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Abstract. Activity sensing in the home has a variety of important applications, 
including healthcare, entertainment, home automation, energy monitoring and 
post-occupancy research studies. Many existing systems for detecting occupant 
activity require large numbers of sensors, invasive vision systems, or extensive 
installation procedures. We present an approach that uses a single plug-in 
sensor to detect a variety of electrical events throughout the home. This sensor 
detects the electrical noise on residential power lines created by the abrupt 
switching of electrical devices and the noise created by certain devices while in 
operation. We use machine learning techniques to recognize electrically noisy 
events such as turning on or off a particular light switch, a television set, or an 
electric stove. We tested our system in one home for several weeks and in five 
homes for one week each to evaluate the system performance over time and in 
different types of houses. Results indicate that we can learn and classify various 
electrical events with accuracies ranging from 85-90%. 

1   Introduction and Motivation 

A common research interest in ubiquitous computing has been the development of 
inexpensive and easy-to-deploy sensing systems to support activity detection and 
context-aware applications in the home. For example, several researchers have 
explored using arrays of low-cost sensors, such as motion detectors or simple contact 
switches [15, 16, 18]. Although these solutions are cost-effective on an individual 
sensor basis, they are not without some drawbacks. For example, having to install and 
maintain many sensors may be a time-consuming task, and the appearance of many 
sensors may detract from the aesthetics of the home [3, 7]. In addition, the large 
number of sensors required for coverage of an entire home may increase the number 
of potential failure points. To address these concerns, recent work has focused on 
sensing through existing infrastructure in a home. For example, researchers have 
looked at monitoring the plumbing infrastructure in the home to infer basic activities 
[6] or using the residential power line to provide indoor localization [13]. Inspired by 
the theme of leveraging existing infrastructure to support activity detection, we 
present an approach that uses the home’s electrical system as an information source to 
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observe various electrical events. The detection and classification of these events can 
be used later for a variety of applications, such as healthcare, entertainment, home 
automation, energy monitoring, and post-occupancy research studies. 

A principal advantage of the approach presented in this paper is that it requires 
only the installation a single, plug-in module that connects to an embedded or 
personal computer. The computer records and analyzes electrical noise on the power 
line caused by the switching of significant electrical loads. Machine learning 
techniques applied to these patterns identify when unique events occur. Examples 
include human-initiated events, such as turning on or off a specific light switch or 
plugging in a CD player, as well as automatic events, such as a compressor or fan of 
an HVAC system turning on or off under the control of a thermostat.  

By observing actuation of certain electrical devices, the location and activity of 
people in the space can be inferred and used for applications that rely on this 
contextual information. For example, detecting that a light switch was turned on can 
be an indication that someone entered a room, and thus an application could adjust the 
thermostat to make that room more comfortable. We can also detect other human-
initiated kitchen events, such as a light turning on inside a refrigerator or microwave 
when its door is opened. The combination of these events may indicate meal 
preparation. Our approach also has implications for providing a low-cost solution for 
monitoring energy usage. An application could log when particular electrical loads 
are active, revealing how and when electrical energy is consumed in the household, 
leading to suggestions on how to maintain a more energy-efficient household. In 
addition, because our approach is capable of differentiating between the on and off 
events of a particular device in real time, those events can be “linked” to other 
actuators for a variety of home automation scenarios. One can imagine a home 
automation system that maps the actuation of a stereo system to an existing light 
switch without having to install additional wiring. 

In this paper, we first present a review of related work in event detection for indoor 
settings, identifying the inspiration for our work and how it complements and extends 
past results. We then describe the underlying theory and initial implementation details 
of our approach to powerline event detection. We report the results of a series of tests 
to determine the stability of our approach over time and its capability of sensing 
electrical events in different homes. These tests consisted of installing our device in a 
single location of a house and collecting data on a variety of electrical events within 
that house. Results show our support vector machine system can learn and later 
classify various unique electrical events with accuracies ranging from 85-90%. 
Finally, we discuss the results, current limitations and potential improvements for this 
powerline event detection approach. 

2   Related Work 

We can classify research in activity and behavior recognition in a home setting by 
examining the origin of the proposed sensing infrastructure. The first area of 
classification includes approaches that introduce new, independent sensors into the 
home that directly sense various activities of its residents. This classification includes 
infrastructures where a new set of sensors and an associated sensor network (wired or 
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wireless) is deployed. A second area encompasses those approaches that take 
advantage of existing home infrastructure, such as the plumbing or electrical busses in 
a home, to sense various activities of residents. The goal of the second approach is to 
lower the adoption barrier by reducing the cost and/or complexity of deploying or 
maintaining the sensing infrastructure. 

Some research approaches use high-fidelity sensing to determine activity, such as 
vision or audio systems that capture movements of people in spaces [2, 10]. Chen et 
al. installed microphones in a bathroom to sense activities such as showering, 
toileting, and hand washing [5]. While these approaches may provide rich details 
about a wide variety of activities, they are often very arduous to install and maintain 
across an entire household. Furthermore, use of these high fidelity sensors in certain 
spaces raise concerns about the balance between value-added services and acceptable 
surveillance, particularly in home settings [3, 7, 9].  

Another class of approaches explores the use of a large collection of simple, low-
cost sensors, such as motion detectors, pressure mats, break beam sensors, and contact 
switches, to determine activity and movement [15, 16, 18]. As an example of this 
low-cost approach, Tapia et al. discussed home activity recognition using many state 
change sensors, which were primarily contact switches [15, 16]. These sensors were 
affixed to surfaces in the home and logged specific events for some period of time. 
The advantage of this approach is being able to sense physical activities in a large 
number of places without the privacy concerns often raised for high-fidelity sensing 
(e.g,. bathroom activity). There are also some disadvantages to this add-on sensor 
approach, which include the requirements of powering the sensors, providing local 
storage of logged events on the sensor itself, or a wireless communication backbone 
for real-time applications. These requirements all complicate the design and 
maintenance of the sensors, and the effort to install many sensors and the potential 
impact on aesthetics in the living space may also negatively impact mass adoption of 
this solution. As an example of the often difficult balance of the value of in home 
sensing and the complexity of the sensing infrastructure, the Digital Family Portrait is 
a peace of mind application for communicating well-being information from an 
elderly person’s home to a remote caregiver [14]. In their deployment study, 
movement data was gathered from a collection of strain sensors attached to the 
underside of the first floor of an elder’s home. The installation of these sensors was 
difficult, time-consuming, and required direct access to the underside of the floor. 
Though the value of the application was proven, the complexity of the sensing limited 
the number of homes in which the system could be easily deployed.  

Other approaches, which are similar to ours, are those that use existing home 
infrastructure to detect events.  Fogarty et al. explored attaching simple microphones 
to a home’s plumbing system, thereby leveraging an available home infrastructure [6]. 
The appeal of this solution is that it is low-cost, consists of only a few sensors, and is 
sufficient for applications, such as the Digital Family Portrait, for which the 
monitoring of water usage is a good proxy for activity in the house. This approach 
requires relatively long timescales over which events must be detected, sometimes up 
to ten seconds. This longer time increases the likelihood of overlapping events, which 
are harder to distinguish. In contrast, powerline event detection operates over 
timescales of approximately half a second and thus overlapping is less likely. Some 
water heaters constantly pump hot water through the house, complicating the 
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detection of some on-demand activities. Detecting noise on water pipes introduced by 
other household infrastructure requires careful placement of the microphone sensors. 
Some homes may not have plumbing infrastructure that is easily accessible, 
particularly those with a finished basement or no basement at all. Despite these 
limitations, this solution is very complementary to our approach, as some events 
revealed by water usage, such as turning on a faucet in a sink or flushing a toilet, do 
not have direct electrical events that could serve as predictive antecedents. The 
converse also holds, as a light being turned on often does not correlate with any 
water-based activity. Another “piggybacking” approach is to reuse sensing 
infrastructure or devices in the home that may be present for other purposes. For 
example, ADT Security System’s QuietCare [1] offers a peace of mind service that 
gathers activity data from the security system’s motion detectors.  

There are several other techniques that employ electrical power use to sense 
activity. For example, some researchers have monitored electrical current flow to 
infer the appliances or electrical equipment being used in the house as a proxy for 
detecting activity [12, 16]. The MITes platform supports the monitoring of current 
consumption of various appliances of interest. Changes in current flow indicate some 
change in state for the instrumented appliance, such as a change from on to off. This 
solution requires a current sensor to be installed inline with each appliance or around 
its power cord and thus only works well if it is sufficient to study the usage of a small 
subset of appliances and those appliances’ power feeds are easy accessible. An 
extension to the MITes work would be to install current sensors on major branch 
circuits of the power lines, but this may require professional installation to provide an 
acceptable level of safety. Our solution can detect a larger number of appliances with 
less instrumentation and with a much easier deployment phase. Our approach is 
influenced by our previous work in PowerLine Positioning system [13], which uses 
existing powerline infrastructure to do practical localization within a home. The main 
difference between that work and the present work is that we are passively sensing 
electrical events using simple events, whereas our previous work senses the location 
of actively tagged objects. 

3   Our Approach and System Details 

Our prototype system consists of a single module (see Figure 1) that is plugged into 
any electrical outlet in the home. Although not necessarily required, we installed it in 
a convenient, central location in the home while experimenting with the setup. The 
other end of the plug-in unit is connected via USB to a computer that collects and 
performs the analysis on the incoming electrical noise. The system learns certain 
characteristics from electrical noise produced by switching an electrical device on or 
off and later predicts when those devices are actuated based on the learned 
phenomena.  Note that we present an approach for countries that use 60 Hz electrical 
systems, but our approach can easily be extended to different frequencies used in 
other countries (i.e., those that use 50 Hz).  

3.1   Theory of Operation 

Our approach relies on the fact that abruptly switched (mechanical or solid-state) 
electrical loads produce broadband electrical noise either in the form of a transient or 
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Fig. 1. Our prototype system consists of a powerline noise analyzer plugged in to an ordinary 
wall outlet and connected to a PC 

continuous noise. This electrical noise is generated either between hot and neutral 
(known as normal mode noise) or between neutral and ground (known as common 
mode noise). Transient and continuous noise on the residential power line is typically 
high in energy and may often be observed with a nearby AM radio. The types of 
electrical noise in which we are interested are produced within the home and are 
created by the fast switching of relatively high currents. For example, a motor-type 
load, such as a fan, will create a transient noise pulse when it is first turned on and 
will then produce a continuous noise signal until it is turned off. In addition, the 
mechanical switching characteristics of a light switch itself can generate transient 
electrical noise [8]. Other examples of noisy events include using a garage door 
opener, plugging in a power adaptor for an electric device, or turning on a television. 
Marubayashi provides a more complete description of this electrical noise 
phenomenon [11]. 

In the case of transient noise, the impulses typically last only a few microseconds 
and consist of a rich spectrum of frequency components, which can range from 10 Hz 
to 100 kHz. Thus, it is interesting to consider both the temporal nature (duration) of 
the transient noise and its frequency components. Depending on the switching 
mechanism, the load characteristics, and length of transmission line, these impulses 
can be very different. For example, Figure 2a shows a sample frequency domain 
graph of a light switch being toggled in a house (light on followed by light off). Note 
the rich number of high amplitude frequency components for each pulse and their 
relative strengths. Also, notice that the signature of a device being turned on is 
different from the same device being turned off. Figure 2b shows the same switch 
being actuated in the same order, but taken 2 hours later, and Figure 2c shows it taken 
1 week later. The amplitudes of individual frequency components and the duration of 
the impulse produced by each switch are similar between the three graphs, although 
there are a few high frequency regions that are different across the samples. Even 
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similar light switches produce different signatures, which is likely due to the 
mechanical construction of each switch and the influence of the power line length 
connected to each switch. For example, we observed that three-way wall switches 
connected to the same light each produced discernable signatures. The main 
difference was in the relative amplitudes of the frequencies being observed. For 
devices that produce continuous noise, they are bounded by some transient 
phenomena, but also exhibit electrical noise during their powered operation. For this 
class of noises, it is possible to not only identify it based on its transient response but 
also its continuous noise signature. 

 

   
                  a)                                           b)                                        c)                          

Fig. 2. Frequency spectrum of a particular light switch being toggled (on and off events). The 
graphs indicate amplitudes at each frequency level. Events in (b) were captured two days after 
(a), and events in (c) were captured one week after (a). Each sample is rich in a broad range of 
frequencies. On and off events are each different enough to be distinguished. In addition, the 
individual on and off events are similar enough over time to be recognized later. 

Because we assume the noise signature of a particular device depends both on the 
device and the transmission line behavior of the interconnecting power line, we have 
attempted to capture both contributions in a single model. Figure 3 depicts a high-
level overview of our simplified model of a home's electrical infrastructure and where 
particular noise transfer functions occur, denoted as H(s). These transfer functions 
reflect our expectation that both the electrical transmission lines and the data 
collection apparatus connected to that line all contribute to some transformation of the 
noise from the source to the collection apparatus. The observed noise results from the 
imposition of all the transfer functions against the generated noise. The influence of 
the transmission line’s transfer function is an important contributor to the different 
electrical noise signatures we observed, which explains why similar device types 
(e.g., light switches) can be distinguished and why the location of the data collection 
module in the house impacts the observed noise. 

In our simplified model, three general classes of electrical noise sources may be 
found in a home (see Figure 3): resistive loads, inductive loads such as motors, and 
loads with solid state switching. Purely resistive loads, such as a lamp or an electric 
stove, do not create detectable amounts of electrical noise while in operation, 
although as a resistor, they can be expected to produce trace amounts of thermal noise 
(Johnson noise) at an undetectable level. In this particular case, only a transient 
 



 At the Flick of a Switch: Detecting and Classifying Unique Electrical Events 277 

 

Fig. 3. Overview of the powerline infrastructure and location of particular signal/noise transfer 
functions, Hn(s). The bottom of the figure shows three general types of loads found in a home, a 
purely resistive, an inductive where voltage noise is generated from a continuous mechanical 
switching (motors), and an inductive load where voltage noise is generated by an internal 
oscillator of a solid state switch. 

noise is produced by minute arcing in the mechanical switch itself (wall switch) when 
the switch is turned on or off. A motor, such as in a fan or a blender, is modeled as 
both a resistive and inductive load. The continuous breaking and connecting by the 
motor brushes creates a voltage noise synchronous to the AC power of 60 Hz (and at 
120 Hz). Solid state switching devices, such as MOSFETs found in computer power 
supplies or TRIACs in dimmer switches or microwave ovens, emit noise that is 
different between devices and is synchronous to an internal oscillator. Thus, the latter 
two classes contribute noise from both the external power switching mechanism 
(transient) and the noise generated by the internal switching mechanism (continuous). 

In the United States, the Federal Communications Commission (FCC) sets 
guidelines on how much electrical noise AC-powered electronic devices can conduct 
back onto the power line (Part 15 section of the FCC regulations). Device-generated 
noise at frequencies between 150 kHz-30 MHz cannot exceed certain limits. 
Regulatory agencies in other countries set similar guidelines on electronic devices. 
Although this mainly applies to electronic devices, such as those that have solid state 
switching power supplies, this gives us some assurance about the type and amount of 
noise we might expect on the power line. 

It is often extremely difficult to analytically predict the transient noise from the 
general description of a load and its switching mechanism because ordinary switches 
are usually not well characterized during their make-and-break times. However, it is 
possible to take a mapping approach by learning these observed signatures using 
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supervised machine learning techniques. The challenge then becomes finding the 
important features of these transient pulses and determining how to detect the relevant 
ones of interest. 

3.2   Hardware Details 

To explore the idea of detecting and learning various electrical events in the home, we 
first built a custom data collector that consisted of a powerline interface with three 
outputs (see Figures 4 and 5). One output was the standard 60 Hz AC power signal, 
which we used during our initial testing and exploratory phase. The second output 
was an attenuated power line output that has been bandpass-filtered with a passband 
of 100 Hz to 100 kHz. The third output was similarly attenuated and was bandpass-
filtered with a 50 kHz to 100 MHz passband. We chose these different filtered outputs 
to have the flexibility to experiment with different frequency ranges (see Figure 6). 
Both filtered outputs have a 60 Hz notch filter in front of their bandpass filters to 
remove the AC power frequency and enhance the dynamic range of the sampled data. 
We built our interface so that we could monitor the power line between hot and 
neutral, neutral and ground, or hot and ground. For the work reported here, we chose 
to observe the noise between hot and neutral (normal mode) because many loads that 
we would like to observe (such as table lamps and small appliances) do not have a 
ground connection. 

 

 

Fig. 4. Block diagram of our powerline interface system 

We further chose to interface with only one 120V leg or branch of the electrical 
system. Most residential houses and apartments in North America and many parts of 
Asia have a single-phase or a split single-phase electrical system. This means there 
are two 120V electrical branches coming into the house to supply 240V appliances, 
but the two branches are still in phase. We found that the noises generated by devices 
of interest connected to the other electrical branch were already being coupled to the 
electrical branch we interfaced to, and so were detectable by our system. While this 
approach was practical and sufficient for our research prototype, we could also plug a 
coupler into a 240V outlet to ensure we have direct access to both electrical branches. 

Finally, the outputs of the powerline interface are connected to a dual-input USB 
oscilloscope interface (EBest 2000) that has a built-in gain control. Each input has 10-
bit resolution with a full scale voltage of 1V, so the least significant bit represents a 
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Fig. 5. The schematic of our powerline interface device 

 

Fig. 6. A model of the frequency response curve of our powerline data collection apparatus at 
the 100 Hz – 100 kHz and the 50 kHz – 100 MHZ outputs. The 60 Hz dip is from the notch 
filter. 

voltage of 4 mV. The oscilloscope interface has a real-time sampling rate of 100 
million samples/sec. A C++ API is provided, resulting in a simple software interface 
to the sampled signal. 
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3.3   Software Details 

For the software components of our prototype, we wrote a C++ application to sample 
the USB oscilloscope interface and perform a Fast Fourier Transform (FFT) on the 
incoming signal to separate the component frequencies for our analysis. The 
application also produces a waterfall plot, a commonly used frequency domain 
visualization in real-time used for visual inspection (such as in Figure 2). The 
application performs this analysis in nearly real-time, and it has the ability to record 
the data stream for post processing. A second application, written in Java, performs 
the machine learning and provides the user interface for the system. The Java 
application connects via a TCP connection to the FFT application and reads the data 
values. The Java application provides the user interface for surveying the home and 
remotely accessing the data from the powerline interface. We used the Weka [17] 
toolkit for our machine learning implementation.  

3.4   Electrical Events That Can Be Recognized 

Having built our data collection apparatus, we first wanted to identify the variety of 
electrical devices we could detect with our apparatus and see which electrical devices 
would produce recognizable signatures that can be used for our machine learning 
software. For this exploration, we installed our apparatus in a single fixed location 
throughout the data collection process. We collected data with both the low frequency 
(100 Hz – 100 KHz) and high frequency (50 kHz – 100 MHz) ports. We took care to 
ensure no major electrical devices were activated (such as the HVAC, fridge, water 
pumps, etc.) by turning them off for the duration of the testing so we knew which 
devices were causing which response. For each electrical device of interest, we 
visually observed and collected noise signatures for turning the device on, turning it 
off, and its stable on state. Table 1 shows the various devices we were able to detect 
and the events we were able to observe for each device (on, off, continuously on 
state). Although we could have observed many more devices, we only show a 
representative sample of commonly used devices.  

After initial experimentation, we found that most loads drawing less than 0.25 
amps were practically undetectable Loads above that amount produced very 
prominent electrical noise (transient and/or continuous). This is related to the dynamic 
range of our data collection device—a collection device with more than 10 bits of 
resolution would be able to detect lower current devices. The devices listed in Table 1 
showed not only strong but also consistently reproducible signatures. However, we 
did observe a limitation in how quickly we could switch a given device (i.e., the delay 
between toggles). Depending on the device, we observed that approximately 500 ms 
delay between subsequent toggles was required for our data collection apparatus to 
detect a noise impulse successfully. This is largely attributed to the sampling and 
processing latency from our device (e.g., USB latency plus processing delays on  
the PC). 

While most devices produced a transient pulse only a few microseconds in duration 
in their energized state, certain devices continuously produced electrical noise while 
they were powered, as expected. For example, lamp dimmers or wall-mounted 
dimmer switches produced noise that was very rich in harmonics while they were 
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Table 1. Electrical devices we tested and which events we were able detect. These devices also 
consistently produced detectable event signatures. 

Device 
Class/Type Devices Observed 

On to Off 
Transition 

Noise? 

Off to On 
Transition 

Noise? 

Continuously 
On Noise? 

Incandescent lights via a 
wall switch Y Y N

Microwave door light Y Y N
Oven light/door Y Y N
Electric stove Y Y N
Refrigerator door Y Y N

Resistive 

Electric Oven Y Y N
Bathroom exhaust fan Y Y N
Ceiling fan Y Y N
Garage door opener Y Y N
Dryer Y Y N
Dishwasher Y Y N
Refrigerator compressor Y Y N
HVAC/Heat Pump Y Y N

Inductive 
(Mechanically 
Switched) 

Garbage disposal Y Y N
Lights via a dimmer wall 
switch Y Y Y

Fluorescent lights via a wall 
switch Y Y N

Laptop power adapter Y N N
Microwave Oven Y Y Y

Inductive (Solid 
State Switched) 

Television (CRT, plasma, 
or LCD) Y Y N

 

activated. Similarly, microwave ovens also coupled broadband noise back on the 
power line during its use. These devices tended to produce strong continuous noise 
above 5 kHz and reaching up to 1 MHz. We also found that switching power supplies, 
such as from a laptop or PC, produced considerably higher noise in the 100 kHz – 1 
MHz area than at the lower 100 Hz – 5 kHz range.  

To understand devices that produced continuous noise, we tested various switching 
power supplies in isolation from other electrical line noise (see Figure 7). Using the 
higher 50 kHz – 100 MHz output on our data collection apparatus, we found that 
many of these devices produced more detectable continuous noise at the higher 
frequencies. At the lower 100 Hz – 5 kHz range, we saw fairly low amplitude, 
continuous noise, and a higher transient noise effect (from the flipping of the switch). 

In the 100 Hz – 100 kHz range, motor-based devices, such as a ceiling or bathroom 
exhaust fan, exhibited slightly longer duration transient pluses when activated with a 
switch, but did not show continuous normal mode noise which would have been 
expected from the repeated electromechanical switching from the motor brushes. We 
attribute this difference to our 60 Hz notch filter, which blocked the 60 Hz power 
frequency. To confirm this hypothesis, we conducted another experiment in which we 
isolated various mechanically-switched devices (e.g., fans) and looked at their noise 
output (see Figure 7). In the case of the fan, our data collection apparatus did indeed 
show the transient pulse, but not the continuous electrical noise. 
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From these observations, we are able to characterize the noise characteristics 
produced by different devices. We observed that transient noise produced from a 
single abrupt switching event (e.g., a wall switch) tended to produce signals rich in 
high amplitude components in the lower frequency range (100 Hz – 5 KHz). 
Inductive loads featuring a solid state switching mechanism generally produced 
continuous noise in the 5 kHz – 1 MHz range. Inductive loads with mechanically 
switched voltages produce noise near 60 Hz, but our data collection apparatus filtered 
out much of that noise. We thus observed that the analysis of the frequency spectrum 
may be broken up into two parts. The lower frequency space (100 Hz – 5 kHz) is 
effective for analysis for transient noise events, such as those produced by wall 
switches. The higher frequency is better for continuous noise events, such as those 
produced by TRIACs and switching power supplies. We even observed that dim 
levels can also be gathered from the continuous noise frequency generated by the 
TRIACs. For this particular paper, we primarily focus on exploring transient noise 
events. Similar analysis and learning could be applied to continuous noise events. 

 
 

Fig. 7. The setup we constructed for isolating and testing the noise response for various 
electrical devices on an individual basis 

3.5   Detecting and Learning the Signals 

Our detection approach requires detection of the transient pulse of electrical noise 
followed by extraction of relevant features for learning classification. 

3.5.1   Detecting Transient Pulses 
The filtering hardware in the powerline interface removes most of the high frequency 
noise. Some broadband noise is always present, but typically at low amplitudes. To 
detect the transient pulses, we employ a simple sliding window algorithm to look for 
drastic changes in the input line noise (both beginning and end). These drastic 
changes, lasting only a few microseconds, are labeled as candidate signals and 
processed further. The sliding window acquires a 1-microsecond sample, which is 
averaged from the data acquired after performing the FFT on data from the data 
acquisition hardware. Each sample consists of frequency components and its 
associated amplitude values in vector form. Each vector consists of amplitude values 
for frequency intervals ranging between 0 and 50 kHz. We then compute the 
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Euclidean distance between the previous vector and the current window’s vector. 
When the distance first exceeds a predetermined threshold value, the start of the 
transient is marked. The window continues to slide until there is another drastic 
change in the Euclidean distance (the end of the transient). Although the threshold 
value was determined through experimentation, we can imagine learning and adapting 
the thresholds over time. 

After having isolated the transient, we are left with N vectors of length L, where N 
is the pulse width in 1 microsecond increments and L is the number of frequency 
components (2048 in our case). A new vector of length L + 1 is then constructed by 
averaging the corresponding N values for each frequency components. The (L + 1)st 
value is simply N, the width of the transient. This value then serves as our feature 
vector for that particular transient. 

3.5.2   Learning the Transients 
For our learning algorithm, we employed a support vector machine (SVM) [4]. SVMs 
perform classification by constructing an N-dimensional hyperplane that optimally 
separates the data into multiple categories. The separation is chosen to have the 
largest distance from the hyperplane to the nearest positive and negative examples. 
Thus, the classification is appropriate for testing data that is near, but not identical, to 
the training data as is the case for the feature vectors for the transients. SVMs are 
appealing because our feature space is fairly large compared to our potential training 
set. Because SVMs employ overfitting protection, which does not necessarily depend 
on the number of features, they have the ability to better handle large feature spaces. 
The feature vectors are used as the support vectors in the SVM. We used the Weka 
Toolkit to construct an SVM, using labeled training data to later classify the query 
points. 

4   Feasibility and Performance Evaluation 

To evaluate the feasibility and performance of our approach, we tested it in six 
different homes of varying styles, age, sizes, and locations. We first tested our 
transient isolation scheme in a single home. Next, we conducted a feasibility study in 
that home for a six-week period to determine the classification accuracy of various 
electrical events over an extended period of time. Finally, for the five other homes, we 
conducted a one-week study to reproduce the results from the first home.  

4.1   Transient Isolation Evaluation 

To evaluate the feasibility of our automatic transient detection scheme, we collected 
data from one home for a four-hour period and had our software continuously isolate 
transient signals. During that period, we actuated various electrical components and 
made a note of their timestamps. A total of 100 distinct events were generated during 
this period. For each event, we then determined if a transient was isolated successfully 
at the noted times. Table 2 shows the results of five different four-hour sessions. We 
report the percentage of successfully identified transients out of the number of event 
triggers. We believe the reason for the missed events was because of our static 
threshold algorithm. An adaptive threshold approach would mitigate this problem. 
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Table 2. Percentage of successfully identified transient pulses using our transient isolation 
scheme. Each test lasted for a four-hour period with approximately 100 possible transient 
events in each period. 

Test 1 
(% found) 

Test 2 
(% found) 

Test 3 
(% found) 

Test 4 
(% found) 

Test 5 
(% found) 

98 93 91 88 96 

4.2   Classifying Transient Events in Various Homes 

The aim of our extended 6-week evaluation was to determine the classification 
accuracy of various types of electrical devices and how often we had to retrain the 
system (signal stability over time). The other five deployments were used to show that 
we could detect events similar to those of the initial home and to show that the 
transient noise signatures were temporally stable in other homes as well. Despite the 
small number of homes, we tried to test a variety of homes and sizes, including older 
homes with and without recently updated electrical systems (see Table 3). We also 
included an apartment home in a six-story building, as we expected its electrical 
infrastructure to be somewhat different from that of a single family home. We were 
interested in testing the types of electrical devices listed in Table 1, so we ensured that 
the homes in which we deployed had most of these devices.  

For the entire testing period, we installed our data collection apparatus in the same 
electrical outlet. For Home 1, we collected and labeled data at least three times per 
week during the 6-week period. The data collection process involved running our 
system and toggling various predetermined electrical devices (see Table 1 for 
examples). For each device toggled, we manually labeled each on-to-off and off-to-on 
event. In addition, we captured at least two instances of each event during each 
session. For Home 1, we selected 41 different devices for testing (82 distinct events) 
and collected approximately 500 instances during each week. Thus, approximately 
3000 labeled samples were collected during the 6-week period.   

We collected and labeled data in a similar manner for the shorter 1-week 
deployments. We collected training data at the beginning of the week and collected 
additional test data at the end of the week. At least 4 instances of each event were 
gathered for the training set. Because we had control over the events, the number of 
distinct events were fairly equally distributed among the data and not biased towards a 
single device or switch for all the 6 homes. 

Tables 4 and 5 show classification accuracies for the different homes we tested. 
For Home 1, we show the classification accuracy of test data gathered at various times 
during the six weeks using the training set gathered during the first week. The average 
overall classification accuracy in Home 1 was approximately 85% (Table 4). We also 
show the accuracy of the classification for varying training set sizes. Because there 
can potentially be many events of interest in the home, making the training process an 
arduous task, we wanted to find the minimum number of samples that would provide 
reasonable performance. The results suggest that there is only a slight decrease in 
classification over the 6 week period. The results also suggest that a small number of 
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Table 3. Descriptions of the homes in which our system was deployed. Home 1 is where we 
conducted the long-term 6 week deployment. 

Home Year 
Built 

Electrical 
Remodel 

Year 

Floors/ 
Total Size 

(Sq Ft)/ 
(Sq M) 

Style 
Bedrooms/
Bathrooms/ 
Total Rms. 

Deply. 
Time 

(weeks) 

1 2003 2003 3/4000/371 1 Family House 4/4/13 6
2 2001 2001 3/5000/464 1 Family House 5/5/17 1
3 1999 1999 1/700/58 1 Bed Apartment 1/1/4 1
4 2002 2002 3/2600/241 1 Family House 3/3/12 1
5 1935 1991 1/1100/102 1 Family House 2/1/7 1
6 1967 1981 1/1500/140 1 Family House 2/1/7 1  

Table 4. Performance results of Home 1. The accuracies are reported based on the percentage 
of correctly identified events. Training happened during Week 1, and we reported the 
accuracies of the classifier for test data from subsequent weeks using that initial training set 
from week 1. Overall classification accuracy of a simple majority classifier was 4%. 

 SVM accuracies during specific weeks of testing 

Training Set 
Size/Instances 

per event 

Week 
1 (%) 

Week 
2 (%) 

Week 
3 (%) 

Week 
4 (%) 

Week 
5 (%) 

Week 
6 (%) 

164/2 83 82 81 79 80 79 

246/3 86 84 85 84 82 83 

328/4 88 91 87 85 86 86 

410/5 90 92 91 87 86 87 

 
training instances result in lower classification accuracies. In addition, the majority 
classifier had accuracies of only about 4% on average, because of the equal 
distribution of the distinct events in the training and test data, 

As reported, increasing the number of training instances did increase the 
classification accuracy. A small number of training samples makes it very important 
to have accurate training data. Mislabeling of a single training sample can have major 
impacts on the learned model. We even caught ourselves accidentally mislabeling a 
few events. For example, the on and off event labels we noted were sometimes 
flipped for a particular electrical device. Thus, this highlights the importance of 
designing a training or calibration scheme that mitigates human error during the 
training and labeling process. 

The results from the one-week deployments in the five other homes are shown in 
Table 5, and the test data from the end of the week showed promising results. We did 
not see any significant differences in accuracy between old and new homes. The 
lower classification accuracy for Home 5 was the result of a low frequency noise that 
interfered with our transient events. Although we could not find the origin of that 
noise, we can imagine building a smarter system that learns these erroneous noise 
events to avoid incorrect classifications.  
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Table 5. Performance results of various homes. The accuracies are reported based on the 
percentage of correctly identified toggled light switches  or other events in the test data set. The 
results of a majority classifier are also shown. For each home, the training of the data occurred 
at the beginning of the week and the test data set was gathered at the end of that week. 

Home 
Distinct 
events 

Training set
(events) 

Test set 
(events) 

Accuracy 
(%) 

Majority 
classif. (%) 

2 82 328 100 87 4 
3 48 192 96 88 6 
4 76 304 103 92 3 
5 64 256 94 84 3 
6 38 152 80 90 8 

5   Discussion of Limitations and Potential Improvements 

Although we found promising results with our system, it is not without some 
limitations and some future considerations. In the current implementation, we 
purposely analyzed the lower frequency spectrum where solid-state switching devices 
would produce the lowest interference from potential continuous noise. However, at 
the same time, this choice limits our feature space. Looking at a larger frequency 
spectrum could provide better classification for certain transient events. In addition, a 
fully functional system must be able to detect and to adapt to random noise events 
when looking for transient pulses. In the future, we plan to improve the feature 
extraction step. We focused on only the amplitudes of the component frequencies. 
Phase difference between component frequencies, however, should be considered as 
part of a feature extraction scheme. In addition, the exploration of other machine 
learning techniques and application of more domain knowledge of the transient 
signals may also prove valuable in building a better classifier. 

Another consideration is the scaling of our approach. Although unlikely in 
domestic settings, compound events, such as two lights flipped simultaneously, can 
produce errors in classification because their combined transient noises produce 
different feature vectors. This type of event is more of a concern in an extremely large 
home with many residents or in an apartment building that does not have individually 
metered units. If users regularly flip light switches nearly simultaneously, this could 
be trained as a separate event from the individual switches.  

We have been primarily focused on domestic environments, but this type of system 
can also be applied to commercial settings. However, compound events and electrical 
noise in these settings may become a more significant issue. Another issue is that the 
electrical lines may be so long that the noise does not reach the analyzer. Commercial 
buildings typically have multiple electrical legs, and to mitigate problems with 
compound events and line distance, we could install multiple line noise analyzers 
throughout an office building to isolate the analysis to certain sections of the building. 
Our approach will have some difficulty differentiating between individual events 
among a dense collection of proximal devices that have similar switching and load 
characteristics. For our approach to scale to these environments, the entire frequency 
band may needs to be considered. Another drawback of commercial buildings is that 
they tend to have more noisy components, such as large HVAC systems, connected to 
the power line that can produce many other transients and mask the pulses of interest.. 
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Our system is more appropriate for detecting and learning fixed electrical devices 
than mobile devices or portable devices. Though we could support them, portable 
devices require training the system on any possible outlet that they may be plugged 
into. In addition, plugging the device into an extension cord or power strip might 
produce a different fingerprint than plugging it into an electrical outlet directly. With 
a well-defined set of events that should be detected, a suitable training plan can be 
devised, but it may become time-consuming as the set grows larger. 

In some respects, this system represents a tradeoff between the two categories of 
systems we mentioned in Section 2. Unlike the first category of prior work, our 
system does not require the deployment of a large number of sensing units throughout 
the home. A single data collection module is certainly easier to physically deploy and 
maintain than a large array of distributed sensors, though one could argue that a single 
point of failure has been introduced (e.g., what if someone accidentally unplugs the 
data collection module?). On the other hand, this simplicity of physical installation 
and maintenance has its cost in terms of training the machine learning algorithm to 
recognize a significant number of electrical loads. The appropriateness of this tradeoff 
is thus expected to be application dependent. 

6   Conclusion 

We presented an approach for a low-cost and easy-to-install powerline event detection 
system that is capable of identifying certain electrical events, such as switches that are 
toggled. This system has implications for applications seeking simple activity 
detection, home automation systems, and energy usage information. We showed how 
our system learns and classifies unique electrical events with high accuracy using 
standard machine learning techniques. Additionally, a deployment of our system in 
several homes showed long-term stability and the ability to detect events in a variety 
of different types of homes. We also discussed specific events our system can detect 
and which events may have problems when used for specific applications. Our system 
has the potential to be integrated easily into existing applications that aim to provide 
services based on detection of various levels of activity. 
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