
NLC-2 Graph Recognition and Isomorphism�

Vincent Limouzy1, Fabien de Montgolfier1, and Michaël Rao1

LIAFA - Univ. Paris Diderot
{limouzy,fm,rao}@liafa.jussieu.fr

Abstract. NLC-width is a variant of clique-width with many applica-
tion in graph algorithmic. This paper is devoted to graphs of NLC-width
two. After giving new structural properties of the class, we propose a
O(n2m)-time algorithm, improving Johansson’s algorithm [14]. More-
over, our alogrithm is simple to understand. The above properties and
algorithm allow us to propose a robust O(n2m)-time isomorphism algo-
rithm for NLC-2 graphs. As far as we know, it is the first polynomial-time
algorithm.

1 Introduction

NLC-width is a graph parameter introduced by Wanke [16]. This notion is tightly
related to clique-width introduced by Courcelle et al. [2]. Both parameters were
introduced to generalise the well known tree-width. The motivation on research
about such width parameter is that, when the width (NLC-, clique- or tree-width)
is bounded by a constant, then many NP-complete problems can be solved in
polynomial (even linear) time, if the decomposition is provided.

Such parameters give insights on graph structural properties. Unfortunately,
finding the minimum NLC-width of the graph was shown to be NP-hard by
Gurski et al. [12]. Some results however are known. Let NLC-k be the class
of graph of NLC width bounded by k. NLC-1 is exactly the class of cographs.
Probe-cographs, bi-cographs and weak-bisplit graphs [9] belong to NLC-2. Jo-
hansson [14] proved that recognising NLC-2 graphs is polynomial and provided
an O(n4 log(n)) recognition algorithm. Complexity for recognition of NLC-k,
k ≥ 3, is still unknown.

In this paper we improve Johansson’s result down to O(n2m). Our approach
relies on graph decompositions. We establish the tight links that exist between
NLC-2 graphs and the so-called modular decomposition, split decomposition,
and bi-join decomposition.

NLC-2 can be defined as a graph colouring problem. Unlike NLC-k classes, for
k ≥ 3, recolouring is useless for prime NLC-2 graphs. That allow us to propose
a canonical decomposition of bi-coloured NLC-2 graphs, defined as certain bi-
coloured split operations. This decomposition can be computed in O(nm) time
if the colouring is provided. If a graph is prime, there using split and bi-join

� Research supported by the ANR project Graph Decompositions and Algorithms
(GRAAL) and by INRIA project-team Gang.

A. Brandstädt, D. Kratsch, and H. Müller (Eds.): WG 2007, LNCS 4769, pp. 86–98, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

NLC-2 Graph Recognition and Isomorphism 87

decompositions, we show that there is at most O(n) colourings to check. Finally,
modular decomposition properties allow to reduce NLC-2 graph decomposition
to prime NLC-2 graph decomposition. Section 3 explains this O(n2m)-time de-
composition algorithm.

In Section 4 is proposed an isomorphism algorithm. Using modular, split and
bi-join decompositions and the canonical NLC-2 decomposition, isomorphism
between two NLC-2 graphs can be tested in O(n2m) time.

2 Preliminaries

A graph G = (V, E) is pair of a set of vertices V and a set of edges E. For a
graph G, V (G) denote its set of vertices, E(G) its set of edges, n(G) = |V (G)|
and m(G) = |E(G)| (or V , E, n and m if the graph is clear in the context).
N(x) = {y ∈ V : {x, y} ∈ E} denotes the neighbourhood of the vertex x, and
N [x] = N(v) ∪ {v}. For W ⊆ V , G[W] = (W, E ∩ W 2) denote the graph induced
by W . Let A and B be two disjoint subsets of V . Then we note A 1© B if for all
(a, b) ∈ A×B, then {a, b} ∈ E, and we note A 0© B if for all (a, b) ∈ A×B, then
{a, b} �∈ E. Two graphs G = (V, E) and G′ = (V ′, E′) are isomorphic (noted
G 	 G′) if there is a bijection ϕ : V → V ′ such that {x, y} ∈ E ⇔ {ϕ(x), ϕ(y)} ∈
E′, for all u, v ∈ V .

A k-labelling (or labelling) is a function l : V → {1, . . . , k}. A k-labelled graph
is a pair of a graph G = (V, E) and a k-labelling l on V . It is denoted by (G, l)
or by (V, E, l). Two labelled graphs (V, E, l) and (V ′, E′, l′) are isomorphic if
there is a bijection ϕ : V → V ′ such that {u, v} ∈ E ⇔ {ϕ(x), ϕ(y)} ∈ E′ and
l(u) = l′(ϕ(u)) for all u, v ∈ V . Let k be a positive integer. The class of NLC-k
graphs is defined recursively by the following operations.

– For all i ∈ {1, . . . , k}, ·(i) is in NLC-k, where ·(i) is the graph with one
vertex labelled i.

– Let G1 = (V1, E1, l1) and G2 = (V2, E2, l2) be NLC-k and let S ⊆ {1, . . . , k}2.
Then G1 ×S G2 is in NLC-k, where G1 ×S G2 = (V, E, l) with V = V1 ∪ V2,

E = E1 ∪ E2 ∪ {{u, v} : (u, v) ∈ V1 × V2 and (l1(u), l2(v)) ∈ S}

and for all u ∈ V , l(u) =

{
l1(u) if u ∈ V1

l2(u) if u ∈ V2.

– Let R : {1, . . . , k} → {1, . . . , k} and G = (V, E, l) be NLC-k. Then ρR(G) is
in NLC-k, where ρR(G) = (V, E, l′) such that l′(u) = R(l(u)) for all u ∈ V .

A graph is NLC-k if there is a k-labelling of G such that (G, l) is in NLC-k.
A k-labelled graph is NLC-k ρ-free if it can be constructed without the ρR

operation.

Modules and modular decomposition. A module in a graph is a non-empty subset
X ⊆ V such that for all u ∈ V \ X , then either N(u) ∩ X = ∅ or X ⊆ N(u). A
module is trivial if |X | ∈ {1, |V |}. A graph is prime (w.r.t. modular decomposi-
tion) if all its modules are trivial. Two sets X and X ′ overlap if X ∩ X ′,X \ X ′

88 V. Limouzy, F. de Montgolfier, and M. Rao

and X ′ \ X are non-empty. A module X is strong if there is no module X ′ such
that X and X ′ overlap. Let M′(G) be the set of modules of G, let M(G) be the
set of its strong modules, and let P(G) = {M1, . . . , Mk} be the maximal (w.r.t.
inclusion) members of M(G) \ {V }.

Theorem 1. [11] Let G = (V, E) be a graph such that |V | ≥ 2. Then:

– if G is not connected, then P(G) is the set of connected components of G,
– if G is not connected, then P(G) is the set of connected components of G,
– if G and G are connected, then P(G) is a partition of V and is formed with

the maximal members of M′ \ {V }.

P(G) is a partition of V , and G can be decomposed into G[M1], . . . , G[Mk],
where P(G) = {M1, . . . , Mk}. The characteristic graph G∗ of a graph G is the
graph of vertex set P(G) and two P, P ′ ∈ P(G) are adjacent if there is an edge
between P and P ′ in G (and so there is no non-edges since P and P ′ are two
modules). The recursive decomposition of a graph by this operation gives the
modular decomposition of the graph, and can be represented by a rooted tree,
called the modular decomposition tree. It can be computed in linear time [15].
The nodes of the modular decomposition tree are exactly the strong modules, so
in the following we make no distinction between the modular decomposition of
G and M(G). Note that |M(G)| ≤ 2 × n − 1. For M ∈ M(G), let GM = G[M]
and G∗

M its characteristic graph.

Lemma 1. [14] Let G be a graph. G is NLC-k if and only if every characteristic
graph in the modular decomposition of G is NLC-k.

Moreover, a NLC-k expression for G can be easily constructed from the modular
decomposition and from NLC-k expressions of prime graphs. On prime graphs,
NLC-2 recognition is easier:

Lemma 2. [14] Let G be a prime graph. Then G is NLC-2 if and only if there
is a 2-labelling l such that (G, l) is NLC-2 ρ-Free.

Bi-partitive family. A bipartition of V is a pair {X, Y } such that X ∩ Y = ∅,
X ∪ Y = V and X and Y are both non empty. Two bipartitions {X, Y } and
{X ′, Y ′} overlap if X ∩Y , X ∩Y ′, X ′∩Y and X ′∩Y ′ are non empty. A family F
of bipartitions of V is bipartitive if (1) for all v ∈ V , {{v}, V \ {v}} ∈ F and (2)
for all {X, Y } and {X ′, Y ′} in F such that {X, Y } and {X ′, Y ′} overlap, then
{X ∩ X ′, Y ∪ Y ′}, {X ∩ Y ′, Y ∪ X ′}, {Y ∩ X ′, X ∪ Y ′}, {Y ∩ Y ′, X ∪ X ′} and
{XΔX ′, XΔY ′} are in F (where XΔY = (X \Y)∪(Y \X)). Bipartitive families
are very close to partitive families [1], which generalise properties of modules in
a graph.

A member {X, Y } of a bipartitive family F is strong if there is no {X ′, Y ′}
such that {X, Y } and {X ′, Y ′} overlap. Let T be a tree. For an edge e in the
tree, {C1

e , C2
e } denote the bipartition of leaves of T such that two leaves are in

the same set if and only if the path between them avoids e. Similarly, for an
internal node α, {C1

α, . . . , C
d(α)
α } denote the partition of leaves of T such that

two leaves are in the same set if and only if the path between them avoid α.

NLC-2 Graph Recognition and Isomorphism 89

Fig. 1. A module, a bi-join, a split and a co-split

Theorem 2. [4] Let F be a bipartitive family on V . Then there is an unique
unrooted tree T , called the representative tree of F , such that the set of leaves
of T is V , the internal nodes of T are labelled degenerate or prime, and

- for every edge e of T , {C1
e , C2

e} is a strong member of F , and there is no
other strong member in F ,

- for every node α labelled degenerate, and for every ∅ � I � {1, . . . , d(α)},
{∪i∈IC

i
α, V \ ∪i∈IC

i
α} is in F , and there is no other member in F .

A split in a graph G = (V, E) is a bipartition {X, Y } of V such that the set of
vertices in X having a neighbour in Y have the same neighbourhood in Y (i.e., for
all u, v ∈ X such that N(u)∩Y �= ∅ and N(v)∩Y �= ∅, then N(u)∩Y = N(v)∩Y).
A co-split in a graph G is a split in G. The family of split in a connected graph
is a bipartitive family [3]. The split decomposition tree is the representative tree
of the family of splits, and can be computed in linear time [5]. Let α be an
internal node of the split decomposition tree of a connected graph G. For all
i ∈ {1, . . . , d(α)} let vi ∈ Ci

α such that N(vi) \ Ci
α �= ∅. Since G is connected,

such a vi always exists. G[{v1, . . . , vd(α)}] denote the characteristic graph of
α. The characteristic graph of a degenerate node is a complete graph or a
star [3].

A bi-join in a graph is a bipartition {X, Y } such that for all u, v ∈ X , {N(u)∩
Y, Y \ N(u)} = {N(v) ∩ Y, Y \ N(v)}. The family of bi-joins in a graph is
bipartitive. The bi-join decomposition tree is the representative tree of the family
of bi-joins, and can be computed in linear time [7,8]. Let α be an internal node of
the bi-join decomposition tree of a graph G. For all i ∈ {1, . . . , d(α)} let vi ∈ Ci

α.
G[{v1, . . . , vd(α)}] denote the characteristic graph of α. The characteristic graph
of a degenerate node is a complete bipartite graph or a disjoint union of two
complete graphs [7,8].

3 Recognition of NLC-2 Graphs

3.1 NLC-2 ρ-Free Canonical Decomposition

In this section, G = (V, E, l) is a 2-labelled graph such that every mono-coloured
module (i.e. a module M such that ∀v, v′ ∈ M , l(v) = l(v′)) has size 1. A couple

90 V. Limouzy, F. de Montgolfier, and M. Rao

(X, Y) is a cut if X∪Y = V , X∩Y = ∅, X �= ∅ and Y �= ∅. Let S ⊆ {1, 2}×{1, 2}.
A cut (X, Y) is a S-cut of G if for all u ∈ X and v ∈ Y , then {u, v} ∈ E if and
only if (l(u), l(v)) ∈ S. For S ⊆ {1, 2}×{1, 2} let FS(G) be the set of S-cut of G.

Definition 1 (Symmetry). We say that S ∈ {1, 2} × {1, 2} is symmetric if
(1, 2) ∈ S ⇐⇒ (2, 1) ∈ S, otherwise we say that S is non-symmetric.

Definition 2 (Degenerate property). A family F of cuts has the degen-
erate property if there is a partition P of V such that for all ∅ � X � P,
(
⋃

X∈X X,
⋃

Y ∈P\X Y) is in F , and there is no others cut in F .

Lemma 3. For every symmetric S ⊆ {1, 2} × {1, 2}, FS(G) has the degenerate
property.

Proof. The family F{}(G) has the degenerate property since (X, Y) is a {}-
cut if and only if there is no edges between X and Y (P is exactly the set of
connected components). For W ⊆ V , let G|W = (V, EΔW 2, l). For i ∈ {1, 2} let
Vi = {v ∈ V : l(v) = i}. Let G1 = G|V1, G2 = G|V2 and G12 = (G|V1)|V2.

– F{(1,1)}(G) = F{}(G1), F{(2,2)}(G) = F{}(G2), F{(1,1),(2,2)}(G) = F{}(G12),
– F{(1,1),(1,2),(2,1),(2,2)}(G) = F{}(G), F{(1,2),(2,1),(2,2)}(G) = F{}(G1),

F{(1,1),(1,2),(2,1)}(G) = F{}(G2), F{(1,2),(2,1)}(G) = F{}(G12).

Thus for every symmetric S ⊆ {1, 2}×{1, 2}, FS(G) has the degenerate property.

Definition 3 (Linear property). A family F of cuts has the linear property
if for all (X, Y) and (X ′, Y ′) in F , either X ⊆ X ′ or X ′ ⊆ X.

Lemma 4. For every non-symmetric S ⊆ {1, 2} × {1, 2}, FS(G) has the linear
property.

Proof. Case S = {(1, 2)}: suppose that X \ X ′ and X ′ \ X are both non-empty.
Then if u ∈ X \ X ′ is labelled 1 and v ∈ X ′ \ X is labelled 2, u and v has
to be adjacent and non-adjacent, contradiction. Thus X \ X ′ and X ′ \ X are
mono-coloured. Now suppose w.l.o.g. that all vertices in XΔX ′ are labelled 1.
Then XΔX ′ is adjacent to all vertices labelled 2 in Y ∩ Y ′ and non adjacent
to all vertices labelled 1 in Y ∩ Y ′. Moreover XΔX ′ is non adjacent to all
vertices in X ∩ X ′. Thus XΔX ′ is a mono-coloured module, and |XΔX ′| ≥ 2.
Contradiction. For others non-symmetric S, we bring back to case {(1, 2)} like
in the proof of lemma 3.

For S ⊆ {1, 2} × {1, 2}, let PS(G) denote the unique partition of V such that
(1) for all (X, Y) ∈ FS(G) and P ∈ PS(G), P ⊆ X or P ⊆ Y , and (2) for
all P, P ′ ∈ P , P �= P ′, there is a (X, Y) ∈ FS(G) such that P ⊆ X and
P ′ ⊆ Y , or P ⊆ Y and P ′ ⊆ X . For a non-symmetric S ∈ {1, 2} × {1, 2}, let
P ′

S(G) = (P1, . . . , Pk) denote the unique ordering of elements in PS(G) such
that for all (X, Y) ∈ FS(G), there is a l such that X = ∪i∈{1,...,l}Pi.

Lemma 5. If G is in NLC-2 ρ-Free, then there is a S ⊆ {1, 2} × {1, 2} such
that FS(G) is non-empty.

NLC-2 Graph Recognition and Isomorphism 91

Proof. If G is NLC-2 ρ-Free, then there is a S ⊆ {1, 2} × {1, 2}, and two graphs
G1 and G2 such that G = G1 ×S G2. Thus (V (G1), V (G2)) ∈ FS(G) and FS(G)
is non empty.

Lemma 6. Let G = (V, E, l) 2-labelled graph and let S ⊆ {1, 2} × {1, 2}. If
G is NLC-2 ρ-Free and has no mono-coloured non-trivial module, then for all
P ∈ PS(G), G[P] has no mono-coloured non-trivial module.

Proof. If M is a mono-coloured module of G[P], then M is a mono-coloured
module of G. Contradiction.

Lemma 7. Let G = (V, E, l) 2-labelled graph and let S ⊆ {1, 2} × {1, 2}. Then
G is NLC-2 ρ-Free if and only if for all P ∈ PS(G), G[P] is NLC-2 ρ-Free.

Proof. The “only if” is immediate. Now suppose that for all P ∈ PS(G), G[P]
is NLC-2 ρ-Free. If S is symmetric, let PS(G) = {P1, . . . , P|PS(G)|}. Then G =
((G[P1]×S G[P2])×S . . .×S G[P|PS(G)|], and G is NLC-2 ρ-Free. Otherwise, if S is
non-symmetric, let P ′

S(G) = (P1, . . . , P|PS(G)|). Then G = ((G[P1]×S G[P2])×S

. . . ×S G[P|PS(G)|], and G is NLC-2 ρ-Free.

The NLC-2 ρ-Free decomposition tree of a 2-labelled graph G is a rooted tree
such that the leaves are the vertices of G, and the internal nodes are labelled by
×S , with S ⊆ {1, 2}×{1, 2}. An internal node is degenerated if S is symmetric,
and linear if S is non-symmetric. By lemmas 5, 6 and 7, G is NLC-2 ρ-Free if
and only if it has a NLC-2 ρ-Free decomposition tree. This decomposition tree
is not unique. But we can define a canonical decomposition tree if we fix a total
order on the subsets of {1, 2} × {1, 2} (for example, the lexicographic order). If
two graphs are isomorphic, then they have the same canonical decomposition
tree. Algorithm 1 computes the canonical decomposition tree of a 2-labelled
prime graph, or fails if G is not NLC-2 ρ-Free.

Input. A 2-labelled graph G = (V, E, l)
Output. A NLC-2 ρ-Free decomposition tree, or fail if G is not NLC-2

ρ-Free
if |V | = 1 then return the leaf ·(l(v)) (where V = {v})1

Let S be the set of subsets of {1, 2} × {1, 2} and σ be the lexicographic2

order of S
foreach S ∈ S w.r.t. σ do3

Compute PS(G), and P ′
S(G) if S is non-symmetric (see algorithm 2)4

if |PS(G)| > 1 then5

Create a new ×S node β6

foreach P ∈ PS(G) (w.r.t. P ′
S(G) if S is non-symmetric) do7

make NLC-2 ρ-Free decomposition tree of G[P] be a child of β.8

return the tree rooted at β9

fail with Not NLC-2 ρ-Free10

Algorithm 1. Computation of the NLC-2 ρ-Free canonical decomposition tree

92 V. Limouzy, F. de Montgolfier, and M. Rao

Algorithm 2 computes PS and P ′
S for a 2-labelled prime graph G and S ⊆

{1, 2} × {1, 2} in linear time. We need some additional definitions for this algo-
rithm and its proof of correctness. A bipartite graph is a triplet (X, Y, E) such
that E ⊆ X × Y . The bi-complement of a bipartite graph (X, Y, E) is the bi-
partite graph (X, Y, (X × Y) \ E). A bipartite trigraph (BT) is a bipartite graph
with two types of edges: the join edges and the mixed edges. It is denoted by
B = (X, Y, Ej, Em) where Ej are the set of join edges, and Em the set of mixed
edges. A BT-module in a BT is a M ⊆ X or M ⊆ Y such that M is a module in
(X, Y, Ej) and there is no mixed edges between M and (X∪Y)\M . For v ∈ X∪Y ,
let Nj(v) = {u ∈ X ∪Y : {u, v} ∈ Ej} and Nm(v) = {u ∈ X ∪Y : {u, v} ∈ Em}.
Let dj(v) = |Nj(v)| and dm(v) = |Nm(v)|. A semi-join in a BT (X, Y, Ej , Em)
is a cut (A, B) of X ∪ Y , such that there is no edges between A ∩ Y and B ∩ X ,
and there is only join edges between A ∩ X and B ∩ Y .

In algorithm 2, B is obtained from the graph G. Vertices of X correspond to
subsets of vertices labelled 1 in G, and vertices of Y correspond to subsets of
vertices labelled 2. There is a join edge between M and M ′ in B if M 1© M ′

in G, and there is a mixed edge between M ∈ X and M ′ ∈ Y in B if there is
at least an edge and a non-edge between M and M ′ in G. Such a graph B can
easily be built in linear time from a given graph G. It suffices to consider a list
and an array bounded by the number of component in G with the same colour.
The following lemmas are close to observations in [9], but deal with BT instead
of bipartite graphs.

Lemma 8. Let G = (X, Y, Ej , Em) be a BT such that every BT-module has size
1. Let (x1, . . . , x|X|) be X sorted by (dj(x), dm(x)) in lexicographic decreasing
order. If (A, B) is a semi-join of G, then there is a k ∈ {0, . . . , |X |} such that
A ∩ X = {x1, . . . , xk}.

Input. A 2-labelled graph G, and S ⊆ {1, 2} × {1, 2}
Output. PS if S is symmetric, P ′

S if S is non-symmetric
Vi ← {v : v ∈ V and l(v) = i} ;1

if (1, 1) ∈ S then C1 ← co-connected components of G[V1];2

else C1 ← connected components of G[V1];3

if (2, 2) ∈ S then C2 ← co-connected components of G[V2];4

else C2 ← connected components of G[V2];5

B = (C1, C2, Ej , Em) ← the bipartite trigraph between the elements of C16

and C2 ;
if S ∩ {(1, 2), (2, 1)} = ∅ then7

return connected components of (C1, C2, Ej ∪ Em)8

else if S ∩ {(1, 2), (2, 1)} = {(1, 2), (2, 1)} then9

return connected components of the bi-complement of (C1, C2, Ej)10

else Search all semi-joins of B (using lemmas 8 and 9) ;11

Algorithm 2. Computation of PS and P ′
S

NLC-2 Graph Recognition and Isomorphism 93

Lemma 9. Let k ∈ {0, . . . , |X |} and k′ ∈ {0, . . . , |Y |}. Then (A, (X ∪ Y) \
A), where A = {x1, . . . , xk, y1, . . . , yk′}, is a semi-join of G if and only if∑k

i=1 dj(xi)−
∑k′

i=1 dj(yi) = k × (|Y |−k′) and
∑k

i=1 dm(xi)−
∑k′

i=1 dm(yi) = 0.

Theorem 3. Algorithm 2 is correct and runs in linear time.

Proof. Correctness: Suppose that (A, B) is a S-cut. If (1, 1) �∈ S, then there
is no edge between A ∩ V1 and B ∩ V1, thus (A, B) cannot cut a component
C1 (and similarly for (1, 1) ∈ S, and for C2). Now we work on the BT B =
(C1, C2, Ej , Em). If S ∩ {(1, 2), (2, 1)} = ∅, then S-cuts correspond exactly to
connected components of B, and if S ∩ {(1, 2), (2, 1)} = {(1, 2), (2, 1)} then S-
cuts correspond exactly to connected components of the BT of G, which is
(C1, C2, (C1 × C2) \ (Ej ∪ Em), Em). Finally, if S is non-symmetric, S-cuts corre-
spond to semi-joins of B.

Complexity: It is well admitted that we can perform a BFS on a graph or its
complement in linear time [13,6]. The instructions on lines [2-5,8] can be done
with a BFS on a graph or its complement. It is easy to see that we can do a BFS
on the bi-complement in linear time (like a BFS on a complement graph, with
two vertex lists for X and Y), so instruction line 10 can be done in linear time.
Finally, the operations at line 11 are done in linear time.

These results can be summarized as:

Theorem 4. Algorithm 1 computes the canonical NLC-2 ρ-Free decomposition
tree of a 2-labelled graph in O(nm) time.

3.2 NLC-2 Decomposition of a Prime Graph

In this section, G is an unlabelled prime (w.r.t. modular decomposition) graph,
with |V | ≥ 3.

Definition 4 (2-bimodule). A bipartition {X, Y } of V is a 2-bimodule if X
can be partitioned into X1 and X2, and Y into Y1 and Y2 such that for all
(i, j) ∈ {1, 2} × {1, 2}, then either Xi 0© Yj or Xi 1© Yj. It is easy to see that
if {X, Y } is a 2-bimodule if and only if {X, Y } is a split, a co-split or a bi-join.
Moreover, if min(|X |, |Y |) > 1 then {X, Y } cannot be both of them in the same
time (since G is prime).

Let l : V → {1, 2} be a 2-labelling. Then s(l) denote the 2-labelling on V such
that for all v ∈ V , s(l)(v) = 1 if and only if l(v) = 2.

Definition 5 (Labelling induced by a 2-bimodule). Let {X, Y } be a 2-
bimodule. We define the labelling l : V → {1, 2} of G induced by {X, Y }. If
|X | = |Y | = 1, then l(x) = 1 and l(y) = 2, where X = {x} and Y = {y}.
If |X | = 1, then l(v) = 1 iff v ∈ N [x]. Similarly if |Y | = 1, then l(v) = 1 iff
v ∈ N [y]. Now we suppose min(|X |, |Y |) > 1. If {X, Y } is a split, then the set of
vertices in X with a neighbour Y and the set of vertices in Y with a neighbour

94 V. Limouzy, F. de Montgolfier, and M. Rao

in X is labelled 1, others vertices are labelled 2. If {X, Y } is a co-split, then a
labelling of G induced by {X, Y } is a labelling of G induced by the split {X, Y }.
Finally if {X, Y } is a bi-join, l is such that {v ∈ X : l(v) = 1} is a join with
{v ∈ Y : l(v) = 1} and {v ∈ X : l(v) = 2} is a join with {v ∈ Y : l(v) = 2}. Note
that if {X, Y } is a bi-join, then there is two possibles labelling l1 and l2, with
l1 = s(l2). If {X, Y } is a 2-bimodule of G and l a labelling induced by {X, Y },
then every mono-coloured module has size 1 (since G is prime and |V | ≥ 3).

Definition 6 (Good 2-bimodule). A 2-bimodule {X, Y } is good if the graph
G with the labelling induced by {X, Y } is NLC-2 ρ-Free. The following proposi-
tion comes immediately from lemma 2.

Proposition 1. G is NLC-2 if and only if G has a good 2-bimodule.

Lemma 10. If G has a good 2-bimodule {X, Y } which is a split, then G has a
good 2-bimodule which is a strong split.

Proof. There is a node α in the split decomposition tree and we have ∅ � I �

{1, . . . , d(α)} such that {X, Y } = {∪i∈IC
i
α, ∪i�∈IC

i
α}. Let l : V → {1, 2} be

the labelling of G induced by {X, Y }. For all i ∈ {1, . . . , d(α)}, (G[Ci
α], l|Ci

α
) is

NLC-2 ρ-Free (where l|W is the function l restricted at W).
Let l′ be the 2-labelling of V such that for all i, and v ∈ Ci

α, l(v) = 1 if and
only if v has a neighbour outside of Ci

α. For all i, either l|Ci
α

= l′|Ci
α
, or ∀v ∈ Ci

α,
l(v) = 2. Then for all i, (G[Ci

α], l′|Ci
α
) is NLC-2 ρ-Free, and thus (G, l′) is NLC-2

ρ-Free. Since there is a dominating vertex in the characteristic graph of α, there
is a j such that the labelling induced by the strong split {Cj

α, V \Cj
α} is l′. Thus

the strong split {Cj
α, V \ Cj

α} is good.
Previous lemma on G say that if G has a good 2-bimodule {X, Y } which is a
co-split, then G has a good 2-bimodule which is a strong co-split. The following
lemma is similar to Lemma 10.

Lemma 11. If G has a good 2-bimodule {X, Y } which is a bi-join, then G has
a good 2-bimodule which is a strong bi-join.

Input. A graph G
Result. Yes iff G is NLC-2
S ← the set of strong splits, co-splits and bi-joins of G ;
foreach {X, Y } ∈ S do

l ← the labelling of G induced by {X, Y } ;
if (G[X], G[Y], l) is NLC-2 ρ-Free then return Yes ;

return No ;

Algorithm 3. Recognition of prime NLC-2 graphs

Theorem 5. Algorithm 3 recognises prime NLC-2 graphs, and its time com-
plexity is O(n2m).

NLC-2 Graph Recognition and Isomorphism 95

Proof. Trivially if the algorithm return Yes, then G is NLC-2. On the other
hand, by proposition 1, and lemmas 10 and 11, if G is NLC-2, then it has a good
strong 2-bimodule and the algorithm returns Yes.

The set S can be computed using algorithms for computing split decomposi-
tion on G and G, and bi-join decomposition on G. Note that it is not required to
use a linear time algorithm for split decomposition [5]: some simpler algorithms
run in O(n2m) [3,10]. [7,8] show that bi-join decomposition can be computed in
linear time, using a reduction to modular decomposition. But there also, mod-
ular decomposition algorithms simpler than [15] may be used. The set S has
O(n) elements. Testing if a 2-bimodule is good takes O(nm) using algorithm 1.
So total running time is O(n2m).

3.3 NLC-2 Decomposition

Using lemma 1, modular decomposition and algorithm 3, we get:

Theorem 6. NLC-2 graphs can be recognised in O(n2m), and a NLC-2 expres-
sion can be generated in the same time.

4 Graph Isomorphism on NLC-2 Graphs

4.1 Graph Isomorphism on NLC-2 ρ-Free Prime Graphs

Proposition 2. Consider a symmetric S ∈ {1, 2} × {1, 2}. Two graphs G and
H are isomorphic if and only if there is a bijection π between PS(G) and PS(H)
such that for all P ∈ PS(G), G[P] is isomorphic to H [π(P)].

Proposition 3. Let a non-symmetric S ∈ {1, 2}×{1, 2} and let G and H be two
graphs. Let P ′

S(G) = (P1, . . . , Pk) and P ′
S(H) = (P ′

1, . . . , P
′
k′) then G and H are

isomorphic if and only if k = k′ and for all i ∈ {1, . . . , k}, G[Pi] is isomorphic
to H [P ′

i].

These two propositions are direct consequences of the linear and degenerate
properties of S-cuts. Then two NLC-2 ρ-Free 2-labelled graphs G and H are
isomorphic if and only if there is an isomorphism between their canonical NLC-
2 ρ-Free decomposition tree which respects the order of children of linear nodes.
This isomorphism can be tested in linear time, thus isomorphism of NLC-2 ρ-Free
graphs can be done in O(nm) time.

4.2 Graph Isomorphism on Prime NLC-2 Graphs

Theorem 7. Algorithm 4 test isomorphism between two prime NLC-2 graphs
in time O(n2m).

Proof. If the algorithm returns “yes”, then trivially G 	 H . On the other hand
suppose that G 	 H and let π : V (G) → V (H) be a bijection such that {u, v} ∈
E(G) iff (π(u), π(v)) ∈ E(H). Then {X ′, Y ′} with X ′ = π(X) and Y ′ = π(Y)

96 V. Limouzy, F. de Montgolfier, and M. Rao

is a good 2-bimodule if H . If min(|X |, |Y |) > 1 and {X ′, Y ′} is a bi-join, then
by definition there is two labelling induced by {X, Y }, and (G, l) 	 (H, l′) or
(G, l) 	 (H, s(l′)). Otherwise the labelling is unique and (G, l) 	 (H, l′).

Input. Two prime NLC-2 graphs G and H
Result. Yes if G 	 H , No otherwise
S ← the set of strong splits, co-splits and bi-joins of G ;
S′ ← the set of strong splits, co-splits and bi-joins of H ;
if there is no good 2-bimodule in S then fail with “G is not NLC-2”;
{X, Y } ← a good 2-bimodule in S ;
l ← the labelling of G induced by {X, Y } ;
foreach {X ′, Y ′} ∈ S′ such that {X ′, Y ′} is good do

l′ ← the labelling of H induced by {X ′, Y ′} ;
if |X | > 1 and |Y | > 1 and {X, Y } is a bi-join then

if (G, l) 	 (H, l′) or (G, l) 	 (H, s(l′)) then return Yes ;
else if (G, l) 	 (H, l′) then return Yes ;

return No ;

Algorithm 4. Isomorphism for prime NLC-2 graphs

The sets S and S′ can be computed in O(n2) time using linear time algorithms
for computing split decomposition on G and G, and bi-join decomposition on G.
The sets S and S′ have O(n) elements. Test if a 2-bimodule is good take O(nm)
using algorithm 1, and test if two 2-labelled prime graphs are isomorphic take
also O(nm). Thus the total running time is O(n2m).

4.3 Graph Isomorphism on NLC-2 Graphs

It is easy to show that graph isomorphism on prime NLC-2 graphs with an
additional labels into {1, . . . , q} can be done in O(n2m) time. For that, we add
the additional label of v at the leaf corresponding to v in the NLC-2 ρ-Free
decomposition tree.

We show that we can do graph isomorphism on NLC-2 graphs in time O(n2m),
using the modular decomposition and algorithm 4. Let M(G) and M(H) be the
modular decomposition of G and H . For M ∈ M(G), let GM be G[M], and for
M ∈ M(H), let HM be H [M]. Let G∗

M be the characteristic graph of GM (note
that |V (G∗

M)| is the number of children of M in the modular decomposition
tree). Let M(i,∗) = {M ∈ M(G) ∪ M(H) : |M | = i}, let M(∗,j) = {M ∈
M(G) ∪ M(H) : |V (G∗

M)| = j} and let M(i,j) = M(i,∗) ∩ M(∗,j). Note that∑n
j=1(|M(∗,j)| × j) is the number of vertices in G plus the number of edges in

the modular decomposition tree, and thus is at most 3n − 2.

Theorem 8. Algorithm 5 tests isomorphism between two NLC-2 graphs in time
O(n2m).

Proof. The correctness comes from the fact that at each step, for all M, M ′ ∈
M(G) ∪ M(H) such that l(M) and l(M ′) are set, GM and GM ′ are isomorphic

NLC-2 Graph Recognition and Isomorphism 97

if and only if l(M) = l(M ′). The total time f(n, m) of this algorithm is (“big
O” is omitted): f(n, m) ≤

∑
i

∑
j

(
j2m|M(i,j)|2

)
≤ m

∑
j

(
j2 ∑

i

(
|M(i,j)|2

))
≤

m
∑

j

(
j2|M(∗,j)|2

)
≤ m

∑
j

((
j|M(∗,j)|

)2
)

≤ n2m.

Input. Two NLC-2 graphs G and H
Result. Yes if G 	 H , No otherwise
for every M ∈ M(G) ∪ M(H) such that |M | = 1 do l(M) ← 1 ;
for i from 2 to n do

for j from 2 to i do
Compute the partition P of M(i,j) such that M and M ′ are in the
same class of P if and only if (G∗

M , l) 	 (G∗
M ′ , l). ;

foreach P ∈ P do
a ← a new label (an integer not in Img(l)) ;
For all M ∈ P , l(M) ← a ;

Algorithm 5. Isomorphism on NLC-2 graphs

References

1. Chein, M., Habib, M., Maurer, M.C.: Partitive hypergraphs. Discrete Math. 37(1),
35–50 (1981)

2. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph gram-
mars. J. Comput. Syst. Sci. 46(2), 218–270 (1993)

3. Cunningham, W.H.: Decomposition of directed graphs. SIAM J. Algebraic Discrete
Methods 3(2), 214–228 (1982)

4. Cunningham, W.H., Edmonds, J.: A combinatorial decomposition theory. Canad.
J. Math. 32, 734–765 (1980)

5. Dahlhaus, E.: Parallel algorithms for hierarchical clustering and applications to
split decomposition and parity graph recognition. J. Algorithms 36(2), 205–240
(2000)

6. Dahlhaus, E., Gustedt, J., McConnell, R.M.: Partially complemented representa-
tions of digraphs. Discrete Math. Theor. Comput. Sci. 5(1), 147–168 (2002)

7. de Montgolfier, F., Rao, M.: The bi-join decomposition. In: ICGT. ENDM, vol. 22,
pp. 173–177 (2005)

8. de Montgolfier, F., Rao, M.: Bipartitives families and the bi-join decomposition.
Technical report (2005), https://hal.archives-ouvertes.fr/hal-00132862

9. Fouquet, J.-L., Giakoumakis, V., Vanherpe, J.-M.: Bipartite graphs totally de-
composable by canonical decomposition. Internat. J. Found. Comput. Sci. 10(4),
513–533 (1999)

10. Gabor, C.P., Supowit, K.J., Hsu, W.-L.: Recognizing circle graphs in polynomial
time. J. ACM 36(3), 435–473 (1989)

11. Gallai, T.: Transitiv orientierbare Graphen. Acta Math. Acad. Sci. Hungar. 18,
25–66 (1967)

12. Gurski, F., Wanke, E.: Minimizing NLC-width is NP-Complete. In: Kratsch, D.
(ed.) WG 2005. LNCS, vol. 3787, pp. 69–80. Springer, Heidelberg (2005)

https://hal.archives-ouvertes.fr/hal-00132862

98 V. Limouzy, F. de Montgolfier, and M. Rao

13. Habib, M., Paul, C., Viennot, L.: Partition refinement techniques: An interesting
algorithmic tool kit. Internat. J. Found. Comput. Sci. 10(2), 147–170 (1999)

14. Johansson, Ö.: NLC2-decomposition in polynomial time. Internat. J. Found. Com-
put. Sci. 11(3), 373–395 (2000)

15. McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation.
Discrete Math. 201(1-3), 189–241 (1999)

16. Wanke, E.: k-NLC Graphs and Polynomial Algorithms. Discrete Appl. Math. 54(2-
3), 251–266 (1994)

	NLC-2 Graph Recognition and Isomorphism
	Introduction
	Preliminaries
	Recognition of NLC-2 Graphs
	NLC-2 ρ-Free Canonical Decomposition
	NLC-2 Decomposition of a Prime Graph
	NLC-2 Decomposition

	Graph Isomorphism on NLC-2 Graphs
	Graph Isomorphism on NLC-2 ρ-Free Prime Graphs
	Graph Isomorphism on Prime NLC-2 Graphs
	Graph Isomorphism on NLC-2 Graphs

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

