Mixing 3-Colourings in Bipartite Graphs

Luis Cereceda¹, Jan van den Heuvel¹, and Matthew Johnson^{2,*}

¹ Centre for Discrete and Applicable Mathematics, Department of Mathematics, London School of Economics, Houghton Street, London WC2A 2AE, U.K.

{jan,luis}@maths.lse.ac.uk

 2 Department of Computer Science, Durham University,

Science Laboratories, South Road, Durham DH1 3LE, U.K.

matthew.johnson2@dur.ac.uk

Abstract. For a 3-colourable graph G, the 3-colour graph of G, denoted $\mathcal{C}_3(G)$, is the graph with node set the proper vertex 3-colourings of G, and two nodes adjacent whenever the corresponding colourings differ on precisely one vertex of G. We consider the following question : given G, how easily can we decide whether or not $\mathcal{C}_3(G)$ is connected? We show that the 3-colour graph of a 3-chromatic graph is never connected, and characterise the bipartite graphs for which $\mathcal{C}_3(G)$ is connected. We also show that the problem of deciding the connectedness of the 3-colour graph of a bipartite graph is coNP-complete, but that restricted to planar bipartite graphs, the question is answerable in polynomial time.

1 Introduction

Throughout this paper a graph G = (V, E) is simple, loopless and finite. We always regard a k-vertex-colouring of a graph G as proper; that is, as a function $\alpha : V \to \{1, 2, ..., k\}$ such that $\alpha(u) \neq \alpha(v)$ for any $uv \in E$. For a positive integer k and a graph G, we define the k-colour graph of G, denoted $\mathcal{C}_k(G)$, as the graph that has the k-colourings of G as its node set, with two k-colourings joined by an edge in $\mathcal{C}_k(G)$ if they differ in colour on just one vertex of G. We say that G is k-mixing if $\mathcal{C}_k(G)$ is connected.

Continuing a theme begun in an earlier paper [2], we investigate the connectedness of $\mathcal{C}_k(G)$ for a given G. The connectedness of the k-colour graph is an issue of interest when trying to obtain efficient algorithms for almost uniform sampling of k-colourings of a given graph. In particular, $\mathcal{C}_k(G)$ needs to be connected for the single-site Glauber dynamics of G (a Markov chain defined on the k-colour graph of G) to be rapidly mixing. For further details, see, for example, [5,6] and references therein.

In [2] it was shown that if G has chromatic number k for k = 2, 3, then G is not k-mixing, but that, on the other hand, for $k \ge 4$, there are k-chromatic graphs that are k-mixing and k-chromatic graphs that are not k-mixing. In this

^{*} Research partially supported by Nuffield grant no. NAL/32772.

A. Brandstädt, D. Kratsch, and H. Müller (Eds.): WG 2007, LNCS 4769, pp. 166–177, 2007.

[©] Springer-Verlag Berlin Heidelberg 2007

paper, we look further at the case k = 3: we know 3-chromatic graphs are not 3-mixing, but what about bipartite graphs? Examples of 3-mixing bipartite graphs include trees and C_4 , the cycle on 4 vertices. On the other hand, all cycles except C_4 are not 3-mixing — see [2] for details. In Theorem 1, we distinguish between 3-mixing and non-3-mixing bipartite graphs in terms of their structure and the possible 3-colourings they may have. As G is k-mixing if and only if every connected component of G is k-mixing, we will take our "argument graph" G to be connected.

Some terminology is required to state the result. If v and w are vertices of a bipartite graph G at distance two, then a *pinch* on v and w is the identification of v and w (and the removal of any double edges produced). And G is *pinchable* to a graph H if there exists a sequence of pinches that transforms G into H.

Given a 3-colouring α , the *weight* of an edge e = uv oriented from u to v is

$$w(\overrightarrow{uv}, \alpha) = \begin{cases} +1, \text{ if } \alpha(u)\alpha(v) \in \{12, 23, 31\};\\ -1, \text{ if } \alpha(u)\alpha(v) \in \{21, 32, 13\}. \end{cases}$$
(1)

To orient a cycle means to orient each edge on the cycle so that a directed cycle is obtained. If C is a cycle, then by \vec{C} we denote the cycle with one of the two possible orientations. The weight $W(\vec{C}, \alpha)$ of an oriented cycle \vec{C} is the sum of the weights of its oriented edges.

Theorem 1. Let G be a connected bipartite graph. The following are equivalent:

(i) The graph G is not 3-mixing.

(ii) There exists a cycle C in G and a 3-colouring α of G with $W(\vec{C}, \alpha) \neq 0$. (iii) The graph G is pinchable to the 6-cycle C_6 .

We also determine the computational complexity of the following decision problem.

3-MIXING Instance: A connected bipartite graph G. Question: Is G 3-mixing?

Theorem 2. The decision problem 3-MIXING is coNP-complete.

We also prove, however, that there is a polynomial algorithm for the restriction of 3-MIXING to planar graphs. We remark that this difference in complexity contrasts with many other well-known graph colouring problems where the planar case is no easier to solve.

Theorem 3. Restricted to planar bipartite graphs, the decision problem 3-MIXING is in the complexity class P.

Organization of the paper: we prove Theorems 1, 2 and 3 in Sections 2, 3 and 4 respectively.

2 Characterising 3-Mixing Bipartite Graphs

To prove Theorem 1, we need some definitions, terminology and lemmas.

For the rest of this section, let G = (V, E) denote a connected bipartite graph with vertex bipartition X, Y. We use α, β, \ldots to denote specific colourings, and, having defined the colourings as nodes of $C_3(G)$, the meaning of, for example, the path between two colourings should be clear. We denote the cycle on n vertices by C_n , and will often describe a colouring of C_n by just listing the colours as they appear on consecutive vertices.

Given a 3-colouring α of G, we define a height function for α with base X as a function $h: V \to \mathbb{Z}$ satisfying the following conditions. (See [1,4] for other, similar height functions.)

H1 For all $v \in X$, $h(v) \equiv 0 \pmod{2}$; for all $v \in Y$, $h(v) \equiv 1 \pmod{2}$. H2 For all $uv \in E$, $h(v) - h(u) = w(\overrightarrow{uv}, \alpha) \ (\in \{-1, +1\} \}$.

H3For all $v \in V$, $h(v) \equiv \alpha(v) \pmod{3}$.

If $h: V \to \mathbb{Z}$ satisfies conditions H2, H3 and also

H1' For all $v \in X$, $h(v) \equiv 1 \pmod{2}$; while for $v \in Y$, $h(v) \equiv 0 \pmod{2}$.

then h is said to be a height function for α with base Y.

Observe that for a particular colouring of a given G, a height function might not exist. An example of this is the 6-cycle C_6 coloured 1-2-3-1-2-3.

Conversely, however, a function $h: V \to \mathbb{Z}$ satisfying conditions H1 and H2 induces a 3-colouring of G: the unique $\alpha: V \to \{1, 2, 3\}$ satisfying condition H3, and h is in fact a height function for this α . Observe also that if h is a height function for α with base X, then so are h + 6 and h - 6; while h + 3 and h - 3are height functions for α with base Y. Because we will be concerned solely with the question of *existence* of height functions, we assume henceforth that for a given G, all height functions have base X. Thus we let $\mathcal{H}_X(G)$ be the set of height functions with base X corresponding to some 3-colouring of G, and define a metric m on $\mathcal{H}_X(G)$ by setting

$$m(h_1, h_2) = \sum_{v \in V} |h_1(v) - h_2(v)|,$$

for $h_1, h_2 \in \mathcal{H}_X(G)$. Note that condition H1 above implies that $m(h_1, h_2)$ is always even.

For a given height function h, h(v) is said to be a *local maximum* (respectively, *local minimum*) if h(v) is larger than (respectively, smaller than) h(u) for all neighbours u of v. Following [4], we define the following *height transformations* on h.

- An increasing height transformation takes a local minimum h(v) of h and transforms h into the height function h' given by $h'(x) = \begin{cases} h(x) + 2, \text{ if } x = v; \\ h(x), & \text{ if } x \neq v. \end{cases}$ - A decreasing height transformation takes a local maximum h(v) of h and transforms h into the height function h' given by $h'(x) = \begin{cases} h(x) - 2, \text{ if } x = v; \\ h(x), & \text{ if } x \neq v. \end{cases}$ Notice that these height transformations give rise to transformations between the corresponding colourings. Specifically, if we let α' be the 3-colouring corresponding to h', an increasing transformation yields $\alpha'(v) = \alpha(v) - 1$, while a decreasing transformation yields $\alpha'(v) = \alpha(v) + 1$, where addition is modulo 3.

The following lemma shows that colourings with height functions are connected in $\mathcal{C}_3(G)$. It is a simple extension of the range of applicability of a similar lemma appearing in [4].

Lemma 1 ([4]). Let α, β be two 3-colourings of G with corresponding height functions h_{α}, h_{β} . Then there is a path between α and β in $C_3(G)$.

Proof. We use induction on $m(h_{\alpha}, h_{\beta})$. The lemma is trivially true when $m(h_{\alpha}, h_{\beta}) = 0$, since in this case α and β are identical.

Suppose therefore that $m(h_{\alpha}, h_{\beta}) > 0$. We show that there is a height transformation transforming h_{α} into some height function h with $m(h, h_{\beta}) = m(h_{\alpha}, h_{\beta}) - 2$, from which the lemma follows.

Without loss of generality, let us assume that there is some vertex $v \in V$ with $h_{\alpha}(v) > h_{\beta}(v)$, and let us choose v with $h_{\alpha}(v)$ as large as possible. We show that such a v must be a local maximum of h_{α} . Let u be any neighbour of v. If $h_{\alpha}(u) > h_{\beta}(u)$, then it follows that $h_{\alpha}(v) > h_{\alpha}(u)$, since v was chosen with $h_{\alpha}(v)$ maximum, and $|h_{\alpha}(v) - h_{\alpha}(u)| = 1$. If, on the other hand, $h_{\alpha}(u) \le h_{\beta}(u)$, we have $h_{\alpha}(v) \ge h_{\beta}(v) + 1 \ge h_{\beta}(u) \ge h_{\alpha}(u)$, which in fact means $h_{\alpha}(v) > h_{\alpha}(u)$.

Thus $h_{\alpha}(v) > h_{\alpha}(u)$ for all neighbours u of v, and we can apply a decreasing height transformation to h_{α} at v to obtain h. Clearly $m(h, h_{\beta}) = m(h_{\alpha}, h_{\beta}) - 2$.

The next lemma tells us that for a given 3-colouring, non-zero weight cycles are, in some sense, the obstructing configurations forbidding the existence of a corresponding height function.

Lemma 2. Let α be a 3-colouring of G with no corresponding height function. Then G contains a cycle C for which $W(\vec{C}, \alpha) \neq 0$.

Proof. For a path P in G, let \overrightarrow{P} denote one of the two possible directed paths obtainable from P, and let

$$W(\overrightarrow{P}, \alpha) = \sum_{e \in E(\overrightarrow{P})} w(e, \alpha),$$

where $w(\boldsymbol{e}, \alpha)$ takes values as defined in (1).

Notice that if a colouring does have a height function, it is possible to construct one by fixing a vertex $x \in X$, giving x an appropriate height (satisfying properties H1–H3) and then assigning heights to all vertices in V by following a breadth-first ordering from x.

Whenever we attempt to construct a height function h for α in such a fashion, we must come to a stage in the ordering where we attempt to give some vertex v a height h(v) and find ourselves unable to because v has a neighbour u with a previously assigned height h(u) and |h(u) - h(v)| > 1. Letting P be a path between u and v formed by vertices that have been assigned a height, and choosing the appropriate orientation of P, we have $w(\vec{P}, \alpha) = |h(u) - h(v)|$. The lemma now follows by letting C be the cycle formed by P and the edge uv. \Box

The following lemma is obvious.

Lemma 3. Let u and v be vertices on a cycle C in a graph G, and suppose there is a path P between u and v in G internally disjoint from C. Let α be a 3-colouring of G. Let C' and C'' be the two cycles formed from P and edges of C, and let $\overrightarrow{C'}, \overrightarrow{C''}$ be the orientations of C', C'' induced by an orientation \overrightarrow{C} of C (so the edges of P have opposite orientations in $\overrightarrow{C'}$ and $\overrightarrow{C''}$). Then $W(\overrightarrow{C}, \alpha) =$ $W(\overrightarrow{C'}, \alpha) + W(\overrightarrow{C''}, \alpha)$.

Note this tells us that $W(\overrightarrow{C}, \alpha) \neq 0$ implies $W(\overrightarrow{C'}, \alpha) \neq 0$ or $W(\overrightarrow{C''}, \alpha) \neq 0$.

Proof of Theorem 1. Let G be a connected bipartite graph.

(i) \implies (ii). Suppose $C_3(G)$ is not connected. Take two 3-colourings of G, α and β , in different components of $C_3(G)$. By Lemma 1 we know at least one of them, say α , has no corresponding height function, and, by Lemma 2, there is a cycle C in G with $W(\overrightarrow{C}, \alpha) \neq 0$.

(ii) \implies (iii). Let G contain a cycle C with $W(\vec{C}, \alpha) \neq 0$ for some 3colouring α of G. Because $W(\vec{C_4}, \beta) = 0$ for any 3-colouring β of C_4 , it follows that $C = C_n$ for some even $n \geq 6$. If G = C, then it is easy to find a sequence of pinches that will yield C_6 . If G is C plus some chords, then, by Lemma 3, there is a smaller cycle C' with $W(\vec{C'}, \alpha) \neq 0$. Thus if $G \neq C$, we can assume that $V(G) \neq V(C)$, and we describe how to pinch a pair of vertices so that (ii) remains satisfied (for a specified cycle with G replaced by the graph created by the pinch and α replaced by its restriction to that graph; also denoted α); by repetition, we can obtain a graph that is a cycle and, by the previous observations, the implication is proved.

We shall choose vertices coloured alike to pinch so that the restriction of α to the graph obtained is well-defined and proper. If C has three consecutive vertices u, v, w with $\alpha(u) = \alpha(w)$, pinching u and w yields a graph containing a cycle $C' = C_{n-2}$ with $W(\overrightarrow{C'}, \alpha) = W(\overrightarrow{C}, \alpha)$. Otherwise C is coloured 1-2-3- \cdots -1-2-3. We can choose u, v, w to be three consecutive vertices of C, such that there is a vertex $x \notin V(C)$ adjacent to v. Suppose, without loss of generality, that $\alpha(x) = \alpha(u)$, and pinch x and u to obtain a graph in which $W(\overrightarrow{C}, \alpha)$ is unchanged.

(iii) \implies (i). Suppose G is pinchable to C_6 . Take two 3-colourings of C_6 not connected by a path in $\mathcal{C}_3(C_6) - 1$ -2-3-1-2-3 and 1-2-1-2-1-2, for example. Considering the appropriate orientation of C_6 , note that the first colouring has weight 6 and the second has weight 0. We construct two 3-colourings of G not connected by a path in $\mathcal{C}_3(G)$ as follows. Consider the reverse sequence of pinches that gives G from C_6 . Following this sequence, for each colouring of C_6 , give

every pair of new vertices introduced by an "unpinching" the same colour as the vertex from which they originated. In this manner we obtain two 3-colourings of G, α and β , say. Observe that every unpinching maintains a cycle in G which has weight 6 with respect to the colouring induced by the first colouring of C_6 and weight 0 with respect to the second induced colouring. This means G will contain a cycle C for which $W(\vec{C}, \alpha) = 6$ and $W(\vec{C}, \beta) = 0$, showing that α and β cannot possibly be in the same connected component of $C_3(G)$.

This completes the proof of the theorem.

3 The Complexity of 3-Mixing for Bipartite Graphs

Observing that Theorem 1 gives us two polynomial-time verifiable certificates for when G is *not* 3-mixing, we immediately obtain that 3-MIXING is in the complexity class coNP. By the same theorem, the following decision problem is the complement of 3-MIXING.

PINCHABLE-TO- C_6

Instance : A connected bipartite graph G.

Question: Is G pinchable to C_6 ?

Our proof will in fact show that PINCHABLE-TO- C_6 is NP-complete. We will obtain a reduction from the following decision problem.

RETRACTABLE-TO- C_6

Instance: A connected bipartite graph G with an induced 6-cycle S.

Question: Is G retractable to S? That is, does there exist a homomorphism $r: V(G) \to V(S)$ such that r(v) = v for all $v \in V(S)$?

In [7] it is mentioned, without references, that Tomás Feder and Gary MacGillivray have independently proved the following result: for completences, we give a sketch of a proof.

Theorem 4 (Feder, MacGillivray, see [7]). RETRACTABLE-TO- C_6 is NPcomplete.

Sketch of proof of Theorem 4. It is clear that RETRACTABLE-TO- C_6 is in NP.

Given a graph G, construct a new graph G' as follows: subdivide every edge uv of G by inserting a vertex y_{uv} between u and v. Also add new vertices a, b, c, d, e together with edges za, ab, bc, cd, de, ez, where z is a particular vertex of G (any one will do). The graph G' is clearly connected and bipartite, and the vertices z, a, b, c, d, e induce a 6-cycle S. We will prove that G is 3-colourable if and only if G' retracts to the induced 6-cycle S.

Assume that G is 3-colourable and take a 3-colouring τ of G with $\tau(z) = 1$. From τ we construct a 6-colouring σ of G'. For this, first set $\sigma(x) = \tau(x)$, if $(4, \text{ if } \tau(u) = 1 \text{ and } \tau(v) = 2.$

$$x \in V(G).$$
 For the new vertices y_{uv} set $\sigma(y_{uv}) = \begin{cases} 1, t + (\tau) & t \text{ and } \tau(\tau) & t \text{ } \\ 5, \text{ if } \tau(u) &= 2 \text{ and } \tau(v) &= 3, \\ 6, \text{ if } \tau(u) &= 3 \text{ and } \tau(v) &= 1. \end{cases}$

And for the cycle S we take $\sigma(a) = 4$, $\sigma(b) = 2$, $\sigma(c) = 5$, $\sigma(d) = 3$ and $\sigma(e) = 6$. Now define $r : V(G') \to V(S)$ by setting r(x) = z, if $\sigma(x) = 1$; r(x) = a, if $\sigma(x) = 4$; r(x) = b, if $\sigma(x) = 2$; r(x) = c, if $\sigma(x) = 5$; r(x) = d, if $\sigma(x) = 3$; and r(x) = e, if $\sigma(x) = 6$. It is easy to check that r is a retraction of G' to S.

Conversely, suppose G' retracts to S. We can use this retraction to define a 6-colouring of G' in a similar way to that in which we defined r from σ in the preceeding paragraph. The restriction of this 6-colouring to G yields a 3colouring of G, completing the proof.

Proof of Theorem 2. We have established that it is sufficient to describe a polynomial reduction from RETRACTABLE-TO- C_6 to PINCHABLE-TO- C_6 . We shall describe the reduction but leave the remainder of the proof — which is a simple matter of checking a number of cases and, though straightforward, is lengthy — to the reader.

The reduction we use follows that used in [7] to prove the NP-completeness of the following problem:

Compactable-to- C_6

Instance: A connected bipartite graph G.

Question: Is G compactable to C_6 ? That is, does there exist an edge-surjective homomorphism $c: V(G) \to V(C_6)$?

Consider an instance of RETRACTABLE-TO- C_6 : a connected bipartite graph G and an induced 6-cycle S. From G we construct, in time polynomial in the size of G, an instance G' of PINCHABLE-TO- C_6 such that

$$G$$
 retracts to S if and only if G' is pinchable to C_6 . (*)

Assume G has vertex bipartition (G_A, G_B) . Let $V(S) = S_A \cup S_B$, where $S_A = \{h_0, h_2, h_4\}$ and $S_B = \{h_1, h_3, h_5\}$, and assume $E(S) = \{h_0h_1, \ldots, h_4h_5, h_5h_0\}$. The construction of G' is as follows.

- For every vertex $a \in G_A \setminus S_A$, add to G new vertices $u_1^a, u_2^a, w_1^a, y_1^a, y_2^a$, together with edges $u_1^a h_0, au_2^a, w_1^a h_3, aw_1^a, u_1^a w_1^a, y_1^a h_5, y_2^a h_2, u_1^a y_1^a, w_1^a y_2^a, u_1^a u_2^a, y_1^a y_2^a$.
- For every vertex $b \in G_B \setminus S_B$, add to G new vertices $u_1^b, w_1^b, w_2^b, y_1^b, y_2^b$, together with edges $u_1^b h_0, bu_1^b, w_1^b h_3, bw_2^b, u_1^b w_1^b, y_1^b h_5, y_2^b h_2, u_1^b y_1^b, w_1^b y_2^b, w_1^b w_2^b, y_1^b y_2^b$.
- For every edge $ab \in E(G) \setminus E(S)$, with $a \in G_A \setminus S_A$ and $b \in G_B \setminus S_B$, add two new vertices: x_a^{ab} adjacent to a and u_1^a ; and x_b^{ab} adjacent to b, w_1^b and x_a^{ab} .

It is clear that G' is connected and bipartite and that G' contains G as an induced subgraph. Note also that the subgraphs constructed around a vertex $a \in G_A \setminus S_A$ and a vertex $b \in G_B \setminus S_B$ are isomorphic; these subgraphs are depicted below in Fig. 1 and Fig. 2.

It is now easy to prove (*) by considering a number of cases. The details are omitted.

Fig. 1. The subgraph of G' added around a vertex $a \in G_A \setminus S_A$, together with the 6-cycle S

Fig. 2. The subgraph of G' added around a vertex $b \in G_B \setminus S_B$, together with the 6-cycle S

4 A Polynomial-Time Algorithm for Planar Bipartite Graphs

Now let G denote a bipartite *planar* graph. To prove Theorem 3 we need some technical results.

Lemma 4. Let P be a shortest path between distinct vertices u and v in a bipartite graph H. Then H is pinchable to P.

Proof. Let P have vertices $u = v_0, v_1, \ldots, v_{k-1}, v_k = v$, and let T be a breadthfirst spanning tree of H rooted at u that contains P (we can choose T so that it contains P since P is a shortest path). Now, working in T, pinch all vertices at distance one from u to v_1 . Next pinch all vertices at distance two from u to v_2 . Continue until all vertices at distance k from u are pinched to $v_k = v$. If necessary, arbitrary pinches on the vertices at distance at least k + 1 from u will yield P. \Box

Lemma 5. Let H be a bipartite graph.

- (i) Let u and v be two vertices in H properly pre-coloured with colours from 1,2,3. Then this colouring can be extended to a proper 3-colouring of H.
- (ii) Let u, v and w be three vertices in H with $uv, vw \in E(H)$. Suppose u, v, w are properly pre-coloured with colours from 1,2,3. Then this colouring can be extended to a proper 3-colouring of H.
- (iii)Suppose the vertices of a 4-cycle in H are properly 3-coloured. Then this 3-colouring can be extended to a proper 3-colouring of H.

Proof. (i) is trivial.

(ii) Without loss of generality we can assume that the colouring of u, v, w is 1-2-1 or 1-2-3. In the first instance, since H is bipartite, we can extend the colouring of u, v, w to a colouring of H using colours 1 and 2 only. For the second case, we can use the same 1,2-colouring, except leaving w with colour 3.

(iii) Since any 3-colouring of a C_4 has two vertices with the same colour, without loss of generality we can assume the 4 vertices are coloured 1-2-1-2 or 1-2-1-3. Colourings similar to those used in (ii) above will immediately lead to the appropriate 3-colourings of H.

Proof of Theorem 3. The sequence of claims below outlines an algorithm that, given G as input, determines in polynomial time whether or not G is 3-mixing. The first claim is a simple observation.

Claim 1. If G is not connected, then G is 3-mixing if and only if every component of G is 3-mixing.

We next show how we can reduce the case to 2-connected graphs.

Claim 2. Suppose G has a cut-vertex v. Let H_1 be a component of G-v. Denote by G_1 the subgraph of G induced by $V(H_1) \cup \{v\}$, and let G_2 be the subgraph induced by $V(G) \setminus V(H_1)$. Then G is 3-mixing if and only if both G_1 and G_2 are 3-mixing.

Proof. If G is 3-mixing, then clearly so are G_1 and G_2 . Conversely, if G is not 3-mixing, we know by Theorem 1 that there must exist a 3-colouring α of G and a cycle C in G such that $W(\vec{C}, \alpha) \neq 0$. But because C must lie completely in G_1 or G_2 , we have that G_1 or G_2 is not 3-mixing.

Now we can assume that G is 2-connected. In the next claim we will show that we can actually assume G to be 3-connected.

Claim 3. Suppose G has a 2-vertex-cut $\{u, v\}$. Let H_1 be a component of $G - \{u, v\}$. Denote by G_1 the subgraph of G induced by $V(H_1) \cup \{u, v\}$, and let G_2 be the subgraph induced by $V(G) \setminus V(H_1)$. For i = 1, 2, let ℓ_i be the distance between u and v in G_i .

Then only the following cases can occur:

(i) We have $\ell_1 = \ell_2 = 1$. Then G is 3-mixing if and only if both G_1 and G_2 are 3-mixing.

- (ii) We have $\ell_1 = \ell_2 = 2$. (So for i = 1, 2, there is a vertex $w_i \in V(G_i)$ so that $uw_i, vw_i \in E(G_i)$.) Let G_1^* be the subgraph of G induced by $V(G_1) \cup \{w_2\}$ and let G_2^* be the subgraph induced by $V(G_2) \cup \{w_1\}$. Then G is 3-mixing if and only if both G_1^* and G_2^* are 3-mixing.
- (iii) We have $\ell_1 + \ell_2 \geq 6$. Then G is not 3-mixing.

Proof. Because G is bipartite, ℓ_1 and ℓ_2 must have the same parity. If $\ell_1 = 1$ or $\ell_2 = 1$, then there is an edge uv in G, and this same edge must appear in both G_1 and G_2 . This guarantees that both $\ell_1 = \ell_2 = 1$, and shows that we always have one of the three cases.

(i) In this case we have an edge uv in all of G, G_1, G_2 . If one of G_1 and G_2 is not 3-mixing, say G_1 , we must have a 3-colouring α of G_1 and a cycle C in G_1 for which $W(\overrightarrow{C}, \alpha) \neq 0$. By Lemma 5 (i) we can easily extend α to the whole of G, showing that G is not 3-mixing. On the other hand, if G is not 3-mixing, we know we must have a 3-colouring β of G and a cycle D in G for which $W(\overrightarrow{D}, \beta) \neq 0$. If D is contained entirely in one of G_1 or G_2 , we are done. If not, D must pass through u and v. For i = 1, 2, consider the cycle D^i formed from the part of Dthat is in G_i together with the edge uv. From Lemma 3 it follows that one of D^1 and D^2 has non-zero weight under β , showing that G_1 or G_2 is not 3-mixing.

(ii) If one of G_1^* and G_2^* is not 3-mixing, we can use a similar argument as in (i) (now using Lemma 5 (ii)) to conclude that G is not 3-mixing. For the converse we assume G is not 3-mixing. So there is a 3-colouring α of G and a cycle Cin G for which $W(\vec{C}, \alpha) \neq 0$. If C is contained entirely in one of G_1^* or G_2^* , we are done. If not, C must pass through u and v. If C does not contain w_1 , then for i = 1, 2, consider the cycle C^i formed by the part of C that is in G_i^* plus the path uw_1v . From Lemma 3 it follows that one of C^1, C^2 has non-zero weight under α , showing that G_1^* or G_2^* is not 3-mixing. If w_1 is contained in C, then we can use the same argument but now using the edge uw_1 or vw_1 as the path (at least one of these edges is not on C since C is not contained entirely in G_2^*).

(iii) For i = 1, 2, let P_i be a shortest path between u and v in G_i , so P_i has length ℓ_i . Then, by Lemma 4, we can see that G is pinchable to $C_{\ell_1+\ell_2}$ (follow, in G, the sequence of pinches that transforms G_1 into P_1 and G_2 into P_2). Since $\ell_1 + \ell_2 \geq 6$, $C_{\ell_1+\ell_2}$ is of course pinchable to C_6 , and hence G is not 3-mixing. \Box

From now on we consider G to be 3-connected, and can therefore use the following result of Whitney — for details, see, for example, [3] pp. 78–80.

Theorem 5 (Whitney). Any two planar embeddings of a 3-connected graph are equivalent.

Henceforth, we identify G with its (essentially unique) planar embedding. For a cycle D in G, denote by Int(D) and Ext(D) the set of vertices inside and outside of D, respectively. If both Int(D) and Ext(D) are non-empty, D is separating and we define $G_{Int}(D) = G - Ext(D)$ and $G_{Ext}(D) = G - Int(D)$.

We next consider the case that G has a separating 4-cycle.

Claim 4. Suppose G has a separating 4-cycle D. Then G is 3-mixing if and only if $G_{Int}(D)$ and $G_{Ext}(D)$ are both 3-mixing.

Proof. To prove necessity, we show that if one of $G_{\text{Int}}(D)$ or $G_{\text{Ext}}(D)$ is not 3mixing, then G is not 3-mixing. Without loss of generality, suppose that $G_{\text{Int}}(D)$ is not 3-mixing, so there exists a 3-colouring α of $G_{\text{Int}}(D)$ and a cycle C in $G_{\text{Int}}(D)$ with $W(\vec{C}, \alpha) \neq 0$. The 3-colouring of the vertices of the 4-cycle D can be extended to a 3-colouring of $G_{\text{Ext}}(D)$ (use Lemma 5 (iii)). The combination of the 3colourings of $G_{\text{Int}}(D)$ and $G_{\text{Ext}}(D)$ gives a 3-colouring of G with a non-zero weight cycle, showing G is not 3-mixing.

To prove sufficiency, we show that if G is not 3-mixing, then at least one of $G_{\text{Int}}(D)$ and $G_{\text{Ext}}(D)$ must fail to be 3-mixing. Suppose that α is a 3-colouring of G for which there is a cycle C with $W(\overrightarrow{C}, \alpha) \neq 0$. If C is contained entirely within $G_{\text{Int}}(D)$ or $G_{\text{Ext}}(D)$ we are done; so let us assume that C has some vertices in Int(D) and some in Ext(D). Then applying Lemma 3 (repeatedly, if necessary) we can find a cycle C' contained entirely in $G_{\text{Int}}(D)$ or $G_{\text{Ext}}(D)$ for which $W(\overrightarrow{C'}, \alpha) \neq 0$, completing the proof. \Box

We call a face of G with k edges in its boundary a k-face, and a face with at least k edges in its boundary a $\geq k$ -face. The number of ≥ 6 -faces in G — which now we can assume is a 3-connected bipartite planar graph with no separating 4-cycle — will lead to our final claim.

Claim 5. Let G be a 3-connected bipartite planar graph with no separating 4cycle. Then G is 3-mixing if and only if it has at most one ≥ 6 -face.

Proof. We first prove sufficiency. Suppose G has no ≥ 6 -faces, so has only 4-faces. Let α be any 3-colouring of G and let C be any cycle in G. We show $W(\overrightarrow{C}, \alpha) = 0$ by induction on the number of faces inside C. If there is just one face inside C, C is in fact a facial 4-cycle and $W(\overrightarrow{C}, \alpha) = 0$. For the inductive step, let C be a cycle with $r \geq 2$ faces in its interior. If, for two consecutive vertices u, v of C, we have vertices $a, b \in \text{Int}(C)$ together with edges ua, ab, bv in G, let C' be the cycle formed from C by the removal of the edge uv and the addition of edges ua, ab, bv. If not, check whether for three consecutive vertices u, v, w of C, there is a vertex $a \in \text{Int}(C)$ with edges ua, aw in G. If so, let C' be the cycle formed from C by the removal of the addition of the edges ua, aw. If neither of the previous two cases apply, we must have, for u, v, w, x four consecutive vertices of C, an edge ux inside C. In such a case, let C' be the cycle formed from C by the removal of vertices v, w and the addition of the edge ux. In all cases we have that C' has r - 1 faces in its interior, so, by induction, we can assume $W(\overrightarrow{C'}, \alpha) = 0$.

Suppose now that G contains exactly one ≥ 6 -face. Without loss of generality we can assume that this face is the outside face, and hence the argument above will work exactly the same to show that G is 3-mixing.

To prove necessity we show that if G contains at least two ≥ 6 -faces, then G is pinchable to C_6 . For f a ≥ 6 -face in G, a separating cycle D is said to be f-separating if f lies inside D. Let f and f_o be two ≥ 6 -faces in G, where we can assume f_o is the outer face of G, and let C be the cycle bounding f. Our claim is

that we can successively pinch vertices into a cycle of length at least 6 without ever introducing an f-separating 4-cycle — we will initially do this around C.

Let x, y, z be any three consecutive vertices of C with y having degree at least 3 — if there is no such vertex y, then G is simply a cycle of length at least 6 and we are done. Let a be a neighbour of y distinct from x and z, such that the edges y_a and y_z form part of the boundary of a face adjacent to f. If the result of pinching a and z introduces no f-separating 4-cycle, then pinch a and z and repeat the process. If pinching a and z does result in the creation of an f-separating 4-cycle, this must be because the path ay, yz forms part of an f-separating 6-cycle D. We now show how we can find alternative pinches which do not introduce an f-separating 4-cycle. The fact that D is f-separating means there is a path $P \subseteq D$ of length 4 between a and z. Note that P cannot contain y, for this would contradict the fact that G has no separating 4-cycle. Consider the graph $G' = G_{Int}(D) - \{yz\}$. We claim that the path $P' = P \cup \{ay\}$ is a shortest path between y and z in G'. To see this, remember that G is bipartite, so any path between y and z in G has to have odd length. We cannot have another edge $yz \in E(G')$ since G is simple. Finally, any path between y and z in G' would, together with the edge yz, form an f-separating cycle in G. Hence a path of length 3 between y and z would contradict the fact that G has no separating 4-cycle. By Lemma 4, we see G' is pinchable to P'. Using the same sequence of pinches in G will pinch $G_{\text{Int}}(D)$ into D. Note this introduces no separating 4cycle into the resulting graph. If necessary, we can repeat the process by pinching vertices into D, which now bounds a 6-face. This completes the proof.

The sequence of Claims 1-5 can easily be used to obtain a polynomial-time algorithm to check if a given planar bipartite graph G is 3-mixing. This completes the proof of Theorem 3.

Acknowledgements. We are indebted to Gary MacGillivray for helpful discussions and for bringing reference [7] to our attention.

References

- Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, New York (1982)
- 2. Cereceda, L., van den Heuvel, J., Johnson, M.: Connectedness of the graph of vertexcolourings. Discrete Math. (to appear)
- 3. Diestel, R.: Graph Theory, 2nd edn. Springer, Heidelberg (2000)
- Goldberg, L.A., Martin, R., Paterson, M.: Random sampling of 3-colorings in Z². Random Structures Algorithms 24, 279–302 (2004)
- 5. Jerrum, M.: A very simple algorithm for estimating the number of k-colourings of a low degree graph. Random Structures Algorithms 7, 157–165 (1995)
- Jerrum, M.: Counting, Sampling and Integrating: Algorithms and Complexity. Birkhäuser Verlag, Basel (2003)
- Vikas, N.: Computational complexity of compaction to irreflexive cycles. J. Comput. Syst. Sci. 68, 473–496 (2004)