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Abstract. We study the competitive ratio of certain online algorithms
for a well-studied class of load balancing problems. These algorithms
are obtained and analyzed according to a method by Crescenzi et al
(2004). We show that an exact analysis of their competitive ratio on
certain “uniform” instances would resolve a fundamental conjecture by
Caccetta and Haggkvist (1978). The conjecture is that any digraph on n
nodes and minimum outdegree d must contain a directed cycle involving
at most [n/d] nodes. Our results are the first relating this conjecture
to the competitive analysis of certain algorithms, thus suggesting a new
approach to the conjecture itself. We also prove that, on “uniform” in-
stances, the analysis by Crescenzi et al (2004) gives only trivial upper
bounds, unless we find a counterexample to the conjecture. This is in
contrast with other (notable) examples where the same analysis yields
optimal (non-trivial) bounds.

Keywords: Caccetta-Haggkvist conjecture, online load balancing, com-
petitive analysis.

1 Introduction

We consider a combinatorial problem which has applications to the construction
of competitiv algorithms for the well-studied class of online load balancing
problems considered in e.g. [4I3I215] (see Section for a formal definition).
Our work is motivated by a technique from Crescenzi et al. [§] in which the
simple greedy algorithm is “tuned” on the problem at hand. A rather informal
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! Intuitively speaking, an online algorithm is c-competitive if there exists a constant
b such that the algorithm outputs a solution whose cost is at most ¢ - opt + b where
opt is the optimum for the instance considered up to the current time step. In this
case, ¢ is the competitive ratio of the algorithm.
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description of this technique is as follows (see Section for a more formal
description):

Each online load balancing problem specifies a set of “feasible modifica-
tions” of the greedy algorithm and an “easy-to-compute” upper bound
¢(+) on the competitive ratio. In particular, every such feasible modi-
fication M describes a modified version of the greedy algorithm whose
competitive ratio on this problem is at most ¢(M).

This approach has been applied to the linear and to the hierarchical server
topologies studied in [5] where it is rather easy to find an M such that ¢(M) results
in a dramatic improvement over the competitive ratio of the greedy algorithm
and matches the lower bound for the problem considered [8]. It is thus natural
to try to apply the same technique to more problems.

1.1 Owur Contribution

In this work we consider a natural class of s-uniform online load balancing prob-
lems in which every task can be assigned to some s-subset of the n processors
(this subset can vary arbitrarily from task to task). The resulting combinatorial
problem is to determine (exactly) the minimum competitive bound C(n, s) which
is the smallest value that the above function ¢(:) can assume for s-uniform in-
stances. Our major contribution is to show that the minimum competitive bound
C(n, s) leads to an equivalent version of one of the most fundamental and intrigu-
ing conjectures in graph theory (which also accounts for dozens of connections
to other basic questions in combinatorics and number theory [14]):

Conjecture 1 (Caccetta-Hiaggkvist 1978 [7]). Any digraph on n nodes with
minimum outdegree at least d contains a directed cycle of length at most [n/d].

We indeed prove that, if the above conjecture is true, then C(n,s) = n/s. Ob-
serve that, there is a trivial upper bound C(n,s) < n/s (see Section [[2)). Thus
any improvement on the trivial bound would give a counterexample to the con-
jecture. At the heart of this result is another interesting number associated to the
analysis of s-uniform instances which we call the blind competitive bound B(n, s).
This number is “tightly coupled” with the Caccetta-Haggkvist conjecture since
we prove that, for s < /n,

B(n,s)=1+4+mn—[n/s]

if and only if the conjecture holds. The number B(n, s) is the minimum for ¢(-)
when considering certain modifications M which result in “blind” algorithms
that assign tasks without even “looking at the processors”: tasks which can
be potentially allocated to the same subset of processors are all assigned to a
predetermined and fixed processor.

Our results can be seen as the hardness of obtaining any non-trivial bound
with the method of [§] in the case of s-uniform instances (this is in contrast with
other instances considered in [8]). These hardness results are in some sense of
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a “‘new type” since they do not rely on computational assumptions and they
are obtained by relating two (apparently) different problems. We feel one of the
main contributions of this work is to connect the analysis of online algorithms
to a fundamental conjecture in graph theory and to show that such an analysis
is as difficult as solving the latter.

From another point of view, our results suggest a possible way for proving
the conjecture by showing a lower bound on the competitive ratio of the online
algorithms yielded by certain modifications of greedy. Such bounds have also a
practical interest since these algorithms use only local information (namely, each
task can decide its own allocation by considering only the current load of the
processors in its associated subset). Blind algorithms are a notable example since
lower bounds are probably easier to prove, while any tight result on the com-
petitive ratio of the best blind algorithm for s-uniform instances would either
prove or disprove the conjecture. We stress that the Caccetta-Haggkvist conjec-
ture is considered a central and important problem in combinatorics, graph, and
number theory. Thirty years of significant efforts culminated in a large number
of deep connections among these areas. They have been the main subject of a
recent workshop held at the American Institute of Mathematics dedicated to
this conjecture (see Sullivan’s paper surveying these results [14]).

Roadmap. In Section we introduce online load balancing, the technique in
[]], and the related combinatorial problems. In Section 2l we introduce and study
blind algorithms, and we relate the blind competitive bound to the Caccetta-
Haggkvist conjecture. We apply these results to the minimum competitive bound
in Section [3 Finally, we further discuss our results and their implications in
Section 4]

1.2 Online Load Balancing, Modified Greedy Algorithms, and
Their Analysis

In this section we go back to our initial application that is online load balancing of
temporary weighted tasks in the case of restricted assignment with no preemption.
Here each task t is specified by a subset Sy of processors that can execute that
task, a weight W, and a duration D;. Tasks arrive one by one, each task ¢
needs to be allocated upon its arrival to one of the processors in S;. No task
can be reallocated. The duration D, is unknown and the task simply disappears
without any prior notice after D; time units from its arrival. At every time step,
a processor has a load equal to the sum of the weights of those tasks currently
in the system and which have been assigned to it. The goal is to keep, over time,
the maximum processor load as low as possible. We are interested in designing
online algorithms with a small competitive ratio ¢, that is, the algorithm must
guarantee that the load of each processor never exceeds c - opt + b, where opt is
the optimum for the instance and b is a fixed constant.

In general, online algorithms with a “good” competitive ratio are designed
“ad-hoc” for a family F containing all possible subsets of processors that can be
associated to any task. A notable example is the hierarchical server topologies
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by Bar-Noy et al [5] where the “combinatorial structure” of F impacts signifi-
cantly on the competitive ratio of the algorithms. Moreover, “general purpose”
algorithms, such as the greedy one, are in general “far” from the optimal [SI4lJ5].
The approach in [§] constructs a “modified” version of the greedy algorithm for
the problem ‘F’ as follows:

— In an offline phase, each S € F is mapped into a non-empty subset M(S) C
S, for some function M(-).

— In the online phase, each task t is allocated to the currently least-loaded
processor in M(S).

Notice that we limit ourselves to a subset of available processors. As shown in [§],
by carefully choosing M, the modified greedy algorithm avoids allocations that
are “too far” from the optimum. The main result in [§ is that the competitive
ratio of this algorithm is at most 1 + cx(M), with

o |Adversary (.S, M)|

where Adversary (S, M) consists of the union of all subsets S’ in F such that
M(S") intersects M(S). Intuitively, the tasks allocated to M(S) could have been
assigned only to processors in Adversary (.5, M).

In this work, we focus on s-uniform instances, that is, the case in which F
contains all s-subsets of the n processors. This is a natural restriction modeling
problems where each task is guaranteed (only) to be assignable to s out of the n
processors (though this set can change arbitrarily from task to task). With the
minimum competitive bound C(n, s) we ask how small the bound in () can be
depending on n and s (see Definition 2]). Notice that the resulting algorithm uses
only local information as it assigns a task ¢ by simply considering the current
load of (a subset of) the processors that can execute that task. When this subset,
which is specified by M, consists of a single processor, the corresponding algo-
rithm requires “no information” on the processors’ loads. The blind competitive
bound B(n, s) is defined as the minimum competitive bound, when restricting
to these “blind” algorithms (see Definition [I). This number is a tight bound
on the competitive ratio of these algorithms and its analysis is fundamental for
the minimum competitive bound too. Both numbers initiate the study of online
algorithms for load balancing problems which use only local information. In our
view, one of the main contributions of this work is a stringent connection be-
tween the competitive analysis of certain local online load balancing algorithms
and the Caccetta-Haggkvist conjecture.

Preliminaries and notation. We are given a family F of distinct subsets of an
n-set (the latter, representing the processors). We let Feas(F) be the set of all
functions M mapping every subset S € F into a nonempty subset M(S) C S.
We let
Adversary (S, M) := U S’
S7eF: M(S)NM(S)£0
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In the sequel, s denotes the cardinality of the sets in F. We will always assume
that s and n are positive integers satisfying 2 < s < n (the case s = 1 is
trivial and not interesting for the application). Observe that Adversary (.S, M)
contains at most n elements (i.e., the n processors). Thus, the identity function
Mirivial(S) = S yields a trivial upper bound:

C}'(Mtrivial) < n/s~ (2)

We typically consider families containing all possible s-subsets of an n-set. In
this case we write Feas(n, s) and omit the subscript ‘7.

2 Blind Algorithms and the Caccetta-Haggkvist
Conjecture

A simple (and somewhat naive) class of (online) algorithms assign tasks in a
fixed manner without “looking” at the current loads of the processors: every
task ¢ is allocated to the processor p(S:) for some function p(-) (thus ignoring
the allocation of all other tasks). These algorithms and their analysis via the
upper bound in (Il) are captured by the following:

Definition 1. A blind algorithm is a function M mapping every s-subset of the
n processors into a 1-subset of this s-subset. The blind competitive ratio is

B = i M
:5) = e i, DD

where Blind(n, s) consists of all blind algorithms.

We stress that a simple argument shows that, for blind algorithms, the upper
bound in () gives a tight analysis:

Fact 2. The competitive ratio of any blind algorithm M is exactly ¢(M). Hence,
B(n, s) is the minimum competitive ratio over all blind algorithms.

In this section, we show that B(n,s) = 1 +n — [n/s], where the lower bound
holds if and only if the Caccetta-Haggkvist conjecture (see Conjecture[l]) is true.
The upper and the lower bounds will follow from the next two lemmata.

Lemma 1. Let G be any digraph on n nodes with minimum outdegree d and
not containing any directed cycle of length at most s. Then there exists M &€
Blind(n, s) with ¢((M) =n — d, that is, B(n,s) <n —d.

Proof. We construct M € Blind(n, s) as follows. We identify the nodes of G with
the n processors. For every s-subset S we search for an a € S such that in G
there is no edge from a to another element in S. Observe that such an element
must exist since otherwise we have a directed cycle involving only elements in 5,
and thus a directed cycle of length at most s. We then set M(S) := {a}. Observe
that, if (a,b) is an edge in G and an s-subset T' contains b, then it cannot be the
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case M(T) = {a}. This implies that the set Adversary(S,M) does not contain
any node in the outneighborhood of a. Since node a has outdegree at least d,
this set has cardinality at most n — d. Since |M(S)| = 1 for all S, from () we
obtain ¢(M) = maxg |Adversary(S,M)| <n —d. O

Lemma 2. Let n, s, and d > s be positive integers such that B(n,s) < n — d.
Then there exists a digraph G on at most n nodes with minimum outdegree at
least d and not containing a directed cycle of length at most s.

Proof. Let G = G(M) be the digraph on n nodes containing the edge (a,b) if
and only if there exists no S such that b € S and M(S) = {a}. By construction
the outneighborhood of a contains all but the elements in Adversary(S, M), that
is, its outdegree is n — [Adversary(S, M)|. Since |Adversary(S,M)| < B(n, s), the
outdegree of any node «a is at least n — B(n,s) > d. Hence, the graph G has
minimum outdegree dg > d.

We observe that the subgraph induced by any subset of s nodes must contain
a sink, that is, a node having outdegree 0 in that subgraph: Indeed, for any 5,
the element a such that M(S) = {a} must be a sink. In particular, there is no
directed cycle of length s.

Using this fact, we iteratively remove nodes from G and obtain a subgraph G’
with n’ < n nodes, without directed cycles of length at most s, and minimum
outdegree equal to the minimum outdegree d of G. Towards this end, we proceed
as follows. While we can pick a set C' of nodes that form a directed cycle of length
at most s — 1 in G’ (recall that there is no directed cycle of length s), we add
to C, one by one, nodes of G’ that have an edge directed to the current set of
nodes. This process must stop when reaching at most s — 1 nodes since otherwise,
when C' reaches cardinality s, by construction, it does not contain a sink, thus
a contradiction. Notice that there is no edge from a node in G’ — C to a node
in C'. We can thus remove the nodes in C' from the graph without decreasing its
minimum outdegree.

At the end of this process, the graph G’ does not contain any directed cycle
of length s or smaller and its minimum outdegree is at least dg > d. Observe
that G’ cannot be empty since every removed set C' as above must have some
outgoing edge (because of d > s > |C]) and this edge cannot be ingoing to the
previously removed components. a

Lemmata [I] and [2 will give us the upper and the lower bound:

Theorem 3. For any n and s < /n, it holds that
B(n,s)=14n—[n/s]

where the lower bound holds unless Conjecture [l is false.

Proof. Let us set d = max{s, [n/s]}. By contradiction, assume B(n,s) < n —d.
Lemma ] implies the existence of a digraph G on n’ < n nodes with minimum
outdegree d > [n'/s| and not containing directed cycles of length s or smaller.
However, Conjecture [l implies that G' must have a directed cycle of length at



160 A. Monti, P. Penna, and R. Silvestri

most [n'/d] < [n'/[n'/s]] < [n'/(n'/s)] = s, thus a contradiction. Since B(n, )
is integer, it must be B(n,s) > 1+ n — d. Since s < y/n, we have d = [n/s],
which proves the lower bound. In order to prove the upper bound, we consider
the following digraph G, first described by Behzad, Chartrand and Wall [6]. We
let [n] = {0,...,n — 1} be the set of nodes. For every node x € [n], we let its
out-neighborhood being the d — 1 nodes in the interval [(z + 1) mod n, (z +d —
1) mod n]. By construction, the resulting digraph G has minimum outdegree
d —1 and, since d — 1 = [n/s] — 1 < n/s, does not have any directed cycle of
length at most s. Lemma [l thus implies B(n,s) <n—(d—1) =n— [n/s] + 1,
that is the upper bound. a

Remark 1. Notice that the Caccetta-Haggkvist conjecture is not “interesting”
for d > n/2 since in this case it is easy to show that a two-cycle must exist,
i.e., the conjecture holds. Lemma [] implies that B(n,2) = n/2, for any n. In
contrast, proving a tight bound for B(n, 3) is the first hard case: It corresponds
to the case d = n/3 of the conjecture which is one of the most studied [I4]
Section 2.2].

It is possible to settle (weaker) lower bounds on B(n,s) by using some “ap-
proximate” results for the Caccetta-Haggkvist conjecture. It is known that the
conjecture holds if we consider some “additive” constant «. That is, a minimum
outdegree d guarantees that every digraph on n nodes must have a directed cycle
of length at most n/d + «. Currently, the best known bound is a = 73 by Shen
[13]. This type of results imply the following:

Theorem 4. For anyn and o < s < \/n+ «/2, it holds that B(n,s) > 1+n —
[n/(s = a)].

Proof. Since s > «, we can consider d = [n/(s — «)]. By contradiction, assume
B(n,s) <n—[n/(s—a)] =n—d. From s < /n + «/2, we have d > s and
thus Lemma [2] implies that there exists a digraph on n nodes with minimum
outdegree d and not containing any directed cycle of length s or smaller. Since
n/d+a=n/[n/(s—a)]+a<n/(n/(s—a))+a=(s—a)+a=s, this graph
does not contain a directed cycle of length n/d + « or smaller. This contradicts
the definition of . Since B(n, s) is integer, it must be B(n,s) > 1+ n —d and
the theorem follows. O

For s = 3, Shen [I2] proved another approximate version of the conjecture: if
the minimum outdegree is at least p - n, then there is a directed triangle, where
> 1/3 is a “multiplicative” constant (see also [I4, Section 2.3]). This result,
combined with Lemma [2 yields the following lower bound:

Theorem 5. For anyn, it holds that B(n,3) > 1+n—u-n, where p = 3—/7 =
0.3542 - - -.

3 The Minimum Competitive Bound

In this section, we turn our attention to “less naive” algorithms which can be
obtained with the method described in Section In particular, we study the
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bound in (), again when F counsists of all s-subsets of the n processors (for the
sake of readability, we omit the subscript ‘F’):

Definition 2. The minimum competitive bound is

C(n,s):= min c(M
( ’ ) MEFeas(n,s){ ( )}’
where Feas(n,s) consists of all functions M(-) mapping every s-subset of n
processors into a non-empty subset M(S) C S.

Notice that we have a trivial upper bound C(n,s) < n/s (see Equation 2]). We
prove that C(n,s) = n/s, unless we disprove Conjecture [l That is, the trivial
upper bound is likely the best possible. We will first prove lower bounds for some
special cases (these results do not require Conjecture [IJ).

Lemma 3. Let M € Feas(n,s) such that |M(S)| > 2, for all s-subset S. Then,
there exists an s-subset T for which |Adversary(T, M)| = n.

Proof. Without loss of generality, we can assume that |M(S)| = 2, for every S.
Indeed, if we shrink all M(SS) into a two-set M'(.S) C M(S), we obtain a function
M’ € Feas(n,s) satisfying Adversary(S, M’) C Adversary(S, M).

We use Adversary(S) as a shorthand for Adversary(S,M) and assume, by
way of contradiction, that |Adversary(S)| < n, for all S of size s. Using this
fact, we give an iterative way to define a suitable sequence B! ¢ B> C --- C B*
as follows. We start from an arbitrary s-subset S' and let B! := M(S!). At
each iteration i, we “expand” the current B’ into a new set B*t! := B U
{b;} UM(S*L), where b; and S**! are defined as follows. Each S? is an s-
subset and thus the hypothesis |Adversary(S?)| < n implies that we can chose
b; ¢ Adversary(S?). We then define S**! as an s-subset such that b; € M(S**1),
if such a set exists; otherwise, S**! is an arbitrarily chosen s-subset containing
B? and b;. Below we will show that the set B*t! adds 2 or 3 elements to the set
B?, thus implying that we can stop when s — 2 < |B¥| < s.

Claim (1). M(S) cannot intersect B® if S is an s-subset containing B* U {b;}.

Proof of Claim (1). We proceed by induction on 4. For ¢ = 1, if M(S) intersects
B! = M(S'), then Adversary(S') contains S. Since b; € S, this contradicts
the definition of b;. Now assume the claim holds for i — 1 and let S be an
s-subset containing B U {b;}. Since B* = B*~! U {b;_1} U M(S?), S contains
B=1U{b;_1}, and the inductive hypothesis implies that M(S) cannot intersect
B If M(S) intersects M(S?) then, since b;—1 € S, we have the contradiction
b; € Adversary(S?). If M(S) contains b;_1, the definition of S* implies that
bi—1 € M(S?). (Recall that b;_; ¢ M(S) only in the case there is no s-subset
S with b;—1 € M(S).) But then M(S) would again intersect M(S?), which leads
to the same contradiction as above. The inductive step thus follows from B? =
Bt U {b;—1} UM(S?). The claim thus follows. O

Since [M(S)| = 2, Claim (1) implies that B! is obtained from B® by adding at
least two (and at most three) new elements not in B’. We can thus define k as
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the first integer such that s — 2 < |B¥| < s. We next show that in each of the
three cases a contradiction arises:

1. For |B¥| = s—2, we consider any s-subset S(z) := B¥U{by}U{z}, with = ¢
B¥ U {bx}. Claim (1) implies M(S(x)) = {bx,z}, and thus Adversary(S(z))
contains also all elements not in B* U {b;,}, that is, |Adversary(S(z))| = n.

2. For |B¥| = s — 1, we simply observe that for S := B*~! U {b;_1} Claim (1)
yields M(S) = {bx—1}, contradicting the hypothesis |M(S)| > 2 for all s-
subsets S.

3. For |B¥| = s, B*¥"1 U {b_1} must have size s — 2, since |B*"1| < s — 2. For
every s-subset S(z,y) := B¥"1U{by_1, 7, y} Claim (1) implies M(S(z,y)) =
{z,y}. If we keep x fixed and consider all y not in this set, we obtain the
contradiction |Adversary(S(z,y))| = n.

This concludes the proof of the lemma. O

Observe that the above result says that, if C(n, s) < n/s, then the corresponding
M must be such that [M(S)| = 1 for at least one S. In order to prove the lower
bound C(n,s) = n/s, we will make use of the following result showing that,
without loss of generality, we can restrict ourselves to optimal modifications M
having a “canonical” structure (the result applies to any family F of s-subsets):

Lemma 4. For any M € Feas(F), there exists an M. € Feas(F) such that
cr(M.) < cx(M) and M, is canonical, that is, M.(S) ¢ M.(T) for all S,T € F.

Proof. Consider two s-subsets S and T such that M(S) C M(T). (Otherwise
the lemma holds.) If we shrink M(T') to M(S), what we obtain is a new M’ €
Feas(F) such that M'(T) = M(S) and M'(U) = M(U) for U # T. This implies
Adversary (U, M’) C Adversary (U, M) for all s-subsets U, and that

|[Adversary (T, M) - |Adversary z(S, M)|

IM(T)] - IM(5)| ’
|Adversary (U, M')| |Adversary (U, M)
<
U M) SUR M)

This yields cx(M’) < ¢x(M). To obtain the final family M. it suffices to iterate
the above transformation at most |F| times. (At every iteration we let M being
the family obtained in the previous iteration and pick S and T as above with
M(S) not containing another M(U).) The lemma thus follows. O

We first give a tight bound for some special cases for which we do not need the
Caccetta-Haggkvist conjecture:

Theorem 6. For every n, if s > /n or s = 2, then it holds that C(n,s) = n/s.

Proof. Let M be such that ¢(M) = C(n,s). We first consider s > y/n. If there
exists one S with [M(S)] = 1, then ¢(M) > |Adversary(S,M)| > s > n/s,
where the two inequalities follow from S € Adversary(S, M) and from s > /n,
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respectively. Otherwise, in the case [M(S)| # 1 for every S, Lemma Bl implies
that ¢(M) > n/s. (Recall that [M(S)| < |S| < s.)

Let us now consider the case s = 2. From Lemma ] we can assume that M
is canonical. This implies that the n processors are partitioned into two sets Ny
and Ny such that the following holds. For every two-subset S C Nj, it holds
that |[M(S)| = 4, with i = 1,2. Let ny := |N1| and ng := |Na|, and let F;
denote the family of all two-subsets of N;, for i = 1,2. Let M’ be the function M
restricted F; and observe that M’ € Blind(n1,2). Hence, there is one S C Ny
for which |Adversaryr (S,M’)| > B(ni,2) = n1/2 (see Remark [). That is,
Adversary(S, M) contains at least n1/2 elements from N;. We next show that
it must also contain all elements z in N,. Indeed, for every two-subset S(x)
consisting of z € Ny and M(S), LemmaMlimplies that M(S(z)) = M(S), and thus
x € Adversary(S,M). Hence, |Adversary(S,M)| > ni/24+n2 = n1/2+(n—n1) =
n —ny/2 > n/2, where the last inequality follows from ny < n. m]

Finally, from Lemma Bl we obtain the main result of this section:

Theorem 7. For every n and 2 < s < \/n, it holds that C(n,s) = n/s. The
lower bound holds unless Conjecture [1l is false. Hence, the trivial upper bound
C(n,s) < n/s is the best possible one.

Proof. Let M € Feas(n,s) with ¢(M) = C(n, s). From Lemma[] we can assume
M being canonical. Because of Lemma B the theorem holds if [M(S)| > 2 for
all s-subsets S. Otherwise, we consider the subset N; of those processors x such
that {z} = M(S), for some S. Let Ny be the complement of Nj, that is, the
subset of processors not in N;. From the hypothesis, we have 3 < s < n/s. We
consider the following two cases for ny := |Na|:

1. ng < n/s. In this case nq := |[N1| =n —ng > n —n/s. Since M is canonical,
for every s-subset T contained in N7, it must be the case |[M(T)| = 1. Let J;4
denote the family of all s-subsets of N7 and let M’ be the function obtained by
restricting M to Fi. Observe that M’ is a function in Blind(n1, s). Hence,
there exists S € Nj such that C(n,s) > |Adversary(S,M’)| > B(ni,s).
From the proof of Theorem [B] if Conjecture [l holds, then B(ni,s) > 1+
ny — max{s, [n1/s]} > 14+ n —n/s — max{s,[n1/s|} > 1+n—n/s—
max{s, [n/s|} =1+n—n/s—[n/s] >n —2n/s, where the last inequality
follows from [n/s] < 1+ n/s. Since s > 3, we have n — 2n/s > n/s, thus
implying C(n,s) > B(ni,s) > n/s.

2. ng > n/s. By definition of N7 and Nj, every s-subset S contained in Ny must
satisfy |M(S)| > 2. Since s < /n, we have ny > n/s > s and thus Ny con-
tains some s-subset. Let us consider the function M’ obtained by restricting
M to the s-subsets of Ny. Observe that M’ € Feas(ns, s). Lemma [ implies
that there exists S C Ny with Adversary(S, M) containing all the elements
in Ny. If the set Adversary(S,M) contains also Nj, then we clearly have
C(n,s) > n/s. Otherwise, we consider an z € Ny with « ¢ Adversary(S, M).
For {z} = M(T), if Adversary(T,M) contains No, then C(n,s) > ny > n/s
(recall that |M(T)| = 1) and the theorem holds. Otherwise, we can pick a
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y € Ny with y & Adversary(T, M). Observe that M(S) must contain at least
s — 1 elements, unless C'(n,s) > n/s. We can thus construct an s-subset
S’ .= {z}UR’ with R’ containing y and other s —2 elements from M(S). Ob-
serve that M(S’) cannot contain « since otherwise M(S") N M(T') = {z} # 0
and thus y € S” C Adversary(T, M), contradicting the definition of y. Simi-
larly, M(S’) cannot contain any of the elements in R’ \ {y} since otherwise
M(S") N M(S) # 0 and thus x € S’ C M(S), contradicting the definition
of x. Hence, it must be the case M(S’") = {y}, contradicting y ¢ N; (since
y € Na). O

4 Conclusions and Open Questions

We have applied the approach by Crescenzi et al [§] to a natural class of s-
uniform instances, which model the problem version in which the only available
information is that each task is assignable to s out of the n processors, for some
known constant s. We have shown that this approach is unlikely to lead to any
“satisfactory” upper bound. Namely, the minimum competitive bound C(n, s)
is equal to the trivial n/s upper bound, unless we find a counterexample to
the Caccetta-Haggkvist conjecture [I4]. Even for rather limited algorithms, for
which the analysis in [§] is tight, an exact answer is “equivalent” to the conjecture
above. That is, the competitive ratio B(n, s) of the best algorithm in this class
can be determined for all s and n if and only if we resolve the conjecture.

We consider the study of these algorithms interesting by itself since they only
require local information. Indeed, the online load balancing problem considered
here arises in many practical situations (e.g., when connecting mobile devices
requiring different bandwidth to one of the “geographically close” base stations).
The natural greedy algorithm can have a rather unsatisfactory competitive ratio
in several cases [3l5], which motivated the development of more sophisticated
“ad-hoc” algorithms [I5]. The latter are not local, though their competitive
ratio is significantly better than greedy one. To the best of our knowledge, there
is no prior study of local online algorithms for this problem version (apart from
the tight bound ©(n?/?) on the greedy [4]). Online local algorithms for a different
task allocation problem have been studied by Kuhn et al [9]. In their problem,
the goal is to maintain (roughly) the same number of tasks on each processor,
and tasks can be moved only “locally”, i.e., between adjacent processors.

We conclude observing that our results might be used to write a computer
program to check the Caccetta-Haggkvist conjecture. Observe that, if we believe
the conjecture is true, then a program which verifies it for a fixed n and d, will
have to go through all possible digraphs on n nodes and minimum outdegree d.
This is because we have to show that there is no way to avoid a directed cycle
with [n/d] nodes. Theorem [3 gives an alternative that is to come up with an
(efficient) algorithm to compute B(n,s). Obviously, this algorithm should not
rely on the Caccetta-Haggkvist conjecture, that is, it should be possible to prove
its correctness independently from the conjecture (e.g., the algorithm returns an
optimal modification M for any given F containing only s-subsets). Notice that,
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once again, the case s = 3 seems to be the “first” difficult one. Indeed, for s = 2
the optimal modification M for any family F reduces to the problem of orienting
the edges of an indirected graph in order to minimize the maximum indegree
(see Aichholzer et al [I] and Nash-Williams [I1]). Such optimal orientation can
be computed with standard flow techniques, thus yielding an optimal algorithm
for s = 2 (see the full version of this work [10]). Unfortunately, the results do
not apply to s = 3, which remains an interesting open question.
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