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Abstract. The class of 2-interval graphs has been introduced for mod-
elling scheduling and allocation problems, and more recently for specific
bioinformatics problems. Some of those applications imply restrictions
on the 2-interval graphs, and justify the introduction of a hierarchy of
subclasses of 2-interval graphs that generalize line graphs: balanced 2-
interval graphs, unit 2-interval graphs, and (x,x)-interval graphs. We
provide instances that show that all inclusions are strict. We extend the
NP-completeness proof of recognizing 2-interval graphs to the recognition
of balanced 2-interval graphs. Finally we give hints on the complexity of
unit 2-interval graphs recognition, by studying relationships with other
graph classes: proper circular-arc, quasi-line graphs, K1,5-free graphs, . . .

Keywords: 2-interval graphs, graph classes, line graphs, quasi-line graphs,
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1 2-Interval Graphs and Restrictions

The interval number of a graph, and the classes of k-interval graphs have been in-
troduced as a generalization of the class of interval graphs by McGuigan [McG77]
in the context of scheduling and allocation problems. Recently, bioinformatics
problems have renewed interest in the class of 2-interval graphs (each vertex is
associated to a pair of disjoint intervals and edges denote intersection between
two such pairs). Indeed, a pair of intervals can model two associated tasks in
scheduling [BYHN+06], but also two similar segments of DNA in the context of
DNA comparison [JMT92], or two complementary segments of RNA for RNA
secondary structure prediction and comparison [Via04].

RNA (ribonucleic acid) are polymers of nucleotides linked in a chain through
phosphodiester bonds. Unlike DNA, RNAs are usually single stranded, but
many RNA molecules have secondary structure in which intramolecular loops are
formed by complementary base pairing. RNA secondary structure is generally
divided into helices (contiguous base pairs), and various kinds of loops (unpaired
nucleotides surrounded by helices). The structural stability and function of non-
coding RNA (ncRNA) genes are largely determined by the formation of stable
secondary structures through complementary bases, and hence ncRNA genes
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(a) (b) (c)

Fig. 1. Helices in a RNA secondary structure (a) can be modeled as a set of balanced
2-intervals among all 2-intervals corresponding to complementary and inverted pairs of
letter sequences (b), or as an independent subset in the balanced associated 2-interval
graph (c).

across different species are most similar in the pattern of nucleotide complemen-
tarity rather than in the genomic sequence. This motivates the use of 2-intervals
for modelling RNA secondary structures: each helix of the structure is modeled
by a 2-interval. Moreover, the fact that these 2-intervals are usually required to be
disjoint in the structure naturally suggests the use of 2-interval graphs. Further-
more, aiming at better modelling RNA secondary structures, it was suggested
in [CHLV05] to focus on balanced 2-interval sets (each 2-interval is composed of
two equal length intervals) and their associated intersection graphs referred as
balanced 2-interval graphs. Indeed, helices in RNA secondary structures are most
of the time composed of equal length contiguous base pairs parts. To the best of
our knowledge, nothing is known on the class of balanced 2-interval graphs.

Sharper restrictions have also been introduced in scheduling, where it is pos-
sible to consider tasks which all have the same duration, that is 2-interval whose
intervals have the same length [BYHN+06,Kar05]. This motivates the study of
the classes of unit 2-interval graphs, and (x, x)-interval graphs. In this paper,
we consider these subclasses of interval graphs, and in particular we address the
problem of recognizing them.

A graph G = (V, E) of order n is a 2-interval graph if it is the intersection
graph of a set of n unions of two disjoint intervals on the real line, that is each
vertex corresponds to a union of two disjoint intervals Ik = Ik

l ∪ Ik
r , k ∈ �1, n� (l

for “left” and r for “right”), and there is an edge between Ij and Ik iff Ij∩Ik �= ∅.
Note that for the sake of simplicity we use the same letter to denote a vertex
and its corresponding 2-interval. A set of 2-intervals corresponding to a graph G
is called a realization of G. The set of all intervals,

⋃n
k=1{Ik

l , Ik
r }, is called the

ground set of G (or the ground set of {I1, . . . , In}).
The class of 2-interval graphs is a generalization of interval graphs, and also

contains all circular-arc graphs (intersection graphs of arcs of a circle), outer-
planar graphs (have a planar embedding with all vertices around one of the
faces [KW99]), cubic graphs (maximum degree 3 [GW80]), and line graphs (in-
tersection graphs of edges of a graph).

Unfortunately, most classical graph combinatorial problems turn out to be
NP-complete for 2-interval graphs: recognition [WS84], maximum independent
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Fig. 2. Graph classes related to 2-interval graphs and its restrictions. A class pointing
towards another strictly contains it, and the dashed lines mean that there is no inclusion
relationship between the two. Dark classes correspond to classes not yet present in the
ISGCI Database [BLS+].

set [BNR96,Via01], coloration [Via01], . . . Surprisingly enough, the complexity
of the maximum clique problem for 2-interval graphs is still open (although it
has been recently proven to be NP-complete for 3-interval graphs [BHLR07]).

For practical application, restricted 2-interval graphs are needed. A 2-interval
graph is balanced if it has a 2-interval realization in which each 2-interval is
composed of two intervals of the same length [CHLV05], unit if it has a 2-
interval realization in which all intervals of the ground set have length 1 [BFV04],
and is called a (x, x)-interval graph if it has a 2-interval realization in which
all intervals of the ground set are open, have integer endpoints, and length
x [BYHN+06,Kar05]. In the following sections, we will study those restrictions of
2-interval graphs, and their position in the hierarchy of graph classes illustrated
in Figure 2.

Note that all (x, x)-interval graphs are unit 2-interval graphs, and that all
unit 2-interval graphs are balanced 2-interval graphs. We can also notice that
(1, 1)-interval graphs are exactly line graphs: each interval of length 1 of the
ground set can be considered as the vertex of a root graph and each 2-interval as
an edge in the root graph. This implies for example that the coloration problem
is also NP-complete for (2, 2)-interval graphs and wider classes of graphs. It is
also known that the complexity of the maximum independent set problem is NP-
complete on (2, 2)-interval graphs [BNR96]. Recognition of (1, 2)-union graphs, a
related class (restriction of multitrack interval graphs), was also recently proven
NP-complete [HK06].
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(a) (b) (c)

Fig. 3. The complete bipartite graph K5,3 (a,b) has a balanced 2-interval realization
(c): vertices of S5 are associated to balanced 2-intervals of length 7, those of S3 to
balanced 2-intervals of length 11. Any realization of this graph is contiguous, i.e., the
union of all 2-intervals is an interval.

2 Useful Gadgets for 2-Interval Graphs and Restrictions

For proving hardness of recognizing 2-interval graphs, West and Shmoys consid-
ered in [WS84] the complete bipartite graph K5,3 as a useful 2-interval gadget.
Indeed, all its realizations are contiguous: for any realization, the union of all
intervals in its ground set is an interval. Thus, by putting edges between some
vertices of a K5,3 and another vertex v, we can force one interval of the 2-interval
v (or just one extremity of this interval) to be blocked inside the realization of
K5,3. It is easy to see that K5,3 has a balanced 2-interval realization, for example
the one in Figure 3.

However, K5,3 is not a unit 2-interval graph. Indeed, each 2-interval I = Il∪Ir

corresponding to a degree 5 vertex intersect 5 disjoint 2-intervals, and hence one
of Il or Ir intersect at least 3 intervals, which is impossible for unit intervals.
Therefore, we introduce the new gadget K4,4 − e which is a (2, 2)-interval graph
with only contiguous realizations (the proof is omitted).

3 Balanced 2-Interval Graphs

We show in this section that the class of balanced 2-interval graphs is strictly in-
cluded in the class of 2-interval graphs, and strictly contains circular-arc graphs.
Moreover, we prove that recognizing balanced 2-interval graphs is as hard as
recognizing (general) 2-interval graphs.

Property 1. The class of balanced 2-interval graphs is strictly included in the
class of 2-interval graphs.

(a) (b) (c)

Fig. 4. The graph K4,4 − e (a), a nicer representation (b), and a 2-interval realization
with open intervals of length 2 (c)
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(a)

(b)

Fig. 5. An example of unbalanced 2-interval graph (a) : any realization groups intervals
of the seven K5,3 in a block, and the chain of seven blocks creates six “holes” between
them, which make it impossible to balance the lengths of the three 2-intervals I1, I2,
and I3

Proof. We build a 2-interval graph that has no balanced 2-interval realization.
Let’s consider a chain of gadgets K5,3 (introduced in previous section) to which
we add three vertices I1, I2, and I3 as illustrated in Figure 5. In any realization,
the presence of holes showed by crosses in the Figure gives the following in-
equalities for any realization: l(Il

2) < l(Il
1), l(Il

3) < l(Ir
2), and l(Ir

1) < l(Ir
3)

(or if the realization of the chain of K5,3 appears in the symmetrical order:
l(Il

1) < l(Il
3), l(Ir

3) < l(Il
2), and l(Ir

2) < l(Ir
1)). If this realization was bal-

anced, then we would have l(Il
1) = l(Ir

1) < l(Ir
3) = l(Il

3) < l(Ir
2) = l(Il

2) (or
the symetrical equality): impossible! So this graph has no balanced 2-interval
realization although it has a 2-interval generalization.

Theorem 1. Recognizing balanced 2-interval graphs is NP-complete.

Proof. We just adapt the proof of West and Shmoys [WS84,GW95]: reduce the
problem of Hamiltonian cycle in a 3-regular triangle-free graph to balanced 2-
interval recognition.

Let G = (V, E) be a 3-regular triangle-free graph. We build a graph G′ which
has a 2-interval realization (a special one, very specific, called H-representation
and which we prove to be balanced) iff G has a Hamiltonian cycle. The construc-
tion of G′, illustrated in Figure 6(a) is almost identical to the one by West and
Shmoys, so we just prove that G′ has a balanced realization, shown in Figure 6
(b), by computing lengths for each interval to ensure it. All K5,3 have a balanced
realization as shown in section 1 of total length 79, in particular H3. We can
thus affect length 83 to the intervals of v0. The intervals of the other vi can have
length 3, and their M(vi) length 79, so through the computation illustrated in
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Fig. 6. There is a balanced 2-interval of G′ (which has been dilated in the drawing
to remain readable) iff there is an H-representation (that is a realization where the
left intervals of all 2-intervals are contiguous) for its induced subgraph G iff there is a
Hamiltonian cycle in G

Figure 6, intervals of z can have length 80 + 82 + 2(n − 1) + 3, that is 163 + 2n.
We dilate H1 until a hole between two consecutive intervals of its S3 can contain
an interval of z, that is until the hole has length 165+2n : so after this dilating,
H1 has length 79(165 + 2n). Finally if G has a Hamiltonian cycle, then we have
found a balanced 2-interval realization of G of total length 13, 273 + 241n.

It is known that circular-arc graphs are 2-interval graphs, they are also balanced
2-interval.

Property 2. The class of circular-arc graphs is strictly included in the class of
balanced 2-interval graphs.

Proof. The transformation is simple: if we have a circular-arc representation of
a graph G = (V, E), then we choose some point P of the circle. We partition V
in V1 ∪ V2, where P intersects all the arcs corresponding to vertices of V1 and
none of the arcs of the vertices of V2. Then we cut the circle at point P to map
it to a line segment: every arc of V2 becomes an interval, and every arc of V1
becomes a 2-interval. To obtain a balanced realization we just cut in half the
intervals of V2 to obtain two intervals of equal length for each. And for each
2-interval [g(Il), d(Il)] ∪ [g(Ir), d(Ir)] of V1, as both intervals are located on one
of the extremities of the realization, we can increase the length of the shortest so
that it reaches the length of the longest without changing intersections with the
other intervals. The inclusion is strict because K2,3 is a balanced 2-interval graph
(as a subgraph of K5,3 for example) but is not a circular-arc graph (we can find
two C4 in K2,3, and only one can be realized with a circular-arc representation).
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4 Unit 2-Interval and (x,x)-Interval Graphs

Property 3. Let x ∈ N, x ≥ 2. The class of (x, x)-interval graphs is strictly
included in the class of (x + 1, x + 1)-interval graphs.

Proof. We first prove that an interval graph with a representation where all
intervals have length k (and integer open bounds) has a representation where all
intervals have length k + 1.

We use the following algorithm. Let S be initialized as the set of all intervals
of length k, and let T be initially the empty set. As long as S is not empty,
let I = [a, b] be the left-most interval of S, remove from S each interval [α, β]
such that α < b (including I), add [α, β + 1] to T , and translate by +1 all the
remaining intervals in S. When S is empty, the intersection graph of T , where all
intervals have length k + 1 is the same as the intersection graph for the original
S.

We also build for each x ≥ 2 a (x+1, x+1)-interval graph which is not a (x, x)-
interval graph. We consider the bipartite graph K2x and a perfect matching
{(vi, v

′
i), i ∈ �1, x�}. We call K ′

x the graph obtained from K2x with the following
transformations, illustrated in Figure 7(a): remove edges (vi, v

′
i) of the perfect

matching, add four graphs K4,4 − e called X1, X2, X3, X4 (for each Xi, we call
vi

l and vi
r the vertices of degree 3), link v2

r and v3
l , link all vi to v1

r and v4
l , link all

v′i to v2
l and v3

r , and finally add a vertex a (resp. b) linked to all vi, v′i, and to two
adjacent vertices of X1 (resp. X4) of degree 4. We illustrate in Figure 7(b) that
K ′

x has a realization with intervals of length x + 1. We can prove by induction
on x that K ′

x has no realization with intervals of length x: it is rather technical,
so we just give the idea. Any realization of K ′

x forces the block X2 to share an
extremity with the block X3, so each 2-interval v′i has one interval intersecting
the other extremity of X2, and the other intersecting the other extremity of X3.
Then constraints on the position of vertices vi force their intervals to appear as
two “stairways” as shown in Figure 7(b). So v1

r must contain x extremities of
intervals which have to be different, so it must have length x + 1.

The complexity of recognizing unit 2-interval graphs and (x, x)-interval graphs
remains open, however the following shows a relationship between those com-
plexities.

Lemma 1. {unit 2-interval graphs} =
⋃

x∈N∗
{(x, x)-interval graphs}.

Proof. The ⊃ part is trivial. To prove ⊂, let G = (V, E) be a unit 2-interval
graph. Then it has a realization with |V | = n 2-intervals, that is 2n intervals
of the ground set. So we consider the interval graph of the ground set, which
is a unit interval graph. There is a linear time algorithm based on breadth-first
search to compute a realization of such a graph where interval endpoints are
rational, with denominator 2n [CKN+95]. So by dilating by a factor 2n such a
realization, we obtain a realization of G where intervals of the ground set have
length 2n.
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(a)

(b)

Fig. 7. The graph K′
4 (a) is (5,5)-interval but not (4,4)-interval

Theorem 2. If recognizing (x, x)-interval graphs is polynomial for any integer
x then recognizing unit 2-interval graphs is polynomial.

5 Investigating the Complexity of Unit 2-Interval Graphs

In this section we show that all proper circular-arc graphs (circular-arc graphs
such that no arc is included in another in the representation) are unit 2-interval
graphs, and we study a class of graphs which generalizes quasi-line graphs and
contains unit 2-interval graphs.

Property 4. The class of proper circular-arc graphs is strictly included in the
class of unit 2-interval graphs.

Proof. As in the proof of Property 2, we cut the circle of the representation
of a proper circular-arc graph G to get a proper interval realization, which we
transform into a unit interval realization [Rob69], which provides a unit 2-interval
representation of G. To complete the proof, we notice that the domino (two cycles
C4 having an edge in common) is a unit 2-interval graph but not a circular-arc
graph.

Quasi-line graphs are those graphs whose vertices are bisimplicial, i.e., the
closed neighborhood of each vertex can be partitioned into two cliques. They
have been introduced as a generalization of line graphs and a useful subclass
of claw-free graphs [Ben81,FFR97,CS05,KR07]. Following the example of quasi-
line graphs that generalize line graphs, we introduce here a new class of graphs for
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generalizing unit 2-interval graphs. Let k ∈ N
∗. A graph G = (V, E) is all-k-

simplicial if the neighborhood of each vertex v ∈ V can be partitioned into at
most k cliques (note that quasi-line graphs are exactly all-2-simplicial graphs).

Property 5. The class of unit 2-interval graphs is strictly included in the class of
all-4-simplicial graphs.

Proof. The inclusion is trivial. We show that it is strict. Consider the following
graph which is all-4-simplicial but not unit 2-interval: start with the cycle C4,
call its vertices vi, i ∈ �1, 4�, add four K4,4 − e gadgets called Xi, and for each i
we connect the vertex vi to two connected vertices of degree 4 in Xi. This graph
is certainly all-4-simplicial. But if we try to build a 2-interval realization of this
graph, then each of the 2-intervals vk has an interval trapped into the block
Xk. So each 2-interval vk has only one interval to realize the intersections with
the other vi: this is impossible as we have to realize a C4 which has no interval
representation.

Property 6. The class of claw-free graphs is not included in the class of all-4-
simplicial graphs.

Proof. The Kneser Graph KG(7, 2) is triangle-free, not 4-colorable [Lov78]. The
graph obtained by adding an isolated vertex v and then taking the complement
graph, i.e., KG(7, 2) 
 {v}, is claw-free as KG(7, 2) is triangle-free. And if it was
all-4-simplicial, then the neighborhood of v in KG(7, 2) 
 {v}, that is KG(7, 2),
would be a union of at most four cliques, so KG(7, 2) would be 4-colorable:
impossible so this graph is claw-free but not all-4-simplicial.

Property 7. The class of all-k-simplicial graphs is strictly included in the class
of K1,k+1-free graphs.

Proof. If a graph G contains K1,k+1, then it has a vertex with k+1 independent
neighbors, and hence G is not all-k-simplicial. The wheel W2k+1 is a simple
example of K1,k+1-free graph in which the center can not have its neighborhood
(a C2k+1) partitioned into k cliques or less.

Unfortunately, all-k-simplicial graphs do not have a nice structure which could
help unit 2-interval graph recognition.

Theorem 3. Recognizing all-k-simplicial graphs is NP-complete for k ≥ 3.

Proof. We reduce from Graph k-colorability, which is known to be NP-
complete for k ≥ 3 [Kar72]. Let G = (V, E) be a graph, and let G′ be the com-
plement graph of G to which we add a universal vertex v. We claim that G is k-
colorable iff G′ is all-k-simplicial. If G is k-colorable, then the non-neighborhood
of any vertex in G is k-colorable, so the neighborhood of any vertex in G is a
union of at most k cliques. And the neighborhood of v is also a union of at most
k cliques, so G′ is all-k-simplicial. Conversely, if G′ is all-k-simplicial, then in
particular the neighborhood of v is a union of at most k cliques. Let’s partition
it into k vertex-disjoint cliques X1, . . . , Xk. Then, coloring G such that two ver-
tices have the same color iff they are in the same Xi leads to a valid k-coloring
of G.
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6 Conclusion

Motivated by practical applications in scheduling and computational biology, we
focused in this paper on balanced 2-interval graphs and unit 2-intervals graphs.
Also, we introduced two natural new classes: (x, x)-interval graphs and all-k-
simplicial graphs.

We mention here some directions for future works. First, the complexity of
recognizing unit 2-interval graphs and (x, x)-interval graphs remains open. Sec-
ond, the relationships between quasi-line graphs and subclasses of balanced 2-
intervals graphs still have to be investigated. Last, since most problems remain
NP-hard for balanced 2-interval graphs, there is a natural interest in investigat-
ing the complexity and approximation of classical optimization problems on unit
2-interval graphs and (x, x)-interval graphs.
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BYHN+06. Bar-Yehuda, R., Halldórson, M.M., Naor, J., Shachnai, H., Shapira, I.:
Scheduling split intervals. SIAM Journal on Computing 36(1), 1–15 (2006)

CHLV05. Crochemore, M., Hermelin, D., Landau, G.M., Vialette, S.: Approximating
the 2-interval pattern problem. In: Brodal, G.S., Leonardi, S. (eds.) ESA
2005. LNCS, vol. 3669, pp. 426–437. Springer, Heidelberg (2005)

CKN+95. Corneil, D.G., Kim, H., Natarajan, S., Olariu, S., Sprague, A.P.: Simple
linear time recognition of unit interval graphs. Information Processing Let-
ters 55, 99–104 (1995)

CS05. Chudnovsky, M., Seymour, P.: The structure of claw-free graphs. In: Sur-
veys in Combinatorics. London. Math. Soc. Lecture Notes, vol. 327, pp.
153–172. Cambridge University Press, Cambridge (2005)

http://wwwteo.informatik.uni-rostock.de/isgci/classes.cgi


On Restrictions of Balanced 2-Interval Graphs 65
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GW95. Gyárfás, A., West, D.B.: Multitrack interval graphs. Congress Numeran-
tium 109, 109–116 (1995)
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