NLC-2 Graph Recognition and Isomorphism^{*}

Vincent Limouzy¹, Fabien de Montgolfier¹, and Michaël Rao¹

LIAFA - Univ. Paris Diderot {limouzy,fm,rao}@liafa.jussieu.fr

Abstract. NLC-width is a variant of clique-width with many application in graph algorithmic. This paper is devoted to graphs of NLC-width two. After giving new structural properties of the class, we propose a $O(n^2m)$ -time algorithm, improving Johansson's algorithm [14]. Moreover, our alogrithm is simple to understand. The above properties and algorithm allow us to propose a robust $O(n^2m)$ -time isomorphism algorithm for NLC-2 graphs. As far as we know, it is the first polynomial-time algorithm.

1 Introduction

NLC-width is a graph parameter introduced by Wanke [16]. This notion is tightly related to clique-width introduced by Courcelle *et al.* [2]. Both parameters were introduced to generalise the well known tree-width. The motivation on research about such *width* parameter is that, when the width (NLC-, clique- or tree-width) is bounded by a constant, then many NP-complete problems can be solved in polynomial (even linear) time, if the decomposition is provided.

Such parameters give insights on graph structural properties. Unfortunately, finding the minimum NLC-width of the graph was shown to be NP-hard by Gurski *et al.* [12]. Some results however are known. Let NLC-*k* be the class of graph of NLC width bounded by *k*. NLC-1 is exactly the class of cographs. Probe-cographs, bi-cographs and weak-bisplit graphs [9] belong to NLC-2. Jo-hansson [14] proved that recognising NLC-2 graphs is polynomial and provided an $O(n^4 \log(n))$ recognition algorithm. Complexity for recognition of NLC-*k*, $k \geq 3$, is still unknown.

In this paper we improve Johansson's result down to $O(n^2m)$. Our approach relies on graph decompositions. We establish the tight links that exist between NLC-2 graphs and the so-called modular decomposition, split decomposition, and bi-join decomposition.

NLC-2 can be defined as a graph colouring problem. Unlike NLC-k classes, for $k \geq 3$, recolouring is useless for prime NLC-2 graphs. That allow us to propose a canonical decomposition of bi-coloured NLC-2 graphs, defined as certain bi-coloured split operations. This decomposition can be computed in O(nm) time if the colouring is provided. If a graph is *prime*, there using split and bi-join

^{*} Research supported by the ANR project *Graph Decompositions and Algorithms* (GRAAL) and by INRIA project-team GANG.

A. Brandstädt, D. Kratsch, and H. Müller (Eds.): WG 2007, LNCS 4769, pp. 86–98, 2007.

[©] Springer-Verlag Berlin Heidelberg 2007

decompositions, we show that there is at most O(n) colourings to check. Finally, modular decomposition properties allow to reduce NLC-2 graph decomposition to prime NLC-2 graph decomposition. Section 3 explains this $O(n^2m)$ -time decomposition algorithm.

In Section 4 is proposed an isomorphism algorithm. Using modular, split and bi-join decompositions and the canonical NLC-2 decomposition, isomorphism between two NLC-2 graphs can be tested in $O(n^2m)$ time.

2 Preliminaries

A graph G = (V, E) is pair of a set of vertices V and a set of edges E. For a graph G, V(G) denote its set of vertices, E(G) its set of edges, n(G) = |V(G)| and m(G) = |E(G)| (or V, E, n and m if the graph is clear in the context). $N(x) = \{y \in V : \{x, y\} \in E\}$ denotes the neighbourhood of the vertex x, and $N[x] = N(v) \cup \{v\}$. For $W \subseteq V$, $G[W] = (W, E \cap W^2)$ denote the graph induced by W. Let A and B be two disjoint subsets of V. Then we note A ① B if for all $(a, b) \in A \times B$, then $\{a, b\} \in E$, and we note A ① B if for all $(a, b) \in A \times B$, then $\{a, b\} \in E$, and G' = (V', E') are isomorphic (noted $G \simeq G'$) if there is a bijection $\varphi : V \to V'$ such that $\{x, y\} \in E \Leftrightarrow \{\varphi(x), \varphi(y)\} \in E'$, for all $u, v \in V$.

A k-labelling (or labelling) is a function $l: V \to \{1, \ldots, k\}$. A k-labelled graph is a pair of a graph G = (V, E) and a k-labelling l on V. It is denoted by (G, l)or by (V, E, l). Two labelled graphs (V, E, l) and (V', E', l') are isomorphic if there is a bijection $\varphi: V \to V'$ such that $\{u, v\} \in E \Leftrightarrow \{\varphi(x), \varphi(y)\} \in E'$ and $l(u) = l'(\varphi(u))$ for all $u, v \in V$. Let k be a positive integer. The class of NLC-k graphs is defined recursively by the following operations.

- For all $i \in \{1, \ldots, k\}$, (i) is in NLC-k, where (i) is the graph with one vertex labelled i.
- Let $G_1 = (V_1, E_1, l_1)$ and $G_2 = (V_2, E_2, l_2)$ be NLC-*k* and let $S \subseteq \{1, ..., k\}^2$. Then $G_1 \times_S G_2$ is in NLC-*k*, where $G_1 \times_S G_2 = (V, E, l)$ with $V = V_1 \cup V_2$,

$$E = E_1 \cup E_2 \cup \{\{u, v\} : (u, v) \in V_1 \times V_2 \text{ and } (l_1(u), l_2(v)) \in S\}$$

and for all
$$u \in V$$
, $l(u) = \begin{cases} l_1(u) \text{ if } u \in V_1 \\ l_2(u) \text{ if } u \in V_2. \end{cases}$

- Let $R: \{1, \ldots, k\} \to \{1, \ldots, k\}$ and G = (V, E, l) be NLC-k. Then $\rho_R(G)$ is in NLC-k, where $\rho_R(G) = (V, E, l')$ such that l'(u) = R(l(u)) for all $u \in V$.

A graph is NLC-k if there is a k-labelling of G such that (G, l) is in NLC-k. A k-labelled graph is NLC-k ρ -free if it can be constructed without the ρ_R operation.

Modules and modular decomposition. A module in a graph is a non-empty subset $X \subseteq V$ such that for all $u \in V \setminus X$, then either $N(u) \cap X = \emptyset$ or $X \subseteq N(u)$. A module is *trivial* if $|X| \in \{1, |V|\}$. A graph is *prime* (w.r.t. modular decomposition) if all its modules are trivial. Two sets X and X' overlap if $X \cap X', X \setminus X'$

and $X' \setminus X$ are non-empty. A module X is *strong* if there is no module X' such that X and X' overlap. Let $\mathcal{M}'(G)$ be the set of modules of G, let $\mathcal{M}(G)$ be the set of its strong modules, and let $\mathcal{P}(G) = \{M_1, \ldots, M_k\}$ be the maximal (w.r.t. inclusion) members of $\mathcal{M}(G) \setminus \{V\}$.

Theorem 1. [11] Let G = (V, E) be a graph such that $|V| \ge 2$. Then:

- if G is not connected, then $\mathcal{P}(G)$ is the set of connected components of G,
- if \overline{G} is not connected, then $\mathcal{P}(G)$ is the set of connected components of \overline{G} ,
- if G and \overline{G} are connected, then $\mathcal{P}(G)$ is a partition of V and is formed with the maximal members of $\mathcal{M}' \setminus \{V\}$.

 $\mathcal{P}(G)$ is a partition of V, and G can be decomposed into $G[M_1], \ldots, G[M_k]$, where $\mathcal{P}(G) = \{M_1, \ldots, M_k\}$. The characteristic graph G^* of a graph G is the graph of vertex set $\mathcal{P}(G)$ and two $P, P' \in \mathcal{P}(G)$ are adjacent if there is an edge between P and P' in G (and so there is no non-edges since P and P' are two modules). The recursive decomposition of a graph by this operation gives the modular decomposition of the graph, and can be represented by a rooted tree, called the modular decomposition tree. It can be computed in linear time [15]. The nodes of the modular decomposition tree are exactly the strong modules, so in the following we make no distinction between the modular decomposition of G and $\mathcal{M}(G)$. Note that $|\mathcal{M}(G)| \leq 2 \times n - 1$. For $M \in \mathcal{M}(G)$, let $G_M = G[M]$ and G_M^* its characteristic graph.

Lemma 1. [14] Let G be a graph. G is NLC-k if and only if every characteristic graph in the modular decomposition of G is NLC-k.

Moreover, a NLC-k expression for G can be easily constructed from the modular decomposition and from NLC-k expressions of prime graphs. On prime graphs, NLC-2 recognition is easier:

Lemma 2. [14] Let G be a prime graph. Then G is NLC-2 if and only if there is a 2-labelling l such that (G, l) is NLC-2 ρ -Free.

Bi-partitive family. A bipartition of V is a pair $\{X, Y\}$ such that $X \cap Y = \emptyset$, $X \cup Y = V$ and X and Y are both non empty. Two bipartitions $\{X, Y\}$ and $\{X', Y'\}$ overlap if $X \cap Y, X \cap Y', X' \cap Y$ and $X' \cap Y'$ are non empty. A family \mathcal{F} of bipartitions of V is bipartitive if (1) for all $v \in V$, $\{\{v\}, V \setminus \{v\}\} \in \mathcal{F}$ and (2) for all $\{X, Y\}$ and $\{X', Y'\}$ in \mathcal{F} such that $\{X, Y\}$ and $\{X', Y'\}$ overlap, then $\{X \cap X', Y \cup Y'\}, \{X \cap Y', Y \cup X'\}, \{Y \cap X', X \cup Y'\}, \{Y \cap Y', X \cup X'\}$ and $\{X \Delta X', X \Delta Y'\}$ are in \mathcal{F} (where $X \Delta Y = (X \setminus Y) \cup (Y \setminus X)$). Bipartitive families are very close to partitive families [1], which generalise properties of modules in a graph.

A member $\{X, Y\}$ of a bipartitive family \mathcal{F} is *strong* if there is no $\{X', Y'\}$ such that $\{X, Y\}$ and $\{X', Y'\}$ overlap. Let T be a tree. For an edge e in the tree, $\{C_e^1, C_e^2\}$ denote the bipartition of leaves of T such that two leaves are in the same set if and only if the path between them avoids e. Similarly, for an internal node α , $\{C_{\alpha}^1, \ldots, C_{\alpha}^{d(\alpha)}\}$ denote the partition of leaves of T such that two leaves are in the same set if and only if the path between them avoid α .

Fig. 1. A module, a bi-join, a split and a co-split

Theorem 2. [4] Let \mathcal{F} be a bipartitive family on V. Then there is an unique unrooted tree T, called the representative tree of \mathcal{F} , such that the set of leaves of T is V, the internal nodes of T are labelled **degenerate** or **prime**, and

- for every edge e of T, $\{C_e^1, C_e^2\}$ is a strong member of \mathcal{F} , and there is no other strong member in \mathcal{F} ,

- for every node α labelled degenerate, and for every $\emptyset \subsetneq I \subsetneq \{1, \ldots, d(\alpha)\}$, $\{\bigcup_{i \in I} C^i_{\alpha}, V \setminus \bigcup_{i \in I} C^i_{\alpha}\}$ is in \mathcal{F} , and there is no other member in \mathcal{F} .

A split in a graph G = (V, E) is a bipartition $\{X, Y\}$ of V such that the set of vertices in X having a neighbour in Y have the same neighbourhood in Y (*i.e.*, for all $u, v \in X$ such that $N(u) \cap Y \neq \emptyset$ and $N(v) \cap Y \neq \emptyset$, then $N(u) \cap Y = N(v) \cap Y$). A co-split in a graph G is a split in \overline{G} . The family of split in a connected graph is a bipartitive family [3]. The split decomposition tree is the representative tree of the family of splits, and can be computed in linear time [5]. Let α be an internal node of the split decomposition tree of a connected graph G. For all $i \in \{1, \ldots, d(\alpha)\}$ let $v_i \in C^i_{\alpha}$ such that $N(v_i) \setminus C^i_{\alpha} \neq \emptyset$. Since G is connected, such a v_i always exists. $G[\{v_1, \ldots, v_{d(\alpha)}\}]$ denote the characteristic graph of α . The characteristic graph of a degenerate node is a complete graph or a star [3].

A bi-join in a graph is a bipartition $\{X, Y\}$ such that for all $u, v \in X$, $\{N(u) \cap Y, Y \setminus N(u)\} = \{N(v) \cap Y, Y \setminus N(v)\}$. The family of bi-joins in a graph is bipartitive. The bi-join decomposition tree is the representative tree of the family of bi-joins, and can be computed in linear time [7,8]. Let α be an internal node of the bi-join decomposition tree of a graph G. For all $i \in \{1, \ldots, d(\alpha)\}$ let $v_i \in C_{\alpha}^i$. $G[\{v_1, \ldots, v_{d(\alpha)}\}]$ denote the characteristic graph of α . The characteristic graph of a degenerate node is a complete bipartite graph or a disjoint union of two complete graphs [7,8].

3 Recognition of NLC-2 Graphs

3.1 NLC-2 ρ -Free Canonical Decomposition

In this section, G = (V, E, l) is a 2-labelled graph such that every mono-coloured module (*i.e.* a module M such that $\forall v, v' \in M, l(v) = l(v')$) has size 1. A couple

(X, Y) is a *cut* if $X \cup Y = V, X \cap Y = \emptyset, X \neq \emptyset$ and $Y \neq \emptyset$. Let $S \subseteq \{1, 2\} \times \{1, 2\}$. A cut (X, Y) is a *S*-*cut* of *G* if for all $u \in X$ and $v \in Y$, then $\{u, v\} \in E$ if and only if $(l(u), l(v)) \in S$. For $S \subseteq \{1, 2\} \times \{1, 2\}$ let $\mathcal{F}_S(G)$ be the set of *S*-cut of *G*.

Definition 1 (Symmetry). We say that $S \in \{1, 2\} \times \{1, 2\}$ is symmetric if $(1, 2) \in S \iff (2, 1) \in S$, otherwise we say that S is non-symmetric.

Definition 2 (Degenerate property). A family \mathcal{F} of cuts has the degenerate property if there is a partition \mathcal{P} of V such that for all $\emptyset \subsetneq \mathcal{X} \subsetneq \mathcal{P}$, $(\bigcup_{X \in \mathcal{X}} X, \bigcup_{Y \in \mathcal{P} \setminus \mathcal{X}} Y)$ is in \mathcal{F} , and there is no others cut in \mathcal{F} .

Lemma 3. For every symmetric $S \subseteq \{1,2\} \times \{1,2\}$, $\mathcal{F}_S(G)$ has the degenerate property.

Proof. The family $\mathcal{F}_{\{\}}(G)$ has the degenerate property since (X, Y) is a $\{\}$ -cut if and only if there is no edges between X and Y (\mathcal{P} is exactly the set of connected components). For $W \subseteq V$, let $G|W = (V, E\Delta W^2, l)$. For $i \in \{1, 2\}$ let $V_i = \{v \in V : l(v) = i\}$. Let $G_1 = G|V_1, G_2 = G|V_2$ and $G_{12} = (G|V_1)|V_2$.

$$- \mathcal{F}_{\{(1,1)\}}(G) = \mathcal{F}_{\{\}}(G_1), \ \mathcal{F}_{\{(2,2)\}}(G) = \mathcal{F}_{\{\}}(G_2), \ \mathcal{F}_{\{(1,1),(2,2)\}}(G) = \mathcal{F}_{\{\}}(G_{12}), \\ - \mathcal{F}_{\{(1,1),(1,2),(2,1),(2,2)\}}(G) = \mathcal{F}_{\{\}}(\overline{G}), \ \mathcal{F}_{\{(1,2),(2,1),(2,2)\}}(G) = \mathcal{F}_{\{\}}(\overline{G_1}), \\ \mathcal{F}_{\{(1,1),(1,2),(2,1)\}}(G) = \mathcal{F}_{\{\}}(\overline{G_2}), \ \mathcal{F}_{\{(1,2),(2,1)\}}(G) = \mathcal{F}_{\{\}}(\overline{G_{12}}).$$

Thus for every symmetric $S \subseteq \{1, 2\} \times \{1, 2\}, \mathcal{F}_S(G)$ has the degenerate property.

Definition 3 (Linear property). A family \mathcal{F} of cuts has the linear property if for all (X, Y) and (X', Y') in \mathcal{F} , either $X \subseteq X'$ or $X' \subseteq X$.

Lemma 4. For every non-symmetric $S \subseteq \{1,2\} \times \{1,2\}$, $\mathcal{F}_S(G)$ has the linear property.

Proof. Case $S = \{(1,2)\}$: suppose that $X \setminus X'$ and $X' \setminus X$ are both non-empty. Then if $u \in X \setminus X'$ is labelled 1 and $v \in X' \setminus X$ is labelled 2, u and v has to be adjacent and non-adjacent, contradiction. Thus $X \setminus X'$ and $X' \setminus X$ are mono-coloured. Now suppose w.l.o.g. that all vertices in $X \Delta X'$ are labelled 1. Then $X \Delta X'$ is adjacent to all vertices labelled 2 in $Y \cap Y'$ and non adjacent to all vertices labelled 1 in $Y \cap Y'$. Moreover $X \Delta X'$ is non adjacent to all vertices in $X \cap X'$. Thus $X \Delta X'$ is a mono-coloured module, and $|X \Delta X'| \ge 2$. Contradiction. For others non-symmetric S, we bring back to case $\{(1,2)\}$ like in the proof of lemma 3.

For $S \subseteq \{1,2\} \times \{1,2\}$, let $\mathcal{P}_S(G)$ denote the unique partition of V such that (1) for all $(X,Y) \in \mathcal{F}_S(G)$ and $P \in \mathcal{P}_S(G)$, $P \subseteq X$ or $P \subseteq Y$, and (2) for all $P, P' \in \mathcal{P}$, $P \neq P'$, there is a $(X,Y) \in \mathcal{F}_S(G)$ such that $P \subseteq X$ and $P' \subseteq Y$, or $P \subseteq Y$ and $P' \subseteq X$. For a non-symmetric $S \in \{1,2\} \times \{1,2\}$, let $\mathcal{P}'_S(G) = (P_1, \ldots, P_k)$ denote the unique ordering of elements in $\mathcal{P}_S(G)$ such that for all $(X,Y) \in \mathcal{F}_S(G)$, there is a l such that $X = \bigcup_{i \in \{1,\ldots,l\}} P_i$.

Lemma 5. If G is in NLC-2 ρ -Free, then there is a $S \subseteq \{1,2\} \times \{1,2\}$ such that $\mathcal{F}_S(G)$ is non-empty.

Proof. If G is NLC-2 ρ -Free, then there is a $S \subseteq \{1, 2\} \times \{1, 2\}$, and two graphs G_1 and G_2 such that $G = G_1 \times_S G_2$. Thus $(V(G_1), V(G_2)) \in \mathcal{F}_S(G)$ and $\mathcal{F}_S(G)$ is non empty.

Lemma 6. Let G = (V, E, l) 2-labelled graph and let $S \subseteq \{1, 2\} \times \{1, 2\}$. If G is NLC-2 ρ -Free and has no mono-coloured non-trivial module, then for all $P \in \mathcal{P}_S(G)$, G[P] has no mono-coloured non-trivial module.

Proof. If M is a mono-coloured module of G[P], then M is a mono-coloured module of G. Contradiction.

Lemma 7. Let G = (V, E, l) 2-labelled graph and let $S \subseteq \{1, 2\} \times \{1, 2\}$. Then G is NLC-2 ρ -Free if and only if for all $P \in \mathcal{P}_S(G)$, G[P] is NLC-2 ρ -Free.

Proof. The "only if" is immediate. Now suppose that for all $P \in \mathcal{P}_S(G)$, G[P] is NLC-2 ρ -Free. If S is symmetric, let $\mathcal{P}_S(G) = \{P_1, \ldots, P_{|\mathcal{P}_S(G)|}\}$. Then $G = ((G[P_1] \times_S G[P_2]) \times_S \ldots \times_S G[P_{|\mathcal{P}_S(G)|}]$, and G is NLC-2 ρ -Free. Otherwise, if S is non-symmetric, let $\mathcal{P}'_S(G) = (P_1, \ldots, P_{|\mathcal{P}_S(G)|})$. Then $G = ((G[P_1] \times_S G[P_2]) \times_S \ldots \times_S G[P_{|\mathcal{P}_S(G)|}]$, and G is NLC-2 ρ -Free.

The NLC-2 ρ -Free decomposition tree of a 2-labelled graph G is a rooted tree such that the leaves are the vertices of G, and the internal nodes are labelled by \times_S , with $S \subseteq \{1,2\} \times \{1,2\}$. An internal node is **degenerated** if S is symmetric, and **linear** if S is non-symmetric. By lemmas 5, 6 and 7, G is NLC-2 ρ -Free if and only if it has a NLC-2 ρ -Free decomposition tree. This decomposition tree is not unique. But we can define a *canonical decomposition tree* if we fix a total order on the subsets of $\{1,2\} \times \{1,2\}$ (for example, the lexicographic order). If two graphs are isomorphic, then they have the same canonical decomposition tree. Algorithm 1 computes the canonical decomposition tree of a 2-labelled prime graph, or fails if G is not NLC-2 ρ -Free.

Input. A 2-labelled graph G = (V, E, l)

- 1 if |V| = 1 then return the leaf $\cdot(l(v))$ (where $V = \{v\}$)
- **2** Let S be the set of subsets of $\{1,2\} \times \{1,2\}$ and σ be the lexicographic order of S
- 3 for each $S \in S$ w.r.t. σ do
- 4 Compute $\mathcal{P}_S(G)$, and $\mathcal{P}'_S(G)$ if S is non-symmetric (see algorithm 2)
- 5 if $|\mathcal{P}_S(G)| > 1$ then

8

- **6** Create a new \times_S node β
- 7 foreach $P \in \mathcal{P}_S(G)$ (w.r.t. $\mathcal{P}'_S(G)$ if S is non-symmetric) do
 - make NLC-2 ρ -Free decomposition tree of G[P] be a child of β .
- 9 return the tree rooted at β

10 fail with Not NLC-2 ρ -Free

Algorithm 1. Computation of the NLC-2 ρ -Free canonical decomposition tree

Output. A NLC-2 ρ -Free decomposition tree, or fail if G is not NLC-2 ρ -Free

Algorithm 2 computes \mathcal{P}_S and \mathcal{P}'_S for a 2-labelled prime graph G and $S \subseteq \{1,2\} \times \{1,2\}$ in linear time. We need some additional definitions for this algorithm and its proof of correctness. A *bipartite graph* is a triplet (X,Y,E) such that $E \subseteq X \times Y$. The *bi-complement* of a bipartite graph (X,Y,E) is the bipartite graph (X,Y,E) is the bipartite graph $(X,Y,E) \setminus E$. A *bipartite trigraph* (BT) is a bipartite graph with two types of edges: the *join* edges and the *mixed* edges. It is denoted by $\mathcal{B} = (X,Y,E_j,E_m)$ where E_j are the set of *join* edges, and E_m the set of *mixed* edges. A *BT-module* in a BT is a $M \subseteq X$ or $M \subseteq Y$ such that M is a module in (X,Y,E_j) and there is no *mixed* edges between M and $(X \cup Y) \setminus M$. For $v \in X \cup Y$, let $N_j(v) = \{u \in X \cup Y : \{u,v\} \in E_j\}$ and $N_m(v) = \{u \in X \cup Y : \{u,v\} \in E_m\}$. Let $d_j(v) = |N_j(v)|$ and $d_m(v) = |N_m(v)|$. A *semi-join* in a BT (X,Y,E_j,E_m) is a cut (A,B) of $X \cup Y$, such that there is no edges between $A \cap Y$ and $B \cap X$, and there is only *join* edges between $A \cap X$ and $B \cap Y$.

In algorithm 2, \mathcal{B} is obtained from the graph G. Vertices of X correspond to subsets of vertices labelled 1 in G, and vertices of Y correspond to subsets of vertices labelled 2. There is a *join* edge between M and M' in \mathcal{B} if M (1) M'in G, and there is a *mixed* edge between $M \in X$ and $M' \in Y$ in \mathcal{B} if there is at least an edge and a non-edge between M and M' in G. Such a graph \mathcal{B} can easily be built in linear time from a given graph G. It suffices to consider a list and an array bounded by the number of component in G with the same colour. The following lemmas are close to observations in [9], but deal with BT instead of bipartite graphs.

Lemma 8. Let $G = (X, Y, E_j, E_m)$ be a BT such that every BT-module has size 1. Let $(x_1, \ldots, x_{|X|})$ be X sorted by $(d_j(x), d_m(x))$ in lexicographic decreasing order. If (A, B) is a semi-join of G, then there is a $k \in \{0, \ldots, |X|\}$ such that $A \cap X = \{x_1, \ldots, x_k\}.$

Input. A 2-labelled graph G, and $S \subseteq \{1, 2\} \times \{1, 2\}$

Output. \mathcal{P}_S if S is symmetric, \mathcal{P}'_S if S is non-symmetric

- 1 $V_i \leftarrow \{v : v \in V \text{ and } l(v) = i\};$
- **2** if $(1,1) \in S$ then $C_1 \leftarrow$ co-connected components of $G[V_1]$;
- **3 else** $C_1 \leftarrow$ connected components of $G[V_1]$;
- 4 if $(2,2) \in S$ then $C_2 \leftarrow$ co-connected components of $G[V_2]$;
- **5 else** $C_2 \leftarrow$ connected components of $G[V_2]$;
- **6** $\mathcal{B} = (\mathcal{C}_1, \mathcal{C}_2, E_j, E_m) \leftarrow$ the bipartite trigraph between the elements of \mathcal{C}_1 and \mathcal{C}_2 ;
- 7 if $S \cap \{(1,2), (2,1)\} = \emptyset$ then
- **s return** connected components of $(\mathcal{C}_1, \mathcal{C}_2, E_j \cup E_m)$
- 9 else if $S \cap \{(1,2), (2,1)\} = \{(1,2), (2,1)\}$ then
- **10** return connected components of the bi-complement of (C_1, C_2, E_j)

11 else Search all semi-joins of \mathcal{B} (using lemmas 8 and 9);

Algorithm 2. Computation of \mathcal{P}_S and \mathcal{P}'_S

Lemma 9. Let $k \in \{0, ..., |X|\}$ and $k' \in \{0, ..., |Y|\}$. Then $(A, (X \cup Y) \setminus A)$, where $A = \{x_1, ..., x_k, y_1, ..., y_{k'}\}$, is a semi-join of G if and only if $\sum_{i=1}^{k} d_j(x_i) - \sum_{i=1}^{k'} d_j(y_i) = k \times (|Y| - k')$ and $\sum_{i=1}^{k} d_m(x_i) - \sum_{i=1}^{k'} d_m(y_i) = 0$.

Theorem 3. Algorithm 2 is correct and runs in linear time.

Proof. Correctness: Suppose that (A, B) is a *S*-cut. If $(1, 1) \notin S$, then there is no edge between $A \cap V_1$ and $B \cap V_1$, thus (A, B) cannot cut a component C_1 (and similarly for $(1, 1) \in S$, and for C_2). Now we work on the BT $\mathcal{B} =$ $(\mathcal{C}_1, \mathcal{C}_2, E_j, E_m)$. If $S \cap \{(1, 2), (2, 1)\} = \emptyset$, then *S*-cuts correspond exactly to connected components of \mathcal{B} , and if $S \cap \{(1, 2), (2, 1)\} = \{(1, 2), (2, 1)\}$ then *S*cuts correspond exactly to connected components of the BT of \overline{G} , which is $(\mathcal{C}_1, \mathcal{C}_2, (\mathcal{C}_1 \times \mathcal{C}_2) \setminus (E_j \cup E_m), E_m)$. Finally, if *S* is non-symmetric, *S*-cuts correspond to semi-joins of \mathcal{B} .

Complexity: It is well admitted that we can perform a BFS on a graph or its complement in linear time [13,6]. The instructions on lines [2-5,8] can be done with a BFS on a graph or its complement. It is easy to see that we can do a BFS on the bi-complement in linear time (like a BFS on a complement graph, with two vertex lists for X and Y), so instruction line 10 can be done in linear time. Finally, the operations at line 11 are done in linear time.

These results can be summarized as:

Theorem 4. Algorithm 1 computes the canonical NLC-2 ρ -Free decomposition tree of a 2-labelled graph in O(nm) time.

3.2 NLC-2 Decomposition of a Prime Graph

In this section, G is an unlabelled prime (w.r.t. modular decomposition) graph, with $|V| \ge 3$.

Definition 4 (2-bimodule). A bipartition $\{X,Y\}$ of V is a 2-bimodule if X can be partitioned into X_1 and X_2 , and Y into Y_1 and Y_2 such that for all $(i,j) \in \{1,2\} \times \{1,2\}$, then either $X_i \bigoplus Y_j$ or $X_i \bigoplus Y_j$. It is easy to see that if $\{X,Y\}$ is a 2-bimodule if and only if $\{X,Y\}$ is a split, a co-split or a bi-join. Moreover, if $\min(|X|, |Y|) > 1$ then $\{X,Y\}$ cannot be both of them in the same time (since G is prime).

Let $l: V \to \{1, 2\}$ be a 2-labelling. Then s(l) denote the 2-labelling on V such that for all $v \in V$, s(l)(v) = 1 if and only if l(v) = 2.

Definition 5 (Labelling induced by a 2-bimodule). Let $\{X,Y\}$ be a 2bimodule. We define the labelling $l: V \to \{1,2\}$ of G induced by $\{X,Y\}$. If |X| = |Y| = 1, then l(x) = 1 and l(y) = 2, where $X = \{x\}$ and $Y = \{y\}$. If |X| = 1, then l(v) = 1 iff $v \in N[x]$. Similarly if |Y| = 1, then l(v) = 1 iff $v \in N[y]$. Now we suppose min(|X|, |Y|) > 1. If $\{X,Y\}$ is a split, then the set of vertices in X with a neighbour Y and the set of vertices in Y with a neighbour in X is labelled 1, others vertices are labelled 2. If $\{X,Y\}$ is a co-split, then a labelling of G induced by $\{X,Y\}$ is a labelling of \overline{G} induced by the split $\{X,Y\}$. Finally if $\{X,Y\}$ is a bi-join, l is such that $\{v \in X : l(v) = 1\}$ is a join with $\{v \in Y : l(v) = 1\}$ and $\{v \in X : l(v) = 2\}$ is a join with $\{v \in Y : l(v) = 2\}$. Note that if $\{X,Y\}$ is a bi-join, then there is two possibles labelling l_1 and l_2 , with $l_1 = s(l_2)$. If $\{X,Y\}$ is a 2-bimodule of G and l a labelling induced by $\{X,Y\}$, then every mono-coloured module has size 1 (since G is prime and $|V| \ge 3$).

Definition 6 (Good 2-bimodule). A 2-bimodule $\{X, Y\}$ is good if the graph G with the labelling induced by $\{X, Y\}$ is NLC-2 ρ -Free. The following proposition comes immediately from lemma 2.

Proposition 1. G is NLC-2 if and only if G has a good 2-bimodule.

Lemma 10. If G has a good 2-bimodule $\{X, Y\}$ which is a split, then G has a good 2-bimodule which is a strong split.

Proof. There is a node α in the split decomposition tree and we have $\emptyset \subsetneq I \subsetneq \{1, \ldots, d(\alpha)\}$ such that $\{X, Y\} = \{\bigcup_{i \in I} C^i_{\alpha}, \bigcup_{i \notin I} C^i_{\alpha}\}$. Let $l : V \to \{1, 2\}$ be the labelling of G induced by $\{X, Y\}$. For all $i \in \{1, \ldots, d(\alpha)\}$, $(G[C^i_{\alpha}], l|_{C^i_{\alpha}})$ is NLC-2 ρ -Free (where $l|_W$ is the function l restricted at W).

Let l' be the 2-labelling of V such that for all i, and $v \in C^i_{\alpha}$, l(v) = 1 if and only if v has a neighbour outside of C^i_{α} . For all i, either $l|_{C^i_{\alpha}} = l'|_{C^i_{\alpha}}$, or $\forall v \in C^i_{\alpha}$, l(v) = 2. Then for all i, $(G[C^i_{\alpha}], l'|_{C^i_{\alpha}})$ is NLC-2 ρ -Free, and thus (G, l') is NLC-2 ρ -Free. Since there is a dominating vertex in the characteristic graph of α , there is a j such that the labelling induced by the strong split $\{C^j_{\alpha}, V \setminus C^j_{\alpha}\}$ is l'. Thus the strong split $\{C^j_{\alpha}, V \setminus C^j_{\alpha}\}$ is good.

Previous lemma on \overline{G} say that if G has a good 2-bimodule $\{X, Y\}$ which is a co-split, then G has a good 2-bimodule which is a strong co-split. The following lemma is similar to Lemma 10.

Lemma 11. If G has a good 2-bimodule $\{X, Y\}$ which is a bi-join, then G has a good 2-bimodule which is a strong bi-join.

Input. A graph G Result. Yes iff G is NLC-2 $S \leftarrow$ the set of strong splits, co-splits and bi-joins of G; foreach $\{X, Y\} \in S$ do $l \leftarrow$ the labelling of G induced by $\{X, Y\}$; if (G[X], G[Y], l) is NLC-2 ρ -Free then return Yes; return No;

Algorithm 3. Recognition of prime NLC-2 graphs

Theorem 5. Algorithm 3 recognises prime NLC-2 graphs, and its time complexity is $O(n^2m)$. *Proof.* Trivially if the algorithm return Yes, then G is NLC-2. On the other hand, by proposition 1, and lemmas 10 and 11, if G is NLC-2, then it has a good strong 2-bimodule and the algorithm returns Yes.

The set S can be computed using algorithms for computing split decomposition on G and \overline{G} , and bi-join decomposition on G. Note that it is not required to use a linear time algorithm for split decomposition [5]: some simpler algorithms run in $O(n^2m)$ [3,10]. [7,8] show that bi-join decomposition can be computed in linear time, using a reduction to modular decomposition. But there also, modular decomposition algorithms simpler than [15] may be used. The set S has O(n) elements. Testing if a 2-bimodule is good takes O(nm) using algorithm 1. So total running time is $O(n^2m)$.

3.3 NLC-2 Decomposition

Using lemma 1, modular decomposition and algorithm 3, we get:

Theorem 6. NLC-2 graphs can be recognised in $O(n^2m)$, and a NLC-2 expression can be generated in the same time.

4 Graph Isomorphism on NLC-2 Graphs

4.1 Graph Isomorphism on NLC-2 p-Free Prime Graphs

Proposition 2. Consider a symmetric $S \in \{1,2\} \times \{1,2\}$. Two graphs G and H are isomorphic if and only if there is a bijection π between $\mathcal{P}_S(G)$ and $\mathcal{P}_S(H)$ such that for all $P \in \mathcal{P}_S(G)$, G[P] is isomorphic to $H[\pi(P)]$.

Proposition 3. Let a non-symmetric $S \in \{1, 2\} \times \{1, 2\}$ and let G and H be two graphs. Let $\mathcal{P}'_S(G) = (P_1, \ldots, P_k)$ and $\mathcal{P}'_S(H) = (P'_1, \ldots, P'_{k'})$ then G and H are isomorphic if and only if k = k' and for all $i \in \{1, \ldots, k\}$, $G[P_i]$ is isomorphic to $H[P'_i]$.

These two propositions are direct consequences of the linear and degenerate properties of S-cuts. Then two NLC-2 ρ -Free 2-labelled graphs G and H are isomorphic if and only if there is an isomorphism between their canonical NLC-2 ρ -Free decomposition tree which respects the order of children of linear nodes. This isomorphism can be tested in linear time, thus isomorphism of NLC-2 ρ -Free graphs can be done in O(nm) time.

4.2 Graph Isomorphism on Prime NLC-2 Graphs

Theorem 7. Algorithm 4 test isomorphism between two prime NLC-2 graphs in time $O(n^2m)$.

Proof. If the algorithm returns "yes", then trivially $G \simeq H$. On the other hand suppose that $G \simeq H$ and let $\pi : V(G) \to V(H)$ be a bijection such that $\{u, v\} \in E(G)$ iff $(\pi(u), \pi(v)) \in E(H)$. Then $\{X', Y'\}$ with $X' = \pi(X)$ and $Y' = \pi(Y)$

is a good 2-bimodule if H. If $\min(|X|, |Y|) > 1$ and $\{X', Y'\}$ is a bi-join, then by definition there is two labelling induced by $\{X, Y\}$, and $(G, l) \simeq (H, l')$ or $(G, l) \simeq (H, s(l'))$. Otherwise the labelling is unique and $(G, l) \simeq (H, l')$.

Input. Two prime NLC-2 graphs G and H Result. Yes if $G \simeq H$, No otherwise $S \leftarrow$ the set of strong splits, co-splits and bi-joins of G; $S' \leftarrow$ the set of strong splits, co-splits and bi-joins of H; if there is no good 2-bimodule in S then fail with "G is not NLC-2"; $\{X,Y\} \leftarrow$ a good 2-bimodule in S; $l \leftarrow$ the labelling of G induced by $\{X,Y\}$; foreach $\{X',Y'\} \in S'$ such that $\{X',Y'\}$ is good do $l' \leftarrow$ the labelling of H induced by $\{X,Y\}$; if |X| > 1 and |Y| > 1 and $\{X,Y\}$ is a bi-join then \lfloor if $(G,l) \simeq (H,l')$ or $(G,l) \simeq (H,s(l'))$ then return Yes; else if $(G,l) \simeq (H,l')$ then return Yes; return No;

Algorithm 4. Isomorphism for prime NLC-2 graphs

The sets S and S' can be computed in $O(n^2)$ time using linear time algorithms for computing split decomposition on G and \overline{G} , and bi-join decomposition on G. The sets S and S' have O(n) elements. Test if a 2-bimodule is good take O(nm)using algorithm 1, and test if two 2-labelled prime graphs are isomorphic take also O(nm). Thus the total running time is $O(n^2m)$.

4.3 Graph Isomorphism on NLC-2 Graphs

It is easy to show that graph isomorphism on prime NLC-2 graphs with an additional labels into $\{1, \ldots, q\}$ can be done in $O(n^2m)$ time. For that, we add the additional label of v at the leaf corresponding to v in the NLC-2 ρ -Free decomposition tree.

We show that we can do graph isomorphism on NLC-2 graphs in time $O(n^2m)$, using the modular decomposition and algorithm 4. Let $\mathcal{M}(G)$ and $\mathcal{M}(H)$ be the modular decomposition of G and H. For $M \in \mathcal{M}(G)$, let G_M be G[M], and for $M \in \mathcal{M}(H)$, let H_M be H[M]. Let G_M^* be the characteristic graph of G_M (note that $|V(G_M^*)|$ is the number of children of M in the modular decomposition tree). Let $\mathcal{M}_{(i,*)} = \{M \in \mathcal{M}(G) \cup \mathcal{M}(H) : |M| = i\}$, let $\mathcal{M}_{(*,j)} = \{M \in$ $\mathcal{M}(G) \cup \mathcal{M}(H) : |V(G_M^*)| = j\}$ and let $\mathcal{M}_{(i,j)} = \mathcal{M}_{(i,*)} \cap \mathcal{M}_{(*,j)}$. Note that $\sum_{j=1}^{n} (|\mathcal{M}_{(*,j)}| \times j)$ is the number of vertices in G plus the number of edges in the modular decomposition tree, and thus is at most 3n - 2.

Theorem 8. Algorithm 5 tests isomorphism between two NLC-2 graphs in time $O(n^2m)$.

Proof. The correctness comes from the fact that at each step, for all $M, M' \in \mathcal{M}(G) \cup \mathcal{M}(H)$ such that l(M) and l(M') are set, G_M and $G_{M'}$ are isomorphic

if and only if l(M) = l(M'). The total time f(n,m) of this algorithm is ("big O" is omitted): $f(n,m) \leq \sum_i \sum_j \left(j^2 m |\mathcal{M}_{(i,j)}|^2\right) \leq m \sum_j \left(j^2 \sum_i \left(|\mathcal{M}_{(i,j)}|^2\right)\right) \leq m \sum_j \left(j^2 |\mathcal{M}_{(*,j)}|^2\right) \leq m \sum_j \left(\left(j |\mathcal{M}_{(*,j)}|\right)^2\right) \leq n^2 m.$

Input. Two NLC-2 graphs G and H Result. Yes if $G \simeq H$, No otherwise for every $M \in \mathcal{M}(G) \cup \mathcal{M}(H)$ such that |M| = 1 do $l(M) \leftarrow 1$; for *i* from 2 to *n* do for *j* from 2 to *i* do Compute the partition \mathcal{P} of $\mathcal{M}_{(i,j)}$ such that M and M' are in the same class of \mathcal{P} if and only if $(G_M^*, l) \simeq (G_{M'}^*, l)$.; foreach $P \in \mathcal{P}$ do $a \leftarrow a$ new label (an integer not in Img(*l*)); For all $M \in P$, $l(M) \leftarrow a$;

Algorithm 5. Isomorphism on NLC-2 graphs

References

- Chein, M., Habib, M., Maurer, M.C.: Partitive hypergraphs. Discrete Math. 37(1), 35–50 (1981)
- Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph grammars. J. Comput. Syst. Sci. 46(2), 218–270 (1993)
- Cunningham, W.H.: Decomposition of directed graphs. SIAM J. Algebraic Discrete Methods 3(2), 214–228 (1982)
- Cunningham, W.H., Edmonds, J.: A combinatorial decomposition theory. Canad. J. Math. 32, 734–765 (1980)
- Dahlhaus, E.: Parallel algorithms for hierarchical clustering and applications to split decomposition and parity graph recognition. J. Algorithms 36(2), 205–240 (2000)
- Dahlhaus, E., Gustedt, J., McConnell, R.M.: Partially complemented representations of digraphs. Discrete Math. Theor. Comput. Sci. 5(1), 147–168 (2002)
- de Montgolfier, F., Rao, M.: The bi-join decomposition. In: ICGT. ENDM, vol. 22, pp. 173–177 (2005)
- 8. de Montgolfier, F., Rao, M.: Bipartitives families and the bi-join decomposition. Technical report (2005), https://hal.archives-ouvertes.fr/hal-00132862
- Fouquet, J.-L., Giakoumakis, V., Vanherpe, J.-M.: Bipartite graphs totally decomposable by canonical decomposition. Internat. J. Found. Comput. Sci. 10(4), 513–533 (1999)
- Gabor, C.P., Supowit, K.J., Hsu, W.-L.: Recognizing circle graphs in polynomial time. J. ACM 36(3), 435–473 (1989)
- Gallai, T.: Transitiv orientierbare Graphen. Acta Math. Acad. Sci. Hungar. 18, 25–66 (1967)
- Gurski, F., Wanke, E.: Minimizing NLC-width is NP-Complete. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 69–80. Springer, Heidelberg (2005)

- Habib, M., Paul, C., Viennot, L.: Partition refinement techniques: An interesting algorithmic tool kit. Internat. J. Found. Comput. Sci. 10(2), 147–170 (1999)
- Johansson, Ö.: NLC₂-decomposition in polynomial time. Internat. J. Found. Comput. Sci. 11(3), 373–395 (2000)
- McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation. Discrete Math. 201(1-3), 189–241 (1999)
- Wanke, E.: k-NLC Graphs and Polynomial Algorithms. Discrete Appl. Math. 54(2-3), 251–266 (1994)