
Completeness of the Authentication Tests�

Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer

The MITRE Corporation
shaddin@stanford.edu, {guttman,jt}@mitre.org

Abstract. Protocol participants manipulate values, transforming the
cryptographic contexts in which they occur. The rules of the protocol de-
termine which transformations are permitted. We formalize these trans-
formations, obtaining new versions of the two authentication tests from
earlier strand space papers.

We prove that the new versions are complete, in this sense: any col-
lection of behaviors that satisfies those two authentication tests, when
combined with some feasible adversary behavior, yields a possible exe-
cution.

We illustrate the strengthened authentication tests with brief analyses
of three protocols.

1 Introduction

Cryptographic protocols are designed to control the ways that protocol partic-
ipants transform messages. The protocol determines when a critical value may
be transmitted within new forms of message. If the critical value has so far oc-
curred only within a particular set of cryptographic contexts, then a participant
may be authenticated by the way she transforms it to occur in a new context. A
protocol preserves secrecy by ensuring that no participant’s transformation will
remove it from a class of safe contexts.

Protocol analysis within a simple Dolev-Yao model [5] may be completely
formalized in terms of this idea.

In this paper, we support this assertion, using two forms of the transformation
principle. One form covers the case in which the critical value is a fresh, unguess-
able value such as a nonce or session key. The other covers the case in which
the critical value is an encrypted message. Each is a strengthened authentication
test, various versions of which have appeared in earlier papers [9,10,11,13]. We
illustrate the different aspects of the strengthened authentication tests in refer-
ence to a protocol due to Perrig and Song [13], Yahalom’s protocol [3], and a new
protocol we call the ambassador’s protocol. The authentication tests are sensi-
tive only to the regular (non-adversary) protocol behavior and a set of values
assumed uncompromised; they are insensitive to specific adversary behavior.

We work within the strand space model [10], so local behaviors of regular
principals are represented by regular strands, and adversary behavior is repre-
sented by penetrator strands. Possible executions are represented by bundles.
(See Definitions 2–5.)
� Supported by the National Security Agency and by MITRE-Sponsored Research.

J. Biskup and J. Lopez (Eds.): ESORICS 2007, LNCS 4734, pp. 106–121, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Completeness of the Authentication Tests 107

Our main result is completeness for the authentication tests, in the following
sense. Suppose that a collection of regular strands has been chosen, as well as a
collection X of values that we assume the adversary did not originally possess
and will not guess. Then there exists a bundle B containing exactly the given
strands, without the adversary using the values X , if and only if those strands
and the values X satisfy the authentication tests (Prop 5).

An implementation called cpsa uses most aspects of the strengthened au-
thentication tests. It searches for all the minimal, essentially different executions
that a protocol allows, as described in [4]. We call these minimal, essentially
different executions shapes. cpsa checks authentication and secrecy properties,
since these are easily read off from the set of shapes. By the undecidability of
these properties [6], there exist protocols for which the set of shapes is infinite;
however, for many protocols the set of shapes is very small, and frequently only
one or two.

Related work. There is a vast body of work on protocol analysis. Much, such as
Cryptyc [7] and ProVerif [1], aim at sound but not complete methods. Others, for
instance Athena [13], do a search involving both regular and adversary behaviors.
We here propose a method that is complete in the sense we have mentioned, but
considers adversary behavior only in the most limited way. In particular, the
authentication tests consider only whether given values—generally, keys—are
available to the adversary, but not what actions are needed to synthesize the
values received by the regular participants.

Roadmap to this paper. In Section 2 we give the basic strand space definitions,
adapted to our current needs. Section 3 summarizes three examples that together
illustrate many aspects of protocol analysis. Section 4 defines the key idea of a
message “occurring only within” certain contexts in another message; we also
provide a number of examples that will be used later in the paper. Section 5 gives
the authentication test principles, and illustrates how to use them to analyze
our three examples. Section 6 considers the adversary in more detail, and gives
the crucial lemma for completeness. Finally, Section 7 introduces the notion of
skeleton and uses it to formalize completeness. Appendix A fills in the proof of
the key lemma.

2 Terms, Strands, and Bundles

In this section, we give background definitions, which are somewhat more general
than those in the extended version of [4].

2.1 Algebra of Terms

Terms (or messages) form a free algebra A, built from (typed) atoms and (un-
typed) indeterminates g, h, . . . via constructors.

The atoms may be partitioned into some types, e.g. keys, nonces, etc. We
assume A contains infinitely many atoms of each type.

108 S.F. Doghmi, J.D. Guttman, and F.J. Thayer

An inverse operator is defined on atomic keys. There may be additional func-
tions on atoms, such as an injective public key of function mapping principals to
keys, or an injective long term shared key of function mapping pairs of principals
to keys. These functions are not constructors, and their results are atoms. For
definiteness, we include here functions pubk(a), ltk(a) mapping principals to (re-
spectively) their public keys and to a symmetric key shared on a long-term basis
with a fixed server S. pubk(a)−1 is a’s private key, where pubk(a)−1 �= pubk(a).
By contrast, ltk(a)−1 = ltk(a).

Terms in A are freely built from atoms and indeterminates using tagged con-
catenation and encryption. The tags are chosen from a set of constants written
in sans serif font (e.g. tag). The tagged concatenation using tag of t0 and t1 is
written tagˆt0ˆt1. Tagged concatenation using the distinguished tag null of t0
and t1 is written t0ˆt1.

Encryption takes a term t and a term t′ serving as a key, and yields a term
as result written {|t|}t′ . Protocols generally use a term t′ as a key only if it is of
some special forms, such as an atomic key or a term produced by hashing (used
as a symmetric key). We regard hashing as encryption with a public key the
inverse of which is not known to any principal. We extend the inverse function
to non-atomic keys by stipulating that if K is non-atomic, then K−1 = K. We
write {|t|}K to cover both the case of atomic and non-atomic K.

We regard terms as abstract syntax trees, where atoms and indeterminates are
the leaves. A concatenation tagˆt0ˆt1 has a root node labeled tag and the two
immediate subtrees representing t0, t1. An encryption {|t0|}t1 has a root labeled
with t1, and one immediate subtree representing t0.

Replacements are essentially homomorphisms on the algebra A:

Definition 1 (Replacement, Application). A replacement is a function α
mapping atoms and indeterminates to A, such that (1) for every atom a, α(a) is
an atom of the same type as a, and (2) α is a homomorphism with respect to the
operations on atoms, e.g., α(K−1) = (α(K))−1 and α(pubk(a)) = pubk(α(a)).

The application of α to t, written t · α, homomorphically extends α’s action on
atoms and indeterminates. More explicitly, if t = a is an atom, then a · α = α(a);
if t = g is an indeterminate, then g · α = α(g) and:

(tagˆt0ˆt1) · α = tagˆ(t0 · α)ˆ(t1 · α)
({|t|}K) · α = {|t · α|}K·α

We extend the homomorphism · α to larger objects such as pairing and sets;
thus, (x, y) · α = (x · α, y · α), and S · α = {x · α: x ∈ S}. If x �∈ A is a simple
value such as an integer or a symbol, then x · α = x.

2.2 Strands and Origination

Directed messages represent transmission and reception of messages, where the
direction + means transmission, and the direction − means reception:

Completeness of the Authentication Tests 109

Definition 2 (Strand Spaces). A direction is one of the symbols +, −. A
directed term is a pair (d, t) with t ∈ A and d a direction, normally written
+t, −t. (±A)∗ is the set of finite sequences of directed terms.

A strand space over A is a structure containing a set Σ and two mappings: a
trace mapping tr : Σ → (±A)∗ and a replacement application operator (s, α) �→
s · α such that tr(s · α) = (tr(s)) · α.

By a strand, we just mean any member of some strand space Σ.

Definition 3. A penetrator strand has trace of one of the following forms:
Mt: 〈+t〉 where t ∈text, principal,nonce KK : 〈+K〉 with atomic key K
Cg,h: 〈−g, −h, +gˆh〉 Sg,h: 〈−gˆh, +g, +h〉
Eh,K : 〈−K, −h, +{|h|}K〉 Dh,K : 〈−K−1, −{|h|}K , +h〉.

If s is a penetrator strand, then s · α is a penetrator strand of the same kind.
The subterm relation, written �, is the least reflexive, transitive relation such

that (1) t0 � tagˆt0ˆt1; (2) t1 � tagˆt0ˆt1; and (3) t � {|t|}K . Notice, however,
K �� {|t|}K unless (anomalously) K � t. The subterms of t are the terms repre-
sented by the subtrees of t’s abstract syntax tree. We say that a key K is used
for encryption in a term t if for some t0, {|t0|}K � t.

A node is a pair n = (s, i) where i ≤ length(tr(s)); strand(s, i) = s; and the
direction and term of n are those of tr(s)(i). We prefer to write s ↓ i for the
node n = (s, i). A term t originates at node n if n is positive, t � msg(n), and
t �� msg(m) whenever m ⇒+ n. Thus, t originates on n if t is part of a message
transmitted on n, and t was neither sent nor received previously on this strand.

2.3 Protocols and Bundles

Definition 4 (Protocols). A candidate 〈Π, strand non, strand unique〉 consists
of: (1) a finite set Π of strands called the roles of the protocol; (2) a function
strand non mapping each role r to a finite set of keys strand nonr, the non-
originating keys of r; and (3) a function strand unique mapping each role r to a
finite set of atoms strand uniquer, the uniquely originating atoms of r.

A candidate 〈Π, strand non, strand unique〉 is a protocol if (1) K ∈ strand nonr

implies that K does not occur in any node of r, but either K or K−1 is used
for encryption on some term of tr(r); and (2) a ∈ strand uniquer implies that a
originates on r.

The regular strands of 〈Π, strand non, strand unique〉 form the set of instances
of the roles, ΣΠ = {r · α: r ∈ Π}.

The set N of all nodes forms a directed graph G = 〈N , (→ ∪ ⇒)〉 with edges
n1 → n2 for communication (with the same term, directed from positive to
negative node) and n1 ⇒ n2 for succession on the same strand.

Definition 5 (Bundle). A finite acyclic subgraph B = 〈NB, (→B ∪ ⇒B)〉 of G
is a bundle if (1) when n2 ∈ NB is negative, there is exactly one n1 ∈ NB with
n1 →B n2; and (2) if n2 ∈ NB and n1 ⇒ n2, then n1 ⇒B n2.

When B is a bundle,
B is the reflexive, transitive closure of (→B ∪ ⇒B).

110 S.F. Doghmi, J.D. Guttman, and F.J. Thayer

B is a bundle over 〈Π, strand non, strand unique〉 if for every s ↓ i ∈ B, (1)
either s ∈ ΣΠ or s is a penetrator strand; (2) if s = r · α and a ∈ strand nonr · α,
then a does not occur in B; and (3) if s = r · α and a ∈ strand uniquer · α, then
a originates at most once in B.

We say that a strand s is in B if s has at least one node in B. Henceforth, assume
fixed some arbitrary protocol 〈Π, strand non, strand unique〉.

Proposition 1. Let B be a bundle.
B is a well-founded partial order. Every
non-empty set of nodes of B has
B-minimal members. If a � msg(n) for any
n ∈ B, then a originates at some m
B n.

If α is a replacement, and B is a bundle, then B · α is a bundle.

B · α is a bundle over the same protocol if the replacement α does not cause the
origination assumptions to fail.

3 Some Example Protocols

We consider here three relevant protocol examples.

Example 1 (Perrig-Song). The PS protocol (Fig. 1) is due to Perrig and
Song, or rather, invented by their automated protocol generator [13]. Here, A
and B share a long-term symmetric key, and the purpose of the protocol is to
provide mutual authentication using the key. If the nonces are chosen to be
Diffie-Hellman values, i.e. Na = gx, Nb = gy, then the participants can combine
those values to obtain an authenticated shared secret gxy at the end.

The authors mention a reflection attack if B’s name is omitted from the second
message.

A B

•
Na � Na � •

•
�

�{|Na ˆNb ˆB|}ltk(A,B) �{|Na ˆNb ˆB|}ltk(A,B) •
�

•
�

Nb � Nb � •
�

Fig. 1. PS symmetric key protocol

Example 2 (Yahalom). The Yahalom protocol [3] is also a symmetric key
protocol, in this case using a key server to generate a session key whose reception
by A is confirmed to B in the protocol (Fig. 2). This clever and compact protocol
uses a surprising range of the tricks of protocol analysis.

Example 3 (The Ambassador’s Protocol). A new protocol, which we call
the ambassador’s protocol, illustrates a rarely used aspect of the complete au-
thentication tests. In this protocol (Fig. 3), a government G delivers a signed
and encrypted authorization to its ambassador A. If negotiations are successful,
then the ambassador performs the decryption and delivers the commitment to

Completeness of the Authentication Tests 111

Init
AˆNa � AˆNa � Resp

�Bˆ{|AˆNa ˆNb|}ltk(B) •
�

•
�

�
�
�
�
�

� {|BˆK ˆNaˆNb|}ltk(A)

{|AˆK|}ltk(B) � •
�

�
�
�
�
�

•
�

�
�
�
�
�

{|Nb|}K � {|Nb|}K � •
�

Serv �Bˆ{|AˆNa ˆNb|}ltk(B)

�{|BˆK ˆNaˆNb|}ltk(A) •
�

•
� {|AˆK|}ltk(B) �

Fig. 2. Yahalom protocol (forwarding removed)

the foreign government F , which countersigns and returns the now reciprocal
commitment to G. Typically, G would perform its first step with many poten-
tial messages m; after negotiations, the ambassador would select an appropriate
session to complete. It is important that the commitments are encrypted so that
A’s portfolio of negotiating strategies is not disclosed to F . The fact that a par-
ticular commitment is decrypted tells G that the negotiations completed with
this outcome.

G A F

•
{|{|m|}signk(G)|}pubk(A)� •

•
� {|m|}signk(G) � •

•
�

�
�
�
�
�

{|{|m|}signk(G)|}signk(F)� •
�

Fig. 3. The Ambassador’s Protocol

4 “Occurs Only Within”

The most important idea for stating the strengthened authentication tests is of
a term t0 occurring only within specific forms in some other term.

Suppose that a set S = {{|t0|}K0 , {|t1|}K1 , . . .} contains only encryptions. We
say that a term t occurs only within S in t′ if every path through the abstract
syntax tree of t′ that ends with t traverses a member of S.1 The recursive for-
mulation of Definition 6 is equivalent.
1 In our terminology (Section 2), the K in {|t|}K is not an occurrence as a subterm,

and no path in the syntax tree reaches it.

112 S.F. Doghmi, J.D. Guttman, and F.J. Thayer

When t �� t′, then no path reaches it, so t occurs only within S in t′ for every
set of encryptions S, vacuously.

Definition 6 (Occurs only within/outside). Let S be a set of encryptions.
A term t0 occurs only within S in t, if:

1. t0 �� t; or
2. t ∈ S; or
3. t �= t0, and either (3a) t = {|t1|}K and t0 occurs only within S in t1, or else

(3b) t = tagˆt1ˆt2 and t0 occurs only within S in each ti (i = 1, 2).

It occurs outside S in t if t0 does not occur only within S in t.
We say that t has exited S passing from t0 to t1 if t occurs only within S in

t0 but t occurs outside S in t1. Term t exits S at a node n if t occurs outside S
in msg(n) but occurs only within S in every msg(m) for m ≺ n.

If it occurs outside S, this means that t0 � t and there is a non-empty path
from the root to an occurrence of t0 as a subterm of t that traverses no t1 ∈ S.
“Occurring only within” is similar to “being protected by a set of hat-terms” [2].

Example 4 (PS Occurrences). Nb occurs only within the singleton set

Sps = {{|NaˆNb|}ltk(A,B)}

in the term {|NaˆNb|}ltk(A,B). It has exited Sps passing from {|NaˆNb|}ltk(A,B)
to Nb. This provides the responder’s guarantee.

{|NaˆNb|}ltk(A,B) occurs only within the null set ∅ in Na, that is, it does not
occur at all in Na. However, this encryption occurs outside ∅ in {|NaˆNb|}ltk(A,B).
This provides the initiator’s guarantee.

Example 5 (Yahalom Occurrences). Nb exits SY,1 = {{|AˆNaˆNb|}ltk(B)}
passing from {|AˆNaˆNb|}ltk(B) to the server’s output {|BˆK ˆNaˆNb|}ltk(A).
The nonce Nb exits the larger set

SY,2 = {{|AˆNaˆNb|}ltk(B)} ∪ {{|BˆK ′′ˆNaˆNb|}ltk(A): K ′′ is a key }

when passing from {|AˆNaˆNb|}ltk(B) to any term of the form {|Nb|}K′ . When
K ′ �= K, Nb has exited SY,2 ∪ {{|Nb|}K′} when passing from {|AˆNaˆNb|}ltk(B)
to {|Nb|}K .

The correctness of the protocol, for the responder, relies on these three steps.

Example 6 (Ambassador’s Protocol). The signed message {|m|}signk(G) oc-
curs outside the empty set ∅ in {|m|}signk(G).

It has exited Sa = {{|{|m|}signk(G)|}pubk(A)} passing from {|{|m|}signk(G)|}pubk(A)
to {|m|}signk(G).

Completeness of the Authentication Tests 113

5 The Strengthened Authentication Tests

When a principal follows the rules of a protocol, it transforms the way that
a critical value occurs in messages. A critical value that has hitherto occurred
only within a limited set of forms is freed from them, and retransmitted in a
new form. The outgoing and incoming authentication tests describe the possible
executions of protocols using this idea. The outgoing test deals with the case
where the critical value is a uniquely originating atom, and the incoming test
deals with the case where it is an encryption.

5.1 The Outgoing Authentication Test

We say that t is disclosed in B iff msg(n) = t for some n ∈ B. By the definitions
of the penetrator strands for encryption and decryption (Definition 3), if the
adversary uses K for encryption or decryption anywhere in B, then K is disclosed
in B. If K−1 is not disclosed, it cannot decrypt any term encrypted with K.

We say that t is disclosed before m in B, iff, for some n ∈ B, msg(n) = t and
n ≺B m. If a key is not disclosed before a negative node m, then the adversary
cannot use that key to prepare the term received on m.

Proposition 2 (Outgoing Authentication Test). Suppose an atom a origi-
nates uniquely at a regular node n0 in bundle B, and suppose for some n1 ∈ B, a
has exited S passing from msg(n0) to msg(n1), where S is a set of encryptions.

Then either (1) there exists some {|t|}K ∈ S such that K−1 is disclosed before
n1 in B, or else (2) a exits from S at some positive regular m1
B n1. If in
case (2) n0 and m1 lie on different strands, then for some negative m0 ∈ B with
a � msg(m0),

n0 ≺B m0 ⇒+ m1
B n1.

Proof. Suppose, contrary to case (1), that no K−1 for {|t|}K ∈ S is disclosed
before n1 in B. Apply Prop. 1 to T =

{m: m
B n1 and a occurs outside S in msg(m)};

n1 ∈ T , so T has
B-minimal members m1. Since keys K used in S have K−1

not disclosed before n1, m1 cannot lie on a decryption penetrator D-strand. By
unique origination, a does not lie on a M-strand or K-strand. By the definitions
of S and “occurs only within,” m1 does not lie on a S-, C-, or E-strand. Thus,
m1 lies on some s ∈ ΣΠ . If n0 does not lie on s, then a does not originate on s,
so a � msg(m0) for some negative m0, with m0 ⇒+ m1. ��

In the outgoing test, we call m0 ⇒+ m1 an outgoing transforming edge for a, S. It
transforms the occurrence of a, causing a to exit S. We call (n0, n1) an outgoing
test pair for a, S when a originates uniquely at n0 and a has exited S passing
from msg(n0) to msg(n1). We also sometimes call m1 an outgoing transforming
node and n1 an outgoing test node.

114 S.F. Doghmi, J.D. Guttman, and F.J. Thayer

Example 7. In the Perrig-Song protocol, with responder role sr, the nodes
(sr ↓ 2), (sr ↓ 3) form an outgoing test pair for Nb, Sps, where Sps is as given in
Example 4.

The initiator role si has the only outgoing transforming edge for Nb, Sps, lying
on si ↓ 2 ⇒ si ↓ 3. Hence, if any bundle B has uncompromised long term key
ltk(A, B), and B contains the three nodes of any responder strand, then B also
contains the three nodes of an initiator strand with matching parameters.

This is the responder’s authentication result.

Many protocols can be verified using only singleton sets like Sps, and this was
the part of the outgoing authentication test given in [10,8]. However, there are
other protocols in which the same critical value is transformed more than once,
and these protocols cannot be verified using only singleton sets S. For instance,
in the Yahalom protocol, the responder’s nonce Nb is transformed first by the
key server and then again by the initiator. To verify the presence of the initiator,

A B

�........................ n0

�

�
�

m0

�

�
�
�
�
�
�
�
�

�........................

•
�

�
�
�
�
�
�
�
�

m1

�

�
�
�
�
�
�
�
�

..� n1

�

�
�

A, B, Na, Nb, K
′ A, B, Na, Nb, K

Fig. 4. Yahalom bundle containing responder

we use a set that includes the original form transmitted by the responder, and
also all forms that could be produced from it by means of a server strand. To
cause Nb to escape from this set SY,2, a server strand cannot suffice: we need an
initiator strand.

Example 8 (Yahalom: Inferring Initiator). As in Example 5, letting

SY,2 = {{|AˆNaˆNb|}ltk(B)} ∪ {{|BˆK ′′ˆNaˆNb|}ltk(A): K ′′ is a key },

by Prop. 2, if B contains a full Yahalom responder strand, then either one of
the keys ltk(A), ltk(B) is compromised, or else there is an initiator strand in B
agreeing on A, B, Na, Nb, although possibly not on the session key K ′ (Fig. 4).
Another application of Prop. 2 allows us to interpolate a server run into the
middle column of Fig. 4, as shown in Fig 5. We instantiate n0, n1 from the
theorem by the nodes labeled n0 and n′

1 in Fig. 5. This application uses the
singleton set SY,1 from Example 5.

Completeness of the Authentication Tests 115

A B

S : m0 �............................. n0

�

�
�

n′
1

�

�
�
�
�
�
�
�

�................................. m1

�
�

?

�
�

•
�

�
�
�
�
�
�
�
�

•
�

�
�
�
�
�
�
�
�

...� n1

�

�
�

A,B, Na, Nb, K
′ A,B, Na, Nb, K

′ A,B, Na, Nb, K

Fig. 5. Yahalom bundle containing responder and server

The outgoing authentication test is also the main theorem for establishing se-
crecy for session keys and other values that are transmitted in protocols. Long-
term keys, which are typically used but never transmitted in any form in proto-
cols, are typically secret only by assumption. However, the outgoing test allows
us to infer that a session key—such as the one in the Yahalom protocol—will re-
main secret assuming that the participants’ long-term keys are uncompromised.

Example 9 (Yahalom Session Key Secrecy). Suppose that B is a bundle
in which ltk(A), ltk(B) are uncompromised, in which K ′ originates uniquely on
a server strand ss with parameters A, B, Na, Nb, K

′. Then K ′ is uncompromised
in B. The reason is that otherwise, we may apply Prop. 2 to the set

SY,3 = {{|BˆK ′ˆNaˆNb|}ltk(A), {|AˆK ′|}ltk(B)}.

There is no role of the protocol that, having received K ′ occurring only within
SY,3, would retransmit it outside this form. Thus, given that the keys used in
SY,3 are assumed uncompromised, we have refuted the assumption that K ′ could
occur compromised in B.

Thus, secrecy relies on the absence of an outgoing transforming edge. We also
use the outgoing test negatively to prove that values that otherwise could be
different are in fact equal.

Example 10 (Yahalom Session Key Agreement). In Fig. 5, we must in
fact have K ′ = K. Otherwise, Nb has exited the set

SY,4 = SY,2 ∪ {{|Nb|}K′′ : K ′′ �= K}

passing from n0 to n1. However, we have assumed that ltk(A), ltk(B) are un-
compromised, and we have now ascertained that K ′ is uncompromised also.
Thus, there would have to be a outgoing transforming edge for Nb, SY,4, but the
Yahalom protocol does not furnish any role that would do so.

116 S.F. Doghmi, J.D. Guttman, and F.J. Thayer

Thus, we have illustrated that the outgoing authentication test is a highly versa-
tile protocol analysis tool. It allows repeated use of a nonce for authentication; it
helps prove secrecy for values that a protocol distributes; and it allows us to prove
equality of values when certain messages cannot be transformed by the protocol.

5.2 The Incoming Authentication Test

The incoming test principle is similar, except that the critical value is an en-
cryption t = {|t0|}K . In this case, the transforming edge may be a single node
m1 that emits t, rather than the pair we have in the outgoing case. The node
m1 is not always preceded by another node m0 that has received t.

Proposition 3 (Incoming Authentication Test). Let t = {|t0|}K and let S
be a set of encryptions. If t occurs outside S in any n1 ∈ B, then either (1) K is
disclosed before n1 in B, or (2) for some K0 with {|t|}K0 ∈ S, K−1

0 is disclosed
before n1 in B, or (3) t exits S at some positive regular m1
B n1.

Proof Sketch. Apply Prop. 1 to the set T = {m: m
B n1 and t occurs outside
S in msg(m)}. ��

We call m1 an incoming transforming node for t, S, and n1 an incoming test node
for t, S. In our experience with existing protocols, Prop. 3 is almost always used
with S = ∅, i.e. t does not occur at all before m1. However, one can invent pro-
tocols, like the ambassador’s protocol, requiring non-empty S, and completeness
requires the stronger form. We first illustrate the more usual case S = ∅.

Example 11 (PS Initiator’s Guarantee). Suppose that, in a PS bundle B,
A has transmitted Na and received {|NaˆNbˆB|}ltk(A,B). Then B contains at
least the first two nodes of a matching responder strand, unless ltk(A, B) is
compromised in B. To prove this, one applies Prop. 3 to t = {|NaˆNbˆB|}ltk(A,B),
S = ∅, and n1 = the initiator’s second node.

One can also use the incoming test in a similar way in the Yahalom protocol
(see Fig. 5) to show that the server strand’s last node—marked ? there—has
occurred.

Example 12 (Ambassador’s Protocol). Let B be a bundle for the Ambas-
sador’s Protocol, and suppose that G’s first and second nodes are both contained
in B. Then the ambassador A has a full run with the same message m.

To prove this, we apply Prop. 3 with S = {{|{|m|}signk(G)|}pubk(A)}. The message
{|m|}signk(G) has exited from S passing from G’s first to G’s second node. Thus,
either privk(A) is compromised, or A has extracted {|m|}signk(G) from S.

6 Penetrator Webs and Test Nodes

We can see that Props. 2–3 have some sort of completeness by considering the
powers of the adversary. In essence, if any negative regular node is neither an

Completeness of the Authentication Tests 117

outgoing test node nor an incoming test node, then the adversary can derive the
term on it. Thus, only test nodes in this sense can provide authentication guar-
antees about the presence of regular activity. The rest could be the adversary’s
work.

To make this precise, we define penetrator webs, which characterize what the
adversary can do with fixed inputs from the regular participants.

Definition 7 (Penetrator web, derivable). Let G = 〈NG, (→G ∪ ⇒G)〉 be
a finite acyclic subgraph of 〈N , (→ ∪ ⇒)〉 such that NG consists entirely of
penetrator nodes. G is a penetrator web with support Sspt and result R if Sspt
and R are sets of terms and moreover:

1. If n2 ∈ NG is negative, then either msg(n2) ∈ Sspt or there is a unique n1
such that n1 →G n2.

2. If n2 ∈ NG and n1 ⇒ n2 then n1 ⇒G n2.
3. For each t ∈ R, either t ∈ Sspt or for some positive n ∈ NG, msg(n) = t.

If V is a set of atoms, then term t1 is derivable from Sspt avoiding V if there is
a web G with support SG ⊆ Sspt and t1 ∈ RG, where no atom in V originates
on a penetrator strand in G.

If n ∈ B is a negative node, then B includes a penetrator web G with result
RG = {msg(n)}. Its support SG = {msg(m): m is positive regular and m ≺B n}.

When Sspt is a set of terms, we say that t has exited Senc passing from Sspt to
t1 if for each t0 ∈ Sspt, t has exited Senc passing from t0 to t1. Def. 6 says that
this means that t occurs only within the encryptions in Senc in every t0 ∈ Sspt,
and t occurs outside Senc in t1.

In the following proposition, the first condition says that when t1 �= msg(n1)
is an outgoing test node n1 ∈ B, then we do not need to add an outgoing
transforming edge. The second condition says that when t1 �= msg(n1) is an
incoming test node n1 ∈ B, we do not need to add an incoming transforming
node. The conclusion is that the term is then derivable.

Proposition 4. Let V be a set of atoms; let Sspt be a finite set of terms; and let
t1 be a term such that, for any a ∈ V , if a � t1, then a � t0 for some t0 ∈ Sspt.
Suppose the following conditions hold:

1. for all a ∈ V and all sets of encryptions Senc, if a has exited Senc passing
from Sspt to t1, then there is some {|t|}K0 ∈ Senc, such that K0

−1 is derivable
from Sspt avoiding V ; and

2. for all encryptions {|t|}K, and all sets of encryptions Senc, if {|t|}K has exited
Senc passing from Sspt to t1, then either K is derivable from Sspt avoiding
V , or else some K0

−1 with K0 ∈ used(Senc) is derivable from Sspt avoiding
V .

Then term t1 is derivable from Sspt avoiding V .

A proof is in Appendix A. One can easily determine whether t is derivable
from Sspt, since penetrator webs normalize [10, Proposition 5] so that all their
destructive steps precede their constructive steps (cf. [12]). Thus, there are only
as many intermediate values as there are subterms of Sspt ∪ {t}.

118 S.F. Doghmi, J.D. Guttman, and F.J. Thayer

7 Completeness

In order to extract the completeness result from Proposition 4, it is convenient
to introduce the notion of skeleton, following [4]. A skeleton is potentially the
regular (non-penetrator) part of a bundle or of some portion of a bundle. We
may regard a bundle as “put together” using a skeleton and one penetrator web
for each negative regular node within it.

A skeleton consists of nodes annotated with additional information, indicating
order relations among the nodes, uniquely originating atoms, and non-originating
atoms. We say that an atom a occurs in a set nodes of nodes if for some n ∈ nodes,
a � msg(n). A key K is used in nodes if for some n ∈ nodes, {|t|}K � msg(n).
We say that a key K is mentioned in nodes if K or K−1 either occurs or is used
in nodes. For a non-key a, a is mentioned if it occurs.

Definition 8. A four-tuple A = (nodesA,
A, nonA, uniqueA) is a skeleton if:

1. nodesA is a finite set of regular nodes; n1 ∈ nodes and n0 ⇒+ n1 implies
n0 ∈ nodesA;

2.
A is a partial ordering on nodesA such that n0 ⇒+ n1 implies n0
A n1;
3. nonA is a set of atomic keys, and for all K ∈ nonA, either K or K−1 is used

in nodesA, and for all K ∈ nonA, K does not occur in nodesA;
4. unique

A
is a set of atoms, and for all a ∈ unique

A
, a occurs in nodesA, and

a ∈ uniqueA implies a originates at no more than one node in nodesA.

We think of a skeleton as describing a set of bundles; for our present purposes
it is enough to consider the bundles into which a skeleton may be embedded:

Definition 9. If A = (nodesA,
A, nonA, unique
A
) is a skeleton and B is a bun-

dle, then A is embedded in B if:

1. For all n ∈ nodesA, n ∈ B;
2. If n0
A n1, then n0
B n1;
3. For all K ∈ nonA, K originates nowhere in B;
4. For all a ∈ uniqueA, a originates uniquely in B.

The embedding is tight if for all regular n ∈ B, n ∈ nodesA, and whenever
n0, n1 ∈ nodesA and n0
B n1, then n0
A n1.

A message t is potentially compromised before n in A if, letting

V = nonA ∪ (uniqueA ∩ {a: a originates somewhere in A}),

and
Sspt = {msg(m): m
A n and n is positive },

t is derivable from Sspt avoiding V . Evidently, A is tightly embedded in a bundle
if, for every negative n ∈ A, msg(n) is potentially compromised before n in A.

We regard a skeleton A as satisfying the authentication test properties when
“disclosed before n” is interpreted as meaning potentially compromised before
n. That is:

Completeness of the Authentication Tests 119

Definition 10. A satisfies the outgoing authentication test if and only if the
following is true for all n0, n1 ∈ A, and for all atoms a and sets of encryptions
S. If a has exited S passing from n0 to n1, then either (1) there exists some
{|t|}K ∈ S such that K−1 is potentially compromised before n1 in A, or else (2)
a exits from S at some positive regular m1
A n1.

A satisfies the incoming authentication test if and only if the following is true
for all n1 ∈ A, and for all encryptions t = {|t0|}K sets of encryptions S. If t occurs
outside S in any n1 ∈ A, then either (1) K is potentially compromised before
n1 in A, or (2) for some K0 with {|t|}K0 ∈ S, K−1

0 is potentially compromised
before n1 in A, or (3) t exits S at some positive regular m1
A n1.

We say that A respects origination if n
A m whenever, for any a ∈ uniqueA, a
originates at n ∈ A and a is mentioned in msg(m).

Proposition 5 (Completeness of Authentication Tests). Let A respect
origination. A satisfies the outgoing and incoming authentication tests if and
only if there exists a bundle B such that A is tightly embedded into B.

Proof Sketch. From right to left, use Props. 2–3. From left to right, we must
show that for every negative n ∈ A, msg(n) is potentially compromised before n
in A. To do so, for any given negative n ∈ A, we apply Prop. 4 to:

1. V = nonA ∪ U where U = unique
A

∩ {a: a originates in A}; and
2. Sspt = {msg(m): m
A n ∧ m positive }. ��

8 Conclusion

We have presented two principles about how messages are transformed in crypto-
graphic protocols. These two principles are complete in the sense that whenever
they are satisfied in a skeleton, then that skeleton describes a possible execution
of the protocol, modulo some choice of adversary behavior.

This result is part of the justification for the search method of cpsa, which is
based on the authentication tests [4]. cpsa tries to complete partial executions,
by which we mean skeletons that are not tightly embedded into any bundle. It
uses the authentication tests to consider what ingredients may need to be added
to obtain a minimal execution. By considering the ingredients suggested by the
authentication tests, it finds all minimal, essentially different executions. Thus,
this paper provides the core justification for the claim in [4] that the search finds
all the possibilities.

References

1. Abadi, M., Blanchet, B.: Analyzing security protocols with secrecy types and logic
programs. Journal of the ACM 52(1), 102–146 (2005)

2. Bozga, L., Lakhnech, Y., Perin, M.: Pattern-based abstraction for verifying secrecy
in protocols. In: Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003.
LNCS, vol. 2619, Springer, Heidelberg (2003)

120 S.F. Doghmi, J.D. Guttman, and F.J. Thayer

3. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. In: Proceedings
of the Royal Society. Series A, vol. 426(1871), pp. 233–271 (December 1989)

4. Doghmi, S.F., Guttman, J.D., Javier Thayer, F.: Searching for shapes in cryp-
tographic protocols. In: TACAS 2003. LNCS, vol. 4424, pp. 523–538. Springer,
Heidelberg (2007), extended version at URL: http://eprint.iacr.org/2006/435

5. Dolev, D., Yao, A.: On the security of public-key protocols. IEEE Transactions on
Information Theory 29, 198–208 (1983)

6. Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: Multiset rewriting and the com-
plexity of bounded security protocols. Journal of Computer Security 12(2), 247–
311 (2004) (Initial version appeared in Workshop on Formal Methods and Security
Protocols (1999))

7. Gordon, A.D., Jeffrey, A.: Types and effects for asymmetric cryptographic proto-
cols. Journal of Computer Security 12(3/4), 435–484 (2003)

8. Guttman, J.D.: Security goals: Packet trajectories and strand spaces. In: Fo-
cardi, R., Gorrieri, R. (eds.) Foundations of Security Analysis and Design. LNCS,
vol. 2171, pp. 197–261. Springer, Heidelberg (2001)

9. Guttman, J.D., Javier Thayer, F.: Authentication tests. In: Proceedings, 2000
IEEE Symposium on Security and Privacy, IEEE Computer Society Press, Los
Alamitos (May 2000)

10. Guttman, J.D., Javier Thayer, F.: Authentication tests and the structure of bun-
dles. Theoretical Computer Science 283(2), 333–380 (2000)

11. Guttman, J.D., Javier Thayer, F., Carlson, J.A., Herzog, J.C., Ramsdell, J.D.,
Sniffen, B.T.: Trust management in strand spaces: A rely-guarantee method. In:
Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 325–339. Springer, Heidelberg
(2004)

12. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security (1998) (also Report 443, Cambridge University Computer
Lab.)

13. Perrig, A., Song, D.X.: Looking for diamonds in the desert: Extending automatic
protocol generation to three-party authentication and key agreement protocols. In:
Proceedings of the 13th IEEE Computer Security Foundations Workshop, IEEE
Computer Society Press, Los Alamitos (July 2000)

A Proof of Proposition 4

Proposition. Let V be a set of atoms; let Sspt be a finite set of terms; and let
t1 be a term such that, for any a ∈ V , if a � t1, then a � t0 for some t0 ∈ Sspt.
Suppose the following conditions hold:

1. for all a ∈ V and all sets of encryptions Senc, if a has exited Senc passing
from Sspt to t1, then there is some {|t|}K0 ∈ Senc, such that K0

−1 is derivable
from Sspt avoiding V ; and

2. for all encryptions {|t|}K, and all sets of encryptions Senc, if {|t|}K has exited
Senc passing from Sspt to t1, then either K is derivable from Sspt avoiding
V , or else some K0

−1 with K0 ∈ used(Senc) is derivable from Sspt avoiding
V .

Then term t1 is derivable from Sspt avoiding V .

http://eprint.iacr.org/2006/435

Completeness of the Authentication Tests 121

Proof. The proof is by structural induction on the pair (Sspt, t1), i.e. the ordering
under which (Sspt, t1) ≤ (S′

spt, t
′
1) iff t1 � t′1, and for all t ∈ Sspt, there is some

t′ ∈ S′ such that t � t′.

Case t1 = a: If a �∈ V , then the one-node web originating a satisfies the con-
ditions. Otherwise, Sa = {t ∈ Sspt: a � t} is non-empty. If a ∈ Sa, then
the empty web suffices. If some concatenation t0ˆt′0 ∈ Sa, then apply the
induction hypothesis to Sa \ {t0ˆt′0}∪{t0}∪{t′0}. This asserts the existence
of a penetrator web Ga deriving a. Obtain the desired web by prepending a
separation S-strand above any occurrences of t0 and t′0 in Ga.

Otherwise, Sa consists entirely of encryptions, and a has exited Sa passing
from Sspt to a. By condition 1, there is some {|t|}K0 ∈ Sa with K0

−1 derivable
from Sspt avoiding V , using some web GK0

−1 . Thus, applying the induction
hypothesis to (Sa \ {{|t|}K0}) ∪ {t}, we obtain a web G. We may prepend
GK0

−1 and a decryption D-strand before G to obtain the required web.
Case t1 = t′1 ˆt′′1 : Apply the induction hypothesis to t′1 and t′′1 , and append a

concatenation C-strand after the resulting webs.
Case t1 = {|t′1|}K : Suppose K is derivable from Sspt avoiding V , using some

web GK . Apply the induction hypothesis to t′1, obtaining a web G. Append
an encryption E-strand after GK and G to derive {|t′1|}K .
Otherwise, by condition 2, some K−1

0 with {|t0|}K0 ∈ Senc is derivable from
Sspt avoiding V , using a web GK0

−1 . Apply the induction hypothesis to
(Sspt\{{|t0|}K0})∪{t0}, obtaining a web G. Prepend GK0

−1 and a decryption
D-strand before G. ��

	Completeness of the Authentication Tests
	Introduction
	Terms, Strands, and Bundles
	Algebra of Terms
	Strands and Origination
	Protocols and Bundles

	Some Example Protocols
	``Occurs Only Within''
	The Strengthened Authentication Tests
	The Outgoing Authentication Test
	The Incoming Authentication Test

	Penetrator Webs and Test Nodes
	Completeness
	Conclusion
	Proof of Proposition 4

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

