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Abstract. For a 3-colourable graph G, the 3-colour graph of G, de-
noted C3(G), is the graph with node set the proper vertex 3-colourings
of G, and two nodes adjacent whenever the corresponding colourings
differ on precisely one vertex of G. We consider the following question :
given G, how easily can we decide whether or not C3(G) is connected? We
show that the 3-colour graph of a 3-chromatic graph is never connected,
and characterise the bipartite graphs for which C3(G) is connected. We
also show that the problem of deciding the connectedness of the 3-colour
graph of a bipartite graph is coNP-complete, but that restricted to planar
bipartite graphs, the question is answerable in polynomial time.

1 Introduction

Throughout this paper a graph G = (V, E) is simple, loopless and finite. We
always regard a k-vertex-colouring of a graph G as proper; that is, as a function
α : V → {1, 2, . . . , k} such that α(u) �= α(v) for any uv ∈ E. For a positive
integer k and a graph G, we define the k-colour graph of G, denoted Ck(G), as
the graph that has the k-colourings of G as its node set, with two k-colourings
joined by an edge in Ck(G) if they differ in colour on just one vertex of G. We
say that G is k-mixing if Ck(G) is connected.

Continuing a theme begun in an earlier paper [2], we investigate the con-
nectedness of Ck(G) for a given G. The connectedness of the k-colour graph is
an issue of interest when trying to obtain efficient algorithms for almost uni-
form sampling of k-colourings of a given graph. In particular, Ck(G) needs to be
connected for the single-site Glauber dynamics of G ( a Markov chain defined
on the k-colour graph of G ) to be rapidly mixing. For further details, see, for
example, [5,6] and references therein.

In [2] it was shown that if G has chromatic number k for k = 2, 3, then G
is not k-mixing, but that, on the other hand, for k ≥ 4, there are k-chromatic
graphs that are k-mixing and k-chromatic graphs that are not k-mixing. In this
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paper, we look further at the case k = 3: we know 3-chromatic graphs are
not 3-mixing, but what about bipartite graphs? Examples of 3-mixing bipartite
graphs include trees and C4, the cycle on 4 vertices. On the other hand, all cycles
except C4 are not 3-mixing — see [2] for details. In Theorem 1, we distinguish
between 3-mixing and non-3-mixing bipartite graphs in terms of their structure
and the possible 3-colourings they may have. As G is k-mixing if and only if every
connected component of G is k-mixing, we will take our “argument graph” G to
be connected.

Some terminology is required to state the result. If v and w are vertices of a
bipartite graph G at distance two, then a pinch on v and w is the identification
of v and w ( and the removal of any double edges produced ). And G is pinchable
to a graph H if there exists a sequence of pinches that transforms G into H .

Given a 3-colouring α, the weight of an edge e = uv oriented from u to v is

w(−→uv, α) =
{

+1, if α(u)α(v) ∈ {12, 23, 31};
−1, if α(u)α(v) ∈ {21, 32, 13}. (1)

To orient a cycle means to orient each edge on the cycle so that a directed cycle
is obtained. If C is a cycle, then by

−→
C we denote the cycle with one of the two

possible orientations. The weight W (
−→
C , α) of an oriented cycle

−→
C is the sum of

the weights of its oriented edges.

Theorem 1. Let G be a connected bipartite graph. The following are equivalent :

(i) The graph G is not 3-mixing.
(ii) There exists a cycle C in G and a 3-colouring α of G with W (

−→
C , α) �= 0.

(iii) The graph G is pinchable to the 6-cycle C6.

We also determine the computational complexity of the following decision
problem.

3-Mixing

Instance : A connected bipartite graph G.
Question : Is G 3-mixing?

Theorem 2. The decision problem 3-Mixing is coNP-complete.

We also prove, however, that there is a polynomial algorithm for the restriction
of 3-Mixing to planar graphs. We remark that this difference in complexity con-
trasts with many other well-known graph colouring problems where the planar
case is no easier to solve.

Theorem 3. Restricted to planar bipartite graphs, the decision problem
3-Mixing is in the complexity class P.

Organization of the paper: we prove Theorems 1, 2 and 3 in Sections 2, 3 and 4
respectively.
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2 Characterising 3-Mixing Bipartite Graphs

To prove Theorem 1, we need some definitions, terminology and lemmas.
For the rest of this section, let G = (V, E) denote a connected bipartite graph

with vertex bipartition X, Y . We use α, β, . . . to denote specific colourings, and,
having defined the colourings as nodes of C3(G), the meaning of, for example, the
path between two colourings should be clear. We denote the cycle on n vertices
by Cn, and will often describe a colouring of Cn by just listing the colours as
they appear on consecutive vertices.

Given a 3-colouring α of G, we define a height function for α with base X as
a function h : V → Z satisfying the following conditions. ( See [1,4] for other,
similar height functions. )
H1For all v ∈ X , h(v) ≡ 0 (mod 2); for all v ∈ Y , h(v) ≡ 1 (mod 2).
H2For all uv ∈ E, h(v) − h(u) = w(−→uv, α) ( ∈ {−1, +1} ).
H3For all v ∈ V , h(v) ≡ α(v) (mod 3).

If h : V → Z satisfies conditions H2, H3 and also
H1′ For all v ∈ X , h(v) ≡ 1 (mod 2); while for v ∈ Y , h(v) ≡ 0 (mod 2).

then h is said to be a height function for α with base Y .
Observe that for a particular colouring of a given G, a height function might

not exist. An example of this is the 6-cycle C6 coloured 1-2-3-1-2-3.
Conversely, however, a function h : V → Z satisfying conditions H1 and H2

induces a 3-colouring of G : the unique α : V → {1, 2, 3} satisfying condition H3,
and h is in fact a height function for this α. Observe also that if h is a height
function for α with base X , then so are h + 6 and h − 6; while h + 3 and h − 3
are height functions for α with base Y . Because we will be concerned solely
with the question of existence of height functions, we assume henceforth that
for a given G, all height functions have base X . Thus we let HX(G) be the set
of height functions with base X corresponding to some 3-colouring of G, and
define a metric m on HX(G) by setting

m(h1, h2) =
∑
v∈V

|h1(v) − h2(v)|,

for h1, h2 ∈ HX(G). Note that condition H1 above implies that m(h1, h2) is
always even.

For a given height function h, h(v) is said to be a local maximum ( respectively,
local minimum ) if h(v) is larger than ( respectively, smaller than ) h(u) for all
neighbours u of v. Following [4], we define the following height transformations
on h.
– An increasing height transformation takes a local minimum h(v) of h and

transforms h into the height function h′ given by h′(x) =
{

h(x) + 2, if x = v;
h(x), if x �= v.

– A decreasing height transformation takes a local maximum h(v) of h and

transforms h into the height function h′ given by h′(x) =
{

h(x) − 2, if x = v;
h(x), if x �= v.
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Notice that these height transformations give rise to transformations between
the corresponding colourings. Specifically, if we let α′ be the 3-colouring corre-
sponding to h′, an increasing transformation yields α′(v) = α(v) − 1, while a
decreasing transformation yields α′(v) = α(v) + 1, where addition is modulo 3.

The following lemma shows that colourings with height functions are con-
nected in C3(G). It is a simple extension of the range of applicability of a similar
lemma appearing in [4].

Lemma 1 ([4]). Let α, β be two 3-colourings of G with corresponding height
functions hα, hβ. Then there is a path between α and β in C3(G).

Proof. We use induction on m(hα, hβ). The lemma is trivially true when
m(hα, hβ) = 0, since in this case α and β are identical.

Suppose therefore that m(hα, hβ) > 0. We show that there is a height transfor-
mation transforminghα into someheight functionhwithm(h, hβ)= m(hα, hβ)−2,
from which the lemma follows.

Without loss of generality, let us assume that there is some vertex v ∈ V with
hα(v) > hβ(v), and let us choose v with hα(v) as large as possible. We show
that such a v must be a local maximum of hα. Let u be any neighbour of v. If
hα(u) > hβ(u), then it follows that hα(v) > hα(u), since v was chosen with hα(v)
maximum, and |hα(v) − hα(u)| = 1. If, on the other hand, hα(u) ≤ hβ(u), we
have hα(v) ≥ hβ(v) + 1 ≥ hβ(u) ≥ hα(u), which in fact means hα(v) > hα(u).

Thus hα(v) > hα(u) for all neighbours u of v, and we can apply a decreasing
height transformation to hα at v to obtain h. Clearly m(h, hβ) = m(hα, hβ)− 2.

�	

The next lemma tells us that for a given 3-colouring, non-zero weight cycles
are, in some sense, the obstructing configurations forbidding the existence of a
corresponding height function.

Lemma 2. Let α be a 3-colouring of G with no corresponding height function.
Then G contains a cycle C for which W (

−→
C , α) �= 0.

Proof. For a path P in G, let
−→
P denote one of the two possible directed paths

obtainable from P , and let

W (
−→
P , α) =

∑
e∈E(

−→
P )

w(e, α),

where w(e, α) takes values as defined in (1).
Notice that if a colouring does have a height function, it is possible to con-

struct one by fixing a vertex x ∈ X , giving x an appropriate height ( satisfying
properties H1–H3 ) and then assigning heights to all vertices in V by following
a breadth-first ordering from x.

Whenever we attempt to construct a height function h for α in such a fash-
ion, we must come to a stage in the ordering where we attempt to give some
vertex v a height h(v) and find ourselves unable to because v has a neighbour u
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with a previously assigned height h(u) and |h(u) − h(v)| > 1. Letting P be a
path between u and v formed by vertices that have been assigned a height, and
choosing the appropriate orientation of P , we have w(

−→
P , α) = |h(u)−h(v)|. The

lemma now follows by letting C be the cycle formed by P and the edge uv. �	

The following lemma is obvious.

Lemma 3. Let u and v be vertices on a cycle C in a graph G, and suppose
there is a path P between u and v in G internally disjoint from C. Let α be a
3-colouring of G. Let C′ and C′′ be the two cycles formed from P and edges of C,
and let

−→
C′,

−→
C′′ be the orientations of C′, C′′ induced by an orientation

−→
C of C

( so the edges of P have opposite orientations in
−→
C′ and

−→
C′′ ). Then W (

−→
C , α) =

W (
−→
C′, α) + W (

−→
C′′, α).

Note this tells us that W (
−→
C , α) �= 0 implies W (

−→
C′, α) �= 0 or W (

−→
C′′, α) �= 0.

Proof of Theorem 1. Let G be a connected bipartite graph.
(i) =⇒ (ii). Suppose C3(G) is not connected. Take two 3-colourings of G, α

and β, in different components of C3(G). By Lemma 1 we know at least one of
them, say α, has no corresponding height function, and, by Lemma 2, there is a
cycle C in G with W (

−→
C , α) �= 0.

(ii) =⇒ (iii). Let G contain a cycle C with W (
−→
C , α) �= 0 for some 3-

colouring α of G. Because W (
−→
C4, β) = 0 for any 3-colouring β of C4, it follows

that C = Cn for some even n ≥ 6. If G = C, then it is easy to find a sequence of
pinches that will yield C6. If G is C plus some chords, then, by Lemma 3, there
is a smaller cycle C′ with W (

−→
C′, α) �= 0. Thus if G �= C, we can assume that

V (G) �= V (C), and we describe how to pinch a pair of vertices so that (ii) remains
satisfied ( for a specified cycle with G replaced by the graph created by the pinch
and α replaced by its restriction to that graph; also denoted α ); by repetition,
we can obtain a graph that is a cycle and, by the previous observations, the
implication is proved.

We shall choose vertices coloured alike to pinch so that the restriction of α
to the graph obtained is well-defined and proper. If C has three consecutive
vertices u, v, w with α(u) = α(w), pinching u and w yields a graph containing
a cycle C′ = Cn−2 with W (

−→
C′, α) = W (

−→
C , α). Otherwise C is coloured 1-2-3-

· · · -1-2-3. We can choose u, v, w to be three consecutive vertices of C, such that
there is a vertex x /∈ V (C) adjacent to v. Suppose, without loss of generality,
that α(x) = α(u), and pinch x and u to obtain a graph in which W (

−→
C , α) is

unchanged.
(iii) =⇒ (i). Suppose G is pinchable to C6. Take two 3-colourings of C6

not connected by a path in C3(C6) — 1-2-3-1-2-3 and 1-2-1-2-1-2, for example.
Considering the appropriate orientation of C6, note that the first colouring has
weight 6 and the second has weight 0. We construct two 3-colourings of G not
connected by a path in C3(G) as follows. Consider the reverse sequence of pinches
that gives G from C6. Following this sequence, for each colouring of C6, give
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every pair of new vertices introduced by an “unpinching” the same colour as the
vertex from which they originated. In this manner we obtain two 3-colourings
of G, α and β, say. Observe that every unpinching maintains a cycle in G which
has weight 6 with respect to the colouring induced by the first colouring of C6
and weight 0 with respect to the second induced colouring. This means G will
contain a cycle C for which W (

−→
C , α) = 6 and W (

−→
C , β) = 0, showing that α

and β cannot possibly be in the same connected component of C3(G).
This completes the proof of the theorem. �	

3 The Complexity of 3-Mixing for Bipartite Graphs

Observing that Theorem 1 gives us two polynomial-time verifiable certificates
for when G is not 3-mixing, we immediately obtain that 3-Mixing is in the
complexity class coNP. By the same theorem, the following decision problem is
the complement of 3-Mixing.

Pinchable-to-C6
Instance : A connected bipartite graph G.
Question : Is G pinchable to C6?

Our proof will in fact show that Pinchable-to-C6 is NP-complete. We will
obtain a reduction from the following decision problem.

Retractable-to-C6
Instance : A connected bipartite graph G with an induced 6-cycle S.
Question : Is G retractable to S? That is, does there exist a homomorphism

r : V (G) → V (S) such that r(v) = v for all v ∈ V (S)?

In [7] it is mentioned, without references, that Tomás Feder and
Gary MacGillivray have independently proved the following result: for complete-
ness, we give a sketch of a proof.

Theorem 4 (Feder, MacGillivray, see [7]). Retractable-to-C6 is NP-
complete.

Sketch of proof of Theorem 4. It is clear that Retractable-to-C6 is in NP.
Given a graph G, construct a new graph G′ as follows : subdivide every edge uv

of G by inserting a vertex yuv between u and v. Also add new vertices a, b, c, d, e
together with edges za, ab, bc, cd, de, ez, where z is a particular vertex of G ( any
one will do ). The graph G′ is clearly connected and bipartite, and the vertices
z, a, b, c, d, e induce a 6-cycle S. We will prove that G is 3-colourable if and only
if G′ retracts to the induced 6-cycle S.

Assume that G is 3-colourable and take a 3-colouring τ of G with τ(z) = 1.
From τ we construct a 6-colouring σ of G′. For this, first set σ(x) = τ(x), if

x ∈ V (G). For the new vertices yuv set σ(yuv) =

⎧⎨
⎩

4, if τ(u) = 1 and τ(v) = 2,
5, if τ(u) = 2 and τ(v) = 3,
6, if τ(u) = 3 and τ(v) = 1.
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And for the cycle S we take σ(a) = 4, σ(b) = 2, σ(c) = 5, σ(d) = 3 and
σ(e) = 6. Now define r : V (G′) → V (S) by setting r(x) = z, if σ(x) = 1;
r(x) = a, if σ(x) = 4; r(x) = b, if σ(x) = 2; r(x) = c, if σ(x) = 5; r(x) = d, if
σ(x) = 3; and r(x) = e, if σ(x) = 6. It is easy to check that r is a retraction
of G′ to S.

Conversely, suppose G′ retracts to S. We can use this retraction to define
a 6-colouring of G′ in a similar way to that in which we defined r from σ in
the preceeding paragraph. The restriction of this 6-colouring to G yields a 3-
colouring of G, completing the proof. �	

Proof of Theorem 2. We have established that it is sufficient to describe a poly-
nomial reduction from Retractable-to-C6 to Pinchable-to-C6. We shall
describe the reduction but leave the remainder of the proof — which is a simple
matter of checking a number of cases and, though straightforward, is lengthy —
to the reader.

The reduction we use follows that used in [7] to prove the NP-completeness
of the following problem:

Compactable-to-C6
Instance : A connected bipartite graph G.
Question : Is G compactable to C6? That is, does there exist an edge-surjective

homomorphism c : V (G) → V (C6)?

Consider an instance of Retractable-to-C6 : a connected bipartite graph G
and an induced 6-cycle S. From G we construct, in time polynomial in the size
of G, an instance G′ of Pinchable-to-C6 such that

G retracts to S if and only if G′ is pinchable to C6. (∗)

Assume G has vertex bipartition (GA, GB). Let V (S) = SA ∪ SB, where SA =
{h0, h2, h4} and SB = {h1, h3, h5}, and assume E(S) = { h0h1, . . . , h4h5, h5h0 }.

The construction of G′ is as follows.

• For every vertex a ∈ GA\SA, add to G new vertices ua
1, u

a
2 , w

a
1 , ya

1 , ya
2 , together

with edges ua
1h0, aua

2 , w
a
1h3, awa

1 , ua
1w

a
1 , ya

1h5, y
a
2h2, u

a
1y

a
1 , wa

1ya
2 , ua

1u
a
2, y

a
1ya

2 .

• For every vertex b ∈ GB \SB, add to G new vertices ub
1, w

b
1, w

b
2, y

b
1, y

b
2, together

with edges ub
1h0, bu

b
1, w

b
1h3, bw

b
2, u

b
1w

b
1, y

b
1h5, y

b
2h2, u

b
1y

b
1, w

b
1y

b
2, w

b
1w

b
2, y

b
1y

b
2.

• For every edge ab ∈ E(G)\E(S), with a ∈ GA \SA and b ∈ GB \SB, add two
new vertices : xab

a adjacent to a and ua
1 ; and xab

b adjacent to b, wb
1 and xab

a .

It is clear that G′ is connected and bipartite and that G′ contains G as an
induced subgraph. Note also that the subgraphs constructed around a vertex
a ∈ GA \ SA and a vertex b ∈ GB \ SB are isomorphic; these subgraphs are
depicted below in Fig. 1 and Fig. 2.

It is now easy to prove (∗) by considering a number of cases. The details are
omitted.
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Fig. 1. The subgraph of G′ added around a vertex a ∈ GA \ SA, together with the
6-cycle S
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Fig. 2. The subgraph of G′ added around a vertex b ∈ GB \ SB, together with the
6-cycle S

4 A Polynomial-Time Algorithm for Planar Bipartite
Graphs

Now let G denote a bipartite planar graph. To prove Theorem 3 we need some
technical results.

Lemma 4. Let P be a shortest path between distinct vertices u and v in a bi-
partite graph H. Then H is pinchable to P .

Proof. Let P have vertices u = v0, v1, . . . , vk−1, vk = v, and let T be a breadth-
first spanning tree of H rooted at u that contains P (we can choose T so that
it contains P since P is a shortest path ). Now, working in T , pinch all vertices
at distance one from u to v1. Next pinch all vertices at distance two from u to v2.
Continue until all vertices at distance k from u are pinched to vk = v. If necessary,
arbitrary pinches on the vertices at distance at least k +1 from u will yield P . �	
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Lemma 5. Let H be a bipartite graph.
(i) Let u and v be two vertices in H properly pre-coloured with colours from

1, 2, 3. Then this colouring can be extended to a proper 3-colouring of H.
(ii) Let u, v and w be three vertices in H with uv, vw ∈ E(H). Suppose u, v, w

are properly pre-coloured with colours from 1, 2, 3. Then this colouring can
be extended to a proper 3-colouring of H.

(iii)Suppose the vertices of a 4-cycle in H are properly 3-coloured. Then this
3-colouring can be extended to a proper 3-colouring of H.

Proof. (i) is trivial.
(ii) Without loss of generality we can assume that the colouring of u, v, w

is 1-2-1 or 1-2-3. In the first instance, since H is bipartite, we can extend the
colouring of u, v, w to a colouring of H using colours 1 and 2 only. For the second
case, we can use the same 1,2-colouring, except leaving w with colour 3.

(iii) Since any 3-colouring of a C4 has two vertices with the same colour,
without loss of generality we can assume the 4 vertices are coloured 1-2-1-2 or
1-2-1-3. Colourings similar to those used in (ii) above will immediately lead to
the appropriate 3-colourings of H . �	

Proof of Theorem 3. The sequence of claims below outlines an algorithm that,
given G as input, determines in polynomial time whether or not G is 3-mixing.

The first claim is a simple observation.

Claim 1. If G is not connected, then G is 3-mixing if and only if every compo-
nent of G is 3-mixing.

We next show how we can reduce the case to 2-connected graphs.

Claim 2. Suppose G has a cut-vertex v. Let H1 be a component of G−v. Denote
by G1 the subgraph of G induced by V (H1) ∪ {v}, and let G2 be the subgraph
induced by V (G)\V (H1). Then G is 3-mixing if and only if both G1 and G2 are
3-mixing.

Proof. If G is 3-mixing, then clearly so are G1 and G2. Conversely, if G is not
3-mixing, we know by Theorem 1 that there must exist a 3-colouring α of G

and a cycle C in G such that W (
−→
C , α) �= 0. But because C must lie completely

in G1 or G2, we have that G1 or G2 is not 3-mixing. �	

Now we can assume that G is 2-connected. In the next claim we will show that
we can actually assume G to be 3-connected.

Claim 3. Suppose G has a 2-vertex-cut {u, v}. Let H1 be a component of G −
{u, v}. Denote by G1 the subgraph of G induced by V (H1) ∪ {u, v}, and let G2
be the subgraph induced by V (G) \ V (H1). For i = 1, 2, let �i be the distance
between u and v in Gi.

Then only the following cases can occur :

(i) We have �1 = �2 = 1. Then G is 3-mixing if and only if both G1 and G2 are
3-mixing.
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(ii)We have �1 = �2 = 2. ( So for i = 1, 2, there is a vertex wi ∈ V (Gi) so that
uwi, vwi ∈ E(Gi). ) Let G∗

1 be the subgraph of G induced by V (G1) ∪ {w2}
and let G∗

2 be the subgraph induced by V (G2) ∪ {w1}. Then G is 3-mixing if
and only if both G∗

1 and G∗
2 are 3-mixing.

(iii) We have �1 + �2 ≥ 6. Then G is not 3-mixing.

Proof. Because G is bipartite, �1 and �2 must have the same parity. If �1 = 1
or �2 = 1, then there is an edge uv in G, and this same edge must appear in
both G1 and G2. This guarantees that both �1 = �2 = 1, and shows that we
always have one of the three cases.

(i) In this case we have an edge uv in all of G, G1, G2. If one of G1 and G2 is
not 3-mixing, say G1, we must have a 3-colouring α of G1 and a cycle C in G1 for
which W (

−→
C , α) �= 0. By Lemma 5 (i) we can easily extend α to the whole of G,

showing that G is not 3-mixing. On the other hand, if G is not 3-mixing, we know
we must have a 3-colouring β of G and a cycle D in G for which W (

−→
D, β) �= 0.

If D is contained entirely in one of G1 or G2, we are done. If not, D must pass
through u and v. For i = 1, 2, consider the cycle Di formed from the part of D
that is in Gi together with the edge uv. From Lemma 3 it follows that one of D1

and D2 has non-zero weight under β, showing that G1 or G2 is not 3-mixing.
(ii) If one of G∗

1 and G∗
2 is not 3-mixing, we can use a similar argument as in (i)

( now using Lemma 5 (ii) ) to conclude that G is not 3-mixing. For the converse
we assume G is not 3-mixing. So there is a 3-colouring α of G and a cycle C

in G for which W (
−→
C , α) �= 0. If C is contained entirely in one of G∗

1 or G∗
2, we

are done. If not, C must pass through u and v. If C does not contain w1, then
for i = 1, 2, consider the cycle Ci formed by the part of C that is in G∗

i plus
the path uw1v. From Lemma 3 it follows that one of C1, C2 has non-zero weight
under α, showing that G∗

1 or G∗
2 is not 3-mixing. If w1 is contained in C, then

we can use the same argument but now using the edge uw1 or vw1 as the path
( at least one of these edges is not on C since C is not contained entirely in G∗

2 ).
(iii) For i = 1, 2, let Pi be a shortest path between u and v in Gi, so Pi has

length �i. Then, by Lemma 4, we can see that G is pinchable to C�1+�2 (follow,
in G, the sequence of pinches that transforms G1 into P1 and G2 into P2). Since
�1 + �2 ≥ 6, C�1+�2 is of course pinchable to C6, and hence G is not 3-mixing. �	

From now on we consider G to be 3-connected, and can therefore use the following
result of Whitney — for details, see, for example, [3] pp. 78–80.

Theorem 5 (Whitney). Any two planar embeddings of a 3-connected graph
are equivalent.

Henceforth, we identify G with its ( essentially unique ) planar embedding. For a
cycle D in G, denote by Int(D) and Ext(D) the set of vertices inside and outside
of D, respectively. If both Int(D) and Ext(D) are non-empty, D is separating
and we define GInt(D) = G − Ext(D) and GExt(D) = G − Int(D).

We next consider the case that G has a separating 4-cycle.

Claim 4. Suppose G has a separating 4-cycle D. Then G is 3-mixing if and
only if GInt(D) and GExt(D) are both 3-mixing.
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Proof. To prove necessity, we show that if one of GInt(D) or GExt(D) is not 3-
mixing, then G is not 3-mixing. Without loss of generality, suppose that GInt(D)
is not 3-mixing, so there exists a 3-colouring α of GInt(D) and a cycle C in GInt(D)
with W (

−→
C , α) �= 0. The 3-colouring of the vertices of the 4-cycle D can be ex-

tended to a 3-colouring of GExt(D) ( use Lemma 5 (iii) ). The combination of the 3-
colourings of GInt(D) and GExt(D) gives a 3-colouring of G with a non-zero weight
cycle, showing G is not 3-mixing.

To prove sufficiency, we show that if G is not 3-mixing, then at least one
of GInt(D) and GExt(D) must fail to be 3-mixing. Suppose that α is a 3-colouring
of G for which there is a cycle C with W (

−→
C , α) �= 0. If C is contained entirely

within GInt(D) or GExt(D) we are done; so let us assume that C has some
vertices in Int(D) and some in Ext(D). Then applying Lemma 3 ( repeatedly, if
necessary ) we can find a cycle C′ contained entirely in GInt(D) or GExt(D) for
which W (

−→
C′, α) �= 0, completing the proof. �	

We call a face of G with k edges in its boundary a k-face, and a face with at
least k edges in its boundary a ≥ k-face. The number of ≥ 6-faces in G — which
now we can assume is a 3-connected bipartite planar graph with no separating
4-cycle — will lead to our final claim.

Claim 5. Let G be a 3-connected bipartite planar graph with no separating 4-
cycle. Then G is 3-mixing if and only if it has at most one ≥ 6-face.

Proof. We first prove sufficiency. Suppose G has no ≥ 6-faces, so has only 4-faces.
Let α be any 3-colouring of G and let C be any cycle in G. We show W (

−→
C , α) = 0

by induction on the number of faces inside C. If there is just one face inside C,
C is in fact a facial 4-cycle and W (

−→
C , α) = 0. For the inductive step, let C be a

cycle with r ≥ 2 faces in its interior. If, for two consecutive vertices u, v of C, we
have vertices a, b ∈ Int(C) together with edges ua, ab, bv in G, let C′ be the cycle
formed from C by the removal of the edge uv and the addition of edges ua, ab, bv.
If not, check whether for three consecutive vertices u, v, w of C, there is a vertex
a ∈ Int(C) with edges ua, aw in G. If so, let C′ be the cycle formed from C by
the removal of the vertex v and the addition of the edges ua, aw. If neither of the
previous two cases apply, we must have, for u, v, w, x four consecutive vertices
of C, an edge ux inside C. In such a case, let C′ be the cycle formed from C
by the removal of vertices v, w and the addition of the edge ux. In all cases we
have that C′ has r − 1 faces in its interior, so, by induction, we can assume
W (

−→
C′, α) = 0. From Lemma 3 we then obtain W (

−→
C , α) = 0.

Suppose now that G contains exactly one ≥ 6-face. Without loss of generality
we can assume that this face is the outside face, and hence the argument above
will work exactly the same to show that G is 3-mixing.

To prove necessity we show that if G contains at least two ≥ 6-faces, then G
is pinchable to C6. For f a ≥ 6-face in G, a separating cycle D is said to be
f -separating if f lies inside D. Let f and fo be two ≥ 6-faces in G, where we can
assume fo is the outer face of G, and let C be the cycle bounding f . Our claim is
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that we can successively pinch vertices into a cycle of length at least 6 without
ever introducing an f -separating 4-cycle — we will initially do this around C.

Let x, y, z be any three consecutive vertices of C with y having degree at
least 3 — if there is no such vertex y, then G is simply a cycle of length at
least 6 and we are done. Let a be a neighbour of y distinct from x and z, such
that the edges ya and yz form part of the boundary of a face adjacent to f . If
the result of pinching a and z introduces no f -separating 4-cycle, then pinch a
and z and repeat the process. If pinching a and z does result in the creation of
an f -separating 4-cycle, this must be because the path ay, yz forms part of an
f -separating 6-cycle D. We now show how we can find alternative pinches which
do not introduce an f -separating 4-cycle. The fact that D is f -separating means
there is a path P ⊆ D of length 4 between a and z. Note that P cannot contain y,
for this would contradict the fact that G has no separating 4-cycle. Consider the
graph G′ = GInt(D)− {yz}. We claim that the path P ′ = P ∪{ay} is a shortest
path between y and z in G′. To see this, remember that G is bipartite, so any
path between y and z in G has to have odd length. We cannot have another edge
yz ∈ E(G′) since G is simple. Finally, any path between y and z in G′ would,
together with the edge yz, form an f -separating cycle in G. Hence a path of
length 3 between y and z would contradict the fact that G has no separating
4-cycle. By Lemma 4, we see G′ is pinchable to P ′. Using the same sequence of
pinches in G will pinch GInt(D) into D. Note this introduces no separating 4-
cycle into the resulting graph. If necessary, we can repeat the process by pinching
vertices into D, which now bounds a 6-face. This completes the proof. �	

The sequence of Claims 1 – 5 can easily be used to obtain a polynomial-time
algorithm to check if a given planar bipartite graph G is 3-mixing. This completes
the proof of Theorem 3. �	

Acknowledgements. We are indebted to Gary MacGillivray for helpful dis-
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