Mixing 3-Colourings in Bipartite Graphs

Luis Cereceda¹, Jan van den Heuvel¹, and Matthew Johnson^{2,*}

 $^{\rm 1}$ Centre for Discrete and Applicable Mathematics, Department of Mathematics, London School of Economics, Houghton Street, London WC2A 2AE, U.K. {jan,luis}@maths.lse.ac.uk

² Department of Computer Science, Durham University, Science Laboratories, South Road, Durham DH1 3LE, U.K. matthew.johnson2@dur.ac.uk

Abstract. For a 3-colourable graph G, the 3-colour graph of G, denoted $C_3(G)$, is the graph with node set the proper vertex 3-colourings of G, and two nodes adjacent whenever the corresponding colourings differ on precisely one vertex of G. We consider the following question: given G, how easily can we decide whether or not $C_3(G)$ is connected? We show that the 3-colour graph of a 3-chromatic graph is never connected, and characterise the bipartite graphs for which $C_3(G)$ is connected. We also show that the problem of deciding the connectedness of the 3-colour graph of a bipartite graph is coNP-complete, but that restricted to planar bipartite graphs, the question is answerable in polynomial time.

1 Introduction

Throughout this paper a graph $G = (V, E)$ is simple, loopless and finite. We always regard a k -vertex-colouring of a graph G as proper; that is, as a function $\alpha: V \to \{1, 2, \ldots, k\}$ such that $\alpha(u) \neq \alpha(v)$ for any $uv \in E$. For a positive integer k and a graph G, we define the k-colour graph of G, denoted $\mathcal{C}_k(G)$, as the graph that has the k-colourings of G as its node set, with two k-colourings joined by an edge in $\mathcal{C}_k(G)$ if they differ in colour on just one vertex of G. We say that G is k-mixing if $\mathcal{C}_k(G)$ is connected.

Continuing a theme begun in an earlier paper [\[2\]](#page-11-0), we investigate the connectedness of $C_k(G)$ for a given G. The connectedness of the k-colour graph is an issue of interest when trying to obtain efficient algorithms for almost uniform sampling of k-colourings of a given graph. In particular, $\mathcal{C}_k(G)$ needs to be connected for the single-site Glauber dynamics of G (a Markov chain defined on the k-colour graph of G) to be rapidly mixing. For further details, see, for example, [\[5](#page-11-1)[,6\]](#page-11-2) and references therein.

In [\[2\]](#page-11-0) it was shown that if G has chromatic number k for $k = 2, 3$, then G is not k-mixing, but that, on the other hand, for $k \geq 4$, there are k-chromatic graphs that are k -mixing and k -chromatic graphs that are not k -mixing. In this

⁻ Research partially supported by Nuffield grant no. NAL/32772.

A. Brandst¨adt, D. Kratsch, and H. M¨uller (Eds.): WG 2007, LNCS 4769, pp. 166[–177,](#page-11-3) 2007.

⁻c Springer-Verlag Berlin Heidelberg 2007

paper, we look further at the case $k = 3$: we know 3-chromatic graphs are not 3-mixing, but what about bipartite graphs? Examples of 3-mixing bipartite graphs include trees and C_4 , the cycle on 4 vertices. On the other hand, all cycles except C_4 are not 3-mixing — see [\[2\]](#page-11-0) for details. In Theorem [1,](#page-1-0) we distinguish between 3-mixing and non-3-mixing bipartite graphs in terms of their structure and the possible 3-colourings they may have. As G is k -mixing if and only if every connected component of G is k-mixing, we will take our "argument graph" G to be connected.

Some terminology is required to state the result. If v and w are vertices of a bipartite graph G at distance two, then a *pinch* on v and w is the identification of v and w (and the removal of any double edges produced). And G is *pinchable* to a graph H if there exists a sequence of pinches that transforms G into H .

Given a 3-colouring α , the *weight* of an edge $e = uv$ oriented from u to v is

$$
w(\overrightarrow{uv}, \alpha) = \begin{cases} +1, \text{ if } \alpha(u)\alpha(v) \in \{12, 23, 31\}; \\ -1, \text{ if } \alpha(u)\alpha(v) \in \{21, 32, 13\}. \end{cases}
$$
(1)

To orient a cycle means to orient each edge on the cycle so that a directed cycle is obtained. If C is a cycle, then by \overrightarrow{C} we denote the cycle with one of the two possible orientations. The weight $W(\vec{C}, \alpha)$ of an oriented cycle \vec{C} is the sum of the weights of its oriented edges.

Theorem 1. Let G be a connected bipartite graph. The following are equivalent:

(i) The graph G is not 3-mixing.

(ii) There exists a cycle C in G and a 3-colouring α of G with $W(\overrightarrow{C}, \alpha) \neq 0$. (iii) The graph G is pinchable to the 6-cycle C_6 .

We also determine the computational complexity of the following decision problem.

3-Mixing Instance : A connected bipartite graph G. $Question: Is G 3-mixing?$

Theorem 2. The decision problem 3-Mixing is coNP-complete.

We also prove, however, that there is a polynomial algorithm for the restriction of 3-Mixing to planar graphs. We remark that this difference in complexity contrasts with many other well-known graph colouring problems where the planar case is no easier to solve.

Theorem 3. Restricted to planar bipartite graphs, the decision problem 3-Mixing is in the complexity class P.

Organization of the paper: we prove Theorems [1,](#page-1-0) [2](#page-1-1) and [3](#page-1-2) in Sections [2,](#page-2-0) [3](#page-5-0) and [4](#page-7-0) respectively.

2 Characterising 3-Mixing Bipartite Graphs

To prove Theorem [1,](#page-1-0) we need some definitions, terminology and lemmas.

For the rest of this section, let $G = (V, E)$ denote a connected bipartite graph with vertex bipartition X, Y. We use α, β, \ldots to denote specific colourings, and, having defined the colourings as nodes of $C_3(G)$, the meaning of, for example, the path between two colourings should be clear. We denote the cycle on n vertices by C_n , and will often describe a colouring of C_n by just listing the colours as they appear on consecutive vertices.

Given a 3-colouring α of G, we define a *height function for* α with base X as a function $h: V \to \mathbb{Z}$ satisfying the following conditions. (See [\[1,](#page-11-4)[4\]](#page-11-5) for other, similar height functions.)

H1For all $v \in X$, $h(v) \equiv 0 \pmod{2}$; for all $v \in Y$, $h(v) \equiv 1 \pmod{2}$. H2For all $uv \in E$, $h(v) - h(u) = w(\overrightarrow{uv}, \alpha)$ $(\in \{-1, +1\})$.

H3For all $v \in V$, $h(v) \equiv \alpha(v) \pmod{3}$.

If $h: V \to \mathbb{Z}$ satisfies conditions H2, H3 and also

H1' For all $v \in X$, $h(v) \equiv 1 \pmod{2}$; while for $v \in Y$, $h(v) \equiv 0 \pmod{2}$.

then h is said to be a height function for α with base Y.

Observe that for a particular colouring of a given G , a height function might not exist. An example of this is the 6-cycle C_6 coloured 1-2-3-1-2-3.

Conversely, however, a function $h: V \to \mathbb{Z}$ satisfying conditions H1 and H2 induces a 3-colouring of G: the unique $\alpha: V \to \{1, 2, 3\}$ satisfying condition H3, and h is in fact a height function for this α . Observe also that if h is a height function for α with base X, then so are $h + 6$ and $h - 6$; while $h + 3$ and $h - 3$ are height functions for α with base Y. Because we will be concerned solely with the question of *existence* of height functions, we assume henceforth that for a given G, all height functions have base X. Thus we let $\mathcal{H}_X(G)$ be the set of height functions with base X corresponding to some 3-colouring of G , and define a metric m on $\mathcal{H}_X(G)$ by setting

$$
m(h_1, h_2) = \sum_{v \in V} |h_1(v) - h_2(v)|,
$$

for $h_1, h_2 \in \mathcal{H}_X(G)$. Note that condition H1 above implies that $m(h_1, h_2)$ is always even.

For a given height function h, $h(v)$ is said to be a *local maximum* (respectively, local minimum) if $h(v)$ is larger than (respectively, smaller than) $h(u)$ for all neighbours u of v. Following $[4]$, we define the following height transformations on h.

– An increasing height transformation takes a local minimum $h(v)$ of h and transforms h into the height function h' given by $h'(x) = \begin{cases} h(x) + 2, & \text{if } x = v; \\ h(x) & \text{if } x \neq v. \end{cases}$ $h(x)$, if $x \neq v$. – A decreasing height transformation takes a local maximum $h(v)$ of h and transforms h into the height function h' given by $h'(x) = \begin{cases} h(x) - 2, & \text{if } x = v; \\ h(x) & \text{if } x \neq v. \end{cases}$ $h(x)$, if $x \neq v$.

Notice that these height transformations give rise to transformations between the corresponding colourings. Specifically, if we let α' be the 3-colouring corresponding to h', an increasing transformation yields $\alpha'(v) = \alpha(v) - 1$, while a decreasing transformation yields $\alpha'(v) = \alpha(v) + 1$, where addition is modulo 3.

The following lemma shows that colourings with height functions are connected in $C_3(G)$. It is a simple extension of the range of applicability of a similar lemma appearing in [\[4\]](#page-11-5).

Lemma 1 ([\[4\]](#page-11-5)). Let α, β be two 3-colourings of G with corresponding height functions h_{α}, h_{β} . Then there is a path between α and β in $C_3(G)$.

Proof. We use induction on $m(h_{\alpha}, h_{\beta})$. The lemma is trivially true when $m(h_{\alpha}, h_{\beta}) = 0$, since in this case α and β are identical.

Suppose therefore that $m(h_{\alpha}, h_{\beta}) > 0$. We show that there is a height transformation transforming h_{α} into some height function h with $m(h, h_{\beta})= m(h_{\alpha}, h_{\beta})-2$, from which the lemma follows.

Without loss of generality, let us assume that there is some vertex $v \in V$ with $h_{\alpha}(v) > h_{\beta}(v)$, and let us choose v with $h_{\alpha}(v)$ as large as possible. We show that such a v must be a local maximum of h_{α} . Let u be any neighbour of v. If $h_{\alpha}(u) > h_{\beta}(u)$, then it follows that $h_{\alpha}(v) > h_{\alpha}(u)$, since v was chosen with $h_{\alpha}(v)$ maximum, and $|h_{\alpha}(v) - h_{\alpha}(u)| = 1$. If, on the other hand, $h_{\alpha}(u) \leq h_{\beta}(u)$, we have $h_{\alpha}(v) \geq h_{\beta}(v) + 1 \geq h_{\beta}(u) \geq h_{\alpha}(u)$, which in fact means $h_{\alpha}(v) > h_{\alpha}(u)$.

Thus $h_{\alpha}(v) > h_{\alpha}(u)$ for all neighbours u of v, and we can apply a decreasing height transformation to h_{α} at v to obtain h. Clearly $m(h, h_{\beta}) = m(h_{\alpha}, h_{\beta}) - 2$. \Box

The next lemma tells us that for a given 3-colouring, non-zero weight cycles are, in some sense, the obstructing configurations forbidding the existence of a corresponding height function.

Lemma 2. Let α be a 3-colouring of G with no corresponding height function. Then G contains a cycle C for which $W(\overrightarrow{C}, \alpha) \neq 0$.

Proof. For a path P in G, let \overrightarrow{P} denote one of the two possible directed paths obtainable from P , and let

$$
W(\overrightarrow{P}, \alpha) = \sum_{e \in E(\overrightarrow{P})} w(e, \alpha),
$$

where $w(e, \alpha)$ takes values as defined in [\(1\)](#page-1-3).

Notice that if a colouring does have a height function, it is possible to construct one by fixing a vertex $x \in X$, giving x an appropriate height (satisfying properties $H1-H3$) and then assigning heights to all vertices in V by following a breadth-first ordering from x.

Whenever we attempt to construct a height function h for α in such a fashion, we must come to a stage in the ordering where we attempt to give some vertex v a height $h(v)$ and find ourselves unable to because v has a neighbour u with a previously assigned height $h(u)$ and $|h(u) - h(v)| > 1$. Letting P be a path between u and v formed by vertices that have been assigned a height, and choosing the appropriate orientation of P, we have $w(\vec{P}, \alpha) = |h(u) - h(v)|$. The lemma now follows by letting C be the cycle formed by P and the edge uv . \square

The following lemma is obvious.

Lemma 3. Let u and v be vertices on a cycle C in a graph G , and suppose there is a path P between u and v in G internally disjoint from C. Let α be a 3-colouring of G. Let C' and C'' be the two cycles formed from P and edges of C, and let $\overrightarrow{C'}$, $\overrightarrow{C''}$ be the orientations of C' , C'' induced by an orientation \overrightarrow{C} of C (so the edges of P have opposite orientations in \overrightarrow{C}' and $\overrightarrow{C''}$). Then $W(\overrightarrow{C}, \alpha) =$ $W(\overrightarrow{C'}, \alpha) + W(\overrightarrow{C''}, \alpha).$

Note this tells us that $W(\overrightarrow{C}, \alpha) \neq 0$ implies $W(\overrightarrow{C'}, \alpha) \neq 0$ or $W(\overrightarrow{C''}, \alpha) \neq 0$.

Proof of Theorem [1](#page-1-0). Let G be a connected bipartite graph.

(i) \implies (ii). Suppose $C_3(G)$ is not connected. Take two 3-colourings of G, α and β , in different components of $C_3(G)$. By Lemma [1](#page-3-0) we know at least one of them, say α , has no corresponding height function, and, by Lemma [2,](#page-3-1) there is a cycle C in G with $W(\overrightarrow{C}, \alpha) \neq 0$.

(ii) \implies (iii). Let G contain a cycle C with $W(\overrightarrow{C}, \alpha) \neq 0$ for some 3colouring α of G. Because $W(\overrightarrow{C_4}, \beta) = 0$ for any 3-colouring β of C_4 , it follows that $C = C_n$ for some even $n \geq 6$. If $G = C$, then it is easy to find a sequence of pinches that will yield C_6 . If G is C plus some chords, then, by Lemma [3,](#page-4-0) there is a smaller cycle C' with $W(\overrightarrow{C}, \alpha) \neq 0$. Thus if $G \neq C$, we can assume that $V(G) \neq V(C)$, and we describe how to pinch a pair of vertices so that (ii) remains satisfied (for a specified cycle with G replaced by the graph created by the pinch and α replaced by its restriction to that graph; also denoted α); by repetition, we can obtain a graph that is a cycle and, by the previous observations, the implication is proved.

We shall choose vertices coloured alike to pinch so that the restriction of α to the graph obtained is well-defined and proper. If C has three consecutive vertices u, v, w with $\alpha(u) = \alpha(w)$, pinching u and w yields a graph containing a cycle $C' = C_{n-2}$ with $W(\overrightarrow{C'}, \alpha) = W(\overrightarrow{C}, \alpha)$. Otherwise C is coloured 1-2-3- \cdots -1-2-3. We can choose u, v, w to be three consecutive vertices of C, such that there is a vertex $x \notin V(C)$ adjacent to v. Suppose, without loss of generality, that $\alpha(x) = \alpha(u)$, and pinch x and u to obtain a graph in which $W(\overrightarrow{C}, \alpha)$ is unchanged.

(iii) \implies (i). Suppose G is pinchable to C_6 . Take two 3-colourings of C_6 not connected by a path in $C_3(C_6)$ — 1-2-3-1-2-3 and 1-2-1-2-1-2, for example. Considering the appropriate orientation of C_6 , note that the first colouring has weight 6 and the second has weight 0. We construct two 3-colourings of G not connected by a path in $C_3(G)$ as follows. Consider the reverse sequence of pinches that gives G from C_6 . Following this sequence, for each colouring of C_6 , give

every pair of new vertices introduced by an "unpinching" the same colour as the vertex from which they originated. In this manner we obtain two 3-colourings of G, α and β , say. Observe that every unpinching maintains a cycle in G which has weight 6 with respect to the colouring induced by the first colouring of C_6 and weight 0 with respect to the second induced colouring. This means G will contain a cycle C for which $W(\vec{C}, \alpha) = 6$ and $W(\vec{C}, \beta) = 0$, showing that α and β cannot possibly be in the same connected component of $C_3(G)$.

This completes the proof of the theorem.

3 The Complexity of 3-Mixing for Bipartite Graphs

Observing that Theorem [1](#page-1-0) gives us two polynomial-time verifiable certificates for when G is not 3-mixing, we immediately obtain that $3-MIXING$ is in the complexity class coNP. By the same theorem, the following decision problem is the complement of 3-Mixing.

PINCHABLE-TO- C_6

Instance : A connected bipartite graph G.

Question : Is G pinchable to C_6 ?

Our proof will in fact show that PINCHABLE-TO- C_6 is NP-complete. We will obtain a reduction from the following decision problem.

$RETRACTABLE-TO-C₆$

Instance: A connected bipartite graph G with an induced 6-cycle S .

Question: Is G retractable to S ? That is, does there exist a homomorphism $r: V(G) \to V(S)$ such that $r(v) = v$ for all $v \in V(S)$?

In [\[7\]](#page-11-6) it is mentioned, without references, that Tomás Feder and Gary MacGillivray have independently proved the following result: for completeness, we give a sketch of a proof.

Theorem 4 (Feder, MacGillivray, see [\[7\]](#page-11-6)). RETRACTABLE-TO- C_6 is NPcomplete.

Sketch of proof of Theorem [4](#page-5-1). It is clear that RETRACTABLE-TO- C_6 is in NP.

Given a graph G, construct a new graph G' as follows: subdivide every edge uv of G by inserting a vertex y_{uv} between u and v. Also add new vertices a, b, c, d, e together with edges za, ab, bc, cd, de, ez , where z is a particular vertex of G (any one will do). The graph G' is clearly connected and bipartite, and the vertices z, a, b, c, d, e induce a 6-cycle S. We will prove that G is 3-colourable if and only if G' retracts to the induced 6-cycle S .

Assume that G is 3-colourable and take a 3-colouring τ of G with $\tau(z) = 1$. From τ we construct a 6-colouring σ of G'. For this, first set $\sigma(x) = \tau(x)$, if $\int 4$, if $\tau(u) = 1$ and $\tau(v) = 2$,

$$
x \in V(G)
$$
. For the new vertices y_{uv} set $\sigma(y_{uv}) = \begin{cases} 5, & \text{if } \tau(u) = 2 \text{ and } \tau(v) = 3, \\ 6, & \text{if } \tau(u) = 3 \text{ and } \tau(v) = 1. \end{cases}$

And for the cycle S we take $\sigma(a) = 4$, $\sigma(b) = 2$, $\sigma(c) = 5$, $\sigma(d) = 3$ and $\sigma(e) = 6$. Now define $r: V(G') \to V(S)$ by setting $r(x) = z$, if $\sigma(x) = 1$; $r(x) = a$, if $\sigma(x) = 4$; $r(x) = b$, if $\sigma(x) = 2$; $r(x) = c$, if $\sigma(x) = 5$; $r(x) = d$, if $\sigma(x) = 3$; and $r(x) = e$, if $\sigma(x) = 6$. It is easy to check that r is a retraction of G' to S .

Conversely, suppose G' retracts to S. We can use this retraction to define a 6-colouring of G' in a similar way to that in which we defined r from σ in the preceeding paragraph. The restriction of this 6-colouring to G yields a 3 colouring of G , completing the proof. \Box

Proof of Theorem [2](#page-1-1). We have established that it is sufficient to describe a polynomial reduction from RETRACTABLE-TO- C_6 to PINCHABLE-TO- C_6 . We shall describe the reduction but leave the remainder of the proof — which is a simple matter of checking a number of cases and, though straightforward, is lengthy to the reader.

The reduction we use follows that used in [\[7\]](#page-11-6) to prove the NP-completeness of the following problem:

COMPACTABLE-TO- C_6

Instance : A connected bipartite graph G.

Question : Is G compactable to C_6 ? That is, does there exist an edge-surjective homomorphism $c: V(G) \to V(C_6)$?

Consider an instance of RETRACTABLE-TO- C_6 : a connected bipartite graph G and an induced 6-cycle S . From G we construct, in time polynomial in the size of G , an instance G' of PINCHABLE-TO- C_6 such that

G retracts to S if and only if
$$
G'
$$
 is pinchable to C_6 . (*)

Assume G has vertex bipartition (G_A, G_B) . Let $V(S) = S_A \cup S_B$, where $S_A =$ ${h_0, h_2, h_4}$ and $S_B = {h_1, h_3, h_5}$, and assume $E(S) = {h_0h_1, \ldots, h_4h_5, h_5h_0}$. The construction of G' is as follows.

- For every vertex $a \in G_A \backslash S_A$, add to G new vertices $u_1^a, u_2^a, w_1^a, y_1^a, y_2^a$, together with edges $u_1^a h_0$, au_2^a , $w_1^a h_3$, aw_1^a , $u_1^a w_1^a$, $y_1^a h_5$, $y_2^a h_2$, $u_1^a y_1^a$, $w_1^a y_2^a$, $u_1^a u_2^a$, $y_1^a y_2^a$.
- For every vertex $b \in G_B \backslash S_B$, add to G new vertices $u_1^b, w_1^b, w_2^b, y_1^b, y_2^b$, together with edges $u_1^b h_0$, bu_1^b , $w_1^b h_3$, bw_2^b , $u_1^b w_1^b$, $y_1^b h_5$, $y_2^b h_2$, $u_1^b y_1^b$, $w_1^b y_2^b$, $w_1^b w_2^b$, $y_1^b y_2^b$.
- For every edge $ab \in E(G) \setminus E(S)$, with $a \in G_A \setminus S_A$ and $b \in G_B \setminus S_B$, add two new vertices: x_a^{ab} adjacent to a and u_1^a ; and x_b^{ab} adjacent to b, w_1^b and x_a^{ab} .

It is clear that G' is connected and bipartite and that G' contains G as an induced subgraph. Note also that the subgraphs constructed around a vertex $a \in G_A \setminus S_A$ and a vertex $b \in G_B \setminus S_B$ are isomorphic; these subgraphs are depicted below in Fig. 1 and Fig. 2.

It is now easy to prove (∗) by considering a number of cases. The details are omitted.

Fig. 1. The subgraph of G' added around a vertex $a \in G_A \setminus S_A$, together with the 6-cycle S

Fig. 2. The subgraph of G' added around a vertex $b \in G_B \setminus S_B$, together with the 6-cycle S

4 A Polynomial-Time Algorithm for Planar Bipartite Graphs

Now let G denote a bipartite planar graph. To prove Theorem [3](#page-1-2) we need some technical results.

Lemma 4. Let P be a shortest path between distinct vertices u and v in a bipartite graph H. Then H is pinchable to P.

Proof. Let P have vertices $u = v_0, v_1, \ldots, v_{k-1}, v_k = v$, and let T be a breadthfirst spanning tree of H rooted at u that contains P (we can choose T so that it contains P since P is a shortest path). Now, working in T , pinch all vertices at distance one from u to v_1 . Next pinch all vertices at distance two from u to v_2 . Continue until all vertices at distance k from u are pinched to $v_k = v$. If necessary, arbitrary pinches on the vertices at distance at least $k+1$ from u will yield P. \Box

Lemma 5. Let H be a bipartite graph.

- (i) Let u and v be two vertices in H properly pre-coloured with colours from 1, 2, 3. Then this colouring can be extended to a proper 3-colouring of H.
- (ii) Let u, v and w be three vertices in H with $uv, vw \in E(H)$. Suppose u, v, w are properly pre-coloured with colours from $1, 2, 3$. Then this colouring can be extended to a proper 3-colouring of H.
- (iii)Suppose the vertices of a 4-cycle in H are properly 3-coloured. Then this 3-colouring can be extended to a proper 3-colouring of H.

Proof. (i) is trivial.

(ii) Without loss of generality we can assume that the colouring of u, v, w is 1-2-1 or 1-2-3. In the first instance, since H is bipartite, we can extend the colouring of u, v, w to a colouring of H using colours 1 and 2 only. For the second case, we can use the same 1,2-colouring, except leaving w with colour 3.

(iii) Since any 3-colouring of a C_4 has two vertices with the same colour, without loss of generality we can assume the 4 vertices are coloured 1-2-1-2 or 1-2-1-3. Colourings similar to those used in (ii) above will immediately lead to the appropriate 3-colourings of H .

Proof of Theorem [3](#page-1-2). The sequence of claims below outlines an algorithm that, given G as input, determines in polynomial time whether or not G is 3-mixing. The first claim is a simple observation.

Claim 1. If G is not connected, then G is 3-mixing if and only if every component of G is 3-mixing.

We next show how we can reduce the case to 2-connected graphs.

Claim 2. Suppose G has a cut-vertex v. Let H_1 be a component of $G-v$. Denote by G_1 the subgraph of G induced by $V(H_1) \cup \{v\}$, and let G_2 be the subgraph induced by $V(G) \setminus V(H_1)$. Then G is 3-mixing if and only if both G_1 and G_2 are 3-mixing.

Proof. If G is 3-mixing, then clearly so are G_1 and G_2 . Conversely, if G is not 3-mixing, we know by Theorem [1](#page-1-0) that there must exist a 3-colouring α of G and a cycle C in G such that $W(\overrightarrow{C}, \alpha) \neq 0$. But because C must lie completely in G_1 or G_2 , we have that G_1 or G_2 is not 3-mixing.

Now we can assume that G is 2-connected. In the next claim we will show that we can actually assume G to be 3-connected.

Claim 3. Suppose G has a 2-vertex-cut $\{u, v\}$. Let H_1 be a component of $G \{u, v\}$. Denote by G_1 the subgraph of G induced by $V(H_1) \cup \{u, v\}$, and let G_2 be the subgraph induced by $V(G) \setminus V(H_1)$. For $i = 1, 2$, let ℓ_i be the distance between u and v in G_i .

Then only the following cases can occur:

(i) We have $\ell_1 = \ell_2 = 1$. Then G is 3-mixing if and only if both G_1 and G_2 are 3-mixing.

- (ii)We have $\ell_1 = \ell_2 = 2$. (So for $i = 1, 2$, there is a vertex $w_i \in V(G_i)$ so that $uw_i, vw_i \in E(G_i)$.) Let G_1^* be the subgraph of G induced by $V(G_1) \cup \{w_2\}$ and let G_2^* be the subgraph induced by $V(G_2) \cup \{w_1\}$. Then G is 3-mixing if and only if both G_1^* and G_2^* are 3-mixing.
- (iii) We have $\ell_1 + \ell_2 \geq 6$. Then G is not 3-mixing.

Proof. Because G is bipartite, ℓ_1 and ℓ_2 must have the same parity. If $\ell_1 = 1$ or $\ell_2 = 1$, then there is an edge uv in G, and this same edge must appear in both G_1 and G_2 . This guarantees that both $\ell_1 = \ell_2 = 1$, and shows that we always have one of the three cases.

(i) In this case we have an edge uv in all of G, G_1, G_2 . If one of G_1 and G_2 is not 3-mixing, say G_1 , we must have a 3-colouring α of G_1 and a cycle C in G_1 for which $W(\overrightarrow{C}, \alpha) \neq 0$. By Lemma [5](#page-8-0)(i) we can easily extend α to the whole of G, showing that G is not 3-mixing. On the other hand, if G is not 3-mixing, we know we must have a 3-colouring β of G and a cycle D in G for which $W(\overrightarrow{D}, \beta) \neq 0$. If D is contained entirely in one of G_1 or G_2 , we are done. If not, D must pass through u and v. For $i = 1, 2$, consider the cycle $Dⁱ$ formed from the part of D that is in G_i together with the edge uv. From Lemma [3](#page-4-0) it follows that one of D^1 and D^2 has non-zero weight under β , showing that G_1 or G_2 is not 3-mixing.

(ii) If one of G_1^* and G_2^* is not 3-mixing, we can use a similar argument as in (i) (now using Lemma $5(ii)$) to conclude that G is not 3-mixing. For the converse we assume G is not 3-mixing. So there is a 3-colouring α of G and a cycle C in G for which $W(\overrightarrow{C}, \alpha) \neq 0$. If C is contained entirely in one of G_1^* or G_2^* , we are done. If not, \hat{C} must pass through u and v. If C does not contain w_1 , then for $i = 1, 2$, consider the cycle $Cⁱ$ formed by the part of C that is in $G[*]_i$ plus the path uw_1v . From Lemma [3](#page-4-0) it follows that one of C^1 , C^2 has non-zero weight under α , showing that G_1^* or G_2^* is not 3-mixing. If w_1 is contained in C, then we can use the same argument but now using the edge uw_1 or vw_1 as the path (at least one of these edges is not on C since C is not contained entirely in G_2^*).

(iii) For $i = 1, 2$, let P_i be a shortest path between u and v in G_i , so P_i has length ℓ_i . Then, by Lemma [4,](#page-7-1) we can see that G is pinchable to $C_{\ell_1+\ell_2}$ (follow, in G, the sequence of pinches that transforms G_1 into P_1 and G_2 into P_2). Since $\ell_1 + \ell_2 \geq 6$, $C_{\ell_1+\ell_2}$ is of course pinchable to C_6 , and hence G is not 3-mixing.

From now on we consider G to be 3-connected, and can therefore use the following result of Whitney — for details, see, for example, [\[3\]](#page-11-7) pp. 78–80.

Theorem 5 (Whitney). Any two planar embeddings of a 3-connected graph are equivalent.

Henceforth, we identify G with its (essentially unique) planar embedding. For a cycle D in G, denote by $Int(D)$ and $Ext(D)$ the set of vertices inside and outside of D, respectively. If both $Int(D)$ and $Ext(D)$ are non-empty, D is separating and we define $G_{\text{Int}}(D) = G - \text{Ext}(D)$ and $G_{\text{Ext}}(D) = G - \text{Int}(D)$.

We next consider the case that G has a separating 4-cycle.

Claim 4. Suppose G has a separating 4-cycle D. Then G is 3-mixing if and only if $G_{Int}(D)$ and $G_{Ext}(D)$ are both 3-mixing.

Proof. To prove necessity, we show that if one of $G_{Int}(D)$ or $G_{Ext}(D)$ is not 3mixing, then G is not 3-mixing. Without loss of generality, suppose that $G_{Int}(D)$ is not 3-mixing, so there exists a 3-colouring α of $G_{Int}(D)$ and a cycle C in $G_{Int}(D)$ with $W(\vec{C}, \alpha) \neq 0$. The 3-colouring of the vertices of the 4-cycle D can be extended to a 3-colouring of $G_{\text{Ext}}(D)$ (use Lemma [5](#page-8-0) (iii)). The combination of the 3colourings of $G_{Int}(D)$ and $G_{Ext}(D)$ gives a 3-colouring of G with a non-zero weight cycle, showing G is not 3-mixing.

To prove sufficiency, we show that if G is not 3-mixing, then at least one of $G_{Int}(D)$ and $G_{Ext}(D)$ must fail to be 3-mixing. Suppose that α is a 3-colouring of G for which there is a cycle C with $W(\vec{C}, \alpha) \neq 0$. If C is contained entirely within $G_{\text{Int}}(D)$ or $G_{\text{Ext}}(D)$ we are done; so let us assume that C has some vertices in $Int(D)$ and some in $Ext(D)$. Then applying Lemma [3](#page-4-0) (repeatedly, if necessary) we can find a cycle C' contained entirely in $G_{Int}(D)$ or $G_{Ext}(D)$ for which $W(\overrightarrow{C'}, \alpha) \neq 0$, completing the proof.

We call a face of G with k edges in its boundary a k -face, and a face with at least k edges in its boundary a $\geq k$ -face. The number of \geq 6-faces in G — which now we can assume is a 3-connected bipartite planar graph with no separating 4-cycle — will lead to our final claim.

Claim 5. Let G be a 3-connected bipartite planar graph with no separating $\frac{1}{4}$ cycle. Then G is 3-mixing if and only if it has at most one ≥ 6 -face.

Proof. We first prove sufficiency. Suppose G has no \geq 6-faces, so has only 4-faces. Let α be any 3-colouring of G and let C be any cycle in G. We show $W(\overrightarrow{C}, \alpha) = 0$ by induction on the number of faces inside C . If there is just one face inside C , C is in fact a facial 4-cycle and $W(\vec{C}, \alpha) = 0$. For the inductive step, let C be a cycle with $r \geq 2$ faces in its interior. If, for two consecutive vertices u, v of C, we have vertices $a, b \in Int(C)$ together with edges ua, ab, by in G, let C' be the cycle formed from C by the removal of the edge uv and the addition of edges ua, ab , bv. If not, check whether for three consecutive vertices u, v, w of C, there is a vertex $a \in Int(C)$ with edges ua, aw in G. If so, let C' be the cycle formed from C by the removal of the vertex v and the addition of the edges ua, aw . If neither of the previous two cases apply, we must have, for u, v, w, x four consecutive vertices of C , an edge ux inside C . In such a case, let C' be the cycle formed from C by the removal of vertices v, w and the addition of the edge ux . In all cases we have that C' has $r - 1$ faces in its interior, so, by induction, we can assume $W(\vec{C}', \alpha) = 0$. From Lemma [3](#page-4-0) we then obtain $W(\vec{C}, \alpha) = 0$.

Suppose now that G contains exactly one \geq 6-face. Without loss of generality we can assume that this face is the outside face, and hence the argument above will work exactly the same to show that G is 3-mixing.

To prove necessity we show that if G contains at least two \geq 6-faces, then G is pinchable to C_6 . For f a ≥ 6 -face in G, a separating cycle D is said to be f-separating if f lies inside D. Let f and f_0 be two \geq 6-faces in G, where we can assume f_o is the outer face of G, and let C be the cycle bounding f. Our claim is that we can successively pinch vertices into a cycle of length at least 6 without ever introducing an f -separating 4-cycle — we will initially do this around C .

Let x, y, z be any three consecutive vertices of C with y having degree at least 3 — if there is no such vertex y, then G is simply a cycle of length at least 6 and we are done. Let a be a neighbour of y distinct from x and z , such that the edges ya and yz form part of the boundary of a face adjacent to f. If the result of pinching a and z introduces no f-separating 4-cycle, then pinch a and z and repeat the process. If pinching a and z does result in the creation of an f-separating 4-cycle, this must be because the path ay, yz forms part of an f -separating 6-cycle D. We now show how we can find alternative pinches which do not introduce an f -separating 4-cycle. The fact that D is f -separating means there is a path $P \subseteq D$ of length 4 between a and z. Note that P cannot contain y, for this would contradict the fact that G has no separating 4-cycle. Consider the graph $G' = G_{Int}(D) - \{yz\}$. We claim that the path $P' = P \cup \{ay\}$ is a shortest path between y and z in G' . To see this, remember that G is bipartite, so any path between y and z in G has to have odd length. We cannot have another edge $yz \in E(G')$ since G is simple. Finally, any path between y and z in G' would, together with the edge yz , form an f-separating cycle in G . Hence a path of length 3 between y and z would contradict the fact that G has no separating 4-cycle. By Lemma [4,](#page-7-1) we see G' is pinchable to P' . Using the same sequence of pinches in G will pinch $G_{Int}(D)$ into D. Note this introduces no separating 4cycle into the resulting graph. If necessary, we can repeat the process by pinching vertices into D, which now bounds a 6-face. This completes the proof. \Box

The sequence of Claims $1 - 5$ $1 - 5$ can easily be used to obtain a polynomial-time algorithm to check if a given planar bipartite graph G is 3-mixing. This completes the proof of Theorem [3.](#page-1-2)

Acknowledgements. We are indebted to Gary MacGillivray for helpful discussions and for bringing reference [\[7\]](#page-11-6) to our attention.

References

- 1. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, New York (1982)
- 2. Cereceda, L., van den Heuvel, J., Johnson, M.: Connectedness of the graph of vertexcolourings. Discrete Math. (to appear)
- 3. Diestel, R.: Graph Theory, 2nd edn. Springer, Heidelberg (2000)
- 4. Goldberg, L.A., Martin, R., Paterson, M.: Random sampling of 3-colorings in \mathbb{Z}^2 . Random Structures Algorithms 24, 279–302 (2004)
- 5. Jerrum, M.: A very simple algorithm for estimating the number of k-colourings of a low degree graph. Random Structures Algorithms 7, 157–165 (1995)
- 6. Jerrum, M.: Counting, Sampling and Integrating: Algorithms and Complexity. Birkhäuser Verlag, Basel (2003)
- 7. Vikas, N.: Computational complexity of compaction to irreflexive cycles. J. Comput. Syst. Sci. 68, 473–496 (2004)