NLC-2 Graph Recognition and Isomorphism*-*

Vincent Limouzy¹, Fabien de Montgolfier¹, and Michaël Rao¹

LIAFA - Univ. Paris Diderot {limouzy,fm,rao}@liafa.jussieu.fr

Abstract. NLC-width is a variant of clique-width with many application in graph algorithmic. This paper is devoted to graphs of NLC-width two. After giving new structural properties of the class, we propose a $O(n^2m)$ -time algorithm, improving Johansson's algorithm [\[14\]](#page-12-0). Moreover, our alogrithm is simple to understand. The above properties and algorithm allow us to propose a robust $O(n^2m)$ -time isomorphism algorithm for NLC-2 graphs. As far as we know, it is the first polynomial-time algorithm.

1 Introduction

NLC-width is a graph parameter introduced by Wanke [\[16\]](#page-12-1). This notion is tightly related to clique-width introduced by Courcelle et al. [\[2\]](#page-11-0). Both parameters were introduced to generalise the well known tree-width. The motivation on research about such width parameter is that, when the width (NLC-, clique- or tree-width) is bounded by a constant, then many NP-complete problems can be solved in polynomial (even linear) time, if the decomposition is provided.

Such parameters give insights on graph structural properties. Unfortunately, finding the minimum NLC-width of the graph was shown to be NP-hard by Gurski et al. [\[12\]](#page-11-1). Some results however are known. Let $NLC-k$ be the class of graph of NLC width bounded by k . NLC-1 is exactly the class of cographs. Probe-cographs, bi-cographs and weak-bisplit graphs [\[9\]](#page-11-2) belong to NLC-2. Johansson [\[14\]](#page-12-0) proved that recognising NLC-2 graphs is polynomial and provided an $O(n^4 \log(n))$ recognition algorithm. Complexity for recognition of NLC-k, $k \geq 3$, is still unknown.

In this paper we improve Johansson's result down to $O(n^2m)$. Our approach relies on graph decompositions. We establish the tight links that exist between NLC-2 graphs and the so-called modular decomposition, split decomposition, and bi-join decomposition.

 $NLC-2$ can be defined as a graph colouring problem. Unlike $NLC-k$ classes, for $k \geq 3$, recolouring is useless for prime NLC-2 graphs. That allow us to propose a canonical decomposition of bi-coloured NLC-2 graphs, defined as certain bicoloured split operations. This decomposition can be computed in $O(nm)$ time if the colouring is provided. If a graph is prime, there using split and bi-join

^{*} Research supported by the ANR project Graph Decompositions and Algorithms (GRAAL) and by INRIA project-team Gang.

A. Brandst¨adt, D. Kratsch, and H. M¨uller (Eds.): WG 2007, LNCS 4769, pp. 86[–98,](#page-12-2) 2007.

⁻c Springer-Verlag Berlin Heidelberg 2007

decompositions, we show that there is at most $O(n)$ colourings to check. Finally, modular decomposition properties allow to reduce NLC-2 graph decomposition to prime NLC-2 graph decomposition. Section [3](#page-3-0) explains this $O(n^2m)$ -time decomposition algorithm.

In Section [4](#page-9-0) is proposed an isomorphism algorithm. Using modular, split and bi-join decompositions and the canonical NLC-2 decomposition, isomorphism between two NLC-2 graphs can be tested in $O(n^2m)$ time.

2 Preliminaries

A graph $G = (V, E)$ is pair of a set of vertices V and a set of edges E. For a graph G, $V(G)$ denote its set of vertices, $E(G)$ its set of edges, $n(G) = |V(G)|$ and $m(G) = |E(G)|$ (or V, E, n and m if the graph is clear in the context). $N(x) = \{y \in V : \{x, y\} \in E\}$ denotes the neighbourhood of the vertex x, and $N[x] = N(v) \cup \{v\}$. For $W \subseteq V$, $G[W] = (W, E \cap W^2)$ denote the graph induced by W. Let A and B be two disjoint subsets of V. Then we note $A \oplus B$ if for all $(a, b) \in A \times B$, then $\{a, b\} \in E$, and we note $A \circledcirc B$ if for all $(a, b) \in A \times B$, then ${a,b} \notin E$. Two graphs $G = (V, E)$ and $G' = (V', E')$ are *isomorphic* (noted $G \simeq G'$) if there is a bijection $\varphi : V \to V'$ such that $\{x, y\} \in E \Leftrightarrow \{\varphi(x), \varphi(y)\} \in$ E', for all $u, v \in V$.

A k-labelling (or labelling) is a function $l: V \rightarrow \{1, \ldots, k\}$. A k-labelled graph is a pair of a graph $G = (V, E)$ and a k-labelling l on V. It is denoted by (G, l) or by (V, E, l) . Two labelled graphs (V, E, l) and (V', E', l') are isomorphic if there is a bijection $\varphi: V \to V'$ such that $\{u, v\} \in E \Leftrightarrow \{\varphi(x), \varphi(y)\} \in E'$ and $l(u) = l'(\varphi(u))$ for all $u, v \in V$. Let k be a positive integer. The class of NLC-k graphs is defined recursively by the following operations.

- **–** For all i ∈ {1,...,k}, ·(i) is in NLC-k, where ·(i) is the graph with one vertex labelled i.
- $-$ Let $G_1 = (V_1, E_1, l_1)$ and $G_2 = (V_2, E_2, l_2)$ be NLC-k and let $S \subseteq \{1, ..., k\}^2$. Then $G_1 \times_S G_2$ is in NLC-k, where $G_1 \times_S G_2 = (V, E, l)$ with $V = V_1 \cup V_2$,

$$
E = E_1 \cup E_2 \cup \{ \{u, v\} : (u, v) \in V_1 \times V_2 \text{ and } (l_1(u), l_2(v)) \in S \}
$$

and for all
$$
u \in V
$$
, $l(u) = \begin{cases} l_1(u) & \text{if } u \in V_1 \\ l_2(u) & \text{if } u \in V_2. \end{cases}$

 $-$ Let $R: \{1, ..., k\}$ → $\{1, ..., k\}$ and $G = (V, E, l)$ be NLC-k. Then $ρ_R(G)$ is in NLC-k, where $\rho_R(G) = (V, E, l')$ such that $l'(u) = R(l(u))$ for all $u \in V$.

A graph is NLC-k if there is a k-labelling of G such that (G, l) is in NLC-k. A k-labelled graph is NLC-k ρ -free if it can be constructed without the ρ_R operation.

Modules and modular decomposition. A module in a graph is a non-empty subset $X \subseteq V$ such that for all $u \in V \setminus X$, then either $N(u) \cap X = \emptyset$ or $X \subseteq N(u)$. A module is trivial if $|X| \in \{1, |V|\}$. A graph is prime (w.r.t. modular decomposition) if all its modules are trivial. Two sets X and X' overlap if $X \cap X'$, $X \setminus X'$

and $X' \setminus X$ are non-empty. A module X is *strong* if there is no module X' such that X and X' overlap. Let $\mathcal{M}'(G)$ be the set of modules of G, let $\mathcal{M}(G)$ be the set of its strong modules, and let $\mathcal{P}(G) = \{M_1, \ldots, M_k\}$ be the maximal (w.r.t. inclusion) members of $\mathcal{M}(G) \setminus \{V\}.$

Theorem 1. [\[11\]](#page-11-3) Let $G = (V, E)$ be a graph such that $|V| \ge 2$. Then:

- $-$ if G is not connected, then $\mathcal{P}(G)$ is the set of connected components of G,
- $-$ if \overline{G} is not connected, then $\mathcal{P}(G)$ is the set of connected components of G ,
- $-$ if G and \overline{G} are connected, then $\mathcal{P}(G)$ is a partition of V and is formed with the maximal members of $\mathcal{M}' \setminus \{V\}.$

 $\mathcal{P}(G)$ is a partition of V, and G can be decomposed into $G[M_1], \ldots, G[M_k],$ where $\mathcal{P}(G) = \{M_1, \ldots, M_k\}$. The *characteristic graph* G^* of a graph G is the graph of vertex set $\mathcal{P}(G)$ and two $P, P' \in \mathcal{P}(G)$ are adjacent if there is an edge between P and P' in G (and so there is no non-edges since P and P' are two modules). The recursive decomposition of a graph by this operation gives the modular decomposition of the graph, and can be represented by a rooted tree, called the modular decomposition tree. It can be computed in linear time [\[15\]](#page-12-3). The nodes of the modular decomposition tree are exactly the strong modules, so in the following we make no distinction between the modular decomposition of G and $\mathcal{M}(G)$. Note that $|\mathcal{M}(G)| \leq 2 \times n - 1$. For $M \in \mathcal{M}(G)$, let $G_M = G[M]$ and G_M^* its characteristic graph.

Lemma 1. $[14]$ Let G be a graph. G is NLC-k if and only if every characteristic graph in the modular decomposition of G is NLC-k.

Moreover, a NLC- k expression for G can be easily constructed from the modular decomposition and from $NLC-k$ expressions of prime graphs. On prime graphs, NLC-2 recognition is easier:

Lemma 2. $[14]$ Let G be a prime graph. Then G is NLC-2 if and only if there is a 2-labelling l such that (G, l) is NLC-2 ρ -Free.

Bi-partitive family. A *bipartition* of V is a pair $\{X, Y\}$ such that $X \cap Y = \emptyset$, $X \cup Y = V$ and X and Y are both non empty. Two bipartitions $\{X, Y\}$ and $\{X', Y'\}$ overlap if $X \cap Y, X \cap Y', X' \cap Y$ and $X' \cap Y'$ are non empty. A family $\mathcal F$ of bipartitions of V is *bipartitive* if (1) for all $v \in V$, $\{\{v\}, V \setminus \{v\}\}\in \mathcal{F}$ and (2) for all $\{X,Y\}$ and $\{X',Y'\}$ in F such that $\{X,Y\}$ and $\{X',Y'\}$ overlap, then $\{X \cap X', Y \cup Y'\}, \{X \cap Y', Y \cup X'\}, \{Y \cap X', X \cup Y'\}, \{Y \cap Y', X \cup X'\}$ and ${X\Delta X', X\Delta Y'}$ are in $\mathcal F$ (where $X\Delta Y = (X \ Y) \cup (Y \ X)$). Bipartitive families are very close to partitive families [\[1\]](#page-11-4), which generalise properties of modules in a graph.

A member $\{X,Y\}$ of a bipartitive family $\mathcal F$ is strong if there is no $\{X',Y'\}$ such that $\{X,Y\}$ and $\{X',Y'\}$ overlap. Let T be a tree. For an edge e in the tree, $\{C_e^1, C_e^2\}$ denote the bipartition of leaves of T such that two leaves are in the same set if and only if the path between them avoids e. Similarly, for an internal node α , $\{C^1_{\alpha}, \ldots, C^{d(\alpha)}_{\alpha}\}\$ denote the partition of leaves of T such that two leaves are in the same set if and only if the path between them avoid α .

Fig. 1. A module, a bi-join, a split and a co-split

Theorem 2. [\[4\]](#page-11-5) Let $\mathcal F$ be a bipartitive family on V. Then there is an unique unrooted tree T, called the representative tree of \mathcal{F} , such that the set of leaves of T is V , the internal nodes of T are labelled degenerate or prime, and

- for every edge e of T, $\{C_e^1, C_e^2\}$ is a strong member of F, and there is no other strong member in F ,

- for every node α labelled **degenerate**, and for every $\emptyset \subsetneq I \subsetneq \{1,\ldots,d(\alpha)\},$ $\{\cup_{i\in I} C_{\alpha}^i, V\setminus \cup_{i\in I} C_{\alpha}^i\}$ is in \mathcal{F} , and there is no other member in \mathcal{F} .

A split in a graph $G = (V, E)$ is a bipartition $\{X, Y\}$ of V such that the set of vertices in X having a neighbour in Y have the same neighbourhood in $Y(i.e.,$ for all $u, v \in X$ such that $N(u) \cap Y \neq \emptyset$ and $N(v) \cap Y \neq \emptyset$, then $N(u) \cap Y = N(v) \cap Y$. A co-split in a graph G is a split in \overline{G} . The family of split in a connected graph is a bipartitive family [\[3\]](#page-11-6). The split decomposition tree is the representative tree of the family of splits, and can be computed in linear time [\[5\]](#page-11-7). Let α be an internal node of the split decomposition tree of a connected graph G. For all $i \in \{1, ..., d(\alpha)\}\$ let $v_i \in C^i_\alpha$ such that $N(v_i) \setminus C^i_\alpha \neq \emptyset$. Since G is connected, such a v_i always exists. $G[\{v_1,\ldots,v_{d(\alpha)}\}]$ denote the *characteristic graph* of α . The characteristic graph of a degenerate node is a complete graph or a star [\[3\]](#page-11-6).

A bi-join in a graph is a bipartition $\{X, Y\}$ such that for all $u, v \in X$, $\{N(u) \cap Y\}$ $Y, Y \setminus N(u)$ = $\{N(v) \cap Y, Y \setminus N(v)\}.$ The family of bi-joins in a graph is bipartitive. The bi-join decomposition tree is the representative tree of the family of bi-joins, and can be computed in linear time [\[7,](#page-11-8)[8\]](#page-11-9). Let α be an internal node of the bi-join decomposition tree of a graph G. For all $i \in \{1, ..., d(\alpha)\}$ let $v_i \in C^i_{\alpha}$. $G[\{v_1,\ldots,v_{d(\alpha)}\}]$ denote the *characteristic graph* of α . The characteristic graph of a degenerate node is a complete bipartite graph or a disjoint union of two complete graphs [\[7,](#page-11-8)[8\]](#page-11-9).

3 Recognition of NLC-2 Graphs

3.1 NLC-2 *ρ***-Free Canonical Decomposition**

In this section, $G = (V, E, l)$ is a 2-labelled graph such that every mono-coloured module (*i.e.* a module M such that $\forall v, v' \in M$, $l(v) = l(v')$) has size 1. A couple

 (X, Y) is a cut if $X \cup Y = V$, $X \cap Y = \emptyset$, $X \neq \emptyset$ and $Y \neq \emptyset$. Let $S \subseteq \{1, 2\} \times \{1, 2\}$. A cut (X, Y) is a S-cut of G if for all $u \in X$ and $v \in Y$, then $\{u, v\} \in E$ if and only if $(l(u), l(v)) \in S$. For $S \subseteq \{1,2\} \times \{1,2\}$ let $\mathcal{F}_S(G)$ be the set of S-cut of G.

Definition 1 (Symmetry). We say that $S \in \{1,2\} \times \{1,2\}$ is symmetric if $(1, 2) \in S \iff (2, 1) \in S$, otherwise we say that S is non-symmetric.

Definition 2 (Degenerate property). A family $\mathcal F$ of cuts has the degenerate property if there is a partition P of V such that for all $\emptyset \subsetneq X \subsetneq P$, $(\bigcup_{X \in \mathcal{X}} X, \bigcup_{Y \in \mathcal{P} \setminus \mathcal{X}} Y)$ is in F, and there is no others cut in F.

Lemma 3. For every symmetric $S \subseteq \{1,2\} \times \{1,2\}$, $\mathcal{F}_S(G)$ has the degenerate property.

Proof. The family $\mathcal{F}_{\{\}}(G)$ has the degenerate property since (X, Y) is a {}cut if and only if there is no edges between X and Y ($\mathcal P$ is exactly the set of connected components). For $W \subseteq V$, let $G|W = (V, E\Delta W^2, l)$. For $i \in \{1, 2\}$ let $V_i = \{v \in V : l(v) = i\}.$ Let $G_1 = G|V_1, G_2 = G|V_2 \text{ and } G_{12} = (G|V_1)|V_2.$

$$
- \mathcal{F}_{\{(1,1)\}(G)} = \mathcal{F}_{\{\}}(G_1), \mathcal{F}_{\{(2,2)\}(G)} = \mathcal{F}_{\{\}}(G_2), \mathcal{F}_{\{(1,1),(2,2)\}}(G) = \mathcal{F}_{\{\}}(G_{12}),
$$

$$
- \mathcal{F}_{\{(1,1),(1,2),(2,1),(2,2)\}}(G) = \mathcal{F}_{\{\}}(G), \mathcal{F}_{\{(1,2),(2,1),(2,2)\}}(G) = \mathcal{F}_{\{\}}(G_1),
$$

$$
\mathcal{F}_{\{(1,1),(1,2),(2,1)\}}(G) = \mathcal{F}_{\{\}}(G_2), \mathcal{F}_{\{(1,2),(2,1)\}}(G) = \mathcal{F}_{\{\}}(G_{12}).
$$

Thus for every symmetric $S \subseteq \{1,2\} \times \{1,2\}, \mathcal{F}_S(G)$ has the degenerate property.

Definition 3 (Linear property). A family $\mathcal F$ of cuts has the linear property if for all (X, Y) and (X', Y') in F, either $X \subseteq X'$ or $X' \subseteq X$.

Lemma 4. For every non-symmetric $S \subseteq \{1,2\} \times \{1,2\}$, $\mathcal{F}_S(G)$ has the linear property.

Proof. Case $S = \{(1, 2)\}\$: suppose that $X \setminus X'$ and $X' \setminus X$ are both non-empty. Then if $u \in X \setminus X'$ is labelled 1 and $v \in X' \setminus X$ is labelled 2, u and v has to be adjacent and non-adjacent, contradiction. Thus $X \setminus X'$ and $X' \setminus X$ are mono-coloured. Now suppose w.l.o.g. that all vertices in $X\Delta X'$ are labelled 1. Then $X\Delta X'$ is adjacent to all vertices labelled 2 in $Y\cap Y'$ and non adjacent to all vertices labelled 1 in $Y \cap Y'$. Moreover $X \Delta X'$ is non adjacent to all vertices in $X \cap X'$. Thus $X \Delta X'$ is a mono-coloured module, and $|X \Delta X'| \geq 2$. Contradiction. For others non-symmetric S, we bring back to case $\{(1,2)\}\$ like in the proof of lemma [3.](#page-4-0)

For $S \subseteq \{1,2\} \times \{1,2\}$, let $\mathcal{P}_S(G)$ denote the unique partition of V such that (1) for all $(X,Y) \in \mathcal{F}_S(G)$ and $P \in \mathcal{P}_S(G)$, $P \subseteq X$ or $P \subseteq Y$, and (2) for all $P, P' \in \mathcal{P}, P \neq P'$, there is a $(X, Y) \in \mathcal{F}_S(G)$ such that $P \subseteq X$ and $P' \subseteq Y$, or $P \subseteq Y$ and $P' \subseteq X$. For a non-symmetric $S \in \{1,2\} \times \{1,2\}$, let $\mathcal{P}'_S(G)=(P_1,\ldots,P_k)$ denote the unique ordering of elements in $\mathcal{P}_S(G)$ such that for all $(X, Y) \in \mathcal{F}_S(G)$, there is a l such that $X = \bigcup_{i \in \{1, ..., l\}} P_i$.

Lemma 5. If G is in NLC-2 ρ -Free, then there is a $S \subseteq \{1,2\} \times \{1,2\}$ such that $\mathcal{F}_S(G)$ is non-empty.

Proof. If G is NLC-2 ρ -Free, then there is a $S \subseteq \{1,2\} \times \{1,2\}$, and two graphs G_1 and G_2 such that $G = G_1 \times_S G_2$. Thus $(V(G_1), V(G_2)) \in \mathcal{F}_S(G)$ and $\mathcal{F}_S(G)$ is non empty.

Lemma 6. Let $G = (V, E, l)$ 2-labelled graph and let $S \subseteq \{1, 2\} \times \{1, 2\}$. If G is NLC-2 ρ-Free and has no mono-coloured non-trivial module, then for all $P \in \mathcal{P}_S(G)$, $G[P]$ has no mono-coloured non-trivial module.

Proof. If M is a mono-coloured module of $G[P]$, then M is a mono-coloured module of G. Contradiction.

Lemma 7. Let $G = (V, E, l)$ 2-labelled graph and let $S \subseteq \{1, 2\} \times \{1, 2\}$. Then G is NLC-2 ρ -Free if and only if for all $P \in \mathcal{P}_S(G)$, $G[P]$ is NLC-2 ρ -Free.

Proof. The "only if" is immediate. Now suppose that for all $P \in \mathcal{P}_S(G)$, $G[P]$ is NLC-2 ρ -Free. If S is symmetric, let $\mathcal{P}_S(G) = \{P_1, \ldots, P_{|\mathcal{P}_S(G)|}\}\)$. Then $G =$ $((G[P_1] \times_S G[P_2]) \times_S \ldots \times_S G[P_{|\mathcal{P}_S(G)|}],$ and G is NLC-2 ρ -Free. Otherwise, if S is non-symmetric, let $\mathcal{P}'_S(G)=(P_1,\ldots,P_{|\mathcal{P}_S(G)|})$. Then $G=((G[P_1]\times_S G[P_2])\times_S G[P_3])$ $\ldots \times_S G[P_{\mathcal{P}_S(G)}],$ and G is NLC-2 ρ -Free.

The NLC-2 ρ -Free decomposition tree of a 2-labelled graph G is a rooted tree such that the leaves are the vertices of G , and the internal nodes are labelled by \times_S , with $S \subseteq \{1,2\} \times \{1,2\}$. An internal node is degenerated if S is symmetric, and linear if S is non-symmetric. By lemmas [5,](#page-4-1) [6](#page-5-0) and [7,](#page-5-1) G is NLC-2 ρ -Free if and only if it has a NLC-2 ρ -Free decomposition tree. This decomposition tree is not unique. But we can define a canonical decomposition tree if we fix a total order on the subsets of $\{1,2\} \times \{1,2\}$ (for example, the lexicographic order). If two graphs are isomorphic, then they have the same canonical decomposition tree. Algorithm [1](#page-5-2) computes the canonical decomposition tree of a 2-labelled prime graph, or fails if G is not NLC-2 ρ -Free.

Input. A 2-labelled graph $G = (V, E, l)$

- **1 if** $|V| = 1$ **then return** the leaf $\cdot(l(v))$ (where $V = \{v\}$)
- **2** Let S be the set of subsets of $\{1,2\} \times \{1,2\}$ and σ be the lexicographic order of S
- **3 foreach** $S \in \mathcal{S}$ w.r.t. σ **do**
- 4 Compute $\mathcal{P}_S(G)$, and $\mathcal{P}'_S(G)$ if S is non-symmetric (see algorithm [2\)](#page-6-0)
- **5 if** $|\mathcal{P}_S(G)| > 1$ **then**
- **6** Create a new \times_S node β
- **for foreach** $P \in \mathcal{P}_S(G)$ (w.r.t. $\mathcal{P}'_S(G)$ if S is non-symmetric) **do**
- **8** \Box make NLC-2 ρ -Free decomposition tree of $G[P]$ be a child of β .
- **⁹ return** the tree rooted at β

¹⁰ fail with Not NLC-2 ρ-Free

Algorithm 1. Computation of the NLC-2 ρ -Free canonical decomposition tree

Output. A NLC-2 ρ -Free decomposition tree, or fail if G is not NLC-2 ρ -Free

Algorithm [2](#page-6-0) computes \mathcal{P}_S and \mathcal{P}'_S for a 2-labelled prime graph G and $S \subseteq$ $\{1, 2\} \times \{1, 2\}$ in linear time. We need some additional definitions for this algorithm and its proof of correctness. A *bipartite graph* is a triplet (X, Y, E) such that $E \subseteq X \times Y$. The bi-complement of a bipartite graph (X, Y, E) is the bipartite graph $(X, Y, (X \times Y) \setminus E)$. A bipartite trigraph (BT) is a bipartite graph with two types of edges: the *join* edges and the *mixed* edges. It is denoted by $\mathcal{B} = (X, Y, E_i, E_m)$ where E_i are the set of join edges, and E_m the set of mixed edges. A BT-module in a BT is a $M \subseteq X$ or $M \subseteq Y$ such that M is a module in (X, Y, E_i) and there is no *mixed* edges between M and $(X \cup Y) \setminus M$. For $v \in X \cup Y$, let $N_j(v) = \{u \in X \cup Y : \{u, v\} \in E_j\}$ and $N_m(v) = \{u \in X \cup Y : \{u, v\} \in E_m\}.$ Let $d_j(v) = |N_j(v)|$ and $d_m(v) = |N_m(v)|$. A semi-join in a BT (X, Y, E_j, E_m) is a cut (A, B) of $X \cup Y$, such that there is no edges between $A \cap Y$ and $B \cap X$, and there is only *join* edges between $A \cap X$ and $B \cap Y$.

In algorithm [2,](#page-6-0) β is obtained from the graph G. Vertices of X correspond to subsets of vertices labelled 1 in G , and vertices of Y correspond to subsets of vertices labelled 2. There is a *join* edge between M and M' in B if M (1) M' in G, and there is a mixed edge between $M \in X$ and $M' \in Y$ in B if there is at least an edge and a non-edge between M and M' in G. Such a graph β can easily be built in linear time from a given graph G . It suffices to consider a list and an array bounded by the number of component in G with the same colour. The following lemmas are close to observations in [\[9\]](#page-11-2), but deal with BT instead of bipartite graphs.

Lemma 8. Let $G = (X, Y, E_j, E_m)$ be a BT such that every BT-module has size 1. Let $(x_1,\ldots,x_{|X|})$ be X sorted by $(d_j(x),d_m(x))$ in lexicographic decreasing order. If (A, B) is a semi-join of G, then there is a $k \in \{0, \ldots, |X|\}$ such that $A \cap X = \{x_1, \ldots, x_k\}.$

Input. A 2-labelled graph G, and $S \subseteq \{1, 2\} \times \{1, 2\}$

Output. P_S if S is symmetric, P'_S if S is non-symmetric

- 1 $V_i \leftarrow \{v : v \in V \text{ and } l(v) = i\};$
- **2 if** $(1, 1) \in S$ **then** $C_1 \leftarrow$ co-connected components of $G[V_1]$;
- **3 else** $C_1 \leftarrow$ connected components of $G[V_1]$;
- **4 if** $(2, 2) \in S$ **then** $\mathcal{C}_2 \leftarrow$ co-connected components of $G[V_2]$;
- **5 else** $C_2 \leftarrow$ connected components of $G[V_2]$;
- **6** $\mathcal{B} = (\mathcal{C}_1, \mathcal{C}_2, E_j, E_m) \leftarrow$ the bipartite trigraph between the elements of \mathcal{C}_1 and \mathcal{C}_2 ;
- *7* **if** $S \cap \{(1,2), (2,1)\} = ∅$ **then**
- **Preturn** connected components of $(C_1, C_2, E_j \cup E_m)$
- **9 else if** $S \cap \{(1, 2), (2, 1)\} = \{(1, 2), (2, 1)\}$ **then**
- **10 return** connected components of the bi-complement of (C_1, C_2, E_j)

11 else Search all semi-joins of β (using lemmas β and β);

Algorithm 2. Computation of P_S and P'_S

Lemma 9. Let $k \in \{0, ..., |X|\}$ and $k' \in \{0, ..., |Y|\}$. Then $(A, (X \cup Y) \setminus$ A), where $A = \{x_1, \ldots, x_k, y_1, \ldots, y_{k'}\}$, is a semi-join of G if and only if $\sum_{i=1}^{k} d_j(x_i) - \sum_{i=1}^{k'} d_j(y_i) = k \times (|Y| - k')$ and $\sum_{i=1}^{k} d_m(x_i) - \sum_{i=1}^{k'} d_m(y_i) = 0$.

Theorem 3. Algorithm [2](#page-6-0) is correct and runs in linear time.

Proof. Correctness: Suppose that (A, B) is a S-cut. If $(1, 1) \notin S$, then there is no edge between $A \cap V_1$ and $B \cap V_1$, thus (A, B) cannot cut a component \mathcal{C}_1 (and similarly for $(1, 1) \in S$, and for \mathcal{C}_2). Now we work on the BT $\mathcal{B} =$ (C_1, C_2, E_i, E_m) . If $S \cap \{(1,2), (2,1)\} = \emptyset$, then S-cuts correspond exactly to connected components of B, and if $S \cap \{(1,2), (2,1)\} = \{(1,2), (2,1)\}$ then Scuts correspond exactly to connected components of the BT of \overline{G} , which is $(\mathcal{C}_1, \mathcal{C}_2, (\mathcal{C}_1 \times \mathcal{C}_2) \setminus (E_j \cup E_m), E_m)$. Finally, if S is non-symmetric, S-cuts correspond to semi-joins of β .

Complexity: It is well admitted that we can perform a BFS on a graph or its complement in linear time [\[13,](#page-12-4)[6\]](#page-11-10). The instructions on lines [\[2](#page-6-3)[-5](#page-6-4)[,8\]](#page-6-5) can be done with a BFS on a graph or its complement. It is easy to see that we can do a BFS on the bi-complement in linear time (like a BFS on a complement graph, with two vertex lists for X and Y), so instruction line [10](#page-6-6) can be done in linear time. Finally, the operations at line [11](#page-6-7) are done in linear time.

These results can be summarized as:

Theorem 4. Algorithm [1](#page-5-2) computes the canonical NLC-2 ρ -Free decomposition tree of a 2-labelled graph in $O(nm)$ time.

3.2 NLC-2 Decomposition of a Prime Graph

In this section, G is an unlabelled prime (w.r.t. modular decomposition) graph, with $|V| \geq 3$.

Definition 4 (2-bimodule). A bipartition $\{X, Y\}$ of V is a 2-bimodule if X can be partitioned into X_1 and X_2 , and Y into Y_1 and Y_2 such that for all $(i, j) \in \{1, 2\} \times \{1, 2\}$, then either $X_i \n\mathbb{O} Y_j$ or $X_i \n\mathbb{O} Y_j$. It is easy to see that if $\{X,Y\}$ is a 2-bimodule if and only if $\{X,Y\}$ is a split, a co-split or a bi-join. Moreover, if $\min(|X|, |Y|) > 1$ then $\{X, Y\}$ cannot be both of them in the same time (since G is prime).

Let $l: V \to \{1,2\}$ be a 2-labelling. Then $s(l)$ denote the 2-labelling on V such that for all $v \in V$, $s(l)(v) = 1$ if and only if $l(v) = 2$.

Definition 5 (Labelling induced by a 2-bimodule). Let $\{X, Y\}$ be a 2bimodule. We define the labelling $l: V \to \{1,2\}$ of G induced by $\{X,Y\}$. If $|X| = |Y| = 1$, then $l(x) = 1$ and $l(y) = 2$, where $X = \{x\}$ and $Y = \{y\}$. If $|X| = 1$, then $l(v) = 1$ iff $v \in N[x]$. Similarly if $|Y| = 1$, then $l(v) = 1$ iff $v \in N[y]$. Now we suppose $\min(|X|, |Y|) > 1$. If $\{X, Y\}$ is a split, then the set of vertices in X with a neighbour Y and the set of vertices in Y with a neighbour

in X is labelled 1, others vertices are labelled 2. If $\{X, Y\}$ is a co-split, then a labelling of G induced by $\{X,Y\}$ is a labelling of \overline{G} induced by the split $\{X,Y\}$. Finally if $\{X,Y\}$ is a bi-join, l is such that $\{v \in X : l(v)=1\}$ is a join with $\{v \in Y : l(v)=1\}$ and $\{v \in X : l(v)=2\}$ is a join with $\{v \in Y : l(v)=2\}$. Note that if $\{X,Y\}$ is a bi-join, then there is two possibles labelling l_1 and l_2 , with $l_1 = s(l_2)$. If $\{X, Y\}$ is a 2-bimodule of G and l a labelling induced by $\{X, Y\}$, then every mono-coloured module has size 1 (since G is prime and $|V| \geq 3$).

Definition 6 (Good 2-bimodule). A 2-bimodule $\{X, Y\}$ is good if the graph G with the labelling induced by $\{X, Y\}$ is NLC-2 ρ -Free. The following proposition comes immediately from lemma [2.](#page-2-0)

Proposition 1. G is NLC-2 if and only if G has a good 2-bimodule.

Lemma 10. If G has a good 2-bimodule $\{X, Y\}$ which is a split, then G has a good 2-bimodule which is a strong split.

Proof. There is a node α in the split decomposition tree and we have $\emptyset \subsetneq I \subsetneq$ $\{1,\ldots,d(\alpha)\}\$ such that $\{X,Y\} = \{\cup_{i\in I} C^i_{\alpha}, \cup_{i\notin I} C^i_{\alpha}\}\$. Let $l: V \to \{1,2\}$ be the labelling of G induced by $\{X,Y\}$. For all $i \in \{1,\ldots,d(\alpha)\},\ (G[C^i_{\alpha}],l|_{C^i_{\alpha}})$ is NLC-2 ρ -Free (where $l|_W$ is the function l restricted at W).

Let l' be the 2-labelling of V such that for all i , and $v \in C_{\alpha}^{i}$, $l(v) = 1$ if and only if v has a neighbour outside of C^i_{α} . For all i, either $l|_{C^i_{\alpha}} = l'|_{C^i_{\alpha}}$, or $\forall v \in C^i_{\alpha}$, $l(v) = 2$. Then for all i, $(G[C^i_{\alpha}], l'|_{C^i_{\alpha}})$ is NLC-2 ρ -Free, and thus (G, l') is NLC-2 ρ -Free. Since there is a dominating vertex in the characteristic graph of α , there is a j such that the labelling induced by the strong split $\{C^j_\alpha, V \setminus C^j_\alpha\}$ is l'. Thus the strong split $\{C^j_\alpha, V \setminus C^j_\alpha\}$ is good.

Previous lemma on \overline{G} say that if G has a good 2-bimodule $\{X,Y\}$ which is a co-split, then G has a good 2-bimodule which is a strong co-split. The following lemma is similar to Lemma [10.](#page-8-0)

Lemma 11. If G has a good 2-bimodule $\{X, Y\}$ which is a bi-join, then G has a good 2-bimodule which is a strong bi-join.

Input. A graph G **Result.** Yes iff G is NLC-2 $\mathcal{S} \leftarrow$ the set of strong splits, co-splits and bi-joins of G; **foreach** $\{X, Y\} \in \mathcal{S}$ **do** $l \leftarrow$ the labelling of G induced by $\{X, Y\}$; **if** $(G[X], G[Y], l)$ is NLC-2 ρ -Free **then return** Yes; **return** No ;

Algorithm 3. Recognition of prime NLC-2 graphs

Theorem 5. Algorithm [3](#page-8-1) recognises prime NLC-2 graphs, and its time complexity is $O(n^2m)$.

Proof. Trivially if the algorithm return Yes, then G is NLC-2. On the other hand, by proposition [1,](#page-8-2) and lemmas [10](#page-8-0) and [11,](#page-8-3) if G is NLC-2, then it has a good strong 2-bimodule and the algorithm returns Yes.

The set S can be computed using algorithms for computing split decomposition on G and \overline{G} , and bi-join decomposition on G. Note that it is not required to use a linear time algorithm for split decomposition [\[5\]](#page-11-7): some simpler algorithms run in $O(n^2m)$ [\[3,](#page-11-6)[10\]](#page-11-11). [\[7](#page-11-8)[,8\]](#page-11-9) show that bi-join decomposition can be computed in linear time, using a reduction to modular decomposition. But there also, mod-ular decomposition algorithms simpler than [\[15\]](#page-12-3) may be used. The set S has $O(n)$ elements. Testing if a 2-bimodule is good takes $O(nm)$ using algorithm [1.](#page-5-2) So total running time is $O(n^2m)$.

3.3 NLC-2 Decomposition

Using lemma [1,](#page-2-1) modular decomposition and algorithm [3,](#page-8-1) we get:

Theorem 6. NLC-2 graphs can be recognised in $O(n^2m)$, and a NLC-2 expression can be generated in the same time.

4 Graph Isomorphism on NLC-2 Graphs

4.1 Graph Isomorphism on NLC-2 *ρ***-Free Prime Graphs**

Proposition 2. Consider a symmetric $S \in \{1, 2\} \times \{1, 2\}$. Two graphs G and H are isomorphic if and only if there is a bijection π between $\mathcal{P}_S(G)$ and $\mathcal{P}_S(H)$ such that for all $P \in \mathcal{P}_S(G)$, $G[P]$ is isomorphic to $H[\pi(P)]$.

Proposition 3. Let a non-symmetric $S \in \{1,2\} \times \{1,2\}$ and let G and H be two graphs. Let $\mathcal{P}'_S(G) = (P_1, \ldots, P_k)$ and $\mathcal{P}'_S(H) = (P'_1, \ldots, P'_{k'})$ then G and H are isomorphic if and only if $k = k'$ and for all $i \in \{1, ..., k\}$, $G[P_i]$ is isomorphic to $H[P'_i]$.

These two propositions are direct consequences of the linear and degenerate properties of S-cuts. Then two NLC-2 ρ -Free 2-labelled graphs G and H are isomorphic if and only if there is an isomorphism between their canonical NLC- 2ρ -Free decomposition tree which respects the order of children of linear nodes. This isomorphism can be tested in linear time, thus isomorphism of NLC-2 ρ -Free graphs can be done in $O(nm)$ time.

4.2 Graph Isomorphism on Prime NLC-2 Graphs

Theorem 7. Algorithm [4](#page-10-0) test isomorphism between two prime NLC-2 graphs in time $O(n^2m)$.

Proof. If the algorithm returns "yes", then trivially $G \simeq H$. On the other hand suppose that $G \simeq H$ and let $\pi : V(G) \to V(H)$ be a bijection such that $\{u, v\} \in$ $E(G)$ iff $(\pi(u), \pi(v)) \in E(H)$. Then $\{X', Y'\}$ with $X' = \pi(X)$ and $Y' = \pi(Y)$

is a good 2-bimodule if H. If $\min(|X|, |Y|) > 1$ and $\{X', Y'\}$ is a bi-join, then by definition there is two labelling induced by $\{X, Y\}$, and $(G, l) \simeq (H, l')$ or $(G, l) \simeq (H, s(l'))$. Otherwise the labelling is unique and $(G, l) \simeq (H, l').$

Input. Two prime NLC-2 graphs G and H **Result.** Yes if $G \simeq H$, No otherwise $\mathcal{S} \leftarrow$ the set of strong splits, co-splits and bi-joins of G; $\mathcal{S}' \leftarrow$ the set of strong splits, co-splits and bi-joins of H; **if** there is no good 2-bimodule in S **then fail with** " G is not NLC-2"; $\{X,Y\} \leftarrow$ a good 2-bimodule in S; $l \leftarrow$ the labelling of G induced by $\{X, Y\}$; **foreach** $\{X', Y'\} \in \mathcal{S}'$ such that $\{X', Y'\}$ is good **do** $l' \leftarrow$ the labelling of H induced by $\{X', Y'\}$; **if** $|X| > 1$ **and** $|Y| > 1$ **and** $\{X, Y\}$ *is a bi-join* **then** $\mathbf{if}^{\mathsf{T}}(G,l)\simeq (H,l')$ or $(G,l)\simeq (H,s(l'))$ then return Yes ; else if $(G, l) \simeq (H, l')$ then return Yes; **return** No ;

Algorithm 4. Isomorphism for prime NLC-2 graphs

The sets S and S' can be computed in $O(n^2)$ time using linear time algorithms for computing split decomposition on G and \overline{G} , and bi-join decomposition on G. The sets S and S' have $O(n)$ elements. Test if a 2-bimodule is good take $O(nm)$ using algorithm [1,](#page-5-2) and test if two 2-labelled prime graphs are isomorphic take also $O(nm)$. Thus the total running time is $O(n^2m)$.

4.3 Graph Isomorphism on NLC-2 Graphs

It is easy to show that graph isomorphism on prime NLC-2 graphs with an additional labels into $\{1,\ldots,q\}$ can be done in $O(n^2m)$ time. For that, we add the additional label of v at the leaf corresponding to v in the NLC-2 ρ -Free decomposition tree.

We show that we can do graph isomorphism on NLC-2 graphs in time $O(n^2m)$, using the modular decomposition and algorithm [4.](#page-10-0) Let $\mathcal{M}(G)$ and $\mathcal{M}(H)$ be the modular decomposition of G and H. For $M \in \mathcal{M}(G)$, let G_M be $G[M]$, and for $M \in \mathcal{M}(H)$, let H_M be $H[M]$. Let G_M^* be the characteristic graph of G_M (note that $|V(G_M^*)|$ is the number of children of M in the modular decomposition tree). Let $\mathcal{M}_{(i,*)} = \{M \in \mathcal{M}(G) \cup \mathcal{M}(H) : |M| = i\}$, let $\mathcal{M}_{(*,j)} = \{M \in$ $\mathcal{M}(G) \cup \mathcal{M}(H)$: $|V(G_M^*)| = j$ and let $\mathcal{M}_{(i,j)} = \mathcal{M}_{(i,*)} \cap \mathcal{M}_{(*,j)}$. Note that $\sum_{j=1}^{n}(|\mathcal{M}_{(*,j)}| \times j)$ is the number of vertices in G plus the number of edges in the modular decomposition tree, and thus is at most $3n - 2$.

Theorem 8. Algorithm [5](#page-11-12) tests isomorphism between two NLC-2 graphs in time $O(n^2m)$.

Proof. The correctness comes from the fact that at each step, for all $M, M' \in$ $\mathcal{M}(G) \cup \mathcal{M}(H)$ such that $l(M)$ and $l(M')$ are set, G_M and $G_{M'}$ are isomorphic if and only if $l(M) = l(M')$. The total time $f(n, m)$ of this algorithm is ("big O" is omitted): $f(n,m) \leq \sum_i \sum_j (j^2m|\mathcal{M}_{(i,j)}|^2) \leq m \sum_j (j^2 \sum_i (|\mathcal{M}_{(i,j)}|^2)) \leq$ $m\sum_j (j^2|\mathcal{M}_{(*,j)}|^2) \leq m\sum_j ((j|\mathcal{M}_{(*,j)}|)^2) \leq n^2m.$

Input. Two NLC-2 graphs G and H **Result.** Yes if $G \simeq H$, No otherwise **for** every $M \in \mathcal{M}(G) \cup \mathcal{M}(H)$ such that $|M| = 1$ **do** $l(M) \leftarrow 1$; **for** i from 2 to n **do for** j from 2 to i **do** Compute the partition P of $\mathcal{M}_{(i,j)}$ such that M and M' are in the same class of P if and only if $(G_M^*, l) \simeq (G_{M'}^*, l)$.; **foreach** P ∈ P **do** $a \leftarrow$ a new label (an integer not in Img(l)); For all $M \in P$, $l(M) \leftarrow a$;

Algorithm 5. Isomorphism on NLC-2 graphs

References

- 1. Chein, M., Habib, M., Maurer, M.C.: Partitive hypergraphs. Discrete Math. 37(1), 35–50 (1981)
- 2. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph grammars. J. Comput. Syst. Sci. 46(2), 218–270 (1993)
- 3. Cunningham, W.H.: Decomposition of directed graphs. SIAM J. Algebraic Discrete Methods 3(2), 214–228 (1982)
- 4. Cunningham, W.H., Edmonds, J.: A combinatorial decomposition theory. Canad. J. Math. 32, 734–765 (1980)
- 5. Dahlhaus, E.: Parallel algorithms for hierarchical clustering and applications to split decomposition and parity graph recognition. J. Algorithms 36(2), 205–240 (2000)
- 6. Dahlhaus, E., Gustedt, J., McConnell, R.M.: Partially complemented representations of digraphs. Discrete Math. Theor. Comput. Sci. 5(1), 147–168 (2002)
- 7. de Montgolfier, F., Rao, M.: The bi-join decomposition. In: ICGT. ENDM, vol. 22, pp. 173–177 (2005)
- 8. de Montgolfier, F., Rao, M.: Bipartitives families and the bi-join decomposition. Technical report (2005), <https://hal.archives-ouvertes.fr/hal-00132862>
- 9. Fouquet, J.-L., Giakoumakis, V., Vanherpe, J.-M.: Bipartite graphs totally decomposable by canonical decomposition. Internat. J. Found. Comput. Sci. 10(4), 513–533 (1999)
- 10. Gabor, C.P., Supowit, K.J., Hsu, W.-L.: Recognizing circle graphs in polynomial time. J. ACM 36(3), 435–473 (1989)
- 11. Gallai, T.: Transitiv orientierbare Graphen. Acta Math. Acad. Sci. Hungar. 18, 25–66 (1967)
- 12. Gurski, F., Wanke, E.: Minimizing NLC-width is NP-Complete. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 69–80. Springer, Heidelberg (2005)
- 13. Habib, M., Paul, C., Viennot, L.: Partition refinement techniques: An interesting algorithmic tool kit. Internat. J. Found. Comput. Sci. 10(2), 147–170 (1999)
- 14. Johansson, \ddot{O} .: NLC₂-decomposition in polynomial time. Internat. J. Found. Comput. Sci. 11(3), 373–395 (2000)
- 15. McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation. Discrete Math. 201(1-3), 189–241 (1999)
- 16. Wanke, E.: k-NLC Graphs and Polynomial Algorithms. Discrete Appl. Math. 54(2- 3), 251–266 (1994)