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Abstract. We present hardness results, approximation heuristics, and
exact algorithms for bottleneck labeled optimization problems arising in
the context of graph theory. This long-established model partitions the
set of edges into classes, each of which is identified by a unique color.
The generic objective is to construct a subgraph of prescribed structure
(such as that of being an s-t path, a spanning tree, or a perfect matching)
while trying to avoid over-picking or under-picking edges from any given
color.

1 Introduction

Let G = (V, E) be a directed or undirected graph, with a weight function w :
E → R+ and a labeling function L : E → {c1, . . . , cq}. We interchangeably refer
to the elements of L(E) as labels or colors. In addition, for E′ ⊆ E and 1 ≤ i ≤ q,
we use Li(E′) = {e ∈ E′ : L(e) = ci} to denote the collection of ci-colored edges
in E′. With this notation in mind, the ci-color weight of an edge set E′ ⊆ E is
defined as

∑
e∈Li(E′) w(e), i.e., the total weight of all ci-colored edges in E′.

Now let P be a given graph property defined on subsets of E, such as that of
inducing a spanning tree, an s-t path, an s-t cut, or a perfect matching. The min-
max weighted labeled P problem (henceforth, WL-min-max P) asks to compute
an edge set E′ ⊆ E satisfying P that minimizes maxi

∑
e∈Li(E′) w(e), the maxi-

mum color weight of E′. Similarly, in max-min weighted labeled P (WL-max-min
P), the minimum color weight should be maximized. We refer to both versions
as weighted labeled bottleneck P problems. Furthermore, for ease of presentation,
we denote by UL-min-max P the unweighted special case of WL-min-max P ,
that asks to minimize the maximum color frequency. Analogous notation will
also be used for the corresponding max-min variant.

The complexity of WL-min-max P has been investigated for several graph
properties by Richey and Punnen [23], Punnen [21,22], and Averbakh and
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Berman [5], in the context of “optimization problems under categorization”.
As indicated in [23,5], WL-min-max P contains both min-max weighted P and
min-sum weighted P as special cases. One simply has to assign a distinct label
to each edge in the former variant, and a single label for all edges in the latter
variant. Similar arguments lead to an analogous result, stating that max-sum
weighted P can be formulated in terms of WL-max-min P . Consequently, when-
ever min-sum weighted (respectively, max-sum weighted) P is NP-hard, so is
WL-min-max (respectively, max-min) P .

1.1 Our Results

We now provide, for each problem considered in this paper, a brief description
of our main findings, accompanied by a concise summary of previous work.

Labeled bottleneck s-t path. Previous work:

1. Averbakh and Berman [5] showed that WL-min-max s-t path is weakly NP-
hard, even in bicolored graphs. Moreover, they proved that UL-min-max s-t
path is NP-hard for an arbitrary number of colors. These results apply to
both directed and undirected graphs.

2. In [12] (problem [GT54], p. 203), it was mentioned that the pair-choice vertex
problem is NP-hard. Here, we are given a directed graph G = (V, E), two
specified nodes {s, t} ⊆ V , and a collection of pairwise-disjoint pairs of arcs.
The objective is to determine whether there exists an s-t path traversing at
most one arc from any given pair. Since UL-min-max directed s-t path can
be viewed as a special case of this problem (pairs correspond to colors), the
former cannot be approximated within a factor of 2 − ε for any fixed ε > 0,
unless P=NP.

3. It is not difficult to verify that UL-max-min s-t path generalizes the longest
path problem, even in monochromatic graphs. Therefore, the results of
Karger, Motwani and Ramkumar [15] imply that UL-max-min s-t path can-
not be approximated within a factor of 2O(log1−ε n) for any fixed ε > 0, unless
NP ⊆ DTIME(2O(log1/ε n)).

New results:

1. UL-max-min s-t path is not approximable at all, unless P=NP (Theorem 6).
2. For a fixed number of colors, there is a fully polynomial-time approximation

scheme for WL-min-max s-t path (Corollary 5).
3. For an arbitrary number of colors, there is an efficient algorithm that con-

structs a feasible solution to UL-min-max s-t path in undirected graphs
using O(

√
nOPT) edges from any given color (Section 4.2). Here, n = |V |

and OPT denotes the objective value of an optimal solution. For directed
graphs, the path we construct traverses O(

√
mOPT) edges from any color,

where m = |E| (Section 4.3).

Labeled bottleneck spanning tree. Previous work: Richey and Punnen [23]
showed that WL-min-max spanning tree is weakly NP-hard, even in bicolored
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graphs. We are not aware of previous work regarding the max-min version of
this problem.

New results:

1. WL-min-max spanning tree is strongly NP-hard (Theorem 9); it can be
approximated within a factor of O(log n) (Section 5.3).

2. UL-min-max spanning tree can be solved in polynomial time (Theorem 11).
3. UL-max-min spanning tree can be solved in polynomial time (Theorem 10).

WL-max-min spanning tree is strongly NP-hard (Theorem 9), and it is also
weakly NP-hard in planar bicolored graphs (Theorem 1).

4. For a fixed number of colors, there is a fully polynomial-time approxima-
tion scheme for both versions of weighted labeled bottleneck spanning tree
(Corollary 5).

Labeled bottleneck perfect matching. Previous work:

1. Richey and Punnen [23] showed that WL-min-max perfect matching is
weakly NP-hard, even in bicolored graphs. A stronger result has recently
been obtained by Punnen [22], who proved that even the simpler WL-min-
max assignment problem is strongly NP-hard.

2. Itai, Rodeh, and Tanimoto [14] proved that the following problem is NP-
complete: Given a bipartite graph and a collection of pairs of edges, decide
whether there exists a perfect matching that picks at most one edge from
any given pair. This problem remains NP-complete for a collection of disjoint
pairs [12] (problem [GT59], p. 203). Since UL-min-max perfect matching can
be viewed as a special case of this problem, the former cannot be approxi-
mated within a factor of 2 − ε for any fixed ε > 0, unless P=NP.

3. Karzanov [16], and Yi, Murty and Spera [26] proved that, given a complete
bipartite graph Kn,n with edges colored either red or blue, the problem of
finding a perfect matching consisting of exactly r red edges and n − r blue
edges is polynomial-time solvable1. Therefore, UL-min-max and UL-max-
min perfect matching in complete bipartite bicolored graphs can be solved
to optimality in polynomial time.

4. To our knowledge, WL-max-min perfect matching has not been studied in
the literature.

New results:

1. WL-max-min perfect matching is weakly NP-hard in bicolored planar graphs
(Theorem 1). UL-max-min perfect matching is not approximable at all in
general graphs, unless P=NP.

2. There is an approximation-preserving reduction from UL-min-max directed
s-t path to UL-min-max perfect matching.

3. For a fixed number of colors, there is a fully polynomial-time approximation
scheme for both versions of weighted labeled bottleneck perfect matching
(Corollary 5).

1 On the other hand, the complexity of this problem in general bipartite graphs is still
open.
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Due to space limitations, these results appear in the full version of this paper.

Labeled bottleneck s-t cut. Previous work: To our knowledge, both versions
of this problem have not been studied yet.

New results:

1. UL-min-max s-t cut is NP-hard in bicolored graphs (Theorem 3). When the
underlying graph is planar, UL-min-max s-t cut cannot be approximated
within a factor of 2 − ε for any fixed ε > 0, unless P=NP, and the weighted
version of this problem is weakly NP-hard when the graph is bicolored as
well (Theorem 1).

2. WL-max-min s-t cut is weakly NP-hard in planar bicolored graphs (Theorem
1). For an arbitrary number of colors, this problem is not approximable at
all in planar multigraphs, unless P=NP.

Due to space limitations, these results appear in the full version of this paper.

1.2 Related Work

In this section, we provide a brief survey of several frameworks to which our
contributions are related. Since some of the settings under consideration have
received a great deal of attention in recent years, it is beyond the scope of this
writing to present an exhaustive overview. We refer the reader to the undermen-
tioned papers and to the references therein for a more comprehensive review of
the literature.

Multiobjective combinatorial optimization [11,24,25]. The basic ingredi-
ents of a multiobjective optimization problem are typically: A set of instances
I; a set of feasible solutions F(x) associated with every instance x ∈ I; and a
collection of cost functions w1(x, y), . . . , wk(x, y) associated with every instance
x ∈ I and feasible solution y ∈ F(x). Given an instance x ∈ I, the goal is to
solve miny∈F(x){w1(x, y), . . . , wk(x, y)}, where the exact meaning of “min” de-
pends on the particular setting in question. For example, it may stand for Pareto
optimality (see Section 3), for aiming to minimize the worst cost function, or
for lexicographically minimizing the vector of cost functions. It is not difficult
to verify that WL-min-max P is actually a multiobjective optimization problem
in disguise: The set of feasible solutions consists of all edge sets that satisfy P ;
for every color ci there is a corresponding cost function wi which is exactly the
ci-color weight; and the goal is to minimize the maximum cost function. Minor
adjustments allow us to treat WL-max-min P in a similar way.

Robust discrete optimization [17,6]. Very informally, robust optimization
deals with decision making in environments of considerable data uncertainty,
trying to come up with solutions that hedge against the worst contingency that
may arise. Several alternative approaches for coping with uncertainty have been
explored and exploited; however, the scenario-based framework of Kouvelis and
Yu [17] seems most relevant to our paper. In this context, future developments
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are described by a finite number of scenarios, each of which corresponds to
a possible realization of the unknown model parameters. The objective is to
optimize against the worst possible scenario by using a min-max objective. Once
again, we note that WL-min-max P can be easily cast as a scenario-based robust
optimization problem: For every color ci there is an analogous scenario si, in
which the weight wsi(e) of an edge e ∈ E is set to w(e) if its color is ci, and to
0 otherwise. In addition, the cost of an edge set E′ ⊆ E in scenario si is given
by

∑
e∈E′ wsi (e), which is exactly the ci-color weight of this set.

The min-sum-max setting. A complementary line of work [23,5,22] on edge-
colored graphs attempts to minimize the sum of the maximal edge weight picked
from every given color. In particular, when all edges are associated with unit
weights, a problem of this nature reduces to that of constructing subgraphs
satisfying a required property while minimizing the number of colors used. Some
properties that have recently been studied in this context include spanning trees
[10,7,9,13], s-t paths [8,13], and perfect matchings [19].

2 Fixed Number of Colors: Hardness Results

2.1 Weak NP-Hardness in Bicolored Graphs

In what follows, we prove that several weighted labeled bottleneck problems are
NP-hard, even in planar bicolored graphs. As noted in Section 1.1, WL-min-max
P is known to be NP-hard in bicolored graphs for P ∈ {spanning tree, s-t path,
perfect matching} [23,5].

Theorem 1. WL-min-max P and WL-max-min P are NP-hard, even in planar
bicolored graphs, for P ∈ {s-t path, s-t cut, perfect matching, spanning tree}.

2.2 Strong NP-Hardness for s-t Cuts

Aissi, Bazgan and Vanderpooten [4] proved that min-max robust P with a fixed
number of scenarios admits pseudo-polynomial algorithms for s-t paths and span-
ning trees in general graphs and for perfect matchings in planar graphs. Since
WL-min-max P can be viewed as a special case of these settings (see Section
1.2), it follows that the corresponding min-max labeled problems have pseudo-
polynomial algorithms for a fixed number of colors.

In contrast, we proceed by proving that WL-min-max s-t cut is strongly NP-
hard in bicolored graphs. A similar result was established for bi-criteria s-t cut
[20, Thm. 6], and more recently for min-max robust s-t cut with two scenarios
[3, Cor. 1]. Unfortunately, in their reductions the resulting instances do not
correspond to WL-min-max s-t cut instances, and it appears as if we cannot
conclude the desired result for WL-min-max s-t cut in an obvious way. However,
we can slightly modify the construction of Papadimitriou and Yannakakis [20].
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Theorem 2. WL-min-max s-t cut is strongly NP-hard in bicolored graphs.

Proof. We propose a reduction from the bisection width problem. Given a con-
nected graph G = (V, E) on 2n vertices, a bisection is a cut (V1, V2) in G with
|V1| = |V2| = n. The decision version of bisection width asks to determine, for
a given integer k, whether there exists a bisection with at most k edges. This
problem is known to be NP-complete [12] (problem [ND17], p. 210).

Given an instance of bisection width, as described above, we construct an in-
stance I = (G′, w, L) of WL-min-max s-t cut, with G′ = (V ′, E′) and L(E′) =
{c1, c2}, as follows:

– G′ has two additional vertices, s and t, each of which is connected to every
vertex of G.

– L(s, v) = c1 for every v ∈ V ; all other edges have color c2.
– w(s, v) = k(n + 1) and w(t, v) = kn for every v ∈ V ; w(e) = n for every

original edge e ∈ E.

We now argue that G has a bisection of size at most k if and only if I has
an s-t cut whose min-max value is at most kn(n + 1). If (V1, V2) is a bisection
with at most k edges, then ({s} ∪ V1, {t} ∪ V2) is an s-t cut in G′ that picks
c1-colored edges of total weight

∑
e∈({s},V2) w(e) = kn(n + 1) and c2-colored

edges of total weight
∑

e∈({t},V1) w(e)+
∑

e∈(V1,V2) w(e) = kn2 +kn = kn(n+1).
Conversely, let ({s} ∪ V1, {t} ∪ V2) be an s-t cut in G′ with min-max value of at
most kn(n + 1). Since each c1-colored edge in this cut has a weight of k(n + 1),
it follows that |V2| ≤ n. In addition, the c2-colored edges in this cut have a total
weight of n|E′′|+kn|V1|, where E′′ = (V1, V2), and we conclude that |V1| ≤ n+1.
Now, if |V1| = n+1 the inequality n|E′′|+kn|V1| ≤ kn(n+1) implies E′′ = ∅, so
G is clearly disconnected (contradicting our initial assumption); thus |V1| ≤ n.
Finally, since |V1| ≤ n and |V2| ≤ n, we have |V1| = |V2| = n, and therefore
(V1, V2) is a bisection with at most k edges. 	


Theorem 3. UL-min-max s-t cut is NP-hard in bicolored graphs.

Proof. To prove the theorem, we show that a ρ-approximation for UL-min-max
s-t cut can be converted in polynomial time into a ρ-approximation for WL-min-
max s-t cut when the edge weights are integers upper bounded by a polynomial
in n. The theorem follows from the combination of this result and Theorem 2.

Let I = (G, w, L) be an instance of WL-min-max s-t cut, where G = (V, E)
has n vertices and maxe∈E w(e) = O(nO(1)). We replace each edge e = (u, v) ∈ E
by a collection H(e) of w(e) edge-disjoint paths of length two (connecting u and
v), each edge of which is colored by L(e). The vertices u and v will be called
extreme vertices of H(e), whereas other vertices of H(e) will be called inner
vertices. We refer to the resulting UL-min-max s-t cut instance as I ′ = (G′, L′).

Consider an s-t cut (S′, T ′) in G′, with s ∈ S′ and t ∈ T ′. We iteratively apply
the following procedure for each original edge e ∈ E: If the extreme vertices of
H(e) appear in the same set of the partition, assign all inner vertices of H(e)
to that set. These changes can only decrease the total weight of L(e)-colored
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edges in the current s-t cut, and therefore also its min-max value. From the
resulting s-t cut (S′, T ′), we can find an s-t cut in G of identical min-max value
by considering (S′ ∩ V, T ′ ∩ V ), the restriction of this cut to G. 	


3 Fixed Number of Colors: An FPTAS

In what follows, we present a fully polynomial-time approximation scheme for
weighted labeled bottleneck s-t path, spanning tree, and perfect matching, for a
fixed number of colors.

Approximate Pareto curves. Let P be a property described in Section 1,
and consider the multiobjective version of P (henceforth, MultikP). An instance
I of this problem consists of a graph G = (V, E), and a weight vector w(e) =
(w1(e), . . . , wk(e)) for each edge e ∈ E. An edge set E′ ⊆ E forms a feasible
solution to MultikP if it satisfies P , and the objective value of E′ is given by the
vector (

∑
e∈E′ w1(e), . . . ,

∑
e∈E′ wk(e)). In a minimization problem, we say that

a solution E′ is dominated by E′′ if
∑

e∈E′′ wi(e) ≤
∑

e∈E′ wi(e) for every 1 ≤ i ≤
k, and the inequality is strict for at least one index; the inequalities are reversed
for a maximization problem. The goal is to compute the Pareto curve C(I), which
is the set of all undominated solutions to I. Finally, an ε-approximate Pareto
curve for the minimization (respectively, maximization) version of MultikP is a
set Cε(I) of solutions such that

1. |Cε(I)| is polynomially bounded in terms of the input size and 1/ε.
2. For every E∗ ∈ C(I), there exists E′ ∈ Cε(I) with

∑
e∈E′ wi(e) ≤ (1 +

ε)
∑

e∈E∗ wi(e) for every 1 ≤ i ≤ k (respectively,
∑

e∈E′ wi(e) ≥ (1 −
ε)

∑
e∈E∗ wi(e)).

When k is fixed, Papadimitriou and Yannakakis [20, Cor. 5] proposed an FP-
TAS for constructing ε-approximate Pareto curves of multiobjective s-t walk,
spanning tree, and perfect matching.

The approximation scheme. We now relate the approximability of several
weighted labeled bottleneck problems to that of their multiobjective counter-
parts. This approach has already been suggested in the context of robust op-
timization [17,2], implying that results similar to those described in the next
theorem can be immediately derived for the min-max variants.

Theorem 4. For a fixed number of colors, the efficient construction of an ε-
approximate Pareto curve for the maximization version of MultikP implies a
(1 − ε)-approximation to WL-max-min P. A similar result for the minimization
version leads to a (1 + ε)-approximation to WL-min-max P.

By combining Theorem 4 and the results of Papadimitriou and Yannakakis [20]
mentioned earlier, Corollary 5 follows. However, an important remark is in place.
Even though the algorithm in [20] constructs an ε-approximate Pareto curve of
multiobjective s-t walk, note that any such walk can be converted (by eliminating
cycles) to an s-t path of no greater min-max objective value. An analogous claim
regarding the max-min version is incorrect.
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Corollary 5. For a fixed number of colors, weighted labeled bottleneck spanning
tree and perfect matching admit a fully polynomial-time approximation scheme.
A similar result also holds for WL-min-max s-t path.

4 Arbitrary Number of Colors: s-t Paths

For a fixed number of colors, UL-min-max s-t path is polynomial time solvable.
This claim follows from the observation that we can decide whether there exists
a walk connecting s and t whose objective value is exactly p ∈ {1, . . . , n − 1} by
means of dynamic programming. In contrast, we proceed by showing that both
versions of the problem under consideration become NP-hard for an arbitrary
number of colors. We complement these results by devising efficient approxima-
tion algorithms.

4.1 Hardness Results

We now derive new inapproximability bounds for both versions of labeled bot-
tleneck s-t path, in undirected as well as directed graphs. To our knowledge,
these results do not follow from existing work.

Theorem 6. UL-min-max s-t path is not (2 − ε)-approximable for any fixed
ε > 0, and UL-max-min s-t path is not approximable at all, unless P=NP.
Similar results hold for directed graphs.

4.2 UL-Min-Max s-t Path: Approximating the Undirected Case

In what follows, we show how to efficiently construct an undirected s-t path us-
ing O(

√
nOPT) edges from any given color, where n = |V | and OPT denotes

the cost of an optimal solution. An essential building block of our algorithm is a
constant-factor approximation for multi-budget maximum coverage. An instance
of this problem consists of a ground set U and a collection of subsets S ⊆ 2U ,
which is partitioned into S1, . . . , Sr. Given an integral budget bt for each part St,
the objective is to find a subcollection S′ ⊆ S such that S′ picks at most bt sets
from each St and such that the number of elements covered by S′ is maximized.
For these particular settings, a performance guarantee of 1 − 1/e can be achieved
by adopting the maximum coverage heuristic of Ageev and Sviridenko [1, Rem. 2].
The algorithm. For simplicity of presentation, it would be convenient to assume
that OPT is known in advance. Clearly, this assumption can be enforced by
testing 1, . . . , n−1 as candidate values, and returning the best solution found. We
also make use of Δ = Δ(n, OPT) as a parameter whose value will be determined
later.

1. F ← ∅, H ← G.
2. While distH(s, t) > Δ

(a) Create a multi-budget maximum coverage instance by: The ground set is
V (H); for each edge e ∈ E(H) there is a corresponding subset Ve, consist-
ing of the endpoints of e; these subsets are partitioned into {S1, . . . , Sq},
where Si = {Ve : L(e) = ci}; each Si has a budget of OPT.
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(b) Approximate the instance defined above, and let F+ be the collection of
edges e ∈ E(H) for which Ve is picked by the resulting solution.

(c) F ← F ∪ F+, H ← the contraction of F+ in H .
3. Let P be a shortest s-t path in H . Return F ∪ P .

Theorem 7. By setting Δ =
√

nOPT, the subgraph induced by F ∪ P picks
O(

√
nOPT) edges from any given color.

Proof. We begin by showing that, for any value of Δ, step 2 terminates within
no more than 4n/Δ iterations. For this purpose, it is sufficient to prove that
the number of vertices in H decreases by at least Δ/4 whenever an edge set is
contracted. Let E∗ ⊆ E be an optimal solution, with maxi |Li(E∗)| = OPT, and
consider a single iteration. Since the edges E∗ ∩ E(H) form a subgraph of H
containing an s-t path, it follows that {Ve : e ∈ E∗ ∩E(H)} is a feasible solution
to the multi-budget maximum coverage instance defined in step 2a. Moreover, as
the s-t distance in H is at least Δ, the latter solution satisfies |

⋃
e∈E∗∩E(H) Ve| ≥

Δ. Consequently, for the current F+ we must have |
⋃

e∈F+ Ve| ≥ (1 − 1/e)Δ,
implying that the contraction of F+ decreases the number of vertices by at least
(1 − 1/e)Δ/2 > Δ/4.

Now, starting with an empty set of edges, in each iteration of step 2 we
augment F with an edge set F+ that contains at most OPT edges from each
color. Therefore, by setting Δ =

√
nOPT, the maximum number of edges we pick

from any given color is at most (4n/Δ)OPT+|P | ≤ (4n/Δ)OPT+Δ = 5
√

nOPT.
	


4.3 UL-Min-Max s-t Path: Approximating the Directed Case

In the following, we demonstrate that ideas similar to those presented in Section
4.2 can be employed to construct a directed s-t path using O(

√
mOPT) arcs

from any given color. Here, m = |E| and OPT denotes the cost of an optimal
solution.

The algorithm. Once again, we assume that OPT is known in advance, and
let Δ = Δ(m, OPT) be a parameter whose value will be determined later.

1. F ← ∅, χE\F ← characteristic function of E \ F .
2. While distχE\F

(s, t) > Δ
(a) Create a multi-budget maximum coverage instance by: The ground set

is V ; for each arc e = (u, v) ∈ E \ F there is a corresponding singleton
Ve = {v}; these subsets are partitioned into {S1, . . . , Sq}, where Si =
{Ve : L(e) = ci}; each Si has a budget of OPT.

(b) Approximate the instance defined above, and let F+ be the collection of
arcs e ∈ E \ F for which Ve is picked by the resulting solution.

(c) F ← F ∪ F+.
3. Let P be a shortest s-t path (with respect to χE\F ). Return P .
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Theorem 8. By setting Δ =
√

mOPT, the path P traverses O(
√

mOPT) arcs
from any given color.

Proof. We first demonstrate that step 2 consists of at most 2m/Δ iterations, by
showing that we always have |F+| ≥ Δ/2. Let P ∗ be an optimal solution, with
maxi |Li(P ∗)| = OPT. In each iteration, {Ve : e ∈ P ∗ \ F} is a feasible solution
to the multi-budget maximum coverage instance defined in step 2a. Moreover, as
distχE\F

(s, t) > Δ, the latter solution satisfies |
⋃

e∈P ∗\F Ve| ≥ Δ. Consequently,
we must have |F+| ≥ |

⋃
e∈F+ Ve| ≥ (1 − 1/e)Δ > Δ/2.

Now, starting with an empty set of arcs, in each iteration of step 2 we augment
F with an arc set F+ that contains at most OPT arcs from each color. Therefore,
by setting Δ =

√
mOPT, the maximum number of edges P traverses from any

given color is at most |F | + Δ ≤ (2m/Δ)OPT + Δ ≤ 3
√

mOPT. 	


5 Arbitrary Number of Colors: Spanning Trees

In Corollary 5 we have shown that, for a fixed number of colors, both versions
of weighted labeled spanning tree admit an FPTAS. In this section, we provide
hardness results, exact algorithms, and approximation algorithms for the general
case of an arbitrary number of colors.

5.1 Hardness Results

As indicated in Section 1.1, WL-min-max spanning tree is known to be weakly
NP-hard [23]. Here, we show that both weighted labeled bottleneck spanning
tree problems are in fact strongly NP-hard.

Theorem 9. Both weighted labeled bottleneck spanning tree problems are
strongly NP-hard.

5.2 Exact Algorithms

Broersma and Li [7] devised a polynomial-time algorithm based on matroid
intersection for computing a spanning tree using a maximum number of colors.
Here, we prove that both unweighted labeled bottleneck spanning tree problems
can also be solved in polynomial time by utilizing matroid intersection. It is
interesting to observe that this result is in contrast to the weighted case, which
was shown to be strongly NP-hard in Theorem 9.

Theorem 10. UL-max-min spanning tree can be solved to optimality in poly-
nomial time.

Proof. Given an instance (G, L) of UL-max-min spanning tree, with G = (V, E),
we may assume without loss of generality that OPT is known in advance, since
we can test 0, . . . , n − 1 as candidate values for this parameter, and return the
best solution found. Now, since the optimal tree picks at least OPT edges from
every color in L(E) = {c1, . . . , cq}, it follows that there exists a forest picking
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exactly OPT edges from any given color. Moreover, such a forest can be efficiently
constructed by computing a maximum cardinality intersection2 of the matroids
M1 and M2, where:

– M1 = (E, I1) is the graphic matroid, that is, I1 = {F ⊆ E : F is a forest}.
– M2 = (E, I2) is a partition matroid, with I2 = {F ⊆ E : |Li(F )| ≤

OPT for every 1 ≤ i ≤ q}.

We complete the resulting forest into a spanning tree in an arbitrary way, noting
that this augmentation leaves the objective value unchanged. 	


Theorem 11. UL-min-max spanning tree can be solved to optimality in poly-
nomial time.

Proof. The algorithm for this version is nearly identical to the one given for
UL-max-min spanning tree; however, an important remark is in place. After we
“guess” OPT and compute a maximum cardinality intersection F ⊆ E of M1 and
M2, there is no need to complete the subgraph induced by F into a spanning
tree, implying that its objective value remains unchanged. This claim follows
from observing that |F | = |V | − 1, since the edge set of the optimal spanning
tree forms a feasible solution to the matroid intersection problem we solve. 	


5.3 WL-Min-Max Spanning Tree: A Logarithmic Approximation

In what follows, we show that a matroid intersection algorithm is not only a
useful tool for solving the unweighted version to optimality; rather, it can also
be applied to approximate the weighted min-max version.
The algorithm. For ease of exposition, we assume without loss of generality
that an estimator of the optimum W ∈ [OPT, 2 · OPT] is known in advance.
Otherwise, for every 0 ≤ k ≤ �log(nwmax/wmin)�, we can test 2kwmin as a
candidate value and return the best solution found, where wmin and wmax denote
the minimum and maximum non-zero edge weights, respectively.

1. Delete all edges of weight greater than W , and define a partition of the
undeleted edges as follows:
(a) For every 1 ≤ i ≤ q and 0 ≤ k ≤ �log n�, let Ei,k be the set of edges e

with L(e) = ci and w(e) ∈ (W/2k+1, W/2k].
(b) In addition, let Efree be the set of remaining edges (of weight at most

W/n).
2. By applying a matroid intersection algorithm, find a spanning tree T that

picks at most 2k+1 edges from each Ei,k and any number of edges from Efree.
Return T .

Note that the suggested algorithm is well-defined. To establish this claim, it is
sufficient to show that a spanning tree satisfying the constraints of step 2 indeed
exists. It is easy to verify that all edges of the optimal tree T ∗ survive step 1
and that |T ∗ ∩ Ei,k| ≤ 2k+1, or otherwise there is a color ci from which T ∗ picks
edges of total weight strictly greater than W ≥ OPT.
2 See, for example, [18, Chap. 8].
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Theorem 12. The edges picked by T from any given color have an overall
weight of O(log n) · OPT.

Proof. Consider some color ci. Then,

∑

e∈Li(T )

w(e) =
�log n�∑

k=0

∑

e∈T∩Ei,k

w(e) +
∑

e∈Li(T∩Efree)

w(e)

≤
�log n�∑

k=0

(

|T ∩ Ei,k| · max
e∈T∩Ei,k

w(e)
)

+ |T ∩ Efree| · max
e∈T∩Efree

w(e)

≤
�log n�∑

k=0

2k+1 W

2k
+ (n − 1)

W

n
≤ (2�log n� + 3)W ≤ (4�log n� + 6)OPT .

The second inequality holds since |T ∩ Ei,k| ≤ 2k+1 for every 0 ≤ k ≤ �log n�,
and since |T ∩ Efree| ≤ n − 1. The last inequality follows from the assumption
W ≤ 2 · OPT. 	
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