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Abstract. The so called (σ, ρ)-domination, introduced by J.A. Telle, is
a concept which provides a unifying generalization for many variants of
domination in graphs. (A set S of vertices of a graph G is called (σ, ρ)-
dominating if for every vertex v ∈ S, |S ∩N(v)| ∈ σ, and for every v /∈ S,
|S ∩ N(v)| ∈ ρ, where σ and ρ are sets of nonnegative integers and N(v)
denotes the open neighborhood of the vertex v in G.) It was known that
for any two nonempty finite sets σ and ρ (such that 0 /∈ ρ), the deci-
sion problem whether an input graph contains a (σ, ρ)-dominating set is
NP-complete, but that when restricted to chordal graphs, some polyno-
mial time solvable instances occur. We show that for chordal graphs, the
problem performs a complete dichotomy: it is polynomial time solvable
if σ, ρ are such that every chordal graph contains at most one (σ, ρ)-
dominating set, and NP-complete otherwise. The proof involves certain
flavor of existentionality - we are not able to characterize such pairs (σ, ρ)
by a structural description, but at least we can provide a recursive al-
gorithm for their recognition. If ρ contains the 0 element, every graph
contains a (σ, ρ)-dominating set (the empty one), and so the nontrivial
question here is to ask for a maximum such set. We show that MAX-
(σ, ρ)-domination problem is NP-complete for chordal graphs whenever
ρ contains, besides 0, at least one more integer.

Keywords: Computational complexity, graph algorithms.

1 Introduction and Overview of Results

We consider finite undirected graphs without loops or multiple edges. The vertex
set of a graph G is denoted by V (G) and its edge set by E(G). The open
neighborhood of a vertex is denoted by N(u) = {v : uv ∈ E(G)}. A graph is
chordal if it does not contain an induced cycle of length greater than three.
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A. Brandstädt, D. Kratsch, and H. Müller (Eds.): WG 2007, LNCS 4769, pp. 1–11, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 P. Golovach and J. Kratochv́ıl

1.1 (σ, ρ)-Domination

Let σ, ρ be a pair of nonempty sets of nonnegative integers. A set of vertices
of G is called (σ, ρ)-dominating if for every vertex v ∈ S, |S ∩ N(v)| ∈ σ, and
for every v /∈ S, |S ∩ N(v)| ∈ ρ. The concept of (σ, ρ)-domination was intro-
duced by J.A. Telle [14,15] (and further elaborated on in [12,9]) as a unifying
generalization of many previously studied variants of the notion of dominating
sets (see [8] for an extensive bibliography on domination in graphs). In particu-
lar, (N0,N)-dominating sets are ordinary dominating sets, ({0},N0)-dominating
sets are independent sets, (N0,{1})-dominating sets are efficient dominating sets,
({0},{1})-dominating sets are 1-perfect codes (or independent efficient dominat-
ing sets), ({0},{0, 1})-dominating sets are strong stable sets, ({0},N)-dominating
sets are independent dominating set, ({1},{1})-dominating sets are total perfect
dominating set, or ({r},N0)-dominating sets are induced r-regular subgraphs (N
and N0 denote the sets of positive and nonnegative integers, respectively).

We are interested in the complexity of the problem of existence of a (σ, ρ)-
dominating set in an input graph, and we denote this problem by ∃(σ, ρ)-
domination. It can be easily seen that if 0 ∈ ρ, then the ∃(σ, ρ)-domination

problem has a trivial solution S = ∅. So throughout the main part of the paper
(and unless not explicitly stated otherwise) we suppose that 0 /∈ ρ.

1.2 Our Results

In view of the above given examples, it is not surprising that for any nontriv-
ial combination of finite sets σ and ρ (considered as fixed parameters of the
problem), ∃(σ, ρ)-domination is NP-complete [14]. It is then natural to pay at-
tention to restricted graph classes for inputs of the problem. It was observed in
[11] that for any pair of finite sets σ and ρ, the problem is solvable in polynomial
time for interval graphs, but that it becomes NP-complete when restricted to
chordal graphs (for some parameter sets σ and ρ). In particular, it was shown
that for one-element sets σ = {p}, ρ = {q}, ∃(σ, ρ)-domination is polynomial
time solvable if q > 2p + 1 and NP-complete if q ≤ p + 1. We close this gap by
showing that all the remaining cases are also polynomial time solvable. More-
over, we extend this polytime/NP-completeness dichotomy to any pair of finite
sets σ, ρ by showing the following characterization:

Theorem A. For finite sets σ, ρ, ∃(σ, ρ)-domination is polynomial time solv-
able for chordal graphs if every chordal graph has at most one (σ, ρ)-dominating
set, and it is NP-complete otherwise.

This theorem provides a full characterization and dichotomy, with both the poly-
nomial time solvable and NP-complete cases including nontrivial and interesting
samples (as we show by discussing some examples in Section 4). Dichotomy re-
sults are valued and intensively looked for (e.g., the classification of Boolean
satisfiability by Schaefer [13], further dichotomy results for larger classes of the
Constraint Satisfaction Problem by Bulatov et al. [2] paving the way to the
utmost CSP dichotomy conjecture of Feder and Vardi [4], or several results for
graph homomorphisms [10,3,6,5].) The characterization is nonconstructive in the
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sense that we are not able to provide a structural description of ambivalent (or
non-ambivalent) pairs σ, ρ (we call a pair σ, ρ ambivalent if there exists a chordal
graph containing two different (σ, ρ)-dominating sets), and there is indication
that such a description will not be simple. Indeed, for any pair of σ and ρ, there
are infinitely many chordal graphs to be checked if any of them, by chance,
contains two different (σ, ρ)-dominating sets. Perhaps somewhat surprisingly we
show that this fact can be overcome at least from the computational point of
view:

Theorem B. It can be decided in finite time (i.e., by a recursive algorithm)
whether for a given pair of finite sets σ, ρ, there exists a chordal graph containing
two different (σ, ρ)-dominating sets.

The NP-hardness part of Theorem A is proved in Section 2 by a reduction from a
variant of the Exact Cover problem. Its polynomial part is proved in Section 3
by providing an explicit dynamic programming algorithm. Theorem B is proved
by providing an explicit upper bound on the minimum size of an ambivalent
graph in Section 4. In Section 5, we discuss the case when 0 ∈ ρ. As we have
already mentioned, the ∃(σ, ρ)-domination problem is then trivial (the empty
set is always (σ, ρ)-dominating), and the natural question here is the optimization
variant. However, we show this is always a hard problem:

Theorem C. Given a chordal graph graph G and a number k, it is NP-complete
to decide if G contains a (σ, ρ)-dominating set of size at least k, provided σ, ρ
are finite sets of nonnegative integers and ρ �= {0}.
Throughout the paper n = |V (G)|, pmin = min σ, pmax = max σ, qmin = min ρ
and qmax = max ρ, where G is the graph and σ, ρ the sets under consideration.
In case of single-element sets σ or ρ, we write simply p = pmin = pmax and
q = qmin = qmax.

2 NP-Complete Cases

This section is devoted to the proof of the following theorem.

Theorem 1. Let σ, ρ be finite sets of nonnegative integers, 0 /∈ ρ. If there is a
chordal graph with at least two different (σ, ρ)-dominating sets, then the ∃(σ, ρ)-
domination problem is NP-complete for chordal graphs.

2.1 An Auxiliary Complexity Lemma

We are going to reduce from a special variant of the Cover by triples problem
(or Exact Cover)(see [7]).

Let r be a positive integer. An instance of the Cover by no more than r
triples is a pair (X, M), where X is a nonempty finite set and M is a set of
triples of elements of X . We ask about the existence of a set M ′ ⊂ M such that
every element of X belongs to at least one and to at most r triples of M ′. Such
a set we call a cover of X by no more than r triples. For space limitations the
proof of the following auxiliary lemma is omitted.
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Lemma 1. For every fixed r ≥ 1, the Cover by no more than r triples

problem is NP-complete.

2.2 The Forcing Gadget

Our next step of the proof is the construction of a gadget which “enforces” on a
given vertex the property of “not belonging to any (σ, ρ)-dominating set”.

It is known (cf. [11]) that if qmin ≥ 2pmax+2, then every chordal graph contains
at most one (σ, ρ)-dominating set. Hence we assume that qmin ≤ 2pmax + 1. We
construct a rooted graph F as follows.

Suppose first that qmin ≤ pmax + 1. We start with a complete graph Kpmax+1
with vertices u1, u2, . . . , upmax+1. Let {S1, S2, . . . , St} be a set of qmin-tuples
which covers the set {u1, u2, . . . , upmax+1} (i.e., each uj belongs to at least one
Si). For every i = 1, 2, . . . , t, we add qmax + 1 new vertices v

(i)
1 , v

(i)
2 , . . . , v

(i)
qmax+1

and connect them to all vertices of Si by edges.
If qmin > pmax + 1, the construction is slightly different. We again start with

a complete graph Kpmax+1 with vertices u1, u2, . . . , upmax+1. We add qmax + 1 new
verticesv1, v2, . . . , vqmax+1 andqmax+1copiesofKpmax+1, sayQ1, Q2, . . . , Qqmax+1,
andconnecteveryvj byedgestoallverticesu1, u2, . . . , upmax+1 andtoqmin−pmax+1
vertices of the corresponding Qj .

In both cases the vertex u1 is the root of F .

Lemma 2. The graph F has at least one (σ, ρ)-dominating set, and for every
(σ, ρ)-dominating set S in F , u1, u2, . . . , upmax+1 ∈ S. Moreover, if F is an
induced subgraph of a graph F ′ such that u1 is the only vertex of F adjacent to
vertices of F ′\F , then the vertices of F ′\F that are adjacent to u1 do not belong
to any (σ, ρ)-dominating set in F ′.

Proof. Suppose that qmin ≤ pmax +1. Obviously {u1, u2, . . . , upmax+1} is a (σ, ρ)-
dominating set in F . For the second statement, assume that S is a (σ, ρ)-
dominating set in F and ui /∈ S for some i. Let Sj be a qmin-tuple which contains
ui. It is readily seen that v

(j)
1 , v

(j)
2 , . . . , v

(j)
qmax+1 ∈ S. But then ui is adjacent to

at least qmax + 1 vertices of S, a contradiction.
If qmin > pmax + 1, the proof of the second statement is similar. For the

first part, note that the vertices u1, u2, . . . , upmax+1 and all vertices of the added
cliques Qj form a (σ, ρ)-dominating set.

For the last statement, note that we have proved that in both cases u1 is in
S and has pmax neighbors in S, for any (σ, ρ)-dominating set S in F , but the
argument survives for any (σ, ρ)-dominating set in F ′ as well. 
�

2.3 The Reduction

Let H be a graph which has at least two different (σ, ρ)-dominating sets S, ˜S.
We choose a vertex u ∈ S ÷ ˜S, where ÷ denotes the symmetric difference of sets,
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and pronounce u the root of H . Let k = max{i ∈ N0 : i /∈ ρ, i + 1 ∈ ρ}. Since
0 /∈ ρ, k is correctly defined.

Let a set X = {x1, x2, . . . , xn} and a set M = {t1, t2, . . . , tm} of triples on
X be given as an instance of Cover by no more than r triples for r =
qmax − k > 0.

We start the construction of a graph G with a complete graph Kn with vertices
x1, x2, . . . , xn. For every triple ti = {xa, xb, xc}, a copy Hi of the graph H with
root ui is added, and ui is connected by edges to xa, xb, xc. If k = 0, we further
add qmax copies of the graph F with roots v1, v2, . . . , vqmax , add a new extra
vertex y, and join y with x1, x2, . . . , xn and v1, v2, . . . , vqmax by edges. If k > 0,
then k copies of F with roots v1, v2, . . . , vk are added, and vertices v1, v2, . . . , vk

are connected with x1, x2, . . . , xn by edges.
We claim that the graph G constructed in this way has a (σ, ρ)-dominating set

if and only if (X, M) allows a cover by no more than r triples. Since the graphs
H and F depend only on σ and ρ, G has O(n + m) vertices, our reduction is
polynomial and the proof will be concluded.

Suppose first that G has a (σ, ρ)-dominating set S. Let M ′ = {ti ∈ M : ui ∈
S}. If k = 0, then y /∈ S and v1, v2, . . . , vqmax ∈ S by Lemma 2. Hence
x1, x2, . . . , xn /∈ S. Since 0 /∈ ρ, for every i = 1, 2, . . . , n, the vertex xi has
at least one S-neighbor in the set {u1, u2, . . . , um}, but no more than r = qmax
such neighbors. So M ′ is a cover of X by no more than r triples.

If k > 0, then v1, v2, . . . , vk ∈ S and x1, x2, . . . , xn /∈ S by Lemma 2 again.
Since k /∈ ρ, for every i = 1, 2, . . . , n, the vertex xi has at least one S-neighbor in
the set {u1, u2, . . . , um}, but no more than r = qmax − k such neighbors. Hence
again, M ′ is a cover of X by no more than r triples.

Suppose now that M ′ ⊆ M is a cover of X by no more than r triples. For every
i = 1, 2, . . . , m, we choose a (σ, ρ)-dominating set Si in Hi such that ui ∈ Si if
and only if ti ∈ M ′. Let S′

1, S
′
2, . . . be (σ, ρ)-dominating sets in the copies of F .

Since {k + 1, k + 2, . . . , qmax} ⊆ ρ, S = S1 ∪ S2 ∪ · · · ∪ Sn ∪ S′
1 ∪ S′

2 ∪ . . . is a
(σ, ρ)-dominating set in G.

3 The Polynomial Cases

In this section we prove the complementary part of Theorem A by presenting a
polynomial time algorithm that decides the existence of a (σ, ρ)-dominating set
in a chordal graph, provided the parameters σ and ρ are such that every chordal
graph contains at most one (σ, ρ)-dominating set. It is perhaps of some interest
that our algorithm can be formulated in a general way so that it is based only
on the promise of a unique solution. On the contrary, in many situations the
assumption of uniqueness of the solution does not help.

In fact we present two algorithms in this section. In the first subsection we
give the general algorithm, and in the latter one we deal with a special case
of one-element set σ. The running time of the second algorithm is much better
and moreover, this algorithm explicitly closes the gap between polynomial and
NP-complete cases for single-element parameter sets left open in [11].
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3.1 The General Algorithm

In this subsection it is assumed that σ and ρ are such that every chordal graph
contains no more than one (σ, ρ)-dominating set. The algorithm uses dynamic
programming and is based on the clique-decomposition of the input graph.

Let K be the set of all maximal cliques of an input chordal graph G, and let T
be a clique tree of G, i.e., V (T ) = K and for every u ∈ V (G), the subgraph of T
induced by {K ∈ K : u ∈ K} is connected. It is well known (see, for example, [1])
that a clique tree of a chordal graph graph is not unique, but can be constructed
in linear time. We choose a clique R0 ∈ K and consider the clique tree T rooted
in R0. This induces a parent-child relation in the tree, in which all vertices are
descendants of the root. For any clique R ∈ K, we denote by TR the subtree of
T rooted in R and containing all descendants of R, and we denote by GR the
subgraph of G induced by the vertices contained in the cliques of V (TR).

The key idea of the algorithm is the fact that every clique R ∈ K contains at
most pmax + 1 vertices of any (σ, ρ)-dominating set, and hence for every clique
we can list all possible intersections with a solution set S in polynomial time.
We need to keep track of how many S-neighbors these vertices have. Towards
this end we build the following array. Let R ∈ K and let X = {x1, x2, . . . , xr}
be an ordered subset of R, 0 ≤ r ≤ pmax + 1 (X can also be empty). Further
let P = (p1, p2, . . . , pr) be a sequence of nonnegative integers, pi ≤ pmax for
i = 1, 2, . . . , r. For each such triple R, X, P , our algorithm constructs a set
S(R, X, P ) ⊆ V (GR) which satisfies

– S(R, X, P ) ∩ R = X ,
– |N(xi) ∩ S(R, X, P )| = pi for i = 1, 2, . . . , r,

– for every v ∈ V (GR) \ R, |N(v) ∩ S(R, X, P )| ∈
{

σ if v ∈ S(R, X, P ),
ρ if v /∈ S(R, X, P );

(i.e., S(R, X, P ) is a candidate for S ∩ V (GR)) or S(R, X, P ) =nil if we can
deduce that no such set can be extended to a solution S for the entire G. The
details of the algorithm will appear in the full version of the paper. The recursive
step is technical but straightforward. The crucial fact is that for each triple
R, X, P , we store at most one candidate set, which follows from the following
lemma.

Lemma 3. If S1 and S2 are distinct subsets of V (GR) satisfying the candidate
conditions for the same triple R, X, P , then none of them can be extended to a
(σ, ρ)-dominating set S in the entire graph G.

Proof. Suppose S1 can be extended to a (σ, ρ)-dominating set S. Then S and
(S \S1)∪S2 are two distinct (σ, ρ)-dominating sets in G[V (G) \ (R \ X)], which
is a contradiction to the assumption that every chordal graph contains at most
one (σ, ρ)-dominating set. 
�

The algorithm can be implemented to run in time O(np2
max+2pmax+3). Hence we

have proved the polynomial part of Theorem A:
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Theorem 2. If σ and ρ are finite sets such that every chordal graph contains at
most one (σ, ρ)-dominating set, then the ∃(σ, ρ)-Domination problem is solvable
in polynomial time for chordal graphs.

3.2 Single-Element Sigma

In the case when the set σ contains only one element, we are able to design
a more efficient greedy algorithm. This algorithm uses the simple structure of
(σ, ρ)-dominating sets in such a case.
Lemma 4. Let σ = {p}, let ρ be arbitrary and suppose that S is a (σ, ρ)-
dominating set in a chordal graph G. Then S is the union of disjoint cliques
of size p + 1, and vertices of different cliques are nonadjacent.

Proof. Let G[S] be the subgraph of G induced by S. This graph is chordal, so it
has a simplicial vertex. The closed neighborhood of this vertex is a clique of size
p + 1, and this clique is the vertex set of one component of G[S]. By repeating
these arguments we prove that all components of G[S] are induced by cliques of
size p + 1. 
�
Though we use the following observation for the case of single-element σ, we
state it in a more general form:
Lemma 5. Suppose that pmax + 2 ≤ qmin. Let S be a (σ, ρ)-dominating set in
G. Then all simplicial vertices of G belong to S.

Proof. Let v be a simplicial vertex of G. If v /∈ S, then |N(v)∩S| ∈ ρ, and since
pmax + 2 ≤ qmin, |N(v) ∩ S| ≥ pmax + 2. So S contains a clique of size pmax + 2,
a contradiction. 
�
The core observation for our algorithm is the following lemma, which is a
straightforward corollary of Lemmas 4 and 5.
Lemma 6. Let σ = {p} and let p + 2 ≤ qmin. Let S be a (σ, ρ)-dominating set
in a chordal graph G. Further let T be a clique tree of G, let X be a leaf of T ,
and Y the neighbor of X in T . Then

– |X \ Y | ≤ p + 1,
– if |X \ Y | = p + 1, then X \ Y ⊆ S and (Y ∩ X) ∩ S = ∅,
– if |X \ Y | < p + 1, then (Y \ X) ∩ S = ∅.

Given a chordal graph, our algorithm first builds a clique tree and then con-
secutively reduces it by deleting vertices which must or must not belong to any
(σ, ρ)-dominating set. In the final step it is necessary to check whether the only
candidate (if any) for S is really a (σ, ρ)-dominating set. The technical details will
again appear in the full version of the paper. We only note that with some extra
care the algorithm can be designed so that in each reduction step, a clique tree
of the reduced graph can be easily derived from the clique tree of the previous
one. Thus we can claim:

Theorem 3. If σ = {p} and p+2 ≤ qmin, then the (σ, ρ)-domination problem
can be solved in time O(n2).



8 P. Golovach and J. Kratochv́ıl

4 Uniqueness of (σ, ρ)-Dominating Sets

It would be most desirable to have a full classification of the pairs of parameter
sets σ, ρ for which there exist chordal graphs with two different (σ, ρ)-dominating
sets. Such a classification is not currently known and perhaps not easy to obtain.
In the first subsection of this section we summarize the known results in this
direction. A positive result is proven in the second subsection. We show a bound
on the size of a minimal chordal graph containing two different (σ, ρ)-dominating
sets, thus showing that the existence of such a graph can be decided by a finite
algorithm.

Recall that we call a pair (σ, ρ) ambivalent if there exists a graph containing
at least two different (σ, ρ)-dominating sets. Such a graph will be called (σ, ρ)-
ambivalent.

4.1 On the Way to Classification

First observation about the uniqueness of a (σ, ρ)-dominating set in a chordal
graph was made in [11]. More cases are covered by the following theorem, but the
picture is far from being complete. Fully characterized are the cases of σ = {p}
and σ = {0, pmax}.

Theorem 4. The following table presents examples of ambivalent and non-
ambivalent pairs of σ and ρ:

ambivalent non-ambivalent
qmin ≤ pmax + 1 qmin ≥ 2pmax + 2

∃i : {i, i + 1} ⊆ σ, qmin ≤ 2pmax + 1 σ = {p}, qmin ≥ p + 2
σ = {0, pmax}, qmin ≤ pmax + 2 σ = {0, pmax}, qmin ≥ pmax + 3

Proof. Will appear in the full version. 
�

4.2 Deciding the Ambivalence

The main goal of this subsection is to prove Theorem B. We do so by proving an
upper bound on the number of vertices of any minimum chordal graph containing
two different (σ, ρ)-dominating sets, in terms of pmax and qmax.

Theorem 5. Let σ, ρ be finite sets of nonnegative integers, 0 /∈ ρ. Suppose that
G is a minimum chordal (σ, ρ)-ambivalent graph. Then

– for every maximal clique K of G, |K| ≤ 2pmax + 2,
– for every vertex v ∈ V (G), deg v ≤ max{2pmax, pmax + qmax},
– the diameter of G is O(p2pmax+2qmax+7

max ).

Proof. Will appear in the full version. 
�
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Since every graph of maximum degree Δ and diameter d has at most Δd+1

vertices, we have proven the following corollary and hence also Theorem B.

Corollary 1. Let σ, ρ be finite sets of nonnegative integers, 0 /∈ ρ. Then the size
of every minimum (σ, ρ)-ambivalent chordal graph is bounded by a function of
pmax and qmax and the existence of such a graph can be tested algorithmically by
a finite procedure.

5 MAX-(σ, ρ)-Domination

So far we have been considering the question of existence of (σ, ρ)-dominating
sets. One could also pose the optimization questions, i.e., asking for the sizes of
minimum or maximum (σ, ρ)-dominating sets. Since optimization problems are
at least as difficult as the existence ones, and since the polynomial part of our
Theorem A is based on uniqueness of the solution, our results translate directly
to the optimization variants. Namely, if 0 /∈ ρ, then both Min-(σ, ρ)-domination

and Max-(σ, ρ)-domination problems are NP-hard when restricted to chordal
graphs for ambivalent (σ, ρ) and polynomial time solvable for the non-ambivalent
pairs.

If ρ = {0}, the only possible (σ, ρ)-dominating sets in a connected graph G
are S = ∅ and S = V (G). The latter is the maximum (σ, ρ)-dominating set if
deg v ∈ σ for every v ∈ V (G), otherwise S = ∅ is the only (and hence also the
maximum) (σ, ρ)-dominating set in G. This is, however, the only polynomially
solvable case, as Theorem C claims. The rest of this section is devoted to its
proof.

5.1 Proof of Theorem C

We begin with an auxiliary construction. Let F consist of qmax copies of the
complete graph Kpmax+1, say Q1, Q2, . . . , Qqmax , and one extra vertex r, the
root of F , which is adjacent to exactly one vertex from each Qi. The following
technical lemma is straightforward.

Lemma 7. The set S = V (Q1) ∪ V (Q2) ∪ · · · ∪ V (Qqmax) is a maximum (σ, ρ)-
dominating set in F , and it has cardinality qmax(pmax + 1). Moreover, suppose
that a graph F ′ is created by uniting F with some graph (with different vertices)
and joining the root of F to some new vertices u1, u2, . . . , us. If S′ is a (σ, ρ)-
dominating set in F ′, r /∈ S′, and ui ∈ S′ for some i, then |V (F ) ∩ S′| <
qmax(pmax + 1).

Now we prove Theorem C by a reduction from the Exact h-Cover problem,
whose is input is a pair (X, M), where X = {x1, x2, . . . , xn} is a finite set and
M = {t1, t2, . . . , tm} is a set of triples on X , and the question is if M contains
a subsystem M ′ ⊂ M such that every element of X belongs to exactly h triples
of M ′. This problem is NP-complete for every fixed h > 0 (cf. e.g., [11]). For
our reduction, we use h = qmax. For a given instance (X, M), we may assume
without loss of generality that nqmax = 3l and l ≤ m.
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We start the construction of a graph G with a complete graph Kn with vertices
x1, x2, . . . , xn. For every triple ti = {xa, xb, xc}, a copy Hi of the complete graph
Kpmin+1 is added, and one vertex of this graph is connected by edges to xa, xb, xc.
We further add s = (m − l)(pmin + 1) + 2pmax + 2 copies F1, . . . , Fs of the graph
F , with their roots r1, r2, . . . , rs being adjacent to all x1, x2, . . . , xn. This graph
G has m(pmin +1)+n+s(qmax(pmax +1)+1) vertices and it is constructed from
(X, M) in polynomial time. We claim that G contains a (σ, ρ)-dominating set of
size ≥ k = l(pmin + 1) + sqmax(pmax + 1) if and only if (X, M) contains an exact
qmax-cover.

Let first M ′ be a qmax-cover of X . Clearly, |M ′| = l, and it is straightforward
to check that S =

⋃

i: ti∈M ′ V (Hi) ∪
⋃s

i=1(V (Fi) \ {ri}) is a (σ, ρ)-dominating
set in G of cardinality k.

Assume now that S is a (σ, ρ)-dominating set in G, and |S| ≥ k. Suppose that
some vertex xj is in S. Then S can contain no more than m(pmin +1) vertices of
the graphs Hi, and no more than pmax +1 vertices from the set {x1, x2, . . . , xn}.
Also at least s − pmax vertices from {r1, r2, . . . , rs} do not belong to S. So,
according to the preceding lemma, |S| ≤ m(pmin+1)+pmax+1+pmaxqmax(pmax+
1)+(s−pmax)(qmax(pmax +1)−1) = m(pmin+1)+2pmax+1+sqmax(pmax +1)−
(m − l)(pmin + 1) − 2pmax − 2 = l(pmin + 1) + sqmax(pmax + 1) − 1 < k. So, none
of the vertices x1, x2, . . . , xn belongs to S. Note that in this case V (Hi) ⊂ S or
V (Hi) ∩ S = ∅ for all i = 1, 2, . . . , m, and vertices of no more than l graphs Hi

belong to S. Since S can contain no more than qmax(pmax+1) vertices from every
graph Fi, and |S| ≥ k, vertices of exactly l graphs Hi are included to S. Every
vertex xj can have no more than qmax adjacent vertices from S. Hence each xj

is adjacent to exactly qmax vertices from Hi’s and the set M ′ = {ti : V (Hi) ⊂ S}
is a qmax-cover of X .

6 Concluding Remarks and Open Problems

The complete classification of ambivalent pairs (σ, ρ) remains the first and main
open problem. We believe that it is an interesting combinatorial problem by
itself, and that it deserves attention. Perhaps it is impossible to formulate simple
necessary and sufficient conditions for the general problem, but it would be
interesting to obtain a complete solution at least for some special cases. For
example for two-element sets σ = {p1, p2} (it seems that cardinality of σ is more
important).

A related complexity question is if the ambivalence of (σ, ρ) can be tested in
polynomial time.

Another interesting question is a fixed parameter tractability of the ∃(σ, ρ)-
domination. If the maximal value of σ is supposed to be the parameter, then
the Theorem 3 shows that this problem is in FPT for |σ| = 1 and p + 2 ≤ qmin
(in fact our algorithm is polynomial in p and n). On the other hand, our general
algorithm from Subsection 3.1 has the parameter pmax in the exponent of the
running time, and hence is not FPT-algorithm. Fixed parameter tractability
(or intractability) of the general case remains an open problem. Also it would
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be interesting to consider the problem parametrized by the size of the (σ, ρ)-
dominating set.
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