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Abstract. NLC-width is a variant of clique-width with many applica-
tion in graph algorithmic. This paper is devoted to graphs of NLC-width
two. After giving new structural properties of the class, we propose a
O(n?*m)-time algorithm, improving Johansson’s algorithm [I4]. More-
over, our alogrithm is simple to understand. The above properties and
algorithm allow us to propose a robust O(an)-time isomorphism algo-
rithm for NLC-2 graphs. As far as we know, it is the first polynomial-time
algorithm.

1 Introduction

NLC-width is a graph parameter introduced by Wanke [16]. This notion is tightly
related to clique-width introduced by Courcelle et al. [2]. Both parameters were
introduced to generalise the well known tree-width. The motivation on research
about such width parameter is that, when the width (NLC-, clique- or tree-width)
is bounded by a constant, then many NP-complete problems can be solved in
polynomial (even linear) time, if the decomposition is provided.

Such parameters give insights on graph structural properties. Unfortunately,
finding the minimum NLC-width of the graph was shown to be NP-hard by
Gurski et al. [12]. Some results however are known. Let NLC-k be the class
of graph of NLC width bounded by k. NLC-1 is exactly the class of cographs.
Probe-cographs, bi-cographs and weak-bisplit graphs [9] belong to NLC-2. Jo-
hansson [I4] proved that recognising NLC-2 graphs is polynomial and provided
an O(n*log(n)) recognition algorithm. Complexity for recognition of NLC-k,
k > 3, is still unknown.

In this paper we improve Johansson’s result down to O(n?m). Our approach
relies on graph decompositions. We establish the tight links that exist between
NLC-2 graphs and the so-called modular decomposition, split decomposition,
and bi-join decomposition.

NLC-2 can be defined as a graph colouring problem. Unlike NLC-k classes, for
k > 3, recolouring is useless for prime NLC-2 graphs. That allow us to propose
a canonical decomposition of bi-coloured NLC-2 graphs, defined as certain bi-
coloured split operations. This decomposition can be computed in O(nm) time
if the colouring is provided. If a graph is prime, there using split and bi-join

* Research supported by the ANR project Graph Decompositions and Algorithms
(GRAAL) and by INRIA project-team GANG.

A. Brandstadt, D. Kratsch, and H. Miiller (Eds.): WG 2007, LNCS 4769, pp. 86 2007.
© Springer-Verlag Berlin Heidelberg 2007



NLC-2 Graph Recognition and Isomorphism 87

decompositions, we show that there is at most O(n) colourings to check. Finally,
modular decomposition properties allow to reduce NLC-2 graph decomposition
to prime NLC-2 graph decomposition. Section [ explains this O(n?m)-time de-
composition algorithm.

In Section [ is proposed an isomorphism algorithm. Using modular, split and
bi-join decompositions and the canonical NLC-2 decomposition, isomorphism
between two NLC-2 graphs can be tested in O(n?m) time.

2 Preliminaries

A graph G = (V, E) is pair of a set of vertices V and a set of edges E. For a
graph G, V(G) denote its set of vertices, E(G) its set of edges, n(G) = |[V(G)|
and m(G) = |E(G)| (or V, E, n and m if the graph is clear in the context).
N(z) ={y € V : {z,y} € E} denotes the neighbourhood of the vertex x, and
Nlz] = N(v)U{v}. For W C V, GIW] = (W, ENW?) denote the graph induced
by W. Let A and B be two disjoint subsets of V. Then we note A () B if for all
(a,b) € Ax B, then {a,b} € E, and we note A 0 B if for all (a,b) € Ax B, then
{a,b} ¢ E. Two graphs G = (V,E) and G’ = (V', E’) are isomorphic (noted
G ~ @) if there is a bijection ¢ : V' — V' such that {z,y} € E < {¢(x),¢(y)} €
E', for all u,v € V.

A k-labelling (or labelling) is a function I : V' — {1,...,k}. A k-labelled graph
is a pair of a graph G = (V, E) and a k-labelling [ on V. It is denoted by (G, 1)
or by (V,E,l). Two labelled graphs (V, E,l) and (V',E',l') are isomorphic if
there is a bijection ¢ : V' — V' such that {u,v} € E < {p(z),p(y)} € E' and
I(u) =U'(p(u)) for all u,v € V. Let k be a positive integer. The class of NLC-k
graphs is defined recursively by the following operations.

— For all ¢ € {1,...,k}, (i) is in NLC-k, where -(¢) is the graph with one
vertex labelled i.

— Let G; = (V4, Eq,1h) and G = (Va, Ea,ls) be NLC-k and let S C {1, ..., k}2.
Then G7 Xg Ga is in NLC-k, where G1 xg G2 = (V, E|l) with V = V3 U V3,

E=EUEU{{u,v}: (u,v) € V1 x Va and (I1(u),l2(v)) € S}
li(u)ifuelVy
lo(u) if u € V3.

— Let R:{1,...,k} — {1,...,k} and G = (V, E,l) be NLC-k. Then pr(G) is
in NLC-k, where pg(G) = (V, E,l') such that I'(u) = R(l(u)) for all u € V.

A graph is NLC-k if there is a k-labelling of G such that (G,1) is in NLC-k.
A k-labelled graph is NLC-k p-free if it can be constructed without the pg
operation.

and for all u € V, I(u) = {

Modules and modular decomposition. A module in a graph is a non-empty subset
X C V such that for all w € V' \ X, then either N(u)NX =0 or X C N(u). A
module is trivial if |X| € {1,|V|}. A graph is prime (w.r.t. modular decomposi-
tion) if all its modules are trivial. Two sets X and X' overlap if X N X' X \ X’
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and X'\ X are non-empty. A module X is strong if there is no module X’ such
that X and X’ overlap. Let M’(G) be the set of modules of G, let M(G) be the
set of its strong modules, and let P(G) = {M;, ..., Mi} be the maximal (w.r.t.
inclusion) members of M(G) \ {V'}.

Theorem 1. [I1] Let G = (V, E) be a graph such that |V| > 2. Then:

— if G is not connected, then P(G) is the set of connected components of G,

— if G is not connected, then P(G) is the set of connected components of G,

— if G and G are connected, then P(Q) is a partition of V' and is formed with
the mazximal members of M’ \ {V'}.

P(G) is a partition of V, and G can be decomposed into G[M;],...,G[My],
where P(G) = {Mj, ..., My}. The characteristic graph G* of a graph G is the
graph of vertex set P(G) and two P, P’ € P(G) are adjacent if there is an edge
between P and P’ in G (and so there is no non-edges since P and P’ are two
modules). The recursive decomposition of a graph by this operation gives the
modular decomposition of the graph, and can be represented by a rooted tree,
called the modular decomposition tree. It can be computed in linear time [I5].
The nodes of the modular decomposition tree are exactly the strong modules, so
in the following we make no distinction between the modular decomposition of
G and M(G). Note that [M(G)| <2 xn—1. For M € M(G), let Gy = G[M]
and G, its characteristic graph.

Lemma 1. [T]|] Let G be a graph. G is NLC-k if and only if every characteristic
graph in the modular decomposition of G is NLC-k.

Moreover, a NLC-k expression for G can be easily constructed from the modular
decomposition and from NLC-k expressions of prime graphs. On prime graphs,
NLC-2 recognition is easier:

Lemma 2. [T]|] Let G be a prime graph. Then G is NLC-2 if and only if there
is a 2-labelling | such that (G,1) is NLC-2 p-Free.

Bi-partitive family. A bipartition of V is a pair {X,Y} such that X NY = 0,
XUY =V and X and Y are both non empty. Two bipartitions {X,Y} and
{X", Y’} overlap if XNY, XNY’, X'NY and X'NY” are non empty. A family F
of bipartitions of V' is bipartitive if (1) for allv € V, {{v}, V' \ {v}} € F and (2)
for all {X,Y} and {X’,Y’} in F such that {X,Y} and {X', Y’} overlap, then
(XNX YUY} {XNY YUX'} {YNX , XUY'}, {¥NY', X UX'} and
{XAX',XAY"} are in F (where X AY = (X \Y)U(Y '\ X)). Bipartitive families
are very close to partitive families [I], which generalise properties of modules in
a graph.

A member {X,Y} of a bipartitive family F is strong if there is no {X’,Y"}
such that {X,Y} and {X',Y’} overlap. Let T be a tree. For an edge e in the
tree, {C}, C?} denote the bipartition of leaves of T' such that two leaves are in
the same set if and only if the path between them avoids e. Similarly, for an
internal node a, {C}, ..., C’g(a)} denote the partition of leaves of 7" such that
two leaves are in the same set if and only if the path between them avoid a.
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Fig. 1. A module, a bi-join, a split and a co-split

Theorem 2. [{] Let F be a bipartitive family on V. Then there is an unique
unrooted tree T, called the representative tree of F, such that the set of leaves
of T is V, the internal nodes of T are labelled degenerate or prime, and

- for every edge e of T, {CL,C?} is a strong member of F, and there is no
other strong member in F,

- for every node « labelled degenerate, and for every O C T C {1,...,d(a)},
{UicrCL, V \ UierCL} is in F, and there is no other member in F.

A split in a graph G = (V, E) is a bipartition {X,Y} of V such that the set of
vertices in X having a neighbour in Y have the same neighbourhood in Y (i.e., for
all u,v € X such that N(u)NY # @ and N(v)NY # @, then N(u)NY = N(v)NY).
A co-split in a graph G is a split in G. The family of split in a connected graph
is a bipartitive family [3]. The split decomposition tree is the representative tree
of the family of splits, and can be computed in linear time [5]. Let a be an
internal node of the split decomposition tree of a connected graph G. For all
i€ {l,...,d(a)} let v; € C such that N(v;)\ C’ # 0. Since G is connected,
such a v; always exists. G[{v1,...,vq()}] denote the characteristic graph of
. The characteristic graph of a degenerate node is a complete graph or a
star [3].

A bi-join in a graph is a bipartition { X, Y’} such that for all u,v € X, {N(u)N
Y)Y\ Nuw)} = {N@w)NnY,Y \ N(v)}. The family of bi-joins in a graph is
bipartitive. The bi-join decomposition tree is the representative tree of the family
of bi-joins, and can be computed in linear time [7J]]. Let « be an internal node of
the bi-join decomposition tree of a graph G. For alli € {1,...,d(a)} let v; € C¥.
G[{v1,...,v4(a)}] denote the characteristic graph of o.. The characteristic graph
of a degenerate node is a complete bipartite graph or a disjoint union of two

complete graphs [7I8].

3 Recognition of NLC-2 Graphs

3.1 NLC-2 p-Free Canonical Decomposition

In this section, G = (V, E, 1) is a 2-labelled graph such that every mono-coloured
module (i.e. a module M such that Vv,v" € M, I(v) = I(v")) has size 1. A couple
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(X,Y)isacutif XUY =V, XNY =0, X £ 0andY #0.Let S C {1,2} x{1,2}.
Acut (X,Y)isa S-cut of Gif for allu € X and v € Y, then {u,v} € F if and
only if (I(u),l(v)) € S. For S C {1,2} x {1, 2} let F5(G) be the set of S-cut of G.

Definition 1 (Symmetry). We say that S € {1,2} x {1,2} is symmetric if
(1,2) € S < (2,1) € S, otherwise we say that S is non-symmetric.

Definition 2 (Degenerate property). A family F of cuts has the degen-
erate property if there is a partition P of V such that for all 0 € X C P,
(Uxex X:Uyep\x Y) is in F, and there is no others cut in F.

Lemma 3. For every symmetric S C {1,2} x {1,2}, Fs(G) has the degenerate
property.

Proof. The family F;;(G) has the degenerate property since (X,Y) is a {}-
cut if and only if there is no edges between X and Y (P is exactly the set of
connected components). For W C V, let G|W = (V, EAW?2,1). For i € {1,2} let
Vi={veV:l(v)=i}. Let G1 = G|V1, G2 = G|V2 and G12 = (G|V1)|Va.

= Fiay(G) = F3(Gr), Freen(G) = Fi3(G2), Fra),e2)(G) = F(Gia),
= Fran,.2),20,023(G) = F3(G), Fla2),e1),021(G) = Fi(G),
Fra1),1,2),201G) = F(G2), Fra,2),211(G) = F(Giz).

Thus for every symmetric S C {1,2} x{1, 2}, Fs(G) has the degenerate property.

Definition 3 (Linear property). A family F of cuts has the linear property
if for all (X,Y) and (X',Y") in F, either X C X' or X' C X.

Lemma 4. For every non-symmetric S C {1,2} x {1,2}, Fs(G) has the linear
property.

Proof. Case S ={(1,2)}: suppose that X \ X" and X’ \ X are both non-empty.
Then if u € X \ X’ is labelled 1 and v € X'\ X is labelled 2, v and v has
to be adjacent and non-adjacent, contradiction. Thus X \ X’ and X’ \ X are
mono-coloured. Now suppose w.l.o.g. that all vertices in X AX’ are labelled 1.
Then X AX' is adjacent to all vertices labelled 2 in Y N Y’ and non adjacent
to all vertices labelled 1 in Y NY’. Moreover X AX’ is non adjacent to all
vertices in X N X’. Thus X AX’ is a mono-coloured module, and | X AX'| > 2.
Contradiction. For others non-symmetric S, we bring back to case {(1,2)} like
in the proof of lemma

For S C {1,2} x {1,2}, let Pg(G) denote the unique partition of V' such that
(1) for all (X,Y) € Fs(G) and P € Ps(G), P C X or P C Y, and (2) for
all P,P' € P, P # P/, there is a (X,Y) € Fg(G) such that P C X and
P'CY,or PCY and P’ C X. For a non-symmetric S € {1,2} x {1,2}, let
PL(G) = (P1,...,P;) denote the unique ordering of elements in Pg(G) such
that for all (X,Y) € Fs(G), there is a [ such that X = U;cqr,.. 13 P

Lemma 5. If G is in NLC-2 p-Free, then there is a S C {1,2} x {1,2} such
that Fs(G) is non-empty.
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Proof. Tt G is NLC-2 p-Free, then there is a .S C {1,2} x {1,2}, and two graphs
Gl and GQ such that G = Gl X GQ. Thus (V(Gl), V(Gz)) S fs(G) and Fs(G)
is non empty.

Lemma 6. Let G = (V, E,l) 2-labelled graph and let S C {1,2} x {1,2}. If
G is NLC-2 p-Free and has no mono-coloured non-trivial module, then for all
P € Ps(G), G[P] has no mono-coloured non-trivial module.

Proof. f M is a mono-coloured module of G[P], then M is a mono-coloured
module of G. Contradiction.

Lemma 7. Let G = (V, E,l) 2-labelled graph and let S C {1,2} x {1,2}. Then
G is NLC-2 p-Free if and only if for all P € Ps(Q), G|P] is NLC-2 p-Free.

Proof. The “only if” is immediate. Now suppose that for all P € Pg(G), G[P]
is NLC-2 p-Free. If S is symmetric, let Ps(G) = {Py,..., Ppg(q)}- Then G =
(G[P]x5G[P]) x5 .. xsG[Ppg(a)l, and G is NLC-2 p-Free. Otherwise, if S is
non-symmetric, let Pg(G) = (P, ..., Ppy))- Then G = ((G[P1] x5 G[Ps]) x5
... X5 G[Ppg(cy); and G is NLC-2 p-Free.

The NLC-2 p-Free decomposition tree of a 2-labelled graph G is a rooted tree
such that the leaves are the vertices of G, and the internal nodes are labelled by
x g, with S C {1,2} x{1,2}. An internal node is degenerated if S is symmetric,
and linear if S is non-symmetric. By lemmas Bl [l and [, G is NLC-2 p-Free if
and only if it has a NLC-2 p-Free decomposition tree. This decomposition tree
is not unique. But we can define a canonical decomposition tree if we fix a total
order on the subsets of {1,2} x {1,2} (for example, the lexicographic order). If
two graphs are isomorphic, then they have the same canonical decomposition
tree. Algorithm [0 computes the canonical decomposition tree of a 2-labelled
prime graph, or fails if G is not NLC-2 p-Free.

Input. A 2-labelled graph G = (V, E,l)
Output. A NLC-2 p-Free decomposition tree, or fail if G is not NLC-2
p-Free
1 if |[V| =1 then return the leaf -(I(v)) (where V = {v})
2 Let S be the set of subsets of {1,2} x {1,2} and ¢ be the lexicographic
order of S
3 foreach S €S w.r.t odo
Compute Pg(G), and Pg(G) if S is non-symmetric (see algorithm [2)
if |Ps(G)| > 1 then
Create a new xg node 3
foreach P € Pg(G) (w.r.t. P5(G) if S is non-symmetric) do
make NLC-2 p-Free decomposition tree of G[P] be a child of 3.

9 return the tree rooted at (3

o N O oA

10 fail with Not NLC-2 p-Free

Algorithm 1. Computation of the NLC-2 p-Free canonical decomposition tree



92 V. Limouzy, F. de Montgolfier, and M. Rao

Algorithm ] computes Ps and Pg for a 2-labelled prime graph G and S C
{1,2} x {1,2} in linear time. We need some additional definitions for this algo-
rithm and its proof of correctness. A bipartite graph is a triplet (X,Y, E) such
that £ C X x Y. The bi-complement of a bipartite graph (X,Y, E) is the bi-
partite graph (X,Y, (X x Y)\ E). A bipartite trigraph (BT) is a bipartite graph
with two types of edges: the join edges and the mized edges. It is denoted by
B = (X,Y,E;, E,,) where E; are the set of join edges, and E,, the set of mized
edges. A BT-module in a BT isa M C X or M C Y such that M is a module in
(X, Y, E;) and there is no mized edges between M and (XUY )\ M. Forv € XUY,
let Nj(v) = {ue XUY : {u,v} € E;} and Ny, (v) = {u € XUY : {u,v} € E,, }.
Let d;(v) = |N;(v)| and dp,(v) = |Npm(v)|. A semi-join in a BT (X,Y, Ej;, Ep,)
is a cut (A, B) of X UY, such that there is no edges between ANY and BN X,
and there is only join edges between AN X and BNY.

In algorithm [2 B is obtained from the graph G. Vertices of X correspond to
subsets of vertices labelled 1 in G, and vertices of Y correspond to subsets of
vertices labelled 2. There is a join edge between M and M’ in B if M @ M’
in G, and there is a mized edge between M € X and M’ € Y in B if there is
at least an edge and a non-edge between M and M’ in G. Such a graph B can
easily be built in linear time from a given graph G. It suffices to consider a list
and an array bounded by the number of component in G with the same colour.
The following lemmas are close to observations in [9], but deal with BT instead
of bipartite graphs.

Lemma 8. Let G = (X,Y, Ej, Ey,) be a BT such that every BT-module has size
L. Let (x1,...,2x)) be X sorted by (dj(x),dn(x)) in lericographic decreasing
order. If (A, B) is a semi-join of G, then there is a k € {0,...,|X|} such that
ANX ={x,..., a1}

Input. A 2-labelled graph G, and S C {1,2} x {1,2}
Output. Py if S is symmetric, Py if S is non-symmetric
Vi —{v:veVandl(v)=1i};
if (1,1) € S then (C; « co-connected components of G[V4];
else C; < connected components of G[V1];
if (2,2) € S then C; < co-connected components of G[Va];
else Cy «— connected components of G[V5];
B = (C1,Cq, Ej, E;,) < the bipartite trigraph between the elements of Cy
and Cs ;
if SN{(1,2),(2,1)} =0 then

return connected components of (C1,Ca, E; U Epp,)

9 else if SN{(1,2),(2,1)} ={(1,2),(2,1)} then
10 return connected components of the bi-complement of (C1,Ca, Ej)

(<21 BNV VI

®

11 else Search all semi-joins of B (using lemmas [§ and [ ;

Algorithm 2. Computation of Pg and P§
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Lemma 9. Let k € {0,...,|X|} and ¥ € {0,...,|[Y|}. Then (A, (X UY)\
A), where A = {x1,...,2k,Y1,..., Yk }, s a semi-join of G if and only if

k K k K
Doim Ai(mi) =32, dj(ys) = k< ([Y| = k') and 32, dm(2:) = 3251 dim(ys) = 0.
Theorem 3. Algorithm [ is correct and runs in linear time.

Proof. Correctness: Suppose that (A, B) is a S-cut. If (1,1) ¢ S, then there
is no edge between A NV; and B N Vi, thus (A, B) cannot cut a component
Ci (and similarly for (1,1) € S, and for C2). Now we work on the BT B =
(C1,Co, Ej, Ey). I SN {(1,2),(2,1)} = 0, then S-cuts correspond exactly to
connected components of B, and if SN {(1,2),(2,1)} = {(1,2),(2,1)} then S-
cuts correspond exactly to connected components of the BT of G, which is
(C1,C2,(C1 x C2) \ (E; UEy,), Ey,). Finally, if S is non-symmetric, S-cuts corre-
spond to semi-joins of B.

Complexity: It is well admitted that we can perform a BFS on a graph or its
complement in linear time [I36]. The instructions on lines 2HEIE] can be done
with a BF'S on a graph or its complement. It is easy to see that we can do a BFS
on the bi-complement in linear time (like a BF'S on a complement graph, with
two vertex lists for X and Y'), so instruction line [0 can be done in linear time.
Finally, the operations at line [[T] are done in linear time.

These results can be summarized as:

Theorem 4. Algorithm [l computes the canonical NLC-2 p-Free decomposition
tree of a 2-labelled graph in O(nm) time.

3.2 NLC-2 Decomposition of a Prime Graph

In this section, G is an unlabelled prime (w.r.t. modular decomposition) graph,
with |V| > 3.

Definition 4 (2-bimodule). A bipartition {X,Y} of V is a 2-bimodule if X
can be partitioned into Xy, and Xz, and Y into Y7 and Yy such that for all
(1,7) € {1,2} x {1,2}, then either X; @ Y; or X; D Yj. It is easy to see that
if {X,Y} is a 2-bimodule if and only if {X,Y} is a split, a co-split or a bi-join.
Moreover, if min(|X|,|Y]) > 1 then {X,Y} cannot be both of them in the same
time (since G is prime).

Let [ : V — {1,2} be a 2-labelling. Then s(I) denote the 2-labelling on V' such
that for all v € V, s(I)(v) = 1 if and only if I(v) = 2.

Definition 5 (Labelling induced by a 2-bimodule). Let {X,Y} be a 2-
bimodule. We define the labelling I : V' — {1,2} of G induced by {X,Y}. If
| X| =1Y] =1, then l(x) = 1 and I(y) = 2, where X = {z} and Y = {y}.
If I X| =1, then l(v) = 1 iff v € N[z|. Similarly if |Y| =1, then l(v) = 1 iff
v € N[y|. Now we suppose min(|X|,|Y|) > 1. If {X,Y'} is a split, then the set of
vertices in X with a neighbour Y and the set of vertices in' Y with a neighbour
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in X is labelled 1, others vertices are labelled 2. If {X,Y'} is a co-split, then a
labelling of G induced by {X,Y} is a labelling of G induced by the split {X,Y}.
Finally if {X,Y} is a bi-join, 1 is such that {v € X : l(v) = 1} is a join with
{veY :l(v)=1} and {v € X : I(v) = 2} is a join with {v € Y : [(v) = 2}. Note
that if {X,Y'} is a bi-join, then there is two possibles labelling 11 and la, with
I1 = s(le). If {X,Y} is a 2-bimodule of G and 1 a labelling induced by {X,Y},
then every mono-coloured module has size 1 (since G is prime and |V| > 3).

Definition 6 (Good 2-bimodule). A 2-bimodule {X,Y} is good if the graph
G with the labelling induced by {X,Y} is NLC-2 p-Free. The following proposi-
tion comes immediately from lemma 2.

Proposition 1. G is NLC-2 if and only if G has a good 2-bimodule.

Lemma 10. If G has a good 2-bimodule {X,Y} which is a split, then G has a
good 2-bimodule which is a strong split.

Proof. There is a node « in the split decomposition tree and we have ) C I C
{1,...,d(a)} such that {X,Y} = {Uie;CL,Uig;CL}. Let I : V. — {1,2} be
the labelling of G induced by {X,Y}. For all i € {1,...,d(a)}, (G[CL],l|c:) is
NLC-2 p-Free (where I|y is the function [ restricted at W).

Let I’ be the 2-labelling of V such that for all i, and v € C?, I(v) = 1 if and
only if v has a neighbour outside of C,. For all 4, either I|c: = '|c:i , or Yo € CF,,
I(v) = 2. Then for all i, (G[CL],U'|c: ) is NLC-2 p-Free, and thus (G, ') is NLC-2
p-Free. Since there is a dominating vertex in the characteristic graph of «, there
is a j such that the labelling induced by the strong split {C?,V \ C?} is I’. Thus
the strong split {C7,V \ €7} is good.

Previous lemma on G say that if G has a good 2-bimodule {X,Y} which is a
co-split, then G has a good 2-bimodule which is a strong co-split. The following
lemma is similar to Lemma [I0l

Lemma 11. If G has a good 2-bimodule {X,Y} which is a bi-join, then G has
a good 2-bimodule which is a strong bi-join.

Input. A graph G
Result. Yes iff G is NLC-2
S « the set of strong splits, co-splits and bi-joins of G ;
foreach {X,Y} € § do

[ « the labelling of G induced by {X,Y} ;

if (G[X],G[Y],1) is NLC-2 p-Free then return Yes ;
return No ;

Algorithm 3. Recognition of prime NLC-2 graphs

Theorem 5. Algorithm [3 recognises prime NLC-2 graphs, and its time com-
plezity is O(n*m).
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Proof. Trivially if the algorithm return Yes, then G is NLC-2. On the other
hand, by proposition [l and lemmas[I0 and [IT] if G is NLC-2, then it has a good
strong 2-bimodule and the algorithm returns Yes.

The set S can be computed using algorithms for computing split decomposi-
tion on G and G, and bi-join decomposition on G. Note that it is not required to
use a linear time algorithm for split decomposition [5]: some simpler algorithms
run in O(n?m) [3U10]. [708] show that bi-join decomposition can be computed in
linear time, using a reduction to modular decomposition. But there also, mod-
ular decomposition algorithms simpler than [I5] may be used. The set S has
O(n) elements. Testing if a 2-bimodule is good takes O(nm) using algorithm [I

So total running time is O(n?m).

3.3 NLC-2 Decomposition
Using lemma [I modular decomposition and algorithm [ we get:

Theorem 6. NLC-2 graphs can be recognised in O(n*m), and a NLC-2 expres-
ston can be generated in the same time.

4 Graph Isomorphism on NLC-2 Graphs

4.1 Graph Isomorphism on NLC-2 p-Free Prime Graphs

Proposition 2. Consider a symmetric S € {1,2} x {1,2}. Two graphs G and
H are isomorphic if and only if there is a bijection 7 between Pg(G) and Ps(H)
such that for all P € Ps(Q), G[P] is isomorphic to H[rx(P)].

Proposition 3. Let a non-symmetric S € {1,2} x{1,2} and let G and H be two
graphs. Let P4 (G) = (Py,...,Py) and P4(H) = (P{,...,P],) then G and H are
isomorphic if and only if k = k' and for all i € {1,...,k}, G|P;] is isomorphic
to H[P]].

These two propositions are direct consequences of the linear and degenerate
properties of S-cuts. Then two NLC-2 p-Free 2-labelled graphs G and H are
isomorphic if and only if there is an isomorphism between their canonical NLC-
2 p-Free decomposition tree which respects the order of children of 1inear nodes.
This isomorphism can be tested in linear time, thus isomorphism of NLC-2 p-Free
graphs can be done in O(nm) time.

4.2 Graph Isomorphism on Prime NLC-2 Graphs

Theorem 7. Algorithm []] test isomorphism between two prime NLC-2 graphs
in time O(n?m).

Proof. If the algorithm returns “yes”, then trivially G ~ H. On the other hand
suppose that G ~ H and let 7 : V(G) — V(H) be a bijection such that {u,v} €
E(GQ) iff (m(u),n(v)) € E(H). Then {X",Y'} with X' = n(X) and Y’ = 7(Y)
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is a good 2-bimodule if H. If min(|X|,|Y|) > 1 and {X’,Y’} is a bi-join, then
by definition there is two labelling induced by {X,Y}, and (G,l) ~ (H,l’) or
(G,1) ~ (H,s(l")). Otherwise the labelling is unique and (G, 1) ~ (H,1’).

Input. Two prime NLC-2 graphs G and H
Result. Yes if G ~ H, No otherwise
S « the set of strong splits, co-splits and bi-joins of G ;
S’ « the set of strong splits, co-splits and bi-joins of H ;
if there is no good 2-bimodule in S then fail with “G is not NLC-27;
{X,Y} < a good 2-bimodule in S ;
I « the labelling of G induced by {X,Y} ;
foreach {X',Y'} € 8’ such that {X',Y"} is good do
" «+ the labelling of H induced by {X’, Y’} ;
if | X|>1and |Y|>1and {X,Y} is a bi-join then
if (G,1) ~ (H,!') or (G,l) ~ (H,s(l')) then return Yes ;
else if (G,l) ~ (H,!’) then return Yes ;
return No ;

Algorithm 4. Isomorphism for prime NLC-2 graphs

The sets S and S’ can be computed in O(n?) time using linear time algorithms
for computing split decomposition on G and G, and bi-join decomposition on G.
The sets S and 8" have O(n) elements. Test if a 2-bimodule is good take O(nm)
using algorithm [I and test if two 2-labelled prime graphs are isomorphic take
also O(nm). Thus the total running time is O(n?m).

4.3 Graph Isomorphism on NLC-2 Graphs

It is easy to show that graph isomorphism on prime NLC-2 graphs with an
additional labels into {1,..., ¢} can be done in O(n?m) time. For that, we add
the additional label of v at the leaf corresponding to v in the NLC-2 p-Free
decomposition tree.

We show that we can do graph isomorphism on NLC-2 graphs in time O(n?m),
using the modular decomposition and algorithm @l Let M(G) and M(H) be the
modular decomposition of G and H. For M € M(G), let Gar be G[M], and for
M e M(H), let Hy; be H[M]. Let G, be the characteristic graph of Gs (note
that [V (G3y)| is the number of children of M in the modular decomposition
tree). Let M.y = {M € M(G)UM(H) : M| = i}, let M, ;) = {M €
M(G)UM(H) : [V(G3y)| = 7} and let M(m‘) = M(i7*) N M(*yj). Note that
Z?:1<‘M(*,j)| x 7) is the number of vertices in G plus the number of edges in
the modular decomposition tree, and thus is at most 3n — 2.

Theorem 8. Algorithm[d tests isomorphism between two NLC-2 graphs in time
O(n?m).

Proof. The correctness comes from the fact that at each step, for all M, M’ €
M(G) UM(H) such that [(M) and [(M') are set, Gy and Gy are isomorphic
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if and only if [(M) = I(M’). The total time f(n7 m) of this algorithm is (“big
O” is omitted): f(n,m) < 37,37, (72m|M i ? mZ] (723 (IMup?) <
m S, (PIMepP) <m S, ((1Mep)?) < n2m

Input. Two NLC-2 graphs G and H
Result. Yes if G >~ H, No otherwise
for every M € M(G) UM(H) such that |M|=1do (M) —1;
for i from 2 to n do
for j from 2 to i do
Compute the partition P of M, ;) such that M and M’ are in the
same class of P if and only if (G%,,1) ~ (G}, 1). ;
foreach P € P do
a < a new label (an integer not in Img(l)) ;
For all M € P,I(M) «— a ;

Algorithm 5. Isomorphism on NLC-2 graphs
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