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Abstract. It has been shown in [9] that there exist planar digraphs that
require exponential area in every upward straight-line planar drawing. On
the other hand, upward poly-line planar drawings of planar graphs can
be realized in Θ(n2) area [9]. In this paper we consider families of DAGs
that naturally arise in practice, like DAGs whose underlying graph is a
tree (directed trees), is a bipartite graph (directed bipartite graphs), or is
an outerplanar graph (directed outerplanar graphs). Concerning directed
trees, we show that optimal Θ(n log n) area upward straight-line/poly-
line planar drawings can be constructed. However, we prove that if the
order of the neighbors of each node is assigned, then exponential area is
required for straight-line upward drawings and quadratic area is required
for poly-line upward drawings, results surprisingly and sharply contrast-
ing with the area bounds for planar upward drawings of undirected trees.
After having established tight bounds on the area requirements of planar
upward drawings of several families of directed trees, we show how the
results obtained for trees can be exploited to determine asymptotic opti-
mal values for the area occupation of planar upward drawings of directed
bipartite graphs and directed outerplanar graphs.

1 Introduction

Upward drawings of directed acyclic digraphs (DAGs for short) have several
applications in the visualization of hierarchical structures, as PERT diagrams,
subroutine-call charts, Hasse diagrams, and is-a relationships, and hence they
have been intensively studied from a theoretical point of view. It is known that
testing the upward planarity of a graph is an NP -complete problem if the graph
has a variable embedding [13], while it is polynomially solvable if the embedding
of the graph is fixed [2], if the underlying graph is supposed to be an outerplanar
graph ([15]), if the digraph has a single source ([14]), or if it’s a bipartite DAG
([7]). Di Battista and Tamassia ([8]) showed that a graph is upward planar if and
only if it’s a subgraph of an st-planar graph. Moreover, some families of DAGs
are always upward planar, like the series-parallel digraphs and the digraphs
whose underlying graph is a tree.

Concerning algorithms for obtaining upward drawings of DAGs in small area,
Di Battista et al. have shown in [9] that every upward planar embedding can
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be drawn with upward poly-line edges in optimal Θ(n2) area, while there exist
graphs that require exponential area in any planar straight-line upward drawing.
Hence, it is natural to restrict the attention to interesting families of DAGs,
searching for better area bounds. This research direction has been taken by
Bertolazzi et al. in [1], where it is shown that series-parallel digraphs admit
upward planar straight-line drawings in Θ(n2) area, while exponential area is
generally required if the embedding is chosen in advance.

In this paper we study classes of DAGs that commonly arise in practice, as
DAGs whose underlying graph is a tree (directed trees), is a bipartite graph (di-
rected bipartite graphs), or is an outerplanar graph (directed outerplanar graphs).
All of such digraph classes exhibit simple and strong structural properties that
allow to create planar upward drawings with less constraints and in a easier way
with respect to general digraphs. Consequently, we are able to construct straight-
line planar upward drawings of directed trees in Θ(n log n) area, and to get Θ(n)
area straight-line planar upward drawings for some sub-classes of directed trees.
Surprisingly, we prove that when constraints are imposed on the drawings by
forcing an ordering of the neighbors of each vertex, then again exponential area
is required for constructing straight-line planar upward drawings and quadratic
area is required for constructing poly-line planar upward drawings. Such negative
results contrast with the fact that sub-quadratic area is sufficient for construct-
ing straight-line order-preserving upward planar drawings of undirected trees
([3]). Furthermore, we prove that the lower bounds obtained for directed trees
extend also to directed bipartite graphs and directed outerplanar graphs.

More in detail, we provide the following results: (i) straight-line and poly-line
planar upward drawings of directed trees can be constructed in optimal Θ(n log n)
area (Sec. 3); (ii) straight-line order-preserving planar upward drawings of di-
rected trees require (and can be constructed in) exponential area (Sec. 4); (iii)
poly-line order-preserving planar upward drawings of directed trees require (and
can be constructed in) quadratic area (Sec. 4); (iv) directed binary trees have the
same area requirements of general directed trees (Sec. 5); (v) directed caterpil-
lars and directed spider trees admit linear area straight-line drawings (Sec. 5); (vi)
straight-line planar upward drawings of directed bipartite graphs require (and can
be constructed in) exponential area (Sec. 5); (vii) poly-line planar upward draw-
ings of directed bipartite graphs require (and can be constructed in) quadratic
area (Sec. 5); (viii) straight-line outerplanar upward drawings of directed outer-
planar graphs require (and can be constructed in) exponential area (Sec. 5); and

Table 1. A table summarizing the results on minimum area upward drawings of di-
rected trees. Straight-line and poly-line non-order-preserving drawings are in the same
columns, since they have the same area bounds. Constants b and c are greater than 1.

Straight-line / Poly-line Straight-line Order-Pres. Poly-line Order-Pres.
UB ref. LB ref. UB ref. LB ref UB ref. LB ref.

Dir. Trees O(n log n) Th. 1 Ω(n log n) Th. 1 O(cn) [12] Ω(bn) Th. 2 O(n2) [9] Ω(n2) Th. 3

Dir. Binary Trees O(n log n) Th. 1 Ω(n log n) Th. 1 O(cn) [12] Ω(bn) Th. 2 O(n2) [9] Ω(n2) Th. 3

Dir. Caterpillars O(n) Th. 4 Ω(n) trivial O(cn) [12] Ω(bn) Th. 2 O(n2) [9] Ω(n2) Th. 3
Dir. Spider Trees O(n) Th. 5 Ω(n) trivial O(n) Th. 5 Ω(n) trivial O(n) Th. 5 Ω(n) trivial
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(ix) poly-line planar upward drawings of directed outerplanar graphs require (and
can be constructed in) quadratic area (Sec. 5). Table 1 summarizes the area re-
quirements of planar upward drawings of directed trees, directed binary trees, di-
rected caterpillars, and directed spider trees.

2 Preliminaries

We assume familiarity with graphs and their drawings (see also [5]).
A grid drawing of a graph is a mapping of each vertex to a distinct point of the

plane with integer coordinates and of each edge to a Jordan curve between the
endpoints of the edge. A poly-line drawing is such that the edges are sequences
of rectilinear segments, with bends having integer coordinates. A straight-line
drawing is such that all edges are rectilinear segments. A planar drawing is such
that no two edges intersect. An upward drawing of a digraph is a planar drawing
with each directed edge represented by a curve monotonically increasing in the
vertical direction. In the following when we refer to upward drawings we always
mean planar upward grid drawings. The graph obtained from a digraph G by
considering its edges without orientation is called the underlying graph of G. An
embedding of a graph is a circular ordering of the edges incident on each vertex.
A drawing is order-preserving if the order of the edges incident on each vertex
is the same as the one of an embedding specified in advance. The bounding box
B(Γ ) of a drawing Γ is the smallest rectangle with sides parallel to the axes
that covers Γ completely. We denote by l(Γ ), by r(Γ ), by t(Γ ), and by b(Γ )
the left side, the right side, the top side, the bottom side of B(Γ ), respectively.
The height (width) of Γ is the height (width) of its bounding box plus one. The
area of Γ is the height of Γ multiplied by its width. We denote by y(v) the
y-coordinate of a vertex v that is drawn on the plane.

An outerplanar graph is a graph that has a planar embedding in which all
vertices are incident to the same face. Such an embedding is called outerplanar
embedding. A bipartite graph is a graph G that has the vertices partitioned into
two subsets such that G has edges only between vertices of different subsets. A
caterpillar C is a tree such that the removal from C of all the leaves and of their
incident edges turns C in a path. A spider tree is a tree having only one vertex
of degree greater than two.

3 Upward Drawings of Trees

In this section we show that directed trees admit straight-line upward drawings
in Θ(n log n) area and that such an area is necessary in the worst case, even if
bends are allowed on the edges. Concerning the lower bound, Crescenzi et al.
in [4] showed a non-directed rooted binary tree T that requires Ω(n log n) area
in any strictly upward grid drawing. Now T can be turned in a directed binary
tree T ′ by directing its edges away from the root. Since an upward drawing of
T ′ is a strictly upward drawing of T , the lower bound on the area requirement
of upward drawings of directed trees follows.
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Now we show that every directed tree has an O(n log n) area straight-line up-
ward drawing. This is done by means of an algorithm that consider a directed
tree T , removes from T a path called spine, recursively draws each disconnected
subtree, and finally puts the drawings of the subtrees together with a drawing of
the spine, obtaining a drawing of T . This divide et impera strategy has been in-
tensively used in algorithms for drawing undirected trees and outerplanar graphs
([3,11,10,6]). Let us describe the algorithm more formally.
Preprocessing: The input is a directed tree T with n nodes. We derive a non-
directed rooted tree T ′ from T by removing the orientations from the edges of
T and by choosing a node r in T as root of T ′.
Divide: Let T ∗ be the current non-directed rooted tree and let r∗ be its root
(at the first step the current tree is T ′ rooted at r).

If the number of nodes in T ∗ is greater than one, then select a spine S∗ =
(v0, v1, . . . , vk) in T ∗ with the following properties: (i) v0 = r∗, (ii) for 1 ≤ i ≤ k,
vi is the root of the heaviest (i.e. with the greatest number of nodes) subtree
among the subtrees rooted at the children of vi−1, and (iii) each edge (vi−1, vi)
is directed from vi to vi−1 in T , for 1 ≤ i < k, and (iv) edge (vk−1, vk) is directed
from vk−1 to vk in T , or vk is a leaf. Remove from T ∗ the nodes of S∗, but for
vk, disconnecting T ∗ in several non-directed subtrees. We classify such subtrees
into sets T ∗(↑, vi) and T ∗(↓, vi), with 0 ≤ i < k, so that a tree rooted at a vertex
v goes into set T ∗(↑, vi) (resp. T ∗(↓, vi)) if in the directed tree T there is an edge
directed from v to vi (resp. there is an edge directed from vi to v). Notice that
each set could contain several trees. We denote by T ∗(vk) the tree rooted at vk

and by r(T ∗) the root of a non-directed tree T ∗.
Impera: Assume that in the Divide step a tree T ∗ has been disconnected in a
spine S∗, in a subtree T ∗(vk), and in several subtrees in T ∗(↑, vi) and in T ∗(↓, vi),
with 0 ≤ i < k. Introduce again the direction on the edges of T ∗, obtaining a
directed tree T (vk) from T ∗(vk), obtaining a set of directed trees T (↑, vi) from
the trees in T ∗(↑, vi), and obtaining a set of directed trees T (↓, vi) from the trees
in T ∗(↓, vi). Assume to have for each of such directed trees a drawing with the
following properties: (P1) the drawing is planar, upward, and straight-line; (P2)
the root of the tree is placed on the left side of the bounding box of the drawing;
and (P3) no node of the tree is placed in the drawing below and on the same
vertical line of the root of the tree.

Notice that such a drawing can be trivially constructed for a tree with at most
one node. Now we show how to construct a drawing Γ satisfying properties P1,
P2, and P3 for the directed tree T obtained from T ∗ by introducing again the
directions on the edges. Notice that, in the last Impera step, Γ will be a drawing
of the whole directed tree T . We distinguish two cases:

k = 1: Place the drawings of the trees in T (↓, v0) stacked one above the other
at one unit of vertical distance, with the left side of their bounding boxes on the
same vertical line l, obtaining a drawing Γ ′. Place v0 one unit to the left of l and
one unit below b(Γ ′). Place the drawings of the trees in T (↑, v0) stacked one above
the other at one unit of vertical distance, with the left side of their bounding
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boxes on l, and so that the highest horizontal line intersecting a drawing of
a tree in T (↑, v0) is one unit below v0, obtaining a drawing Γ ′′. If (v0, v1) is
directed from v0 to v1, then place the drawing of T (v1) so that the left side of
its bounding box is on the same vertical line of v0 and so that the bottom side
of its bounding box is one unit above t(Γ ′′) (see Fig. 1.a). Otherwise, that is v1
is a leaf and (v0, v1) is directed from v1 to v0, place v1 on the same vertical line
of v0 and one unit below b(Γ ′′).

k ≥ 2: Place the drawings of the trees in T (↓, v0) stacked one above the other
at one unit of vertical distance, with the left side of their bounding boxes on the
same vertical line l, obtaining a drawing Γ ′. Place v0 two units to the left of l and
one unit below b(Γ ′). Place the drawings of the trees in T (↑, v0) stacked one above
the other at one unit of vertical distance, with the left side of their bounding
boxes on l, and so that the highest horizontal line intersecting a drawing of a tree
in T (↑, v0) is one unit below v0, obtaining a drawing Γ0. For i = 1, 2, . . . , k − 2,
place the drawings of the trees in T (↓, vi) stacked one above the other at one
unit of vertical distance, with the left side of their bounding boxes on l, and
so that the highest horizontal line intersecting a drawing of a tree in T (↓, vi)
is one unit below b(Γi−1), obtaining a drawing Γ ′. Place vi one unit to the left
of l and and one unit below b(Γ ′). Place the drawings of the trees in T (↑, vi)
stacked one above the other at one unit of vertical distance, with the left side
of their bounding boxes on l, and so that the highest horizontal line intersecting
a drawing of a tree in T (↑, vi) is one unit below vi, obtaining a drawing Γi.
Let W be the maximum between the width of the drawing of T (vk) minus 1
and the maximum width of a drawing of a tree in T (↑, vi) or in T (↓, vi) plus 2,
with 0 ≤ i < k. Let l′ be the vertical line W units to the right of v0. Mirror
the drawings of the trees in T (↑, vk−1) with respect to a vertical line and place
them stacked one above the other at one unit of vertical distance, with the right
side of their mirrored bounding boxes one unit to the left of l′ and so that the
highest horizontal line intersecting a drawing of a tree in T (↑, vk−1) is one unit
below b(Γk−2). Mirror the drawings of the trees in T (↓, vk−1) with respect to a
vertical line and place them stacked one above the other at one unit of vertical
distance, with the right side of their mirrored bounding boxes one unit to the
left of l′, and so that the lowest horizontal line intersecting a drawing of a tree
in T (↓, vk−1) is one unit above t(Γk−2). Place vk−1 on l′ one unit below vk−2,
obtaining a drawing Γk−1. Finally, if edge (vk−1, vk) is directed from vk−1 to
vk, mirror the drawing of T (vk) with respect to a vertical line and place it with
the right side of its mirrored bounding box on l′ so that the bottom side of its
bounding box is one unit above t(Γk−1); otherwise, that is vk is a leaf and edge
(vk−1, vk) is directed from vk to vk−1, place vk on l′ one unit below b(Γk−1).

The planarity and the upwardness of the final drawing Γ of T can be easily
verified. Concerning the area requirements of Γ , the height of Γ is O(n), since
there is at least one node of the tree for each horizontal line intersecting Γ .
Denote by w(T (↑, vi)), by w(T (↓, vi)), by w(T (vi)), and by w(n) the width of
the drawing of a tree in T (↑, vi), of a tree in T (↓, vi), of a tree T (vi), and of
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Fig. 1. (a) and (b) Impera step of the algorithm for obtaining straight-line non-order
preserving upward drawings of trees, in the case k = 1 and k ≥ 2. (c) Embedding
En+1 of the series-parallel digraph presented in [1]. (d) A clockwise coil. (e) A counter-
clockwise coil.

an n-nodes tree constructed by the above described algorithm, respectively. In
case k = 1 we have w(T ) = max{w(T (v1)), 1+w(T (↑, v0)), 1+w(T (↓, v0))}, and
in case k ≥ 2 we have w(T ) = max0≤i<k{w(T (vk)), 3 + w(T (↑, vi)), 3 + w(T (↓
, vi))}. By the definition of S, each tree in T (↑, vi) and each tree in T (↓, vi)
has at most n/2 nodes, and T (vk) has at most n − k nodes. It follows that
w(n) = max{w(n−1), 3+w(n/2)}, that easily solves to w(n) = O(log n). So we
have the following:

Theorem 1. Every n-nodes directed tree admits an upward straight-line drawing
in optimal Θ(n log n) area.

4 Upward Drawings of Trees with Fixed Embedding

We discuss the area requirement of order-preserving upward drawings of directed
trees. Garg and Tamassia ([12]) proved that any upward planar embedding can
be realized with straight-line edges in exponential area. Hence, exponential area
straight-line upward drawings of embedded directed trees are feasible.
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Now we prove the claimed exponential lower bound. Bertolazzi et al. showed
in [1] an embedding En of a 2n-vertex series-parallel digraph requiring Ω(4n)
area in any order-preserving upward straight-line drawing. Such an embedding
is recursively defined as follows: E0 consists of a single edge (s0, t0); En+1 is
obtained from En by adding (i) two new nodes sn+1 and tn+1, (ii) an edge from
sn+1 to sn, (iii) an edge from tn to tn+1, (iv) an edge from sn to tn+1 on the
right of En, and (v) an edge from sn+1 to tn+1 on the left of En (see Fig. 1.c).

We define a clockwise coil S to be an upward planar drawing of a directed
path P = (v1, v2, . . . , vk) that respects three properties: property (i) the edges
(vi, vi+1) of P , with i odd (with i even), are directed from vi to vi+1 (resp. from
vi+1 to vi), property (ii) y(vi) < y(vj) (y(vi) > y(vj)), for every i odd (resp.
for every i even) and every j such that j < i, and property (iii) for i odd
(for i even) every vertex vj , with j < i, is contained in the region R(vi, vi+1)
delimited by the edge (vi, vi+1) and by the horizontal half-lines starting at vi and
at vi+1 and directed toward increasing x-coordinates (resp. toward decreasing x-
coordinates) (see Fig. 1.d). A counter-clockwise coil is defined analogously, with
odd replaced by even and vice-versa in property (iii) (see Fig. 1.e). We have:

Lemma 1. A straight-line n-vertex clockwise or counter-clockwise coil S re-
quires Ω(2n) area.

Proof. Consider any straight-line clockwise coil S. We show that adding seg-
ments (vi, vi+2), for i = 1, 2 . . . , n − 2, augments S in a planar drawing S′.
Namely, we prove that a segment (vi, vi+2) does not intersect (a) any segment
(vj , vj+1) of S, with j ≤ i, (b) segment (vi+1, vi+2) of S, (c) segment (vi+2, vi+3)
of S, (d) any segment (vj , vj+1) of S, with j > i + 2, and (e) any segment
(vj , vj+2), with j �= i added to S.

(a) Suppose i is odd (is even). By property (ii) no vertex vj of S, with j < i+2
and j �= i, lies in the open half-plane H below (resp. above) the horizontal line
passing through vi. Moreover, vi+2 is contained in H. Hence, (vi, vi+2) does not
create crossings with any segment (vj , vj+1) of S, with j ≤ i. (b) Since they
are adjacent, (vi, vi+2) and (vi+1, vi+2) cross only if they overlap. But in such a
case (vi, vi+1) and (vi+1, vi+2) overlap, too. However, this is not possible by the
supposed planarity of S. (c) By property (iii) vi is contained inside R(vi+2, vi+3).
Hence (vi, vi+2) is internal to R(vi+2, vi+3) and can not cross (vi+2, vi+3) that
is on the border of R(vi+2, vi+3). (d) By property (iii) vi and vi+2 are con-
tained inside R(vj , vj+1), so (vi, vi+2) is internal to R(vi+2, vi+3) and can not
cross (vi+2, vi+3) that is on the border of R(vi+2, vi+3). (e) It’s easy to see that
segments (vi, vi+2), for i = 1, 2 . . . , n − 2, form a directed path with increasing
y-coordinate and so they don’t cross each other.

Now one can observe that S′ is an upward drawing of En/2 (see [1] and the
beginning of the section). Hence, an n-vertex straight-line clockwise coil S re-
quires the same area of a straight-line drawing of En/2, that is Ω(4n/2) = Ω(2n).
If S is a counter-clockwise straight-line coil a straightforward modification of the
previous proof shows that S requires Ω(2n) area. �
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Fig. 2. (a) An upward drawing of T ∗ with embedding E∗. (b) T (vj). (c) T (vj+1). (d)
An upward drawing of P ∗. Notice that (v1, v2, . . . , v7) is a counter-clockwise coil, while
(v11, v10, . . . , v7) is a clockwise coil.

Now let T ∗ be a tree composed by an n/2-nodes path P ∗ = (v1, v2, . . . , vn/2)
and by n/2 leaves si, 1 ≤ i ≤ n/2, such that si adjacent to vi, with n even
and n/2 odd. Edges (vi, vi+1), with i odd (with i even), are directed from vi to
vi+1 (resp. from vi+1 to vi). Edges (vi, si), with i odd (with i even), are directed
from si to vi (resp. from vi to si). We fix for T ∗ an embedding E∗ such that
for each node vi, 2 ≤ i ≤ n/2, the clockwise order of the edges incident in vi is
[si, vi−1, vi+1] (see Fig. 2.a). We claim the following:

Lemma 2. Every upward drawing Γ ∗ of T ∗ with embedding E∗ contains a clock-
wise or a counter-clockwise coil of at least n/4 nodes.

Proof. Observe that, by the embedding constraints of E∗ and by the upward-
ness of Γ ∗, path P ∗ turns in clockwise direction at every edge (vi−1, vi), for
i = 2, 3, . . . , n/2, i. e. considering the half-lines t1 and t2 starting at vi and
tangent to the curves representing edges (vi−2, vi−1) and (vi1 , vi), respectively,
the angle described by a clockwise movement that leads t1 to overlap with
t2 is less than π. Let j be the highest index such that the drawing S∗

1 of
the subpath (v1, v2, . . . , vj) of P ∗ is a counter-clockwise coil. If j ≥ n/4 or if
such a j doesn’t exist, i.e. P ∗ is entirely drawn as a counter-clockwise coil,
the lemma follows. Otherwise, we claim that the drawing S∗

2 of the subpath
(vn/2, vn/2−1, . . . , vj+1, vj) of P ∗ is a clockwise coil. Property (i) follows from
the upwardness of Γ ∗. Consider three vertices vi−1, vi, and vi+1 that are consec-
utive in P ∗. Let vt be the one between vi−1 and vi+1 such that |y(vi) − y(vt)| is
minimum. Denote by T (vi), with i = j, j+1, . . . , n/2−1 the triangle with curved
edges delimited by (vi, vi−1), by (vi, vi+1), and by the horizontal line through vt.
Assume j is odd. Since (v1, v2, . . . , vj , vj+1) is not a coil, then y(vj−1) ≥ y(vj+1).
Since (vj+1, vj+2) turns in clockwise direction with respect to (vj , vj+1), the
planarity and the upwardness of Γ ∗ imply that vj+2 is inside T (vj), and so
y(vj+2) > y(vj) (see Fig. 2.b). Since (vj+2, vj+3) turns in clockwise direction
with respect to (vj+1, vj+2), the planarity and the upwardness of Γ ∗ imply that
vj+3 is inside T (vj+1), and so y(vj+3) > y(vj+1) (see Fig. 2.c). Proceeding in
the same way, it follows that, for all i = j, j + 1, . . . , n/2 − 2, y(vi+2) > y(vi)
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(y(vi+2) > y(vi)) with i odd (resp. with i even). Hence, property (ii) is satis-
fied by S∗

2 . Further, property (iii) is satisfied by S∗
2 , since every vertex vk, with

k ≥ i + 2 is contained inside T (vi) and, consequently, inside R(vi, vi+1), that
encloses T (vi). If j is even an analogous proof shows that S∗

2 is a clockwise coil.
Finally, since j < n/4, S∗

2 contains at least n/2 − j > n/4 nodes. �

Theorem 2. There exists an n-nodes embedded directed tree requiring Ω(bn)
area, with b greater than 1, in any upward straight-line order-preserving drawing.

Proof. Consider T ∗ and its embedding E∗ described in this section. By Lemma 2
every upward drawing of T ∗ with embedding E∗ contains a coil of at least n/4
nodes that, by Lemma 1, requires Ω(2n/4) = Ω(( 4

√
2)n) = Ω(bn), with b = 4

√
2.
�

Now we turn to poly-line drawings. Di Battista et al. have shown in [9] that every
upward planar embedding can be drawn with poly-line edges in O(n2) area. It
follows that quadratic area poly-line upward drawings of embedded directed trees
are feasible. Concerning the lower bound, we have the following:

Lemma 3. An n-vertex poly-line clockwise or counter-clockwise coil S requires
Ω(n2) area.

Proof. By property (ii) vertex vi, with i odd, has y-coordinate less than the
one of every vertex vj , with j < i. This implies that n/2 vertices vi such that
i is odd occupy n/2 distinct horizontal lines and so the height of S is Ω(n).
Concerning the width of S, suppose w.l.o.g. to draw S starting from a drawing
Γ1 of v1, and then iteratively constructing a drawing Γi by adding vertex vi and
edge (vi−1, vi) to Γi−1, for i = 2, . . . , n. We claim that the width of Γi is at least
the width of Γi−1 plus one. Suppose that the width of Γi is equal to the width
of Γi−1. Then edge (vi−1, vi) can not be on the left or on the right of Γi−1 and
so property (iii) can not be satisfied. It follows that the width of S is Ω(n). �
Hence, we can again consider directed tree T ∗ with fixed embedding E∗. By
Lemma 2 every upward drawing of T ∗ with embedding E∗ contains a clockwise
or a counter-clockwise coil S of at least n/4 nodes. By Lemma 3 Ω(n2) area is
required for S.

Theorem 3. There exists an n-nodes directed tree T ∗ and an embedding of T ∗

requiring Ω(n2) area in any upward poly-line order-preserving drawing.

5 Upward Drawings of Some Families of DAGs

In the first part of this section we study the area requirement of planar upward
drawings of some families of directed trees, like directed binary trees, directed
caterpillars, and directed spider trees, searching for better area bounds with
respect to those obtained for general trees. In the second part of this section we
show that the results obtained for directed trees can be exploited to obtain area
bounds for several others families of DAGs, like directed bipartite graphs and
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directed outerplanar graphs. The proofs of the theorems claimed in this section
are omitted, for reasons of space.

Concerning directed binary trees, one can observe that the lower bounds on
the area requirement of planar upward drawings of directed trees presented in
Sections 3 and 4 are obtained by considering directed binary trees. Hence such
lower bounds are still valid here. Moreover, the algorithms for drawing directed
trees clearly apply also to directed binary trees, hence the optimal bounds on
the area requirement of planar upward drawings of directed binary trees are the
same of the ones of general trees.

Analogously, concerning directed caterpillars, we notice that the lower bound
on the area requirement of order-preserving upward drawings of directed trees
presented in Section 4 was obtained by considering a directed caterpillar. Hence
such a lower bound is still valid here. On the other hand, for non-order-preserving
drawings one can obtain better results with respect to those for general trees, as
shown by the following:

Theorem 4. Every n-nodes directed caterpillar tree admits an upward straight-
line drawing in optimal Θ(n) area.

For directed spider trees linear area is achievable also for order-preserving draw-
ings:

Theorem 5. Every n-nodes directed spider tree admits an upward order-
preserving straight-line drawing in optimal Θ(n) area.

Considering families of DAGs richer than directed trees, exponential area is
sometimes necessary even without forcing an order of the neighbors of each
vertex. In the following we show the inductive construction of an n-vertex di-
rected bipartite graph Bn. Such a digraph contains an O(n) nodes coil in any
upward planar drawing, hence it requires exponential area in any straight-line
upward drawing and quadratic area in any poly-line upward drawing. Such lower
bounds are again matched by the upper bounds in [12,9]. We define Bn as
the directed bipartite graph with vertex sets V and U , inductively defined as
follows: (i) B8 has vertices v−2, v−1, v1, v2 ∈ V and u−2, u−1, u1, u2 ∈ U , the
edges of a directed path (v−2, u−2, v−1, u−1, v1, u1, v2, u2), and the directed edges
(v1, u2), (v−1, u1), (v−2, u1) and (v−1, u2) (see Fig. 3.a); (ii) Bn, with n multi-
ple of 4, is done by Bn−4, by four new vertices vn/4, un/4, v−n/4, and u−n/4
and by eight directed edges (v−n/4, u−n/4), (u−n/4, v−n/4+1), (un/4−1, vn/4),
(vn/4, un/4), (v−n/4+2, un/4), (v−n/4+1, un/4−1), (v−n/4, un/4−1), and
(v−n/4+1, un/4) (see Fig. 3.b). An extensive study of the properties of Bn leads
to the followings:

Theorem 6. There exists an n-vertex directed bipartite graph requiring Ω(bn)
area, with b greater than 1, in any upward straight-line drawing.

Theorem 7. There exists an n-vertex directed bipartite graph requiring Ω(n2)
area in any upward poly-line drawing.
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Fig. 3. (a) B8. (b) Bn. (c) O4. (d) On.

Again using arguments based on the results obtained for directed trees, it can
be shown that directed outerplanar graphs generally require exponential area in
any outerplanar straight-line upward drawing and quadratic area in any poly-line
upward drawing. These results are achieved by considering the n-vertex directed
outerplanar graph On inductively defined as follows: (i) O4 has four vertices v1,
v2, v3, and v4 and four directed edges (v1, v2), (v1, v4), (v2, v3), and (v3, v4) (see
Fig. 3.c); (ii) On+4 is composed by On, by four new vertices vn+1, vn+2, vn+3,
and vn+4, and by six new directed edges (vn+1, vn), (vn+2, vn−1), (vn+1, vn+2),
(vn+2, vn+3), (vn+1, vn+4), and (vn+3, vn+4) (see Fig. 3.d). Studying the proper-
ties of upward drawings of On the followings can be proved:

Theorem 8. There exists an n-vertex directed outerplanar graph requiring
Ω(bn) area, with b greater than 1, in any upward outerplanar straight-line drawing.

Theorem 9. There exists an n-vertex directed outerplanar graph requiring
Ω(n2) area in any upward poly-line drawing.

6 Conclusions and Open Problems

In this paper we have studied the area requirement of upward drawings of several
classes of DAGs that frequently arise in theory and in practice.

We provided tight bounds on the area requirement of straight-/poly-line order-
/non-order-preserving upward drawings of general directed trees and of several
families of directed trees. However, the following problem is still open:

Problem 1. Which is the minimum area of upward straight/poly-line order/non
order-preserving drawings of complete and balanced trees?

Concerning directed bipartite graphs, we have shown an exponential area lower
bound for straight-line upward drawings, but the following is still open:

Problem 2. Which is the minimum area of an upward drawing of a bipartite
DAG? Bipartite DAGs [7] are those DAGs having a vertex set partitioned into
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two subsets V1 and V2 with each edge directed from a vertex of V1 to a vertex
of V2. Consequently, bipartite DAGs form a subclass of the digraphs whose
underlying graph is bipartite, that was considered in this paper.

Further, we have shown an outerplanar graph requiring exponential area in
any straight-line outerplanar upward drawing. However, when considering non-
outerplanar drawings, one could obtain better area bounds, so we ask:

Problem 3. Which is the minimum area of straight-line non-outerplanar upward
drawings of directed outerplanar graphs?
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