a function h: U → {0, . . . , n−1} that is one-to-one on S. The complex-
ity measures of interest are storage space for h, evaluation time (which
should be constant), and construction time. The talk gives an overview
of several recent randomized constructions of minimal perfect hash func-
tions, leading to space-efficient solutions that are fast in practice. A
central issue is a method (“split-and-share”) that makes it possible to
assume that fully random (hash) functions are available.

1 Introduction

In this survey paper we discuss algorithmic techniques that are useful for the
construction of minimal perfect hash functions. We focus on techniques for man-
aging randomness.

We assume a set U = {0, 1}w (the “universe”) of “keys” x is given. Assume
that S ⊆ U is a (given) set with cardinality n = |S|, and that m ≥ n. A function
h: U → [m] that is one-to-one on S is called a perfect hash function (for S). If in
addition n = m (the smallest possible value), h is called a minimal perfect hash
function (MPHF).1

The MPHF problem for a given S ⊆ U is to construct a data structure Dh

that allows us to evaluate h(x) for given x ∈ U , where h is a MPHF for S. The
parameters of interest are the storage space for Dh and the evaluation time of
h, which should be constant. Clearly, such a data structure Dh can be used to
devise a (static) dictionary that for each key x ∈ S stores x and some data item
dx in an array of size n, with constant retrieval time.

In the past decades, the MPHF problem has been studied thoroughly. For a
detailed survey of the developments up to 1997 see the comprehensive study [9].
To put the results into perspective, one should notice the fundamental space
lower bound of n log e + log w − O(log n) bits2, valid as soon as w ≥ (2 +
ε) log n, proved by Fredman and Komlós [18]. This bound is essentially tight:
Mehlhorn [23, Sect. III.2.3, Thm. 8] gave a construction of a MPHF that takes
n log e + logw + O(log n) bits of space (but has a vast evaluation time). In order
not to have to worry about the influence of the size 2w of U too much, unless
1 [m] denotes the set {0, . . . , m − 1}.
2 All logarithms in this paper are to the base 2. Note that log e ≈ 1.443 . . .

J. Hromkovič et al. (Eds.): SAGA 2007, LNCS 4665, pp. 2–17, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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noted otherwise, we will assume in the following that n > w ≥ (2 + ε) log n, and
subsume the term log w in the space bounds in terms O(log n) and larger.

1.1 Space-Optimal, Time-Efficient Constructions

The (information-)theoretical background settled, the question is how close to
the bound n log e+log w one can get if one insists on constant evaluation time. In
the seminal paper [19] Fredman, Komlós, and Szemerédi constructed a dictionary
with constant lookup time, which can be used to obtain a MPHF data structure
with constant evaluation time and space O(n log n) bits. Based on [19], Schmidt
and Siegel [28] gave a construction for MPHF with constant evaluation time
and space O(n) bits (optimal up to a constant factor). Finally, Hagerup and
Tholey [20] described a method that in expected linear time constructs a data
structure Dh with n + log w + o(n + log w) bits, for evaluating a MPHF h in
constant time. This is space-optimal up to an additive term. It seems hard,
though, to turn the last two constructions into data structures that are space
efficient and practically time efficient at the same time for realistic values of n.

1.2 Practical Solutions

In a different line of development, methods for constructing MPHF were studied
that emphasized the evaluation time and simple construction methods over opti-
mality of space. Two different lines (a “graph/hypergraph-based approach” and
a method called “hash-and-displace”) in principle led to constructions of very
simple structures that offered constant evaluation time and a space requirement
that was dominated by a table of Θ(n) elements of [n] = {0, . . . , n− 1}, which
means Θ(n log n) bits. Very recently, refinements of these methods were proposed
that lead to a space requirement of O(n log log n) bits (and constant evaluation
time) [11,32]. Only in 2007, Botelho, Pagh, and Ziviani [5] managed to devise
a construction for a MPHF that is simple and time-efficient, and gets by with
O(n) bits of storage space, with a constant factor that is only a small factor
away from the information theory minimum log e ≈ 1.44. Crucial steps in this
development will be described in some detail in the rest of this paper.

1.3 Randomness Assumptions

Given a universe U of keys, a hash function is just any function h: U → [m].
Most constructions of MPHF involve several hash functions, which must behave
randomly in some way or the other. There are two essentially different ways to
approach the issue of the hash functions:

The “full randomness” assumption: One assumes that a sequence h0, h1, . . . of
hash functions is available, so that evaluating hi(x) takes constant time, no
storage space is needed for these functions, and such that hi(x), x ∈ S, i ≥ 0,
are fully random values (uniform in [m], independent). The analysis of several
MPHF algorithms is based on this assumption (e. g., [8,22,7,4]).
Randomization: “Universal hashing” was introduced by Carter and Wegman [6]
in 1979. One uses a whole set (“class”) H of hash functions and chooses one such
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function from H at random whenever necessary. Normally, some parameters of
a function with a fixed structure are chosen at random. Storing the function
means storing the parameters; the analysis is carried out on the basis of the
probability space induced by the random choice of the function. Some classical
MPFH algorithm use this approach (e. g., [28,25,20]).

Below, we will explain in detail how in the context of the MPHF problem
one may quite easily work around the randomness issue by using very simple
universal hash classes. To be concrete, we describe two such classes here. We
identify U = {0, 1}w with [2w].

Definition 1. A set H of functions from U to [m] is called 1-universal if for
each pair of different x, y ∈ U and for h chosen at random from H we have

Pr(h(x) = h(y)) ≤ 1
m

.

There are many constructions of 1-universal classes. One is particularly simple
(see [6]): Assume p is a prime number larger than 2w, and m ≤ 2w. For a, b ∈ [p]
define ha,b(x) = ((ax+ b) mod p) mod m, and let Hm = {ha,b | a ∈ [p]−{0}, b ∈
[p]}. Choosing/storing a hash function from Hm amounts to choosing/storing
the coefficients a and b (not much more than 2w bits).

Definition 2. Let k ≥ 2. A set H of functions from U to [m] is called k-wise
independent if for each sequence (x1, . . . , xk) of different elements of U and for
h chosen at random from H we have that the values h(x1), . . . , h(xk) are fully
random in [m]k and each value h(x) is [approximately] uniformly distributed in
[m].

The simplest way of obtaining a k-wise independent class is by using polynomials.
Let p > 2w be a prime number as before, and let m1+ε ≤ 2w for some ε > 0.
The set Hk

m of all functions of the form

h(x) = ((ak−1x
k−1 + · · ·+ a1x + a0) mod p) mod m, ak−1, . . . , a0 ∈ [p]

(polynomials over the field Zp of degree smaller than k, projected into [m]), is
k-wise independent. Choosing/storing a hash function amounts from this class
amounts to choosing/storing the coefficients (ak−1, . . . , a0). For details see, e. g.,
[15,12]. The evaluation time is Θ(k). For more sophisticated hash function con-
structions see e. g. [29,14,30].

2 Split-and-Share for MPHFs

Let S ⊆ U be fixed, n = |S|. For a hash function h: S → [m] and i ∈ [m] let
Si = {x ∈ S | h(x) = i}, and let ni = |Si|. It is a common idea, used many
times before in the context of perfect hashing constructions (e. g. in [19,20,10]),
to construct separate and disjoint data structures for the “chunks” Si.

The new twist is to “share randomness” among the chunks Si, as follows.
(The approach was sketched, for different applications, in [17,16].) In the static



Design Strategies for Minimal Perfect Hash Functions 5

setting, with S given, this works as follows: Choose h, and calculate the sets
Si = {x ∈ S | h(x) = i} and their sizes ni, repeating if necessary until the
sizes are suitable. Then devise one data structure that for each i provides one or
several hash functions that behave fully randomly on Si. Each Si may own some
component of this data structure but one essential part (usually a big table of
random words) is used (“shared”) by all Si’s.

We describe the approach in more detail. First, we “split”, and make sure that
none of the chunks is too large. The proof of the following lemma is standard.

Lemma 1. If m ≥ 2n2/3 and h: U → [m] is chosen at random from a 4-
universal class H = H4

m, then Pr(max{|Si| | 0 ≤ i < m} >
√

n) ≤ 1
4 .

Proof. The probability that |Si| >
√

n is bounded by

Pr
((|Si|

4

)
≥
(√

n

4

))
≤

E(
(|Si|

4

)
)(√

n
4

) ≤
(
n
4

)
/(2n2/3)4(√

n
4

) <
1

8n2/3
,

for n large enough; hence Pr(∃i: |Si| ≥
√

n) ≤ 2n2/3/(8n2/3) = 1
4 .

Given S, we fix m = 2n2/3 and repeatedly choose h from H4
m until an h with

max{|Si| | 0 ≤ i < m} ≤
√

n is found. We fix this function h and call it h0 from
here on; thus also the Si and the ni are fixed. With ai =

∑
0≤j<i ni we can allocate

indices in the interval [ai, ai+1 − 1] as possible hash values for keys in Si.
Once we have found MPHFs hi, one for each Si, we may let

h(x) = ai + hi(x) for i = h0(x), (1)

thus obtaining an MPHF for all of S. Below, we will describe several methods for
building such a MPHF hi. For this, it is most convenient to have at our disposal
one or several hash functions that behave fully randomly (on each Si separately).
To make this concrete, let K > 1 be some constant, and let L = K log n. We
will argue that when considering Si we may assume that we have a source of
L fully random hash functions h1, . . . , hL from U to {0, 1}k for some k we may
choose, which can be evalutated in (small) constant time. The data structure
that provides the random elements used in these functions will be shared among
the different hi.

Let Hr denote an arbitrary 1-universal class of functions from U to [r].

Lemma 2. Let r = 2n3/4. For an arbitrary given S′ ⊆ U with n′ = |S′| ≤ √n
we may in expected time O(|S′|) find two hash functions h0, h1 from Hr such
that for any two tables T0[0..r − 1] and T1[0..r − 1], each containing r random
elements from {0, 1}k, we have that h′(x) = T0[h0(x)] ⊕ T1[h1(x)] defines a
function h′ : U → {0, 1}k that is fully random on S′. (⊕ denotes bitwise XOR.)

Proof. Assume h0, h1 are chosen at random from Hr. We call a pair h0, h1 good
if for each x ∈ S′ there is some i ∈ {0, 1} such that hi(x) �= hi(y) for all
y ∈ S′−{x}. For each x ∈ S′, the probability that ∃y0 ∈ S′−{x}: h0(x) = h0(y0)
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and ∃y1 ∈ S′ − {x}: h1(x) = h1(y1) is smaller than (
√

n/r)2 ≤ 1/(4
√

n). This
implies that the probability that (h0, h1) is not good is bounded by 1

4 . We keep
choosing h1, h2 from Hr until a good pair is found — the expected number
of trials is smaller than 4

3 . Checking one pair h1, h2 takes time O(|S′|) when
utilizing an auxiliary array of size r. Once a good pair h1, h2 has been fixed, for
a key x ∈ S′ either table position T0[h0(x)] or table position T1[h1(x)] appears
in the calculation of h(x) but of no other key y ∈ S′. Since this entry is fully
random, and because {0, 1}k with ⊕ is a group, h(x) is random and independent
of the other hash values h(y), y ∈ S′ − {x}.

From here, we proceed as follows: For each i, 0 ≤ i < m, we choose hash functions
hi

0, h
i
1 that are as required in Lemma 2 for S′ = Si. The descriptions of these

2m hash functions as well as the sizes ni and the offsets ai can be stored in (an
array that takes) space O(m) = O(n3/4) (words of length O(w)).

Now we describe the “shared” part of the data structure: Recall that L =
K log n. For each j ∈ [L] we initialize arrays Tj,0[0..r− 1] and Tj,1[0..r− 1] with
random words from {0, 1}k. We let

hi
j(x) = Tj,0[hi

0(x)] ⊕ Tj,1[hi
1(x)], for x ∈ U , 0 ≤ j < L, 0 ≤ i < m.

Since hi
0, h

i
1 satisfy the condition in Lemma 2, for each fixed i we have that the

values hi,j(x), x ∈ Si, j ∈ [L], are fully random. The overall data structure takes
up space 2n3/4 ·L words from {0, 1}k plus O(n2/3) words of size log |U |, for the
description of the hi

0, h
i
1. We will see below that with high probability these hash

functions will be sufficient for constructing a MPHF hi for Si, for all i ∈ [m]. If
that construction is not successful, we start all over, with new random entries
in the arrays Tj,0 and Tj,1 .

From here on we assume that we have a fixed set S′ of size n′ ≤ √n and a
supply of L = K log n fully random hash functions h0, . . . , hL−1 with constant
evaluation time and range {0, 1}k (identified with [2k]).
Goal: Build a MPHF for S′ that has constant evaluation time and requires little
storage space (beyond the functions h0, . . . , hL−1). In the rest of the paper we
discuss various strategies for achieving this.

3 Hash-and-Displace Approach

In this section, we discuss an approach to obtaining a MPHF by splitting S′

into buckets, hashing the buckets into the common range [n′] and adjusting by
offsets.

3.1 Pure Hash-and-Displace

Pagh [25] introduced the following approach for constructing a minimal perfect
hash function for a set S′: Choose hash functions f : U → [n′] and g: U → [m′].
The set [m′]× [n′] may be thought of as an array A with entry at (i, j) equal to 1
if (f(x), g(x)) = 1 for some x ∈ S, and 0 otherwise. Let Bi = {x ∈ S′ | g(x) = i},
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0 ≤ i < m′. We would like to see that f when restricted on Bi distributes the
keys one-to-one into (the ith copy of) [n′]. Technically, we check whether (f, g)
is one-to-one on S′ and whether

∑

0≤i<m′

|Bi|≥2

|Bi|2 < (1− δ)n′. (2)

for some constant δ > 0. Inequality (2) implies the “harmonic decay property”
which is at the heart of the analysis of Pagh’s algorithm:

s ·
∑

0≤i<m′

|Bi|≥s

|Bi| < (1− δ)n′, for all s ≥ 2. (3)

If (2) is not satisfied, choose new (f, g) until (2) is satisfied. Pagh showed that
once (2) is guaranteed a simple randomized scheme RFD (“random fit decreas-
ing”) in expected time O(n′) finds “displacements” di ∈ [n′], 0 ≤ i < m′, such
that the function

h(x) = (f(x) + dg(x)) mod n′ (4)

is (minimal) perfect for S′. Here, RFD works as follows: Sort the “rows” Bi

by falling “weight” |Bi|. In this order, treat rows with |Bi| ≥ 2 as follows:
Repeat choosing di at random from [n′] until {(f(x) + di) mod n′ | x ∈ Bi}
is disjoint from {(f(x) + dg(x)) mod n′ | x ∈ Bi′ , Bi′ already placed}. Rows Bi

with |Bi| = 1 are placed in one final deterministic round.
The question is how small m′ may be chosen so that functions f and g as

required can be found. Pagh based his construction on simple 1-universal classes
and showed that to get by with f and g from such classes it is sufficient to
have m′ > (2 + ε)n′. Looking at (3) it is easy to see [13] that in place of (2)
the following conditions are sufficient to make sure that RFD works: (f, g) is
one-to-one on S′ and

2 ·
∑

0≤i<m′

|Bi|≥2

|Bi| < (1− δ)n′ and
∑

0≤i<m′

|Bi|≥3

|Bi|2 < (1− δ)n′. (5)

for some constant δ > 0. With α = n′/m′ one may show (with techniques
explained in more detail in [13]) that asymptotically (n′, m′ →∞)

E
( ∑

0≤i<m′

|Bi|≥2

|Bi|
)
≈ n′ ·(1−e−α) and E

( ∑
0≤i<m′

|Bi|≥3

|Bi|2
)
≈ n′ ·(α+1−e−α−2αe−α).

(6)
Since for suitable ε > 0 and α < ln 2/(1 + ε) we have 2(1 − e−α) < 1 − δ and
α + 1 − e−α − 2αe−α < 0.6 < 1 − δ, this means that for n′, m′ large enough
and m′ > 1.45(1 + ε)n′ > (1 + ε)(log e)n′, inequalities (5) will be satisfied with
high probability. Since the probability that (f, g) is not one-to-one on S′ can be
bounded by

(
n′

2

)
/(n′m′) < 1/(2 ·1.45), a random pair (f, g) will be suitable with
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probability larger than 1/3. If we try (f, g) = (h2t mod n′, h2t+1 mod m′), t =
0, 1, . . . , L/2−1, for being one-to-one on S′ and (5) being satisfied, the expected
number of trials will be not larger than 3, the expected time will be O(|S′|), and
the probability we are not finished after testing L/2 pairs is at most 3−L/2 =
3−(K/2) log n = n−(K log 3)/2. We can make this smaller than n−3 by choosing
K large enough. Thus the probability that for some i no suitable (f, g) is found
among (h2t mod ni, h2t+1 mod mi), t = 0, 1, . . . , L/2−1, is bounded by m·n−3 ≤
n−2. (In this improbable case we choose new random entries for Tj,0 and Tj,1

and start all over.)
The overall data structure Dh for a hash-and-displace MPFH h for the whole

set S consists of the following pieces:

– the splitting hash function h0;
– hi

0, h
i
1, for 0 ≤ i < m;

– values ai (and bi), for 0 ≤ i < m;
– arrays Tj,0[0..r − 1] and Tj,1[0..r − 1], for j ∈ [L];
– an index t ∈ [L/2] for the suitable pair (h2t mod ni, h2t+1 mod mi);
– 1.45(1 + ε)ni offset values in [ni], for 0 ≤ i < m.

The overall space needed is 2m = 4n2/3 words of size log |U | and mL = O(n2/3 ·
log n) words from {0, 1}k and 1.45(1+ε)n offset values in [

√
n] (about 0.78n logn

bits).
As remarked by P. Sanders [27], the space requirements may be lowered further

asymptotically by increasing m to some larger power n(t−1)/t, and increasing the
degree of the splitting hash function h0.

Remark : For the RFD algorithm to work, it is necessary that (f, g) are one-to-
one, but condition (5) is only sufficient, not necessary. It is interesting to note
that in (preliminary) experiments values of m′ down to below 0.3n′ still seem to
work, so in a supervised situation where a MPHF is to be built (and one might
resort to the pure, certified algorithm if not successful) it may save up to two
thirds of the space if one tries to run RFD without checking (5).

3.2 Undo-One

Dietzfelbinger and Hagerup [13] modified Pagh’s approach [25] as follows: Func-
tions (f, g) were chosen to be one-to-one and satisfy the following conditions:
∑

0≤i<m′

|Bi|≥3

|Bi|2 < (1 − δ)n′ and |{i | Bi �= ∅}|+ |{i | |Bi| = 1}| ≥ (1 + δ)n′. (7)

Once condition (7) is satisfied, a variant of Pagh’s algorithm can be proved to
find suitable offsets in expected constant time: For sets Bi with |Bi| ≥ 3 run the
RFD algorithm as before; for sets Bi of size 2 it is also checked whether they
can be successfully be placed by moving up to one set that was placed before
(for details see [13]).

It can be shown (using techniques from [13]) that for (f, g) fully random func-
tions and m′ = (1+ ε)n′, for an arbitrary fixed ε > 0, relation (7) holds with high
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probability, as long as n′ is sufficiently large. This means that we may search for
(f, g) just as in the previous section — only checking for (7) to hold. The final data
structure will look the same as in the previous section. In contrast to [13], where for
smaller ε polynomials of larger and larger degree are employed, the evaluation time
for the hash functions described here does not depend on ε anymore. The overall
space needed is 2m = 4n2/3 words of size log |U | and n2/3L = O(n2/3 log n) words
from {0, 1}k and (1 + ε)n offset values in [

√
n] (a little more than 0.5n logn bits).

Again, the constant factor in front of the n logn may be reduced at the expense
of increasing m and the degree of independence of h0.

4 Minimal Perfect Hashing by the Multifunction
Paradigm

A different approach to constructing MPHF uses several hash functions. In that,
it resembles the approach taken in the area of Bloom filters (see [3], and e. g. [7]).

4.1 The Hypergraph Approach

Czech et al. [8] and Majewski et al. [22] introduced the following approach to
constructing a MPHF. To each key x associate a sequence (h1(x), . . . , hd(x)) of
distinct hash values in some range [m]. The structure consisting of V = [m] and
the system of (labeled) sets ex = {h1(x), . . . , hd(x)}, x ∈ S′, may be regarded as
a hypergraph G(S′, h1, . . . , hd) of order (edge size) d. If the elements of S′ can
be arranged in a sequence (x1, . . . , xn′) such that

exj −
⋃
s<j

exs �= ∅ , for j = 1, . . . , n′ (8)

then we say that G(S′, h1, . . . , hd) is acyclic. It is useful to consider the vertex-
edge incidence matrix AG of G(S′, h1, . . . , hd). It has n′ rows, labeled with
x1, . . . , xn′ , where position � in row j is 1 if � ∈ {h1(xj), . . . , hd(xj)}, and is
0 otherwise. Condition (8) entails that in this matrix in row j there is a 1-
entry in some position �j so that column �j has only 0s above row j. Thus the
matrix AG can be transformed into echelon form by exchanging columns. This
immediately implies the following.

Lemma 3. If (8) holds, then for each vector (b1, . . . , bn′) ∈ [n′] we may (even
in linear time) find a set of values g(i) ∈ [n′], i ∈ [m′], such that

(g(h1(xj)) + · · ·+ g(hd(xj))) mod m′ = bj , for 1 ≤ j ≤ n′.

It can be arranged that g(i) = 0 for i /∈ {�j | 1 ≤ j ≤ n′}. If we choose
(b1, . . . , bn′) as a permutation of (0, 1, . . . , n′ − 1), we obtain a MPHF for S′.

Remark 1. In [7] the approach of the acyclic hypergraph was re-discovered and
utilized in a similar way as in [22] to implement an arbitrary function f : S′ →
{0, 1}q, even including a mechanism to detect (with some probability 1 − ε)



10 M. Dietzfelbinger

if a key x /∈ S′ is presented to the data structure. (This problem was called
“retrieval” in [10].) In [7], a naive analysis of the acyclicity property was used,
leading to an estimate O(n′) of the space requirements that is much larger than
the space bounds from [22], as discussed below. However, the bounds from [22]
do apply also in this context.

In [8] and [22] it was assumed that fully random hash functions are available.
This gap in the analysis vanishes if one employs the “split-and-share” trick.

A minor question that remains is how one may find a mapping x �→ (h1(x),
. . . , hd(x)) that attains vectors of d different elements as values, each one with
the same probability, if only given fully random values (h0

1(x), . . . , h0
d(x)) in

{0, 1}k. There are several approaches to this problem, a solution due to Floyd
being discussed in [2]. (A workaround used in some papers (e. g. [5]) is to let
h1, . . . , hd have disjoint ranges of size m′/d each, the slight disandvantage being
that results from the random graphs literature do not apply directly to this
situation of “d-partite hypergraphs”.)

Again, with the “splitting” approach at the basis, we do not have to worry
about space, and can even simplify Floyd’s method, utilizing an idea usually
employed to construct (full) random permutations (see [21, Algorithm P]). Use
an auxiliary array R[0..

√
n−1], initialized so that R[i] = i for all i (this property

is restored after each use). We assume that a fully random sequence h0
1, . . . , h

0
d

of hash functions with range [2k] is available, k ≥ 2 log n.

Algorithm. Hyperedge
Input: x, n′.
Output: (h1(x), . . . , hd(x)) (∗ distinct values ∗)
for � = 1 to d do

j� ← h0
�(x) mod (n′ − � + 1);

exchange R[j�] and R[n′ − �];
(z1, . . . , zd)← (R[n′ − 1], . . . , R[n′ − d]);
for � = 1 to d do

R[j�]← j�; R[n′ − �]← n′ − �;
return (z1, . . . , zd).

It is not hard to check that each d-tuple (z1, . . . , zd) in [n′] that consists of d
distinct values (up to negligibly small rounding errors) has the same probability
to be returned as (h1(x), . . . , hd(x)). Once the edges ex, x ∈ S′, have been
calculated, one may easily in linear time calculate an ordering (x1, . . . , xn′) that
satisfies (8), if such an ordering exists. (For details see [22].) If no such ordering
exists (the hypergraph ([m], {ex}x∈S′) is “cyclic”), we repeat with a new set
h0

1, . . . , h
0
d of fully random hash functions. (If this approach is implemented in

the context of the “split-and-share” approach, for each trial a new segment of d
of the fully random functions h0, . . . , hL−1 are used.)

In [22] it is discussed in detail what the probability for acyclicity is for various
d and quotients c = n′/m′ (assuming the asymptotic case with n′, m′ →∞). For
d = 2 we must have c > 2 and get an acyclicity probability of e1/c

√
(c− 2)/c > 0.



Design Strategies for Minimal Perfect Hash Functions 11

For d = 3, 4, 5 one gets threshold values

c3 ≈ 1.222, c4 ≈ 1.295, c5 ≈ 1.425,

meaning that if n′/m′ ≥ c > cd then the probability that the hypergraph is acylic
is high (approaching 1 as n′, m′ grow). Larger values of d have worse threshold
values. The most attractive choice for d obviously is d = 3, where a choice of
m′ = 1.23n′ leads to a good chance for hitting an acyclic hypergraph.

Thus, a data structure for a mapping U � x �→ ex = {h1(x), . . . , hd(x)} so
that ([m′], {ex}x∈S′) forms an acyclic hypergraph can be constructed in expected
time O(|n′|). We have already seen how such a structure can be used to get a
MPHF for S′ that in essence consists of a table of m′ numbers from [

√
n]. If one

uses this construction for each set Si separately, sharing the random entries in
the arrays Tj,0, Tj,1 as before, one obtains a data structure Dh for a MPFH h
for S that has the following components:

– the splitting hash function h0;
– hi

0, h
i
1, for 0 ≤ i < m;

– values ai (and bi), 0 ≤ i < m;
– arrays Tj,0[0..r − 1] and Tj,1[0..r − 1], j ∈ [L];
– an index t ∈ [L/2] for the suitable triple

(h3t mod ni, h3t+1 mod mi, h3t+2 mod mi);
– 1.23ni gi-values in [ni], for 0 ≤ i < m.

The overall space needed is 2m = 4n2/3 words of size log |U | and mL words from
{0, 1}k and 1.23n offset values in [

√
n] (about 0.62n logn bits).

5 Below the Graph Thresholds

Using the approach of Majewski et al. [22] one may not get below the space
bound 1.23n′ given by the requirement that the random hypergraphs be acyclic.
The Undo-Une construction from [13] achieves space (1+ε)n′, but seemingly not
less. However, in [4] and in [31] methods for constructing MPHF are described
that have the potential to get below the threshold of n′ words. Botelho et al. [4] as
well as Weidling [31] independently propose using the hypergraph approach with
d = 2, in which case the hypergraph G(S′, h1, h2) turns into a standard graph.
The central change is to give up the requirement that this graph be acyclic.
Rather, these authors propose studying the 2-core J2 ⊆ [m′] of G(S′, h1, h2),
which is the largest subgraph all of whose nodes having degree 2 or larger.

From graph theory it is well known that the 2-core of a graph G can be found
in linear time by a simple “peeling” process. This process iterates cutting off
nodes of degree 1 (“leaves”) from G; the remaining graph with nodes of degree
at least 2 is the 2-core. If one assumes that the 2-core J2 of G(S′, h1, h2) has
been determined and that values g(i), i ∈ J2, have been calculated such that

the mapping x �→ (g(h1(x)) + g(h2(x))) mod n′ (9)
is one-to-one on the set {x ∈ S′ | h1(x), h2(x) ∈ J2},
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then it is very easy to calculate values g(i) for i ∈ [m′] − J2 such that x �→
(g(h1(x)) + g(h2(x))) mod n′ is one-to-one on S′. (See Section 5.2.) We are left
with the problem of finding a suitable g-labeling of the nodes in J2. Here, the
methods of [4] and [31] differ.

5.1 A Partly Heuristic Approach

Botelho et al. [4] propose a greedy strategy for determining the g-values inside
J2. This strategy assigns g-values to nodes in the order i1, . . . , i|J2| of a breadth-
first-search in the 2-core, where each value g(it) is chosen so that it is bigger
than g(i1), . . . , g(it−1) but minimal so as not to get into conflict with (9). The
authors of [4] conjecture (Conjecture 1, [4, p. 496]) that if

the 2-core of G(S′, h1, h2) has ≤ n′/2 edges, (10)

then this greedy strategy succeeds in the sense that the largest g-value assigned
is not larger than n′− 1. For this conjecture, experimental evidence is provided.

It remains to estimate the edge density n′/m′ we can afford so that with high
probability the 2-core has no more than n′/2 edges. Referring to results on the
structure of 2-cores of random graphs, in particular to [26], in [4] the following
rule is provided (valid for n′, m′ →∞): The number of edges in the 2-core is

(1 + o(1))(1 − T/d)2n′,

where d = 2n′/m′ is the average degree of G(S′, h1, h2) and T is the unique
solution in (0, 1) of the equation Te−T = de−d. A simple numeric computation
shows that the threshold value for d is approximately 1.736. This means that
(for n′, m′ large) we can afford d ≈ 1.73, or m′ ≥ 1.152n′, and may expect to
have no more than n′/2 edges in the 2-core.

In [4] experimental evidence is given that the algorithm works well for this
choice of m′. The authors further report that in experiments a variant of their
algorithm (not insisting that the values g(xt) increase with t increasing) makes
it possible to further decrease m′, to some value m′/n′ ≈ 0.93, but not further.

5.2 An Analyzed Approach

We turn to Weidling’s [31] analysis of the strategy based on the 2-core of
G(S′, h1, h2). The lowest edge density we consider in the analysis is never larger
than 1.1, meaning that always m′ > 0.9n′. In this case the probability that
G(S′, h1, h2) has an empty 3-core (i. e., G(S′, h1, h2) does not have a nonempty
subgraph with minimum degree 3) is overwhelming. Further, with high proba-
bility the maximum degree of nodes in G(S′, h1, h2) is O(log(n′)). Finally, with
positive probability G(S′, h1, h2) does not have double edges. For simplicity from
here on we assume that G(S′, h1, h2) satisfies these properties (otherwise this will
turn out at some time of the execution of the algorithm, in which case we choose
new hash functions h1, h2 for S′). The following assumption is crucial for the
analysis of the first algorithm (cf. (10)):

the 2-core of G(S′, h1, h2) has ≤ (1
2 − ε)n′ edges. (11)
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We “peel” G(S′, h1, h2), as follows: Let G1 = G(S′, h1, h2). We disregard nodes
of degree 0.
• Round t = 1, . . . , �1: We choose a node jt of degree 1 in Gt and obtain Gt+1 by
removing jt and the (unique) incident edge {h1(xt), h2(xt)}. — What remains
is a graph G�1 with minimum degree 2, the 2-core.
Round t = �1 + 1, . . . , �2: If all nodes in Gt have degree 2 or larger, we choose a
node jt of degree 2 and obtain Gt+1 by removing jt and its two incident edges
{h1(xt,1), h2(xt,1)}, {h1(xt,2), h2(xt,2)} from Gt. Otherwise we choose a node
jt of degree 1, and obtain Gt by removing it and the (unique) incident edge
{h1(xt), h2(xt)}. This is continued until an empty graph results.

Now the g-values are assigned. Preliminarily, assign g-value 0 to all nodes
j ∈ [m′]. Let H = ∅ (the already assigned hash values). We proceed in the
reverse order of the peeling process.
Round t = �2, . . . , �1 + 1:

Case 1: Node jt has degree 2 in Gt, with two incident edges {h1(xt,1), h2(xt,1)},
{h1(xt,2), h2(xt,2)}. Assume jt = h1(xt,1) = h1(xt,2). (The other cases are
treated analogously.) Let j′ = h2(xt,1) and j′′ = h2(xt,2). What are legal values
for g(jt) so that we do not get stuck on our way to constructing a MPHF? We
must have
(i) (g(jt) + g(j′)) mod n′, (g(jt) + g(j′′)) mod n′ are different and not in H , and
(ii) g(jt) /∈ {g(js) | s > t and js has distance 2 to jt}.
That condition (i) is necessary (and sufficient for carrying out step t) is obvious.
Condition (ii) makes sure that in a later step t′ it will not happen that a common
neighbor of jt and jt′ cannot be labeled because g(jt) = g(jt′). Since by assump-
tion (11) we have |H | ≤ 1

2 (1− ε)n′, and since graph G(S′, h1, h2) has maximum
degree O(log(n′)), conditions (i) and (ii) exclude at most (1− ε)n′ −O(log(n′))
values for g(jt). Since there are n′ values to choose from, we may try values from
[n′] at random until a suitable value for g(jt) is found, and will succeed after an
expected number of 1/ε rounds. One still has to prove the simple fact that the
expected number of nodes at distance 1 and 2, averaged over all nodes, is O(1),
to conclude that the overall construction time is expected O(n).

Case 2: Node jt has degree 1 in Gt. Let j′ be its unique neighbor in Gt. In this
case the new value g(jt) just has to satisfy (i)′ (g(jt) + g(j′)) mod n′ /∈ H and
condition (ii); again after an expected constant number of random trials we will
find a suitable value g(jt).
• Round t = �1, . . . , 1:
We know that node jt has degree 1 in Gt. Let j′ be its unique neighbor. De-
terministically choose g(jt) = (i + n′ − g(j′)) mod n′ for one (the next) element
i /∈ H .

This algorithm finishes in expected linear time, if (11) is satisfied. On the
same grounds from random graph theory as noted in Section 5.1 one sees that
for this the condition m′ ≥ 1.152(1 + δ)n′ for some δ > 0 is sufficient. (In [31] a
direct estimate of the number of edges in the 2-core is provided, leading to the
same result.)
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Looking from the point of view of space efficiency, the threshold m′ ≥ 1.152
(1 + δ)n′ is not yet satisfying since the construction from [13] achieves a similar
result with space m′ = (1 + δ)n′.

Weidling [31] investigated the combination of the graph-based construction
with the “Undo-One” strategy from Section 3.2. He proved that m′ ≥ 0.9353(1+
δ)n′ is sufficient to guarantee that an adapted version of this strategy succeeds
in building a graph-based MPHF. For the full data structure in the context of
the split-and-share approach this would lead to the same space requirements as
in Section 4.1, replacing the term “1.23n offset values in [

√
n] (about 0.62n logn

bits)” by “0.94n offset values in [
√

n] (about 0.47n logn bits)”.

6 Below n log n

Using methods different from those described in this paper, based on the ap-
proach of [20], Woelfel [32] provided a MPHF construction that had more prac-
tical evaluation times than the purely theoretical constructions but gets by with
space O(n log log n). A similar result was reported in [11]. This construction is
based on the hash-and-displace approach with the random-fit-decreasing algo-
rithm, see 3.1. However, for each bucket Bi of size 2 or larger a new sequence of
fully random hash functions is employed (instead of one fixed f for all buckets).
Only the index of the successful hash function has to be stored, which will be a
number of size O(log n), hence of log log n + O(1) bits. The buckets Bi of size 1
cause a new subtle problem. To allocate these buckets with a hash function out
of a pool of O(log n) many, one has to construct a perfect matching in the graph
induced by the x’s in such buckets and the respective hash values h0, . . . , hL−1,
for L = Θ(log n). For this, methods for finding matchings in sparse random
graphs are employed ([1,24]). The construction time rises to O(n(log n)2).

7 An Almost Optimal Solution

Very recently, Botelho, Pagh, and Ziviani ([5], WADS’07) described a method
to obtain a MPFH with description size O(n), a constant factor away from the
optimum. We give a brief account of their approach. For the theoretical analysis,
they appeal to the “split-and-share” approach just as we did before, so we may
assume that we have to achieve the goal formulated at the end of Section 1.3:
find a MPHF for S′, n′ = |S′| ≤

√
n, assuming a pool of K log n fully random

functions. Botelho et al. set out from the hypergraph setting of Section 4.1, with
hypergraphs of order d. They use the fact known from random graph theory
that for each d ≥ 2 there is a constant cd such that if m′/n′ ≥ c > cd then the
hypergraph G(S′, h1, . . . , hd) is acyclic (with positive probability for d = 2 and
with high probability as n′, m′ →∞ for d ≥ 3). They calculate the corresponding
order (x1, . . . , xn′) of the elements of S′ such that (8) is satisfied. The crucial
observation now is that the mapping

xj �→ some element �j of exj −
⋃

s<j exs
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from S′ to [m′] is one-to-one. Thus, for each j we may choose some �j ∈ [d]
(namely, an arbitrary �j ∈ exj −

⋃
s<j exs) such that the mapping

h′: U � x �→ h�j+1(x) ∈ [m′] (12)

is one-to-one on S′. Thus this mapping already represents a hash function that
is perfect on S′, with a range that is a little larger than we would like it to be.

A central idea of [5] now is to provide a data structure for calculating h′. (As
mentioned in Remark 1, this idea was already used in very much the same way by
Chazelle et al. [7] in the context of data structures that represent “half-dynamic”
mappings from S′ to some range X , there called “Bloomier filters”, but without
an attempt to make m′ as small as possible.) This is done as follows: We use the
construction indicated in Lemma 3, but not for [n′] with modular addition, but
for [d]: We may find, in linear time, values g(i) ∈ [d], i ∈ [m′], such that

(g(h1(xj)) + · · ·+ g(hd(xj))) mod d = �j , for 1 ≤ j ≤ n′.

Moreover, we arrange that g(i) = 0 for i /∈ {�j | 1 ≤ j ≤ n′}. These values g(i),
when stored in a table with m′ entries from [d], form a data structure that makes
it possible to calculate h′(x), x ∈ U , from (12) as follows:

h′(x) = h1+(g(h1(x))+···+g(hd(x))) mod d(x). (13)

Storing the values g(j), j ∈ [m′], takes about m′ blocks of �log d� bits, or, by cod-
ing s numbers into one block of length �log(ds)�, about m′/s blocks of �log(ds)�
bits. For a concrete figure, let d = 3, in which case one may use m′ = 1.23n′,
and s = 5. Then �log(ds)� = �log(243)� = 8, so a block is a byte, and one needs
1.23n′ bytes or approximately 1.97n′ bits. Using this approach for constructing
a perfect hash function for S one obtains a data structure that uses no more
than 2n + O(n2/3 log n) bits, and has an extremely simple structure.

The hash function h′ described so far does not have minimal range [n′]. In [5]
the following approach is proposed. In the table for the g-values positions j ∈
[m′] − {�j | 1 ≤ j ≤ n′} are filled with the entry “d” — indicating that the
index does not belong to the set {�j | 1 ≤ j ≤ n′}, but having no effect on the
arithmetic modulo d. Thus, for d = 3 one has four possible g-values, requiring 2
bits per entry, resulting in a little bit more than 2.46n′ bits.

The MPFH h we aim at is defined as

h(x) = |{�j | 1 ≤ j ≤ n′, �j < h′(x)}|. (14)

A moment’s thought reveals that this function h takes on values in [n′] and is
one-to-one on S′, because the h′(x)-values for the elements x ∈ S′ are just the
n′ elements in {�j | 1 ≤ j ≤ n′}. There are several ways of calculating h(x) using
the table of g-values and some auxiliary data structure — for details see [5].

The authors of [5] report on experiments that indicate that their approach
leads to data structures that are space-efficient as described by the theory as
well as very time-efficient. (The implementations use standard universal hash
classes, which turn out to be sufficient so that it is not necessary to employ the
“split-and-share” trick.)
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8 Conclusion

The study of data structures for the MPHF problem has taken some interesting
steps in the past few years. From the theoretical side, it has been understood
how the full randomness assumption may be justified without resorting to con-
structions with large evaluation times, and — building on earlier work that have
demonstrated the crucial role played by hypergraph structures — a practically
useful construction has been found that approaches the theoretically optimal
space bound of n log e bits up to a small constant factor. A natural question left
open is whether one can get even closer to the space lower bound, while retaining
practicability. Also, it would be interesting to see whether provable randomness
properties remain in the graph and hypergraph structures discussed here if one
does not assume full randomness but only k-wise independence for some k.
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Abstract. Quantum finite automata with mixed states are proved to be
super-exponentially more concise rather than quantum finite automata
with pure states. It was proved earlier by A.Ambainis and R.Freivalds
that quantum finite automata with pure states can have exponentially
smaller number of states than deterministic finite automata recognizing
the same language. There was a never published “folk theorem” proving
that quantum finite automata with mixed states are no more than super-
exponentially more concise than deterministic finite automata. It was not
known whether the super-exponential advantage of quantum automata
is really achievable.

We prove that there is an infinite sequence of distinct integers n such
that there are languages Ln such that there are quantum finite automata
with mixed states with 5n states recognizing the language Ln with prob-
ability 3

4 while any deterministic finite automaton recognizing Ln needs

to have at least eO(nlnn) states.

Unfortunately, the alphabet for these languages grows with n. In order
to prove a similar result for languages in a fixed alphabet we consider a
counterpart of Hamming codes for permutations of finite sets, i.e. sets
of permutations such that any two distinct permutations in the set have
Hamming distance at least d. The difficulty arises from the fact that in
the traditional Hamming codes for binary strings positions in the string
are independent while positions in a permutation are not independent.
For instance, any two permutations of the same set either coinside or
their Hamming distance is at least 2. The main combinatorial problem
still remains open.

1 Introduction

A.Ambainis and R.Freivalds proved in [4] that for recognition of some languages
the quantum finite automata can have smaller number of the states than deter-
ministic ones, and this difference can even be exponential. The proof contained
a slight non-constructiveness, and the exponent was not shown explicitly. For
probabilistic finite automata exponentiality of such a distinction was not yet
proved. The best (smaller) gap was proved by Ambainis [2]. The languages rec-
ognized by automata in [4] were presented explicitly but the exponent was not.
In a very recent paper by R.Freivalds [10] the non-constructiveness is modified,
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and an explicit (and seemingly much better) exponent is obtained at the expense
of having only non-constructive description of the languages used. Moreover, the
best estimate proved in this paper is proved under assumption of the well-known
Artin’s Conjecture (1927) in Number Theory. [10] contains also a theorem that
does not depend on any open conjectures but the estimate is worse, and the
description of the languages used is even less constructive. This seems to be the
first result in finite automata depending on open conjectures in Number Theory.

The following two theorems are proved in [10]:

Theorem 1. Assume Artin’s Conjecture. There exists an infinite sequence of
regular languages L1, L2, L3, . . . in a 2-letter alphabet and an infinite sequence
of positive integers z(1), z(2), z(3), . . . such that for arbitrary j:

1. there is a probabilistic reversible automaton with (z(j) states recognizing Lj

with the probability 19
36 ,

2. any deterministic finite automaton recognizing Lj has at least (21/4)z(j) =
= (1.1892071115 . . .)z(j) states,

Theorem 2. There exists an infinite sequence of regular languages
L1, L2, L3, . . . in a 2-letter alphabet and an infinite sequence of positive integers
z(1), z(2), z(3), . . . such that for arbitrary j:

1. there is a probabilistic reversible automaton with z(j) states recognizing Lj

with the probability 68
135 ,

2. any deterministic finite automaton recognizing Lj has at least (7
1
14 )z(j) =

(1.1149116725 . . .)z(j) states,

The two theorems above are formulated in [10] as assertions about reversible
probabilistic automata. For probabilistic automata (reversible or not) it was un-
known before the paper [10] whether the gap between the size of probabilistic
and deterministic automata can be exponential. It is easy to re-write the proofs
in order to prove counterparts of Theorems 1 and 2 for quantum finite automata
with pure states. The aim of this paper is to prove a counterpart of these theo-
rems for quantum finite automata with mixed states.

Quantum algorithms with mixed states were first considered by D.Aharonov,
A.Kitaev, N.Nisan [1]. More detailed description of quantum finite automata with
mixed states can be found in A.Ambainis, M.Beaudry, M.Golovkins, A.Ķikusts,
M.Mercer, D.Thrien [3].

The automaton is defined by the initial density matrix ρ0. Every symbol
ai in the input alphabet is associated with a unitary matrix Ai. When the
automaton reads the symbol ai the current density matrix ρ is transformed into
A∗

i ρAi. When the reading of the input word is finished and the end-marker $ is
read, the current density matrix ρ is transformed into A∗

endρAend and separate
measurements of all states are performed. After that the probabilities of all the
accepting states are totalled, and the probabilities of all the rejecting states are
totalled.
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Like quantum finite automata with pure states described by A.Kondacs and
J.Watrous [12] we allow measurement of the accepting states and rejecting states
after every step of the computation.

The main result in our paper is:

Theorem 3. There is an infinite sequence of distinct integers n such that there
are languages L′

n such that there are quantum finite automata with mixed states
with 5n states recognizing the language L′

n with probability 3
4 while any deter-

ministic finite automaton recognizing L′
n needs to have at least eO(nlnn) states.

Proof is delayed till Section 4.
Since the number of the states for deterministic automata and quantum au-

tomata with pure states differ no more than exponentially, we have

Theorem 4. There is an infinite sequence of distinct integers n such that there
are languages Ln in a 2-letter alphabet such that there are quantum finite au-
tomata with mixed states with 2n states recognizing the language Ln with proba-
bility 3

4 while any quantum finite automaton with pure states recognizing Ln with
bounded error needs to have at least eO(nlnn) states.

Unfortunately, the alphabet for the languages considered in Theorem 3 grows
unlimitedly with n. It is only natural to try to prove a counterpart of Theorem
3 in 2- or 3-letter alphabet. We have developed a methodology of such a proof
based on combining ideas of Theorem 3 and the results in [10]. However we need
a notion similar to Hamming codes for permutations. Since Hamming distance
between permutations is already considered in several well-known textbooks (e.g.
[7]) it seemed natural that the corresponding theory might be already published.
Very far from truth!

2 Permutations

Permutation of the set Nn is a 1-1 correspondence from Nn onto itself. Let f be
such a permutation. The fact that it is onto means that for any k ∈ Nn there
exists i ∈ Nn such that f(i) = k.

If we think of a permutation that “changes” the position of the first element
to the first element, the second to the second, and so on, we really have not
changed the positions of the elements at all. Because of its action, we describe
it as the identity permutation because it acts as an identity function.

There are two main notations for such permutations. In relation notation,
one can just arrange the “natural” ordering of the elements being permuted on
a row, and the new ordering on another row:

{
1 2 3 4 5
2 5 4 3 1

}

stands for the permutation s of the set {1, 2, 3, 4, 5} defined by s(1) = 2, s(2) =
5, s(3) = 4, s(4) = 3, s(5) = 1.
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Rather often in the literature permutations are described by the string s(1) =
2, s(2) = 5, s(3) = 4, s(4) = 3, s(5) = 1 only. Alternatively, we can write the
permutation in terms of how the elements change when the permutation is suc-
cessively applied. This is referred to as the permutation’s decomposition in a
product of disjoint cycles. It works as follows: starting from one element x, we
write the sequence (xs(x)s2(x) · · · ) until we get back the starting element (at
which point we close the parenthesis without writing it for a second time). This
is called the cycle associated to x’s orbit following s. Then we take an element we
did not write yet and do the same thing, until we have considered all elements.
In the above example, we get: s = (125)(34).

Every fixed point is a cycle with length 1.
If we have a finite set E of n elements, it is by definition in bijection with the

set 1, ..., n, where this bijection f corresponds just to numbering the elements.
Once they are numbered, we can identify the permutations of the set E with
permutations of the set {1, ..., n}.

If one has some permutation, called P , one may describe a permutation, writ-
ten P−1, which undoes the action of applying P . In essence, performing P then
P−1 is equivalent to performing the identity permutation. One always has such
a permutation since a permutation is a bijective map. Such a permutation is
called the inverse permutation.

One can define the product of two permutations. If we have two permutations,
P and Q, the action of performing P and Q will be the same as performing
some other permutation, R = P ◦ Q, itself. The product of P and Q is defined
to be the permutation R. An even permutation is a permutation which can be
expressed as the product of an even number of transpositions, and the identity
permutation is an even permutation as it equals (12)◦ (12). An odd permutation
is a permutation which can be expressed as the product of an odd number of
transpositions. It can be shown that every permutation is either odd or even and
cannot be both.

The set of all permutations of the set 1, ..., n with algebraic operation “product
of permutations” can be considered as a group Gn. This group has two generating
elements, the permutations (123 · · ·n) and (12)(3)(4) · · · (n).

We can also represent a permutation in matrix form - the resulting matrix is
known as a permutation matrix.

A permutation matrix is a matrix obtained by permuting the rows of an n×n
identity matrix according to some permutation of the numbers 1 to n. Every
row and column therefore contains precisely a single 1 with 0s everywhere else,
and every permutation corresponds to a unique permutation matrix. There are
therefore n! permutation matrices of size n, where n! is a factorial.

3 Hamming Distance

Hamming distance between two objects is the number of changes one needs to per-
form to obtain one object from the another. The Hamming distance between two
binary words (of the same length) is defined to be the number of positions at which
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they differ. For instance, we consider a set of three binarywords {0011, 0110, 1100}.
The first word is at Hamming distance 3 from the other two. Additionally, every
word in this set is at Hamming distance at least 2 from any other. Such systems
of words are called codes. They are important because they allow us to eliminate
accidental errorswhen transmitting thewords throughnoisy information channels.

We consider Hamming distance between permutations. Hamming distance
between the permutation s of the set {1, 2, 3, · · ·n} and the permutation r of the
same set is the number of distinct numbers i such that s(i) �= r(i). For instance,
let s be a permutation of the set {1, 2, 3, · · ·n} and the number of it’s fixed points
be p. Then the Hamming distance between the permutation s and the identity
permutation is the number n− p.

It would be interesting to develop a theory of Hamming codes for permuta-
tions, i.e. sets of permutations such that any two distinct permutations in the
set have Hamming distance at least d. Unfortunately, we were not able to find
in the literature a solution to this problem. The difficulty is in the fact that
in the traditional Hamming codes for binary strings positions in the string are
independent while positions in a permutation are not independent. For instance,
any two permutations of the same set either coinside or their Hamming distance
is at least 2.

For arbitrary n there is a set P3 of n-permutations such that the Hamming
distance between any two distinct permutations in this set is at least 3. Take the
set of all even permutations as P3. It is easy to see that there is no bigger set of
n-permutations with this property.

For arbitrary n there is a set Pn of n-permutations such that the Hamming
distance between any two distinct permutations in this set is at least n. Take the
set of all cyclic permutations of type s = x+d(modn) where d ∈ {0, 1, 2, · · · , n−1
as Pn.

It is easy to see that there is no bigger set of n-permutations with this property.
It is easy to see that both P3 and Pn are groups with the operation “product of
permutations”. It is more difficult to construct maximum cardinality sets Pd for
d between 3 and n. We have only partial results for this. However, our main goal
is the complexity of quantum finite automata, not permutations. The subsequent
sections contain results on Hamming distance between permutations sufficient
for our goal.

Lemma 1. Let d be an arbitrary real number such that 0 ≤ d ≤ 1. No more
than 2dnlnn permutations can be on Hamming distance less or equal than (dn
from the identity permutation.

Proof. By Stirling formula, n! = en.lnn−o(nlnn) . Let π be an arbitrary n-
permutation. How many there are distinct n-permutations differing from the
permutation π in no more than dn positions? The differing positions can be
chosen in

≤
(

n
d

)
< 2n

ways and these ≤ dn positions are permuted. Hence there are no more than
2n.2dnlnn−o(nlnn) ≤ 2dnlnn permutations of this type.
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Theorem 5. For arbitrary constant c < 1 such that for arbitrary n there is a set
Gn of n-permutations containing eΩ(n log n) permutations such that the pairwise
Hamming distance of permutations is at least c · n.

Proof. Immediately from Lemma 1.

4 Main Results on Automata

Theorem 6. The assertion (1) implies the assertion (2), where:

(1) there is a fixed constant c and an infinite sequence of distinct integers n such
that for each n there is a group Gn of permutations of the set {1, 2, . . . , n},
the group has eΩ(n log n) elements and k generating elements, and the pair-
wise Hamming distance of permutations is at least c · n,

(2) there is an infinite sequence of distinct integers n such that for each n there is
a language Ln in a k-letter alphabet that can be recognized with probability c

2
by a quantum finite automata with mixed states that has 2n states, while any
deterministic finite automaton recognizing Ln must have at least eΩ(n log n)

states.

Proof. For each permutation group Gn we define the language Ln as follows:

The letters of Ln are the k generators of the group Gn and
it consists of words s1s2s3 . . . sm such that the product

s1 ◦ s2 ◦ s3 ◦ · · · ◦ sm differs from the identity permutation.

Proof. (1) Any deterministic automaton recognizing Ln is to remember the first
input letter by a specific state.

(2) We will construct a quantum automaton with mixed states. It has 4n
states and the initial density matrix ρ0 is a diagonal block-matrix that consists
of n blocks ρ̃0:

ρ̃0 =
1
2n

⎛
⎜⎜⎝

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

For each of k generators gi ∈ Gn we will construct the corresponding unitary
matrix Ui as follows – it is a 2n × 2n permutation matrix, that permutes the
elements in the even positions according to permutation gi, but leaves the odd
positions unpermuted.

For example, g = 3241 can be expressed as the following permutation matrix
that acts on a column vector:

g =

⎛
⎜⎜⎝

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎠
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The initial density matrix ρ0 for n = 4 and the unitary matrix U that corre-
sponds to the permutation matrix (4) of permutation g are as follows:

ρ0 =
1
8

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The unitary matrix U$ for the end-marker is also a diagonal block-matrix. It
consists of n blocks that are the Hadamard matrices

H̃ =
1√
2

(
1 1
1 −1

)

Notice how the Hadamard matrix H̃ acts on two specific 2× 2 density matrices:

if ρ =
1
2n

(
1 1
1 1

)
, then H̃ρH̃† =

1
2n

(
2 0
0 0

)
,

if ρ =
1
2n

(
1 0
0 1

)
, then H̃ρH̃† =

1
2n

(
1 0
0 1

)
.

For example, when the letter g is read, the unitary matrix U is applied to
the density matrix ρ0 (both are given in equation (4)) and the density matrix
ρ1 = Uρ0U

† is obtained. When the end-marker “$” is read, the density matrix
becomes ρ$ = U$ρ1U

†
$ . Matrices ρ1 and ρ$ are as follows:

ρ1 =
1
8

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 1
0 1 0 0 1 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ρ$ =
1
8

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1
2

1
2

1
2 −

1
2

0 1 0 0 − 1
2 −

1
2

1
2 −

1
2

0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0
1
2 −

1
2 0 0 1 0 1

2
1
2

1
2 −

1
2 0 0 0 1 − 1

2 −
1
2

1
2

1
2 0 0 1

2 −
1
2 1 0

− 1
2 −

1
2 0 0 1

2 −
1
2 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Finally, we declare the states in the even positions to be accepting, but the states
in the odd positions to be rejecting. Therefore one must sum up the diagonal
entries that are in the even positions of the final density matrix to find the
probability that a given word is accepted.

In our example the final density matrix ρ$ is given in (4). It corresponds to
the input word “g$”, which is accepted with probability 1

8 (1 + 0 + 1 + 1) = 3
8

and rejected with probability 1
8 (1 + 2 + 1 + 1) = 5

8 . Note that the accepting and
rejecting probabilities sum up to 1.

It is easy to see, that the words that do not belong to the language Ln are
rejected with certainty, because the matrix U$ρ0U

†
$ has all zeros in the even po-

sitions on the main diagonal. However, the words that belong to Ln are accepted
with the probability at least d

2n = cn
2n = c

2 , because all permutations are at least
at the distance d from the identity permutation.

It is also easy to see that any deterministic automaton that recognizes the
language Ln must have at least N = |Gn| states, where |Gn| is the size of the
permutation group Gn. If the number of states is less than N , then there are
two distinct words u and v such that the deterministic automaton ends up in the
same state no matter which one of the two words it reads. Since Gn is a group,
for each word we can find an inverse, that returns the automaton in the initial
state (the only rejecting state). Since u and v are different, they have different
inverses and u◦u−1 is the identity permutation and must be rejected, but v◦u−1

is not the identity permutation and must be accepted – a contradiction. ��

5 Super-Exponential Size Advantage

Finally, we wish to prove Theorem 3.
Consider the following infinite sequence of languages. For every n take the

set Gn considered in Theorem 5. The language L′
n consists of all the words aa

(of the length 2) where a is a symbol for an arbitrary element from Gn. Hence
there are eΩ(n log n) letters in the alphabet of the language L′

n and equally many
words in L′

n.

Theorem 3. There is an infinite sequence of distinct integers n such that there
are languages L′

n such that there are quantum finite automata with mixed states
with 5n states recognizing the language L′

n with probability 3
4 while any deter-

ministic finite automaton recognizing L′
n needs to have at least eO(nlnn) states.

Proof is similar to the proof of Theorem 6. When constructing the quantum
automaton for Theorem 6 we used two distinct sets of states {q1, q3, · · · , q2n−1}
and {q2, q4, · · · , q2n}. The unitary transformations corresponding to all gener-
ators in the group Gn permuted some states in the first set and it left all the
states in the second set unpermuted.

Now we have five such sets of n-tuples of states. Let gi be any one of the
permutations in Gn. (Remember that the cardinality of Gn equals eΩ(n log n).)
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Let the inverse permutation of gi be denoted as hi. The unitary transformation
corresponding to gi leaves the states from the first set unpermuted. It takes the
states from the second set into the third one performing the permutation gi. For
instance, if n = 5 and gi is (35421) then f(6) = 13, f(7) = 15, f(8) = 14, f(9) =
12, f(10) = 11. The unitary transformation takes the third set into the fourth one
performing the permutation hi. The unitary transformation takes the fourth set
into the fifth one performing no permutation. The unitary transformation takes
the fifth set into the first one performing no permutation. After this transfor-
mation a measurement is performed which measures all the states in the fifth
set considering them as rejecting states. No measurement of accepting states is
performed. The unitary transformation corresponding to the end-marker uses n
instances of the Hadamard matrices

H̃ =
1√
2

(
1 1
1 −1

)
.

This transformation has the following property. If the state q3n+j has been the
result of permutation from the state qn+j , then the amplitude of the state q4n+j

becomes double the amplitude of the state q3n+j on the preceding step. If the
state q3n+j has been the result of permutation from the state qn+j , then the
amplitude of the state q4n+j becomes equal to the amplitude of the state q3n+j

on the preceding step. After this transformation a measurement is performed
which measures all the states in the first set considering them as accepting
states. All the other states are measured as rejecting states.

It is easy to see that if the input word is aa, then all the amplitudes of the
states q3n+j are doubled at the moment when the end-marker is read. The word
is accepted with the probability 1. If the input word is shorter than two letters,
then the probability to accept this word equals zero. If the input word is longer
than two letters, then the probability of acceptance cannot exceed 1

2 . If the length
of the input word is two letters but the letters are not equal, then by the property
of Gn desribed in Theorem 5, the probability of acceptance is less than 1

2 .

6 Smaller Alphabets

Unfortunately, the size of the alphabet for the languages considered in Theorem
3 grow extraordinary quickly. What can we prove in the case of 2- or 3-letter
alphabets? The paper [11] by R.Freivalds, M.Ozols and L.Mančinska shows a
large collection of examples found in order to prove

Conjecture. There is a fixed constant c and an infinite sequence of distinct
integers n such that for each n there is a group Gn of permutations of the set
{1, 2, . . . , n}, the group has eΩ(n log n) elements and k generating elements, and
the pairwise Hamming distance of permutations is at least c · n.

The parameters of some of these examples may be seen at this Figure.
Some of these examples are constructed in [11] by computerised search.
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Fig. 1. The maximal permutation groups

We performed computer experiments to find permutation groups with pairwise
Hamming distance in the region between d ≥ 4 and d ≤ n − 3. The obtained
results for n = 7, 8, 9, 10 are shown in Table 1. In addition we mention also two
large groups for n = 15 and n = 16.

These groups were obtained by choosing two random permutations g1 and g2

and computing their closure with respect to the product of permutations. If at
some point the distance between any two distinct obtained permutations became
less than some predefined dmin, the process was terminated and restarted with
another random generators g1 and g2. Some of the groups obtained in this way
have very interesting properties:

(1) G(7, 4) has 168 = 7 · 6 · 4 elements and is isomorphic to the automorphism
group of the Fano plane.

(2) G(8, 4) has 1344 = 8 ·168 = 8 ·7 ·6 ·4 elements. This group has the property,
that the stabilizers of any element form a group that is isomorphic to the
automorphism group of the Fano plane. This group also has a property that
for any 3-tuples x and y of distinct elements there are exactly 4 permutations
that send x to y. It is isomorphic to the automorphism group of the octonion
multiplication table.
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Table 1. Experimentally obtained results for G(n, d). The columns have the following
meaning: n – the size of the set S, d – the pairwise Hamming distance, G(n, d) – the
size of the group obtained, “Bound” – the upper bound for G(n, d) , “Generators” –
the two generators of the group.

n d G(n, d) Bound Generators

7 4 168 840 6, 4, 3, 2, 5, 1, 7
6, 1, 7, 5, 2, 3, 4

8 5 336 1680 3, 8, 6, 2, 4, 5, 1, 7
7, 4, 6, 3, 1, 5, 2, 8

8 4 1344 6720 2, 6, 8, 4, 5, 7, 1, 3
7, 4, 3, 5, 1, 8, 6, 2

9 6 1512 3024 4, 5, 1, 8, 3, 7, 6, 2, 9
3, 4, 8, 5, 7, 1, 6, 9, 2

9 5 1512 15120 9, 4, 1, 6, 5, 2, 7, 8, 3
1, 4, 5, 3, 7, 9, 8, 2, 6

9 4 1512 60480 7, 2, 8, 3, 5, 6, 9, 4, 1
6, 1, 3, 8, 2, 4, 9, 5, 7

10 7 720 5040 3, 9, 5, 7, 4, 8, 10, 6, 1, 2
7, 9, 4, 5, 3, 6, 8, 1, 10, 2

10 6 1512 30240 8, 2, 10, 7, 4, 3, 1, 6, 5, 9
1, 2, 8, 5, 10, 6, 3, 7, 9, 4

10 5 1512 151200 1, 10, 3, 9, 6, 8, 5, 4, 7, 2
1, 10, 8, 3, 2, 4, 5, 7, 6, 9

10 4 1920 604800 5, 1, 4, 8, 9, 7, 6, 10, 2, 3
7, 8, 2, 1, 10, 3, 9, 6, 4, 5

15 12 2520 32760 7, 2, 4, 5, 11, 10, 13, 15, 3, 9, 6, 8, 14, 12, 1
9, 15, 11, 6, 4, 2, 10, 13, 7, 12, 8, 1, 14, 3, 5

16 12 40320 524160 16, 5, 6, 12, 14, 13, 11, 1, 10, 3, 7, 4, 15, 8, 9, 2
6, 7, 14, 8, 15, 3, 12, 2, 9, 10, 13, 11, 4, 16, 1, 5

(3) G(8, 4) has 1512 = 9 ·168 = 9 ·8 ·7 ·3 elements and it has the same stabilizer
property, but for each 3-tuples x and y there are exactly 3 permutations that
send x to y.

(4) G(15, 12) has 2520 = 15 · 168 = 15 · 14 · 12 elements and it also has the
stabilizer property, but for each 2-tuples x and y there are exactly 12 per-
mutations that send x to y.

(5) G(16, 12) has 40320 = 16 · 15 · 168 = 16 · 15 · 14 · 12 elements. The stabilizers
of any two elements form a group that is isomorphic to the automorphism
group of the Fano plane. For any 3-tuples x and y there are exactly 12
permutations that send x to y.
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Abstract. We consider applications of probabilistic techniques in the
framework of algorithmic game theory. We focus on three distinct case
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1 Preliminaries and Notation

For any k ∈ N, let [k] ≡ {1, 2, . . . , k}. M ∈ Fm×n denotes a m × n matrix
(denoted by capital letters) whose elements belong to set F . We call a pair
(A, B) ∈ (F × F )m×n (ie, an m× n matrix whose elements are ordered pairs of
values from F ) a bimatrix. A k×1 matrix is also considered to be an k-vector.
Vectors are denoted by bold small letters (eg, x). ei denotes a vector having a
1 in the i-th position and 0 everywhere else. 1k (0k) is the k-vector having 1s
(0s) in all its coordinates. The k × k matrix E = 1k · 1k

T ∈ {1}k×k has value
1 in all its elements. For any x,y ∈ Rn, x ≥ y implies their component–wise
comparison: ∀i ∈ [n], xi ≥ yi. For any m×n (bi)matrix M , Mj is its j-th column
(as an m × 1 vector), M i is the i-th row (as a (transposed) 1 × n vector) and
Mi,j is the (i, j)-th element.

For any integer k ≥ 1, Δk = {z ∈ Rk : z ≥ 0; (1k)T z = 1} is the (k − 1)-
simplex. For any point z ∈ Δk, its support is the set of coordinates with positive
value: supp(z) ≡ {i ∈ [k] : zi > 0}. For an arbitrary logical expression E , we
denote by P {E} the probability of this expression being true, while I{E} is the
indicator variable of whether E is true or false. For any random variable x, E {x}
is its expected value (wrt some probability measure).
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2 Existence of Approximate Equilibria of Small Support
Sizes in Bimatrix Games

In this section we use the probabilistic method in order to prove the existence
of (well supported) approximate Nash equilibria of logarithmic support sizes in
bimatrix games. In the next subsection we briefly present the model of bimatrix
games and the notions of approximate equilibria for these games. Consequently
we demonstrate the proof of Althöfer’s Approximation Lemma and how this
lemma can be used to prove existence of well supported approximate equilibria
with small support sizes.

2.1 Bimatrix Games Notation

For 2 ≤ m ≤ n, an m × n bimatrix game 〈A, B〉 is a 2−person game in
normal form, determined by the bimatrix (A, B) ∈ (R× R)m×n as follows: The
first player (the row player) has an m−element action set [m], and the second
player (the column player) has an n−element action set [n]. Each row (column)
of the bimatrix corresponds to a different action of the row (column) player. The
row and the column player’s payoffs are determined by the m× n real matrices
A and B respectively. 〈A, B〉 is a zero sum game, if B = −A. In that case the
game is solvable in polynomial time using linear programming. If both payoff
matrices belong to [0, 1]m×n then we have a [0, 1]−bimatrix (aka normalized)
game. The special case of bimatrix games in which all elements of the bimatrix
belong to {0, 1} × {0, 1}, is called a {0, 1}−bimatrix (aka win lose) game.
A win lose game having (for integer λ ≥ 1) at most λ (1, 0)−elements per row
and at most λ number (0, 1)−element per column of the bimatrix, is called a
λ−sparse game. Any point x ∈ Δm is a mixed strategy for the row player:
She determines her action independently from the column player, according to
the probability vector x. Similarly, any point y ∈ Δn is a mixed strategy for the
column player. Each extreme point ei ∈ Δm (ej ∈ Δn), that enforces the use of
the i-th row (j-th column) by the row (column) player, is a pure strategy for
her. Any element (x,y) ∈ Δm × Δn is a (mixed in general) strategy profile
for the players. The notion of approximate best responses will help us simplify
the forthcoming definitions:

Definition 1 (Approximate Best Response). Fix any bima-
trix game 〈A, B〉 and 0 ≤ ε ≤ 1. The sets of approximate
(pure) best responses of the column (row) player against x ∈ Δm

(y ∈ Δn) are: BR(ε, BT ,x) =
{
y ∈ Δn : yT BT x ≥ zT BTx− ε, ∀z ∈ Δn

}
,

BR(ε, A,y) =
{
x ∈ Δm : xT Ay ≥ zT Ay − ε, ∀z ∈ Δm

}
, PBR(ε, BT ,x)

=
{
j ∈ [n] : BT

j x ≥ BT
s x− ε, ∀s ∈ [n]

}
and PBR(ε, A,y) ={

i ∈ [m] : Aiy ≥ Ary − ε, ∀r ∈ [m]
}

.

Definition 2 (Approximate Nash Equilibria). For any bimatrix game
〈A, B〉 and 0 ≤ ε ≤ 1, (x,y) ∈ Δm × Δn is: (1) An ε−approximate Nash



32 S.C. Kontogiannis and P.G. Spirakis

Equilibrium (ε−ApproxNE) iff each player chooses an ε−approximate best re-
sponse against the opponent: [x ∈ BR(ε, A,y)] ∧

[
y ∈ BR(ε, BT ,x)

]
. (2) An

ε−well–supported Nash Equilibrium (ε−SuppNE) iff each player assigns
positive probability only to ε−approximate pure best responses against the strat-
egy of the opponent: ∀i ∈ [m], xi > 0 ⇒ i ∈ PBR(ε, A,y) and ∀j ∈ [n], yj >
0 ⇒ j ∈ PBR(ε, BT ,x) .

To see the difference between the two notions of approximate equilibria, con-
sider the Matching Pennies game with payoffs (A, B)1,1 = (A, B)2,2 = (1, 0)
(row player wins) and (A, B)1,2 = (A, B)2,1 = (0, 1) (column player wins).(
e1, 1

2 · (e1 + e2)
)

is a 0.5−ApproxNE, but only a 1−SuppNE for the game.
Any NE is both a 0−ApproxNE and a 0−SuppNE. Moreover, any ε−SuppNE

is also an ε−ApproxNE, but not necessarily vice versa, as was shown in the pre-
vious example. Indeed, the only thing we currently know towards this direction
is that from an arbitrary ε2

8n−ApproxNE one can construct an ε−SuppNE in
polynomial time [6]. Note that both notions of approximate equilibria are de-
fined wrt an additive error term ε. Although (exact) NE are known not to be
affected by any positive scaling of the payoffs, approximate notions of NE are
indeed affected. Therefore, from now on we adopt the commonly used assump-
tion in the literature (eg, [21,8,17,5,6]) that, when referring to ε−ApproxNE or
ε−SuppNE, we consider a [0, 1]−bimatrix game.

Definition 3 (Uniform Profiles). x ∈ Δr is a k−uniform strategy iff x ∈
Δr(k) = Δr∩

{
0, 1

k , 2
k , . . . , k−1

k , 1
}r

. If x ∈ Δ̂r(k) = Δr∩
{
0, 1

k

}r, then we refer
to a strict k−uniform strategy. (x,y) ∈ Δm ×Δn for which x is a (strict)
k−uniform strategy and y is a (strict) �−uniform strategy, is called a (strict)
(k, �)−uniform profile.

2.2 Existence of SuppNE with Logarithmic Support Sizes

The existence of (uniform) ε−ApproxNE with small support sizes was proved in
[21]. Recently [18] extended this to ε−SuppNE, based solely on Althöfer’s Ap-
proximation Lemma [1], which is a direct application of the probabilistic method:

Theorem 1 (Approximation Lemma [1]). Consider any real matrix C ∈
[0, 1]m×n. Let p ∈ Δm be any probability vector. Fix an arbitrary constant ε > 0.
There exists probability vector p̂ ∈ Δm with |supp(p̂)| ≤ k ≡

⌈
log(2n)

2ε2

⌉
, such

that |pT Cj − p̂T Cj | ≤ ε, ∀j ∈ [n] . Moreover, p̂ is a k−uniform strategy, ie,
p̂ ∈ Δm(k).

Proof. Fix C ∈ [0, 1]m×n and consider arbitrary probability vector p ∈ Δm.
For some integer k (to be specified later), consider the independent random
variables X1, X2, . . . , Xk taking values from [m], according to p, ie, ∀t ∈ [k], ∀i ∈
[m], P {Xt = i} = pi.

Fix now an arbitrary column j ∈ [n] of C and let ∀t ∈ [k], Yt(j) = CXt,j be
independent random variables taking values in {Ci,j}i∈[m] ⊂ [0, 1]. Let Ȳ (j) =
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1
k

∑
t∈[k] Yt(j) = 1

k

∑
t∈[k] CXt,j be the average value of {Yt(j)}t∈[k]. Observe

that ∀t ∈ [k], E {Yt(j)} =
∑m

i=1 pi ·Ci,j = pT Cj and, by linearity of expectation,
E
{
Ȳ (j)

}
= pT Cj as well. Using the Hoeffding Bound [15] and the Union Bound

we conclude that: ∀ε > 0,

∀j ∈ [n], P
{
|Ȳ (j)− pT Cj | > ε

}
� 2 exp(−2ε2k)

/∗ Union Bound ∗/
=⇒

P
{
∃j ∈ [n] : |Ȳ (j)− pT Cj | > ε

}
� 2n exp(−2ε2k) = exp

(
log(2n)− 2ε2k

)
⇒

∀k >
log(2n)

2ε2
, P
{
∀j ∈ [n], |Ȳ (j)− pT Cj | � ε

}
� 1− exp

(
log(2n)− 2ε2k

)
> 0

Observe that Ȳ (j) is nothing more than the outcome of the inner product
of Cj with some k−uniform probability distribution, p̂ ∈ Δm, that is uniquely
determined by the random variables X1, . . . , Xk:

∀j ∈ [n], Ȳ (j) =
1
k

∑
t∈[k]

Yt(j) =
1
k

∑
t∈[k]

CXt,j

=
∑
t∈[k]

∑
i∈[m]

(
1
k
· I{Xt=i}

)
· Ci,j =

∑
i∈[m]

⎛
⎝1

k

∑
t∈[k]

·I{Xt=i}

⎞
⎠

︸ ︷︷ ︸
=p̂i

·Ci,j

=
∑

i∈[m]

p̂i · Ci,j = p̂T Cj

So, we conclude that for the probability vector p̂ =
(∑

t∈[k] ·I{Xt=i}
k

)
i∈[m]

∈
Δm(k) that is produced by the independent random variables X1, . . . , Xk, it
holds that:

∀ε >

√
log(2n)

2k
, P

{
∀j ∈ [n], |p̂T Cj − pT Cj | ≤ ε

}
> 0

That is, there is at least one k−uniform probability distribution p̂, that certainly
has this property.

The following simple observation will be quite useful in our discussion:

Proposition 1 For any C ∈∈ [0, 1]m×n and any probability p ∈ Δm, the empir-
ical distribution p̂ ∈ Δm produced by the Approximation Lemma assigns positive
probabilities only to rows whose indices belong to supp(p).

Proof. The result of Althöfer assumes a hypothetical repeated sampling of rows
according to the probability vector p. Then it constructs an empirical distribu-
tion p̂ by assigning to each row probability proportional to the number of hits
of this row in the random experiment. It is proved that the resulting empirical
distribution p̂ is actually with positive probability a good approximation of p
wrt the columns of the considered matrix C, so long as the number of samples
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is sufficiently large (this only depends on the number n of columns that have to
be taken into account, but not on the dimension of the probability space). This
implies that at least one realization of this empirical distribution produced by
the random experiment, has this property with certainty. Exactly this repeated
sampling procedure also assures that the support of the empirical distribution
p̂ will certainly be a subset of the support of the actual distribution p.

We now demonstrate how the Approximation Lemma, along with the previous
observation, guarantees the existence of a uniform (2ε)−SuppNE with support
sizes at most

⌈
log(2n)

2ε2

⌉
, for any constant ε > 0:

Theorem 2. Fix any positive constant ε > 0 and an arbitrary [0, 1]−bimatrix
game 〈A, B〉. There is at least one (k, �)−uniform profile which is also a
(2ε)−SuppNE for this game, where k ≤

⌈
log(2n)

2ε2

⌉
and � ≤

⌈
log(2m)

2ε2

⌉
.

Proof. Assume any profile (p,q) ∈ NE(A, B), which we of course know to exist
for any finite game in normal form [23]. We use the Approximation Lemma to
assure the existence of some k−uniform strategy p̂ ∈ Δm with |supp(p̂)| ≤ k ≡⌈

log(2n)
2ε2

⌉
, such that |pT Bj − p̂T Bj | ≤ ε, ∀j ∈ [n]. Similarly, we assume the

existence of some �−uniform strategy q̂ ∈ Δn with |supp(q̂)| ≤ � ≡
⌈

log(2m)
2ε2

⌉
,

such that |Aiq−Aiq̂| ≤ ε, ∀i ∈ [m].
Observe now that, trivially, p̂T B − 1T · ε ≤ pT B ≤ p̂T B + 1T · ε . Similarly,

A · q̂− 1 · ε ≤ A ·q ≤ A · q̂ + 1 · ε . Therefore (also exploiting the Nash Property
of (p,q) and the fact that supp(p̂) ⊆ supp(p)) we have:

∀i ∈ [m], p̂i > 0
/∗ Sampling ∗/

=⇒ pi > 0
/∗ Nash Prop. ∗/

=⇒ Aiq ≥ Arq, ∀r ∈ [m]
/∗ Approx. Lemma ∗/

=⇒ Aiq̂ + ε ≥ Arq̂− ε, ∀r ∈ [m]
=⇒ Aiq̂ ≥ Arq̂− 2ε, ∀r ∈ [m]

The argument for the column player is identical. Therefore, we conclude that
(p̂, q̂) is a (k, �)−uniform profile that is also a (2ε)−SuppNE for 〈A, B〉.

3 The Effect of Statistical Conflict in Network Congestion
Games

In the present section we focus on the impact of statistical conflict on the qual-
ity of a network congestion game, by means of the price of anarchy quality
measure introduced in [20]. We initially present the model and then we give an
upper bound on the blow-up of the price of anarchy, due to the consideration of
probability vectors as (mixed) strategies of the players.
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3.1 The Network Congestion Game Model

Consider having a set of resources E in a system. For each e ∈ E, let de(·) be the
delay per player that requests his service, as a function of the total usage (ie, the
congestion) of this resource by all the players. Each such function is considered
to be non-decreasing in the total usage of the corresponding resource. Each
resource may be represented by a pair of points: an entry point to the resource
and an exit point from it. So, we represent each resource by an arc from its
entry point to its exit point and we associate with this arc the charging cost
(eg, the delay as a function of the load of this resource) that each player has to
pay if he is served by this resource. The entry/exit points of the resources need
not be unique; they may coincide in order to express the possibility of offering
a joint service to players, that consists of a sequence of resources. We denote by
V the set of all entry/exit points of the resources in the system. Any nonempty
collection of resources corresponding to a directed path in G ≡ (V, E) comprises
an action in the system.

Let N ≡ [n]1 be the set of players, each willing to adopt some action in the
system. ∀i ∈ N , let wi denote player i’s traffic demand (eg, the flow rate from
a source node to a destination node), while P i ≡ {ai

1, . . . , a
i
mi
} ⊆ 2E \ ∅ (for

some mi ≥ 2) is the collection of actions, any of which would satisfy player
i (eg, alternative routes from a source to a destination node, if G represents a
communication network). The collection P i is called the action set of player i and
each of its elements contains at least one resource. Any n−tuple � ∈ P ≡ ×n

i=1P i

is a pure strategies profile, or a configuration of the players. Any real vector
p = (p1,p2, . . . ,pn) s.t. ∀i ∈ N, pi ∈ Δ(P i) ≡ {z ∈ [0, 1]mi :

∑mi

k=1 zk = 1} is
a probability distribution over the set of allowable actions for player i, is called
a mixed strategies profile for the n players.

A congestion model
(
(P i)i∈N , (de)e∈E

)
typically deals with players of iden-

tical demands, and thus the resource delay functions depend only on the num-
ber of players adopting each action ([11,22,25]). In the more general case, ie,
a weighted congestion model is the tuple ((wi)i∈N , (P i)i∈N , (de)e∈E). That
is, we allow the players to have different (but fixed) demands for service (de-
noted by their weights) from the whole system, and thus affect the resource
delay functions in a different way, depending on their own weights. We denote
by Wtot ≡

∑
i∈N wi and wmax ≡ maxi∈N{wi}.

The weighted congestion game Γ ≡
(
N, E, (wi)i∈N , (P i)i∈N , (de)e∈E

)
as-

sociated with this model, is the game in strategic form with the set of players
N and players’ demands (wi)i∈N , the set of shared resources E, the action sets
(P i)i∈N and players’ cost functions (λi

�i)i∈N,�i∈Pi defined as follows: For any
configuration � ∈ P and ∀e ∈ E, let Λe(�) = {i ∈ N : e ∈ �i} be the set
of players wishing to exploit resource e according to � (called the view of re-
source e wrt configuration �). We also denote by xe(�) ≡ |Λe(�)| the number
of players using resource e wrt �, whereas θe(�) ≡

∑
i∈Λe(�) wi is the load

of e wrt to �. The cost λi(�) of player i for adopting strategy �i ∈ P i

1 ∀k ∈ N, [k] ≡ {1, 2, . . . , k}.
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in a given configuration � is equal to the cumulative delay λ�i(�) of all the
resources comprising this action:

λi(�) = λ�i(�) =
∑

e∈�i

de(θe(�)) . (1)

On the other hand, for a mixed strategies profile p, the (expected) cost of
player i for adopting strategy �i ∈ P i wrt p is

λi
�i(p) =

∑
�−i∈P−i

P (p−i, �−i) ·
∑
e∈�i

de

(
θe(�−i ⊕�i)

)
(2)

where, �−i ∈ P−i ≡ ×j 	=iPj is a configuration of all the players except for
i, p−i ∈ ×j 	=iΔ(Pj) is the mixed strategies profile of all players except for i,
�−i ⊕ a is the new configuration with i definitely choosing the action a ∈ P i,
and P (p−i, �−i) ≡

∏
j 	=i pj

�j is the occurrence probability of �−i according to
p−i.

Remark: We abuse notation a little bit and consider the player costs λi
�i as

functions whose exact definition depends on the other players’ strategies: In the
general case of a mixed strategies profile p, Eq. (2) is valid and expresses the
expected cost of player i wrt p, conditioned on the event that i chooses path �i.
If the other players adopt a pure strategies profile �−i, we get the special form
of Eq. (1) that expresses the exact cost of player i choosing action �i.

A congestion game in which all players are indistinguishable (ie, they have
the traffic demands and the same action set), is called symmetric. When each
player’s action set P i consists of sets of resources that comprise (simple) paths
between a unique origin-destination pair of nodes (si, ti) in (V, E), we refer to
a (multi–commodity) network congestion game. If additionally all origin-
destination pairs of the players coincide with a unique pair (s, t) we have a
single–commodity network congestion game and then all players share
exactly the same action set. Observe that in general a single–commodity network
congestion game is not necessarily symmetric because the players may have
different demands and thus their cost functions will also differ.

Dealing with Selfish behavior. Fix an arbitrary (mixed in general)
strategies profile p for a congestion game that is described by the tuple(
(wi)i∈N , (P i)i∈N , (de)e∈E

)
. We say that p is a Nash Equilibrium (NE) if

and only if
∀i ∈ N, ∀α, β ∈ P i, pi

α > 0⇒ λi
α(p) ≤ λi

β(p) .

A configuration � ∈ P is a Pure Nash Equilibrium (PNE) if and only if

∀i ∈ N, ∀α ∈ P i, λi(�) = λ�i(�) ≤ λα(�−i ⊕ α) = λi(�−i ⊕ α) .

The social cost SC(p) in this congestion game is

SC(p) =
∑
�∈P

P (p, �) ·max
i∈N
{λ�i(�)} (3)
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where P (p, �) ≡
∏n

i=1 pi
�i is the probability of configuration � occurring, wrt

the mixed strategies profile p. The social optimum of this game is defined as

OPT = min
�∈P

{
max
i∈N

[λ�i(�)]
}

(4)

The price of anarchy for this game is then defined as

PoA = max
p is a NE

{
SC(p)
OPT

}
(5)

Layered Networks. We consider a special family of networks whose behavior
wrt the price of anarchy, as we shall see, is asymptotically equivalent to that of
the parallel links model of [20] (which is actually a 1-layered network): Let � ≥ 1
be an integer. A directed network G = (V, E) with a distinguished source–
destination pair (s, t), s, t ∈ V , is an �-layered network if every (simple)
directed s − t path has length exactly � and each node lies on a directed s − t
path. In a layered network there are no directed cycles and all directed paths are
simple. In the following, we always use m = |E| to denote the number of edges
in an �-layered network G = (V, E).

3.2 Price of Anarchy in Weighted Network Congestion Games

In this subsection we focus our interest on weighted �-layered network congestion
games where the resource delays are identical to their loads. Our source for this
section is [12]. This case comprises a highly non-trivial generalization of the
well–known model of selfish routing of atomic (ie, indivisible) traffic demands via
identical parallel channels [20]. The main reason why we focus on this specific
category of resource delays is that there exist instances of (even unweighted)
congestion games on layered networks that have unbounded price of anarchy
even if we only allow linear resource delays. Eg, [26, p. 256] is an example where
the price of anarchy is indeed unbounded. This example is easily converted into
an �-layered network. The resource delay functions used are either constant, or
M/M/1-like (ie, of the form 1

c−x) delay functions. However, we can be equally bad
even in layered networks with linear resource delay functions. Such an example
is given in [12].

In the following, we restrict our attention to �-layered networks whose resource
delays are equal to their loads. Our main tool is to interpret a strategies profile
as a flow in the underlying network.

Flows and Mixed Strategies Profiles. Fix an arbitrary �-layered network
G = (V, E) and a set N = [n] of distinct players willing to satisfy their own traffic
demands from the unique source s ∈ V to the unique destination t ∈ V . Again,
w = (wi)i∈[n] denotes the varying demands of the players. Fix an arbitrary mixed
strategies profile p = (p1, p2, . . . , pn) where, for sake of simplicity, we consider
that ∀i ∈ [n], pi : Ps−t �→ [0, 1] is a real function (rather than a vector) assigning
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non-negative probabilities to the s−t paths of G (which are the allowable actions
for player i).

A feasible flow for the n players is a function ρ : Ps−t �→ R≥0 mapping
amounts of non-negative traffic (on behalf of all the players) to the s− t paths of
G, in such a way that

∑
π∈Ps−t

ρ(π) = Wtot ≡
∑

i∈[n] wi. That is, all players’ de-
mands are actually satisfied. We distinguish between unsplittable and splittable
(feasible) flows. A feasible flow is unsplittable if each player’s traffic demand
is satisfied by a unique path of Ps−t. In the general case, any feasible flow is
splittable, in the sense that the traffic demand of each player is possibly routed
over several paths of Ps−t.

We map the mixed strategies profile p to a feasible flow ρp as follows: For each
s− t path π ∈ Ps−t, ρp(π) ≡

∑
i∈[n] wi · pi(π). That is, we handle the expected

load traveling along π according to p as a splittable flow, where player i routes
a fraction of pi(π) of his total demand wi along π. Observe that, if p is actually
a pure strategies profile, the corresponding flow is then unsplittable. Recall now
that for each edge e ∈ E,

θe(p) =
n∑

i=1

∑
π:e∈π

wipi(π) =
∑

π:e∈π

ρp(π) ≡ θe(ρp)

denotes the expected load (and in our case, also the expected delay) of e wrt p,
and can be expressed either as a function θe(p) of the mixed profile p, or as a
function θe(ρp) of its associated feasible flowρp. As for the expected delay along
a path π ∈ Ps−t according to p, this is

θπ(p) =
∑
e∈π

θe(p) =
∑
e∈π

∑
π′
e

ρp(π′) =
∑

π′∈Ps−t

|π ∩ π′|ρp(π′) ≡ θπ(ρp) .

Let θmin(ρ) ≡ minπ∈Ps−t{θπ(ρ)} be the minimum expected delay among all
s − t paths. From now on for simplicity we drop the subscript of p from its
corresponding flow ρp, when this is clear by the context. When we compare
network flows, two typical measures are those of total latency and maximum
latency. For a feasible flow ρ the maximum latency is defined as

L(ρ) ≡ max
π:ρ(π)>0

{θπ(ρ)} = max
π:∃i, pi(π)>0

{θπ(p)} ≡ L(p) (6)

L(ρ) is nothing but the maximum expected delay paid by the players, wrt p. From
now on, we use ρ∗ and ρ∗f to denote the optimal unsplittable and splittable flows
respectively. The objective of total latency is defined as follows:

C(ρ) ≡
∑
π∈P

ρ(π)θπ(ρ) =
∑
e∈E

θ2
e(ρ) =

∑
e∈E

θ2
e(p) ≡ C(p) (7)

The second equality is obtained by summing over the edges of π and reversing the
order of the summation. We have no direct interpretation of the total latency
of a flow to the corresponding mixed profile. Nevertheless, observe that C(p)
was used as the b-potential function of the corresponding game that proves the
existence of a PNE.
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Flows at Nash Equilibrium. Let p be a mixed strategies profile and let ρ be
the corresponding flow. For an �-layered network with resource delays equal to
the loads, the cost of player i on path π is λi

π(p) = �wi + θ−i
π (p), where θ−i

π (p)
is the expected delay along path π if the demand of player i was removed from
the system:

θ−i
π (p) =

∑
π′∈P

|π ∩ π′|
∑
j 	=i

wjpj(π′) = θπ(p)− wi

∑
π′∈P

|π ∩ π′|pi(π′) (8)

Thus, λi
π(p) = θπ(p)+

[
�−
∑

π′∈P |π ∩ π′|pi(π′)
]
wi. Observe now that, if p is a

NE, then L(p) = L(ρ) ≤ θmin(ρ) + � wmax. Otherwise, the players routing their
traffic on a path of expected delay greater than θmin(ρ) + � wmax could improve
their delay by defecting to a path of expected delay θmin(ρ). We sometimes say
that a flow ρ corresponding to a mixed strategies profile p is a NE with the
understanding that it is actually p which is a NE.

Maximum Latency Versus Total Latency. We show that if the resource
delays are equal to their loads, a splittable flow is optimal wrt the objective of
maximum latency if and only if it is optimal wrt the objective of total latency.
As a corollary, we obtain that the optimal splittable flow defines a NE where all
players adopt the same mixed strategy.

Lemma 1 ([12]). There is a unique feasible flow ρ which minimizes both L(ρ)
and C(ρ).

Proof. For every feasible flow ρ, the average path latency 1
Wtot

C(ρ) of ρ cannot
exceed its maximum latency among the used paths L(ρ):

C(ρ) =
∑
π∈P

ρ(π)θπ(ρ) =
∑

π:ρ(π)>0

ρ(π)θπ(ρ) ≤ L(ρ)Wtot (9)

A feasible flow ρ minimizes C(ρ) if and only if for every π1, π2 ∈ P with
ρ(π1) > 0, θπ1(ρ) ≤ θπ2(ρ) (e.g., [4], [24, Section 7.2], [26, Corollary 4.2]). Hence,
if ρ is optimal wrt the objective of total latency, for all paths π ∈ P , θπ(ρ) ≥ L(ρ).
Moreover, if ρ(π) > 0, then θπ(ρ) = L(ρ). Therefore, if ρ minimizes C(ρ), then
the average latency is indeed equal to the maximum latency:

C(ρ) =
∑

π∈P:ρ(π)>0

ρ(π)θπ(ρ) = L(ρ)Wtot (10)

Let ρ be the feasible flow that minimizes the total latency and let ρ′ be
the feasible flow that minimizes the maximum latency. We prove the lemma
by establishing that the two flows are identical. Observe that L(ρ′) ≥ C(ρ′)

Wtot
≥

C(ρ)
Wtot

= L(ρ) . The first inequality follows from Ineq. (9), the second from the
assumption that ρ minimizes the total latency and the last equality from Eq.
(10). On the other hand, it must be L(ρ′) ≤ L(ρ) because of the assumption that
the flow ρ′ minimizes the maximum latency. Hence, it must be L(ρ′) = L(ρ) and
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C(ρ′) = C(ρ). In addition, since the function C(ρ) is strictly convex and the set
of feasible flows forms a convex polytope, there is a unique flow which minimizes
the total latency. Thus, ρ and ρ′ must be identical.

The following corollary is an immediate consequence of Lemma 1 and the char-
acterization of the flow minimizing the total latency.

Corollary 1. A flow ρ minimizes the maximum latency if and only if for every
π1, π2 ∈ P with ρ(π1) > 0, θπ1(ρ) ≤ θπ2(ρ).

Proof. By Lemma 1, the flow ρ minimizes the maximum latency if and only if
it minimizes the total latency. Then, the corollary follows from the the fact that
ρ minimizes the total latency if and only if for every π1, π2 ∈ P with ρ(π1) > 0,
θπ1(ρ) ≤ θπ2(ρ) (eg, [24, Section 7.2], [26, Corollary 4.2]).

The following corollary states that the optimal splittable flow defines a mixed
NE where all players adopt exactly the same strategy.

Corollary 2. Let ρ∗f be the optimal splittable flow and let p be the mixed strate-
gies profile where every player routes his traffic on each path π with probability
ρ∗f (π)/Wtot. Then, p is a NE.

Proof. By construction, the expected path loads corresponding to p are equal to
the values of ρ∗f on these paths. Since all players follow exactly the same strat-
egy and route their demand on each path π with probability ρ∗f/Wtot, for each
player i,

θ−i
π (p) = θπ(p)− wi

∑
π′∈P

|π ∩ π′|
ρ∗f (π′)
Wtot

= (1 − wi

Wtot
) θπ(p)

Since the flow ρ∗f also minimizes the total latency, for every π1, π2 ∈ P with
ρ∗f (π1) > 0, θπ1(p) ≤ θπ2(p) (eg, [4], [24, Section 7.2], [26, Corollary 4.2]),
which also implies that θ−i

π1
(p) ≤ θ−i

π2
(p). Therefore, for every player i and every

π1, π2 ∈ P such that player i routes his traffic demand on π1 with positive
probability, λi

π1
(p) = �wi + θ−i

π1
(p) ≤ �wi + θ−i

π2
(p) = λi

π2
(p) . Consequently, p is

a NE.

An Upper Bound on the Social Cost. Next we derive an upper bound on
the social cost of every strategy profile whose maximum expected delay (ie, the
maximum latency of its associated flow) is within a constant factor from the
maximum latency of the optimal unsplittable flow.

Lemma 2. Let ρ∗ be the optimal unsplittable flow, and let p be a mixed strate-
gies profile and ρ its corresponding flow. If L(p) = L(ρ) ≤ α L(ρ∗), for some
α ≥ 1, then

SC(p) ≤ 2 e (α + 1)
(

log m

log log m
+ 1
)

L(ρ∗) ,

where m = |E| denotes the number of edges in the network.



Probabilistic Techniques in Algorithmic Game Theory 41

Proof. For each edge e ∈ E and each player i, let Xe,i be the random variable
describing the actual load routed through e by i. The random variable Xe,i is
equal to wi if i routes his demand on a path π including e and 0 otherwise.
Consequently, the expectation of Xe,i is equal to E {Xe,i} =

∑
π:e∈π wipi(π) .

Since each player selects his path independently, for every fixed edge e, the
random variables in {Xe,i}i∈[n] are independent from each other.

For each edge e ∈ E, let Xe =
∑n

i=1 Xe,i be the random variable that describes
the actual load routed through e, and thus, also the actual delay paid by any
player traversing e. Xe is the sum of n independent random variables with values
in [0, wmax]. By linearity of expectation,

E {Xe} =
n∑

i=1

E {Xe,i} =
n∑

i=1

wi

∑
π
e

pi(π) = θe(ρ) .

By applying the standard Hoeffding bound2 with w = wmax and t =
eκ max{θe(ρ), wmax}, we obtain that for every κ ≥ 1,

P {Xe ≥ e κ max{θe(ρ), wmax}} ≤ κ− e κ .

For m ≡ |E|, by applying the union bound we conclude that

P {∃e ∈ E : Xe ≥ eκ max{θe(ρ), wmax}} ≤ mκ− e κ (11)

For each path π ∈ P with ρ(π) > 0, we define the random variable Xπ =∑
e∈π Xe describing the actual delay along π. The social cost of p, which is equal

to the expected maximum delay experienced by some player, cannot exceed the
expected maximum delay among paths π with ρ(π) > 0. Formally,

SC(p) ≤ E

{
max

π:ρ(π)>0
{Xπ}

}
.

If for all e ∈ E, Xe ≤ eκ max{θe(ρ), wmax}, then for every path π ∈ P with
ρ(π) > 0,

Xπ =
∑
e∈π

Xe ≤ e κ
∑
e∈π

max{θe(ρ), wmax}

≤ e κ
∑
e∈π

(θe(ρ) + wmax)

= e κ (θπ(ρ) + �wmax)
≤ e κ (L(ρ) + �wmax)
≤ e (α + 1)κ L(ρ∗)

2 We use the standard version of Hoeffding bound ([15]): Let X1, X2, . . . , Xn be inde-
pendent random variables with values in the interval [0, w]. Let X =

∑n
i=1 Xi and

let E {X} denote its expectation. Then, ∀t > 0, P {X ≥ t} ≤
(

e E{X}
t

)t/w

.
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The third equality follows from θπ(ρ) =
∑

e∈π θe(ρ), the fourth inequality from
θπ(ρ) ≤ L(ρ) since ρ(π) > 0, and the last inequality from the hypothesis that
L(ρ) ≤ α L(ρ∗) and the fact that �wmax ≤ L(ρ∗) because ρ∗ is an unsplittable
flow. Therefore, using Ineq. (11), we conclude that

P

{
max

π:ρ(π)>0
{Xπ} ≥ e (α + 1)κ L(ρ∗)

}
≤ mκ− e κ .

In other words, the probability that the actual maximum delay caused by p
exceeds the optimal maximum delay by a factor greater than 2 e (α + 1)κ is at
most mκ− e κ. Therefore, for every κ0 ≥ 2,

SC(p) ≤ E

{
max

π:ρ(π)>0
{Xπ}

}
≤ e (α + 1)L(ρ∗)

(
κ0 +

∞∑
k=κ0

kmk− e k

)

≤ e (α + 1)L(ρ∗)
(
κ0 + 2mκ− e κ0+1

0

)
.

If κ0 = 2 log m
log log m , then κ− e κ0+1

0 ≤ m−1, ∀m ≥ 4. Thus, we conclude that

SC(p) ≤ 2 e (α + 1)
(

log m

log log m
+ 1
)

L(ρ∗) .

Bounding the Price of Anarchy. Our final step is to show that the maximum
expected delay of every NE is a good approximation to the optimal maximum
latency. Then, we can apply Lemma 2 to bound the price of anarchy for our
selfish routing game.

Lemma 3. For every flow ρ corresponding to a mixed strategies profile p at NE,
L(ρ) ≤ 3L(ρ∗).

Proof. The proof is based on Dorn’s Theorem [9] which establishes strong duality
in quadratic programming3. We use quadratic programming duality to prove that
for any flow ρ at Nash equilibrium, the minimum expected delay θmin(ρ) cannot
exceed L(ρ∗f )+ � wmax. This implies the lemma because L(ρ) ≤ θmin(ρ)+ � wmax,
since ρ is at Nash equilibrium, and L(ρ∗) ≥ max{L(ρ∗f ), � wmax}, since ρ∗ is an
unsplittable flow.

Let Q be the square matrix describing the number of edges shared by each
pair of paths. Formally, Q is a |P|×|P| matrix and for every π, π′ ∈ P , Q[π, π′] =
|π
⋂

π′|. By definition, Q is symmetric. Next we prove that Q is positive semi-
definite4.

3 Let min{xT Qx+ cT x : Ax ≥ b, x ≥ 0} be the primal quadratic program. The Dorn’s
dual of this program is max{−yT Qy+bT u : AT u−2Qy ≤ c, u ≥ 0}. Dorn [9] proved
strong duality when the matrix Q is symmetric and positive semi-definite. Thus, if Q
is symmetric and positive semi-definite and both the primal and the dual programs
are feasible, their optimal solutions have the same objective value.

4 An n × n matrix Q is positive semi-definite if for every vector x ∈ Rn, xT Qx ≥ 0.
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xT Qx =
∑
π∈P

x(π)
∑

π′∈P
Q[π, π′]x(π′)

=
∑
π∈P

x(π)
∑

π′∈P
|π
⋂

π′|x(π′)

=
∑
π∈P

x(π)
∑
e∈π

∑
π′:e∈π′

x(π′)

=
∑
π∈P

x(π)
∑
e∈π

θe(x)

=
∑
e∈E

θe(x)
∑

π:e∈π

x(π)

=
∑
e∈E

θ2
e(x) ≥ 0

First recall that for each edge e, θe(x) ≡
∑

π:e∈π x(π). The third and the fifth
equalities follow by reversing the order of summation. In particular, in the third
equality, instead of considering the edges shared by π and π′, for all π′ ∈ P ,
we consider all the paths π′ using each edge e ∈ π. On both sides of the fifth
inequality, for every edge e ∈ E, θe(x) is multiplied by the sum of x(π) over all
the paths π using e.

Let ρ also denote the |P|-dimensional vector corresponding to the flow ρ.
Then, the π-th coordinate of Qρ is equal to the expected delay θπ(ρ) on the
path π, and the total latency of ρ is C(ρ) = ρT Qρ.

Therefore, the problem of computing a feasible splittable flow of minimum
total latency is equivalent to computing the optimal solution to the following
quadratic program: min{ρT Qρ : 1T ρ ≥ Wtot, ρ ≥ 0}, where 1/0 denotes the
|P|-dimensional vector having 1/0 in each coordinate. Also notice that no flow of
value strictly greater than Wtot can be optimal for this program. This quadratic
program is clearly feasible and its optimal solution is ρ∗f (Lemma 1).

The Dorn’s dual of this quadratic program is: max{zWtot − ρT Qρ : 2Qρ ≥
1z, z ≥ 0} (e.g., [9], [3, Chapter 6]). We observe that any flow ρ can be regarded
as a feasible solution to the dual program by setting z = 2 θmin(ρ). Hence,
both the primal and the dual programs are feasible. By Dorn’s Theorem [9], the
objective value of the optimal dual solution is exactly C(ρ∗f ). More specifically,
the optimal dual solution is obtained from ρ∗f by setting z = 2θmin(ρ∗f ). Since
L(ρ∗f ) = θmin(ρ∗f ) and C(ρ∗f ) = L(ρ∗f )Wtot, the objective value of this solution is
2θmin(ρ∗f )Wtot − C(ρ∗f ) = C(ρ∗f ).

Let ρ be any feasible flow at Nash equilibrium. Setting z = 2 θmin(ρ), we
obtain a dual feasible solution. By the discussion above, the objective value of
the feasible dual solution (ρ, 2 θmin(ρ)) cannot exceed C(ρ∗f ). In other words,

2 θmin(ρ)Wtot − C(ρ) ≤ C(ρ∗f ) (12)

Since ρ is at Nash equilibrium, L(ρ) ≤ θmin(ρ) + � wmax. In addition, by
Ineq. (9), the average latency of ρ cannot exceed its maximum latency. Thus,



44 S.C. Kontogiannis and P.G. Spirakis

C(ρ) ≤ L(ρ)Wtot ≤ θmin(ρ)Wtot + � wmax Wtot

Combining the inequality above with Ineq. (12), we obtain that θmin(ρ)Wtot ≤
C(ρ∗f ) + � wmax Wtot. Using C(ρ∗f ) = L(ρ∗f )Wtot, we conclude that θmin(ρ) ≤
L(ρ∗f ) + � wmax.

The following theorem is an immediate consequence of Lemma 3 and Lemma 2.

Theorem 3 ([12]). The price of anarchy of any �-layered network congestion
game with resource delays equal to their loads, is at most 8 e

(
log m

log log m + 1
)
.

A recent development which is complementary to the last theorem is the follow-
ing which we state without a proof:

Theorem 4 ([13]). The price of anarchy of any unweighted, single–commodity
network congestion game with resource delays (de(x) = ae · x, ae ≥ 0)e∈E, is at

most 24 e
(

log m
log log m + 1

)
.

3.3 The Pure Price of Anarchy in Congestion Games

In this last subsection we overview some recent advances in the Pure Price of
Anarchy (PPoA) of congestion games, that is, the worst-case ratio of the social
cost of a PNE over the social optimum of the game.

The case of linear resource delays has been extensively studied in the lit-
erature. The PPoA wrt the total latency objective has been proved that it is
3+

√
5

2 , even for weighted multi–commodity network congestion games [2,7]. This
result is also extended to the case of mixed equilibria. For the special case of
identical players it has been proved (independently by the papers [2,7]) that
the PPoA drops down to 5/2. When considering identical users and single–
commodity network congestion games, the PPoA is again 5/2 wrt the maximum
latency objective, but explodes to Θ(

√
n) for multi–commodity network conges-

tion games ([7]). Earlier it was implicitly proved by [12] that the PPoA of any
weighted congestion game on a layered network with resource delays identical to
the congestion, is at most 3.

4 The Effect of Coalitions in Parallel Links Congestion
Games

4.1 The Coalitional KP Model

We consider a collection M = [m] of identical parallel machines (the resources)
and a collection N = [n] of jobs (the users)5. Each user may be allocated to
any of the m available resources. Associated with each user i ∈ [n] is an integer
service demand wi ∈ N+ (eg, the number of elementary operations for serving
user i). We denote by W̃ = {wi}i∈[n] the multiset of the users’ demands.

5 For any integer k ≥ 1, [k] ≡ {1, . . . , k}.
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Definition 4 (Coalitions). A set of k ≥ 1 static coalitions (the players)
C1, . . . , Ck is a fixed partition of W̃ into k nonempty multisets: (i) ∪j∈[k]Cj = W̃ ,
(ii) Cj �= ∅, ∀j ∈ [k], and (iii) Ci ∩ Cj = ∅, ∀i, j ∈ [k] : i �= j.6

For j ∈ [k] let Cj = {w1
j , . . . , w

nj

j }, so that
∑k

j=1 nj = n. Let Wj =
∑nj

i=1 wi
j

be the cumulative service demand required by coalition Cj , let wmax
j =

maxi∈[nj ]{wi
j} be the largest demand handled by coalition Cj , and let Wtot =∑

j∈[k] Wj be the overall service demand required by the system. Wlog assume
that w1

j ≥ · · · ≥ w
nj

j for all j ∈ [k].

Strategies and Profiles. A pure strategy σj = (σi
j)i∈[nj ] for coalition Cj

defines the deterministic selection of a resource σi
j ∈M for each wi

j ∈ Cj . Denote
by §j the set of all pure strategies available to coalition Cj . Clearly, §j = Mnj .
We denote by Sj(σj) = {� ∈ [m] : ∃i ∈ [nj ] with σi

j = �} the set of resources
serving some user of coalition j in pure strategy σj .

A mixed strategy for coalition Cj is a probability distribution pj on the
set §j of its pure strategies (ie, a point of the simplex Δ(§j) ≡ {q ∈ Rnj : q ≥
0; 1T q = 1}). In order to indicate the probability of pure strategy σj being
chosen by Cj when the mixed strategy pj has been adopted, we use (for sake
of simplicity) the functional notation pj(σj), rather than the coordinate of the
vector pj corresponding to σj .

A pure strategies profile or configuration for the coalitions is a collection
σ = (σj)j∈[k] of pure strategies, one per coalition. § ≡ ×j∈[k]§j is the set of all
the possible configurations of the game (called the configuration space). Let
(σ−j , αj) denote the configuration resulting from a configuration σ when coali-
tion Cj unilaterally changes its pure strategy from σj to αj . Similarly, we call the
simplotope Δ(§) ≡ ×j∈[k]Δ(§j) the mixed strategies space of the coalitional
game. A mixed strategies profile p = (pj)j∈[k] ∈ Δ(§) is a collection of mixed
strategies, one per coalition. (p−j,qj) is the mixed strategies profile in which all
players except for player j adopt the strategies indicated by p, while player j
adopts strategy qj (rather than pj).

The support of coalition j ∈ [k] in the mixed profile p is the set Sj(p) =
{σj ∈ §j : pj(σj) > 0}; thus Sj(p) is the set of pure strategies that coalition
j chooses with non-zero probability. A profile p having Sj = §j for all the
coalitions, is called a fully mixed profile. A profile p is said to be a generalized
fully mixed profile, if for each coalition j ∈ [k] it holds that it assigns positive
probability mass to all, but only those optimum m-partitions of its own users’
weights to the links, ie, to all those configurations (but only them) σj ∈ §j which
are lexicographically minimum wrt the load vector (for the definition of the load
of a link see next paragraph).

6 The union and intersection operations are over multisets (and return multisets). An
equivalent representation that only uses sets, would be to consider each user as a pair
(i, wi) of the user’s (unique) identifier and its own (not necessarily unique) service
demand. In this representation the meaning of the union and intersection operations
is clear.
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A special case of particular interest in scheduling literature, is when the coali-
tions are enforced to eventually choose consecutive resources for their own tasks
(or similarly, in a single subinterval in case of interval scheduling). When the
coalitions are forced to choose only this kind of pure strategies for their own
users, then we shall refer to the Coalitional Chains model.

Selfish Costs. Fix a configuration σ = (σj)j∈[k]. Define as load on resource
� ∈M due to coalition Cj , the cumulative demand induced on � by this coalition:
θ�(σj) ≡

∑
i∈[nj ]:σi

j=� wi
j . The total load on resource � ∈M is the total demand

on � with respect to σ, ie, θ�(σ) =
∑k

j=1 θ�(σj) . Similarly, the load induced
on resource � ∈ M by all the coalitions except for coalition Cj , is θ�(σ−j) =∑

r∈[k]\{j} θ�(σr) . The selfish cost λj(σ) of coalition Cj is the maximum load
over the set of resources it employs for its users: λj(σ) = max�∈Sj(σj){θ�(σ)} .

For a mixed profile p, the load on each resource � ∈ M becomes a random
variable induced by the probability distributions pj for all j ∈ [k]. More precisely,
let θ�(pj) =

∑
σj∈Σj

pj(σj)θ�(σj) be the expected load induced on resource � by
coalition j according to mixed strategy pj. The expected load on resource
� ∈ M , denoted by θ�(p), is the expectation of the load on � according to p.
Formally,

θ�(p) =
∑
σ∈§

⎡
⎣
⎛
⎝∏

j∈[k]

pj(σj)

⎞
⎠ · θ�(σ)

⎤
⎦ =

∑
j∈[k]

θ�(pj)

We use θ�(p−j) to denote the expected load that all the coalitions except for
coalition Cj induce on resource �. Formally,

θ�(p−j) =
∑

σ−j∈§−j

⎡
⎣
⎛
⎝ ∏

r∈[k]\{j}
pr(σr)

⎞
⎠ · θ�(σ−j)

⎤
⎦ =

∑
r∈[k]\{j}

θ�(pr)

The conditional expected selfish cost of coalition j adopting the pure
strategy σj ∈ §j , given that the other coalitions follow the strategies indicated
by p, is

λj(p−j, σj) = max
�∈Sj(σj)

{θ�(σj) + θ�(p−j)}

In words, coalition Cj pays for the conditional expectation of its selfish cost,
had it adopted the pure strategy σj ∈ §j . This is because coalition Cj has to
encounter all the possible alternatives for serving its own users prior to the other
coalitions’ determination of their actual action, knowing only their probability
distributions. The expected selfish cost of coalition Cj is defined as the ex-
pectation of coalition Cj ’s conditional expected cost, over all possible actions
that can be taken: λj(p) =

∑
σj∈§j

[pj(σj) · λj(p−j, σj)] .

Remark: Note that each coalition pays for the expected maximum load that
it would cause if it was on its own, plus the expected loads caused by the other
coalitions to each of the resources.
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Nash Equilibria. The definition of expected selfish costs completes the def-
inition of the finite normal form game involving the k static coalitions (the
players) of users that are to be served by the m shared resources: Γ =
〈[k], (§j)j∈[k], (λj)j∈[k]〉. We are interested in the induced Nash Equilibria [23]
of Γ . Informally, a Nash Equilibrium is a (pure or mixed) profile such that no
coalition can reduce its expected selfish cost by unilaterally changing its strategy.
Formally:

Definition 5 (Nash Equilibrium). A pure strategies profile σ = (σj)j∈[k] is
a Pure Nash Equilibrium (PNE) for Γ if, ∀j ∈ [k], ∀αj ∈ §j , λj(σ) ≤
λj(σ−j , αj). A mixed strategies profile p is a Nash Equilibrium (NE) if, ∀j ∈
[k], ∀σj ∈ §j, it holds that pj(σj) > 0 ⇒ σj ∈ argminαj∈§j {λj(p−j, αj)}.
Assume now that the players, rather than trying unilateral changes of strate-
gies, also consider joint changes in groups of at most r players. These changes
are considered to be selfish if they improve the coalitional cost of the players
participating in them.

We call a pure strategies profile which is robust against any sort of selfish
coalitional (≤r)−move, an r−robust PNE. For example, the traditional PNE
when no coalitions are allowed, are in our terminology equivalent to the 1−robust
PNE. When no more than pairs of players are allowed to form coalitions, then
our stable points are the 2−robust PNE. More formally:

Definition 6 (Robust Nash Equilibrium). A pure strategies profile σ =
(σj)j∈[k] is an r−robust PNE for Γ if, ∀S ⊆ [n] : 1 ≤ |S| ≤ r, ∀αS ∈
[m]|S|, λS(σ) ≤ λS(σ−S , αS), where we denote by λS(σ) the expected selfish
cost of coalition S in σ. Similarly, a mixed strategies profile p is an r−robust
NE if, ∀S ⊆ [n] : 1 ≤ |S| ≤ r, ∀αS ∈ [m]|S|, it holds that pS(αS) > 0 ⇒
αS ∈ argminαS∈[m]|S| {λS(p, αS)}.

Social Cost, Social Optimum and Price of Anarchy. For any config-
uration σ = (σj)j∈[k] we define the social cost, denoted SC(σ), to be the
maximum load over the set of the shared resources M , with respect to σ.
That is, SC(σ) = max�∈M{θ�(σ)} = maxj∈[k]{λj(σ)} . For any mixed pro-
file p the social cost is defined as the expectation, over all random choices
of the coalitions, of the maximum load over the set of resources: SC(p) =∑

σ∈§
(∏k

j=1 pj(σj)
)
·max�∈M {θ�(σ)} .

Now let σ∗ be a configuration that minimizes the social cost function, ie,
σ∗ ∈ argminσ {SC(σ)}. Thus σ∗ is an optimal configuration of the set of loads
W̃ to the set of resources M . We denote its value by OPT = SC(σ∗). The Price
of Anarchy (also referred to as Coordination Ratio) [20], is the worst–case
ratio of the social cost paid at any NE, over the value of the social optimum of
the game: PoA = maxp is NE

{
SC(p)
OPT

}
.

Improvement Paths. When we discuss convergence issues, we shall frequently
refer to the notion of improvement paths: These are sequences of configurations
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for the coalitions (ie, points in §), such that any two consecutive configurations
differ only in the pure strategy of exactly one coalition, and additionally the
cost of this unique coalition is strictly less in the latter configuration than in the
former one. Observe that an improvement path is not necessarily acyclic, as it
would be the case in the graph–theoretic notion of a path. The only demand is
that the single coalition that alters its pure strategy (between two consecutive
configurations in the path) has a reason to do so. If it is true that any improve-
ment path of a normal form game is acyclic, then we say that this game holds
the Finite Improvement Property (FIP). This is a very nice property since
it is a sufficient (but not necessary) condition for the existence of PNE for the
game.

4.2 Price of Anarchy in the Coalitional KP Model

Assume that there is a single coalition C1 = W̃ , ie k = 1. In this case, any
NE is an optimum assignment of C1 to M and vice versa. Hence in any NE σ,
SC(σ) = OPT and thus R = 1. On the other hand, the case where k = n reduces
to the standard KP-model [20], for which PoA = Θ

(
log m

log log m

)
[19].

We now prove that for every k ∈ [n], the price of anarchy is
Θ(min{k, log m

log log m}). The lower bound (Theorem 5) holds even for identical tasks
and coalitions of equal cardinality. The upper bound (Theorem 6) holds for
weighted tasks and arbitrary coalitions.

The Lower Bound

Theorem 5. The price of anarchy is Ω(min{k, log m
log log m}) even for identical

tasks and coalitions of equal cardinality.

Proof. We consider m identical parallel links and m unit size tasks partitioned
into k ≥ 2 coalitions each with r ≡ m/k tasks (wlog we assume that m/k is an
integer). We say that a coalition j ∈ [k] hits a link � ∈ [m] if j assigns at least
one of its tasks to �. We first prove a lower bound for the Coalitional Chains
Model.

Lemma 4. In the Coalitional Chains Model, when the number of coalitions
is k = mε for arbitrary constant ε ∈ (0, 1], the price of anarchy is PoA =
Ω
(

log m
log log m

)
.

Proof. It is easy to construct a very simple and natural (especially in scheduling
literature) mixed profile that is indeed a NE and achieves the lower bound of
Ω
(

log m
log log m

)
, for the case where the number of coalitions is k = mε, for arbitrary

constant ε ∈ (0, 1]. This example is the following: Each coalition contains exactly
r = m/k = m1−ε unit size tasks. We consider the following mixed profile p for
the coalitions: Assuming that the m links form a cycle, each coalition j ∈ [k]
chooses uniformly at random a link �j ∈ [m] as its starting point, and then assigns
its r weights to r consecutive links �j, �j + 1(mod m), . . . , �j + r − 1(mod m).
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We show first that this is indeed a NE: Observe that for any link � ∈ [m],
the expected load wrt any subset of coalitions using the profile p is the same:
∀� ∈ [m], θ�(p) =

∑
j∈[k] 1 ·P {j hits link �} =

∑
j∈[k] n

−ε = 1 and ∀� ∈ [m], ∀j ∈
[k], θ�(p−j) =

∑
j′∈[k]\{j} 1 · P {j′ hits link �} =

∑
j′∈[k]\{j} n−ε = 1− n−ε . Ob-

serve now that, since for any coalition j ∈ [k] the expected load of the other
players is exactly the same and there is no chance (wrt p) that two balls of Cj

fall into the same bin, the expected cost of Cj is λj(p) = 1+1−n−ε = 2−n−ε .
On the other hand, ∀σj ∈ §j , λj(p−j, σj) = max�∈Sj(σj){θ�(σj) + θ�(p−j)} ≥
1 + 1 − n−ε = λj(p) , Therefore, we conclude that p is a mixed NE for the
coalitional game.

Next we prove that the coordination ratio for p is Ω
(

log m
log log m

)
. To see this,

simply observe that the expected maximum load induced by p is lower bounded
by the expected maximum load of any subset of links. We call a chain any
set of r consecutive links in M (modulo m). Each player then chooses a chain
independently and uniformly at random to allocate his r weights. Thus, a specific
chain hits a link � ∈ [m] if � belongs to this chain. Consider the subset of
links M ′ ≡ {1, r + 1, 2r + 1, . . . , (k − 1)r + 1}. The links of this subset have
the property that any chain will hit exactly one of the links in M ′. Thus, the
expected maximum load (wrt to the profile p) among the links of M ′ equals
the expected maximum load that we face when throwing k identical balls (the
choices of the players’ chains) to k identical bins (the links included in M ′). But
this is known that it equals Θ

(
log k

log log k

)
. Therefore, the social cost of p is lower

bounded as follows: SC(p) = Ω
(

log k
log log k

)
= Ω

(
log mε

log log mε

)
= Ω

(
ε log m

log ε+log log m

)
.

The social optimum of this example is clearly 1. So, for any constant 1 ≥ ε > 0,
we have that PoA = Ω

(
log m

log log m

)
. ��

General Case. As before, we consider m identical parallel links and m unit
size tasks partitioned into k ≥ 2 coalitions with r ≡ m/k tasks each. The
social optimum is equal to 1. The lower bound is established for the following
generalized fully mixed NE: Let p be the mixed profile where every coalition
chooses r links uniformly at random without replacement and assigns a task
to every chosen link. In other words, every coalition assigns its tasks to any
particular combination of r links with probability 1/

(
m
r

)
. The probability that

coalition j hits link � is 1 −
(
m−1

r

)
/
(
m
r

)
= r

m = 1
k . Every coalition assigns at

most one of its tasks to every link. It is simple to show that p is a NE for the
coalitional game (see [14]).

For every link � ∈ [m] and every positive integer ρ ≤ k, let E�(ρ) ∈ {0, 1} be
the indicator variable of the event that link � is hit by less than ρ coalitions in
the outcome produced by p. For convenience, we call a link � light if it is hit
by less than ρ coalitions, ie if E�(ρ) = 1, and heavy otherwise. The number of
coalitions hitting a given link � is the sum of k independent 0-1 random variables
each becoming 1 with probability 1/k. It is easy to calculate an upper bound on
the probability that a given link is light.
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P {E�(ρ) = 0} ≥
(

k

ρ

)(
1
k

)ρ(
1− 1

k

)k−ρ

≥ 1
expρρ

⇒

P {E�(ρ) = 1} ≤ 1− 1
expρρ

(13)

where we use that
(
k
ρ

)
≥ (k

ρ )ρ and that for every integer k ≥ 2, (1− 1
k )k−1 ≥ 1

exp .
The crucial observation is that the link lightness events are negatively asso-

ciated7. Therefore, for every positive integer ρ ≤ k,

P {E1(ρ) = · · · = Em(ρ) = 1} ≤
(

1− 1
expρρ

)m

≤ exp− m
expρρ (14)

The second inequality follows from e−x ≥ 1−x. The first inequality is established
in Lemma 5 below similarly to [16, Lemma 1].

Before we formally prove (14), we show that it indeed implies the lemma. In
particular, we show that unless ρ = O(min{k, log m

log log m}), it is almost certain that
in the configuration chosen wrt p, at least one of the links is heavy. Indeed for
every constant c ≥ 1, there is a constant α ∈ (0, 1) such that for all positive
integers ρ ≤ α log m

log log m , ρρ ≤ m
c exp log m (note that α tends asymptotically to 1).

Therefore, exp− m
expρρ ≤ m−c. In simple words, with probability at least 1−m−c,

there is some link hit by at least min{k, α log m
log log m} coalitions. If k = Ω( log m

log log m),
the social cost of p is Θ( log m

log log m). If k = o( log m
log log m ), the social cost of p is Θ(k).

Since the optimal social cost is 1, this implies the lower bound of Theorem 5.
The following lemma establishes that the link lightness events are negatively

associated.

Lemma 5. For any fixed positive integer ρ ≤ k,

P {E1(ρ) = · · · = Em(ρ) = 1} ≤
m∏

�=1

P {E�(ρ) = 1}

Proof. For simplicity, we assume an arbitrary fixed threshold ρ ≤ k and denote
the event that a link � is light wrt ρ simply by E� (instead of E�(ρ)). We first
prove that for every � ∈ {2, . . . , m},

P {E1 = · · · = E�−1 = 1|E� = 1} ≤ P {E1 = · · · = E�−1 = 1|E� = 0} (15)

For all l ∈ [m], let θl denote the number of coalitions hitting l in the outcome
produced by p. We fix an � ∈ {2, . . . , m}. To establish (15), we consider the first
� links and fix the total number of hits in the links of [�]. In particular, let M
be an arbitrary fixed integer such that M =

∑
l∈[�] θl. We observe that

P
{
E1 = · · · = E�−1 = 1|E� = 1;

∑
l∈[�] θl = M

}

= P
{
E1 = · · · = E�−1 = 1|θ� ≤ ρ− 1;

∑
l∈[�] θl = M

}

= P
{
E1 = · · · = E�−1 = 1|

∑
l∈[�−1] θl ≥M − ρ + 1;

∑
l∈[�] θl = M

}
(16)

7 The negative association of bin occupancies in the classical “balls and bins” experi-
ment is established eg in [10].
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whereas

P
{
E1 = · · · = E�−1 = 1|E� = 0;

∑
l∈[�] θl = M

}

= P
{
E1 = · · · = E�−1 = 1|θ� ≥ ρ;

∑
l∈[�] θl = M

}

= P
{
E1 = · · · = E�−1 = 1|

∑
l∈[�−1] θl ≤M − ρ;

∑
l∈[�] θl = M

}
(17)

Now it is clear that the probability given in (16) is upper bounded by the
one given in (17), since in both cases we assume the same amount of hits in the
links of [�], but for (16) we assume that more hits (than those assumed by (17))
regard links of [� − 1]. This implies (15) because it holds for any total number
of hits in the links of [�], and thus for any vector of coalitional hits in [�].

Using (15), we obtain that for every � ∈ {2, . . . , m},

P {E1 = · · · = E�−1 = 1} = P {E1 = · · · = E�−1 = 1|E� = 1} · P {E� = 1}
+P {E1 = · · · = E�−1 = 1|E� = 0} · P {E� = 0}

≥ P {E1 = · · · = E�−1 = 1|E� = 1} (18)

Therefore,

P {E1 = · · · = Em = 1} = P {E1 = · · · = Em−1 = 1|Em = 1} · P {Em = 1}

≤ P {E1 = · · · = Em−1 = 1} · P {Em = 1} ≤ · · · ≤
m∏

�=1

P {E� = 1}

where the inequalities are due to a recursive application of (18). ��

Lemma 5 establishes the negative association of the link lightness events and
concludes the proof of the lower bound. ��

The Upper Bound. In this last subsection we establish an asymptotically
tight upper bound on the Price of Anarchy for the coalitional game on identical
parallel links. The approach is similar to the approach of the previous section
that bounds the price of anarchy in weighted congestion games on networks with
linear delays. More technical details can by found in [14].

Theorem 6. For every NE p, SC(p) ≤ O(min{k, log m
log log m})OPT.
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Abstract. Devices connected wirelessly, in various forms including com-
puters, hand-held devices, ad hoc networks, and embedded systems, are
expected to become ubiquitous all around us. Wireless networks pose in-
teresting new challenges, some of which do not arise in standard (wired)
networks. This survey discusses some key probabilistic notions – both ran-
domized algorithms and probabilistic analysis – in wireless networking.

1 Introduction

It is anticipated that wireless networking will continue to have considerable
growth in the foreseeable future, and that devices connected in wireless fash-
ion will pervade our world. As compared to wired networks, two particular chal-
lenges arise in the wireless setting: energy-conservation (since tiny and embedded
devices, especially, have very little access to a continuous source of power) and
interference between nearby transmissions. This survey will briefly reference cer-
tain algorithmic approaches and modeling/analysis techniques that have been
developed to tackle such issues. This is certainly not meant to be an encyclope-
dic survey, and many key papers will not be referred to here. Rather, we hope
to spur the interest of the reader in exploring this exciting area further.

It is natural that probabilistic considerations should help in our present con-
text. First, in addition to their well-known advantages (such as leading to faster
and simpler algorithms), randomized algorithms play a powerful role in any type
of distributed system, through paradigms such as symmetry-breaking; a natural
example of this is contention resolution at the MAC (Media Access Control) layer
of wireless networks, where nearby radios try to access their local radio spectrum
in a contention-free manner for short periods of time. Second, probabilistic anal-
ysis is useful as always in determining “typical” properties of systems. Consider
the example of a set of n transceivers distributed randomly in a bounded region:
this is a particularly natural way to model a set of n sensors thrown over the
region. Probabilistic models are also one obvious approach to model mobility.

We will reference below a few representative examples of randomized algo-
rithms and probabilistic analysis in wireless networking. The reader is referred
to [22] for a comprehensive tutorial on algorithms for sensor networks.
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2 Four Topics

We briefly consider four topics: (a) energy conservation, (b) design and analysis
of media-access protocols, (c) probabilistic analysis of network capacity assuming
a random network topology and/or a random traffic matrix, and (d) probabilistic
analysis/randomized algorithms in efficient aggregation of information in sensor
networks.

A candidate approach that has been proposed for energy savings is through co-
operation: subsets of nodes act as a backbone while other nodes go to sleep, and the
backbone stores and forwards messages for all nodes during this period [5]. This
backbone is updated frequently, in the interest of fairness. Graph-theoretically,
such problems are closely related to connected domination (which is a natural con-
dition to impose on the backbone), domatic partitions (the problem of partitioning
the network into backbones) etc. Randomization plays an essential role in much
work in this area; see, e.g., [5,8,6]. However, good deterministic deterministic ap-
proximation algorithms are also possible, in the case where the underlying network
satisfies inter-node distances that approximate those in some low-dimensional Eu-
clidean space (e.g., if the network has small doubling-dimension) [19]. However,
what if the nodes are selfish and will deviate from the protocol if it satisfies their
individual selfish desire to conserve their own power? See [16] for a game-theoretic
approach to this problem.

Second, as mentioned above, random access is a natural approach for accessing
the medium (i.e., the radio spectrum). While this is a classical, well-studied issue
(see, e.g., [1,3,11]), the analysis becomes much harder for modern protocols in
wireless networking; this is due to additional constraints and features such as
routing in the network, the possibility of multi-channel multi-radio transceivers,
etc. The works [21,12] respectively analyze protocols such as relatives of IEEE
802.11 and present new random-access protocols for multihop wireless networks.
Combined MAC scheduling and end-to-end routing for a given set of end-to-end
connections is achieved in [14]; the ideas include linear-programming relaxations,
distributed graph-coloring, and geometric arguments. See [4] for a provably-
good deterministic distributed packet-scheduling algorithm for the multi-channel
multi-radio setting.

Our next two topics largely involve probabilistic analysis.
Our third topic relates to the fact that as opposed to wired networks, the

capacity or throughput (measured using maximum flow, maximum concurrent
flow, or other similar objective functions) of wireless networks is complicated by
the presence of interference. In a seminal paper, Gupta & Kumar considered the
capacity of a multi-hop wireless network formed by distributed n transceivers
randomly in the unit square; the traffic matrix is random (such as a random
permutation of the transceivers), and the interference model can be any one of
a few standard candidates [10]. This spurred quite some work on generalizations
(e.g., to hybrid networks which have a few base stations, see [17,13]). The ca-
pacity has also been approximated in the worst case using geometric arguments
[15]. Random-graph models for wireless (sensor) networks have been analyzed
in works including [20,9,18].
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Finally, we very briefly mention the field of collecting/aggregating information
from the sensors in a sensor network, in an energy-efficient manner. The basic
idea is that since the data at nearby nodes are likely to be correlated, we could try
and achieve some sort of information-theoretic compression while transmitting
the data from the sensors, as compared to separately outputting the data at
each sensor. See [2,7] for two papers in this growing area; interesting further
connections to fields such as information theory and machine learning appear
ripe for investigation here.
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Abstract. We initiate studying the convergence time to Nash equilibria in player-
specific singleton congestion games. We consider simple games that have natural
representations as graphs as we assume that each player chooses between two re-
sources. We are not able to present an analysis for general graphs. However, we
present first results for interesting classes of graphs. For the class of games that are
represented as trees, we show that every best-response schedule terminates after
O(n2) steps. We also consider games that are represented as circles. We show that
deterministic best response schedules may cycle, whereas the random best response
schedule, which selects the next player to play a best response uniformly at ran-
dom, terminatesafterO(n2) steps inexpectation.These results imply that inplayer-
specificcongestiongames inwhicheachplayerchoosesbetween tworesources, and
eachresource isallocatedbyatmost twoplayers, the randombest responseschedule
terminates quickly. Our analysis reveals interesting relationships between random
walks on lines and the random best response schedule.

1 Introduction

In this paper, we take a first step towards analyzing the convergence time in player-
specific singleton congestion games. In such games, we are given a set of resources and
a set of players. Each player is equipped with a set of non-decreasing, player-specific
delay functions which measure the delay the player would experience from allocat-
ing a particular resource while sharing it with a certain number of other players. A
player’s goal is to allocate a single resource with minimum delay given fixed choices
of the other players. As every such player-specific singleton congestion game possesses
a Nash equilibrium [9], we are interested in analyzing the maximum number of steps
until players iteratively changing to resources with minimum delay reach a Nash equi-
librium. In the following, we call this process the best response dynamics. Furthermore,
we call a schedule which selects the next player to play a best response a best response
schedule. If all players have identical delay functions, that is, if all players sharing a re-
source observe the same delay, we omit the term player-specific and call such a game a
standard singleton congestion game. In the case of standard singleton congestion games,
Ieong et al. [7] show that the best response dynamics terminates after at most n2m steps

� This work was supported in part by the EU within the 6th Framework Programme under con-
tract 001907 (DELIS).
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in a Nash equilibrium. Here, n equals the number of players, and m the number of re-
sources. Their analysis relies on a potential functions that strictly decreases whenever a
player plays a best response.

Milchtaich [9] observes that player-specific singleton congestion games do not admit
a potential function as there exist games in which the best response dynamics may cycle.
However, he proves that from every state of such a game, there exists a sequence of best
responses of polynomial length leading to a Nash equilibrium. He concludes that if we
select the next player to play a best response uniformly at random, the random best
response schedule terminates in a Nash equilibrium after a finite number of steps with
probability one. His analysis leaves open the question how long it takes until the random
best response schedule terminates. In this paper, we address this question as we think
that it is an important and interesting one.

Currently, we are not able to analyze the convergence time in arbitrary player-specific
singleton congestion games. However, we begin with very simple yet interesting classes
of games, and consider games in which each player chooses between two alternatives.
These games can be represented as graphs: each resource corresponds to a node, each
player to an edge. In the following, we call games that can be represented as graphs
with topology t player-specific congestion games on topology t. We consider games
on trees and circles. In the case of player-specific congestion games on trees we show
that the best response dynamics cannot cycle. In order to prove this we observe that
one can replace the player-specific delay functions by common delay functions without
changing the players preferences. Thus, player-specific congestion games on trees are
isomorphic to standard congestion games on tress. From this observation we conclude
a tight upper bound of Θ(n2) on the convergence time in such games. We proceed with
player-specific congestion games on circles, and show that these games are in some
sense the simplest games in which the best response dynamics may cycle. As we are
only given four different delay values per player, we characterize with respect to the
ordering of these four values in which cases the best response dynamics may cycle
and when not. We observe that the delay functions have to be chosen in the right way
in order to obtain games in which deterministic best response schedules may cycle.
Finally, we analyze the convergence time of the random best response schedule in such
games, and prove a tight bound of Θ(n2). Our analysis reveals interesting relationships
between random walks on lines and the random best response schedule.

1.1 Definitions and Notations

Player-specific Singleton Congestion Games: A player-specific singleton congestion
game Γ is a tuple (N ,R, (Σi)i∈N , (di

r)
i∈N
r∈R) where N = {1, . . . , n} denotes the set

of players, R = {1, . . . , m} the set of resources, Σi ⊆ R the strategy space of player
i, and di

r : N → N a strictly increasing player-specific delay function associated with
player i and resource r. In the following, we assume that for every player i, every pair
of resources r1, r2 ∈ ΣiR, and every pair nr1 , nr2 ∈ N: di

r1
(nr1) �= di

r2
(nr2). The

reason for this assumption will be explained later.
We denote by S = (r1, . . . , rn) the state of the game where player i allocates resource

ri ∈ Σi. For a state S, we define the congestion nr(S) on resource r by nr(S) = |{i |
r = ri}|, that is, nr(S) equals the number of players sharing resource r in state S. We
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assume that players act selfishly seeking to allocate single resources minimizing their
individual delays. The delay of player i from allocating resource r in state S is given by
di

r(nr(S)). Given a state S = (r1, . . . , rn), we call a resource r∗ ∈ Σi \ {ri} a best
response of player i to S if, for all r′ ∈ Σi \ {ri}, di

r∗(nr∗(S) + 1) ≤ di
r′(nr′(S) + 1),

and if di
r∗(nr∗(S) + 1) < di

ri
(nri(S)). Note that due to our assumptions on the delay

functions, best responses are unique. The standard solution concept to player-specific
singleton congestion games are Nash equilibria. A state S is a Nash equilibrium if no
player has an incentive to allocate another resource.

In this paper, we only consider games that have natural representations as graphs.
We assume that each player chooses between two resources and that no two players
choose between the same two resources. In this case, we can represent the resources
of such a game as the nodes of a graph and the players as the edges. The direction of
an edge naturally corresponds to the strategy the player plays. We call games that can
be represented as graphs with topology t player-specific singleton congestion games on
topology t.

In the following, we will sometime refer to standard singleton congestion games.
Standard singleton congestion games are defined in the same way as player-specific
singleton congestion games except that we are not given player-specific delay functions
di

r, r ∈ R, i ∈ N , but common delay functions dr, r ∈ R.

Transition Graph: We define the transition graph TG(Γ ) of a player-specific singleton
congestion game Γ as the graph that contains a vertex for every state of the game.
Moreover, there is a directed edge from state S to state S′ if we would obtain S′ from
S by permitting one player to play a best response.

Best Response Dynamics and Best Response Schedule: We call the dynamics in which
players iteratively play best responses given fixed choices of the other players best re-
sponse dynamics. Furthermore, we use the term best response schedule to denote an
algorithm that selects given a state S the next player to play a best response. We assume
that such a player is always selected among those players who have an incentive to
change their strategy. The convergence time t(n, m) of a best response schedule is the
maximum number of steps to reach a Nash equilibrium in any game with n players and
m resources independent of the initial state. If the schedule is a randomized algorithm
then t(n, m) refers to the expected convergence time.

The Type of a Player: Ieong et al. [7] consider standard singleton congestion games.
They observe that one can always replace the delay values dr(nr) with r ∈ R and
1 ≤ nr ≤ n by their ranks in the sorted list of these values without changing the
best response dynamics. Note that this approach is not restricted to standard singleton
congestion games but also applies to player-specific singleton congestion games. That
is, given a player-specific congestion game Γ , fix a player i and consider a list of all
delays di

r(nr) with r ∈ R and 1 ≤ nr ≤ n. Assume that this list is sorted in a non-
decreasing order. For each resource r, we define an alternative player-specific delay
function d̃i

r : N→ N where, for each possible congestion nr, d̃i
r(nr) equals the rank of

the delay di
r(nr) in the aforementioned list of all delays. Due to our assumptions on the

delay functions, all ranks are unique. In the following, we define the type of a player i
by the ordering of the player-specific delays di

r(1), . . . , di
r(n) of the resources r ∈ Σi.
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1.2 Related Work

Milchtaich [9] introduces player-specific singleton congestion games, and proves that
every such game possesses a Nash equilibrium if the player-specific delay functions are
non-decreasing. He also observes that player-specific singleton congestion game do not
admit a potential function as there exist games in which the best response dynamics
may cycle. Milchtaich also observes that from every state of such a game there exists
a sequence of best responses leading to a Nash equilibrium. As these sequences can be
computed efficiently, there exists a polynomial time algorithm computing Nash equilib-
ria in player-specific singleton congestion games. Ackermann, Röglin, and Vöcking [2]
extend these results to player-specific matroid congestion games. In such games the
players’ strategy spaces are sets of bases of matroids on the resources.

A model closely related to player-specific congestion games are standard congestion
games. Rosenthal [10] introduces these games and proves with a potential function that
every such game, regardless of the players’ strategy spaces, and of any assumptions
on the delay functions, possesses a Nash equilibrium. Ieong et al. [7] address the con-
vergence time in such games. They consider standard singleton congestion games, and
show that the best response dynamics converges quickly. Fabrikant, Papadimitriou, and
Talwar [5] show that in general standard congestion games players do not convergence
quickly. Their result especially holds in the case of network congestion games, in which
players seek to allocate a path between different source-sink pairs. Later, Ackermann,
Röglin, and Vöcking [1] extended the result of Ieong et al. [7] towards matroid conges-
tion games, and prove that the matroid property is the maximal property on the players’
strategy spaces guaranteeing polynomial time convergence.

There are several other articles addressing the convergence time to Nash equilibria in
standard or weighted singleton congestion games [3,4,6]. All these analyses depend on
potential functions. To our knowledge, this is the first paper addressing the convergence
time in player-specific singleton congestion games which do not possess a potential
function.

2 Games on Trees

In this section, we consider player-specific congestion games on trees. First, we ob-
serve that one can always replace the player-specific delay functions by common delay
functions such that the players’ types are preserved. In this case, we obtain a standard
singleton congestion game, whose transition graph equals the transition graph of the
player-specific game. We conclude the following theorem.

Theorem 1. Let Γ be a player-specific congestion game on a tree. Then the transition
graph of Γ is cycle-free.

A formal proof of Theorem 1, can be found in a full version. Furthermore, by reworking
the proof of the convergence time of standard congestion game [7], we conclude that
every best response schedule for player-specific congestion games on trees terminates
after O(n2) steps. We also like to mention that this upper bound is tight. That is, there
exists an infinite family of instances of player-specific congestion games on trees and a
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best response schedule that terminates after Ω(n2) steps on every instance of the family
if the initial state is chosen appropriately. A precise description of these instances and
of the corresponding schedule can be found in the full version, too.

Corollary 2. Let Γ be a player-specific congestion game on a tree. Then every best
response schedule terminates after O(n2) steps. Moreover, this analysis is tight.

3 Player-Specific Congestion Games on Circles

We now consider player-specific congestion games Γ on circles. Without loss of gen-
erality, we assume that for every player i: Σi = {ri, ri+1 mod n}. In the following, we
call ri the 0- and ri+1 mod n the 1-strategy of player i. Furthermore, we drop the mod n
terms and assume that all indices are computed modulo n. Due to our assumptions on
the delay functions, there are six different types of players in such games.

di
ri

(1) < di
ri

(2) < di
ri+1

(1) < di
ri+1

(2) type 1

di
ri

(1) < di
ri+1

(1) < di
ri

(2) < di
ri+1

(2) type 2

di
ri

(1) < di
ri+1

(1) < di
ri+1

(2) < di
ri

(2) type 3

We call the other 3 types, which can be obtained by exchanging the identities of the re-
sources ri and ri+1 in the above inequalities, type 1’, type 2’, and type 3’. Furthermore,
we call two players i, j consecutive, if they share a resource, that is, if j = i + 1 or
i = j +1. Given a state S, we call two consecutive players synchronized, if both play the
same strategy, that is, if both either play their 0- or their 1-strategy. Moreover, we call a
set of consecutive players i, . . . , j synchronized if all players play the same strategy.

3.1 A Lower Bound

As a first step, we present an infinite family of games possessing cycles in their transi-
tion graphs, and show a lower bound of Ω(n2) on the convergence time of the random
best response schedules on these games.

Consider the family of games on a circle such that all players are of type 3. It is
not difficult to verify that in every Nash equilibrium of such a game all players are
synchronized. Let S be a state with the following properties. In S there are two non-
empty sets S0 and S1 of synchronized players. Players in S0 all play their 0-strategy,
whereas players in S1 all play their 1-strategy. Again, it is not difficult to verify that in
every such state there are two players who have an incentive to change their strategies.
From both sets only the first player clockwise has an incentive to change her strategy.
From this observation we conclude that there exist cycles in the transition graphs of
such games. We obtain such a cycle by selecting players from the two sets alternately,
and letting them play best responses.

In order to prove a lower bound on the random best response schedule, observe that
with probability 1/2 the total number of players playing their 0-strategy increases or
decreases by one whenever a player is selected uniformly at random. After the strat-
egy change either all players are synchronized, and therefore the random best response
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schedule terminates, or again we are in a state S′ with two sets of synchronized play-
ers. Observe now that this process is isomorphic to a random walk on a line of nodes
v0, . . . , vn. The node vi corresponds to the fact that i players play their 0-strategy. As
the expected time of a random walk on a line with n + 1 nodes to reach one of the two
ends of the line is Θ(n2) if the walk starts in the middle of the line [8], we obtain a
lower bound of Ω(n2) on the convergence time of player-specific congestion games on
circles.

Corollary 3. There exists a family of instances of player-specific congestion games on
circles with initial states such that the convergence time of the random best response
schedule is lower bounded by Ω(n2).

In the following sections, we present a matching upper bound on the convergence time
of the random best response schedule, and prove the following theorem which follows
from Lemma 5, 8, 9, 10 and 11.

Theorem 4. Let Γ be a player-specific congestion game on a circle. Then the ran-
dom best response schedule terminates after O(n2) steps in expectation. Moreover, this
analysis is tight.

We characterize with respect to the types of the players in which cases there are cycles in
the transition graphs of such games. We show that in almost all cases there are no cycles;
cycles only exist if all players are of type 3 or type 3’. We analyze the convergence time
of deterministic best response schedules in cycle-free games by developing a general
framework that allows to derive potential functions. Finally, we analyze the convergence
time of the random best response schedule in the case of games with players of type 3
or type 3’.

3.2 The Impact of Type 1 Players

In this section, we investigate the impact of type 1 players on the existence of cycles
in the transition graphs and on the convergence time of best response schedules. An
intuitive argument for the absence of cycles in the transition graphs of games with at
least one player of type 1 is that every player of type 1 changes her strategy at most
once, whereas in a cycle every player changes her strategy at least two times.

Lemma 5. Let Γ be a player-specific congestion game on a circle. If there exists at
least one player of type 1, then TG(Γ ) is cycle-free. Moreover, every best response
schedule terminates after O(n2) steps.

The proof can be found in the the full version. The running time follows since one can
always split the game into two player-specific congestion games on trees, and embed
the transition graphs of these two games into the transition graph of Γ . In the first game
the player of type 1 is fixed to her 0-strategy, in the second one to her 1-strategy. Note
that Lemma 5 also holds in the case of a player of type 1’. In the following sections, we
will therefore assume that there exist no players of type 1 or 1’, as otherwise we could
apply Lemma 5.
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3.3 A Framework to Analyze the Convergence Time

In this section, we present a framework to analyze the convergence time of best response
schedules in player-specific congestion games on circles. Let Γ be a game such that
there is no player of type 1 or 1’. First, we investigate whether there is a sufficient
condition such that player i does not want to change her strategy in a state S of Γ .

Observation 6. Suppose that player i is not of type 1 or 1′. Then if she is synchronized
with the players i− 1 and i + 1 in S, she has no incentive to change her strategy.

In the following, we call a resource r overloaded in state S, if two players share r.
Additionally, we call a resource r′ underloaded in state S, if no player allocates r′.
Obviously in every state of Γ , the total number of overloaded resources equals the
total number of underloaded resources. From Observation 6, we conclude that in every
state S only players who allocate a resource that is currently overloaded or who could
allocate a resource that is currently underloaded might have an incentive to change their
strategy.

Based on this observation, we now present a general framework to analyze the con-
vergence time of best response schedules. First, we introduce the notion of over- and
underload tokens. Given an arbitrary state S of Γ , we place an overload token on ev-
ery overloaded resource. Additionally, we place an underloaded token on every un-
derloaded resource. Obviously over- and underload tokens alternate on the circle. Fur-
thermore, note that a legal placement of tokens uniquely determines the strategies the
players play. A placement of tokens is legal if no two tokens share a resource, and if the
tokens alternate on the circle.

In the following, we investigate in which directions tokens move if players play best
responses. Consider first a sequence of resources ri, . . . , rj and assume that players
i, . . . , j−1 are of the same type t. Additionally, assume that an overload token is placed
on resource rk , and that an underload token is placed on resource rl with i < k < l < j.
The scenario we consider is depicted in Figure 1.

overloaded underloaded

orientation of the players

ri rj

overload underload
type 2 anticlockwise clockwise
type 2’ clockwise anticlockwise
type 3 clockwise clockwise
type 3’ anticlockwise anticlockwise

Fig. 1. In which directions do the tokens move?

Assume first, that the distance (number of edges) between the two tokens is at least
two. Thus, |l − k| ≥ 2. In this case, we observe that each token can only move in one
direction. The directions are uniquely determined by the type of the players. They can
be derived from investigating, with respect to the players’ type t, which players have
incentives to change their strategy. The directions are stated in Figure 1, too. Assume



A First Step Towards Analyzing the Convergence Time 65

now that the distance between the two tokens is one. That is, k = l−1. Thus, there exists
a player who is interested in the over- and underloaded resource, and who currently
allocates the overloaded one. It is not difficult to verify that this player always has an
incentive to change her strategy. Note that this holds regardless of the player’s type
since we assumed that there are no players of type 1 and 1’. Observe now that after
the strategy change of this player all players are synchronized and therefore there exist
no over- and underloaded resources anymore. In the following, we call such an event a
collision of tokens.

So far, we considered sequences of players of the same type and observed that there
is a unique direction in which tokens of the same kind move. In sequences with multiple
types of players such unique directions do not exist any longer, i. e., overload as well
as underload tokens can move in both directions. However, if two players of different
types share a resource and if due to best responses of both players an over- or underload
token moves onto this resource, then the token could stop there. In the following, we
formalize this observation with respect to overload tokens and introduce the notion of
termination points.

Definition 7. We call a resource ri a termination point of an overload token if the
following conditions are satisfied.

1. The players i− 1 and i have different types. Let these types be ti−1 and ti.
2. In sets of consecutive players of type ti−1 overload tokens move clockwise, whereas

they move anticlockwise in sets of consecutive players of type ti.

We illustrate the definition in Figure 2a). Let player i− 1 be of type 3, and let player i
be of type 2. In this case, the requirements of the definition are satisfied. Assume, that
the player i− 1 plays her 1-strategy and that she is synchronized with the player i− 2.
Additionally, assume that player i plays her 0-strategy and that she is synchronized with
the player i + 1. Observe now that the token cannot move as neither the player i − 1
nor the player i has an incentive to change her strategy. Suppose now that initially all
players along the path play their 0-strategy. Then an overload token that moves from the
left to the right along the path stops at ri. The token may only move on if one of the two
players is not synchronized with its neighbor any longer. In this case, this player always
has an incentive to change her strategy as she can allocate a resource that is currently
underloaded. Thus, an underload and an overload token collide. Additionally, if initially
all players play their 1-strategy and an overload token moves from the right to the left
along the path, we observe the same phenomenon. The token cannot pass the resource
ri unless it collides with an underload token.

Note that the definition of a termination point can easily be adopted to underload
tokens. A list of all termination point is given in Figure 2b). In the left column we
present all termination points for overload tokens, in the right one for underload tokens.

3.4 Analyzing the Convergence Time

In this section, we analyze the convergence time in player-specific congestion games on
circles. We distinguish between the following four cases.
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type 2type 3

overloaded

ri

orientation of the players →→←← ←←→→
2’ 2 2 2’
3 3’ 3 3’
3 2 -

- 2 3’
- 3 2’

2’ 3’ -

Fig. 2. a) An example of a termination point. b) A list of all termination points.

Case 1: For both kinds of tokens there exists at least one termination point.
Case 2: Only for one kind of token there exists at least one termination point.
Case 3: There exist no termination points but over- and underload tokens move in

opposite directions.
Case 4: There exist no termination points and over- and underload tokens move in

the same direction.

In the first two cases, we present potential functions and prove that the transition graphs
of such games are cycle-free and that every best response schedule terminates after
O(n2) steps. In the third case, we can do slightly better and prove an upper bound of
O(n) on the convergence time. Note that in all cases one can easily construct matching
lower bounds. Only in the fourth case deterministic best response schedules may cycle.
In this case, we prove that the random best response schedule terminates after O(n2)
steps in expectation.

Before we take a closer look at the different cases, we discuss which games with
respect to their players’ types belong to which case. Games with players of type 2 and
2’ or with players of type 3 and 3’ belong to the first case. Additionally, some games
with more than two types of players belong to this case. The second case covers all
games with at least three different kind of players which do not belong to the first case.
Furthermore, it covers games with type 2 and type 3 players, and games with type 2’
and type 3’ players. Games with type 2 players only, or games with type 2’ players only
belong to the third case. Finally, games with type 3 players only and games with type 3’
players only belong to the fourth case. These observations can easily be derived from
Figure 2 b).

Case 1

Lemma 8. Let Γ be a player-specific congestion game on a circle such that there are
termination points for both kinds of tokens. Then TG(Γ ) is cycle-free. Moreover, every
best response schedule terminates after O(n2) steps.

Proof. Let S be a state of Γ and consider the mapping that maps every token in S
to the next termination point lying in the direction in which the token moves. In the
following, we define d(t, S) as the distance of a token t in state S to its correspond-
ing termination point. Obviously d(t, S) ≤ n. Consider now the potential function
φ(S) =

∑
token t d(t, S) and suppose that a player plays a best response. Then either
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one tokens moves closer to its termination point or two tokens collide. In both cases
φ(S) decreases by at least 1. Thus, φ(S) strictly decreases if a player plays a best re-
sponse and therefore, TG(Γ ) is cycle-free. Moreover, as φ(S) is upper bounded by
O(n2), every best response schedule terminates after O(n2) steps. ��

Case 2

Lemma 9. Let Γ be a player-specific congestion game on a circle such that there are
termination points only for one kind of token. Then TG(Γ ) is cycle-free. Moreover,
every best response schedule terminates after O(n2) steps.

Proof. Without loss of generality, assume that termination points only exist for overload
tokens. In this case, we define d(to, S) for every overload token to as in the proof of
Lemma 8. For every underload token tu we define d(tu, S) as follows. Let to be the
first overload token lying in the same direction as tu moves.

1. If to moves in the opposite direction as tu, then we define d(tu, S) as the distance
between the two tokens. The distance of two tokens moving in opposite directions
is defined as the number of moves of these tokens until they collide.

2. If to moves in the same directions as tu, then we define d(tu, S) as the distance
between tu and to plus the distance between to and the first termination point at
which to has to stop. Thus, d(tu, S) equals the maximum number of moves of
these two tokens until they collide.

Observe, that for every underload token tu: d(tu, S) ≤ 2n. Consider, the potential
function φ : Σ → N × N with φ(S) = (φ1(S), φ2(S)). φ1(S) equals the total number
of overload tokens in S, whereas φ2(S) equals the sum of all d(t, S) for all under-
and overload tokens. Suppose now that a player plays a best response. Obviously if
two tokens collide, then φ1(S) decrease by one. Moreover, if there is no collision, then
φ2(S) decreases. Note that in the first case φ2 may increase. This may happen if, due
to the collision, d(tu, S) of a remaining underload token tu has to be recomputed as its
associated overload token has been removed. The new value is upper bounded by the
sum of the old values of tu and the collided underload token plus 1. Now consider an
ordering <φ of the states of Γ with respect to φ. Let S and S′ be two states of Γ . Then

S <φ S′ ⇔
{

φ1(S) < φ1(S′) or
φ1(S) = φ1(S′) and φ2(S) < φ2(S′) .

Observe, that φ strictly decreases if a player plays a best response. Thus, TG(Γ ) is
cycle-free. Additionally, observe that φ1 is upper bounded by n, and that φ2 is upper
bounded by n2. However, as φ2 only increases by one when φ1 decreases, we conclude
that every best response schedule terminates after O(n2) steps. ��

Case 3. The analysis of the third case follows similar arguments then the proofs of
Lemma 8 and Lemma 9. We therefore omitted a formal proof of the following lemma.



68 H. Ackermann

Lemma 10. Let Γ be a player-specific congestion game on a circle such that there
exist no termination points but over- and underload tokens move in opposite directions.
Then TG(Γ ) is cycle-free. Moreover, every best response schedule terminates after
O(n) steps.

Case 4. In the following, we present a proof of the fourth case with respect to players
of type 3. By symmetry of the types 3 and 3’, the same result holds with respect to
games with players of type 3’, too.

Lemma 11. Let Γ be a player-specific congestion game on a circle such that all players
are of type 3. Then the random best response schedule terminates after O(n2) steps in
expectation.

Proof. In order to prove the lemma, we prove the following lemma.

Lemma 12. In every state S of Γ the number of players who want to change from their
0- to their 1-strategy equals the number of players who want to change from their 1- to
their 0-strategy.

Proof. In the following, we call a synchronized set of consecutive players maximal, if
the next players to both ends of the set play different strategies than the synchronized
players. Obviously in every state S of Γ which is not an equilibrium the number of
maximal, synchronized sets of players playing their 0-strategy equals the number of
maximal, synchronized subsets of players playing their 1-strategy.

We now prove that in every maximal, synchronized set of consecutive players only
the first player clockwise has an incentive to change her strategy. Thus, in every max-
imal set, there is only a single player who wants to change her strategy. Note that this
suffices to prove the lemma.

First, consider a maximal, synchronized subset of consecutive players N ′ = {i, . . .
j} which all play their 0-strategy. Then the player i− 1 plays her 1-strategy, and there-
fore the players i − 1 and i share the resource ri. In this case, player i can decrease
her delay by changing to her 1-strategy. Other players k ∈ N ′, k �= i, do not have an
incentive to change their strategy as this would increase their delay.

Second, consider a maximal, synchronized subset of consecutive players N ′ =
{i, . . . j} which all play their 1-strategy. Then player i − 1 plays her 0-strategies and
therefore no player currently allocates the resource ri. Observe now that player i may
decrease her delay by changing to her 0-strategy. Again, all other players k ∈ N ′,
k �= i, do not have an incentive to change their strategy as this would increase their
delay. This is especially true for the last player, who currently allocates an overloaded
resource. ��

Consider now the random best response schedule activating an unsatisfied player uni-
formly at random. From Lemma 12 we conclude that the total number of players play-
ing their 0-strategy increases or decreases by 1 with probability 1/2. Combining this
observation with the observation that in a Nash equilibrium all players play the same
strategy, we conclude that the random best response schedule is isomorphic to a random
walk on a line with n + 1 vertices. Vertex vi corresponds to the fact that i players play
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their 0-strategy. As the time of such a random walk to reach one of the two ends of the
line is O(n2), the lemma follows. ��

4 Conclusions and Open Problems

In this paper, we presented a first step towards analyzing the convergence time in player-
specific congestion games. We presented polynomial upper bounds on the convergence
time in very simple games. The techniques we invented seem to be inapplicable to
games on more general graphs. Therefore, we leave it as a challenging open question
to bound the convergence time in more general games. However, we conjecture that a
family of instances with exponential expected convergence time can be constructed.
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1. Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure on con-
gestion games. In: Proceedings 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 613–622 (2006)
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Abstract. The line-of-sight networks is a network model introduced re-
cently by Frieze et al. It considers wireless networks in which the underly-
ing environment has a large number of obstacles and the communication
can only take place between objects that are close in space and are in
the line of sight to one another. To capture the main properties of this
model, Frieze et al. proposed a new random networks model in which
nodes are randomly placed on an n × n grid and a node can communi-
cate with all the nodes that are in at most a certain fixed distance r and
which are in the same row or column.

Frieze et al. concentrated their study on basic structural properties
of the random line-of-sight networks and in this paper we focus on their
communication aspects in the scenario of ad-hoc radio communication
networks. We present efficient algorithms for two fundamental commu-
nication problems of broadcasting and gossiping in the classical ad-hoc
radio communication model adjusted to random line-of-sight networks.

1 Introduction

In this paper we study basic communication properties of random Line-of-Sight
networks, a model of wireless networks introduced recently by Frieze et al. [10].
The model of line-of-sight networks has been motivated by wireless networking
applications in complex environments with obstacles. It considers scenarios of
wireless networks in which the underlying environment has obstacles and the
communication can only take place between objects that are close in space and
are in the line of sight (are visible) to one another. In such scenarios, the classical
random graph models [2] and random geometric network models [16] seem to be
not well suited, since they do not capture main properties of environments with
obstacles and of line-of-sight constraints. Therefore Frieze et al. [10] proposed
a new random network model that incorporates two key parameters in such
scenarios: range limitations and line-of-sight restrictions. In the model of Frieze
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et al. [10], one places points randomly on a 2-dimensional grid and a node can see
(can communicate with) all the nodes that are in at most a certain fixed distance
and which are in the same row or column. One motivation is to consider urban
areas, where the rows and the columns correspond to “streets” and “avenues”
among a regularly spaced array of obstructions.

Frieze et al. [10] concentrated their study on basic structural properties of the
line-of-sight networks like the connectivity, k-connectivity, etc. In this paper, we
initiate the study of fundamental communication properties of the random line-
of-sight networks in the scenario of ad-hoc radio communication networks. Our
focus is on two classical communication problems: broadcasting and gossiping. In
the broadcasting problem, a distinguished source node has a message that must
be sent to all other nodes. In the gossiping problem, the goal is to disseminate
the messages so that each node will receive messages from all other nodes.

1.1 Random Line-of-Sight Network and Communication Protocols

A line-of-sight network is defined on a set T of grid points {(x, y) : x, y ∈
{1, 2, . . . , n}}. Let p, called a placement probability, be a parameter of the net-
work, 0 ≤ p ≤ 1. Then for each lattice point x from T we place a wireless device
at x independently at random with probability p.

To measure the distance between any lattice points we use the L1-distance:
for two points p = (i, j) and q = (i′, j′), we define dist(p, q) = |i − i′|+ |j − j′|.
Each node has a (common) range r. There is a communication link between two
nodes x, y iff x and y are on the same straight line of the grid and dist(x, y) ≤ r.

As observed in [10], in the scenario of wireless communication, comparing with
classic geometric network model, line-of-sight networks capture some important
aspects of wireless networks. For example, in urban area, two wireless devices
at different streets can not communicate each other even the Euclidean distance
between them is quite small.

To study communication in the network, we consider an extension of the
so-called ad-hoc radio networks model of communication [1,3,6,8,9,11,15]. We
assume that all nodes have access to a global clock and work synchronously in
discrete time steps called rounds. In radio networks the nodes communicate by
sending messages through the edges of the network. In each round each node
can either transmit the message to all its neighbors at once or can receive the
message from one of its neighbors (be in the listening mode). A node x receives
a message from its neighbor y in a given round iff: (i) x does not transmit (is in
the listening mode) and (ii) y is the only neighbor of x that is transmitting in
that round. In the case that constraint (ii) is violated, we say a collision occurs,
in which case no message is received by x. In particular, we assume that x is
unable to detect if a collision happened or none of its neighbors did transmit.

In the classical radio network model a node cannot receive any message if
more than one of its neighbors transmits because the radio signals from these
nodes will interfere. Although this definition is often used to model radio ad hoc
networks, we believe that this definition of the collision here is too narrow to
fit the framework of ad hoc networks in the line-of-sight model. Since in a radio
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Fig. 1. The nodes on bold line could cause collision when y sends a message to x

network messages are sent out via microwave signals, signals can interfere each
other if they overlap in space (rather than just by saying that when two or more
neighbors transmit). For example, in Figure 1, a sending node z can interfere
the node x from receiving the message of y, even though z is not neighbor of x.

To cope with this phenomenon, we add one more constraint to ensure that
node x receives the message from y: (iii) no neighbor of y is transmitting and
there is no node z that is transmitting and that lies on a grid-line perpendicular
to the segment xy and is at distance at most r from the segment xy, see, e.g.,
Figure 1. If either condition (ii) or (iii) is violated, then we say a collision occurs.
It is easy to see that any gossiping algorithm that works in our model will
certainly work in the traditional model, but not vice versa.

All protocols designed in this paper are distributed and there is no centralized
coordinator. We assume the length of the message sent in each single round is at
most polynomial in n, and thus, each node can combine multiple messages into
one. Throughout this paper, we assume that each node has a unique integral ID
that is bounded in polynomial of the number of nodes. The node only knows its
own ID, the placement probability p, and its range r; the topology of the network
is unknown for any node (this is the so-called unknown network topology model,
see, e.g., [6,13]). In addition, we assume in Section 3 only that each node knows
its own location in the grid. We do not use this assumption in Sections 4–5.

We say an algorithm completes broadcasting in T rounds if at the end of round
T each node already received the message from the source. We say an algorithm
completes gossiping in T rounds if at the end of round T each node already
received messages from all other nodes.

1.2 Properties of Random Line-of-Sight Networks

Two parameters, r and p, play a critical role in the analysis of properties of
the random line-of-sight networks. Frieze et al. [10] proved that when r = o(n)
and r = ω(log n), if r · p = o(log n), the network is disconnected with high
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probability, and therefore no full information exchange (including broadcasting
and gossiping processes) can be performed in that case. Therefore we will assume
that r = o(n), r = ω(log n), and r·p ≥ c·log n for some sufficiently large constant
c. This will ensure that the network is connected with high probability.

Assuming that r ·p > c ·log n for some sufficiently large constant c, we can also
make some further assumptions about the structure of the input network. And so,
it is easy to prove, that such a random line-of-sight network has minimum and
maximum degree Θ(r p), and has diameter D = Θ(n/r), where these bounds
hold with high probability. Besides these easy properties, we also need some
other properties that are essential for our algorithms. Before we state them, let
us introduce one more notation: for any r × r square in the grid T , we call the
graph induced by the nodes in this sub-grid as an r-graph.

Lemma 1. [10] If rp > c log n for certain constant c, then with high probability:

(1) all r-graphs are connected, and
(2) the diameter of any r-graph is α = Θ(log r/ log(p r)).

For simplicity of presentation, throughout the paper we will use term α as in
the lemma above. All the claims in Lemma 1 hold with high probability, that is,
with probability at least 1 − 1/n3. Therefore, from now on, we shall implicitly
condition on these events.

1.3 Related Prior Works

Broadcasting and gossiping have been extensively studied in the ad-hoc radio
networks model of communication. Before we present prior works on these prob-
lems, we want to clarify that in all these models, broadcasting and gossiping
problems are considered on the communication graph induced by the accessibil-
ity of nodes: if the signal of node x can reach y, then there is an edge from x to
y. Let us call the set of nodes that can interfere x from getting message from y
a collision set (of x with respect to y), denoted by c(x, y). In the classical radio
network model studied before, c(x, y) can be implicitly expressed by the com-
munication graph: c(x, y) = {z : z is the neighbor of y}. But in our model, there
is no such a clean structure and collision sets c(x, y) cannot be defined in term
of the communication graph, see Section 2 for the definition. So all algorithms,
even those working in general communication graphs, do not work without any
modifications in our model. To the best of our knowledge, we have not seen any
work on the broadcasting and gossiping problems in ad-hoc radio networks with
collisions as defined in this paper.

Prior works with standard definition of collision sets. In the centralized
scenario, when each node knows the entire network, Kowalski and Pelc [15] gave
a centralized deterministic broadcasting algorithm running in O(D+log2 n) time
and Ga̧sieniec et al. [11] designed a deterministic O(D +Δ log n)-time gossiping
algorithm, where D is the diameter and Δ the maximum degree of the network.
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There has been also a very extensive research in the non-centralized (dis-
tributed) setting in ad-hoc radio networks, see, e.g., [3,6,12,14,15] and the ref-
erences therein. In the model of unknown topology (directed) networks, there
are known optimal randomized broadcasting O(D log(n/D) + log2 n)-time algo-
rithms [6,14] and an almost optimal O(n log2 D)-time deterministic algorithm
[6]. The fastest randomized algorithm for gossiping in directed networks runs in
O(n log2 n) time [6] and the fastest deterministic algorithm runs inO(n4/3 log4 n)
time [12]. For undirected networks, both broadcasting and gossiping have deter-
ministic O(n)-time algorithms [1,4], what is asymptotically tight [1,13]. Clementi
et al. [3] gave an algorithm that runs in O(D Δ2 log n) time.

Dessmark and Pelc [8] consider broadcasting in ad-hoc radio networks in a
model of geometric networks with the nodes knowing their own locations on the
plane, and Elsässer and Ga̧sieniec [9], Chlebus et al. [5], and Czumaj and Wang
[7] consider broadcasting in ad-hoc radio random networks.

1.4 New Contributions

In this paper we present the first thorough study of basic communication prim-
itives in random line-of-sight networks.

We first consider in Section 3 the most powerful model in which each node
knows its own geometric position in the grid (but it does not know positions
of other nodes). In this model, we present a distributed deterministic algorithm
that completes gossiping in O(r4 p2 α log n + n/r) steps, with α as in Lemma 1.

Next, we study the model in which each node knows its own ID, the values of
n, r, and p, but it is not aware of any other information about the network. We
believe that this is the main model to be studied in line-of-sight networks. We
present two algorithms in this model. First, in Section 4, we design a distributed
deterministic algorithm that completes broadcasting in O(r4 p2 α log n + n/r)
steps. Next, in Section 5, we design a distributed randomized algorithm that
completes gossiping in O(r4 p2 α log2 n + n/r) steps. These two results demon-
strate that even if only a very limited information about the network is known
to the nodes, still broadcasting and gossiping can be performed very fast.

The running time of O(r4 p2 α log2 n + n/r) steps for these algorithms may
seem to be unimpressive, but this running time is especially efficient in the most
interesting scenario when r is not too large and the product r · p is just a little
larger than that needed to ensure the connectivity of the network. In particular,
if r ≤ O(n1/5/ log3/5 n), our algorithms achieve the optimal number of steps
which is proportional to the diameter of the network. Thus, we demonstrate
that for a large range of the input parameters (including those being the most
interesting) our algorithms are achieving asymptotically optimal running time.

Finally, in all the bounds above, we have assumed the model of collisions
as discussed in Section 1.1. Still, our algorithms can be also run (without any
modification) in the classical model of collisions in radio networks. Furthermore,
it is not difficult to see that in that case one can speed up all our algorithms to
remove a factor Θ(r2) from the first term in the running times. And so, the first
two algorithms have the running time of O(r2p2α log n+n/r) and the third one
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runs in O(r2p2α log2 n + n/r) time. This yields an optimal number of steps for
r = O(n1/3/ log n). The details are deferred to the full version of the paper.

2 Preliminaries

Let V be the set of nodes in the grid. For any node x, define N(x) to be the
set of nodes are reachable from x in one hop, N(x) = {y ∈ V : dist(v, u) ≤
r and x, y are on the same straight line}, where dist(v, u) is the distance
between v and u. Any node in N(v) is called a neighbor of v, and set N(v)
is called the neighborhood of v. For any X ⊆ V , let N(X) =

⋃
x∈X N(x). Define

the kth neighborhood of a node v, Nk(v), recursively as follows: N0(v) = v and
Nk(v) = N(Nk−1(v)) for k ≥ 1. Let Δ be the maximum degree and D be the
diameter of the radio network. As we mentioned earlier, in our model Δ = Θ(r p)
and D = Θ(n/r), with high probability.

Definition 1 (Collision sets). Let x, y ∈ T with x ∈ N(y). We define the
collision set for the communication from y to x, denoted by C(y, x), to be the
set of nodes that can interfere x from receiving a message from y. Set C(y, x)
contains all nodes z ∈ T that satisfy one of the following:

1. z ∈ N(x) ∪N(y), or
2. there is a grid point q such that (i) q lies on the segment connecting x and

y, (ii) grid line zq is orthogonal to the grid line xy, and (iii) dist(z, q) ≤ r.

It is easy to see that C(y, x) = O(r2 p) with high probability.

Strongly selective families. Let k and m be two arbitrary positive integers with
k ≤ m. Following [3], a family F of subsets of {1, . . . , m} is called (m, k)-strongly-
selective if for every subset X ⊆ {1, . . . , m} with |X | ≤ k, for every x ∈ X there
exists a set F ∈ F such that X ∩ F = {x}. It is known (see, e.g., [3]) that for
every k and m, there exists a (m, k)-strongly-selective family of size O(k2 log m).

In the last years the concept of strongly-selective families has been success-
fully used to design fast deterministic distributed broadcasting and gossiping
algorithms. In particular, Clementi et al. [3] used this approach to obtain a de-
terministic distributed gossiping algorithm for general radio networks (with the
standard notion of collision sets) that runs in O(D Δ2 log n) time.

We can use this approach for line-of-sight networks (and for our notion of
collision sets) to obtain the following result.

Lemma 2. In random line-of-sight networks, for any integer k, in (determin-
istic) time O(k r4 p2 log n) all nodes can send their messages to all nodes in
their kth neighborhood. The algorithm may fail with probability at most 1/n2

(where the probability is wrt. the random choice of the nodes in the network).

Proof. Our arguments follow a nowadays standard approach of applying selective
families to broadcasting and gossiping in radio ad-hoc networks, see, e.g., [3].
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Since in our setting, for each pair of nodes x and y, we have a collision set of
size |C(y, x)| = O(r2 p), with high probability.

Let us consider a random line-of-sight network with at most n2 nodes. Assume,
wlog that all IDs are distinct integers in {1, 2, . . . , nλ}, for a constant λ. Let F =
{F1, F2, . . . } be an (nλ, Θ(r2 p))-strongly-selective family of size O(r4 p2 log n);
the existence of such family follows from our discussion above. Then, consider a
protocol in which in step t only the nodes whose IDs are in the set Ft transmit.
By the strong selectivity property, for every node u and its every neighbor v
there is at least one time step when u does not transmit and v is the only node
of C(v, u) that transmits in that step since C(v, u) = O(r2 p). Therefore, every
node will receive a message from all its neighbors after O(r4 p2 log n) steps.
Hence, we can repeat this procedure to ensure that after O(k r4 p2 log n) steps,
every node will receive a message from its entire kth neighborhood. ��

The following is an immediate corollary of Lemma 2 obtained by setting k = D
(which corresponds to the bound from [3] in our setting):

Corollary 1. Distributed gossiping in random line-of-sight networks can be per-
formed in deterministic time O(D r4 p2 log n) = O(n r3 p2 log n). The algo-
rithm may fail with probability at most 1/n2.

Since r p = Ω(log n), the running time of this algorithm is in the best case
Ω(n log4 n), and thus it is superlinear. The goal of this paper is to develop
algorithms that are faster, optimally, those that achieve the running time O(D),
which is a trivial asymptotic lower bound for broadcasting and gossiping.

3 Deterministic Algorithm with Position Information

We consider the gossiping problem in random line-of-sight networks in the model,
where each node knows its own geometric position in the grid. In such model,
Dessmark and Pelc [8] give a deterministic distributed broadcasting algorithm
that runs in O(D) time. It can be applied to solve the broadcasting problem
in our model, with the same running time. We can prove a similar result for
gossiping by extending the preprocessing phase from [8] and use an appropriate
strongly-selective family to collect information about the neighbors of each node.

Theorem 1. If every input node knows its location in the n × n grid, then
the algorithm Gossiping-Known-Locations-D below will complete gossiping in a
random line-of-sight network in deterministic time O(α r4 p2 log n + n/r). The
algorithm may fail with probability at most 1/n2.

Let us introduce some notations. We label the horizontal lines in the grid as
H1, . . . , Hn from bottom to top; label the vertical lines in the grid as V1, . . . , Vn

from left to right. We refer the crossing point of Hi and Vj as (Hi, Vj). For
each Hi, we further divide Hi into segments of length of r/2, except for the last
segment which is of length at most r/2, and label them as: Hi,1, . . . , Hi,2 n/r�
from left to right. Define Vj,1, . . . , vj,2 n/r� in a similar way, from bottom to top.
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Gossiping-Known-Locations-D

Preprocessing: do local gossiping using Lemma 2 (with k = α)
to ensure that each node knows messages and positions of its neighbors

for j = 1 to �2n/r� do:
for c = 1 to 4 do:

for each i with i mod 4 + 1 ≡ c in parallel do:
the node with the minimum ID in the Hi,j transmits

for j = �2n/r� downto 1 do:
for c = 1 to 4 do:

for each i with i mod 4 + 1 ≡ c in parallel do:
the node with the minimum ID in the Hi,j transmits

for j = 1 to �2 n/r� do:
for c = 1 to 4 do:

for each i with i mod 4 + 1 ≡ c in parallel do:
the node with the minimum ID in the Vi,j transmits

for j = �2n/r� downto 1 do:
for c = 1 to 4 do:

for each i with i mod 4 + 1 ≡ c in parallel do:
the node with the minimum ID in the Vi,j transmits

Postprocessing: do local gossiping using Lemma 2 (with k = α)

It is easy to see that for r p ≥ c log n with a sufficiently large c, with high
probability, there is a node in each segment. For any node x, we define Mt(x) as
the messages known by x at step t. For any segment S, we define Mt(S) as the
common messages known by all nodes in segment S at step t.

Proof. After the preprocessing in the algorithm Gossiping-Known-Locations-D,
by Lemma 2, every node knows which segment it belongs to, and every node
knows all other nodes in its segment, including their messages and positions.
Therefore, in every segment, all the nodes from that block can select a single
representative who will be the only node transmitting (for the entire segment)
in all the following time slots.

Let us call all nodes that are scheduled to send by the algorithm representa-
tive nodes. By our definition of the segment, in any time slot, when a segment
(its representative) sends a message, the nearest sending segment is at distance
of 2 r from it. So after each sending, the sending segment, say Hi,j , will success-
fully send its message Mt(Hi,j) to segments Hi,j−1 and Hi,j+1 if there are such
segments. The statement is also true for any segment Vi,j . For any two nodes
v and u in the grid, the algorithm will sent the message of u to v successfully:
There are two representative nodes that are within the r × r square centered at
u and v respectively, with high probability. After preprocessing, the message of
u will be sent to its representative node. Then after O(n/r) steps, the message
of u will be sent to the representative node of v. After the postprocessing, the
message of u will eventually reach v.

By Lemma 2, the running time of the preprocessing is O(α r4 p2 log n), and
so is the running time of the postprocessing phase. Therefore the total running
time of Gossiping-Known-Locations-D is O(α r4 p2 log n + n/r). ��
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4 Broadcasting and Deterministic Gossiping with a
Leader

We now move to a more natural model in which each node knows the values of n,
r, and p, knows its own ID (which is a unique integer bounded by a polynomial of
n), but it is not aware of any other information about the network. In particular,
the node does not know its own location. We believe that this is the main model
for the study of principles of the communication in random line-of-sight networks.

We begin our discussion with a slightly relaxed model: there is a special node
(leader) � in the network, such that � knows that she is the leader, and all
other nodes in the network know that they are not the leader. We will show
that in this model distributed gossiping can be done deterministically in time
O(α r4 p2 log n + n/r). This will immediately imply a deterministic distributed
broadcasting algorithm with asymptotically the same running time.

We start with the same preprocessing as that used in algorithm Gossiping-
Known-Locations-D from Section 3. This takes O(α r4 p2 log n) steps. After the
preprocessing, each node knows its second neighborhood with high probability.

4.1 Gossiping Along a Grid Line

We first consider the gossiping among the nodes belonging to the same grid line.
We begin with two lemmas that estimate the size of the join neighborhood in

random line-of-sight networks. The lemmas follow easily from Chernoff bounds.

Lemma 3. For any u, v belonging to the same grid line, with high probability:

(i) if dist(u, v) ≤ r/2 then |N(u) ∩N(v)| ≥ 1.3 r p, and
(ii) if dist(u, v) ≥ r then |N(u) ∩N(v)| ≤ 1.2 r p.

Lemma 4. For any node u, if the distance between u and the nearest boundary
is greater than or equal to r, then, in each of four directions, with high probability,
there is a neighboring node v of u such that 1.2 r p ≤ |N(u) ∩N(v)| ≤ 1.3 r p.

The process of the gossiping among the nodes on a grid-line is initialized by
one specific node (call it a launching node). The launching node u checks its
second neighborhood N2(u), and selects one representative node, say v, such
that 1.2 r p ≤ |N(u) ∩ N(v)| ≤ 1.3 r p. Then, u sends a message to v with the
aims: (i) u transmits its message to v and (ii) u informs v that it is picked as
representative node. Because of Lemmas 3 and 4, we know r/2 ≤ dist(u, v) ≤ r.

The process of gossiping along a grid line is working in steps. At the beginning
of each step, a node �t receives a message from node �t−1, and �t is informed
that it is the representative node. Then �t will pick a representative node �t+1

for the next step, and then send a message to �t+1 to inform about it. �t picks
�t+1 by checking N2(�t), and selecting as �t+1 any node fulfilling: (i) 1.2 r p ≤
|N(�t) ∩N(�t+1)| ≤ 1.3 r p, (ii) |N(�t−1) ∩N(�t+1)| ≤ 1.3 r p.

Because of Lemmas 3 and 4, it is easy to see that r/2 ≤ dist(�t+1, �t) ≤
r. Moreover, �t+1 and �t−1 are at the different sides of �t, for otherwise
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dist(�t+1, �t−1) ≤ r/2 and then the second constraint would be violated with
high probability. If in one step �t is unable to find the �t+1 as defined above,
then the distance between �t and its nearest boundary is less than r. In that
case �t simply stops the process and makes itself as the last representative node.

We run this process for 2 n/r steps and call these steps Phase 1. Then the
last representative node, say �t+1, picks �t as next representative node and
initialize the process again, for another 2 n/r steps. These steps define Phase 2.
Then, the representative nodes in Phase 2 send their messages in reverse order
and with that the gossiping along straight-line will be done. These steps form
Phase 3. The total running time is O(n/r).

4.2 Broadcasting and Gossiping with the Leader in the Whole Grid

Now, we are ready to present our gossiping algorithm in the model with a dis-
tinguished leader �. First, the leader will pick an arbitrary direction and do
gossiping along the corresponding grid line. As a by product of this algorithm,
a set of representative nodes will be chosen and the minimum distance between
any pair of them is greater than or equal to r/2. Next, each of the representa-
tive nodes treat itself as the pseudo-leader, and do gossiping along a grid line in
parallel, in an orthogonal direction to that first chosen by the leader. There are
two issues to be solved. First, since the distance between these pseudo leaders
could be as small as r/2, we need to interleave the transmissions in adjacent
pseudo-leaders, which yields a constant-factor slow-down. Second, by checking
its second neighborhood, a pseudo-leader can indeed find a node in orthogonal
direction that first chosen by the leader. (�i can pick a node y from its neighbors
such that 1.2 r p ≤ |N(�t) ∩N(y)| ≤ 1.3 r p and |N(�t−1) ∩N(y)| ≡ 1.)

Next, we repeat the whole process once again. It is easy to see that gossiping
is done among all representative nodes. For any pair of nodes u and v, there
are two representative nodes that are within the r × r squares centered at u
and v respectively, with high probability. After preprocessing, u will send its
message to its representative nodes. The message of u then will be sent to the
representative node of v in the following steps. Let us run the postprocessing
defined in the algorithm of the Section 3, the message of u will be sent to v. The
running time is O(α r4 p2 log n + n/r).

Theorem 2. If there is a leader in the random line-of-sight network, then gos-
siping can be completed in deterministic time O(α r4 p2 log n + n/r). The al-
gorithm may fail with probability at most 1/n2.

Theorem 2 immediately implies the following result for broadcasting.

Theorem 3. Distributed broadcasting in random line-of-sight networks can be
performed in deterministic time O(α r4 p2 log n + n/r).

5 Fast Distributed Randomized Gossiping

We continue our study of the model of random line-of-sight networks in which
each node knows the values of n, r, and p, knows its own ID, but it is not aware
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of any other information about the network. As we have seen in the previous
section, if the nodes in the network can elect a leader then gossiping could be
done within the time bounds stated in Theorem 2. In this section, we will show
that randomized leader election can be solved efficiently.

At the beginning, each node independently and uniformly at random selects
itself as the leader with probability log n

n2 p . By simple probabilistic arguments, one
can prove that exactly Θ(log n) leaders are chosen with high probability. Then
we want to execute a distributed minimum finding algorithm to eliminate all of
them but one, and the one chosen will have the lowest ID.

Each of these leaders will pick four representative nodes along four directions,
respectively, and execute the process of Phase 1 as described in Section 4.1. Let
us call it fast transmission. We interleave fast transmission with the preprocess-
ing of the algorithm in Section 3. Let us call it slow transmission. In the odd
steps, every node follows the schedule of fast transmission, and in the even steps,
every node follow the schedule of slow transmission. Since we have more than
one leader, it is possible that transmission collisions can occur. We are able to
detect these collisions, because after �t picks �t+1 as the next representative
node and informs it, in the next step, �t is expected to receive an acknowledge-
ment of the successful transmission from �t+1. If the acknowledgement is not
received, �t knows that a collision happened.

When a node, say u, detects a collision, in the following O(α r4 p2 log n) steps
u will send nothing (stay in the listening mode) in odd steps, and run slow
transmission as before in even steps. By the property of the strongly selective
family, u will eventually receive the messages of other representative nodes that
are transmitting for their own leaders during this period. Then u compares the
ID of its own leader with all other leader’s ID that it just received. If (at least)
one of those ID is smaller than the ID of its leader, u will send an “eliminating”
message back to its leader, reversely along the path through which the leader sent
the message to it. The leader eliminates itself after getting this message. If the
ID of u’s leader is the smallest one, u resumes the fast transmission. Altogether,
a node will encounter at most O(log n) collisions when it transmits toward any
boundary. Therefore the slow down caused by collisions is small and the total
running time is O(r4 p2 α log2 n + n/r).

Now we can see that the leader is either eliminated or successfully transmits
its ID along four directions. Thus, for any pair of surviving leaders, there is a
pair of representative nodes in one r×r square. If we run the postprocessing from
Section 3, the two representative nodes will exchange information about their
leaders. Again, the representative node that holds the larger ID will transmit an
“eliminating” message to its leader. The running time is O(r4 p2 α log2 n+n/r).
After this procedure, all but one leader with the smallest ID will survive.

Finally, we can combine our analysis above with Theorem 2, to obtain:

Theorem 4. In the random line-of-sight network, distributed gossiping can be
completed in randomized time O(r4 p2 α log2 n + n/r), with high probability.
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6 Conclusions

We have presented three efficient algorithms for broadcasting and gossiping in
the model of random sight-of-line networks. If r = O(n1/5/ log3/5 n), then all
our algorithms perform the optimal number of O(D) steps. While it is very
interesting to extend the optimality of these bounds to larger values of r, we
believe that the case r = O(n1/5/ log3/5 n) covers the most interesting cases,
when the graph is relatively sparse and each node is able to communicate only
with the nodes that are not a large distance apart. Therefore, in our opinion the
most interesting specific open problem left in this paper is to extend the result
from Section 5 to obtain a distributed deterministic algorithm for gossiping.
Even more interesting is a more general question: what are important aspects of
random sight-of-line networks to perform fast communication in these networks.
Our work is only the very first step in that direction.
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Abstract. In the layered-graph query model of network discovery, a
query at a node v of an undirected graph G discovers all edges and
non-edges whose endpoints have different distance from v. We study the
number of queries at randomly selected nodes that are needed for ap-
proximate network discovery in Erdős-Rényi random graphs Gn,p. We
show that a constant number of queries is sufficient if p is a constant,
while Ω(nα) queries are needed if p = nε/n, for arbitrarily small choices
of ε = 3/(6 · i + 5) with i ∈ N. Note that α > 0 is a constant depending
only on ε. Our proof of the latter result yields also a somewhat surprising
result on pairwise distances in random graphs which may be of indepen-
dent interest: We show that for a random graph Gn,p with p = nε/n,
for arbitrarily small choices of ε > 0 as above, in any constant cardinal-
ity subset of the nodes the pairwise distances are all identical with high
probability.

1 Introduction

A fundamental problem in the study of complex networks is how to obtain
accurate information about the topology of a network using a limited number
of measurements or observations. For example, attempts to map the Internet
can be based on traceroute experiments [1] or on the analysis of BGP routing
tables [2]. A simplified theoretical model of such network discovery settings, the
so-called layered-graph query model, has been introduced in [3]. The goal is to
discover the edges and non-edges (for u, v ∈ V , we call {u, v} a non-edge if it is
not an edge of the graph) of an unknown graph or network G = (V, E) using a
minimum number of queries; a query at a node v reveals all edges and non-edges
whose endpoints have different distance from v.

The layered-graph query model can be interpreted in the following way: A
query at v yields the shortest-path subgraph rooted at v, i.e., the set of all edges
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on shortest paths between v and any other node. To see that this is equivalent
to our definition (where a query yields all edges and non-edges between vertices
of different distance from v), note that an edge connects two vertices of different
distance from v if and only if it lies on a shortest path between v and one of these
two vertices. Furthermore, the shortest-path subgraph rooted at v implicitly
confirms the absence of all edges between vertices of different distance from v
that are not part of the shortest-path subgraph.

This model clearly is an abstraction of reality. Two real-life scenarios where
the results of queries come close to yielding shortest-path subgraphs are: trace-
route based experiments (done, e.g., by the DIMES project [1]) and querying
border gateway protocol routers (pursued, e.g., by the RouteViews project [2]).
In a recent paper [4] several snapshots of the Internet graph obtained by both
approaches are compared. In particular, it is checked how well the layered-graph
model fits to the actually collected data.

In the off-line version of network discovery, the goal is to verify with as few
queries as possible a given graph or network G = (V, E). In this case we also
speak of network verification.

Simulation experiments reported in [5] with (scale-free as well as Erdős-Rényi)
random graphs indicate that the number of queries needed to discover all edges
and non-edges typically grows with the size of the graph, as expected, but in
some cases appears to be bounded by a small constant independent of the size
of the graph if only a large fraction (say, 95%) of the edges and of the non-
edges needs to be discovered. This shows that for the practically relevant goal of
approximate network discovery, a surprisingly small number of queries is often
sufficient. Motivated by this experimental result, we now study this phenomenon
analytically for Erdős-Rényi random graphs Gn,p. These are graphs on n nodes
in which each possible edge is present independently with probability p. We
consider the simple query strategy that selects the query nodes uniformly at
random. We say that a set of random queries approximately discovers Gn,p in
expectation, if the expected number of edges discovered by the queries is at least
a ρ-fraction of all edges, and the analogous condition is satisfied for non-edges.
Here, ρ is a constant such as 0.95.

Surprisingly, we find that if p is a constant strictly between 0 and 1 (i.e., if we
consider dense Gn,p graphs), then a constant number of query nodes is sufficient
to approximately discover Gn,p in expectation, but if p = nε/n, for an arbitrarily
small constant ε = 3/(6 · i + 5) with i ∈ N, then Ω(nα) queries are necessary,
where α > 0 is a constant depending on ε. Our results show that the number of
random queries needed to approximately discover Gn,p depends on the density
of the graph, and in the query model considered it is actually easier to discover
dense random graphs than relatively sparse ones.

The results of this paper are mainly of theoretical interest and can be seen as
first steps. We believe it would be of interest to do a similar analysis for scale free
(e.g., Barabási-Albert [6]) random graphs, since they more realistically capture
properties of the Internet graph.
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Related Work. There are several ongoing large-scale efforts to collect data
representing local views of the Internet. Here we will only mention two. The
most prominent one is probably the RouteViews project [2] by the University
of Oregon. It collects data from a large number of so-called border gateway
protocol routers. Essentially, for each router—which can be seen as a node in the
Internet graph on the level of autonomous systems—its list of paths (to all other
nodes in the network) is retrieved. More recently and, due to good publicity,
very successfully, the DIMES project [1] has started collecting data with the
help of a volunteer community. Users can download a client that collects paths
in the Internet by executing successive traceroute commands. A central server
can direct each client individually by specifying which routes to investigate.
Data obtained by these or similar projects has been used in heuristics to obtain
maps of the Internet, basically by simply overlaying possible paths found by the
respective project. There is an extensive body of related work studying various
aspects of this approach, see, e.g., [1,2,7,8,9,10,11,12,13,14,15,16].

In [3,5], the network discovery and verification problems are introduced and
several results for the layered-graph query model are presented. It is shown that
the network verification problem cannot be approximated within a factor of
o(log n) unless P = NP , proving that an approximation algorithm from [17] (see
below) is best possible, up to constant factors. A useful lower bound formula is
given for the optimal number of queries of a graph. A discussion of simulation
experiments for four different heuristic discovery strategies on various types of
graphs, including several random graph models, can be found in [5]. Moreover, the
on-line setting (network discovery) is studied and several lower and upper bounds
on the competitive ratio are given. A number of results for both the on-line and off-
line setting have also been derived for the much weaker distance querymodel [18,5],
in which a query at node v reveals only the distances to all other nodes.

It turns out that the network verification problem in the layered-graph query
model has previously been considered as the problem of placing landmarks in
graphs [17]. Here, the motivation is to place landmarks in as few vertices of
the graph as possible in such a way that each vertex of the graph is uniquely
identified by the vector of its distances to the landmarks. The smallest number
of landmarks that are required for a given graph G is also called the metric
dimension of G [19]. For a survey of known results, we refer to [20].

The problem of determining whether k landmarks suffice (i.e., of determining
if the metric dimension is at most k) is long known to be NP-complete [21]; the
mentioned inapproximability of o(log n) [3] for the network verification problem
transfers directly to the problem of minimizing the number of landmarks. In [17]
it is shown that the problem admits an O(log n)-approximation algorithm based
on SetCover. For trees, they show that the problem can be solved optimally
in polynomial time. Furthermore, they prove that one landmark is sufficient if
and only if G is a path, and discuss properties of graphs for which 2 landmarks
suffice. They also show that if k landmarks suffice for a graph with n vertices
and diameter D, we must have n ≤ Dk +k. For d-dimensional hypercubes, it was
shown in [22] (using an earlier result from [23] on a coin weighing problem) that
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the metric dimension is asymptotically equal to 2d/ log2 d. See [24] for further
results on the metric dimension of Cartesian products of graphs.

Our Contribution and Outline. In Section 2 we give some preliminary defini-
tions concerning (random) graphs and the layered-graph query model of network
discovery. The stated results in Gn,p graphs are presented in Section 3. Our anal-
ysis for constant p in Section 3.1 is based on the observation that the probability
that a query at node q discovers an edge or non-edge {u, v} is at least 2p(1− p),
which is the probability that q is adjacent to one of u, v but not the other.

For the case of p = nε/n, treated in Section 3.2, we use bounds from [25] on
the size of the i-neighborhood and on the size of the i-th breadth-first search
layer of a node in Gn,p, for arbitrarily small ε = 3/(6 · i + 5) depending on the
choice of i. These bounds allow us to show that for an edge or non-edge {u, v}, a
query node q is very likely to have the same distance from u and v (and thus does
not discover the edge or non-edge). We generalize this in Section 3.3 to obtain
the following result: For a random graph Gn,p with p = nε/n, for arbitrarily
small choices of ε > 0 as above, in any constant cardinality subset of the nodes
the pairwise distances are all identical, with high probability (w.h.p.).

2 Preliminaries

Graphs and Neighborhoods. With G = (V, E) we denote an undirected
graph with |V | = n nodes. For two distinct nodes u, v ∈ V , we say that {u, v} is
an edge if {u, v} ∈ E and a non-edge if {u, v} /∈ E. The set of non-edges of G is
denoted by E. For u, v ∈ V , let d(u, v) be the distance between the nodes u, v,
i.e., the number of edges on a shortest path between u and v. For a graph G and
a node v ∈ V , the set of nodes at distance i of v is denoted as the i-th layer:
Γi(v) = {u ∈ V |d(v, u) = i}. We define the i-neighborhood Ni(v) =

⋃i
j=0 Γj(v)

to be the set of nodes within distance i of v.
Gn,p denotes an Erdős-Rényi random graph on n nodes in which a pair of

nodes appears as an edge with probability p.

The Layered-Graph Query Model. A query is specified by a node v ∈ V and
is called a query at v or simply the query v. The answer of a query at v consists of
a set Ev of edges and a set Ev of non-edges. These sets are determined as follows.
Let Ev be the set of all edges connecting vertices in different layers (from v), and
Ev be the set of all non-edges whose endpoints are in different layers. Because the
query result can be seen as a layered graph, we refer to this query model as the
layered-graph query model. We say a query v ∈ V discovers a node pair u, w ∈ V
if u, w are in different layers (from v), i.e., if d(v, u) �= d(v, w) holds.

A set Q ⊆ V of queries discovers (all edges and non-edges of) a graph G =
(V, E), if

⋃
q∈Q Eq = E and

⋃
q∈Q Eq = E. In the off-line case, we also say

“verifies” instead of “discovers”. The network verification problem is to compute,
for a given network G, a smallest set of queries that verifies G. The network
discovery problem is the on-line version of the network verification problem. Its
goal is to compute a smallest set of queries that discovers G. Here, the edges
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and non-edges of G are initially unknown to the algorithm, the queries are made
sequentially, and the next query must always be determined based only on the
answers of previous queries.

Discovering a Large Fraction of a Graph. Let ρ ∈ (0, 1] be a constant,
typically a “large” value close to 1. We say a query set Q ⊆ V discovers a
ρ-fraction of the graph, if |

⋃
q∈Q Eq| ≥ ρ · |E| and |

⋃
q∈Q Eq| ≥ ρ · |E|.

Note that we require separately that a fraction of all edges and that a fraction
of all non-edges should be discovered. This is important, since another seemingly
natural definition which requires only that a fraction of all node pairs should be
discovered, might be misleading for the interesting case of sparse graphs. Here a
query set discovering almost all non-edges but only some of the edges would be a
valid solution, since the number of edges is small compared to the total number
of node pairs. However, since only few edges were discovered, the resulting graph
is far away from the actual one. This is avoided by the separate treatment of
edges and non-edges.

For a random graph or if Q is a random variable, we say Q discovers a ρ-
fraction of the graph in expectation, if

E [| ∪q∈Q Eq|] ≥ ρ · E [|E|] and E
[
| ∪q∈Q Eq|

]
≥ ρ · E

[
|E|
]
.

3 Discovering a Large Fraction of a Random Graph

In this section we study the discovery strategy RANDOM which simply picks
a given number k of query nodes at random from V (using the uniform distri-
bution). We show that in a random graph Gn,p already a constant number of
such queries suffices to discover a ρ-fraction of the graph in expectation, if p is
a constant.

Since one of the main motivations for studying the network discovery setting
is to discover the Internet graph, the case of sparse graphs is practically more
relevant. Interestingly, if p = nε/n for certain arbitrarily small choices of ε =
3/(6 · i + 5) with i ∈ N, RANDOM needs at least Ω(nα · ρ) queries to discover a
ρ-fraction of the graph in expectation, where α > 0 depends on ε.

3.1 The Case of Constant p

To prove that RANDOM discovers a ρ-fraction of the graph in expectation with
only constantly many queries is straightforward. We start by showing a helpful
lemma on queries and one node pair.

Lemma 1. For a random graph Gn,p = (V, E) and three distinct nodes q, u, v ∈
V , a query at q discovers the node pair u, v with probability at least 2 · p · (1− p).
The probability that k queries discover u, v is at least x = 1− (1−2 ·p · (1−p))k.

Proof. We call a node w ∈ V a candidate, if w is directly connected to v and not
to u or directly connected to u and not to v. If the query node q is a candidate,
it surely discovers the node pair u, v. This is independent of whether {u, v} ∈ E
or {u, v} ∈ E. The probability of this event is Pr [q is candidate] = 2 · p · (1− p).
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If we have several query nodes Q, the events “q is candidate” for q ∈ Q
are independent, since for each q the event depends on two distinct edges.
Thus the probability that at least one query in Q discovers u, v is at least
Pr [Q contains candidate] = 1−Pr [no q ∈ Q is candidate] = 1−(1−2·p·(1−p))k,
where k = |Q|. ��

The desired result is a corollary of the following theorem.

Theorem 1. To discover a ρ-fraction of a Gn,p graph in expectation, the RAN-
DOM strategy needs at most k = �log(1− ρ)/ log(1− 2 · p · (1− p))� queries.

Proof. By Lemma 1 we know that k queries Q discover a node pair u, v ∈ V
with probability at least x = 1 − (1 − 2 · p · (1 − p))k. The expected num-
ber of edges discovered by Q can be computed as E [edges discovered by Q] =∑

u,v∈V,u	=v Pr [{u, v} is an edge and is discovered by Q] ≥
∑

u,v∈V,u	=v px = x ·
E [|E|]. Similarly we obtain E[non-edges discovered by Q] ≥ x · E

[
|E|
]
. Setting

x = ρ and solving for k gives the stated result. ��

3.2 The Case of p = nε/n

Given an arbitrarily chosen constant i ∈ N, in this entire section we set ε =
3/(6 · i + 5) and p = nε/n. By α, β, c > 0 we always denote appropriately
chosen constants, possibly depending on ε. Let Gn,p = (V, E) be a random
graph. By U = {u1, . . . , uk} ⊂ V we always denote an arbitrary node subset of
constant cardinality. Let Ni(U) :=

⋃k
�=1 Ni(u�) denote the i-neighborhood of U .

The event A plays a central role in our discussion and is defined as follows: for
each u ∈ U the size of its i-neighborhood is bounded from above by |Ni(u)| ≤
c·(np)i and the size of its i-th layer is bounded from below by |Γi(u)| ≥ c(np)i, for
some constants c, c > 0. Additionally, there is no edge between the neighborhoods
Ni(u) and Ni(v), for all pairs u, v ∈ U , u �= v.

Lemma 2 states that event A holds w.h.p. Then in Lemma 3 we condition on
event A and show that a node w ∈ V \Ni(U) is connected to two distinct i-th
layers Γi(u) and Γi(v), for u, v ∈ U , with probability Ω(n−β), for a constant
β < 1. We remark that the constant ε is chosen carefully on a “borderline”:
small enough such that Lemma 2 still holds and large enough for Lemma 3 to
hold for some constant β < 1. These two lemmata can be applied to prove that
a query node q is at the same distance 2 · (i + 1) from a node u ∈ V and a node
v ∈ V w.h.p. Finally, we use this fact to show that Ω(nα · ρ) queries are needed
to discover a ρ-fraction of a Gn,p graph in expectation, for some constant α > 0.
The proofs are based on two very helpful lemmata in [25] which give the tight
bounds stated in event A on the size of the i-neighborhoods and the i-th layer.

Lemma 2. Let i, ε, p be as given above. Let Gn,p = (V, E) be a random graph
and U ⊂ V a constant cardinality node subset. Event A on Gn,p and U holds
with probability 1−O(n−α), for an appropriate constant α > 0.
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Proof. We start by bounding the size of the neighborhoods and i-th layers. For
a node v ∈ V Lemma 2 from [25] states that |Ni(v)| ≤ c · (np)i holds with
probability at least 1− o(n−1), for some constant c > 0. To see that this bound
actually holds simultaneously for all u ∈ U with probability 1 − |U | · o(n−1) =
1 − o(n−1), simply consider the counter-events and apply the subadditivity of
probabilities. Note that the cardinality |U | is constant.

For a node v ∈ V Lemma 8 from [25] states that if Gn,p is connected, we
have |Γi(v)| ≥ c(np)i with probability at least 1− o(n−1), for some constant c >
0. This bound actually holds simultaneously for all u ∈ U with probability
1 − |U | · o(n−1) = 1 − o(n−1); again apply the subadditivity of probabilities
to see this. Since Gn,p is connected with probability at least 1 − o(n−1) for
this range of p, cf. [26], the connectedness assumption can be dropped. In other
words, the bounds on the size of the i-th layers of all u ∈ U hold for any Gn,p

with probability 1− o(n−1).
Combining both the bounds for the neighborhoods and the bounds for the

i-th layers of the nodes in U , we have shown that the first part of event A holds
with probability 1− o(n−1).

We now come to the second part of event A. Let x = c · (np)i and consider c
arbitrary node subsets of cardinality at most x. The probability that there is no
edge from one of these subsets to another is at least

(1− p)(
c
2 )·x2

≥ (1− p)c2·c2(np)2i ≥ exp
(
− p

1− p
· c2 · c2(np)2i

)

≥ exp(−c′ · nε−1 · n2iε)

for some constant c′ ≥ c2 · c2/(1− p). With α = −(ε− 1 + 2iε) = 2/(6 · i + 5) we
get

exp(−c′ · nε−1 · n2iε) ≥ 1− c′ · n−α.

We conclude that with probability 1 − c′ · n−α = 1 − O(n−α) there is no edge
between any of the c subsets of cardinality x. To see that this also holds for the
constant number c = |U | of neighborhoods Ni(u) as long as |Ni(u)| ≤ x, for
u ∈ U , we consider neighborhoods in iteratively defined subgraphs of the origi-
nal Gn,p. Instead of Ni(u1) consider the neighborhood N

(1)
i (u1) in the random

graph G(1) = Gn,p \ (U \ {u1}). For 1 < j ≤ k we iteratively define the random
graphs G(j) = Gn,p \ (

⋃
�∈{1,...,j−1} N

(�)
i (u�) ∪ (U \ {uj})) for which uj’s neigh-

borhood is denoted by N
(j)
i (uj). By construction the neighborhoods N

(j)
i (uj) do

not overlap and clearly |N (j)
i (uj)| ≤ |Ni(uj)| holds, for j ∈ {1, . . . , k}. Moreover,

by constructing N
(j)
i (uj) in such a way, no information about the edges between

the individual N
(j)
i (uj) is revealed. Each such edge is still present with probabil-

ity p. Therefore if |Ni(uj)| ≤ x, the computation goes through as above, yielding:
with probability 1−O(n−α) there is no edge between any of the neighborhoods
N

(j)
i (uj), j ∈ {1, . . . , k}. In this case we obviously have N

(j)
i (uj) = Ni(uj).

Hence, the probability that the first and the second part of event A hold at
the same time is at least 1 − o(n−1) − O(n−α) = 1 − O(n−α). Once more, this
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can be seen by considering the counter-events and applying the subadditivity of
probabilities. ��

Lemma 3. Let i, ε, p be as given above. Let Gn,p = (V, E) be a random graph
and U ⊂ V a constant cardinality node subset. Conditioned on event A, a node
w ∈ V \ Ni(U) is connected to both Γi(u) and Γi(u′) with probability Ω(n−β),
for distinct u, u′ ∈ U and an appropriate constant 0 < β < 1. This holds inde-
pendently for all w ∈ V \Ni(U).

Proof. Conditioning on event A reveals no information about the presence of
edges between a node w ∈ V \ Ni(U) and a node v ∈ Γi(u), for u ∈ U . Such
edges {w, v} remain to be present independently with probability p.1 Therefore,
the probability that w ∈ V \ Ni(U) is connected to both Γi(u) and Γi(u′), for
distinct u, u′ ∈ U , is at least

(1 − (1− p)c(np)i

)2 ≥ (1 − exp(−p · c(np)i))2 ≥ (1 − exp(−c · nε−1+iε))2.

With a = −(ε− 1 + iε) = (3i + 2)/(6i + 5) this gives

(1 − exp(−c · n−a))2 ≥
(

c · n−a

1 + c · n−a

)2

≥ Ω(n−2a) ≥ Ω(n−β),

for some constant β, with 2a ≤ β < 1. Since the edges considered for different w
do not overlap, this holds independently for all w ∈ V \Ni(U). ��

Lemma 4. Let i, ε, p be as given above. Let Gn,p = (V, E) be a random graph
and q, u, v ∈ V three distinct nodes. A query at q discovers the node pair u, v
with probability O(n−α), for an appropriate constant α > 0.

Proof. For the graph Gn,p and U = {u, v, q} we assume that event A holds
and under this assumption show that w.h.p. d(q, u) = d(q, v) = 2(i + 1). In the
following we concentrate on d(q, u). Let Vq,u ⊆ V \Ni({u, v, q}) be some constant
fraction of all nodes, i.e., nq,u = |Vq,u| ≥ n/c′ for some constant c′ > 1. This is
possible, since by event A we know |Ni({u, v, q})| = o(n).

To show that d(q, u) = 2(i + 1) w.h.p., it suffices to show that at least one
of the nodes in Vq,u is connected to both Γi(q) and Γi(u) w.h.p. Note that by
construction no node in Vq,u can be connected with a node in Ni(q) \ Γi(q) or
Ni(u)\Γi(u). The probability that at least one node in Vq,u is connected to both
Γi(q) and Γi(u) by Lemma 3 and with appropriate constants c, c′′, α′ > 0, β < 1
is at least

1− (1− c · n−β)nq,u ≥ 1− exp(−c · n−β · nq,u)

≥ 1− exp(−c/c′ · n1−β) ≥ 1− exp(−c′′nα′
),

1 Note on the other hand that by conditioning on event A we know that no edge
between w ∈ V \ Ni(U) and a node v ∈ Ni(u) \ Γi(u), for u ∈ U , can be present.
This will be used in the proof of Lemma 4.
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With at least this probability d(q, u) = 2(i + 1) holds. Note that by definition
of Vq,u, there is still a constant fraction of all nodes left for Vq,v and therefore
d(q, v) = 2(i + 1) holds w.h.p. as well.

Combining this with the probability for event A given by Lemma 2, we obtain
that q is at the same distance from u and v with probability 1 − O(n−α), for
some constant α > 0. Or equivalently: a query at q discovers the node pair u, v
with probability at most O(n−α). ��

We are now ready to state our main theorem.

Theorem 2. Let i ∈ N be a given constant and set ε = 3/(6 · i + 5), p = nε/n.
To discover a ρ-fraction of a Gn,p graph in expectation, the RANDOM strategy
needs at least Ω(nα · ρ) queries, for some appropriately chosen constant α > 0.

Proof. Assume we need k = o(nα · ρ) random queries to discover a ρ-fraction
in expectation. Let Q be a set of k queries returned by RANDOM. Then with
Lemma 4 and E

[
|E|
]

= Ω(n2) we get

E [non-edges discovered by Q] ≤
∑
q∈Q

∑
u,v∈V :u	=v

Pr [u, v discovered by q]

≤ k ·O(n−α) · n2 = o(ρ) · E
[
|E|
]
.

This gives a contradiction and concludes the proof. ��

3.3 Distances Within a Constant Cardinality Subset of the Nodes

We generalize the result in Lemma 4 to the case of distances between the nodes
of an arbitrary constant cardinality subset of V : all distances are identical w.h.p.
for certain choices of ε and p = nε/n. We believe this property is interesting in
itself, since it does not necessarily seem intuitive at first sight.

Theorem 3. With an arbitrarily chosen constant i ∈ N, let ε = 3/(6 · i+5) and
p = nε/n. Let Gn,p = (V, E) be a random graph and U ⊂ V a constant cardinality
node subset. All pairwise distances between the nodes in U are simultaneously
equal to 2(i+1) with probability 1−O(n−α), for an appropriate constant α > 0.

Proof. We proceed as in Lemma 4, but instead of just two, we define
(

|U|
2

)

disjoint sets Vu,v ⊆ V \Ni(U) with |Vu,v| ≥ n/c′, for u, v ∈ U and some constant
c′ > 1. Note that such a constant exists, since |U | is constant. The argumentation
goes through for each Vu,v independently as above, giving the statement of the
theorem. ��

4 Conclusion

We have introduced the notions of approximate network discovery and of discov-
ering a large fraction of a graph in expectation. Motivated by previous compu-
tational experiments in random graphs, we have studied approximate network
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discovery in the Gn,p model analytically for two different ranges of p. Surpris-
ingly, we have been able to show that for constant p a constant number of queries
suffices to discover a large fraction of a Gn,p in expectation, whereas for certain
small choices of p the number of queries chosen uniformly at random that dis-
cover a large fraction of Gn,p grows with n. The analysis of the latter case also
gave an interesting result for constant cardinality subsets of the nodes of a Gn,p,
for certain small choices of p: w.h.p. all nodes of the subset are at exactly the
same distance from each other.

A natural question for the case p = nε/n is whether the lower bound that
we have presented is tight. It would also be interesting to extend the analysis to
other ranges of p. Analytically analyzing network discovery in scale-free random
graphs would be of interest as well, in particular due to the practical relevance.
Many real world networks (e.g., the Internet graph or peer-to-peer networks) are
believed to have scale-free properties.
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Abstract. Motivated by an application in project portfolio analysis un-
der uncertainty, we develop an algorithm S-VNS for solving stochas-
tic combinatorial optimization (SCO) problems based on the Variable
Neighborhood Search (VNS) metaheuristic, and show its theoretical
soundness by a mathematical convergence result. S-VNS is the first
general-purpose algorithm for SCO problems using VNS. It combines
a classical VNS search strategy with a sampling approach with suit-
ably increasing sample size. After the presentation of the algorithm, the
considered application problem in project management, which combines
a project portfolio decision on an upper level and project scheduling as
well as staff assignment decisions on a lower level, is described. Uncertain
work times require a treatment as an SCO problem. First experimental
results on the application of S-VNS to this problem are outlined.

Keywords: Variable Neighborhood Search, stochastic combinatorial
optimization, project portfolio selection, staff assignment, project
scheduling.

1 Introduction

Stochastic combinatorial optimization (SCO) problems occur very frequently in
diverse types of applications, since many optimization problems have a discrete
or combinatorial structure, and very often, decisions have to be made under
uncertainty. In this case, a standard approach offered by the operations research
paradigm is to represent uncertain aspects quantitatively by a stochastic model,
and to optimize the decision with respect to important characteristics (usually
expected values, sometimes also variances, quantiles etc.) of the cost function
which is then a random variable. For stochastic models involving a high degree
of realism and therefore usually also a high degree of complexity, it can easily
occur that these characteristics cannot be computed from explicit formulas or
by means of numerical procedures, but must be estimated by simulation. This
has led to the development of so-called simulation-optimization methods such
as the Stochastic Branch-and-Bound Method [17], the Stochastic Ruler Method
[2], or the Nested Partitions Method [18]. For a good survey on this area, cf. [5].
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Especially in cases where already the underlying deterministic combinato-
rial optimization (CO) problem is computationally hard and practical prob-
lem instances are of a medium or large size, combined methods treating the
combinatorial aspect of the problem by a metaheuristic seem to be advisable.
Such metaheuristic-supported simulation-optimization algorithms have been de-
veloped, e.g., based on Simulated Annealing ([7], [8], [1]), Genetic Algorithms
[4], or Ant Colony Optimization ([9], [10]).

Recently, much attention is given in the literature to the Variable Neighbor-
hood Search (VNS) metaheuristic developed by Hansen and Mladenovich [13]
which seems to produce excellent results on several hard deterministic CO prob-
lems. To our best knowledge, however, no attempt has been made up to now to
develop an extension of a VNS algorithm for the treatment of SCO problems
by a simulation-optimization approach. Thus, a general-purpose technique for
treating SCO problems by a VNS-based method seems still to be lacking.

In the present work, we propose a VNS-based algorithm called S-VNS which is
applicable to a broad class of SCO problems. We give a formal “proof of concept”
for the algorithm by deriving a strict mathematical convergence result: Under
mild conditions, the current solutions of S-VNS converge to (global) optimality.
A convergence result for a metaheuristic is certainly not yet a sufficient condi-
tion for its practical usefulness. However, one would hesitate to apply a heuristic
algorithm for which cases cannot be excluded where the optimal solution can
never be found, no matter how much computation time is invested. In a deter-
ministic context, convergence of the “best solution so far” to the optimum can
typically be easily achieved by introducing a sufficient amount of randomness
into the search process. In a stochastic context, however, the problem is compli-
cated by two factors: First, the “best solution so far” can not be determined with
certainty by simulation. Secondly, the question of a suitable sample size scheme
in an iterative stochastic optimization procedure is non-trivial, as outlined very
clearly by Homem-de-Mello in [14].

The development of our VNS variant for stochastic problems is mainly mo-
tivated by an application in the field of project portfolio analysis under uncer-
tainty. Practical project management, especially in the R & D area, requires
(repeated) decisions on sets of projects, so-called portfolios, that are to be car-
ried out, while rejecting or deferring other project candidates because of capacity
limits or of insufficient benefits to be expected from those projects (cf. , e.g., [16]
or [6]). In real applications, this decision cannot be separated from two other
decisions to be made on a “lower decision level”: one on the scheduling of the
required work packages of each project that has been chosen, the other on the
assignment of personnel to work packages. The problem is stochastic in so far as
the work times needed by each work package have to be considered as random
variables. Finally, when considering objective functions, we do not only take ac-
count of economic goals and of potential tardiness of projects, but also include a
strategic goal connected with the work of the staff in different “competencies”.
All in all, this gives a problem formulation that is sufficiently complex to serve
as a test case for the proposed S-VNS algorithm.
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The plan of the paper is the following: In section 2, the proposed algorithm
S-VNS is presented. Section 3 contains the mathematical convergence result. In
section 4, we present the application problem under consideration, outline the
way it is attacked, and present results of the application of S-VNS for a specific
example instance. Section 5 contains conclusions.

2 The Proposed Simulation-Optimization Algorithm

2.1 General Problem Structure

The proposed algorithm is designed to provide solutions to the following rather
general type of stochastic combinatorial optimization problems:

Minimize f(x) = E (F (x, ω)) s.t. x ∈ S.

Therein, x is the decision, F is the cost function, ω denotes the influence of
randomness, E denotes the mathematical expectation, and S is a set of feasible
decisions, which we always assume as finite.

We focus on application cases where it is difficult or even impossible to com-
pute E (F (x, ω)) numerically. Instead of determining approximations to this ex-
pected value by numerical techniques (e.g., numerical integration or analytical
transform techniques), we resort to estimating it by sampling: For this purpose,
a sample Z of s independent random scenarios ω1, . . . , ωs is drawn. The sam-
ple average estimate (SAE) is then given by f̃(x) = (1/s)

∑s
ν=1 F (x, ων) ≈

E (F (x, ω)). It is easy to see that f̃(x) is an unbiased estimator for f(x).
A typical application of our approach is given by the case where the SAEs are

obtained by Monte-Carlo simulation. In this situation, we can interpret a sce-
nario ων as a random number or a vector of random numbers allowing, together
with the solution x and the cost function F , the computation of an observation
F (x, ων).

2.2 The Algorithm S-VNS

Our proposed solution algorithm, S-VNS, follows the general lines of the VNS
algorithm as described in [13], but extends it by the computation of SAEs at
several places, and by the introduction of an additional step called tournament,
where a current candidate solution x is compared to a solution x̂ considered best
so far, replacing x̂ by x if the SAE of x (based on an appropriate sample size)
turns out as better than the SAE of x̂.

As ordinary VNS, the procedure S-VNS uses a hierarchy of neighborhood struc-
tures: For each x ∈ S, we assume a k-neighborhood Nk(x) ⊆ S of x as given,
where k = 0, . . . , kmax. It is assumed that N0(x) = {x} for all x ∈ S. Fur-
thermore, we assume that the sets Nk (k = 0, . . . , kmax) are nonempty and
pairwise disjoint. The last assumption comes in a natural manner if the neigh-
borhoods are derived from a distance function d(., .) on S by the definition
Nk(x) = {y ∈ S | d(x, y) = k}. (An alternative assumption would be to consider
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neighborhoods that form a chain of inclusions: N0(x) ⊂ N1(x) ⊂ . . . ⊂ Nkmax .
This situation occurs if one sets Nk(x) = {y ∈ S | d(x, y) ≤ k}. Our theoretical
result can also be extended to this case, but we skip this point for the sake of
brevity.)

Procedure S-VNS
set m = 1;
choose x ∈ S;
set x̂ = x; // best-so-far solution
repeat until stopping criterion is met{

(1) set k = 1;
(2) repeat until k = kmax {

(a) (shaking:) generate an x′ ∈ Nk(x) at random;
(b) (local search:)

set x̄ = x′;
set local-optimum-found = false;
set ρ = 1;
repeat until local-optimum-found or ρ > ρmax {

draw a sample Z of size s0;
compute the SAEs of x̄ and of all solutions in N1(x̄) w.r.t. Z;
set x̄∗ = solution in N1(x̄) with best SAE;
if (x̄∗ has better SAE than x̄) {

set x̄ = x̄∗;
set ρ = ρ + 1;
}
else set local-optimum-found = true;
}
set x′′ = x̄;

(c) (move-or-not:)
draw a sample Z ′ of size s0;
compute the SAEs of x and of x′′ w.r.t. Z ′;
if (x′′ has better SAE than x) {

set x = x′′;
set k = 1;
}
else set k = k + 1;

(d) (tournament:)
draw a sample Z ′′ of size sm;
compute the SAEs of x̂ and of x w.r.t. Z ′′;
if (x has better SAE than x̂)

set x̂ = x;
set m = m + 1;

} }

Fig. 1. Pseudocode S-VNS
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Fig. 1 shows the pseudo-code of S-VNS. We call the part (a) – (d) of the
execution starting with a shaking step and ending with a tournament step a
round of the algorithm. The integer m (m = 1, 2, . . .) is used as a round index.
A round begins with the determination of a random neighbor solution x′ to the
current solution x (“shaking”), which aims at escaping from local optima. The
size k of the neighborhood is dynamically controlled. The shaking mechanism
must ensure that all solutions x′ in the considered neighborhood have a positive
probability of being selected. After that, x′ is improved by local search steps until
either a local optimum is found, or a certain predefined number ρmax of steps
is reached. Since the comparison of the current local search solution x̄ with its
neighbor solutions requires the estimation of objective function values, a sample
Z (updated in each step) of constant size s0 is used in each local search step.

Each round starts with some value of the neighborhood size variable k. We can
group the rounds to cycles, where a new cycle is started any time when a round
starts with k = 1. A cycle consists of one or several rounds with consecutively
increasing values of k.

Local search results in a solution x′′. In the step “move-or-not”, this solution
replaces the current incumbent x if it evaluates better at a further sample Z ′,
again of size s0. In the last case, the neighborhood size is reduced to one. Finally,
the “tournament” between the incumbent x and the solution x̂ considered best
so far takes place. The size sm of the sample Z ′′ on which this tournament is
based has to be increased with suitable speed during the process in dependence
on m. (This is contrary to the sizes of samples Z and Z ′ which are not increased.)
We denote the solution x exposed to the tournament in round m by x(m), and it
will be shown in the next section that on certain conditions, the sequence x(m)
converges to a globally optimal solution.

3 Convergence Analysis

As it is seen from the pseudo-code, S-VNS works with different random samples
at different occasions. Let us start their description with sample Z ′′. In round m,
sample Z ′′ contains scenarios ωm

1 , . . . , ωm
sm

. We use the symbol ωm for the sm-
tupel (ωm

1 , . . . , ωm
sm

), and the symbol ω for (ω1, ω2, . . .).
Sample Z contains, in the ρ-th local search step of the m-th round, sce-

narios ηm
ρ,1, . . . , η

m
ρ,s0

, and sample Z ′ contains scenarios which we denote by
ηm
0,1, . . . , η

m
0,s0

. By ηm, the matrix (ηm
ρ,ν) (ρ = 0, . . . , ρmax; ν = 1, . . . , s0) is de-

noted, and η = (η1, η2, . . .) comprises all ηm.
Finally, there is an additional influence of randomness which is active in the

shaking step of the algorithm. We denote the random scenario influencing the
choice of the solution x′ in the shaking step of round m by ξm, and set ξ =
(ξ1, ξ2, . . .). Note that apart from ξm, the decision on x′ is also dependent on
the current x and on the current value of k.

The total information (ξ, η, ω) determining the random influence will be called
sample path.
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Throughout this article, we assume that all scenarios ωm
ν , ηm

ρ,ν and ξm are
independent. Moreover, it is assumed that the ωm

ν have identical probability
measures for all m and ν, the ηm

ρ,ν have identical probability measures for all
m, ρ and ν, and the ξm have identical probability measures for all m. These
assumptions are satisfied in a natural way if S-VNS applies Monte-Carlo simu-
lation for cost evaluation, based on a series of independent random numbers the
distribution of which is independent of x and m.

Note that we have two different probability mechanisms in the algorithm. The
first mechanism generates the part (ξ, η) of the sample path. This mechanism
completely determines the control flow in S-VNS, with the exception of the
question whether in the tournament, x̂ is updated to the value x or not. We
denote the probability space consisting of the elements (ξ, η) by Ξ, and the
probability measure on it by P . The second mechanism generates the part ω of
the sample path. It influences the decision which solution wins a tournament.
We denote the probability space consisting of the elements ω by Ω, and the
probability measure on it by P̃ .

For deriving our main theoretical result, we make use of the following lemma
which has be proven by large-deviation theory:

Lemma 3.1. (Homem-de-Mello [14], Proposition 3.2). Suppose that for a scheme
(s1, s2, . . .) of sample sizes and independent scenarios ωm

ν ,

(i) for each x ∈ S, the variances var[F (x, ωm
1 )] are bounded by some constant

M = M(x) > 0,
(ii) the scenarios ωm

ν have identical probability measures, and the SAEs f̃m(x) =
(1/sm)

∑sm

ν=1 F (x, ωm
ν ) are unbiased1, i.e., E (f̃m(x)) = f(x) for all x,

(iii)
∑∞

m=1 αsm <∞ for all α ∈]0, 1[.

Then for each x, we have f̃m(x)→ f(x) (m→∞) for P̃ -almost all ω ∈ Ω.

We are now able to show convergence of S-VNS to a (globally) optimal solu-
tion. For the proof, we refer to the technical report [12].

Theorem 3.1. Consider S-VNS. Suppose that

(a)
⋃kmax

k=0 Nk(x) = S for all x ∈ S,
(b) the assumptions (i) – (iii) of Lemma 3.1 are satisfied for the tournaments in

S-VNS, and
(c) the distribution of F (x, ω) has a nonzero density in each point of IR.

Then, for P -almost all (ξ, η) ∈ Ξ and P̃ -almost all ω ∈ Ω, there exists an integer
m0 (depending on the sample path (ξ, η, ω)) such that xm ∈ S∗ for all m ≥ m0,
where S∗ is the set of optimal solutions.

Remark 1. In typical VNS applications, kmax is usually set to a smaller value
than the minimum value ensuring that each solution can be reached from any x

1 Homem-de-Mello also refers to a more general framework where E (F (x,ωm
ν )) can

be different from f(x). In our context, unbiasedness follows by definition.
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within a k-neighborhood with k ≤ kmax, as assumed in condition (a) of The-
orem 3.1. In future investigations, one might try to generalize the result by
omitting condition (a).

Remark 2. A sufficient condition for assumption (iii) in Lemma 2.1 to be sat-
isfied is that the sample size sm grows as c0 ·

√
m with a constant c0 > 0, which

is a fairly moderate growth. However, not all increasing samples size schedules
satisfy assumption (iii); e.g., logarithmic growth is not sufficient.

4 The Application Problem: Stochastic Project Selection,
Scheduling and Staffing

4.1 Problem Formulation

We apply the proposed algorithm to the stochastic version of a problem the
deterministic version of which has been introduced in [11] (cf. also [16], [6]). The
problem encompasses a project portfolio selection decision on an upper decision
level and decisions on project scheduling and staff assignment on a lower level.
The upper-level decision consists in the choice of a subset of projects from a
given set of candidates i = 1, . . . , n. Let the binary decision variable xi take the
value 1 iff project i is to be selected, and let x = (x1, . . . , xn). Projects have
ready times ρi and due dates δi. The decision has to be made under uncertainty
on the work times needed by the projects with respect to certain required human
competencies r = 1, . . . , R, which can be considered as “resources”. It is assumed
that project i requires a (so-called “effective”) work time of Dir in competency r
(r = 1, . . . , R), where Dir is a random variable with a (known) distribution the
parameters of which can be estimated in advance. We call that part of a project i
that requires a particular competency r the work package with index (i, r).

A fixed team of employees j = 1, . . . , J is assumed as available. For each em-
ployee, we suppose that her/his efficiency in each competency r can be quantified
as a value γjr , measuring the fraction of effective work in competency r that s/he
is able to deliver within given time, compared to the work of an employee with
a “perfect” ability in the considered competency r. If employee j with efficiency
γjr works for y time units in work package (i, r), s/he reduces the effective work
time required for work package (i, r) by the amount γjr ·y. To distinguish y from
the effective work time γjr · y, we call y the real work time.

On the lower decision level, after a decision on a project portfolio has been
made, the workload corresponding to the single competencies has to be assigned
to the staff over time. Since work times are uncertain, a dynamic policy is re-
quired for this part of the planning process. We will consider a specific, fixed
policy of this type. It is allowed that several employees contribute to the same
work package (i, r), provided that the efficiency value of each of these employees
in competency r does not lie below some pre-defined minimum value γmin. Each
contribution is weighted by the efficiency value of the assigned employee.

As the objective function, we take a weighted average with fixed weights β1,
β2 resp. β3 of three terms: (1) Economic benefit (return etc.), which can be
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estimated for each project i by a value wi, its overall value resulting as the sum
of the values wi of the selected projects i. (2) Expected strategic benefit, where
strategic benefit measures the degree to which the company engages in future-
oriented areas. To quantify this objective, desirability values vr are assigned
to each competency r. The strategic benefit is defined as the weighted sum of
the real work times Yr(x) the overall staff spends in each competency r (given
portfolio x), weighted by the values vr. It is important to note that we take here
real work times instead of effective work times; the reason for this choice is that in
models on organizational learning (cf., e.g., [3]), competence increment is rather
related to real than to effective work. As a consequence, the second objective
function is not simply determined by the set of selected projects, but influenced
by the staff assignment decision. Observe that the quantities Yr(x) depend also
on the random variables Dir and are therefore random variables themselves.
(3) The expected value of the total tardiness Ψ(x) of the selected projects with
respect to their due date (given portfolio x). The value Ψ(x) is the sum of the
tardiness values Ψi(x) of the selected projects i, where, with Ci(x) denoting the
completion time of project i under portfolio decision x, the tardiness Ψi(x) is
defined as (Ci(x)− δi)+ if xi = 1, and zero otherwise. Objective (3) enters with
negative sign into the overall objective function, since it is to be minimized.

In total, this produces the objective function

E

(
β1

n∑
i=1

wixi + β2

R∑
r=1

vrYr(x) − β3

n∑
i=1

Ψi(x)

)
→ max,

where the first term is in fact deterministic. The constraint is defined by the
(given) capacity limits of the employees.

4.2 Solution Technique

On the upper decision level of project portfolio selection, the problem presented
in the previous subsection is an SCO problem, which makes the proposed al-
gorithm S-VNS applicable. The feasible set S is in this case the set {0, 1}n of
possible project portfolios. What remains to be specified is the way the two
other aspects of the problem, namely project scheduling and staff assignment,
are handled on the lower decision level.

Evidently, our problem formulation contains a (particular) stochastic schedul-
ing problem as a special case. Methods for solving stochastic scheduling problems
have found considerable interest in the literature; we refer, e.g., to Möhring and
Stork [15]. As outlined in [15], a suitable approach to the solution of a stochastic
scheduling problem consists in determining a policy which acts at so-called deci-
sion points of the time axis. Roughly speaking, a decision point is a time point
where “something happens”. In our case, decision points are t = 0 (project
start), the ready times ρi of the projects, and the (random) completion times of
the work packages (i, r). It is important to ensure that the decision prescribed by
some policy for decision point t only uses information that is already available
at time t; for example, the knowledge of the random work time Dir required
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by a work package (i, r) that is not yet completed at time t cannot be used in
the decision. However, since we assume that the distributions of these random
variables are known in advance, quantities as E (Dir) may be used by the policy
at any time.

Procedure Stochastic Scheduling-and-Staffing
set τ = 0; // decision point
repeat until all work packages are completed {

for all projects i in ascending order of their due dates δi {
for all yet uncompleted work packages (i, r) with τ ≥ ρi in descending order

of E (Dir) {
for all employees j in descending order of γjr {

if (employees j is not yet assigned and γjr ≥ γmin)
assign employee j to work package (i, r);

} } }
determine the earliest time τ ′ at which either one of the currently scheduled

work packages becomes completed, or a ready time occurs;
subtract, for each work package, the effective work done between time τ and

time τ ′ from the remaining effective work time (work times by employees
have to be weighted by their efficiencies);

set τ = τ ′, and set all assignments of employees to work packages back;
}

Fig. 2. Dynamic policy for the lower decision level

For scheduling the remaining work in the selected projects and to re-assign
staff in a decision point, we have chosen a conceptually simple heuristic pol-
icy which can be classified as priority-based in the terminology of [15]: First of
all, projects with an earlier due date have a higher priority of being scheduled
immediately than projects with a later due date. Secondly, within a project i,
work packages (i, r) with a higher value of E (Dir) (i.e., those that can be ex-
pected to consume a higher amount of resources) obtain higher priorities. Fi-
nally, for each work package (i, r), employees j with free capacities and efficiency
value γjr ≥ γmin are assigned according to priorities defined by their efficiency
value γjr (higher priority for higher efficiency). We present the applied stochas-
tic scheduling-and-staffing algorithm in pseudo-code form in Fig. 2. The chosen
policy effects that at each decision point t, the set of employees is partitioned
into teams where each team is either assigned to a specific work package, or is
(in the case at most one team) “idle” at the moment.

4.3 A Numerical Example

At the moment, we are performing tests using benchmark data on candidate
projects, employees, work times, efficiencies and objectives from an application
provided by the E-Commerce Competence Center Austria (“EC3”), a public-
private R & D organization. The following illustration example is a simplified



102 W.J. Gutjahr, S. Katzensteiner, and P. Reiter

version derived from this real-world application. Experiments were performed
on a PC Pentium 2.4 GHz with program code implemented in Matlab V 6.1.

The reduced example application (which does not use the EC3 data directly,
but is similar in flavor) considers n = 12 projects, J = 5 employees and R = 3
competencies. Ready times and due dates span over a time horizon of 32 months.
For modelling the work times Dir, triangular distributions have been used for
the first tests, where the parameter estimations map the typical high skewness of
work times in R & D projects, the most frequent value lying much closer to the
minimum value than to the maximum value. (We do not claim that triangular
distribution satisfy the conditions of Theorem 3.1, but they yield meaningful
test cases for the algorithm S-VNS nevertheless.) Efficiency values have been
determined by a special procedure the description of which is outside the scope
of this paper; in the case of the five selected employees for the illustration example
presented here, the efficiency values are such that one of the five employees is
highly specialized, whereas the efficiencies of the other four employees are more
evenly distributed over the three considered competencies. A minimum efficiency
score of γmin = 0.25 has been defined. The economic benefits of the 12 projects
have roughly been estimated by the vector (20, 1, 4, 5, 4, 4, 4, 4, 3, 1, 6, 8); for the
strategic benefits, the three considered competencies have been weighted by the
desirability values 2, 1 and 5, respectively. The time unit is a month. First,
we considered the case where the weights for the three parts of the objective
function (corresponding to economic benefit, strategic benefit and tardiness)
are estimated by the numbers β1 = 20, β2 = 1 and β3 = 100, respectively.
This means that work experience of 20 months gained in a competency with
desirability 1 is considered as of the same worth as an additional unit of economic
benefit, and the loss caused by a delay of one month is considered as equivalent
to the loss of five units of economic benefit.

It is not easy to evaluate the results delivered by the proposed algorithm S-
VNS, since exact solutions2 are very hard to determine already for this compa-
rably small problem size: Note that the solutions space for the portfolio decision
consists of 212 = 4096 portfolios, and from the observed variances and the typ-
ical differences between objective function values, we estimate that at least 104

simulation runs are necessary to compute a sufficiently accurate approximation
to the true objective function value f(x) enabling an identification of the optimal
solution with some reliability. Of course, even this time-consuming brute-force
procedure would not give a guarantee that the true optimum is found. In order
to have a yardstick for our heuristic results, we adopted the following pragmatic
procedure instead: First, a heuristic solution x̃ was determined by S-VNS, and
using the observed SAE variance, an aspiration level ca was determined in such
way that an SAE with sample size s(1) would be above ca for each solution that is
at least as good as x̃, except with a very small failure probability < 10−6. Then,
we performed complete enumeration of all portfolios x ∈ S by an SAE with

2 By the term “exact solution”, we refer in the sequel only to the portfolio selec-
tion decision, considering the described scheduling-and-staffing policy as fixed. The
question whether this policy can be improved will not be treated here.
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sample size s(1). Whenever the resulting objective function estimate exceeded
the aspiration level ca for a solution x, we re-evaluated this solution based on a
second SAE with large sample size s(2) ! s(1). For s(1) and s(2), we chose the
values 80 and 20 0000, respectively.

By this technique, we found the presumably best solution within a runtime
of about 5 hours and 20 minutes. For the weights indicated above, this was
the solution x∗ = (0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1). We performed now runs of S-
VNS where the stopping criterion was a pre-defined maximum number mmax of
rounds chosen in such a way that each run required about 1 minute computation
time only. For each parameter combination, the average relative deviation of the
objective function values of the delivered solutions in ten independent runs from
that of the (presumably) best solution was computed. We observed that for
several parameter combinations, the optimal solution was found in a majority of
runs. Let us look at two special parameter combinations. Therein, c0 denotes the
factor of

√
m in Remark 2 after Theorem 3.1, and Δr gives the average relative

deviation of the solution quality from the optimum in percent. It can be seen
that the relative derivations are rather low:

(i) s0 = 5, c0 = 5, kmax = 12, ρmax = 10, mmax = 10: Δr = 1.13%.
(ii) s0 = 3, c0 = 10, kmax = 12, ρmax = 10, mmax = 10: Δr = 0.86%.

Reducing the weight β3 for objective function 3 from 100 to 20 describes the
situation where violations of due dates have less serious consequences. The op-
timal solution for this weight combination is x∗ = (1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0).
It is seen that here, the decision maker can risk to include the larger (and more
profitable) project no. 1 into the portfolio. Using parameter combination (i) from
above, all of ten independent runs of S-VNS provided this optimal solution.

5 Conclusions

We have presented a simulation-optimization algorithm S-VNS for stochastic
combinatorial optimization problems, based on the Variable Neighborhood
Search metaheuristic, and shown that the solutions produced by S-VNS converge
under rather weak conditions to optimality. As an application case, a stochastic
project portfolio selection problem involving project scheduling and staff assign-
ment decisions has been described, and the application of the proposed algorithm
to this problem has been outlined.

First experimental observations have been obtained, which are of course not
yet sufficient for an experimental evaluation of the approach, but show promising
results. Tests on a large number of randomly generated instances as well as on
real-life instances will be necessary to judge the solution quality achieved by
the method. In particular, these tests should include comparisons with other
simulation-optimization techniques and verify the found results by statistical
significance tests. Within our mentioned application context, we are performing
extensive investigations of this type, and a long version of the present paper is
planned providing results of this type.



104 W.J. Gutjahr, S. Katzensteiner, and P. Reiter

Acknowledgment. Financial support from the Austrian Science Fund (FWF)
by grant #L264-N13 is gratefully acknowledged.

References

1. Alrefaei, M.H., Andradottir, S.: A Simulated Annealing algorithm with constant
temperature for discrete stochastic optimization. Management Sci. 45, 748–764
(1999)

2. Alrefaei, M.H., Andradottir, S.: A modification of the stochastic ruler method for
discrete stochastic optimization. European J. of Operational Research 133, 160–182
(2001)

3. Chen, A.N.K., Edgington, T.M.: Assessing value in organizational knowledge cre-
ation: considerations for knowledge workers. MIS Quaterly 29, 279–309 (2005)

4. Fitzpatrick, J.M., Grefenstette, J.J.: Genetic algorithms in noisy environments.
Machine Learning 3, 101–120 (1988)

5. Fu, M.C.: Optimization for simulation: theory vs. practice. INFORMS J. on Com-
puting 14, 192–215 (2002)

6. Gabriel, S.A., Kumar, S., Ordonez, J., Nasserian, A.: A multiobjective optimiza-
tion model for project selection with probabilistic considerations. Socio-Economic
Planning Sciences 40, 297–313 (2006)

7. Gelfand, S.B., Mitter, S.K.: Simulated Annealing with noisy or imprecise measure-
ments. J. Optim. Theory Appl. 69, 49–62 (1989)

8. Gutjahr, W.J., Pflug, G.: Simulated annealing for noisy cost functions. J. of Global
Optimization 8, 1–13 (1996)

9. Gutjahr, W.J.: A converging ACO algorithm for stochastic combinatorial optimiza-
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13. Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applica-
tions. European J. of Operational Research 130, 449–467 (2001)

14. Homem-de-Mello, T.: Variable-sample methods for stochastic optimization, ACM
Trans. on Modeling and Computer Simulation 13, 108–133 (2003)
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Abstract. We introduce a new approach for randomizing the digit sets
of binary integer representations used in elliptic curve cryptography, and
present a formal analysis of the sparsity of such representations. The
motivation is to improve the sparseness of integer representations and to
provide a tool for defense against side channel attacks. Existing alterna-
tive digit sets D such as D = {0, 1, −1} require a certain non-adjacency
property (no two successive digits are non-zero) in order to attain the de-
sired level of sparseness. Our digit sets do not rely on the non-adjacency
property, which in any case is only possible for a certain very restricted
class of digit sets, but nevertheless achieve better sparsity. For example,
we construct a large explicit family of digit sets for which the resulting
integer representations consist on average of 74% zeros, which is an im-
provement over the 67% sparsity available using non-adjacent form rep-
resentations. Our proof of the sparsity result is novel and is dramatically
simpler than the existing analyses of non-adjacent form representations
available in the literature, in addition to being more general. We conclude
with some performance comparisons and an analysis of the resilience of
our implementation against side channel attacks under an attack model
called the open representation model. We emphasize that our side chan-
nel analysis remains preliminary and that our attack model represents
only a first step in devising a formal framework for assessing the security
of randomized representations as a side channel attack countermeasure.

Keywords: randomized representations, elliptic curve cryptography,
non-adjacent form representations, side channel attack countermeasures.

1 Introduction

Let α be an elliptic curve private key. In traditional elliptic curve cryptography,
a point of the form αQ is computed via repeated doubling and addition using
the binary representation α = akak−1 . . . a1a0 of α. By exploiting the fact that
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inverses on an elliptic curve are easy to compute, one can speed up the com-
putation of αQ using signed binary representations [2,?]. As a simple example,
consider the case where the integers ai are taken from the set {0, 1,−1}. In this
case, the resulting representations α =

∑k
i=0 ai2i are no longer unique, but Re-

itweisner [22] observed in 1960 that these representations become unique if one
decrees that no two consecutive ai are nonzero. The resulting representations are
known as non-adjacent form representations or naf representations in the liter-
ature. Furthermore, the naf representation of α is guaranteed to have the fewest
possible nonzero terms out of all possible representations of α using {0, 1,−1}, a
property which is desirable for performance reasons because nonzero terms slow
down the computation of αQ. Morain and Olivos [14] were among the first to
exploit {0, 1,−1}-representations to speed up elliptic curve computations.

Recently, Muir and Stinson [15] studied representations of the form α =∑k
i=0 ai, where ai ∈ {0, 1, x} for some constant x, and found an infinite (but

exponentially rare) class of sets {0, 1, x}, called non-adjacent digit sets or nads,
satisfying the property that each integer α has a unique naf representation in
{0, 1, x}. Subsequent work [1,7] has extended the understanding of the properties
of nads and their corresponding naf representations, but such research has had
at best limited applicability to cryptography because of the exponential rarity of
known nads, which results in only a limited variety of such sets being available
for use in implementations.

In this paper we introduce and study binary representations with respect to
more general digit sets of the form {0, 1, x, y, . . . z}. We show that the high perfor-
mance characteristics of traditional signed binary representations can be realized
over this much larger and more general collection of digit sets. Our result enables
an entire new class of algorithms for runtime randomization of elliptic curve ex-
ponentiation, based on randomized digit sets. We provide both theoretical and
empirical analysis showing that ec exponentiation using randomized sparse rep-
resentations is superior to traditional exponentiation or signed exponentiation
in efficiency. Our theoretical analysis is simpler than prior investigations even
when restricted to the special case of non-adjacent digit sets of the form {0, 1, x},
but our results also apply more generally to digit sets having size 2c + 1 for any
c, with only mild restrictions (e.g. the set must contain one element congru-
ent to 3 mod 4). We achieve this ease of analysis by allowing the use of integer
representations which occasionally violate the nonadjacency rule. Nevertheless,
we show that these representations have zero density asymptotically equal to or
better than the uniquely defined representations arising from nads. Finally, we
provide an analysis indicating that the information entropy of an integer multi-
plier is lower bounded by that of the digit set under an attack model which we
call the open representation model, in which the symbolic representation of the
integer multiplier (that is, the pattern of digits appearing in the representation)
is exposed to the attacker via side channel information but the digit set itself
is hidden. The use of randomized digit sets is crucial to this analysis, because
otherwise there is no distinction between knowing the symbolic representation
of an integer and knowing the integer itself. Since all known side channel attacks



Digit Set Randomization in Elliptic Curve Cryptography 107

to date (for example, [11,?,?]) operate by obtaining the symbolic representation
of an integer, we believe that the introduction of randomized digit sets and the
creation of such a distinction under the open representation model constitutes
a crucial first step in devising a rigorous framework for analyzing side channel
attack countermeasures. We emphasize, however, that our preliminary investi-
gations fall short of a complete framework for side channel attack analysis and
that much more remains to be done in this area.

2 Statistical Properties of NAF Representations

Heuberger and Prodinger [7] recently showed that non-adjacent form represen-
tations with respect to digit sets {0, 1, x} have an average density of nonzero
terms equal to 1/3, using a detailed combinatorial study involving recurrences.
In this section we give a Markov Chain analysis for the {0, 1, x} case, which as
we will see generalizes readily to larger digit sets. We begin with the relevant
definitions.

Definition 2.1. A digit set is a finite set of integers containing both 0 and 1 as
elements.

For the rest of this section, we assume the digit set D has the form D = {0, 1, x}
where x ≡ 3 (mod 4) is negative.

Definition 2.2. Let D be a digit set and let α be a nonnegative integer. A non-
adjacent form representation (or naf representation) of α with respect to D is
a finite (possibly empty) sequence of integers ai ∈ D, i = 0, . . . , k, with ak �= 0,
such that α =

∑k
i=0 ai2i, and no two consecutive values of ai are both nonzero.

We note at this point that an arbitrary integer α does not necessarily have a naf

representation with respect to D. For the moment, we will limit our attention
to the case where α does have a naf representation with respect to D. Later
we will discuss how to modify our algorithm and analysis to apply to the cases
where it does not.

Theorem 2.3 ([15]) Every nonnegative integer has at most one naf represen-
tation with respect to D.

We write α = (ak · · · a2a1a0)2 to denote that the sequence ai is the naf repre-
sentation for α. By convention, the empty sequence is the naf representation
for 0.

The following definition and theorem provide a method for computing naf

representations.

Definition 2.4. For any digit set D = {0, 1, x}, let fD : N → N and gD : N →
D ∪ (D ×D) be the functions defined by

fD(n) =

⎧
⎪⎪⎨
⎪⎪⎩

n/4 n ≡ 0 (mod 4)
(n− 1)/4 n ≡ 1 (mod 4)

n/2 n ≡ 2 (mod 4)
(n− x)/4 n ≡ 3 (mod 4)

, gD(n) =

⎧
⎪⎪⎨
⎪⎪⎩

(0, 0) n ≡ 0 (mod 4)
(0, 1) n ≡ 1 (mod 4)

0 n ≡ 2 (mod 4)
(0, x) n ≡ 3 (mod 4)

.
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Theorem 2.5 ([15]) A nonnegative integer α has a naf representation if and
only if fD(α) has a naf representation. Moreover, if α = (ak · · · a2a1a0)2 and
fD(α) = (b� · · · b2b1b0)2, then ak · · · a2a1a0 = b� · · · b2b1b0 || gD(α), where ||
denotes concatenation of sequences.

Theorem 2.5 suggests the following algorithm A for computing the naf repre-
sentation of α:

1. If α = 0, then return the empty string. Otherwise:
2. Evaluate fD(α) and gD(α).
3. Recursively call the algorithm A on the new input value fD(α) in order to

find the naf representation of fD(α).
4. Concatenate the naf representation of fD(α) with gD(α), and remove any

leading zeros, in order to obtain the naf representation for α.

By Theorems 2.3 and 2.5, the algorithm A is guaranteed to return the naf

representation of α whenever α has one.

2.1 A As a Dynamical System

The execution profile of the algorithm A involves calculating the quantities α1 =
fD(α), α2 = fD(α1) = f2

D(α), α3 = fD(α2) = f3
D(α), etc., as well as the values

of gD(α), gD(α1), gD(α2), etc. We are interested in knowing the distribution of
the integers αk mod 4 in order to predict which of the execution pathways for
fD and gD in Definition 2.4 are more likely to be encountered.

Theorem 2.6 For a fixed digit set D = {0, 1, x}, where x ≡ 3 (mod 4) the prob-
ability distribution of the congruence classes αk mod 4 over the values (0, 1, 2, 3),
for random uniformly selected integers α ∈ [0, N ], where N ! |x|, converges to
the vector (1

5 , 3
10 , 1

5 , 3
10 ) as k → ∞, with error bounded in magnitude by an ex-

ponential in k.

Proof. By hypothesis, the initial (uniformly selected) input value α has prob-
ability distribution P0 = (1

4 , 1
4 , 1

4 , 1
4 ) over the congruence classes mod 4. The

probability distribution P1 for α1 is computed as follows:

– By assumption, α is uniformly distributed in [0, N ].
– If α ≡ 0 (mod 4), then α1 = α/4 is uniformly distributed mod 4.
– If α ≡ 1 (mod 4), then α1 = α−1

4 is uniformly distributed mod 4.
– If α ≡ 2 (mod 4), then α1 = α/2 is uniformly either 1 or 3 mod 4.
– If α ≡ 3 (mod 4), then α1 = α−x

4 is uniformly distributed mod 4.

Denote by A the matrix

A =

⎛
⎜⎜⎝

1
4

1
4 0 1

4
1
4

1
4

1
2

1
4

1
4

1
4 0 1

4
1
4

1
4

1
2

1
4

⎞
⎟⎟⎠ .
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Then the probability distribution P1 of α1 is given by

P1 = A · P0 =
(

3
16 , 5

16 , 3
16 , 5

16

)
. (2.1)

Similarly, the probability distribution P2 of α2 is given by

P2 = A · P1 =
(

13
64 , 19

64 , 13
64 , 19

64

)
. (2.2)

In general, the probability distribution Pk of αk is given by the formula Pk =
A · Pk−1.

Transient Analysis. We now show that AkP0 gets exponentially close to the
eigenvector π = (1

5 , 3
10 , 1

5 , 3
10 ) of A in a small number of steps independent of D

and the value of α.
The eigenvalues of A are λ1 = 1 and λ2 = −1/4, with the other eigenvalues

being zero. We diagonalize the matrix to obtain Λ(1,− 1
4 , 0, 0) = P−1AP where

P as usual consists of eigenvectors of A.
Let the eigenvectors corresponding to λ1 and λ2 be π and π′ respectively.

The angle between these two eigenvectors is 78.69 degrees. Let q1 and q2 be
the projections of P0 onto the one dimensional spaces spanned by π and π′

respectively, and let q′ = P0−q1−q2. Then AkP0 = Ak(q1 +q2+q′) = q1 +λk
2q2,

since Akq′ = 0. Since λ2 is bounded away from 1, it follows that ||AkP0 − π||
drops exponentially fast in k. Thus our steady state eigenvector π will dominate
the behavior of AkP0 for even modest values of k.

Corollary 2.7 On average, for random values of α! |x|, the naf representa-
tion of α has 2/3 of its output digits equal to 0.

Proof. By Theorem 2.6, out of every ten instances of αk, we expect two to be
0 mod 4, three to be 1 mod 4, two to be 2 mod 4, and three to be 3 mod 4.
Hence we produce on average two values of gD(αk) equal to (0, 0), three values
of gD(αk) equal to (0, 1), two values of gD(αk) equal to 0, and three values of
gD(αk) equal to (0, x). Counting up the digits, we find that on average 12 out
of the 18 output digits are equal to 0.

2.2 Generalizations

The techniques described above generalize readily to any digit set D = {0, 1}∪X
where X consists of 2n − 1 elements belonging to prescribed congruence classes
mod 2n. For example, using n = 3 we have been able to construct digit sets with
proven 78% asymptotic sparsity (compared with 67% in Corollary 2.7 and 74%
in Corollary 2.10). However, as a compromise between readability and generality,
and also for space reasons, we limit our analysis here to the case of digit sets
having five elements. We consider digit sets of the form D = {0, 1, x, y, z} where
x ≡ 3 (mod 8), y ≡ 5 (mod 8) and z ≡ 7 (mod 8) are negative. The transition
matrix in this case has the same largest and second largest eigenvalues as in
the {0, 1, x} case, with all other eigenvalues being 0. We emphasize that one has
considerable freedom in the design of the transition matrix and that the choices
given here merely represent a useful baseline.
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Definition 2.8. For a digit set D of the above form, let fD : N → N and
gD : N→ D ∪ (D ×D) be the functions defined by

fD(n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n/8 n≡0 (mod 8)
(n−1)/8 n≡1 (mod 8)

n/2 n≡2 (mod 8)
(n−x)/8 n≡3 (mod 8)

n/4 n≡4 (mod 8)
(n−y)/8 n≡5 (mod 8)
(n−2x)/8 n≡6 (mod 8)
(n−z)/8 n≡7 (mod 8)

, gD(n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(0,0,0) n≡0 (mod 8)
(0,0,1) n≡1 (mod 8)

0 n≡2 (mod 8)
(0,0,x) n≡3 (mod 8)
(0,0) n≡4 (mod 8)

(0,0,y) n≡5 (mod 8)
(0,x,0) n≡6 (mod 8)
(0,0,z) n≡7 (mod 8)

.

Theorem 2.9 Let α ∈ N and D = {0, 1, x, y, z} as above. Any naf representa-
tion (b� · · · b2b1b0)2 of fD(α) yields a naf representation (b� · · · b2b1b0 || gD(α))2
of α via concatenation. Furthermore, the the probability distribution of the con-
gruence class of fk

D(α) mod 8, for random uniformly selected integers α ∈ [0, N ],
where N ! |max(x, y, z)|, converges to the vector ( 1

10 , 7
40 , 1

10 , 1
8 , 1

10 , 7
40 , 1

10 , 1
8 ) as

k →∞, with error bounded in magnitude by an exponential in k.

Proof. By hypothesis, the initial input α has probability distribution P0 =
(1
8 , 1

8 , 1
8 , 1

8 , 1
8 , 1

8 , 1
8 , 1

8 ) over the congruence classes mod 8. The probability dis-
tribution P1 for fD(α) is computed as follows:

– Assume that α is uniformly distributed in [0, N ].
– If α ≡ 0 (mod 8), then α1 = α/8 is uniformly distributed mod 8.
– If α ≡ 1 (mod 8), then α1 = α−1

8 is uniformly distributed mod 8.
– If α ≡ 2 (mod 8), then α1 = α/2 is uniformly 1 or 5mod 8.
– If α ≡ 3 (mod 8), then α1 = α−x

8 is uniformly distributed mod 8.
– If α ≡ 4 (mod 8), then α1 = α/4 is uniformly 1, 3, 5 or 7 mod 8.
– If α ≡ 5 (mod 8), then α1 = α−y

8 is uniformly distributed mod 8.
– If α ≡ 6 (mod 8), then α1 = α−2x

8 is uniformly distributed mod 8.
– If α ≡ 7 (mod 8), then α1 = α−z

8 is uniformly distributed mod 8.

Denote by B the transition matrix

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
8

1
8 0 1

8 0 1
8

1
8

1
8

1
8

1
8

1
2

1
8

1
4

1
8

1
8

1
8

1
8

1
8 0 1

8 0 1
8

1
8

1
8

1
8

1
8 0 1

8
1
4

1
8

1
8

1
8

1
8

1
8 0 1

8 0 1
8

1
8

1
8

1
8

1
8

1
2

1
8

1
4

1
8

1
8

1
8

1
8

1
8 0 1

8 0 1
8

1
8

1
8

1
8

1
8 0 1

8
1
4

1
8

1
8

1
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Then P1 = B · P0, and as in the case of Theorem 2.6, the limit distribution
of Pk = BkP0 for fk

D(α) converges exponentially rapidly to the eigenvector
π = ( 1

10 , 7
40 , 1

10 , 1
8 , 1

10 , 7
40 , 1

10 , 1
8 ) of B.

Corollary 2.10 On average, for random values of α ! |x|, the naf represen-
tation of α has 20/27 of its output digits equal to 0.

Proof. Counting in the same manner as Corollary 2.7, we find that for every
forty instances of αk, on average 80 out of the 108 output digits are equal to 0.
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α = 111101011000010010110001111001111000011000110001111101010101101000100\
0001011110101010111011110001111111101010010111100100000101111001010001111\
1101010111011000011100001000111100011101010110011
α = z00000y0010010000z00x000x0000z00z00y00000z00y0000100z00000y00x0000x0\
0001000100x000x0x000x0z00x00100y0000100y0000y000010000y00y00100x0000x00x\
000000100000z00x00y00y00x0001000x0x000x00y0010010111
for X = {0, 1, −709, −947, −913}
α = z00z000100x00000010010000010000y000x000000z0000y001001000x01000x0010\
000000100y0000z000x0x00000x0001000y00y00100x00z000x0z00y0000x0000x000010\
000x00x000x000000000z0010000100000y0010111010110110011110000001
for X = {0, 1, −152397797, −272310435, −132159113}

Fig. 1. Examples of randomized sparse representations of a fixed 192-bit integer α
with respect to random digit sets X = {0, 1, x, y, z}. In each representation, the least
significant digits are written on the left.

3 Empirical Results

We begin by describing the standard technique for implementing elliptic curve
scalar multiplication using non-adjacent form representations. Let α be an inte-
ger having a naf representation α = (ak · · · a1a0) with respect to some digit set
D = {0, 1, x, y, z, . . .}. Compute the point xQ (and also yQ, zQ etc. if needed).
The computation of xQ is very fast if |x| is small, and even for large values of |x|
there are some protocols (such as ElGamal encryption) for which the point Q is
fixed, in which case xQ may be precomputed and stored. One can then compute
αQ =

∑
2k(akQ) using the usual double and add formula except with xQ (resp.

yQ, zQ) in place of Q whenever the representation of d contains an x (resp. y, z)
term as opposed to a 1 term. The efficiency of this calculation depends in large
part on the proportion of terms in the representation which are nonzero, since
these are the terms that trigger addition operations in the standard double and
add formula.

In order to make this algorithm practical for random digit sets, we need to
allow the use of integer representations which lack the non-adjacency property,
since not every integer has a naf representation with respect to every digit set.
Without this allowance, the algorithm A would enter into an infinite loop when
presented with input values α that lack naf representations. Our approach is to
revert to standard binary representation whenever the algorithm A encounters
an input value of size less than that of one of the digits in the digit set. In this
case, the maximum possible length of the ensuing purely binary portion is � :=
log(max{|x|, |y|, |z|, . . .}). Hence, for α ! max{|x|, |y|, |z|, . . .}, the statistical
analysis of the previous section remains valid for the 1 − �

log |α| fraction of the
digit string which comprises the vast majority of the representation of α.

Figure 1 contains examples of a 192-bit integer represented in random sparse
format with respect to various digit sets {0, 1, x, y, z}. Figure 2 compares the
measured performance of the randomized exponentiation algorithm versus signed
binary exponentiation as well as standard double-and-add exponentiation. On
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Fig. 2. Empirical timings for 192-bit EC exponentiation implemented on a 3.0 GHz
Pentium 4 processor using the Microsoft bignum library. The vertical axis represents
clock cycles and the horizontal axis depicts the results of 100 trials. In the left graph,
each trial took place using a randomly selected digit set {0, 1, x, y, z} with 10-bit values
for x, y, z; the right graph uses 32-bit values. In each graph the two horizontal lines
represent the cycle count for standard and signed binary representation, respectively.

average, the randomized algorithm outperforms signed binary multiplication for
values of x, y, z as large as 10 bits, and remains competitive at 32-bit values. The
timings do not include the cost of computing the individual multiples xQ, yQ,
zQ, but in performance contexts this cost can be minimized by selecting small
values for x, y, z. In the next section, however, we consider digit set randomiza-
tion in the setting of side channel attacks, and in this setting we do need to use
large values of x, y, z and account for the ensuing computational cost.

4 Digit Set Randomization as a Side Channel Attack
Countermeasure

Side channel attacks [11] remain one of the most critical points of vulnerability
for elliptic curve cryptosystem implementations as they exist today. These at-
tacks make use of power consumption, cache hit rate, timing, or other differences
between ec add and ec double operations to determine the binary representa-
tion of a scalar multiplier in an ec exponentiation operation [9]. While a number
of protective countermeasures against side channel attacks have been proposed
([4,6,8,12,20,13,26,28]; see [3] for overview), many of the schemes have been bro-
ken [5,16,17,18,21,24,25,27] owing to their ad-hoc nature, and all of the existing
proposals involve significant performance penalties.

We make a distinction between two classes of side channel attacks known as
simple and differential attacks. In simple side channel attacks, a single execution
instance is analyzed and the secret key is deduced using side channel informa-
tion from that instance alone. In differential attacks, side channel information
from multiple execution instances are compared and processed to deduce the
secret key. For obvious reasons, it is generally considered more difficult to pro-
tect against differential attacks than against simple attacks. In this section we
explain how randomized digit sets can be used to leverage simple side channel
resilience into differential side channel resilience and present a formal analysis of
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security under a simplified attack model. Our goal here is not to provide a com-
prehensive proof of security, but rather just to suggest a new and promising type
of approach which has never been considered before, and propose a preliminary
naive security analysis as motivation.

A typical side channel attack operates by using side channel information to de-
duce the internal representation of a secret multiplier, for example by exploiting
differences in power consumption between the main branches of a multiplication
algorithm. In most cases, knowing the internal representation of an integer is
enough to deduce the value of the multiplier. However, when randomized digit
sets are used, a given internal (symbolic digit) representation can correspond
to a multitude of different integer values, depending on which digit set is used.
Hence, even if an attacker possesses full knowledge of the symbolic representa-
tion of an integer, we can still quantify to what extent does the value of the
integer remain uncertain. Formally, we define the open representation model to
denote the attack model in which the attacker possesses no information other
than the symbolic digits corresponding to the secret multiplier α, and ask how
many bits of information entropy remain in the value of α. In the next section we
analyze this question and show that the number of bits is equal to the entropy
of the digit set, assuming that this entropy is itself less than the entropy of α.

The computation of the individual multiples xQ, yQ, zQ in the rsf algorithm
must be done in a side channel resistant manner in order to prevent the attacker
from determining the values of x, y, z via side channel analysis. However, since
x, y, z are randomly selected at runtime, the computation of xQ will only be
performed once for any given value of x, and thus this computation only needs
to resist simple side channel attacks.

Although some aspects of the open representation model lack realism—for
example, a real attacker would likely know the value of αQ—we believe that
the model is useful because it isolates the effects of side channel leakage in a
well defined way. Our introduction of this attack model is novel since other side
channel countermeasures do not make the crucial distinction between symbolic
representations and integer values which is necessary in order for the model to be
non-vacuous. Indeed, most side channel countermeasures in the literature rely on
manipulating either the representation itself or the sequence of field operations
used, and do not provide any security under the open representation model.

5 Entropy Bounds on Randomized Representations of
Integers

In order to evaluate the security of digit set randomization in the open repre-
sentation model, we now determine for a given digit string how many random
digit sets D will produce a fixed number α under that digit string. In order to
avoid the awkward issue of how to select random digit sets out of an infinite
collection, we assume that the elements of D are bounded in absolute value by
some fixed bound (such as 232) which is very small relative to α. We also as-
sume for simplicity that the elements of D are all negative except for 0 and 1.
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However, we emphasize that this analysis does not depend on the naf property
or indeed any other property of the digit string in question. Our analysis uses
the Gaussian Heuristic [23] for lattices which states in any well behaved subset
of Rn the number of lattice points inside is approximated by the ratio of the
volume of the body to the lattice determinant.

5.1 One Random Term in D

The simplest case of randomized digit sets is sets of the form D = {0, 1} ∪
X where X = {x}, x < 0 is randomly selected (possibly under some mild
constraints, such as x ≡ 3 (mod 4), whose effect will be explained below). In
this case, given a digit string (ak · · · a2a1a0)2, the corresponding value of α is

α =
k∑

i=0

ai2i = A0 + A1x, where A0 =
∑
ai=1

2i, A1 =
∑
ai=x

2i.

For any given value of α! |x|, there is only one value of x that will satisfy the
equation A0 + A1x = α. Thus the information entropy of α is exactly equal to
the entropy of X .

The condition x ≡ 3 (mod 4) means that an attacker who obtains the com-
plete representation of α can obtain the two least significant bits of α using the
formula α = A0 + A1x. This phenomenon can also be seen in Figure 1 where
the last two digits (or three digits, in the case of digit sets defined mod8) of the
representation are independent of the digit set. However, this level of informa-
tion leakage must be put into perspective: without digit set randomization, the
entire integer α would already be known, as opposed to two or three bits.

5.2 Two Random Terms in D

If we consider digit sets D = {0, 1} ∪X where X = {x, y}, then we have

α =
k∑

i=0

ai2i = A0 + A1x + A2y, where A0 =
∑
ai=1

2i, A1 =
∑
ai=x

2i, A2 =
∑
ai=y

2i.

For fixed α, A0, A1, A2 > 0, the number of negative integer solutions (x, y) to
α = A0 + A1x + A2y (or, equivalently, the number of positive integer solutions
(x, y) to A0 − α = A1x + A2y) is bounded above by

(A0 − α)
A1A2

· gcd(A1, A2).

This bound is obtained using standard linear Diophantine analysis. For conve-
nience, we sketch the argument here. Let Ax + By = C be a linear Diophan-
tine equation in two variables, with A, B, C > 0. Divide out by gcd(A, B) to
obtain a new equation ax + by = c with gcd(a, b) = 1. If (x0, y0) is one so-
lution to the equation, then all solutions to the equation must have the form
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(x, y) = (x0 + bt, y0− at), where t is an integer parameter. If we require x and y
to be positive, then that imposes the bounds 0 < x < c/a on x, and the number
of integers of the form x = x0 + bt that satisfy 0 < x < c/a is upper bounded by

c/a

b
=

c

ab
=

C

AB
· gcd(A, B),

as desired. In particular, in expectation one would get (A0 − α) = Θ(α) =
Θ(A1) = Θ(A2) and gcd(A1, A2) = O(1), so (A0 − α) gcd(A1, A2) = Θ(α) is
overwhelmingly likely to be less than A1A2 = Θ(α2). Therefore, on average,
we expect at most one negative integer solution (x, y) to the equation α =
A0 + A1x + A2y, and thus the information entropy in computing α for the
attacker is equal to the entropy in computing x and y.

5.3 General Case

In general, with D = {0, 1} ∪ X , where X = {x1, x2, . . . , xc}, we find that the
corresponding Diophantine equation α = A0 +

∑c
i=1 Aiyi has

1
(c− 1)!

· (A0 − α)c−1

∏c
i=1 Ai

· gcd(A1, . . . , Ac)

negative integer solutions. Here the numerator has approximate size O(αc−1)
and the denominator O(αc), so on average each α will have at most one negative
integer solution.

6 Conclusions and Further Work

We present a method for using randomized digit sets in integer representations
and give empirical results showing that elliptic curve point multiplication al-
gorithms based on large randomized digit sets outperform both standard and
signed binary representations. Our theoretical analysis of the sparsity of ran-
domized digit set representations simplifies and generalizes the existing analyses
available in the literature. We also propose digit set randomization as a side
channel attack countermeasure, and provide a preliminary analysis of the secu-
rity of random digit sets under a new attack model called the open representation
model which is designed to isolate the impact of side channel information leak-
age. Our randomized algorithm is one of the only side channel countermeasures
available that achieves even some level of security under this attack model.

In this paper we have not yet made any attempt to find parameters for digit
set randomization which both simultaneously achieve good performance and
good side channel resilience. In the future, we hope to perform empirical trials
comparing the performance of random digit sets with various parameters against
other existing side channel countermeasures; this task is greatly complicated by
the large number and variety of side channel attack countermeasures which have
been proposed. However, based on the fact that performance-oriented choices of
digit set parameters lead to record or near record levels of performance, we are
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optimistic that digit set randomization provides a good foundation for future
work towards high performing side channel attack resistant algorithms.

Acknowledgments. We are grateful to James Muir for his helpful and detailed
suggestions to us during the preparation of this manuscript.
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Abstract. “Hit-and-run is fast and fun” to generate a random point in
a high dimensional convex set K (Lovász/Vempala, MSR-TR-2003-05).
More precisely, the hit-and-run random walk mixes fast independently
of where it is started inside the convex set. To hit-and-run from a point
x ∈ Rn, a line L through x is randomly chosen (uniformly over all
directions). Subsequently, the walk’s next point is sampled from L ∩ K
using a membership oracle which tells us whether a point is in K or not.

Here the focus is on black-box optimization, however, where the
function f : Rn → R to be minimized is given as an oracle, namely a
black box for f -evaluations. We obtain in an obvious way a direct-search
method when we substitute the f -oracle for the K-membership oracle to
do a line search over L, and, naturally, we are interested in how fast such
a hit-and-run direct-search heuristic converges to the optimum point x∗

in the search space Rn.
We prove that, even under the assumption of perfect line search, the

search converges (at best) linearly at an expected rate larger (i. e. worse)
than 1−1/n. This implies a lower bound of 0.5 n on the expected number
of line searches necessary to halve the approximation error. Moreover,
we show that 0.4 n line searches suffice to halve the approximation error
only with an exponentially small probability of exp(−Ω(n1/3)). Since
each line search requires at least one query to the f -oracle, the lower
bounds obtained hold also for the number of f -evaluations.

1 Introduction

Finding an optimum of a given function f : S → R is one of the fundamental
problems—in theory as well as in practice. The search space S can be discrete
or continuous, like N or R. If S has more than one dimension, it may also be
a mixture. Here the optimization in “high-dimensional” Euclidean space is con-
sidered, i. e., the search space is Rn. What “high-dimensional” means is usually
anything but well defined. A particular 10-dimensional problem in practice may
already be considered “high-dimensional” by the one who tries to solve it. Here
the crucial aspect is how the optimization time scales with the dimensionality of
the search space Rn, i. e., we consider the optimization time as a function of n.
In other words, here we are interested in what happens when the dimensionality
� Supported by the German Research Foundation (DFG) through the collaborative
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of the search space gets higher and higher. This viewpoint is typical for analyses
in computer science. In the domain of operations research and mathematical
programming, however, focusing on how the optimization time scales with the
search space’s dimension seems not that common. Usually, the performance of
an optimization method is described by means of convergence theory. As an ex-
ample, let us take a closer look at “Q-linear convergence” (we drop the “Q” in
the following): Let x∗ denote the optimum search point of a unimodal function
and x[k] the approximate solution after k optimization steps. Then we have

dist(x∗, x[k+1])
dist(x∗, x[k])

→ r ∈ R<1 as k →∞

where dist(·, ·) denotes some distance measure, most commonly the Euclidean
distance between two points (when considering convergence towards x∗ in the
search space Rn, as we do here), or the absolute difference in function value
(when considering convergence towards the optimum function value in the ob-
jective space). Apparently, there seems to be no connection to n, the dimension
of the search space. Yet only if r is an absolute constant, there is actual indepen-
dence of n. In general, however, the convergence rate r depends on n. When we
are interested in, say, the number of steps necessary to halve the approximation
error (given by the distance from x∗), the order of this number with respect to n
precisely depends on how r depends on n. For instance, if r = 1 − 0.5/n, we
need Θ(n) steps; if r = 1− 0.5/n2, we need Θ(n2) steps, and if r = 1− 2−n, we
need 2Θ(n) steps. For any fixed dimension, however, in any of the three cases we
actually have linear convergence. Thus, the order of convergence tells us some-
thing about the “speed” of the optimization, but in general nothing about the
n-dependence of the number of steps necessary to ensure a certain approxima-
tion error (unless r is an absolute constant, i. e. independent of n). So, in case of
linear convergence, we want to know how the convergence rate depends on the
dimensionality of the search space.

Methods for solving optimization problems in continuous domains, essentially
S = Rn, are usually classified into first-order, second-order, and zeroth-order
methods, depending on whether they utilize the gradient (first derivative) of
the objective function, the gradient and the Hessian (second derivative), or
neither of both. A zeroth-order method is also called derivative-free or direct
search. Newton’s method is a classical second-order method; first-order meth-
ods can be (sub)classified into Quasi-Newton, conjugate gradient, and steepest
descent methods. Classical zeroth-order methods try to approximate the gradi-
ent and to then plug this estimate into a first-order method. Finally, amongst
the modern zeroth-order methods, randomized direct-search heuristics like simu-
lated annealing and evolutionary algorithms come into play, which are supposed
general-purpose search heuristics.

When information about the gradient is not available, for instance if f re-
lates to a property of some workpiece and is given by computer simulations or
even by real-world experiments, then zeroth-order methods are the only option
(unless simulations allow for algorithmic/automatic differentiation). As the ap-
proximation of the gradient usually involves at least n f -evaluations (forward
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finite differences; 2n for symmetric finite differences), a single optimization step
of a classical zeroth order-method is computationally expensive, in particular if
f is given implicitly by complex simulations. In practical optimization, especially
in mechanical engineering, this is often the case, and particularly in this field
randomized search heuristics (especially evolutionary algorithms) are becom-
ing more and more popular. However, the enthusiasm in practical optimization
heuristics has led to an unclear variety of very sophisticated and problem-specific
algorithms. Unfortunately, from a theoretical point of view, the development of
such algorithms is solely driven by practical success, whereas the aspect of a
theoretical analysis is left aside.

In such situations f is given to the optimization algorithm as a black box
for f -evaluations (zeroth-order oracle) and the cost of the optimization (the
runtime) is defined as the number of queries to this oracle, and we are in the
so-called black-box optimization scenario. Nemirovsky Yudin (1983, p. 333) state
(w. r. t. optimization in continuous search spaces) in their book Problem Com-
plexity and Method Efficiency in Optimization: “From a practical point of view
this situation would seem to be more typical. At the same time it is objectively
more complicated and it has been studied in a far less extent than the one [with
first-order oracles/methods] considered earlier.” After more than two decades
there still seems to be some truth in their statement, though to a smaller extent.
For discrete black-box optimization, a complexity theory has been successfully
started, cf. Droste, Jansen, Wegener (2006). Lower bounds on the number of
f -evaluations (the black-box complexity) are proved with respect to classes of
functions when an arbitrary(!) optimization heuristic knows about the class F
of functions to which f belongs, but nothing about f itself. The benefits of such
results are obvious: They can prove that an allegedly poor performance of an
apparently simple black-box algorithm on f is due to F ’s inherent black-box
complexity rather than due to the algorithm’s simpleness.

As already discussed above, the situation for heuristic optimization in con-
tinuous search spaces is different, especially with respect to randomized (direct)
methods. The results to be presented here contribute to this emerging field of
optimization theory.

2 The Framework for the Randomized Methods

As already noted above, classical zeroth-order methods (i. e. black-box optimiz-
ers) for continuous search spaces usually try to approximate the gradient of the
function f to be minimized at the current search point x. Subsequently, a line
search along gradient direction is performed to find the next search point, which
replaces x. Usually, the line search aims at locating the best (with respect to
the f -value) point on the line through x, and various strategies for how to do
the line search exist (Armijo/Goldstein, Powell/Wolfe, etc.; cf. Nocedal Wright
(2006, Ch. 3) for instance). As the approximation of the gradient usually in-
volves at least n f -evaluations, and as the (approximate) gradient’s direction
may significantly differ from the direction pointing directly to the optimum x∗
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anyway (cf. ill-conditioned quadratics), more and more direct-search heuris-
tics have been proposed which abandon gradient approximation. Among the
first and most prominent ones are the pattern search by Hooke Jeeves (1961) and
the (downhill) simplex method by Nelder Mead (1965);
cf. Kolda, Lewis, Torczon (2004) for a comprehensive review. Surprisingly, also
already in the 1960s randomized direct-search methods were proposed, one is
the so-called evolution strategy by Rechenberg (1965) and Schwefel (1965). For
some obscure reason, however, there has been resentment against randomized
algorithms in these early years. This started to change with the randomization
of quicksort and randomized testing for primality. At the latest by the time when
Dyer, Frieze, Kannan (1989) came up with a randomized approximation algo-
rithm for the computation of the volume of a convex body in high dimensional
space, the (potential) benefits of randomization have won recognition. Though
the polynomial expected runtime of this algorithm was not very practical, it
showed in principle the power of randomization since for any deterministic algo-
rithm there is a convex set for which the relative approximation error is nΩ(n)

after any polynomial number of steps. At the core of this algorithm was a ran-
dom walk on a (sufficiently fine) lattice. This algorithm was further improved,
in particular by substituting the so-called ball walk for the original lattice walk.
One step of this ball walk consists in uniformly choosing a point from the hyper-
ball of radius δ around the current point. If this point lies in the convex set, then
it becomes the next point of the walk. Obviously, one has to choose the parame-
ter δ appropriately. Moreover, when the ball walk is started very close (w. r. t. δ)
to the corner of a hypercube, just for instance, it may need an exponential num-
ber of steps to leave this corner, making a so-called warm start necessary (i. e. a
preprocessing). As recently shown by Lovász Vempala (2006), using the hit-and-
run walk instead of the ball walk avoids these two issues. Hit-and-run mixes fast
even when started close to the boundary of the convex set, and moreover, no
“step size” needs to be appropriately predefined. Also an optimization algorithm
based on random walks in convex sets has been proposed (Bertsimas Vempala,
2004).

As already noted in the abstract, to hit-and-run from a point x ∈ Rn within
a convex set K ⊂ Rn, a line L through x is randomly chosen (uniformly over
all directions). Subsequently, the walk’s next point is sampled from L ∩ K (as
uniformly as possible) using a membership oracle which tells us whether a sample
from L lies in K or not. As also already noted in the abstract, we obtain in
an obvious way a hit-and-run direct-search method for black-box optimization
of f : Rn → R when we substitute the f -oracle for the K-membership oracle.
Thus, the framework of the heuristics for black-box optimization we consider is
as follows: For a given initialization of x ∈ Rn the following loop is performed:

1. Randomly choose a line L through x (uniformly over all directions).
2. By some kind of a line search (using the f -oracle), find a point x′ ∈ L.
3. Set x := x′ and GOTO 1 (unless stopping is requested; then output x).

Naturally, we are interested in how fast such a heuristic converges to the optimum
point x∗ ∈ Rn (we assume that there is a unique global optimum), in particular:
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How fast can it converge in principle? That is, we are interested in a general lower
bound which is universal for the class of hit-and-run direct-search heuristics.

Note that there are no assumptions on how the line search is performed. In
particular, for the line search in the ith iteration, the algorithm may use all the
information gathered from all the samples drawn during the preceding i− 1 line
searches. Naturally, in each step the choice of how to do the line search may
additionally depend on the actual direction of L. All in all, a large variety of
adaptive strategies for black-box optimization is covered by our framework.

3 The Lower Bounds

Since any reasonable strategy for the line search implies at least one query to
the f -oracle, in our scenario the number of f -evaluations is bounded below by
the number of line searches. Thus, we focus on the number of line searches in the
following and aim at a general lower bound. Therefore, we need an upper bound
on the gain of a single line search. We consider the best case: When we want the
heuristic to approach the unique optimum point x∗ as fast as possible, we may
optimistically assume that x′ was chosen from the line L such that the distance
between x′ and x∗ is minimum. Call this a perfect line search. The situation is
depicted in the figure below.

g

d

x∗
L∗

d′
�

x

x′′x′

L

α

α

H

It is well known that the distance between x∗ and x′ is minimum when x′ ∈
L ⊃ {x} is such that the line passing through x′ and x∗ is perpendicular to
the line L (given that x∗ /∈ L, which is the case with probability one, unlike
already x coincides with the optimum point x∗, because L’s direction is chosen
uniformly over all directions).

Let d := dist(x, x∗) denote the current approximation error in the search space
and let d′ := dist(x′, x∗). Furthermore, let L∗ denote the line through x and x∗.
Now consider the hyper-plane H which contains x and is perpendicular to L∗.
Let x′′ := argminy∈H dist(x′, y) denote the unique point in H with smallest
distance from x′. Then the angle α between L and L∗ equals the angle between
L and the line through x′ and x′′ (which is parallel to L∗ since it is perpendicular
to H just as L∗). Consequently, we have

d′ = d · sin α and dist(x′, H) = dist(x′, x) · cosα.



Lower Bounds for Hit-and-Run Direct Search 123

Let g := dist(x′, x′′) denote the distance of x′ from H , and � := dist(x′, x) so
that we have g/� = cosα. Since d′/d = sin α =

√
1− (cos α)2, we obtain

d′

d
=
√

1− (g/�)2, (1)

which ranges in [0, 1] since g ∈ [0, �]. Thus, instead of focusing on the distribution
of sin α when the line L is chosen uniformly over all directions, we can focus on
the ratio g/� and concentrate on the distribution of this relative distance of x′

from the hyper-plane H (namely, relative to the distance of x′ from x). (It will
shortly become clear why this makes sense.)

In two dimensions, like in the figure above, for any fixed d′ ∈ (0, d) there
are exactly two (different) lines through x with distance d′ from the optimum
point x∗. (Note that by fixing d′ we also fixed � and g.) In three or more
dimensions, however, there is an infinite number of such lines. In three di-
mensions they form a double cone with its apex at x, and all points of this
cone with a distance of exactly d′ from x∗ (namely all x′) form a circle. This
circle lies in a plane which is parallel to H (a plane in three dimensions).
In general, i. e. in n ≥ 3 dimensions, the potential points x′ form the set
S := {x′ ∈ Rn | dist(x′, x∗) = d′ and dist(x′, x) = �}, which is an (n−1)-sphere
since S is the intersection of two hyper-spheres, namely of the hyper-sphere
with radius d′ centered at x∗ and the hyper-sphere with radius � centered at x.
Moreover, S lies in the hyper-plane H ′ which is parallel to H such that it has
distance g from H and distance d− g from x∗. The situation is depicted below,
where the left sphere consists of all points with distance d′ from the optimum
point x∗, and the right sphere consists of all points with distance � from our
current approximate solution x.

H ′

xx∗

H

L∗

Recall that we fixed d′ ∈ (0, d) for the above discussion, and that this implies
fixed values for � and g = dist(H ′, H). Now consider a randomly chosen line
L through x (uniform over all directions). According to our construction, if L
penetrates the (n−1)-sphere S ⊂ H ′, then the perfect line search on L yields a
point with a distance of exactly d′ from x∗. Now, if L lies inside the double cone,
i. e., L penetrates the open (n−1)-ball whose missing boundary is S, then the
perfect line search yields a point with a distance smaller than d′ from x∗. If L
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lies outside the double cone (except for passing through the apex x, of course),
then the perfect line search yields a point with a distance larger than d′ from x∗.
Thus, we are interested in the probability that L is chosen such that it lies inside
the cone, namely the probability that the perfect line search yields a point with
a distance of less than d′ from x∗.

Now, how can we actually pick a line through x such that its direction is
uniformly random? We pick uniformly at random a point y from/over the unit
hyper-sphere centered at x and choose L as the line through y and x. From this
point of view, the perfect line search yields a point with a distance of exactly d′

from x∗ if y’s distance from H is exactly g/�; a point with a distance smaller
than d′ from x∗ if y’s distance from H is larger than g/�; and a point with a
distance larger than d′ from x∗ if y’s distance from H is smaller than g/�.

In other words, we can consider the random variable R := d′/d as a func-
tion of the random variable G defined as y’s distance from the hyper-plane H ,
where the point y is chosen uniformly over the unit hyper-sphere centered
at x. Namely, we have R =

√
1−G2, cf. Equation 1. (Note that the distri-

bution of y over Rn is spherically symmetric; more precisely, invariant w. r. t.
orthonormal transformations.) For n ≥ 4 the density function of G’s distri-
bution over [0, 1] is given by (1 − x2)(n−3)/2/Ψ (Jägersküpper, 2003), where
Ψ =

∫ 1

0 (1 − x2)(n−3)/2 dx (normalization) and the value of this integral is
Ψ =

√
π/4 · Γ (n/2 − 1/2)/Γ (n/2) =

√
π/n/2 + Θ(n−3/2), where “Γ ” denotes

the well-known gamma function. Consequently, y’s expected distance from H

equals
∫ 1

0 x · (1 − x2)(n−3)/2 dx
/
Ψ = (n − 1)−1/Ψ which turns out to be about

0.8/
√

n. This might appear bewildering (at first) since this implies that, as the
search space’s dimensionality increases, the expected distance from H tends
to zero—although y’s distance form x is fixed to one and H is hit with zero
probability. However, noting that H is an affine subspace with dimension n−1
(i. e. codimension 1), it may become more plausible that getting far away from
H becomes less and less probable as n increases. It might help even more to
recall that an n-hypercube with unit diameter (longest diagonal) has edges of
length 1/

√
n.

Naturally, E[G] does not tell us much about E[R] = E
[√

1−G2
]
, the expec-

tation in which we are actually interested. We can easily compute it, though:

E[R] =
∫ 1

0

√
1− x2 · (1 − x2)(n−3)/2

/
Ψ dx =

∫ 1

0

(1 − x2)n/2−1 dx
/
Ψ.

Since
∫ 1

0
(1− x2)n/2−1 dx =

√
π/4 · Γ (n/2)/Γ (n/2 + 1/2), we obtain

E[R] =

√
π/4 · Γ (n/2)/Γ (n/2 + 1/2)√
π/4 · Γ (n/2− 1/2)/Γ (n/2)

=
Γ (n/2) · Γ (n/2)

Γ (n/2− 1/2) · Γ (n/2 + 1/2)
. (2)

Using Γ (n/2 + 1/2) = Γ (n/2− 1/2) · (n/2− 1/2), we have

E[R] =
n− 1

2
·
(

Γ (n/2)
Γ (n/2 + 1/2)

)2

,
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and since Γ (n/2 + 1/2)/Γ (n/2) <
√

n/2, we obtain the following lower bound
on the expected factor by which the approximation error is reduced in each step:

E[R] >
n− 1

2
· 2
n

= 1− 1
n

.

This lower bound holds for perfect line search and, as a direct consequence, also
for any other line-search strategy. With other words, this bound is universal for
the class of hit-and-run direct-search methods.

To see how good this general lower bound on E[R] actually is, an upper bound
on E[R] under the assumption of perfect line search would be nice. Using that
Γ (n) = (n− 1)!, Γ (n/2) = (n− 2)!! ·

√
π/2(n−1)/2, and Γ (k + 1/2) = (2k− 1)!! ·√

π/2k (where k!! is defined as 2 · 4 · 6 · · ·k for even k, and as 1 · 3 · 5 · · ·k for odd
k), the right-hand side of Equation 2 can be estimated as follows:

E[R] <
2n− 1

2n
= 1− 1

2n
.

In other words, for perfect line search, the expected factor by which the approx-
imation error is reduced (in each step) is smaller (i. e. better) than 1 − 0.5/n.
This shows that our general lower bound of 1 − 1/n on E[R] is actually pretty
tight. All in all, we have proved the following result:

Theorem 1. Consider the optimization of a function f : Rn → R with a unique
optimum point x∗. Then we have for n ≥ 4:

The (hypothetical) hit-and-run direct-search method which performs a perfect
line search in each step converges linearly towards x∗ at an expected rate of
1− β/n, where 0.5 < β < 1 (and β depends on n according to Equation 2).

Independently of how a hit-and-run direct-search method performs the line
searches, the expected factor by which the approximation error (i. e. the distance
from x∗) is reduced is larger than 1 − 1/n in each step. That is, if (at all) a
hit-and-run direct-search method converges towards x∗, then at best linearly at
an expected rate larger (i. e. worse) than 1− 1/n.

The result on the expected factor by which the approximation error is reduced
directly implies a bound on the expected spatial gain towards the optimum
point x∗. Therefore, let d[i] denote the approximation error (i. e. the distance
from x∗) after the ith step, and let d[0] denote the initial approximation error.
For a fixed d[i−1], let Δ[i] := d[i] − d[i−1] be defined as the random variable
corresponding to the spatial gain towards x∗ in the ith step. Then the above
theorem says that in general, i. e. for any hit-and-run direct-search method,
E
[
Δ[i]
]

< d[i−i]/n in each step i. Moreover, for perfect line search, in each step
E
[
Δ[i]
]

= β(n) · d[i−1]/n for some function β : N→ (0.5, 1).
Let us stick with perfect line search in the following. Then the approximation

error is non-increasing, i. e., d[0] ≥ d[1] ≥ d[2] . . . (actually, d[i+1] < d[i] with
probability one, since the randomly chosen line lies in H with zero probability).
Thus, in each step Δ[i] < d[i−1]/n ≤ d[0]/n, and consequently, the number
of steps necessary for an expected total gain of at least d[0]/2 is larger than
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(d[0]/2)/(d[0]/n) = n/2 (actually, n ln 2). However, in general, maximizing the
expected total gain of a fixed number of steps need not necessarily result in
minimizing the expected number of steps to realize a specified gain. Nevertheless,
n/2 will turn out to be a lower bound on the expected number of steps which
are necessary to halve the approximation error. The proof is a straight-forward
application of the following lemma, which is a modification of Wald’s equation.

Lemma 2. Let X1, X2, . . . denote random variables with bounded range and S
the random variable defined by S = min{ t | X1 + · · · + Xt ≥ g} for a given
g > 0. Given that S is a stopping time (i. e., the event {S = t} depends only on
X1, . . . , Xt), if E[S] <∞ and E[Xi | S ≥ i] ≤ u �= 0 for all Xi, then E[S] ≥ g/u.

(A proof can be found, e. g., in Jägersküpper, 2007.) We let Xi denote Δ[i]

and choose g := d[0]/2. As we have just seen, 0 ≤ Δ[i] ≤ d[0], and since in
our scenario “S ≥ i ” merely means that the approximation error has not been
halved in the first i−1 steps, actually E

[
Δ[i] | S ≥ i

]
< d[0]/n =: u. Finally, we

note that S is in fact a stopping time so that g/u = n/2 is indeed a lower bound
on the expected number of steps to halve the approximation error (unless E[S]
was infinite, in which case we would not need to prove a lower bound anyway).
Due to the linearity of expectation, the expected number of steps to halve the
approximation error b ∈ N times is lower bounded by (n/2)+ (b− 1) · (n/2− 1),
where the rightmost “−1” emerges because the last step within a halving-phase
is also (and must be counted as) the first step of the following halving-phase.
Thus, we have just proved the following result.

Theorem 3. Let a hit-and-run direct-search method optimize a function in Rn,
n ≥ 4, with a unique optimum. Let b : N → N. For perfect line search, the
expected number of steps until the approximation error in the search space is less
than a 2−b(n)-fraction of the initial one is lower bounded by b(n) · n/2− b(n) + 1.

Now that we know that at least n/2 steps are necessary in expectation to halve
the approximation error, we would like to know whether there is a good chance
of getting by with considerably fewer steps. In fact, we want to show that there
is almost no chance of getting by with a little fewer steps. Actually, we are
going to prove that 0.4 n steps suffice to halve the approximation error only
with an exponentially small probability. Therefore recall the following notions
and notations, where X and Y denote random variables:

– X stochastically dominates Y , in short “X # Y,” if (and only if) ∀a ∈ R:
P{X ≤ a} ≤ P{Y ≤ a}. Obviously, “#” is a transitive relation.

– If X # Y as well as Y # X , i. e., ∀a ∈ R : P{X ≤ a} = P{Y ≤ a}, then X
and Y are equidistributed and we write “X ∼ Y .”

Theorem 4. Let a hit-and-run direct-search method optimize a function in Rn

with a unique optimum. Let b : N→ N such that b(n) = poly(n). For perfect line
search, with a very high probability of 1 − exp(−Ω(n1/3)) more than b(n) · 0.4 n
steps are necessary until the approximation error is less than a 2−b(n)-fraction
of the initial approximation error.
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Proof. Assume that x[0] �= x∗. Because in each step perfect line search is per-
formed, Δ[i]/d[i−1] ∼ Δ[j]/d[j−1] for i, j ∈ N (scale invariance) . Since moreover
d[0] ≥ d[1] ≥ d[2] . . . , we have Δ[1] # Δ[2] # . . . for the single-step gains. Let
X1, X2, X3, . . . denote independent instances of the random variable Δ[1]. Then
∀i ∈ N : Xi # Δ[i], and hence

∑k
i=1 Δ[i] ≺ Sk :=

∑k
i=1 Xi. In less formal words:

Adding up k independent instances of the random variable which corresponds
the spatial gain in the first step results in a random variable (namely Sk) which
stochastically dominates the random variable given by the total gain of the first
k steps. The advantage of considering Sk instead of the “true” total gain of these
steps is the following: Sk is the sum of independent random variables so that we
can apply Hoeffding’s bound. Namely, Hoeffding (1963, Theorem 2) tells us:

Let X1, . . . , Xk denote independent random variables with bounded ranges so
that ai ≤ Xi ≤ bi with ai < bi for i ∈ {1, . . . , k}. Let S := X1 + · · · + Xk.
Then P{S ≥ E[S] + x} ≤ exp(−2x2/

∑k
i=1(bi − ai)

2) for any x > 0.

If the support of each random variable Xi is contained in [a, b] ⊂ R, Hoeffding’s
bound becomes exp(−2 · (x/(b − a))2/k). So, let k := 0.4n and S := Sk. Then
E[S] = 0.4n · E

[
Δ[1]
]
≤ 0.4d[0], and for the application of Hoeffding’s bound we

choose x := 0.1d[0], which yields an upper bound of exp(−0.05(d[0]/(b− a))2/n)
on the probability that the approximation error is halved in 0.4n steps. We can
choose a := 0 so that we obtain P

{
X1 + · · ·+ Xk ≥ d[0]/2 | X1, . . . , Xk ≤ b

}
≤

exp(−0.05(d[0]/b)2/n), where b is an upper bound on the gain towards the op-
timum point x∗ in a step. Unfortunately, when substituting the trivial upper
bound of d[0] for b, the upper bound on the probability becomes exp(−0.05/n),
which tends to one as n grows. For b := d[0]/n2/3, however, we obtain (recall
that k was chosen as 0.4n)

P
{
X1 + · · ·+ Xk ≥ d[0]/2 | X1, . . . , Xk ≤ d[0]/n2/3

}
≤ e−0.05 n1/3

.

Thus, if we can show that P
{
Xi > d[0]/n2/3

}
= e−Ω(n1/3) in each of the 0.4n

steps, we obtain (by an application of the union bound)

P
{
X1 + · · ·+ Xk ≥ d[0]/2

}
≤ e−0.05 n1/3

+ 0.4n · e−Ω(n1/3) = e−Ω(n1/3).

Finally, by another application of the union bound, we obtain the theorem be-
cause b(n) = poly(n) implies b(n) · e−Ω(n1/3) = e−Ω(n1/3).

In other words, it remains to be shown that P
{
Δ[0] > d[0]/n2/3

}
is actu-

ally bounded above by e−Ω(n1/3). Therefore, recall Equation 1. It tells us that
d − d′ = d · (1 −

√
1− (g/�)2). As a consequence, P

{
Δ > d/n2/3

}
is equal to

P
{
1−
√

1−G2 > 1/n2/3
}
. Solving the inequality 1 −

√
1−G2 > 1/n2/3 for

G yields G >
√

2/n2/3 + 1/n4/3 so that that Δ > d/n2/3 actually implies
G >

√
2/n1/3. Since G’s density is a non-increasing function in [0, 1],

P
{
G >

√
2/n1/3

}
=
∫ 1

√
2/n1/3

(1− x2)(n−3)/2 dx <

(
1− 2

n2/3

)(n−3)/2

.
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Since (1−t/k)k < e−t for 0 < t < k > 1, we have (1 − 2/n2/3)n2/3
< e−2, so that

P
{
Δ > d/n2/3

}
< P
{
G >

√
2/n1/3

}
< e−2·((n−3)/2)/n2/3

= e−n1/3+3/n2/3
. ��

4 Discussion and Conclusion

Even though it is clear from intuition that the lower bounds presented in the two
preceding theorems do not only hold for perfect line search but for any line-search
strategy, they are formally proved only for perfect line search. Interestingly,
we can easily show that our theorems do hold independently of how the line
searching is actually done: By induction over the number of steps i we show that
the random variable which corresponds to the approximation error after i steps
for a given line-search strategy stochastically dominates the random variable d[i]

for perfect line search, which we considered in the proofs.
So, hit-and-run direct-search methods converge (at best and if at all) linearly

with an expected rate larger/worse than 1− 1/n. In simple words, the reason for
this is that in high dimensions the randomly chosen direction is with a high prob-
ability “almost perpendicular” to the direction pointing directly towards the op-
timum point x∗. For the further discussion, consider the simple toy problem of
minimizing a quadratic form x �→ x�Qx, where the matrix Q ∈ Rn×n is posi-
tive definite. For this simple scenario, steepest descent converges at least linearly
at a rate which is independent of the dimension n but which gets worse when the
condition number of Q increases—when assuming a worst-case starting point (cf.
Nocedal Wright (2006, Sec. 3.3) for instance). In the best case, however, steepest
descent needs a single (perfect) line search to determine the optimum. Thus, for
ill-conditioned quadratics, the performance of steepest decent heavily depends on
the starting point. This is one reason why usually preconditioning is applied. Hy-
pothetically assume for a moment the extreme of perfect preconditioning, so that
x�Ix = |x|2 is to be minimized. Interestingly, the original evolution strategy
from 1965 by Rechenberg/Schwefel mentioned in the introduction, a very simple
randomized method which belongs to the class of hit-and-run direct-search meth-
ods (a line search consists in sampling a single point), actually gets by with O(n)
f -evaluations with very high probability to halve the approximation error in this
scenario (Jägersküpper, 2003). This shows that the very general lower bound ob-
tained here can be met at least up to a constant factor. However, in this ideal
scenario steepest descent needs a single (perfect) line search to find the optimum
independently of the starting point. Now, as we consider black-box optimization,
steepest descent must approximate the gradient. Even though the approximation
of the gradient may cost 2n f -evaluations, a single line search in this approximate
direction may yield a significantly larger gain towards the optimum—whereas a
hit-and-run method needs at least 0.5n f -evaluations to halve the approximation
error in any case (in expectation; 0.4n with very high probability). Thus, with a
passable preconditioning, the approximation of the gradient should pay off—even
though it costs a linear (in n) number of f -evaluations per step—so that it will
likely be superior to hit-and-run into a random direction.
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As just discussed, for smooth functions we cannot expect hit-and-run direct
search to compete with methods which learn (and then utilize) second-order in-
formation like the well-known BFGS method or (nonlinear) conjugate gradient
methods. Clearly, hit-and-run can make sense in real-world optimization—when
classical/established (nonlinear) methods have turned out to fail. For instance,
when the function to be optimized is non-smooth, or disturbed by noise, or highly
multimodal such that gradient approximation is deceptive. Then, however, as we
have proved here, we should not expect such hit-and-run direct search to be fast.
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An Exponential Gap Between LasVegas and

Deterministic Sweeping Finite Automata�

Christos Kapoutsis, Richard Královič, and Tobias Mömke

Department of Computer Science, ETH Zürich

Abstract. A two-way finite automaton is sweeping if its input head can
change direction only on the end-markers. For each n ≥ 2, we exhibit a
problem that can be solved by a O(n2)-state sweeping LasVegas automa-
ton, but needs 2Ω(n) states on every sweeping deterministic automaton.

1 Introduction

One of the major goals of the theory of computation is the comparative study
of probabilistic computations, on one hand, and deterministic and nondetermin-
istic computations, on the other. An important special case of this comparison
concerns probabilistic computations of zero error (also known as “LasVegas com-
putations”): how does zpp compare with p and np? Or, in informal terms: Can
every fast LasVegas algorithm be simulated by a fast deterministic one? Can
every fast nondeterministic algorithm be simulated by a fast LasVegas one?

Naturally, the computational model and resource for which we pose these
questions are the Turing machine and time, respectively, as these give rise to the
best available theoretical model for the practical problems that we care about.
However, the questions have also been asked for other computational models and
resources. Of particular interest to us is the case of restricted models, where the
questions appear to be much more tractable. Conceivably, answering them there
might also improve our understanding of the harder, more general settings.

In this direction, Hromkovič and Schnitger [1] studied the case of one-way
finite automata, where efficiency is measured by size (number of states). They
showed that, in this context, LasVegas computations are not more powerful
than deterministic ones—intuitively, every small one-way LasVegas finite au-
tomaton (1p0fa) can be simulated by a small deterministic one (1dfa). This
immediately implied that, in contrast, nondeterministic computations are more
powerful than LasVegas ones: there exist small one-way nondeterministic finite
automata (1nfas) that cannot be simulated by any small 1p0fa.

For the case of two-way finite automata (2dfas, 2p0fas, and 2nfas), though,
the analogous questions remain open [2]: Can every small 2p0fa be simulated by
a small 2dfa? Can every small 2nfa be simulated by a small 2p0fa? Note that
a negative answer to either question would confirm the long-standing conjecture
that 2nfas can be exponentially more succinct than 2dfas [5].
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In this article we provide such negative answers for the special case where the
two-way automata involved are sweeping (sdfas, sp0fas, snfas), in the sense that
their input head can change direction only on the end-markers. Both answers use
the crucial fact (adapted from [2,4]) that a problem can be solved by small sp0fas
iff small snfas can solve both that problem and its complement. Based on that,
the answer to the second question is an immediate corollary of the recent result
of [3]. The first question is answered by exhibiting a specific problem (inspired by
liveness [5]) that cannot be solved by small sdfas but is such that small snfas
can solve both it and its complement. Our contribution is this latter theorem.

We stress that the expected running time of all probabilistic automata in this
article is (required to be finite, but) allowed to be exponential in the length of the
input, as our focus is on size complexity only. Our theorem should be interpreted
as a first step towards the more natural (and more faithful to the analogy with
zpp, p, and np) case where size and time must be held small simultaneously.

The next section defines the basics and presents the problem witnessing the
separation. Section 3 describes a sp0fa that solves this problem with O(n2) states.
Section 4 proves that every sdfa solving the same problem needs at least 2Ω(n)

states. Finally, Section 5 sketches a bigger picture that our theorem fits in.

2 Preliminaries

By [n] we denote {1, 2, . . . , n}. If Σ is an alphabet, then Σ∗ is the set of all finite
strings over Σ. If z ∈ Σ∗, then |z|, zt, zt, and zR are its length, t-th symbol (if
1 ≤ t ≤ |z|), t-fold concatenation with itself (if t ≥ 0), and reverse. A problem
(or language) over Σ is any L ⊆ Σ∗; then L is its complement. If # �∈ Σ, then
L# is the problem #(L#)∗ of all #-delimited finite concatenations of strings of L.

An automaton solves (or recognizes) a problem iff it accepts exactly the strings
of that problem. A family of automata M = (Mn)n≥0 solves a family of problems
Π = (Πn)n≥0 iff, for all n, Mn solves Πn. The automata of M are ‘small’ iff,
for some polynomial p and all n, Mn has at most p(n) states. Often, the generic
member of a family informally denotes the family itself: e.g., “Πn can be solved
by a small 1dfa” means that some family of small 1dfas solves Π .

If f is a function and t ≥ 1, then f t is the t-fold composition of f with itself.

Sweeping automata. A sweeping deterministic finite automaton (sdfa) [6]
over an alphabet Σ and a set of states Q is any triple M = (qs, δ, qa) of a start
state qs ∈ Q, an accept state qa ∈ Q, and a transition function δ which partially
maps Q× (Σ∪{&,'}) to Q, for some end-markers &,' /∈ Σ. An input z ∈ Σ∗ is
presented to M surrounded by the end-markers, as &z'. The computation starts
at qs and on &. The next state is always derived from δ and the current state and
symbol. The next position is always the adjacent one in the direction of motion;
except when the current symbol is & or when the current symbol is ' and the
next state is not qa, in which cases the next position is the adjacent one towards
the other end-marker. Note that the computation can either loop, or hang, or
fall off ' into qa. In this last case we call it accepting and say that M accepts z.
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More generally, for any input string z ∈ Σ∗ and state p, the left computation
of M from p on z is the unique sequence lcompM,p(z) := (qt)1≤t≤m, where
q1 := p; every next state is qt+1 := δ(qt, zt), provided that t ≤ |z| and the value
of δ is defined; and m is the first t for which this provision fails. If m = |z|+ 1,
we say that the computation exits z into qm; otherwise, 1 ≤ m ≤ |z| and the
computation hangs at qm. The right computation of M from p on z is denoted
by rcompM,p(z) and defined symmetrically, with qt+1 := δ(qt, z|z|+1−t).

The traversals of M on z are the members of the unique sequence (ct)1≤t<m

where c1 := lcompM,p1(z) for p1 := δ(qs,&); every next traversal ct+1 is either
rcompM,pt+1(z), if t is odd and ct exits into a state qt such that δ(qt,') =
pt+1 �= qa, or lcompM,pt+1(z), if t is even and ct exits into a state qt such that
δ(qt,&) = pt+1; and m is either the first t for which ct cannot be defined or ∞,
if ct exists for all t. Then, the computation of M on z, denoted by compM (z),
is the concatenation of (qs), c1, c2, . . . and possibly also (qa), if m is finite and
even and cm−1 exits into a state qm−1 such that δ(qm−1,') = qa.

If M is allowed more than one next move at each step, we say it is nondeter-
ministic (a snfa). Formally, this means that δ partially maps Q×(Σ∪{&,'}) to
the set of all non-empty subsets of Q. Hence, on any z ∈ Σ∗, compM (z) is a set
of computations. If at least one of them is accepting, we say that M accepts z.

If M follows exactly one of its nondeterministic choices at each step according
to some rational distribution, we say it is probabilistic (a spfa). Formally, this
means that δ partially maps Q × (Σ ∪ {&,'}) to the set of all rational distri-
butions over Q—i.e., all total functions from Q to the rational numbers that
obey the axioms of probability. Hence, on any z ∈ Σ∗, compM (z) is a rational
distribution of computations. The expected length of a computation drawn from
this distribution is called the expected running time of M on z.

For M to be a LasVegas spfa (a sp0fa), a few extra conditions should hold.
First, a special reject state qr ∈ Q must be specified—so that M = (qs, δ, qa, qr).
Second, whenever the current symbol is ' and the next state is qr, the next
position is the adjacent one in the direction of motion—so that a computation
may also fall off ' into qr, in which case we call it rejecting. Last, on any z ∈ Σ∗, a
computation drawn from compM (z) must be either accepting with probability 1
or rejecting with probability 1. In the former case, we say that M accepts z.
The concept of Las Vegas randomness is closely related to the self-verifying
nondeterminism (see [2]).

Finally, a sweeping automaton is called one-way (1dfa, 1nfa, 1pfa, 1p0fa)
if it halts immediately after reading the right end-marker. Formally, this means
that the value of the transition function on any state and on ' is always either
undefined or qa (for 1dfas); or {qa} (for 1nfas); or the unique distribution over
{qa} (for 1pfas); or some distribution over {qa, qr} (for 1p0fas).

The witness. In this section we define the family of problems Π that witnesses
the separation between small sp0fas and small sdfas. Let n ≥ 2 be arbitrary.

Problem Πn consists of all #-delimited concatenations of the strings of another
problem, Π ′

n. That is, Πn := (Π ′
n)# = #(Π ′

n#)
∗. So, we need to present Π ′

n.
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11
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(d)(c)(b)(a)

(g)(f)(e)

Fig. 1. (a) Three symbols of Γ5; e.g., the leftmost one is (3, 4, {2, 4}). (b) The symbol
{(3, 4), (5, 2)} of X5. (c) Two symbols of Δ5. (d) The string defined by the six symbols
of (a)-(c); in circles: the roots of the four trees; in bold: the two upper trees; the string
is in Π ′

5. (e) The upper left tree vanishes. (f) No tree vanishes, but the middle edges
miss the upper left tree. (g) A well-formed string that does not respect the tree order.

Problem Π ′
n is defined over the alphabet Σ′

n := Γn ∪Xn ∪Δn, where:

Γn := { (i, j, α) | i, j ∈ [n] and i < j and ∅ �= α � [n] },
Xn := { {(i, r), (j, s)} | i, j, r, s ∈ [n] and i �= j and r �= s },
Δn := { (α, j, i) | i, j ∈ [n] and i < j and ∅ �= α � [n] }.

Intuitively, each (i, j, α) ∈ Γn represents a two-column graph (Fig. 1a) that has n
nodes per column and contains exactly the edges that connect the ith left node
to all right nodes inside α and the jth left node to all right nodes outside α.
Symmetrically, each (α, j, i) ∈ Δn represents a similar graph (Fig. 1c) containing
exactly the edges that connect the ith and jth right nodes to the left nodes inside
α and outside α, respectively. Finally, each {(i, r), (j, s)} ∈ Xn represents a graph
(Fig. 1b) containing only the edges connecting the ith and jth left nodes to the
rth and sth right nodes, respectively. In all cases, we say that i and j (and r
and s, in the last case) are the roots of the given symbol.

Of all strings over Σ′
n, consider those following the pattern Γ ∗

nXnΔ∗
n. Each

of them represents the multi-column graph (Fig. 1d) that we get from the cor-
responding sequence of two-column graphs when we identify adjacent columns.
The symbol of Xn is called ‘the middle symbol’—although it may very well not
be in the middle position. If we momentarily hide the edges of that symbol, we
easily see that the graph consists of exactly four disjoint trees, stemming out of
the roots of the leftmost and rightmost columns. The tree out of the upper root
of the leftmost column is naturally referred to as “the upper left tree”. Similarly,
the other trees are called “lower left”, “upper right”, and “lower right”. Notice
that, starting from the leftmost column, the two left trees may or may not both
reach the left column of the middle symbol, as one of them may at some point
‘cover all nodes’ (Fig. 1e). Similarly, at least one of the two right trees reaches
the right column of the middle symbol, but not necessarily both. Also observe
that, in the case where all four trees make it to the middle symbol, the two edges
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of that symbol may or may not collectively ‘touch’ all trees (Fig. 1f). A string
over Σ′

n is called well-formed if it belongs to Γ ∗
nXnΔ∗

n and is such that each of
the four trees contains exactly one of the roots of the middle symbol (Fig. 1dg).

Of all well-formed strings over Σ′
n, problem Π ′

n consists of those that ‘respect
the tree order’, in the sense that the two edges of the middle symbol do not
connect an upper tree to a lower one (Fig. 1d). In other words, this is the set

Π ′
n := {z ∈ (Σ′

n)∗ | z is well-formed and respects the tree order}.

Hence, to solve Πn = #(Π ′
n#)

∗ means to check that the input string (over Σn :=
Σ′

n ∪ {#}) starts and ends with # and is such that every infix between two
successive copies of # is well-formed and respects the tree order.

3 The Upper Bound

In this section we prove that Πn can be solved by a sp0fa with O(n2) states.

One-way nondeterministic finite automata. The next two simple lemmata
reduce solving Πn with a small sp0fa to solving Π ′

n and Π ′
n with small 1nfas.

Lemma 1 (adapted from [2,4]). If each of L and L can be solved by a 1nfa

with m states, then L can be solved by a sp0fa with 1 + 2m states.

Proof. Suppose M and M are two m-state 1nfas solving L and L, respectively.
Then, on any input z, exactly one of the computation trees of M and M on z
contains accepting computations. We construct a sp0fa M ′ for L that navigates
probabilistically through these trees, trying to discover such a computation. If
it succeeds, then it accepts or rejects, depending on which tree the computation
was found in. If it fails, it sweeps back to the left end-marker and tries again.

More specifically, on input z, M ′ performs a series of sweeps. Each left-to-
right sweep is an attempt to find an accepting computation of either M or M
on z, while right-to-left sweeps are just rewinds. A left-to-right sweep starts
with M ′ selecting one of M and M uniformly at random. Then, the selected
1nfa is simulated on z: at each step, M ′ either follows one of the possible next
states uniformly at random or—if there are no such states (i.e., the 1nfa would
hang at that point)—simply stops the simulation and sweeps blindly to '. If
the simulation ever reaches a situation where the 1nfa would be about to fall
off ' into its accepting state, then M ′ has discovered the desired accepting
computation and therefore falls off ', too, into its own accepting or rejecting
state (depending on whether it had been simulating M or M , respectively).
Otherwise, the simulation stops somewhere before or at ', in which case M ′

finishes the left-to-right sweep, sweeps back to &, and starts a new attempt.
It is not hard to see that M ′ can be constructed out of a copy of M , a copy of

M , and 1 extra state. Also, M ′ halts only after finding an accepting computa-
tion, which happens with probability 1, and then decides correctly. Finally, since
each attempt uses at most 2|z|+ 2 steps and succeeds with probability at least
1
2 ( 1

m )|z|+1, the average running time is at most (2|z|+ 2) · 2m|z|+1 = 2O(|z|). ��
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Lemma 2. If L can be solved by a 1nfa with m states, then L# can be solved
by an 1nfa with 2 + m states. Similarly, if L can be solved by a 1nfa with m
states, then L# can be solved by an 1nfa with 4 + m states.

Proof. Suppose M is an m-state 1nfa solving L. A 1nfa M ′ for L# can simply
simulate M successively on every #-delimited infix of its input, until the input
is exhausted or one of these simulations produces no accepting computation.
Easily, M ′ can be constructed out of one copy of M and two new states.

Similarly, if M is an m-state 1nfa for L, then a 1nfa M ′ for L# can simply
simulate M on a nondeterministically chosen #-delimited infix of its input, and
accept if the simulation accepts; at the same time, additional nondeterministic
threads accept if the input fails to be a #-delimited concatenation of infixes.
Easily, M ′ can be constructed out of one copy of M and four new states. ��

Two upper bounds for Π ′
n. It is now enough to prove that each of Π ′

n and
Π ′

n can be solved by a 1nfa with O(n2) states. To see how, let us first suppose
that the input is promised to be of the form Γ ∗

nXnΔ∗
n.

It is easy to see that such an input is in Π ′
n iff it contains two disjoint paths

that run from the leftmost to the rightmost column and have their right end-
points in the same order as their left endpoints. To verify this condition, a 1nfa

M can simply guess the two paths (at each step remembering only the most
recent node in each of them) and accept iff their last nodes are in the order
in which the paths started. This can be done easily with 2

(
n
2

)
states. To dis-

prove this condition, a 1nfa M can look for one of the following ‘flaws’: (i) in
some a ∈ Γn, one of the roots touches two roots of the following symbol, (ii) in
some a ∈ Δn, one of the roots touches two roots of the preceding symbol, or
(iii) the input (is well-formed, but) does not respect the tree order. The last
flaw can be detected easily, with a slightly modified copy of M ; detecting (ii) is
then possible with one additional state; a final modification—requiring

(
n
2

)
new

states—ensures that (i) is also detected. Overall, 1 + 3
(
n
2

)
states are enough.

Now, if the input is not promised to be of the form Γ ∗
nXnΔ∗

n, we can simply
augment M and M to also check this additional condition. Specifically, given
that Γ ∗

nXnΔ∗
n can be recognized by a 1dfa M ′ with only two states, Π ′

n can
be solved by the (standard) Cartesian product of M and M ′ that accepts iff
both of them accept (and is twice as big as M); similarly, Π ′

n can be solved by
an augmented version of M that includes M ′ as an additional nondeterministic
thread (and has two more states than M).

4 The Lower Bound

Much like what we did in Section 3, we first reduce the task of proving a lower
bound for sdfas solving Πn to the task of proving a lower bound for a simpler
class of automata (the parallel intersection automata, see below) solving Π ′

n.
Essential in this reduction is the notion of generic strings (adapted from [6]).
So, we start with the definition and properties of these strings, continue with
the reduction, and conclude with the lower bound for the simpler setting.
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Generic strings. Let M be a sdfa over an alphabet Σ and state set Q. For
any y ∈ Σ∗, consider the set of all states that can be produced on the rightmost
boundary of y by left computations of M :

lviewsM (y) := {q ∈ Q | (∃p ∈ Q)[lcompM,p(y) exits into q]}.

How does this set change if we replace y with some right-extension yz of it? In
other words, how do the sets lviewsM (y) and lviewsM (yz) compare?

Consider the partial function lmapM (y, z) : lviewsM (y) → Q which, for
every q ∈ lviewsM (y), is defined only if lcompM,q(z) does not hang and, if
so, returns the state that this computation exits into. Easily, the values of this
function: (i) are all in lviewsM (yz),and (ii) cover the entire lviewsM (yz).(1)

So, lmapM (y, z) is a partial surjection from lviewsM (y) to lviewsM (yz). This
immediately implies Fact 1. Fact 2 is equally simple.

Fact 1. For all y, z: |lviewsM (y)| ≥ |lviewsM (yz)|.

Fact 2. For all y, z: lviewsM (yz) ⊆ lviewsM (z).

Now consider any property ∅ �= P ⊆ Σ∗ which is infinitely extensible to the right,
in the sense that every string that has the property can be right-extended into a
longer one that also has it. Fact 1 implies the following about the behavior of M
on P : if we start with any y ∈ P and keep right-extending it ad infinitum into
yz, yzz′, yzz′z′′, · · · ∈ P , then from some point on the corresponding sequence of
the sizes of the sets |lviewsM (·)| will become constant. Any of the extensions
after that point is called l-generic (for M) over P . Summarizing:

Definition 1. A string y is l-generic over P if y ∈ P and, for all yz ∈ P ,
|lviewsM (y)| = |lviewsM (yz)|.

Fact 3. Suppose P ⊆ Σ∗ is non-empty and infinitely extensible to the right.
Then l-generic strings over P exist.

Note that a symmetric argument works in the other direction, too: working
with right computations and left-extensions, we can define rviewsM (y) and
rmapM (z, y); conclude Facts 1 and 2 for rviewsM (y) and rviewsM (zy); define
r-generic strings; and conclude Fact 3 for them, too. In fact, we can often con-
struct strings, called simply generic, that are simultaneously l- and r-generic:

Fact 4. Suppose that yl and yr are l-generic and r-generic over P , respectively.
Then every string in P of the form ylzyr is generic over P .

Proof. For any l-generic string over P , all right-extensions of it in P are clearly
also l-generic. In the other direction, the symmetric statement is true. ��

The next lemma is the key for the reduction presented in Lemma 4.

Lemma 3. Suppose a sdfa M solves L# and y is generic for it over L#. Then a
string x belongs to L iff lmapM (y, xy) and rmapM (yx, y) are total and injective.
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Proof. Suppose x ∈ L. Since y ∈ L# (because y is generic over L#), we know yxy
is also in L#. Hence, yxy is a right-extension of y in L#. Since y is l-generic, this
implies that |lviewsM (y)| = |lviewsM (yxy)|.

Now consider lmapM (y, xy). By the discussion before Fact 1, we already know
this is a partial surjection from lviewsM (y) to lviewsM (yxy). Since the two
sets are of equal size, the function must be total. For the same reason, it must
also be injective. The argument for rmapM (yx, y) is symmetric.

Conversely, suppose lmapM (y, xy) is total and injective. Since we already
know that it partially surjects lviewsM (y) to lviewsM (yxy), we can conclude
that it is actually a bijection between the two sets. Now, by Fact 2, we also know
that lviewsM (yxy) ⊆ lviewsM (y). Hence, lmapM (y, xy) bijects lviewsM (y)
into one of its subsets. Clearly, this is possible only if this subset is the set
itself. So, lmap(y, xy) is a permutation π of lviewsM (y). Symmetrically, if
rmapM (yx, y) is total and injective, then it is a permutation ρ of rviewsM (y).

Now pick any k ≥ 1 such that each of πk and ρk is the identity on its do-
main, and consider the string z := y(xy)k = (yx)ky. It is easy to verify that
lmapM

(
y, (xy)k

)
equals lmapM (y, xy)k = πk, and is therefore the identity on

lviewsM (y). Similarly, rmapM

(
(yx)k, y

)
equals ρk, and is therefore the identity

on rviewsM (y). Intuitively, this means that, computing through z, the left-to-
right computations of M do not notice the presence of (xy)k to the right of the
prefix y; similarly, the right-to-left computations do not notice the presence of
(yx)k to the left of the suffix y. Consequently, M does not distinguish between
y and z: it either accepts both of them or rejects both of them. Since M solves
L# and y ∈ L#, we know M accepts y. Therefore, M accepts z as well. Hence,
every #-delimited infix of z is in L. In particular, x ∈ L. ��

Parallel intersection automata. A parallel intersection automaton over Σ
is any pair M = (L,R) of families of 1dfas over Σ. To run M on an input x
means to run each of its component 1dfas on x, but with a twist: each D ∈ L
reads x from left to right, while each D ∈ R reads x from right to left. We say
M accepts x iff all these computations are accepting—i.e., iff all D ∈ L accept
x and all D ∈ R accept xR. The next lemma presents a non-trivial connection
with sdfas—implicitly present already in the argument of [6].

Lemma 4. If L# can be solved by a sdfa of size m, then L can be solved by a
parallel intersection automaton with at most 2

(
m
2

)
components, each of size

(
m
2

)
.

Proof. Suppose a sdfa M over a set Q of m states solves L#. We will construct
a parallel intersection automaton M ′ = (L,R) that solves L, as follows.

First, we fix y to be any generic string for M over L# (we know such y exist,
by Facts 3,4 and easy properties of L#). Then (Lemma 3) an arbitrary x is in L
iff lmapM (y, xy) and rmapM (yx, y) are both total and injective, namely iff:

• for all distinct p, q ∈ lviewsM (y): both lcompM,p(xy) and lcompM,q(xy)
exit xy, and they do so into different states, and
• for all distinct p, q ∈ rviewsM (y): both rcompM,p(yx) and rcompM,q(yx)

exit yx, and they do so into different states.
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Letting ml := |lviewsM (y)| and mr := |rviewsM (y)|, we see that checking
x ∈ L reduces to checking

(
ml

2

)
+
(
mr

2

)
separate conditions, one for each unordered

pair of distinct states from lviewsM (y) or from rviewsM (y). The components
of M ′ are designed to check exactly these conditions.

Before describing these components, let us rewrite the above conditions a bit
more nicely. First, we need a concise way of saying whether two left computations
on y exit into different states or not, and similarly for right computations. To
this end, we define the following relations on Q:

• p (l q iff both lcompM,p(y) and lcompM,q(y) exit y, and they do so into
different states.
• p (r q iff both rcompM,p(y) and rcompM,q(y) exit y, and they do so into

different states.
Now, the conditions from above can be rephrased as follows:
• for all distinct p, q ∈ lviewsM (y): both lcompM,p(x) and lcompM,q(x)

exit x, and they do so into states that are (l-related, and
• for all distinct p, q ∈ rviewsM (y): both rcompM,p(x) and rcompM,q(x)

exit x, and they do so into states that are (r-related,
and it is now straightforward to build 1dfas that check each of them.

For example, the 1dfa checking the condition for the pair p, q ∈ lviewsM (y)
has 1 state for each unordered pair of distinct states from Q, with {p, q} being
both the start and the accept state. On &, {p, q} simply goes to itself. At every
step after that, the automaton tries to compute the next pair by applying the
transition function of M on the current symbol and each of the two states of the
current pair. If either application returns no value or both return the same value,
the automaton simply hangs; else, it moves to the corresponding pair. On ', the
pairs leading to {p, q} (and thus to acceptance) are exactly the (l-related ones.

Overall, we need
(
ml

2

)
+
(
mr

2

)
≤ 2
(
m
2

)
automata, each of size

(
m
2

)
. ��

A lower bound for Π ′
n. By Lemma 4, it is now enough to prove that no parallel

intersection automaton can solve Π ′
n with a small number of small components.

The next lemma proves something much stronger: no parallel intersection au-
tomaton can solve Π ′

n with small components, irrespective of their number. The
argument is similar to that of [5, Theorem 4.2.3].

Lemma 5. In any parallel intersection automaton solving Π ′
n, at least one of

the components has size strictly greater than (2n − 2)/n.

Proof. Towards a contradiction, suppose M = (L,R) solves Π ′
n with at most

(2n−2)/n states in each one of its components. We can then prove the following.

Claim. There exists a string u ∈ Γ ∗
n that admits well-formed right-extensions

and has all of them accepted by every D ∈ L. Symmetrically, some v ∈ Δ∗
n

admits well-formed left-extensions and has all of them accepted by every D ∈ R.

Intuitively, u is a string that manages to ‘confuse’ every left component of M :
each of them accepts every well-formed right-extension of u (no matter whether
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Fig. 2. Confusing D in the proof of Lemma 5

it respects the tree order or not), exactly because it has failed to correctly keep
track of the tree order inside u. Similarly for v and the right components of M .

We will prove only the first half of the claim, as the argument for the other
half is symmetric. Before that, though, let us see how the claim implies a con-
tradiction. First, since u has well-formed right-extensions, we can find nodes
i, j ∈ [n] on its rightmost column that belong to different trees. Similarly, the
leftmost column of v contains nodes r, s ∈ [n] that belong to different trees of v.
Now, consider the two symbols of Xn that have i, j, r, s as their roots, namely
x := {(i, r), (j, s)} and x′ := {(i, s), (j, r)}, and the strings uxv and ux′v. Clearly,
each string is well-formed, right-extends u, and left-extends v. So, by the claim,
each of them is accepted by all components of M . Hence, M accepts both strings.
However, by the selection of x and x′, we know that one of the strings does not
respect the tree order. So, after all, M does not solve Π ′

n—a contradiction.
To prove the first half of the claim, we work by induction on the size of L.
If L is empty, then the claim holds vacuously for, say, the empty u.
If L is non-empty, we pick any D in it and let L′ := L − {D}. Then L′ is

smaller than L, so (by the inductive hypothesis) some u′ ∈ Γ ∗
n admits well-

formed right-extensions and has all of them accepted by all D′ ∈ L′. Our goal is
to find two symbols a, c ∈ Γn such that the string u := u′ac admits well-formed
right-extensions and has all of them accepted by all members of L. (Fig. 2.)

We start by noting (as above) that, since u′ has well-formed right-extensions,
there exist nodes i′ and j′ in its rightmost column that belong to different trees.

Moreover, some of the well-formed right-extensions of u′ respect the tree order
(because, for each extension that does not, there is one that does: the one that
differs only in the pairing of the roots of the middle symbol) and are therefore
accepted by M . In particular, they are accepted by D. Thus, the left computation
of D on each of them exits to the right. Hence, the left computation of D on u′

exits to the right, too. Let p be the corresponding exit state.
Based on D, i′, j′, and p, we can now find the symbols a, c that we are after.
Consider all symbols of Γn that have i′ and j′ as roots. Each of them is of

the form (i′, j′, α) and takes p to some next state. Since there are 2n − 2 such
symbols (one for each ∅ �= α � [n]) and D has at most (2n−2)/n states, we know
some next state attracts at least (2n − 2)/

(
(2n − 2)/n

)
= n symbols. Call this

state q. Among the α’s that correspond to the symbols taking p to q, two must
be incomparable (otherwise, they would form a chain of n or more non-trivial
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subsets of [n]—a contradiction). Call these subsets α0 and α1. Then symbol a
is one of the two corresponding symbols, say a := (i′, j′, α0). We also name the
other symbol, say b := (i′, j′, α1), and a node in each side of the symmetric
difference of the two sets, say i ∈ α0 \ α1 and j ∈ α1 \ α0 (both sides are non-
empty, by the incomparability of α0, α1). It is important to note that a connects
i′ and j′ to i and j, respectively, whereas in b this connection is reversed. Finally,
c is selected to be any symbol with i and j as roots, say c := (i, j, {1}).

Let us see why u = u′ac is the string that we want (ubc would also do).
First, by the choice of i′ and j′, we know that a extends both trees of u′: one

to α0, the other one to α0. Similarly, c extends both trees of u′a, since i ∈ α0 and
j ∈ α0. Hence, u = u′ac can indeed be right-extended into well-formed strings.

Second, every such extension of u is obviously a well-formed right-extension
of u′, and is thus accepted by all D′ ∈ L′ (recall the inductive hypothesis).

Finally, every such extension of u, say uz, is also accepted by D. To see why,
consider the computations of D on u′a and u′b. Both exit into q (by the selection
of a, b, q). So, the computation of D on uz = u′acz has the same suffix as the
computation of D on u′bcz. Hence, D either accepts both strings or rejects both
strings. In the latter case, M would also reject both strings, contradicting the
fact that one of them respects the tree order (the strings differ only at a and b,
which connect i′ and j′ to i and j differently). Hence, D must be accepting both
strings. In particular, it accepts u′acz = uz. ��

5 A Bigger Picture

Our theorem is only a piece in the puzzle defined by the study of size complexity
in finite automata. An elegant theoretical framework for describing this puzzle
is due to Sakoda and Sipser [5]. Analogous to the framework built on other com-
putational models and resources (e.g., Turing machines and time), it is based
on the notions of a reduction and of a complexity class. However, a member of
a class in this framework is always a family of problems and each class contains
exactly every family that is solvable by a family of small automata of a corre-
sponding type. For example, 1d contains exactly every family of problems that
can be solved by some family of small 1dfas. Similarly, the classes 1n, 2d, and 2n

were defined for 1nfas, 2dfas, and 2nfas, respectively, while co1d, co1n, co2d,
and co2n were defined to consist of the corresponding families of complements.

Replacing 1dfas with sdfas, sp0fas, or snfas in the above definition, we can
naturally define the classes sd, sp0x, and sn, respectively, for sweeping and/or
LasVegas automata.1 Then, sd ⊆ sp0x ⊆ sn (trivially), Π ∈ 1n ∩ co1n ⊆ sp0x

(by Sect. 3), Π �∈ sd (by Sect. 4), and therefore sd � sp0x (our theorem; note
that we have actually proved a stronger fact: sd � 1n ∩ co1n). At the same
time, we also have sp0x ⊆ sn ∩ cosn (trivially) and cosn � sn (by [3]), so that
sp0x � sn. Overall, the trivial chain sd ⊆ sp0x ⊆ sn is actually sd � sp0x � sn.

1 Note the “x” in “sp0x”. The name “sp0” is reserved for the more natural class where
the sp0fas must run in polynomial expected time. Similarly for 2p0x, rp0x, sp1x, etc.
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Fig. 3. A map of classes: boxes mean equality; the axes show the easy inclusions; a
solid arrow A → B means A � B; a dashed arrow A → B means we conjecture A � B

Figure 3 shows in more detail the relations between the several classes, includ-
ing those for Monte-Carlo automata (“p1” and “p2”—for one-sided and two-sided
error), self-verifying automata (“Δ”—these capture the intersection of nondeter-
minism and co-nondeterminism; e.g., 1Δ = 1n ∩ co1n), and rotating automata
(“r”—these are sweeping automata capable of only left-to-right sweeps).

Most facts on this map are trivial, or easy, or modifications/consequences of
known results [1–6] and of our main theorem. Exceptions include the ability
of small nondeterministic and probabilistic rotating automata to simulate their
sweeping counterparts: rn = sn, rp0x = sp0x, rp1x = sp1x, and rp2x = sp2x. A
more detailed presentation will appear in the full version of this article.
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Abstract. Orthogonal variable spreading factor (OVSF) codes are widely used 
to provide variable data rates for supporting different bandwidth requirements 
in wideband code division multiple access (WCDMA) systems. Many works in 
the literature have intensively investigated to find an optimal dynamic code 
assignment scheme for OVSF codes. Unlike earlier studies, which assign OVSF 
codes using conventional (CCA) or dynamic (DCA) code allocation schemes, in 
this paper, stochastic optimization methods which are genetic algorithm (GA) 
and simulated annealing (SA) were applied which population is adaptively 
constructed according to existing traffic density in the OVSF code-tree. Also, 
the influences of the GA (selection, crossover and mutation techniques) and the 
SA (cooling schedules, number of inner loop) parameters were examined on the 
dynamic OVSF code allocation problem. Simulation results show that the GA 
and SA provide reduced code blocking probability and improved spectral 
efficiency when compared to the CCA and DCA schemes. 

1   Introduction 

In order to meet the demands of mixed traffic applications, 3G systems support 
variable data rates for different users. WCDMA is the most popular 3G radio access 
technology. In WCDMA systems [1], orthogonal variable spreading factor (OVSF) 
codes are used to facilitate variable rate data transmissions. Each base station (BS) in 
WCDMA manages a code tree for downlink transmission. Since the OVSF codes are 
limited, effective management of this resource is an important issue. There are several 
techniques, which are mainly classified as the conventional code allocation (CCA) [2] 
and the dynamic code allocation (DCA) [3] schemes. CCA scheme basically assigns 
an OVSF code for an incoming call request if there is an available one in the code 
tree, otherwise call is dropped. DCA schemes reallocate some used codes in the code 
tree in order to find a suitable code for the call request. In this paper, we focused on 
stochastic search techniques such as Genetic Algorithm (GA) and Simulated 
Annealing (SA) for dynamic allocation of OVSF code tree with a random initial 
population. The remainder of this paper proceeds as follows. In the next section the 
background knowledge is reviewed. GA and SA based DCA schemes are presented in 
Section III. In Section IV simulation parameters and results. Finally, conclusions are 
given in Section V. 
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2   Basic Background Knowledge 

2.1   OVSF Code Tree 

In a WCDMA system, two operations are applied to user data [4]. The first one is 
channelization, which transforms every bit into a code sequence. The length of the 
code sequence per data bit is called the spreading factor (SF), which is typically 
power of two. Channelization codes in the OVSF code tree have a unique description 
as CSF,k, where k is the code number, SFk ≤≤1 . The second operation is scrambling, 
which applies a scrambling code to the spread signal. Scrambling codes are used to 
separate transmission from a single source. All codes in the same layer are orthogonal 
to each other, while codes in different layers are also orthogonal if they do not have 
an ancestor-descendant relationship. The data rate is doubled whenever we go one 
level up in the tree. 

2.2   Related Works 

Many existing works have been thoroughly investigated as follows. Tseng et al. [5] 
have proposed single-code and multi-code placement and replacement schemes for 
WCDMA systems. The algorithm for single code placement/replacement possibly 
produces a code blocking problem. The multi-OVSF code placement and replacement 
scheme presented by Chao et al. [6] reduces the code blocking problem by using a 
code-separation operation. Minn et al. [3] developed a dynamic code assignment 
(DCA) scheme, which is based on the code pattern search to find a branch of requested 
rate in the code tree, which can be vacated with minimum cost. Regarding GAs [7], is 
generally applied in wireless communications for optimizing and designing antenna 
arrays [8], or detecting multiuser [9]. An OVSF code allocation strategy using GA is 
proposed in by Cinteza et al [10]. They have used binary representation of a 
chromosome and investigated fixed traffic density. New code requests coming onto an 
OVSF code tree already containing active codes are managed by using the GA. SA 
firstly proposed by Kirkpatrick et al. [11], which is based on the analogy between the 
process of finding best solution of a combinatorial optimization problem and annealing 
process. However, SA algorithm is also applied in wireless communications for 
detecting multiuser [12], and optimizing and designing antenna arrays [13]. 

3   Dynamic OVSF Code Allocation Using GA/SA 

Code blocking is the major problem in OVSF code assignment, which limits system 
performance. This section discusses stochastic search techniques such as GA and SA 
in OVSF code assignment strategy. General flowchart is given at Figure 1. In idle 
state, execution is not required for resource assignment. Call is initiated with the call 
processor’s signaling to resource manager to allocate resources for a traffic channel. 
First, availability of capacity (total rates of unused codes) is checked in the code tree 
whether to support the requested call rate. If there is enough capacity, then availability 
of requested rate OVSF code is checked among unused codes in the relevant 
layer,where the call can be supported. If a call cannot be assigned a code due 
unavailability of the code with the requested rate, GA/SA block is executed. 
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Fig. 1. Dynamic OVSF code allocation flow chart using GA/SA 

This block is start with initial chromosome. For the clearly understanding of the tree 
structure using GA / SA, a sample OVSF code tree is shown in Figure 2. The OVSF 
code tree which is input to the GA / SA block is named as initial chromosome (Chini) 
and this chromosome is represented with the index information belonging to active 
users. In other words, index numbers of occupied branches are expressed by existing 
OVSF code tree index which corresponds to a chromosome in the population. Traffic 
rate detector detects the traffic to change the algorithm in code reassignment process. 

3.1   GA Based Dynamic OVSF Code Allocation Scheme 

GA, one of the optimization and global search methods, is applied effectively to solve 
various combinatorial optimization problems and worked with probabilistic rules [7]. 
Selection, crossover and mutation are the most known genetic operators.  
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Fig. 2. Sample OVSF code tree and construction of initial population from code tree 

GA starts with initial chromosome. The size of initial population P of n 
chromosomes is adaptively changes according to current traffic density. Each 
chromosome in the initial population has different code tree index number, but the 
number of data bit rates and the total amount data bit rates of each chromosome is 
identical with initial chromosome. In Figure 2, initial chromosome is Chini =[6 9 14 16 
21] and the data bit rate of this chromosome is [4R 2R 2R R R]. Each active user’s 
index number in the chromosome is called as a gene and gene is represented by an 
integer number. Population size is depends on the traffic density which is 

( )∑
=

−=
U

i

iSSFn
1

 (1) 

where, U is the total number of active users and S(i) is the date rate of ith active user, 
where i=1,…,U. In the above figure, U and S are 5 and 10R, respectively. Therefore 
the number of chromosome in the initial population (n) is obtained as 6 (16-10). Each 
of n chromosomes comprises coded information of existing OVSF code tree obtained 
with using random permutation that fully describes a potential solution to the 
optimization problem and expresses the different OVSF code tree. Nevertheless 
number of users and each user’s data bit rate remain same as Chini. 

Figure 2 also shows how the 1st chromosome is obtained from the Chini. 
Temporary population TP(1) which is derived from Chini with random permutation is 
sequentially assigned to empty OVSF code tree from 1st gene to Uth gene. It is 
important to consider the orthogonality principle, while assigning codes in the OVSF 
code tree. Index numbers are taken to compose a new chromosome P(1). The process 
of obtaining P(1) is as follows: For each gene of TP(1), the corresponding gene in 
P(1) is selected as the possible leftmost OVSF code that has the same rate as this gene 
in TP(1). For instance, the first gene numbered by 14 in TP(1) has the rate 2R. Hence, 
possible leftmost gene with rate 2R is the OVSF code numbered as 8 in P(1). For, the 
gene numbered 21 with rate R in TP(1), we obtain the OVSF code numbered 18, and 
so on. After obtaining each corresponding gene for P(1), we list the genes in P(1) 
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from highest rate to lowest rate. This process is repeated n times to fill the P. P 
shows, several different possible result for a given problem. It is clear that iteration 
number of optimal solution is depends on population size (n), users’ data bit rates 
(S(i)), and their location in the code tree. 

Then, the fitness value for each chromosome of population is evaluated according 
to fitness function, which is defined specially for OVSF code assignment–
reassignment problem. The fitness value of jth chromosome f(j) is the quantity of 
replacement of each individual in P(j) according to Chini defined by 

( )
( ) ( )( ) ( )∑
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where, j is the chromosome number, j=1,…,n. Based on the fitness values of the 
chromosomes in the population, the selection operator creates a new population of n 
chromosomes, which contains chromosomes that, on average, have better fitness 
values than those in the original population. In order to produce better traits, the 
chromosomes should be hybridized using the crossover operation. Pairs of 
chromosomes are selected from the population subjected to crossover rate (pc). The 
number of chromosomes (nj) with crossover operation is given by 

cj pnn ×=  (3) 

If nj is odd, then (nj-1)/2 randomly selected chromosome pairs are used for 
crossover, otherwise it is nj/2. Chromosome pairs used at crossover operation are 
randomly chosen. Then, the mutation operation is applied to the population produced 
by the crossover operation to preserve genetic diversity by perturbing chromosomes 
randomly. In this operation, if randomly obtained number between 0 and 1 smaller 
than mutation rate (pm), then mutation process is started; otherwise a new random 
number is taken for the next chromosome. Finally each chromosome in the population 
is checked in terms of its fitness values. If an OVSF code tree which represented by 
best chromosome, can assign the requested data bit rate to desired user, then 
optimization criterion is confirmed and requested data bit rate is assigned to desired 
user. Otherwise, another chromosomes in the population are checked. This process is 
run-on until to assign the requested data bit rate to new user or to met the 
predetermined loop. GA operators are described as follows: 

Population: Because the size of the population varies according to traffic density, 
there is no clear mark how large it should be. 

Fitness Function: This is specifically defined for OVSF code reassignment problem, 
which is the quantity of replacement of each individual in population according to 
Chini. 

Selection: In this study roulette wheel selection technique has been used. In roulette 
wheel, probability of each chromosome (Pr(j)) is inverse proportional with its fitness 
value (f(j)). This selection process continued until the population is completed. 

Crossover: Crossover operator is powerful for exchanging information between 
chromosomes and creating new solutions. This work consider single point crossover 
operator in which for each pair to be crossed a random integer l is chosen as crossover 
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Fig. 3. Single point crossover operator 

point. Randomly selected two chromosomes’ first pair’s head part up to lth gene is 
associated with second pair’s tail part from l+1st gene to lth gene, where t is the 
length of each chromosome, as depicted in Figure 3, 

 

Fig. 4. Swap mutation operator 

Mutation: This operator is used to prevent the reproduction of similar type 
chromosomes in population. Swap mutation operator used in this work, which 
randomly selects two genes in chromosome and swaps the positions of these genes to 
produce a new chromosome. Figure 4 shows swap mutation operation. 

3.2   SA Based Dynamic OVSF Code Allocation Scheme 

SA, firstly developed by Kirkpatrick et al. [11], is a local search algorithm. The 
searching process in SA starts with initial chromosome. A neighborhood of this 
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solution is generated using any neighborhood move rule. Then the cost of this 
possible solution (=chromosome) is obtained with 

1−−=Δ ii fff  (4) 

where, Δ f represents the change amount between costs of the two solutions. fi and fi-1 
represent fitness values belong to neighborhood solution and current solution, 
respectively. If Δf<0, current solution is replaced with the generated neighborhood 
solution. Otherwise if Δf>0, its mean that current solution is replaced with the 
generated neighborhood solution within the limits of specific probability. 

( ) RTf >Δ− /exp  (5) 

where, T is temperature which is a positive control parameter and R is a random 
number varies from 0 to 1. Then inner loop is checked. Algorithm turns mutation 
operator to obtain possible solution with better fitness value, until inner loop criterion 
is met. Then, the optimization criterion is checked. The optimization criterion check 
blocks in the flow chart are used to control the algorithm. If criterion is provided, then 
algorithm is finalized and requested data bit rate is assigned to new user. This process 
is run-on until to assign the requested data bit rate to new user or to met the outer 
loop. If the requested data bit rate can not assign while the outer loop is met, then call 
is blocked. SA operators are described as follows: 

Fitness Function: This is same with the GA (Eq. 2). 

Neighborhood Move: This operator is used to produce a near solution to current 
solution in search space. Swapping move is used in this paper. This operator works 
same with the swap mutation operation in GA. 

Cooling Schedule: The performance of this algorithm is dependant on this operator. 
Lundy & Mees is used in this work as a cooling schedule. In Lundy & Mees schedule; 
the relationship between Tk+1 and Tk is below: 

k

k
k T

T
T

β+
=+ 11

, 
fi

fi

TMT

TT −
=β  (6) 

where, (β>0) is coefficient between two temperatures, Tk+1 and Tk. In this study, initial 
temperature (Ti) is 0.9, while final temperature (Tf) is 0.1, and M is the number of 
outer loop in the algorithm. 

Inner Loop and Outer Loop: Inner loop criterion decides how many possible new 
solution produced in every temperature. Outer loop criterion is used to stop the 
searching process. In this study, inner loop criterion is set to 5. Outer loop criterion is 
number of 1000. 

4   Performance Evaluation 

For performance measurement, firstly call blocking probability is investigated, which 
is the ratio of the number of blocked calls to the number of incoming call requests. 
Then, spectral efficiency is calculated as the ratio of data rates of served calls to the 
total requested data rate. Finally influences of several GA and SA operators are 
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considered. In the simulations: Representation of chromosomes is integer. Population 
size is depending on the density of traffic. In GA sub-block roulette wheel selection, 
single point crossover and swap mutation techniques are used. Mutation rate (pm) and 
crossover rate (pc) are taken as 0.2 and 0.8, respectively. In SA sub-block initial and 
final temperatures are 0.9 and 0.1, respectively. Swap neighborhood move and Lundy 
& Mees cooling schedule are used. Inner loop criteria is set to 5, while outer loop is 
1000. However, call arrival process is Poisson with mean arrival rate of λ varied from 
4 to 64 calls/unit. Call duration is exponentially distributed with a mean value of μ is 
0.25 units of time. Spreading factor (SF) is 256. Possible OVSF code rates are 
generated using uniform distribution between R and SF×R. Single simulation is 
performed until at least 1000 incoming calls. For the same input parameters, the 
simulations are repeated 10 times, and then results are averaged. 
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Fig. 5. Blocking probability at different traffic loads, SF: 256 

Figure 5 shows the simulation results for blocking probability. It is clearly seen 
that GA and SA have less blocking probability than DCA and CCA. When we 
compare the GA and SA, we can se that the blocking probability of GA and SA are 
depend on the traffic load. For example, when the traffic load is 6, blocking 
probability of GA, SA, DCA, and CCA are % 22, % 32.5, % 40, % 50, respectively.  
If the traffic load is increased to 12, blocking probability of GA, SA, DCA, and CCA 
are % 62.1, % 55.3, % 65.9, % 70.9, respectively. As a result, when the traffic load is 
increased from 6 to 12, the algorithm with best performance shift from SA to GA. 

Figure 6 shows the spectral efficiency of the GA, SA, DCA, and CCA methods at 
different traffic loads. The spectral efficiency of the resource is inversely proportional 
to the traffic load in the system. It is clearly seen that GA and SA are effectively use 
given spectrum. As numerically at traffic load 10, spectral efficiency of GA, SA, 
DCA, and CCA are % 12.6, % 22.2, % 25.6, % 25.9, respectively. 
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Fig. 6. Spectral efficiency at different traffic loads, SF: 256 

Also, the influences of the GA and SA parameters were examined on the dynamic 
OVSF code allocation problem. In order to improve the system performance, different 
selection, crossover, and mutation techniques are investigated. For this purpose, 
roulette wheel and tournament methods as selection, single point and arithmetic 
methods as crossover, and swap and shift methods as mutation, are compared. In 
selection, the tournament operator uses the roulette selection N times to produce a 
tournament subset of chromosomes, where the tournament size N is chosen as random 
integer number. The best chromosome is then chosen as the selected chromosome. 
However, arithmetic crossover technique linearly combines parent chromosomes to 
produce new chromosomes according to the following equations: 

( ) Parent_2*1Parent_1*1Offspring_ aa −+=
( ) Parent_2*Parent_1*12Offspring_ aa +−=  

(7) 

where, a is a random weighting factor. As close as rounded integer values are taken 
for offspring_1 and offspring_2. In shift mutation technique, a selected gene in the 
chromosome is shifted either left hand or right hand side. Table 1 considers the results 
for the average number of reassigned users with several selection, crossover, and 
mutation techniques. 

According to Table 1, it is clearly seen that, performance improvements are 
proportional with traffic load. In traffic load 10, number of reassigned user is more at 
tournament method (18.01) than roulette wheel method (11.72) for selection, more at 
arithmetic method (15.68) than single point method (11.72) for crossover, more at 
shift method (13.98) than swap method (11.72) for mutation techniques. 
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Table 1. Influences of selection, crossover, and mutation operators 

Traffic Density ( )
8 16 24 32 40 48 56 64 

Selection 
Roulette Wheel 4.51 5.49 6.72 8.86 11.72 16.68 20.88 26.02 

Tournament 6.92 8.91 11.41 14.74 18.01 21.72 30.06 42.17 
Crossover 

Single Point 4.51 5.49 6.72 8.86 11.72 16.68 20.88 26.02 
Arithmetic 5.29 8.12 9.93 11.34 15.68 20.14 22.4 24.77 

Mutation
Swap 4.51 5.49 6.72 8.86 11.72 16.68 20.88 26.02 
Shift 4.74 5.83 6.34 8.04 13.98 20.47 26.18 31.62 

 

Table 2. Average number of reassigned users with varying cooling schedules 

Traffic Density ( )
8 16 24 32 40 48 56 64 

Cooling Schedules 
Lundy & Mees 4.51 5.49 6.72 8.86 11.72 16.68 20.88 26.02 
Proportional 3.19 3.6 4.54 5.17 7.23 10.42 16.0 19.78  
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Fig. 7. Lundy & Mees and proportional cooling schedules 

Selection, crossover, and mutation techniques are related to GA sub-block. In order 
to investigate the effect of SA sub-block, several cooling schedules and different 
number of inner loops are considered. Step size of algorithm in the search space is 
defined with cooling schedule. Here, Lundy & Mees cooling schedule is compared 
with proportional to calculate Tk+1 from Tk. In proportional cooling schedule, 

kk TT α=+1 , M

i

f

T

T
=α  (8) 

Table 2 presents the comparison of Lundy & Mees and proportional cooling schedules. 
The more number of reassigned users is seen when Lundy & Mees cooling schedule is 
used. It is also clear that the number of reassigned user is increased with traffic rate.  



152 M. Karakoc and A. Kavak 

Figure 7 shows the Lundy & Mees and proportional cooling schedule. Because of 
the Lundy & Mees converges faster than proportional to lower temperature values for 
each simulation step, this schedule gives better performance. 
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Fig. 8. Number of reassigned users with different number of inner loops 

The number of reassigned users is changed using different number of inner loops. 
Inner loop in the ASAGA decides, how many new solutions are generated for each 
temperature value. Possible solution with best fitness value is obtained among the new 
solutions. For this purpose 1, 3, 5, and 10 numbers of inner loop are considered to 
observe the system performance. Figure 8 shows the number of reassigned users for each 
traffic load for different inner loop numbers. It is clear that the more number of new 
solution means the better fitness value obtained for each temperature value. Therefore the 
number of inner loop is proportional with the number of reassigned users. We can also 
say that this proportion is valid between the number of reassigned users with traffic load. 

5   Conclusions 

This work mainly investigates Genetic Algorithm (GA) and Simulated Annealing (SA) 
based OVSF code assignment in order to provide the answer to following questions; 
what can be done in order to improve the number of active users in the system and how 
the high data bit rate requests are assigned if enough capacity is provided by system. For 
this purpose, the performance of GA is evaluated under different selection crossover, 
and mutation techniques, and SA is evaluated under different cooling schedules, and 
number of inner loops. The simulation results show that the GA and SA as compared to 
the CCA and DCA, provides the smallest blocking probability and largest spectral 
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efficiency in the system. In addition to that different selection, crossover, and mutation 
operations are considered. Tournament in the selection part, arithmetic in the crossover 
part, and shift in the mutation part provide better performance than other techniques in 
each class for GA sub-block. In SA sub-block, influences of different cooling schedules 
and different number of inner loops are considered. It is clearly seen that Lundy & Mees 
has shown better performance for cooling schedule. Also, the number of reassigned 
users is proportional with number of inner loop and traffic load. 
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Abstract. In this paper we study the support sizes of evolutionary sta-
ble strategies (ESS) in random evolutionary games. We prove that, when
the elements of the payoff matrix behave either as uniform, or normally
distributed independent random variables, almost all ESS have support
sizes o(n), where n is the number of possible types for a player. Our
arguments are based exclusively on the severity of a stability property
that the payoff submatrix indicated by the support of an ESS must sat-
isfy. We then combine our normal–random result with a recent result of
McLennan and Berg (2005), concerning the expected number of Nash
Equilibria in normal–random bimatrix games, to show that the expected
number of ESS is significantly smaller than the expected number of sym-
metric Nash equilibria of the underlying symmetric bimatrix game.
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1 Introduction

In this work we study the distribution of the support sizes of evolutionary sta-
ble strategies (ESS) in random evolutionary games, whose payoff matrices have
elements that behave as independent, identically distributed random variables.
Arguing about the existence of a property in random games may actually re-
veal information about the (in)validity of the property in the vast majority of
payoff matrices. In particular, a vanishing probability of ESS existence would
prove that this notion of stability is rather rare among payoff matrices, dictating
the need for a new, more widely applicable notion of stability. Etessami and
Lochbihler [2] recently proved both the NP−hardness and coNP−hardness of
even detecting the existence of an ESS for an arbitrary evolutionary game.
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The concept of ESS was formally introduced by Maynard–Smith and Price [14].
Haigh [4] provided an alternative characterization, via a set of necessary and suf-
ficient conditions (called feasibility, superiority and stability conditions), for a
strategy x being an ESS. As will be clear later, the first two conditions imply
that the profile (x,x) is a symmetric Nash equilibrium (SNE) of the underlying
symmetric bimatrix game 〈A, AT 〉.

A series of works about thirty years ago (eg, [3], [9], [6]) have investigated
the probability that an evolutionary game with an n × n payoff A whose ele-
ments behave as uniform random variables in [0, 1], possesses a completely mixed
strategy (ie, assigning positive probability to all possible types) which is an ESS.
Karlin [6] had already reported experimental evidence that the stability condi-
tion is far more restrictive than the feasibility condition in this case wrt1 the
existence of ESS (the superiority condition becomes vague in this case since we
refer to completely mixed strategies).

Kingman [7] also worked on the severity of the stability condition, in a work
on the size of polymorphisms which, interpreted in random evolutionary games,
corresponds to random payoff matrices that are symmetric. For the case of uni-
form distribution, he proved that almost all ESS in a random evolutionary game
with symmetric payoff matrix, have support size less than 2.49

√
n. Consequently,

Haigh [5] extended this result to the case of asymmetric random payoff matrices.
Namely, for a particular probability measure with density φ(x) = exp(−x)/

√
πx,

he proved that almost all ESS have support size at most 1.636n2/3. He also con-
jectured that similar results should also hold for a wide range of probability
measures with continuous density functions.

Another (more recent) line of research concerns the expected number of Nash
equilibria in random bimatrix games. Initially McLennan [10] studied this quan-
tity for arbitrary normal form games and provided a formula for this number.
Consequently, McLennan and Berg [11] computed asymptotically tight bounds
for this formula, for the special case of bimatrix games. They proved that the
expected number of NE in normal–random bimatrix games is asymptotically
equal to exp(0.2816n + O(log n)), while almost all NE have support sizes that
concentrate around 0.316n. Recently Roberts [13] calculated this number in the
case zero sum games 〈A,−A〉 and coordination games 〈A, A〉, when the Cauchy
probability measure is used for the entries of the payoff matrix.

In a previous work of ours [8] we had attempted to study the support sizes
of ESS in random games, under the uniform probability measure. In that work
we had calculated an exponentially small upper bound on the probability of any
given support of size r being the support of an ESS (actually, being the support
of a submatrix that satisfies the stability condition). Nevertheless, this bound
proved to be insufficient for answering Haigh’s conjecture for the uniform case,
due to the extremely large number of supports.

In this work we resolve affirmatively the conjecture of Haigh for the cases of
both the uniform distribution in [0, 1] and the standard normal distribution (ac-
tually, shifted by a positive number). In both cases we prove the crucial probability

1 With respect to.
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of stability for a given support to be significantly smaller than exponential. This
is enough to prove that almost all ESS have sublinear support size. We then pro-
ceed to combine our result on satisfaction of the stability condition in random
evolutionary games wrt the (standard, shifted) normal distribution, with the re-
sult of McLennan and Berg [11] on the expected number of NE in normal–random
bimatrix games. Our observation is that ESS in random evolutionary games are
significantly less than SNE in the underlying symmetric bimatrix games.

The structure of the rest of the paper is the following: In Section 2 we provide
some notation and some elementary background on (symmetric) bimatrix and
evolutionary games. In Section 3 we calculate the probability of the stability
condition holding (unconditionally) for given support sizes, in the case of the
uniform distribution (cf. Subsection 3.2) and in the case of the normal distribu-
tion (cf. Subsection 3.3). We then use these bounds to give concentration results
on the support sizes of ESS for these two random models of evolutionary games
(cf. Subsection 3.4). In Section 4 we prove that the stability condition is more
severe than the (symmetric) Nash property in symmetric games, by showing
that the expected number of ESS in a evolutionary game with a normal–random
payoff matrix A is significantly less than the expected number of Symmetric
Nash Equilibria in the underlying symmetric bimatrix game 〈A, AT 〉.

2 Preliminaries

Notation. IR denotes the set of real numbers, IR�0 is the set of nonnegative reals,
and IN is the set of nonnegative integer numbers. For any k ∈ IN\{0}, we denote
the set {1, 2, . . . , k} by [k]. ei ∈ IRn is the vector with all its elements equal to
zero, except for its i−th element, which is equal to one. 1 =

∑
i∈[n] ei is the

all–one vector, while 0 is the all–zero vector in IRn.
We consider any n× 1 matrix as a column vector and any 1× n matrix as a

row vector of IRn. A vector is denoted by small boldface letters (eg, x,p, . . .) and
is typically considered as a column vector. For any m × n matrix A ∈ IRm×n,
its i−th row (as a row vector) is denoted by Ai and its j−th column (as a
column vector) is denoted by Aj . The (i, j)−th element of A is denoted by Ai,j

(or, Aij). AT is the transpose matrix of A. For any positive integer k ∈ IN,
Δk ≡ {z ∈ IRk

�0 : 1T z = 1} is the (k − 1)−simplex, ie, the set of probability
vectors over k−element sets. For any z ∈ Δk, its support is the subset of [k] of
actions that are assigned positive probability mass: supp(x) ≡ {i ∈ [k] : zi > 0}.

For any probability space (Ω,F , P) and any event E ∈ F , P {E} is the prob-
ability of this event occurring, while I{E} is the indicator variable of E holding.
For a random variable X , E {X} is its expectation and Var {X} its variance. In
order to denote that a random variable X gets its value according to a proba-
bility distribution F , we use the following notation: X ∈R F . For example, for
a uniform random variable in [0, 1] we write X ∈R U(0, 1), while for a random
variable drawn from the standard normal distribution we write X ∈R N (0, 1).

Bimatrix Games. The subclass of symmetric bimatrix games provides the ba-
sic setting for much of Evolutionary Game Theory. Indeed, every evolutionary
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game implies an underlying symmetric bimatrix game, that is repeatedly played
between randomly chosen opponents from the population. Therefore we provide
the main game theoretic definitions with respect to symmetric bimatrix games.

Definition 1. For arbitrary m × n real matrices A, B ∈ IRm×n, the bimatrix
game Γ = 〈A, B〉 is a game in strategic form between two players, in which the
first (row) player has m possible actions and the second (column) player has n
possible actions. A mixed strategy for the row (column) player is a probability
distribution x ∈ Δm (y ∈ Δn), according to which she chooses her own action,
independently of the other player’s choice. A strategy x ∈ Δm is completely
mixed if and only if supp(x) = [m]. The payoffs of the row and the column
player, when the row and column players adopt strategies ei and ej, are Aij and
Bij respectively. If the two players adopt the strategies p ∈ Δm and q ∈ Δn,
then the (expected) payoffs of the row and column player are pT Aq and pT Bq
respectively. Some special cases of bimatrix games are the zero sum (B = −A),
the coordination (B = A), and the symmetric (B = AT ) games.

Note that in case of a symmetric bimatrix game, the two players have exactly
the same set of possible actions (say, [n]). The standard notion of equilibrium in
strategic games are the Nash Equilibria [12]:

Definition 2. For any bimatrix game 〈A, B〉, a strategy profile (x,y) ∈ Δm ×
Δn is called a Nash Equilibrium (NE in short), if and only if xT Ay �
zT Ay, ∀z ∈ Δm and xT By � xT Bz, ∀z ∈ Δn. If additionally supp(x) = [m]
and supp(y) = [n], then (x,y) is called a completely mixed Nash Equi-
librium (CMNE in short). A profile (x,x) that is NE for 〈A, B〉 is called a
symmetric Nash Equilibrium (SNE in short).

Observe that the payoff matrices in a symmetric bimatrix game need not be
symmetric. Note also that not all NE of a symmetric bimatrix game need be
symmetric. However it is known that there is at least one such equilibrium:

Theorem 1 ([12]). Each finite symmetric bimatrix game has at least one SNE.

When we wish to argue about the vast majority of symmetric bimatrix games,
one way is to assume that the real numbers in the set {Ai,j : (i, j) ∈ [n]} are
independently drawn from a probability distribution F . For example, it can be
the uniform distribution in an interval [a, b] ∈ IR, denoted by U(a, b). Then, a
random symmetric bimatrix game Γ is just an instance of the implied random
experiment that is described in the following definition:

Definition 3. A symmetric bimatrix game Γ = 〈A, AT 〉 is an instance of a
(symmetric 2-player) random game wrt the probability distribution F , if and only
if ∀i, j ∈ [n], the real number Ai,j is an independently and identically distributed
random variable drawn from F .

Evolutionary Stable Strategies. For some A ∈ IRn×n, fix a symmetric game
Γ = 〈A, AT 〉. Suppose that all the individuals of an infinite population are
programmed to play the same (either pure or mixed) incumbent strategy x ∈ Δn,
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whenever they are involved in Γ . Suppose also that at some time a small group
of invaders appears in the population. Let ε ∈ (0, 1) be the share of invaders
in the post–entry population. Assume that all the invaders are programmed to
play the (pure or mixed) strategy y ∈ Δn whenever they are involved in Γ .

Pairs of individuals in this dimorphic post–entry population are now repeat-
edly drawn at random to play always the same symmetric game Γ against each
other. Recall that, due to symmetry, it is exactly the same for each player to be
either the row or the column player. If an individual is chosen to participate, the
probability that her (random) opponent will play strategy x is 1− ε, while that
of playing strategy y is ε. This is equivalent to saying that the opponent is an
individual who plays the mixed strategy z = (1−ε)x+εy. The post–entry payoff
to the incumbent strategy x is then xT Az and that of the invading strategy y
is just yT Az. Intuitively, evolutionary forces will select against the invader if
xT Az > yT Az. The most popular notion of stability in evolutionary games is
the Evolutionary Stable Strategy (ESS):

Definition 4. A strategy x is evolutionary stable (ESS in short) if for any
strategy y �= x there exists a barrier ε̄ = ε̄(y) ∈ (0, 1) such that ∀0 < ε �
ε̄, xT Az > yT Az where z = (1 − ε)x + εy.

The following lemma states that the “hard cases” of evolutionary games are not
the ones in which there exists a completely mixed ESS:

Lemma 1 (Haigh 1975 [4]). If a completely mixed strategy x ∈ Δ is an ESS,
then it is the unique ESS of the evolutionary game.

Indeed, it is true that, if for an evolutionary game with payoff matrix A ∈ IRn×n

it holds that some strategy x ∈ Δn is an ESS, then no strategy y ∈ Δn such
that supp(y) ⊆ supp(x) may be an ESS as well.

Haigh [4] also provided an alternative characterization of ESS in evolutionary
games, which is the conjunction of the following sentences, and will prove to be
very useful for our discussion:

Theorem 2 (Haigh [4]). A strategy p ∈ Δn in an evolutionary game with
payoff matrix A ∈ IRn×n is an ESS if and only if the following necessary and
sufficient conditions simultaneously hold:

[H1]: Nash Property There is a constant c ∈ IR such that:

[H1.1]: Feasibility
∑

j∈supp(p) Aijpj = Aip = c, ∀i ∈ supp(p).

[H1.2]: Superiority
∑

j∈supp(p) Aijpj = Aip � c, ∀i /∈ supp(p).

[H2]: Stability ∀x ∈ IRn :
IF (x �= 0 ∧ supp(x) ⊆ supp(p) ∧ 1Tx = 0) THEN xT Ax < 0

Observe that [H1] assures that (p,p) is a symmetric Nash Equilibrium (SNE) of
the underlying symmetric bimatrix game 〈A, AT 〉. This is because ∀i, j ∈ [n], i ∈
supp(p) ⇒ Aip � Ajp and ∀i, j ∈ [n], i ∈ supp(p) ⇒ pT (AT )i = pT (Ai)T �
pT (Aj)T = pT (AT )j . Since in this work we deal with evolutionary games with
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random payoff matrices (in particular, whose entries behave as independent,
identically distributed continuous random variables), we can safely assume that
almost surely [H1.2] holds with strict inequality. As for [H2], this is the one that
guarantees the stability of the strategy against (sufficiently small) invasions.

3 Probability of Stability

In this section we study the probability of a strategy with support size r ∈ [n]
also being an ESS. In the next section we shall use this to calculate an upper
bound on the support sizes of almost all ESS in a random game.

Assume a probability distribution F , whose density function φ : IR �→ [0, 1]
exists, according to which the random variables {Aij}(i,j)∈[n]×[n] determine their
values. We focus on the cases of: (i) the uniform distribution U(0, 1), with density
function φu(x) = I{x∈[0,1]} and distribution function Φu(x) = x · I{x∈[0,1]} +
I{x>1}, and (ii) the standard normal distribution N (0, 1), with density function

φg(x) =
exp(−x2/2)√

2π
and distribution function Φg(x) =

∫ x

−∞ n(t)dt. Our goal is
to study the severity of [H2] for a strategy being an ESS. We follow Haigh’s
generalization of the interesting approach of Kingman (for random symmetric
payoff matrices) to the case of asymmetric matrices. Our findings are analogous
to those of Haigh [5], who gave the general methodology and then focused on
a particular distribution. Here we resolve the cases of uniform distribution and
standard normal distributions, which were left open in [5].

3.1 Kingman’s Approach

Consider an arbitrary strategy p ∈ Δn, for which we assume (without loss of
generality) that its support is supp(p) = [r]. Since condition [H2] has to hold
for any non-zero real vector x ∈ IRn \ {0} : 1Tx = 0∧ supp(x) ⊆ [r], we can also
apply it for all vectors x(i, j) = ei − ej : 1 � i < j � r, as was observed in [7].
This immediately implies the following necessary condition for p being an ESS:

∀1 � i < j � r, Aij + Aji > Aii + Ajj (1)

Mimicking Kingman and Haigh’s notation [7,5], we denote by DI the event that
our random matrix A has the property described by inequality (1), if r = |I| and
we rearrange the rows and columns of A so that I = [r]. As was demonstrated
in [5], the probability of this event is expressed by the following form:

P {DI} =
∫ ∞

−∞
· · ·
∫ ∞

−∞

∏
1�i<j�r

[1−G(aii + ajj)] ·
∏
i∈[r]

[φ(aii)] da11 · · · darr (2)

where G(x) =
∫ x

−∞ g(t)dt is the distribution function of any random variable
Xij = Aij + Aji : 1 � i < j � r (the sum of two iid random variables with
density function φ). Note that the density function g is the convolution of f with
itself. This formula was studied in [5] for the special case φ(x) = exp(−x)/

√
πx.
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In the next two subsections we do the same for the uniform and (shifted)
standard normal distribution. Then we bound the support sizes of almost all
ESS in uniformly–random and normal–random evolutionary games.

3.2 The Case of U(0, 1)

If we adopt U(0, 1) as our basic probability distribution, then of course f(x) =
φu(x) = I{x∈(0,1)} and the distribution function G can be easily computed:

∀0 � x � 1, G(x) =
∫ x

0
f(aii)

(∫ x−aii

0
f(ajj)dajj

)
daii = x2

2 and ∀1 � x �

2, G(x) =
∫ 1

0 f(aii)
(∫ min{1,x−aii}

0 f(ajj)dajj

)
daii = 2x− 1− x2

2 . Therefore we
conclude that the following holds (also mentioned in [5]): ∀x ∈ IR,

1−G(x) =
(

1− x2

2

)
· I{0�x�1} +

1
2
(2− x)2 · I{1<x�2} (3)

Observe now that each 1−G(aii +ajj) factor in equation (2) expresses the prob-
ability that the random variable Xij ≡ Aij +Aji is strictly larger than a certain
value aii + ajj . On the other hand, all the f(aii) = φu(aii) factors in equality
(2) assure that each of the diagonal elements in A (ie, the random variables
Aii) get the assumed values (ie, Aii = aii), which have to be nonnegative. We
use the following trivial upper bound on each of the 1 − G(aii + ajj) factors,
which exploits only the fact of non negative values of the elementary random
variables Aij ∈R U(0, 1) that we consider: ∀1 � i < j � r, 1 − G(aii + ajj) =
P {Xij > aii + ajj} � P {Xij > aii} = 1−G(aii), to get the following from (2):

P {DI} �
∫ 1

0

· · ·
∫ 1

0

∏
1�i<j�r

[1−G(aii)] da11 · · ·darr

=
∏

i∈[r−1]

(∫ 1

0

[1−G(aii)]r−i daii

)
(4)

using the facts that f(x) = I{x∈(0,1)} and
∫ 1

0 f(arr)darr = 1. Plugging in the
form of 1−G(x) in case of the uniform distribution (eq. (3)), we get the following:

P {DI} �
∏

i∈[r−1]

(∫ 1

0

[
1− 1

2
a2

ii

]r−i

daii

)
(5)

Using the trivial bound (1− x)a � exp(−ax), ∀x > 0, ∀a � 1, we have:

P {DI} �
∏

i∈[r−1]

[∫ 1

0

exp
(
−r − i

2
a2

ii

)
daii

]

�
∏

i∈[r−1]

[
1√

r − i
·
∫ 1

0

exp

(
−
(
aii

√
r − i

)2
2

)
√

r − i daii

]
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=
∏

i∈[r−1]

[
1√

r − i
·
∫ √

r−i

0

exp
(
−β2

i

2

)
dβi

]

<
∏

i∈[r−1]

[
1

2
√

r − i

]
= exp

⎛
⎝−(r − 1) ln 2− 1

2

r−1∑
j=1

ln j

⎞
⎠

< exp

⎛
⎝−(r − 1) ln 2− 1

2

⎡
⎣(r − 1) +

r−1∑
j=1

Hj

⎤
⎦
⎞
⎠

= exp
(
−(r − 1) ln 2− 1

2
[−2(r − 1) + rHr−1]

)

= exp
(
(r − 1)(1− ln 2)− r

2
− r

2
ln(r − 1)

)
= exp

(
−r ln r

2
+O(r)

)
(6)

since,
∫√r−i

0
exp
(
−β2

i

2

)
dβi <

∫∞
0

exp
(
−β2

i

2

)
dβi = 1

2 . We used the following

properties of harmonic numbers: If Hr−1 =
∑r−1

i=1
1
i is the (r − 1)−th harmonic

number, then
∑r−1

i=1 Hi = rHr−1 − (r− 1) and ln(r− 1) < Hr−1 < ln(r− 1) + 1.

3.3 The Case of N (ξ, 1)

Assume now, for some ξ > 0 that will be fixed later, that each element of
the payoff matrix behaves as a normally distributed independent random vari-
able with mean ξ and variance 1: ∀(i, j) ∈ [n] × [n], Aij ∈R N (ξ, 1). Then it
also holds that all the Xij variables (for 1 � i < j � r) behave also as nor-
mally distributed random variables, with mean 2ξ and variance 2. That is:
∀(i, j) ∈ [r] × [r] : i �= j, Xij ∈R N (2ξ, 2). Then the following hold: ∀t ∈
IR, f(t) = 1√

2π
exp
(
− (t−ξ)2

2

)
and g(t) = 1

2
√

π
exp
(
− (t−2ξ)2

4

)
. Moreover, ∀x ∈

IR, 1 − F (x) = 1√
2π

∫∞
x

exp
(
− (t−ξ)2

2

)
dt ⇒ 1 − F (x) = 1√

2π

∫∞
x−ξ

exp
(
− z2

2

)
dz

(by the change in variable z = t−ξ) and 1−G(x) = 1
2
√

π

∫∞
x

exp
(
− (t−2ξ)2

4

)
dt⇒

1 −G(x) = 1√
2π

∫∞
x−2ξ√

2
exp
(
− z2

2

)
dz (by setting z = t−2ξ√

2
). The following prop-

erty is useful for bounding the distribution function of a normal random variable
(cf. Theorem 1.4 of [1]): ∀x > 0,

(
1− x−2

) exp(x2/2)
x �

∫∞
x

exp(−z2/2)dz �
exp(x2/2)

x . A simple corollary of this property is the following:

Corollary 1. Assume that F (x), G(x) are the distribution functions of N (ξ, 1)
and N (2ξ, 2) respectively. Then: ∀x > ξ, 1 − F (x) ∈

[(
1− 1

(x−ξ)2

)
, 1
]
· 1√

2π
·

exp(−(x−ξ)2/2)
x−ξ and ∀x > 2ξ, 1−G(x) ∈

[(
1− 2

(x−2ξ)2

)
, 1
]
· 1√

π
· exp(−(x−2ξ)2/4)

x−2ξ .

Recall now that

P {DI} =
∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
r times

∏
1�i<j�r

[1−G(aii + ajj)] ·
∏
i∈[r]

(f(aii)daii)
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�
r∑

k=0

(
r
k

) k∏
i=1

(∫ 0

−∞
f(aii)daii

)
·

r∏
i=k+1

(∫ ∞

0

[1−G(aii)]r−if(aii)daii

)

=
r∑

k=0

(
r
k

)
(F (0))k ·

r−k−1∏
i=0

μi

where we have exploited the facts that ∀x ∈ IR, 1 −G(x) = P {X > x} � 1 and
∀y, z � 0, 1 − G(y + z) = P {X > y + z} � P {X > z} = 1 − G(z) and we set
μi ≡

∫∞
0 [1 − G(x)]if(x)dx, ∀i ∈ IN. Exploiting Corollary 1 and the symmetry

of the normal distribution, we have: F (0)k = (1− F (2ξ))k �
(

exp(−ξ2/2)

ξ·√2π

)k

=

exp
(
−k ln(2π)

2 − kξ2

2 − k ln ξ
)
. As for the product of the μi’s, since ∀i � 0, μi =

∫∞
0 [1−G(x)]if(x)dx � [1−G(0)]i · (1− F (0)), we conclude that:

∏r−k−1
i=0 μi �

(1−F (0))r−k(1−G(0))(r−k)(r−k−1)/2 < exp
(
− (r−k)(r−k−1)G(0)

2

)
. Therefore we

get the following bound:

P {DI} � exp
(
−r(r − 1)

2
·G(0)

)

+
r∑

k=1

exp
(

k ln
( r

k

)
− (r − k)(r − k − 1)

2
·G(0)− kξ2

2
−O(k ln ξ)

)
(7)

Assume now that, for some sufficiently small δ > 0, it holds that ξ =√
(1− δ) ln r. Observe that for some constant ε > 0 and all 0 � k � εr,∏r−k−1
i=0 μi < exp

(
− (1−ε)2

2 r2 ·G(0)
)

= exp
(
− (1−ε)2

2 r ln r · eδ ln r−O(ln ln r)
)

<

exp
(
− (1−ε)2

2 r ln r
)

for δ = Ω
(

ln ln r
ln r

)
, exploiting the fact that G(0) =

exp
(
−ξ2 − ln ξ −O(1)

)
(cf. Corollary 1). On the other hand, for all

εr < k � r, observe that F (0)k � exp
(
−kξ2

2 − k ln ξ −O(k)
)

<

exp
(
− 1−δ

2 εr ln r −O(k ln ln r)
)

< exp
(
− (1−δ)ε

2 r ln r
)
. Since for ε = 3−√

5
2 it

holds that (1−ε)2

2 � (1−δ)ε
2 , we conclude that each term in the right hand side

of inequality (7) is upper bounded by exp(−ε(1− δ)/2 · r ln r +O(r)) and so we
get the following: P {DI} � exp

(
− (1−δ)ε

2 · r ln r +O(r)
)

.

3.4 Support Sizes of Almost All ESS

In the previous subsections we calculated upper bounds on the probability
P {DI} of a size–r subset I ⊂ [n] (say, I = [r]) satisfying [H2] (and thus being a
candidate support for an ESS), for the cases of U(0, 1) and N

(√
(1 − δ) ln r, 1

)
.

We now apply the following counting argument introduced by Kingman and
used also by Haigh: Let dr be the event that there exists a submatrix of the
random matrix A, of size at least r × r, such that DI is satisfied. Then the
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probability of this event occurring is upper by the following formula (cf. [5][eq.
10]): ∀1 � s � r � n, P {dr} = P {∃ submatrix with |I| � r s.t. DI holds} �(

n
s

)
·P {Ds}·

(
r
s

)−1

. Using Stirling’s formula, k! =
√

2πk·(k/e)k ·(1+Θ(1/k)),

where e = exp(1), we write: ∀1 � s � r � n,
(

n
s

)
·
(

r
s

)−1

=
(

n
r

)s+1/2 ·
(

n
n−s

)n−s

·
(

r−s
r

)r−s ·
(

r−s
n−s

)1/2

· (1 + o(1)) . Assume now that r = Ana >

s = Bnβ, for some 1 > a > β > 0 and A � B. Then:
(

n
s

)
·
(

r
s

)−1

=

(1 + o(1)) ·
(

n1−a

A

)Bnβ+1/2

·
(
1− B

n1−β

)−nβ(n1−β−B) ·
(
1− B

Ana−β

)nβ(Ana−b−B) ·
(

A
n1−a · 1−B/(Ana−β)

1−B/n1−β

)1/2

= exp
(
(1− a)Bnβ ln n +O

(
nβ
))

. We proved for the
uniform distribution U(0, 1) that for any subset I ⊆ [n] such that |I| =
Ana, P {DI} = exp

(
−Aa

2 na ln n +O(na)
)
. Therefore, in this case, P {dAna} �

exp
[
−
(

a
2 − 1 + a

)
Bnβ ln n +O

(
nβ
)]

, which tends to zero for all a > 2/3.

Similarly, we proved for the normal distribution N
(√

(1− δ) ln(Bnβ), 1
)

that for any I ⊆ [n] : |I| = Bnβ , P {DI} = exp
(
− ε(1−δ)Bβ

2 · nβ ln n +O
(
nβ
))

,

where ε = 3−√
5

2 . Therefore we conclude that: P {dAna} �
exp
[
−
(

ε(1−δ)β
2 − 1 + a

)
Bnβ ln n +O

(
nβ
)]

, which tends to zero for all

a > 4
7−√

5−(3−√
5)δ
∼= 0.8396, since δ = Θ

(
ln ln n
lnn

)
= o(1) (for n → ∞). Thus we

conclude with the following theorem concerning the support sizes of ESS in a
random evolutionary game:

Theorem 3. Consider an evolutionary game with a random n×n payoff matrix
A. Fix arbitrary positive constant ζ > 0.

1. If Aij ∈R U(0, 1) , ∀(i, j) ∈ [n] × [n], then, as n → ∞,
it holds that: P

{
∃ ESS with support size at least n(2+2ζ)/3

}
�

exp
(
− 5ζ

6 · n(2+ζ)/3 · ln n +O
(
n(2+ζ)/3

))
→ 0.

2. If Aij ∈R N (ξ, 1) , ∀(i, j) ∈ [n] × [n], where ξ = Θ
(√

ln n
)
, then, as

n → ∞, it holds that: P
{
∃ ESS with support size at least n0.8397+ζ

}
�

exp
(
−1.19ζ · n0.8397+ζ/2 · ln n +O

(
n0.8397+ζ/2

))
→ 0.

Remark: Indeed the above theorem upper bounds the unconditional probabil-
ity of [H2] being satisfied by any submatrix of A that is determined by an index
set I ⊆ [n] : |I| > n2/3 (for the uniform case) or |I| > n0.8397 (for the case of
the normal distribution). We adopt the particular presentation for purposes of
comparison with the corresponding results of Haigh [5] and Kingman [7].
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4 An Upper Bound on the Expected Number of ESS

We now combine our result on the probability of [H2] being satisfied in random
evolutionary games wrt N (ξ, 1), with a result of McLennan and Berg [11] on the
expected number of NE in random bimatrix games wrt N (0, 1). The goal is to
show that ESS in random evolutionary games are significantly less than SNE in
the underlying symmetric bimatrix games.

We start with some additional notation, that will assist the clearer presen-
tation of the argument. Let A, B be normal–random n × n (payoff) matrices:
∀(i, j) ∈ [n]× [n], Aij , Bij ∈R N (ξ, 1). Enash

n,r is the expected number of NE with
support sizes equal to r for both strategies, in 〈A, B〉. Esym

n,r is the expected num-
ber of SNE with support sizes equal to r for both strategies, in 〈A, AT 〉. Eess

n,r is
the expected number of ESS of support size r, in the random evolutionary game,
with payoff matrix A. Finally, Estable

n,r is the expected number of strategies with
support size r that satisfy property [H2], in the random evolutionary game, with
payoff matrix A. We shall prove now the following theorem:

Theorem 4. If the n×n payoff matrix A of an evolutionary game is randomly
chosen so that each of its elements behaves as an independent N (ξ, 1) random
variable, then it holds that Eess

n = o(Esym
n ), as n→∞.

Proof: First of all we should mention that the concept of Nash Equilibrium is
invariant under affine transformations of the payoff matrices. Therefore, we may
safely assume that the results of [11] on the expected number of NE in n × n
bimatrix games, in which the values of both the payoff matrices are treated as
standard normal random variables, are also valid if we shift both the payoff
matrices by any positive number ξ (or equivalently, if we consider the normal
distribution N (ξ, 1) for the elements of the payoff matrices). The main theorem
of the work of McLennan and Berg concerns Enash

n,r in 〈A, B〉 2.
In our work we are concerned about Eess

n,r , the expected number of ESS with
support size r, in a random evolutionary game with payoff matrix A. Our pur-
pose is to demonstrate the severity of [H2] (compared to the Nash Property [H1]
that must also hold for an ESS), therefore we shall compare the expected number
of SNE in 〈A, AT 〉 with the expected number of ESS in the random evolutionary
game with payoff matrix A. Although the main result of [11] concerns arbitrary
(probably asymmetric) normal–random bimatrix games, if one adapts their cal-
culations for SNE in symmetric bimatrix games, then one can easily observe
that similar concentration results hold for this case as well. The key formula

of [11] is the following: ∀1 � r � n, Enash
n,r =

(
n
r

)2

· 22−2r · (R(r − 1, n− r))2,

where, R(a, b) =
∫∞
−∞ φg(x) ·

(
Φg

(
x√
a+1

))b

dx is the probability of e0 getting

a value greater than
√

a + 1 times the maximum value among e1, . . . , eb, where
2 In such a random game, strategy profiles in which the two player don’t have the

same support sizes, are not NE with probability asymptotically equal to one. This
is why we only focus on profiles in which both players have the same support size r.
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e0, e1, . . . , eb ∈R N (0, 1). For the case of a random symmetric bimatrix game
〈A, AT 〉, the proper shape of the formula for SNE in 〈A, AT 〉 is the following:

∀1 � r � n, Esym
n,r =

(
n
r

)
· 21−r · (R(r − 1, n− r)).

As for the asymptotic result that the support sizes r of NE are sharply con-
centrated around 0.316n, this is also valid for SNE in symmetric games. The only
difference is that as one increases n by one, the expected number of NE in the
symmetric game goes up, not by an asymptotic factor of exp(0.2816) ≈ 1.3252,
but rather by its square root exp(0.1408) ≈ 1.1512. So, we can state this exten-
sion of the McLennan-Berg result as follows: There exists a constant β ≈ 0.316,
such that for any ε > 0, it holds (as n → ∞) that

∑(1+ε)βn�
r=�(1−ε)βn� Esym

n,r �
εEsym

n . From this we can easily deduce that
∑�(1−ε)βn�−1

r=1 Esym
n,r � (1 − ε)Esym

n .
It is now rather simple to observe that for any 1 � Z � n, Eess

n ≡∑n
r=1 Eess

n,r =
∑Z

r=1 Eess
n,r +

∑n
r=Z+1 Eess

n,r �
∑Z

r=1 Esym
n,r +

∑n
r=Z+1 Estable

n,r ,
since ess = stable ∧ sym. If we set Z = n0.8397+ζ for some ζ > 0,
then:

∑Z
r=1 Esym

n,r � n−0.1603+ζ

β Esym
n and

∑n
r=Z+1 Estable

n,r �
∑n

r=Z+1 Eess
n ·

P {∃ ESS with support � r} <
∑n

Z=r+1 Esym
n · P {∃ ESS with support � r} <

Esym
n ·exp

(
log n− 1.19ζ · n0.8397+ζ/2 · ln n +O

(
n0.8397+ζ/2

))
. Therefore, we con-

clude that Eess
n = O

(
n−0.16 ·Esym

n

)
= o(Esym

n ).
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