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Abstract. We study a variation of the vertex cover problem where it
is required that the graph induced by the vertex cover is connected. We
prove that this problem is polynomial in chordal graphs, has a PTAS in
planar graphs, is APX-hard in bipartite graphs and is 5/3-approximable
in any class of graphs where the vertex cover problem is polynomial (in
particular in bipartite graphs).
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1 Introduction

In this paper, we study a variation of the vertex cover problem where the sub-
graph induced by any feasible solution must be connected. Formally, a vertex
cover of a simple graph G = (V, E) is a subset of vertices S ⊆ V which covers
all edges, i.e. which satisfies: ∀e = {x, y} ∈ E, x ∈ S or y ∈ S. The vertex
cover problem (MinVC in short) consists in finding a vertex cover of minimum
size. MinVC is known to be APX-complete in cubic graphs [1] and NP-hard in
planar graphs, [13]. MinVC is 2-approximable in general graphs, [3] and admits
a polynomial approximation scheme in planar graphs, [5]. On the other hand,
MinVC is polynomial for several classes of graphs such as bipartite graphs,
chordal graphs, graphs with bounded treewidth, etc. [7].

The connected vertex cover problem, denoted by MinCVC, is the variation
of the vertex cover problem where, given a connected graph G = (V, E), we
seek a vertex cover S∗ of minimum size such that the subgraph induced by S∗

is connected. This problem has been introduced by Garey and Johnson, [12]
where it is proved to be NP-hard in planar graphs of maximum degree 4. As
indicated in [19], this problem has some applications in the domain of wireless
network design. In such a model, the vertices of the network are connected by
transmission links. We want to place a minimum number of relay stations on
vertices such that any pair of relay stations are connected (by a path which uses
only relay stations) and every transmission link is incident to a relay station.
This is exactly the connected vertex cover problem.
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1.1 Previous Related Works

The main complexity and approximability results known on this problem are
the following: in [21], it is shown that MinCVC is polynomially solvable when
the maximum degree of the input graph is at most 3. However, it is NP-hard
in planar bipartite graphs of maximum degree 4, [10], as well as in 3-connected
graphs, [22]. Concerning the positive and negative results of the approximability
of this problem, MinCVC is 2-approximable in general graphs, [20,2] but it is
NP-hard to approximate within ratio 10

√
5−21, [10]. Finally, recently the fixed-

parameter tractability of MinCVC with respect to the vertex cover size or to the
treewidth of the input graph has been studied in [10,14,17,18,19]. More precisely,
in [10] a parameterized algorithm for MinCVC with complexity O∗(2.9316k) is
presented improving the previous algorithm with complexity O∗(6k) given in
[14] where k is the size of an optimal connected vertex cover. Independently, the
authors of [17,18] have also obtained FPT algorithms for MinCVC and they
obtain in [18] an algorithm with complexity O∗(2.7606k). In [19], the author
gives a parameterized algorithm for MinCVC with complexity O∗(2t · t3t+2n)
where t is the treewidth of the graph and n the number of vertices.

MinCVC is related to the unweighted version of tree cover. The tree cover
problem has been introduced in [2] and consists, given a connected graph G =
(V, E) with non-negative weights w on the edges, in finding a tree T = (S, E′)
of G with S ⊆ V and E′ ⊆ E which spans all edges of G and such that
w(T ) =

∑
e∈E′ w(e) is minimum. In [2], the authors prove that the tree cover

problem is approximable within factor 3.55 and the unweighted version is 2-
approximable. Recently, (weighted) tree cover has been shown to be approx-
imable within a factor of 3 in [16], and a 2-approximation algorithm is proposed
in [11]. Clearly, the unweighted version of tree cover is (asymptotically) equiva-
lent to the connected version since S is a connected vertex cover of G iff there
exists a tree cover T ′ = (S, E′) for some subset E′ of edges. Since in this latter
case, the weight of T ′ is |S| − 1, the result follows.

1.2 Our Contribution

In this article, we mainly deal with complexity and approximability issues for
MinCVC in particular classes of graphs. More precisely, we first present some
structural properties on connected vertex covers (Section 2). Using these proper-
ties, we show that MinCVC is polynomial in chordal graphs (Section 3). Then,
in Section 4, we prove that MinCVC is APX-complete in bipartite graphs of
maximum degree 4, even if each vertex of one block of the bipartition has a
degree at most 3. On the other hand, if each vertex of block part of the bi-
partition has a degree at most 2 and the vertices of the other block have an
arbitrary degree, then MinCVC is polynomial. Section 5 deals with the approx-
imability of MinCVC. We first show that MinCVC is 5/3-approximable in any
class of graphs where MinVC is polynomial (in particular in bipartite graphs, or
more generally in perfect graphs). Then, we present a polynomial approximation
scheme for MinCVC in planar graphs.
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Notation. All graphs considered are undirected, simple and without loops. Un-
less otherwise stated, n and m will denote the number of vertices and edges,
respectively, of the graph G = (V, E) considered. NG(v) denotes the neighbor-
hood of v in G, ie., NG(v) = {u ∈ V : {u, v} ∈ E} and dG(v) its degree that is
dG(v) = |NG(v)|. Finally, G[S] denotes the subgraph of G induced by S.

2 Structural Properties

We present in this subsection some properties on vertex covers or connected
vertex covers. These properties will be useful in the rest of the article to devise
polynomial algorithms that solve MinCVC either optimally (chordal graphs) or
approximately (bipartite graphs,...).

2.1 Vertex Cover and Graph Contraction

For a subset A ⊆ V of a graph G = (V, E), the contraction of G with respect to
A is the simple graph GA = (V ′, E′) where we replace A in V by a new vertex
vA (so, V ′ = (V \ A) ∪ {vA}) and {x, y} ∈ E′ iff either x, y /∈ A and {x, y} ∈ E
or x = vA, y �= vA and there exists v ∈ A such that {v, y} ∈ E. The connected
contraction of G following V ′ ⊆ V is the graph Gc

V ′ corresponding to the iterated
contractions of G with respect to the connected components of V ′ (note that
contraction is associative and commutative). Formally, Gc

V ′ is constructed in
the following way: let A1, · · · , Aq be the connected components of the subgraph
induced by V ′. Then, we inductively apply the contraction with respect to Ai for
i = 1, · · · , q. Thus, Gc

V ′ = GA1◦···◦Aq . Finally, let New(Gc
V ′) = {vA1 , · · · , vAq}

be the new vertices of Gc
V ′ (those resulting from the contraction). The following

Lemma concerns contraction properties that will, in particular, be the basis of
the approximation algorithm presented in Subsection 5.1.

Lemma 1. Let G = (V, E) be a connected graph and let S ⊆ V be a vertex
cover of G. Let G0 = (V0, E0) = Gc

S be the connected contraction of G following
S where A1, · · · , Aq are the connected components of the subgraph induced by S.
The following assertions hold:

(i) G0 is connected and bipartite.
(ii) If S = S∗ is an optimal vertex cover of G, then New(G0) is an optimal

vertex cover of G0.
(iii) If S = S∗ is an optimal vertex cover of G and v ∈ V \S∗ with dGc

S∗ (v) ≥ 2,
then New(G0) is an optimal vertex cover of G0 = Gc

S∗∪{v}.

2.2 Connected Vertex Covers and Biconnectivity

Now, we deal with connected vertex covers. It is easy to see that if the removal of
a vertex v disconnects the input graph (v is called a cut-vertex, or an articulation
point), then v has to be in any connected vertex cover. In this section we show
that, informally, solving MinCVC in a graph is equivalent to solve it on the



Complexity and Approximation Results 205

biconnected components of the graph, under the constraint of including all cut
vertices.

Formally, a connected graph G = (V, E) with |V | ≥ 3 is biconnected if for any
two vertices x, y there exists a simple cycle in G containing both x and y. A
biconnected component (also called block) Gi = (Vi, Ei) is a maximal connected
subgraph of G that is biconnected. For a connected graph G = (V, E), Vc denotes
the set of cut-vertices of G and Vi,c its restriction to Vi.

Lemma 2. Let G = (V, E) be a connected graph. S ⊆ V is a connected vertex
cover of G iff for each biconnected component Gi = (Vi, Ei), i = 1, · · · , p, Si =
S ∩ Vi is a connected vertex cover of Gi containing Vi,c.

Lemma 2 allows us to characterize the optimal connected vertex covers of G.

Corollary 1. Let G = (V, E) be a connected graph. S∗ ⊆ V is an optimal
connected vertex cover of G iff for each biconnected component Gi = (Vi, Ei),
i = 1, · · · , p, S∗

i = S∗ ∩ Vi is an optimal connected vertex cover of Gi among the
connected vertex covers of Gi containing Vi,c.

For instance, using Corollary 1, we deduce that for the class of trees or split
graphs MinCVC is polynomial. More generally, we will see in Section 3 that
this result holds in chordal graphs. If we denote by MinPrextCVC (by analogy
with the well known PreExtension Coloring problem) the variation of MinCVC

where given G = (V, E) and V0 ⊆ V , we seek a connected vertex cover S of G
containing V0 and of minimal size, we obtain the following result:

Lemma 3. Let G be a class of connected graphs defined by a hereditary property.
Solving MinCVC in G polynomially reduces to solve MinPrextCVC in the
biconnected graphs of G. Moreover, if G is closed by pendant addition (ie., is
closed under addition of a new vertex v and a new edge {u, v} where u ∈ V ),
then they are polynomially equivalent.

3 Chordal Graphs

The class of chordal graphs is a very well known class of graphs which arises in
many practical situations. A graph G is chordal if any cycle of G with a size
at least 4 has a chord (i.e., an edge linking two non-consecutive vertices of the
cycle). There are many characterizations of chordal graphs, see for instance [7].

In this section, we devise a polynomial time algorithm to compute an optimal
CVC in chordal graphs. To achieve this, we need the following lemma.

Lemma 4. Let G = (V, E) be a connected chordal graph and let S be a vertex
cover of G. The following properties hold:

(i) The connected contraction G0 = (V0, E0) = Gc
S of G following S is a tree.

(ii) If G is biconnected, then S is a connected vertex cover of G.
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Proof. Let S be a vertex cover of G.
For (i): from Lemma 1, we know that G0 = (V0, E0) = Gc

S is bipartite and
connected. Assume that G0 is not a tree, and let Γ be a cycle of G0 with a
minimal size. By construction, Γ is chordless, has a size at least 4 and alternates
vertices of New(G0) and vertices of V \ S. From Γ , we can build a cycle Γ ′ of
G using the following rule: if {x, vAi} ∈ Γ and {vAi , y} ∈ Γ where x, y /∈ S
and vAi ∈ New(G0) (where we recall that Ai is some connected component
of G[S]), then we replace these two edges by a shortest path μx,y from x to y
in G among the paths from x to y in G which only use vertices of Ai (such a
path exists since Ai is connected and is linked to x and y); by repeating this
operation, we obtain a cycle Γ ′ of G with |Γ ′| ≥ |Γ | ≥ 4. Let us prove that Γ ′

is chordless which will lead to a contradiction since G is assumed to be chordal.
Let v1, v2 be two non consecutive vertices of Γ ′. If v1 /∈ S and v2 /∈ S, then
{v1, v2} /∈ E since otherwise Γ would have a chord in G0. So, we can assume
that v1 ∈ (μx,y \ {x, y}) and v2 ∈ μx,y (since there is no edge linking two vertices
of disjoint paths μx,y and μx′,y′); in this case, using edge {v1, v2}, we could obtain
a path which uses strictly less edges than μx,y.

For (ii): Suppose that S is not connected. Then, from (i) we deduce that G0
is not a star and thus, there are two edges {vAi , x} and {x, vAj } in G0 where
Ai and Aj are two connected components of S. We deduce that x would be a
cut-vertex of G, contradiction since G is assumed to be biconnected.

In particular, using (ii) of Lemma 4, we deduce that any optimal vertex cover
S∗ of a biconnected chordal graph G is also an optimal connected vertex cover.

Now, we give a simple linear algorithm for computing an optimal connected
vertex cover of a chordal graph.

Theorem 1. MinCVC is polynomial in chordal graphs. Moreover, an optimal
solution can be found in linear time.

Proof. Following Lemma 3, solving MinCVC in a chordal graph G = (V, E)
can be done by solving MinPrextCVC in each of the biconnected components
Gi = (Vi, Ei) of G. Since Gi is both biconnected and chordal, by Lemma 4,
MinPrextCVC is the same problem as MinPrextVC (in Gi). But, by adding
a pendant edge to vertices required to be taken in the vertex cover, we can easily
reduce MinPrextVC to MinVC (note that the graph remains chordal). Since
computing the biconnected components and solving MinVC in a chordal graph
can be done in linear time (see [7]), the result follows.

4 Bipartite Graphs

A bipartite graph G = (V, E) is a graph where the vertex set is partitioned into
two independent sets L and R. Using the result of [10], we already know that
MinCVC is NP-hard in planar bipartite graphs of maximum 4. Using Lemma
3, we can strengthen this result:
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Lemma 5. MinCVC is NP-hard in biconnected planar bipartite graphs of max-
imum degree 4.

Now, one can show that MinCVC has no PTAS in bipartite graphs of maximum
degree 4.

Theorem 2. MinCVC is not 1.001031-approximable in connected bipartite
graphs G = (L, R; E) where ∀l ∈ L, dG(l) ≤ 4 and ∀r ∈ R, dG(r) ≤ 3, un-
less P=NP.

In Theorem 2, we proved in particular that MinCVC is NP-hard when all the
vertices of one part of the bipartition have a degree at most 3. It turns out
that if all the vertices of one part of this bipartition have a degree at most
2, the problem becomes easy. This property will be very useful to devise our
approximation algorithm in Subsection 5.1.

Lemma 6. MinCVC is polynomial in bipartite graphs G = (L, R; E) such that
∀r ∈ R, dG(r) ≤ 2. Moreover, if L2 = {l ∈ L : dG(l) ≥ 2}, then opt(G) =
|L| + |L2| − 1.

5 Approximation Results

MinCVC is trivially APX-complete in k-connected graphs for any k ≥ 2 since
starting from graph G = (V, E), instance of MinVC, we can add a clique Kk

of size k and link each vertex of G to each vertex of Kk. This new graph G′ is
obviously k-connected and S is a vertex cover of G iff S union the k vertices of
Kk (we can always assume that S �= V ) is a connected vertex cover of G′. Thus,
using the negative result of [15] it is quite improbable that one can improve the
approximation ratio of 2 for MinCVC, even in k-connected graphs. Thus, in this
subsection we deal with the approximability of MinCVC in particular classes
of graphs.

In Subsection 5.1, we devise a 5/3-approximation algorithm for any class of
graphs where the classical vertex cover problem is polynomial. In Subsection 5.2,
we show that MinCVC admits a PTAS in planar graphs.

5.1 When MinVC Is Polynomial

Let G be a class of connected graphs where MinVC is polynomial (for instance,
the connected bipartite graphs). The underlying idea of the algorithm is simple:
we first compute an optimal vertex cover, and then try to connect it by adding
vertices (either using high degree vertices or Lemma 6). The analysis leading to
the ratio 5/3 is based on Lemma 1 which deals with graph contraction.

Now, let us formally describe the algorithm. Recall that given a vertex set
V ′, Gc

V ′ denotes the connected contraction of V following V ′, and New(Gc
V ′)

denotes the set of new vertices (one for each connected component of G[V ′]).
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algoCV C input: A graph G = (V, E) of G with at least 3 vertices.

1 Find an optimal vertex cover S∗ of G such that in Gc
S∗ , ∀v ∈ New(Gc

S∗),
dGc

S∗ (v) ≥ 2;
2 Set G1 = Gc

S∗ , N1 = New(Gc
S∗), S = S∗ and i = 1;

3 While |Ni| ≥ 2 and there exists v /∈ Ni such that v is linked in Gi to at least
3 vertices of Ni do

3.1 Set S := S ∪ {v} and i := i + 1;
3.2 Set Gi := Gc

S and Ni = New(Gc
S);

4 If |Ni| ≥ 2, apply the polynomial algorithm of Lemma 6 on Gi (let S′ be the
produced solution) and set S := S ∪ (V ∩ S′);

5 Output S;

Now, we show that algoCV C outputs a connected vertex cover of G in poly-
nomial time. First of all, given an optimal vertex cover S∗ of a graph G (assumed
here to be computable in polynomial time), we can always transform it in such a
way that ∀v ∈ New(Gc

S∗), dGc
S∗ (v) ≥ 2. Indeed, if a vertex of Gc

S∗ corresponding
to a connected component of S∗ has only one neighbor in Gc

S∗ , then we can take
this neighbor in S∗ and remove one vertex on this connected component (and
the number of such ‘leaf’ connected components decreases, as soon as Gc

S∗ has
at least 3 vertices). Now, using (ii) of Lemma 1, we know that New(Gc

S∗) is an
optimal vertex cover of Gc

S∗ . Then, from New(Gc
S∗), we can find such a solution

within polynomial time.
Moreover, using (i) of Lemma 1 with S∗, we deduce that the graph Gi is

bipartite, for each possible value of i. Assume that Gi = (Ni; Ri, Ei) for iteration
i where Ni is the left set corresponding to the contracted vertices and Ri is the
right set corresponding to the remaining vertices and let p be the last iteration.
Clearly, if |Np| = 1, the the output solution S is connected. Otherwise, the
algorithm uses step 4; we know that Gp is bipartite and by construction ∀r ∈ Rp,
dGp(r) ≤ 2. Thus, we can apply Lemma 6 on Gp. Moreover, a simple proof also
gives that ∀l ∈ Np, dGp(l) ≥ 2. Indeed, otherwise there exists l ∈ Np such that
l has a unique neighbor r0 ∈ Rp. Let {x1, · · · , xj} ⊆ Np−1 with j ≥ 3 and r1
be the vertices contracted in Gp−1 in order to obtain Gp. We conclude that the
neighborhood of {x1, · · · , xj} is {r0, r1} in Gp−1 which is impossible since on the
one hand, Np−1 is an optimal vertex cover of Gp−1 (using (iii) of Lemma 1),
and on the other hand, by flipping {x1, · · · , xj} with {r0, r1}, we obtain another
vertex cover of Gp−1 with smaller size than Np−1! Finally, using Lemma 6, an
optimal connected vertex cover of Gp consists of taking Np and |Np| − 1 of Rp.
In conclusion, S is a connected vertex cover of G.

We now prove that this algorithm improves the ratio 2.

Theorem 3. Let G be a class of connected graphs where MinVC is polynomial.
Then, algoCV C is a 5/3-approximation for MinCVC in G.
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Proof. Let G = (V, E) ∈ G. Let S be the approximate solution produced by
algoCV C on G. Using the previous notations and Lemma 6, the solution S has
a value apx(G) satisfying:

apx(G) = |S∗| + p − 1 + |Np| − 1 (1)

where p is the number of iterations of step 3. Obviously, we have:

opt(G) ≥ |S∗| (2)

Now let us prove that for any i = 1, · · · , p − 1, we also have opt(Gi) ≥
opt(Gi+1)+1. Let S∗

i be an optimal connected vertex cover of Gi. Let ri ∈ Ri be
the vertex added to S during iteration i and let NGi(ri) be the neighbors of ri in
Gi. The graph Gi+1 is obtained from the contraction of Gi with respect to the
subset Si = {ri}∪NGi(ri). Thus, if vSi denotes the new vertex resulting from the
contraction of Si, then (S∗

i \Si)∪{vSi} is a connected vertex cover of Gi+1. More-
over, |S∗

i ∩ Si| ≥ 2 since either ri ∈ S∗
i and at least one of these neighbors must

belong to S∗
i (S∗

i is connected and i < p) or NGi(ri) ⊆ S∗
i since S∗

i is a vertex
cover. Thus opt(Gi+1) ≤ |S∗

i \Si|+1 = opt(Gi)−|S∗
i ∩Si|+1 ≤ opt(Gi)−1. Sum-

ming up these inequalities for i = 1 to p − 1, and using that opt(G) ≥ opt(G1),
we obtain:

opt(G) ≥ opt(Gp) + p − 1 (3)

Moreover, thanks to Lemma 6, we know that opt(Gp) = 2|Np| − 1. Together
with equation (3), we get:

opt(G) ≥ 2|Np| − 1 + p − 1 (4)

Finally, since each vertex chosen in step 3 has degree at least 3, we get |Ni+1| ≤
|Ni| − 2. This immediately leads to |N1| ≥ |Np| + 2(p − 1). Since |S∗| ≥ |N1|, we
get:

|S∗| ≥ |Np| + 2(p − 1) (5)

Combination of equations (2), (4) and (5) with coefficients 4, 1 and 1 (respec-
tively) gives:

5opt(G) ≥ 3|S∗| + 3|Np| − 1 + 3(p − 1) (6)

Then, equation (1) allows to conclude.

5.2 Planar Graphs

Given a planar embedding of a planar graph G = (V, E), the level of a vertex is
defined as follows (see for instance [4]): the vertices on the exterior face are at
level 1. Given vertices at level i, let f be an interior face of the subgraph induced
by vertices at level i. If Gf denotes the subgraph induced by vertices included
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Fig. 1. Level of a planar graph

in f , then the vertices on the exterior face of Gf are at level i + 1. The set of
vertices at level i is called the layer Li.

This is illustrated on Figure 1. The dashed ellipse represents an interior face on
level i−1. Depicted vertices are at level i. There are 3 interior faces (constituted
respectively by the ui’s, by {v1, v2, t} and {t, w1, w2}).

Baker gave in [4] a polynomial time approximation scheme for several prob-
lems including vertex cover in planar graphs. The underlying idea is to consider
k-outerplanar subgraphs of G constituted by k consecutive layers. The polyno-
miality of vertex cover in k-outerplanar graphs (for a fixed k) allows to achieve
a (k + 1)/k approximation ratio.

We adapt this technique in order to achieve an approximation scheme for
MinCVC (MinCVC is NP-hard in planar graphs, see [12]). First of all, note
that k-outerplanar graphs have treewidth bounded above by 3k − 1, [6]. Since
MinCVC is polynomially solvable for graphs with bounded treewidth, [19],
MinCVC is polynomial for k-outerplanar graphs.

Theorem 4. MinCVC admits an approximation scheme in planar graphs.

Proof. Given an embedding of a planar (connected) graph G, we define, as pre-
viously, the layers L1, · · · , Lq of G. For each layer Li, we define Fi as the set
of vertices of Li that are in an interior face of Li. For instance, in Figure 1, all
vertices but the xi’s are in Fi.

Following the principle of the approximation scheme for vertex cover, we define
an algorithm for any integer k > 0. Let Vi = Fi ∪ Li+1 ∪ Li+2 ∪ . . . ∪ Li+k, and
Gi be the graph induced by Vi. Note that Gi is not necessarily connected since
for example there can be several disjoint faces in Fi (there are two connected
components in Figure 1).

Let S∗ be an optimum connected vertex cover on G with value opt(G), and
S∗

i = S∗ ∩Vi. Then of course S∗
i is a vertex cover of Gi. However, even restricted

to a connected component of Gi, it is not necessarily connected. Indeed, S∗ is
connected but the path(s) connecting two vertices of S∗ in a connected compo-
nent of Gi may use vertices out of this connected component. To overcome this
problem, notice that only vertices in Fi or in Fi+k connect Vi to V \ Vi. Hence,
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S∗
i ∪ Fi ∪ Fi+k can be partitioned into a set of connected vertex covers on each

of the connected components of Gi (since Fi and Fi+k are made of cycles). Now,
take an optimum connected vertex cover on each of these connected components,
and define Si as the union of these optimum solutions. Then, we have :

|S∗
i ∪ Fi ∪ Fi+k| ≥ |Si| (7)

Now, let p ∈ {1, . . . , k}. Let V0 = L1 ∪L2 ∪ . . . ∪Lp, G0 be the subgraph of G
induced by V0, S∗

0 = S∗ ∩ V0, and S0 be an optimum vertex cover on G0. With
similar arguments as previously, we have:

|S∗
0 ∪ Fp| ≥ |S0| (8)

We build a solution Sp on the whole graph G as follows. Sp is the union of S0
and of all Si’s for i = p mod k. Of course, Sp is a vertex cover of G, since any
edge of G appears in at least one Gi (or G0). Moreover, it is connected since:

– S0 is connected, and each Si is made of connected vertex covers on the
connected components of Gi;

– each of these connected vertex covers in Si is connected to Si−k (or to S0 if
i = p): this is due to the fact that Fi belongs to Vi and to Vi−k (or V0). Hence,
a level i interior face f is common to Si−k (or S0) and to the connected vertex
cover of Si we are dealing with. Both partial solutions cover all the edges of
this face f . Since f is a cycle, the two solutions are necessarily connected. In
other words, each connected component of Si is connected to Si−k (or S0)
and, by recurrence, to S0. Consequently, the whole solution Sp is connected.

Summing up equation (7) for each i = p mod k and equation (8), we get:

|S∗
0 ∪ Fp| +

∑

i=p mod k

|S∗
i ∪ Fi ∪ Fi+k| ≥ |S0| +

∑

i=p mod k

|Si| (9)

By definition of Sp, we have |Sp| ≤ |S0|+
∑

i=p mod k |Si|. On the other hand,
since only vertices in Fi (i = p mod k) appear in two different Vi’s (i = 0 or
i = p mod k), we get that |S∗

0 ∪ Fp| +
∑

i=p mod k |S∗
i ∪ Fi ∪ Fi+k| ≤ |S∗| +

2
∑

i=p mod k |Fi|. This leads to:

opt(G) + 2
∑

i=p mod k

|Fi| ≥ |Sp| (10)

If we consider the best solution S with value apx(G) among the Sp’s (p ∈
{1, . . . , k}), we get :

opt(G) +
2
k

q∑

i=1

|Fi| ≥ apx(G) (11)

To conclude, we observe that the following property holds:

Property 1. S∗ takes at least one fourth of the vertices of each Fi.
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To see this property of S∗ ∩ Fi, consider Fi and the set Ei of edges of G that
belong to one and only one interior face of Fi (for example, in Figure 1, if there
were edges {u2, u4} and {u3, v1}, they would not be in Ei). Let ni be the number
of vertices in Fi, and mi the number of edges in Ei. This graph is a collection of
edge-disjoint (but not vertex-disjoint, as one can see in Figure 1) interior faces
(cycles). Of course, S∗ ∩ Fi is a vertex cover of this graph. Since this graph is a
collection of interior faces (cycles), on each of these faces f S∗ ∩Fi cannot reject
more than |f |/2 vertices. In all,

|S∗ ∩ Fi| ≥ ni −
∑

f∈Fi

|f |
2

(12)

But since faces are edge-disjoint,
∑

f∈Fi
|f | = mi. On the other hand, if Nf

denotes the number of interior faces in Fi, since each face contains at least 3
vertices, mi =

∑
f∈Fi

|f | ≥ 3Nf . Since the graph is planar, using Euler formula
we get 1 + mi = ni + Nf ≤ ni + mi/3. Hence, mi ≤ 3ni/2. Finally, |S∗ ∩ Fi| ≥
ni − mi/2 ≥ ni/4.

Based on this property, we get:

opt(G)
(

1 +
8
k

)

≥ apx(G) (13)

Taking k sufficiently large leads to a 1 + ε approximation. The polynomiality
of this algorithm follows from the fact that each subgraph we deal with is (at
most) k + 1-outerplanar, hence for a fixed k we can find an optimum solution in
polynomial time.
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2. Arkin, E.M., Halldórsson, M.M., Hassin, R.: Approximating the tree and tour
covers of a graph. Inf. Process. Lett. 47(6), 275–282 (1993)

3. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and Approximation (Combinatorial Optimization Problems
and Their Approximability Properties). Springer, Berlin (1999)

4. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. J. ACM 41(1), 153–180 (1994)

5. Bar-Yehuda, R., Even, S.: On approximating a vertex cover for planar graphs. In:
STOC, pp. 303–309 (1982)

6. Bodlaender, H.L.: A partial -arboretum of graphs with bounded treewidth. Theor.
Comput. Sci. 209(1-2), 1–45 (1998)

7. Brandstadt, A., Le, V.B., Spinrad, J.: Graph classes: a survey. Society for Industrial
and Applied Mathematic, Philadelphia (1999)

8. Dawar, A., Grohe, M., Kreutzer, S., Schweikardt, N.: Approximation schemes for
first-order definable optimisation problems. In: LICS, pp. 411–420 (2006)

9. Demaine, E.D., Hajiaghayi, M.T.: Bidimensionality: new connections between fpt
algorithms and ptass. In: SODA, pp. 590–601 (2005)



Complexity and Approximation Results 213

10. Fernau, H., Manlove, D.: Vertex and edge covers with clustering properties: Com-
plexity and algorithms. In: Algorithms and Complexity in Durham, pp. 69–84
(2006)

11. Fujito, T.: How to trim an mst: A 2-approximation algorithm for minimum cost
tree cover. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4051, pp. 431–442. Springer, Heidelberg (2006)

12. Garey, M.R., Johnson, D.S.: The rectilinear steiner tree problem in NP complete.
SIAM Journal of Applied Mathematics 32, 826–834 (1977)

13. Garey, M.R., Johnson, D.S.: Computer and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

14. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of generalized
vertex cover problems. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS
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