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Foreword

These proceedings contain the papers selected for presentation at the 12th Eu-
ropean Symposium on Research in Computer Security – ESORICS 2007 – held
in Dresden, Germany, September 24–26, 2007.

ESORICS has become the European research event in computer security.
The symposium started in 1990 and has been organized on alternate years in
different European countries. It attracts an international audience from both the
academic and industrial communities. From 2002 it has taken place yearly.

As solicited in the call for papers, the contributions present theory, mecha-
nisms, applications, or practical experience on all traditional or emerging topics
relevant for security in computing systems, approximately covering the following
topics:

– security architecture and secure components (trusted computing modules,
smartcards, personal computing devices, networks, information systems, ap-
plications, peer-to-peer connections, language-based security, ... )

– access control (authorization, privileges, delegation, revocation, credentials,
authentication, accountability, safety analysis, ... )

– information control (data flows, information flows, inferences, covert channel
analysis, ... )

– applied cryptography (protocol design, protocol verification, authentication
protocols, identity management, key distribution, ... )

– tolerance and survivability (attack models, vulnerability analysis, intrusion
detection, malware collection and analysis, ... )

– security management (requirements engineering, policy specification, trust
evaluation, policy enforcement, ... )

– secure electronic commerce, administration, and government (digital rights
management, intellectual property protection, privacy-enhancing technolo-
gies, e-voting, ... )

– formal methods in security (security models, security verification, ... )

The 164 papers submitted were each reviewed by three members of the pro-
gram committee, and subsequently intensively – and partially controversially –
discussed not only by the reviewers, but in principle by all committee members.
In fact, more than 350 messages were posted on the discussion boards, contain-
ing additional evaluations, technical concerns, positive or negative opinions on
the relevance, and many more aspects. Finally, 39 papers were included in the
program and are presented in these proceedings.

We were very pleased that Michael K. Reiter accepted the invitation to talk
about his view on how redundancy, diversity and modularity can be used to
implement trustworthy services.

As in the two previous years, ESORICS 2007 was accompanied by four spe-
cialized security workshops whose results are independently documented:



VI Foreword

– 1st International Workshop on Run Time Enforcement for Mobile and Dis-
tributed Systems (REM2007)

– Security Aspects of RFID Usage
– 3rd International Workshop on Security and Trust Management (STM 07)
– Signal Processing in the Encrypted Domain

We gratefully acknowledge the fact that many colleagues offered their time
and energy to make ESORICS 2007 possible. In particular, we would like to
thank all the members of the program committee and their additional review-
ers for the careful evaluations and fair discussions. Additionally, we benefited
greatly from the organizational and technical support from Ulrich Flegel, Jan-
Hendrik Lochner, Marcel Preuß, and Sandra Wortmann from the University of
Dortmund; Rodrigo Roman from the University of Malaga; and Stefan Berthold,
Sebastian Clauß, Martina Gersonde, Silvia Labuschke, and Sandra Steinbrecher
from Dresden University of Technology.

Finally, and most importantly, we sincerely thank all the authors who sub-
mitted their work, in particular those who presented their results during the
symposium, and all the attendees for the stimulating discussions. We hope that
readers will find these proceedings useful for their future work on computer
security.

September 2007 Joachim Biskup
Javier Lopez

Andreas Pfitzmann
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Véronique Cortier, Bogdan Warinschi, and Eugen Zălinescu

A Cryptographic Model for Branching Time Security Properties – The
Case of Contract Signing Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
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Trustworthy Services and the Biological Analogy

Michael K. Reiter

University of North Carolina at Chapel Hill

Abstract. Biological systems survive through a combination of redun-
dancy, diversity and modularity. It has been argued that these principles
can also be applied to construct information services that survive a vari-
ety of hostile attacks, including even the compromise of computers that
help implement the service. Despite nearly 30 years of research to advance
these principles and to apply them to the construction of trustworthy ser-
vices, each remains an active and fruitful topic of research. In this talk
we will describe recent progress in achieving redundancy, diversity and
modularity, and in using these to implement trustworthy services. This
progress, we will argue, is paving the way to next-generation services
that are significantly more resilient than today’s. We will also discuss
challenges that remain in achieving this goal.

J. Biskup and J. Lopez (Eds.): ESORICS 2007, LNCS 4734, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Security of Multithreaded Programs by Compilation

Gilles Barthe1, Tamara Rezk2, Alejandro Russo3, and Andrei Sabelfeld3

1 INRIA Sophia Antipolis, France
2 MSR-INRIA

3 Dept. of Computer Science and Engineering, Chalmers University of Technology, Sweden

Abstract. Information security is a pressing challenge for mobile code technolo-
gies. In order to claim end-to-end security of mobile code, it is necessary to es-
tablish that the code neither intentionally nor accidentally propagates sensitive
information to an adversary. Although mobile code is commonly multithreaded
low-level code, the literature is lacking enforcement mechanisms that ensure in-
formation security for such programs. This paper offers a modular solution to the
security of multithreaded programs. The modularity is three-fold: we give modu-
lar extensions of sequential semantics, sequential security typing, and sequential
security-type preserving compilation that allow us enforcing security for multi-
threaded programs. Thanks to the modularity, there are no more restrictions on
multithreaded source programs than on sequential ones, and yet we guarantee that
their compilations are provably secure for a wide class of schedulers.

1 Introduction

Information security is a pressing challenge for mobile code technologies. Current secu-
rity architectures provide no end-to-end security guarantees for mobile code: such code
may either intentionally or accidentally propagate sensitive information to an adversary.
However, recent progress in the area of language-based information flow security [22]
indicates that insecure flows in mobile code can be prevented by program analysis.

While much of existing work focuses on source languages, recent work has devel-
oped security analyses for increasingly expressive bytecode and assembly languages [4,
10,16,3,5]. Given sensitivity annotations on inputs and outputs, these analyses provably
guarantee noninterference [11], a property of programs that there are no insecure flows
from sensitive inputs to public outputs.

It is, however, unsettling that information flow for multithreaded low-level programs
has not been addressed so far. It is especially concerning because multithreaded byte-
code is ubiquitous in mobile code scenarios. For example, multithreading is used for
preventing screen lock-up in mobile applications [15]. In general, creating a new thread
for long and/or potentially blocking computation, such as establishing a network con-
nection, is a much recommended pattern [13].

This paper is the first to propose a framework for enforcing secure information flow
for multithreaded low-level programs. We present an approach for deriving security-
type systems that provably guarantee noninterference. On the code consumer side, these
type systems can be used for checking the security of programs before running them.

J. Biskup and J. Lopez (Eds.): ESORICS 2007, LNCS 4734, pp. 2–18, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Security of Multithreaded Programs by Compilation 3

Our solution goes beyond guarantees offered by security-type checking to code con-
sumers. To this end, we have developed a framework for security-type preserving com-
pilation, which allows code producers to derive security types for low-level programs
from security types for source programs. This makes our solution practical for the sce-
nario of untrusted mobile code. Moreover, even if the code is trusted (and perhaps even
immobile), compilers are often too complex to be a part of the trusted computing base.
Security-type preserving compilation removes the need to trust the compiler, because
the type annotations of compiled programs can be checked directly at bytecode level.

The single most attractive feature of our framework is that security is guaranteed by
source type systems that are no more restrictive than ones for sequential programs. This
might be counterintuitive: there are covert channels in the presence of threads, such as
internal timing channels [28], that do not arise in a sequential setting. Indeed, special
primitives for interacting with the scheduler have been designed (e.g., [18]) in order
to control these channels. The pinnacle of our framework is that such primitives are
automatically introduced in the compilation phase. This means that source-language
programmers do not have to know about their existence and that there are no restric-
tions on dynamic thread creation at the source level. At the target level, the prevention
of internal timing leaks does not introduce unexpected behaviors: the effect of interact-
ing with the scheduler may only result in disallowing certain interleavings. Note that
disallowing interleavings may, in general, affect the liveness properties of a program.
Such a trade-off between between liveness and security is shared with other approaches
(e.g., [26, 28, 24, 25, 18]).

For an example of an internal timing leak, consider a simple two-threaded source-
level program, where hi is a sensitive (high) and lo is a public (low) variable:

if hi {sleep(100)}; lo := 1 ‖ sleep(50); lo := 0

If hi is originally non-zero, the last command to assign to lo is likely to be lo := 1. If hi
is zero, the last command to assign to lo is likely to be lo := 0. Hence, this program is
likely to leak information about hi into lo. In fact, all of hi can be leaked into lo via the
internal timing channel, if the timing difference is magnified by a loop (see, e.g., [17]).

In order for the timing difference of the thread that branches on hi not to make
a difference in the interleaving of the assignments to lo, we need to ensure that the
scheduler treats the first thread as “hidden” from the second thread: the second thread
should not be scheduled until the first thread reaches the junction point of the if. We
will show that the compiler enforces such a discipline for the target code so that the
compilation of such source programs as above is free of internal timing leaks.

Our work benefits from modularity, which is three-fold. First, the framework has
the ability to modularly extend sequential semantics. This grants us with language-
independence from the sequential part. Further, the framework allows modular exten-
sions of sequential security type systems. Finally, security type preserving compilation
is also a modular extension of the sequential counterpart.

To illustrate the applicability of the framework, we instantiate it with some scheduler
examples. These examples clarify what is expected of a scheduler to prevent internal
timing leaks. Also, we give an instantiation of the source language with a simple imper-
ative language, as well as an instantiation of the target language with a simple assembly
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language that features an operand stack, conditions, and jumps. As we will discuss,
these instantiations are for illustration only: we expect our results to apply to languages
close to Java and Java bytecode, respectively.

Our approach pushes the feasibility of replacing trust assumptions by type checking
for mobile-code security one step further. It is especially encouraging that we inherit
the main benefit of recent results on enforcing secure information flow by security-type
systems [3]: compatibility with bytecode verification, and no need to trust the compiler.

2 Syntax and Semantics of Multithreaded Programs

This section sets the scene by defining the syntax and semantics for multithreaded pro-
grams. We introduce the notion of secure schedulers that help dealing with covert chan-
nels in the presence of multithreading.

Syntax and program structure. Assume we have a set Thread of thread identifiers, a
partially ordered set Level of security levels, a set LocState of local states and a set
GMemory of global memories. The definition of programs is parameterized by a set of
sequential instructions SeqIns. The set of all instructions extends SeqIns by a dynamic
thread creation primitive start pc that spawns a new thread with a start instruction at
program point pc.

Definition 1 (Program). A program P consists of a set of program points P , with a
distinguished entry point 1 and a distinguished exit point exit, and an instruction map
insmapP : P \ {exit} → Ins, where Ins = SeqIns ∪ {start pc} with pc ∈ P \ {exit}.
We sometimes write P [i] instead of insmapP i.

Each program has an associated successor relation �→⊆ P × P . The successor relation
describes possible successor instructions in an execution. We assume that exit is the
only program point without successors, and that any program point i s.t. P [i] = start pc
is not branching, and has a single successor, denoted by i+ 1 (if it exists); in particular,
we do not require that i �→ pc. As common, we let �→� denote the reflexive and transitive
closure of the relation �→ (similar notation is used for other relations).

Definition 2 (Initial program points). The set Pinit of initial program points is de-
fined as: {i ∈ P | ∃j ∈ P , P [j] = start i} ∪ {1}.

We assume the attacker level k ∈ Level partitions all elements of Level into low and
high elements. Low elements are no more sensitive than k: an element � is low if � ≤ k.
All other elements (including incomparable ones) are high. We assume that the set of
high elements is not empty. This partition reduces the set Level to a two-element set
{low , high}, where low < high , which we will adopt without loss of generality.

Programs come equipped with a security environment [5] that assigns a security level
to each program point and is used to prevent implicit flows [9]. The security environment
is also used by the scheduler to select the thread to execute.

Definition 3 (Security environment, low, high, and always high program points).

1. A security environment is a function se : P → Level.
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2. A program point i ∈ P is low, written L(i), if se(i) = low ; high, written H(i),
if se(i) = high; and always high, written AH (i), if se(j) = high for all points j
such that i �→� j.

Semantics. The operational semantics for multithreaded programs is built from an op-
erational semantics for sequential programs and a scheduling function that picks the
thread to be executed among the currently active threads. The scheduling function takes
as parameters the current state, the execution history, and the security environment.

Definition 4 (State).

1. The set SeqState of sequential states is a product LocState×GMemory of the local
state LocState and global memory GMemory sets.

2. The set ConcState of concurrent states is a product (Thread ⇀ LocState) ×
GMemory of the partial-function space (Thread ⇀ LocState), mapping thread
identifiers to local states, and the set GMemory of global memories.

It is convenient to use accessors to extract components from states: we use s.lst and
s.gmem to denote the first and second components of a state s. Then, we use s.act to
denote the set of active threads, i.e., s.act = Dom(s.lst). We sometimes write s(tid)
instead of s.lst(tid) for tid ∈ s.act. Furthermore, we assume given an accessor pc that
extracts the program counter for a given thread from a local state.

We follow a concurrency model [18] that lets the scheduler distinguish between dif-
ferent types of threads. A thread is low (resp., high) if the security environment marks
its program counter as low (resp., high). A high thread is always high if the program
point corresponding to the program counter is always high. A high thread is hidden if
it is high but not always high. (Intuitively, the thread is hidden in the sense that the
scheduler will, independently from the hidden thread, pick the following low threads.)
Formally, we have the following definitions:

s.lowT = {tid ∈ s.act | L(s.pc(tid))}
s.highT = {tid ∈ s.act | H(s.pc(tid))}
s.ahighT = {tid ∈ s.act | AH (s.pc(tid))}
s.hidT = {tid ∈ s.act | H(s.pc(tid)) ∧ ¬AH (s.pc(tid))}

A scheduler treats different classes of threads differently. To see what guarantees are
provided by the scheduler, it is helpful to foresee what discipline a type system would
enforce for each kind of threads. From the point of view of the type system, a low
thread becomes high while being inside of a branch of a conditional (or a body of a
loop) with a high guard. Until reaching the respective junction point, the thread may
not have any low side effects. In addition, until reaching the respective junction point,
the high thread must be hidden by the scheduler: no low threads may be scheduled while
the hidden thread is alive. This prevents the timing of the hidden thread from affecting
the interleaving of low side effects in low threads. In addition, there are threads that are
spawned inside of a branch of a conditional (or a body of a loop) with a high guard.
These threads are always high: they may not have any low side effects. On the other
hand, such threads do not have to be hidden in the same way: they can be interleaved
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with both low and high threads. Recall the example from Section 1. The intention is
that the scheduler treats the first thread (which is high while it is inside the branch) as
“hidden” from the second (low) thread: the second thread should not be scheduled until
the first thread reaches the junction point of the if.

We proceed to defining computation history and secure schedulers, which operate on
histories as parameters.

Definition 5 (History).

1. A history is a list of pairs (tid, �) where tid ∈ Thread and � ∈ Level. We denote
the empty history by εhist.

2. Two histories h and h′ are indistinguishable, written h
hist∼ h′, if h|low = h′|low ,

where h|low is obtained from h by projecting out pairs with the high level in the
second component.

We denote the set of histories by History. We now turn to the definition of a secure
scheduler. The definition below is of a more algebraic nature than that of [18], but
captures the same intuition, namely that a secure scheduler: i) always picks an active
thread; ii) chooses a high thread whenever there is one hidden thread; and iii) only uses
the names and levels of low and the low part of histories to pick a low thread.

Definition 6 (Secure scheduler). A secure scheduler is a function pickt : ConcState×
History ⇀ Thread, subject to the following constraints, where s, s′ ∈ ConcState and
h, h′ ∈ History:

1. for every s such that s.lowT∪ s.highT �= ∅, pickt(s, h) is defined, and pickt(s, h) ∈
s.act;

2. if s.hidT �= ∅, then pickt(s, h) ∈ s.highT; and

3. if h
hist∼ h′ and s.lowT = s′.lowT, then 〈pickt(s, h), �〉 :: h hist∼ 〈pickt(s′, h′), �′〉 ::

h′, where � = se(s.pc(pickt(s, h))) and �′ = se(s′.pc(pickt(s′, h′))).

Example 1. Consideraround-robinpolicy:pickt(s, h) = rr(AT , last(h)),whereAT =
s.act, and thepartial function last(h) returns the identityof themost recentlypickedthread
recorded inh (if it exists). Given aset of thread ids, an auxiliary functionrr returns the next
thread id to pick according to a round-robin policy. This scheduler is insecure because low
threads can be scheduled even if a hidden thread is present, which violates req. 2 above.

Example 2. An example of a secure round-robin scheduler is defined below. The sched-
uler takes turns in picking high and low threads.

pickt(s, h) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

rr(ATL, lastL(h)),
if h = εhist or

h = (tid,L).h′ and ATH = ∅ and ATL �= ∅ or
h = (tid,H ).h′ and hidT = ∅ and ATL �= ∅

rr(ATH , lastH (h)),
if hidT �= ∅ or

h = (tid,H ).h′ and ATL = ∅ and ATH �= ∅ or
h = (tid,L).h′ and ATH �= ∅

We assume that ATL and ATH are functions of s that extract the set of identifiers of
low and high threads, respectively, and the partial function last� returns the identity of
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pickt(s, h) = ctid s.pc(ctid) = i P [i] ∈ SeqIns
〈s(ctid), s.gmem〉�seq σ, μ σ.pc �= exit

s, h �conc s.[lst(ctid) := σ, gmem := μ], 〈ctid , se(i)〉 :: h

pickt(s, h) = ctid s.pc(ctid) = i P [i] ∈ SeqIns
〈s(ctid), s.gmem〉�seq σ, μ σ.pc = exit

s, h �conc s.[lst := lst \ ctid , gmem := μ], 〈ctid , se(i)〉 :: h

pickt(s, h) = ctid s.pc(ctid) = i P [i] = start pc
freshtse(i)(s) = ntid s(ctid).[pc := i + 1] = σ′

s, h �conc s.[lst(ctid) := σ′, lst(ntid) := λinit(pc)], 〈ctid , se(i)〉 :: h

Fig. 1. Semantics of multithreaded programs

P [i] ∈ SeqIns i �seq S ⇒ T

se, i � S ⇒ T

P [i] = start pc se(i) ≤ se(pc)

se, i � S ⇒ S

Fig. 2. Typing rules

the most recently picked thread at level � recorded in h, if it exists. The scheduler may
only pick active threads (cf. req. 1). In addition to the alternation between high and
low threads, the scheduler may only pick a low thread if there are no hidden threads
(cf. req. 2). The separation into high and low threads ensures that for low-equivalent
histories, the observable choices of the scheduler are the same (cf. req. 3).

To define the execution of multithreaded programs, we assume given a (determin-
istic) sequential execution relation �seq⊆ SeqState × SeqState that takes as input a
current state and returns a new state, provided the current instruction is sequential.

We assume given a function λinit : P → LocState that takes a program point and
produces an initial state with program pointer pointing to pc. We also assume given a
family of functions fresht� that takes as input a set of thread identifiers and generates
a new thread identifier at level �. We assume that the ranges of fresht� and fresht�′ are
disjoint whenever � �= �′. We sometimes use fresht� as a function from states to Thread.

Definition 7 (Multithreaded execution). One step execution �conc⊆ (ConcState ×
History)×(ConcState×History) is defined by the rules of Figure 1. We write s, h �conc

s′, h′ when executing s with history h leads to state s′ and history h′.

The first two rules of Figure 1 correspond to non-terminating and terminating sequential
steps. In the case of termination, the current thread is removed from the domain of lst. The
last ruledescribesdynamic thread creation caused bythe instructionstartpc.Anewthread
receives a fresh name ntid from freshtse(i) where se(i) records the security environment
at the point of creation. This thread is added to the pool of threads under the name ntid .
All rules update the history with the current thread id and the security environment of the
current instruction. The evaluation semantics of programs can be derived from the small-
step semantics in the usual way. We let main be the identity of the main thread.

Definition 8 (Evaluation semantics). The evaluation relation ⇓conc⊆ (ConcState×
History) × GMemory is defined by the clause s, h ⇓conc μ iff ∃s′, h′. s, h ��

conc
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s′, h′ ∧ s′.act = ∅ ∧ s′.gmem = μ. We write P, μ ⇓conc μ′ as a shorthand for
〈f, μ〉, εhist ⇓conc μ

′, where f is the function {〈main , λinit(1)〉}.

3 Security Policy

Noninterference is defined relative to a notion of indistinguishability between global
memories. For the purpose of this paper, it is not necessary to specify the definition of
memory indistinguishability.

Definition 9 (Noninterfering program). Let ∼g be an indistinguishability relation
on global memories. A program P is noninterfering if for all memories μ1, μ2, μ

′
1, μ

′
2:

μ1 ∼g μ2 and P, μ1 ⇓ μ′
1 and P, μ2 ⇓ μ′

2 implies μ′
1 ∼g μ

′
2

4 Type System

This section introduces a type system for multithreaded programs as an extension of a
type system for noninterference for sequential programs. In Section 5, we show that the
type system is sound for multithreaded programs, in that it enforces the noninterference
property defined in the previous section. In Section 6, we instantiate the framework to
a simple assembly language.

Assumptions on type system for sequential programs. We assume given a set LType of
local types for typing local states, with a distinguished local type Tinit to type initial
states, and a partial order ≤ on local types. Typing judgments in the sequential type
system are of the form se, i �seq S ⇒ T, where se is a security environment, i is a
program point in program P , and S and T are local types.

Typing rules are used to establish a notion of typable program 1; typable programs
are assumed to satisfy several properties that are formulated precisely in Section 5.

Type system for multithreaded programs. The typing rules for the concurrent type sys-
tem have the same form as those of the sequential type system and are given in Figure 2.

Definition 10 (Typable multithreaded program). A concurrent program P is typable
w.r.t. type S : P → LType and security environment se, written se,S � P , if

1. Si = Tinit for all initial program points i of P (initial program point of main
threads or spawn threads); and

2. for all i ∈ P and j ∈ P: i �→ j implies that there exists S ∈ LType such that
se, i � Si ⇒ S and Sj ≤ S.

5 Soundness

The purpose of this section is to prove, under sufficient hypotheses on the sequential
type system and assuming that the scheduler is secure, that typable programs are non-
interfering. Formally, we want to prove the following theorem:

1 The notion of typable sequential program is a particular case of typable multithreaded program.
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Theorem 1. If the scheduler is secure and se,S � P , then P is noninterfering.

Throughout this section, we assume that P is a typable program, i.e., se,S � P , and
that the scheduler is secure. Moreover, we state some general hypotheses that are used
in the soundness proofs. We revisit these hypotheses in Section 6 and show how they
can be fulfilled.

State equivalence. In order to prove noninterference, we rely on a notion of state equiv-
alence. The definition is modular, in that it is derived from an equivalence between
global memories ∼g and a partial equivalence relation ∼l between local states. (Intu-
itively, partial equivalence relations on local and global memories represent the obser-
vational power of the adversary.) In comparison to [3], equivalence between local states
(operand stacks and program counters for the JVM) is not indexed by local types, since
these can be retrieved from the program counter and the global type of the program.

Definition 11 (State equivalence). Two concurrent states s and t are:

1. equivalent w.r.t. local states, written s
lmem∼ t, iff s.lowT = t.lowT and for every

tid ∈ s.lowT, we have s(tid) ∼l t(tid).
2. equivalent w.r.t. global memories, written s

gmem∼ t, iff s.gmem ∼g t.gmem.

3. equivalent, written s ∼ t, iff s
gmem∼ t and s

lmem∼ t.

In order to carry out the proofs, we also need a notion of program counter equivalence
between two states.

Definition 12. Two states s and s′ are pc-equivalent, written, s
pc∼ s′ iff s.lowT =

t.lowT and for every tid ∈ s.lowT, we have s.pc(tid) = t.pc(tid).

Unwinding lemmas. In this section, we formulate unwinding hypotheses for sequential
instructions and extend them to a concurrent setting. Two kinds of unwinding statements
are considered: a locally respects unwinding result, which involves two executions and
is used to deal with execution in low environments, and a step consistent unwinding
result, which involves one execution and is used to deal with execution in high en-
vironments. From now on, we refer to local states and global memories as λ and μ,
respectively.

Hypothesis 1 (Sequential locally respects unwinding). Assume λ1 ∼l λ2 and μ1 ∼g

μ2 and λ1.pc = λ2.pc. If 〈λ1, μ1〉 �seq 〈λ′1, μ′
1〉 and 〈λ2, μ2〉 �seq 〈λ′2, μ′

2〉, then
λ′1 ∼l λ

′
2 and μ′

1 ∼g μ
′
2.

In addition, we also need a hypothesis on the indistinguishability of initial local states.

Hypothesis 2 (Equivalence of local initial states). For every initial program point i,
we have λinit(i) ∼l λinit(i).

We now extend the unwinding statement to concurrent states; note that the hypothesis
s′.lowT = t′.lowT is required for the lemma to hold. This excludes the case of a thread
becoming hidden in an execution and not another (i.e., a high while loop).



10 G. Barthe et al.

Lemma 1 (Concurrent locally respects unwinding). Assume s ∼ t and hs
hist∼ ht and

pickt(s, hs) = pickt(t, ht) = ctid and s.pc(ctid) = t.pc(ctid). If s, hs �conc s
′, hs′

and t, ht �conc t
′, ht′ , and s′.lowT = t′.lowT, then s′ ∼ t′ and hs′

hist∼ ht′ .

The proof of this and other results can be found in the full version [7] of the paper.
We now turn to the second, so-called step consistent, unwinding lemma. The lemma

relies on the hypothesis that the current local memory is high, i.e., invisible by the
attacker. Formally, highness is captured by a predicate High lmem(λ) where λ is a local
state.

Hypothesis 3 (Sequential step consistent unwinding). Assume λ1 ∼l λ2 and μ1 ∼g

μ2. Let λ1.pc = i. If 〈λ1, μ1〉 �seq 〈λ′1, μ′
1〉 and High lmem(λ1) and H(i), then λ′1 ∼l

λ2 and μ′
1 ∼g μ2.

Lemma 2 (Concurrent step consistent unwinding). Assume s ∼ t and hs
hist∼ ht and

pickt(s, h) = ctid and s.pc(ctid) = i and High lmem(s(ctid)) andH(i). If s, hs �conc

s′, hs′ and s′.lowT = t.lowT, then s′ ∼ t and hs′
hist∼ ht.

The proofs of the unwinding lemmas are by a case analysis on the semantics of concur-
rent programs.

The next function. The soundness proof relies on the existence of a function next that
satisfies several properties. Intuitively, next computes for any high program point its
minimal observable successor, i.e., the first program point with a low security level
reachable from it. If executing the instruction at program point i can result in a hidden
thread (high if or high while), then next(i) is the first program point such that i �→�

next(i) and the thread becomes visible again.

Hypothesis 4 (Existence of next function). There exists a function next : P ⇀ P
such that the next properties (NeP) hold:

NePd) Dom(next) = {i ∈ P|H(i) ∧ ∃j ∈ P . i �→� j ∧ ¬H(j)}
NeP1) i, j ∈ Dom(next) ∧ i �→ j ⇒ next(i) = next(j)
NeP2) i ∈ Dom(next) ∧ j �∈ Dom(next) ∧ i �→ j ⇒ next(i) = j
NeP3) j, k ∈ Dom(next) ∧ i �∈ Dom(next) ∧ i �→ j ∧ i �→ k ∧ j �= k ⇒ next(j) = next(k)
NeP4) j ∈ Dom(next) ∧ i, k �∈ Dom(next) ∧ i �→ j ∧ i �→ k ∧ j �= k ⇒ next(j) = k

Intuitively, properties NeP1, NeP2, and NeP3 ensure that the next of instructions within
an outermost high conditional statement coincides with the junction point of the con-
ditional; in addition, properties NeP1, NeP2, and NeP4 ensure that the next of instruc-
tions within an outermost high loop coincides with the exit point of the loop.

In addition to the above assumptions, we also need another hypothesis that relates
the domain of next to the operational semantics of programs. In essence, the hypothesis
states that, under the assumptions of the concurrent locally respects unwinding lemma,
either the executed instruction is a low instruction, in which case the program counter
of the active thread remains equal after one step of execution, or that the executed in-
struction is a high instruction, in which case the active thread is hidden in one execution
(high loop) or both (high conditional).
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e ::= x | n | e op e c ::= x := e | c; c | if e then c else c | while e do c | fork(c)

instr ::= binop op binary operation on stack
| push n push value on top of stack
| load x load value of x on stack
| store x store top of stack in variable x
| ifeq j conditional jump
| goto j unconditional jump
| start j creation of a thread

where op ∈ {+,−,×, /}, n ∈ Z, x ∈ X , and j ∈ P .

Fig. 3. Source and target language

Hypothesis 5 (Preservation of pc equality). Assumes ∼ t;pickt(s, hs) = pickt(t, ht)
= ctid ; s(ctid).pc = t(ctid).pc; s, hs �conc s

′, hs′ ; and t, ht �conc t
′, ht′ . Then,

s′(ctid).pc = t′(ctid).pc; or s′(ctid).pc ∈ Dom(next); or t′(ctid).pc ∈ Dom(next).

The final hypothesis is about visibility by the attacker:

Hypothesis 6 (High hypotheses).

1. For every program point i, we have High lmem(λinit(i)).
2. If 〈λ, μ〉 �seq 〈λ′, μ′〉 and High lmem(λ) and H(λ.pc) then High lmem(λ′).
3. If High lmem(λ1) and High lmem(λ2) then λ1 ∼l λ2.

Theorem 1 follows from the hypotheses above. For the proof details, we refer to the full
version of the paper [7].

6 Instantiation

In this section, we apply our main results to a simple assembly language with condi-
tional jumps and dynamic thread creation. We present the assembly language with a
semantics and a type system for noninterference but without considering concurrent
primitives and plug these definitions into the framework for multithreading. Then, we
present a compilation function from a simple while-language with dynamic thread cre-
ation into assembly code. The source and target languages are defined in Figure 3. The
compilation function allows us to easily define control dependence regions and junction
points in the target code. Function next is then defined using that information. More-
over, we prove that the obtained definition of next satisfies the properties required in
Section 5. Finally, we conclude with a discussion about how a similar instantiation can
be done for the JVM.

Sequential part of the language. The instantiation requires us to define the semantics
and a type system to enforce noninterference for the sequential primitives in the lan-
guage. On the semantics side, we assume that a local state is a pair 〈os, pc〉 where os is
an operand stack, i.e., a stack of values, and pc is a program counter, whereas a global
state μ is a map from variables to values. The operational semantics is standard and
therefore we omit it. We also define λinit(pc) to be the local state 〈ε, pc〉, where ε is the
empty operand stack.
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P [i] = push n

se , i �seq st ⇒ se(i) :: st

P [i] = binop op

se, i �seq k1 :: k2 :: st⇒ (k1 � k2 � se(i)) :: st

P [i] = store x se(i) � k ≤ Γ (x)

se, i �seq k :: st ⇒ st

P [i] = load x

se, i �seq st⇒ (Γ (x) � se(i)) :: st

P [i] = goto j

se, i �seq st ⇒ st

P [i] = ifeq j ∀j′ ∈ reg(i), k ≤ se(j′)

se , i �seq k :: st ⇒ liftk(st)

Fig. 4. Transfer rules

The enforcement mechanism consists of local types which are stacks of security
levels, i.e., LType = Stack(Level); we let Tinit be the empty stack of security levels.
Typing rules are summarized in Figure 4, where liftk(st) denotes the point-wise exten-
sion of λk′. k � k′ to stacks of security levels, and reg : P ⇀ ℘(P) denotes the region
of branching points. We express the chosen security policy by assigning a security level
Γ (x) to each variable x.

Similarly to [4], the soundness of the transfer rules relies on some assumptions about
control dependence regions in programs. Essentially, these regions represent an over-
approximation of the range of branching points. This concept is formally introduced
by the functions reg : P ⇀ ℘(P) and jun : P ⇀ P , which respectively compute
the control dependence region and the junction point for a given instruction. Both func-
tions need to satisfy some properties in order to guarantee noninterference in typable
programs. These properties are known as SOAP properties [4]. In Section 6, we will
show that these properties can be guaranteed by compilation.

In the full version [7] we instantiate definitions of local and global state equivalences
to establish the soundness of the type system.

Concurrent extension. As shown in Definition 7, the concurrent semantics is obtained
from the semantics for sequential commands together with a transition for the instruc-
tion start. Moreover, the sequential type system in Figure 4 is extended by the typing
rules presented in Figure 2 to consider concurrent programs.

The proof of noninterference for concurrent programs relies on the existence of the
function next. Similarly to the technique of [6], we name program points where con-
trol flow can branch or writes can occur. We add natural number labels to the source
language as follows:

c ::= [x := e]n | c; c | [if e then c else c]n | [while e do c]n | [fork(c)]n

This labeling allows us to define control dependence regions for the source code and
use this information to derive control dependence regions for the assembly code. We
introduce two functions, sregion and tregion, to deal with control dependence regions
in the source and target code, respectively.

Definition 13 (function sregion). For each branching command [c]n, sregion(n) is
defined as the set of labels that are inside of the command c except for those ones that
are inside of fork commands.
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E(x) = load x E(n) = push n E(e op e′) = E(e) :: E(e′) :: binop op

S(x := e, T ) = (E(e) :: store x, T )

S(c1; c2, T ) = let (lc1, T1) = S(c1, T ); (lc2, T2) = S(c2, T1);
in (lc1 :: lc2, T2)

S(while e do c, T ) = let le = E(e); (lc, T ′) = S(c, T );
in (goto (pc + #lc + 1) :: lc :: le :: ifeq (pc−#lc−#le),

T ′)
S(if e then c1 else c2, T ) = let le = E(e); (lc1, T1) = S(c1, T ); (lc2, T2) = S(c2, T1);

in (le :: ifeq (pc + #lc2 + 2) :: lc2 :: goto (pc + #lc1 + 1) ::

lc1, T2)
S(fork(c), T ) = let (lc, T ′) = S(c, T ); in (start (#T ′ + 2), T ′ :: lc :: return)

C(c) = let (lc, T ) = S(c, []); in goto (#T + 2) :: T :: lc :: return

Fig. 5. Compilation function

As in [6], control dependence regions for low-level code are defined based on the func-
tion sregion and a compilation function. For a complete source program c, we define the
compilation C(c) in Figure 5. We use symbol # to compute the length of lists. Symbol
:: is used to insert one element to a list or to concatenate two existing lists. The current
program point in a program is represented by pc. The function C(c) calls the auxiliary
function S which returns a pair of programs. The first component of that pair stores the
compiled code of the main program, while the second one stores the compilation code
of spawned threads. We now define control dependence regions for assembly code and
respective junction points.

Definition 14 (function tregion). For a branching instruction [c]n in the source code,
tregion(n) is defined as the set of instructions obtained by compiling the commands
[c′]n

′
, where n′ ∈ sregion(n). Moreover, if c is a while loop, then n ∈ tregion(n).

Otherwise, the goto instruction after the compilation of the else-branch also belongs to
tregion(n).

Junction points are computed by the function jun. The domain of this function consist
of every branching point in the program. We define jun as follows:

Definition 15 (junction points). For every branching point [c]n in the source program,
we define jun(n) = max{i|i ∈ tregion(n)}+ 1.

Having defined control dependence regions and junction points for low-level code, we
proceed to defining next. Intuitively, next is only defined for instructions that belong
to regions corresponding to the outermost branching points whose guards involved se-
crets. For every instruction i inside of an outermost branching point [c]n, we define
next(i) = jun(n). Observe that this definition captures the intuition about next given in
the beginning of Section 5. However, it is necessary to know, for a given program, what
are the outermost branching points whose guards involved secrets. With this in mind, we
extend one of the type systems given in [6] to identify such points. We add some rules



14 G. Barthe et al.

�α c : E �α c′ : E

�α c ; c′ : E

� e : L �α c : E

�α [while e do c]nα : E

� e : L �α c : E �α c′ : E

�α [if e then c else c′]nα : E

� e : H �• c : E

�• [while e do c]n• : E

� e : H �• c : E �• c′ : E

�• [if e then c else c′]n• : E

�α c : E E = liftα(E, labels(c))

�α [fork(c)]nα : E

ASSIGN
� e : k k �E(n) ≤ Γ (x)

�α [x := e]nα : E

TOP-H-WHILE
� e : H �• c : E E = liftH(E, sregion(n))

�◦ [while e do c]n• : E

TOP-H-COND
� e : H �• c : E �• c′ : E E = liftH(E, sregion(n))

�◦ [if e then c else c′]n• : E

Fig. 6. Intermediate typing rules for high-level language commands

for outermost branching points that involved secrets together with some extra notations
to know when a command is inside of one of those points or not.

A source program c is typable, written �◦ c : E, if its command part is typable with
respect to E according to the rules given in Figure 6. The typing judgment has the form
�α [c]nα′ : E, where E is a function from labels to security levels. Function E can be
seen as a security environment for the source code which allows to easily define the
security environment for the target code. If R is a set of points, then liftk(E,R) is the
security environmentE′ such that E′(n) = E(n) if n /∈ R and E′(n) = k � E(n) for
n ∈ R. For a given program c, labels(c) returns all the label annotations in c. Variable
α denotes if c is part of a branching instruction that branches on secrets (•) or public
data (◦). Variable α′ represents the level of the guards in branching instructions. The
most interesting rules are TOP−H−COND and TOP−H−WHILE . These rules
can be only applied when the branching commands are the outermost ones and when
they branch on secrets. Observe that such commands are the only ones that are typable
considering α = ◦ and α′ = •. Moreover, the type system prevents explicit (via as-
signment) and implicit (via control) flows [9]. To this end, the type system enforces the
same constraints as standard security type systems for sequential languages (e.g., [29]).
Explicit flows are prevented by rule ASSIGN , while implicit flows are ruled out by de-
manding a security environment of level H inside of commands that branch on secrets.
The type system guarantees information-flow security at the same time as it identifies
the outermost commands that branch on secrets. Function next is defined as follows:

Definition 16 (function next). For every branching point c in the source program such
that �◦ [c]n• , we have that ∀k ∈ tregion(n).next(k) = jun(n).

This definition satisfies the properties from Section 5, as shown by the following lemma.
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Lemma 3. Definition 16 satisfies properties NePd and NeP1–4.

Notice that one does not need to trust the compiler in order to verify that properties
NePd and NeP1–4 are satisfied. Indeed, these properties are intended to be checked
independently from the compiler by code consumers. We are now in condition to show
the soundness of the instantiation.

Corollary 1 (Soundness of the instantiation). Hypotheses 1–6 from Section 5 are sat-
isfied by the instantiation, and therefore the derived type system guarantees noninter-
ference for multithreaded assembly programs.

Hypotheses 1–3 follow from the unwinding lemmas of [5]; Hypothesis 4 from Lemma 3,
and Hypotheses 5 and 6 from the definitions of next and High lmem, respectively.

Type preserving compilation. The compilation of sequential programs is type-preserving,
as shown in previous work [6]. Our framework allows extending type-preservation to mul-
tithreading. Moreover, it enables us to obtain a key non-restrictiveness result: although
the source-level type system is no more restrictive than a typical type system for a sequen-
tial language (e.g., [29]), the compilation of (possibly multithreaded) typable programs
is guaranteed to be typable at low-level. Due to the lack of space, we only give an in-
stantiation of this result to the source and target languages of this section:

Theorem 2. For a given source-level program c, assume nf (c) is obtained from c by
replacing all occurrences of fork(d) by d. If command nf (c) is typable under the
Volpano-Smith-Irvine type system [29] then se,S � C(c) for some se and S.

This theorem and Theorem 1 entail the following corollary:

Corollary 2. If command nf (c) is typable under the Volpano-Smith-Irvine type sys-
tem [29] then C(c) is secure.

Java Virtual Machine. The modular proof technique developed in the previous section
is applicable to a Java-like language. If the sequential type system is compatible with
bytecode verification, then the concurrent type system is also compatible with it. This
implies that Java bytecode verification can be extended to perform security type check-
ing. Note that the definition of a secure scheduler is compatible with the JVM, where
the scheduler is mostly left unspecified. Moreover, it is possible to, in effect, override an
arbitrary scheduler from any particular implementation of JVM with a secure scheduler
that keeps track of high and low threads as a part of an application’s own state (cf. [27]).

However, some issues arise in the definition of a concurrent JVM: in particular, we
cannot adapt the semantics and results of [3] directly, because the semantics of method
calls is big-step. Instead, we must rely on a more standard semantics where states in-
clude stack frames, and prove unwinding lemmas for such a semantics; fortunately, the
technical details in [4] took this route, and the same techniques can be used here.

Another point is that the semantics of the multithreaded JVM obtained by the method
described in Section 2 only partially reflects the JVM specification. In particular, it
ignores object locks, which are used to perform synchronization throughout program
execution. Dealing with synchronization is a worthwhile topic for future work.
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7 Related Work

Information flow type systems for low-level languages, including JVML, and their rela-
tion to information flow type systems for structured source languages, have been studied
by several authors [4,10,16,6,3,5]. Nevertheless, the present work provides, to the best
of our knowledge, the first proof of noninterference for a concurrent low-level language,
and the first proof of type-preserving compilation for languages with concurrency.

This work exploits recent results on interaction between the threads and the sched-
uler [18] in order to control internal timing leaks. Other approaches [26, 28, 24, 25] to
handling internal timing rely on protect(c) which, by definition, hides the internal
timing of command c. It is not clear how to implement protect() without modifying
the scheduler (unless the scheduler is cooperative [19, 27]). It is possible to prevent in-
ternal timing leaks by spawning dedicated threads for computations that involve secrets
and carefully synchronizing the resulting threads [17]. However, this implies high syn-
chronization costs. Yet other approaches prevent internal timing leaks in code by disal-
lowing any races on public data [30,12]. However, they wind up rejecting such innocent
programs as lo := 0 ‖ lo := 1 where lo is a public variable. Still other approaches pre-
vent internal timing by disallowing low assignments after high branching [8, 2]. Less
related work [1, 23, 20, 21, 14] considers external timing, where an attacker can use a
stopwatch to measure computation time. This work considers a more powerful attacker,
and, as a price paid for security, disallows loops branching on secrets. For further related
work, we refer to an overview of language-based information-flow security [22].

8 Conclusions

We have presented a framework for controlling information flow in multithreaded low-
level code. Thanks to its modularity and language-independence, we have been able
to reuse several results for sequential languages. An appealing feature enjoyed by the
framework is that security-type preserving compilation is no more restrictive for pro-
grams with dynamic thread creation than it is for sequential programs. Primitives for
interacting with the scheduler are introduced by the compiler behind the scenes, and in
such a way that internal timing leaks are prevented.

We have demonstrated an instantiation of the framework to a simple imperative lan-
guage and have argued that our approach is amenable to extensions to object-oriented
languages. The compatibility with bytecode verification makes our framework a promis-
ing candidate for establishing mobile-code security via type checking.

Acknowledgment . This work was funded in part by the Sixth Framework programme
of the European Community under the MOBIUS project FP6-015905.
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Abstract. We present a new technique for generating a formal proof that an ac-
cess request satisfies access-control policy, for use in logic-based access-control
frameworks. Our approach is tailored to settings where credentials needed to
complete a proof might need to be obtained from, or reactively created by, distant
components in a distributed system. In such contexts, our approach substantially
improves upon previous proposals in both computation and communication costs,
and better guides users to create the most appropriate credentials in those cases
where needed credentials do not yet exist. At the same time, our strategy offers
strictly superior proving ability, in the sense that it finds a proof in every case that
previous approaches would (and more). We detail our method and evaluate an
implementation of it using both policies in active use in an access-control testbed
at our institution and larger policies indicative of a widespread deployment.

1 Introduction

Much work has given credence to the notion that formal reasoning can be used to but-
tress the assurance one has in an access-control system. While early work in this vein
modeled access-control systems using formal logics (e.g., [9,18]), recent work has im-
ported logic into the system as a means to implement access control (e.g., [6]). In these
systems, the resource monitor evaluating an access request requires a proof, in formal
logic, that the access satisfies access-control policy. In such a proof, digitally signed
credentials are used to instantiate formulas of the logic (e.g., “KAlice signed delegate
( Alice,Bob, resource)” or “KCA signedKAlice speaksforKCA.Alice”), and then in-
ference rules are used to derive a proof that a required policy is satisfied (e.g., “Manager
says open(resource)”). The resource monitor, then, need only validate that each re-
quest is accompanied by a valid proof of the required policy.

Because the resource monitor accepts any valid proof of the required policy, this
framework offers potentially a high degree of flexibility in how proofs are constructed.
This flexibility, however, is not without its costs. First, it is essential that the logic is
sound and free from unintended consequences, giving rise to a rich literature in de-
signing appropriate authorization logics (e.g., [9,19,16,14]). Second, and of primary
concern in this paper, it must be possible to efficiently find proofs for accesses that
should be allowed. Rather than devising a proving strategy customized to each applica-
tion, we would prefer to develop a general proof-building strategy that is driven by the
logic itself and that is effective in a wide range of applications.
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In this paper we focus on systems where needed credentials are distributed among
different components, if they exist at all, and may be created at distant components re-
actively and with human intervention. Such systems give rise to new requirements for
credential-creation and proof-construction algorithms. To address these requirements,
we combine a number of new and existing techniques into a proof-generation strategy
that is qualitatively different from those proposed by previous works. In comparison
to these works (notably [4]), we show that our strategy offers dramatic improvements
in the efficiency of proof construction in practice, consequently making such systems
significantly more useable. Moreover, our strategy will find proofs whenever previous
algorithms would (and sometimes even when they would not). Our method builds from
three key principles. First, our method strategically delays pursuing “expensive” sub-
goals until, through further progress in the proving process, it is clear that these subgoals
would be helpful to prove. Second, our method precomputes delegation chains between
principles in a way that can significantly optimize the proving process on the critical
path of an access. Third, our method eliminates the need to hand-craft tactics, a fragile
and time-intensive process, to efficiently guide the proof search. Instead, it utilizes a
new, systematic approach to generating tactics from the inference rules of the logic.

The technique we report here is motivated by an ongoing deployment at our institu-
tion of a testbed environment where proof-based access control is used to control access
to both physical resources (e.g., door access) and information resources (e.g., computer
logins). The system has been deployed for over a year, guards access to about 35 re-
sources spanning two floors of our office building, and is used daily by over 35 users.
In this deployment, smartphones are used as the vehicle for constructing proofs and
soliciting consent from users for the creation of new credentials, and the cellular net-
work is the means by which these smartphones communicate to retrieve needed proofs
of subgoals. In such an environment, both computation and communication have high
latency, and so limiting use of these resources is essential to offering reasonable re-
sponse times to users. And, for the sake of usability, it is essential that we involve users
in the proof generation process (i.e., to create new credentials) infrequently and with as
much guidance as possible. We have developed the technique we report here with these
goals in mind, and our deployment suggests that it offers acceptable performance for the
policies with which we have experimented and is a drastic improvement over previous
approaches. All of the examples used in this paper are actual policies drawn from the
deployment. We evaluate the scalability of our algorithm on larger, synthetically gen-
erated policies in Section 4.2 and show that the quantity of precomputed state remains
reasonable and the performance advantage of our approach remains or increases as the
policy grows. Our approach has applications beyond the particular setting in which we
describe it; we briefly discuss one such application in Section 5.

The contributions of this paper are to: (1) identify the requirements of a proving algo-
rithm in a distributed access-control system with dynamic credential creation
(Section 2); (2) propose mechanisms for precomputing delegation chains (Section 3.2)
and systematically generating tactics (Section 3.3); (3) describe a technique for utiliz-
ing these pre-computed results to find proofs in dramatically less time than previous
approaches (Section 3.3); and (4) evaluate our technique on a collection of policies
representative of those used in practice (Section 4.1) and those indicative of a larger
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φ ::= s signed φ′ | p says φ′

φ′ ::= open (s) | p speaksfor p | delegate(p, p, s)

(s ranges over strings and p over principals)

pubkey signed F

key(pubkey) says F
(SAYS-I)

A says (A.S says F )

A.S says F
(SAYS-LN)

A says (B speaksfor A) B says F

A says F
(SPEAKSFOR-E)

A says (B speaksfor A.S) B says F

A.S says F
(SPEAKSFOR-E2)

A says (delegate(A, B,U )) B says (open(U, N))

A says (open(U, N)) (DELEGATE-E)

Fig. 1. A sample access-control logic [4]

deployment (Section 4.2). In Section 5, we discuss the use of our techniques in the con-
text of additional logics, systems and applications. Proofs of our theorems, and discus-
sion of related work elided due to space constraints, can be found in our accompanying
technical report [5].

2 Goals and Contributions

As discussed in Section 1, we will describe new techniques for generating proofs in an
authorization logic that an access request is consistent with access-control policy. It will
be far easier to discuss our approach in the context of a concrete authorization logic,
and for this purpose we utilize the same sample logic as we used in previous work [4],
which is reproduced in Figure 2. However, our techniques are not specific to this logic,
or even necessarily to a logic-based system; rather, they can be adapted to a wide range
of authorization systems provided that they build upon a similar notion of delegation,
as discussed in Section 5.

If pubkey is a particular public key, then key(pubkey) is the principal that cor-
responds to that key. If Alice is a principal, we write Alice.secretary to denote the
principal whom Alice calls “secretary.” The formulas of our logic describe principals’
beliefs. If Alice believes that the formula F is true, we write Alice says F . To indicate
that she believes a formula F is true, a principal signs it with her private key—the re-
sulting sequence of bits will be represented by the formula pubkey signed F , which
can be transformed into a belief (key(pubkey) says F ) using the SAYS-I inference
rule. To describe a resource that a client wants to access, we use the open constructor.
A principal believes the formula open(resource) if she thinks that it is OK to access
resource.1 Delegation is described with the speaksfor and delegate predicates. The
formula Alice speaksfor Bob indicates that Bob has delegated to Alice his authority
to make access-control decisions about any resource. delegate(Bob,Alice, resource)
transfers to Alice only the authority to access the resource called resource.

1 open takes a nonce as a second parameter, which we omit here for simplicity.
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2.1 Requirements

To motivate our requirements, we use as an example a simple policy in use on a daily
basis in our system. This policy is chosen for illustrative purposes; the performance
advantage of our technique actually widens as the policy becomes more complicated
(see Section 4.2). All the resources in our example are owned by our academic depart-
ment, and so to access a resource (resource) one must prove that the department has
authorized the access (Dept says open(resource)).

Alice is the manager in charge of a machine room with three entrances: door1, door2,
and door3. To place her in charge, the department has created credentials giving Al-
ice access to each door, e.g., KDept signed delegate(Dept, Alice, door1). Alice’s re-
sponsibilities include deciding who else may access the machine room. Instead of in-
dividually delegating access to each door, Alice has organized her security policy by
(1) creating a group Alice.machine-room; (2) giving all members of that group access
to each door (e.g., KAlice signed delegate(Alice,Alice.machine-room, door1)); and,
finally, (3) making individuals like Bob members of the group (KAlice signed (Bob
speaksfor Alice.machine-room)).

Suppose that Charlie, who currently does not have access to the machine room,
wishes to open one of the machine-room doors. When his smartphone contacts the
door, it is told to prove Dept says open(door1). The proof is likely to require creden-
tials created by the department, by Alice, and perhaps also by Bob, who may be willing
to redelegate the authority he received from Alice.

Previous approaches to distributed proof generation (notably [4] and [21]) did not
attempt to address three requirements that are crucial in practice. Each requirement may
appear to be a trivial extension of some previously studied proof-generation algorithm.
However, straightforward implementation attempts suffer from problems that lead to
greater inefficiency than can be tolerated in practice, as will be detailed below.

Credential creation. Charlie will not be able to access door1 unless Alice, Bob, or the
department creates a credential to make that possible. The proof-generation algorithm
should intelligently guide users to create the “right” credential, e.g., KAlice signed
( Charlie speaksfor Alice.machine-room), based on other credentials that already ex-
ist. This increases the computation required, as the prover must additionally investigate
branches of reasoning that involve credentials that have not yet been created.

Exposing choice points. When it is possible to make progress on a proof in a number
of ways (i.e., by creating different credentials or by asking different principals for help),
the choice points should be exposed to the user instead of being followed automatically.
Exposing the choice points to the user makes it possible both to generate proofs more
efficiently by taking advantage of the user’s knowledge (e.g., Charlie might know that
Bob is likely to help but Alice isn’t) and to avoid undesired proving paths (e.g., bother-
ing Alice at 3AM with a request to create credentials, when she has requested she not
be). This increase in overall efficiency comes at a cost of increased local computation,
as the prover must investigate all possible choice points prior to asking the user.

Local proving. Previous work showed that proof generation in distributed environ-
ments was feasible under the assumption that each principal attempted to prove only the
formulas pertaining to her own beliefs (e.g., Charlie would attempt to prove formulas
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like Charlie says F , but would immediately ask Bob for help if he had to prove
Bob says G) [4]. In our example, if Charlie asks Alice for help, Alice is able to create
sufficient credentials to prove Dept says open(door1), even though this proof involves
reasoning about the department head’s beliefs. Avoiding a request to the department
head in this case improves the overall efficiency of proof generation, but in general re-
quires Alice to try to prove all goals for which she would normally ask for help, again
increasing the amount of local computation.

The increase in computation imposed by each requirement may seem reasonable,
but when implemented as a straightforward extension of previous work, Alice’s prover
running on a Nokia N70 smartphone will take over 5 minutes to determine the set of
possible ways in which she can help Charlie gain access. Using the technique described
in this paper, Alice is able to find the most common options (see Section 3.3) in 2
seconds, and is able to find a provably complete set of options in well less than a minute.

2.2 Insights

We address the requirements outlined in Section 2.1 with a new distributed proving
strategy that is both efficient in practice and that sacrifices no proving ability relative
to prior approaches. The insights embodied in our new strategy are threefold and we
describe them here with the help of the example from Section 2.1.

Minimizing expensive proof steps. In an effort to prove Dept says open(door1),
suppose Charlie’s prover directs a request for help to Alice. Alice’s prover might de-
compose the goal Dept says open(door1) in various ways, some that would require the
consent of the user Alice to create a new credential (e.g., Alice says Charlie speaksfor
Alice.machine-room) and others that would involve making a remote query (e.g., to
Dept, since this is Dept’s belief). We have found that naively pursuing such options
inline, i.e., when the prover first encounters them, is not reasonable in a practical imple-
mentation, as the former requires too much user interaction and the latter induces too
much network communication and remote proving.

We employ a delayed proof procedure that vastly improves on these alternatives for
the policies we have experimented with in practice. Roughly speaking, this procedure
strategically bypasses formulas that are the most expensive to pursue, i.e., requiring
either a remote query or the local user consenting to signing the formula directly. Each
such formula is revisited only if subsequent steps in the proving process show that
proving it would, in fact, be useful to completing the overall proof. In this way, the most
expensive steps in the proof process are skipped until only those that would actually be
useful are determined. These useful steps may be collected and presented to the user to
aid in the decision-making process.

Precomputing delegation chains. A second insight is to locally precompute and
cache delegation chains using two approaches: the well-studied forward chaining al-
gorithm [22] and path compression, which we introduce here. Unlike backward chain-
ing, which recursively decomposes goals into subgoals, these techniques work for-
ward from a prover’s available credentials (its knowledge base) to derive both facts
and metalogical implications of the form “if we prove Charlie says F , then we can
prove David says F ”. By computing these implications off the critical path, numerous
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lengthy branches can be avoided during backward chaining. While these algorithms
can theoretically produce a knowledge base whose size is exponential in the number of
credentials known, our evaluation indicates that in practice most credentials do not com-
bine, and that the size of the knowledge base increases roughly linearly with the number
of credentials (see Section 4.2). As we discuss in Section 3.3, the chief challenge in us-
ing precomputed results is to effectively integrate them in an exhaustive time-of-access
proof search that involves hypothetical credentials.

If any credential should expire or be revoked, any knowledge derived from that cre-
dential will be removed from the knowledge base. Each element in the knowledge base
is accompanied by an explicit derivation (i.e., a proof) of the element from credentials.
Our implementation searches the knowledge base for any elements that are derived
from expired or revoked credentials and removes them. Our technique is agnostic to the
underlying revocation mechanism.

Systematic tactic generation. Another set of difficulties in constructing proofs is re-
lated to constructing the tactics that guide a backward-chaining prover in how it de-
composes a goal into subgoals. One approach to constructing tactics is simply to use
the inference rules of the logic as tactics. With a depth-limiter to ensure termination,
this approach ensures that all possible proofs up to a certain size will be found, but is
typically too inefficient for use on the critical path of an access because it may enu-
merate all possible proof shapes. A more efficient construction is to hand-craft a set
of tactics by using multiple inference rules per tactic to create a more specific set of
tactics [13]. The tactics tend to be designed to look for certain types of proofs at the
expense of completeness. Additionally, the tactics are tedious to construct, and do not
lend themselves to formal analysis. While faster than inference rules, the hand-crafted
tactics can still be inefficient, and, more importantly, often suffer loss of proving ability
when the policy grows larger or deviates from the ones that inspired the tactics.

A third insight of the approach we describe here is a new, systematic approach for
generating tactics from inference rules. This contribution is enabled by the forward
chaining and path compression algorithms mentioned above. In particular, since our
prover can rely on the fact that all delegation chains have been precomputed, its tactics
need not attempt to derive the delegation chains directly from credentials when gener-
ating a proof of access. This reduces the difficulty of designing tactics. In our approach,
an inference rule having to do with delegation gives rise to two tactics: one whose chief
purpose is to look up previously computed delegation chains, and another that identi-
fies the manner in which previously computed delegation chains may be extended by
the creation of further credentials. All other inference rules are used directly as tactics.

3 Proposed Approach

The prover operates over a knowledge base that consists of tactics, locally known cre-
dentials, and facts that can be derived from these credentials. The proving strategy
we propose consists of three parts. First, we use the existing technique of forward
chaining to extend the local knowledge base with all facts that it can derive from existing
knowledge (Section 3.1). Second, a path-compression algorithm (which we introduce in
Section 3.2) computes delegation chains that can be derived from the local knowledge
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base but that cannot be derived through forward chaining. Third, a backward-chaining
prover uses our systematically generated tactics to take advantage of the knowledge
generated by the first two steps to efficiently compute proofs of a particular goal (e.g.,
Dept says open(door1)) (Section 3.3).

The splitting of the proving process into distinct pieces is motivated by the obser-
vation that if Charlie is trying to access door1, he is interested in minimizing the time
between the moment he indicates his intention to access door1 and the time he is able
to enter. Any part of the proving process that takes place before Charlie attempts to
access door1 is effectively invisible to him. By completely precomputing certain types
of knowledge, the backward-chaining prover can avoid some costly branches of inves-
tigation, thus reducing the time the user spends waiting.

3.1 Forward Chaining

Forward chaining (FC) is a well-studied proof-search technique in which all known
ground facts (true formulas that do not contain free variables) are exhaustively com-
bined using inference rules until either a proof of the formula contained in the query is
found, or the algorithm reaches a fixed point from which no further inferences can be
made. We use a variant of the algorithm known as incremental forward chaining [22]
in which state is preserved across queries, allowing the incremental addition of a single
fact to the knowledge base. The property we desire from FC is completeness—that it
finds a proof of every formula for which a proof can be found from the credentials in
the knowledge base (KB ). More formally:

Theorem 1. After each credential f ∈ KB has been incrementally added via FC, for
any p1 . . . pn ∈ KB , if (p1 ∧ . . . ∧ pn) ⊃ q then q ∈ KB .

If forward chaining is invoked on a knowledge base for which there is no fixed point, the
algorithm is not guaranteed to terminate. Because of this, forward chaining is frequently
restricted to Datalog knowledge bases, for which it can be shown to be complete [22].
Our logic includes some functions that are not representable in Datalog, but we show
that these functions are crafted to not affect completeness. For a proof of Theorem 1
and all other theorems in this paper, please see our technical report [5].

3.2 Path Compression

A path is a delegation chain between two principals A and B such that a proof of
B says F implies that a proof of A says F can be found. Some paths are represented
directly in the logic (e.g., B speaksfor A). Other paths, such as the path between A
andC that results from the credentialsKA signed (B speaksfor A) andKB signed
(C speaksfor B), cannot be expressed directly—they are metalogical constructs, and
cannot be computed by FC. More formally, we define a path as follows:

Definition 1. A path (A says F,B says F ) is a set of credentials c1, . . . , cn and a
proof P of (c1, . . . , cn, A says F ) ⊃ B says F .

For example, the credentialKAlice signed Bob speaksfor Alice will produce the path
(Bob says F, Alice says F ), where F is an unbound variable. Now, for any concrete
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0 global set paths /* All known delegation chains. */
1 global set incompletePaths /* All known incomplete chains. */

2 PC(credential f )
3 if (credToPath(f) = ⊥), return /* If not a delegation, do nothing. */
4 (x, y)← depends-on(f) /* If input is a third-person delegation,
5 if (((x, y) �= ⊥) ∧ ¬((x, y) ∈ paths)) add it to incompletePaths . */
6 incompletePaths ← incompletePaths ∪ (f, (x, y))
7 return

8 (p, q)← credToPath(f) /* Convert input credential into
9 add-path((p, q)) a path. */

10 foreach (f ′, (x′, y′)) ∈ incompletePaths /* Check if new paths make any
11 foreach (p′′, q′′) ∈ paths previously encountered third-
12 if((θ ← unify((x′, y′), (p′′, q′′))) �= ⊥) person credentials useful. */
13 (p′, q′)← credToPath(f ′)
14 add-path((subst(θ, p′), subst(θ, q′)))

15 add-path(chain (p, q))
16 local set newPaths = {}
17 paths ← union((p, q), paths) /* Add the new path to set
18 newPaths ← union((p, q),newPaths) of paths. */

19 foreach (p′, q′) ∈ paths
20 if((θ ← unify(q, p′)) �= ⊥) /* Try to prepend new path to
21 c ← (subst(θ, p), subst(θ, q′)) all previous paths. */
22 paths ← union(c, paths)
23 newPaths ← union(c, paths)

24 foreach (p′, q′) ∈ paths
25 foreach (p′′, q′′) ∈ newPaths /* Try to append all new paths
26 if((θ ← unify(q′, p′′)) �= ⊥) to all previous paths. */
27 c ← (subst(θ, p′), subst(θ, q′′))
28 paths ← union(c, paths)

Fig. 2. PC, an incremental path-compression algorithm

formula g, if Bob says g is true, we can conclude Alice says g. If Bob issues the cre-
dentialKBob signed delegate(Bob,Charlie, resource), then we can construct the path
(Charlie says open(resource), Bob says open(resource)). Since the conclusion of
the second path unifies with the premise of the first, we can combine them to construct
the path (Charlie says open(resource),Alice says open(resource)). Unlike the two
credentials above, some delegation credentials represent a meaningful path only if an-
other path already exists. For example, Alice could delegate authority to Bob on behalf
of Charlie (e.g., KAlice signed delegate(Charlie,Bob, resource)). This credential by
itself is meaningless because Alice lacks the authority to speak on Charlie’s behalf. We
say that this credential depends on the existence of a path from Alice to Charlie, because
this path would give Alice the authority to speak on Charlie’s behalf. Consequently, we
call such credentials dependent, and others independent.

Algorithm. Our path compression algorithm, shown in Figure 2, is divided into two
subroutines: PC and add-path. The objective of PC is to determine if a given credential
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represents a meaningful path, and, if so, add it to the set of known paths by invoking
add-path. add-path is responsible for constructing all other possible paths using this
new path, and for adding all new paths to the knowledge base. The subroutine subst
performs a free-variable substitution and unify returns the most general substitution (if
one exists) that, when applied to both parameters, produces equivalent formulas.

PC ignores any credential that does not contain a delegation statement (Line 3 of
Figure 2). If a new credential does not depend on another path, or depends on a path
that exists, it will be passed to add-path (Line 9). If the credential depends on a path
that does not exist, the credential is instead stored in incompletePaths for later use
(Lines 5–7). Whenever a new path is added, PC must check if any of the credentials in
incompletePaths are now meaningful (Lines 10–12), and, if so, covert them to paths
and add the result to the knowledge base (Lines 13–14).

After adding the new path to the global set of paths (Line 17), add-path finds the
already-computed paths that can be appended to the new path, appends them, and adds
the resulting paths to the global set (Lines 19–23). Next, add-path finds the existing
paths that can be prepended to the paths created in the first step, prepends them, and
saves the resulting paths (Lines 24–28). To prevent cyclic paths from being saved,
the union subroutine adds a path only if the path does not represent a cycle. That is,
union((p, q), S) returns S if unify(p, q) �= ⊥, and S ∪ {(p, q)} otherwise.

Completeness of PC. The property we desire of PC is that it constructs all possible
paths that are derivable from the credentials it has been given as input. We state this
formally below.

Theorem 2. If PC has completed on KB , then for any A,B such that A �= B, if for
some F (B says F ⊃ A says F ) then (B says F,A says F ) ∈ KB .

For the proof of Theorem 2, please see our technical report [5]. Informally: We first
show that add-path will combine all paths that can be combined—that is, for any paths
(p, q) and (p′, q′) if q unifies with p′ then the path (p, q′) will be added. We then show
that for all credentials that represent a path, add-path is immediately invoked for inde-
pendent credentials (Line 9), and all credentials that depend on the existence of another
path are passed to add-path whenever that path becomes known (Lines 10–14).

3.3 Backward Chaining

Backward-chaining provers are composed of tactics that describe how formulas might
be proved and a backward-chaining engine that uses tactics to prove a particular for-
mula. The backward-chaining part of our technique must perform two novel tasks.
First, the backward-chaining engine needs to expose choice points to the user. At each
such point the user can select, e.g., which of several local credentials to create, or
which of several principals to ask for help. Second, we want to craft the tactics to
take advantage of facts precomputed through forward chaining and path compression
to achieve greater efficiency and better coverage of the proof space than previous ap-
proaches.

Delayed backward chaining. While trying to generate a proof, the prover may inves-
tigate subgoals for which user interaction is necessary, e.g., to create a new credential or
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to determine the appropriate remote party to ask for help. We call these subgoals choice
subgoals, since they will not be investigated unless the user explicitly chooses to do so.
The distributed theorem-proving approach of our previous work [4] attempted to pursue
each choice subgoal as it was discovered, thus restricting user interaction to a series of
yes or no questions. Our insight here is to pursue a choice subgoal only after all other
choice subgoals have been identified, thus delaying the proving of all choice subgoals
until input can be solicited from the user. This affords the user the opportunity to guide
the prover by selecting the choice subgoal that is most appropriate to pursue first.

Converting the algorithm from previous work to the delayed strategy is straightfor-
ward. Briefly, the delayed algorithm operates by creating a placeholder proof whenever
it encounters a choice subgoal. The algorithm then backtracks and attempts to find al-
ternate solutions, returning if it discovers a proof that does not involve any choice sub-
goals. If no such proof is found, the algorithm will present the list of placeholder proofs
to the user, who can decide which one is most appropriate to pursue first. As an opti-
mization, heuristics may be employed to sort or prune this list. As another optimization,
the prover could determine whether a choice subgoal is worth pursing by attempting to
complete the remainder of the proof before interacting with the user. This algorithm will
identify a choice subgoal for every remote request made by previous approaches, and
will additionally identify a choice subgoal for every locally creatable credential such
that the creation of the credential would allow the completion of the proof from local
knowledge. For a more detailed description, please see our technical report [5].

Tactics. In constructing a set of tactics to be used by our backward-chaining engine,
we have two goals: the tactics should make use of facts precomputed by FC and PC,
and they should be generated systematically from the inference rules of the logic.

If a formulaF can be proved from local credentials, and all locally known credentials
have been incrementally added via FC, then, by Theorem 1, a proof of F already exists
in the knowledge base. In this case, the backward-chaining component of our prover
need only look in the knowledge base to find the proof. Tactics are thus used only when
F is not provable from local knowledge, and in that case their role is to identify choice
subgoals to present to the user.

Since the inference rules that describe delegation are the ones that indirectly give
rise to the paths precomputed by PC, we need to treat those specially when generating
tactics; all other inference rules are imported as tactics directly. We discuss here only
delegation rules with two premises; for further discussion see Section 5.

Inference rules about delegation typically have two premises: one that describes a
delegation, and another that allows the delegated permission to be exercised. Since tac-
tics are applied only when the goal is not provable from local knowledge, one of the
premises must contain a choice subgoal. For each delegation rule, we construct two tac-
tics: (1) a left tactic for the case when the choice subgoal is in the delegation premise,
and (2) a right tactic for the case when the choice subgoal is in the other premise.2 We
call tactics generated in this manner LR tactics.

2 For completeness, if there are choice subgoals in both premises, one will be resolved and
then the prover will be rerun (see [5] for details). In practice, we have yet to encounter a
circumstance where a single round of proving was not sufficient.
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A says (B speaksfor A) B says F

A says F (SPEAKSFOR-E)

left tactic prove(A says F ) :- pathLookup(B says F , A says F ),
prove(B says F ).

right tactic prove(A says F ) :- proveWithChoiceSubgoal(A says (B speaksfor A)),
factLookup(B says F ).

Fig. 3. Example construction of LR tactics from an inference rule

The insight behind the left tactic is that instead of looking for complete proofs of the
delegation premise in the set of facts in the knowledge base, it looks for proofs among
the paths precomputed by PC, thus following an arbitrarily long delegation chain in
one step. The premise exercising the delegation is then proved normally, by recursively
applying tactics to find any remaining choice subgoals. Conversely, the right tactic as-
sumes that the delegation premise can be proved only with the use of a choice subgoal,
and restricts the search to only those proofs. The right tactic may then look in the knowl-
edge base for a proof of the right premise in an effort to determine if the choice subgoal
is useful to pursue.

Figure 3 shows an inference rule and the two tactics we construct from that rule.
All tactics are constructed as prove predicates, and so a recursive call to prove may
apply tactics other than the two shown. The factLookup and pathLookup predicates
inspect the knowledge base for facts produced by FC and paths produced by PC. The
proveWithChoiceSubgoal acts like a standard prove predicate, but restricts the search to
discard any proofs that do not involve a choice subgoal. We employ rudimentary cycle
detection to prevent repeated application of the same right rule.

Optimizations to LR. The dominant computational cost of running a query using
LR tactics is repeated applications of right tactics. Since a right tactic handles the
case in which the choice subgoal represents a delegation, identifying the choice sub-
goal involves determining who is allowed to create delegations, and then determining
on whose behalf that person wishes to delegate. This involves exhaustively searching
through all paths twice. However, practical experience with our deployed system indi-
cates that people rarely delegate on behalf of anyone other than themselves. This allows
us to remove the second path application and trade completeness for speed in finding
the most common proofs. If completeness is desired, the optimized set of tactics could
be run first, and the complete version could be run afterwards. We refer to the opti-
mized tactics as LR′. This type of optimization is made dramatically easier because of
the systematic approach used to construct the LR tactics.

Alternative approaches to caching. Naive constructions of tactics perform a large
amount of redundant computation both within a query and across queries. An appar-
ent solution to this problem is to cache intermediate results as they are discovered to
avoid future recomputation. As it turns out, this type of caching does not improve per-
formance, and even worsens it in some situations. If attempting to prove a formula with
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an unbound variable, an exhaustive search requires that all bindings for that variable be
investigated. Cached proofs will be used first, but as the cache is not necessarily all-
inclusive, tactics must be applied as well. These tactics in turn will re-derive the proofs
that are in cache. Another approach is to make caching part of the proving engine
(e.g., Prolog) itself. Tabling algorithms [10] provide this and other useful properties,
and have well-established implementations (e.g., http://xsb.sourceforge.net/).
However, this approach precludes adding to cache proofs that are discovered via differ-
ent proving techniques (e.g., FC, PC, or a remote prover using a different set of tactics).

Completeness of LR. Despite greater efficiency, LR tactics have strictly greater prov-
ing ability than the depth-limited inference rules. We state this formally below.

Theorem 3. Given one prover whose tactics are depth-limited inference rules (IR), and
a second prover that uses LR tactics along with FC and PC, if the prover using IR tactics
finds a proof of goal F , the prover using LR tactics will also find a proof of F .

For the proof of Theorem 3, please see our technical report [5]. Informally: We first
show show that provers using LR and IR are locally equivalent—that is, if IR finds a
complete proof from local knowledge then LR will do so as well and if IR identifies
a choice subgoal then LR will identify the same choice subgoal. We show this by first
noting that if IR finds a complete proof from local knowledge, then a prover using LR
will have precomputed that same proof using FC. We show that LR and IR find the same
choice subgoals by induction over the size of the proof explored by IR and noting that
left tactics handle the case where the proof of the right premise of an inference rule con-
tains a choice subgoal and that right tactics handle the case where the the left premise
contains a choice subgoal. Having shown local equivalence, we can apply induction
over the number of remote requests made to conclude that a prover using LR will find a
proof of F if a prover using IR finds a proof of F .

4 Empirical Evaluation

Since the usability of the distributed access-control system as a whole depends on the
timeliness with which it can generate a proof of access, the most important evaluation
metric is the amount of time it takes either to construct a complete proof, or, if no com-
plete proof can be found, to generate a list of choices to give to the user. We also con-
sider the number of subgoals investigated by the prover and the size of the knowledge
base produced by FC and PC. The number of subgoals investigated represents a coarse
measure of efficiency that is independent of any particular Prolog implementation.

We compare the performance of five proving strategies: three that represent previous
work and two (the combination of FC and PC with either LR or LR′) that represent
the strategies introduced here. The strategies that represent previous work are backward
chaining with depth-limited inference rules (IR), inference rules with basic cycle de-
tection (IR-NC), and hand-crafted tactics (HC). HC evolved from IR during our early
deployment as an effort to improve the efficiency of the proof-generation process. As
such, HC represents our best effort to optimize a prover that uses only backward chain-
ing to the policies used in our deployment, but at the cost of theoretical completeness.

http://xsb.sourceforge.net/
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We analyze two scenarios: the first represents the running example presented pre-
viously (which is drawn from our deployment), and the second represents the policy
described by our previous work [4], which is indicative of a larger deployment. As
explained in Section 4.2, these large policies are the most challenging for our strategy.

Our system is built using Java Mobile Edition (J2ME), and the prover is written in Pro-
log. We perform simulations on two devices: a Nokia N70 smartphone,which is the device
used in our deployment, and a dual 2.8 Ghz Xeon workstation with 1 GB of memory. Our
Prolog interpreter for the N70 is JIProlog (http://www.ugosweb.com/jiprolog/)
due to its compatibility with J2ME. Simulations run on the workstation use SWI-Prolog
(http://www.swi-prolog.org/).

4.1 Running Example

Scenario. As per our running example, Alice controls access to a machine room. We
simulate a scenario in which Charlie wishes to enter the machine room for the first time.
To do so, his prover will be asked to generate a proof of Dept says open(door1). His
prover will immediately realize that Dept should be asked for help, but will continue to
reason about this formula using local knowledge in the hope of finding a proof without
making a request. Lacking sufficient authority, this local reasoning will fail, and Charlie
will be presented with the option to ask Dept for help. Preferring not to bother the
department head, Charlie will decide to ask his manager, Alice, directly.

0 KDept signed (delegate(Dept, Alice, door1))
1 KDept signed (delegate(Dept, Alice, door2))
2 KDept signed (delegate(Dept, Alice, door3))
3 KAlice signed delegate(Alice, Alice.machine-room, door1)
4 KAlice signed delegate(Alice, Alice.machine-room, door2)
5 KAlice signed delegate(Alice, Alice.machine-room, door3)
6 KAlice signed (Bob speaksfor Alice.machine-room)
7 KAlice signed (David speaksfor Alice.machine-room)
8 KAlice signed (Elizabeth speaksfor Alice.machine-room)
9 KDept signed delegate(Dept, Alice, office)
10 KDept signed (delegate(Dept, Dept.residents, lab-door))
11 KDept signed (Alice speaksfor Dept.residents)
12 KCharlie signed open(door1)

Fig. 4. Credentials on Alice’s phone

13 KDept signed (delegate(Dept, Dept.residents, lab-door))
14 KDept signed (Charlie speaksfor Dept.residents)
15 KCharlie signed open(door1)

Fig. 5. Credentials on Charlie’s phone

Creating a complete proof
in this scenario requires three
steps: (1) Charlie’s prover at-
tempts to construct a proof, re-
alizes that help is necessary,
and asks Alice, (2) Alice’s
phone constructs a proof con-
taining a delegation to Char-
lie, and (3) Charlie assembles
Alice’s response into a final
proof. As Alice’s phone holds
the most complicated policy,
step 2 dominates the total time
required to find a proof.

Policy. The policy for this sce-
nario is expressed in the cre-
dentials known to Alice and
Charlie, shown in Figures 4 and
5. The first six credentials of Figure 4 represent the delegation of access to the
machine-room doors from the department to Alice, and her redelegation of these re-
sources to the group Alice.machine-room. Credentials 6–8 indicate that the group
Alice.machine-room already includes Bob, David, and Elizabeth. Notably, Alice has
not yet created a credential that would give Charlie access to the machine room. We
will analyze the policy as is, and with the addition of a credential that adds Charlie
to the machine-room group. Credentials 9–11 deal with other resources that Alice can

http://www.ugosweb.com/jiprolog/
http://www.swi-prolog.org/
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access. The final credential is given to Alice when Charlie asks her for help: it indicates
Charlie’s desire to open door1.

Charlie’s policy (Figure 5) is much simpler. He has access to a shared lab space
through his membership in the group Dept.residents, to which the department has del-
egated access. He has no credentials pertaining to the machine room.

The only credential in Figures 4 and 5 that was created at the time of access is the
one indicating Charlie’s desire to access door1. This means that FC and PC have already
been run on all other credentials.

Performance. Figure 6 describes the proving performance experienced by Alice when
she attempts to help Charlie. Alice wishes to delegate authority to Charlie by giving
him membership in the group Alice.machine-room. We show performance for the case
where this credential does not yet exist, and the case where it does. In both cases,
Alice’s phone is unable to complete a proof with either IR or IR-NC as both crash
due to lack of memory after a significant amount of computation. To demonstrate the
relative performance of IR and IR-NC, Figure 6 includes (on a separate y-axis) results
collected on a workstation. IR, IR-NC, and HC were run with a depth-limit of 7, chosen
high enough to find all solutions on this policy.

In the scenario where Alice has not yet delegated authority to Charlie, HC is over six
times slower than LR, and more than two orders of magnitude slower than LR′. If Alice
has already added Charlie to the group, the difference in performance widens. Since FC
finds all complete proofs, it finds the proof while processing the credentials supplied
by Charlie, so the subsequent search by LR and LR′ is a cache lookup. The result is
that a proof is found by LR and LR′ almost 60 times faster than HC. When run on the
workstation, IR and IR-NC are substantially slower than even HC.

Figure 7 shows the total time required to generate a proof of access in the scenario
where Alice must reactively create the delegation credential (IR and IR-NC are omitted
as they crash). This consists of Charlie’s initial attempt to generate a proof, Alice’s proof
generation that leads to the creation of a new credential, and Charlie assembling Alice’s
reply into a final proof. The graph also shows the division of computation between the
incremental algorithms FC and PC and the backward search using tactics. In overall
computation, HC is six times slower than LR and 60 times slower than LR′. This does



Efficient Proving for Practical Distributed Access-Control Systems 33

not include the transit time between phones, or the time spent waiting for users to choose
between different options.
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Since computation time is dependent
on the Prolog implementation, as a more
general metric of efficiency we also mea-
sure the number of formulas investigated
by each strategy. Figure 8 shows the to-
tal number of formulas investigated (in-
cluding redundant computation) and the
number of unique formulas investigated
(note that each is measured on a sepa-
rate y-axis). LR and LR′ not only inves-
tigate fewer unique formulas than previ-
ous approaches, but drastically reduce the
amount of redundant computation.

4.2 Large Policies

Although our policy is a real one used in practice, in a widespread deployment it is
likely that policies will become more complicated, with users having credentials for
dozens of resources spanning multiple organizations. Our primary metric of evalua-
tion is proof-generation time. Since backward chaining only considers branches, and
hence credentials, that are relevant to the proof at hand, it will be least efficient when
all credentials must be considered, e.g., when they are generated by members of same
organization. As a secondary metric, we evaluate the size of the knowledge base, as
this directly affects the memory requirements of the application as well as the speed
of unification. Since credentials from the same organization are more likely to be com-
bined to produce a new fact or path, the largest knowledge base will occur when all
credentials pertain to the same organization. In this section, we evaluate a policy where
all credentials pertain to the same organization as it represents the worst case for both
metrics.

Policy. We evaluate our work with respect to the policy presented in our previous
work [4]. This policy represents a university-wide deployment. In addition to its larger
size, this policy has a more complex structure than the policy described in Section 4.1.
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For example, the university maintains a certification authority (CA) that binds names
to public keys, thus allowing authority to be delegated to a principal’s name. Further-
more, many delegations are made to roles (e.g., Dept.Manager1), to which principals
are assigned using additional credentials.

We simulate the performance of our approach on this policy from the standpoint of a
principal who has access to a resource via a chain of three delegations (assembled from
10 credentials), and wants to extend this authority to a subordinate.

Performance. Figure 9 shows the proof-generation time of the different strategies for
different numbers of subordinates on the workstation. For these policies, the depth limit
used by IR, IR-NC, and HC must be 10 or greater. However, IR crashed at any depth limit
higher than 7, and is therefore not included in these simulations. Simulations on this
policy used a depth-limit of 10. IR-NC displays the worst performance on the first three
policy sizes, and exhausts available memory and crashes for the two largest policies. HC
appears to outperform LR, but, as the legend indicates, was unable to find 11 out of the
14 possible solutions, including several likely completions, the most notable of which
is the desired completion Alice says (Charlie speaksfor Alice. machine-room). This
completion is included in the subset of common solutions that LR′ is looking for. This
subset constitutes 43% of the total solution space, and LR′ finds all solutions in this
subset several orders of magnitude faster than any other strategy.

The size of the knowledge base for each policy is shown in Figure 10. The knowledge
base consists of certificates and, under LR and LR′, facts and paths precomputed by FC
and PC. We observe that many credentials from the same policy cannot be combined
with each other, yielding a knowledge base whose size is approximately linear with
respect to the number of credentials.

In summary, the two previous, theoretically complete approaches (IR and IR-NC)
are unable to scale to the larger policies. HC, tailored to run on a particular policy, is
unable to find a significant number of solutions when used on larger policies. LR is
able to scale to larger policies while offering theoretical completeness guarantees. LR′,
which is restricted to finding a common subset of solutions, finds all of those solutions
dramatically faster than any other approach.

5 Generality of Our Approach

Although we described and evaluated our technique with respect to a particular access-
control logic and system, it can be applied to others, as well. There are three aspects of
generality to consider: supporting the logical constructs used by other logics, perform-
ing efficiently in the context of different systems, and enabling other applications.

Other logics. When applying our approach to other logics, we must consider individ-
ually the applicability of each component of our approach: FC, PC, and the generation
of LR tactics. We consider our technique with respect to only monotonic authorization
logics, i.e., logics where a formula remains provable when given more credentials. This
constraint is commonly used in practical systems (cf., [8]).

As discussed previously, to ensure that the forward-chaining component of our
prover terminates, the logic on which it is operating should be a subset of Datalog, or,
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if function symbols are allowed, their use must be constrained (as described in Sec-
tion 3.1). This is sufficient to express most access-control logics, e.g., the logics of
SD3 [17], Cassandra [7], and Binder [11], but is not sufficient to express higher-order
logic, and, as such, we cannot fully express the access-control logic presented by Appel
and Felten [2]. The general notion of delegation introduced in Definition 1 is conceptu-
ally very similar to that of the various logics that encode SPKI [1,19,16], the RT family
of logics [20], Binder [11], Placeless Documents [3], and the domain-name service logic
of SD3 [17], and so our technique should apply to these logics as well.

Our path-compression algorithm and our method for generating LR tactics assume
that any delegation rule has exactly two premises. Several of the logics mentioned above
(e.g., [17,11,3]) have rules involving three premises; however, initial investigation sug-
gests that any multi-premise rule may be rewritten as a collection of two-premise rules.

Path compression requires a decidable algorithm for computing the intersection of
two permissions. That is, when combining the paths (Alice says F,Bob says F ) and
(Bob says open(door1),Charlie says open(door1)), we need to determine the in-
tersection of F and open(door1) for the resulting path. For our logic, computing the
permission is trivial, since in the most complicated case we unify an uninstantiated for-
mula F with a fully instantiated formula, e.g., open(door1). In some cases, a different
algorithm may be appropriate: for SPKI, for example, the algorithm is a type of string
intersection [12].

Other systems. Our strategies should be of most benefit in systems where (a) cre-
dentials can be created dynamically, (b) credentials are distributed among many par-
ties, (c) long delegation chains exist, and (d) credentials are frequently reused. Delayed
backward chaining pursues fewer expensive subgoals, thus improving performance in
systems with properties (a) and (b). Long delegation chains (c) can be effectively com-
pressed using either FC (if the result of the compression can be expressed directly in
the logic) or PC (when the result cannot be expressed in the logic). FC and PC extend
the knowledge base with the results of their computation, thus allowing efficient reuse
of the results (d).

These four properties are not unique to our system, and so we expect our technique,
or the insights it embodies, will be useful elsewhere. For example, Greenpass [15] al-
lows users to dynamically create credentials. Properties (b) and (c) have been the focus
of considerable previous work, notably SPKI [1,19,16], the DNS logic of SD3 [17],
RT [20], and Cassandra [7]. Finally, we feel that (d) is common to the vast majority of
access-control systems, as a statement of delegation is typically intended to be reused.

Other applications. There are situations beyond our smartphone-oriented setting when
it is necessary to efficiently compute similar proofs and where the efficiency offered
by our approach is welcome or necessary. For example, user studies conducted at our
institution indicated that, independently of the technology used to implement an access-
control system, users strongly desired an auditing and credential-creation tool that would
allow them to better understand the indirect effects on policy of creating new creden-
tials by giving them real-time feedback as they experimented with hypothetical cre-
dentials. If Alice wants to create a new credential KAlice signed delegate(Alice,
Alice.machine-room, door4), running this hypothetical credential through the
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path-compression algorithm could inform Alice that an effect of the new credential is
that Bob now has access to door4 (i.e., that a path for door4 was created from Bob to
Alice). Accomplishing an equivalent objective using IR or IR-NC would involve assum-
ing that everyone is willing to access every resource, and attempting to prove access to
every resource in the system—a very inefficient process.

6 Conclusion

In this paper we presented a new approach to generating proofs that accesses comply
with access-control policy. Our strategy is targeted for environments in which creden-
tials must be collected from distributed components, perhaps only after users of those
components consent to their creation, and our design is informed by such a testbed we
have deployed and actively use at our institution. Our technique embodies three con-
tributions, namely: novel approaches for minimizing proof steps that involve remote
queries or user interaction; methods for inferring delegation chains off the critical path
of accesses that significantly optimize proving at the time of access; and a systematic ap-
proach to generating tactics that yield efficient backward chaining. We demonstrated an-
alytically that the proving ability of this technique is strictly superior to previous work,
and demonstrated empirically that it is efficient on policies drawn from our deployment
and will scale effectively to larger policies. Our method will generalize to other security
logics that exhibit the common properties detailed in Section 5.
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Abstract. From a security standpoint, it is preferable to implement least priv-
ilege network security policies in which only the bare minimum of TCP/UDP
ports on internal hosts are accessible from outside the perimeter. Unfortunately,
organizations with such policies can no longer communicate using common mul-
tiport protocols that require randomly chosen ports for auxiliary connections.
This paper introduces a new approach for maintaining such communication un-
der least privilege while achieving maximum performance. By dynamically mod-
ifying perimeter ACLs, inbound auxiliary connections are only allowed through
the perimeter at exactly the times required. These modifications are made trans-
parently to external users and with minimal changes to internal configuration. A
prototype implementation of the Dynamic Perimeter Enforcement system, called
Diaper, has been implemented and tested with several applications.

Keywords: Firewalls, grids, high performance networking, multiport protocols,
network access control, security.

1 Introduction

A fundamental dictate of computer security is the Principle of Least Privilege, which
states that “every program and every user of the system should operate using the least
set of privileges necessary to complete the job” [28]. In networks, privilege tradition-
ally corresponds to the set of TCP/UDP ports that are allowed to traverse a perimeter
established by some form of perimeter enforcer such as a firewall or router/switch with
access control lists (ACLs). A typical least privilege network policy might contain the
rules (1) allow all outbound traffic to non-blacklisted hosts, (2) allow inbound traffic in
direct response to established outbound traffic, (3) allow inbound traffic to a small set
of well-known server control ports, and (4) deny all other traffic. In this policy, users
on external hosts are limited to the least possible set of privileges necessary to provide
some predetermined set of capabilities to them. Namely, they are only allowed to initi-
ate connections to the control ports of designated network services, which are already
bound, thus cannot be used for any other purpose. Internal users can generate arbitrary
outbound traffic to non-blacklisted hosts and receive inbound responses to that traffic,
but internal services they start are not directly accessible from beyond the perimeter.
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Fig. 1. Basic multiport service models Fig. 2. Communication breakdown

While such a policy works well for single port protocols such as SSH and HTTP,
it breaks down when utilizing multiport protocols. Figure 1 shows the basic multiport
protocol models. Each model consists of a client and a server, one of which is inside
and one of which is outside the perimeter created by the perimeter enforcer. To request
a specific service provided by the server, the client connects to a statically determined
control port on the server, after which it establishes a set of auxiliary connections over
dynamically determined ports. Each server is designated as either active or passive. An
active server is one that initiates the auxiliary connections to the client. A passive server
is one that listens for the auxiliary connections from the client. While traditionally as-
sociated with the FTP protocol, which uses separate control and data channels, these
same models are just as applicable to modern protocols for grids, high performance file
transfer, voice over IP, multimedia over IP, and other applications.

By default, the least privilege policy above supports the internal active server and
external passive server models. Since all inbound auxiliary connections are denied, it
does not support the internal passive server or external active server models. Figure 2
shows the breakdown in multiport protocols when two sites both utilize a least privilege
policy. As can be seen, it is impossible for the two sites to communicate since the
models that are supported by one site are exactly the models not supported by the other.

The easiest solution for many organizations is to permanently open up the perimeter
and allow inbound traffic to a subset of unprivileged ports, which can then be used for
auxiliary connections. Since these ports are accessible from anywhere, however, it is
easier for attackers to hijack or interfere with auxiliary connections. In addition, appli-
cations only listen on these ports at specific times related to control port traffic, thus
these ports are usually not bound until that time and can be used for other purposes.
These may range from running software still under development to running unautho-
rized services or authorized services with unauthorized versions and/or configurations
to Trojans acting without a user’s knowledge waiting for malicious connections. The
ports associated with these uses are now directly accessible from outside the perimeter
and are subject to attack and/or unauthorized utilization.

Several approaches try to resolve this problem without resorting to permanent
perimeter openings such as protocol-aware firewalls, routers/switches with network lo-
gin, specialized proxies, new low-level protocols, etc. These approaches suffer from var-
ious drawbacks including the need for changes to client/server software and/or
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practices, requiring special trust relationships with other entities, substantial degrada-
tion of network performance, and inability to handle arbitrary protocols and
applications.

This paper presents a new approach for Dynamic Perimeter Enforcement called
Diaper, which provides a general-purpose mechanism for maintaining least privilege
network security policies while still supporting full utilization of multiport protocols.
Diaper protects a site from unauthorized network flows by dynamically applying ACLs
on the perimeter enforcer that temporarily allow specific paths through the perimeter
at exactly the times required. The appropriate paths and times are derived by observ-
ing system calls from within the services that require them. Since Diaper operates at
the system call level, it can guarantee that temporary openings cannot be utilized for
other purposes since ports are already bound at the time they are allowed through the
perimeter. Perimeter openings are only authorized for a single external host, thus mak-
ing it more difficult to hijack or interfere with auxiliary connections. Diaper requires
no changes to software or practices outside of the perimeter, only minimal changes in-
side, and can be deployed in configurations varying in size from a single host running a
software firewall to an organization running multiple hardware perimeter enforcers. Fi-
nally, since Diaper utilizes the ACLs of network devices themselves, it does not degrade
network performance allowing protocols to operate at the highest speeds possible.

This paper is organized as follows. Section 2 presents related work. Section 3 de-
scribes perimeter observation using system call interposition. Section 4 discusses how
the perimeter is opened and closed. Section 5 describes implementation and perfor-
mance. Finally, Section 6 presents conclusions and future work.

2 Related Work

There are a variety of efforts related to the problem addressed by this paper. Stateful
firewalls such as Cisco’s IOS Firewall [5] can interpret the control channels of specific
protocols to determine when an auxiliary port needs to be opened between a given pair
of hosts. Only unencrypted protocols can be supported, however, and such support is
generally limited to a small set of standardized protocols. To increase support for new
protocols, the NAI Labs Wrappers [7] allow system administrators and even users to
add custom proxies into the firewall under the supervision of a system call wrapper
that prevents subversion of perimeter policy due to bugs or malicious code. This ap-
proach does not help with encrypted control channels, however, and is unsuitable for
high performance environments since it is deployed on software firewalls.

In general, even hardware stateful firewalls are unsuitable since they are signifi-
cantly behind the performance curve of routers and switches. For example, the Juniper
Netscreen-5400 is one of the few firewalls on the market with 10 gigabit interfaces [16],
but only supports 5 Gb/s per interface. The Force10 P10 intrusion prevention appliance
[8] operates at 10 Gb/s line-rate, but has no stateful capabilities. The first 10 Gb/s line-
rate router, however, was available from Juniper six years earlier [17]. This performance
lag is likely to continue as vendors move to 100 Gb/s and beyond.

Routers and switches often support another approach through network login mech-
anisms such as Cisco’s Lock-and-Key [6], where initially all network traffic is denied
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until users authenticate themselves, after which a static set of ports is opened up from
the originating host to internal resources. This approach supports maximum line-rates,
but requires users to perform additional authentication and typically opens more ports
than needed. Another built-in option is a virtual private network (VPN) [36], where an
external host or network can be granted access to the internal network using an au-
thenticated, encrypted connection. VPNs require either special trust relationships set
up between organizations or additional steps performed by the user. In addition, the
encryption used to guarantee privacy and integrity also degrades performance. For ex-
ample, the Juniper Netscreen-5400, which is one of the fastest existing VPNs, is only
capable of 2.5 Gb/s over each 10 gigabit interface [16].

SOCKS [21] is a protocol that allows clients to traverse firewalls through the use of
a proxy server that relays packets from one side of the firewall to the other. SOCKS
requires special software to communicate with SOCKS servers and external users must
have knowledge of which sites require SOCKS and which do not, which SOCKS server
is responsible for each host of a given site, and which set of authentication creden-
tials must be used to access each SOCKS server. In addition, since the SOCKS server
must relay every packet, but is not supported in high speed network devices, SOCKS is
unsuitable for high performance environments.

Hole punching [9] is a network address translation (NAT) traversal technique where
peers behind different NAT firewalls exchange contact information through a well-
known rendezvous server and then use a specific series of outbound messages to open
inbound paths through the firewall. Hole punching allows high performance communi-
cation, but requires special client software, knowledge of which sites utilize the tech-
nique and with which rendezvous servers, and a trust relationship with each server.

Many related projects are motivated by the use of grids across organization firewalls.
The Globus grid middleware requires a large number of ports to be left open [38],
which creates many difficulties behind restrictive firewalls [1]. Hillier proposes the use
of a log reader to wait for a successfully authenticated Globus “ping”, after which it
parses the source host and adds an appropriate rule to the firewall to allow access to a
statically-defined range of ports from that host [12]. Dyna-Fire [11] is a dynamic fire-
wall service that allows a host to access specific ports after receiving an appropriate port
knocking sequence (i.e. a pattern of connection attempts to closed ports). Both of these
approaches are essentially network login mechanisms with the same disadvantages.

Condor is another grid middleware that requires many port openings [18]. Dynamic
Port Forwarding (DPF) [31] allows services on private internal hosts to lease external
IP address/port pairs from a NAT firewall, which are sent to external clients for use in
direct connections. Firewall requests are not authenticated, however, and the internal
host is opened up to all external hosts. Cooperative On-Demand Opening (CODO) [30]
adds more restrictive openings and basic authentication to DPF, but only supports basic
multiprocess applications and only when they are recompiled with the CODO library.
Generic Connection Brokering (GCB) [31] uses an external proxy to relay packets be-
tween external clients and internal servers, with drawbacks similar to SOCKS.

Voice over IP (VoIP) and multimedia over IP (MoIP) also use multiport communica-
tion models, thus are difficult to deploy behind firewalls [29]. Many proposed solutions
involve adding knowledge of related protocols such as the Session Initiation Protocol
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(SIP) into the firewall itself [22]. In the Distributed Dynamic Firewall Architecture [27],
control channels are observed by protocol-specific proxies, which direct filters to allow
and deny traffic as needed. Fung et al. enhanced SOCKS with additional UDP handling
to support the Real-Time Streaming Protocol (RTSP) [10]. These solutions are similar
to stateful firewalls with similar drawbacks.

An alternative approach is to let applications themselves control firewall behavior as
needed. The Firewall Control Protocol (FCP) [20] was proposed as a standard for fire-
wall query and control by applications that was originally motivated by the difficulties
of deploying SIP servers behind firewalls. This approach relies on the standardization
of FCP and its acceptance and integration by firewall vendors, however, which is a
long-term effort. Universal Plug and Play (UPnP) [23] defines a similar capability in
its Internet Gateway Device (IGD) specification, which allows clients to control UPnP-
enabled gateways to permit inbound network access when needed. The IGD specifica-
tion does not define any access control mechanisms, however, thus is only suitable for
home networks with minimal security requirements.

The multiport problem is an artifact of basic TCP/UDP design, which only allows
a single stream of data per port. Several new protocols such as the Stream Control
Transmission Protocol (SCTP) [32] have been proposed to enable multiplexing of many
streams into one. These protocols are not widely supported, however, thus cannot be
used with existing implementations of software and cannot take advantage of existing
higher level protocol support in network devices.

3 Perimeter Observation

Diaper is based on the notion of a pinhole, which is a dynamic rule that allows TCP/
UDP traffic to pass from a specific external host to a specific port on a specific internal
host. The basic approach is to open a pinhole exactly when the external host needs to
establish an inbound auxiliary connection and to close that pinhole exactly when the
external host no longer needs the connection. By using this approach, sites with least
privilege policies can still communicate, but users cannot hijack pinholes for their own
purposes because the internal host will already be using the associated ports.

A single pinhole corresponds to a TCP/UDP ACL on a perimeter enforcer, which
is defined by the 5-tuple of protocol, source IP address, source port, destination IP ad-
dress, and destination port. Since pinholes only require basic ACLs, which can be done
at line-rate on many network devices, the pinhole approach supports performance at
the maximum capacity of the network itself. To successfully implement a pinhole ap-
proach, however, it is necessary to accurately determine three key pieces of information:
which internal ports will be used for auxiliary connections, when these connections are
needed, and which external host will initiate them.

3.1 Observer Location

This information may be observed at various locations in the network. The most ap-
pealing location is on the perimeter enforcer, which has access to all network traffic
passing between client and server. In this case, all setup is self-contained on the device
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mediating network traffic. Unfortunately, at this location, every protocol must be han-
dled differently, encrypted protocols cannot be supported at all, and hardware enforcers
can only support the limited set of unencrypted protocols implemented by the vendor.

The least desirable observer locations are on the external host and in the external
client/server. To open pinholes appropriately, users or software on external hosts must
be given the authority to do so, which gives them the capability to change the internal
site’s network security policy, thus does not conform least privilege. In addition, the
security mechanisms are no longer transparent since they require the installation of new
software or modifications to the invocation of existing software as well as managing
these changes across different sites that may require different configurations.

An observer on the internal host, but not in the internal client/server, requires no
external changes and has access to information beyond that of a perimeter observer such
as logs generated, kernel structures modified, etc. A log reader approach suffers from
imprecision due to the lag between when an activity is performed and when it is logged.
A kernel observer could provide the required information, but kernel development is
difficult and error-prone and would affect every process on the internal host.

The final alternative is an observer in the internal client/server itself, which has ac-
cess to detailed information about every aspect of program operation including vari-
ables, functions, system calls, etc. Modifying client/server source code is undesirable as
different implementations use different programming languages, data structures, nam-
ing conventions, error conditions, etc. that must all be handled differently. In addition,
these modifications must be kept up-to-date with the latest patches and revisions. Al-
though services may have very different implementations, they are all built on top of the
same set of standard system calls. Furthermore, with the advent of system call interpo-
sition [15], system calls can be changed dynamically on a per application basis without
changes to existing code. A set of such system call modifications is known as an in-
terposition agent. The application of this technique for the observation of perimeter
information is described in the next section.

3.2 Diaper Interposition Agent

All TCP and UDP sessions share the same basic flow of Standard C Library system
calls that occur between an initiator and a listener. In a TCP session, both parties create
a socket using socket(). The listener binds its socket to a local address and port num-
ber using bind() and then indicates its willingness to receive connections on the socket
using listen(). The initiator can then connect to the listening address using connect().
When the listener is ready to process inbound connections, it accepts one of the wait-
ing connections using accept(). Finally, the two parties communicate using read() and
write(), and at the completion of communication, they close their sockets using close().
UDP sessions are similar, but connectionless, thus after bind(), both parties can imme-
diately send and receive datagrams using sendto() and recvfrom(). Equivalent system
calls exist in the Windows Sockets API [24], but will not be discussed further.

In the models of Figure 1, clients and servers can be both initiators as well as lis-
teners and have identical network system call behavior after the establishment of the
control channel. Thus, the same Diaper interposition agent can be used to intercept the
system calls of internal passive servers as well as internal clients used to connect to
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external active servers. The agent processes the control channel appropriately based
on whether the wrapped application first connects outbound like a client or waits for
inbound connections like a server. The combined functionality allows the agent to ad-
ditionally handle mixed-mode applications, such as Iperf [13], that act as both a client
and a server with auxiliary connections in both directions.

The main challenge in observing the required information by intercepting system
calls is in grouping together separate unrelated system calls to obtain a complete picture
of the information. At the point just after a bind(), it is known in both TCP and UDP
sessions that a socket will be used to listen for external connections on a specific port
number. This is also when it is safe to open a pinhole to that port since after bind(),
a port can no longer be used by any other process on that host. The pinhole can be
opened from this time up until just before accept() or recvfrom(), neither of which can
succeed unless inbound traffic was already allowed to the port. Diaper opens a pinhole
immediately after every bind() on an external interface, as shown in Figure 5, except
the first bind() in the internal passive server case as that bind() is used to establish the
control channel. The intercepted bind() does not return to the caller until the pinhole
has been successfully opened or an error occurs.

To open a pinhole for an auxiliary connection requires knowledge of which exter-
nal host will initiate a connection, which is not known until an accept() or recvfrom()
completes on the same port. Thus, this information can only be obtained by associating
the auxiliary connection with a previously established control channel connection for
which the external host is already known. For clients, it is assumed that the control chan-
nel is established during the first outbound TCP/UDP connection from an unconnected
state, thus the external address for subsequent auxiliary connections is obtained from
the address in the last successful control channel connect() or sendto(). For servers, it
is assumed that the first externally bound TCP/UDP port is the control port, thus the
external address is obtained from each accept() or recvfrom() on this port.

The association of auxiliary ports with control ports must be handled differently de-
pending on the concurrency model of the client/server. The three major concurrency
models [25] are multiprocess, where each connection is managed by a separate process,
multithreaded, where each connection is managed by a separate thread, and multiplexed,
where all connections are managed by the same process/thread using non-blocking I/O.
Association in the multiprocess model is straightforward as each control connection is
managed by a different process that spawns its own auxiliary connection processes. In
this case, the external address in auxiliary processes is the address of the host connected
to the parent control socket. The multithreaded model is similar with each control con-
nection managed by a different thread that spawns its own auxiliary connection threads.
In this case, however, multiple threads may share the same memory space, thus care
must be taken to store the control thread IP address in a thread-safe location. The other
complication is the existence of multiple thread implementations. Diaper currently sup-
ports only POSIX threads. The basic flow of system calls in multiprocess and multi-
threaded servers is shown in Figure 3. The only difference is the use of pthread_create()
instead of fork() and pthread_exit() instead of exit() in the multithreaded model.

The multiplexed model is significantly different. In a multiplexed client/server, poll()
and/or select() system calls are used to determine which sockets have data waiting,
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thus preventing the single thread of execution from blocking during accept() or read().
Since poll() and select() may return any number of sockets, a multiplexed client/server
may handle any number of arbitrarily ordered control and auxiliary connections in a
single round of implementation-dependent processing. Diaper manages this complexity
by intercepting poll() and select() and artificially limiting the concurrency during each
round to a single socket (with starvation prevention using a round robin approach).
Since auxiliary connections will only be created when a need for them arises during
control channel processing, the external address used to open an auxiliary pinhole can
be obtained from the socket that is currently being processed. The basic flow of system
calls in multiplexed servers is shown in Figure 4.

The final piece of information needed by the interposition agent is the point at which
each auxiliary connection is no longer needed so that the associated pinhole can be
closed. The basic approach is to examine each close() system call to determine if it is
closing a socket associated with an open pinhole. Care must be taken to avoid closing
pinholes prematurely due to duplication of sockets caused by accept() and fork(). A
close() on a listening socket that has already been accepted (i.e. not the accepted socket)
does not trigger a pinhole close nor does a close() on a listening socket that has not
been accepted, but which has been preceded by a fork(). In the latter case, closing the
pinhole becomes the responsibility of the child process. Pinholes are also closed in the
same manner within exit() and _exit() system calls and within signal handlers.

4 Perimeter Control

Once all of the required information has been observed by the interposition agent and
a pinhole request has been generated, that request must be carried out on the perimeter
enforcer. The perimeter controller is defined to be the system that interacts with the
perimeter enforcer to dynamically open and close pinholes upon request. In order to
interact with the perimeter enforcer, the perimeter controller may need to be in special
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proximity to it. For a hardware device such as a switch or router, the controller may need
to be on a host attached to the device’s management port. For a software enforcer such
as Iptables [14], the controller must usually be on the same host. Since network services
will be hosted and invoked on potentially many different systems, pinhole requests gen-
erated by an interposition agent must be authenticated and sent to the perimeter con-
troller host. After a request reaches the perimeter controller, it is authorized against a
set of allowed perimeter changes. Finally, the request is executed by making the appro-
priate ACL changes on the perimeter enforcer. Figure 5 shows the components of the
perimeter controller and the flow through a multiprocess internal passive server. Dia-
per was designed as a modular collection of servers with unique functions that can be
combined or replaced individually with different implementations as desired.

4.1 Pinhole Authentication

When a pinhole request is generated by an interposition agent, it must be sent to the
perimeter controller for execution. Before execution, the perimeter controller must ver-
ify that the request came from a legitimate source. The component on the perimeter
controller that authenticates requests is called the remote pinhole authentication server.
With the need to support the external active server model, remote authentication be-
comes subject to a number of complications. In this model, a client running inside
the perimeter must request pinholes for auxiliary connections from the external active
server. Clients are executed by normal users, but users must not be able to modify the
perimeter policy directly. Instead, requests are carried out indirectly on their behalf by
a component on the client host called the local pinhole authentication server.

Local Authentication. The local authentication server runs with administrator privi-
leges and reads pinhole requests from interposition agents. After a request is received,
the local authentication server authenticates to the remote authentication server on the
user’s behalf, after which the request is passed on for further processing. Users cannot
read the remote authentication credentials, thus cannot make direct requests. The local
authentication server must also guarantee that only authorized clients in system direc-
tories that need pinholes are able to request them and that those clients are not under
the control of mechanisms such as LD_PRELOAD or ptrace().

To achieve these goals, authorized clients are wrapped with a simple setuid program.
The owner of the wrapper may be any valid user recognized by the local authentication
server and is designated as the local delegate for that particular client. The wrapper
first opens a temporary file descriptor used to communicate with the local authenti-
cation server. It then clears unsafe environment variables such as LD_PRELOAD and
LD_LIBRARY_PATH and preloads the interposition agent. Finally, the wrapper perma-
nently drops all delegate privileges and executes the original command with the orig-
inal arguments. The FD_CLOEXEC flag is immediately set on the file descriptor by
the agent to prevent abuse by any local shell escapes, etc. that a client may implement.
User-level mechanisms for dynamically modifying application behavior are disabled by
the kernel since the wrapper is a setuid program.

When a client’s interposition agent needs to make a pinhole request, it searches for an
open file descriptor not owned by itself. The ability to write to this descriptor provides
assurance that the client has been executed by the setuid wrapper. A second descriptor is



Maintaining High Performance Communication 47

Server

exit()

close(con)

close pinhole

ok/fail

local user
remote user

pinhole
pinhole

ACLs

exit()

read/write(aux)

close(aux)

close(aux0)

aux = accept(aux0)

ACLs
pinhole

pinhole
remote user

local user

close(con)

close(con0)

con = accept(con0)

listen(con0)

bind(con0)

con0 = socket()

fork()

read/write(con)

fork()

close(aux0)

listen(aux0)

bind(aux0)

aux0 = socket()

authenticate
authenticate

authorize
execute

configure

Server Server
Server Server

Local
PinholePinhole

PinholePinhole RemotePerimeter

AuthenticationAuthentication
AuthorizationExecutionEnforcer

open pinhole

ok/fail

configure
execute

authorize
authenticate

authenticate

Perimeter Controller

Server Host

Fig. 5. Diaper event flow in multiprocess internal passive server

opened by the client itself based on a name provided by the local authentication server
to obtain the invoking user’s identity and prevent replay attacks.

Note that the internal passive server model works similarly, but since servers typ-
ically run with elevated privileges to service multiple users, a setuid wrapper is not
required. Instead, the interposition agent running in the server intercepts the setuid(),
seteuid(), and setreuid() system calls. At this point, before dropping privileges, the ap-
propriate file descriptor is created, after which the same authentication scheme is used.

Remote Authentication. Remote authentication ensures that only legitimate users can
access the perimeter controller in order to issue pinhole requests. The actual mechanism
used to enforce this policy between the local and remote authentication servers can take
any form. In the Diaper implementation, a stock SSH server is used with an extremely
restrictive login shell called Mash [19] that does not allow remote delegates to do any-
thing besides issue pinhole requests via a command created for that purpose. Each local
authentication server defines a mapping from each of its local delegates to a remote del-
egate known to the remote authentication server for which it possesses authentication
credentials. These credentials are then used to transmit locally authenticated requests to
the remote authentication server for further processing.

An undesirable, but unavoidable risk of allowing non-interactive requests to the
perimeter controller is the need for the remote delegate credentials to be unprotected
beyond standard file system discretionary access controls. For instance, an SSH pri-
vate key cannot be encrypted or else the local authentication server cannot use it to
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authenticate to the remote authentication server. Thus, a root compromise of a local
authentication server host allows the attacker to issue pinhole requests. To mediate this
risk, authenticated pinhole requests are first checked against a site security policy before
being carried out on the perimeter enforcer.

4.2 Pinhole Authorization

The component responsible for validating authenticated pinhole requests against a site
security policy is called the pinhole authorization server. A site policy is defined by a
set of rules of the form “(allow|deny) <remote delegate> <end user> (tcp|udp) <source
IP address range> <source port range> <destination IP address range> <destination port
range>”. A pinhole is permitted if it allowed by at least one rule in the policy and is not
denied by any rule in the policy. Fairly restrictive policies can be imposed by employing
service or host specific remote delegates. For example, host specific remote delegates
can be used to minimize the damage of local authentication server compromises by
using a remote delegate with the same name as each host “hosti” and a rule “allow
hosti * * * * hosti *”. In this setup, hosts can only open pinholes to themselves, thus a
breach of one host does not affect the security of all the others.

4.3 Pinhole Execution

Once the authorization server determines that a pinhole request is permitted, that request
must actually be carried out on the perimeter enforcer. Since many different requests
may be received around the same time, access to the perimeter enforcer must be strictly
controlled to avoid interference between requests. The required mutual exclusion and
perimeter enforcer interaction is provided by the pinhole execution server. This server
only accepts requests from root-level processes, such as the authorization server. Re-
quests are processed in batches by a single process as will be described in Section 5.1.

Each pinhole request is translated into an ACL update command on the perimeter
enforcer, which varies by the enforcer’s type and vendor. Some products have APIs or
SNMP-based mechanisms for manipulating the running configuration. Those without
such support require scripting of the command-line interface. Diaper currently supports
one software enforcer (Iptables) and four classes of hardware enforcers (Cisco IOS
devices, Force10 FTOS devices, Foundry IronWare OS devices, and Juniper JunOS
devices). Additional enforcer types can be added in a modular fashion.

The pinhole execution server also detects and cleans up stale pinholes, which are
those that are no longer needed by any process, but which are still active on the perime-
ter enforcer. This can occur when a process receives a SIGKILL before it is able to
clean up its own pinholes or after a crash of the pinhole execution server itself. A re-
lated condition is when the ACL state of the perimeter enforcer does not match that of
the pinhole execution server as could potentially occur after a reboot of the perimeter
enforcer or a manual update by an administrator. Both of these cases are handled by
a periodic status check of the perimeter enforcer’s ACLs. Stale pinholes are detected
using ACL accounting functionality that counts how many packets have matched a
given ACL. A pinhole is considered stale and will be closed if its packet count does
not change between two consecutive status calls. Using this approach, Diaper’s pinhole
state is resilient even across failures and restarts of multiple components.
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5 Implementation and Performance

A prototype of Diaper has been fully implemented. The local pinhole authentication
server, pinhole authorization server, and pinhole execution server are written in Perl.
The remote pinhole authentication server is a stock SSH server. The interposition agent
is written in Bypass [33], which is a minimal syntactic wrapper around C/C++ code
that isolates the user from differences in system call interfaces and implementations
between Unix operating systems. Bypass supports layering of multiple agents, thus
using the Diaper agent does not preclude using other agents for other purposes.

Diaper has been fully tested on Linux, but can run on any Unix operating system
with a library preload mechanism. The agent is compiled into a shared library, which
is loaded into applications by setting the appropriate preload environment variable (e.g.
LD_PRELOAD, _RLD_LIST, etc.) before the application is executed. With the excep-
tion of POSIX thread support, all of the intercepted system calls are a core part of the
Standard C Library, which is linked into almost every application on Unix operating
systems, thus Diaper is likely to work correctly with the vast majority of dynamically
linked multiport applications without modification. The same approach can also be used
on Windows systems by utilizing an equivalent mechanism such as Fault Tolerant In-
terposition Agents [3]. The Diaper interposition agent is around 1000 lines of Bypass
C++ code. The setuid wrapper is about 50 lines of C code.

The test network consisted of an internal host, an external host, and a perimeter
controller, each on a 2.4 GHz Pentium 4 Linux box connected by 100 Mb/s Ethernet
through three types of perimeter enforcer: Iptables, a Cisco 6500, and a Force10 E600.
The least privilege policy of Section 1 was applied to each perimeter enforcer. Raw
performance numbers were also gathered for a Foundry MLX-4 and a Juniper MX960.

5.1 Scalability

The main bottleneck in the Diaper architecture is the perimeter enforcer. While the
various Diaper servers can be scaled using standard server load balancing techniques,
the perimeter enforcer is a unique resource that must be involved in every interaction.
The two main scalability measures of a perimeter enforcer are the maximum number of
ACLs that can be in effect at any given time without appreciable performance degrada-
tion and the maximum rate at which ACLs can be updated.

Hardware enforcers typically have no performance degradation regardless of the
number of ACLs in effect due to special Ternary Content Addressable Memory
(TCAM) that can perform simultaneous line-rate lookups across the entire ACL space.
TCAM is expensive, however, thus, depending on the vendor, is usually limited to some-
where between thousands and tens of thousands of ACL entries per interface. Software
enforcers have access to large amounts of cheap memory, thus can theoretically support
very large numbers of ACLs. Since standard memory is not optimized for large scale
parallel lookups, however, performance degrades significantly as more and more ACLs
are applied. Thus, the practical limit for these enforcers is usually between thousands
and tens of thousands of ACLs total.

The other limiting factor is the maximum rate at which ACLs can be updated. Figures
6 and 7 show the time required to apply ACLs sequentially and in batches using Iptables,
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Fig. 6. Sequential update times Fig. 7. Batch update times

a Cisco 6500, a Force10 E600, a Foundry MLX-4, and a Juniper MX960. As can be
seen, significant performance gains can be achieved by batching ACL updates together.
Figure 8 shows the update rates achieved with different batch sizes when no ACLs are
initially in effect. The optimal batch size is approximately 200 for Iptables, 300 for the
Cisco 6500, 1000 for the Force10 E600, 5000 for the Foundry MLX-4, and 4200 for the
Juniper MX960, achieving effective rates of 10000, 1220, 445, 1070, and 446 updates
per second, respectively. The pinhole execution server processes ACLs in batches of
the optimal size when at least that many requests are queued, thereby maximizing the
update rate. As shown in Figure 9, the maximum achievable rate can only be maintained
up to a certain number of existing ACLs before factors such as exhaustion of the TCAM
or kernel caches are encountered. The update performance of the Force10 E600 and the
Foundry MLX-4 degrades far less dramatically than the others as the number of ACLs
in effect increases. The Juniper MX960 has several orders of magnitude more ACL
capacity than the others, but is hampered by a slow ACL compilation process. The
Foundry MLX-4 has the best overall ACL performance with a high maximum update
rate and almost no degradation as existing ACLs increase.

To determine the suitability of Diaper to a particular organization, the ACL char-
acteristics of that organization’s perimeter enforcer must be compared to its expected
network traffic patterns. Namely, the expected average number of concurrent multiport
protocol connections must be less than the ACL capacity of the perimeter enforcer and
the initiation/termination rate of those protocols must be less than the maximum up-
date rate achievable with a number of ACLs in effect equal to the average number of
connections. To handle bursty traffic where the average number of connections is less
than the ACL capacity of the perimeter enforcer, but the maximum number of connec-
tions is sometimes greater, the pinhole execution server keeps track of ACL usage and
buffers requests until the load returns to normal. If the ACL characteristics of the pri-
mary perimeter enforcer are not adequate for the expected traffic, there are still many
possible deployment options due to the flexibility of the Diaper architecture.

First, Diaper can be deployed on a per application basis, thus the protocol load may
easily be shared with other approaches. For example, a network login capability can be
used to offload portions of the traffic such as long running MoIP sessions while Diaper
can dynamically control the remaining traffic. Second, Diaper is designed to control



Maintaining High Performance Communication 51

Fig. 8. Batch update rates Fig. 9. Update rate degradation

both firewalls as well as core routers and switches with no modifications necessary be-
yond the perimeter. By deploying multiple perimeter controllers each in charge of a
different network device, the natural segmentation of network traffic provided by inter-
nal switches and routers can be used to combine the ACL capacities of multiple devices.
A similar approach can be used with a sequence of perimeter enforcers on the border.
Finally, Diaper is lightweight enough to be deployed on every host in the network that
runs its own software enforcer. In this case, the perimeter enforcer, perimeter controller,
and internal host are all one and the same. The organization perimeter enforcer can sta-
tically allow some subset of traffic to pass through to the end hosts, which themselves
can dynamically control which connections they will and will not allow.

As a sanity check for the scalability results, publicly available packet traces of FTP
connections to Lawrence Berkeley National Laboratory [26] were analyzed to determine
the requirements for a real organization. The traces represent over 22,000 FTP control
connections and over 49,000 data connectionsconsisting of more than 3,200,000 packets
between 320 unique servers and 5832 unique clients over a 10 day period. Figure 10
shows the number of open FTP data connections over time, which represents the
maximum number of perimeter enforcer ACLs required at any given time. Figure 11
shows the ACL updates per second required to open/close the corresponding pinholes.
As can be seen, although the traces encompass one of the most prevalent multiport
protocols and a fairly large number of hosts and connections, the ACL usage and
update rate requirements are very modest and could easily be handled by any of the
perimeter enforcers tested. Additional study is needed, however, to assess whether such
requirements are typical of all organizations and multiport protocols.

5.2 High Performance File Transfer

Diaper was tested with a variety of high performance file transfer protocols that rep-
resent a wide cross-section of existing multiport protocol behavior including TCP and
UDP control streams, TCP and UDP data streams, encrypted control streams, multi-
ple data streams, and internal passive/external active server models with multiprocess,
multiplexed, and multithreaded concurrency. The applications used for testing include
BbFTP [2], BetaFTPD [4], Tsunami [34], UDT [35], Vsftpd (SSL mode) [37], and



52 P.Z. Kolano

Fig. 10. Open data connections Fig. 11. Required update rate

Wzdftpd [39]. None of the corresponding protocols besides unencrypted FTP
(i.e. BetaFTPD and Wzdftpd) are supported by existing firewalls due to either their
use of encryption on the control channel or their nonstandard research-oriented nature.

Table 1 shows the overhead in milliseconds introduced by Diaper while transferring
a 100 MB file through three types of perimeter enforcer using each of the applications.
The overhead was measured against the same transfers through statically authorized
ports without the agent wrapper. In these tests, overhead was proportional to the number
of ACL updates divided by the ACL update speed of the given perimeter enforcer plus a
slight overhead of around 15 ms per update. No benefit was gained from batching in the
multiple stream BbFTP case as it binds its auxiliary ports sequentially. Overall, Diaper
operated correctly with a variety of protocols with minimal overhead.

Table 1. Diaper overhead (ms) during 100 MB file transfer

Application Server Model Control Data Concurrency Iptables Cisco 6500 Force10 E600

BbFTP (1 stream) Internal Passive TCP TCP Multiprocess 30.1 61.6 397

BbFTP (2 stream) Internal Passive TCP TCP Multiprocess 68.4 137 755

BbFTP (4 stream) Internal Passive TCP TCP Multiprocess 149 293 1570

BbFTP (8 stream) Internal Passive TCP TCP Multiprocess 400 682 3410

BetaFTPD Internal Passive TCP TCP Multiplexed 29.8 64.1 373

Tsunami External Active TCP UDP Multiprocess 29.9 68.3 406

UDT External Active UDP UDP Multiprocess 29.5 62.9 370

Vsftpd (SSL mode) Internal Passive TCP TCP Multiprocess 29.4 66.9 406

Wzdftpd Internal Passive TCP TCP Multithreaded 30.8 68.9 426

6 Conclusions and Future Work

This paper has described a new approach for enabling least privilege network security
policies based on Dynamic Perimeter Enforcement called Diaper. Diaper observes the
behavior of network services to identify the specific inbound perimeter access that is
required at any given time and dynamically adjusts the ACLs of a perimeter enforcer
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to open and close the perimeter accordingly. It supports inbound access for both clients
and servers and is completely transparent to external users. Internal services must be
invoked slightly differently, but no source code modifications nor changes to user usage
patterns are required. Through the use of the Diaper framework, each site can have the
tightest perimeter policy possible and yet still communicate at the highest bandwidth
with almost any multiport application.

There are a variety of directions for future research. The ACL characteristics of ad-
ditional perimeter enforcers will be evaluated and corresponding support added to the
pinhole execution server. Scalability analysis will be performed on additional multiport
protocols when corresponding packet traces become available. Support for NAT envi-
ronments and a Windows interposition agent will also be investigated. Alternatives to
library preloading will be studied to enable support of static binaries. For deployment in
real-world security settings, mechanisms for redundancy and resiliency must be added
such as automatic fail-over based on factors including the health of the Diaper servers
and the perimeter controller’s connectivity to the perimeter enforcer. Finally, additional
pinhole authorizations can be added including time-based permissions and dynamic
permissions on the pinhole execution server that can, for example, limit the number of
pinholes that any one user can have open at once.
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Abstract. As the XML model gets more popular, new needs arise to
specify access control within XML model. Various XML access control
models and enforcement methods have been proposed recently. However,
by and large, these approaches either assume the support of security fea-
tures from XML databases or use proprietary tools outside of databases.
Since there are currently few commercial XML databases with such ca-
pabilities, the proposed approaches are not yet practical. Therefore, we
explore the problem of “Is is possible to fully support XML access control
in RDBMS?” We formalize XML and relational access control models us-
ing deep set operators. Then we show that the problem of XML AC atop
RDBMS is amount to the problem of converting XML deep set opera-
tors into equivalent relational deep set operators. We show the conversion
algebra and identify the properties to ensure the correct conversion. Fi-
nally, we present three practical implementations of XML access controls
using off-the-shelf RDBMS and their performance results.

1 Introduction

The XML model [1] has emerged as the de facto standard for storing and ex-
changing information in the Internet Age. As more information is exchanged
over the Web, the issues of security become increasingly important. Such is-
sues span from data level security to network level security to high-level access
controls. In this paper, our focus is on how to support access control for XML
data. Many access control methods extending the XML model to incorporate
security aspects have been proposed recently (e.g., [2,3,4,5]). To the lesser or
greater extent, however, XML access control enforcement mechanisms proposed
in the research community neglect the fact that the most XML data still resides
in RDBMS. In the scenario of RDBMS-backed XML database systems (here-
after XRDB), XML documents are stored in RDBMS and query-answering is
conducted through a conversion layer. In the scenario of XML publishing, rela-
tional data is compiled into XML format for distribution and exchange. For both
scenarios, we enjoy the benefit of XML model while taking advantage of the ma-
turity of the off-the-shelf RDBMS. In both scenarios, it is desirable to natively
specify access controls on the XML side, but they need to be enforced on the
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RDBMS. We believe that current XML access control enforcement mechanism
research is in a sense re-inventing wheels without utilizing existing relational ac-
cess control models or leveraging on security features that are readily available
in relational products. In short, our goal in this paper is to answer the question:
When is it (not) possible to support XML access control using RDBMS? Why?
How?

Challenges. First, the major challenges of supporting XML access control in
XRDB systems stem from the inherent discrepancy of XML and relational data
models. Relational data model features a structure of two-dimensional table,
while XML features a hierarchical data model. When XML data are shredded
into relational data model, not all transformation algorithms can fully preserve
structural properties of XML model [6]. The inherent incompatibility of two data
models leads to the fundamental discrepancy between two access control models.
Second, relational access control policies define authorized actions of “cells,”
where each cell is an impartible element and whose accessibility is explicitly
expressed. However, XML nodes are hierarchically nested, and XML data model
inherently takes “answer by subtree model” (e.g., querying for //foo yields the
whole subtree rooting at node <foo/>). Therefore, for any XML node, an action
could be: authorized/unauthorized to the whole subtree, or partially authorized.
The later case does not occur in relational access control model. Finally, in XML
model, we can control the access right of each individual node. In traditional
relational model, the smallest granularity that we may control is a column via
GRANT/REVOKE. Therefore, we need to employ more recent developments of
RDBMS access controls (e.g., Oracle VPD) to enable cell level access control.

Key contributions. (1) To our best knowledge, this work is the first one to al-
gebraically formalize XML access control in both native XML (XDB) and XRDB
environment. (2) This work takes the first steps to define the equivalent objects
and equivalent operations between native XML and XRDB systems. With this
concept, we can migrate all the exciting features of native XML systems into
XRDB by converting the atomic operations into equivalent relational counter-
parts. In this paper, we take the feature of fine-grained XML access control for
a pilot study, and the results are encouraging. (3) This work shows for the first
time that the “security” of XRDB can be achieved by finding the “equivalent”
relational operators for three specific deep-set operators. This finding provides a
viable way to build secure XRDB systems. (4) Finally, this work proposes several
practical approaches to implement the viable way “discovered” by our theory.

2 Related Work

2.1 XML and Relational Access Control

Current access control research can be categorized into two groups: access control
modeling and access control enforcement mechanisms.

On the model side, several XML access control models have been proposed.
Starting with [7] for HTML documents; [8,3] describes XML access control with
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an authorization sheet to each document or DTD. [4] proposed and XML ac-
cess control model to deal with authorization priorities and conflict resolution.
[9] introduced provisional authorization and XACL. [10] formalizes the way of
specifying objects in XML access control using XPath. Most of the proposals
adopt either role-based access control (e.g. [12]) or credential-based access con-
trol (e.g. [13]). The major difference between them is the way they identify users.
Credential-based access control is more flexible and powerful in this aspect. How-
ever, in the research of access control enforcement mechanisms, people tend to
choose a relatively simple access control model to avoid distraction.

XML access control enforcement mechanisms in native XML environment
have been intensively studied in recent years. They are categorized into four
classes: (1) engine level mechanisms implement security check inside XML
database engine; each XML node is tagged with a label [15,16,17] or an au-
thorization list [18,19], and filtered during query processing. (2) view based ap-
proaches build security views that only contain access-granted data [20,21,22].
1(3) pre-processing approaches check user queries and enforce access control rules
before queries are evaluated, such as the static analysis approach [23,14], QFil-
ter approach [24], access condition table approach [25], policy matching tree[26],
secure query rewrite (SQR) approach [27], etc. (4) [28] considers access control
of streaming XML data and apply security check at client side, using a filter-
ing mechanism. More recently, [29,30] takes encryption issues into consideration,
and [31,32] focus on protecting the privacy and security associated with XML
tree structure.

Relational access control models can be classified into two categories: multi-
level security models [33,34,35] and discretionary security models (DAC). Most
real world database systems implement a table/column level DAC similar to
the one implemented in System R [36]. View-based approaches is the traditional
method to enable row-level access control, while Oracle’s VPD is the most re-
cent development. Finally, some advanced access control models (e.g., [37,38])
are proposed in a more theoretical manner.

2.2 XML and Relational Conversion

As illustrated in Figure 1(a), in XRDB: XML data DX are converted into DR

and stored in RDBMS; user issues XML query QX (XPath or XQuery) using
1 When a view-based approach implements virtual views without materializing them,

it is inherently a pre-processing approach.
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published XML schema; QX is converted into QR (SQL) and evaluated against
DR; relational answer AR is finally converted to XML (AX) to return to user.

Toward conversion between XML and relational models, an array of research
has addressed the particular issues lately. On the industry side, database ven-
dors are busily extending their databases to adopt XML types. Shredding and
non-shredding are two major pathes that followed by commercial products. Or-
acle provides both un-shredded (CLOB) and shredded storage options [40]. Mi-
crosoft supports XML shredding and publishing through mid-tier approach in
SQL Server 2000, and adds CLOB storage in SQL Server 2005 [41]. IBM pro-
poses the first native XML storage in DB2 9, but shredded XML storage (through
schema decomposition) is still kept as an important feature [42,43]. On the re-
search side, various proposals have been made recently, mainly either schema-
based (e.g., [44,45,46]) or schema-oblivious (e.g., [47,48]) approaches.

In terms of access control, some commercial products apply existing column
level access control of RDBMS on XML data stored in CLOB columns. None
of these approaches supports or discusses fine-grained access control. Finally, to
our best knowledge, the only work that is directly relevant to our proposal is [5].
[5] proposes an idea of using RDBMS to handle XML access controls, in a rather
limited setting. In our vision paper [49], we addressed some issues and challenges
of enforcing XML access control atop RDBMS. We provide the algebraic analysis
and explore practical solutions in this paper.

Our framework is not tied to a particular conversion method. Throughout
this paper, we use shared-inlining [45] and XRel [48] as the examples of schema-
based and schema-oblivious conversion methods, respectively. Briefly, XRel de-
composes XML documents into document, element, attribute, text, and path
tables. In this approach, each node is stored as one record in the element table,
and each distinct path is stored as one record in the pth table. As a simple
example, we decompose an XMark ([50], Figure 1(b)) document using XRel and
show part of element table in Figure 2 (b). As we can see, element 252 is a node
of path 164 (“/site/people”, as stored in the path table); which starts from
offset 33996 (byte) and ends at 36229 in the original XML document.

3 Preliminaries

3.1 XML Access Control Policy

Access control models define the semantics and syntax of access control policies.
Although they could be very complicated, the essential is to describe subjects,
objects, actions and all the variations around it. Fortunately, there is no dis-
crepancy in identifying subjects and defining actions in XML and relational
environment, e.g., they both could adopt RBAC or CBAC to identify users. As
we described in Section 1, shredding XML access control models into relational
ones is a challenging task, because of the fundamental discrepancies of XML
and Relational data models. Therefore, challenges reside in object -related com-
ponents of access control models, while issues that only relate to subjects and
actions are trivial. Thus, our subsequent discussion focuses more on object part.
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In this paper, we adopt the model proposed in [3] as the basis; other models like
[23,28,24,51] can be used as well with a reasonable change.

Definition 1 (XML Access Control Rule) . An XML access control policy is
specifiedby a set ofaccess control rules:RX ={subject,object, action, sign},
where subject is to whom an authorization is granted, object is a set of XML nodes
(in XPath) to which the policy is applied, action is one of read, write, or update,
and sign ∈ {+,−} refers to access granted or denied, respectively. �

In this model, access is prohibited by default. Negative rule takes precedence
when it conflicts with positive rules. All access controls propagate to the entire
subtree rooting at object, complying with the answer-by-tree XML semantics. If
a rule applies to context node only, we add “/text()” to its object field.

3.2 XML to Relational Conversion

Remark 1.A relational to XML conversion method contains: (1) CD() to con-
vert XML to relational data, (2) CQ() to convert XML query (XQuery or XPath)
to SQL, and (3) C−1 to convert relational answer back to XML. �

That is, QR = CQ(QX), DR = CD(DX), and AX = C−1(AR). From this, the
process of “evaluating XML query on XRDB” can be modeled as:

AX = C−1(AR) = C−1(QR〈DR〉) = C−1(CQ(QX)〈CD(DX)〉) (1)

Remark 2 . An X2R conversion algorithm is lossless iff: (1) (lossless node con-
version) ∀ XML node xi, C

−1
D (CD(xi)) = xi; (2) (lossless node set decomposition)

∀XML node set {x1, ..., xn}, C−1
D (CD({x1, ...xn})) = C−1

D ({CD(x1), ...CD(xn)}) =
{C−1

D (CD(x1)), ...C−1
D (CD(xn))}; and (3) (exclusive conversion)CD(x1)=CD(x2)

only when x1 = x2, and C−1
D (r1) = C−1

D (r2) only when r1 = r2. �

Remark 3 . An X2R conversion algorithm is correct iff: ∀ query Q and ∀ doc-
ument X , Q〈X〉 = C−1(QR〈DR〉) = C−1(CQ(QX)〈CD(X)〉). �

Definition 2 (Soundness) . An X2R conversion algorithm A is sound iff it is
lossless and correct. �

In the remainder of the paper, we assume that the conversion algorithm being
used is sound. We ignore the order of XML nodes when we compare the correct-
ness, since this feature is not supported in most X2R conversion algorithms.

In the research community, most X2R conversion algorithms support a subset
of XQuery/XPath (e.g., /, //, * and predicates). Our approach does not alter the
query or data conversion algorithm. Therefore, for a particular X2R conversion
method X , we support everything that X supports. For ease of understanding,
we do not use predicates in the examples, however, we test queries with predicates
in our experiments.
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3.3 Deep Set Operators

In [52], we propose deep set operators for XML, as extensions of conventional set
operators defined in XPath [53] and XQuery [54]. Here, we briefly revisit them,
and later demonstrate how they are used to formalize XML access control.

Definition 3 (deep set operators) . The deep-union operator (
D
∪) takes node

sequences 〈P 〉 and 〈Q〉 as operands, and returns a sequence of nodes (1) who exist
as a node or as a descendant in either operand sequences, and (2) whose parent

does not satisfy (1). Formally, 〈P 〉
D
∪ 〈Q〉 = {n|(n ∈ 〈Pd〉 ∨ n ∈ 〈Qd〉) ∧ (n ::

parent() �∈ 〈Pd〉 ∧ n :: parent() �∈ 〈Qd〉)} where Pd = P/descendant − or −
self(). The deep-intersect operator (

D
∩) takes node sequences 〈P 〉 and 〈Q〉 as

operands, returns a sequence of nodes (1) who exist as a node or as a descendant
in both operand sequences, and (2) whose parent does not satisfy (1). Formally,

〈P 〉
D
∩ 〈Q〉 = {n|(n ∈ 〈Pd〉 ∧ n ∈ 〈Qd〉) ∧ (n :: parent() �∈ 〈Pd〉 ∨ n :: parent() �∈

〈Qd〉)}. Finally, the deep-except operator (
D
−) takes node sequences 〈P 〉 and

〈Q〉 as operands, for each node 〈pi〉 in 〈P 〉, it remove 〈pi〉
D
∩X 〈Q〉 from the subtree

of 〈pi〉 and return the remaining. �

3.4 XML Access Control in XDB and XRDB

XML access control is to ensure that only safe answer (SA) is returned. As
in [55,52], safe answer of Q includes all the XML nodes n such that: (1) n ∈ 〈Q〉,
(2) the access of n is granted by positive rules, and (3) the access of n is not
denied by negative rules. Therefore, the precise semantics of “safe answer,” SAX

is:

SAX = 〈QX〉
D
∩X [(〈R+

X1
〉

D
∪X ...

D
∪X 〈R+

Xn
〉)

D
−X (〈R−

X1
〉

D
∪X ...

D
∪X 〈R−

Xm
〉)] (2)

Equation (1) models XML query evaluation in XRDB. Similarly, (2) models
how only safe XML answers, SAX , are returned. Combine them, we have:

Definition 4 (Secure XRDB) . An XRDB is secure iff ∀ ACR set ACRX and
∀ query QX , it always returns the safe answer: AX ≡ SAX . Therefore,

C−1({CQ(QX)〈CD(DX)〉}′) ≡ 〈QX〉
D
∩X [(〈R+

X1〉
D
∪X ...)

D
−X (〈R−

X1〉
D
∪X ...)] (3)

�

Note that {CQ(QX)〈CD(DX)〉}′ indicates that access control mechanism inter-
venes in relational query processing. Our goal in this paper is to enforce XML
access controls on RDBMS so that Equation 3 holds in XRDB setting. In this
way, we need to convert access control rules RX and deep set operators into their
equivalent relational counterpart.
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1. {user, /site/people/person, read, +}
2. {user, /site/people/person/credicard, read, -}

DOCID ELEMENTID PATHID ST ED 
0  252  164  33996  36229 <people>
0  293  165  35592  35826 <person>
0  299  165  35832  36217 <person>
0  303  188  35989  36032  <creditcard>

SELECT  e0.DOCID, e0.ELEMENTID, e0.PATHID, e0.ST, e0.ED 
FROM document d, element e0, pth p0
WHERE p0.pathexp LIKE '#%/people'
AND e0.pathid = p0.pathid AND d.docid = e0.docid

(a)

(b)

SELECT  e0.DOCID, e0.ELEMENTID, e0.PATHID, e0.ST, e0.ED 
FROM document d, element e0, pth p0
WHERE p0.pathexp LIKE '#%/people#/person'
AND e0.pathid = p0.pathid AND d.docid = e0.docid

(c)

(d)

Fig. 2. Naive enforcement of “equivalent” relational ACR leads to wrong answer

4 XML Access Control in XRDB: The Theory

All entities of the 4-tuple XML access control model, except object, can be di-
rectly adopted to relational access control model. We apply an X2R algorithm
C(RX .object) to get RR.object. Therefore, we get “equivalent” relational ACR:

RR = {RX.subject,C(RX.object),RX.action,RX.sign}

However, naive enforcement of the converted relational access control rules may
lead to security leakage, as demonstrated in the following example:

Example 1. Consider two rules of Fig. 2(a) with XRDB(XRel) – an XRDB
employing XRel [48] as the conversion algorithm. The “element” table is partly
shown in Fig. 2(b). Rule 1 indicates that a user is allowed to access <person>
nodes, i.e., nodes 293 and 299 (record 2 and 3 in Fig. 2 (b)), and rule 2 indicates
that a user cannot access <credicard> nodes, i.e., node 303. Naive enforcement
will grant access to the record 2, 3; and revoke the access to record 4.

Query “//people” is desired to yield an answer containing two <person>
nodes, since they are the accessible descendants of the requested node. However,
the converted SQL query (Fig. 2(c)) yields no answer since access to record 1
is prohibited by default. Moreover, for a query “//person”, the converted SQL
(Fig. 2(d)) returns both <person> nodes to the user (with the unauthorized
<creditcard> node). This is so because both records of element 293 and 299
are accessible, while revoking access to element 303 does not affect its ancestor.�

4.1 Object and Operation Equivalency

To solve the problem illustrated in Example 1, we propose our framework of sup-
porting access control in XRDB systems. First, we define object and operation
equivalency between XML and relational.

Definition 5 (Object Equivalency) . When bothR=C(X) andX = C−1(R)
hold for XML node set X and relation R, we consider X and R equivalent w.r.t.
C/C−1, and denote as X ≡ R. �

Note that, when we talk about equivalency of X and R, we have to predefine
the context, i.e., select the X2R conversion algorithm C/C−1. For a XML node
set X , C(X) may be different under different X2R conversion algorithms.
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Definition 6 (Operation Equivalency) . Suppose X1 ≡ R1 and X2 ≡ R2

w.r.t. C/C−1. Then, an XML operation OPX is equivalent to a relational oper-
ation OPR (denoted as OPX ≡ OPR) w.r.t. C and C−1 if:

C(X1 OPX X2) = C(X1) OPR C(X2) = R1 OPR R2 �

Note that XML operator takes node sets as operands while its equivalent rela-
tional counterpart may not take two generic relations as operands. Each operand
is the equivalent objects of corresponding XML node set, which may be tables,
columns, records, etc. Relational operations require operands to be domain com-
patible (e.g., intersect, union etc.). We loosen this requirement for OPR.

With the concept of operation equivalency, we can migrate all the exciting
features of XML into XRDB by converting the atomic operations into equivalent
relational operation. Our secure XRDB problem is articulated as follows:

Lemma 1. In XRDB(C), if we can find relational operators,
D
∪R,

D
∩R, and

D
−R,

which are equivalent to XML deep set operators,
D
∪X ,

D
∩X , and

D
−X , w.r.t. the

X2R conversion algorithm C, we are able to enforce XML access control in
XRDB(C) such that Equation (3) always holds.

Please refer to [56] for detailed proof. Now we need to find equivalent operations

such that
D
∪R ≡

D
∪X ,

D
∩R ≡

D
∩X and

D
−R ≡

D
−X . Again, equivalency is based

on specific X2R conversion method, therefore, the existence and representation
of relational deep set operators also depends on the particular X2R conversion.
Hereafter, we analyze the role of each deep set operator in (2) and the existence of
its equivalent relational counterpart under different X2R conversion algorithms.

4.2 On Equivalent Conversion of Deep Set Operators

Deep-union operator is used to integrate all the accessible nodes defined by
individual positive rules (also, all the inaccessible nodes defined by negative

rules). With the property P
D
∪Q ⊆ P ∪Q [52], Remark 1 is rewritten into:

〈P 〉
D
∪X 〈Q〉 = {n|(n ∈ 〈P 〉 ∨ n ∈ 〈Q〉) ∧ (n �∈ 〈P//∗〉 ∧ n �∈ 〈Q//∗〉)} (4)

Let r = C(n). When C/C−1 is sound according to Definition 2, we have:

C(〈P 〉
D
∪X〈Q〉) = {r|[r ∈ C(〈P 〉)∨r ∈ C(〈Q〉)] ∧[r �∈ C(〈P//∗〉)∧r �∈ C(〈Q//∗〉)]}

Here, since we are to find
D
∪R such that C(〈P 〉)

D
∪R C(〈Q〉) = C(〈P 〉

D
∪X 〈Q〉):

C(〈P 〉)
D
∪RC(〈Q〉) = {r|[r ∈ C(〈P 〉)∨ r ∈ C(〈Q〉)] ∧[r �∈ C(〈P//∗〉)∧ r �∈ C(〈Q//∗〉)]}

The condition of [r ∈ C(〈P 〉) ∨ r ∈ C(〈Q〉)] is essentially the regular union. It
is composed by set containment and Boolean operations. In XRDB, set contain-
ment check is supported when the soundness requirement in Definition 2 is ful-
filled, and Boolean operation is generally supported in RDBMS. [r �∈ C(〈P//∗〉)
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∧ r �∈ C(〈Q//∗〉)] tends to support deep semantics. It requires XRDB to be able
to identify if r ∈ C(〈P//∗〉) for any given relational object r and set C(〈P 〉).

Lemma 2. To implement deep-union operator in XRDB(C), the X2R conver-
sion algorithm C should: (1) fulfil the soundness requirement stated in Defini-
tion 2; and (2) for given node n and node set 〈P 〉, it should be able to check the
containment condition of: C(n) ∈ C(〈P//∗〉), e.g., it should recognize if C(n) is
a descendant of any node C(pi);

At present, all X2R conversion algorithms (we are aware of) fulfill Lemma 2.

Deep-intersect operator is used to calculate the exact overlapping of queried
data and accessible data (i.e. 〈Q〉 and 〈ACR〉). It is defined as:

C(〈P 〉
D
∩X〈Q〉)={r|[r∈C(〈P 〉)∧ r ∈ C(〈Q〉)] ∧[r �∈ C(〈P//∗〉)∨ r �∈ C(〈Q//∗〉)]}

(5)
Compare with 4, they only differ in logical operators. Therefore, Lemma 2 could
be directly extended to deep-intersect.

Example 2. In Example 1, a query “//people” yields <people> nodes, i.e.
element 252, (record 1 in Fig. 2 (b)). Meanwhile, object field of access control
rule 1, “/site/people/person”, yields <person> nodes, i.e. element 293 and
299 (record 2 and 3 in Fig. 2 (b). In XRel, each XML node is marked with
“start” and “end” offset. Node containment is checked through comparison of
the offsets: for nodes p1 and p2, if (p1.start < p2.start) and (p1.end > p2.end), p2

is an descendant of p1. Here, we can tell that node 293 and 299 are descendants

of node 292. Therefore, “//people
D
∩X //person” yields node 293 and 299.

Comparing with Example 1, “//people ∩ //person” yields Null. �

The operands of XML deep-union/intersect operators may contain different
nodes. In RDBMS, where domain compatibility is strictly enforced, their re-
lational equivalent counterpart might be domain incompatible (e.g. a row “in-
tersect” a cell). This happens in schema-based X2R conversion (e.g. [44,45]),
where different XML nodes could be converted to tables, rows, etc. To tackle
this problem, we employ new RDBMS techniques, e.g. Oracle VPD, to enable
fine-control of relational tables to create relational views with any group of cells.

Deep-except is used to remove inaccessible nodes from the answer. Recall that,
in our XML access control model, all nodes are inaccessible by default. When
a user is prohibited to access a node, there is no need to write a negative rule
to revoke accessibility unless the node is covered by positive rules (ACR+).
Thus, negative rules are only used to specify exceptions to global permissions,
i.e. “revoke” access granted by ACR+. Deep except operator is used to enforce
negative rules. Regarding whether deep except could be implemented in XRDB
with X2R conversion algorithm, it depends upon the characteristics of specific
negative rule. In particular, we distinguish two types of negative rules:
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Definition 7 (Node elimination vs. Descendant elimination rules) . A
negative rule in ACR restricts user from access a set of nodes {r−1 , ...r−n }. If
none of the nodes is a descendant of the context node of a positive rule, i.e.:

r−i �∈ 〈R+//∗〉, ∀r−i ∈ {r−1 , ...r−n }; ∀〈R+〉 ∈ 〈ACR+〉

then it is called a node elimination (NE) negative rule. Else, if one of the
nodes is a descendant of the context node of a positive rule, i.e.:

r−i ∈ 〈R+//∗〉, ∃r−i ∈ {r−1 , ...r−n }; ∃〈R+〉 ∈ 〈ACR+〉

it is called a descendant elimination (DE) negative rule. �

Intuitively, “Node Elimination” negative rule removes context node from
〈ACR+〉. For XML nodes covered by node elimination negative rules 〈ACR−

1 〉,
deep-except operator directly removes them from 〈ACR+〉:

〈ACR+〉
D
−X 〈ACR−

1 〉 = {n|n ∈ 〈ACR+〉 ∧ n �∈ 〈ACR−
1 〉}

Essentially, this is the regular except semantics. In this way, in XRDB, we have,

C(〈ACR+〉)
D
−R C(〈ACR−

1 〉) = {r|r ∈ C(〈ACR+〉) ∧ r �∈ C(〈ACR−
1 〉)}

To support deep except operator for node elimination negative rules only, the
conditions described in Lemma 2 still apply.

On the other hand, “Descendant Elimination” negative rule removes descen-
dants from context node of 〈ACR+〉. It takes more burden to process descendant
elimination negative rules, where real “deep” semantics is required. That is,

〈ACR+〉
D
−X 〈ACR−

2 〉 = {deepRemove(n, n
D
∩X 〈ACR−

2 〉)|n ∈ 〈ACR+〉}
where deepRemove(p, 〈Q〉) takes a node and a set of its descendants as operands,
removes the descendants from the subtree of the node and return the remaining.
This function may not be directly converted to relational.

Lemma 3. When deep-except operator takes node specified by descendant elim-
ination negative rules as the second operand, it is implemented through
deepRemove() operation. To implement deep-except operator that supports de-
scendant elimination negative rules in XRDB(C), the X2R conversion algo-
rithm X should: (1) fully satisfy Lemma 2; and (2) for any node n1 and its
descendant n2, C(n2) should be part of C(n1); and in the reverse conversion of
n1 = C−1(C(n1)), node n2 in the subtree is entirely converted from C(n2).

Example 3. For instance, in Example 1, Rule 2 is a descendant elimination
negative rule since it revoke access towards descendants of node (<person>).

In XRDB(XRel) [48], descendants are converted to independent records that
are stand alone from ancestors. As shown in Fig. 2(b), to reconstruct a <person>
node, C−1

XRel() only takes record 2 to reconstruct a full node. The descendant
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<creditcard> is included in the answer, but the record 4 is not touched by
C−1

XRel(). Therefore, XRel violates condition (2) of Lemma 3, so that we can-
not directly implement deep-except operator to support descendant elimination
rules. When user requests for “//person”, we are not able to revoke access
towards <creditcard> child from RDBMS side.

In Shared-Inlining [45] approach, <person> nodes are translated into a table,
and <creditcard> nodes take a column. The relational schema is [57]:

Person(Id, ParentId, Person, Person_address, Person_address_city, ...
..., Person_address_zipcode, Person_creditcard, ......)

Here, the ancestor-descendant relationship is kept such that each row represents
a “person” node, and each cell represents a child node. Therefore, to obtain

//person
D
−X //creditcard, we just mask “person creditcard” column in the

table; and the reconstructed XML tree of “person” node will not have corre-
sponding child, i.e., “creditcard” node is removed from the XML answer. �

5 XML Access Control Enforcement in XRDB

Figures 3 shows a general framework for XML access control in XDB and XRDB.
There are three categories of XML access control enforcement mechanisms: (1)
view-based approach ( 1© 4© in Fig. 3); (2) pre-processing approach ( 2© 5© in
Fig. 3); and (3) post-processing approach ( 3© 6© in Fig. 3). In this section, we
articulate the algebra of these approaches using deep set operators.

5.1 View-Based Approach

When access control is first enforced on XML documents to create views, it is the
traditional view-based approach. In this model, XML view VX (or safe document
SD) is constructed, and query is evaluated against the view

SA = Q〈VX〉 = Q[(〈R+
X1〉

D
∪X ...

D
∪X 〈R+

n 〉)
D
−X (〈R−

1 〉
D
∪X ...

D
∪X 〈R−

m〉)]
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Fig. 3. Access control enforcement approaches in XML DB and XRDB
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Fig. 4. Enforcing XML access control via external pre-processing

To convert this approach into XRDB, we can either convert XML view into
relational view, as shown in 1© of Figure 3; or construct relational view using
converted relational ACR, 4© of Figure 3. They are formalized as:

SA = C−1(QR〈VR〉) = C−1(QR〈C(VX )〉) (6)
and SA = C−1(Q〈VR〉) = C−1(Q〈C(ACRX )〈DR〉〉) (7)

5.2 Pre-processing Approach

In preprocessing model, safe query SQ is constructed as:

SQX = QX

D
∩X [( R+

X1

D
∪X ...

D
∪X R+

Xn)
D
−X (R−

X1

D
∪X ...

D
∪X R−

Xm)]

Safe answer is yielded by evaluating safe query against the original document:
SAX = SQX〈DX〉. To extend this approach to XRDB, we have: (1) XML Query
Rewriting: as shown in 2© in Fig. 3, we convert the safe XML query into SQL,
and answer it with regular XRDB; and (2) Relational Query Rewriting: as shown
in 5© in Fig. 3, we convert original QX into SQL QR. and then we rewrite it into
safe query SQR. They are formalized as

SAX = C−1(SQR〈DR〉) = C−1(C(SQX)〈DR〉) (8)

and SQR = QR

D
∩R [( R+

R1

D
∪R ...

D
∪R R+

Rn)
D
−X (R−

R1

D
∪X ...

D
∪X R−

Rm)](9)

Example 4. Let use revisit the previous examples: we manage XMark docu-
ment in XRDB(XRel). Suppose we have access control rule (user, //people,
read, +), and user submits query //name. Figure 4(a) shows the relational

query for C(//people)
D
∩R C(//name), which is implemented according to the

definition in Equation 5 (we marked up all the sub-queries). Moreover, this query
could be further optimized, as shown in Figure 4(b). �
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Another method is to use Oracle VPD. Oracle version 8.1.5 introduces a new
security feature supporting non-view-based fine-grained access control, namely
Row Level Security or Virtual Private Database. It allows users to control acces-
sibility towards row/cell level. With VPD, we are able to tailor relational data
into any shape we want. To utilize VPD for access control in XRDB, we first
construct relational predicates from the converted relational access control rules
ACRR, then define a VPD policy to enforce the predicates on converted SQL
queries. Moreover, cell level access control capability of VPD is of special im-
portance to XRDB systems that use schema-based X2R conversion algorithm,
such as Inlining. In those XRDB systems, XML nodes are converted to different
types of relational objects: tables, rows and cells. In this way, 〈ACR〉 may not be
conventional relations, e.g. it could be arbitrary combinations of columns, rows
and/or individual cells.

5.3 Post-processing Based Approach

In native XML DB, access control through post-processing described as:

SAX = ACR〈AX〉 = ACR〈QX〈DX〉〉

In XRDB, this approach could be conducted through: (1) XML answer filtering
( 3© in Fig. 3); or (2) relational answer filtering ( 6© in Fig. 3). (1) is similar to
the postprocessing approach in [55], while (2) evaluates relational query QR to
obtain unsafe relational answer, and process ACRR against the answers:

SAX = C−1(SAR) = C−1(ACRR〈AR〉) = C−1(ACRR〈QR〈DR〉〉)

However, the post-processing filters require the intermediate answers (〈AR〉 or
〈AX〉) to retain information of the original paths for ACR to operate on. As an
example of this approach, [28] check streaming XML data against both query
and ACR at the same time. Since it works in the streaming data environment,
full paths are retained. However, in most X2R conversion algorithms, the inter-
mediate answer AR or AX does not contain full path information. Therefore,
postprocessing approaches are not suitable for all applications.

6 Experimental Validation

To show that the proposed theory and implementations are practical yet efficient,
we show our preliminary experimental results.

An XML document with 8517 nodes are generated by XMark [50]. We use
XRDB(XRel) [48], with Oracle 10g as underlying RDBMS. We design five roles,
abbreviated as A (administrator),M , RU , S and U , respectively. We do not have
any descendant elimination negative rules since XRDB(XRel) cannot directly
handle it (Lemma 3. We generate four groups of synthetic XPath queries, each
has a different setting of wildcards and predicates.

In the XRDB(XRel), we convert all rules into relational, and enforce them
through views and VPD. For a comparison, we also enforce same rule sets on
the same XML document in native XML environment. We enforce XML access
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Fig. 5. Query processing time for four sets of queries

control rules using QFilter [24], and answer XML queries using Galax. In all the
experiments, we use the query processing time as an evaluation metric. Figure 5
shows the results. Comparing both view-based and VPD-based approaches with
the reference (no security enforcement), our approaches do not add much over-
head for fine-grained access control. Meanwhile, the size of accessible data gets
smaller with security enforcement. Therefore, querying on smaller set of records
is even faster than that on no-security case.

7 Conclusion

In this paper, we propose a generic analysis to the access control problem in
XRDB. We first analyze XML control models to propose a formal description of
XML access control using deep set operators. Then we articulate the problem
of XML access control in XRDB as essentially the problem of XML/Relational
object and operation equivalency and conversion. We show that, equivalent coun-
terparts of deep set operators in relational model are needed to fully implement
XML access control in XRDB. We analyze the definition and semantics of each
operator, and show how they can be converted to XRDB through two lemmas.
Although detailed conversion implementation is connected with the specific X2R
conversion algorithm used in XRDB, we propose an algebraic description of these
operators. Moreover, we study possible implementations of XML access control
in XRDB. We categorize them into three approaches, and formally describe the
semantics of each approach using deep set operators. Finally, we show the valid-
ity of our approaches using experiment results.
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Abstract. Privacy is considered critical for all organizations needing to
manage individual related information. As such, there is an increasing
need for access control models which can adequately support the spec-
ification and enforcement of privacy policies. In this paper, we propose
a model, referred to as Conditional Privacy-aware Role Based Access
Control (P-RBAC), which supports expressive condition languages and
flexible relations among permission assignments for more complex pri-
vacy policies. Efficient algorithms for detecting conflicts, redundancies,
and indeterminism for a set of permission assignments are presented. In
the paper we also extend Conditional P-RBAC to Universal P-RBAC
by taking into account hierarchical relations among roles, data and pur-
poses. In comparison with other approaches, such as P3P, EPAL, and
XACML, our work has achieved both expressiveness and efficiency.

1 Introduction

Privacy is today a key issue in information technology (IT)[24] and has received
increasing attention from consumers, stakeholders, and legislators. Legislative
acts, such as the Health Insurance Portability and Accountability Act (HIPAA)
[27] for healthcare and the Gramm Leach Bliley Act (GLBA)[28] for financial
institutions, require enterprises to protect the privacy of their customers. To
address privacy, enterprises have adopted various strategies to protect customer
data and to communicate their privacy policies to customers, such as publishing
privacy policies on websites [2] possibly based on P3P, or incorporating privacy
seal programs (e.g. TRUSTe [25], ESRB, BBBOnline, CPAWebTrust). Those ap-
proaches however cannot truly safeguard consumers because they do not address
how consumer personal data is actually handled after it is collected. Enterprises’
actual practices might intentionally or unintentionally violate the privacy poli-
cies published at their websites. Privacy protection can only be achieved by
enforcing privacy policies within an enterprise’s online and offline data process-
ing systems. Therefore enforceability of privacy policies is the key to a solution
for privacy protection.

Conventional access models, such as Mandatory Access Control (MAC) and
Discretionary Access Control (DAC), are not designed to enforce privacy policies
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Fig. 1. A family of conceptual P-RBAC models

and barely meet the requirements of privacy protection [8]. However, existing ac-
cess control technology can be used as a starting point for managing personal
identifiable information in a trustworthy fashion [20]. A language used for pri-
vacy policies must be the same as or integrated with the language used for
access control policies, because both types of policy usually control access to the
same resources and should not conflict with one another [3]. Under this promise,
we have proposed a family of Privacy-aware Role Based Access Control (P-
RBAC) models (see Figure 1) [17] that naturally extend classical RBAC models
[7,23] to support privacy policies. Due to the complexity and variety of privacy
policies and privacy requirements from different organizations, we employ a “Di-
vide and Conquer” methodology. That is, the models in our P-RBAC family
are designed to meet different levels of requirements and handle different prob-
lems. The P-RBAC family includes four models: Core P-RBAC, Hierarchical
P-RBAC, Conditional P-RBAC and Universal P-RBAC. Core P-RBAC is the
basic model and is able to directly represent privacy-crucial information, such
as purpose of data use and obligations. However, although Core P-RBAC can
be used to describe commonly used public privacy policies and some acts, the
limited expressiveness of its condition language makes it not suitable for repre-
senting internally enforceable privacy policies for large scale enterprises and/or
complex applications. Specifically, Core P-RBAC has the following limitations.
First, Core P-RBAC only supports equality constraints on context variables in
finite domains. Second, conditions are restricted to conjunctions of atomic for-
mulas. Third, it only supports one type of relation, that we refer to as AND,
among different permission assignments. The type of relation adopted by a set
of permission assignments is crucial in determining which obligations need to be
executed and which conditions have to be meet when several permissions may
apply to the same request1.

In this paper, we address the aforementioned shortcomings by developing
two advanced models, the Conditional P-RBAC and the Universal P-RBAC.
Conditional P-RBAC supports more expressive condition languages and more
flexible relations between permission assignments. Moreover, we extend the lim-
ited analysis operation in [17] to redundancy check, indeterministic obligation

1 In standard policy languages, such as EPAL[10] and XACML[18], the relations be-
tween rules are not clearly defined. In order to handle possible interactions or con-
flicts between rules, EPAL and XACML adopt a simple approach: making only one
rule applicable and simply ignoring all other rules. In contrast, relations between
permission assignments in P-RBAC models are explicitly defined.
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enforcement check, conflict check and coverage queries. Universal P-RBAC adds
the concept of hierarchy to Conditional P-RBAC, and it is thus able to support
more complex requirements. To summarize, our current work has the following
five major differences when compared to existing work: 1) Domains, atomic con-
ditions, and relations among permission assignments are carefully crafted to meet
the most demanding needs from privacy polices while keeping the complexity of
policy analysis tractable; 2) Special structures are proposed to process oblig-
ations appearing in multiple permission assignments that can simultaneously
apply; 3) Indeterminism in obligation enforcement among policies is identified
and a solution is proposed; and 4) Efficient algorithms for detecting conflicts,
indeterminism and redundancies of a new permission assignment against all ex-
isting permission assignments2 are presented.

2 A Summary of Core P-RBAC

Core P-RBAC [17] is the foundation of the P-RBAC family models. It includes
seven sets of entities: Users(U ), Roles(R), Data(D), Actions(A), Purposes(P),
Obligations(O), and Conditions (C ) expressed by a customized language, re-
ferred to as LC0. A user in the Core P-RBAC model is a human being, and
a role represents a job function or job title within the organization with some
associated semantics regarding the authority and responsibility conferred on a
member of the role. Data in P-RBAC means any information relating to an iden-
tified or identifiable individual. An action is an executable image of a program,
which upon invocation executes some function for the user. The types of action
and data objects that P-RBAC controls depend on the type of system in which
they are deployed.

The motivations for i ntroducing Purposes, Conditions, and Obligations in
Core P-RBAC originate from OECD Guidelines [19] on the Protection of Pri-
vacy and Transborder Flows of Personal Data, current privacy laws in the United
States, and public privacy policies of some well-known organizations. The OECD
guidelines are, to the best of our knowledge, the most well-known set of pri-
vate information protection principles, on which many other guidelines, data-
protection laws, and public privacy policies are based. Purposes which are bound
to actions on data in Core P-RBAC directly reflect the OECD Data Quality Prin-
ciple, Purpose Specification Principle, and Use Limitation Principle. Purposes
are widely used for specifying privacy rules in legislative acts and actual public
policies. Obligations, that is, actions to be performed after an action has been
executed on data objects, are also part of many privacy policies. Conditions,
that is, prerequisites to be met before any action can be executed, are frequent
components of privacy policies too.

Core P-RBAC directly models the above notions. In Core P-RBAC, as in
classical RBAC, permissions are assigned to roles and users obtain such per-
missions by being assigned to roles. The distinctive feature of Core P-RBAC
2 The significance of comparing a new permission assignment against all pre-existing

assignments simultaneously as opposed to pair-wisely is elaborated in Section 4.1.
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lies in the complex structure of privacy permissions, which reflects the highly
structured ways of expressing privacy rules to represent the essences of OECD
principles and Privacy acts. Hence, aside from the data and the action to be per-
formed on it, a privacy permission explicitly states the intended purpose of the
action along with the conditions under which the permission can be granted and
the obligations that are to be finally performed. Conditions are represented by
conjunction of equality constraints over context variables, which record privacy-
relevant requirements taken into account when enforcing privacy permissions.
The following definition introduces Core P-RBAC. We refer the readers to [17]
for additional details.

Definition 1. The Core P-RBAC model is composed of the following compo-
nents:
– A set U of users, a set R of roles, a set D of data, a set P of purposes, a

set A of actions, a set O of obligations, and a condition language LC0.
– The set of Privacy-sensitive Data Permission PDP = {(a, d, p, c, o)| a ∈
A, d ∈ D, p ∈ P, c is an expression of LC0, o ∈ P(O)}, where P(O)
denotes the powerset of O.

– User Assignment UA ⊆ U × R, a many-to-many mapping user to role as-
signment relation.

– Privacy-sensitive Data Permission Assignment PDPA ⊆ R×PDP , a many-
to-many mapping privacy-sensitive data permission to role assignment
relation. �

For simplicity, we use (r, a, d, p, c, o) to denote a permission assignment in the
rest of the paper.

3 Conditional P-RBAC

A major shortcoming of Core P-RBAC is the limited expressive power of its
condition language LC0. For example, LC0 is not able to express conditions like
(DataUser=“Alice”) OR (DataUser=“Bob”) because it only supports conjunc-
tion as logical operator. LC0 cannot deal with conditions like (8am <
currentT ime < 5pm) either because it only supports equality comparisons.

However, enhancing the expressiveness may result in a condition language
which is not tractable. In particular, to determine whether a condition in a
permission assignment can be satisfied is essentially the classic NP-complete
satisfiability problem (SAT) where only a few classes of formulae are tractable.
Therefore, for practical purposes, we divide our problem into two subcases, a
tractable case and an intractable case, by carefully investigating commonly used
conditions in privacy policies. Correspondingly, we define Conditional P-RBAC
as characterized by a two-fold solution as follows.
– We define a more expressive condition language LC1 and introduce the con-

cept of simple permission assignment set, for which SAT is tractable.
– We define a fully expressive condition language LC2 and introduce the con-

cept of advanced permission assignment set, for which SAT is theoretically
intractable but remains tractable in practice given a reasonable assumption.
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3.1 Context Variable Domains and Atomic Conditions

Definition 2. In both LC1 and LC2, conditions are expressed against context
variables in the following domains with respective relational operators that have
the standard semantics:
– Integer domain I with operators <,≤,=, �=, >,≥.
– String domain S with operators <,≤,=, �=, >,≥.
– Real domain R with operators <,≤,=, �=, >,≥.
– Date domain D with operators <,≤,=, �=, >,≥.
– Time domain T with operators <,≤,=, �=, >,≥.
– A finite tree domain H with operators <,≤,=, �=, >,≥,≺,�, ,!,", �".
– A finite partially ordered discrete domain PO with operators <,≤,=, �=, >,≥,
≺,�, ,!,", �".

– A finite unordered discrete domain UD with operators =, �=. �

These domains are commonly used in various kinds of policies including privacy
policies. For example, X.500 directories and XML data are in the tree domain;
some security labels and role hierarchies are in the partially ordered discrete
domain; Boolean values and data subject’s consent are in the unordered discrete
domain. Most relational operators are easily understood and thus here we only
explain some relational operators used in the tree domain and the partially
ordered domain. Let x be a context variable in a tree domain Tx and let v ∈ Tx,
x < v denotes that x is a descendant of v, while x ≺ v means x is a direct
descendent(child) of v. Similarly, the operator > represents the ancestor relation
while  describes the direct ancestor (parent) relation. The operators " and �"
represent comparability and non-comparability tests between domain elements
respectively.

Definition 3. The atomic conditions of LC1 and LC2 are defined as follows:
– Let Dx be one of the domains introduced by Definition 2; let xi and xj be

variables in Dx; let v be a constant in Dx; let opr ∈ {=, �=}; then xi opr v
is an atomic condition, referred to as equality atomic condition.

– Let Dx be one of the domains introduced by Definition 2 different from do-
main UD; let xi and xj be variables in Dx; let v be a constant in Dx; let
opr ∈ {<,≤, >,≥}; then xi opr v is an atomic condition, referred to as
order atomic condition.

– Let Dx be domain H or domain PO; let xi and xj be variables in Dx; let v
be a constant in Dx; let opr ∈ {≺,�, ,!,", �"}; then xi opr v is an atomic
condition, referred to as hierarchy atomic condition. �

Note that for all domains in Definition 2, except UD, the order atomic condition
is more expressive than the equality atomic condition because the equality op-
eration is just a special case of order relation. One typical class of condition in
policies are range condition such as x ∈ (0, 13]. Ranges can be easily represented
by two order atomic conditions. We also do not define negation of atomic con-
ditions in the totally ordered domain (i.e. integer, real, string, date, and time)
as atomic conditions because it can be easily expressed by using corresponding
negative relational operators. For example, a negation of atomic condition (not
OwnerAge ≤ 13) can be represented as (OwnerAge > 13).
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3.2 The Condition Language LC1 and Simple Permission
Assignment Sets

Given the definition of atomic conditions, we now define LC1 conditions.

Definition 4. The conditions of LC1 are defined as follows:
– An atomic condition is a condition of LC1.
– Let ci and cj be conditions of LC1; then ci ∧ cj 3 is a condition of LC1. �

When dealing with multiple permission assignments including conditions and
obligations, it is fundamental to understand the semantics associated with the
permission when multiple assignments can be applied. For this purpose, we in-
troduce two possible relations AND and OR. An AND relation for a set of per-
mission assignments indicates that an access request related to these permission
assignments will be authorized only if all conditions in these permission assign-
ments are satisfied and all obligations are fulfilled thereafter. Alternatively, an
OR relation for a set of permission assignments indicates that an access request
related to these permission assignments will be authorized if one of the con-
ditions in these permission assignments is satisfied and only the corresponding
obligations in that permission assignment are fulfilled thereafter (more details
about AND and OR relation are presented in Section 4.1). To handle AND and
OR relations, we introduce the concept of Simple Permission Assignment Sets
(SPAS).

Definition 5.
– An atomic simple permission assignment set is a set {PA1, PA2, ..., PAk},

such that the relation among the permission assignments in the set is AND.
– Let SPAS1, ..., SPASn be atomic SPASs, then {SPAS1, ..., SPASn} is

a non-atomic SPAS, if (i) the relation among atomic SPAS’s is OR; and
(ii)SPASi ∩ SPASj = ∅, i, j ∈ [1..n] ∧ i �= j.

– An atomic SPAS is a SPAS; a non-atomic SPAS is a SPAS. �

Many permission can be expressed using SPAS. e.g., SPAS allows different groups
or departments to define their own permission assignments in one or several
permission sets. Also, SPAS helps to specify the relation OR between permission
assignments. Organizational privacy policies can then be represented by a finite
number of atomic SPASs. Consider the following example: “Marketing employee
can only access customers’ email address for promotion if the customers are not
under 13 and allow them to do so. If they are under 13, they need to get their
parents’ consent”. The corresponding SPAS is as follows.

Example 1. SPAS ≡ {SPAS1, SPAS2}; SPAS1 ≡ {(MarketingEmployee,
Read, EmailAddress, Promotion, OwnerAge > 13 ∧ OwnerConsent=Yes, ∅)};
SPAS2 ≡ {(MarketingEmployee, Read, EmailAddress, Promotion, OwnerAge
≤ 13 ∧ ParentalConsent=Yes, ∅)}. �

3 To avoid ambiguities, Boolean operators ∧ and ∨ will be used in predicate conditions,
while AND and OR will be used to denote relations between permission assignments.
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The rationale behind LC1 and SPAS is to provide good expressiveness while
guaranteeing the efficient generation of disjunctive OR forms by permission as-
signment normalization. Disjunctive normal form and permission assignment
normalization ensure the efficiency of our analysis algorithms. We will detail
these concepts and analysis in Section 4.

3.3 The Condition Language LC2 and Advanced Permission
Assignment Sets

Some applications may require the ability to specify more complex conditions
that need both Boolean operators ∧ and ∨. For example, the condition
(OwnerAge ≤ 13 ∧ ParentalConsent = Y es) ∨ (OwnerAge > 13 ∧
OwnerConsent = Y es). We define the language LC2 to cover these cases.

Definition 6. The conditions of LC2 are defined as follows:
– An atomic condition is a condition of LC2.
– Let ci and cj be conditions of LC2; then ci ∧ cj and ci ∨ cj are conditions of
LC2. �

Along with LC2, an Advanced Permission Assignment Set(APAS) is defined to
support the representation of different relations among permission assignments.

Definition 7. Let S be a set of all possible permission assignments.
– An atomic APAS is a tuple N [rel, pas, ∅], where N is an identifier, rel ∈
{AND, OR} and pas is a finite subset of S.

– Let rel ∈{AND,OR}, pas is a finite subset of S, and apas be a set of APAS;
then a N [rel, pas, apas] is an APAS. �

Example 2. Let PA1, PA2, ..., PA14 be permission assignments. An example
APAS is APAS1 [ AND, {PA1, PA2}, {APAS2 [AND, {PA3, PA4}, {APAS3

[OR, {PA5, PA6}, ∅], APAS4 [OR, {PA7, PA8}, ∅]}], APAS5 [OR, {PA9,
PA10}, {APAS6 [AND, {PA11, PA12}, ∅], APAS7 [OR, {PA13, PA14}, ∅]}]}],
which can be represented as a tree(see Figure 2). �

The advantage of APAS is that it provides a natural and flexible way to help
administrate different levels of permission assignments. Example 2 could repre-
sent a company with two departments D1 and D2. D1 has teams T1 and T2, and
D2 has teams T3 and T4. We may allow a senior privacy officer to administrate
the whole APAS tree, and departmental privacy officers to maintain APAS2 and
APAS5 respectively. If necessary, a privacy officer can also be assigned to several
APAS nodes in the tree.

APAS1{AND {PA1,PA2},{ APAS2, APAS5}}

APAS2{AND {PA3,PA4},{ APAS3, APAS4}} APAS5{OR {PA9,PA10},{ APAS6, APAS7}}

APAS3{OR {PA5,PA6}, } APAS4{AND {PA7,PA8}, } APAS6{AND {PA11,PA12}, } APAS7{OR {PA13,PA14}, }

Fig. 2. An APAS tree
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4 Consistency Checking in Conditional P-RBAC

In P-RBAC, when a new permission assignment is entered, the privacy officer
needs to check how the new permission assignment interacts with existing ones.
We refer to such task as consistency checking of permission assignments.

Definition 8. A new permission assignment is consistent with pre-existing per-
mission assignments if none of the following conditions hold:

– Redundancy. A permission assignment x is redundant with respect to a
group of permission assignments Y ≡ {y1, ..., yn}(n ≥ 1) if the addition of x
does not affect the behavior of the system governed by Y .

– Conflict. A permission assignment x conflicts with a group of permission
assignments Y ≡ {y1, ..., yn}(n ≥ 1) if the addition of x results in that one
action of the system governed by Y can be never carried out or there exists
a conflict among new obligations.

– Indeterminism. A permission assignment x results in indetermination
with respect to a group of permission assignments Y ≡ {y1, ..., yn}(n ≥ 1) if
the addition of x results in that the enforcement of obligations governed by
Y becomes nondeterministic. �

Here the unchanged behavior in the definition of redundancy means given any
data request, the system will make the same decision and execute the same set of
obligations. Conflict happens if (i) the new condition created after the addition of
x cannot be satisfied; or (ii) the new obligations introduced by x need to be added
to a set of obligations of a permission assignment and the new obligations conflict
with the set. Indeterminism arises because of the relations between conditions
and obligations in privacy policies. For example, if there is a permission assign-
ment (MarketingEmployee, read, EmailAddress, promotion, ownerage ≤ 13,
notify(byPhone, optout)), a new permission assignment(MarketingEmployee,
read, EmailAddress, promotion, ownerage ≤ 19, notify(byEmail)) that has
OR relation with respect to the original permission assignment results in inde-
terministic obligation enforcement. For a kid who is ten, enforcement of notify
(byPhone, optout) or notify(byEmail) is undetermined to system. Any policy
language that supports both pre-conditions and post-actions may suffer from
such a problem.

Based on the result of consistency checking, the privacy officer will accept or
reject new permission assignments, resolve potential conflicts, or mark certain
permission assignments as being inactive. Consistency checking can also include
coverage queries. In some cases, the privacy officer may want to know if the per-
mission assignments have been defined for a certain range of context variables.
For example, a privacy officer may want to know if third parties can access pur-
chase order information for research purposes between 19:00 and 22:00. In what
follows, we present a normalization technique to carry out the above analysis in
Conditional P-RBAC.
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4.1 Permission Assignment Normalization

In Conditional P-RBAC, permission assignments are maintained as a SPAS or an
APAS tree. Directly using such a set or tree structure to answer data requests
or to detect whether there exists a conflict between a new permission assign-
ment and the pre-existing permission assignments, may not be efficient because
sometimes the entire set or the entire tree need to be traversed to find an an-
swer. Therefore, it would be helpful to translate a SPAS (an APAS tree) into a
form better suited for analysis; we call such a translation permission assignment
normalization.

Observe that in a group of permission assignments, either in a SPAS or in
an APAS, two permission assignments may interact with each other only when
they share the same role, action, data and purpose. Otherwise, the permission
assignments are incomparable4. Therefore, the goal of permission assignment
normalization is to generate a new permission assignment set such that each
combination of (role, action, data, purpose) only appears once in the set.

The benefit of the normalization for answering data access requests is obvious.
Now the system can give an answer within constant time by using a hashing func-
tion H(r, a, d, p) to locate the permission assignment being queried. The same
hashing function can be used to improve the efficiency of the consistency check-
ing. It is worth noting that the normalization is extremely helpful in determining
the relation between a new permission assignment and a group of permission as-
signments because a series of related permission assignments will become one
permission assignment after the normalization. It is not sufficient to compare
a new permission assignment against each existing permission assignment. For
example, let D be a finite domain {a, b, c} and x be a context variable on D,
let P1 and P2 be two existing permission assignments with conditions x �= a
and x �= b respectively, let P3 be the new permission assignments with condition
x �= c, and we assume the other components of P1, P2 and P3 are the same and
they have an AND relation. Obviously P3 does not conflict individually with P1

or P2, but conflicts with the integration of P1 and P2.

Definition 9. Let S and S′ be two permission assignment sets, we say the be-
havior of S′ is equivalent to that of S if for any data access request, S′ yields
the same authorization decision and performs the same obligations as S. �

The normalization is challenging because we must guarantee that the behavior
of a normalized permission assignment is equivalent to the original assignments.
The difficulty lies in the analysis of conditions and obligations. In the following,
we discuss the procedures for normalizing SPAS and APAS separately.

Permission Assignment Normalization on SPAS. To facilitate permission
assignment normalization on SPAS, we first introduce the following structure.

Definition 10. Let R be a set of roles, D be a set of data, P be a set of pur-
poses, A be a set of actions, O be a set of obligations in Conditional P-RBAC;
4 The statement is not true if role hierarchies, data hierarchies and purpose hierarchies

are considered. Such situation is discussed in Universal P-RBAC.
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a condition-obligation structure is a set of tuples of the form (c, o) where c is a
condition of LC1 and o ∈ P(O); a normalized permission assignment is a 5-tuple
(r, a, d, p, co) where r ∈ R, a ∈ A, d ∈ D, p ∈ P , and co is a condition-obligation
structure. �

The normalization algorithm for SPAS consists of two steps. First, for permis-
sion assignments with the same (role, action, data, purpose) in the same SPAS,
we combine their conditions using the Boolean operator ∧, and associate the
new condition with the UNION of corresponding obligations. Second, we con-
struct the condition-obligation structure for permission assignments with the
same (role, action, data, purpose) in different SPASs. Given a normalized per-
mission assignment (r, a, d, p, co) where co = {(ci, oi) | 0 < i < k} and k is
the number of atomic SPASs in the SPAS, if a single ci is satisfied, the data
access request is allowed and the corresponding obligations in oi are performed
later. The pseudo codes of the algorithms are shown in Figures 3 and 4. The
time complexity of each algorithm is O(n) assuming the number of permission
assignments is n. We use Example 3 to illustrate ideas in the algorithms.

Algorithm CO-Normalization(NSPAS)
Input: NSPAS is a non-atomic SPAS with respect to the same (role, action, data, purpose)
1. NPAL← nil; // NPAL is a normalized permission assignment list
2. ConditionObligationStructure ← ∅;
3. for each atomic SPAS in the NSPAS
4. (c, o)← (true, ∅);
5. for each permission assignment (r′, a′, d′, p′, c′, o′) in SPAS
6. (c, o) ← (c ∧ c′, o ∪ o′);
7. ConditionObligationStructure ← ConditionObligationStructure ∪ (c, o);
8. NPAL← List.CONS((role, action, data, purpose,ConditionObligationStructure), NPAL);
9. return NPAL.

Fig. 3. CO-Normalization algorithm

Algorithm SPAS-Normalization(NSPAS)
Input : NSPAS is a non-atomic SPAS
1. NPAL← nil; // NPAL is a normalized permission assignment list;
2. divide NSPAS into {NSPAS1, NSPAS2, ..., NSPASn},

where NSPASi consists of permission assignment with same (role, action, data, purpose);
3. for i ← 1 to n
4. NPAL ← List.CONS(CO-Normalization(NSPASi),NPAL);
5. return NPAL.

Fig. 4. SPAS-Normalization algorithm

Example 3. Consider a SPAS containing the following atomic SPASs:
SPAS1((r11, a11, d11, p11, c11, o11), (r12, a12, d12, p12, c12, o12), (r13, a13, d13, p13, c13, o13)),
SPAS2((r21, a21, d21, p21, c21, o21), (r22, a22, d22, p22, c22, o22), (r23, a23, d23, p23, c23, o23)),
SPAS3((r31, a31, d31, p31, c31, o31), (r32, a32, d32, p32, c32, o32), (r33, a33, d33, p33, c33, o33)).
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We assume (r11, a11, d11, p11) = (r21, a21, d21, p21) = (r22, a22, d22, p22) = (r31,
a31, d31, p31) = (r32, a32, d32, p32) = (r33, a33, d33, p33).

Suppose there is a data request DR concerning (r11, a11, d11, p11). Several
possible cases exist according to the definition of SPAS:
– If DR satisfies c11, the request will be authorized and obligations in o11 will

be performed.
– If DR satisfies c21 ∧ c22, then the request will be authorized and obligations

in o21 ∪ o22 will be performed. The intuition of the union of obligations is as
follows:
• Since DR satisfies c21 in permission (r21, a21, d21, p21, c21, o21), obliga-

tions in o21 should be performed.
• Since DR satisfies c22 in permission (r22, a22, d22, p22, c22, o22), obliga-

tions in o22 should be performed.
• Duplicated obligations should be performed only once because generally

several enforcements of a same obligation do not make sense.
– If DR satisfies c31 ∧ c32 ∧ c33, then the request will be authorized and oblig-

ations in o31 ∪ o32 ∪ o33 will be performed.
– Otherwise, the request will be denied.

Then, the normalized permission assignment set is :(r′, a′, d′, p′, co′), (r12, a12, d12,
p12, {(c12, o12)}), (r13, a13, d13, p13, {(c13, o13)}), (r23, a23, d23, p23, {(c23, o23)}),
where r′ = r11, a′ = a11, d′ = d11, p′ = p11, and co′ = {(c11, o11), (c21∧c22, o21∪
o22), (c31 ∧ c32 ∧ c32, o31 ∪ o32 ∪ o32)}. �

Based on the definition of condition-obligation structure, it is easy to prove the
following lemma:

Lemma 1. Algorithm CO-Normalization and SPAS-Normalization guaran-
tee that the behavior of the normalized permission assignment set is equivalent
to that of the original simple permission assignment set. �

Permission Assignment Normalization on APAS. The main difference
between SPAS and APAS is the use of Boolean relation ∨ between conditions
and the relation OR between permission assignments. However, we can still apply
the same idea underlying the normalization of a SPAS to normalize an APAS
tree because as in SPAS, permission assignments with different (role, action,
data, purpose) in an APAS tree do not interfere with one another. The main
challenge is again the processing of obligations. In order to solve the problem,
we introduce a new concept, referred to as condition-obligation binding. The
idea behind this concept is that the fact that the obligations must be fulfilled
depends on the conditions satisfied by a data access request.

Definition 11. Let c be a condition expressed according to LC2, O be a set of
obligations and o ∈ P(O). [c, o] is a condition-obligation binding. If [ci, oi] and
[cj , oj ] are condition-obligation bindings, [ci, oi]∧ [cj , oj ] and [ci, oi]∨ [cj , oj ] are
condition-obligation bindings too. Further, [c, o] is called a normal condition-
obligation binding if c is a condition in LC1 (i.e. a conjunction of atomic
conditions). �
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Lemma 2. A condition-obligation binding supports the following transforma-
tions:
– [ci ∨ cj , o]⇔ [ci, o] ∨ [cj , o].
– [ci ∧ (cj ∨ ck), o] ⇔ [ci ∧ cj , o] ∨ [ci ∧ ck, o].
– [ci, oi] ∧ [cj , oj ]⇔ [ci ∧ cj , oi ∪ oj ]. �

The normalization algorithm for an APAS tree is as follows. First, we transform
all permission assignments in the APAS tree into a new form (r, a, d, p, [c, o]).
Second, we remove all relation operators and sub-trees by moving relation op-
erators into condition-obligation bindings. For example, given (r, a, d, p, [ci, oi])
OR (r, a, d, p, [cj , oj ]), we have (r, a, d, p, [ci, oi] ∨[cj , oj ]). After this step, we ob-
tain a set of permission assignments in the form of (r, a, d, p,�n

i=1[ci, oi]) where
� ∈ {∧,∨}. Next, we convert �n

i=1[ci, oi] into ∨m
j=1[cj , oj ], where [cj , oj ] is a nor-

mal condition-obligation binding, by using the transformations given in Defini-
tion 11. Finally, we transform ∨m

j=1[cj , oj ] into a condition-obligation structure
and generate a set of normalized permission assignments. The pseudo code is
omitted due to space constraints. The following example illustrates the algo-
rithm.

Example 4. Consider Example 2. Assuming that APAS1 contains the following
permission assignments: PA3 = (r3, a3, d3, p3, c3, o3), PA8 = (r8, a8, d8, p8, c8, o8)
PA9 = (r9, a9, d9, p9, c9, o9), PA13 = (r13, a13, d13, p13, c13, o13) where r3 = r8 =
r9 = r13, a3 = a8 = a9 = a13, d3 = d8 = d9 = d13, p3 = p8 = p9 = p13. The
following steps are executed by the algorithm.

Step 1: Group permission assignments according to (role, action, data, pur-
pose) and construct condition-obligation bindings, where we have:
PA3 = (r3, a3, d3, p3, [c3, o3]), PA8 = (r8, a8, d8, p8, [c8, o8])
PA9 = (r9, a9, d9, p9, [c9, o9]), PA13 = (r13, a13, d13, p13, [c13, o13])

Step 2: Flatten the APAS tree by moving the relational operators into the per-
mission assignments. We obtain NPA′=(r3, a3, d3, p3, [c3, o3] ∧[c8, o8] ∧([c9, o9]
∨[c13, o13])). We assume that c3, c8, c9 and c13 are atomic conditions (a more
general case of conditions is shown in our technical report).

Step 3: Transform the condition-obligation bindings in NPA′ into a DNF as
shown below.

[c3, o3] ∧ [c8, o8] ∧ ([c9, o9] ∨ [c13, o13]) ⇒ [c3 ∧ c8 ∧ c9, o3 ∪ o8 ∪ o9] ∨ [c3 ∧ c8 ∧
c13, o3 ∪ o8 ∪ o13].

Step 4: Construct the condition-obligation structure and generate the normal-
ized permission assignment: NPA = (r3, a3, d3, p3, {(c3 ∧ c8 ∧ c9, o3 ∪ o8 ∪ o9),
(c3 ∧ c8 ∧ c13, o3 ∪ o8 ∪ o13)}) �

It is worth noting that the disjunctive normal form transformation for the
condition-obligation bindings may be exponential to the number of atomic con-
ditions. However, such situation rarely happens in practice due to the following
observations. First, in real privacy policies, for each flattened permission assign-
ment, the number of atomic conditions in the conditions is usually very small
(e.g. ≤ 10). Second, the APAS-Normalization is linear with respect to the num-
ber of permission assignments, which has no direct relation with the total number
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of context variables. In other words, even if the total number of context variables
were tens of thousands, the running time of our APAS-Normalization will still
be linear in the total number of permission assignments.

4.2 Permission Assignment Maintenance

In conditional P-RBAC, we guarantee that there is no redundancy, indeter-
minism or conflict between a new permission and a pre-existing permission as-
signment set by taking the following steps when inserting a new permission
assignment is issued.

1. Redundancy checking. If no error occurs, continue.
2. Conflict detection. If no error occurs, continue.
3. Indeterminism checking. If no error occurs, insert the new permission assign-

ment.

Definition 12. Let NPAL be a normalized permission assignment set based on
either a SPAS or an APAS set, PA′ be a new permission assignment, NPA is
the normalized permission assignment which have the same (role, action, data,
purpose) as PA′, and NPA′ is the normalized permission assignments of the
addition of PA′ in the pre-existing permission assignments.

– If either a condition of NPA′ is not satisfiable or an obligation conflict is
detected, we say PA′ strongly conflicts with NPAL.

– Let CO = {(c1, o1), ..., (cn, on)} be a condition-obligation structure of NPA′.
If a ci, for i ∈ [1, n], is not satisfiable, we sayPA′ weakly conflicts5 withNPAL.

– If the context variable domain of NPA is the same as that of NPA′ and the
corresponding obligation sets are equivalent, we say PA′ is redundant with
respect to NPAL.

– Let CO = {(c1, o1), ..., (cn, on)} be a condition-obligation structure of NPA′.
If there exist two tuple (ci, oi), (cj , oj) ∈ CO such that ci ∧ cj is satisfiable
and oi �= oj, we say PA′ causes indeterminism of obligation enforcement in
NPAL. �

The coverage query can be very generic and depends on requirements and their
implementations, therefore no formal definition is given here. The general case
of coverage queries is that given some constraints on role, data, purpose, and
context variables, the system checks whether they are satisfiable or unsatisfiable
based on a permission assignment set.

Given the definition of redundancy, strong conflict, weak conflict, and indeter-
minism, our permission assignment normalization algorithms, and the domain
elimination algorithms discussed in [1], the problems of redundancy checking,
indeterminism checking, conflict detection and coverage queries are converted
into a tractable satisfiability problem. We do not include more details due to
space limitation.
5 Weak conflict may indicate potential problems introduced by a new permission as-

signment because it causes some (ci, oi) to be totally useless.
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5 Universal P-RBAC

Universal P-RBAC combines Hierarchical P-RBAC and Conditional P-RBAC,
and inherits both their features. Such integration of Hierarchical P-RBAC and
Conditional P-RBAC supports the specification of more complex relations be-
tween different permission assignments, which in turn raises several issues with
respect to consistency check.

5.1 Hierachical P-RBAC

Hierarchical P-RBAC provides role hierarchies (RH), data hierarchies (DH) and
purpose hierarchies (PH). Role hierarchies represent an important notion in
RBAC [23,7], which reflect organization’s lines of authority and responsibility.
Mathematically, role hierarchies are partial orders. The purpose hierarchy is rep-
resented as a tree, where each purpose (except the root purpose) has exactly one
parent purpose and there are no cycles. A parent node represents a more general
purpose than its children nodes. Access for a parent purpose is allowed only when
the access for all its children purpose is allowed. Like the purpose hierarchy, the
data hierarchy is also a tree structure. Access to a parent data object is allowed
only if access to all its children is allowed. Introducing the hierarchy concept
compacts permission assignments (e.g., permission assignments with different
purposes may be clustered providing all the child purposes are already covered),
and also complicates consistency check.

5.2 Interactions Between Hierarchical P-RBAC and Conditional
P-RBAC

As mentioned in previous section, inserting a new permission assignment requires
checking redundancy, conflict and indeterminism. When there is no hierarchy (in
the Conditional P-RBAC), those checks are carried out only on the permissions
with the same (role, data, action, purpose) because each role (data, action or
purpose) is independent of any of other roles. Once we introduce a hierarchy (in
Universal P-RBAC), the situation becomes more complex. We now need to com-
pare permission assignments of different roles (data, or purpose) since potential
interactions may exist among these roles due to their hierarchical relations. To
facilitate the discussion of such interactions, let us assume a new permission
assignment to be PAn =(rn, an, dn, pn, cn, on).

The process of issuing PAn includes two phases. The first phase checks if PAn

causes any redundancy, conflict or indeterminism problem against the existing
permission assignment sets of role rn, ra and rd, respectively, which is carried out
in a temporary copy of existing permission assignment sets. If PAn passes the
check, the second phase will then update all influenced permission assignments.

In the first phase, there are four steps. First, we “virtually” 6 insert PAn

into current SPAS or APAS. Let NPAn and NPA′
n be the normalized per-

mission assignments containing (rn, an, dn, pn) before and after the insertion
6 The word “virtually” means the operation does not have any real effect on the

system.
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respectively. If a strong or weak conflict or indeterminism is detected during the
construction of NPA′

n, or NPA′
n is redundant compared to NPAn, the process-

ing stops. Otherwise, we proceed to the second step which handles the effect of
the data hierarchy. From here, our discussion is based on the normalized per-
mission assignment set after the virtual insertion of PAn. We compare NPA′

n

= {(cn1 ,on1), · · ·, (cni ,oni)} with every such permission assignment NPA′
x =

(rn, an, dx, pn, {(cx1 ,ox1), · · ·, (cxj ,oxj )}), where dx is a descendant or an an-
cestor of dn, denoted as dx � dn and dx ! dn respectively. If NPA′

n provides
broader authorizations than its previous version NPAn, we need to correspond-
ingly increase the authorization on the data which is a descendant of dn. The
reason is that according to the definition of the data hierarchy, if a user can
access data dn under a certain condition, he should also be able to access data
dx (dx � dn) under the same condition. The increase of the authorization is
achieved by combining the condition-obligation bindings of NPA′

n and NPA′
x.

Specifically, the new permission assignment for dx is NPA′′
x = (rn, an, dx, pn,

{(cx1 ,ox1), · · ·, (cxj ,oxj )}
⋃
{(cn1 ,on1), · · ·, (cni ,oni)}). During the combination,

we need to check if there exists indeterminism of obligation enforcement.
In the other case when NPA′

n is stricter than before, we need to check NPA′
x

with dx ! dn. If the solution domain of cx is covered by cn, no more changes are
needed according to the same reason above. Otherwise, it means that cx defines
some situations which cannot be satisfied by cn. In other words, there are some
permissions authorized by NPA′

x but not authorized by NPA′
n, which conflicts

with the functionality of the data hierarchy. Therefore, we remove NPA′
x and

dispatch its permission to its child nodes except dn. For example, if dy is a child
node of dx (dy �= dn), it will receive a permission assignment PAy = (rn, an, dy,
pn, {(cx1 ,ox1), · · ·, (cxj ,oxj )}). After that, we need to normalize the permission
assignment sets again.

Next, we consider the purpose hierarchy. The processing is omitted because
the purpose hierarchy has the same structure as the data hierarchy.

The final step in the first phase is to propagate the changes to the ancestor
roles of rn. The basic rule is to guarantee that parent roles have all the per-
missions of their child roles. The specific operation is as follows. If an updated
permission assignment of rn is different from its previous version, we need to
replace the correspondingly inherited permission assignment for its parent roles
with the new one and renormalize permissions for its parents. After the normal-
ization, if the parent roles obtain different permissions, we repeat the procedure
for the corresponding grandparent roles. Note that these changes may be prop-
agated all the way to the top of the role hierarchy.

All the permission assignments modified in the first phase are made in a
temporary copy of the original permission assignments because the process may
stop at any time due to conflict, indeterminism, or redundancy problems. We
finally update all these changes to the system in the second phase.

Our maintenance algorithm may look complicated. However, it is worth noting
that the frequency of policy changes (i.e. permission insertion) is much less than
that of data requests. By taking care of all possible issues during the insertion
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phase which needs to be executed only once, we are then able to reduce response
time for each data request.

6 Related Work

In this section, we compare our proposal to three proposals that are most closely
related, that is P3P[29], EPAL[10] and XACML [18]. P3P enables websites to
express their privacy practices in a standard format that can be retrieved auto-
matically and interpreted easily by agents. However, P3P is not able to describe
complex conditions like the age constraint, and it is also not an enforceable
policy language. EPAL [4] is proposed to encode enterprise’s privacy-related
data-handling policies and practices, which can be imported and enforced by a
privacy-enforcement system. XACML [18] is a well known access control model
based on XML. Its main goal is to provide an application independent policy lan-
guage which enables the use of arbitrary attributes in different types of policies.
Both EPAL and XACML aim at providing large flexibilities of writing policies,
but leave the policy analysis task to policy analyzers. For example, they use a
very simple strategy to handle conflicts among rules. That is, when multiple rules
in one policy yield different decisions for a same request, EPAL and XACML
will simply choose the decision from one rule according to the rule combining
algorithm and ignore the effects of other rules. One of such strategies, i.e. first
applicable rule, may cause problems as discussed in [5]. In addition, obligation
processing is rather preliminary in both EPAL and XACML. Unlike existing
approaches, our models achieve a balance between expressiveness and tractabil-
ity, and also guarantee that the insertion of a new policy will not affect the
consistency of existing policies.

Besides the policy languages, we are also aware of analysis tools for XACML
policies, such as [9,14,26]. Most of them simplify the analysis and focus on core
functions only. It is not clear if they can be easily extended to support analysis on
the full functionality. Since they are orthogonal to our work, we do not present the
details here. In the definition of domain and atomic conditions, we refer to work
on constraint databases [12,15,21,22]. Compared to other works on obligations
[6,11,16], our idea on condition-obligation binding and indeterminism is new.

7 Conclusion

In this paper, we proposed Conditional P-RBAC and Universal P-RBAC for
specifying complex privacy policies. The key design criterion is to balance effi-
ciency and expressiveness. The definition of domains and atomic conditions are
carefully chosen to reflect the wide needs for enforceable privacy policies and
to meet our efficiency goal, so does the design of condition languages and per-
mission assignment sets. We have taken into account the effect of hierarchical
relations among roles, data and purposes, which further enhance the expressive-
ness of our approach. As part of future work, we plan to introduce a sticky policy
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paradigm[13] into P-RBAC and develop a formal method to describe and man-
age obligations and to automatically detect possible conflicts between obligations
and between obligations and actions.
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Abstract. We propose the role-and-relation-based access control (R2BAC)
model for workflow systems. In R2BAC, in addition to a user’s role member-
ships, the user’s relationships with other users help determine whether the user is
allowed to perform a certain step in a workflow. For example, a constraint may
require that two steps must not be performed by users who have a conflict of in-
terest. We also study the workflow satisfiability problem, which asks whether a
set of users can complete a workflow. We show that the problem is NP-complete
for R2BAC, and is NP-complete for any workflow model that supports certain
simple types of constraints (e.g., constraints that state certain two steps must be
performed by two different users). After that, we apply tools from parameterized
complexity theory to better understand the complexities of this problem. We show
that the problem is fixed-parameter tractable when the only relations used are =
and �=, and is fixed-parameter intractable when user-defined binary relations can
be used. Finally, we study the resiliency problem in workflow systems, which
asks whether a workflow can be completed even if a number of users may be ab-
sent. We formally define three levels of resiliency in workflow systems, namely,
static resiliency, decremental resiliency and dynamic resiliency, and study com-
putational problems related to these notions of resiliency.

1 Introduction

Workflow systems are used in numerous domains, including production, purchase or-
der processing, and various management tasks. Workflow authorization systems have
gained popularity in the research community [1,3,5,10,12]. A workflow divides a task
into a set of well-defined sub-tasks (called steps in the paper). Security policies in work-
flow systems are usually specified using authorization constraints. One may specify, for
each step, which users are authorized to perform it. In addition, one may specify the
constraints between users who perform different steps in the workflow. For example,
one may require that two steps must be performed by different users for the purpose of
separation of duty [4]. Oftentimes, constraints in workflow authorization systems need
to refer to relationships among users. For example, the rationale under a separation of
duty policy that requires 2 users to perform the task is that this deters and controls
fraud, as the collusion of 2 users are required for a fraud to occur. However, when two
users are close relatives, then collusion is much more likely. To achieve the objective of
deterring and controlling fraud, the policy should require that two different steps in a
workflow must be performed by users who are not in conflict of interest with each other.
In different environments, the conflict-of-interest relation need to be defined differently.

J. Biskup and J. Lopez (Eds.): ESORICS 2007, LNCS 4734, pp. 90–105, 2007.
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For instance, inside an organization’s system, relationships such as close relatives (e.g.,
spouses and parent-child) can be maintained and users who are close relatives may be
considered to be in conflict of interest. In a peer-review setting, conflict of interest may
be based on past collaborations, common institutions, etc. For another example, one uni-
versity may have a policy that a graduate student’s study plan must be first approved by the
student’s advisor and then by the graduate officer in the student’s department. To specify
such a constraint, one needs to define and refer to the advisor-student binary relation.

In this paper, we introduce the role-and-relation-based access control (R2BAC)
model for workflow systems. The model is role-based in the sense that individual steps
of a workflow are authorized for roles. The model is relation-based in the sense that
user-defined binary relations can be used to specify constraints and an authorized user
is prevented from performing a step unless the user satisfies these constraints. R2BAC is
a natural step beyond Role-Based Access Control (RBAC) [9], especially in the setting
of workflows. As a role defines a set of users, which can be viewed as a unary relation
among the set of all users, a binary relation is the natural next step.

One fundamental problem in any workflow authorization systems is the workflow
satisfiability problem (WSP), which asks whether a workflow can be completed in a
certain system configuration. We show that WSP is NP-complete in R2BAC. Further-
more, we show that the intractability is inherent in any workflow authorization systems
that support some simple kinds of constraints. In particular, we show that WSP is NP-
hard in any workflow system that supports either constraints that require two steps must
be performed by different users or constraints that require one step must be performed
by a user who also performs at least one of several other steps. Such intractability results
are somewhat surprising and discouraging, because the constraints involved are simple
and natural. It is also unsatisfying as such results do not shed light on the computation
cost one has to pay by introducing additional expressive features such as user-defined
binary relations, since the complexity of WSP is NP-complete with or without them.
Finally, the practical significance of such intractability results is unclear, as in real-
world workflow systems, the number of steps should be small.

To address these issues, we apply tools from parameterized complexity [6] to WSP.
Parameterized complexity is a measure of computational complexity of problems with
multiple input parameters. Parameterized complexity enables us to perform finer-
grained study on the computational complexity of WSP. We show that if only equality
and inequality relations are used and the number of steps in the workflow is treated as
a parameter, WSP is fixed-parameter tractable. More specifically, the problem can be
solved in O(f(k)n), where f is a function, k is the number of steps in the workflow,
and n is the size of the problem. As the number of steps is relatively small in practice,
this result shows that it is possible to solve WSP efficiently, when only equality and
inequality relations are used. Also, we show that if user-defined relations are allowed,
WSP is fixed-parameter intractable. More specifically, WSP is W [1]-hard and is in the
complexity class W [2]; both of W [1] and W [2] are parameterized complexity classes
within NP. This illustrates that while supporting user-defined binary relations increases
the expressive power, it also introduces a computational cost. We note that a naive algo-
rithm solving WSP in R2BAC takes time O(knk+1), which may be acceptable when k
is small. The complexityO(knk+1) is not considered fixed-parameter tractable because
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one cannot separate n and k in the complexity to the form of f(k)nα, where f(k) is
independent of n and α is a constant independent of k. We also note that it is also pos-
sible to develop algorithms with heuristic optimizations that can solve WSP efficiently
for practical instances; the study of such algorithms is beyond the scope of this paper.

In many situations, it is not enough to ensure that a workflow can be completed in the
current system configuration. In particular, when the workflow is designed to complete
a critical task, it is necessary to make sure that the workflow can be completed even
if certain users become absent in emergency situations. In other words, resiliency is
important in workflow systems. The notion of resiliency policies in access control has
been recently introduced [8]. Unlike traditional security policies about access control,
which focus on ensuring that access is properly restricted so that users who should
not have access do not get access, resiliency policies aim at ensuring that access is
properly enabled so that the system is resilient to the absence of users. The goal of
resiliency policies is to guarantee that even if a number of users become absent in certain
emergent situation, the remaining users can still finish the crucial tasks. An example
resiliency policy is as follows: Upon the absence of up to four users, there must still
exist three mutually disjoint sets of users such that the users in each set together have
all permissions to carry out a critical task. Such a policy would be needed when one
needs to be able to send up to three teams of users to different sites to perform a certain
task, perhaps in response to some emergent events.

A challenging problem with both theoretical and practical interest is resiliency in
workflow systems. Resiliency in workflow systems differs from the resiliency policies
proposed in [8] in two aspects. First, due to the existence of authorization constraints,
even if a set of users together are authorized to perform all steps in a workflow, it is
still possible that they cannot complete the task. Second, as a workflow consists of a
sequence of steps and finishing all these steps may take a relatively long time, it is
possible that certain users become absent at some point and come back later. In other
words, the set of available users may change during the execution of a workflow. There-
fore, more refined notions of resiliency for workflow systems are needed. In this paper,
we introduce three levels of resiliency in workflow systems and study the complexity
of checking resiliency.

The contributions of this paper are as follows:
– We propose the role-and-relation-based access control (R2BAC) model for work-

flow systems. R2BAC naturally extends RBAC to use binary relations to specify
authorization constraints and capture many security requirements commonly en-
countered in workflows.

– We show that WSP in R2BAC is NP-complete in general. We also show that WSP
remains NP-hard for any workflow model that supports one of two simple kinds of
constraints. Such results are inherent to features of workflow authorization systems
and are independent from specific modeling approaches.

– We apply tools from the parameterized complexity theory to WSP and show that it
is fixed-parameter tractable when only equality and inequality relations are allowed.
However, when user-defined binary relations can be used, WSP becomes fixed-
parameter intractable. This clearly illustrates the computational cost incurred by
having user-defined binary relations and gives algorithmic insights and ideas about
solving WSP in the fixed-parameter tractable (but NP-complete) case.
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To the best of our knowledge, this paper is the first to use parameterized com-
plexity in access control policy analysis. As a number of policy analysis problems
in access control have been shown to be NP-complete, we believe that parameter-
ized complexity theory can be fruitfully applied to these problems to shed insight
on the causes of hardness in these problems as well as to give new algorithmic
insights.

– We formally define three levels of resiliency in workflow systems. In static re-
siliency, up to t users are absent before the execution of an instance of a workflow.
We show that checking whether a set of users is statically resilient for a workflow
is NP-hard and is in coNPNP, a complexity class in the Polynomial Hierarchy.
In decremental resiliency, users may become absent during the execution of an in-
stance of a workflow, absent users will never come back for the same workflow
instance, and at most t users may be absent in the end. Dynamic resiliency differs
from decremental resiliency in that absent users may come back later and work on
the same workflow instance, and at most t users may be absent at any given point
of time. We show that checking whether a set of users is decremental resilient or
dynamic resilient for a workflow is PSPACE-complete.

The remainder of the paper is organized as follows. We introduce the R2BAC model
in Section 2. After that, we study the workflow satisfiability problem in Section 3 and
study parameterized complexity of the problem in Section 4. We then define and study
resiliency problems in workflow systems in Section 5. We discuss related work in Sec-
tion 6 and conclude in Section 7.

2 The Role-and-Relation-Based Access Control Model for
Workflow Systems

In this section, we introduce the Role-and-Relation-Based Access Control (R2BAC)
model for workflow systems. We start with a motivating example.

Example 1. In an academic institution, submitting a grant proposal to an outside spon-
sor via the sponsor program services (SPS) is modeled as a workflow with five steps1

(see Figure 1).

1. Preparation: A faculty member prepares a proposal and sends it to the business
office of his or her department.

2. Budget: An account clerk prepares the budget, checks the proposal, and submits
it to the SPS office.

3. Expert Review: A regulation expert in the SPS office reviews the proposal to
check whether the proposal satisfies various regulations, e.g., those governing ex-
port control and human subject research.

4. Account Review: An account manager reviews the proposal and the budget.
5. Submission: An account manager submits the proposal to the outside sponsor.

1 This is a simplified version of the process in the authors’ institution, which also requires sig-
natures of the department head and the dean’s office.
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  Prepare budget
(Account Clerk)      (Faculty)

Prepare proposal    Submit proposal
(Account Manager)

   Account review
(Account Manager)

     (Expert)
Expert review

Fig. 1. A workflow for grant proposal submission to outside sponsor via the sponsor program
services (SPS)

In the workflow, steps expert review and account review may be per-
formed concurrently while all other steps must be carried out sequentially. The step
preparation can be performed by any personnel who can serve as a primary inves-
tigator, while the step budget must be carried out by an account clerk. A regulation
expert is authorized to review the proposal in the step expert review. The priv-
ilege to perform steps account review and submission is granted to account
managers.

The workflow has the following constraints.

1. Steps preparation, budget, expert review and account review
must be performed by four different users.

2. The account clerk who signs the proposal must be in the same department as the
faculty member who prepares the proposal.

3. The persons who review the proposal must not have a conflict of interest with the
one submitting the proposal.

4. The account manager who reviews the proposal is responsible to submit it to the
outside sponsor.

In the above, Constraint 2 reflects certain procedural and duty requirements, while Con-
straint 1 enforces the principle of separation of duty. Constraint 3 follows the spirit of
separation of duty and goes beyond that. Rather than simply requiring that the two
steps must be performed by different people, the constraint requires that the people
who perform the two steps must not have a conflict of interest. Constraint 4 enforces a
binding-of-duty policy [5] by requiring two tasks be performed by the same user.

As security and practical requirements vary from tasks to tasks, the specification of
constraints plays a crucial role in the expression of workflow. As demonstrated in Ex-
ample 1, binary relations play an important role in expressing authorization constraints.
Most existing workflow authorization models support only a few pre-defined binary
relations, which limits the expressive power of these models. For example, the model
proposed in [10] supports only six pre-defined binary relations {=, �=, <,≤, >,≥} be-
tween users and roles. Hence, there is no way to express relations like “in the same
department” or “is a family member”. The model in [5] supports user-defined rela-
tions. Our role-and-relation-based access control (R2BAC) model for workflow systems
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extends the model in [5] by explicitly combining roles and relations and by supporting
more sophisticated forms of constraints using these relations.

We now introduce formal definitions for R2BAC. Note that U ,R and B are names of
all possible users, roles and binary relations in the system, respectively.

Definition 1 (Configuration). A configuration is given by a tuple 〈U,UR, B〉, where
U ⊆ U is a set of users, UR ⊆ U × R is the user-role membership relation and
B = {ρ1, · · · , ρm} ⊆ B is a set of binary relations such that ρi ⊆ U × U (i ∈ [1,m]).
For convenience, we assume that when ρ is in B, ρ is also in B, where (u1, u2) ∈ ρ
if and only if (u1, u2) �∈ ρ. Also, ρ is the same as ρ. Furthermore, we assume that
B contains two predefined binary relations “=” and “ �=”, which denote equality and
inequality, respectively.

A configuration 〈U,UR, B〉 defines the environment in which a workflow is to be run.
In particular, B should define all the binary relations that appear in any constraint in
workflows to be run in the environment.

Definition 2 (Workflow and Constraints). A workflow is represented as a tuple 〈S,�
,SA, C〉, where S is a set of steps,�⊆ S × S defines a partial order among steps in S,
SA ⊆ R × S, and C is a set of constraints, each of which takes one of the following
forms:

1. 〈ρ(s1, s2)〉: the user who performs s1 and the user who perform s2 must satisfy the
binary relation ρ.

2. 〈ρ(∃X, s)〉: there exists a step s′ ∈ X such that 〈ρ(s′, s)〉 holds, i.e., the user who
performs s′ and the user who performs s satisfy ρ.

3. 〈ρ(s, ∃X)〉: there exists a step s′ ∈ X such that 〈ρ(s, s′)〉 holds.
4. 〈ρ(∀X, s)〉: for each step s′ ∈ X , 〈ρ(s′, s)〉 must hold.
5. 〈ρ(s, ∀X)〉: for each step s′ ∈ X , 〈ρ(s, s′)〉 must hold.

Intuitively, in a workflow 〈S,�,SA, C〉, that si � sj (i �= j) indicates that step si must
be performed before step sj . Steps si and sj may be performed concurrently, if neither
si � sj nor sj � si. SA is called role-step authorization and (r, s) ∈ SA indicates that
members of role r is authorized to perform step s.

Example 2. Consider the workflow for submitting a grant proposal in Example 1. Let
sprepare, sbudget, sxp review , sac review and ssubmit denote the five steps in the work-
flow. The constraints of the workflow can be represented in tuple-based specification as
follows.

1. 〈�= (sbudget, sprepare)〉, 〈�= (sxp review , ∀{sprepare, sbudget})〉,
〈�= (sac review , ∀{sprepare, sbudget, sxp review})〉
These require that the first four steps in the workflow must be performed by four
different users.

2. 〈ρsame dept(sbudget, sprepare)〉
(ux, uy) ∈ ρsame dept when ux and uy are in the same department. The constraint
requires that the person who signs the proposal must be in the same department as
the person who prepares it.
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3. 〈ρconflict interest(∀{sxp review , sac review}, sprepare)〉
(ux, uy) ∈ ρconflict interest when ux and uy have a conflict of interest. The con-
straint requires that the person who reviews the proposal must not have a conflict
of interest with the person who prepares it.

4. 〈= (ssubmit, sac review)〉
The constraint requires that account review and submission must be per-
formed by the same person.

Definition 3 (Plans and Partial Plans). A plan P for workflowW = 〈S,�,SA, C〉 is
a subset of U × S such that, for every step si ∈ S, there is exactly one tuple (ua, si) in
P , where ua ∈ U . A partial plan PP forW is a subset of U×S such that, for every step
si ∈ S, there is at most one tuple (ua, si) in PP , where ua ∈ U . And (ua, si) ∈ PP
implies that, for every sj � si, there exists ub ∈ U such that (ub, sj) ∈ PP .

Intuitively, a plan assigns exactly one user to every step in a workflow, while a partial
plan does this for only a portion of the steps in the workflow. Furthermore, if a step is
in a partial plan, then its prerequisite steps must also be in the partial plan.

Definition 4 (Valid Plan). Given a workflow W = 〈S,�,SA, C〉, and a configuration
Γ = 〈U,UR, B〉, we say that a user u is an authorized user of a step s ∈ S under Γ
if and only if there exists a role r such that (u, r) ∈ UR and (r, s) ∈ SA. We say that
a plan P is valid for W under Γ if and only if for every (u, s) ∈ P , u is an authorized
user of s, and no constraint in C is violated. We say that W is satisfiable under Γ if and
only if there exists a plan P that is valid for W under Γ .

Note that there can be multiple valid plans for a workflow W under a configuration.
In fact, it is the existence of multiple valid plans that makes it possible for W to be
completed even if a number of users are absent. In situations where the configuration
changes during the execution of a workflow instance (e.g. users become absent), we will
have to change our plan at runtime and thus constraints need to be checked at runtime
as well. If a constraint c contains ∀, then it is checked whenever a step restricted by c is
to be executed. Other kinds of constraints are checked before the last step restricted by
the constraint is to be executed.

Definition 5 (Valid Partial Plan). Given a workflow 〈S,�,SA, C〉 and a configuration
〈U,UR, B〉, let s1, · · · , sm be a sequence of steps such that si �� sj when i > j. A
partial plan PP is valid with respect to the sequence s1, · · · , si if it assigns one user to
each step in s1, · · · , si and no constraint that is checked before the execution of si is
violated by PP .

3 The Workflow Satisfiability Problem

One fundamental problem in workflow authorization systems is the Workflow Satis-
fiability Problem (WSP), which checks whether a workflow W is satisfiable under a
configuration Γ . Note that, given configuration 〈U,UR, B〉, checking whether W is
satisfiable under Γ is equivalent to checking whether there is a valid plan for W under
Γ . In this section, we study the computational complexity of WSP.
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3.1 Computational Complexity of WSP for R2BAC

Theorem 1. WSP is NP-complete in R2BAC.

The proof of Theorem 1 consists of two parts. The first part is Lemma 1, which shows
that WSP is in NP in R2BAC. In the second part, Lemma 2 and Lemma 3 show that
WSP is NP-hard in two restricted cases. Due to page limit, proofs to the following
lemmas are given in our technical report [11].

Lemma 1. WSP is in NP in R2BAC.

Intuitively, a nondeterministic Turing can guess a plan and check whether the plan is
valid in polynomial time.

Lemma 2. WSP is NP-hard in R2BAC, if the workflow uses constraints of the form
〈�= (s1, s2)〉.
To prove the above lemma, we use a reduction from the NP-complete GRAPH K-
COLORABILITY problem. In the reduction, vertices in a graph are mapped to steps
in the workflow, while colors are mapped to users. In the GRAPH K-COLORABILITY

problem, the number of vertices is normally much larger than the number of colors.
Hence, the number of steps in the constructed workflow is much larger than the number
of users, which is rarely the case in practice. Such a phenomenon indicates that classical
complexity framework is inadequate to study the complexity of WSP in a real-word
setting. This motivates us to apply the tool of parameterized complexity to perform
finer-grained study of the complexity of WSP, which will be discussed in Section 4.

Lemma 3. WSP is NP-hard in R2BAC, if the workflow uses constraints of the form
〈= (s, ∃X)〉.
The proof of this lemma uses a reduction from the NP-complete HITTING SET prob-
lem to WSP.

Although WSP is intractable in general in R2BAC, the problem is in P for certain
special cases. Lemma 4 states a tractable case for WSP.

Lemma 4. WSP is in P in R2BAC, if the workflow only has constraints in the forms
of 〈= (s1, s2)〉, 〈= (s, ∀X)〉 or 〈= (∀X, s)〉.

3.2 The Inherent Complexity of Workflow Systems

In Section 3.1, we show that WSP is NP-hard in R2BAC in general. In this section,
we stress that the intractability of WSP is inherent to certain fundamental features of
workflow authorization systems and independent from modeling approaches. We say
that a workflow system supports the feature of user-step authorization if it allows one
to specify (either directly or indirectly) which users are allowed to perform which steps
in the workflow. User-step authorization is probably the most fundamental feature and
almost all workflow systems found in existing literatures support such feature. A user-
inequality constraint states that certain two steps cannot be performed by the same user,
i.e., 〈�= (s1, s2)〉 in R2BAC. An existence-equality constraint states that a certain step
must be performed by a user who performs at least one step in a given set of steps, i.e.,
〈= (s, ∃X)〉 in R2BAC.
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Theorem 2. Checking whether a set of users can complete a workflow is NP-hard for
any workflow system that satisfies either (or both) of the followings:

– The system supports user-step authorization and user-inequality constraints.
– The system supports user-step authorization and existence-equality constraints.

The proof to Theorem 2 follows from the proofs of Lemmas 2 and 3. Please refer to [11]
for details.

Note that user-inequality constraints are widely used in existing literatures to enforce
separation of duty in workflow systems. Many workflow models [3,10,5] support such
type of constraints. Existence-equality constraints are a natural way to enforce the gen-
eral form of binding of duty policies, which require a step be performed by one of those
users who have performed some prerequisite steps.

4 Beyond Intractability of WSP

In Section 3, we have shown that WSP is NP-complete in R2BAC for the general case
as well as the two special cases where only a simple form of constraints are used. Such
results are, however, unsatisfying, as they do not shed light on the computation cost
associated with introducing additional expressive features such as user-defined binary
relations, since the complexity of WSP is NP-complete in all the three cases. Such a
phenomenon indicates that classical computational complexity does not precisely cap-
ture the computational difficulty of different cases of WSP. Furthermore, the practical
significance of such intractability results is unclear. The input to WSP consists of many
aspects, such as the number of steps in the workflow, the number of constraints and
the number of users in the configuration etc. In practice, some aspects of the input will
not take a large value. For instance, even though the number of users may be large, the
number of steps in the workflow is expected to be small. An interesting question arises
is whether WSP can be solved efficiently given the restriction that the number of steps
is small.

To address these issues, we apply tools from the theory of parameterized complex-
ity [6] to WSP.

4.1 Why Parameterized Complexity?

Parameterized complexity is a measure of complexity of problems with multiple input
parameters. The theory of parameterized complexity was developed in the 1990s by
Rod Downey and Michael Fellows. It is motivated, among other things, by the observa-
tion that there exist hard problems that (most likely) require exponential runtime when
complexity is measured in terms of the input size only, but that are computable in a time
that is polynomial in the input size and exponential in a (small) parameter k. Hence, if
k is fixed at a small value, such problems can still be considered ‘tractable’ despite their
traditional classification as ‘intractable’.

In classical complexity, a decision problem is specified by two items of informa-
tion: (1) the input to the problem, and (2) the question to be answered. In parameterized
complexity, there are three parts of a problem specification: (1) the input to the problem,
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(2) the aspects of the input that constitute the parameter, and (3) the question to be an-
swered. Normally, the parameter is selected because it is likely to be confined to a small
range in practice. The parameter provides a systematic way of specifying restrictions
of the input instances. Some NP-hard problems can be solved by algorithms that are
exponential only in a fixed parameter while polynomial in the size of the input. Such an
algorithm is called a fixed-parameter tractable algorithm. More specifically, an algo-
rithm for solving a problem is a fixed-parameter tractable algorithm, if when given any
input instance of the problem with parameter k, the algorithm takes time O(f(k)nα),
where n is the size of the input, k is the parameter, α is a constant (independent of k),
and f is an arbitrary function.

If a problem has a fixed-parameter tractable algorithm, then we say that it is a fixed-
parameter tractable problem and belongs to the class FPT. For example, the NP-
complete VERTEX COVER asks, given a graph G and an integer k, whether there is a
size-k set V ′ of vertices, such that every edge in G is adjacent to at least one vertex in
V ′. This problem is in FPT when taking k as the parameter, as there exists a simple
algorithm with running time of O(2kn), where n is the size of G. Note that not all
intractable problems are in FPT. For instance, the NP-complete DOMINATING SET

problem is fixed-parameter intractable. Given a graphG and an integer k, DOMINATING

SET asks whether there is a size-k set V ′ of vertices such that every vertex inG is either
in V ′ or is connected to a vertex in V ′ by an edge. For DOMINATING SET, there is no
significant alternative to trying all size-k subsets of vertices in G and there are O(nk)
such subsets, where n is the number of vertices.

Finally, we would like to point out that a problem in FPT does not necessarily mean
that it can be efficiently solved as long as the parameter is small. Note that f(k) may be
a function that grows very fast over k. For instance, anO(kkk

n) algorithm is not practi-
cal even if k is as small as 5, just as we cannot claim that a problem in P can be solved
efficiently when the best algorithm takes time O(n100). However, showing that a prob-
lem is in FPT has significant impact as experiences have shown that improvement on
fixed-parameter tractable algorithms are oftentimes possible. For instance, when VER-
TEX COVER was first observed to be solvable in O(f(k)n3), f(k) was such a function
that the algorithm is utterly impractical even for k = 1. An O(2kn) algorithm was pro-
posed later, and then an algorithm with running time O(kn + (4/3)kk2) was revealed.
Right now, VERTEX COVER is well-solved for input of any size, as long as the para-
meter value is k ≤ 60. Parameterized complexity offers a fresh angle into designing
algorithms for such problems.

In this paper, we only study which subcases of WSP are in FPT and which are not.
Improvement on the fixed-parameter tractable algorithms for the FPT cases is beyond
the scope of this paper.

4.2 Fixed Parameter Tractable Cases of WSP

As the number of steps in a workflow is likely to be small in practice, we select the
number of steps as the parameter for WSP. We first show that a special case of WSP
in which only the �= relation is allowed is in FPT. The proof gives a fixed-parameter
tractable algorithm and illustrates the intuition why this problem is in FPT.
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Lemma 5. WSP in R2BAC is in FPT, if �= is the only binary relation used by con-
straints in the workflow. In particular, given a workflowW and a configuration Γ , WSP
can be solved in time O(kk+1n), where k is the number of steps in W and n is the size
of the entire input to the problem.

Proof. A constraint using binary relation �= requires a certain step to be performed by
a user who does not perform certain other step(s). Since there are k steps in W , if step
s is authorized to no less than k users in U , then we can always find an authorized user
of s, who is not assigned to any other steps in W . In other words, we only need to
consider those steps that are authorized to less than k users in U , and there are at most
k such steps. We construct partial plans for these steps by trying all combinations of
authorized users and there are no more than kk such combinations. Verifying whether a
plan is valid can be done in O(kn), as there are O(n) constraints and each constraints
restricts at most k steps. Therefore, checking whether U can complete W can be done
in time O(kk+1n).

Theorem 3. WSP is in FPT in R2BAC, if = and �= are the only binary relations used
by constraints in the workflow.

This Theorem subsumes Lemma 5. Please refer to [11] for its proof.

4.3 WSP Is Fixed Parameterized Intractable in General

A natural question to ask is whether WSP is still in FPT when user-defined binary
relations are allowed in the workflow. We show that the answer is “no”. Similar to
proving a problem is intractable in classical complexity framework, we prove that a
problem is fixed-parameter intractable by reducing another fixed-parameter intractable
problem to the target problem. To preserve fixed-parameter tractability, we need to use
a kind of reduction different from the classical ones used in NP-completeness proofs.
We say that L reduces to L′ by a fixed-parameter reduction if given an instance 〈x, k〉
for L, one can compute an instance 〈x′ = g1(〈x, k〉), k′ = g2(k)〉 in time O(f(k)|x|α)
such that 〈x, k〉 ∈ L if and only if 〈x′, k′〉 ∈ L′, where g1 and g2 are two functions and
α is a constant. Note that many classical reductions are not fixed-parameter reduction
as they do not carry enough structure, and lead to lose of control for the parameter.

Under parameterized complexity, each problem falls somewhere in the hierarchy:
P ⊆ FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [P ] ⊆ NP. If a problem is W [1]-hard,
then it is believed to be fixed-parameter intractable. To understand the classes W [t], we
can start by viewing a 3CNF formula as a (boolean) decision circuit, consisting of one
input for each variable and structurally a large and gate taking inputs from a number
of small or gates. (Some wires in the circuit may include a negation.) The or gates are
small in that each of them takes 3 inputs, and the and gate is large in that it takes an
unbounded number of inputs. The weft of a decision circuit is the maximum number
of large gates on any path from the input variable to the output line. The weighted
satisfiability problem for decision circuits asks whether a decision circuit has a weight
k satisfying assignment (i.e., a satisfying assignment in which at most k variables are
assigned true). The class W [t] includes all problems that are fixed parameter reducible
to the weighted satisfiability problem for decision circuits of weft t.
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The following theorem states that WSP is fixed-parameter intractable in R2BAC
when user-defined binary relations are allowed in the workflow.

Theorem 4. WSP is W [1]-hard in R2BAC if user-defined binary relations are used in
constraints.

The proof to the above theorem is given in [11]. In the proof, we reduce the W [1]-
complete INDEPENDENT SET problem to WSP.

We conclude from Theorem 3 and Theorem 4 that supporting user-defined binary
relations introduces additional complexity to WSP in R2BAC. Parameterized complex-
ity reveals such a fact that is hidden by classical complexity framework and allows us
to better understand the source of complexity of WSP in R2BAC. We point out that a
naive algorithm solving WSP for R2BAC, which enumerates all possible plans and ver-
ifies each of them, takes timeO(knk+1), which may be acceptable when k is small. We
also note that it is possible to develop algorithms with heuristic optimizations that can
solve WSP efficiently for practical instances; the study of such algorithms is beyond
the scope of this paper.

Finally, we provide an upperbound for WSP in R2BAC in the parameterized com-
plexity framework. Please refer to [11] for the proof to Theorem 5.

Theorem 5. WSP in R2BAC is in W [2].

It remains open whether WSP is W [1]-complete or W [2]-complete.

5 Resiliency in Workflow Systems

We have studied the workflow satisfiability problem (WSP) in previous sections. In
many situations, it is not enough to ensure that a workflow is satisfiable in the current
system configuration. In particular, when the workflow is designed to complete a critical
task, it is necessary to guarantee that even if certain users are absent unexpectedly, the
workflow can still be completed. Resiliency is a property of those system configurations
that can satisfy the workflow even with absence of some users.

In this section, we define and study resiliency in workflow systems. The workflow
model we use is R2BAC. Before giving formal definitions of resiliency in workflow
systems, let us consider several possible scenarios.

1. The execution of instances of a workflow is done in a relatively short period of
time, say within fifteen minutes. Although it is possible that certain users are ab-
sent before the execution of a workflow instance, it is unlikely that available users
become absent during the execution of the workflow instance. In other words, the
set of users who are available for a workflow instance is stable.

2. The execution of instances of a workflow takes a relatively long period of time, say
within one day. Some users may not come to work on the day when a workflow
instance is executed. Furthermore, some users may have to leave at some point
(e.g. between the execution of two steps) before the workflow instance is completed
and will not come back to work until the next day. In such a situation, the set of
users available to the workflow instance becomes smaller and smaller over time.
Such a scenario would also be possible in potentially hazardous situations such as
battlefield and fire-fighting.
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3. The execution of instances of a workflow takes a long period of time. For example,
only a single step of the workflow is performed each day. Since the set of users who
come to work may differ from day to day, the set of available users may differ from
step to step.

We capture the above three scenarios by proposing three levels of resiliency in work-
flow systems. They are static (level-1) resiliency, decremental (level-2) resiliency and
dynamic (level-3) resiliency. In static resiliency, a number of users are absent before the
execution of a workflow instance, while remaining users will not be absent during the
execution; in decremental resiliency, users may be absent before or during the execution
of a workflow instance, and absent users will not become available again; in dynamic
resiliency, users may be absent before or during the execution of a workflow instance
and absent users may become available again. In all cases, we assume that the number
of absent users at any point is bounded by a parameter t. We now give formal definitions
of the three levels of resiliency.

Definition 6 (Static Resiliency). Given a workflow W and an integer t ≥ 0, a config-
uration 〈U,UR, B〉 is statically resilient for W up to t absent users if and only if for
every size-t subset U ′ of U , W is satisfiable under 〈(U − U ′),UR, B〉.

Intuitively, a configuration is statically resilient for a workflow if the workflow is still
satisfiable after removing t users from the configuration.

Definition 7 (Decremental Resiliency). Given a workflow W = 〈S,�,SA, C〉 and
an integer t, a configuration 〈U,UR, B〉 is decrementally resilient for W up to t absent
users, if and only if Player 1 can always win the following two-person game when
playing optimally.

Initialization: PP ← ∅, U0 ← U , S0 ← S, t0 ← t and i← 1.

Round i of the Game:
1. Player 2 selects a set U ′

i−1 such that |U ′
i−1| ≤ ti−1.

Ui ← (Ui−1 − U ′
i−1) and ti ← (ti−1 − |U ′

i−1|).
2. Player 1 selects a step sai ∈ Si−1 such that ∀sb(sb ≺ sai ⇒ sb �∈ Si−1).

Player 1 selects a user u ∈ Ui.
PP ← PP ∪ {(u, sai)} and Si ← (Si−1 − {sai}).
If PP is not a valid partial plan with respect to the sequence sa1 , · · · , sai , then
Player 1 loses.

3. If Si = ∅, then Player 1 wins; otherwise, let i← (i+ 1) and the game goes on
to the next round.

In each round, Player 2 may remove a certain number of users and then Player 1 has
to pick a remaining step that is ready to be performed and assign an available user to
it. The total number of users Player 2 may remove throughout the game is bounded by
t. A configuration is decrementally resilient for a workflow if there is always a way to
complete the workflow no matter when and which users are removed, as long as the
total number of absent users is bounded by t.

Also, in Definition 7, we assume that Player 1 plays optimally, which implies that in
each round, Player 1 has to consider not only the next step but also all future steps.
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Definition 8 (Dynamic Resiliency). Given a workflow W = 〈S,�,SA, C〉 and an
integer t, a configuration 〈U,UR, B〉 is dynamically resilient for W up to t absent
users, if and only if Player 1 can always win the following two-person game when
playing optimally.

Initialization: PP ← ∅, S0 ← S and i← 1.
Round i of the Game:

1. Player 2 selects a set U ′
i−1 of up to t users.

Ui ← (U − U ′
i−1).

2. Player 1 selects a step sai ∈ Si−1 such that ∀sb(sb ≺ sai ⇒ sb �∈ Si−1).
Player 1 selects a user u ∈ Ui.
PP ← PP ∪ {(u, sai)} and Si ← (Si−1 − {sai}).
If PP is not a valid partial plan with respect to the sequence sa1 , · · · , sai , then
Player 1 loses.

3. If Si = ∅, then Player 1 wins; otherwise, let i← (i+ 1) and the game goes on
to the next round.

Intuitively, Player 2 may temporarily remove up to t users from the configuration
at the beginning of each round. Then, Player 1 has to select a remaining step that is
ready to be performed and assign an available user to it. After that, the configuration is
restored and the next round of the game starts.

By definition, dynamic (level-3) resiliency is stronger than decremental (level-2) re-
siliency, which is in turn stronger than static (level-1) resiliency.

5.1 Computational Complexities of Checking Resiliency

In this section, we study computational problems related to resiliency in workflow sys-
tems. Due to page limit, proofs are given in [11].

Theorem 6. Checking whether a configuration Γ is statically resilient for a workflow
W up to t users, which is called the Static Resiliency Checking Problem (SRCP), is
NP-hard and is in coNPNP.

It remains open whether SRCP is coNPNP-complete or not. Readers who are familiar
with computational complexity theory will recognize that coNPNP is a complexity
class in the Polynomial Hierarchy. Because the Polynomial Hierarchy collapses when
P = NP, showing that an NP-hard decision problem is in the Polynomial Hierarchy,
although is not equivalent to showing that the problem is NP-complete, has the same
consequence: the problem can be solved in polynomial time if and only if P =NP.

Theorem 7. Checking whether a configuration Γ is decremental resilient for a work-
flow W up to t users, which is called the Decremental Resiliency Checking Problem
(CRCP), is PSPACE-complete.

Checking whether Γ is dynamically resilient for a W up to t users, which is called
the Dynamic Resiliency Checking Problem (DRCP), is PSPACE-complete.

To prove the above theorem, we reduce the PSPACE-complete QUANTIFIED SATIS-
FIABILITY problem to CRCP and DRCP. Intuitively, we use user-step assignments in
workflow to simulate truth assignments for boolean variables.
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6 Related Work

Bertino et al. [3] introduced a language to express workflow authorization constraints
as clauses in a logic programming language. The language supports a number of pre-
defined relations for constraint specification. Bertino et al. [3] also proposed searching
algorithms to assign users to complete a workflow. This work does not support user-
defined binary relations, nor does it formally study computational complexity of the
workflow satisfiability problem. Tan et al. [10] studied the consistency of authoriza-
tion constraints in workflow systems. The model in [10] supports six predefined bi-
nary relations: {=, �=, <,≤, >,≥}, but not user-defined relations. Atluri and Huang [1]
proposed a workflow authorization model that focuses on temporal authorization. This
model does not support constraints about users performing different steps in a task.
Atluri and Warner [2] proposed a model that supports conditional delegation in work-
flow systems. Delegation is a potential mechanism to achieve resiliency. In this paper,
we consider resiliency without using delegation. We plan to extend our definitions on
resiliency to take delegation into account and study how to use delegation to achieve
resiliency in workflow systems. Furthermore, in [12], Warner and Atluri considered
authorization constraints that span multiple instances of a workflow. Their model sup-
ports predefined relations with emphasis on inter-instance constraints. Inter-instance
problems in workflow systems is an interesting research area. The models in [2,12] do
not support user-defined relations. Finally, Kang et al. [7] investigated access control
mechanisms for inter-organizational workflow. Their workflow model authorizes steps
to roles and supports dynamic constraints. However, they do not explicitly point out how
constraints are specified and what kinds of constraints are supported besides separation
of duty. Their paper mainly focuses on infrastructure design and implementation.

The workflow authorization model proposed by Crampton [5] is probably the one
that is most closely related to R2BAC. The model in [5] supports user-defined binary
relations; however, it does not support quantifiers in constraints, so that constraints of
the form 〈ρ(∃X, s)〉 cannot be expressed in that model. Crampton [5] also studied the
workflow satisfiability problem and presented a polynomial time algorithm for their
model. However, the algorithm is incorrect.2 As we have pointed out in Theorem 2,
the workflow satisfiability problem is NP-hard in general for any workflow model
that supports user-inequality constraints. Since the model in [5] supports such type of
constraints, a polynomial time algorithm for the satisfiability problem in their model
could not exist.

None of the work mentioned above have given the computational complexity results
of the Workflow Satisfiability Problem, whereas we give a clear characterization us-
ing parameterized complexity. Also, the resiliency problem in workflow has not been
studied before in the literature.

The concept of resiliency policies in access control is first formally proposed by Li et
al. [8]. To our knowledge, this paper is the first to define and study resiliency problems
in workflow systems. There are major difference between resiliency in workflow sys-
tems and the resiliency policies proposed in [8], and we have discussed the differences
in Section 1.

2 We have verified the bug with the author of [5]. Please refer to [11] for more details.
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7 Conclusion

We have proposed a role-and-relation-based model (R2BAC) for workflow systems,
and have shown that the workflow satisfiability problem in R2BAC is NP-complete.
We have also shown that the problem remains intractable for any workflow model
that supports certain simple types of constraints such as user-inequality constraints and
existence-equality constraints. We then apply tools from parameterized complexity to
better understand the complexities of the problem. Furthermore, we have formally de-
fined three levels of resiliency in workflow systems, namely, static resiliency, decre-
mental resiliency and dynamic resiliency. We have also shown that checking whether
a system configuration is statically resilient for a workflow is NP-hard and is in the
Polynomial Hierarchy, and the same problems for decremental resiliency and dynamic
resiliency are PSPACE-complete.
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Abstract. Protocol participants manipulate values, transforming the
cryptographic contexts in which they occur. The rules of the protocol de-
termine which transformations are permitted. We formalize these trans-
formations, obtaining new versions of the two authentication tests from
earlier strand space papers.

We prove that the new versions are complete, in this sense: any col-
lection of behaviors that satisfies those two authentication tests, when
combined with some feasible adversary behavior, yields a possible exe-
cution.

We illustrate the strengthened authentication tests with brief analyses
of three protocols.

1 Introduction

Cryptographic protocols are designed to control the ways that protocol partic-
ipants transform messages. The protocol determines when a critical value may
be transmitted within new forms of message. If the critical value has so far oc-
curred only within a particular set of cryptographic contexts, then a participant
may be authenticated by the way she transforms it to occur in a new context. A
protocol preserves secrecy by ensuring that no participant’s transformation will
remove it from a class of safe contexts.

Protocol analysis within a simple Dolev-Yao model [5] may be completely
formalized in terms of this idea.

In this paper, we support this assertion, using two forms of the transformation
principle. One form covers the case in which the critical value is a fresh, unguess-
able value such as a nonce or session key. The other covers the case in which
the critical value is an encrypted message. Each is a strengthened authentication
test, various versions of which have appeared in earlier papers [9,10,11,13]. We
illustrate the different aspects of the strengthened authentication tests in refer-
ence to a protocol due to Perrig and Song [13], Yahalom’s protocol [3], and a new
protocol we call the ambassador’s protocol. The authentication tests are sensi-
tive only to the regular (non-adversary) protocol behavior and a set of values
assumed uncompromised; they are insensitive to specific adversary behavior.

We work within the strand space model [10], so local behaviors of regular
principals are represented by regular strands, and adversary behavior is repre-
sented by penetrator strands. Possible executions are represented by bundles.
(See Definitions 2–5.)
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Our main result is completeness for the authentication tests, in the following
sense. Suppose that a collection of regular strands has been chosen, as well as a
collection X of values that we assume the adversary did not originally possess
and will not guess. Then there exists a bundle B containing exactly the given
strands, without the adversary using the values X , if and only if those strands
and the values X satisfy the authentication tests (Prop 5).

An implementation called cpsa uses most aspects of the strengthened au-
thentication tests. It searches for all the minimal, essentially different executions
that a protocol allows, as described in [4]. We call these minimal, essentially
different executions shapes. cpsa checks authentication and secrecy properties,
since these are easily read off from the set of shapes. By the undecidability of
these properties [6], there exist protocols for which the set of shapes is infinite;
however, for many protocols the set of shapes is very small, and frequently only
one or two.

Related work. There is a vast body of work on protocol analysis. Much, such as
Cryptyc [7] and ProVerif [1], aim at sound but not complete methods. Others, for
instance Athena [13], do a search involving both regular and adversary behaviors.
We here propose a method that is complete in the sense we have mentioned, but
considers adversary behavior only in the most limited way. In particular, the
authentication tests consider only whether given values—generally, keys—are
available to the adversary, but not what actions are needed to synthesize the
values received by the regular participants.

Roadmap to this paper. In Section 2 we give the basic strand space definitions,
adapted to our current needs. Section 3 summarizes three examples that together
illustrate many aspects of protocol analysis. Section 4 defines the key idea of a
message “occurring only within” certain contexts in another message; we also
provide a number of examples that will be used later in the paper. Section 5 gives
the authentication test principles, and illustrates how to use them to analyze
our three examples. Section 6 considers the adversary in more detail, and gives
the crucial lemma for completeness. Finally, Section 7 introduces the notion of
skeleton and uses it to formalize completeness. Appendix A fills in the proof of
the key lemma.

2 Terms, Strands, and Bundles

In this section, we give background definitions, which are somewhat more general
than those in the extended version of [4].

2.1 Algebra of Terms

Terms (or messages) form a free algebra A, built from (typed) atoms and (un-
typed) indeterminates g, h, . . . via constructors.

The atoms may be partitioned into some types, e.g. keys, nonces, etc. We
assume A contains infinitely many atoms of each type.
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An inverse operator is defined on atomic keys. There may be additional func-
tions on atoms, such as an injective public key of function mapping principals to
keys, or an injective long term shared key of function mapping pairs of principals
to keys. These functions are not constructors, and their results are atoms. For
definiteness, we include here functions pubk(a), ltk(a) mapping principals to (re-
spectively) their public keys and to a symmetric key shared on a long-term basis
with a fixed server S. pubk(a)−1 is a’s private key, where pubk(a)−1 �= pubk(a).
By contrast, ltk(a)−1 = ltk(a).

Terms in A are freely built from atoms and indeterminates using tagged con-
catenation and encryption. The tags are chosen from a set of constants written
in sans serif font (e.g. tag). The tagged concatenation using tag of t0 and t1 is
written tagˆt0ˆt1. Tagged concatenation using the distinguished tag null of t0
and t1 is written t0ˆt1.

Encryption takes a term t and a term t′ serving as a key, and yields a term
as result written {|t|}t′ . Protocols generally use a term t′ as a key only if it is of
some special forms, such as an atomic key or a term produced by hashing (used
as a symmetric key). We regard hashing as encryption with a public key the
inverse of which is not known to any principal. We extend the inverse function
to non-atomic keys by stipulating that if K is non-atomic, then K−1 = K. We
write {|t|}K to cover both the case of atomic and non-atomic K.

We regard terms as abstract syntax trees, where atoms and indeterminates are
the leaves. A concatenation tagˆt0ˆt1 has a root node labeled tag and the two
immediate subtrees representing t0, t1. An encryption {|t0|}t1 has a root labeled
with t1, and one immediate subtree representing t0.

Replacements are essentially homomorphisms on the algebra A:

Definition 1 (Replacement, Application). A replacement is a function α
mapping atoms and indeterminates to A, such that (1) for every atom a, α(a) is
an atom of the same type as a, and (2) α is a homomorphism with respect to the
operations on atoms, e.g., α(K−1) = (α(K))−1 and α(pubk(a)) = pubk(α(a)).

The application of α to t, written t · α, homomorphically extends α’s action on
atoms and indeterminates. More explicitly, if t = a is an atom, then a · α = α(a);
if t = g is an indeterminate, then g · α = α(g) and:

(tagˆt0ˆt1) · α = tagˆ(t0 · α)ˆ(t1 · α)
({|t|}K) · α = {|t · α|}K·α

We extend the homomorphism · α to larger objects such as pairing and sets;
thus, (x, y) · α = (x · α, y · α), and S · α = {x · α:x ∈ S}. If x �∈ A is a simple
value such as an integer or a symbol, then x · α = x.

2.2 Strands and Origination

Directed messages represent transmission and reception of messages, where the
direction + means transmission, and the direction − means reception:
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Definition 2 (Strand Spaces). A direction is one of the symbols +,−. A
directed term is a pair (d, t) with t ∈ A and d a direction, normally written
+t,−t. (±A)∗ is the set of finite sequences of directed terms.

A strand space over A is a structure containing a set Σ and two mappings: a
trace mapping tr : Σ → (±A)∗ and a replacement application operator (s, α) �→
s · α such that tr(s · α) = (tr(s)) · α.

By a strand, we just mean any member of some strand space Σ.

Definition 3. A penetrator strand has trace of one of the following forms:
Mt: 〈+t〉 where t ∈text, principal,nonce KK : 〈+K〉 with atomic key K
Cg,h: 〈−g, −h, +gˆh〉 Sg,h: 〈−gˆh, +g, +h〉
Eh,K : 〈−K, −h, +{|h|}K〉 Dh,K : 〈−K−1, −{|h|}K , +h〉.

If s is a penetrator strand, then s · α is a penetrator strand of the same kind.
The subterm relation, written %, is the least reflexive, transitive relation such

that (1) t0 % tagˆt0ˆt1; (2) t1 % tagˆt0ˆt1; and (3) t % {|t|}K . Notice, however,
K �% {|t|}K unless (anomalously) K % t. The subterms of t are the terms repre-
sented by the subtrees of t’s abstract syntax tree. We say that a key K is used
for encryption in a term t if for some t0, {|t0|}K % t.

A node is a pair n = (s, i) where i ≤ length(tr(s)); strand(s, i) = s; and the
direction and term of n are those of tr(s)(i). We prefer to write s ↓ i for the
node n = (s, i). A term t originates at node n if n is positive, t % msg(n), and
t �% msg(m) whenever m⇒+ n. Thus, t originates on n if t is part of a message
transmitted on n, and t was neither sent nor received previously on this strand.

2.3 Protocols and Bundles

Definition 4 (Protocols). A candidate 〈Π, strand non, strand unique〉 consists
of: (1) a finite set Π of strands called the roles of the protocol; (2) a function
strand non mapping each role r to a finite set of keys strand nonr, the non-
originating keys of r; and (3) a function strand unique mapping each role r to a
finite set of atoms strand uniquer, the uniquely originating atoms of r.

A candidate 〈Π, strand non, strand unique〉 is a protocol if (1) K ∈ strand nonr

implies that K does not occur in any node of r, but either K or K−1 is used
for encryption on some term of tr(r); and (2) a ∈ strand uniquer implies that a
originates on r.

The regular strands of 〈Π, strand non, strand unique〉 form the set of instances
of the roles, ΣΠ = {r · α: r ∈ Π}.

The set N of all nodes forms a directed graph G = 〈N , (→ ∪ ⇒)〉 with edges
n1 → n2 for communication (with the same term, directed from positive to
negative node) and n1 ⇒ n2 for succession on the same strand.

Definition 5 (Bundle). A finite acyclic subgraph B = 〈NB, (→B ∪ ⇒B)〉 of G
is a bundle if (1) when n2 ∈ NB is negative, there is exactly one n1 ∈ NB with
n1 →B n2; and (2) if n2 ∈ NB and n1 ⇒ n2, then n1 ⇒B n2.

When B is a bundle, �B is the reflexive, transitive closure of (→B ∪ ⇒B).
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B is a bundle over 〈Π, strand non, strand unique〉 if for every s ↓ i ∈ B, (1)
either s ∈ ΣΠ or s is a penetrator strand; (2) if s = r · α and a ∈ strand nonr · α,
then a does not occur in B; and (3) if s = r · α and a ∈ strand uniquer · α, then
a originates at most once in B.

We say that a strand s is in B if s has at least one node in B. Henceforth, assume
fixed some arbitrary protocol 〈Π, strand non, strand unique〉.

Proposition 1. Let B be a bundle. �B is a well-founded partial order. Every
non-empty set of nodes of B has �B-minimal members. If a % msg(n) for any
n ∈ B, then a originates at some m �B n.

If α is a replacement, and B is a bundle, then B · α is a bundle.

B · α is a bundle over the same protocol if the replacement α does not cause the
origination assumptions to fail.

3 Some Example Protocols

We consider here three relevant protocol examples.

Example 1 (Perrig-Song). The PS protocol (Fig. 1) is due to Perrig and
Song, or rather, invented by their automated protocol generator [13]. Here, A
and B share a long-term symmetric key, and the purpose of the protocol is to
provide mutual authentication using the key. If the nonces are chosen to be
Diffie-Hellman values, i.e. Na = gx, Nb = gy, then the participants can combine
those values to obtain an authenticated shared secret gxy at the end.

The authors mention a reflection attack if B’s name is omitted from the second
message.

A B

•
Na � Na � •

•
�

�{|Na ˆNb ˆB|}ltk(A,B) �{|Na ˆNb ˆB|}ltk(A,B) •
�

•
�

Nb � Nb � •
�

Fig. 1. PS symmetric key protocol

Example 2 (Yahalom). The Yahalom protocol [3] is also a symmetric key
protocol, in this case using a key server to generate a session key whose reception
by A is confirmed to B in the protocol (Fig. 2). This clever and compact protocol
uses a surprising range of the tricks of protocol analysis.

Example 3 (The Ambassador’s Protocol). A new protocol, which we call
the ambassador’s protocol, illustrates a rarely used aspect of the complete au-
thentication tests. In this protocol (Fig. 3), a government G delivers a signed
and encrypted authorization to its ambassador A. If negotiations are successful,
then the ambassador performs the decryption and delivers the commitment to



Completeness of the Authentication Tests 111

Init
AˆNa � AˆNa � Resp

�Bˆ{|AˆNa ˆNb|}ltk(B) •
�

•
�

�
�
�
�
�

� {|BˆK ˆNaˆNb|}ltk(A)

{|AˆK|}ltk(B) � •
�

�
�
�
�
�

•
�

�
�
�
�
�

{|Nb|}K � {|Nb|}K � •
�

Serv �Bˆ{|AˆNa ˆNb|}ltk(B)

�{|BˆK ˆNaˆNb|}ltk(A) •
�

•
� {|AˆK|}ltk(B) �

Fig. 2. Yahalom protocol (forwarding removed)

the foreign government F , which countersigns and returns the now reciprocal
commitment to G. Typically, G would perform its first step with many poten-
tial messages m; after negotiations, the ambassador would select an appropriate
session to complete. It is important that the commitments are encrypted so that
A’s portfolio of negotiating strategies is not disclosed to F . The fact that a par-
ticular commitment is decrypted tells G that the negotiations completed with
this outcome.

G A F

•
{|{|m|}signk(G)|}pubk(A)� •

•
� {|m|}signk(G) � •

•
�

�
�
�
�
�

{|{|m|}signk(G)|}signk(F )� •
�

Fig. 3. The Ambassador’s Protocol

4 “Occurs Only Within”

The most important idea for stating the strengthened authentication tests is of
a term t0 occurring only within specific forms in some other term.

Suppose that a set S = {{|t0|}K0 , {|t1|}K1 , . . .} contains only encryptions. We
say that a term t occurs only within S in t′ if every path through the abstract
syntax tree of t′ that ends with t traverses a member of S.1 The recursive for-
mulation of Definition 6 is equivalent.
1 In our terminology (Section 2), the K in {|t|}K is not an occurrence as a subterm,

and no path in the syntax tree reaches it.
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When t �% t′, then no path reaches it, so t occurs only within S in t′ for every
set of encryptions S, vacuously.

Definition 6 (Occurs only within/outside). Let S be a set of encryptions.
A term t0 occurs only within S in t, if:

1. t0 �% t; or
2. t ∈ S; or
3. t �= t0, and either (3a) t = {|t1|}K and t0 occurs only within S in t1, or else

(3b) t = tagˆt1ˆt2 and t0 occurs only within S in each ti (i = 1, 2).

It occurs outside S in t if t0 does not occur only within S in t.
We say that t has exited S passing from t0 to t1 if t occurs only within S in

t0 but t occurs outside S in t1. Term t exits S at a node n if t occurs outside S
in msg(n) but occurs only within S in every msg(m) for m ≺ n.

If it occurs outside S, this means that t0 % t and there is a non-empty path
from the root to an occurrence of t0 as a subterm of t that traverses no t1 ∈ S.
“Occurring only within” is similar to “being protected by a set of hat-terms” [2].

Example 4 (PS Occurrences). Nb occurs only within the singleton set

Sps = {{|NaˆNb|}ltk(A,B)}

in the term {|NaˆNb|}ltk(A,B). It has exited Sps passing from {|NaˆNb|}ltk(A,B)

to Nb. This provides the responder’s guarantee.
{|NaˆNb|}ltk(A,B) occurs only within the null set ∅ in Na, that is, it does not

occur at all inNa. However, this encryption occurs outside ∅ in {|NaˆNb|}ltk(A,B).
This provides the initiator’s guarantee.

Example 5 (Yahalom Occurrences). Nb exits SY,1 = {{|AˆNaˆNb|}ltk(B)}
passing from {|AˆNaˆNb|}ltk(B) to the server’s output {|BˆK ˆNaˆNb|}ltk(A).
The nonce Nb exits the larger set

SY,2 = {{|AˆNaˆNb|}ltk(B)} ∪ {{|BˆK ′′ˆNaˆNb|}ltk(A):K ′′ is a key }

when passing from {|AˆNaˆNb|}ltk(B) to any term of the form {|Nb|}K′ . When
K ′ �= K, Nb has exited SY,2 ∪ {{|Nb|}K′} when passing from {|AˆNaˆNb|}ltk(B)

to {|Nb|}K .
The correctness of the protocol, for the responder, relies on these three steps.

Example 6 (Ambassador’s Protocol). The signed message {|m|}signk(G) oc-
curs outside the empty set ∅ in {|m|}signk(G).

It has exited Sa = {{|{|m|}signk(G)|}pubk(A)} passing from {|{|m|}signk(G)|}pubk(A)

to {|m|}signk(G).
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5 The Strengthened Authentication Tests

When a principal follows the rules of a protocol, it transforms the way that
a critical value occurs in messages. A critical value that has hitherto occurred
only within a limited set of forms is freed from them, and retransmitted in a
new form. The outgoing and incoming authentication tests describe the possible
executions of protocols using this idea. The outgoing test deals with the case
where the critical value is a uniquely originating atom, and the incoming test
deals with the case where it is an encryption.

5.1 The Outgoing Authentication Test

We say that t is disclosed in B iff msg(n) = t for some n ∈ B. By the definitions
of the penetrator strands for encryption and decryption (Definition 3), if the
adversary usesK for encryption or decryption anywhere in B, thenK is disclosed
in B. If K−1 is not disclosed, it cannot decrypt any term encrypted with K.

We say that t is disclosed before m in B, iff, for some n ∈ B, msg(n) = t and
n ≺B m. If a key is not disclosed before a negative node m, then the adversary
cannot use that key to prepare the term received on m.

Proposition 2 (Outgoing Authentication Test). Suppose an atom a origi-
nates uniquely at a regular node n0 in bundle B, and suppose for some n1 ∈ B, a
has exited S passing from msg(n0) to msg(n1), where S is a set of encryptions.

Then either (1) there exists some {|t|}K ∈ S such that K−1 is disclosed before
n1 in B, or else (2) a exits from S at some positive regular m1 �B n1. If in
case (2) n0 and m1 lie on different strands, then for some negative m0 ∈ B with
a % msg(m0),

n0 ≺B m0 ⇒+ m1 �B n1.

Proof. Suppose, contrary to case (1), that no K−1 for {|t|}K ∈ S is disclosed
before n1 in B. Apply Prop. 1 to T =

{m:m �B n1 and a occurs outside S in msg(m)};

n1 ∈ T , so T has �B-minimal members m1. Since keys K used in S have K−1

not disclosed before n1, m1 cannot lie on a decryption penetrator D-strand. By
unique origination, a does not lie on a M-strand or K-strand. By the definitions
of S and “occurs only within,” m1 does not lie on a S-, C-, or E-strand. Thus,
m1 lies on some s ∈ ΣΠ . If n0 does not lie on s, then a does not originate on s,
so a % msg(m0) for some negative m0, with m0 ⇒+ m1. '�

In the outgoing test, we callm0 ⇒+ m1 an outgoing transforming edge for a, S. It
transforms the occurrence of a, causing a to exit S. We call (n0, n1) an outgoing
test pair for a, S when a originates uniquely at n0 and a has exited S passing
from msg(n0) to msg(n1). We also sometimes call m1 an outgoing transforming
node and n1 an outgoing test node.
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Example 7. In the Perrig-Song protocol, with responder role sr, the nodes
(sr ↓ 2), (sr ↓ 3) form an outgoing test pair for Nb, Sps, where Sps is as given in
Example 4.

The initiator role si has the only outgoing transforming edge for Nb, Sps, lying
on si ↓ 2 ⇒ si ↓ 3. Hence, if any bundle B has uncompromised long term key
ltk(A,B), and B contains the three nodes of any responder strand, then B also
contains the three nodes of an initiator strand with matching parameters.

This is the responder’s authentication result.

Many protocols can be verified using only singleton sets like Sps, and this was
the part of the outgoing authentication test given in [10,8]. However, there are
other protocols in which the same critical value is transformed more than once,
and these protocols cannot be verified using only singleton sets S. For instance,
in the Yahalom protocol, the responder’s nonce Nb is transformed first by the
key server and then again by the initiator. To verify the presence of the initiator,
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A, B, Na, Nb, K
′ A, B, Na, Nb, K

Fig. 4. Yahalom bundle containing responder

we use a set that includes the original form transmitted by the responder, and
also all forms that could be produced from it by means of a server strand. To
cause Nb to escape from this set SY,2, a server strand cannot suffice: we need an
initiator strand.

Example 8 (Yahalom: Inferring Initiator). As in Example 5, letting

SY,2 = {{|AˆNaˆNb|}ltk(B)} ∪ {{|BˆK ′′ˆNaˆNb|}ltk(A):K ′′ is a key },

by Prop. 2, if B contains a full Yahalom responder strand, then either one of
the keys ltk(A), ltk(B) is compromised, or else there is an initiator strand in B
agreeing on A,B,Na, Nb, although possibly not on the session key K ′ (Fig. 4).
Another application of Prop. 2 allows us to interpolate a server run into the
middle column of Fig. 4, as shown in Fig 5. We instantiate n0, n1 from the
theorem by the nodes labeled n0 and n′

1 in Fig. 5. This application uses the
singleton set SY,1 from Example 5.
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Fig. 5. Yahalom bundle containing responder and server

The outgoing authentication test is also the main theorem for establishing se-
crecy for session keys and other values that are transmitted in protocols. Long-
term keys, which are typically used but never transmitted in any form in proto-
cols, are typically secret only by assumption. However, the outgoing test allows
us to infer that a session key—such as the one in the Yahalom protocol—will re-
main secret assuming that the participants’ long-term keys are uncompromised.

Example 9 (Yahalom Session Key Secrecy). Suppose that B is a bundle
in which ltk(A), ltk(B) are uncompromised, in which K ′ originates uniquely on
a server strand ss with parameters A,B,Na, Nb,K

′. Then K ′ is uncompromised
in B. The reason is that otherwise, we may apply Prop. 2 to the set

SY,3 = {{|BˆK ′ˆNaˆNb|}ltk(A), {|AˆK ′|}ltk(B)}.

There is no role of the protocol that, having received K ′ occurring only within
SY,3, would retransmit it outside this form. Thus, given that the keys used in
SY,3 are assumed uncompromised, we have refuted the assumption that K ′ could
occur compromised in B.

Thus, secrecy relies on the absence of an outgoing transforming edge. We also
use the outgoing test negatively to prove that values that otherwise could be
different are in fact equal.

Example 10 (Yahalom Session Key Agreement). In Fig. 5, we must in
fact have K ′ = K. Otherwise, Nb has exited the set

SY,4 = SY,2 ∪ {{|Nb|}K′′ :K ′′ �= K}

passing from n0 to n1. However, we have assumed that ltk(A), ltk(B) are un-
compromised, and we have now ascertained that K ′ is uncompromised also.
Thus, there would have to be a outgoing transforming edge for Nb, SY,4, but the
Yahalom protocol does not furnish any role that would do so.
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Thus, we have illustrated that the outgoing authentication test is a highly versa-
tile protocol analysis tool. It allows repeated use of a nonce for authentication; it
helps prove secrecy for values that a protocol distributes; and it allows us to prove
equality of values when certain messages cannot be transformed by the protocol.

5.2 The Incoming Authentication Test

The incoming test principle is similar, except that the critical value is an en-
cryption t = {|t0|}K . In this case, the transforming edge may be a single node
m1 that emits t, rather than the pair we have in the outgoing case. The node
m1 is not always preceded by another node m0 that has received t.

Proposition 3 (Incoming Authentication Test). Let t = {|t0|}K and let S
be a set of encryptions. If t occurs outside S in any n1 ∈ B, then either (1) K is
disclosed before n1 in B, or (2) for some K0 with {|t|}K0 ∈ S, K−1

0 is disclosed
before n1 in B, or (3) t exits S at some positive regular m1 �B n1.

Proof Sketch. Apply Prop. 1 to the set T = {m:m �B n1 and t occurs outside
S in msg(m)}. '�

We call m1 an incoming transforming node for t, S, and n1 an incoming test node
for t, S. In our experience with existing protocols, Prop. 3 is almost always used
with S = ∅, i.e. t does not occur at all before m1. However, one can invent pro-
tocols, like the ambassador’s protocol, requiring non-empty S, and completeness
requires the stronger form. We first illustrate the more usual case S = ∅.

Example 11 (PS Initiator’s Guarantee). Suppose that, in a PS bundle B,
A has transmitted Na and received {|NaˆNbˆB|}ltk(A,B). Then B contains at
least the first two nodes of a matching responder strand, unless ltk(A,B) is
compromised in B. To prove this, one applies Prop. 3 to t = {|NaˆNbˆB|}ltk(A,B),
S = ∅, and n1 = the initiator’s second node.

One can also use the incoming test in a similar way in the Yahalom protocol
(see Fig. 5) to show that the server strand’s last node—marked ? there—has
occurred.

Example 12 (Ambassador’s Protocol). Let B be a bundle for the Ambas-
sador’s Protocol, and suppose that G’s first and second nodes are both contained
in B. Then the ambassador A has a full run with the same message m.

To prove this, we apply Prop. 3 with S = {{|{|m|}signk(G)|}pubk(A)}. The message
{|m|}signk(G) has exited from S passing from G’s first to G’s second node. Thus,
either privk(A) is compromised, or A has extracted {|m|}signk(G) from S.

6 Penetrator Webs and Test Nodes

We can see that Props. 2–3 have some sort of completeness by considering the
powers of the adversary. In essence, if any negative regular node is neither an
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outgoing test node nor an incoming test node, then the adversary can derive the
term on it. Thus, only test nodes in this sense can provide authentication guar-
antees about the presence of regular activity. The rest could be the adversary’s
work.

To make this precise, we define penetrator webs, which characterize what the
adversary can do with fixed inputs from the regular participants.

Definition 7 (Penetrator web, derivable). Let G = 〈NG, (→G ∪ ⇒G)〉 be
a finite acyclic subgraph of 〈N , (→ ∪ ⇒)〉 such that NG consists entirely of
penetrator nodes. G is a penetrator web with support Sspt and result R if Sspt

and R are sets of terms and moreover:

1. If n2 ∈ NG is negative, then either msg(n2) ∈ Sspt or there is a unique n1

such that n1 →G n2.
2. If n2 ∈ NG and n1 ⇒ n2 then n1 ⇒G n2.
3. For each t ∈ R, either t ∈ Sspt or for some positive n ∈ NG, msg(n) = t.

If V is a set of atoms, then term t1 is derivable from Sspt avoiding V if there is
a web G with support SG ⊆ Sspt and t1 ∈ RG, where no atom in V originates
on a penetrator strand in G.

If n ∈ B is a negative node, then B includes a penetrator web G with result
RG = {msg(n)}. Its support SG = {msg(m):m is positive regular and m ≺B n}.

When Sspt is a set of terms, we say that t has exited Senc passing from Sspt to
t1 if for each t0 ∈ Sspt, t has exited Senc passing from t0 to t1. Def. 6 says that
this means that t occurs only within the encryptions in Senc in every t0 ∈ Sspt,
and t occurs outside Senc in t1.

In the following proposition, the first condition says that when t1 �= msg(n1)
is an outgoing test node n1 ∈ B, then we do not need to add an outgoing
transforming edge. The second condition says that when t1 �= msg(n1) is an
incoming test node n1 ∈ B, we do not need to add an incoming transforming
node. The conclusion is that the term is then derivable.

Proposition 4. Let V be a set of atoms; let Sspt be a finite set of terms; and let
t1 be a term such that, for any a ∈ V , if a % t1, then a % t0 for some t0 ∈ Sspt.
Suppose the following conditions hold:

1. for all a ∈ V and all sets of encryptions Senc, if a has exited Senc passing
from Sspt to t1, then there is some {|t|}K0 ∈ Senc, such that K0

−1 is derivable
from Sspt avoiding V ; and

2. for all encryptions {|t|}K, and all sets of encryptions Senc, if {|t|}K has exited
Senc passing from Sspt to t1, then either K is derivable from Sspt avoiding
V , or else some K0

−1 with K0 ∈ used(Senc) is derivable from Sspt avoiding
V .

Then term t1 is derivable from Sspt avoiding V .

A proof is in Appendix A. One can easily determine whether t is derivable
from Sspt, since penetrator webs normalize [10, Proposition 5] so that all their
destructive steps precede their constructive steps (cf. [12]). Thus, there are only
as many intermediate values as there are subterms of Sspt ∪ {t}.
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7 Completeness

In order to extract the completeness result from Proposition 4, it is convenient
to introduce the notion of skeleton, following [4]. A skeleton is potentially the
regular (non-penetrator) part of a bundle or of some portion of a bundle. We
may regard a bundle as “put together” using a skeleton and one penetrator web
for each negative regular node within it.

A skeleton consists of nodes annotated with additional information, indicating
order relations among the nodes, uniquely originating atoms, and non-originating
atoms. We say that an atom a occurs in a set nodes of nodes if for some n ∈ nodes,
a % msg(n). A key K is used in nodes if for some n ∈ nodes, {|t|}K % msg(n).
We say that a key K is mentioned in nodes if K or K−1 either occurs or is used
in nodes. For a non-key a, a is mentioned if it occurs.

Definition 8. A four-tuple A = (nodesA,�A, nonA, uniqueA) is a skeleton if:

1. nodesA is a finite set of regular nodes; n1 ∈ nodes and n0 ⇒+ n1 implies
n0 ∈ nodesA;

2. �A is a partial ordering on nodesA such that n0 ⇒+ n1 implies n0 �A n1;
3. nonA is a set of atomic keys, and for all K ∈ nonA, either K or K−1 is used

in nodesA, and for all K ∈ nonA, K does not occur in nodesA;
4. uniqueA is a set of atoms, and for all a ∈ uniqueA, a occurs in nodesA, and
a ∈ uniqueA implies a originates at no more than one node in nodesA.

We think of a skeleton as describing a set of bundles; for our present purposes
it is enough to consider the bundles into which a skeleton may be embedded:

Definition 9. If A = (nodesA,�A, nonA, uniqueA) is a skeleton and B is a bun-
dle, then A is embedded in B if:

1. For all n ∈ nodesA, n ∈ B;
2. If n0 �A n1, then n0 �B n1;
3. For all K ∈ nonA, K originates nowhere in B;
4. For all a ∈ uniqueA, a originates uniquely in B.

The embedding is tight if for all regular n ∈ B, n ∈ nodesA, and whenever
n0, n1 ∈ nodesA and n0 �B n1, then n0 �A n1.

A message t is potentially compromised before n in A if, letting

V = nonA ∪ (uniqueA ∩ {a: a originates somewhere in A}),

and
Sspt = {msg(m):m �A n and n is positive },

t is derivable from Sspt avoiding V . Evidently, A is tightly embedded in a bundle
if, for every negative n ∈ A, msg(n) is potentially compromised before n in A.

We regard a skeleton A as satisfying the authentication test properties when
“disclosed before n” is interpreted as meaning potentially compromised before
n. That is:
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Definition 10. A satisfies the outgoing authentication test if and only if the
following is true for all n0, n1 ∈ A, and for all atoms a and sets of encryptions
S. If a has exited S passing from n0 to n1, then either (1) there exists some
{|t|}K ∈ S such that K−1 is potentially compromised before n1 in A, or else (2)
a exits from S at some positive regular m1 �A n1.

A satisfies the incoming authentication test if and only if the following is true
for all n1 ∈ A, and for all encryptions t = {|t0|}K sets of encryptions S. If t occurs
outside S in any n1 ∈ A, then either (1) K is potentially compromised before
n1 in A, or (2) for some K0 with {|t|}K0 ∈ S, K−1

0 is potentially compromised
before n1 in A, or (3) t exits S at some positive regular m1 �A n1.

We say that A respects origination if n �A m whenever, for any a ∈ uniqueA, a
originates at n ∈ A and a is mentioned in msg(m).

Proposition 5 (Completeness of Authentication Tests). Let A respect
origination. A satisfies the outgoing and incoming authentication tests if and
only if there exists a bundle B such that A is tightly embedded into B.

Proof Sketch. From right to left, use Props. 2–3. From left to right, we must
show that for every negative n ∈ A, msg(n) is potentially compromised before n
in A. To do so, for any given negative n ∈ A, we apply Prop. 4 to:

1. V = nonA ∪ U where U = uniqueA ∩ {a: a originates in A}; and
2. Sspt = {msg(m):m �A n ∧m positive }. '�

8 Conclusion

We have presented two principles about how messages are transformed in crypto-
graphic protocols. These two principles are complete in the sense that whenever
they are satisfied in a skeleton, then that skeleton describes a possible execution
of the protocol, modulo some choice of adversary behavior.

This result is part of the justification for the search method of cpsa, which is
based on the authentication tests [4]. cpsa tries to complete partial executions,
by which we mean skeletons that are not tightly embedded into any bundle. It
uses the authentication tests to consider what ingredients may need to be added
to obtain a minimal execution. By considering the ingredients suggested by the
authentication tests, it finds all minimal, essentially different executions. Thus,
this paper provides the core justification for the claim in [4] that the search finds
all the possibilities.
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A Proof of Proposition 4

Proposition. Let V be a set of atoms; let Sspt be a finite set of terms; and let
t1 be a term such that, for any a ∈ V , if a % t1, then a % t0 for some t0 ∈ Sspt.
Suppose the following conditions hold:

1. for all a ∈ V and all sets of encryptions Senc, if a has exited Senc passing
from Sspt to t1, then there is some {|t|}K0 ∈ Senc, such that K0

−1 is derivable
from Sspt avoiding V ; and

2. for all encryptions {|t|}K, and all sets of encryptions Senc, if {|t|}K has exited
Senc passing from Sspt to t1, then either K is derivable from Sspt avoiding
V , or else some K0

−1 with K0 ∈ used(Senc) is derivable from Sspt avoiding
V .

Then term t1 is derivable from Sspt avoiding V .
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Proof. The proof is by structural induction on the pair (Sspt, t1), i.e. the ordering
under which (Sspt, t1) ≤ (S′

spt, t
′
1) iff t1 % t′1, and for all t ∈ Sspt, there is some

t′ ∈ S′ such that t % t′.

Case t1 = a: If a �∈ V , then the one-node web originating a satisfies the con-
ditions. Otherwise, Sa = {t ∈ Sspt: a % t} is non-empty. If a ∈ Sa, then
the empty web suffices. If some concatenation t0ˆt′0 ∈ Sa, then apply the
induction hypothesis to Sa \ {t0ˆt′0}∪{t0}∪{t′0}. This asserts the existence
of a penetrator web Ga deriving a. Obtain the desired web by prepending a
separation S-strand above any occurrences of t0 and t′0 in Ga.

Otherwise, Sa consists entirely of encryptions, and a has exited Sa passing
from Sspt to a. By condition 1, there is some {|t|}K0 ∈ Sa with K0

−1 derivable
from Sspt avoiding V , using some web GK0

−1 . Thus, applying the induction
hypothesis to (Sa \ {{|t|}K0}) ∪ {t}, we obtain a web G. We may prepend
GK0

−1 and a decryption D-strand before G to obtain the required web.
Case t1 = t′1 ˆt′′1 : Apply the induction hypothesis to t′1 and t′′1 , and append a

concatenation C-strand after the resulting webs.
Case t1 = {|t′1|}K : Suppose K is derivable from Sspt avoiding V , using some

web GK . Apply the induction hypothesis to t′1, obtaining a web G. Append
an encryption E-strand after GK and G to derive {|t′1|}K .
Otherwise, by condition 2, some K−1

0 with {|t0|}K0 ∈ Senc is derivable from
Sspt avoiding V , using a web GK0

−1 . Apply the induction hypothesis to
(Sspt\{{|t0|}K0})∪{t0}, obtaining a web G. Prepend GK0

−1 and a decryption
D-strand before G. '�
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Abstract. Port knocking is a technique first introduced in the blackhat and trade
literature to prevent attackers from discovering and exploiting potentially vul-
nerable services on a network host, while allowing authenticated users to access
these services. Despite being based on some sound principles and being a po-
tentially useful tool, most work in this area suffers from a lack of a clear threat
model or motivation. We introduce a formal security model for port knocking
that addresses these issues, show how previous schemes fail to meet our defini-
tion, and give a provably secure scheme that uses steganographic embedding of
pseudorandom message authentication codes. We also describe the design and
analysis of SILENTKNOCK, an implementation of this protocol for the Linux 2.6
operating system, that is provably secure, under the assumption that AES and a
modified version of MD4 are pseudorandom functions, and integrates seamlessly
with any existing application, with no need to recompile. Experiments indicate
that the overhead due to running SILENTKNOCK on a server is minimal – on the
order of 150 μs per TCP connection initiation.

1 Introduction

A port scan is a kind of network attack (or attack precursor) in which an adversary
attempts to connect to all, or some subset of, TCP and UDP ports at a given IP address.
Port scans are useful to attackers because the results often indicate the operating system,
architecture, and even a set of specific binaries that a host is running. This information
can then be used to determine what software exploits should be used to attack the host,
or what level of compromise might be likely.

Of course, if a server runs no vulnerable software, a port scan is not a serious threat,
but software security is a sufficiently hard problem that this cannot be seen as an im-
mediate solution. A popular method of protecting against such network attacks is the
firewall, which simply blocks all connection attempts to “internal” network hosts from
“external” ones. Since there are many reasons why it might be desirable for a given
service to be externally accessible — for instance, users may access a network service
from a priori unknown network addresses depending on their physical location — this
solution is not always satisfactory.

One class of proposed solutions to this problem is “port knocking”: a firewall is de-
ployed to protect a server, and before allowing a client connection to a particular port,
that client must transmit a special “knock” that authenticates it. This knock may be ei-
ther common to all authorized users of the system, or may be unique to a given user.
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Any attempts to connect that are not associated with the correct knock will be dropped;
thus to an unauthorized user it should appear as if no network services are running
on the server. A variety of knocking methods have been proposed, such as a sequence
of (dropped) connection attempts [1], inclusion of a cryptographic authenticator in the
initial connection request packet [2], “funny-looking” DNS lookups [3], and IPsec tun-
neling [4].

Many previous proposals for port knocking schemes have been accused of offer-
ing “security through obscurity”, since it is trivially easy to detect and steal knocks
in non-cryptographic systems. But making the distinction between flawed implementa-
tions which are only secure if the details of the system are unknown, and the concept
of port knocking (that even given the details of a port knocking scheme, one cannot tell
if it is being employed), we argue that this concept is not fundamentally flawed. Since
revealing the presence of a service can only help an adversary — for example, by re-
vealing which of a list of hundreds of exploits is the most likely to succeed, thereby de-
creasing the cost of an attack — the notion of concealing services from unauthenticated
users (in addition to regular network and software security measures) is a potentially
useful one. Separating authentication from applications is also a sound choice, since it
enforces least privilege and economy of mechanism, in addition to easing deployment.

Given that the goal of a port knocking scheme should be to conceal the set of services
running on a network host, all existing implementations have a serious flaw. Under rel-
atively weak attack models, these schemes fail to conceal that a port knocking service
itself is running. Since this service mediates access to all the other services exported
by a host, exposing information about the presence and type of port knocking service
a host is running is highly undesirable: under fail-closed semantics, crashing the port
knocking service denies access to all services on the host, while under fail-open seman-
tics detecting and crashing the port knocking service allows an ordinary port-scan to
succeed. Of course, on most currently deployed operating systems, exploiting a code
injection attack in a port knocking service would lead to a total compromise of the host.
Since the port knocking service is such a high-value target, we argue that the presence
of port knocking itself should not be detectable.

In this paper, we develop a formal security model which captures this notion. A for-
mal security model is critically important in order to be certain that a given protocol,
even one that seems secure at a glance, is actually secure. Examples of such “appar-
ently secure” protocols, developed without formally stated security goals, are numer-
ous [5, 6, 7], and some of them have been in operation for years (and have even become
industry standards), before attacks were found. Note that all those protocols were origi-
nally designed for security, and even used well-known cryptographic primitives, but the
protocols were not secure.

Essentially, our notion states that even though a (computationally bounded) adver-
sary may observe many authenticated sessions and arbitrarily inject, delete, and reorder
messages between the client and server, he cannot distinguish a port knocking client
and server from a pair using ordinary TCP/IP, plus some out-of-band authentication
mechanism that prevents other clients from connecting. That is, our definition allows
the adversary to observe authenticated sessions and necessarily allows the adversary to
observe that somehow sessions are being authenticated, but insists that no additional
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information about the authenticating mechanism is leaked. This leaves many plausible
explanations for the behavior, such as dynamic firewall rules1.

We prove that a scheme which is secure in our model also resists forgery and pro-
vides replay attack protection against a global active adversary. We give a protocol
for a generic networking scheme, which makes rudimentary use of provably secure
steganography [8], and prove that this protocol satisfies our strong notion of security.
Furthermore, we describe and analyze the security of SILENTKNOCK, an implementa-
tion of our generic protocol for the Linux 2.6 TCP/IP stack. SILENTKNOCK combines
simple TCP steganography [9] with a very fast cryptographic message authentication
code (MAC) [10] to provide efficient, provably secure port knocking that integrates
seamlessly with existing applications (with no need to recompile) by hooking directly
into the operating system kernel. SILENTKNOCK produces packets that are provably in-
distinguishable from TCP packets generated by the Linux 2.6 implementation of TCP,
under the assumption that AES and a variant of MD4 are pseudorandom functions2.
No applications need to be altered, no shared libraries need to be replaced, and no
potentially-conflicting protocols emerge. SILENTKNOCK is lightweight, has minimal
computational overhead, and is freely available for download [12].

Related work. The first published description of a port knocking scheme seems to
be the work of Barham et al. [2], who describe a scheme whereby a pass-phrase is
transmitted (in cleartext) to a firewall either through a series of SYN packets, in a single
“knock” packet, or as an option in the SYN packet. Krzywinski [1] describes a similar
scheme where a client opens a port by attempting connections to a secret sequence
of port numbers3; a number of similar systems are described at [13]. Several authors
[3, 14, 4] have proposed that knocks should be cryptographically protected to prevent
replay attacks, but still fundamentally involve the use of extra packets or nonstandard
TCP options that allow the detection of a knock (these systems provide authentication
only, i.e. they make no attempt to hide the use of authentication mechanisms). deGraaf
et al. [4] and Manzanares et al. [15] describe some other attacks and weaknesses of
previous port knocking schemes, which our notion of security precludes — that is, any
scheme that satisfies our security notion necessarily is also secure against the attacks
mentioned in these papers.

There is an extensive literature on TCP/IP steganography and covert channels [9,
16, 17, 18, 19], although Murdoch and Lewis [9] show that many of these proposals
are easily detected. We introduce a cryptographic formulation of security similar to that
in [8], and our notion of a secure port knocking scheme can be seen as a simple instance
of a covert computation [20] or the dining Freemasons problem [21]. We are, however,
unaware of previous work relating steganographic computation and port knocking, or

1 e.g. a service that is only available at preset times, or a software firewall that allows the user to
approve connection requests.

2 Linux 2.6 chooses TCP sequence numbers using 24 rounds of MD4 applied to the source
and destination IP address, destination port, and 32 secret random bits, using a randomly
generated, secret initial chaining value that changes every 5 minutes. See the functions
secure tcp sequence number and half md4 transform at [11].

3 The server will monitor connection attempts on all closed ports and opens a port if a specific
sequence of connection attempts is detected.
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any previous work implementing the schemes of [20, 21]. We note that our system, like
those in [20, 21] differs from covert channels alone because we provide covert one-way
authentication, handle synchronization issues, and formally reason about what it should
mean to hide an authentication service.

2 Formal Definition of Port knocking

In this section we provide our formal model of a secure TCP port knocking scheme, and
prove several relationships between our definition and formalized versions of earlier
security properties. We begin by stating our formal model of the TCP protocol:

Definition 1. A TCP implementation is a triple P of efficient, probabilistic programs
Client, Server, and Init. Client has three arguments: a state s, a command c, and a
packet r; Client(s, c, r) outputs a new state s′, and a packet p. Similarly, Server takes
as input state s, command c and packet p and outputs a state s′, a packet r, and a
message m. Init takes as input either client or server and outputs a state s.

Standard TCP Client commands are of the form “connect to port 80 from port 1234,”
“send M from port 1234 to port 80,” or “close the connection to port 80 from port 1234.”
Server commands are of the form “listen on port 80” or “close the connection from
C:1234 to S:80.” With a null command, Client simply outputs the next packet to be sent
to the server and Server outputs a packet acknowledging the input packet and a message
consisting of the data received in the last packet. Client and server state includes the
TCP states of all connections, and buffered messages. Standard TCP packets p have
two fields we will make use of. The syn flag, p.syn, is always set on the first packet
sent on a new connection. Packets with this flag set are the standard way of “knocking”
at a port to establish a connection. TCP/IP connections are uniquely identified by the
tuple (client IP, client port, server IP, server port) which we refer to as p.id.

For a given command sequence C ∈ (command × command)∗ we define the stan-
dard interaction of a TCP implementation P as the following process. First, we initial-
ize s0 = Init(server), q0 = Init(client), and set (p0, r0) to null. Then for each pair
(κi, σi) ∈ C, we let (qi, pi) = Client(qi−1, κi, ri−1) and (si, ri,mi) =
Server(si−1, σi, pi−1). We define the output of the standard interaction on C, P(C),
to be the concatenationm1||m2|| · · · ||m�.

Definition 2. A Port knocking protocol is a TCP implementation H in which both
Client and Server take as additional input a secret key. We letHK(C) denote the result
of the standard interaction between Client and Server where the key input to both is K .

We say thatH extends TCP implementationP if for every command sequence C, there
is an efficiently computable command sequence C′ such that HK(C′) and P(C) are
computationally indistinguishable, for uniformly chosen K . This requirement states
that a port knocking protocol, in which the client and server share a secret key, should
allow any communication that is allowed by the TCP implementation it extends. We
note that a TCP implementation is trivially an (insecure) port knocking protocol with
null keyspace: every TCP session is initiated when the client “knocks” at the server port
he wishes to connect to.
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Security Condition. The informal idea behind our definition and construction is that
a port knocking scheme should hide not only a set of network services, but the very
fact that port knocking is in use, to the extent possible; and this condition should hold
even against an adversary who is allowed to make connection attempts to the server
and see authenticated connections by the client. To that end, we define security of a
port knocking schemeH in terms of an adversary’s inability to distinguish between two
experiments, corresponding to two different “worlds” in which he might find himself.
In both experiments, the adversary is given black-box access to Client and Server
subroutines (i.e., oracles) that output only packets and maintain state internally, so the
attacker may issue commands and deliver packets to the client and server. We stress
that these oracles are “black boxes” only insofar as the adversary cannot a priori infer
which of the two possible sets of oracles he is interacting with; adversaries are assumed
to know the implementation details of each of the two possible oracle pairs.

In the “hidden world”, these subroutines implement the Client and Server routines
from H, with a shared secret key K . The adversary is allowed to interact arbitrarily
with these subroutines, and in particular may make as many queries to both as he de-
sires. This models what an adversary who is attacking a port knocking implementation
will see. In what we call the “plausible world,” the client and server subroutines are
essentially those of the TCP implementation P , except that they are slightly modified.
The “plausible” client and server are modified to share a queue of packetsQ. Whenever
the client generates a packet p, Q is scanned for a packet q with q.id = p.id; if none is
found, p is added to the end of Q. The server also maintains a list Open of ids. When-
ever it is called with a packet p, the server checks to see if p.id ∈ Open, and if it is, calls
P .Server on p; if p is at the front ofQ, the server adds p.id to Open, removes p fromQ,
and calls P .Server on p; otherwise, the server does not respond to p. In essence, client
and server share an out-of-band signaling mechanism such that only recent connections
initiated by the client are processed by the server. Notice that the packets output by the
“plausible world” client are identical to the packets output by P , and if the adversary
simply relays the packets between Client and Server, he will see a perfectly normal
TCP session. However, if the adversary interacts only with the Server oracle, his con-
nection attempts will be ignored, because his packets are not on the shared queue. Thus
this “plausible world” formalizes the idea of revealing that there is authentication going
on, but not revealing any additional information about the authentication.

We say that a port knocking scheme is secure if an adversary who can see many
authenticated sessions and attempt to make many connections cannot tell if he is in the
“hidden world” or the “plausible world”, that is, he cannot tell from the results of his
attack whether port knocking or some other plausible form of authentication is being
employed. Formally, we define the experiments Exphw

H,A and Exppw
P,A as in figure 1, and

we define the port knocking advantage of A againstH with respect to P to be

Advpk
A,H,P(k) = Pr[Exphw

H,A(1k) = 1]− Pr[Exppw
P,A(1k) = 1] .

We say that H is a (t, qC , qS , ε)-secure port knocking scheme with respect to P if for
every time-t adversary A that makes at most qC Client queries and qS Server queries,
Advpk

A,H,P(k) ≤ ε. We call such an adversary a (t, qS , qC) adversary.
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Oracle HClient∗(c, r):
1. (q′, p) ← H.Client(K, Q, c, r)
2. Q ← q′.
3. return(p)

Oracle HServer∗(c, p):
1. (s′, r, m) ← H.Server(K, S, c, p)
2. S ← s′.
3. return(r)

Experiment Exphw
H,A(1k):

1. K ← Uk .
2. Q ← H.Init(client).
3. S ← H.Init(server).
4. returnAHClient∗,HServer∗ (1k)

Oracle PClient∗(c, r):
1. (q′, p) ← P.Client(Q, c, r)
2. Q ← q′.
3. if p.syn then
4. append p to RecentQ.
5. return(p)

Oracle PServer∗(c, p):
1. if (p.syn and p = front(RecentQ)) then
2. remove p from RecentQ.
3. Add p.id to Open.
4. else if (p.id �∈ Open) then
5. p ← ∅.
6. (s′, r, m) ← P.Server(S, c, p).
7. S ← s′.
8. return(r)

Experiment Exppw
P,A(1k):

1. RecentQ ← ().
2. Open ← ∅.
3. Q ← P.Init(client).
4. S ← P.Init(server).
5. return APClient∗,PServer∗ (1k)

Fig. 1. Definition of hidden world (top row) and plausible world (bottom row) experiments

Related notions. Given a new notion of security, it is natural to ask whether it is the
right notion. In the full version, we give some evidence for the strength of our notion,
by considering several security conditions which have been implicitly or explicitly used
as the security goals of earlier port knocking schemes, and showing that our security
notion is stronger.

3 System Design

In this section we introduce SILENTKNOCK, our implementation of a secure port knock-
ing scheme, and discuss how this implementation embodies the security model defined
above. We first discuss several adaptations necessary for secure and reliable interaction
with TCP/IP, such as replay attack protection, client/server synchronization, and indis-
tinguishability. Next, we analyze a number of possible attacks on our implementation.
Finally, we present results showing our system in action. A generic presentation of the
scheme, along with security proof, appears in the appendix.

SILENTKNOCK is designed to be an application-agnostic transport-level authenti-
cation layer. It resists forgery and replay attacks while leaking no further information
about the authentication method employed. We use kernel hooks to ensure that appli-
cations do not need to explicitly support our system in order to benefit from it. We use
keyed MACs as secure authenticators to resist forgery attacks and a two-part counter to
counteract replay attacks while ensuring that client and server counters stay synchro-
nized even in the presence of moderate packet loss. We provide an implementation of
a previously proposed operating system-specific steganographic embedding scheme for
TCP/IP [9] and use it to embed authentication information into TCP headers.

Universal Compatibility. We provide ease-of-use (for end-users, system administra-
tors, and programmers) by choosing an application-agnostic design. By using hooks
directly into the operating system kernel, we avoid modifying any of the network ker-
nel or library calls made by application software or requiring supports for SOCKS-type
proxies. This allows any application to transparently use SILENTKNOCK (without ap-
plication awareness or modification), provided that the network protocol used by the
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application has a steganographic embedding/extraction method supported by SILENT-
KNOCK . We note that for certain protocols, such as TCP, with many implementations
that may have subtle differences, each implementation may require a different stegano-
graphic embedding routine to preserve indistinguishability. Our goal is to seamlessly
support as many transport protocol implementations as possible, although currently
only TCP under Linux 2.6 is supported.

Design Choices. Our implementation is designed to run on the Linux operating system
with a 2.6 kernel. We chose Linux 2.6 due to our familiarity with the system and the
availability of the netfilter/libIPQ API [25], which allowed us to implement our system
entirely in user space instead of modifying the operating system. We use Poly1305-
AES [10] as our MAC function since it is optimized specifically for network packets
and has very fast implementations available for most processor types. We implement
Murdoch and Lewis’ system for embedding steganographic information into TCP ini-
tial sequence numbers (ISNs) [9] and use the TCP timestamp option (enabled by default
in Linux 2.6) to embed an additional byte of information into the timestamp, delaying
packets when needed. For additional details on the adjustments necessary to make ran-
dom ISNs consistent with the Linux 2.6 network stack, see [9].

3.1 Protocol

The SILENTKNOCK algorithm is outlined in Figure 2. A SILENTKNOCK client initi-
ates a connection (composes a TCP SYN packet) to a SILENTKNOCK-enabled server
and steganographically embeds an authentication token into the packet. The embed-
ding algorithm and resulting packet header structure are described in Figures 3 and 4,
respectively. The server receives a SYN packet and extracts the authenticator. If verifi-
cation is successful, the server allows the connection to continue, otherwise the packet is
dropped. The client and server share a key, as well as a counter which is incremented for
every client connection attempt (we discuss counter synchronization later). The counter
prevents replay attacks by ensuring that every SYN packet sent by the client is different
from any packets sent previously, and is also used as the nonce required by our MAC
function. The key, initial counter, and resynchronization interval are exchanged out of
band, since negotiation is impossible in case of one-way communication.

MAC. Instead of an additional sequence of knocks, we use a keyed MAC for client
authentication, applying it to the source and destination (IP, port) tuples as well as the
counter, so every connection attempt is guaranteed to contain a unique MAC. We em-
ploy Poly1305-AES [10] for our MAC function since it is designed specifically to work
on small bits of data such as network packets and is implemented in optimized assembly
for a number of popular platforms. The connection counter serves as the nonce required
by Poly1305-AES. Assuming that AES is a pseudorandom permutation, an adversary
should not be able to compose a valid MAC, or even distinguish one from random bits,
for the next SYN packet without knowing the key (even if we assume that all other
factors are public information).

Steganography and Indistinguishability. We use the TCP sequence number and
timestamp fields of the TCP SYN packet to embed our MAC information [9]. Unfor-
tunately, we are not able to include the complete MAC, as our current implementation
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1. B → A: MACk,ctrB
(m); encoded in TCP/IP headers of SYN packet

2. A: Set ctrA ← ctrA + 1
for i = 0 to ft:

if (MACk,ctrA−1+i(m) = MACk,ctrB
(m))

Set ctrA ← ctrA + i + 1; resynchronize counter if client is ahead
A → B: SYN-ACK
goto 5

3. B: if (SYN-ACK received) then
Set ctrB ← ctrB + 1, goto 5; connection was successful

4. B: if (SYN-ACK not received) then
Set ctrB ← ctrB + 1; assume server got SYN, but SYN-ACK was lost
goto 3

5. A, B: proceed with TCP connection
if (FIN or RST received) then

goto 1

Fig. 2. The pseudocode for SILENTKNOCK. A is the server, B is the client, ctrP is a per-IP-
address counter maintained by principal P , k is a value derived from B’s IP address and a sym-
metric key shared between A and B, m is a TCP flow identifier, and ft is a failure-tolerance
parameter.

only allows a total of 32 bits to be embedded (24 bits in the sequence number and 8
bits — the least significant byte — in the timestamp), assuming Linux sequence num-
bers4 (see Figure 4). Since we must not allow distinguishability based on discrepancy
between the observed packet dispatch time and the packet timestamp, we delay packet
transmission, but only use the last timestamp byte to minimize delay times. Although
32 bits is a relatively short MAC, recall that even at this length, an adversary would
still have to compose, on average, 232 packets to break the authentication (requiring,
for example, 6 weeks to transmit over a T1 link). We remark that standard methods to
deal with online guessing attacks can also be applied here, such as account freezing or
processing delays.

One issue that arises when using the TCP timestamp field (rather than just the ISN)
to encode MAC data is the possibility of lost SYN packets. For instance, if a client
generates a SYN packet but a SYN-ACK from the server does not arrive, the client must
re-transmit the SYN packet. However, TCP requires that re-transmitted SYN packets
have the same sequence number but different timestamp [26], so we can no longer
encode stegotext in the timestamp: if the SYN packet was lost due to a malicious host,
or if an adversary is observing all SYN packets, that adversary would detect that the
least significant byte of the timestamp in the original and re-transmitted SYN packets
are identical. The probability of this is only 1/256, so the adversary could conclude that
SILENTKNOCK was in use.

To solve this problem, we ensure that the last byte of the timestamp looks random
to our adversary, even when we are trying to re-transmit the same MAC. We can use
two existing properties of our system to help us, the first having originally caused this
problem: the higher order bytes of the new timestamp must be different from the one
in the original SYN packet5. Secondly, we do not transmit the entire MAC (only the

4 OpenBSD has 30 bits of entropy available in the sequence number, while Linux 2.6 only has
24 bits.

5 In reality, we only use the middle two bytes of the timestamp, since the upper byte is extremely
unlikely to change, and the bottom byte will be replaced by stegotext.
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P : TCP SYN packet
Pseq = {S1, S2, S3, S4} : Sequence number of packet P (4 bytes)
Pts = {T1, T2, T3, T4} : Timestamp of packet P (4 bytes)
m = (IPB , source port, IPA, destination port) : Authentication information
MACK,ctr(m) = {M1, M2, . . . , M16} : 16 byte MAC
S2 = M1, S3 = M2, S4 = M3
T4 = hM ({T2||T3}) : n-Universal hash function

Fig. 3. The steganographic encoding protocol. Decoding is performed by reversing the operations
in this protocol.

first 32 bits), so the adversary has no knowledge of the rest. We use these undisclosed
MAC bytes to key an n-universal hash function (e.g. ha(x) = a1x

n−1+a2x
n−2+· · ·+

an−1x+an) [27], which is applied to the middle bytes of the (changed) timestamp to de-
termine the last byte of the timestamp, ensuring that any n or fewer distinct timestamps
have last bytes that are indistinguishable from random. 6. Since the server computes the
same MAC, the server can reverse this process and extract the stegotext. Therefore we
preserve the integrity and indistinguishability of stegotext in our timestamp even for
re-transmitted packets (note that a packet will again need to be delayed so transmission
time is consistent with the new timestamp).

Counter management. To protect against replay attacks, we employ a per-user counter,
incremented after every connection attempt. If a given user has never before accessed a
SILENTKNOCK-protected server, the counter is initialized to 0 by both the client and the
server. The counter poses additional challenges, such as what happens when the client
and server counters become desynchronized. Desynchronization can occur in two ways:
either the client’s SYN packet never arrives at the server, leading to the client having
a counter higher than the server’s, or the server’s SYN-ACK can be lost, meaning the
client and server are actually in sync, but the client does not know this. A client would
have a hard time attempting to resynchronize after a failed connection, since the client
does not know whether the server received the SYN packet and verification failed, or
whether the server received and verified the SYN packet but the SYN-ACK was lost,
or whether the SYN never arrived at the server. We allow for automatic in-protocol
resynchronization after a certain time period.

For this purpose, we enforce the equation ctrserver ≤ ctrclient by having the client
always increment its counter when sending a SYN packet. The server, however, will
only increment its counter upon successful MAC validation, to prevent malicious de-
synchronization by sending bogus packets to the server. In the naı̈ve scheme of insisting
the counter be exactly right, the server and client may never again get into sync once
desynchronized, since the client will increment its counter on each connection attempt,
but the server’s counter remains the same.

To counteract permanent desynchronization, we adopt a two-part counter design. Us-
ing a 64-bit counter, the first 32 bits (called the RESYNC field) are initialized to 0 (at the

6 By default, Linux 2.6 TCP only attempts to re-transmit a failed SYN packet five times, so
5-universal hashes are sufficient. If this number were to change, both the client and the server
would need to modify their hash function (for n retransmissions, an m-universal hash function,
where m ≥ n must be used).
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Fig. 4. The TCP SYN packet after steganographic embedding. The “internal consistency” adjust-
ment in the sequence number is performed to keep the modified sequence number consistent with
what Linux is expected to produce.

time of first connection) and are incremented once every configured unit of time (such
as every hour, day, month, leap-year, etc.). The time period must be agreed upon by the
client and the server as part of out-of-band setup. The latter 32 bits (called the CTR
field) are always reset to 0 when RESYNC is incremented. Using this two-part counter,
we allow resynchronization to occur automatically once the RESYNC increment time
elapses. If there is substantial relative clock drift between the client and server, it is pos-
sible that client connections will fail (or even become desynchronized) when the client
initiates a connection at a time when one entity has incremented RESYNC and reset
CTR but the other has not. However this is extremely unlikely and would repair itself
during the next RESYNC increment. Checking more than one consecutive value of the
counter as part of the MAC would make desynchronization unlikely for most (transient)
network-level failures, but would also degrade security linearly, since it allows multiple
MACs to be valid at any given time. If multiple counters are checked, the server should
save the counter that matches whichever MAC successfully verified, and increment that
counter for use next time. This way, the server and client should be in sync for the
next connection attempt. (The number of alternate CTR values checked by the server is
specified by the ft parameter in Figure 2.)

3.2 System Architecture

The SILENTKNOCK system is composed of two separate programs - “ sknockd” (run-
ning on the server), and “ knockproxy” (running on the client). Connections are au-
thenticated on a per-flow instead of per-source (IP address) basis. While knockproxy
actively modifies packets as they leave and enter the client machine, sknockd (on the
server side) does not do any packet modification. Combined with the very low veri-
fication overhead of our chosen MAC function, this should minimize the load on the
server. We use the libIPQ API to register interest in packets with certain flags and (IP,
port) tuples with the kernel, and those packets are rerouted by the netfilter system to
user-space7. On both client and server side, we only send packets we are potentially
interested in to user space, to avoid excess context switching between user-space and
kernel-space. Both sknockd and knockproxy currently detect closed connections

7 This re-routing happens after processing by the network stack for outgoing packets, but before
processing for incoming packets.
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Fig. 5. The architecture of SILENTKNOCK. The client-side application initiates a connection to a
server in the usual manner. The kernel composes a SYN packet, but knockproxy intercepts the
packet before it is sent, and embeds a MAC into the ISN and timestamp fields. The server receives
the packet, and sknockd examines it before passing it to the kernel. If sknockd successfully
extracts and verifies the MAC, the packet is accepted by the kernel and passed to the application;
otherwise it is dropped. Once the SYN packet is accepted, sknockd no longer examines other
packets for that connection (except for terminating packets FIN and RST). knockproxy, how-
ever, is forced to rewrite every incoming and outgoing packet for the connection to prevent the
client TCP stack from getting confused due to a sequence number mismatch.

by listening to FIN and RST packets, and timeout support (in case the FIN or RST
packets are never received due to packet loss) will be added in the future.

Knock Daemon. sknockd, the server side of the SILENTKNOCK system, listens for
connections on a port it reads from its configuration file (the port offering the protected
service, i.e. SSH on port 22), and examines incoming SYN packets on those ports before
the TCP/IP stack sees them. When a packet is received, sknockd checks the source
IP address of the packet and retrieves the secret key as well as the counter for that IP
address from its configuration file (per-user shared keys are also supported). Using the
TCP steganographic algorithm, sknockd extracts stegotext from the packet, treats it
as a MAC, and attempts to verify it. If verification succeeds the packet is accepted, and
passed on to the TCP/IP stack, otherwise the packet is dropped. sknockd then incre-
ments the per-IP connection counter (CTR). This is the extent of sknockd’s involve-
ment with the connection — all other packets are processed directly by the network
stack in the kernel, and are not seen by sknockd (except for detection of connection
closing). Since the SYN packet is copied only once (from kernel to user space) and not
modified (does not have to be copied back), and since our chosen MAC is very fast, the
entire operation is very efficient. Furthermore, since only SYN packets are examined,
the load on the server is minimized.

There is a small trick to preserving indistinguishability when we in fact are inter-
cepting certain packets — we must prevent the adversary from being able to set the
SYN flag on a packet that is part of an existing (previously authenticated) stream, be-
cause if sknockd drops that packet (due to incorrect MAC), the adversary will be
able to conclude that SILENTKNOCK is in use. Therefore, when sknockd tells the
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netfilter to allow a certain connection (after verifying the MAC), we insert the AL-
LOW rule into netfilter before the rule that forwards all SYN packets to sknockd.
Thus, authenticated streams (having a known source (IP, port) tuple) are never again
processed by sknockd, even if they (incorrectly) contain SYN packets, preserving de-
fault TCP stack behavior. This solution (inserting the ALLOW rule for a flow before the
sknockd rule for SYNs) frees sknockd from storing any per-flow state outside of
netfilter. The number of initial netfilter rules is linear in the number of SILENTKNOCK-
protected services, and future rules scale linearly with the number of active connections
to protected services. While the number of rules may become large with many active
connections, this can not be avoided, and we must rely on the efficiency of the underly-
ing packet filter implementation to scale gracefully under load. Memory requirements
for per-user keys (and pre-computed MACs) are linear in the number of users config-
ured, and per-IP counter storage is linear in the number of client IP addresses.

Knockproxy. knockproxy reads a configuration file to find out which servers sup-
port SILENTKNOCK, and for which services (listed by destination (IP, port) pairs). The
configuration file also includes the key shared with the server, and the last value of
the connection counter (if this is the first time connecting to that server, the counter is
initialized to 0). knockproxy registers interest for all SYN packets going from local-
host to that (IP, port) pair. When it receives such a SYN packet (generated by the local
TCP/IP stack), it computes a MAC using the server shared key and steganographically
encodes the information in the TCP initial sequence number and timestamp. It then reg-
isters interest for all incoming and outgoing packets for that (IP, port) tuple, increments
the associated connection counter, and sends the packet over the wire8. Since we have
modified the sequence number from what the local TCP stack expects it to be, we must
modify it again in the return packets before the TCP stack sees them, otherwise we
will confuse the stack and reset the connection. Likewise, we must continue to mod-
ify all future outgoing packets for that connection, otherwise the remote host will reset
the connection when it detects a sequence number mismatch. Once the connection is
closed, knockproxy de-registers interest in that tuple (connection closure is detected
the same way for both sknockd and knockproxy). The number of initial netfilter
rules is linear in the number of SILENTKNOCK-protected services that might be con-
tacted, Future rules scale linearly in the number of active portknocked connections.

3.3 Timing Analysis

The indistinguishability of the SILENTKNOCK implementation relies on the adversary
gaining no information through timing attacks — if sknockd takes an overly long time
to process packets, a smart attacker with knowledge of traffic timing before SILENT-
KNOCK was installed on a server would realize that some kind of additional processing
is occurring (but not necessarily that SILENTKNOCK is in use). If the difference in tim-
ing is large enough, it makes for a good distinguisher for SILENTKNOCK in practice,
even though timing information is not included in our formal model. On the other hand,
if the timing difference is small (compared to timing noise between the adversary and
the server — delays imposed by slower or overloaded routers, etc.) or the adversary

8 The packet may be delayed, depending on the modification made to the timestamp field.
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Table 1. Average time difference between receiving a SYN packet and emitting a SYN-ACK
packet. The third experiment avoids the context switch incurred by user-space iptables manipu-
lation, and gives a performance estimate for a sknockd kernel module.

Experiment SSH only sknockd without commit

Average response time (μs) 242.86 389.33 295.44
St. Dev. (μs) 8.59 13.36 8.64
Slowdown factor 1 1.60 1.22

lacks precise knowledge of the timing characteristics of the server, this “side channel”
will not lead to a good distinguisher in practice. Therefore, we have attempted to min-
imize this information leakage, and can minimize it further by implementing a number
of optimizations, such as more aggressive pre-computation during idle time.

Results of our timings tests are shown in Table 1. We measure the time an SSH
server running sknockd takes to process SYN packets and compare to an ordinary
SSH server. We record the time between when the server receives a SYN packet (con-
taining a valid MAC) and the time it sends a response (SYN-ACK) packet. The first col-
umn shows the baseline (standalone SSH server) time; the second column shows time
with SSH and sknockd running together; the third column is similar to the second,
except that sknockd has been modified to not make the iptables commit kernel call
(iptc commit), which inserts the iptables connection rule constructed by sknockd
into the kernel packet filter table. We made this modification to simulate the amount of
time the server would take to emit a SYN-ACK packet with sknockd running in ker-
nel space, enabling direct manipulation of the packet filter table, without incurring the
overhead of a user space to kernel context switch9. While servers running sknockd
are always slower than servers running SSH alone, modifying sknockd to remove the
iptables commit call reduces the time difference significantly.

Although information leakage (thought timing information) occurs in practice, the
amount of information revealed is minor. Even using user-space sknockd, an adver-
sary located a few hops away, and with perfect knowledge of the server timing distribu-
tion without sknockd, would need to witness several hundred accepted packets to gain
a significant advantage in distinguishing sknockd from a dynamic firewall10; with the
simulated kernel-space sknockd, the adversary is unlikely to detect the processing
time difference unless he is located on the same LAN as the server. To further minimize
this difference, we implemented AES pre-computation for Poly1305-AES nonces. At
the moment we precompute only the initial counter value, but we can precompute and
store values of the next several counters, allowing for verification to be performed with-
out any online cryptographic computation.

While we do not test the client-side knockproxy for timing distinguishability,
mainly due to time constraints, the use of knockproxy would be much more dif-
ficult to detect than sknockd. Since the processing of SYN packets occurs before

9 We can currently account for at least 4 user-space/kernel context switches in sknockd.
10 Due to the fact that 90% of Internet flows experience a standard deviation of 1ms or more in

round-trip time [28], while the magnitude of timing difference even in the case of user space
sknockd is only about 0.15 ms.
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any observable event, and processing subsequent packets in a flow requires no manip-
ulation of kernel data structures and no cryptographic computation, observable timing
differences would be very small. If a remote adversary were to test for the presence of
knockproxy, the largest observable effect would be in the re-transmit timeout, which
may be altered by the packet delay imposed by timestamp modification. However, since
retransmit clocks have granularity measured in seconds [26], and our timestamp modi-
fication has millisecond granularity, detection is unlikely.

4 Discussion

4.1 Limitations of SILENTKNOCK

Here we would like to note a number of limitations of our system. First, we only attempt
to authenticate the start of a connection, but provides no guarantee that connections
stay authentic. In other words, our system does not protect against connection hijacking
(a well-known problem in TCP security) [29]. Furthermore, due to the limited band-
width for authentication, SILENTKNOCK can only support symmetrically-keyed au-
thentication. We believe it is up to the application to provide connection hijacking pro-
tection and relevant user authentication (e.g., SSH [6]).

Our solution relies on embedding stegotext in TCP/IP, and we are therefore limited
in the size of the MAC field we can send. Currently, we only support 32 bits out of
a 16-byte MAC. Furthermore, different operating systems have different TCP initial
sequence number properties, and thus the amount of data that can be embedded in the
SYN packet is highly dependent on the OS composing the packet. Thus, it is necessary
that the server know the OS of the client in order to correctly extract the stegotext;
alternatively, the server can attempt multiple extractions, but this will increase the cost
of filtering and degrade security by a factor of the number of OSes supported.

Identities, Addresses, and NAT. In any distributed authentication system it is neces-
sary to decide what the identities in a system correspond to. Three natural choices are to
let identities correspond to network addresses, to physical hosts, or to human users. Our
current implementation allows two options: identities (keys) may be associated either
with IP addresses or users; each has different consequences for usability and security.

When identities are bound to IP addresses, we must assume that only a single client
machine will be accessing a SILENTKNOCK-protected server from a given IP address,
since a single counter is used for each identity. This assumption breaks down in the
presence of NAT (network address translation) and similar devices. Therefore, in this
scenario, we must limit our system to only one client per NAT. We stress, however,
that unlike previous implementations, where NATs presented a security problem [15],
adversaries sharing a NAT with a valid knockproxy client gain no advantage.

We also support associating identities with users by issuing a key to each user and
checking the MAC on each SYN packet against each user’s key. This can be done at
essentially no extra computational cost due to the design of the Poly1305 MAC, which
is computed by adding a keyed non-cryptographic hash of the message to the AES
encryption of a nonce mod 2128. Suppose we assign different AES keys (but a shared
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non-cryptographic hash) to different users, and precompute the AES encryption of dif-
ferent users’ counters, for the next ft values. Then, given a packet p with embedded tag
t, we can check whether t = MACK,r(p, n) = Poly1305r(p)+AESK(n) mod 232 for
some user’s key K and counter n as follows. We first compute t−H(p) mod 232, and
then we search for the resulting value in our table of precomputed encrypted nonces; if
the value is found, we accept the packet and remove older encrypted counters for the
same user. This search can be implemented in essentially constant time (with respect to
the number of users) using a number of approaches, such as hash tables or tries. After
accepting the packet, we insert the next precomputed nonce for the same user into the
table. While this solves the NAT problem mentioned above, it causes security loss by a
factor of the number of users (and thus the number of user keys) due to the requirement
that we check the MAC against all user keys. Alternatively, once IPv6 is a viable alter-
native to IPv4, we may be able to use unique target IP addresses as part of the key, such
that a server running sknockd has one IPv6 address per user.

Denial of Service. While we have implemented some measures to prevent distinguish-
ing or denial of service attacks due to packet dropping, our scheme is vulnerable to a
selective denial of service attack. An adversary who modifies all packets on a network
by consistently rewriting sequence numbers or timestamps can cause MAC verification
to fail at sknockd, while not impacting the status of most standard TCP traffic. We
note that this attack is both expensive, in that it requires the attacker to touch every
packet in — and maintain per-flow state for — all connections on a network, and may
effect other protocols that authenticate the TCP header, such as IPsec [30] or TCP-
MD5 [22]. Additionally, such selective denial of service is much easier for other port
knocking or general IP service authentication schemes, as in those cases it is easy to
identify knock sequences or authenticated packets and drop them, while maintaining no
other state. Finally, if the server logs failed connection attempts, it will be easy to no-
tice such attacks since, for instance, altering the timestamp will still give a 24-bit MAC
match in the sequence number, which is unlikely.

4.2 Conclusion

Following our formal security model for port knocking, the SILENTKNOCK imple-
mentation provides a provably indistinguishable system with reasonable overhead, and
an especially light load on the server. The system is currently usable by any Linux
2.6 application using TCP/IP as its network protocol, and is completely compatible
with TCP/IP as described by relevant RFCs [26, 31]: it is possible for a client running
knockproxy to connect to a server not running sknockd. Furthermore, since all
“knocks” are destined for ports potentially providing services, the system is compatible
with all currently-deployed firewalls, including host-based software firewalls.

We provide per-flow, not per-source (IP address) authentication, meaning that even if
host A already has an active and authenticated connection to host B, a new connection
from host A to host B (presumably using different outgoing port on host A’s side) would
need to be uniquely authenticated. Furthermore, all of the knock “sequences” we use
are one-time (not replayable) since we employ a connection counter that is unique to
every IP address, and thus every client.
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4.3 Future Work

For future work, there are a number of implementation-level issues to address. The most
pressing issue of these is porting sknockd to a kernel module, to eliminate the over-
head of kernel/user space switching. Along with this conversion, we plan to implement
several other optimizations, including more aggressive pre-computation. We expect that
these modifications will further decrease overhead for sknockd.

Other possibilities for future work include the use of additional TCP/IP fields for
steganographic embedding. For instance, under Linux 2.6, ephemeral TCP ports and IP
IDs are assigned pseudorandomly per destination host, and change every five minutes.
Thus, in an environment that requires a longer MAC, these fields could be utilized,
gaining an additional 34 bits of authentication, at the expense of disallowing more than
one connection to a given IP address and port per five minute period. Using the source
port number and IP ID field, and limiting connections to once per five minute period
would also allow extension of SILENTKNOCK to the UDP protocol, with 34 bits of
authentication; unfortunately, the UDP header format does not include any other stan-
dard, variable elements, so 34 bits per five minutes seems to be an upper bound on the
authentication strength for UDP.

Another important issue to address in the future is usability. Our current implementa-
tion is fairly configurable and relatively straightforward for computer scientists or sys-
tem administrators to use. However, in order to be deployed widely, (say, as widely as
VPNs), we will require a more friendly interface. A related issue that we have not ad-
dressed here is key management. It will be interesting to consider these issues in depth.
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Abstract. In this paper, we introduce a new primitive called identity-
based encryption with wildcard key derivation (WKD-IBE, or “wicked
IBE”) that enhances the concept of hierarchical identity-based encryp-
tion (HIBE) by allowing more general key delegation patterns. A secret
key is derived for a vector of identity strings, where entries can be left
blank using a wildcard. This key can then be used to derive keys for
any pattern that replaces wildcards with concrete identity strings. For
example, one may want to allow the university’s head system admin-
istrator to derive secret keys (and hence the ability to decrypt) for all
departmental sysadmin email addresses sysadmin@*.univ.edu, where *
is a wildcard that can be replaced with any string. We provide appro-
priate security notions and provably secure instantiations with different
tradeoffs in terms of ciphertext size and efficiency. We also present a
generic construction of identity-based broadcast encryption (IBBE) from
any WKD-IBE scheme. One of our instantiation yields an IBBE scheme
with constant ciphertext size.

1 Introduction

Identity-based encryption. Securely linking users to their public keys is a
notorious obstacle in the adoption of public-key encryption schemes in practice.
Most commonly, it is overcome by means of a public key infrastructure (PKI)
where a trusted authority certifies, by means of a digital signature, the relation
between users and their public keys. The high cost of setting up and maintain-
ing such a PKI can be prohibitive for many organizations however. In 1984,
Shamir [20] proposed identity-based encryption (IBE) as a cheaper alternative
to traditional PKIs. Here, the public key of a user is his identity (e.g. his name
or email address), while the corresponding private key is handed to him by a
trusted key distribution center. It lasted until 2000 however for the first practical
IBE schemes [18,7] to be proposed based on bilinear maps.
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Hierarchical identity-based encryption (HIBE) schemes [14,12] are the hier-
archical extension of IBEs where user identities are vectors of bit strings. The
root entity generates private keys for users at the first level; users at level � can
derive keys for their children at level �+1. This prevents the distribution center
from becoming a bottleneck in the system, and at the same time reflects the
hierarchical structure of many organizations and user identities, in particular
email addresses. For example, the head of the computer science department of a
university could be given the key for identity (edu,univ,cs) allowing him to de-
rive keys for identities (edu,univ,cs,username) corresponding to email addresses
username@cs.univ.edu.

Wildcard key derivation. Hierarchical key derivation is a useful feature,
but has its limitations. For example, it would be reasonable to prevent end-users
from further deriving keys for identities below them. This feature was referred
to before as limited delegation by Boneh-Boyen-Goh [6], who show a tweak to
their HIBE scheme offering exactly this functionality—albeit without a formal
security notion or proof for their approach. In some circumstances, it could also
be useful to be able to deviate from the hierarchical structure. For example, one
may want to allow the university’s head system administrator to derive keys for
all departmental sysadmin email addresses sysadmin@*.univ.edu, where * is a
wildcard that can be replaced with any string. As another example, it could be
practical to provide a company like Google Inc. that registers its name at all
top-level domains with a key for *@google.*.

These applications lead us to generalize the concept of HIBE schemes to
identity-based encryption with wildcard key derivation (WKD-IBE), or more suc-
cinctly wicked IBE. After defining adequate security notions, we start looking for
constructions. First observe that if a HIBE scheme allows a maximal hierarchy
depth L to be fixed, then the limited-delegation property of [6] can be achieved
generically by padding the identity vector with “dummy” strings at the unused
lower levels. (But this may come at the cost of efficiency.) The more general
functionality of wildcard key delegation cannot be achieved generically though.
Nevertheless, we show that many of the existing HIBE schemes are amenable
to a modification that enables wildcard key derivation, including the Gentry-
Silverberg [12], Boneh-Boyen [5], Waters [21], and Boneh-Boyen-Goh [6] HIBE
schemes. For the former three this may come as a bit of a surprise, because
no limited-delegation tweaks were previously proposed for these schemes. We
prove the security of the modified schemes under our new notions, thereby pro-
viding as a special case formal ground for the intuition of [6] regarding their
limited-delegation tweak.

Application to identity-based broadcast encryption. Broadcast en-
cryption [11] allows to encrypt a message to any subset S ⊆ {1, . . . , N} of N
users so that only users in S can decrypt the message. A trivial solution consists
of concatenating encryptions of the message under the public key of each user in
S separately, but this yields ciphertexts of size linear in |S|. The most efficient
fully collusion-resistant (meaning where the adversary can corrupt all users out-
side of S) public-key broadcast encryption schemes are due to Boneh et al. [8],
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who present a first construction with constant-size ciphertexts and private keys
but with O(N)-size public keys, and a second construction with O(

√
N)-size

ciphertexts and public keys.
Identity-based broadcast encryption (IBBE) is the natural extension of broad-

cast encryption to the identity-based setting. It is particularly appealing as a
primitive because the total number of users in the system N is limited only by
the size of the identity space. We propose a generic construction of an IBBE
schemes from any WKD-IBE scheme. The construction inflates the private key
size by a factor L being the maximal number of identities in a recipient set, but
otherwise shares the same cost as the underlying wicked IBE.

Of all the instantiations of wicked IBE that we propose, the most attractive
resulting IBBE scheme is that obtained from the scheme based on [6], because
it achieves constant-size ciphertexts. However, it has the disadvantage of having
private keys of size O(L2), where L is the maximum number of recipients in
a ciphertext. The other concrete instantiations are less attractive because they
have ciphertext size O(L), just like the trivial scheme that concatenates individ-
ual ciphertexts. Unlike most other broadcast schemes however, they do have the
remarkable feature that knowledge of the recipient set is not required in order
to decrypt the message.

Wildcard signatures. Just like the key derivation of an IBE scheme auto-
matically gives rise to a signature scheme [7], a WKD-IBE scheme gives rise to
a new primitive that we call a wildcard signature scheme. It allows a signer to
issue a signature on a message containing wildcards, which anyone can replace
with concrete values at a later point without invalidating the signature. Our
constructions of wicked identity-based encryption yield a number of wildcard
signature schemes with different tradeoffs.

Related work. Wicked identity-based encryption can be seen as the dual
notion of identity-based encryption with wildcards [1] (WIBE). There, one can
use wildcards in the recipient identity to which a ciphertext is encrypted, so that
all users whose identity matches the recipient pattern can decrypt it. In fact, the
notions of WKD-IBE and WIBE could be combined into a universal primitive
that allows wildcards to be used in both the encryption and key derivation
algorithms. Instantiations of this primitive can be obtained from all WKD-IBE
schemes presented in this work, except for the one based on Gentry-Silverberg’s
HIBE [12].

Key-policy attribute-based encryption (KP-ABE) [13] associates to each de-
cryption key an access structure consisting of a logical combination of attribute
values using AND and OR gates. A ciphertext is encrypted under a set of de-
scriptive attributes and can only be decrypted with a key whose access structure
is satisfied by the set of attributes. As discussed in [13], HIBE schemes can
be seen as a special case of KP-ABE schemes by mapping the identity vector
(edu, univ, cs, sysadmin) to the access structure (1‖edu ∧ 2‖univ ∧ 3‖cs ∧
4‖sysadmin). Likewise, wicked IBE can be seen as a special case of KP-ABE
by letting the key for identity (edu, *, *, sysadmin) be given by the key for
(1‖edu ∧ 4‖sysadmin). The wicked IBE scheme obtained through the first
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construction of [13] has the disadvantage of having public keys linear in the size
of the attribute universe. The instantiation obtained from their second, large-
universe construction is quite similar to the scheme that we derive from the
Boneh-Boyen HIBE scheme [5]. None of the schemes derived from [13] achieve
constant ciphertext size though, like our wicked IBE construction based on [6].

The use of HIBE schemes in the design of broadcast encryption schemes was
first considered by Dodis and Fazio [10]. Chatterjee and Sarkar [9] gave a direct
construction of an IBBE scheme that is closely related to the instantiation of
our generic construction with the WKD-IBE scheme based on [6]. Our generic
construction provides insight into the design of their scheme, but their con-
struction contains some interesting efficiency-improving tweaks. The schemes
are compared in more detail in Section 4.3.

In independent work, Shacham [19] formalizes the concept of limited delegation
for HIBE schemes and proves this feature for the HIBE scheme of [6]. As we
pointed out above, limited delegation for HIBEs can be seen as a special case of
WKD-IBE where wildcards can only appear at the end of the identity vector.
Our WKD-IBE scheme based on [6] can therefore be seen as a generalization of
the result of [19].

2 Basic Definitions

In this section, we introduce some notation and computational problems that
we will use throughout the rest of the paper. In doing so, we adopt the same
notation and definition style used in [1].

Notation. Let N = {0, 1, . . .} be the set of natural numbers. Let ε be the empty
string. If n ∈ N, then {0, 1}n denotes the set of n-bit strings, and {0, 1}∗ is the
set of all bit strings. More generally, if S is a set, then Sn is the set of n-tuples
of elements of S, S≤n is the set of tuples of length at most n. If S is finite, then
x

$← S denotes the assignment to x of an element chosen uniformly at random
from S. If A is an algorithm, then y ← A(x) denotes the assignment to y of the
output of A on input x, and if A is randomized, then y $← A(x) denotes that the
output of an execution of A(x) with fresh coins is assigned to y.

The Decisional Bilinear Diffie-Hellman Assumption [7]. Let G,GT be
multiplicative groups of prime order p with an admissible map ê : G × G →
GT. By admissible we mean that the map is bilinear, non-degenerate and ef-
ficiently computable. Bilinearity means that for all a, b ∈ Zp and all g ∈ G
we have ê(ga, gb) = ê(g, g)ab. By non-degenerate we mean that ê(g, g) = 1 if
and only if g = 1. Let g ∈ G be a generator. In such a setting, the bilin-
ear decisional Diffie-Hellman (BDDH) problem is to determine, given g, A =
ga, B = gb, C = gc, and Z = ê(g, g)z, whether Z = ê(g, g)abc for hidden
values of a, b, c and z. More formally, let A be an adversary for the BDDH
problem. Such an adversary has advantage ε in solving the BDDH problem if∣
∣Pr[A(g,A,B,C, ê(g, g)abc) = 1]− Pr[A(g,A,B,C, ê(g, g)z) = 1]

∣
∣ ≥ ε, where the

probabilities are over the choice of a, b, c, z and over the random coins consumed
by A.
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Definition 1. The (t, ε)-BDDH assumption holds if no t-time adversary has at
least ε advantage in the above game.

We note that throughout this paper we will assume that the time t of an adver-
sary includes its code size, in order to exclude trivial “lookup” adversaries.

The BDHE Assumption.The �-decisional bilinear Diffie-Hellman exponent (�-
BDHE)problem [6] in G is: given g, h and g(αi) ∈ G, for i = 1, . . . , �−1, �+1, . . . , 2�
as input, output ê(g, h)(α

�) ∈ GT . Boneh, Boyen and Goh, conjectured that the �-
BDHE is a hard problem, meaning with this that no polynomially
bounded adversary A can solve it with more than negligible probability, over the
random choices of g, h ∈ G, the choice of α ∈ Zp, and the random coin tosses ofA.

The decisional version of the problem can be defined in the usual manner.
Let y = (gα, g(α2), . . . , g(α�−1), g(α�+1), . . . , g(α2�)). An algorithm B that out-
puts a bit b, has advantage ε in solving the decisional �-BDHE problem in G

if
∣
∣
∣Pr

[
B(g, h,y, ê(g, h)(α

�)) = 1
]
− Pr

[
B(g, h,y, T ) = 1

]∣∣
∣ ≥ ε, where the prob-

abilities are taken over the random choices of g, h ∈ G, the random choice of
α ∈ Zp, the random choice of T ∈ GT , and the internal coin tosses of B.

Definition 2. The decisional (t, ε, �)-BDHE assumption holds in G if no t-time
(probabilistic) algorithm has advantage at least ε in solving the decisional �-
BDHE problem in G.

3 Wicked Identity-Based Encryption

Syntax. A wicked identity-based encryption scheme (WKD-IBE) is a general-
ization of a HIBE scheme which allows for more general key delegation patterns.
In a WKD-IBE scheme, secret keys are associated with patterns rather than
identity vectors. A pattern P is a vector (P1, . . . , P�) ∈ ({0, 1}∗∪{*})� of length
� ≤ L, where * is a special wildcard symbol and L is the maximal depth of the
WKD-IBE scheme. That is, each component of a pattern P is either a specific
identity string or a wildcard. The main idea behind the WKD-IBE notion is that
a user in possession of the secret key for a given pattern P can generate secret
keys for any pattern P ′ that matches P . We say that a pattern P ′ = (P ′

1, . . . ,
P ′

�′) matches P , denoted P ′ ∈* P , if and only if �′ ≤ �; ∀ i = 1 . . . �′, P ′
i = Pi or

Pi = *; and ∀ i = �′ + 1 . . . �, Pi = *.
More formally, a WKD-IBE scheme is a tuple of algorithms WKD-IBE =

(Setup,KeyDer,Enc,Dec) providing the following functionality. The root author-
ity generates a master key pair (mpk ,msk) $← Setup. Via skP ′

$← KeyDer(skP ,
P ′), a user possessing the secret key skP for a pattern P = (P1, . . . , P�) can
derive a secret key for any pattern P ′ ∈* P . The secret key of the root identity
is msk = sk (*,...,*).

To create a ciphertext of message m ∈ {0, 1}∗ intended for an identity ID =
(ID1, . . . , ID�), the sender computes C $← Enc(mpk , ID ,m). Any user in posses-
sion of the secret key for a pattern P such that ID ∈* P can decrypt the ciphertext
using skP as m ← Dec(skP ,C , ID). Correctness requires that for all key pairs
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(mpk ,msk) output by Setup, all messages m ∈ {0, 1}∗, all 0 ≤ � ≤ L, all pat-
terns P ∈ ({0, 1}∗ ∪ {*})�, and all identities ID ∈ ({0, 1}∗)�′

such that ID ∈* P ,
Dec( KeyDer(msk , P ) , Enc(mpk , ID ,m), ID ) = m with probability one.

Security. We define the security of WKD-IBE schemes in a way that is very
similar to the case of HIBE schemes, but where the adversary can query for
the secret keys corresponding to arbitrary patterns, rather than specific identity
vectors. Of course, the adversary is not allowed to query the key derivation oracle
for any pattern matched by the challenge identity.

More specifically, security is defined through the following game with an ad-
versary. In the first phase, the adversary is run on input of the master public key
of a freshly generated key pair (mpk ,msk) $← Setup. In a chosen-plaintext attack
(IND-WKID-CPA), the adversary is given access to a key derivation oracle that
on input a pattern P ∈

(
{0, 1}∗ ∪ {*}

)≤L returns skP
$← KeyDer(msk , P ).

At the end of the first phase, the adversary outputs two equal-length challenge
messages m∗

0 ,m
∗
1 ∈ {0, 1}∗ and a challenge identity ID∗ = (ID∗

1, . . . , ID
∗
�∗) where

0 ≤ �∗ ≤ L. The adversary is given a challenge ciphertext C ∗ $← Enc(mpk , ID∗,
m∗

b ) for a randomly chosen bit b, and is given access to the same oracles as during
the first phase of the attack. The second phase ends when the adversary outputs
a bit b′. The adversary is said to win the IND-WKID-CPA game if b′ = b and if
it never queried the key derivation oracle for the key of any pattern P such that
ID∗ ∈* P . If Succ is the event that the adversary wins the above game, then its
advantage is defined as ε = 2 · Pr [Succ ]− 1.

Definition 3. A WKD-IBE scheme is (t, qK, ε) IND-WKID-CPA-secure if all
t-time adversaries making at most qK queries to the key derivation oracle have
at most advantage ε in the IND-WKID-CPA game described above.
Selective-identity Security. As for the case of HIBEs, we also define the
weaker selective-identity (sWKID) security notion IND-sWKID-CPA. The IND-
sWKID-CPA definition is analogous to the IND-WKID-CPA one given above
except that the adversary has to commit to the challenge identity at the begin-
ning of the game, before the master public key is made available.

3.1 Constructions with Linear-Size Ciphertexts

A construction from Gentry-Silverberg’s HIBE scheme. In the fol-
lowing, we present a wicked IBE scheme based on the Gentry-Silverberg HIBE
scheme [12]. The scheme uses L independent random oracles Hi : {0, 1}∗ → G
for 1 ≤ i ≤ L. These can be derived from a single random oracle via standard
techniques [4].

We provide some intuition into our construction by taking a closer look at
the key derivation of (a slight variant of) the original Gentry-Silverberg HIBE
scheme. For master secret key α $← Zp and master public key g1 ← gα, the de-
cryption key of an identity (ID0) at the top level is given by sk (ID0) ← H0(ID0)α.
The key for a lower-level identity (ID0, . . . , ID�) is given by

sk (ID0,...,ID�) ←
(
H0(ID0)α ·

∏�
i=1Hi(ID i)ri , gr1 , . . . , gr�

)
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for random r1, . . . , r�
$← Zp. One could “insert a wildcard” at level 1 ≤ j ≤ �

by omitting the factor Hj(ID j)rj from the product in the first component and
omitting the entry grj in the vector; any value for IDj can then be filled in later
by choosing rj , multiplying Hj(IDj)rj into the first component and inserting a
new component grj . Inserting a wildcard at the top level is not so easy though,
as knowledge of the master key α is required to compute the factor H0(ID0)α.
We therefore “disable” the top level by fixing it to identity ⊥, or equivalently,
by including h0 = H0(⊥) in the public key. A similar fix can be used to prevent
a user at level � < L to further derive keys for users at levels � + 1, . . . ,L.
Namely, the key is computed as if it were for the identity at level L with the
components at levels � + 1, . . . ,L fixed to ⊥. Equivalently, one can include the
elements hi = Hi(⊥) for 1 ≤ i ≤ L in the public key.

Before presenting the scheme, we first need to introduce some additional no-
tation. If P = (P1, . . . , P�) is a pattern, then let |P | = � be the length of P , let
W(P ) be the set containing all wildcard indices in P , i.e. the indices 1 ≤ i ≤ �
such that Pi = *, and let W(P ) be the complementary set containing all non-
wildcard indices. Clearly, W(P ) ∩W(P ) = ∅ and W(P ) ∪W(P ) = {1, . . . , �}.
We also extend the notations P |≤ i, P |> i and P |I that we introduced for iden-
tity vectors to patterns in the natural way. We are now ready to present the
GS -WKD-IBE scheme in full details:

Setup. The root identity chooses random generators g, h0, . . . , hL
$← G∗. It

chooses α $← Zp and computes g1 ← gα. It publishes mpk ← (g, g1, h0, . . . ,
hL) as the master public key and keeps msk ← hα

0 secret.
Key Derivation. To compute a secret key for a pattern P = (P1, . . . , P�) di-

rectly from the master secret key, the root proceeds as follows. Let I =
W(P ) ∪ {� + 1, . . . , L}. For all i ∈ I the root chooses ri

$← Zp and lets
bi ← gri . It then computes a ← msk ·

∏
i∈W(P )Hi(Pi)ri ·

∏
i=�+1,...,L h

ri

i .
The secret key for pattern P is skP ← (a, (bi)i∈I).
Anyone knowing this secret key can generate a key for a pattern P ′ =
(P ′

1, . . . , P
′
�′) ∈* P as follows. Let I ′ = W(P ′) ∪ {�′ + 1, . . . , L}. Note that

P ′ ∈* P implies that I ⊆ I ′. For all i ∈ I, choose ri
$← Zp and compute

b′i ← bi · gri ; for all i ∈ I ′ \ I, choose ri
$← Zp and compute b′i ← gri . Finally,

compute a′ ← a ·
∏

i∈W(P ′)Hi(P ′
i )

ri ·
∏L

i=�′+1 h
ri

i and return the secret key
skP ′ ← (a′, (b′i)i∈I′).

Encryption. To encrypt a message m ∈ GT to identity ID = (ID1, . . . , ID�)
under mpk = (g, g1, h0, . . . , hL), the sender chooses t $← Zp, computes

C0 ← gt

Ci ← Hi(ID i)t for i = 1, . . . , �

Ci ← ht
i for i = �+ 1, . . . , L

CL+1 ← ê(g1, h0)t ·m

and outputs the ciphertext C = (C0, . . . ,CL+1).
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Decryption. A recipient knowing the secret key skP for a pattern P = (P1, . . . ,
P�) can decrypt a ciphertext (C0, . . . ,CL+1) intended to any identity ID ∈*

P as follows. Let I = W(P ) ∪ {�+ 1, . . . , L} and let aP = (a, (bi)i∈I). The
recipient recovers the plaintext as

m ← CL+1 ·
∏

i∈I ê(bi,Ci)
ê(C0, a)

.

Note that the recipient need not even know the exact identity under which
the message was encrypted.

The fact that decryption works can be seen as follows. Let P = (P1, . . . , P�) be
a pattern, let I = W(P ) ∪ {� + 1, . . . , L} and let skP = (a, (bi)i∈I) be a secret
key for P . For all i ∈ I, let ri be the discrete logarithm of bi with respect to
g, i.e. bi = gri . From the key derivation algorithm one can see that a = hα

0 ·∏
i∈W(P )Hi(ID i)ri ·

∏L
i=�+1 h

ri

i . When (C0, . . . ,CL+1) is a ciphertext intended
for ID = (ID1, . . . , ID�′) ∈* P , we have that

ê(C0, a) = ê
(
gt , hα

0 ·
∏

i∈W(P )Hi(Pi)ri ·
∏L

i=�+1h
ri

i

)

= ê(gt, hα
0 ) ·

∏

i∈W(P )

ê
(
gri , Hi(Pi)t

)
·

L∏

i=�+1

ê
(
gri, ht

i

)

= ê(g1, h0)t ·
∏

i∈I

ê(bi,Ci) ,

where the last equality holds because Pi = ID i for all i ∈ W(P ) if ID ∈* P .
Hence, the value of K at decryption is exactly the argument of H2 at encryption,
and the correct message is recovered.

The following theorem states the security of the above scheme in the selective-
identity notion under the BDDH assumption in the random oracle model; the
proof is given in the full version [2]. Security in the full-identity notion can be
obtained at the cost of losing a factor O(qLH) in the reduction.

Theorem 1. Under the (t′, ε′) BDDH assumption, the GS -WKD-IBE scheme
described above is (t, qK, qH, ε) IND-sWKID-CPA-secure in the random oracle
model for ε ≥ 2ε′ and t ≤ t′ − (qH + (qK + 3)L)texp, where texp is the time
required to perform an exponentiation in G.

Constructions from Boneh-Boyen’s and Waters’ HIBE schemes. The
attentive reader will have noticed the resemblance of the above scheme with the
HIBE schemes of Boneh-Boyen [5] and Waters [21]. Indeed, if identity strings
are elements of Z∗

p, then one can obtain a wicked IBE variant of [5] by setting
Hi(ID i) = hi,0h

IDi

i,1 , where hi,0, hi,1 are random elements of G that are fixed
in the master public key. This scheme can be proved IND-sWKID-CPA secure
under the BDDH assumption in the standard (i.e., non-random oracle) model
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using a proof quite similar to the above analysis. Likewise, one can obtain a
variant based on Waters’ HIBE scheme when identities are n-bit strings by set-
ting Hi(ID i = ID i,1 . . . ID i,n) = hi,0

∏
IDi,j=1 hi,j . An analysis similar to the

one in [21] can be used to prove this scheme IND-WKID-CPA secure under the
BDDH assumption in the standard model at the cost of losing a factor O((nqK)L)
in the reduction.

3.2 Constructions with Constant-Size Ciphertexts

In this section, we describe efficient wicked IBE schemes with constant-size ci-
phertexts based on the Boneh-Boyen-Goh [6] and Waters [21] HIBE schemes.
We build the wicked IBE scheme BBG -WKD-IBE = (Setup,KeyDer,Enc,Dec)
described as follows:

Setup. The trusted authority chooses random generators g from G, a random
α ∈ Zp and sets g1 ← gα. Next, it picks random elements g2, g3, h1, . . . , hL

from G and sets g4 ← gα
2 . The master public key is mpk = (g, g1, g2, g3,

h1, . . . , hL). The corresponding master secret key is msk = g4.
Key Derivation. Let P ′ = (P ′

1, . . . , P
′
�) ∈

(
Z∗

p ∪ {*}
)≤L be the pattern for

which a secret key needs to be generated. To compute the secret key for P ′

from the master secret key, first a random r
$← Zp is chosen, then the secret

key skP ′ = (a′
1, a

′
2, b

′) for P ′ is constructed as

a′
1 = g4 ·

(

g3
∏

i∈W(P ′)

h
P ′

i

i

)r

; a′
2 = gr ; b′ = (bi = hr

i )i∈W(P ′) .

In order to generate the secret key skP ′ for pattern P ′ from the secret key
skP = (a1, a2, b) for pattern P such that P ′ ∈* P , ones simply chooses a
random r′ $← Zp and outputs skP ′ = (a′

1, a′
2, b′), where

a′
1 = a1 ·

(

g3
∏

i∈W(P ′)

h
P ′

i

i

)r′

·
(

∏

i∈W(P ′)
�

W(P )

bP ′
i

i

)

a′
2 = a2 · gr′

b′ =
(
b′i = bi · hr′

i

)

i∈W(P ′)

Encryption. To encrypt a message m ∈ GT for an identity ID = (ID1, . . . ,

ID�), the sender first chooses t $← Zp and outputs the ciphertext C = (C1,
C2,C3) ∈ G×G×GT, where

C1 = gt ; C2 =
(

g3

�∏

i=1

hIDi

i

)t

; C3 = m · ê(g1, g2)t .

Decryption. Let be the C = (C1,C2,C3) and ID = (ID1, . . . , ID�) be the iden-
tity to which the ciphertext was created. If the receiver is the root authority
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holding the master key msk , then he can recover the message by computing
C3/ê(C1,msk). Any other receiver holding a secret key for pattern P such
that ID ∈* P can decrypt the ciphertext as follows. Let skP = (a1, a2, b) be
the decryption key for the receiver. He can recover the message by computing

a′
1 ← a1 ·

(
∏

i∈W(P )|≤ �
bID i

i

)

and m ← C3 · ê(a2, C2)
ê(C1, a′

1)
.

The fact that decryption works can be seen as follows. Since ID ∈* P , we have
that Pi = ID i for all i ∈ W(P )|≤ �. Thus the quantity ê(a2,C2)

ê(C1,a′
1)

becomes:

ê(a2,C2)
ê(C1, a1

∏
i∈W(P )|≤ �

bIDi

i )
=

ê(gr, (g3
∏�

i=1 h
IDi

i )r)
ê(gt, g4 · (g3

∏
i∈W(P ) h

Pi

i )r ·
∏

i∈W(P )|≤ �
bID i

i )

=
ê(gr, (g3

∏�
i=1 h

IDi

i )t)

ê(gt, g4) ê(gt, (g3
∏�

i=1 h
IDi

i )r)
=

1
ê(gt, g4)

=
1

ê(g1, g2)t

The following theorem states the security of the above scheme in the selective-
identity notion under the �-BDHE assumption in the standard model. The proof
is given in the full version [2]. We remark that, interestingly, we can only prove
security of the scheme based on the �-BDHE assumption, whereas the weaker
�-BDHI assumption was sufficient for the security proof of the HIBE scheme [6].

Theorem 2. Let BBG-WKD-IBE be the WKD-IBE scheme as described above.
Under the decisional (t, ε, �)-BDHE assumption, the BBG-WKD-IBE scheme of
depth L = �−1 is (t′, qK, 2ε) IND-sWKID-CPA-secure where t′ = t−O(Lq′K)·texp

and texp is the time it takes to perform an exponentiation in G.

Full security in the standard model. It is mentioned in [6] that using
techniques from Waters [21] one can construct a variant of their HIBE scheme
that achieves full security in the standard model. The same techniques can be
also used to achieve full IND-WKID-CPA security in the standard model for the
BBG -WKD-IBE scheme, at the cost of increasing the master public key size to
(n+ 1)L+ 3 group elements, where n is the length of an identity string.

3.3 Full Security in the Random Oracle Model

As in the case of IBE and HIBE schemes [5,6], any WKD-IBE scheme WKD-IBE
that is IND-sWKID-CPA-secure can be transformed into a WKD-IBE scheme
WKD-IBE ′ that is IND-WKID-CPA-secure in the random oracle model, by
replacing every pattern (or identity) at key derivation or encryption with the
hash of that pattern, if that pattern is not a wildcard. That is, any given pattern
P = (P1, . . . , P�) in WKD-IBE is mapped onto a pattern P ′ = (P ′

1, . . . , P
′
�)

in WKD-IBE ′, where P ′
i = Hi(Pi) if Pi �= * or P ′

i = * otherwise, and Hi,
1 ≤ i ≤ L are independent random oracles mapping arbitrary bit strings into
an appropriate range ID corresponding to the identity space of WKD-IBE . As
in the cases of HIBE schemes, this transformation only works if the depth L is
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logarithmic in the security parameter due to the loss of a factor O(qLH) in the
reduction. Moreover, ID needs to be sufficiently large to make the probability
of collisions in the output of the hash function negligible.

4 Application to Identity-Based Broadcast Encryption

4.1 Definitions

An identity-based broadcast encryption (IBBE) scheme is a tuple of algorithms
IBBE = (Setup,KeyDer,Enc,Dec) providing the following functionality. The
trusted authority runs Setup to generate a master key pair (mpk ,msk). It pub-
lishes the master public key mpk and keeps the master secret key msk private.
When a user with identity ID wishes to become part of the system, the trusted
authority generates a user decryption key sk ID

$← KeyDer(msk , ID), and sends
this key over a secure and authenticated channel to the user. To broadcast an
encrypted message m to a set of users with identities S = {ID1, . . . , IDk} of car-
dinality k ≤ L, the sender computes the ciphertext C $← Enc(mpk , S,m), which
can be decrypted by a user holding sk ID for any ID ∈ S as m ← Dec(sk ID ,C , S).
Here the value L is an upper bound on the maximal number of distinct receivers
for a broadcast encryption.

The security of an IBBE scheme is defined through the following game. In a
first phase, the adversary is given as input the master public key mpk of a freshly
generated key pair (mpk ,msk) $← Setup. In a chosen-plaintext attack (IND-ID-
CPA), the adversary is given access to a key derivation oracle that on input of
an identity ID , returns the secret key sk ID

$← KeyDer(msk , ID) corresponding
to identity ID . At the end of the first phase, the adversary outputs two equal-
length challenge messages m∗

0 ,m
∗
1 ∈ {0, 1}∗ and a challenge set of identities S∗ =

(ID∗
1, . . . , ID

∗
k∗), where 0 ≤ k∗ ≤ L. The game chooses a random bit b $← {0, 1}∗,

generates a challenge ciphertext C ∗ $← Enc(mpk , S∗,m∗
b ) and gives C ∗ as input

to the adversary for the second phase, during which it gets access to the same
oracles as during the first phase. Assume that during the attack the adversary
made key derivation queries for identities ID1, . . . , IDqK . The adversary wins the
game if it outputs a bit b′ = b and S∗ ∩ {ID1, . . . , IDqK} = ∅.
Definition 4. An IBBE scheme is (t, qK, ε)-IND-ID-CPA-secure if all t-time
adversaries making at most qK queries to the key derivation oracle have at most
advantage ε in winning the IND-ID-CPA game described above.
Selective-identity Security. As for the previous primitives, we further de-
fine the weaker (sID) security notion IND-sID-CPA. The IND-sID-CPA defi-
nition is analogous to the IND-ID-CPA one except that the adversary has to
commit to the challenge set of identities S∗ = (ID∗

1, . . . , ID
∗
k∗) at the beginning

of the game, before even seeing the public-key.

4.2 A Construction from Any Wicked IBE Scheme

First, observe that an IBBE scheme can be trivially constructed from any IBE
scheme by concatenating ciphertext. Meaning, the IBBE encryption for the iden-
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tity set ID = {ID1, . . . , IDk} is simply the concatenation of k separate cipher-
texts, one for each identity ID i in the set ID . This leads to IBBE ciphertext
sizes that are a factor of k longer than the original IBE ciphertexts.

We now present a generic construction from any WKD-IBE scheme that,
depending on the instantiation, can offer advantages over the trivial one. To
any WKD-IBE scheme WKD-IBE = (Setup,KeyDer,Enc,Dec), we associate an
IBBE scheme IBBE = (Setup,KeyDer′,Enc′,Dec′). For an identity ID ∈ {0, 1}∗,
define

Pi(ID) = (*, . . . , *, ID︸︷︷︸
ith position

, *, . . . , *)

as a pattern of length L that has ID at its ith position and the rest consists of
wildcards.

Setup. Setup outputs whatever the WKD-IBE setup outputs.
Key Derivation. Let ID be the identity for which the user secret key sk ID

needs to be generated. The user secret key is defined as the set of L distinct
WKD-IBE user secret keys

sk ID = {skP1(ID), . . . , skPL(ID)},

where skPi(ID) can be computed by calling KeyDer(msk , Pi(ID)).
Encryption. Let m be the message and let S = {ID1, . . . , IDk} be the set

of broadcast recipients of cardinality k ≤ L that we assume to be ordered
with respect to some unique standard ordering. The IBBE ciphertext is
defined as the WKD-IBE encryption of message m and identity vector ID =
(ID1, . . . , IDk).

Decryption. Let sk ID = {skP1(ID), . . . , skPL(ID)} be the user secret key of
identity ID . Let S = {ID1, . . . , IDk} be the set of k ≤ L recipients to
whom the ciphertext C was encrypted, and let index 1 ≤ j ≤ k be such
that ID = ID j ∈ S. It is clear that (ID1, . . . , ID , . . . , IDk) ∈* Pj(ID), and
therefore that the ciphertext can be decrypted as m ← Dec(skPj(ID),C , ID).

Theorem 3. If WKD-IBE is a (t, qK, ε) IND-sWKID-CPA-secure (resp. IND-
WKID-CPA-secure) WKD-IBE scheme, then the IBBE scheme IBBE described
above is (t, qK, ε)-IND-sID-CPA-secure (resp. IND-ID-CPA-secure).

The crucial observation is the following. Let S∗ = {ID∗
1, . . . , ID

∗
k∗} be the set

of challenge broadcast receivers and let ID1, . . . , IDqK be the identities an ad-
versary attacking the IBBE scheme queries the user secret key for. The imposed
requirement is that S∗ ∩ {ID1, . . . , IDqK} = ∅. For 1 ≤ i ≤ qK and 1 ≤ j ≤ L
consider the user secret keys for the patterns Pj(ID i) = (*, . . . , *, ID i, *, . . . , *)
(i.e., ID i is at the jth position) that are established by the transformation when
simulating the IBBE key derivation oracle. For a successful simulation we have
to show that ID∗ = (ID∗

1, . . . , ID
∗
k∗) �∈* Pj(ID i). But this is the case since by

S∗∩{ID1, . . . , IDqK} = ∅ and we can guarantee that ID i �= ID∗
l for all 1 ≤ i ≤ qK

and 1 ≤ l ≤ k.
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The above construction allows for the following trade off between ciphertext
size and key size. If L = L′A, then one can obtain an IBBE scheme with cipher-
text size of A times that of the WKD-IBE scheme, while having a key length that
is only L′ times that of the WKD-IBE scheme. The new scheme creates master
public keys to allow for broadcast encryption to sets of maximal cardinality L′.
To encrypt a message to a set of broadcast identities S = {ID1, . . . , IDk} of car-
dinality k ≤ L split the set S into A smaller sets S1, . . . , SA, each of cardinality
L/A ≤ L′ and define the new broadcast ciphertext to be (C1, . . . ,CA), where Ci

is the encryption of the message m to the set Si.

4.3 Instantiations

Among all the instantiations of IBBE schemes based on WKD-IBE schemes, the
most attractive one is that obtained from the WKD-IBE scheme based on [6]
because it achieves constant-size ciphertexts. However, it has the disadvantage of
having private keys of size O(L2). Instantiations with any of the other WKD-IBE
schemes that we proposed are less attractive because they have ciphertext size
O(L), just like the trivial ciphertext-concatenation scheme. Unlike most other
(public-key) broadcast schemes however, these instantiations do have the re-
markable advantage that knowledge of the set of recipients is not required in
order to decrypt the message.

Chatterjee and Sarkar [9] recently proposed a direct IBBE scheme that is
closely related to our generic construction when instantiated with the WKD-IBE
scheme based on [6]. Their scheme does not impose an a priori maximum on the
number of recipients �, but makes clever use of a non-cryptographic hash function
to achieve an average ciphertext size O(�/L) and private key size O(L), where the
“average” is taken over the recipients’ identities. This means that when � ≤ L,
their scheme has constant ciphertext size on average. Worst-case however, their
scheme has ciphertext size O(�), which is worse than our construction.

5 Wicked and Wildcard Signatures

As observed by Naor [7], any IBE scheme automatically gives rise to a signature
scheme by using as a signature on message m the decryption key for identity
ID = m. Verification can be done by encrypting a random message to identity
ID = m and testing whether it decrypts correctly, but most concrete schemes
have a more natural and efficient verification test. Likewise, one can construct
an L-level hierarchical identity-based signature (HIBS) scheme from an (L+ 1)-
level HIBE [12] by letting the signature on message m by identity (ID1, . . . , ID�)
be given by the decryption key for identity (0‖ID1, . . . , 0‖ID�, 1‖m). The same
technique can be used to construct wicked identity-based signatures (WKD-
IBS), the signing analogue to wicked IBE. Here, a root authority derives se-
cret signing keys for identity patterns with wildcards, from which anyone can
further derive signing keys for matching patterns. An L-level WKD-IBS is con-
structed from an (L + 1)-level WKD-IBE by letting the signature on mes-
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sage m by identity (ID1, . . . , ID�) be given by the decryption key for identity
(0‖ID1, . . . , 0‖ID�, 1‖m).

Alternatively, and perhaps more interestingly, one could also use the wildcard
functionality as a homomorphism on the message being signed, rather than for
the signers’ identities. This yields a new primitive that we call wildcard signa-
tures, that allow to sign message patterns instead of simple messages, possibly
containing wildcards at certain positions. Given such a signature, anyone can
compute a valid signature for any message created by replacing wildcards with
concrete values. This could be used for example to implement signed fill-out
forms, where each input field is represented by a wildcard in the message.

The construction from a WKD-IBE scheme is straightforward: the key pair
is given by the master key pair of the WKD-IBE scheme. The signature on
a message pattern P is given by the decryption key for P . Deriving a valid
signature for a message pattern P ′ ∈* P can be done by deriving a decryption
key for P ′. Verification is done by filling up the remaining wildcards with random
messages to create a vector of messages M , encrypting a random message under
identity M , and checking whether decryption using the signature as secret key
returns the correct message. In fact, one can easily see that the schemes discussed
here allow for more efficient deterministic verification algorithms.

Wildcard signatures can be seen as a special instance of homomorphic signa-
tures [17,15,3,16]. Their relation to wicked IBE is particularly reminiscent of the
relation between HIBS schemes and append-only signatures [16]. They can also
be seen as the dual of redactable signatures [15] that allow anyone to erase parts
of a signed message without invalidating the signature.

A fairly simple, generic construction from standard signatures also exists.
Namely, for each wildcard in the message the signer generates a fresh key pair,
and then signs the message together with all generated public keys. The overall
signature also contains the public and secret keys corresponding to all wildcards.
To replace a wildcard at position i with a concrete value, the i-th secret key
is replaced with a signature on the new value under the i-th public key. The
disadvantage of this generic construction is that signature length and verification
time are both linear in the number of original wildcards in the message, even
after these wildcards have been replaced with original values. The signature
length and verification time of the scheme derived from the BBG -WKD-IBE
scheme on the other hand is only linear in the number of wildcards that are still
present in the message. Also, signatures generated by the generic construction
are linkable in the sense that one can check whether a given signature was
derived from a second one by filling in wildcards. The decryption keys of the
BBG -WKD-IBE scheme, and therefore the signatures of the associated wildcard
signature scheme, can be re-randomized to prevent this type of linkability.

Finally, one could even imagine wicked wildcard signatures that allow for wild-
cards in both the signers’ identities and the messages being signed. Such schemes
are easily constructed from a WKD-IBE scheme by using a different encoding
for identity strings and messages, as was done in the construction of WKD-IBS
schemes above.



Generalized Key Delegation for Hierarchical Identity-Based Encryption 153

Acknowledgements

The authors have been supported inpart by theEuropeanCommission through the
IST Program under Contract IST-2002-507932ECRYPT. The second author was
supported in part by research program Sentinels (http://www.sentinels.nl).
Sentinels is being financed by Technology Foundation STW, the Netherlands Or-
ganization for Scientific Research (NWO), and the Dutch Ministry of Economic
Affairs. The third author is a Postdoctoral Fellow of the Research Foundation –
Flanders (FWO-Vlaanderen), and was supported in part by the European Com-
mission through IST Program under Contract IST-2006-034238 SPEED, and in
part by the IAP Program P6/26 BCRYPT of the Belgian State (Belgian Science
Policy).

References

1. Abdalla, M., Catalano, D., Dent, A., Malone-Lee, J., Neven, G., Smart, N.:
Identity-based encryption gone wild. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 300–311. Springer, Heidel-
berg (2006)

2. Abdalla, M., Kiltz, E., Neven, G.: Generalized Key Delegation for Hierarchical
Identity-Based Encryption. Cryptology ePrint Archive, Report 2007/221 (2007),
http://eprint.iacr.org/

3. Bellare, M., Neven, G.: Transitive signatures: new schemes and proofs. IEEE Trans-
actions on Information Theory 51(6), 2133–2151 (2005)

4. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS ’93, pp. 62–73. ACM Press, New York (1993)

5. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

6. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

7. Boneh, D., Franklin, M.K.: Identity based encryption from the Weil pairing. SIAM
Journal on Computing 32(3), 586–615 (2003)

8. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

9. Chatterjee, S., Sarkar, P.: Multi-receiver identity-based key encapsulation with
shortened ciphertext. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS,
vol. 4329, pp. 394–408. Springer, Heidelberg (2006)

10. Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In:
Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg
(2003)

11. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

12. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

http://www.sentinels.nl
http://eprint.iacr.org/


154 M. Abdalla, E. Kiltz, and G. Neven

13. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM CCS 06, pp. 89–98. ACM Press,
New York (2006) (available as Cryptology ePrint Archive Report 2006/309)

14. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002)

15. Johnson, R., Molnar, D., Song, D.X., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002)

16. Kiltz, E., Mityagin, A., Panjwani, S., Raghavan, B.: Append-only signatures. In:
Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 434–445. Springer, Heidelberg (2005)

17. Rivest, R.: Two signature schemes. Slides from talk given at Cambridge University
(October 2000)

18. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: SCIS
2000, Okinawa, Japan (January 2000)

19. Shacham, H.: The BBG HIBE has limited delegation. Cryptology ePrint Archive,
Report 2007/201 (2007), http://eprint.iacr.org/

20. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

21. Waters, B.R.: Efficient identity-based encryption without random oracles. In:
Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

http://eprint.iacr.org/


Change-Impact Analysis of Firewall Policies

Alex X. Liu

Department of Computer Science and Engineering
Michigan State University

East Lansing, MI 48824-1266, U.S.A
alexliu@cse.msu.edu

Abstract. Firewalls are the mainstay of enterprise security and the
most widely adopted technology for protecting private networks. The
quality of protection provided by a firewall directly depends on the qual-
ity of its policy (i.e., configuration). Due to the lack of tools for analyzing
firewall policies, most firewalls on the Internet have been plagued with
policy errors. A firewall policy error either creates security holes that will
allow malicious traffic to sneak into a private network or blocks legiti-
mate traffic and disrupts normal business processes, which in turn could
lead to irreparable, if not tragic, consequences.

A major source of policy errors stem from policy changes. Firewall
policies often need to be changed as networks evolve and new threats
emerge. In this paper, we first present the theory and algorithms for
firewall policy change-impact analysis. Our algorithms take as input a
firewall policy and a proposed change, then output the accurate impact of
the change. Thus, a firewall administrator can verify a proposed change
before committing it.

1 Introduction

Serving as the first line of defense against malicious attacks and unauthorized
traffic, firewalls are cornerstones of network security and have been widely de-
ployed in businesses and institutions. A firewall is placed at the point of entry
between a private network and the outside Internet such that all incoming and
outgoing packets have to pass through it. The function of a firewall is to examine
every incoming or outgoing packet and decide whether to accept or discard it.
This function is specified by a sequence (i.e., an ordered list) of rules, which is
called the “policy”, i.e., the configuration, of the firewall. Each rule in a fire-
wall policy is of the form 〈predicate〉 → 〈decision〉. The 〈predicate〉 of a rule is
a boolean expression over some packet fields such as source IP address, desti-
nation IP address, source port number, destination port number, and protocol
type. The 〈decision〉 of a rule can be accept, discard, or a combination of these
decisions with other options such as a logging option. The rules in a firewall
policy often conflict. To resolve such conflicts, the decision for each packet is the
decision of the first (i.e., highest priority) rule that the packet matches. Table 1
shows an example firewall.

J. Biskup and J. Lopez (Eds.): ESORICS 2007, LNCS 4734, pp. 155–170, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Table 1. An example firewall

Rule Source IP Destination IP Source Port Destination Port Protocol Action

r1 * 192.168.0.1 * 25 TCP accept
r2 1.2.3.4 * * * * discard
r3 * * * * * accept

Although a firewall policy is a mere sequence of rules, correctly maintaining
one is by no means easy. First, the rules in a firewall policy are logically entan-
gled because of conflicts among rules and the resulting order sensitivity. Second,
a firewall policy may consist of a large number of rules. A firewall on the In-
ternet may consist of hundreds or even a few thousand rules in extreme cases.
Last but not least, an enterprise firewall policy often consists of legacy rules that
are written by different administrators, at different times, and for different rea-
sons, which makes maintaining firewall policies even more difficult. Analyzing a
large and complex sequence of logically related rules is certainly beyond human
capability. Effective methods and tools for analyzing firewall policies, therefore,
are crucial to the success of firewalls. However, firewall administrators are woe-
fully under-assisted due to the lack of firewall policy analysis tools. Quantitative
studies have shown that most firewalls on the Internet are plagued with policy
errors [1]. A firewall policy error either creates security holes that will allow
malicious traffic to sneak into a private network or blocks legitimate traffic and
disrupts normal business processes, which in turn could lead to irreparable, if
not tragic, consequences.

1.1 Motivations

Firewall policies are always subject to change due to a variety of reasons. Mak-
ing policy changes is a major task of firewall administrators. For example, new
network threats such as worms and viruses may emerge. To protect a pri-
vate network from new attacks, firewall policies need to be changed accord-
ingly. Modern organizations also continually transform their network infrastruc-
ture to maintain their competitive edge by adding new servers, installing new
software and services, expanding connectivity, etc. In accordance with network
changes, firewall policies need to be changed as well to provide necessary pro-
tection.

Unfortunately, making changes is a major source of firewall policy errors. Mak-
ing correct firewall policy changes is remarkably difficult due to the interleaving
nature of firewall rules. For example, when a firewall administrator inserts a new
rule into a firewall policy, the meaning of the rules listed under this rule could be
incorrectly changed without being noticed. Furthermore, firewall policy changes
are made by human administrators, and it is common that human administra-
tors make mistakes. It has been shown that administrator errors are the largest
cause of failure for Internet services, and policy errors are the largest category
of administrator errors [2].
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Firewall policy errors can be dangerous and costly. On one hand, if a firewall
policy error permits illegitimate communication, outside attackers may use these
security holes to launch attacks. On the other hand, if a firewall policy error dis-
allows legitimate communication, it may cause significant loss due to interrupted
business. For example, if a firewall policy error prevents the communication be-
tween a web server and its supporting database server, all transactions that need
such communication are disrupted.

1.2 The Problem

The fundamental problem in changing firewall policies is, how does a firewall
administrator know that the change made to the firewall policies is correct?
For example, suppose a firewall administrator wants to make a change to the
firewall policy to allow a database server to talk to a web server. How does
the administrator know that the change indeed enables this communication?
Also, how does the administrator know that the change does not allow some
other illegitimate traffic to flow as a side effect, given the subtle behavior of
firewall rules? Such questions are exceptionally difficult to answer given the high
complexity of firewall rules.

In this context, if there is a tool that takes a firewall configuration and a
proposed change as input, then outputs the precise impact of the change, the
errors caused by making policy changes would be greatly reduced. The impact of
a change shows all the traffic that was formerly discarded, but is now accepted,
and all the traffic that was formerly accepted, but is now discarded. The output
impact must be human readable. With this tool on hand, a firewall administrator
can examine the change-impact for unintended consequences.

1.3 Key Contributions

In this paper, we make the following three key contributions.

1. We develop a theory for firewall policy change-impact analysis. We iden-
tify four types of firewall policy changes: rule deletion, rule insertion, rule
modification, and rule swap. For each type of change, we have a theorem
that states the decisions of what packets will be changed due to the policy
change. These theorems serve as the foundation for developing algorithms
for computing firewall policy change-impact.

2. We present algorithms for firewall policy change-impact analysis. The input
of our algorithms includes a firewall policy and a proposed change, and
the output is the accurate impact of the change. Using our algorithms, an
administrator can verify a proposed change before committing it.

3. We present a way to correlate the impact of a firewall policy change and
the high level security requirements that the firewall needs to satisfy. We
also present methods for making corrections if the impact of a change is not
desirable.

Because the focus of this paper is on security policies, we simply use the term
“firewall” to mean “firewall policy”, “firewall rule set”, or “firewall configuration”
unless otherwise specified.
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1.4 Road Map

The rest of this paper proceeds as follows. In Section 2, we show an example ap-
plication of our firewall change-impact analysis tool. In Section 3, we present the
theory foundation for firewall change-impact analysis. Based on these theorems,
we develop algorithms for computing the impact of firewall changes in Section 4.
In Section 5, we discuss some further issues for firewall change-impact analysis.
In Section 6, we examine previous work and compare it with our approach. In
Section 7, we give concluding remarks.

2 Example

In this section, we show an example application of our firewall policy change-
impact analysis tool. Consider the example firewall in Table 1. We suppose that
the private network behind this firewall has a mail server and a web server, whose
IP addresses are 192.168.0.1 and 192.168.0.2 respectively. We further suppose
that this firewall is required by its high level security policies to discard all
packets from a malicious host whose IP address is 1.2.3.4.

Here we briefly explain the meaning of the three rules in Table 1. Rule r1
means that all email packets to the email server are accepted. Note that for a
packet, if its destination port number is 25 and its protocol type is TCP, then the
packet is an email (SMTP) packet. Rule r2 means that all packets from 1.2.3.4
are discarded. Rule r3 means that all packets are accepted. Note that whenever a
packet arrives at a firewall, the decision of the first rule that the packet matches
is executed.

2.1 Rule Deletion

Suppose that the administrator of this firewall wants to delete rule r1. Our
change-impact analysis tool will output the following impact as shown in Table 2.
The meaning of the impact is as follows: for the email packets from the malicious
host 1.2.3.4 to the email server 192.168.0.1, before deleting rule r1, the decision
for such packets is accept ; after deleting rule r1, the decision for such packets is
discard.

2.2 Rule Insertion

Suppose that the administrator of this firewall wants to insert the following rule
above rule r1:

Src IP Dest. IP Src Port Dest. Port Protocol Action
* 192.168.0.2 * 80 TCP accept

The meaning of this new rule is to accept all the HTTP packets to the web
server 192.168.0.2. After the administrator gives this intended change and the
original firewall in Table 1 to our change-impact analysis tool, the tool will
output the following impact:
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Table 2. Impact after deleting r1 from the firewall in Table 1

Source IP 1.2.3.4
Destination IP: 192.168.0.1
Source Port: *
Destination Port: 25
Protocol Type: TCP

Decision before change: accept
Decision after change: discard

Table 3. Impact after inserting a rule above r1 in the firewall in Table 1

Source IP 1.2.3.4
Destination IP: 192.168.0.2
Source Port: *
Destination Port: 80
Protocol Type: TCP

Decision before change: discard
Decision after change: accept

2.3 Rule Modification

Suppose that the administrator of this firewall wants to modify rule r1 to be the
following rule:

Src IP Dest. IP Src Port Dest. Port Protocol Action
* 192.168.0.1 * * TCP accept

The meaning of this modified rule is to accept all the TCP packets to the
mail server 192.168.0.1. For this intended change, our change-impact analysis
tool outputs the following impact:

2.4 Rule Swap

Suppose that the administrator of this firewall wants to swap rule r1 and r2.
Similarly, for this intended change, our change-impact analysis tool outputs the
same impact as shown in Table 2.

3 Change-Impact Analysis: Theorems

In this paper, we consider the following four types of changes that one can make
to a firewall 〈r1, · · · , rn〉. Recall that the predicate of the last rule in a firewall is
always a tautology, which is for the purpose of ensuring the comprehensiveness
property of the firewall. Therefore, we assume that one does not change the last
rule. (Actually, given any firewall where the predicate of the last rule is not a
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Table 4. Impact after modifying r1 in the firewall in Table 1

Source IP 1.2.3.4
Destination IP: 192.168.0.1
Source Port: *
Destination Port: [1,24]
Protocol Type: TCP

Decision before change: discard
Decision after change: accept

Source IP 1.2.3.4
Destination IP: 192.168.0.1
Source Port: *
Destination Port: [25, 65536]
Protocol Type: TCP

Decision before change: discard
Decision after change: accept

tautology, we can modify the predicate of the last rule to be a tautology without
changing the semantics of the firewall. Due to space limitation, we omit the
proof.)

1. Deletion: delete rule ri, where 1 ≤ i ≤ n− 1.
2. Insertion: insert a new rule r between ri and ri+1, where 1 ≤ i ≤ n− 1.
3. Modification: modify rule ri to be r′i, where 1 ≤ i ≤ n− 1.
4. Swap: swap the two rules ri and rj , where 1 ≤ i < j ≤ n− 1.

Each rule in a firewall is associated with two sets of packets, a matching set
and a resolving set [3]. More precisely, consider a firewall f that consists of n
rules 〈r1, r2, · · · , rn〉. The matching set of a rule ri, denoted M(ri), is the set
of all packets that match ri. The resolving set of a rule ri, denoted R(ri, f), in
firewall f is the set of all packets that match ri, but do not match any rj (j < i)
that is listed before ri in f . The essence of the resolving set R(ri, f) of a rule ri
in firewall f is: for any packet p in R(ri, f), the decision of firewall f for packet
p is the decision of rule ri. Note that the matching set of a rule depends only on
the rule itself, while the resolving set of a rule depends on both the rule itself
and all the rules listed before it in a firewall.

3.1 Theory Foundation

The following four theorems lay the foundation for computing firewall change-
impact. In this paper, we use r.D to denote the decision of rule r, and f(p)
to denote the decision of the first (i.e., highest priority) rule that p matches in
firewall f .

Theorem 1 (Rule Deletion Theorem). Let f be a given firewall 〈r1, · · · , rn〉.
Suppose we delete rule ri where 1 ≤ i ≤ n − 1. Let f ′ be the resulting firewall
〈r1, · · · , ri−1, ri+1, · · · , rn〉. We use g to denote the firewall 〈ri+1, · · · , rn〉, which
consists of the n− i rules ri+1, · · · , rn after rule ri in firewall f . For any packet
p in Σ, consider the following two cases:



Change-Impact Analysis of Firewall Policies 161

1. if p ∈ R(ri, f), then f(p) = ri.D and f ′(p) = g(p), which means that f and
f ′ may have different decisions for p;

2. if p ∈ Σ − R(ri, f), then f(p) = f ′(p), which means that f and f ′ have the
same decision for p. �

Theorem 2 (Rule Insertion Theorem). Let f be the given firewall 〈r1, · · · ,
rn〉. Suppose we insert a new rule r between ri and ri+1 where 1 ≤ i ≤ n−1. Let
f ′ be the resulting firewall 〈r1, · · · , ri, r, ri+1, · · · , rn〉. We use g to denote the
firewall 〈ri+1, · · · , rn〉, which consists of the n− i rules ri+1, · · · , rn after rule ri
in firewall f . For any packet p in Σ, consider the following two cases:

1. if p ∈ R(r, f ′), then f(p) = g(p) and f ′(p) = r.D, which means that f and
f ′ may have different decisions for p;

2. if p ∈ Σ − R(r, f ′), then f(p) = f ′(p), which means that f and f ′ have the
same decision for p. �

Theorem 3 (Rule Modification Theorem). Let f be the given firewall 〈r1,
· · · , rn〉. Suppose we modify rule ri to be r′i where 1 ≤ i ≤ n − 1. Let f ′ be the
resulting firewall 〈r1, · · · , ri−1, r

′
i, ri+1, · · · , rn〉. We use g to denote the firewall

〈ri+1, · · · , rn〉, which consists of the n − i rules ri+1, · · · , rn after rule ri in
firewall f . For any packet p in Σ, consider the following four cases:

1. if p ∈ R(ri, f) ∩R(r′i, f
′), then f(p) = ri.D and f ′(p) = r′i.D;

2. if p ∈ R(ri, f)−R(r′i, f
′), then f(p) = ri.D and f ′(p) = g(p);

3. if p ∈ R(r′i, f
′)−R(ri, f), then f(p) = g(p) and f ′(p) = r′i.D;

4. if p ∈ Σ−R(ri, f)∪R(r′i, f
′), then f(p) = f ′(p), which means that f and f ′

have the same decision for p. �

Theorem 4 (Rule Swap Theorem). Let f be the given firewall 〈r1, · · · , rn〉.
Suppose we swap the two rules ri and rj where 1 ≤ i < j ≤ n− 1. Let f ′ be the
resulting firewall 〈r1, · · · , ri−1, rj , ri+1, · · · , rj−1, ri, rj+1, · · · , rn〉. Let g be the
firewall 〈ri+1, · · · , rn〉, which consists of the n− i rules after rule ri in firewall f ;
and g′ be the firewall 〈ri+1, · · · , rj−1, ri, rj+1, · · · , rn〉, which consists of the n− i
rules after rule rj in firewall f ′. For any packet p in Σ, consider the following
four cases:

1. if p ∈ R(ri, f) ∩R(rj , f ′), then f(p) = ri.D and f ′(p) = rj .D;
2. if p ∈ R(ri, f)−R(rj , f ′), then f(p) = ri.D and f ′(p) = g′(p);
3. if p ∈ R(rj , f ′)−R(ri, f), then f(p) = g(p) and f ′(p) = rj .D;
4. if p ∈ Σ −R(ri, f) ∪R(rj , f ′), then f(p) = f ′(p). �

4 Change-Impact Analysis: Algorithms

In this section, we present algorithms for computing the impact of firewall
changes based on the theorems in Section 3. Given a firewall and a proposed
change, our change-impact analysis algorithms output a set of so-called
“impacts”. An impact is of the form

〈predicate〉 → 〈old decision〉 vs . 〈new decision〉
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The meaning of an impact is: the decision of the packets that satisfy the predicate
is changed from 〈old decision〉 to 〈new decision〉. For ease of understanding, the
predicates of all impacts computed for a change are non-overlapping.

4.1 Rule Deletion

Based on Theorem 1, to compute the impacts of deleting rule ri, we first need
to compute the resolving set R(ri, f). We represent the resolving set of a rule
by a set of non-overlapping rules, the union of whose matching sets is exactly
the resolving set. This set of non-overlapping rules is called an effective rule set
of that rule [3]. More precisely, let r be a rule in a firewall f . A set of non-
overlapping rules {e1, e2, · · · , ek} is an effective rule set of r iff the following
three conditions hold: (1) R(r, f) =

⋃k
i=1M(ei), (2) M(r′i) ∩ M(r′j) = ∅ for

1 ≤ i < j ≤ k, (3) every ei has the same decision as r.
How to compute the effective rule set for a rule in a firewall has been discussed

in our previous work on removing redundant rules in firewalls [3]. Interested
readers can refer to [3] for more technical details. Here we show one example.
Considering the example firewall in Figure 1. In this firewall, for simplicity, we
assume each packet has only two fields, F1 and F2, and the domain of each field
is [1,100]. The effective rule set of each rule is shown in Figure 2. Note that we
use Ei to denote the effective rule set of rule ri.

Next, we discuss how to compute the impact of rule deletion through an ex-
ample. Consider the firewall in Figure 1. Suppose the change is to delete rule r1,
whose effective rule set E1 is {F1 ∈ [20, 50] ∧ F2 ∈ [1, 70] → accept}. According
to Theorem 1, the question that we need to answer is: which packets that satisfy
F1 ∈ [20, 50]∧ F2 ∈ [1, 70] are discarded by firewall 〈r2, r3〉?

To answer this question, we first convert firewall 〈r2, r3〉 to an equivalent non-
overlapping firewall, as shown in Figure 3. (Two firewalls f1 and f2 are equivalent
if and only if for any packet p, we have f1(p) = f2(p). A non-overlapping firewall
is a firewall whose rules are non-overlapping.)

Now the question is: which packets that satisfy F1 ∈ [20, 50]∧F2 ∈ [1, 70] are
discarded by the firewall in Figure 3? Given that this firewall is non-overlapping,
we can answer this question by checking which discard rule in this firewall over-
laps with the predicate F1 ∈ [20, 50] ∧ F2 ∈ [1, 70]. Obviously, the answer is
rule r′1. For the packets that satisfy both predicates F1 ∈ [20, 50] ∧ F2 ∈ [1, 70]
and F1 ∈ [1, 60] ∧ F2 ∈ [40, 100], their decision by the original firewall is accept ,
but their decision by the modified firewall is discard . Therefore, the impact of
deleting rule r1 from the firewall in Figure 2 is as follows:

F1 ∈ [20, 50] ∧ F2 ∈ [40, 70]→ accept vs . discard

r1 : F1 ∈ [20, 50] ∧ F2 ∈ [1, 70] → accept
r2 : F1 ∈ [1, 60] ∧ F2 ∈ [40, 100] → discard
r3 : F1 ∈ [1, 100] ∧ F2 ∈ [1, 100] → accept

Fig. 1. A firewall example
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E1 :{ F1 ∈ [20, 50] ∧ F2 ∈ [1, 70] → accept
}

E2 :{F1 ∈ [1, 19] ∧ F2 ∈ [40, 100]→ discard
F1 ∈ [51, 60] ∧ F2 ∈ [40, 100]→ discard
F1 ∈ [20, 50] ∧ F2 ∈ [71, 100]→ discard
}

E3 :{F1 ∈ [1, 19] ∧ F2 ∈ [1, 39] → discard
F1 ∈ [51, 60] ∧ F2 ∈ [1, 39] → discard
F1 ∈ [61, 100]∧ F2 ∈ [1, 100]→ discard
}

Fig. 2. Effective rule sets

r′
1 : F1 ∈ [1, 60] ∧ F2 ∈ [40, 100] → discard

r′
2 : F1 ∈ [1, 60] ∧ F2 ∈ [1, 39] → accept

r′
3 : F1 ∈ [61, 100] ∧ F2 ∈ [1, 100] → accept

Fig. 3. A non-overlapping firewall

F1

F2 F2

[1, 60] [61, 100]

[40, 100] [1, 39] [1, 100]

d a a

Fig. 4. A firewall decision diagram

For efficiency purposes, we represent a non-overlapping firewall using a firewall
decision diagram [4]. For example, the non-overlapping firewall in Figure 3 can
be represented using the firewall decision diagram in Figure 4.

The pseudocode of the algorithm for computing the impacts of rule deletion
is shown in Figure 5. In this paper, we use t.root to denote the root of a firewall
decision diagram t, I(e) to denote the label of an edge e, F (v) to denote the
label of a node v.

4.2 Rule Insertion

According to Theorem 2, computing the impacts of rule insertion is similar
to that of rule deletion. Let f be the given firewall 〈r1, · · · , rn〉. Suppose we
insert a new rule r between ri and ri+1 where 1 ≤ i ≤ n − 1. Let f ′ be the
resulting firewall 〈r1, · · · , ri, r, ri+1, · · · , rn〉. To compute the impacts of inserting
rule r, we first compute the effective rule set of rule r in firewall f ′. Second, we
construct a firewall decision diagram for the firewall 〈ri+1, · · · , rn〉. (Note that
〈ri+1, · · · , rn〉 is a firewall because the last rule rn can match any given packet.)
Third, we traverse the firewall decision diagram to check which decision path
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Computing Impacts of Rule Deletion
Input : A firewall 〈r1, · · · , rn〉.
Output: Change-impacts of deleting rule ri.
Steps:
1. Compute the effective rule set Ei of rule ri;

Let Ei be {e1, · · · , em}.
Impacts := ∅;

2. Construct a firewall decision diagram from
〈ri+1, · · · , rn〉;

3. for i := 1 to m do Compare( t.root , ei );
return E;

Compare( v, (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd)→ 〈dec〉) )
1. if (v is a terminal node) and (〈dec〉 �= F (v) )

then/*Let (F1 ∈ S′
1) ∧ · · · ∧ (Fd ∈ S′

d)→ F (v)
be the rule defined by the decision path
containing node v;*/

Impacts :=Impacts∪
{(F1 ∈ S1 ∩ S′

1) ∧ · · · ∧ (Fd ∈ Sd ∩ S′
d)→ 〈dec〉 vs. F (v)};

2. if ( v is a nonterminal node ) then
/*Let Fj be the label of v*/
for each edge e in E(v) do

if I(e) ∩ Sj �= ∅ then
Compare( e.t, (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd)→ 〈dec〉) )

Fig. 5. Computing impacts of rule deletion

conflicts with a rule in the effective rule set of r. For each conflict discovered, we
output an impact. Due to space limitations, we omit the details of the algorithm
for computing the impacts of rule insertion.

4.3 Rule Modification

Based on Theorem 3, to compute the impacts of modifying rule ri in firewall f
to be r′i, we first need to know how to compute R(ri, f)∩R(r′i, f

′) and R(ri, f)−
R(r′i, f

′), where f ′ denotes the firewall after modifying ri. Next, we discuss how
to compute them.

Given two resolving sets Ra and Rb, which are represented by the effective
rule sets {e1, · · · , em} and {ε1, · · · , εl} respectively. Then we have Ra ∩ Rb =
∪m

i=1∪l
j=1 (M(ei)∩M(εj)). Note that M(ei)∩M(εj) can be computed as follows.

Let rule ei be (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉 and rule εj be (F1 ∈
S′

1) ∧ · · · ∧ (Fd ∈ S′
d) → 〈decision〉. Let rule r be (F1 ∈ S1 ∩ S′

1) ∧ · · · ∧ (Fd ∈
Sd ∩ S′

d) → 〈decision〉. Then we have M(ei) ∩M(εj) = M(r).
Given two resolving sets Ra and Rb, which are represented by the effective

rule sets {e1, · · · , em} and {ε1, · · · , εl} respectively. Let r be the rule that any
packet can match and f be the firewall 〈ε1, · · · , εl, e1, · · · , em, r〉. Then we have
Ra − Rb = ∪m

i=1R(ei, f). In other words, Ra − Rb is the union of the effective
rule set of every ei in firewall 〈ε1, · · · , εl, e1, · · · , em, r〉.
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Let f be the given firewall 〈r1, · · · , rn〉. Suppose we modify rule ri to be r′i
where 1 ≤ i ≤ n−1. Let f ′ be the resulting firewall 〈r1, · · · , ri−1, r

′
i, ri+1, · · · , rn〉.

The change-impacts of modifying rule ri can be computed in the following steps:

1. Compute the effective rule set of rule ri in firewall f , and that of rule r′i in
firewall f ′.

2. If ri and r′i have the same decision, then skip this step. Otherwise, compute
R(ri, f)∩R(r′i, f

′). If R(ri, f)∩R(r′i, f
′) �= ∅, then generate impacts accord-

ingly. Note that the decision for any packet in R(ri, f)∩R(r′i, f
′) is changed

from the decision of ri to that of r′i.
3. Compute R(ri, f) − R(r′i, f

′) as follows. Let {e1, · · · , em} and {ε1, · · · , εl}
be the effective rule sets of rule ri in firewall f and rule r′i in firewall
f ′ respectively. Compute the effective rule sets of e1, · · · , em in firewall
〈ε1, · · · , εl, e1, · · · , em, r〉 where r is a rule that any packet can match. Let U
be the union of these effective rule sets. Then U representsR(ri, f)−R(r′i, f

′).
4. Construct a firewall decision diagram from firewall 〈ri+1, · · · , rn〉.
5. Traverse the firewall decision diagram to check which decision path conflicts

with a rule in U . Whenever a conflict is found, our tool outputs an impact.
6. Compute R(r′i, f

′)−R(ri, f) by computing the effective rule sets of ε1, · · · , εl

in firewall 〈e1, · · · , em, ε1, · · · , εl, r〉 where r is a rule that any packet can
match. Let U ′ be the union of these effective rule sets. Then U ′ represents
R(r′i, f

′)−R(ri, f).
7. Traverse the firewall decision diagram built from firewall 〈ri+1, · · · , rn〉 to

check which decision path conflicts with a rule in U ′. Whenever a conflict is
found, our tool outputs an impact.

4.4 Rule Swap

Based on Theorem 4, computing the impacts of swapping two rules is similar
to that of rule modification. Due to space limitation, we omit the details of the
algorithm for computing the impacts of rule swap.

5 Discussion

5.1 Prefix and Intervals

Real-life firewalls usually check five packet fields: source IP address, destination
IP address, source port number, destination port number, and protocol type.
Of these five fields, the first two fields are usually represented using prefix for-
mats, and the last three fields are usually represented using integer intervals.
Note that prefix formats and interval formats are interchangeable. For example,
IP prefix 192.168.0.0/16 can be converted to the interval from 192.168.0.0 to
192.168.255.255, where an IP address can be regarded as a 32-bit integer. As an-
other example, the interval [2, 8] can be converted to 3 prefixes: 001∗, 01∗, 1000.

To compute firewall change-impacts, we first convert the source and destina-
tion IP addresses from prefix formats to integer intervals. Note that every prefix
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can be converted to only one integer interval. Second, we run the algorithms
described in Section 4 for computing firewall change-impacts. (Note that the
impacts produced by our algorithms are in interval formats.) Third, for each
impact computed, we convert the source and destination IP addresses from in-
tervals to prefixes. Thus, the format of outputs are similar to that of original
firewall rules, which are easy to understand for firewall administrators. (A w−bit
integer interval can be converted to at most 2w − 2 prefixes [5].)

5.2 High Level Impacts

Many companies or organizations have some “hard requirements” for their fire-
walls. A hard requirement can be interpreted as a set of non-overlapping firewall
rules, which we call “hard rules”. For example, assuming that the hard require-
ment for the firewall example in Table 1 is that the mail server 192.168.0.1 should
be able to receive email packets from any host, this hard requirement can be in-
terpreted as the following hard rule

Src IP Dest. IP Src Port Dest. Port Protocol Action
* 192.168.0.1 * 25 TCP accept

After firewall change-impacts are computed, we can compare each impact and
the hard requirements of the firewall, and see which requirements are violated due
to the change. For example, comparing the impact in Table 2 and the above hard
rule, we see that this change violates the above hard rule, and henceforth the hard
requirement. Correlating each impact computed with the hard requirements that
the impact violates is helpful for firewall administrators to verify the correctness
of each impact.

5.3 Making Corrections

After the impacts of a change are computed, the firewall administrator needs
to verify that the impacts are indeed intended. If not all impacts are desirable,
one approach for the firewall administrator is to revise the proposed change
and compute impacts again; another approach for the firewall administrator is
to commit desired impacts by correcting undesired impacts. Next, we show an
example to illustrate the latter approach.

Consider the two impacts in Table 4. If the first impact is exactly what the
administrator intends to do, and the second impact is not desired, we can keep
the proposed change and add the following rule derived from the second (unde-
sired) impact to the beginning of the modified firewall:

Src IP Dest. IP Src Port Dest. Port Protocol Action
1.2.3.4 192.168.0.1 * [25,65536] TCP discard
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5.4 Complexity Analysis

Let n be the number of rules in a firewall, and d be the total number of distinct
packet fields that are examined by a firewall. The complexity of our change-
impact analysis algorithms is O(nd). Despite the high worst case complexities,
our algorithms are practical for two reasons. First, d is bounded and is typically
small. Real-life firewalls typically examine five packet fields: source IP address,
destination IP address, source port number, destination port number, and pro-
tocol type. Second, the worst cases of our algorithms are extremely unlikely to
happen in practice. To trigger the worst case, the rules in a firewall need to be
exceedingly overlapping, which does not happen in real-life firewalls according
to the statistics on real-life rule sets in [6].

6 Related Work

Numerous studies have been done on analyzing the change-impact of general
programs in software engineering and programming language communities (e.g.,
[7,8]. However, little work has been done on analyzing the change-impact of fire-
wall policies. Firewall policies and general programs are fundamentally different.
While accurately and completely computing the impact of software changes is
nearly impossible in general, the algorithms presented in this paper can compute
the accurate and complete impact of firewall policy changes.

The closest to this work is our previous work on diverse firewall design [9]. In
[9], an algorithm that can compute the semantic differences between two firewalls
were presented. The algorithm in [9] can be used to compute change-impact of
firewalls by comparing a firewall before changes and the firewall after changes.
Comparing with the algorithm in [9], the change-impact analysis algorithms in
this paper are much more efficient. Although the algorithm in [9] can handle the
cases where a firewall administrator makes multiple changes at a time, in real
life, a firewall administrator typically makes one change at a time.

Fisler and Krishnamurthi studied change-impact analysis of access control
policies in their seminal paper [10]. They proposed a solution using multi-terminal
binary decision diagrams to compute the impact of access control policy changes
and verify whether an access control policy satisfies a given property. Their work
is similar to ours in spirit, however, their solution cannot be applied to firewall
policies because the access control policies studied in [10] are quite different
from firewall policies. In [10], every attribute-value pair is encoded as one vari-
able in the MTBDD. This is natural for the access control policies studied in [10],
but is not feasible for firewall policies because of the explosive number (288) of
attribute-value pairs.

Some interesting work has been done on firewall policy modelling and analy-
sis. However, none of the previous work explored the change-impact analysis
of firewall policies. A Lisp-like language was introduced in [11] for specifying a
high-level packet filtering policy. In a similar vein, a UML-like language was pre-
sented in [12] for specifying global filtering policies. Detecting conflicts among
firewall rules was studied in [13,14,15]. In [16,17,18,19,20], a few firewall analysis
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tools were presented. In [21], algorithms for detecting firewall policy anomalies
in distributed environment were proposed. Some anomalies were defined and
techniques for detecting anomalies were presented in [22,23].

There is previous work on firewall testing [25, 26, 27, 28, 29]. These testing
techniques involve injecting packets into a firewall and checking whether the
decisions of the firewall concerning the injected packets are correct. There are
some tools currently available for network vulnerability testing, such as Satan
and Nessus. These vulnerability testing tools scan a private network based on
the current publicly known attacks, rather than the requirement specification
of a firewall. Although these tools can possibly catch some of the errors that
allow illegitimate access to the private network, they cannot find the errors that
disable legitimate communication between the private network and the outside
Internet.

7 Conclusions

Making changes to firewall policies is a major task that firewall administrators
perform; yet, it is also a major source of firewall policies errors. To address
this issue, in this paper, we propose a framework for conducting firewall policy
change-impact analysis. Our contributions are three-fold. First, we lay the theory
foundation for firewall change-impact analysis. Second, we present algorithms
for computing firewall policy change-impacts. Third, we present methods for
correlating the impact of a firewall policy change and the high level security
requirements that the firewall needs to satisfy as well as methods for making
corrections if the impact of a change is not desirable. Our algorithms can be
practically used in the iterative process of firewall policy design and maintenance.
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Abstract. Privacy requirements have an increasing impact on the real-
ization of modern applications. Technical considerations and many signif-
icant commercial and legal regulations demand today that privacy guar-
antees be provided whenever sensitive information is stored, processed,
or communicated to external parties. It is therefore crucial to design so-
lutions able to respond to this demand with a clear integration strategy
for existing applications and a consideration of the performance impact
of the protection measures.

In this paper we address this problem and propose a solution to en-
force privacy over data collections by combining data fragmentation with
encryption. The idea behind our approach is to use encryption as an un-
derlying (conveniently available) measure for making data unintelligible,
while exploiting fragmentation as a way to break sensitive associations
between information.

Keywords: Privacy, fragmentation, encryption.

1 Introduction

Information is today probably the most important and valued resource. Private
and governmental organizations are increasingly gathering vast amounts of data,
which are collected and maintained, and often include sensitive personally iden-
tifiable information. In such a scenario guaranteeing the privacy of the data,
be them stored in the system or communicated to external parties, becomes a
primary requirement.

Individuals, privacy advocates, and legislators are today putting more and
more attention on the support of privacy over collected information. Regulations
are increasingly being established responding to these demands, forcing organi-
zations to provide privacy guarantees over sensitive information when storing,
processing or sharing it with others. Most recent regulations (e.g., [2,14]) require
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that specific categories of data (e.g., data disclosing health and sex life, or data
such as ZIP and date of birth that can be exploited to uniquely identify an in-
dividual) be either encrypted or kept separate from other personally identifiable
information (to prevent their association with specific individuals). Information
privacy guarantees may also derive from the need of preventing possible abuses
of critical information. For instance, the “Payment Card Industry (PCI) Data
Security Standard” [13] forces all the business organizations managing credit
card information (e.g., VISA and MasterCard) to apply encryption measures
when storing data. The standard also explicitly forbids the use of storage en-
cryption as natively offered by operating systems, requiring that access to the
encryption keys be separated from the operating system services managing user
identities and privileges.

This demand for encryption is luckily coupled today with the fact that the
realization of cryptographic functions presents increasingly lower costs in a com-
puter architecture, where the factor limiting system performances is typically
the capacity of the channels that transfer information within the system and
among separate systems. Cryptography then becomes an inexpensive tool that
supports the protection of privacy when storing or communicating information.

From a data access point of view, however, dealing with encrypted infor-
mation represents a burden since encryption makes it not always possible to
efficiently execute queries and evaluate conditions over the data. As a matter
of fact a straightforward approach to guarantee privacy to a collection of data
could consist in encrypting all the data. This technique is, for example, adopted
in the database outsourced scenario [5,8], where a protective layer of encryption
is wrapped around sensitive data, thus counteracting outside attacks as well as
the curiosity from the server itself. The assumption underlying approaches ap-
plying such an encryption wrapper is that all the data are equally sensitive and
therefore encryption is a price to be paid to protect them. This assumption is
typically an overkill in many scenarious. As a matter of fact, in many situations
data are not sensitive per se; what is sensitive is their association with other
data. As a simple example, in a hospital the list of illnesses cured or the list
of patients could be made publicly available, while the association of specific
illnesses to individual patients is sensitive and must be protected. Hence, there
is no need to encrypt both illnesses and patients if there are alternative ways to
protect the association between them.

In this paper, we propose an approach that couples encryption together with
data fragmentation. We apply encryption only when explicitly demanded by the
privacy requirements. The combined use of encryption and data fragmentation
has first been proposed in the context of data outsourcing [1]. In this proposal,
privacy requirements are enforced by splitting information over two independent
database servers (so to break associations of sensitive information) and by en-
crypting information whenever necessary. While presenting an interesting idea,
the approach in [1] suffers from several limitations. The main limitation is that
the privacy relies on the complete absence of communication among the two
servers (which have to be completely unaware of each other). This assumption
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is clearly too strong and difficult to enforce in real environments. A collusion
among the servers (or the users accessing them) easily breaches privacy. Also,
the assumption of two servers limits the number of associations that can be
solved by fragmenting data, often forcing the use of encryption.

In this paper, we propose an approach combining fragmentation and encryp-
tion that overcomes the above limitations. Our solution allows storing data on
a single server and minimizes the amount of data represented only in encrypted
format, therefore allowing for efficient query execution.

We frame our work in the context of relational databases. The reason for
this choice is that relational databases are by far the most common solution
for the management of the data subject of privacy regulations; also, they are
characterized by a clear data model and simple query language that facilitate the
design of a solution. We note, however, that our model could be easily adapted
to the protection of data represented with other data models (e.g., records in
files or XML documents).

Our work assumes that access to data is realized by an application that in-
cludes a compact trusted core, which is invoked every time there is the need
to access sensitive information (i.e., applying decryption or reconstructing as-
sociations by linking fragments). By contrast, the DBMS needs not be trusted,
since accessing single fragments or encrypted information does not expose to
any privacy breach. This is a considerable advantage over previous proposals,
developed, for example, in the data outsourcing scenario [5,8].

The contribution of this paper is threefold. First, we introduce confidential-
ity constraints as a simple, yet powerful, way to capture privacy requirements.
Second, we provide a model formalizing the application of data fragmentation
and encryption, which captures properties related to the correct representation
of the data while minimizing encryption and fragmentation. Third, we propose
a heuristic algorithm for the concrete identification of a fragmentation solution
that satisfies the properties specified.

2 Confidentiality Constraints

We model, in a quite simple and powerful way, the privacy requirements through
confidentiality constraints , which are sets of attributes, as follows.

Definition 1 (Confidentiality constraint). Let A be a set of attributes, a
confidentiality constraint is a subset c ⊆ A.

The semantics of a confidentiality constraint c is that the (joint) visibility of
values of the attributes in c should be protected. When the constraint is a sin-
gleton set, then the semantics is that the individual attribute must be protected,
that is, the list of the attribute values itself is confidential.

While simple, the definition above allows the expression of the different con-
fidentiality requirements that may need to be expressed, such as the following.

– The values assumed by some attributes are considered sensitive and therefore
cannot be stored in the clear . For instance, phone numbers or email addresses
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can be considered sensitive values (even if not associated with any identifying
information).

– The association between values of given attributes is sensitive and therefore
should not be released . For instance, while the list of (names of) patients in
a hospital as well as the list of illnesses are by themselves not confidential,
the association of patient’s names with illnesses is considered sensitive.

Note that constraints specified on the association between attributes can de-
rive from different requirements, as they can correspond to explicit protection
of an association (as in the case of names and illnesses above) or to associations
that could cause inference on other sensitive information. As an example of the
latter, consider a hospital database and suppose that the names of patients are
considered sensitive, and therefore cannot be stored in the clear, and that the
association of DoB together with the ZIP code can work as a quasi-identifier [4,15]
(i.e., DoB and ZIP can be used, possibly in association with external informa-
tion, to help identifying patients and therefore infer, or reduce uncertainty about,
their names). This inference channel can be simply blocked by specifying a con-
straint protecting the association of DoB with the ZIP code. As another example,
consider the case where names are not considered sensitive but their association
with Illness is. Suppose again that DoB together with the ZIP code can work as
a quasi-identifier (then potentially leaking information on names). In this case,
an association constraint will be specified protecting the association between
DoB, ZIP code, and Illness, implying that the three attributes should never be
accessible together in the clear.

In general, we are interested in enforcing a set of well defined confidentiality
constraints, formally defined as follows.

Definition 2 (Well defined constraints). A set of confidentiality constraints
C = {c1,. . . ,cm} is said to be well defined iff ∀ci, cj ∈ C, i �= j, ci �⊂ cj and
cj �⊂ ci.

According to this definition, a set of constraints C over A cannot contain a con-
straint that is a subset of another constraint. The rationale behind this property
is that, whenever there are two constraints ci, cj and ci is a subset of cj (or vice
versa), the satisfaction of constraint ci implies the satisfaction of constraint cj

(see Sect. 3), and therefore cj is redundant.
To model the problem of enforcing a set of well defined confidentiality con-

straints, we assume standard notations from the relational database model. For-
mally, let A be a set of attributes and D a set of domains. A relation schema
R is a finite set of attributes {a1,. . . ,an} ⊆ A that are defined on a domain
Di, i = 1, . . . , n. Notation R(a1,. . . ,an) represents a relation schema R over the
set {a1,. . . ,an} of attributes. A tuple t over a set of attributes {a1,. . . ,an} is a
function that associates with each attribute ai a value v ∈ Di. Notation t[a ] de-
notes value v associated with attribute a in t. A relation r over relation schema
R(a1,. . . ,an) is a set of tuples over the set of attributes {a1,. . . ,an}. In the fol-
lowing, when clear from the context, we will use R to denote either the relation
schema R or the set of attributes in R.
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MedicalData

SSN Name DoB ZIP Illness Physician

123-45-6789 A. Hellman 81/01/03 94142 hypertension M. White
987-65-4321 B. Dooley 53/10/07 94141 obesity D. Warren
246-89-1357 C. McKinley 52/02/12 94139 hypertension M. White
135-79-2468 D. Ripley 81/01/03 94139 obesity D. Warren

(a)

c0= {SSN}
c1= {Name, DoB}
c2= {Name, ZIP}
c3= {Name, Illness}
c4= {Name, Physician}
c5= {DoB, ZIP, Illness}
c6= {DoB, ZIP, Physician}

(b)

Fig. 1. An example of plaintext relation (a) and its well defined constraints (b)

For simplicity, and consistently with other proposals [1,15], we consider a
single relation, r over a relation schema R(a1,. . . ,an), containing all the sensitive
information that needs to be protected.

Example 1. Figure 1 illustrates an example of relation together with some con-
fidentiality constraints on it. The reasons behind the constraints are as follows:

– the list of SSN of patients is considered sensitive (c0);
– the association of patients’ names with any other piece of stored information

is considered sensitive (c1,. . . ,c4);
– DoB and ZIP together can be exploited to infer the name of patients (i.e.,

they can work as a quasi-identifier), consequently their association with other
pieces of information is considered sensitive (c5,c6).

Note that also the association of patients’ Name and SSN is sensitive and should
be protected. However, such a constraint is not specified since it is redundant,
given that SSN by itself has been declared sensitive (c0). As a matter of fact,
protecting SSN as an individual attribute implies automatic protection of its
associations with any other attribute.

3 Fragmentation and Encryption for Constraint
Satisfaction

Our approach to satisfy confidentiality constraints is based on the use of two
techniques: encryption and fragmentation.

– Encryption. Consistently with how the constraints are specified, encryption
applies at the attribute level, that is, it involves an attribute in its entirety.
Encrypting an attribute means encrypting (tuple by tuple) all its values. To
protect encrypted values from frequency attacks [16], we assume that a salt,
which is a randomly chosen value, is applied on each encryption (similarly
to the use of nonces in the protection of messages from replay attacks).

– Fragmentation. Fragmentation, like encryption, applies at the attribute level,
that is, it involves an attribute in its entirety. Fragmenting means splitting
sets of attributes so that they are not visible together, that is, the association
among their values is not available without access to the encryption key.
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It is straightforward to see that singleton constraints can be solved only by
encryption. By contrast, an association constraint could be solved by either: i)
encrypting any (one suffices) of the attributes involved in the constraint, so to
prevent joint visibility, or ii) fragmenting the attributes involved in the constraint
so that they are not visible together. In the following, we use the term fragment
to denote any subset of a given set of attributes. A fragmentation is a set of
fragments, as captured by the following definition.

Definition 3 (Fragmentation). Let R be a relation schema, a fragmentation
of R is a set of fragments F={F 1,. . .,Fm}, where F i ⊆ R, for i = 1, . . . ,m.

At the physical level, a fragmentation translates to a combination of fragmen-
tation and encryption. Each fragment F is mapped into a physical fragment
containing all the attributes in F in the clear, while all the other attributes
of R are encrypted. The reason for reporting all the original attributes (in ei-
ther encrypted or clear form) in each of the physical fragments is to guarantee
that any query can be executed by querying a single physical fragment. For the
sake of simplicity and efficiency, we assume that all the attributes not appearing
in the clear in a fragment are encrypted all together (encryption is applied on
subtuples). Physical fragments are then defined as follows.

Definition 4 (Physical fragment). Let R be a relation schema, and F={F 1,
. . .,Fm} a fragmentation of R. For each F i={ai1 , . . . , ain} ∈ F , the physical
fragment of R over F i is a relation schema F e

i (salt,enc,ai1 , . . . , ain), where enc
represents the encryption of all the attributes of R that do not belong to the
fragment, combined before encryption in a binary XOR (symbol ⊗) with the salt.

At the level of instance, given a fragment F i={ai1 , . . . , ain}, and a relation r
over schema R, the physical fragment F e

i of F i is such that each plaintext tuple
t ∈ r is mapped into a tuple te ∈ f e

i where f e
i is a relation over F e

i and:

– te[enc] = Ek(t [R− Fi] ⊗ te[salt])
– te[aij ] = t [aij ], for j = 1, . . . , n

The algorithm in Fig. 2 shows the construction and population of physical frag-
ments. When the size of the attributes exceeds the size of an encryption block, we
assume that encryption of the protected attributes uses a Cipher Block Chain-
ing (CBC) mode [16], with the salt used as the Initialization Vector (IV); in the
CBC mode, the clear text of the first block is actually encrypted after it has
been combined in binary XOR with the IV.

Note that the salts, which we conveniently use as primary keys of physical
fragments (ensuring no collision in their generation), need not be secret, because
knowledge of the salts does not help in attacking the encrypted values as long
as the encryption algorithm is secure and the key remains protected.

Given a relation r over schema R and a set of confidentiality constraints C on
it, our goal is to produce a fragmentation that satisfies the constraints. However,
we must also ensure that no constraint can be violated by recombining together
two or more fragments. In other words, there cannot be attributes that can be
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Algorithm 1 (Constraint resolution).

INPUT
A relation r over schema R
C = {c1, . . . , cm} /* well defined constraints */
OUTPUT
A set of physical fragments Fe

={Fe
1,. . . ,Fe

i }
A set of relations {f e

1,. . . ,f
e
i} over schemas {Fe

1,. . . ,F
e
i}

MAIN
CF := {c∈C : |c | >1} /* association constraints */
AF := {a∈R: {a}�∈C}
F := fragment(AF , CF )
/* define physical fragments */
for each F={ai1 ,. . . ,ail

} ∈F do
define relation Fe with schema:

Fe(salt, enc, ai1 ,. . . ,ail
)

/* populate physical fragments instances */
for each t∈r do

te[salt] := generatesalt(F ,t )
te[enc] := Ek(t [aj1 . . .ajp ] ⊗te[salt]) /* {aj1 . . . ajp}=R−F */
for each a∈F do te[a ] := t [a ]
insert te in f e

Fig. 2. Algorithm that correctly fragments R

f e
1

salt enc Name

s1 α A. Hellman
s2 β B. Dooley
s3 γ C. McKinley
s4 δ D. Ripley

(a)

f e
2

salt enc DoB ZIP

s5 ε 81/01/03 94142
s6 ζ 53/10/07 94141
s7 η 52/02/12 94139
s8 θ 81/01/03 94139

(b)

f e
3

salt enc Illness Physician

s9 ι hypertension M. White
s10 κ obesity D. Warren
s11 λ hypertension M. White
s12 μ obesity D. Warren

(c)

Fig. 3. An example of physical fragments for relation in Fig. 1(a)

exploited for linking. Since encryption is differentiated by the use of the salt,
the only attributes that can be exploited for linking are the plaintext attributes.
Consequently, ensuring that fragments are protected from linking translates into
requiring that no attributes appear in clear form in more than one fragment.

The conditions above are formally captured by the following definition.

Definition 5 (Fragmentation correctness). Let R be a relation schema, F
be a fragmentation of R, and C a set of well defined constraints over R. F
correctly enforces C iff the following conditions are satisfied:

1. ∀F ∈ F , ∀c ∈ C : c �⊆ F (each individual fragment satisfies the constraints);
2. ∀F i,F j ∈ F , i �= j : F i ∩ F j = ∅ (fragments do not have attributes in

common).

Note that condition 1, requiring fragments not to be a superset of any constraint,
implies that attributes appearing in singleton constraints do not appear in any
fragment. As a matter of fact, as already noted, singleton constraints require the
attributes on which they are defined to appear only in encrypted form. Figure 3
illustrates an example of fragmentation of the relation schema in Fig. 1(a) that
correctly enforces the well defined constraints in Fig. 1(b).
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Original query on R Translation over fragment F e
3

Q1 := select SSN, Name
from MedicalData
where Illness=‘obesity’

and

Physician=‘D. Warren’

Q3
1 := select salt, enc

from F e
3

where Illness=‘obesity’and

Physician=‘D. Warren’

Q
′
1 := select SSN, Name

from Decrypt(Q3
1, Key)

Q2 := select SSN, Name
from MedicalData
where Illness=‘obesity’

and

Physician=‘D. Warren’
and

ZIP=‘94139’

Q3
2 := select salt, enc

from F e
3

where Illness=‘obesity’and

Physician=‘D. Warren’

Q
′
2 := select SSN, Name

from Decrypt(Q3
2, Key)

where ZIP=‘94139’

Fig. 4. An example of query translation over a fragment

4 Executing Queries on Fragments

Fragmentation of a relation implies that only fragments (which are stored in place
of the original relation to satisfy confidentiality constraints) will be available for
queries. Note that, since every physical fragment of R contains all the attributes
of R, either in encrypted or in clear form, no more than one fragment needs
to be accessed to respond to a query. However, if the query executed over a
fragment involves an attribute that is encrypted, an additional query may need
to be executed (after decryption) by the application to evaluate the conditions
on the attributes.

We consider generic select-from-where SQL queries that present relation R in
the from clause, specify a conjunction of equality predicates in the where clause,
and extract a subset of the R’s attributes in the select clause.

Example 2. Consider the relation in Fig. 1(a) and its fragment F e
3 in Fig. 3(c).

– Consider a query Q1 retrieving the Social Security Number and the name
of the patients whose illness is obesity and whose physician is D. Warren.
Figure 4 illustrates the translation of Q1 to queries Q3

1 executed by the DBMS
on the fragment, and Q

′

1 executed by the application. Note that since both
Illness and Physician are represented in the clear in F e

3, the conditions
in the where clause can be executed on the fragment itself, thus returning to
the application only the tuples belonging to the final result.

– Consider a query Q2 retrieving the Social Security Number and the name of
the patients whose illness is obesity, whose physician is D. Warren, and whose
ZIP is 94139. Figure 4 illustrates the translation of Q2 to queries Q3

2 executed
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by the DBMS on the fragment, and Q
′

2 executed by the application. Note
that, since ZIP does not appear in the clear in the fragment, the condition
on it needs to be evaluated by the application.

The cost of executing a query over a fragment depends on the number of
plaintext attributes it contains and on their selectivity. A query optimizer can
be used to select the fragment that allows the execution of more selective queries
by the DBMS, thus decreasing the workload of the application and maximizing
the efficiency of the execution.

5 Minimal Fragmentation

As the examples in Sect 4 have shown, the availability of plaintext attributes
in a fragment permits an efficient execution of queries. Therefore, we aim at
minimizing the number of attributes that are not represented in the clear in
any fragment, because queries using those attributes will be generally processed
inefficiently. In other words, we prefer fragmentation over encryption whenever
possible and always solve association constraints via fragmentation.

The requirement on the availability of a plain representation for the max-
imum number of attributes can be captured by imposing that any attribute
not involved in a singleton constraint must appear in the clear in at least one
fragment. This requirement is represented formally by the definition of maximal
visibility as follows.

Definition 6 (Maximal visibility). Let R be a relation schema, and C be a
set of well defined constraints. A fragmentation F of R maximizes visibility iff
∀a∈R, {a} �∈ C: ∃F ∈ F such that a∈F .

Note that the combination of maximal visibility together with the second con-
dition of Definition 5 imposes that each attribute that does not appear in a
singleton constraint must appear in the clear in exactly one fragment.

Another important aspect to consider when fragmenting a relation to satisfy
a set of constraints is to avoid excessive fragmentation. As a matter of fact, the
availability of more attributes in the clear in a single fragment allows a more
efficient execution of queries on the fragment.

Indeed, a straightforward approach for producing a fragmentation that satis-
fies the constraints while maximizing visibility is to define as many (singleton)
fragments as the number of attributes not appearing in singleton constraints.
Such a solution, unless demanded by the constraints, is however undesirable
since it makes the evaluation of a query involving conditions on more than one
attribute inefficient.

We are interested in finding a fragmentation that makes query execution effi-
cient. A simple strategy to achieve this goal consists in finding a minimum frag-
mentation that is correct and maximizes visibility, while minimizing the number
of fragments. This problem is NP-hard since it corresponds to the minimum
hypergraph coloring problem [7]. It is also interesting to note that, assuming
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NP �= ZPP , there are no polynomial time approximation algorithms for col-
oring k-uniform hypergraphs with approximation ratio O(n1−ε) for any fixed
ε > 0 [10,17]. We propose therefore a definition of minimality, which can be
exploited to find an efficient fragmentation through a heuristic (see Sect. 6).

To formally define minimality, we introduce the concept of fragment vector
as follows.

Definition 7 (Fragment vector). Let R be a relation schema, and F= {F1,
. . . ,Fm} be a fragmentation of R. The fragment vector VF of F is a vector of
fragments with an element VF [a ] for each a ∈

⋃m
i=1 F i, where the value of VF [a ]

is the unique fragment F j∈F containing attribute a .

Example 3. Let F = {{Name},{DoB,ZIP},{Illness,Physician}} be a fragmen-
tation of the relation schema in Fig. 1(a). The fragment vector is the vector VF
such that:

– VF [Name]={Name};
– VF [DoB]=VF [ZIP]={DoB,ZIP};
– VF [Illness]=VF[Physician]={Illness,Physician}.

Fragment vectors allow us to define a partial order between fragmentations as
follows.

Definition 8 (Dominance). Let R be a relation schema, and F and F ′ be two
fragmentations of R maximizing visibility. Let A be the (equal) set of attributes
in the two fragmentations. We say that F ′ dominates F , denoted F�F ′, iff
VF [a ]⊆VF ′[a ], for all a ∈ A. Consequently, F ≺ F ′ iff F�F ′ and F �= F ′.

Definition 8 states that solution F ′ dominates solution F if F ′ can be computed
from F by merging two (or more) fragments composing F .

Example 4. Let F1={{Name}, {DoB,ZIP}, {Illness,Physician}} and F2=
{{Name}, {DoB}, {ZIP}, {Illness,Physician}} be two fragmentations of the
relation schema in Fig. 1(a). According to Definition 8, F2≺F1, since F1 can
be obtained from F2 by merging fragments {DoB} and {ZIP}.

We can formally define the minimality property as follows.

Definition 9 (Minimal fragmentation). Let R be a relation schema, C be a
set of well defined constraints, and F be a fragmentation of R. F is a minimal
fragmentation iff all the following conditions are satisfied:

1. F correctly enforces C (Definition 5);
2. F maximizes visibility (Definition 6);
3. �F ′ such that F≺F ′ and F ′ satisfies the two conditions above.

According to this definition of minimality, a fragmentation F is minimal if and
only if it is correct, it maximizes visibility, and all fragmentations that can
be obtained from F by merging any two fragments in F violate at least one
constraint.
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Function 1 (Minimal fragmentation).

FRAGMENT(A ToPlace,C ToSolve)

F := ∅
for each a∈A ToPlace do /* initialize arrays Con[] and N con[] */

Con[a ] := {c ∈ C ToSolve| a ∈ c}
N con[a ] := |Con[a ]|

repeat
if C ToSolve �= ∅ then

let attr be an attribute with the maximum value of N con[]
for each c ∈ (Con[attr ] ∩ C ToSolve) do

C ToSolve := C ToSolve − {c} /* adjust the constraints */
for each a ∈ c do N con[a ] := N con[a ]−1 /* adjust array N con[] */

else /* since all the constrains are satisfied, choose any attribute in A ToPlace */
let attr be an attribute in A ToPlace

endif
A ToPlace := A ToPlace − {attr}
inserted := false /* try to insert attr in the existing fragments */
for each F ∈ F do /* evaluate if F ∪ {attr} satisfies the constraints */

satisfies := true
for each c ∈ Con[attr ] do

if c ⊆ (F ∪ {attr}) then
satisfies := false /* choose the next fragment */
break

endif
if satisfies then

F := F ∪ {attr} /* attr has been inserted in F */
inserted := true
break

endif
if not inserted then /* insert attr in a new fragment */

add {attr} to F
endif

until A ToPlace = ∅
return(F)

Fig. 5. Function that finds a minimal fragmentation

Example 5. Consider fragmentations F1 and F2 of Example 4, and the set of
constraints in Fig. 1(b). Since F2≺F1, F2 is not minimal. By contrast, F1

is minimal. As a matter of fact, F1 contains all attributes of relation schema
MedicalData in Fig. 1(a), but SSN (maximize visibility); satisfies all constraints
in Fig. 1(b) (correctness); no fragmentation obtained from it by merging any
pair of fragments satisfies the constraints.

6 Computing a Minimal Fragmentation

Our heuristic method for computing a minimal fragmentation is based on the
fragment function illustrated in Fig. 5. This function takes as input a set of
attributes A ToPlace to be fragmented, and a set of constraints C ToSolve. It
computes a minimal fragmentation F of A ToPlace as follows.

First, the function initializes F to the empty set and creates two arrays Con[]
and N con[] that contain an element for each attribute a in A ToPlace. El-
ement Con[a ] contains the set of constraints on a , and element N con[a ] is
the number of non solved constraints involving a (note that, at the beginning,
N con[a ] coincides with the cardinality of Con[a ]). The function then executes
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a repeat-until cycle that, at each iteration, places an attribute attr into a frag-
ment as follows. If there are constraints still to be solved (C ToSolve �= ∅) attr is
selected as an attribute with the highest number of non-solved constraints. The
reason for this choice is to bring all constraints to satisfaction in a few number
of steps. Then, for each constraint c in Con[attr ]∩C ToSolve, the function re-
moves c from C ToSolve and, for each attribute a in c , decreases N con[a ] by
one. Otherwise, that is, all constraints are solved (C ToSolve= ∅), the function
chooses attr by randomly extracting an attribute from A ToPlace and removes
it from A ToPlace. Then, the function looks for a fragment F in F in which
attr can be inserted without violating any constraint including attr that has
already been solved (indeed, there is no need to check constraints that have not
yet been solved). If such a fragment F is found, attr is inserted in F , other-
wise a new fragment {attr} is added to F . Note that the search for a fragment
terminates as soon as a fragment is found (inserted=true). Also, the control on
constraint satisfaction terminates as soon as a violation to constraints is found
(satisfies=false).

Example 6. Figure 6 presents the execution, step by step, of function fragment
applied to the example in Fig. 1. Here, for simplicity, we represent attributes with
their initials. The left hand side of Fig. 6 illustrates the evolution of variables attr ,
F , C ToSolve, and A ToPlace, while the right hand side graphically illustrates
the same information through a matrix with a row for each attribute and a
column for each constraint. If an attribute belongs to a non solved constraint ci,
the corresponding cell is set to ×; otherwise, if ci is solved, the cell is set to �.
At the beginning, F is empty, all constraints are not solved, and all attributes
need to be placed. In the first iteration, function fragment chooses attribute n,
since it is the attribute involved in the highest number of non solved constraints.
The constraints in Con[n] become now solved, N con[ai] is updated accordingly,
and fragment {n} is added to F . Function fragment proceeds in analogous way
by choosing attributes d, z, i, and p. The final solution is represented by the
relations in Fig. 3.

The correctness and complexity of our approach are stated by the following
theorems, whose complete proofs are omitted here for space constraints.

Theorem 1 (Correctness). Function fragment terminates and finds a min-
imal fragmentation (Definition 9).

Proof (sketch). The repeat loop terminates because A ToPlace is finite, and in
each iteration an attribute in A ToPlace is extracted, and the loop is executed
till A ToPlace becomes empty. Moreover, all the inner for loops always consider
a finite set of fragments and constraints. Each attribute attr in A ToPlace is then
inserted exactly in one existing fragment, if no constraint is violated; it is inserted
in a new fragment, otherwise (maximal visibility and fragmentation correctness).
Moreover, function fragment cannot generate two different fragments whose
union does not violate any constraint (minimality). In fact, if merging the two
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F=∅
C ToSolve={c1,c2,c3,c4,c5,c6}
A ToPlace={n,d,z,i,p}

c1 c2 c3 c4 c5 c6 N con[ai]

n × × × × 4
d × × × 3
z × × × 3
i × × 2
p × × 2

ToSolve yes yes yes yes yes yes

attr = n
Con[n]={c1,c2,c3,c4}

F = {{n}}
C ToSolve = {c5,c6}
A ToPlace = {d,z,i,p}

c1 c2 c3 c4 c5 c6 N con[ai]

n � � � � 0
d � × × 2
z � × × 2
i � × 1
p � × 1

ToSolve � � � � yes yes

attr = d
Con[d]={c1,c5,c6}

F = {{n},{d}}
C ToSolve = ∅
A ToPlace = {z,i,p}

c1 c2 c3 c4 c5 c6 N con[ai]

n � � � � 0
d � � � 0
z � � � 0
i � � 0
p � � 0

ToSolve � � � � � �

attr = z
Con[z]={c2,c5,c6}

F = {{n},{d,z}}
C ToSolve = ∅
A ToPlace = {i,p}

c1 c2 c3 c4 c5 c6 N con[ai]

n � � � � 0
d � � � 0
z � � � 0
i � � 0
p � � 0

ToSolve � � � � � �

attr = i
Con[i]={c3,c5}

F = {{n},{d,z},{i}}
C ToSolve = ∅
A ToPlace = {p}

c1 c2 c3 c4 c5 c6 N con[ai]

n � � � � 0
d � � � 0
z � � � 0
i � � 0
p � � 0

ToSolve � � � � � �

attr = p
Con[p]={c4,c6}

F = {{n},{d,z},{i,p}}
C ToSolve = ∅
A ToPlace = ∅

c1 c2 c3 c4 c5 c6 N con[ai]

n � � � � 0
d � � � 0
z � � � 0
i � � 0
p � � 0

ToSolve � � � � � �

Fig. 6. An example of function execution
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fragments does not violate any constraint, the function would have inserted all
the attributes in the first of the two fragments that was created.

Theorem 2 (Complexity). Given a set of constraints C={c1,. . . ,cm} and a
set of attributes A={a1,. . . an} the complexity of function fragment(A,C) is
O(n2m) in time.

Proof (sketch). To chose attribute attr from A ToPlace, in the worst case the
function fragment scans array N con[], and adjusts array N con[] for each at-
tribute involved in at least one constraint with attr . This operation costs O(nm)
for each attribute chosen. After the choosing phase, each attribute is inserted
in a fragment. Note that the number of fragments is O(n) in the worst case. To
choose the right fragment that will contain attr , in the worst case the function
tries to insert it in all the fragments F∈F , and compares F∪{attr} with the
constraints. Since the sum of the number of attributes in all the fragments is
O(n), then O(n) attributes will be compared with the O(m) constraints contain-
ing attr , giving, in the worst case, a O(nm) complexity for each attr . Thus, the
complexity of the second phase of function fragment is O(n2m).

Finally, the overall time complexity is therefore O(n2m).

7 Related Work

A significant amount of research has recently been dedicated to the study of the
outsourced data paradigm. Most of this research has assumed the data to be en-
tirely encrypted, focusing on the design of techniques for the efficient execution
of queries (Database As a Service paradigm). One of the first proposals towards
the solution of this problem is presented in [8,9], where the authors propose stor-
ing additional indexing information together with the encrypted database. Such
indexes can be used by the DBMS to select the data to be returned in response
to a query. In [5] the authors propose a hash-based index technique for equality
queries, together with a B+ tree technique applicable to range queries. In [18]
the authors propose an indexing method which, exploiting B-trees, supports
both equality and range queries, while reducing inference exposure thanks to an
almost flat distribution of the frequencies of index values. In [3,5] the authors
present different approaches for evaluating the inference exposure for encrypted
data enriched with indexing information, showing that even a limited number
of indexes can greatly facilitate the task for an attacker wishing to violate the
confidentiality provided by encryption.

The first proposal suggesting the storage of plaintext data, while enforcing a
series of privacy constraints, is presented in [1]. The main difference with the
work proposed in this paper is that in [1] the authors suppose data to be stored
on two remote servers, belonging to two different service providers, which never
exchange information. This choice also forces to design a fragmentation schema
with at most two separate fragments. The approach presented in our paper
removes all these restrictions and appears more adequate to the requirements of
real scenarios. Our approach may force the use of a greater amount of storage,
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but in typical environments this presents a smaller cost than that required for
the management and execution of queries on remote database servers managed
by fully independent third parties.

Our work may bring some resemblance with the work of classifying informa-
tion while maximizing visibility [6]. However, while the two lines of work share
the goal of ensuring protection and minimizing security measures enforcement,
the consideration of fragmentation and encryption on the one side and security
labeling on the other makes the problems considerably different.

The problem of fragmenting relational databases while maximizing query ef-
ficiency has been addressed by others in the literature and some approaches
have been proposed [11,12]. However, these approaches are not applicable to our
problem since they are only aimed at performance optimization and do not allow
taking into consideration protection requirements.

8 Conclusions

We presented a model and a corresponding concrete approach for the definition
and management of privacy requirements in data collection. Our work provides
a direct response to the emerging demand by individuals as well as privacy
regulators.

Besides being a technical contribution, we hope that our work can represent
a step towards the effective enforcement, as well as the establishment, of privacy
regulations. Technical limitations are in fact claimed as one of the main reasons
why privacy cannot be achieved and, consequently, regulations not be put into
enforcement. Research on the line of ours can then help in providing the building
blocks for a more precise specification of privacy needs and regulations as well as
their actual enforcement, together with the benefit of a clearer and more direct
integration of privacy requirements within existing ICT infrastructures.
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Abstract. This paper describes an identification and authentication protocol for
RFID tags with two contributions aiming at enhancing the security and privacy of
RFID based systems. First, we assume that some of the servers storing the infor-
mation related to the tags can be compromised. In order to protect the tags from
potentially malicious servers, we devise a technique that makes RFID identifi-
cation server-dependent, providing a different unique secret key shared by each
pair of tag and server. The proposed solution requires the tag to store only a sin-
gle secret key, regardless of the number of servers, thus fitting the constraints on
tag’s memory. Second, we provide a probabilistic tag identification scheme that
requires the server to perform simple bitwise operations, thus speeding up the
identification process. The proposed tag identification protocol assures privacy,
mutual authentication and resilience to both DoS and replay attacks. Finally, each
of the two schemes described in this paper can be independently implemented to
enhance the security of existing RFID protocols.

1 Introduction

Radio Frequency IDentification (RFID) is a technology for automated identification of
objects and people. An RFID device, also known as tag, is a small microchip designed
for wireless data transmission. It is generally attached to an antenna in a package that
resembles an ordinary adhesive sticker. The applications of RFID ranges from cattle
monitoring to e-passport [1].

The other components of an RFID system are readers and servers. A reader is a de-
vice querying tags for identification information, while all information about tags (ID,
assigned keys, etc.) are maintained on servers. A server can be assigned multiple read-
ers; in this case it only engages in communication with its constituent readers. It is gen-
erally assumed to have a single logical server that might resolve to multiple physically
replicated servers. All communications between server and readers is assumed to be
over private and authentic channels. Both readers and server do not suffer of constraints
on power, processing, memory, and bandwidth.
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Furthermore, based on a widely agreed assumption, servers, readers and the link
between them are assumed to be trusted in that only the tags and the communication
channel between the tag and the readers are assumed to be potentially vulnerable to
malicious attacks [1,2]. In this paper we relax this hypothesis by assuming a more gen-
eral setting whereby tags, servers and readers can be subject to malicious attacks. In
that context, we focus on the problem of tag identification by multiple servers that are
either replicas of the same logical server or different servers governed by independent
authorities like in the case of electronic passports. As a result of the relaxed security hy-
pothesis, the new requirement in this setting is to cope with the compromise of servers.
Apart from the obvious need to perform mutual authentication, as opposed to one-way
authentication of the tag by the server, server compromise calls for new measures to pre-
vent possible attacks originating from the leakage of secrets stored in the compromised
server’s authentication database. For instance, based on most existing tag authentica-
tion protocols, using the entries of a compromised server’s authentication database, the
attacker can fabricate duplicate tags (i.e. e-passports). The first contribution of this pa-
per is an information confinement technique aiming at keeping the impact of server
compromise limited. Thanks to this technique, the compromise of a server does not af-
fect the authentication of any tag by other servers, be they replicas of the same logical
server or different servers. A simple solution for confinement could consist of having
each tag and server pair share a unique set of secrets. However, this solution would
not be suitable with the memory constraints of RFID tags since with m servers, each
RFID tag would have to store m pieces of information. The solution proposed in this
paper requires the RFID tag to store a single secret key for all servers yet assuring the
confinement property in case of server compromise.

Another challenging issue that affects the RFID systems is the responsiveness of the
server during tag identification. It is usually the case that the server needs to search its
DB of locally stored keys and to perform a cryptographic operation on each of these
keys in order to identify the tag. In some scenarios the cost and the time required to
identify a tag can be prohibitive due to the total number of tags that can potentially
interact with the same server. Existing proposals for RFID identification try to reduce
the complexity of the search operation performed by the server without requiring the
tag to perform costly operations. Along the same lines, the second contribution of this
paper is an efficient identification technique based on a probabilistic mechanism for the
server to identify the tag that requires both the tag and the server to perform only bitwise
operations. Through a three-way handshake protocol this identification technique also
achieves mutual authentication, as well as resilience against DoS and replay attacks.
Moreover, the proposed identification technique is shown to preserve the privacy of the
tag. Finally, note that either of the two contributions can be independently incorporated
into existing protocols.

The sequel of the paper is structured as follows: next section introduces the re-
lated work; Section 3 outlines the system assumptions and Section 4 presents a mutual
authentication protocol incorporating the confinement and probabilistic identification
techniques, while Section 5 is devoted to the security evaluation and overhead analysis
of this protocol. Finally, in Section 6 we expose some concluding remarks.
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2 Related Work

A standard approach to provide security in RFID protocols [3,4] consists of using a
unique key for each tag such that only the verifier (server) knows all the keys. This
approach suffers from an expensive time complexity on the server side. Indeed, because
only symmetric cryptographic functions can be used, the server needs to explore its
entire database in order to retrieve the identity of the tag it is interacting with. If n is
the number of tags managed by the server, O(n) cryptographic operations are required
in order to identify one tag. The advantage of the server over an adversary is that the
server knows in which subset of identifiers it needs to search while the adversary has to
explore the full range of identifiers.

In [3] a proposal that requires just logδ n interactions between the server and a tag
for the server to identify the tag is proposed. However, this approach requires logδ keys
to be stored on each tag and in [5] it has been proved that this technique weakens the
privacy when an adversary is able to tamper with at least one tag. Further, the more tags
an adversary tampers with, the more privacy is exposed.

A general solution, also adopted in [2,4] is to employ hash chains to allow tag iden-
tification and mutual authentication between the tag and the server. However, note that
the hash chain length corresponds to the lifetime of the tag, which must be therefore
stated in advance, leading to a waste of memory on the server side. Moreover, as the
same author of [2] recognizes, this solution is prone to DoS attack, in that an adversary
can easily exhaust the hash chain via reading attempts.

In [5,6] the authors optimizes a technique originally proposed in [7]. This technique
allows to trade-off between time and the memory required on the reader. In particular,
the time T required to invert any given value in a set of N outputs of a one-way func-
tion h(◦) with the help of M units of memory is T = N2γ/M2, where γ is a factor
(usually a small one: < 10) to account for success probability. However, note that the
technique is still prone to DoS attack and requires more computations on the server
side. Leveraging this idea, in [8] the authors propose a new RFID identification proto-
col —RIPP-FS— that enforces privacy and forward secrecy, as well as resilience to a
specific DoS attack, where the goal of the adversary is to force the tag to overuse the
hash chain that has a finite length originally set to last for the tag’s expected lifetime.

Aforementioned solutions assume that servers are trusted and cannot be compro-
mised. The first requirement raised by relaxing this hypothesis is for mutual authentica-
tion. An interesting solution to mutual authentication is exposed in [9]: the authors are
inspired by the work in [10] to introduce the HB+ protocol, a novel, symmetric au-
thentication protocol with a simple, low-cost implementation. The security of the HB+
protocol against active adversaries is proved and based on the hardness of the Learning
Parity with Noise (LPN) problem. The protocol is based on r rounds, where r is the
security parameter, and each round requires: the tag and the server to send a message
of |�| bits to each other, where |�| is the key length; to perform two inner product over
terms of |�| bits. A further work [11] showed the vulnerability of the HB+ protocol
against a man in the middle (MIM) attack. A fix to the MIM attack HB+ was subject to
was proposed in [12], through the HB++ protocol. Furthermore, HB++ was proven in
[13] to be subject to a particular attack in which the adversary could gain knowledge of
the private key of the tag, hence jeopardizing the authentication mechanism.
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3 System Assumptions/Model

The components of the system are: tags, readers and key distribution centers (KDCs).
KDCs represent the authorities ruling over a set of tags. Each KDC generates a unique
key ki for every tag tagi that is under its jurisdiction and securely stores it in the tag.
The KDC also provides each reader readerj that is authorized to identify a tag tagi

that is under its jurisdiction with a derived tag identification key ki,j along with the
identifier IDi of the tag. Each tag can thus be identified by one or several readers based
on the derived tag identification keys distributed by the KDC. Each reader keeps in a
secure key database (KDB) the set of derived tag identification keys and identifiers of
the tags it is authorized to identify. It should be noted that in this model a reader can
be associated with more than one KDC or be able to identify tags issued by several
authorities.

Each tag has the capability to run a pseudo random number generator (PRNG)
and a secure hash function h(◦), as assumed in literature [2,3,5]. The KDC assigns
a unique key ki to tagi. The derived tag identification key ki,j will be generated by
the KDC during the initialization of readerj’s KDB, based on the expression ki,j =
h(ki||readerj ||ki), where ′′||′′ denotes concatenation. In the following we will assume
the KDB to host n entries and KDB[g] to return the key kg,j .

4 The Protocol

This section presents first the protocol through which the confinement and probabilistic
identification techniques are implemented. Further details are then provided on the mu-
tual authentication and the lookup process that is the underpinning of the probabilistic
identification technique.

4.1 Overview of the Solution

Our proposal for tag identification and mutual authentication is based on a simple three-
way handshake, as depicted in Figure 1. In the first flow, the reader sends a challenge
and its identity to the tag. The tag replies with a response message computed based on
its secret key, the identity of the reader, the challenge and a set of locally generated
pseudo random numbers. The reader retrieves the identity of the tag through a lookup
in its local database. If the lookup succeeds, the reader has authenticated the tag. The
last flow of the protocol allows the tag to authenticate the reader. The main idea of our
solution for information confinement is a reader-dependent identification mechanism
that allows each reader (or the server to which the reader is connected to) to identify
and authenticate a tag based on some long-term secret (ki,j) that is different on each
server whereas each tag keeps a unique secret identification key (ki) for all readers.
During the identification process each tag generates a temporary reader-dependent se-
cret based on the identifier IDj of the reader it is communicating with and its unique
secret identification key ki, computing ki,j = h(ki||IDj ||ki). The advantages of the
reader-dependent mechanism are twofold:

– confinement of exposure: compromise of the long term secrets at a reader does not
threaten the integrity of the identification by other readers.
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– selective reader access or non-transferable tag identification capability: the set of
readers authorized to perform tag identification can be controlled based on each
reader’s identity. Since the long-term identification secret for a tag is tightly bound
with each reader’s id, the identification capability cannot be transferred among
readers with different identities and the set of tags each reader is authorized to
identify can be determined based on the set-up of long-term identification keys.

Another innovative feature of our proposal is the efficiency of the lookup process.
Based on the response message transmitted by the tag, the reader searches the matching
entry of its database (if any) by iterative elimination of the entries that cannot match
with the entry it is looking for. The response message includes a series of verification
values (α1, . . . , αq) computed under the key ki,j associated with the tag and the reader.
Each verification value allows the reader to eliminate about one half of the active en-
tries in the KDB — where an active entry is an entry that has not been eliminated yet.
By subsequently eliminating active entries at each step, the reader achieves the iden-
tification of the tag. Unlike other solutions whereby each step of the lookup process
requires encryption or hashing, the lookup process we provide is efficient in that it re-
quires O(n log n) bit-wise operations (where n is the number of tags) and only uses
simple comparison of memory cells.

α1, . . . αq, V, ω

IDj , nj

ReaderjTagi

h(ki,j||r1||ki,j)

Fig. 1. The proposed protocol

4.2 Lookup Process

The lookup process allows the reader to identify the tag based on the following mes-
sages sent by the tag in the second flow of the protocol: < α1, . . . , αq, V, w >, where
ω = h(ki,j ||nj ||r1||ki,j), V is a bit vector of length q and, for p ∈ [1 . . . q], it holds:

αp = ki,j ⊕ rp (1)

V [p] = DPM(rp) (2)

where the value rp is the result of the invocation of the PRNG. Note that the bit length
of rp and ki,j is the same, that is |ki,j | = |rp| = �, and rp[i] denotes the ith bit of the bit
vector rp. In the following we assume, without losing of generality, that � is a multiple
of 3. The functionDPM : {0, 1}� → {0, 1} is defined as follows:
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DPM(rp) = P (M(S1), . . . ,M(S�/3))

where each Si accounts for a triplet of bits of rp as follows:

Si =< rp[3i− 2], rp[3i− 1], rp[3i] >, i = 1, . . . , �/3

the function M : {0, 1}3 → {0, 1} is the simple majority function, indicating whether
its input has more 1s than 0s or viceversa:

M(b1, b2, b3) = (b1 ∧ b2) ∨ (b1 ∧ b3) ∨ (b2 ∧ b3)

and P : {0, 1}�/3 → {0, 1} is the standard parity function; that is, given T ∈ {0, 1}�/3,
it holds:

P (T ) =
�/3⊕

i=1

T [i].

For each value αp (p ∈ [1, . . . q]) transmitted by the tag, the reader will perform a
check for each of its active entries. Let us focus on the gth entry of the KDB and assume
it is active; the following check will be performed:

1. compute r′ = KDB[g]⊕ αp;
2. check if DPM(r′) = V [p].

If the check fails, the gth entry is discarded and the next entry of the KDB, if
any, is examined. However, if the check succeeds, the current entry of KDB cannot
be discarded. Indeed, if KDB[g] is the actual entry associated with the tag, that is, if
KDB[g] = ki,j , the check will succeed by construction. On the other hand, if the check
fails, the current entry definitely cannot be the one associated with the tag. Finally, note
that for each αp on the average one half of the active entries are eliminated. A thorough
analysis of the lookup process can be found in Section 4.4.

4.3 Mutual Authentication and Session Freshness

Assume that the look up process completes, returning a single entry of the KDB to
the reader (KDB[i]). On one hand, as shown by the analysis of the lookup process in
the next section, for an appropriate choice of the value q this will happen with high
probability if the tag is a legitimate one, i.e. belonging to the set of tags recorded in the
KDB. On the other hand, if the tag it is not a legitimate one, with high probability no
entry will be returned. Hence, when the lookup procedure returns a single entry, we will
assume in this subsection that the returned entry identifies the tag. Once the reader has
identified the tag —let ki,j be the key in the KDB returned by the identification protocol
—, the reader first recovers r1 (r1 = α1 ⊕ ki,j) and then proceeds to authenticate the
tag and to verify the freshness of the session just computing z = h(ki,j ||nj ||r1||ki,j)
and verifying whether z = ω. If the latter match succeeds, the reader has successfully
authenticated the tag and verified the freshness of the session.

In the following we show how the tag authenticates the reader. We start by observing
that once the reader has successfully identified the tag, the reader can easily retrieve
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Global variables: n ; q ; KDB
Input : < α1, . . . , αq, V, w >
Output : The active entries of the KDB.

for i=1 to n do1.1

Active[u] = True1.2

end1.3

count = 0; a = 01.4

while a < q do1.5

u = 01.6

while u < n do1.7

if Active[u] then1.8

r′ = αa ⊕KDB[u]1.9

if DPM(r′) �= V [a] then1.10

Active[u] = False1.11

count + +1.12

end1.13

end1.14

u + +1.15

end1.16

a + +1.17

end1.18

if count = n then1.19

fail1.20

else1.21

return KDB[j] s.t. Active[j] = True1.22

end1.23

Algorithm 1. Lookup

each of the q values rp (p ∈ [1, . . . , q]) generated by the tag. Indeed, from Equation 1, rp
can be computed by the reader as: rp = αp⊕KDB[i]. Hence, the reader authenticates
itself to the tag and assures the freshness of the session by sending to the tag the value
h(ki,j ||r1||ki,j). If this value matches with the one locally stored on the tag - computed
by the tag when r1 was generated - then the tag authenticates the reader and it is also
assured about the freshness of the session.

4.4 Analysis

Server compromise: in case readerj is compromised the attacker can only access ki,j ,
i = 1..n. Under the assumption that the hash function is one-way, it is impossible to de-
rive ki from ki,j ; hence the attacker cannot impersonate any of the n tags within any run
of the protocol with any other reader. Further, note that the reader cannot impersonate
any reader other than readerj either.

Identification protocol: in the sequel we show that the lookup protocol completes and
we prove its correctness.
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Protocol termination: from Table 1 it can be verified that the protocol terminates after
a finite number of iterations in the two inner loops; further, its completion takes at most
O(nq) steps, where each step consists of simple xor operations and a comparison. In the
following it is shown that q = O(log n), yielding an overall complexity of O(n log n)
bitwise comparisons.
Protocol correctness: the following lemma show that the proposed protocol will never
reject a valid tag, while it could accept a bogus tag or return the wrong entry of the
KDB for a valid tag, with a probability ε, where ε can be decided at design phase.

Lemma 1. For each valid input to the the Lookup Process provided by a valid tag tagi,
Active[i] will take on value True on all iterations of the Lookup Process.

Proof. By construction, the key ki,j corresponding to a valid input will never fail any
of the tests in the inner loop starting at line 1.7 of Algorithm 1; hence, Active[i] will
never be assigned with the value False. '�

Lemma 2. A randomly chosen input will be accepted by the Lookup Process with prob-
ability less than ε, where ε is chosen at design phase.

Proof. Let I =< α1, . . . , αq, V, w > be a randomly chosen input for the Lookup
Process. Let Xi[u] be the random variable that takes on the value 1 if the value αi

will not set an entry of the Active vector to False in Algorithm 1 — that is if V [i] =
P (M(αi ⊕ ku,j))— and 0 otherwise. In order for I to be considered a valid input with
respect to a single entry (KDB[u]) of the KDB, all q tests have to succeed. This hap-
pens with probability: Pr[Eu] = Pr[X1[u] = 1∧X2[u] = 1∧ . . .∧Xq[u] = 1]. Since
the Xi are i.i.d, we have that Pr[Eu] = Pr[X1[u] = 1]q where, as it will be shown in
Lemma 3:

Pr[X1[u] = 1] =
1
2
.

Since there are n entries in the KDB, the probability that at least one of them survives
after q steps is Pr[E1 ∨ . . . ∨ En] ≤ nPr[E1] < n(1/2)q = (1/2)−q+log n. Now let r
be the highest integer such that ε ≤ 2−r. If we set q = r + logn, the lemma holds. '�

In Figure 2 we report an experiment to support the previous result. We implemented a
simulator for Algorithm 1. We generated a KDB of 65,536 entries, and tested the num-
ber of active entries that were left in the KDB for an increasing size of the value q, that
is the number of αi sent by the tag to the reader. In particular, we varied q in the range
[(logn)/2, . . . , 10+ logn], that is in the range [8, . . . , 26], using an incremental step of
1. On the x-axis we report the value q, while on the y-axis the number of active entries
left in the KDB. To amortize statistical fluctuation, for each value of q, we performed
256 identification attempts, and we reported on the y-axis the number of active entries
left in the KDB, averaged over these 256 protocol runs. As it can be seen from Figure
2, the number of active entries left in the KDB that result from the simulation is in
accordance with the theoretical result of Lemma 2.

Theorem 1. On a valid input I generated by a legitimate tag (tagi) the Lookup Process
will return only the entry KDB[i] with probability at least 1 − ε, where ε is chosen at
design phase.
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Fig. 2. Reader false acceptance rate: comparison of analytical and experimental results

Proof. This theorem can be reworded as: on a valid input, when the Lookup Process
ends, the probability that only one entry of theActive vector is still set to True and that
this entry is the one matching the input is 1− ε. The proof of this theorem follows from
Lemma 1 and Lemma2. Based on Lemma 1 the probability that the entry of the Active
vector matching the input is set to True after the last iteration of the Lookup Process
is 1. The probability that at least one more entry has the value True when the Lookup
Process ends is the same as the probability that a randomly chosen input is accepted,
that is less than ε by Lemma 2.

5 Security Analysis and Overhead

Due to space limitations, a formal proof of the security properties as well as a thorough
comparison with [9] will appear in the extended version of this paper. Nevertheless, in
the sequel of this paper we will provide an intuition on the soundness of the security
properties.

5.1 Key Secrecy and Privacy

A run of the identification protocols sends q times over the communication channel
between the tag and the reader the key of the tag, each time xored with a random value
(rp). Hence, so far the security and privacy provided is that of the One Time Pad (OTP),
that is perfect security and privacy. However, it should be noted that the protocol leaks
one bit of information for each of the values ri; this bit is conveyed in V [i].

Key secrecy. To provide an intuition of how the secrecy of the proposed scheme is
affected by the leakage of V [i] = DPM(ri), let us compute what is the probability
that a random values r′ ∈ {0, 1}� verifies DPM(r′) = DPM(ri). Indeed, for an
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adversary to mount a successful attack, it is required to discriminate among the set of
possible keys; the bigger the set of possible keys, the harder the task, and the bigger this
set, the higher the above probability.

Lemma 3. Given a value p ∈ {0, 1}, for r′ ∈R {0, 1}� it holds that:

Pr[DPM(r′) = p] =
1
2

Proof. Given a vector of d i.i.d binary random variable X =< X1, . . . , Xd > and
p ∈ {0, 1}, there exist 2d−1 different assignment of values to < X1, . . . , Xd > such
that ⊕d

j=1Xj = p. For instance, note that in our identification protocol, for a given
Si (e.g. Si =< 1, 1, 1 >), it is possible to generate three other Sij (Si1 =< 1, 1, 0 >,
Si2 < 1, 0, 1 >, Si2 =< 0, 1, 1 >) such that: M(Si) = M(Sij ).

Let Xi = M(Si) and note that the Si (i = 1, . . . , �/3) are independent. It follows
that it is possible to have (4�/3)(2�/3−1) = 2�−1 different r′i such that DPM(ri) =
DPM(r′i). Hence,

Pr[DPM(r′) = p] =
2�−1

2�
=

1
2

. '�
Privacy. To study the impact of one bit leakage on privacy, we consider a hypothetical
protocol based on the original identification protocol defined in Section 4.2 with a slight
modification that consists of the substitution of the DPM(◦) function by the parity
function. Thus in the hypothetical protocol, V [i] = P (ri) = ˆDPM(ri). It can be
shown that the modified version of the protocol is similar to the original one with respect
to the number of messages required to identify the appropriate key in the KDB, that is
O(log n) messages. Moreover, as for the confidentiality of the key, it easily follows
from Lemma 3 that the leakage of the parity bit just halves the key space. However,
when it comes to privacy, the hypothetical protocol is basically flawed.

Indeed, assume the attacker can observe two different runs of the identification pro-
tocol: < α1,1, . . . , α1,q, V1, ω1 > and < α2,1, . . . , α2,q, V2, ω2 >. Its task is to distin-
guish, with a non negligible probability, if the two flows intercepted were originated by
the same tag or not.

Note that for two random bit vectors r1, r2, it can be shown that ˆDPM(r1 ⊕ r2) =
ˆDPM(r1)⊕ ˆDPM(r2) — that is, the parity computed over the xor of vectors r1, r2 is

equal to xoring the result of the parity computed over each single vector; this introduces
an imbalance in the probability distribution that could be leveraged by an adversary
tampering with privacy. In particular, let δ be the event ” ˆDPM(α1,i ⊕ α2,i) = V1[i]⊕
V2[i]”. We can express Pr[k1 �= k2|δ] as Pr[k1 �= k2|δ] = 1/2 − |adv|. In a perfect
privacy preserving solution, we would have |adv| = 0. When trading off privacy with
identification capabilities, as it is the case when leaking one bit of information, we
would like to have |adv| as small as possible, and possibly such that lim�→∞ |adv| = 0;
the faster the convergence to zero, the less is the advantage gained by the adversary.
However, in this modified protocol, we have that adv = 1/6, as formalized with the
following lemma:

Lemma 4. Given the event δ=” ˆDPM(α1,i ⊕ α2,i) = V1[i] ⊕ V2[i]”. Then Pr[k1 �=
k2|δ] = 1/2− 1/6.
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Proof.

Pr[k1 �= k2|δ] =1− Pr[k1 = k2|δ] = 1− Pr[(k1 = k2) ∧ δ]/Pr[δ] =

1− Pr[δ|(k1 = k2)]Pr[k1 = k2]
Pr[δ]

=

1− Pr[δ|(k1 = k2)]Pr[k1 = k2]
Pr[δ|k1 = k2]Pr[k1 = k2] + Pr[δ|k1 �= k2]Pr[k1 �= k2]

.

Now, as noticed above, we have that: Pr[δ|(k1 = k2)] = 1 and Pr[δ|(k1 �= k2)] = 1/2.
Plugging these equalities in the above equation, we obtain:

Pr[k1 �= k2|δ] = 1− 1× 1/2
(1× 1/2) + 1/2× 1/2

= 1− 2
3

=
1
2
− 1

6

'�
We believe that capitalizing on the imbalance of the distribution probability a thorough
attack targeting the privacy of the hypothetical protocol could be mounted. However,
this is out the scope of the paper; the discussion so far was meant to give the reader the
intuition behind the main rationale for the privacy evaluation of the original protocol. In
particular, the main threat against privacy can be expressed as the advantage —adv—
that was given to the adversary when computing: Pr[δ|k1 = k2] = Pr[ ˆDPM(α1,i ⊕
α2,i) = V1[i]⊕ V2[i]|k1 = k2] = 1

2 + |adv|. Turning to the original protocol proposed
in this paper, we notice that the following theorem holds.

Theorem 2. Let δ be the event ”DPM(α1,i ⊕ α2,i) = V1[i] ⊕ V2[i]”. Then Pr[k1 �=
k2|δ] = 1

2 −
ε

2(2+ε) , where ε =
(

1
2

) 2
3 �

.

Proof. Following the demonstration flow of Lemma 4 we can rewrite Pr[k1 �= k2|δ]
as:

Pr[k1 �= k2|δ] = 1− Pr[δ|(k1 = k2)]Pr[k1 = k2]
Pr[δ|k1 = k2]Pr[k1 = k2] + Pr[δ|k1 �= k2]Pr[k1 �= k2]

.

It can be proved (see conditioned in Appendix) that Pr[δ|k1 = k2] = 1/2+(1/2)
2
3 �+1.

Hence:

Pr[k1 �= k2|δ] = 1− (1/2 + (1/2)
2
3 �+1)(1/2)

(1/2 + (1/2)�+1)(1/2) + (1/2)(1/2)
=

1− 1/2 + (1/2)
2
3 �+1

1/2 + (1/2)
2
3 �+1 + 1/2

=
1/2

1 + (1/2)
2
3 �+1

=
1

2 + (1/2)
2
3 �

=
1
2
− ε

2(2 + ε)
,

where ε =
(

1
2

) 2
3 �

. '�

Therefore, using the attack that originally targeted the hypothetical protocol, the ad-
vantage of the attacker on our protocol decreases exponentially fast with the length of
the key. In particular, this also provides a method for determining the appropriate key
length. Indeed, by setting the maximum advantage for the adversary to 2−τ , a key length
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that provides to the adversary an advantage less than 2−τ is given by � = ,(3/2)(τ−2)-.
The previous equation was based on the following consideration: τ

2(2+τ) ≤
τ
4 . As an

illustration, to provide the adversary with an advantage less than 2−80, the key length
could be set to � = ,(3/2)(τ − 2)- = ,(3/2)(80− 2)- = 117.

5.2 Mutual Authentication

By Lemma 2 a bogus reply message generated by an attacker can be accepted with
probability less than ε only. Further, such a scenario can be made practically impossible
by setting appropriate values for q in order to keep ε below a negligible value. Besides,
even a successful attempt that achieves acceptance of the random input by the Lookup
Process cannot compromise authentication, since the attacker would not be able to com-
plete the remainder of the protocol flows without the knowledge of the legitimate tag’s
secret key. The choice of the particular expression h(ki,j ||nj ||r1||ki,j) combining the
key and the nonces as part of the authentication scheme is justified in [14].

As for reply attacks, the freshness of a session is granted by binding the messages
exchanged to the random values generated by both the tag (r1), and the reader (nj), as
in Figure 1.

5.3 DoS Resilience

Opposed to other approaches [2,5,6], our protocol is stateless in that there is no need to
store any state information such as timestamps or counter values beyond the execution
of each protocol instance. The only piece of information that the tag has to persistently
keep in memory is the key ki. Hence, even if a tag is triggered t consecutive times by
an attacker attempting to impersonate a legitimate reader, if the next reading is per-
formed by a legitimate reader, the tag will be correctly identified since the state has not
been modified. Statelessness thus bestows our protocol with an inherent countermea-
sure against denial of service attacks.

Furthermore, as a side advantage of statelessness, our protocol allows a tag to be read
a practically unbounded number of times by a legitimate reader.

5.4 Overhead

The main computational overhead on the tag is due to the generation of the q values
rp. These values could be computed via a PRNG. Similarly to what proposed in [2], in
practice it can be resolved as an iterated keyed hash (e.g., HMAC) computed on some
cheap, weak pseudo random source (for instance circuitry noise) and keyed on ki,j . The
solutions in [15,16], matching the tight hardware constraints of RFID, could be adopted
to serve as hash function. Further, the tag requires to compute q� ”and” (∧), q� ”or” (∨)
—due to the recurrent invocation of the functionM(◦)— and q�/3 more ”xor” (⊕) due
to the invocation of the function P (◦). Note that the sum of the cost of all these ”xor”,
”or” and ”and” operations can be considered negligible.

As for the communications overhead, the tag is required to send q messages of |�|
bits (αp), plus q bits (the bit vector V ), and the result of the hash function, that can be
considered of 160 bits. We focus on the main source of overhead, that is the q messages.



Information Confinement, Privacy, and Security in RFID Systems 199

From Lemma 2, a practical value for q could be 2 logn; in this way the reader lookup
protocol will return, when triggered by a legitimate query, more than one entry only
with probability 1/n on the average. As discussed before note that, in case the lookup
protocol returns a bogus entry, the authentication protocol will reject that entry. Note
that a new round of the protocol could be invoked in case of such a failure. What is
more important, in case of a protocol re-run due to the fact that in the KDB there are
too many active entries left, is that the new values αi can be matched against the active
entries left in the KDB. In other words, the computations performed by the reader in
the previous run will be leveraged to pursue identification.

The main computational overhead sustained by the reader is the tag identification;
this operation requires in the worst case no more than justO(n log n) bitwise operations
and O(n log n) bit comparison. As for the number of messages, the reader just sends
three values for a total of (h +m + no) bits where h is the size in bit of the output of
the hash function, m is the number of bits required to identify a reader, and no is the
size in bit of the nonce.

Last, one should note one caveat: the proposed protocol is particularly sensitive to
the value n, as shown in Lemma 2, where n is the total number of tags the system
is composed of. Hence, the protocol requires to devise at design time an upper bound
n′ on the number of tags. We believe this is not a critical limitation, since this upper
bound will impact on the protocol requiring just c logn′ messages, where c is a small
constant as seen before and computing the logarithm over n′ will attenuate the overhead
of considering an upper bound. Furthermore, the value n′ does not affect the storage
requirements of the reader since the reader is only required to store the keys of the n
tags that are actually deployed.

5.5 Protocol Comparison

A concise comparison of the properties provided by our protocol with regard to a few
reference protocols is given in Table 1. Note that our protocol is the only one that fulfils
all the properties. Due to page limitation, a detailed discussion enriched with few more
properties will be provided in the extended version of this paper.

Table 1. Comparison of our proposal with some protocols in Section 2

Protocol Properties
Privacy Mutual DoS reply

auth. resilience attack res.

Our [this paper] Yes Yes Yes Yes
OSK/OA [5] Yes Yes No Yes
CR/MW [3] weak Yes Yes Yes
Ya-Trap[2] Yes No No Yes

6 Concluding Remarks

As a first contribution of this paper we have relaxed the assumption that servers can-
not be compromised and have provided a solution that limits the impact of server
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compromise. In particular, thanks to the confinement technique we provide, the com-
promise of a server has no impact on other servers, such as rekeying or update of crit-
ical data, or on the privacy of tags since the secret database of each server is made
server-dependent. Second, we have proposed a probabilistic mechanism that preserves
privacy and allows mutual authentication between server and tag. This mechanism is
also resilient to DoS and replay attacks. Further, it only requiresO(n logn) bitwise op-
erations and comparisons on the data base of keys stored in a server, hence speeding up
the search process. Moreover, the tag just requires to store a single key and the capabil-
ity to run a PRNG and a hash function. Finally, the information confinement technique
and the tag identification protocol could be independently incorporated into existing
solutions.

Current work is aimed at devising a possibly general formal framework to evaluate
the security and privacy of the proposed solution.
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Appendix

conditioned. In the sequel, we want to evaluate the advantage —adv— that is given to
the adversary in Equation 3:

Pr[DPM(α1 ⊕ α2) = V [1]⊕ V [2]|k1 = k2] = 1
2 +

(
1
2

)− �
3+1 ∏�/3

i=1
1
8 (3)

= 1
2 +

(
1
2

) 2
3 �+1

Note that the lower |adv|, the harder would be for the adversary to perform an edu-
cated guess in distinguishing between the two tags.

Pr[DPM(α1,i ⊕ α2,i) = V1[i]⊕ V2[i]|k1 = k2] =
Pr[DPM(r1,i ⊕ r2,i) = V1[i]⊕ V2[i]] =
Pr[M(S1,1 ⊕ S2,1)⊕ . . .⊕M(S1,�/3 ⊕ S2,�/3) =
M(S1,1)⊕ . . .⊕M(S1,�/3)⊕M(S2,1)⊕ . . .⊕M(S2,�/3)] =
Pr[(M(S1,1 ⊕ S2,1)⊕M(S1,1)⊕M(S2,1))⊕ . . .⊕
(M(S1,�/3 ⊕ S2,�/3)⊕M(S1,�/3)⊕M(S2,�/3)) = 0]

Now, let Zi = (M(S1,i ⊕ S2,i) ⊕M(S1,i) ⊕M(S2,i). We can rewrite Equation 3
as:

Pr[DPM(α1 ⊕ α2) = V [1]⊕ V [2]|k1 = k2] = Pr[Z1 ⊕ . . .⊕ Z�/3 = 0].

Note that the Zi are independent, hence we can apply the piling-up-lemma [17], obtain-
ing:

Pr[DPM(α1 ⊕ α2) = V [1]⊕ V [2]|k1 = k2] =

Pr[Z1 ⊕ . . .⊕ Z�/3 = 0] =
1
2

+ 2
�
3−1

�/3∏

i=1

(

Pr[Zi = 0]− 1
2

)
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It can be shown (see Prob. here below) that Pr[Zi = 0] = 10/16, hence we have
that:

Pr[DPM(α1 ⊕ α2) = V [1]⊕ V [2]|k1 = k2] =
1
2

+
(

1
2

) �
3−1 �/3∏

i=1

1
8

=
1
2

+
(

1
2

) 2
3 �+1

Prob. Let Zi = (M(S1,i ⊕ S2,i)⊕M(S1,i)⊕M(S2,i)). We have that:

Pr[Zi = 0] = Pr[(M(S1,i ⊕ S2,i)⊕M(S1,i)⊕M(S2,i) = 0] =
Pr[M(S1,i ⊕ S2,i) = 0 ∧M(S1,i) = 0 ∧M(S2,i) = 0]+
Pr[M(S1,i ⊕ S2,i) = 0 ∧M(S1,i) = 1 ∧M(S2,i) = 1]+
Pr[M(S1,i ⊕ S2,i) = 1 ∧M(S1,i) = 0 ∧M(S2,i) = 1]+
Pr[M(S1,i ⊕ S2,i) = 1 ∧M(S1,i) = 1 ∧M(S2,i) = 0] =
10
64

+
10
64

+
10
64

+
10
64

=
5
8
.

Indeed, let:

[M(S1,i ⊕ S2,i) = 0 ∧M(S1,i) = 0 ∧M(S2,i) = 0] = C1;
[M(S1,i ⊕ S2,i) = 0 ∧M(S1,i) = 1 ∧M(S2,i) = 1] = C2;
[M(S1,i ⊕ S2,i) = 1 ∧M(S1,i) = 0 ∧M(S2,i) = 1] = C3;
[M(S1,i ⊕ S2,i) = 1 ∧M(S1,i) = 1 ∧M(S2,i) = 0] = C4,

it is possible to build the truth table for the above variables that confirm our numerical
results (the truth table is omitted due to space limitation).
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Abstract. We present a logic for specifying policies where access re-
quests can have effects on the authorization state. The logic is semanti-
cally defined by a mapping to Transaction Logic. Using this approach,
updates to the state are factored out of the resource guard, thus enhanc-
ing maintainability and facilitating more expressive policies that take
the history of access requests into account. We also present a sound and
complete proof system for reasoning about sequences of access requests.
This gives rise to a goal-oriented algorithm for finding minimal sequences
that lead to a specified target authorization state.

1 Introduction

Trust management [1] has become a leading approach for controlling the access
to security critical services in distributed environments. One of the reasons for
this success is the flexibility and expressiveness provided by their associated
authorisation query languages for policy specification. As depicted in Figure 1,
these languages allow the authorization policy to be factored out of the hard-
coded resource guard and written explicitly as a list of declarative rules. When
a principal requests access, the resource guard issues an authorization query to
the policy evaluator. Access is granted only if the policy evaluator succeeds in
proving that the request complies with the local policy and the authorization
state. The latter is a database containing relevant environmental facts including
knowledge obtained from (submitted or fetched) credentials.

This approach hugely increases the maintainability of complex systems, as
modifying the declarative policy rules is much simpler than rewriting and recom-
piling pieces of procedural code hidden in the resource guard. However, often the
resource guard will not only allow or deny access, but also update the autho-
rization state after a successful request. In a role-based policy, for instance, the
fact that a user has activated some role is inserted into the authorization state
after a successful role activation request. Similarly, the fact may be removed
from the state if the role is deactivated. There are many policies that depend
on past interactions; relevant events must therefore be stored in the authoriza-
tion state. Consider for example the following scenario, where a company policy
specifies that payments are only executed if they are initiated and authorized
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Fig. 1. Model of a policy-based autho-
rization system

Fig. 2. Factoring out the state manip-
ulations

by two different managers. The resource guard could then contain the following
two procedures to implement this policy:

procedure initPay(X:Principal, P:Payment) {
if query(isMgr(X)) and not(query(hasBeenInit(P))) then {

insertFact(hasBeenInit(P));
insertFact(hasInitPay(X, P))

}
}
procedure authPay(X:Principal, P:Payment) {
if query(isMgr(X)) and query(hasBeenInit(P)) and

not(query(hasInitPay(X, P))) then
insertFact(hasBeenAuth(P))

If user A attempts to initiate a payment P , the resource guard executes the
procedure initPay(A, P), which issues queries to the policy evaluator to check
whether A is a manager and that the payment has not already been initiated. If
successful, the facts hasBeenInit(P) and hasInitPay(A, P) are inserted into
the authorization state. A request of user B to authorize the same payment P is
authorized if B can be proved to be a manager and that the payment has been
initiated by someone else.

This example highlights a deficiency in current authorization languages: they
cannot express updates of the authorization state, as required for many role-based,
separation-of-duties and other history-dependent policies. Instead, updates have
to be hard-coded into the resource guard, which leads to maintainability problems.
Moreover,as the state changeshappenoutside thepolicyandarewritten inaTuring-
complete language, rigorous analysis is difficult.

In this paper, we address this problem by introducing SMP, a logic for speci-
fying policies with state-modifying user requests. State changes are thus factored
out of the resource guard, as in Figure 2. For example, in our approach the above
scenario could be modelled by the following two policy rules:

initPay(X,P ) ← isMgr(X) ∧ ¬hasBeenInit(P ) ⊗
+hasBeenInit(P ) ⊗ +hasInitPay(X,P )

authPay(X,P ) ← isMgr(X) ∧ hasBeenInit(P ) ∧ ¬hasInitPay(X,P ) ⊗
+hasBeenAuth(P )
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Intuitively, +P specifies an insertion of a fact P into the authorization state,
and the connective ⊗ expresses a serial execution of state changes.

The complexity of state-modifying policies calls for analysis tools that support
policy authors in debugging policies. We present a proof system that describes all
possible sequences of access requests which yield a certain outcome. This proof sys-
tem is proved sound and correct with respect to the logic, and we describe a sound
and complete algorithm for finding minimal sequences in the propositional case.

The remainder of this paper is structured as follows. In §2 we introduce SMP
and motivate its syntax and semantics. In §3 we present a proof system for rea-
soning about sequences of access requests, and describe the related algorithm. In
§4 we present a larger case study for using state-modifying authorization poli-
cies. We conclude in §5 with a discussion on related works. A technical report [2]
contains full proofs.

2 A Logic for State-Modifying Policies

This section introduces the syntax and semantics of SMP . This logic is based
on Datalog, but extends it with statements for state modification, henceforth
called effects, and a simple form of negation. We assume a denumerable set
of variables X and a first-order signature with constants C and disjoint sets of
predicate symbols, extensional (Qext) and intensional (Qint) ones, as in standard
Datalog. In addition, we have a third set of so-called command predicate symbols
Qcmd, intended to represent access requests. As usual, (extensional, intensional
and command) atoms are formed by applying predicate symbols to ordered lists
of constants or variables. A literal is either an atom P or a negated atom ¬P .

The extensional predicates are defined by an extensional database (EDB), a
set of ground extensional atoms (facts). The validity of an extensional literal
can thus be checked simply by inspecting the database. In the context of an
authorization system, the database contains environmental facts that are rele-
vant for authorization, e.g. hasInitPay(Alan, P123) or isUser(Alan). As we shall
see later, facts may be inserted or removed from the database as the result of
evaluating an access request. The database thus constitutes the transient state
of an authorization system; hence we also call it the authorization state.

Definition 2.1. An authorization state B is a finite set of facts.

Intensional predicate symbols are defined by rules. A rule consists of an inten-
sional atom Pint (the head) and a conditional body, a (possibly empty) conjunc-
tion of extensional or intensional literals: Pint ← L1∧ . . .∧Lm. For example, the
intensional predicate symbol isMgr may be defined by a rule specifying that X
is a manager if X is a user and if someone has registered X as a manager:

isMgr(X)← isUser(X) ∧ hasRegisteredAsMgr(Y,X)

Negation is restricted to extensional atoms: ¬Pext holds if Pext is not in the
current authorization state. This is the simplest form of negation that is sufficient
for our purposes.
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Table 1. Syntax of SMP

Term t ::= X | a where X ∈ X , a ∈ C
Atom Pτ ::= p(t1, . . . , tk) where p ∈ Qτ , τ ∈ {ext, int, cmd}
Literal L ::= Pint | Pext | ¬Pext

Effect K ::= +Pext | −Pext

Rule Rl ::= Pint ← L1 ∧ . . . ∧ Lm where m ≥ 0
| Pcmd ← L1 ∧ . . . ∧ Lm ⊗K1 ⊗ . . .⊗Kn where m, n ≥ 0

Access requests, or commands, are defined by command rules, i.e. rules with
a command atom as head. In addition to the body, a command rule contains
a (possibly empty) sequence of effects on the authorization state which are ex-
ecuted if all conditions in the body have been satisfied. An effect is either an
insertion (+Pext) of a fact Pext into the authorization state or a removal (−Pext).
Effects are sequentially composed by the operator ⊗ from Transaction Logic. A
command rule is thus of the form Pcmd ← L1 ∧ . . . ∧ Lm ⊗K1 ⊗ . . . ⊗Kn. We
sometimes write �L to abbreviate L1 ∧ . . .∧Lm, and K̃ for K1⊗ . . .⊗Kn. Table
1 shows the complete SMP syntax.

Definition 2.2 (Well-formed Policy). A policy is a finite set of rules. A rule
is well-formed if all variables of its effects also occur in the head; furthermore, if
effects +P1 and −P2 occur in the same rule, then P1 and P2 are non-unifiable.
A policy P is well-formed iff all rules in P are well-formed, and furthermore,
whenever two ground instances of rules in P have the same head, their effects
are identical.

The well-formedness conditions ensure that every ground command uniquely
determines a sequence of ground effects, and furthermore, that the order of the
sequence is irrelevant. As command literals cannot occur inside a body, effects
can only occur at the top level: they are effectively decoupled from recursion.
Recursive effects would not only be harder to compute and to comprehend, but
worse, they would be non-deterministic.

Example 2.3. We would like to write a policy for an online movie store. Infor-
mally, we would like to express that users can buy a movie online, and are then
allowed to play it twice. This is expressed by the following transaction policy:

buy(X,M) ← +bought(X,M)
play1(X,M) ← bought(X,M) ∧ ¬played1(X,M) ⊗ +played1(X,M)
play2(X,M) ← played1(X,M) ∧ ¬played2(X,M) ⊗ +played2(X,M)

The semantics of SMP is formalized by modelling it as a fragment of Transaction
Logic [3]. Transaction Logic is a general framework that incorporates database
updates and transactions into first order logic. A Herbrand-style model theory
of Transaction Logic is presented in detail in [3]. Based on this semantics, we
define an entailment relation B̃ �P φ between a sequence of authorization states
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Table 2. SMP semantics

(pos) B �P Pext iff P ∈ B
(neg) B �P ¬Pext iff P /∈ B
(and) B̃ �P φ ∧ ψ iff B̃ �P φ and B̃ �P ψ
(seq) B1, ..., Bk �P φ⊗ ψ iff B1, ..., Bi �P φ and Bi, ..., Bk �P ψ for some i ∈ {1, ..., k}
(plus) B1,B2 �P +P iff B2 = B1 ∪ {P}
(min) B1,B2 �P −P iff B2 = B1 \ {P}
(impl) B̃ �P Q iff Q ← φ is a ground instantiation of a rule in P and B̃ �P φ

where Q is not extensional

B̃ and a formula φ, in the context of a well-formed policy P . This relation is
presented in Table 2.

Intuitively, B0, . . . ,Bn �P φ means that the goal φ can be derived in the con-
text of policy P , starting from an initial authorization state B0. The evaluation
of φ leads (via the intermediate states) to a final state Bn. Rule (pos) and (neg)
state that extensional literals are checked by inspecting the authorization state.
This involves no effects, so the initial and final state are both identical. Rule
(and) states that a database sequence B̃ entails the conjunction of two formulae
φ and ψ iff each of them is independently entailed by the same B̃. In contrast,
a serial composition φ⊗ ψ is entailed by B1, ...,Bk iff φ can be derived starting
from B1 and ending in some intermediate state Bi, and ψ can be derived starting
from Bi and ending in Bk. Rules (plus) and (min) straightforwardly describe
the insertion and deletion of facts. Finally, rule (impl) defines the derivation for
non-extensional literals.

3 Reasoning About User Requests

The increased complexity of state-modifying policies calls for proof techniques
and tools to support the policy writer in establishing the correctness of a policy.
For instance, in Example 2.3 a policy writer might like to determine the answers
to the questions “Is there a command sequence that enables a user to play
a movie without purchase?” and “Can a movie be played at least twice after
purchase?”. In this section, we develop a sound and complete proof system which
determines the command sequences which yield a certain target authorization
state, and also motivates an algorithm for deriving a finite abstraction of all such
possible sequences.

3.1 State Constraints

In analyzing state-modifying policies, we are usually not interested in whether
a specific authorization state is reachable. Rather, we wish to reason about the
reachability of a family of target states that all satisfy some constraint; for exam-
ple, all states containing some ground instantiation of the atom played1(X,M)
but not the corresponding instantiation of bought(X,M). This would capture
all states in which a movie has been played without purchase.
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The following definition allows us to specify classes of authorization states by
stating which atoms it must or must not contain.

Definition 3.1 (State Constraints). A state constraint D is a set of exten-
sional literals. The notation D+ (and D−, respectively) is used to refer to the set
of atoms derived from the positive (negative) literals in D. A state B satisfies a
ground state constraint D iff D+ ⊆ B and D− ∩B = ∅. A state constraint D is
consistent iff D+ ∩D− = ∅.

For example, the state B0 = {p(0), q(1), r(2)} satisfies the state constraint D =
{p(0), q(1),¬r(1)} because D+ = {p(0), q(1)} ⊆ B0 and D− = {r(1)} ∩B0 = ∅.
In this way D characterizes a family of states, namely the set of states that
satisfy D. The state constraint E = {p(0), q(1),¬p(0)} is not consistent because
E+ ∩E− = {p(0)} �= ∅.

Example 3.2. Continuing Example 2.3, a policy writer might be interested in
establishing that there is no command sequence which leads to a state satisfying
the constraint {¬bought(X,M), played1(X,M)}; we will establish later that there
exists no such sequence. On the other hand, we will be able to determine that the
command sequence buy(X,M)⊗ play1(X,M) leads from an arbitrary state to a
state satisfying {bought(X,M), played1(X,M)}.

Composing state constraints allows us to specify their transformation when a
command is performed on them.

Definition 3.3 (Composition Operator). The operator ◦ defines a notion
of composition for state constraints E and D:

(E ◦D)+ = (D+ ∪ E+) \E− (E ◦D)− = (D− ∪ E−) \ E+

Intuitively, E can be interpreted as a set of effects, where positive literals in E
are interpreted as insertions into D, and negative ones as removals. Then E ◦D
can be interpreted as the result of applying the effects in E to D. More precisely:
it is the strongest constraint that is satisfied by states obtained by applying E
to states satisfying D. For example, let D = {p(0), q(1),¬r(1)} as before and
E = {¬p(0), r(1), s(2)} then E ◦D = {q(1), r(1), s(2),¬p(0)}. This will enable
us later to formulate the strongest postcondition when applying some command
Q with effect E to a state constraint D.

Recall that the well-formedness conditions of policies ensure that every ground
command atom is uniquely associated with a sequence of its effects. We can now
define a mapping eff that maps a ground command atom to a state constraint
that is equivalent to its effects:

Definition 3.4 (Specification of eff ). Let Q be a ground command atom, and
let K̃ be the (possibly empty) sequence of ground effects uniquely determined
by it (in the context of a well-formed policy). Then eff (Q) is defined as the state
constraint

eff (Q) = {P : +P ∈ K̃} ∪ {¬P : −P ∈ K̃}
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3.2 Preconditions and Effects

We wish to relate command sequences of the form S̃ = Q1 ⊗ . . . ⊗ Qk to state
constraints D that represent initial authorization states from which S̃ can suc-
cessfully execute, and to state constraints D′ that represent authorization states
after executing the sequence. In other words, for all authorization states B and
B′ such that B satisfies D and B′ satisfies D′, B, . . . ,B′ �P S̃ should hold. We
start by considering the case k = 1, where the command sequence consists of just
one single command. The proof system developed in §3.3 then deals with com-
mand sequences of arbitrary lengths and captures exactly the above relationship
between D, S̃ and D′.

In order to decide from which initial states a command successfully executes,
we need to compute its preconditions as a state constraint. To determine the tar-
get states, we need to find its effects. For example, suppose a command predicate
q is defined by a single policy rule (where p, r and s are all extensional):

q(X,Y )← ¬p(X) ∧ r(Z) ⊗+p(X)⊗−s(Y ),

Then in order for the command q(0, 1) to execute, the starting authorization
state must satisfy the state constraint {¬p(0), r(Z)} containing the preconditions
of the command. Likewise, due to the effects of the command, the end state
contains p(0) but cannot contain s(1). Moreover, the atom r(Z) is left untouched
by the command, hence the end state satisfies {r(Z), p(0),¬s(1)}.

The effects are easily obtained using the function eff defined in Definition 3.4
that reinterprets the sequence of effects as a state constraint (insertions +P
corresponds to positive literals P , and removals −P to negative literals ¬P ).

In the following, we define a function pre which yields the information about
the (extensional) preconditions of a ground atom P . In the case where P is
entirely defined by rules whose body literals are all extensional, it is easy to
determine the preconditions. For instance, in the rule for play1(X,M) of Exam-
ple 2.3 both bought and played1 are extensional predicate symbols. Furthermore,
play1 is defined by only one single rule. Therefore the preconditions for executing
play1(X,M) are given by a set containing only one state constraint:

pre(play1(X,M)) = {{bought(X,M),¬played1(X,M)}}

In general however, command predicates may be defined by multiple rules, and
the body literals of those rules may be intensional, as in the following example.

Example 3.5. We modify Example 2.3 by removing the buy(X,M) rule, and
adding the following two rules (where bought is now an intensional predicate):

bought(X,M) ← bank(Y ), cardPayment(X,Y,M)
bought(X,M) ← freeTrial(X)

These rules express that customer X has bought a movie M if he either paid for
it using his credit card issued by a bank Y , or has signed up for a free trial offer
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of the movie store. In this case, pre(play1(X,M)) is a set containing the two
preconditions under which the command play1 can execute:

F1 = {bank(Y ), cardPayment(X,Y,M),¬played1(X,M)}
F2 = {freeTrial(X),¬played1(X,M)}

To specify pre formally, note that the bodies of the rules defining P determine its
preconditions; in particular, the effects have no influence. We therefore introduce
the following operation on policies that erases the effects:

Definition 3.6. Let P be a well-formed policy, and

Rl ≡ Pcmd ← L1 ∧ . . . ∧ Lm ⊗ E1 ⊗ . . .⊗ En

be one of its rules. Then Rl� denotes the pure Datalog rule Pcmd ← L1∧. . .∧Lm,
where all effects have been removed. We write P� to denote the policy obtained
from P by applying the �-operation to all its rules.

We are now ready to specify pre:

Definition 3.7 (Specification of pre). The function pre is a mapping between
ground atoms and sets of state constraints. It is defined by the following axiom
which holds for any state B and ground atom P :

∃ F, θ : F ∈ pre(P ) ∧B satisfies Fθ iff B �P� P

Read in the “only if”-direction, the axiom states that every authorization state
satisfying a ground instantiation of a state constraint in pre(P ) indeed suffices as
a precondition of P . In the “if”-direction, the axiom states that every extensional
ground precondition is subsumed by some state constraint in pre(P ).

Note that literals in preconditions can also contain free variables, such as
Y in the first rule of Example 3.5. These variables are instantiated by some
substitution θ.

The function pre can be computed using abduction [4], a dual to deduction,
where explanatory facts, e.g. F1 in the example, are inferred from a desired
result, e.g. bought(X,M), using some general (effect-free) logic program, P�.
Abduction algorithms for logic programs are documented in [5].

3.3 Proof System

Based on the notion of state constraints and the functions pre and eff defined
above, we now present a Hoare-style proof system in which we can reason about
pre- and postconditions of general command sequences. The proof system allows
the inference of triples of the form {D1} S̃ {D2}. Intuitively, this holds if S̃
can be executed from any authorization state satisfying D1, and terminates in
a state satisfying D2. The empty command ε trivially transforms any ground
and consistent state constraint G into itself, according to rule (eps). The rule
(cmd) relates commands to their preconditions and postconditions based on
pre and eff , but also incorporates precondition strengthening and postcondition
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Table 3. Proof system

(eps)
G is ground and consistent

{G} ε {G}
(seq)

{G1} S̃ {H} {H}P {G2}
{G1} S̃ ⊗ P {G2}

(cmd)

G1 ⊇ Fθ F ∈ pre(P ) eff (P ) ◦G1 ⊇ G2

G1 is ground and consistent P is ground

{G1}P {G2}

weakening: a command P transforms G1 into G2 if the following holds: there
exists a substitution θ such that the free variables in a precondition F ∈ pre(P )
can be resolved with G1 ⊇ Fθ, i.e. Fθ is a weakest precondition for the execution
of P and G1 is strong enough to satisfy this preconditon; furthermore, G2 has
to be contained in eff (P )◦G1, i.e. G2 is weaker than the strongest postcondition
obtained by computing eff (P ) ◦ G1. Finally, rule (seq) states that a sequence
S̃ and a command P can be executed sequentially, if the postcondition of S̃ is
strong enough to serve as a precondition for P .

The correctness of the proof system is ensured by the following soundness and
completeness results, which relate it back to SMP semantics.

Theorem 3.8 (Soundness). For all state constraints G,G′, command sequen-
ces S̃ �= ε and authorization states B1 the following holds. If {G} S̃ {G′} and
B1 satisfies G, then there exists a sequence of authorization states B1, ...,Bn

(for some n ≥ 1) such that B1, . . . ,Bn �P S̃ and Bn satisfies G′.

Theorem 3.9 (Completeness). For all sequences of authorization states B1,
..., Bn (where n ≥ 1), command sequences S̃ and state constraints G′ the fol-
lowing holds. If B1, ...,Bn �P S̃ and Bn satisfies G′, then there exists G such
that {G} S̃ {G′} and B1 satisfies G.

3.4 Tabling Algorithm

The proof system gives rise to an algorithm for computing an abstraction of the
set of all sequences which, given an authorization state B0 to start with, lead
to states that are guaranteed to satisfy a target state constraint D. The only
inputs to the algorithm are B0, D, and a well-formed program P . We present
this algorithm for the propositional case, i.e. the policy and the state constraints
are variable-free. A prototype implementation of the algorithm has been used to
confirm the results from the examples presented in this section.

The algorithm uses a goal-oriented search that attempts to construct sequen-
ces backwards. To ensure completeness and termination, and to prune the search
trees, intermediate results are cached in a table and are reused. The technique
of tabling, or memoing [6,7,8,9], has also been considered for policy evaluation
[10,11]. Our algorithm works on nodes that represent both answers and unsolved
goals which arise during the computation.
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Table 4. Tabling algorithm

(root) ({〈D2〉} � N , Ans, Wait) −→P (N ∪N1 ∪N2, Ans, Wait)
if N1 = {goal〈D1; Q; D2〉 : Q is some command in P , and E

def
= eff (Q)

E ∩D2 �= ∅
F ∈ pre(Q)

D1
def
= (D2 \E) ∪ F is consistent

D2
+ ∩ E− = ∅ and D2

− ∩ E+ = ∅}
N2 = {ans〈D2; ε; D2〉 : B0 satisfies D2}

(ans) ({ans〈D1; T̃ ; D2〉} � N , Ans, Wait) −→P (N ∪N ′, Ans′, Wait)
if � m ∈ Ans(D2) : ans〈D1; T̃ ; D2〉 � m

N ′ =
�

n′∈Wait(D2) merge(ans〈D1; T̃ ; D2〉, n′)

Ans′ = Ans[D2 �→ Ans(D2) ∪ {ans〈D1; T̃ ; D2〉}]

(goal1) ({goal〈D1; Q; D2〉} � N , Ans, Wait) −→P (N ∪N ′, Ans, Wait′)
if D1 ∈ dom(Ans)
N ′ =

�
n′∈Ans(D1) merge(n′, goal〈D1; Q;D2〉)

Wait′ = Wait[D1 �→Wait(D1) ∪ {goal〈D1; Q; D2〉}]

(goal2) ({goal〈D1; Q; D2〉} � N , Ans, Wait) −→P (N ∪ {〈D1〉}, Ans′, Wait′)
if D1 /∈ dom(Ans)

Ans′ = Ans[D1 �→ ∅]
Wait′ = Wait[D1 �→ {goal〈D1; Q; D2〉}]

Definition 3.10 (Nodes). A root node is of the form 〈D〉 where D is a state
constraint. An answer node is denoted ans〈D1; T̃ ;D2〉, where T̃ is a sequence
and D1 and D2 are state constraints, called the pre- and postcondition of T̃ ,
respectively. The same terms apply to a goal node goal〈D1; T̃ ;D2〉.
Intuitively, if 〈D2〉 occurs in the node set the algorithm is working on, we are
looking for command sequences which have D2 as final state. Tables Ans and
Wait are defined to map state constraints into sets of answer and goal nodes,
respectively. If ans〈D1; T̃ ;D2〉 ∈ Ans(D2), then T̃ is an answer to D2, i.e. B0

satisfies D1, and {D1} T̃ {D2}. If goal〈D1; T̃ ;D2〉 ∈Wait(D1), then T̃ is not yet
an answer to D2, but it is waiting for new answers to D1 which can be resolved
with the goal to give a new answer to D2.

We present the algorithm as a state transition system in Table 4. A state is
given by the current node set, the answer table, and the waiting table together.

Definition 3.11 (State). A state is a triple (N ,Ans,Wait) where N is a set
of nodes, Ans is an answer table, and Wait is a wait table. For every consistent
state constraint D, a state ({D}, [D �→ ∅], [D �→ ∅]) is an initial state. A state S
is a final state iff there is no state S′ such that S −→P S′.

When a new root 〈D2〉 is spawned, it is processed by transition (root). If B0

satisfiesD2, then a single answer node ans〈D2; ε;D2〉 is produced (set N2), corre-
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sponding to rule (eps) of the proof system. Set N1 contains goal nodes, which are
produced according to the following scheme which corresponds to rule (cmd):
for all commands Q, it is tested whether they can contribute at least one ef-
fect which occurs in D2, by checking E ∩ D2 �= ∅. Then for all preconditions
F ∈ pre(Q), a constraint D1 is computed, which is obtained by removing all
effects of Q from D2 and adding the precondition F , thus reasoning backwards
to a state, starting from which Q can execute and yield D2. The constraint D1

has to be consistent, and so must be the union D2 ∪E, which is ensured by two
further side conditions.

Before explaining the remaining rules, we need two further definitions. The first
one deals with deriving new answers from given answers and corresponding goals.

Definition 3.12 (Merge). An answer node n1 ≡ ans〈D1; T̃ ;D2〉 and a goal
node n2 ≡ goal〈E1;Q;E2〉 can be merged iff D2 = E1 and D1, D2, E1, E2

are all consistent. The resulting node is n ≡ ans〈D1; T̃ ⊗ Q;E2〉, and we write
n = merge(n1, n2).

In general, given an initial state B0 and a target state constraint D, there are
infinitely many correct command sequences that lead from B0 to D. However,
most of these answers are redundant in the sense that there is a shorter one
consisting of the same atoms, or there is one with the same length but involves
a smaller number of different commands. It turns out that, even if the complete
set of answers is infinite, the set of “minimal” answers is finite. The presented
algorithm always terminates and is complete with respect to this finite set of
answers. All other answers are then subsumed by one of the computed answers.

The following definition defines the subsumption relation between answers.
In this definition, let atoms be a function such that atoms(Q1 ⊗ · · · ⊗ Qk) =
{Q1, ..., Qk} and atoms(ε) = ∅.
Definition 3.13 (Subsumption for Answers). Let n ≡ ans〈D1; S̃;D2〉 and
m ≡ ans〈E1; T̃ ;E2〉. Then, n is said to be subsumed by m, written n � m, iff

D1 ⊇ E1 ∧ D2 = E2 ∧ |S̃| ≥ |T̃ | ∧ atoms(S̃) ⊇ atoms(T̃ )

The idea is that node n is subsumed by m if m is a “better” answer: that is, n’s
precondition is at least as strong as m’s, its postcondition is equal to m’s, and its
command sequence is at least as long asm’s and involves the same (or more) atoms.

Answer nodes are processed by rule (ans). The rule executes if the answer
node in question is not subsumed by another one already in Ans(D2). Then the
node is added to the answer table, and it is merged with all waiting goals in
Wait(D2). Goal nodes are processed by either (goal1) or (goal2), according to
whether or not their precondition D1 has been spawned before. If not, (goal2)
ensures that 〈D1〉 is spawned and that the answer and waiting tables are properly
initialized for this new goal. Otherwise, (goal1) prescribes that the goal node is
merged with all answer nodes that might be already available for D1, and that
the waiting table is updated. The companion technical report [2] has a worked
example demonstrating the functionality of the algorithm.

The correctness of the algorithm is stated in the following soundness and
completeness theorems:
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Theorem 3.14 (Soundness). If (N ,Ans,Wait) is reachable from some ini-
tial state, then the following holds for all D2 ∈ dom(Ans): if ans〈D1; T̃ ;D2〉 ∈
Ans(D2) and D1 is consistent, then {D1} T̃ {D2} and B0 satisfies D1.

Intuitively, the soundness theorem states that every answer produced by the algo-
rithm is indeed a correct answer with respect to the proof system. By soundness
of the proof system, the algorithm is then also sound with respect to the SMP
semantics.

Theorem 3.15 (Completeness). If (N ,Ans,Wait) is a final state reachable
from some initial state, the following implication holds for all D2 ∈ dom(Ans):
if {G1} S̃ {G2}, G2 ⊇ D2, and B0 satisfies G1 then there exists ans〈D1; T̃ ;D2〉 ∈
Ans(D2) such that B0 satisfies D1, |S̃| ≥ |T̃ |, and atoms(S̃) ⊇ atoms(T̃ ).

The completeness theorem states that if a sequence is a correct answer with
respect to the proof system, then the algorithm produces an answer that is at
least as good, in the sense that it may be shorter or involve a smaller number of
different commands.

Finally, the following theorem proves that the algorithm always terminates.

Theorem 3.16 (Termination). All transition paths starting from an initial
state are of finite length.

4 Case Study

This section presents a larger, non-trivial example policy from the area of elec-
tronic health care, based on [12]. The policy defines roles such as patient, clin-
ician, or administrator. Users may be members of several roles, and may ac-
tivate such roles within a session, in order to utilize the privileges associated
with the roles. In the following example, a user may activate the patient role
with the command activate. The command succeeds if the user is a member of
that role (expressed by the predicate member), and as a result, a corresponding
hasActivated fact is inserted into the authorization state. Patients can deactivate
their own role if this fact is in the state. The deactivation entails the removal of
the fact from the state.

activate(X, Patient)← member(X, Patient)⊗+hasActivated(X, Patient)
deactivate(X, Patient)← hasActivated(X, Patient)⊗−hasActivated(X, Patient)

For some groups of roles, the policy specifies a separation-of-duties constraint:
users may be active in at most one of the roles at the same time. In the rule
below, the clinician role may only be activated if the user is not already active in
the administrator role. We also have a symmetric rule for administrators where
“Clinician” and “Admin” are permuted. The deactivation rules for clinicians
and administrators are similar to the one for patients above.

activate(X, Clinician) ← member(X, Clinician) ∧ ¬hasActivated(X, Admin) ⊗
+hasActivated(X, Clinician)
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In the examples above, role membership is a prerequisite for role activation. The
following two clauses let administrators update the role membership assignment,
using the commands register and unregister.

register(X,U,R)← hasActivated(X, Admin)⊗+member(U,R)
unregister(X,U,R)← hasActivated(X, Admin) ∧ registered(U,R)⊗

−member(U,R)⊗−hasActivated(U,R)

Permission assignments typically do not manipulate the authorization state, but
often specify conditions that depend on the state. The following clause is an
example of a deny-override policy: it allows a clinician X to read data from a
patient P ’s health record if X has a so-called legitimate relationship with the
patient, and if the patient has not explicitly concealed the record from X .

permitted(X, Read, P )← hasActivated(X, Clinician) ∧ legitRelationship(X,P )∧
¬denied(P,X)

The command readEHR is executed when a userX attempts to read a patient P ’s
electronic health record (EHR). The read access is stored in the authorization
state for auditing purposes.

readEHR(X,P )← permitted(X, Read, P )⊗+hasReadEHR(X,P )

Patients can conceal data from a clinician using the command denyAccess, and
remove the concealment with removeDenyAccess. The two corresponding clauses
insert (or remove) a denied fact from the authorization state.

denyAccess(P,X) ← hasActivated(P, Patient)⊗+denied(P,X)
removeDenyAccess(P,X) ← hasActivated(P, Patient) ∧ denied(P,X) ⊗

−denied(P,X)

Access to patient data is conditioned on a legitimate relationship between the
requester and the patient. The following clause specifies that a legitimate rela-
tionship exists between a clinician X and a patient P if the patient has explicitly
consented to treatment:

legitRelationship(X,P )← hasConsented(P,X, Treatment)

The following clauses manage the updates for hasConsented facts. Consent is here
modelled as a two-step process: a clinician can request consent to treatment, and
only then can the patient give consent.

giveConsent(P,X, Treatment)← hasActivated(P, Patient)∧
hasRequestedConsent(X,P ) ⊗
+hasConsented(P,X, Treatment)

requestConsent(X,P, Treatment)← hasActivated(X, Clinician) ⊗
+hasRequestedConsent(X,P, Treatment)
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Finally, patients can withdraw their consent to treatment. Similarly, clinicians
can cancel the treatment. The command cancelTreatment removes both the con-
sent request and the (possibly non-existing) patient consent fact from the au-
thorization state.

withdrawConsent(P,X, Treatment)← hasActivated(P, Patient)∧
hasConsented(P,X, Treatment) ⊗
−hasConsented(P,X, Treatment)

cancelTreatment(X,P )← hasActivated(X, Clinician) ⊗
−hasRequestedConsent(X,P, Treatment) ⊗
−hasConsented(P,X, Treatment)

Suppose we start in an authorization state in which we know that Alice (A)
is a member of the administrator role and has not activated the clinician role.
Furthermore, Bob (B) has not explicitly concealed his data from Alice. We can
then infer a command sequence that terminates in a state where Alice has read
Bob’s EHR:

{member(A, Admin),¬hasActivated(A, Clinician), ¬denied(B, A)}
activate(A, Admin)⊗ register(A, A, Clinician)⊗ register(A, B, Patient)⊗
activate(B, Patient)⊗ deactivate(A, Admin)⊗ activate(A, Clinician)⊗
requestConsent(A, B, Treatment)⊗ giveConsent(B, A, Treatment)⊗ readEHR(A, B)

{hasReadEHR(A, B)}

5 Discussion

Related work. Cassandra [10] is an authorization language that defines the actions
of activating a role and deactivating a role, along with a transition system that up-
dates theauthorization stateby insertingandremovingcorresponding“hasActivated”
facts. Users can thus write state-dependent and implicitly state-manipulating poli-
cies, but this rather ad-hoc approach is inflexible and not very user-friendly. In a
similar spirit, dynFAF [13] keeps track of the history of user requests by dynami-
cally adding facts (with a time-stamp parameter) to the logic program. In dynFAF,
facts arenever removed; instead,permissions are signed, andpermission revocation
is modelled by adding a fact with a negative permission. In [14], a sub-language of
Timed Default Concurrent Constraint Programming is used to specify dynamic
policies. Their language, being almost a full-fledged procedural programming lan-
guage, can express state changes triggered by both user requests as well as environ-
mental changes. This high expressiveness comes at a price: policies are generally
harder to analyze, and evaluation may not terminate.

Some languages such as Ponder [15] or XACML [16] support obligation poli-
cies. An obligation is a task to be executed after evaluating and enforcing an
access request. Obligations are typically used for post-processing jobs such as
auditing or for sending out notifications, but in principle an obligation could also
be a call to an external function that updates the state. While this approach
would move the effects from the hard-coded resource guard into the policy, it
does not provide a precise semantics for the state changes.
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Some work has been done on analyzing security properties in dynamic role-
based systems, in the context of the role-based authorization language RT [17,18]
and Administrative RBAC (ARBAC) [19], where members of administrative
roles can modify the role membership and privilege assignments [20]. Security
properties in the context of SPKI/SDSI certificates are analyzed in [21] by model
checking pushdown automata. [22] presents a Datalog-based logical framework
for representing and reasoning about access control policies. Neither of the two
papers deals with policies updating the authorization state.

Changes to the policy itself can obviously affect the set of actions that are
permitted or denied. Margrave [23] is a tool that can compute the consequences
of changes to an XACML policy. Pucella and Weissman [24] consider systems in
which policies (not just the facts) can change between state transitions. They
introduce a modal logic that can capture the dynamic nature of such systems
and prove its decidability in the propositional case. In [25], policies written in
Datalog can refer to facts in the authorization state, as in our model. Events
(such as access requests) can change the authorization state, and the changes are
specified as a state machine whose transition labels are guarded by the policy.
Security properties can then be analyzed by model checking formulas in first-
order temporal logic.

6 Conclusion

In this paper, we have introduced SMP , a logic that not only expresses autho-
rization conditions but can also specify effects of access requests on the autho-
rization state. The effects are specified explicitly in the language (as opposed to
e.g. a state machine). The logic can be seen as a mild non-monotonic extension
of Datalog and has a formal semantics based on Transaction Logic. Existing
authorization languages, especially Datalog-based ones, can thus be easily ex-
tended to support effects. Examples of SMP ’s applicability have been shown in
a case study on a policy for electronic health records. We have also presented an
inference system for reasoning about sequences of user actions, and a sound and
complete goal-oriented algorithm for computing minimal sequences (or proving
their non-existence) in the propositional case.
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Abstract. Secrecy properties of network protocols assert that no proba-
bilistic polynomial-time distinguisher can win a suitable game presented
by a challenger. Because such properties are not determined by trace-
by-trace behavior of the protocol, we establish a trace-based protocol
condition, suitable for inductive proofs, that guarantees a generic reduc-
tion from protocol attacks to attacks on underlying primitives. We use
this condition to present a compositional inductive proof system for se-
crecy, and illustrate the system by giving a modular, formal proof of
computational authentication and secrecy properties of Kerberos V5.

1 Introduction
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and related protocols that use cryptographic primitives. In spite of the staggering
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SSL/TLS in a day, we do not have correctness proofs that respect cryptographic
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indistinguishability of a key from a randomly chosen value, is that such secrecy
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and compositional proofs, together with a form of standard cryptographic re-
duction argument which shows that any attack on a secretive protocol yields
an attack on cryptographic primitives used in the protocol. We give the cryp-
tographic reduction in a precise form, by inductively defining the operational
behavior of a simulator that simulates the protocol to the protocol adversary.
An essential problem in defining the simulator, which interacts with a game
providing access to the cryptographic primitives, is that the simulator has two
candidate secrets, but must present a view of the protocol that is consistent with
either candidate being the actual protocol secret.

After proving that secretive protocols yield black-box reductions, we present
one inductive method for showing that a protocol is secretive, based on Computa-
tional Protocol Composition Logic (CPCL) [17,18]. In the process, we generalize
a previous induction rule, so that only one core induction principle is needed in
the logic. In contrast to proof systems for symbolic secrecy [28,31], the induction
is over actions of honest parties and not the structure of terms. We also extend
previous composition theorems [16,21] to the present setting, and illustrate the
power of the resulting system by giving modular formal proofs of authentica-
tion and secrecy properties of Kerberos V5 and Kerberos V5 with PKINIT. We
are also able to prove properties of a variant of the Needham-Schroeder-Lowe
protocol that are beyond the standard rank function method [22,19].

Our approach may be compared with equivalence-based methods [6,27,14,5],
used in [3] to derive some computational properties of Kerberos V5 from a sym-
bolic proof. In equivalence-based methods, the behavior of a symbolic abstraction
under symbolic attack must have the same observable behavior as a computa-
tional execution under computational (probabilistic polynomial-time) attack. In
contrast, our approach only requires an implication between symbolic reason-
ing and computational execution. While we believe that both approaches have
merit, the two are distinguished by (i) the need to additionally prove the absence
of a “commitment problem” in [3], which appears to be a fundamental issue in
equivalence-based security [15], and (ii) the open problem expressed in [3] of
developing compositional methods in that framework. Symbolic abstractions for
primitives like Diffie-Hellman key exchange are also problematic for equivalence-
based approaches [4,7], but amenable to treatment in PCL. In contrast to other
symbolic or computationally sound methods, PCL reasoning proceeds only over
action sequences of the protocol program, yet the conclusions are sound for pro-
tocol execution in the presence of attack. This formalizes and justifies a direct
reasoning method that is commonly used informally among researchers, yet is
otherwise not rigorously connected to reduction arguments.

Section 2 describes the protocol process calculus and computational execution
model. A trace-based definition of “secretive protocols” and relevant computa-
tional notions are explained in section 3. The proof system, and soundness and
composition theorems are presented in section 4, and applied in the proofs for
Kerberos in section 5. Conclusions appear in section 6. Many of the proofs and
technical details in this paper are omitted due to space constraints—interested
readers can find them in the full version of this paper [29].
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2 Syntax and Semantics

We begin by reviewing a protocol notation, protocol logic, and a security model
for key exchange developed in earlier work [16,17,18].

Modeling Protocols. Protocols are expressed in a process calculus by defining a
set of roles, such as “Client”, or “Server”, each given by a sequence of actions
such as sending or receiving a message, generating a new nonce, or decrypting or
encrypting a message (see [16]). In a run of a protocol, a principal may execute
one or more instances of each role, each execution constituting a thread identified
by a pair (X̂, η), where X̂ is a principal and η is a unique session identifier.

We illustrate the protocol process calculus using Kerberos V5 [25], which will
be the running example in this paper. Our formulation is based on the A level
formalization of Kerberos V5 in [12]. Kerberos provides mutual authentication
and establishes keys between clients and application servers, using a sequence of
two-message interactions with trusted parties called the Kerberos Authentication
Server (KAS) and the Ticket Granting Server (TGS).

Kerberos has four roles, Client, KAS, TGS and Server. The pre-shared
long-term keys between the client and KAS, the KAS and TGS, and the TGS
and application server, will be written as ktype

X,Y where X and Y are the principals
sharing the key. The type appearing in the superscript indicates the relationship
between X and Y : c → k indicates that X is acting as a client and Y is acting
as a KAS, t → k for TGS and KAS and s → t for application server and TGS.

Client = (C, K̂, T̂ , Ŝ, t) [

new n1;

send Ĉ.T̂ .n1;

receive Ĉ.tgt.enckc;

textkc := symdec enckc, k
c→k
C,K ;

match textkc as AKey.n1.T̂ ;

· · · · · ·

KAS = (K) [

receive Ĉ.T̂ .n1;

new AKey;

tgt := symenc AKey.Ĉ, kt→k
T,K ;

enckc := symenc AKey.n1.T̂ , kc→k
C,K ;

send Ĉ.tgt.enckc;

]K

In the first stage, the client (C) generates a nonce (represented by new n1)
and sends it to the KAS (K) along with the identities of the TGS (T ) and itself.
The KAS generates a new nonce (AKey - Authentication Key) to be used as a
session key between the client and the TGS. It then sends this key along with
some other fields to the client encrypted (represented by the symenc actions)
under two different keys - one it shares with the client (kc→k

C,K ) and one it shares
with the TGS (kt→k

T,K ). The encryption with kt→k
T,K is called the ticket granting

ticket (tgt). The client extracts AKey by decrypting the component encrypted
with kc→k

C,K and recovering its parts using the match action which deconstructs
textkc and associates the parts of this plaintext with AKey, n1, and T̂ . The
ellipses (. . . ) indicates further client steps for interacting with KAS, TGS, and
the application server that are omitted due to space constraints (see [31] for a
full description).
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Table 1. Syntax of the logic

Action Predicates:
a ::= Send(X, t) | Receive(X, t) | SymEnc(X, t, k) | SymDec(X, t, k) | New(X, n)
Formulas:
ϕ ::= a | t = t | Start(X) | Honest(X̂) | Possess(X, t) | Indist(X, t) |

GoodKeyAgainst(X, t) | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃V. ϕ | ∀V.ϕ | ¬ϕ | ϕ ⊃ ϕ | ϕ ⇒ ϕ
Modal formulas:
Ψ ::= ϕ [Actions]X ϕ

In the second stage, the client gets a new session key (SKey - Service Key) and
a service ticket (st) to converse with the application server S which takes place
in the third stage. The control flow of Kerberos exhibits a staged architecture
where once one stage has been completed successfully, the subsequent stages can
be performed multiple times or aborted and started over for handling errors.

Execution Model. We use a standard two-phase protocol execution model as in
[11]. In the initialization phase, we assign roles to each principal, identify a subset
that is honest, and provide encryption keys and random coins as needed. In the
execution phase, the adversary executes the protocol by interacting with honest
principals. We assume the adversary has complete control over the network, as
in [11]. The length of keys and the running time of the protocol are polynomially
bounded in the security parameter.

A trace is a record of all actions executed by honest principals and the attacker
during protocol execution. Since honest principals execute roles defined by a sym-
bolic process calculus, our traces contain symbolic descriptions of the actions of
honest parties and a mapping of symbolic variables to bitstrings values. The at-
tacker may produce and send arbitrary bitstrings, but the trace only records the
send-receive actions of the attacker, and not its internal actions. Our traces also
include the random bits (used by the honest parties, the adversary and the dis-
tinguisher), as well as a few other elements used in defining semantics of formulas
over traces [17]. In section 3, which presents semantic arguments independent of
the protocol logic, we omit these additional fields and refer to a trace as 〈e, λ〉,
where e is a symbolic description of the trace and λ maps terms in e to bitstrings.

For technical reasons, we assume that honest parties conform to certain type
conventions. These restrictions may be imposed by prefixing the values of each
type (nonces, ids, constant strings, pairs, encryptions with key k, etc.) with a
tag such as ‘constant’ or ‘encrypted with key k’ that are respected by honest
parties executing protocol roles. The adversary may freely modify or spoof tags
or produce arbitrary untagged bitrings.

Syntax of Computational PCL. The formulas of the logic are given in Table 1.
Protocol proofs usually use modal formulas of the form ψ[P ]Xϕ. The informal
reading of the modal formula is that if X starts from a state in which ψ holds,
and executes the program P , then in the resulting state the security property ϕ
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is guaranteed to hold irrespective of the actions of an attacker and other honest
principals. Many protocol properties are naturally expressible in this form. Most
formulas have the same intuitive meaning as in the symbolic model [16].

For every protocol action, there is a corresponding action predicate which as-
serts that the action has occurred in the run. For example, Send(X, t) holds in a
run where the thread X has sent the term t. Honest(X̂) means that the princi-
pal X̂ is acting honestly, i.e., the actions of every thread of X̂ precisely follows
some role of the protocol. Start(X) means that the thread X did not execute
any actions in the past. Indist(X, t) means that agent X cannot tell the bitstring
representation of the term t from another bitstring chosen at random from the
same distribution. The logical connectives have standard interpretations, except
that conditional implication (⇒), related to a form of conditional probability, ap-
pears essential for reasoning about cryptographic reductions (see [17] for further
discussion).

Semantics of Computational PCL. Intuitively, a protocol Q satisfies a formula
ϕ, written Q |= ϕ if for all adversaries and sufficiently large security parame-
ters, the probability that ϕ “holds” is asymptotically close to 1 (in the security
parameter). Intuitively, the meaning of a formula ϕ on a set T of computa-
tional traces is usually a subset T ′ ⊆ T that respects ϕ in some specific way.
For example, an action predicate such as Send selects a set of traces in which
a send occurs. More precisely, the semantics �ϕ� (T, D, ε) of a formula ϕ is in-
ductively defined on the set T of traces, with distinguisher D and tolerance ε.
The distinguisher and tolerance are only used in the semantics of Indist and
GoodKeyAgainst, where they determine whether the distinguisher has more than
a negligible chance of distinguishing the given value from random or winning
an IND-CCA game, respectively. The precise inductive semantics for formulas
is given in [17].

The semantics of the predicate GoodKeyAgainst(X, k) is defined using a stan-
dard cryptographic-style game condition. It captures the intuition that a key
output by a secure key exchange protocol should be suitable for use in some
application protocol of interest (e.g. as a key for an IND-CCA secure encryp-
tion scheme) [18]. Formally, �GoodKeyAgainst(X, k)�(T, D, ε) is the complete set
of traces T if the distinguisher D, who is given X ’s view of the run has an
advantage less than ε in winning the IND-CCA game [9] against a challenger
using the bitstring corresponding to term k as the key, and ∅ otherwise. Here
the probability is taken by choosing a uniformly random trace t ∈ T (which
includes the randomness of all parties, the attacker and the distinguisher). The
same approach can be used to define other game conditions.

Atrace property is a formula ϕ such that for any set of protocol traces T ,
�ϕ� (T ) =

⋃
t∈T �ϕ� ({t}). The distinguisher and tolerance are omitted since they

are not used in defining semantics for such predicates. Thus all action formulas,
such as Send(X, m), are trace properties whereas aggregrate properties such as
Indist(X, k) and GoodKeyAgainst (X, k) are not.
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3 Secretive Protocols

In this section, we define a trace property of protocols and show that this prop-
erty implies computational secrecy and integrity. The computational secrecy
properties include key indistinguishability and key usability for IND-CCA se-
cure encryption. These results are established first for the simple case when
secrets are protected by pre-shared “level-0” keys (Theorem 1), then generalized
(Theorems 2-3) under the condition that each key is protected by predecessor
keys in an acyclic graph1. The proofs use standard cryptographic reductions.

Let s and K be the symbolic representations of a nonce and a set of keys
associated with a specific thread in a trace 〈e, λ〉. Define Λ(K) to be the set of
bitstrings corresponding to the keys in K, i.e., {λ(k) | k ∈ K}.

Definition 1 (Secretive Trace). A trace 〈e, λ〉 is a secretive trace with respect
to s and K if the following properties hold for every thread belonging to honest
principals:

– a thread which generates a new nonce r in e, with λ(r) = λ(s), ensures that
r is encrypted with a key k with bitstring representation λ(k) ∈ Λ(K) in any
message sent out.

– whenever a thread decrypts a message with a key k with λ(k) ∈ Λ(K), which
was produced by encryption with key k by an honest party, and parses the
decryption, it ensures that the results are encrypted with some key k′ with
λ(k′) ∈ Λ(K) in any message sent out.

To lift this definition of secretive traces to secretive protocols we need a way to
identify the symbol s and the set of symbols K in each protocol execution trace.
We do this by assuming functions s̄ and K̄ that map a trace to symbols in the
trace corresponding to s and the set of keys in K respectively. In applications,
these mappings will be given by the semantics of logical formulas.

Definition 2 (Secretive Protocol). Given the mappings s̄ and K̄, a protocol
Q is a secretive protocol with respect to s and K if for all probabilistic poly-time
adversaries A and for all sufficiently large security parameters η, the probability
that a trace t, generated by the interaction of A with principals following roles
of Q, is a secretive trace with respect to s̄(t) and K̄(t) is overwhelmingly close
to 1, the probability being taken over all adversary and protocol randomness.

In proving properties of secretive protocols, we focus on the subset of protocol
traces that are secretive. Adversary advantages retain the same asymptotic behav-
ior over this set because non-secretive traces are a negligible fraction of all traces.

The general structure of the proofs of the secrecy theorems is by reduction
of the appropriate protocol secrecy game to a multi-party IND-CCA game:
given protocol adversary A, we construct an adversary A′ against a multi-party
IND-CCA challenger which provides |K|-party Left-or-Right encryption oracles
Eki(LoR (·, ·, b)) parameterized by a challenge bit b and decryption oracles Dki(·)
1 Some of the results here were presented in the informal WITS’07 [30] workshop.
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for all ki ∈ K (Following [9], LoR(m0, m1, b) is a function which returns mb).
We use multi-party security definitions due to Bellare, Boldyreva and Micali [9]
applied to symmetric encryption schemes. 2

The strategy of A′ is to provide a simulation of the secretive protocol to A by
using these oracles such that the capability of A to break the indistinguishability
or key usability of the nonce can be leveraged in some way to guess the challenge
bit b of the multi-party IND-CCA challenger. To this end, A′ employs a bilateral
simulator S which randomly chooses two bit-strings s0, s1 as alternate represen-
tations of the putative secret s and then simulates execution of the protocol to
the protocol adversary A for both the representations.

As with the execution of the actual protocol, S receives messages and schedul-
ing information from A and acts according to the roles of the given protocol.
The difference from a normal protocol execution is that in computing bitstring
representations of terms that involve s, S does so for both representations of
s. We will show that for secretive protocols the representation of s that A sees
is determined by the challenge bit b of the CCA challenger. The operational
semantics of the bilateral simulator is formally described in the full version of
[30]. We explain the form of the definition using an example.

� m′ � m′′ m := pair m′, m′′;

� m, lv(m) = pair(lv(m′), lv(m′′)), rv(m) = pair(rv(m′), rv(m′′))

The notation � m means that the symbol m has been computationally evaluated
according to the semantics. The premise of the rule requires that the symbols
m and m′ have already been evaluated and we are considering the action m :=
pair m′, m′′ in some thread. The functions lv and rv map a symbol to its bit-
string values corresponding to the representations s0 and s1 of s respectively.
The function pair is the actual computational implementation of pairing. The
conclusion of the rule states that lv(m) is evaluated by pairing the bit-strings
lv(m′) and lv(m′′) and similarly for rv(m). In simulating the protocol to the
protocol adversary, the simulator executes each action of the currently scheduled
thread following this definition.

Suppose m is a term explicitly constructed from s. As S is simulating a
secretive protocol, this term is to be encrypted with a key k in K to construct
a message to be sent out to A. So, S asks the encryption oracle of the |K|-
IND-CCA challenger to encrypt (lv(m), rv(m)) with k. In addition, this pair
of bitstrings is recorded and the result of the query is logged in the set qdbk.
If a message construction involves decryption with a key in K, S first checks
whether the term to be decrypted was produced by an encryption oracle by
accessing the log qdbk—if not, then the decryption oracle is invoked; if yes, then
S uses the corresponding encryption query as the decryption. In the second
case the encryption query must have been of the form (m0, m1). Following the
definition of secretive protocol, terms constructed from this decryption will be
re-encrypted with a key in K before sending out. Thus we note here that all
such replies will be consistent to A with respect to any choice of b. The situation
2 In [9], IND-CCA2 security and multi-party IND-CCA security are shown to be as-

ymptotically equivalent.
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becomes trickier when encryption or decryption of a term is required with s as
the key. In this case S encrypts or decrypts with s0. We therefore always have
lv(m) = rv(m) for any message m being sent out.

One subtle issue arises when we consider term deconstructors such as unpair-
ings, decryptions, and pattern matching actions: we need to ensure that the
success of such actions are independent of the challenge bit b The type infor-
mation carried by terms (mentioned in Section 2) ensures this consistency in
an overwhelming number of traces. The proofs proceed by induction over the
operational semantics of the simulator.

Theorem 1 (CCA security - level 1). Assume that a probabilistic poly-time
adversary interacts with a secretive protocol with respect to nonce s and a set of
level-0 keys K.

– Key indistinguishability: If s is not used as a key by the honest principals,
the adversary has negligible advantage at distinguishing s from random after
the interaction provided the encryption scheme is IND-CCA secure.

– Key usability: If the honest principals use s as a key, the adversary has negli-
gible advantage at winning an IND-CCA game against a symmetric encryp-
tion challenger using the key s after the interaction provided the encryption
scheme is IND-CCA secure.

A level-0 key for a protocol execution is an encryption key which is only used
as a key but never as a payload. We now extend Theorem 1 to directed key
hierarchies to reason about key distribution protocols such as Kerberos.

LetKbethesymbolicrepresentationsofnoncesandkeysassociatedwithaspecific
thread in a trace 〈e, λ〉. The key graph of K in a protocol is a directed graph with
keys in K as vertices. There is an edge from key k1 to k2 if the protocol is secretive
with respect to k2 and a key set which includes k1. Consider a directed acyclic key
graph. Keys at the root are level 0 keys. The level of any other key is one more than
the maximum level among its immediate predecessors. For a set of keys K from a
directed acyclic key graph, we define its closure C(K) to be the union of sets of keys
at the root which are predecessors of each key in K.

Theorem 2 (CCA security - Key DAGs). Assume that a probabilistic poly-
time adversary interacts with a secretive protocol with respect to nonce s and a set
of keys K in a DAG (Directed Acyclic Graph) of finite and statically bounded level.

– Key indistinguishability: If s is not used as a key by the honest principals,
the adversary has negligible advantage at distinguishing s from random after
the interaction provided the encryption scheme is IND-CCA secure.

– Key usability: If the honest principals use s as a key, the adversary has negli-
gible advantage at winning an IND-CCA game against a symmetric encryp-
tion challenger using the key s after the interaction provided the encryption
scheme is IND-CCA secure.

The following theorem establishes the integrity of encryptions done with nonces
protected by key hierarchies. The security definition INT-CTXT for ciphertext
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integrity is due to [10] and also referred to as existential unforgeability of cipher-
texts in [23].

Theorem 3 (CTXT integrity). Assume that a probabilistic poly-time adver-
sary interacts with a secretive protocol with respect to nonce s and a set of keys K
in a DAG of finite, statically bounded levels. During the protocol run, if an honest
principal decrypts a ciphertext with key s successfully, then with overwhelming
probability the ciphertext was produced by an honest principal by encryption with
s provided the encryption scheme is IND-CCA and INT-CTXT secure.

4 Proof System

In this section, we present a general induction rule, axiomatize the informal de-
finition of a secretive protocol given in Section 3 and formulate axioms stating
that secretive protocols guarantee certain computational properties. The sound-
ness proofs of these axioms are based on the theorems in Section 3.

4.1 Establishing Secretive Protocols

We introduce the predicate Good(X, m, s, K) to assert that the thread X con-
structed the term m in accordance with the rules allowing a secretive proto-
col with respect to nonce s and set of keys K to send out m. More formally,
�Good(X, m, s, K)�(T, D, ε) is the collection of all traces t ∈ T where thread X
constructs the term m in a ‘good’ way. Received messages, data of atomic type
different from nonce or key, nonces different from s are all ‘good’ terms. Con-
structions that are ‘good’ consist of pairing or unpairing good terms, encrypting
good terms, encrypting any term with a key in K and decrypting good terms
with keys not in K. The following axioms formalize reasoning about the Good
predicate by induction on actions in protocol roles.

G0 Good(X, a, s, K), if a is of an atomic type different from nonce

G1 New(Y,n) ∧ n �= s ⊃ Good(X, n, s, K)

G2 [receive m; ]X Good(X, m, s, K)

G3 Good(X, m, s, K) [a]X Good(X, m, s, K), for all actions a

G4 Good(X, m, s, K) [match m as m′; ]X Good(X, m′, s, K)

G5 Good(X, m0, s, K) ∧ Good(X, m1, s, K) [m := pair m0, m1; ]X Good(X, m, s, K)

G6 Good(X, m, s, K) [m′ := symenc m, k; ]X Good(X, m′, s, K)

G7 k ∈ K [m′ := symenc m, k; ]X Good(X, m′, s, K)

G8 Good(X, m, s, K) ∧ k /∈ K [m′ := symdec m, k; ]X Good(X, m′, s, K)

In the following lemma, the additional field σ in the trace definition refers to an
environment that maps free variables in a formula to bitstrings. The proof is by
induction on the construction of ‘good’ terms.

Lemma 1. If Good(X, m, s, K) holds for a trace 〈e, λ, · · · , σ〉, then any bilateral
simulator with parameters s, K, executing symbolic actions e produces identical
bitstring representations for m on both sides of the simulation, i.e., we will have
� m and lv(m) = rv(m).
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The formula SendGood(X, s, K) asserts that all messages that thread X sends
out are good and Secretive(s, K) asserts that all honest threads only send out
good messages. Formally,

SendGood(X, s, K) ≡ ∀m. (Send(X, m) ⊃ Good(X, m, s, K))

Secretive(s, K) ≡ ∀X. (Honest(X̂) ⊃ SendGood(X, s, K))

The axioms SG0 − 2 are based on the definition of SendGood:

SG0 Start(X) [ ]X SendGood(X, s, K)

SG1 SendGood(X, s, K) [a]X SendGood(X, s, K), where a is not a send.

SG2 SendGood(X, s, K) [send m; ]X Good(X, m, s,K) ⊃ SendGood(X, s, K)

SG1 is obviously valid for nonce generation, message receipt, encryption and
pairing actions. Soundness for unpairing and decryption requires consistency of
deconstructions in the bilateral simulation, e.g. unpairing should succeed on one
side iff it succeeds on the other. Soundness of SG2 follows from the operational
semantics of the simulator on a send action and Lemma 1.

The INDGOOD rule which follows states that if all honest threads executing
some basic sequence in the protocol locally construct good messages to be sent
out, given that they earlier also did so, then we can conclude Secretive(s, K).

INDGOOD ∀ρ ∈ Q.∀P ∈ BS(ρ).

SendGood(X, s, K) [P ]X Φ ⊃ SendGood(X, s, K)
Q � Φ ⊃ Secretive(s, K)

(∗)

(∗): [P ]X does not capture free variables in Φ, K, s,

and Φ is a prefix closed trace formula.

A set of basic sequences (BS) of a role is any partition of the sequence of actions
in a role such that if any element sequence has a receive then it is only at its
beginning. The formula Φ has to be prefix closed which means that it is a formula
such that if it is true at some point in a trace, it is also true at all earlier points.
This rule is an instance of a more general induction rule IND which is obtained
by replacing SendGood(X, s, K) by a general trace formula Ψ(X) and requiring
that Start(X) [ ]X Φ ⊃ Ψ(X). The instance of the latter formula, the base case
of the induction, is trivially satisfied when Ψ(X) is SendGood(X, s, K) because
of axiom SG0.

4.2 Relating Secretive Protocols to Good Keys

The remaining axioms relate the concept of a secretive protocol, which is trace-
based, to complexity theoretic notions of security. As defined in section 3, a
level-0 key is only used as a key. Note that this is a syntactic property and is
evident from inspection of the protocol roles. Typically, a long-term key shared
by two principals is level-0. A nonce is established to be a level-1 key when the
protocol is proved to be a secretive protocol with respect to the nonce and a set
of level-0 keys. This concept is extended further to define level-2 keys.
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The formula InInitSet(X, s, K) asserts X is either the generator of nonce s or
a possessor of some key in the closure C(K). GoodInit(s, K) asserts that all such
threads belong to honest principals. Formally,

InInitSet(X, s, K) ≡ ∃k ∈ C(K). Possess(X, k) ∨ New(X, s)

GoodInit(s,K) ≡ ∀X. (InInitSet(X, s, K) ⊃ Honest(X̂))

Our objective is to state that secrets established by secretive protocols, where
possibly the secrets are also used as keys, are good keys against everybody except
the set of people who either generated the secret or are in possession of a key
protecting the secret. The formula GoodKeyFor expresses this property. For level-
0 keys that we want to claim are possessed only by honest principals we use the
formula GoodKey.

GoodKeyFor(s,K) ≡ ∀X. (GoodKeyAgainst(X, s) ∨ InInitSet(X, s, K))

GoodKey(k) ≡ ∀X. (Possess(X, k) ⊃ Honest(X̂))

For protocols employing an IND-CCA secure encryption scheme, the soundness
of the following axiom follows from theorems 1 and 2:

GK Secretive(s,K) ∧ GoodInit(s, K) ⇒ GoodKeyFor(s,K)

If the encryption scheme is both IND-CCA and INT-CTXT secure then, the
soundness of the following axioms follow from Theorem 3:

CTX0 GoodKey(k) ∧ SymDec(Z, Esym[k](m), k) ⇒ ∃X. SymEnc(X, m,k),

for level-0 key k.

CTXL Secretive(s,K) ∧ GoodInit(s, K) ∧ SymDec(Z, Esym[s](m), s)

⇒ ∃X. SymEnc(X, m, s)

The soundness theorem is proved by showing that every axiom is a valid
formula and that all proof rules preserve validity. Proofs for selected axioms are
given in the full version of the paper [29].

Theorem 4 (Soundness). ∀Q, ϕ. if Q � ϕ then Q � ϕ

Compositional Reasoning. We develop composition theorems that allow secre-
tive-ness proofs of compound protocols to be built up from proofs of their parts.
We consider three kinds of composition operations on protocols—parallel, se-
quential, and staged—based on our previous work [16,21]. However, adapting
that approach for reasoning about secrecy requires new insights. One central
concept in these compositional proof methods is the notion of an invariant. An
invariant for a protocol is a logical formula that characterizes the environment in
which it retains its security properties. While in previous work [16] the “honesty
rule” HON is used for establishing invariants, reasoning about secretive-ness re-
quires a more general form of induction, captured in this paper by the IND rule.
Also, in proving that a protocol step does not violate secretive-ness, we need to
employ derivations from earlier steps executed by the principal. In the technical
presentation, this history information shows up as preconditions in the secrecy
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induction of the sequential and staged composition theorems. The statement of
the theorems is similar to the theorems proved for the symbolic model in earlier
work [31], but the proofs use the computational semantics. In particular we need
a staged composition operation that extends sequential composition by allowing
self loops and arbitrary backward arcs in this chain. This control flow structure
is common in practice, e.g., Kerberos [25], IEEE 802.11i [1], and IKEv2 [24],
with backward arcs usually corresponding to error handling or rekeying.

5 Analysis of Kerberos

Table 2 lists the security properties of Kerberos that we prove. The security
objectives are of two types: authentication and secrecy. The authentication ob-
jectives take the form that a message of a certain format was indeed sent by some
thread of the expected principal. The secrecy objectives take the form that a pu-
tative secret is a good key for certain principals. For example, AUTHclient

kas states
that when C finishes executing the Client role, some thread of K̂ indeed sent the
expected message; SECclient

akey states that the authorization key is good after ex-
ecution of the Client role by C; the other security properties are analogous.
We abbreviate the honesty assumptions by defining Hon(X̂1, X̂2, · · · , X̂n) ≡
Honest(X̂1) ∧ Honest(X̂2) ∧ · · · Honest(X̂n). The formal proofs are omitted from
this paper but present in the full version [29].

The overall proof structure demonstrates an interleaving of authentication and
secrecy properties, reflecting the intuition behind the protocol design. We start
with proving some authentication properties based on the presumed secrecy of
long-term shared symmetric keys. As intended in the design, these authentication
guarantees enable us to prove the secrecy of data protected by the long-term keys.
This general theme recurs further down the protocol stages. Part of the data is
used in subsequent stages as an encryption key. The secrecy of this transmitted
encryption key lets us establish authentication in the second stage of the protocol.
The transmitted key is also used to protect key exchange in this stage - the secrecy
of which depends on the authentication established in the stage.

Theorem 5 (KAS Authentication). On execution of the Client role by a
principal, it is guaranteed with asymptotically overwhelming probability that the
intended KAS indeed sent the expected response assuming that both the client and
the KAS are honest. A similar result holds for a principal executing the TGS
role. Formally, KERBEROS � AUTHclient

kas , AUTHtgs
kas.

Authentication is achieved by the virtue of ciphertext integrity offered by the
symmetric encryption scheme. At a high level, we reason that a ciphertext could
have been produced only by one of the possessors of the corresponding key.

Theorem 6 (Authentication Key Secrecy). On execution of the Client
role by a principal, the Authentication Key is guaranteed to be good, in the sense
of IND-CCA security, assuming that the client, the KAS and the TGS are all
honest. Similar results hold for principals executing the KAS and TGS roles.
Formally, KERBEROS � SECclient

akey , SECkas
akey , SECtgs

akey.
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Table 2. Kerberos Security Properties

SECakey : Hon(Ĉ, K̂, T̂ ) ⊃ (GoodKeyAgainst(X, AKey) ∨ X̂ ∈ {Ĉ, K̂, T̂})
SECskey : Hon(Ĉ, K̂, T̂ , Ŝ) ⊃ (GoodKeyAgainst(X, SKey) ∨ X̂ ∈ {Ĉ, K̂, T̂ , Ŝ})

AUTHkas : ∃η. Send((K̂, η), Ĉ.Esym[kt→k
T,K ](AKey.Ĉ).Esym[kc→k

C,K ](AKey.n1.T̂ ))

AUTHtgs : ∃η. Send((T̂ , η), Ĉ.Esym[ks→t
S,T ](SKey.Ĉ).Esym[AKey](SKey.n2.Ŝ))

SECclient
akey : [Client]C SECakey AUTHclient

kas : [Client]C Hon(Ĉ, K̂) ⊃ AUTHkas

SECkas
akey : [KAS]K SECakey AUTHtgs

kas : [TGS]T Hon(T̂ , K̂) ⊃ ∃n1. AUTHkas

SECtgs
akey : [TGS]T SECakey

AUTHclient
tgs : [Client]C Hon(Ĉ, K̂, T̂ ) ⊃ AUTHtgs

SECclient
skey : [Client]C SECskey AUTHserver

tgs : [Server]S Hon(Ŝ, T̂ )

SECtgs
skey : [TGS]T SECskey ⊃ ∃n2, AKey. AUTHtgs

Proof Sketch. Observe that in the first stage, the KAS sends out AKey en-
crypted under two different keys - kc→k

C,K and kt→k
T,K , and the client uses AKey

as an encryption key. As a first approximation we conjecture that in the entire
protocol execution, AKey is either protected by encryption with either of the
keys in K = {kc→k

C,K , kt→k
T,K } or else used as an encryption key in messages sent to

the network by honest principals. This seems like a claim to be established by
induction. As a base case, we establish that the generator of AKey (some thread
of the KAS) satisfies the conjecture. The induction case is: whenever an honest
principal decrypts a ciphertext with one of the keys in K, it ensures that new
terms generated from the decryption are re-encrypted with some key in K in any
message sent out. The results (of the appropriate type) from such a decryption
are however, allowed to be used as encryption keys, which as you can note is the
case in the first stage of the client.

When we are reasoning from the point of view of the KAS (as in SECkas
akey),

we already know the initial condition - that the KAS sent out AKey encrypted
under only these keys. However, when arguing from the point of view of the
client and the TGS (as in SECclient

akey and SECtgs
akey), we need to have some

authentication conditions established first. These conditions are generally of the
form that the KAS indeed behaved in the expected manner. Reasoning from this
premise, we prove that our initial conjecture is correct.

In the formal proof, we show that Kerberos is a secretive protocol with respect to
thenonceAKey and the set of keysK.The induction idea is captured, in its simplest
form, by the proof rule INDGOOD. However, asKerberos has a staged structure we
use the staged composition theorem which builds upon the rule INDGOOD. The
core of the proof is the secrecy induction which is an induction over all the basic
sequences of all the protocol roles. The authentication condition Φ is easily derived
from the KAS Authentication theorem (theorem 5). The staged composition the-
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orem allows us to facilitate the secrecy induction by obtaining inferences from the
information flow induced by the staged structure of Kerberos in a simple and ef-
fective way. The secrecy induction is modular as the individual basic sequences are
small in themselves. Goodness of AKey now follows from theorem 1 (CCA security
- level 1), which is formally expressed by axiom GK.
Theorem 7 (TGS Authentication). On execution of the Client role by a
principal, it is guaranteed with asymptotically overwhelming probability that the
intended TGS indeed sent the expected response assuming that the client, the
KAS and the TGS are all honest. A similar result holds for a principal executing
the Server role. Formally, KERBEROS � AUTHclient

tgs , AUTHserver
tgs .

Theorem 8 (Service Key Secrecy). On execution of the Client role by a
principal, the Service Key is guaranteed to be good, in the sense of IND-CCA
security, assuming that the client, the KAS, the TGS and the application server
are all honest. A similar result holds for a principal executing the TGS role.
Formally, KERBEROS � SECclient

skey , SECtgs
skey.

The proof of AUTHserver
tgs is similar to the proof of theorem 5. The proof of

AUTHclient
tgs depends on the ‘goodkey’-ness of AKey established by theorem 6.

For theorem 8, the idea is that the Service Key SKey is protected by level-0
key ks→t

S,T and level-1 key AKey. The proof of ‘Secretive’-ness proceeds along the
same line as for theorem 6 and uses derivations from theorem 7. Then we invoke
axiom GK to establish KERBEROS � SECclient

skey , SECtgs
skey .

Kerberos with PKINIT. In the first stage of Kerberos with PKINIT [33], the
KAS establishes the authorization key encrypted with a symmetric key which in
turn is sent to the client encrypted with its public key. Since the protocol uses
both public and symmetric keys at level 0, we formulate a definition of a joint
public-symmetric key game. We then extend the proof system and prove all the
syntactically analogous properties of the PKINIT version.

6 Conclusion

Computational secrecy properties, such as indistinguishability and suitability
of a key (“GoodKey”), are not trace-based properties, making it awkward to
reason inductively or compositionally about them. We therefore formulate the
secretive trace-based property and prove that any secretive protocol can be used
to construct a generic reduction from protocol attacks to attacks on underlying
primitives. This allows computational secrecy to be established by direct induc-
tive reasoning about a relatively natural and intuitive trace-based property.

A second contribution of the paper is a proof system for secrecy, in a formal
logic based on inductive reasoning about protocol actions carried out by honest
parties (only). We illustrate the power of this system by giving a modular, formal
proof of computational authentication and secrecy properties of the Kerberos V5
protocol, thus addressing an open problem posed in [3]. Other proofs have been
carried out, such as for a protocol that poses a challenge for the rank function
method [19], but are omitted due to space constraints.
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What, Indeed, Is Intransitive Noninterference?
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Abstract. This paper argues that Haigh and Young’s definition of non-
interference for intransitive security policies admits information flows
that are not in accordance with the intuitions it seeks to formalise. Sev-
eral alternative definitions are discussed, which are shown to be equiva-
lent to the classical definition of noninterference with respect to transitive
policies. Rushby’s unwinding conditions for intransitive noninterference
are shown to be sound and complete for one of these definitions, TA-
security. Access control systems compatible with a policy are shown to
be TA-secure, and it is also shown that TA-security implies that the
system can be interpreted as an access control system.

1 Introduction

In this paper, we present a new argument against Haigh and Young’s
[HY87, Rus92] definition of intransitive noninterference, showing that it is too
weak for the intuitions it seeks to capture. We present an example that shows
that it allows information to flow to an agent, that could not have come from
the agents from which it is permitted to acquire information.

This leads us to consider alternative definitions. We show that there is in fact
a spectrum of different definitions of noninterference for possibly intransitive
policies, including two new notions TA-security and TO-security that we intro-
duce, which are based on intuitions about the transmission of information about
actions and observations, respectively. We then study these new definitions from
the point of view of proof techniques and an application that have been held
in the literature to be of significance for intransitive noninterference. We begin
with a discussion of “unwinding conditions,” which provide a proof technique for
noninterference, but can be taken as a definition of security in their own right.
Rushby proved that the classical unwinding conditions of Goguen and Meseguer
provide a complete proof technique for noninterference in the transitive case. He
proposes a weakening of these conditions for intransitive policies (correcting an
earlier proposal by Haigh and Young [HY87]). He establishes soundness of the
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weakened unwinding conditions, but not completeness. We give an explanation
of this: Rushby’s conditions are not complete for the Haigh and Young defini-
tion of noninterference. Instead, they are sound and complete for the stronger
notion of TA-security. There is a somewhat surprising subtlety in this state-
ment: for completeness, the weakened unwinding conditions must be applied to
the appropriate bisimilar system, but the existence of the weak unwindings is
not preserved under bisimulation.

We also follow Rushby in considering the behaviour of the definitions on access
control systems, the class of applications originally motivating the literature on
noninterference. Rushby showed that access control systems satisfying a condi-
tion of structural consistency with a policy satisfy Haigh and Young’s definition
of intransitive noninterference. We argue that Rushby’s definition of access con-
trol systems can be weakened, and that access control systems consistent with
a policy satisfy the stronger notion of TA-security as well as Haigh and Young’s
definition of security. Moreover, we also show that TA-security implies that there
is a way to interpret the system as an access control system in the weakened
sense. This shows that TA-security is in some sense equivalent to the existence
of an access control implementation of the system.

These results provide strong evidence that TA-security, rather than Haigh
and Young’s definition, best fits the original objectives for the notion of in-
transitive noninterference. Nevertheless, the stronger notion of TO-security may
well be equally significant for practical purposes. As evidence of this, we prove
that access control systems structurally consistent with a policy also satisfy the
stronger notion of TO-security, provided we work with an appropriate notion of
observation for such systems.

2 Intransitive Noninterference

The notion of noninterference was first proposed by Goguen and Meseguer
[GM82]. Early work on this area was motivated by multi-level secure systems,
and dealt with deterministic systems and partially ordered (hence transitive) in-
formation flow policies. A significant body of work has developed since then, with
a particular focus on generalization to the case of nondeterministic
systems [Sut86, WJ90, McC88, FG01, Rya01] and intransitive policies
[Rus92, RG99, Ohe04]. We focus in this paper on intransitive policies in the
deterministic case.

Several different types of semantic models have been used in the literature
on noninterference. (See [MZ06] for a comparison and a discussion of their
relationships.) We work here with the state-observed machine model used by
Rushby [Rus92], but similar results would be obtained for other models. This
model consists of deterministic machines of the form 〈S, s0, A, step, obs, dom〉,
where S is a set of states, s0 ∈ S is the initial state, A is a set of actions,
dom : A → D associates each action to an element of the set D of secu-
rity domains, step : S × A → S is a deterministic transition function, and
obs : S × D → O maps states to an observation in some set O, for each
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security domain. We may also refer to security domains more succinctly as
“agents”. We write s · α for the state reached by performing the sequence
of actions α ∈ Actions∗ from state s, defined inductively by s · ε = s, and
s ·αa = step(s ·α, a) for α ∈ A∗ and a ∈ A. Here ε denotes the empty sequence.

Noninterference policies, as they are now usually presented, are relations �⊆
D×D, with u � v intuitively meaning that “actions of domain u are permitted
to interfere with domain v”, or “information is permitted to flow from domain u
to domain v”. Since, intuitively, a domain should be allowed to interfere with, or
have information about, itself, this relation is assumed to be reflexive. In early
work on noninterference, it is also assumed to be transitive.

Noninterference is given a formal semantics in the transitive case using a
definition based on a “purge” function. Given a policy �, we define the function
purge : A∗×D → A∗ by taking purge(α, u) to be the subsequence of all actions a
in α with dom(a) � u. (For clarity, we may use subscripting of agent arguments
of functions, writing e.g., purge(α, u) as purgeu(α).) The system M is said
to be secure with respect to the transitive policy � when for all α ∈ A∗ and
domains u ∈ D, we have obsu(s0 · α) = obsu(s0 · purgeu(α)). That is, each
agent’s observations are as if only interfering actions had been performed. An
equivalent formulation (which we state more generally for policies that are not
necessarily transitive, in anticipation of later discussion) is the following:

Definition 1. A system M is P-secure with respect to a policy � if for all
sequences α, α′ ∈ A∗ such that purgeu(α) = purgeu(α′), we have obsu(s0 ·α) =
obsu(s0 · α′).

This can be understood as saying that agent u’s observation depends only on
the sequence of interfering actions that have been performed.

Haigh and Young [HY87] generalised the definition of the purge function to
intransitive policies as follows. Intuitively, the intransitive purge of a sequence
of actions with respect to a domain u is the largest subsequence of actions that
could form part of a causal chain of effects (permitted by the policy) ending
with an effect on domain u. More formally, the definition makes use of a function
sources : A∗ ×D ⇒ P(D) defined inductively by sources(ε, u) = {u} and

sources(aα, u) = sources(α, u) ∪ {dom(a) | ∃v ∈ sources(α, u)(dom(a) � v)}
for a ∈ A and α ∈ A∗. Intuitively, sources(α, u) is the set of domains v such
that there exists a sequence of permitted interferences from v to u within α. The
intransitive purge function ipurge : A∗×D → A∗ is then defined inductively by
ipurge(ε, u) = ε and

ipurge(aα, u) =
{
a · ipurge(α, u) if dom(a) ∈ sources(aα, u)
ipurge(α, u) otherwise

for a ∈ A and α ∈ A∗. An alternative, equivalent formulation that we will find
useful is the following: given a set X ⊆ D, define ipurgeX(α) inductively by
ipurgeX(ε) = ε and

ipurgeX(αa) =
{
ipurgeX∪{dom(a)}(α) · a if dom(a) � u ∈ X
ipurgeX(α) otherwise
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Then ipurgeu(α) is identical to ipurge{u}(α). The intransitive purge function
is then used in place of the purge function in Haigh and Young’s definition:

Definition 2. A system M is IP-secure with respect to a (possibly intransitive)
policy � if for all sequences α ∈ A∗, and u ∈ D, we have obsu(s0 · α) =
obsu(s0 · ipurgeu(α)).

Since the function ipurgeu on A∗ is idempotent, this definition, like the defin-
ition for the transitive case, can be formulated as: M is IP-secure with respect
to a policy � if for all u ∈ D and all sequences α, α′ ∈ A∗ with ipurgeu(α) =
ipurgeu(α′), we have obsu(s0·α)=obsu(s0·α′). It can be seen that ipurgeu(α)=
purgeu(α) when � is transitive, so IP-security is in fact a generalisation of the
definition of security for transitive policies.

Roscoe and Goldsmith [RG99] (henceforth, RG) have argued that the Haigh
and Young definition is incorrect. However, RG’s arguments have not been uni-
versally accepted as compelling (see, e.g., [Ohe04]).

Nevertheless, we believe that a case can be made that IP-security is too weak,
but on different grounds. Note that the intransitive purge ipurgeu(α) preserves
not just certain actions from the sequence α, but also their order. We claim that
this allows u to “know” this order in situations where an intuitive reading of the
policy would suggest that it ought not to know this order.

The notion of knowledge can be made precise using the the following notion
of view. The definition uses an absorbtive concatenation function ◦, defined over
a set X by, for s ∈ X∗ and x ∈ X , by s ◦ x = s if x is equal to the final
element of s (if any), and s◦x = s ·x (ordinary concatenation) otherwise. Define
the view of domain u with respect to a sequence α ∈ A∗ using the function
viewu : A∗ → (A ∪ O)∗ (where O is the set of observations in the system)
defined by

viewu(ε) = obsu(s0), and
viewu(αa) = (viewu(α) · b) ◦ obsu(s0 · α),

where b = a if dom(a) = u and b = ε otherwise. That is, viewu(α) is the
sequence of all observations and actions of domain u in the run generated by α,
compressed by the elimination of stuttering observations. Intuitively, viewu(α)
is the complete record of information available to agent u in the run generated
by the sequence of actions α. The reason we apply the absorbtive concatenation
is to capture that the system is asynchronous, with agents not having access to
a global clock. Thus, two periods of different length during which a particular
observation obtains are not distinguishable to the agent.

We may then say that agent u knows a fact φ about a sequence α if φ is true
of all sequences α′ such that viewu(α) = viewu(α′). Similarly, φ is distributed
knowledge to a group G of agents in a sequence α if φ is true of all sequences
α′ such that viewu(α) = viewu(α′) for all u ∈ G. These are essentially the
definitions of knowledge and distributed knowledge used in the literature on
reasoning about knowledge [FHMV95], for an agent with asynchronous perfect
recall . Intuitively, a fact is distributed knowledge to the set of agents G if it
could be deduced after combining all the information that these agents have.
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We may now present our example illustrating a weakness of IP-security. The
essence of the example is that IP-security is consistent with an agent acquir-
ing information that is not distributed knowledge to the agents from which it
permitted (by an intransitive policy) to acquire information.

Example 1. Consider the intransitive policy � given by H1 � D1, H2 � D2,
D1 � L and D2 � L. Intuitively, H1, H2 are two High security domains, D1, D2

are two downgraders, and L is an aggregator of downgraded information. For
this policy, channel control, one of the motivations for intransitive noninterfer-
ence, would require that any information about L1 and L2 available to L must
have reached L via the downgraders D1 and D2. We may capture this intuition
more formally by expecting that if M is a system that is secure with respect to
this policy, if a fact about H1, H2 is known to L, then it should be distributed
knowledge to D1, D2. We show that if security is interpreted as IP − security,
then this expectation can be false.

Define the systemM with actions A = {h1, h2, d1, d2, l} with domainsH1,H2,
D1, D2, and L, respectively. The set of states of M is the set of all strings in A∗.
The transition function is defined by concatenation, i.e. for a state α ∈ A∗ and
an action a ∈ A, step(α, a) = αa. The observation functions are defined using
the ipurge function associated to the above policy: obsu(α) = [ipurge(α, u)].
(Here we put brackets around the sequence of actions when it is interpreted as
an observation, to distinguish such occurrences from the actions themselves as
they occur in a view.)

It is plain that M is IP-secure. For, if ipurge(α, u) = ipurge(α′, u) then
obsu(s0 · α) = [ipurge(α, u)] = [ipurge(α′, u)] = obsu(s0 · α′).

Consider the sequences of actions α1 = h1h2d1d2 and α2 = h2h1d1d2. Note
that these differ in the order of the events h1, h2. Let φ state that there is an
occurrence of h1 before an occurrence of h2.

Then we have obsL(α1) = [ipurge(α1, L)] = [h1h2d1d2]. It follows that in
α1, agent L knows φ. We demonstrate that α2 is a witness showing φ is not
distributed knowledge to {D1, D2} in α1. Plainly α2 does not satisfy φ so we
need to show viewu(α1) = viewu(α2) for u ∈ {D1, D2}. For this, note

viewD1(α1)
= obsD1(ε) ◦ obsD1(h1) ◦ obsD1(h1h2) ◦ d1 ◦ obsD1(h1h2d1) ◦ obsD1(h1h2d1d2)
= [ε] ◦ [h1] ◦ [h1] ◦ d1 ◦ [h1d1] ◦ [h1d1]
= [ε] ◦ [ε] ◦ [h1] ◦ d1 ◦ [h1d1] ◦ [h1d1]
= obsD1(ε) ◦ obsD1(h2) ◦ obsD1(h2h1) ◦ d1 ◦ obsD1(h2h1d1) ◦ obsD1(h2h1d1d2)
= viewD1(α2)

The case for u = D2 is symmetric. Thus, L has acquired information that cannot
have come from the two sources D1 and D2 that are supposed to be, according
to the policy, its only sources of information. '�

Our example has a rather different character to those of RG. We believe that it
more convincingly demonstrates that IP-security allows information flows that
contradict the intuitive meaning of the policy, at the level of abstraction at which
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the notion of noninterference is intended to operate (rather than the much more
detailed level of abstraction to which RG tried to apply it.) We bolster the case
for this claim in what follows, by showing that some alternative definitions are
better behaved.

3 Alternative Definitions

As a response to Example 1, we consider several alternative definitions of security
for intransitive policies.

To begin, let us consider why it was felt to be necessary to modify the def-
inition of P-security for the intransitive case. For this, note that the system of
Example 1 is not P-secure. For example, if we take α = h1d1 and α′ = d1 then
purgeL(α) = d1 = purgeL(α′) but obsL(s0 · α) = [α] �= [α′] = obsL(s0 · α′).
However, this particular instance does not seem like it should be a counterexam-
ple to the security of the system. Intuitively, the fact that L observations differ
on s0 ·α and s0 ·α′ is justifiable, on the grounds that the action d1 “downgrades”
to L the fact that action h1 has been performed. Thus, whereas IP-security is
too weak, P-security seems to be too strong, since it does not permit an agent
to forward information that it has acquired.

We are lead to propose two other definitions of security.1 Both are based on a
concrete model of the maximal amount of information that an agent may have
after some sequence of actions has been performed, and state that an agent’s
observation may not give it more than this maximal amount of information.
The definitions differ in the modelling of the maximal information, and take the
view that an agent increases its information either by performing an action or
by receiving information transmitted by another agent.

In the first model of the maximal information, what is transmitted when an
agent performs an action is information about the actions performed by other
agents. The following definition expresses this in a weaker way than the ipurge
function.

Given sets X and A, let the set T (X,A) be the smallest set containing X
and such that if x, y ∈ T (X,A) and z ∈ A then (x, y, z) ∈ T (X,A). Intuitively,
the elements of T (X,A) are are binary trees with leaves labelled from X and
interior nodes labelled from A.

Given a policy �, define, for each agent u ∈ D, the function tau : A∗ →
T ({ε}, A) inductively by tau(ε) = ε, and, for α ∈ A∗ and a ∈ A,

1. if dom(a) �� u, then tau(αa) = tau(α),
2. if dom(a) � u, then tau(αa) = (tau(α), tadom(a)(α), a).

Intuitively, tau(α) captures the maximal information that agent u may, consis-
tently with the policy �, have about the past actions of other agents. (The
nomenclature is intended to be suggestive of transmission of information about

1 The question of how exactly our definitions relate to RG’s definitions is subtle and
will be treated elsewhere.
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actions. ) Initially, an agent has information about what actions have been per-
formed. The recursive clause describes how the maximal information tau(α)
permitted to u after the performance of α changes when the next action a is
performed. If a may not interfere with u, then there is no change, otherwise, u’s
maximal permitted information is increased by adding the maximal information
permitted to dom(a) at the time a is performed (represented by tadom(a)(α)),
as well the fact that a has been performed. Thus, this definition captures the
intuition that an agent may only transmit information that it is permitted to
have, and then only to agents with which it is permitted to interfere.

Definition 3. A system M is TA-secure with respect to a policy � if for all
agents u and all α, α′ ∈ A∗ such that tau(α) = tau(α′), we have obsu(s0 · α) =
obsu(s0 · α′).

Intuitively, this says that each agent’s observations provide the agent with no
more than the maximal amount of information that may have been transmitted
to it, as expressed by the functions ta.

Example 2. Note that the system of Example 1 is not TA-secure. For,

taL(h1h2d1d2) = (taL(h1h2d1), taD2(h1h2d1), d2)
= ((taL(h1h2), taD1(h1h2), d1), taD2(h1h2), d2)
= ((taL(h1), taD1(h1), d1), (taD2(h1), taH2(h1), h2), d2)
= ((ε, (ε, ε, h1), d1), (ε, ε, h2), d2)

and

taL(h2h1d1d2) = (taL(h2h1d1), taD2(h2h1d1), d2)
= ((taL(h2h1), taD1(h2h1), d1), taD2(h2h1), d2)
= ((taL(h1), (taD1(h2), taH1(h2), h1), d1), taD2(h2), d2)
= ((ε, (ε, ε, h1), d1), (ε, ε, h2), d2).

So taL(h1h2d1d2) = taL(h2h1d1d2), but obsL(h1h2d1d2) = [h1h2d1d2]
�= [h2h1d1d2] = obsL(h2h1d1d2). This illustrates that TA-security is in accor-
dance with our intuitions about Example 1. '�

The definition of TA-security has one aspect that might plausibly be questioned:
it classifies as secure situations in which an agent transmits information to an-
other that it has not actually observed. Whether one considers this to be a
violation of security depends on one’s attitude to forwarding of unobserved in-
formation. IP-security considers this acceptable, as does TA-security. However,
it is possible to construct a definition that would consider this as insecure, by
changing the definition of the function ta.

Given a policy �, for each domain u ∈ D, define the function tou : A∗ →
T ((A ∪O)∗, A) by tou(ε) = obsu(s0) and

tou(αa) =
{
tou(α) when dom(a) �� u,
(tou(α), viewdom(a)(α), a) otherwise.
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Intuitively, this definition takes the model of the maximal information that an
action a may transmit after the sequence α to be the fact that a has occurred,
together with the information that dom(a) actually has, as represented by its
view viewdom(a)(α). By contrast, TA-security uses in place of this the maximal
information that dom(a) may have. (The nomenclature is intended to be sugges-
tive of transmission of information about observations. ) We may now base the
definition of security on the function to rather than ta.

Definition 4. The system M is TO-secure with respect to � if for all domains
u ∈ D and all α, α′ ∈ A∗ with tou(α) = tou(α′), we have obsu(s0 · α) =
obsu(s0 · α′).

It is possible to give a flatter representation of the information in tou(α) that
clarifies the relationship of this definition to P-security. Define the possibly trans-
mitted view of domain u for a sequence of actions α to be the largest prefix
tviewu(α) of viewu(α) than ends in an action a with dom(a) = u. Then we have
the following result, which intuitively says that u’s observations depend only on
(1) the parts of the views of other agents which are permitted to pass informa-
tion to u, that they have actually acted to transmit, and (2) u’s knowledge of
the ordering of its own actions and the actions of these other agents.

Proposition 1. M is TO-secure with respect to a policy � iff for all sequences
α, α′ ∈ A∗, and domains u ∈ D, if purgeu(α) = purgeu(α′) and tviewv(α) =
tviewv(α′) for all domains v �= u such that v � u, then obsu(s0 ·α) = obsu(s0 ·
α′).

The following result describes how these definitions are related. Like IP-security,
the notions P-security, TO-security and TA-security are generalizations of the
classical notion of noninterference in the transitive case.

Theorem 1. With respect to a given policy �,

1. if M is P-secure then M is TO-secure,
2. if M is TO-secure then M is TA-secure,
3. if M is TA-secure then M is IP-secure, and
4. if � is transitive then M is P-secure iff M is TO-secure iff M is TA-secure

iff M is IP-secure.

4 Unwinding Relations

In this section we relate our alternative definitions of security for intransitive
policies to “unwinding conditions” that have been discussed in the literature
as a way to prove noninterference [GM84]. We show that Rushby’s proposed
unwinding conditions for intransitive noninterference are most closely related
to the notion of TA-security (where they provide a sound and complete proof
method), although they are also sufficient for TO-security in a special case. We
also show the somewhat suprising fact that Rushby’s unwinding conditions are
not preserved under bisimulation.
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We begin by recalling Rushby’s results on unwinding for intransitive nonin-
tereference. Suppose we have for each domain u an equivalence relation ∼u on
the states of M . Rushby discusses the following “unwinding” conditions on such
equivalence relations.

OC: If s ∼u t then obsu(s) = obsu(t). (Output Consistency)
SC: If s ∼u t then s · a ∼u t · a. (Step Consistency)
LR: If dom(a) �� u then s ∼u s · a. (Left Respect)

If these conditions are satisfied and � is a transitive policy, then M is P-secure
[GM84]. Conversely, consider the particular equivalence relations ≈u on states,
defined by s ≈u t if for all strings α in A∗ we have obsu(s · α) = obsu(t · α).
Rushby uses these equivalence relations to show completeness of the unwinding
conditions for transitive noninterference:

Proposition 2. ([Rus92] Theorem 6) Suppose M is P-secure with respect to the
transitive policy �. Then the relations ≈u satisfy OC, SC and LR.

For intransitive noninterference he introduces the following condition:

WSC: If s ∼u t and s ∼dom(a) t then s · a ∼u t · a. (Weak Step Consistency)

Define a weak unwinding on a systemM with respect to a policy � to be a family
of relations ∼u, for u ∈ D, satisfying OC,WSC and LR. It will be convenient to
have the following alternate characterization of this notion. Given a system M
and a policy �, let {≈uw

u }u∈D be the smallest family of equivalence relations
(under the pointwise containment order) satisfying WSC and LR.

Proposition 3. There exists a weak unwinding for M with respect to � iff the
relations ≈uw

u satisfy OC.

Rushby shows the following:

Proposition 4. ([Rus92], Theorem 7) Suppose that the relations {∼u}u∈D on
a system M satisfy OC,WSC and LR. Then M is IP-secure for �.

However, he does not establish completeness of these unwinding conditions for
IP-security. The following result yields an explanation of this fact.

Theorem 2. Suppose that there exists a weak unwinding for M with respect to
�. Then M is TA-secure with respect to �.

Since, by Example 2, TA-security is stronger than IP-security, this result implies
that the existence of equivalence relations ∼u satisfying conditions OC, WSC
and LR is not a necessary condition for IP-security, since if this were the case,
then every IP-secure system would be TA-secure.

This raises the question of whether the existence of weak unwindings is equiv-
alent to TA-security instead. We now show that this question can be answered in
the positive, provided it is formulated appropriately. The existence of weak un-
windings turns out to have a somewhat surprising dependency on the structure
of the system.
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Given a system M = 〈S, s0, step, obs, dom〉 with actions A, define the “un-
folded” system uf(M) = 〈S′, s′0, step

′, obs′, dom〉 with actions A having the
same domains as in M , by S′ = A∗, s′0 = ε, step′(α, a) = αa, and obs′u(α) =
obsu(s0 ·α), where s0 ·α is computed in M . Intuitively, this construction unfolds
the graph of M into an infinite tree. Then we have the following.

Theorem 3. M is TA-secure with respect to � iff there exists a weak unwinding
on uf(M) with respect to �.

It is reasonable to give a definition of security on M by reference to uf(M)
since these systems are bisimilar under the obvious notion of bisimulation on
the state-observed system model. Bisimilarity of two systems is usually taken to
imply their equivalence on all properties of interest. One might therefore expect
from Theorem 3 that TA-security implies the existence of a weak unwinding on
the system M as well as on uf(M). It is the case that unwindings on M can be
lifted to unwindings on uf(M).

Proposition 5. If there exists a weak unwinding for � on M then there exists
a weak unwinding for � on uf(M)

However, what we need, given Theorem 3, to deduce the existence of an unwind-
ing on M from TA-security is the converse of this result. The following example
shows that the converse does not hold. The reader may obtain some intuition
for this example by noting that whereas weak unwinding seems to be sensitive
to information about past actions, bisimulation cares only about the future. The
essence of the example is that not enough past information is encoded in the
states of the system M itself.

Example 3. Consider the system and policy depicted in Figure 1. There are
actions a, b, c of domains A, B, C respectively, and s0 is the initial state. For all
domains u other than D, we assume that the observation obsu is the same on all
states. TA-security therefore depends only on the behaviour of the system with
respect to domain D, where there are two possible observations o, o′ as indicated.
We show that there does not exist a weak unwinding for � on M , but there
does exist one on uf(M).

For the former, we consider the relation family ≈uw
u on M . Note that since

B �� D and s0 · b = s1 we have by LR that s0 ≈uw
D s1. Similarly, since C �� A

we have s0 ≈uw
A s1. Hence, by WSC, for the action a, we get s0 ≈uw

D s2. Since

o o o'

s0 s1 s2

a

b,c

a,b,cb,c

a

obs
D

C

B A

D

Fig. 1. An example showing TA-security does not imply existence of a weak unwinding
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obsD(s0) = o and obsD(s2) = o′, we have that ≈uw
D does not satisfy OC. Since

≈uw
u is the smallest family satisfying WSC and LR, there can exist no weak

unwinding for � on M .
For the unwinding on uf(M), consider ≈uw

u =∼ta
u . Since this family of equiv-

alence relations satisfies WSC and LR, it suffices to consider the property OC,
where we need consider only the domain D, as already noted. Here, the only
possible failure of OC is for states α, α′ where taD(α) = taD(α′), s0 ·α ∈ {s0, s1}
and s0 · α′ = s2. Now s0 · α′ = s2 implies that α′ contains either a b and a later
a, or a c and a later a. View taD(α′) as a tree with nodes of the form (x, y, e)
representing a vertex labelled e with subtrees corresponding to x and y. Then
this tree contains a path from a leaf to the root containing either b and later a,
or c and later a. The same then applies to the identical tree for taD(α), which
implies that α contains either a b and later a or a c and later a. But this means
that s0 · α = s2, a contradiction. Hence the family ≈uw

u satisfies OC. '�

Since uf(M) and M are bisimilar, this example shows that bisimulation does
not preserve existence of a weak unwinding. It is therefore necessary to either
abandon the presumption that security properties are preserved under bisimu-
lation, or adopt the stance that existence of a weak unwinding (on the system
as presented) is not a sensible notion of security. We prefer the latter, but note
that this does not hinder the utility of weak unwinding as a proof technique.

Further evidence of the utility of weak unwinding is the following result, which
shows that it can also be used as a proof technique for TO-security. Define the
relations ≈obs

u on states of a system M by s ≈obs
u t if obsu(s) = obsu(t). Then

we have the following sufficient condition for TO-security:

Proposition 6. Suppose the relation family ≈obs
u is a weak unwinding on M

with respect to �. Then M is TO-secure with respect to �.

5 Access Control Systems

As a particular application of the unwinding conditions, Rushby [Rus92] dis-
cusses a notion of access control system that he formulates in order to give
semantic content to the Bell-La Padula model [BP76] (which has been criticised
for lacking semantics). He shows that every access control system satisfying a
compatibility condition with respect to a noninterference policy is IP-secure. In
this section, we formulate a weaker variant of Rushby’s definitions, and show
that it implies the stronger notion of TA-security. We also show that our weaker
variant implies the even stronger notion of TO-security, provided we work with
a specific, but intuitive, definition of observation in access control systems.

Moreover, we also show a converse to the result that access control systems
are TA-secure, viz., that every system satisfying TA-security can be interpreted
as an access control system. This proves the equivalence in some sense of access
control and TA-security. We believe that these results, together with the example
of Section 3 and the results of the previous section, provide strong evidence that
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TA-security, rather than IP-security, is the notion that best realises the original
objectives of the notion of intransitive noninterference.

According to Rushby, a system with structured state is a machine
〈S, s0, A, step, obs, dom〉 together with

1. a set N of names,
2. a set V of values, and functions
3. contents : S × N → V , with contents(s, n) interpreted as the value of

object n in state s,
4. observe : D → P(N), with observe(u) interpreted as the set of objects

that domain u can observe, and
5. alter : D → P(N), with alter(u) interpreted as the set of objects whose

values domain u is permitted to alter.

For a system with structured state, whenu ∈ D and s is a state, write ocu(s) for the
function mapping observe(u) to values, defined by ocu(s)(n) = contents(s, n)
for n ∈ observe(u). Intuitively, ocu(s) captures all the content of the state s that
is observable to u. Using this, we may define a binary relation ∼oc

u of observable
content equivalence on S for each domain u ∈ D, by s ∼oc

u t if ocu(s) = ocu(t).
In order to capture the conditions under which the machine operates in accor-

dance with the intuitive interpretations of this extra structure, Rushby defines
the following three Reference Monitor Assumptions.

RM1. If s ∼oc
u t then obsu(s) = obsu(t) .

RM2. If s ∼oc
dom(a) t and either contents(s · a, n) �= contents(s, n) or

contents(t · a, n) �= contents(t, n) then contents(s · a, n) = contents(t ·
a, n)
RM3. If contents(s · a, n) �= contents(s, n) then n ∈ alter(dom(a)).

The first of these says that an agent’s observation depends only on the values of
the objects observable to the agent. The third says that if an action can change
the value of an object, then the agent of that action is in fact permitted to alter
that object. The condition RM2 is more subtle. The following provides a possibly
more perspicuous formulation of this condition:

Proposition 7. RM2 is equivalent to the following: For all states s, either

1. for all t ∼oc
dom(a) s, we have contents(t · a, n) = contents(t, n), or

2. for all t ∼oc
dom(a) s, we have contents(s · a, n) = contents(t · a, n)

That is, with the choice depending only on information observable to dom(a),
the effect of the action is either to make no change to n or to assign a new value
to n that depends only on information observable to dom(a).

In addition to the reference monitor assumptions, Rushby considers the con-
dition:

AOI. If alter(u) ∩ observe(v) �= ∅ then u � v.

Intuitively, this says that the ability to write to a value that an agent can observe
counts as a way to interfere with that agent. Rushby shows the following:
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Proposition 8. ([Rus92], Theorems 2,8) Suppose M is a system with structured
state that satisfies RM1-RM3 and AOI. Then the family of relations ∼oc

u on M
is a weak unwinding with respect to �. Hence M is IP-secure for �.

By the results of the previous section, Rushby’s result in fact yields the stronger
conclusion that access control systems consistent with a policy are TA-secure.
We can further strengthen this result by weakening the precondition.

Note that the condition RM2 says that the next value of n produced on
performing an action a depends only on the values of names observable to dom(a).
If n is not observable to dom(a), this may be too strong. Consider, for example,
the situation where n represents a block of memory, and the action a writes
to a single location within this block. Here the successor value depends on the
value written (which will typically depend on the values of names observable to
dom(a)), but also on the previous value of n. Similarly, if the name n is an object
in an object-oriented system, and the effect of the action is to call a method
of this object, then the successor value will depend of the input parameters of
the call (which will depend on values of names observable to dom(a)), but also
on the value of n. Thus, the condition RM2 can plausibly be weakened to the
following.

[RM2 ′] For all actions a, states s, t and names n ∈ alter(dom(a)), if
s ∼oc

dom(a) t and contents(s, n) = contents(t, n) we have contents(s·a, n) =
contents(t · a, n).

That is, for n ∈ alter(dom(a)), the value contents(s · a, n) is a function of
both contents(s, n) and ocdom(a)(s). Using Proposition 7 it can be seen that
RM2 implies RM2 ′. The converse does not hold.

We now weaken Rushby’s notion of access control system by replacing RM2
by RM2 ′. We define a system with structured states to be a weak access control
system if it satisfies conditions RM1,RM2 ′, and RM3.

We also introduce a related notion on systems without structured states,
that expresses that the system behaves as if it were an access control system.
Say that a system M with states S admits a weak access control implementation
consistent with � if there exists a set of names N , a set of values V and functions
observe : D×S → P(N) , alter : D×S → P(N) and contents : N ×S → V ,
with respect to which M is a weak access control system satisfying the condition
AOI.

The following shows that weak access control systems compatible with a policy
satisfy Rushby’s unwinding conditions for intransitive noninterference:

Proposition 9. Suppose M is a weak access control system consistent with �.
Then the family of relations ∼oc

u is a weak unwinding on M with respect to �.

We may also show a converse to this result, which leads to the conclusion that
unwinding and weak access control systems are essentially equivalent.

Proposition 10. Suppose that there exists a weak unwinding on M with respect
to �. Then M admits a weak access control interpretation consistent with �.
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Combining these results with those of the previous section, we see that there is a
close correspondence between TA-security, weak access control interpretations,
and weak unwindings.

Corollary 1. The following are equivalent

1. M is TA-secure with respect to �,
2. uf(M) admits a weak access control interpretation consistent with �,
3. there exists a weak unwinding on uf(M) with respect to �.

From Theorem 2 and Proposition 9, we also obtain the following.

Corollary 2. If M is a weak access control system consistent with � then M
is TA-secure for �.

This conclusion is a more general result than Proposition 8, in which we have
both weakened the antecedent and strengthened the consequent. The following
example shows that we cannot further strengthen the conclusion to TO-security.

Example 4. Consider the system for the policy A � B � C with structured
states for the set of names nAB, nBC , taking boolean values. Intuitively, these
variables represent channels between the agents, so that nAB ∈ alter(A) ∩
observe(B) and nBC ∈ alter(B) ∩ observe(C). Plainly this is consistent with
AOI. We represent states as tuples s = (nAB, nBC) with the obvious interpreta-
tion for contents. The initial state of the system is (0, 0). Domain A has actions
a with semantics nAB := 1 and B has action b with semantics nBC := nAB. The
observation functions are defined on the state s = (nAB, nBC) by obsA(s) =
obsB(s) = ⊥ and obsC(s) = nBC . It can be verified that this system satisfies
RM1,RM2 ′, RM3. However, it does not satisfy TO-security. To see this, consider
the sequences α = b and α′ = ab. Here we have purgeC(α) = b = purgeC(α′),
and tviewB(α) = ⊥b = tviewB(α′) but obsC(s0 ·α) = 0 �= 1 = obsC(s0 ·α′). '�

Notice that in this example, not all of the names observable to a domain have
their contents visible in the observation of the domain. Say that a system with
structured states is fully observable if in all states s we have obsu(s) = ocu(s).
Note that this means that the relations ∼oc

u and ≈obs
u coincide. We now obtain

the following from Propositions 6 and 9. This shows that, modulo the reasonable
assumption of full observability, we can derive a result similar to Corollary 2,
but with the yet stronger conclusion of TO-security.

Corollary 3. If M is a fully observable weak access control system consistent
with � then M is TO-secure with respect to �.

A similar result does not hold with P-security in place of TO-security.

6 Conclusion

Our results have left open a number of technical questions. We have shown
that weak unwindings provide a complete proof technique for TA-security, but
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have not provided a complete technique for TO-security. The reason for this is
that there is inherently no tractable set of conditions on the states of the sys-
tem that characterizes TO-security. We will treat this topic in a followup paper
[Mey07] which deals with the complexity of the notions of security discussed
in this paper. Another area requiring investigation is the generalization of our
definitions to nondeterministic systems and systems that are not input-enabled,
as has been studied for IP-security by von Oheimb [Ohe04]. More generally, one
could consider extensions to the richer semantic framework of process algebra.

Both the fact, as argued by RG, that the notion of (intransitive) noninterfer-
ence on its own falls short of expressing the correctness properties of downgraders
that they sought to capture, and the fact, as we have shown, that there are sev-
eral plausible notions of noninterference for intransitive policies, suggests that
the notion of noninterference policy expressed by a relation � on domains lacks
expressiveness that will be required in applications. We believe further work on
richer formats for the expression of causality and information flow policies is war-
ranted. The approach we have followed in this paper, of comparing an agent’s
actual information to an intuitive concrete operational model of the maximal in-
formation that an agent is permitted to have and transmit, could well be useful
in this enterprise.

The specific case of downgrading policies has received some recent attention.
Chong and Myers [CM04] have proposed a flexible language that attaches down-
grading conditions to data items. Mantel and Sands [MS04] have proposed to
introduce a programming annotation for downgrading, enabling the program-
mer to explicitly mark regions of code that are permitted to violate a transitive
policy. They apply a definition based on IP-security. Bossi et al [BPR04] develop
a theory of downgrading grounded in bisimulation-based notions of unwinding.
Sabelfeld and Sands [SS05] lay out some general principles and direction for re-
search in this area. It would be of interest to reconsider these contributions in
the light of our results in this paper.
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Abstract. The execution of business processes in the decentralized setting raises
security requirements due to the lack of a dedicated infrastructure in charge of
management and control tasks. Basic security features including compliance of
the overall sequence of workflow operations with the pre-defined workflow exe-
cution plan or traceability become critical issues that are yet to be addressed. In
this paper, we suggest new security mechanisms capitalizing on onion encryption
and group encryption techniques in order to assure the integrity of the distrib-
uted execution of workflows and to manage traceability with respect to sensitive
workflow instances. We carry out an in depth analysis of the security properties
offered by these mechanisms. Our solution can easily be integrated into distrib-
uted workflow management systems as its design is strongly coupled with the
runtime specification of decentralized workflows.

Keywords: Integrity of execution, Traceability, Decentralized workflows.

1 Introduction

State of the art business processes may require a decentralized support of execution
[1],[2],[3] because of their dynamicity or unusual execution environments. The flexibil-
ity of a distributed workflow enactment system on the other hand comes at the expense
of security due to the lack a dedicated infrastructure to perform the management and
control tasks during the execution of a business process. As a result, basic security
features such as integrity of workflow execution assuring the compliance of the over-
all sequence of operations with the pre-defined workflow execution plan are no longer
guaranteed. In addition, tracing back the identity of the business partners involved in a
workflow instance becomes an issue without a trusted centralized coordination mecha-
nism selecting workflow participants. As opposed to centralized workflow management
systems, the distributed execution of workflows indeed raises new security requirements
due to the lack of a dedicated coordinator. Yet, existing decentralized workflow manage-
ment systems do not incorporate the appropriate mechanisms to meet the new security
requirements in addition to the ones identified in the centralized setting. Even though
some recent research efforts in the field of distributed workflow security have indeed
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been focusing on issues related to the management of rights in business partner assign-
ment or detecting conflicts of interest [4],[5],[6], basic security issues related to the
security of the overall workflow execution such as integrity and evidence of execution
have not yet been addressed. We already tackled some of these problems in a previous
work [7] yet the solution we proposed did not take into account the management of
security policies and business partners’ trustworthiness.

In this paper, we present new mechanisms supporting the secure execution of work-
flows in the decentralized setting. These mechanisms capitalize on onion encryption
techniques [8] and security policy models in order to assure the integrity of the dis-
tributed execution of workflows, to prevent business partners from being involved in a
workflow instance forged by a malicious peer and to provide business partners’ identity
traceability for sensitive workflow instances. The suggested mechanisms can easily be
integrated into the runtime specification of decentralized workflow management sys-
tems as illustrated in this paper using the pervasive workflow model specified in [3].
The remainder of the paper is organized as follows. Section 2 and 3 outline the perva-
sive workflow model and the associated security requirements, respectively. In section
4 our solution is specified while in section 5 the runtime specification of the secure dis-
tributed workflow execution is presented. Section 6 presents the security analysis of the
proposed mechanisms. Finally section 7 discusses related work and section 8 presents
the conclusion.

2 Workflow Model

The workflow management system used to support our approach was designed in [3].
This model supports the execution of business processes in environments without in-
frastructure and features a distributed architecture characterized by two objectives:

– fully decentralized: the workflow management task is carried out by a set of devices
in order to cope with the lack of dedicated infrastructure

– dynamic assignment of business partners to workflow tasks: the actors can be dis-
covered at runtime

Having designed an abstract representation of the workflow whereby business partners
are not yet assigned to tasks, a partner launches the execution and executes a first set of
tasks. Then the initiator searches for a partner able to perform the next set of tasks. Once
the discovery phase is complete, a workflow message including all data is sent by the
workflow initiator to the newly discovered partner and the workflow execution further
proceeds with the execution of the next set of tasks and a new discovery procedure. The
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Data 
transfert

Request

2b
1b

3v2v1v

3b
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(2)

(3)

(4)

(5)

(6)

(7)Execution of
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Fig. 1. Pervasive workflow runtime
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sequence composed of the discovery procedure, the transfer of data and the execution
of a set of tasks is iterated till the final set of tasks. In this decentralized setting, the data
transmitted amongst partners include all workflow data. We note W the abstract repre-
sentation of a distributed workflow defined by W = {(vi)i∈[1,n], δ} where vi denotes a
vertex which is a set of workflow tasks that are performed by a business partner from
the receipt of workflow data till the transfer of data to the next partner and δ is the set
of execution dependencies between those vertices. We note (Mi→jp)p∈[1,zi] the set of
workflow messages issued by bi to the zi partners assigned to the vertices (vjp)p∈[1,zi]

executed right after the completion of vi. The instance of W wherein business partners
have been assigned to vertices is denoted Wb = {Wiid, (bi)i∈[1,n]} where Wiid is a
string called workflow instance identifier. This model is depicted in figure 1. In this pa-
per, we only focus on a subset of execution dependencies or workflow patterns namely,
SEQUENCE, AND-SPLIT, AND-JOIN, OR-SPLIT and OR-JOIN.

3 Security Requirements

3.1 Authorization

The main security requirement for a workflow management system is to ensure that
only authorized business partners are assigned to workflow tasks during an instance.
In the decentralized setting, the assignment of workflow tasks is managed by partners
themselves relying on a service discovery mechanism. In this case, the business partner
assignment procedure enforces a matchmaking procedure whereby business partners’
security credentials are matched against security requirements for tasks.

3.2 Execution Proofs and Traceability

A decentralized workflow management system does not offer any guarantee regarding
the compliance of actual execution of workflow tasks with the pre-defined execution
plan. Without any trusted coordinator to refer to, the business partner bi assigned to the
vertex vi needs to be able to verify that the vertices scheduled to be executed beforehand
were actually executed according to the workflow plan. This is a crucial requirement to
prevent any malicious peer from forging a workflow instance.

In our workflow execution model, candidate business partners are selected at runtime
based on their compliance with a security policy. Partners’ involvement in a business
process can thus remain anonymous as their identity is not assessed in the partner selec-
tion process. In some critical business scenarios however, disclosing partners’ identity
may be required so that in case of dispute or conflict on the outcome of a sensitive
task the stakeholders can be identified. In this case, the revocation of business partners’
anonymity should only be feasible for some authorized party in charge of arbitrating
conflicts, preserving the anonymity of identity traces is thus necessary.

3.3 Workflow Data Protection

In the case of decentralized workflow execution, the set of workflow data denoted
D = (dk)k∈[1,j] is transferred from one business partner to another. This raises ma-
jor requirements for workflow data security in terms of integrity, confidentiality and
access control as follows:
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– data confidentiality: for each vertex vi, the business partner bi assigned to vi should
only be authorized to read a subset Dr

i of D
– data integrity: for each vertex vi, the business partner bi assigned to vi should only

be authorized to modify a subset Dw
i of Dr

i
– access control: the subsets Dr

i and Dw
i associated with each vertex vi should be

determined based on the security policy of the workflow

4 The Solution

4.1 Key Management

Two types of key pairs are introduced in our approach. Each vertex vi is first associated
with a policy poli defining the set of credentials a candidate partner needs to satisfy in
order to be assigned to vi. The policy poli is mapped to a key pair (PKpoli , SKpoli)
where SKpoli is the policy private key and PKpoli the policy public key. Thus satisfy-
ing the policy poli means knowing the private key SKpoli , the inverse may however not
be true depending on the policy private key distribution scheme as explained later on in
section 6. The policy private key SKpoli can indeed be distributed by different means
amongst which we distinguish three main types:

– Key sharing: a policy poli is associated with a single private policy key that is
shared amongst principals satisfying poli. A simple key server KSpoli associated
with poli can be used to distribute the policy private key SKpoli based on the com-
pliance of business partners with poli. In this case, the partners satisfying poli share
the same policy private key.

– Policy-based cryptography: a policy poli is expressed in a conjunctive-disjunctive
form specifying the combinations of credentials a principal is required to satisfy to
be compliant with the policy. A cryptographic scheme [9] is used to map credentials
to keys denoted credential keys that can be combined to encrypt, decrypt and sign
messages based on a given policy. Some trusted authorities are in charge of dis-
tributing credential keys to requesters when the latter satisfies some assertions (e.g.
(jobtittle=director)∧(company=xcorp)). This scheme provides direct mapping be-
tween a policy and some key material and thus eases policy management as opposed
to key sharing. No anonymity-preserving traceability solution is however offered
as principals satisfying a given assertion may possess the same credential key.

– Group cryptography: a policy poli is mapped to a group structure in which a group
manager distributes different private policy keys to group members satisfying poli.
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A single encryption key is used to communicate with group members who however
use their personal private key to decrypt and sign messages. This mechanism offers
an identity traceability feature as only the group manager can retrieve the identity
of a group member using a signature issued by the latter [10]. We note GMpoli

the group manager of the group whose members satisfy poli. The management of
policy key pair is as complex as for the key server solution since a group structure
is required for each specified policy.

Second, we introduce vertex key pairs (PKi, SKi)i∈[1,n] to protect the access to
workflow data. We suggest a key distribution scheme wherein a business partner bi
whose identity is a priori unknown retrieves the vertex private key SKi upon his assign-
ment to the vertex vi. Onion encryption techniques with policy public keys PKpoli are
used to distribute vertex private keys. Furthermore, execution proofs have to be issued
along with the workflow execution in order to ensure the compliance of the execution
with the pre-defined plan. To that effect, we also leverage onion encryption techniques
in order to build an onion structure with vertex private keys to assure the integrity of
the workflow execution. The suggested key distribution scheme (Od) and the execution
proof mechanism (Op) are depicted in figure 2 and specified later on in the paper.

In the sequel of the paper,M denotes the message space, C the ciphertext space and
K the key space. The encryption of a message m ∈ M with a key K ∈ K is noted
{m}K and h1, h2 denote one-way hash functions.

4.2 Data Protection

The role of a business partner bi assigned to a vertex vi consists in processing the
workflow data that are granted read-only and read-write access during the execution
of vi. We define a specific structure depicted in figure 4 called data block to protect
workflow data accordingly. Each data block consists of two fields: the actual data dk

and a signature signa(dk) = {h1(dk)}SKa
. We note Ba

k = (dk, signa(dk)) the data
block including the data segment dk that has last been modified during the execution
of va. The data block Ba

k is also associated with a set of signatures denoted Ha
k that is

computed by ba assigned to va. Ha
k =

{
{h1({Ba

k}PKl
)}SKa|l ∈ Ra

k

}
where Ra

k is the
set defined as follows. Ra

k = {l ∈ [1, n]|(dk ∈ Dr
l ) and (vl is executed after va) and (vl

is not executed after vp(a,l,k))} where vp(a,l,k) denotes the first vertex executed after va

such that dk ∈ Dw
p(a,l,k)

and that is located on the same branch of the workflow as va

and vl. For instance, consider the example of figure 3 whereby d1 is in Dw
1 , Dr

2, Dw
3 ,

Dr
5 and Dw

6 , v(1,2,1) = v3, R1
1 = {2, 3, 5, 6} and R3

1 = {6}.
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When the business partner bi receives the data blockBa
k encrypted with PKi (i.e. he

is granted read access on dk), he decrypts the structure using SKi in order to get access
to dk and signa(dk). bi is then able to verify the integrity of dk using PKa, i.e. that dk

was last modified after the execution of va. Further, if bi is granted write access on dk,
he can update the value of dk and compute signi(dk) yielding a new data blockBi

k and
a new set Hi

k. If on the contrary bi receivesBa
k encrypted with PKm (in this case vm is

executed after vi), bi can verify the integrity of {Ba
k}PKm by matching h1({Ba

k}PKm)
against the value contained in Ha

k .
The integrity and confidentiality of data access thus relies on the fact that the private

key SKi is made available to bi only prior to the execution of vi. The corresponding
distribution mechanism is presented in the next section.

4.3 Vertex Private Key Distribution Mechanism

The objective of the vertex private key distribution mechanism is to ensure that only the
business partner bi assigned to vi at runtime and whose identity is a priori unknown
can access the vertex private key SKi. To that effect, the workflow structure in terms
of execution patterns is mapped with an onion structure Od so that at each step of the
execution a layer of Od is peeled off using SKpoli and SKi is revealed. The complete
building process is specified in [7], the main results on the distribution of vertex private
keys with respect to various workflow patterns are thus only reminded in this section.

Definition 1. Let X a set. An onion O is a multilayered structure composed of a set of
n subsets of X (lk)k∈[1,n], such that ∀k ∈ [1, n] lk ⊆ lk+1. The elements of (lk)k∈[1,n]

are called layers of O, in particular, l1 and ln are the lowest and upper layers of O,
respectively. We note lp(O) the layer p of an onion O.

Definition 2. Let A = (ak)k∈[1,j] and B = (bk)k∈[1,l] two onion structures, A is said
to be wrapped by B, when ∃k ∈ [1, l] such that aj ⊆ bk.

SEQUENCE workflow pattern. An onion structure assuring the distribution of vertex
private keys is sequentially peeled off by partners. Considering a sequence of n vertices
(vi)i∈[1,n] b1 assigned to v1 initiates the workflow with the onion structure O.

O :

��
�

l1 = {SKn}
li =

�
{li−1}PKpoln−i+2

, SKn−i+1
�

for i ∈ [2, n]

ln+1 =
�
{ln}PKpol1

�

For i ∈ [2, n − 1] the partner bi assigned to vi receives {ln−i+1(O)}PKpoli
, reads

ln−i+1(O) using SKpoli to retrieve SKi and sends {ln−i(O)}PKpoli+1
to bi+1.
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AND-SPLIT workflow pattern. n business partners are concurrently contacted by a
single partner, n different onions are therefore concurrently sent.

AND-JOIN workflow pattern. Since there is a single workflow initiator, the AND-
JOIN pattern is preceded in the workflow by an AND-SPLIT pattern. When n − 1
branches merge into a vertex va, va is executed if and only if n − 1 messages are
received. The vertex private key SKa is thus divided into n−1 parts contained in n−1
onions to be received by va. Besides, in order to avoid redundancy, the onion structure
associated with the sequel of the workflow execution right after va is only included in
one of the onions received by va.

OR-SPLIT workflow pattern. This is an exclusive choice, a single onion is sent
depending on the result of the OR-SPLIT condition. The onions associated with the
branches that can be executed are thus wrapped beforehand.

OR-JOIN workflow pattern. Since there is a single workflow initiator, the OR-JOIN
is preceded in the workflow by an OR-SPLIT pattern. A single branch is executed de-
pending on the choice made at the previous OR-SPLIT in the workflow, thus a single
onion is sent to the vertex into which the branches merge.

Complete key distribution scheme. The onion Od enabling the vertex private keys
distribution during the execution of the workflow depicted in figure 3 is defined as
follows.

Od = {{SK1, {SK2, {SK3, {SK61 ,

Sequel afterv6
︷ ︸︸ ︷
{SK7}PKpol7

}PKpol6
}PKpol3

}PKpol2
︸ ︷︷ ︸

First AND-SPLIT branch

,

{SK4, {SK5, {SK62}PKpol6
}PKpol5

}PKpol4
︸ ︷︷ ︸

Second AND-SPLIT branch

}PKpol1
}

The onions associated with the two branches forming the AND-SPLIT pattern are
wrapped by the layer corresponding to v1. Only the first AND-SPLIT branch includes
the sequel of the workflow after v6.

4.4 Execution Proofs and Traceability

Along with the workflow execution, an onion structure Opi is built at each execution
step i with vertex private keys in order to allow business partners to verify the integrity
of the workflow execution and optionally to gather anonymity-preserving traces when
traceability is required during the execution of a workflow. Based on the properties we
introduced in section 4.1, group cryptography is the only mechanism that meets the
needs of the policy private key distribution when identity traceability is needed. In that
case, we define for a workflow instance, the workflow arbitrator War who is a trusted
third party able to disclose business partners’ identity in case of dispute. The workflow
arbitrator is contacted to revoke the anonymity of some business partners only in case
of dispute, this is an optimistic mechanism.

The onion structure Op is initialized by the business partner b1 assigned to v1 who
computes Op1 =

{
{h1(PW )}SKpol1

}
where PW is called workflow policy and is de-

fined as follows.
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Definition 3. The workflow specification SW denotes the set SW = {W, (Jr
i , J

w
i ,

poli)i∈[1,n], h1} where Jr
i = {k ∈ [1, j]|dk ∈ Dr

i } and Jw
i = {k ∈ [1, j]|dk ∈ Dw

i }
(Jr

i and Jw
i basically specify for each vertex the set of data that are granted read-only

and read-write access, respectively). SW is defined at workflow design phase.
The workflow policy PW denotes the set PW = SW ∪ {Wiid,War, h2} ∪ {PKi|i ∈

[1, n]}. PW is a public parameter computed by the workflow initiator b1 and that is
available to the business partners involved in the execution of W .

The onion structureOp is initialized this way so that it cannot be replayed as it is defined
for a specific instance of a workflow specification. If traceability is required during the
execution of some business processes, the signatures of business partners with policy
private keys are collected during the building process of Op so that anonymity can be
later on revoked in case of dispute. Group encryption is used in this case to distribute
policy private key and b1 is in charge of contacting a trusted third party, sending it
(h1(PW ), PW ) to play the role of workflow arbitrator for the instance.

At the step i of the workflow execution, bi receives Opi−1 and encrypts its upper
layer with SKi to build an onion Opi which he sends to bi+1 upon completion of vi. If
traceability is required, bi encrypts {Opi−1 , {h1(PW )}SKpoli

} with SKi instead. Con-
sidering a set (vi)[1,n] of vertices executed in sequence and assuming that traceability
is needed we get:

Op1 =
�
{h1(PW )}SKpol1

�
Op2 =

�
{Op1 , {h1(PW )}SKpol2

}SK2

�
Opi =

�
{Opi−1 , {h1(PW )}SKpoli

}
SKi

�
for i ∈ [3, n]

The building process of Opi is based on workflow execution patterns ; yet since
it is built at runtime contrary to the onion Od, this is straightforward. First, there is
no specific rule for OR-SPLIT and OR-JOIN patterns. Second, when encountering an
AND-SPLIT pattern, the same structure Opi is concurrently sent while in case of an
AND-JOIN, the n − 1 onions received by a partner bn are wrapped by a single struc-
ture:Opn =

{
{Op1 , Op2 , .., Opn−1 , {h1(PW )}SKpoln

}
SKn

}
. Considering the example

depicted in figure 3 and assuming traceability is not required, at the end of the workflow
execution the onion Op is defined as follows.

Op = {{{{{{h1(PW )}SKpol1
}SK2}SK3

︸ ︷︷ ︸
First AND-SPLIT branch

, {{{h1(PW )}SKpol1
}SK4}SK5

︸ ︷︷ ︸
Second AND-SPLIT branch

}SK6}SK7}

{h1(PW )}SKpol1
is sent by b1 assigned to v1 to both b2 and b4 assigned to v2 and v4,

respectively. The onion structure associated with the two branches forming the AND-
SPLIT pattern thus includes {h1(PW )}SKpol1

twice.
In order to verify that the workflow execution is compliant with the pre-defined plan

when he starts the execution of the vertex vi, the business partner bi assigned to vi just
peels off the layers of Opi−1 using the vertex public keys of the vertices previously
executed based on SW . Doing so he retrieves the value {h1(PW )}SKpol1

that should
be equal to the one he can compute given PW , if the workflow execution has been so
far executed according to the plan. In case traceability is required by the execution, bi
also verifies the signatures of the business partners assigned to the vertices (vjp)p∈[1,ki]

executed right before him i.e. bi decrypts {h1(PW )}SKpolp
for all p ∈ [1, ki]. If bi



Traceability and Integrity of Execution 259

dO
)(1 WPsign

WP
PO

iPK iP K 1+iPK

a
kH

)( 1+ka dsign
1+kd

)( ka dsign
kd

a
kH 1+

Fig. 5. Workflow message structure

detects that a signature is missing he contactsWar to declare the workflow instance in-
consistent. In fact, business partners are in charge of contacting the workflow arbitrator
when a signature is not valid and those who do not declare corrupted signatures are held
responsible in place of partners whose signature is missing. In case of conflict on the
outcome of some workflow tasks, the onion Op is sent to the workflow arbitrator who
is able to retrieve the signatures with policy private key of the stakeholders using PW

and with the help of some group managers the corresponding identities.

4.5 Vertex Key Pair Generation

Vertex key pairs have to be defined for a single instance of a workflow specification
in order to avoid replay attacks. To that effect, we propose to capitalize on ID-based
encryption techniques [11] in the specification of the set (PKi, SKi)i∈[1,n]. For all
i ∈ [1, n] (PKi, SKi) is defined by:�

PKi = h1(Wiid ⊕ SW ⊕ vi)
SKi = s× h2(PKi)

where s ∈ Z∗
q for a prime q. s is called master key and is held by the vertex private key

generator [11] who is in our case the workflow initiator. The signature scheme proposed
in [12] can be used to compute the ID-based signatures required by the mechanisms we
proposed. The public parameters such as the system public key (usually called Ppub)
should be included in PW . This vertex key pair specification has a double advantage.
First vertex key pairs cannot be reused during any other workflow instance and sec-
ond vertex public keys can be directly retrieved from W and Wiid when verifying the
integrity of workflow data or peeling off the onion Op.

4.6 Communication Protocol

In order to support a coherent execution of the mechanisms presented so far, workflow
messages exchanged between business partners consist of the set of information that is
depicted in figure 5.

Workflow data (dk)k∈[1,j] are all transported between business partners and satisfy
the data block specification. A single message may include several copies of the same
data block structure that are encrypted with different vertex public keys based on the
execution plan. This can be the case with AND-SPLIT patterns. Besides, workflow data
can be stored in two different ways depending on the requirements for the execution.
Either we keep the iterations of data resulting from each modification in workflow mes-
sages till the end of the execution or we simply replace data content upon completion
of a vertex. The bandwidth requirements are higher in the first case since the size of
messages increases as the workflow execution proceeds further.
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PW is required to retrieve vertex and policy public keys and specifies the workflow
execution plan.

The two onion structures Od and Op are also included in the message.
Upon receipt of the message depicted in figure 5 a business partner bi assigned to vi

retrieves first the vertex private key from Od. He then checks that PW is genuine i.e.
that it was initialized by the business partner initiator of the workflow assigned to v1.
He is later on able to verify the compliance of the workflow execution with the plan
using Op and finally he can process workflow data.

5 Secure Execution of Decentralized Workflows

In this section we specify how the mechanisms presented so far are combined to support
the secure execution of a workflow in the decentralized setting. After an overview of the
execution steps, the secure workflow execution is described in terms of the workflow
initiation and runtime specifications.

5.1 Execution Process Overview

Integrating security mechanisms to enforce the security requirements of the decentral-
ized workflow execution requires a process strongly coupled with both workflow design
and runtime specifications. At the workflow design phase, the workflow specification
SW is defined in order to specify for each vertex the sets of data that are accessible in
read and write access and the credentials required by potential business partners to be
assigned to workflow vertices. At workflow initiation phase, the workflow policy PW

is specified and the onion Od is built. The workflow initiator builds then the first set of
workflow messages to be sent to the next partners involved. This message generation
process consists of the initialization of the data blocks and that of the onion Op.

At runtime, a business partner bi chosen to execute a vertex vi receives a set of
workflow messages. Those messages are processed to retrieve SKi from the onion Od

and to access workflow data. Once the vertex execution is complete bi builds a set of
workflow messages to be dispatched to the next partners involved in the execution. In
this message building process, the data and the onion Op are updated.

The set of functional operations composing the workflow initiation and runtime spec-
ifications is precisely specified later on in this section. In the following N i

k denotes the
set defined by N i

k = {l ∈ [1, n]|dk ∈ Dr
l and vl is executed right after vi}. Consider

the example of figure 3: d1 is accessed during the execution of the vertices v1, v2 and
v5 thus N1

1 = {2, 5}.

5.2 Workflow Initiation

The workflow is initiated by the business partner b1 assigned to the vertex v1 who issues
the first set of workflow messages (M1→jp)p∈[1,z1]. The workflow initiation consists of
the following steps.

1. Workflow policy specification: generate (PKi, SKi)i∈[1,n] and assign War

2. Initialization of the onion Od

3. Data block initialization: compute ∀k ∈ [1, j] sign1(dk)
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4. Data block encryption:∀k ∈ [1, j] determineN1
k and compute ∀k ∈ [1, j], ∀l ∈ N1

k

{B1
k}PKl

5. Data block hash sets: ∀k ∈ [1, j] determine R1
k and compute ∀k ∈ [1, j], ∀l ∈ R1

k

{h1({B1
k}PKl

)}SK1

6. Initialization of the onion Op: computeOp1

7. Message generation based on W and (N1
k )k∈[1,j]

The steps one and two are presented in sections 4.5 and 4.3, respectively. The workflow
messages are generated with respect to the specification defined in figure 5 and sent to
the next business partners involved. This includes the initialization of the onionOp and
that of data blocks which are encrypted with appropriate vertex public keys.

5.3 Workflow Message Processing

A business partner bi being assigned to a vertex vi proceeds as follows upon receipt of
the set of workflow messages (Mjp→i)p∈[1,ki] sent by the ki business partners assigned
to the vertices (vjp)p∈[1,ki] executed right before vi.

1. Retrieve SKi from Od

2. Data block decryption with SKi based on Jr
i

3. Execution proof verification: peel off the onion Op

4. Data integrity check based on W and PW

5. Vertex execution
6. Data block update: compute ∀k ∈ Jw

i signi(dk) and update dk content
7. Data block encryption: ∀k ∈ Jr

i determine N i
k and compute ∀k ∈ Jr

i , ∀l ∈ N i
k

{Bi
k}PKl

8. Data block hash sets: ∀k ∈ Jw
i determine Ri

k and compute ∀k ∈ Jw
i , ∀l ∈ Ri

k

{h1({Bi
k}PKl

)}SKi

9. Onion Op update: compute Opi

10. Message generation based on W and (N i
k)k∈[1,j]

After having retrieved SK1 from Od, bi verifies the integrity of workflow data and
that the execution of the workflow up to his vertex is consistent with the onion Op.
Workflow data are then processed during the execution of vi and data blocks are updated
and encrypted upon completion. Finally bi computesOpi and issues the set of workflow
messages (Mi→jp)p∈[1,zi] to the intended business partners.

6 Security Analysis

The parameters that are relevant to the security properties offered by the mechanisms
presented in this paper are mainly twofold. First, there are several alternatives with
respect to the management of the key pair (PKpoli , SKpoli), including simple key
distribution based on the policy compliance, group key management or policy-based
cryptography, on which the security properties verified by our solution depend. In fact,
the main difference between the three policy private key distribution schemes we iden-
tified comes from the number of business partners sharing the same policy private key.
As a matter of fact, the more partners share a given private key the easier it is for some
unauthorized peer to get this private key and get access to protected data. Besides, the
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trustworthiness of business partners can not be controlled, especially when it comes to
sharing workflow data with unauthorized peers once the vertex private key has been re-
trieved. In this context, the mechanisms presented in this paper verify some properties
that do not depend on the underpinning policy private key distribution scheme while
some other do. In the security evaluation of our solution, we make two assumptions:

– Security of policy keys: the public key encryption scheme used in the specification
of the policy key pair (PKpoli , SKpoli) is semantically secure against a chosen
ciphertext attack and the associated signature scheme achieves signature unforge-
ability

– Security of vertex keys: the public key encryption scheme used in the specification
of the vertex key pair (PKi, SKi) is semantically secure against a chosen cipher-
text attack and the associated signature scheme achieves signature unforgeability

6.1 Inherent Security Properties

Proposition 1. Integrity of execution. Vertex private keys are retrieved by business
partners knowing policy private keys associated with the policies specified in the work-
flow. Assuming that business partners do not share vertex private keys, the integrity
of the distributed workflow execution is assured i.e. workflow data are accessed and
modified based on the pre-defined plan specified by means of the sets Jr

i and Jw
i .

Proof. This property is ensured by the onionOd which assures distribution of the vertex
keys used for accessing workflow data based on the workflow execution plan.

Assuming that a workflow initiator builds Od based on the methodology specified
in 4.3 and under the policy key security assumption, we claim that it is not feasible for
an adversary A to extract the vertex private key SKi from Od if A does not know the
set of policy private keys (SKpolik

)k∈[1,l] associated with the set of vertices (vik
)k∈[1,l]

executed prior to vi in W . This is true as the structure of Od is mapped to W .

Proposition 2. Resilience to instance forging. Upon receipt of a workflow message,
a business partner is sure that a set of business partners knowing policy private keys
associated with the policies specified in the workflow have been assigned to the vertices
executed so far provided that he trusts the business partners satisfying the policy pol1.

Proof. This property is enforced by the onion Op whose building process is based on
the workflow structure and vertex private keys. As stated in the previous claim, ver-
tex private keys can only be retrieved by business partners knowing some policy private
keys. We also claim that an adversary that does not verify a policy can not forge a work-
flow instance, i.e. that the adversary can not produce a workflow message pertaining to
a valid workflow instance.

Assuming that a workflow initiator builds Op based on the methodology specified in
4.4 and under the policy key security assumption, we claim that the onion structure Op

is unforgeable. The unforgeability property relies on two further properties:

1. a genuine onion structureOp built during a previous instance of a workflow can not
be replayed ;

2. an onion structureOp can not be built by an adversary that is not trusted by business
partners.
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The first property is enforced by the fact that an onion structure Op properly built
is bound to a specific workflow policy PW and thus can not be reused during an at-
tempt to execute a malicious workflow instance. The second property is straightfor-
ward under the policy key security assumption as the policy-based signature scheme
achieves signature unforgeability. Thus an adversary can not produce a valid onion
Op1 =

{
{h1(PW )}SKpol1

}
.

Proposition 3. Data Integrity. Assuming that business partners do not share vertex
private keys they retrieve from the onion Od, our solution achieves the following data
integrity properties:

– Data truncation and insertion resilience: any business partner can detect the dele-
tion or the insertion of a piece of data in a workflow message

– Data content integrity: any business partner can detect the integrity violation of a
data block content in a workflow message

Proof. The first property is ensured as the set of workflow data blocks that should be
present in a workflow message is specified in PW , the workflow message formatting has
thus to be compliant with the workflow specification. The second property is assured by
the fact that an adversary can not modify a given data block without providing a valid
signature on this data block. This property relies on the unforgeability of the signature
scheme used in the data block and hash set specifications.

These three security properties are sufficient to enable a coherent and secure execu-
tion of distributed workflows provided that business partners are trustworthy and do
not share their policy or vertex private keys. The latter assumption is in fact hard to
assess when sensitive information are manipulated during the workflow. We therefore
introduced the traceability mechanism to meet the requirements of sensitive workflow
executions.

6.2 Revocation of a Business Partner Anonymity

The main flaw of the basic security mechanisms we outlined is that the involvement of
business partners in a workflow can remain anonymous thus preventing the detection
of potential malicious peers who somehow got access to some policy private keys. To
overcome this limitation when required, traceability with group cryptography has to be
used during the execution of a business process. In this case the anonymity revocation
mechanism provided with group cryptography can be seen as a penalty for business
partners thus preventing potential malicious behaviors such as vertex private key sharing
with unauthorized peers. Besides, policy private keys distributed by a group manager
are intended for individual use which makes key leakage highly unlikely.

The following claims hold when the policy private key distribution scheme is based
on group encryption techniques and traceability is required in the execution of work-
flows. As corollary of this assumption, we assume that vertex private keys are not shared
with unauthorized peers, proposition 3 is thus verified.
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Proposition 4. Integrity of execution. The integrity of the distributed workflow execu-
tion is ensured or the workflow instance is declared inconsistent by the selected work-
flow arbitrator. Integrity of the distributed workflow execution consists in this case in
performing the following tasks:

– workflow data are accessed and modified based on the pre-defined plan specified
by means of the sets Jr

i and Jw
i ;

– signatures with policy private key are stored by the business partners involved in
the workflow execution.

Proof. Anonymity revocation is here a means to force business partners to behave prop-
erly during the execution of a workflow. If any malicious business partner is involved,
he will not store his signature and we claim that the workflow instance will no longer be
a valid one. The mechanism we proposed for anonymity revocation is as we mentioned
optimistic and four scenarios can actually occur:

– A business partner detects that a signature is missing during the course of the work-
flow execution

– Each business partner stored his signature
– A set of business partners did not store their signature while some other partners

did not declare the missing signatures to the workflow arbitrator
– A set of business partners assigned to vertices contiguously executed till the end of

the workflow did not store their signature

In the first case, the workflow instance will be declared inconsistent by the workflow
arbitrator. In the second case, trustworthy business partners have been involved in the
workflow and their identity can be easily traced back by the workflow arbitrator. In the
third case which is in fact highly unlikely to occur, the business partners who have not
declared the missing signatures become responsible in place of the business partners
who cheated. In the last case, nobody can be held responsible as apparently a group
of untrustworthy business partners was involved in a fraud attempt and the workflow
instance is declared inconsistent.

6.3 Discussion

As mentioned in the security analysis, group cryptography associated with anonymity
revocation provides a full-fledged solution that meets the requirements of sensitive
workflow instances. The other policy private key distribution schemes can be in fact
used when the workflow execution is not sensitive or the partners satisfying the policies
required by the workflow are deemed trustworthy. Our solution can still be optimized
to avoid the replication of workflow messages. A business partner may indeed send the
same workflow message several times to different partners satisfying the same secu-
rity policy resulting in concurrent executions of a given workflow instance. Multiple
instances can be detected by the workflow arbitrator when traceability is required or
a solution based on a stateful service discovery mechanism can be also envisioned to
solve this problem.
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7 Related Work

Security of cross-organizational workflows in both centralized and decentralized set-
tings has been an active research field over the past years mainly focusing on access
control, separation of duty and conflict of interests [13],[14],[6] issues. However, in the
decentralized setting issues related to the integrity of workflow execution and work-
flow instance forging, which are tackled in our paper have been left aside. In [5],[4]
mechanisms are proposed for the management of conflicts of interest [15] during the
distributed execution of workflows. These pieces of work specify solutions in the de-
sign of access control policies to prevent business partners from accessing data that
are not part of their classes of interest. These approaches do not address the issue of
policy enforcement with respect to integrity of execution in fully decentralized work-
flow management systems. Nonetheless, the access control policy models suggested in
[5],[4] can be used to augment our work especially in the specification of the sets Jr

i

and Jw
i at workflow design time.

Onion encryption techniques have been introduced in [8] and are widely used to en-
force anonymity in network routing protocols [16] or mobile agents [17]. In our approach,
we map onion structures with workflow execution patterns in order to build proofs of ex-
ecution and enforce access control on workflow data. As a result, more complex business
scenarios are supported by our solution than usual onion routing solutions. Furthermore,
combined with policy encryption techniques, our solution provides a secure runtime en-
vironment for the execution of fully decentralized workflows supporting runtime assign-
ment of business partners, a feature which had not been tackled so far.

Finally, our approach is suitable for any business scenarios in which business roles
can be mapped to security policies that can be associated with key pairs. It can thus be
easily integrated into existing security policy models such as chinese wall [15] security
model.

8 Conclusion

We presented mechanisms towards meeting the security requirements raised by the ex-
ecution of workflows in the decentralized setting. Our solution, capitalizing on onion
encryption techniques and security policy models, protects the access to workflow data
with respect to the pre-defined workflow execution plan and provides proofs of execu-
tion to business partners. In addition, those mechanisms combined with group cryptog-
raphy provide business partners’ identity traceability for sensitive workflow instances
and can easily be integrated into the runtime specification of decentralized workflows.
Our future work will focus on the integration of these security mechanisms into a trans-
actional framework that we developed for the pervasive workflow model.
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Abstract. In typical Web applications, the access control at the
database management system is not effective due to the dependency on
application behavior. That is, once the information is retrieved, a care-
less application can easily leak the information to undesirable parties.
In addition, database accounts are often shared for multiple Web users
in order to allow connection pooling. We propose DIFCA-J (Dynamic
Information Flow Control Architecture for Java), to keep track of and
control fine-grained information propagation through execution of the
program. DIFCA-J allows controlling the information flow at run-time,
without needing to modify the source code of the target application or
the Java VMs.

1 Introduction

In a typical three-tier Web application server (Figure 1), sensitive information,
such as user’s personal information or credit card numbers, is stored in a data-
base. Access to the database is controlled at the database management system,
and limited to only authorized users. However, such control is not sufficient to
protect sensitive information.

First, after the application retrieves sensitive information from the database,
it is up to the application code how to handle such information. An erroneous
application may carelessly release such information to an undesirable destination.
Furthermore, a single database table may contain data that belong to different
classification levels. Some database systems support fine granular access control,
but again, once the data is retrieved from the database, protection of the data
depends on the application behavior.

Second, many of today’s Web applications use a single database account for
processing requests from multiple Web users, in order to effectively reuse data-
base connections through connection pooling to optimize performance. The ac-
cess control at the database is not effective when the same database account
is used for all users. For example, a credit card number for a user A may be
presented to user B due to a bug in the application, because the single database
account cannot distinguish between users.
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Fig. 1. Three-tier Web App. Example

protected void doGet(HttpServletRequest req,
HttpServletResponse res) throws ... {

String user = req.getParameter("user");
String item = req.getParameter("item");
pw = new PrintWriter(res.getOutputStream());
...
String credit = getCreditCardInfoFromDB(user);
boolean b = processPurchase(user, item, credit);
if(b){ // succeeds

pw.println("Purchase Succeeded: <br/>");
pw.println("Name: " + user + "<br/>");
pw.println("Item: " + item + "<br/>");
pw.println("Credit Card: " + credit );

}else{ // failed
printlog("Invalid credit card: " + credit);

} ... }

Fig. 2. Problematic Servlet Code Example

Figure 2 shows a sample application in which a program bug can cause un-
desirable information flows. This is a simple example of an on-line shop servlet,
which receives a user name and the item name from an HTTP request, and
processes purchase request using the user’s credit card number stored in the
database. The processPurchase method checks the validity of the credit card
number, and stops process by returning false when any problem is detected (e.g.,
the credit card is expired). We assume that the information received from the
user via an HTTP request is not confidential, while credit card numbers in the
database are confidential. (We assume that a proper user authentication takes
place in advance, and the communication channel is protected by SSL or TLS,
and thus the information in the HTTP request can be trusted.)

When looking at this program from the aspect of the confidentiality of the
credit card number, it has two problems.

1. When the processPurchase method succeeds, the application sends back
the credit card number to the user via an HTTP response. Although the
credit card number belongs to the user, it should not be sent to the user
unless necessary since the number may be peeped at over the user’s shoulder,
or leaked from the browser cache.

2. When the processPurchasemethod fails, the application outputs the user’s
credit card number into a log file. Confidential information should not be
output into log files unless necessary.

We propose a system which prevents such undesirable information flow. That
is, in the above example, the system detects undesirable information flow and
stops processing when a credit card number is being output. In addition, when
data is properly sanitized (e.g., when a credit card number is masked), the data
should be ”declassified” to indicate that it is no longer confidential.

In order to achieve fine-grained information flow control, language-based infor-
mation flow control is receiving attention [1]. Much of the past research focuses on
static analysis of information flow in a program using the type system or data flow
analysis. However, we consider the practical use of such technologies to be difficult,
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because 1) It is difficult to analyze complicated data structures and control flows
in multi-threaded object-oriented languages, 2) When a programing language is
extended to include security functionality, existing software resources, such as li-
braries and development tools cannot be reused without adaptations, and 3) static
analysis cannot take the dynamically generated code into account.

A dynamic information flow control approach has been proposed by Haldar,
Chandra and Franz [2] [3] [4] to take advantage of the rich state information
from a running application. They use a bytecode rewriting technique to mod-
ify the application bytecode to insert extra code for tracking the information
flow of an application. Their approach tracks information propagation through
method invocations and field access. We propose a Dynamic Information Flow
Control Architecture for Java (DIFCA-J), inspired by the Haldar et al. approach.
DIFCA-J inherits characteristics of being able to support dynamic conditions of
running applications, not requiring any sourcecode from the target software, and
being independent of Java VM implementations. In addition, in our system: 1)
information flow is tracked and controlled at the granularity of primitive data
types through most of the JVM instructions including logical and arithmetic
computations, the operand stack and local variables operations, method invoca-
tion, and exceptions. 2) it effectively labels data for input or output from or to
external environments, especially data exchanged with databases, and 3) it sup-
ports fine-grained application-level policies, including declassification policies. A
more comparison with Haldar’s approach is discussed in Section 6.

We implemented DIFCA-J on top of Apache Tomcat, and integrated Appli-
cation Privacy Monitoring for JDBC (APM4JDBC) to enforce security policies
in database (See Section 4).

The rest of the paper is organized as follows. Section 2 gives an overview of
DIFCA-J and its basic concepts. Section 3 shows the architecture of DIFCA-J,
and its detailed method for information flow control in execution of Java bytecode
instructions. Section 4 describes integration of the databases for fine- grained in-
formation flow control between the database and the application server. Section 5
describes the current prototype implementation. Section 6 reviews related work,
and Section 7 concludes the paper and covers our future research agenda.

2 Overview of DIFCA-J

We propose a Dynamic Information Flow Control Architecture for Java (DIFCA-
J) to control the information flow of Java applications.

DIFCA-J allows administrators to define security labels for external resources
(such as files, network and databases) as well as the information-flow policies
between labels. During the execution of applications, DIFCA-J keeps track of
propagation of security labels for the data, and detects any output that violates
the policies.

The run-time functionality is inserted into the application bytecode as inline
reference monitors (IRM) [5], using the bytecode rewriting technique. When the
application is executed, the inserted IRM code communicates with the Access
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Control Module (ACM), to notify it of the state of the running application.
The ACM is implemented as a Java class, and a unique instance is created and
associated with each thread. An ACM has an internal structure similar to a
Java Virtual Machine (JVM). However, instead of holding data, an ACM holds
security labels that are associated with data in the JVM. The ACM propagates
security labels of data by synchronizing itself with the code execution of the
JVM.

The ACM takes two sets of policies: the labeling policies, and the information-
flow policies. Since the instrumented bytecode is independent of the policies, the
policies can be late-bound to the application at run-time.

Labeling Policies. In DIFCA-J, any input or output to external resources is
identified by Java APIs associated with the operation, that is represented in a
form of pseudo-URI such as ”java:class name.method name”. Some resources
require finer granular control for labels than APIs; e.g., the labels of files and
network resources need to be identified by their locations, rather than by APIs.
Therefore, such location are represented in the form of a URL.

In addition, a resource is either structured or unstructured, with regard to the
labeling of its information. Examples of unstrucutred data are plain text files,
where each file includes information with the same confidentiality. A database
system is an example of a structured resource. Each datum in a database needs a
more dedicated labeling policy, since each table may include columns with differ-
ent classifications, and the classification may depend on the context of the query.
DIFCA-J leverages Application Privacy Monitoring for JDBC (APM4JDBC) [6]
to allow dynamic labeling of the database query results.

Information Flow Policies. DIFCA-J is policy agnostic and thus can flexibly
adopt different types of policies, such as Biba [7], Bell-LaPadula [8], or the lattice
model [9].

For the sake of simplicity, in the following example we use a simple Bell-
LaPadula-type policy which has only two labels HIGH and LOW; i.e., information
with the label HIGH cannot flow into LOW, while information with the label LOW
can flow into HIGH. Labels are propagated when information flow occurs from
explicitly labeled data.

Label Composition. When a value is derived from the composition of two
values with different labels, the label of the resulting value becomes the compo-
sition of the two labels of the original values. Here, the composed label should
be the Least Upper Bound (LUB) of the two labels; i.e., the lowest label which
satisfy both of the two labels. For example, when a+ b = c where a is HIGH and
b is LOW, the label of c needs to be HIGH. This is because when an attacker learns
the values of both b and c, he can easily infer the value of a.

3 DIFCA-J Architecture

Figure 3 shows the architecture of DIFCA-J. IRMWriter takes the bytecode of
an application as input, and inserts inline reference monitor (IRM) code into it.
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Fig. 3. DIFCA-J Architecture

This instrumentation process may happen either before application deployment,
or on-the-fly when the code is loaded by a class loader.

A JVM has a JVM stack jst for each thread t, which is a stack of frames,
where each frame (frt

i , where i denotes the position on jst) holds an operand
stack ost

i and a list of local variables lvt
i for the methodmt

i that is being executed.
When a new method mt

i+1 is called, a new frame frt
i+1 is created and pushed

onto jst. Likewise, an ACM has a stack structure l(jst) corresponding to the
JVM stack for each thread. Each l(jst) is a stack of frames-for-labels l(frt

i).
Instead of holding data operated upon by a method, each l(frt

i) holds the labels
of local variables l(lvt

i) and the operand stack l(ost
i) associated with the data.

As each bytecode instruction is executed in the application, the IRM code
synchronizes the state of the ACM with the state of JVM so that the labels in
l(jst) represents the security label of the data in jst being operated upon in the
application.

In a JVM, object instances and static field data are stored in the heap area.
The ACM has three tables for holding the labels for the objects in the heap: the
object label table (OLT) for the labels of objects and the fields of the objects,
the array label table (ALT) for the labels of array elements, and the class label
table (CLT) for the static fields of the classes.

A JVM also has a method area and a constant area for holding the bytecode
of methods as well as the constant data of Java classes and interfaces. We regard
these areas as non-confidential, and associate them with the special label NONE
by default (i.e., LUB(NONE, l) = l for any given label l, and either HIGH or LOW
can flow to destination with the label NONE).

3.1 Information Flow in Java Bytecode

Programs written in the Java language are compiled into Java bytecode, a stan-
dard pseudo-machine language that is executed on a JVM [12]. Since we attempt
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to support applications with no source code, we target the Java bytecode to track
the information flow of an application.

The JVM Specification [12] defines about 200 instructions, but in many cases
a single semantic operation is defined in multiple instructions for different data
types. Similarly, most instructions that concern local variables have variants that
include frequently used local variable indices

3.2 Stack and Local Variable Operations

When information is exchanged between the operand stack ost
i and the local

variable table lvt
i , e.g., by a LOAD or STORE instruction, the ACM propagates the

label between l(ost
i) and l(lvt

i). When two values are combined to create a new
value, e.g., as a result of a binary operation, the ACM obtains the composition
of the two labels and associates it with the new value.

When a constant value is loaded onto ost
i, the NONE label is associated with

the value (unless the load operation was affected by an implicit flow as discussed
later in Section 3.5).

For example, Figure 4(a) is a simple Java program which adds the variable b
and the constant 1 and assign the result into the variable a. Figure 4(b) shows
the bytecode representation of the same program.

The ACM follows the operations of the JVM. For example, the ACM first
loads the labels of b from l(lvt

i) to l(ost
i) at the LOAD operation and then the

label of 1 (NONE) to l(ost
i). When the ADD operation is executed, ACM ob-

tains the composition of the two labels on l(ost
i), in this case newlabel =

LUB(l(ost
i[j − 1]), l(ost

i)[j]), where j denotes the highest position of l(ost
i) as

of the time the operation is performed. Then the resulting newlabel is pushed
onto l(ost

i). Finally, the newlabel is propagated to l(lvt
i) to be associated with

the variable a at the ISTORE 1 operation.

3.3 Object and Field Access

Each object can be associated with a security label, but each field of an ob-
ject may have different labels than the object itself. Therefore, our approach is
designed to handle them separately.

A JVM stores objects into the heap area, and accesses to the fields are done
through the GETFIELD and PUTFIELD instructions. The ACM stores the labels
of the objects and their fields in the Object Label Table (OLT ). The labels are
propagated between OLT and ost

i at each GETFIELD or PUTFIELD instruction.
Similarly, the labels of static fields and the labels of array elements are managed
in the Class Label Table (CLT ) and the Array Label Table (ALT ), respectively.

3.4 Method Invocation

When a method is invoked, information is propagated between the caller method
and the callee method through method arguments and the return value.

When a method foo() invokes the method bar(), the method arguments are
the output and the return value is the input, from the view point of foo(). In
contrast, for bar(), the method arguments are the input and the return value is
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the output. Therefore, DIFCA-J allows defining the labeling policy of input and
output for foo() and bar() separately. When an explicit policy is defined for an
input to a method, then a security label is associated with the input data. When
an explicit labeling policy is defined for the method output, then the label of the
output data is compared with the label of the method, and execution is stopped
when any violation of the information flow policy is detected. For example, when
some data with label HIGH is being specified as an argument for a method with
the output label LOW, that invocation causes an information-flow violation.

It should be noted that both the caller foo() and the callee bar() are not
necessarily instrumented with IRM. The IRM Writer can only instrument the
application code, and the standard Java libraries and the middleware (e.g., Web
server) must not be modified. If the standard libraries are also IRM-enabled,
the IRM code would recursively call the IRM code and the code could not be
executed properly. Therefore, when foo() invokes bar(), there are four possi-
bilities with regards to their IRM enablement: 1) both of foo() and bar() are
IRM enabled, 2) only foo() is IRM enabled, 3) only bar() is IRM enabled, or
4) neither foo() nor bar() is IRM enabled.

In case 1), the label of the arguments is explicitly propagated by IRM by
copying the labels from caller method’s l(ost

i) to the callee method’s l(lvt
i+1),

while the arguments are copied from the ost
i to lvt

i+1. When returning from the
method by the RETURN instruction, the label of the return value is popped from
l(ost

i+1) and pushed to l(ost
i).

In case 2), since only mt
i is IRM-enabled, the INVOKE instruction is IRM-

enabled, but the RETURN instruction that is executed from mt
i+1 is not IRM-

enabled. Therefore, the caller method mt
i infers the label of the return value

from the composition of the labels of the input arguments and the target object
itself.

In case 3), since the caller method is not IRM-enabled, the callee does not
receive the label of the input values unless an explicit policy is specified and thus
the label NONE is associated with the input argument by default.

3.5 Implicit Flow

Even when no explicit flow occurs from HIGH to LOW, the HIGH information can be
infered from the LOW information when the HIGH information affects the control
flow of the program. For example, in the example code in Figure 5(a), the value
of x can be inferred from the value of y after the if statement, since the value of
y differs by the value of x. Such information flow is called an implicit flow [29].

In order to detect such an implicit flow, DIFCA-J associates a security label
with the program counter to show any implicit flow caused by the execution
of the code. Let pct be the program counter of the thread t and l(pct) be the
label associated with pct. In the above example, when the value of x causes a
conditional branch in Line 3, l(pct) is raised to HIGH. Then when the value is
assigned to y, the label HIGH is propagated to the label of y.

Figure 5(b) shows the Java bytecode that is compiled from the Java source
code in Figure 5(a). In Line 6 in the bytecode, IF ICMPNE evaluates the value on
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1: int a = 1;
2: int b = 2;
3: a = b + 1;

(a) Java Program

0: ICONST_1
1: ISTORE_1
2: ICONST_2
3: ISTORE_2
4: ILOAD_2
5: ICONST_1
6: IADD
7: ISTORE_1

(b) Bytecode

Fig. 4. Code Example for Addition

1: x = 1; // HIGH
2: y = 0; // LOW
3: if(x == 1){
4: y = 1;
5: }

(a) Java Program

0: ICONST_1
1: ISTORE_1 // x
2: ICONST_0
3: ISTORE_2 // y
4: ILOAD_1
5: ICONST_1
6: IF_ICMPNE #11
9: ICONST_1
10: ISTORE_2 // y=1
11: ...

(b) Bytecode

Fig. 5. Code Example for Branch

the ost
i to branch conditionally. Lines 9 and 10 are the code that are executed

conditionally depending on the two values that are on ost
i (i.e., x and the constant

1). All of the values that are affected by these conditions need to be associated
with the security label of the composition of the original value and the program
counter. In the above example, when IF ICMPNE is executed, l(pct) becomes the
composition of the label of x and the constant 1 (i.e., HIGH), and then in Line
9, the value propagated by the ISTORE instruction will be LUB(l(ost

i[j]), l(pc
t)),

which is the composition of the label of the value on the operand stack l(ost
i)

and the label l(pct).
Similarly, all of the IRM operations described before, need to compose l(pct)

in addition to the label of the operands. For example, when a constant value is
loaded onto OS, the label l = LUB(NONE, l(pct)) is actually pushed onto l(ost

i).
When multiple conditional branches are nesting, l(pct) evolves to reflect the
context; i.e., each time the pct reaches a new branch, l(pct) is updated to be
LUB(l(pct), l(c)) where l(c) denotes the label of the branch condition. l(pct) is
reset at the join point of each conditional statement.

Strictly speaking, the implicit flow occurs whether or not the body of the if
statement is executed; that is, one can infer that the value x is not 1 when the
value of y is 0. It should be noted that a purely dynamic approach, can propagate
the label only when the assignment is done, when there is no knowledge of other
possible execution paths [25][26].

3.6 Exceptions

An exception in a Java program is caused by either 1) the JVM (e.g, division by
zero), 2) a throw statement in the library code, or 3) a throw statement in the
application code. In DIFCA-J, exceptions explicitly thrown by applications will
be assigned the security label that is determined from the label of the data that
is set in the exception as well as l(pct) of the code that throws the exception.
When an exception is not caught, the frames are popped in the JVM stack. In
order to synchronize the stack depth, the IRM inserts default exception handlers
to capture the exception, to synchronize the state of the ACM, and to throw the
exception immediately.
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When an exception is directly thrown by the JVM, the IRM’s ability to detect
the label of the exception object is limited. For example, when division by
zero is reported by java.lang.ArithmeticException, it can be inferred that the
dividision operand was 0. However, since this exception is caused by the JVM
itself, it is difficult for the IRM to reflect the label of the operand to the label
of the exception.

3.7 Multi-threading

The types of information flowing between threads in a multi-thread program
can be classified into 4 types: 1) Initialization parameters of the child thread
objects that are set by the parent thread, 2) Pairs of threads communicatiing
through shared global objects (e.g., singleton objects), 3) Information exchanged
via external resources such as files, databases, or system properties, or 4) Covert
communication channels that make use of Java’s multi-thread capabilities, such
as thread synchronization and interruption.

In DIFCA-J, information flowing through 1) and 2) is captured since the labels
of the objects in the heap area are managed by the global tables OLT , CLT ,
and ALT . Information exchanges through external resources can be captured as
long as all of the resources are labeled properly.

3.8 Declassification

Declassification is an important issue for the practical use of an information flow
control system to mitigate the label creeping problem [29]. For example, in a
system that implements the Bell-LaPadula model with two labels HIGH and LOW,
all processes that can read from both of HIGH and LOW information must not have
a write permission to the LOW information. Therefore, as information propagates,
information that originally had the LOW label tends to be associated with the HIGH
label. Since each process is regarded as a black-box for the operating system level
information flow control, it is difficult to avoid the label-creeping problem.

Even in a language-level information flow control system, the labels of data
tend to become more strict as the program is executed. In particular, this trend
is significant when the label of the program counter is composed into the labels
of the variables to capture the implicit flows.

However in reality, not all information produced from confidential informa-
tion is confidential. For example, credit card numbers are usually regarded as
confidential, but it is a common practice to mask the credit card number except
for the last 4 digits to make it public information that can be printed on the bill,
e.g., "****-****-****-1234". Another example is a password. The password
itself is confidential but its hash value or a boolean result of authentication, both
derived from the password, are public information.

DIFCA-J supports declassification through a API-level declassification pol-
icy specification. For example, if there is an API method String mask(String
creditcard) that masks a credit number except for the last 4 digits, the label-
ing policy can be defined to force the return value of this method to LOW, and
thus allows declassification without modifying the code.
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4 Labeling on Database Queries

JDBC (Java DataBase Connectivity) is a standard API for accessing databases
from Java applications. The standard API encapsulates the complexity of each
database management system and its driver, and allows Java applications to uti-
lize databases without concerns about the implementation- specific differences.
A typical Java application connects to a database using JDBC, ”logs-in” with a
user account registered with the database, and issues queries using SQL.

When the database management system employs an access control mecha-
nism, the access permission is linked to the given database user ID. However,
many of today’s Web applications use a single database account for processing
requests from multiple Web users, in order to effectively reuse database connec-
tions through connection pooling to optimize performance. Therefore, the access
control at the database access point is ignored.

Application Privacy Monitoring for JDBC (APM4JDBC) [6] is a generic
framework for a JDBC to intercept JDBC API calls and to insert customized be-
havior for each activation of the JDBC. Such behavior includes application-level
access control for database queries as well as for recording database accesses for
auditing purposes.

Figure 6 shows the architecture of APM4JDBC. Any query context (such
as a web user account that is different from the database user account) can
be corrected by the Context Handler, so that such information can be later
utilized by the plug-in access controllers to filter and modify the SQL queries
and responses.

DIFCA-J uses the APM4JDBC framework to collect the contexts of the data-
base queries, and labels the retrieved data based on the policies and the contexts
of the queries. For example, DIFCA-J allows putting different security labels
for each column on the queried data (e.g., associate the HIGH label with the
credit card number in our example scenario introduced in Section 1). Similarly,
DIFCA-J allows controlling data output into the database (e.g., make sure that
application will not write a value with the HIGH label into a database column
which should only hold the LOW values). In addition, we can extend the labeling
system to a richer model, such as the lattice model, and associate different labels
for each user’s transactions, and prevent contamination of information belonging
to different users.

5 Prototype Implementation

DIFCA-J was prototyped on top of the Apache Tomcat Web container with
JVM 1.5. The IRM Writer was implemented with Apache Byte Code Engineer-
ing Library (BCEL) [14], an open source toolkit for analyzing and modifying
arbitrary Java bytecode. We modified the Web Application class loader in Tom-
cat to instrument only the bytecode of application classes when they are being
loaded. The ACM is implemented as a singleton Java object.
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Fig. 6. APM4JDBC

...
iconst_0
invokestatic acm.ACM.loadSingleVar (I)V
aload_0
invokestatic acm.ACM.pushSingleConst ()V
iconst_0
dup2
invokestatic acm.ACM.loadSingleArray c
aaload
iconst_1
invokestatic acm.ACM.storeSingleVar (I)V
astore_1
iconst_0
invokestatic acm.ACM.loadSingleVar (I)V
aload_0
invokestatic acm.ACM.pushSingleConst ()V
...

Fig. 7. IRM Enabled Bytecode

Figure 7 shows an example of IRM-enabled bytecode after instrumentation.
Lines with underlines are inserted IRM code that calls the ACM by invoking the
methods of the ACM.

Limitations of the current prototype are that it does not support exceptions,
and some policies (i.e., information flow policy and the database policies) are
hard wired in Java code.

5.1 Policy Definition

The sample information flow policy is defined in a Java class which provides label
comparison and composition as methods. The sample labeling policy (Fig. 8) de-
fines the label LOW for the HTTP requests and responses, and to the printlog()
method. The policy on the mask() method defines the declassification policy on
the masked credit card numbers.

DIFCA-J requires labeling policy only on API that concern input and output
of data. Therefore, the administrator’s burden of policy definition is smaller
than security enhanced language such as Jif [10]. E.g., only 4 entries of labeling
policy is required in example application in Section 1; other methods that does
not concern with input and output of data will just propagate the label.

When no explicit policy is defined, DIFCA-J infers that a label of the value
returned from a standard library method is the composition of the labels of the
target object and the arguments. When this inference rule fails, explicit labeling
policies need to be defined for such API. However, it is possible to pre-define a
set of policies for each standard library and deploy with DIFCA-J, in order to
mitigate administrator’s burden to define them by themselves.

The policy on the database, which associates the label HIGH with credit card
numbers, is hard-coded in a Java class in the current prototype. But it is obvious
that we can extend the system to allow more flexible policy definition. Since
the example policy adopts the simplest two-level labels, no context information
was used for labeling the database query results. However, the architecture is
policy agnostic and we can easily extend the policy to accommodate finer-grained
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<Policy>
<InputRule><Label>LOW</Label><Type>argument</Type>

<URI>java:foo.shop.Purchase.doGet</URI></InputRule>
<InputRule> <Label>LOW</Label><Type>return</Type>

<URI>java:foo.shop.Purchase.mask</URI></InputRule>
<OutputRule><Label>LOW</Label><Type>argument</Type>

<URI>java:foo.shop.Purchase.printlog</URI></OutputRule>
</Policy>

Fig. 8. Example Policy

(a) Arithmetic Operations Web App. (b) JDBC Web App.

Fig. 9. Performance Evaluation

policies in more flexible way; e.g., the credit card numbers that belong to different
users are associated with different labels that corresponds to the user identities.

5.2 Performance Evaluation

We measured performance overhead of DIFCA-J in two types of Web applica-
tions, 1) only arithmetic operations without JDBC (Fig. 9(a)), and 2) sample
application in Section 1 which uses JDBC iFig. 9(b)j. We ran each application
for 10 times, and measured accumulated time consumption of each Java package
using a profiler. The Web server (Apache Tomcat) and the MySQL database
were set up on the same computer. In 1), the pure overhead by ACM over the
original application class is about 18-24 times. In 2), JDBC connection and query
consumes more than 90% of the entire execution time (even if excluding the con-
nection establishment which occurs only once), and thus the overhead by ACM
stays around 10%. But the pure overhead is about 13-18 times. IRMWriter in-
struments the bytecode only once when the application is loaded, and thus most
of the overhead is resulted from ACM. Note that the pure overhead means the ex-
ecution time comparison between the original application class itself and ACM,
and the overhead in the turn-around-time of the Web application as a whole is
smaller, especially when JDBC is involved. After instrumentation, each class file
increases its size about 2-2.8 times.
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In conclusion, although performance overhead caused by ACM is not small,
we think that it is still acceptable in typical Web applications which uses JDBC.

6 Related Work

A number of prior research [7][8][9] have studied policy models to guarantee
secure information flow. There are also technologies to implement the models. For
example, the multi-level security (MLS) system implements the Bell-LaPadula
[8] model, providing strong isolation from the hardware and the networks.

When the information flow control is implemented at the granularity of a sys-
tem or a process, it is inevitable that securely designed information flow policies
cause the label creeping problem [29], since the classification of information be-
comes more strict thorough propagation, making it increasingly difficult for the
information to be shared effectively. Language-based information flow control is
getting attention in order to allow for fine-grained information flow control. This
section briefly reviews prior research work. The language-based information flow
control can be classified into static approaches and dynamic approaches. More
thorough survey of static approachs is found in [1].

Static Approaches. Kobayashi and Shirane [15] defined a small subset of
Java bytecode and statically analyzes information flow within it. Barthe et al.
[16][27][17] proved noninterference for a subset of Java bytecode and proved
that the program written in a security-enhanced language can be compiled into
bytecode without weakening the security properties. No implementation was
reported. Genaim and Spoto [18] studied the information flow analysis of a more
complete set of Java bytecode, and implemented their proposed method. Yu and
Isam proposes Typed Assembly Language for Confidentiality (TALc) [28] for
information flow analysis and proved its noninterference.

Jif [10][19][20] is an extension of the Java language, which allows defining secu-
rity labels as types of program constructs. Programs written in Jif are compiled
into ordinary Java bytecode, and thus have no dependencies on the run-time en-
vironment. However, existing applications need to be converted to Jif programs.
Recently, Boniface et al. implemented an e-mail application in Jif [21] and eval-
uated its usefulness in realistic applications. Li and Zhancewic [22] addressed
the information flow problem in Web applications with the security-enhanced
scripting language. Static approaches for the declassification problem are found
in [23] [13].

Dynamic Approaches. A dynamic approach is potentially more precise than
the static approach since t can exploit the detailed conditions of the running
programs. It also allows security policies to be defined dynamically.

Beres and Dalton [11] modified the operating system, to track information flow
in the execution of machine language. A similar approach is applicable to Java,
but it requires modification of the Java VM, and the resulting implementation
is dependent on the JVM.
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Erlingsson et al. [5] proposed inserting Inline Reference Monitors (IRMs) into
Java bytecode to implement access control that is equivalent to the Java2 secu-
rity architecture [24]. Haldar, Chandra, and Franz [2] [3] [4] proposed information
flow control for Java using a bytecode rewriting technique. Their initial focus
included ”taint” propagation for values input into web applications, but can
be easily extended to support richer labeling systems. According to Franz [4],
they support label propagation at the granularity of Java objects and fields. The
dynamic mechanism tracks information propagation at the time of method invo-
cations and field access. They also employ static analysis for detecting implicit
flows. The literature does not say if that their approach supports information
propagation through all JVM instructions that involve operand stacks and local
variables.

DIFCA-J was influenced by [2] [3] [4], but the major difference is the granular-
ity of the label propagation. DIFCA-J supports information propagation through
most of the JVM instructions, including arithmetic operations, array elements,
multi-threading, and exceptions, and a policy based declassification mechanism.
We also integrated APM4JDBC to effectively label database query results and
to control input and output to the database through JDBC.

The problem of implicit flow in dynamic approach is addressed in [25][26]
based on combination of dynamic and static analysis. Shroff [26] also addresses
the problem by analyzing dependencies of data through monitoring multiple
executions of the program. Since our work aims at detecting undesirable infor-
mation flow by programming errors without modifying the application source
code, it is not the focus of this paper to detect all implicit flows. However, we
believe that the technique presented in this paper can be extended to collect
information about the data dependencies and to detect indirect implicit flows.

7 Conclusions and Future Work

This paper proposes DIFCA-J, which enforces the language-based information
flow control policies for Java applications. We use a bytecode rewriting technique
to insert inline reference monitors (IRMs), and thus 1) the IRMs can utilize the
detailed conditions of the running applications, 2) it does not require source code
of the target application, and 3) the system is independent of JVM implementa-
tions. DIFCA-J tracks the propagation of information in the program through
most of the JVM instructions, and controls the input and output to the external
environment based on the given information flow policies. DIFCA-J also inter-
cepts the JDBC queries to effectively label the query results, and control input
to and output from the database.

However, the current proposal still leaves gaps for future research. First, the
purely dynamic approach can discover only information flows that are actually
executed, and especially cannot detect all of the implicit flows. Second, the cur-
rent approach requires a bytecode-level IRM to be inserted for every bytecode
instruction of the original code, and causes significant performance overhead.
Third, since OLT stores object references with associated security labels, it
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prevents target objects from garbage collected, and causes memory overhead at
run-time. Fourth, terminating the transaction due to the information flow vio-
lation may cause problems in database consistency. It is inherently difficult to
handle such exceptions without modifying the applications. Some of the prob-
lems may be acceptable when using DIFCA-J for the pre-deployment test, but
care needs to be taken to define the test cases with good coverage.

Usability and policy specification is another challenge that needs to be ad-
dressed. DIFCA-J does not require the source code of the target applications,
but the policy writer still needs to understand the structure of the program and
the semantics of the methods. Especially when a declassification policy is de-
fined for a method, such a definition may easily introduce human error, unless
the semantics of the method are well defined and the consequences of the de-
classification are well understood. This is a future topic for allowing easy and
safe policy definitions without needing knowledge of the source code.
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Abstract. In this paper, we propose Cloak—a new class of reliable
timing channels—which is fundamentally different from other timing
channels in several aspects. First, Cloak encodes a message by a unique
distribution of N packets over X TCP flows. The combinatorial nature of
the encoding methods increases the channel capacity largely with (N, X).
Second, Cloak offers ten different encoding and decoding methods, each
of which has a unique tradeoff among several important considerations,
such as channel capacity and the need for packet marking. Third, the
packet transmissions modulated by Cloak could be carefully crafted to
mimic the normal TCP flows in a typical TCP-based application ses-
sion. Although Cloak’s basic idea is simple, we show in this paper how
we tackle a number of challenging issues systematically. Our experiment
results collected from PlanetLab nodes and a test bed suggest that Cloak
is feasible under various network conditions and different round-trip
delays.

Keywords: covert channel analysis, network security, attack models.

1 Introduction

In this paper, we consider data hiding techniques using network protocols as
the cover. The communication channel under the cover is often referred to as a
network covert channel. Network covert channels could pose a serious threat to
the Internet security, because of their “proven” ability of stealthily exfiltrating
stolen information (a hardware was built in [1]), coordinating an Internet-wide
DDoS attacks [2] and Internet worm attack [3], coordinating a physical attack
plan (a book was written about this possibility [4]), and other subversive oper-
ations. On the other good hand, they are useful for enhancing Internet privacy
[5,6], watermarking encrypted flows in stepping stones [7], and tracking VoIP
calls [8].

Similar to the classic covert channels in trusted computer systems, network
covert channels could be classified into storage channels and timing channels
[9,10]. In a storage channel, the encoder and decoder communicate covertly
through “attributes of shared resources” [11], which could be any fields in a
packet that can be “written” by the encoder and “read” by the decoder. The

J. Biskup and J. Lopez (Eds.): ESORICS 2007, LNCS 4734, pp. 283–298, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



284 X. Luo, E.W.W. Chan, and R.K.C. Chang

covert messages are encoded directly into these fields. Most existing network
covert channels fall into this category. In a timing channel, the encoder and de-
coder communicate “through a temporal or ordering relationship of accesses to
a shared resource” [11] which could be the timing of packet arrivals that can
be modulated by the encoder and observed by the decoder. For example, an
IP packet arrival within a time interval represents bit 1 and the absence of it
represents bit 0 in an IP timing channel [12].

Existing network covert channels, however, suffer from low data rates in the
presence of dynamic network conditions and active network intermediaries (ANI)
(e.g., protocol scrubbers [13], traffic normalizer [14], and active wardens [15]).
For example, the message encoding based on inter-packet delay is very sensitive
to delay jitter, and packet losses affect the integrity of both timing and storage
channels. On the other hand, storage channels do not suffer from these problems.
Instead, their encoded messages could be altered by an ANI which modifies the
replaceable header fields in the packets that pass through them.

In this paper, we propose Cloak—a new class of timing channels which is
designed to be reliable under adverse network conditions. That is, Cloak’s de-
coding accuracy is 100% even in the presence of packet losses, delay jitters, packet
reordering, and packet duplications. The key elements responsible for this reli-
ability property are using TCP data traffic as a cover (i.e., exploiting TCP’s
reliable transmission mechanism) and employing a fixed number of TCP pack-
ets (N) for encoding/decoding a message to avoid the inherent synchronization
errors plaguing many network timing channels.

Another important deviation from other timing channels is that Cloak en-
codes a message with a unique distribution of N packets over X TCP flows,
where N,X > 1. Due to the combinatorial nature of the encoding method,
Cloak’s channel capacity increases quickly with (N,X). Besides, Cloak offers ten
different encoding and decoding methods. Each method tradeoffs among several
conflicting design goals. Although Cloak uses multiple flows for the message en-
coding, the packet distribution over the flows can be carefully crafted to match
with the normal TCP behavior in an application session. To our best knowledge,
Cloak is the first network covert channel that exploits Enumerative Combina-
torics [16] to convey hidden messages. Moreover, this original idea is generally
enough for designing new covert channels and applying to other steganography
problems.

The road map for the rest of this paper is as follows. Section 2 briefly discusses
the previously proposed network timing channels. Section 3 presents the basic
idea of message encoding in Cloak which is based on the well-known Twelvefold
Way in the field of Enumerative Combinatorics. Section 4 details how we have
resolved a number of difficult design issues for deploying Cloak in the Internet.
Section 5 reports the test-bed and PlanetLab measurement results to evaluate
Cloak’s data rate under various network conditions and parameter settings. Sec-
tion 6 summarizes this paper with a few venues of enhancing this work.
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2 Related Work

Despite that information theorists have analyzed the capacity of covert timing
channels for a long time, only recently have several practical timing channels
emerged. On the network layer and above, there are so far two practical ap-
proaches to manipulating the packet timing: ordered channels and inter-packet
delay channels. In the class of ordered channels, Kundur and Ahsan [17] pro-
pose to re-sort the original order of a flow of IPSec packets and use the out-of-
orderliness to imbed messages. Chakinala et al. [18] further extend the approach
to TCP packets and formalize various models for these ordered channels.

The class of inter-packet delay channels, on the other hand, embeds messages
in the delay period between selected packets. Cabuk et al. [12] propose an IP
timing channel, where an IP packet arrival during a timing interval is decoded
as 1 and the absence of it is decoded as 0. Shah et al. recently [1] propose
JitterBug, another timing channel to encode binary bits. Unlike the IP timing
channel, JitterBug encodes binary bits into the packet inter-arrival times, and it
does not need to inject new packets. Moreover, they have presented a convincing
threat of leaking keyboard typed secrets, such as passwords, through the timing
channel and have built a hardware to demonstrate its feasibility. Berk et al.
[19] have considered using inter-packet delay of ICMP packets to encode one
or multiple bits. For example, bit 1 is encoded by a longer inter-packet delay,
whereas bit 0 is encoded by a smaller inter-packet delay.

3 The Basic Idea

3.1 Encoding Based on Packet-Flow Distributions

The covert messages in Cloak are encoded by a class of combinatorial objects—
each covert message is encoded with a unique distribution of N TCP packets
over X TCP flows. The encoder and decoder agree on the values of N and X
beforehand. Furthermore, the encoder will transmit the next message only after
receiving the ACKs for the message just sent. On the other side of the chan-
nel, the decoder starts decoding as soon as collecting N TCP packets from the
encoder. Moreover, the encoder and decoder do not have to explicitly exchange
the “codebook”; as will show in section 4.1, the encoding and decoding can be
performed using unranking and ranking functions.

It is worthwhile to point out here that Cloak is reliable in the same sense
of reliability in TCP even when the messages experience adverse network con-
ditions. First of all, Cloak’s decoding accuracy is not affected by delay jitters,
because the encoding is not based on the actual time. Second, since the encoder
sends a covert message one at a time, it can detect whether the decoder has suc-
cessfully received the last message based on the ACKs for the N TCP packets.
Upon detecting an unsuccessful reception, the encoder could “partially” resend
the message. The decoder, on the other hand, will decode only after receiving N
in-sequenced TCP packets from the encoder. Therefore, if Cloak is implemented
using the normal TCP stack, no additional reliability mechanism is needed to
guarantee Cloak’s reliability.



286 X. Luo, E.W.W. Chan, and R.K.C. Chang

(a) The five TCP flows connect to the
same Web server.

(b) The five TCP flows connect to dif-
ferent Web servers.

Fig. 1. Two covert communication scenarios between Cloak encoder and decoder

In Figure 1, we depict two different scenarios for the Cloak encoder and de-
coder to communicate. In both cases, we assume a warden on the encoder’s
network who guards against any network covert channels initiated from inside.
The warden could be active or passive. In the first scenario (Figure 1(a)), the en-
coder establishes a “normal” HTTP session with a remote server which consists
of five TCP flows. The encoder encodes the messages into the TCP flows; the de-
coder eavesdrops at any point of the path and decodes the messages. Moreover,
the warden could not detect Cloak simply based on the presence of multiple TCP
flows to the same server, because it is not uncommon to have multiple TCP flows
in an HTTP session. Moreover, multi-thread upload or download (i.e., sending
commands) also has similar traffic patterns.

In the second scenario (Figure 1(b)), the encoder establishes normal HTTP
sessions with multiple servers which are dispersed at different locations. There-
fore, the decoder should be located on the common routing path for all the
servers. Although this approach restricts the decoder location, it can diffuse the
relationship among the TCP flows. A simple approach for relaxing this restric-
tion is to use distributed information collection, for example, through a botnet.
Each bot will observe partial information and then sends it to the commander.

3.2 The Twelvefold Way

Besides the encoding algorithm just described, Cloak could admit other encoding
methods. In fact, Cloak offers ten different encoding methods which are based on
the well-known Twelvefold Way [16] in the field of Enumerative Combinatorics.
The Twelvefold Way refers to twelve basic counting problems that count all the
possible ways of putting N balls intoX urns, and their results. Let the set of balls
be N (|N| = N) and the set of urns be X (|X| = X). Each problem can be based
on whether the balls and urns are distinguishable or not (e.g., by their colors),
and three possible kinds of ball distributions over the urns: (1) no restriction, (2)
at most one ball per urn, and (3) at least one ball per urn. These three cases can
be equivalently represented by an arbitrary function fA : N → X, an injective
function fI : N → X, and a surjective function fS : N → X, respectively.

The correspondence between balls and urns, and packets and flows is obvious.
Table 1 summarizes the Twelvefold Way using flows (urns) and packets (balls)
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[16]. Each of the twelve results answers the corresponding counting problem
(i.e., the total number of unique packet-flow distributions). Cases (11) and (12)
obviously cannot be used in Cloak, therefore the ten encoding methods. In the
rest of this paper, we refer the ten cases to as Cloakc(N,X), c ∈ [1, 10]. Due to
the space limitation, we refer to [20] for the proofs of the results in Table 1.

Table 1. The Twelvefold Way and their relation to the ten (items 1-10) encoding
methods in Cloak

Elements of N Elements of X fA fI (at most fS (at least

(TCP packets) (TCP flows) (no restriction) 1 packet in a flow) 1 packet in a flow)

Distinguishable Distinguishable XN (1) N !CN
X (2) X!S(N, X) (3)

Indistinguishable Distinguishable CX−1
N+X−1 (4) CN

X (5) CX−1
N−1 (6)

Distinguishable Indistinguishable
PX

i=1 S(N, i) (7)

(
1 if N ≤ X

0 if N > X
(11) S(N, X) (8)

Indistinguishable Indistinguishable
PX

i=1 P (N, i) (9)

(
1 if N ≤ X

0 if N > X
(12) P (N, X) (10)

where

– CN
X = X!

N!(X−N)! and S(N, X) = 1
X!

PX

j=1(−1)X−jCj
XjN .

– P (N, X) is the number of partitions of N into X parts.

According to Table 1, some encoding methods require distinguishable pack-
ets and/or distinguishable flows. The correspondence between the ball and urn
distinguishability, and the flow and packet distinguishability is somewhat tricky.
First of all, all TCP flows and packets are of course distinguishable. However,
the original counting problems assume that the colors of the urns and balls do
not change, but this is not the case for Cloak. For instance, the “marking in-
formation” in the flows and packets could be altered by an ANI. Therefore, the
TCP flows (or packets) are considered distinguishable only if both encoder and
decoder are able to identify the same flow (or packet).

3.3 The Ten-Fold Way in Cloak

In this section, we discuss the differences among the ten encoding methods and
explain why we need all of them. The first important difference among them is
their channel capacity. By modeling a Cloak channel as a classical information
channel, we can obtain the capacity of a Cloakc(N,X) channel in bits/symbol
based on the mutual information [21]. Since Cloak is reliable and there is only one
set of covert messages, the channel capacity can be increased only by increasing
the size of the covert message set. By denoting the Twelvefold Way result for
Cloakc(N,X) by T c(N,X), a higher value of T c(N,X) therefore gives a higher
channel capacity. Furthermore, each unique packet-flow distribution can encode
an L-bit word, where 1 ≤ L ≤ 0log2 T

c(N,X)1.
In the following, we explain the relationships between the channel capacity and

the flow and packet distinguishability. First, making the flows distinguishable
increases the channel capacity (e.g., T 1(N,X) > T 7(N,X)). Similarly, making
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the packets distinguishable also increases the channel capacity (e.g., T 1(N,X) >
T 4(N,X)). Finally, for each row in Table 1, the channel capacity for fA is the
largest, e.g., T 1(N,X) > T 3(N,X), and T 7(N,X) > T 8(N,X). Based on the
channel capacity, we define data rate in bits/second as C

Ts
, where Ts is the time

for transmitting a message. The minimal time for transmitting a message in
Cloak (i.e., the N packets in X flows) is one round-trip time (RTT) between
the encoder and decoder. To achieve a reasonable channel capacity, we therefore
consider X > 1 and N > 1 in the rest of this paper.

Besides the channel capacity, the ten encoding methods differ also in three
other important aspects. The first one concerns the channels that require dis-
tinguishable packets (i.e., c = 1, 3, 7, 8). For these channels, the encoder usually
adds “markers” to the TCP packets in order to make them distinguishable. The
additional markers, however, could be “modified” when the packets traverse an
active warden, which could result in decoding errors. In other words, there is
a tradeoff between achieving a higher channel capacity by making the packets
distinguishable and the decoding accuracy. Similar problems occur also to the
channels with flow distinguishability. We have discussed how to make packet or
flow distinguishable in the full paper [20].

The second one is connected to a head-of-line blocking (HoLB) problem. To
explain the issue, consider c = 1, 2. the difference between them is that the second
method caps the number of packets distributed to a flow to one. Therefore, in
terms of the packet distribution, the flows for c = 2 differ at most by one packet,
but that for c = 1 is N (i.e., all the packets are distributed to a single flow). The
latter case may require several RTTs to complete the transmission of a message;
thus, this HoLB problem, as we shall see later, could reduce the actual data rate
significantly. The last issue is that some flows for the methods under fA and fI
may become idle for a prolonged period of time, which may cause the remote
servers to close the connection. However, those methods under fS mitigate this
problem by insisting each flow to carry at least one packet for each message.

4 Design Issues

In this section, we discuss a number of design elements that are central to a
practical deployment of Cloak in the Internet and to Cloak’s performance.

4.1 Message Encoding and Decoding

As mentioned in the last section, the encoder and decoder do not need to ex-
change a codebook explicitly. Instead, they use two special functions for encod-
ing and decoding: Rank() and Unrank(). Each Cloakc(N,X) channel has its
own function pair. The function Rank() takes in a flow-packet distribution and
returns its rank that is the index of the flow-packet distribution in the decreas-
ing lexicographically ordered array of all possible distributions, staring from 0.
Unrank() does the opposite—taking in a rank and returning the corresponding
flow-packet distribution.
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Fig. 2. The encoding and decoding processes in Cloak

Figure 2 depicts the encoding and decoding processes in Cloak. The encoder
and decoder are assumed to have agreed on (c,N,X) beforehand. They could also
dynamically change (c,N,X) by exploiting the random beacons widely available
in the Internet. The messages are encoded based on L-bit words, where 1 ≤
L ≤ 0log2 T

c(N,X)1. There are three major steps involved in sending a covert
message. Each L-bit word is first converted to the nonnegative decimal value
(through the Bin2Dec() function) that serves as the rank for the corresponding
packet-flow distribution. Then, Unrank() is invoked to compute the distribution.
Finally, the encoder marshals the packet-flow code into the actual TCP flows
and data packets. After sending the N packets over the X flows, the encoder
has to receive the ACKs for the N packets before sending the next N packets.
In the case of packet losses, Cloak may rely on TCP to recover them.

The three-step process above is exactly reversed for receiving a covert message.
In the first step, the decoder unmarshalls the packet-flow distribution from the
flows and packets received from the encoder. That is, the decoder collects exactly
N TCP packets from the X flows before moving to the next step. Moreover, since
the number of flows can be distinguished based on the order of the TCP three-
way handshaking performed, the decoder can count the number of data packets
in each flow. Similar as before, any TCP packet loss, duplication, or reordering
can be taken care of by TCP. As soon as N packets are collected, the decoder
feeds the distribution into Rank() which yields the corresponding rank. As a
last step, the rank is converted back to the L-bit word (through the function
Dec2Bin()). We refer the detailed ranking and unranking algorithms to the full
paper [20].

4.2 A Head-of-Line Blocking Problem

In this section, we discuss a head-of-line blocking (HoLB) problem that we
have encountered when conducting Internet experiments. The HoLB problem
degrades the data rates of all encoding methods, except for c = 2, 5. To explain
the problem, we consider an extreme scenario where most of the N packets are
distributed to a single flow, while other flows receive at most one packet. There-
fore, the total transmission time for the message is governed by the time required
to transmit the packets in the most busy flow which prevents the encoder from
transmitting the next message. Furthermore, since the TCP congestion window
usually starts with one or two packets, it will take the busy flow’s sender sev-
eral RTTs to complete the transmissions, thus leading to a low data rate. The
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problem may become worse if there are packet losses in the most busy flow that
will retransmit those packets according to the timeout mechanism or the fast
retransmission/fast recovery mechanism. This issue will also occur to the flows
that are connected to different servers which experience a wide range of RTTs.

A simple way of mitigating the HoLB problem is to aggressively transmit
every N packets. The basic idea is that the encoder will dispatch all packets
belonging to kth message after receiving ACK packets that acknowledge the
data packets for the (k − 1)th message or a timer with period TE expires. If
the encoder does not receive all the expected ACK packets before TE , it will
retransmit unacknowledged packets and reset the timer. TE is usually set to
the estimated RTT that is computed through the exponential weighted moving
average (EWMA) of RTT samples, an approach similar to the one used in normal
TCP. However, the downside is that the resulting traffic pattern will be different
from normal TCP behavior. This has prompted us to design a new codeword
scheme to be discussed next.

A D-limited codeword scheme. The D-limited codeword scheme essentially
caps the maximum number of packets assigned to a flow to D; that is, it enforces
max{ni} ≤ D, where D ≥ 1 is a constant. The choice of D should be chosen such
that it is less than the encoder’s TCP send window size in terms of packets. In
this way, all the packets can be sent out in one RTT; otherwise, multiple RTTs
would be needed for transmitting a message.

We use c = 10 (indistinguishable packets and flows) to illustrate how this
codeword scheme works. We first define the following two quantities:

1. Let Υ (N) be the total number of ways to distribute N packets into TCP
flows such that each flow is given at most D packets.

2. Let Γ (N,D) be the total number of ways to distribute N packets into D
flows such that each flow is assigned at least one packet. Note that Γ (N,D) =
P (N,D) if both packets and flows are indistinguishable (i.e., c = 10).

Theorem 1. If both packets and flows are indistinguishable, Υ (N) =
∑D

i=1

P (N, i).

Corollary 1. To generate D-limited codewords from P (N,D), we need at most
N + 1−D flows to convey a message.

Theorem 1 computes how much information this D-limited codeword scheme
could transmit. Corollary 1, on the other hand, shows that if the upper bound
on the number of flows is X , then N ≤ X + D − 1. Their proofs are given in
[20]. We now use Proposition 1 and Corollary 1 directly to construct D-limited
codewords for c = 10:

1. Encoding. To transmit a message (a binary string), the encoder first cal-
culates its decimal value and then uses Cloak10’s unranking algorithm to
get the corresponding packet-flow distribution, denoted by ζ. After that, the
encoder computes ζ’s conjugate [16], denoted by ζ′, and transmits packets
according to ζ′.
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2. Decoding. Upon receiving a packet-flow distribution ζ′, the decoder first
computes its conjugate ζ and then uses Cloak10(N,X)’s ranking algorithm
to decode the message.

To construct D-limited codewords for other encoding methods, we could adopt
our general framework for designing new ranking and unranking algorithms [20].
That is, when the encoder receives ζ′ from Cloak9 or Cloak10, it could expand
ζ′ by considering distinguishable packets or flows. For example, if only flows are
distinguishable, we could permute the locations of flows that have different ni

and then increase the capacity in a way similar to λ! or CN
X . If only packets are

distinguishable, we could consider how to partition them into different flows and
therefore to increase the capacity in a way similar to S(N,X)!. If both flows
and packets are distinguishable, we could permute the locations of packets that
belong to different flows. The only requirement is not to change the value of ni.

5 Experimental Results

In this section we discuss how Cloak’s data rate is affected by the RTT, router
hop distance, geographical locations, and various adverse network conditions. Be-
sides, we evaluate the effect of the HoLB problem on Cloak, and its performance
with the D-limited codeword scheme. We also compare Cloak’s performance with
other timing channels: IP timing channel (IPTime) [12] and JitterBug [1], wher-
ever we find appropriate. We have conducted experiments in the real Internet
environment using the PlanetLab platform, and our test-bed which permits con-
trolled experiments configured with various network conditions. Here we present
experiment results obtained from the Planetlab platform and leave the results
from the test bed to [20].

We measure the data rate of the timing channels in terms of their goodput
defined as:

G = (1− pe)
M × L
Td

, (1)

where Td is the total time required for delivering M L-bit covert messages, and
pe is the channel’s bit error rate (BER). The BER is computed based on the
Levenshtein distance which is given by the number of insertions, deletions, and
substitutions needed to convert a source message into a decoded message. Since
Cloak is reliable, its pe is 0.

5.1 Implementation

We have implemented Cloak’s encoder and decoder as a TCP client and a TCP
listener, respectively, including the ten Rank() and Unrank() functions. We have
implemented Bin2Dec(), Dec2Bin(), Rank(), and Unrank() as offline functions.
That is, the encoder pre-computes all the packet-flow combinations, and the
decoder starts decoding only after capturing all N packets from X flows.
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Cloak. For the Cloak’s encoder, we have implemented two types of transmis-
sion functions based on the TCP socket (Cloak(STREAM)) and the raw socket
(Cloak(RAW)). In Cloak(STREAM), the system’s TCP stack guarantees the
transmission reliability, and its traffic pattern resembles normal TCP flows’.
However, it may take several RTTs to complete a single codeword transmission,
thus limiting its data rate. Cloak(RAW), on the other hand, applies the aggres-
sive transmission mechanism discussed in section 4.2 to improve its data rate.
We have also implemented a separate capturing thread in the encoder to mon-
itor the ACK arrivals, in order to determine if the other side has received all
the N packets. We have implemented the Cloak’s decoder with libpcap v0.9.5
library to sniff TCP packets. Moreover, we use a snaplen of 96 bytes to reduce
the overhead during the packet capturing operation. We did not observe any
packet drops throughout the experiments.
IPTime and JitterBug. We have implemented both IPTime’s and Jitter-
Bug’s encoding and decoding schemes as plug-in modules in the Cloak encoder
and decoder, respectively. We employ UDP socket (i.e., SOCK DGRAM), because
the packet transmission in these two timing channels do not require reliability.
During the encoding process, the plug-ins invoke the modulation function in the
Cloak encoder to let the codeword bypass Bin2Dec() and Unrank(), and to mar-
shal the binary stream directly into a flow of modulated UDP packets. Moreover,
the encoder generates the modulated sequences complying with the specifications
of IPTime and JitterBug. Both the IPTime’s encoder and JitterBug’s encoder
use a fixed timing interval (or timing window) of w. The JitterBug’s encoder,
in addition, has a default tolerance parameter of ε = w/4. The corresponding
plug-ins in the decoder perform the reverse procedures for decoding. Moreover,
we did not implement any framing and error correction mechanism for Cloak,
IPTime, and JitterBug.

5.2 The Setup of PlanetLab Experiment Platforms

We locate the encoders in nine geographically diverse PlanetLab nodes, and the
decoders and a Web server in a campus network. The encoders send packets
to the Web server, and the decoder eavesdrops the packets and decodes them.
We have obtained a total of 17,545 RTT samples between the decoder and each
PlanetLab node during the experiment period. Table 2 shows the nine Planet-
Lab nodes with the router hop counts from the encoder to them and the RTT
statistics with a 95% confidence interval. Note that the average RTTs range be-
tween 0.0652 seconds and 0.3418 seconds. Moreover, the RTT measurements for
JP, KR, and CA have higher variations than the others.

5.3 PlanetLab Experiments

Experiment design. To observe the page limitation, we report experiment
results only for Cloak1(N,X). To study the effect of N , we fix X to 20 to give
a large enough number of flows, and N = {5, 9, 10, 11, 15, 20, 30, 40, 50} which
covers a reasonable range of channel capacity. Similarly, to study the effect of
X , we fix N to 20 and consider X = {4, 6, 8, 10, 12, 14}.
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Table 2. Measured path characteristics between each PlanetLab site and the decoder
machine

RTT
Locations Hops

Means Std. Dev. 95% Conf. Intervals

Shenyang, China (CN) 13 .0652 .0060 .0651/.0653

Tokyo, Japan (JP) 16 .0992 .0244 .0988/.0996

California, U.S. (CA) 14 .1767 .0230 .1763/.1770

Kansas, U.S. (KS) 16 .2176 .0056 .2175/.2177

Rhode Island, U.S. (RI) 13 .2267 .0074 .2266/.2268

Gwangju, Korea (KR) 18 .2343 .0356 .2338/.2348

Ghent, Belgium (BE) 16 .3075 .0048 .3074/.3075

London, UK (UK) 19 .3124 .0061 .3123/.3124

Lisbon, Portugal (PT) 17 .3418 .0171 .3415/.3420

To study the adverse effects of the HoLB problem, we have generated two
sets of codewords (datasets 1 and 2) for each N in Cloak1(N, 20). Each dataset
consists of 100 L-bit (M = 100 and L = 0log2X

N1) codewords. Moreover, we
assign each packet in dataset 2 to the 20 flows with equal probability; however,
we intentionally assign more packets in dataset 1 to flow 1. We measure the degree
of HoLB of a codeword by H = max0≤i<X ni. Figure 3(a) plots the values of H ,
the mean values of H for different values of N . As shown, the rate of increase
in H for dataset 1 is about 10 times higher than that for dataset 2 when N
is beyond 10. Moreover, we have generated other sets of codewords (datasets 3
and 4) for each X in Cloak1(20, X). The codewords for datasets 3 and 4 are
generated the same ways as for datasets 1 and 2, respectively. Figure 4(a) shows
that the values of H for the two datasets diverge as X increases.

Experiment results. Figures 3(b), 3(c), 4(b), and 4(c) plot the average good-
puts for the nine PlanetLab nodes with the four datasets of codewords. We
compute the average goodput for each (N ,X) tuple by performing 30 measure-
ments. For each N or X , the nine nodes in the figures are sorted in the ascending
order of their measured mean RTTs given in Table 2. We first report the results
for datasets 2 and 4 (Figure 3(c) and Figure 4(c)) for which the packets are
assigned uniformly to the 20 flows. Among all the nodes, CN achieves a maxi-
mum channel goodput of around 450 bit/s in Figure 3(c). Both figures also show
that the average goodput G for the two smallest RTTs (nodes CN and JP) are
the highest. However, the goodputs do not necessarily decrease with the RTTs.
That is, although the goodputs are inversely proportional to the RTTs, there are
other factors, such as packet losses, that could disturb the goodputs. Moreover,
the increase seems to be more drastic for the case of increasing X . For example,
the JP node’s goodput is increased by more than four times as X increases from
4 to 12. On the other hand, the rates of increases for other nodes with longer
RTTs are smaller. That is, a large RTT will reduce the gain obtained from the
increase in the channel capacity.

Next, we evaluate the effects of the biased packet distributions on the av-
erage goodput. We first compare the results for datasets 1 and 2 (Figure 3(b)
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Fig. 3. The results for the PlanetLab nodes: the average goodput verses N for
Cloak1(N, 20) with datasets 1 and 2
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Fig. 4. The results for the PlanetLab nodes: the average goodput verses X for
Cloak1(20, X) with datasets 3 and 4

and Figure 3(c)). The comparison reveals that they show opposite trends as
N increases: the goodput decreases with N in Figure 3(b). It is important to
point out that the scales of the two figures are actually different. Therefore, the
goodputs in Figure 3(c) are all greater than the respective cases in Figure 3(b),
except for N = 5. Since H increases with N as shown in Figure 3(a), it will take
flow 1 a longer time to complete its packet transmission as N increases. For the
comparison of datasets 3 and 4 (Figure 4(b) and Figure 4(c)), the goodputs in
Figure 4(c) are all greater than the respective cases in Figure 4(b). However,
unlike the previous cases, the goodputs in Figure 4(b) slightly improve as X in-
creases, but the goodputs stop growing as X reaches 10. An increase in X in fact
alleviates the HoLB problem, because flow 1 will become less busy; as a result,
it is not surprising to see some improvement in the goodputs as X increases.

Evaluation of the D-limited codewords. To measure the performance of
the D-limited codewords, we have selected five (JP, CA, KS, KR, and BE) out
of the nine PlanetLab nodes to measure the average goodput of Cloak. Similar
to the last section, we have generated a set of 100 L-bit binary codewords for
each (N,X) tuple for Cloak1(N,X), where X = 6 and N = {12, 16, 20}. We
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Fig. 5. Comparing the average goodput for the normal codewords and the 6-limited
codewords

use Cloak(STREAM) to encode them into two distinct sets of codewords: one
generated by the D-limited codewords scheme with D = 6 and the other by the
normal codewords. The average goodput is again based on 30 measurements.

Figure 5 compares the average goodputs of the two codewords for the five
nodes. The figures show that the D-limited codeword always gives a higher good-
put than the normal scheme for all nodes and for all three (N,X) tuples. Each
figure also gives the average degrees of HoLB for the two codewords. The average
degrees for the D-limited codewords are quite stable in all three cases, whereas
the degree for the normal codewords is the highest in Figure 5(c), followed by
Figure 5(b) and then by Figure 5(a). As a result, the percent of improvement of
using the D-limited codewords also follows the same decreasing order for nodes
JP, CA, and BE in Figures 5(a)-5(c). In particular, we have noticed a maximum
gain of 77% from the JP node with Cloak1(20, 6). On the other hand, the nodes
KS and KR attain much less gains; for example, the gain is only 1.6% for the
KR node with Cloak1(12, 6). By examining the traffic traces, we have found
that the packet loss rates at these two nodes are much lower than the others.
Therefore, the normal scheme has already achieved a very high goodput; the
additional benefit of adopting the D-limited scheme becomes marginal. We have
also evaluated the performance of the aggressive transmission scheme and found
that it could significantly increase Cloak’s goodput [20].

Comparing Cloak, JitterBug, and IPTime. We have also conducted ex-
periments on JitterBug and IPTime in the five PlanetLab nodes. In this set of
experiments, we have generated another 100 packet-flow codewords using the
normal Cloak1(20, 4) encoder with H = 5.86. Each node uses both Cloak(RAW)
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Table 3. The average goodput and average BER for Cloak, IPTime, and JitterBug
obtained from five PlanetLab nodes

95% confidence intervals of average goodput (average BER)

Cloak(RAW) Cloak(STREAM) JitterBug(RTT)

JP 203.86/216.28 (0) 55.17/58.57 (0) 13.01/13.04 (.0155)

CA 85.66/88.49 (0) 68.75/71.75 (0) 7.33/7.35 (.0265)

KS 90.77/91.00 (0) 66.57/69.26 (0) 6.13/6.14 (.0018)

KR 106.52/107.90 (0) 68.68/71.51 (0) 5.67/5.68 (.0012)

BE 63.88/64.20 (0) 44.69/45.61 (0) 4.36/4.36 (.0011)

JitterBug(1.5RTT) IPTime(RTT) IPTime(1.5RTT)

JP 8.77/8.78 (.0164) 9.48/9.50 (.0363) 6.49/6.51 (.0209)

CA 4.76/4.81 (.0521) 5.43/5.47 (.0282) 3.68/3.69 (.0158)

KS 4.10/4.10 (.0010) 4.50/4.51 (.0112) 3.02/3.02 (.0088)

KR 3.81/3.81 (.0010) 4.17/4.18 (.0126) 2.80/2.81 (.0081)

BE 2.91/2.91 (.0007) 3.21/3.21 (.0076) 2.14/2.15 (.0066)

and Cloak(STREAM) to transmit the codewords. We set Cloak(RAW)’s TE to
the measured mean RTTs. For the JitterBug and IPTime experiments, the en-
coder marshals each respective binary codeword directly into a flow of modulated
UDP packets with w = {RTT, 1.5RTT}. Both the average goodput and average
BER are computed based on 30 samples.

We summarize the experiment results in Table 3. In each cell, the two left-
most values correspond to the lower limit of and the upper limit of the 95%
confidence intervals for the same average goodput, and the rightmost value in-
side the parentheses corresponds to the measured average BER. We first point
out that it is difficult to conduct a fair comparison among the three channels,
because, for example, Cloak uses multiple flows whereas the other two use only
one. Therefore, the comparison is based on how their goodputs are affected by
the RTTs. Recall that the five nodes are sorted in an ascending order of their
mean RTTs. For both Cloak channels, we do not find any general relationship
between their goodputs and the RTTs, except that the lowest goodputs for both
cases are given by the highest RTT (i.e., BE). On the other hand, the goodputs
for JitterBug and IPTime show downward trends as the RTT increases. The
magnitude of the goodput degradation is rather significant, which is between
three to four times when comparing the goodputs for JP and BE. Their average
BERs also show similar downward trends except for a couple points.

6 Conclusions and Future Work

In this paper, we propose Cloak, a new class of timing channels. The major
design choices responsible for Cloak’s attractive properties are the use of TCP
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as the cloaking medium, and the exploitation of Enumerative Combinatorics to
encode a message into multiple TCP flows and a fixed number of TCP packets.
The former provides the needed reliability for free, whereas the latter facilitates
the use of the Twelvefold Way to increase the channel data rate and avoid decod-
ing problems inherent in other network timing channels. We have implemented
the Cloak encoder and decoder, and evaluated its goodput under controlled en-
vironment and in the wild. Moreover, we have in fact designed and evaluated
a two-step detection algorithm for Cloak which, due to the space limit, could
not be accommodated in this paper. Interested readers may refer to [20] for the
algorithm and evaluation.

In a broader sense, our contribution in this work is to provide a new frame-
work for designing more effective network covert channels. The ten encoding
methods represent some of the design points in this framework. Based on this
perspective, we should not rule out that there are other design points that pos-
sess other attractive properties. Therefore, one of the future work directions is to
explore novel covert channel design with an even higher data rate than Cloak, for
example. The other direction is on the detection aspect. Although the detection
problem seems notoriously difficult, an active detection method is a promising
approach. Another approach is to design more intelligent intermediaries that
could reduce the channel data rate significantly.
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Abstract. Since the first password-based authenticated key exchange
(PAKE) was proposed, it has enjoyed a considerable amount of inter-
est from the cryptographic research community. To our best knowledge,
most of proposed PAKEs based on Diffie-Hellman key exchange need
some public information, such as generators of a finite cyclic group. How-
ever, in a client-server environment, not all servers use the same public
information, which demands clients authenticate those public informa-
tion before beginning PAKE. It is cumbersome for users. What’s worse,
it may bring some secure problems with PAKE, such as substitution at-
tack. To remove these problems, in this paper, we present an efficient
password-based authenticated key exchange protocol without any pub-
lic information. We also provide a formal security analysis in the non-
concurrent setting, including basic security, mutual authentication, and
forward secrecy, by using the random oracle model.

1 Introduction

With the rapid-developing of the Internet, people prefer to communicate with each
other through the common but insecure channel, rather than traditional meth-
ods, such as ordinary mail. It demands a protocol that can provide mutual au-
thentication and generation of a cryptographically-strong (high entropy) shared
key for two communicating entities. Password-based authenticated key exchange
(PAKE) is a such kind of protocol. In a PAKE, it allows two communicating en-
tities to share a fresh authenticated session key by using a pre-shared human-
memorable password. To date, there are two methods to construct a PAKE: the
hybrid (i.e., password and public-key) method and the password-only method. In
the former method, the two communicating entities share a password and the one
additionally knows the public key of the other (see [17,12]), which demands a se-
cure public-key infrastructure (PKI), thereby arising of issues of user registration,
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key management, and key revocation. In contrast, in the latter method, the need
of a secure PKI can be eliminated, which can make the protocol be more efficient
and practical. Note that the pre-shared human-memorable password is low en-
tropy, however, the fresh authenticated session key is high entropy. It seems para-
doxical to get a high entropy key by only using a low entropy key. In other words,
the latter method seems impossible. However, in 1992, Bellovin and Merritt [3]
proposed the first such kind of protocol, named as Encrypted Key Exchange, by
using a combination of symmetric and asymmetric cryptographic techniques. In
their paper, they proposed two protocols, one is based on RSA [21], and the other
is based on ElGamal public key encryption [9].

Due to its simplicity and convenience, password-only authenticated key ex-
change protocol has received much interest from the cryptographic research com-
munity, and most of proposed protocols are based on Bellovin and Merritt’s work
[4,20]. However, these protocols have not been proven secure. Until the results
in [5,6], the security proof of PAKE was not treated rigorously. Following these
results, a number of provable protocols and improvements have been put forth,
in random oracle model [5,19,2,25,1], in ideal cipher model [6,2], and in standard
model [10,15,14,16,11]. Most of provable PAKEs based on Diffie-Hellman key ex-
change need public information [15,14,2,1], such as generators of a finite cyclic
group. However, in a client-server environment, not all servers choose the same
public information, which would bring some security problems. For example, we
use the protocol in [15], which “do require that no one know the discrete loga-
rithms of any of the generators with respect to any other” [15]. If an adversary
changes the generators (g1, g2, h, c, d) to (g′1, g′2, h′, c′, d′), which he knows the
discrete logarithms. As a consequence, a client’s password will be revealed after
an execution of PAKE with the adversary. And then the adversary can imper-
sonate the client. A natural method to resist this attack (named substitution
attack) is to authenticate the public information before beginning PAKE, how-
ever, it is cumbersome to clients, and adds complexity to password-only PAKE.
The other method is to remove the public information. To our best knowledge,
there is no provable PAKE without public information, based on Diffie-Hellman
key exchange. In this paper, we propose a such kind of PAKE, which is very
efficient (it requires only four and five modular exponentiation computations
on client’s side and server’s side, respectively). Furthermore, we give a formal
security analysis in the non-concurrent setting, including basic secure, mutual
authentication, and forward secrecy, by using the random oracle model.

1.1 Motivation

In this paper, we focus on the PAKE without public information. But what’s the
benefit we can get from this kind of PAKE? Firstly, we discuss the disadvantages
of the PAKE with public information.

As mentioned above, to resist substitution attack, users must get valid public
information. Although users can do it, there still exist some problems, which are
described as follows.
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– On the one hand, compared with the password, the public information is
more complex and larger. For different servers, the public information is dif-
ferent, hence it is a heavy burden for users who store the public information.

– On the other hand, if users will not store the public information, they must
get the public information before performing the protocol every time. To our
best knowledge, there are two following methods to get the public informa-
tion.

• from a public board;
• from a particular party trusted by communicating parties.

For the former one, the public board should be maintained by a particu-
lar trusted party, whom has to be trusted by all users and all servers, and
the data the party maintains will be larger and larger with the number of
servers increasing. Furthermore, on the one hand, if the public information
for some server changes, which will raise the problems similar to the certifi-
cate management problem. On the other hand, if the party is corrupted by
some adversary, the adversary can impersonate all users and all servers, such
as in the protocols of [15,14].

For the latter method, before performing the PAKE with public informa-
tion, the user must communicate with the particular trusted party, which
will increase user’s communication and computation burden. Furthermore,
in the PAKE with public information, it requires that the party and server
are connectable at the same time. If user cannot communicate with the party,
the PAKE cannot be performed.

Now, we can say that the benefit from the PAKE without public information
is to remove the above disadvantages.

1.2 Differences from Previous Work

In fact, the method proposed in this paper is very similar with that in [18,7], while
not the same. On the one hand, in [18], the author proposed a PAKE named Open
Key Exchange (OKE), where the server and the client only needs to share the
password, while the author focuses on the PAKE based on the RSA problem, not
the one based on Diffie-Hellman key exchange. On the other hand, it seems that
our proposal belongs to the generic construction in [7], which extends the OKE
construction by using trapdoor hard-to-invert group isomorphisms. However, in
the generic construction, the PAKE needs six rounds1, while our proposal just
needs four rounds. Furthermore, although the concrete construction based on
Diffie-Hellman key exchange in [7] needs the same rounds2 as our proposal does,
the shared information between the client and the server is different from our
proposal. The concrete construction requires that the shared information is not
only the password, but also the generator of a finite cyclic group, while in our
proposal, the shared information is only the password.

1 We add one round for the client authenticates the server’s session key.
2 We add one round for the client authenticates the server’s session key.
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In this paper, we aim to propose a provable PAKE based on Diffie-Hellman
key exchange, where the client and the server only share the password. Our
proposal can be considered as a natural extension of [18,7].

1.3 Organization

The rest of this paper is organized as follows. In Section 2, we first review the issues
related to the security of password-based authenticated key exchange protocol.
Then, we propose our protocol and its security analysis in Section 3 and Section 4,
respectively. In what follows, we do comparisons our proposal with other PAKEs,
and give some discussions on PAKE without public information in Section 5 and
Section 6, respectively. Finally, we draw our conclusions in Section 7.

2 Preliminaries

In a password-only authenticated key exchange protocol, there are two entities,
say client and server (denoted by C and S), both holding a secret password
drawn from a small password space P . Based on the password, client and server
can authenticate each other and generate a fresh session key which is only known
to the two of them. There is an active adversary, who controls all communications
between client and server, and aims to defeat the goal of the protocol. The
adversary can guess a value for the password and use this value in an attempt
to impersonate a player, either on-line or off-line. For the former attack, it can
be easily detected by the server after several failed attempts, and the server
can halt the account for a while, while the latter one is not the same case
due to its independence of the server. Thus, the fundamental security goal of a
password-only authenticated key exchange protocol is to be secure against the
latter attack. Our formal model of security for password-only authenticated key
exchange protocols is based on the “oracle-based” model of Bellare, Pointechaval,
and Rogaway [6]. In the following, we recall their definition of their model. For
further details, we refer the reader to [6].

Notes, Initialization. Let I be the set of protocol entities, and C and S be
two elements of I, but not fixed. Before running of the protocol, each pair of
entities, C, S ∈ I, share a password pwd, randomly selected from the password
space P . The public information of the protocol, such as a set of cryptographic
functions, are also specified. However, in our proposal, there does not exist any
public information.

Execution of the Protocol. In a challenge-response protocol, entities’ behave
in response to received message is determined by the protocol. For each entity,
she can execute the protocol multiple times with different entities, which is
modeled as an unlimited number of instances3. We denote the i-th instance of
entity C as Πi

C . Since the adversary is assumed to control all communications
among entities, she can interact with entities, which is modeled via access to
oracles. The oracle types are as follows:
3 The security analysis of our proposal is not in a concurrent setting.
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Send(Ci, M) : This sends message M to instance Ci. The instance executes and
responses as specified by the protocol. This oracle models the active attack.

Execute(Ci, Sj) : This executes the protocol between instances Ci and Sj hon-
estly and outputs the transcript. This oracle models the passive attack.

Reveal(Ii) : This outputs the session key ski
I of Ii. This oracle models the

misuse of session key.
Test(Ii) : This oracle can be used only once per challenge. The instance Ii

generates a random bit b and sends its session key ski
I to the adversary if

b = 1, or a random session key if b = 0.

We say that two instances Ci and Sj are partners if they both have accepted
and hold the same messages sent and received by Ci (or Sj). An instance is said
to be fresh if the instance has accepted and neither it nor its partner is queried
to a Reveal oracle.

The notion of semantic security intuitively says that an adversary cannot
effectively distinguish between a correct session key and a random session key.
This is formally defined via a game, which is described as follows: it initialized
by fixing a password pwd, randomly chosen from password space P , let the
adversary A ask a polynomial number of queries to the oracles as described
above. During the game, the adversary queries a single Test oracle on a fresh
instance. At the end of game, the adversary A outputs its guess b′ on the bit b
selected in the Test oracle. We define the advantage of A to be

AdvPAKE
A = |Pr|b = b′| − 1/2|.

Semantic security means that any efficient adversary’s AdvPAKE
A is no more than

Q(k)/N + ε(k), where k is the security parameter, Q(k) is the maximum times
of online attacks, N is the size of dictionary, and ε(·) is a negligible function.

Computational Diffie-Hellman Assumption. Let G = 〈g〉 be a finite cyclic
group of order a k-bit prime number q. Computational Diffie-Hellman assump-
tion means that there is no probabilistic polynomial time adversary can solve
the following problem in G with non-negligible probability:

On input a tuple (g, gx, gy), where x, y ∈ Z∗
q , computing the value gxy.

In the following, we denote εcdh as the probability that the adversary solves
the above problem.

Decisional Diffie-Hellman Assumption. Let G = 〈g〉 be a finite cyclic group
of order a k-bit prime number q. Decisional Diffie-Hellman assumption means
that there is no probabilistic polynomial time adversary can solve the following
problem in G with non-negligible probability:

On input a quadruple (g, gx, gy, gz), where x, y, z ∈ Z∗
q , outputs the decision

whether gxy = gz.
In the following, we denote εddh as the probability that the adversary solves

the above problem.
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client and server only share a password pwd.

client server

G, q, g
rC ∈R Z∗

q

RC ← grC

F low1 ← (G, q, g,RC , client) F low1−−−−−−−→
Check q ∈ {k-bit prime},

gq ?
= 1

(RC)q ?
= 1

Reject if not, else
rS ∈R Z∗

q

RS ← grS

R∗
S ← (RC)pwdRS

R′ ← (RC)rS

F low2←−−−−−−− F low2 ← (R∗
S, server)

Check (R∗
S)q ?

= 1
Reject if not, else

R′
S ← R∗

S(RC)−pwd

R ← (R′
S)rC

H0, H1, H2 ∈R FH

vC ← client||server||RC ||R′
S ||R

α ← H1(vC)
F low3 ← (H0, H1, H2, α) F low3−−−−−−−→

Check whether H0, H1, H2 ∈ FH ,
vS ← client||server||RC ||RS ||R′

α
?
= H1(vS)

Reject if not, else
skS ← H0(vS)

β ← H2(vS)
F low4←−−−−−−− F low4 ← β

Check β
?
= H2(vC)

if not, skC ←⊥
else, skC ← H0(vC)

Fig. 1. Password-based authenticated key exchange without public information

3 Our Proposal

A high-level description of the protocol is given in Figure 1. Our protocol is in
a finite cyclic group G = 〈g〉 with a k-bit prime order q, where G is chosen
by client C. FH is denoted as the family of universal one-way hash function:
{0, 1}∗ → {0, 1}k′

.
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As shown on Figure 1, the protocol runs between a client C and a server
S, who initially share a low-entropy secret string pwd, the password, uniformly
drawn from the dictionary P , without knowing other public parameters, such
as the generator g of the underlying finite cyclic group G, where k and k′ are
security parameters. Note that all computations are in G.

The protocol consists of the following four flows.

1. The client first chooses a random finite cyclic group G = 〈g〉 of order a k-bit
prime number q, and selects a random number rC ∈ Z∗

q , and computes the
value RC ← grC , then it sends

(G, q, g, RC , client)

to the server as Flow1.

2. After receiving Flow1, the server first checks whether q is k-bit prime, g

and RC are two members of G with order q (gq ?= 1 and Rq
C

?= 1). If not,
reject Flow1 and abort; otherwise, choose a random number rS ∈ Z∗

q , and
compute

RS ← grs , R∗
S ← (RC)pwdRS , and R′ ← (RC)rS ,

then it sends (R∗
S , server) to the client as Flow2.

3. Upon receiving Flow2, the client first checks whether R∗
S is a member of G

with order q ((R∗
S)q ?= 1), if not, reject Flow2 and abort; otherwise, choose

randomly three hash functions H0, H1, H2 from FH , and compute

R
′

S ← R∗
S(RC)−pwd, R ← (R

′

S)rC , and α ← H1(client||server||RC ||R′

S ||R),

and send (H0, H1, H2, α) to the client as Flow3.

4. On receiving Flow3, the server first checks whether H0, H1, H2 are chosen
from FH , and α

?= H1(client||server||RC ||RS ||R′). If not, reject Flow3 and
abort; otherwise, compute

skS ← H0(client||server||RC ||RS ||R′), β ← H3(client||server||RC ||RS ||R′)

which the server sends to the client as Flow4.
5. If β

?= H3(client||server||RC ||R′

S ||R) holds on the client side, the client com-
putes skC ← H0(client||server||RC ||R′

S ||R), which means that they have
successfully exchanged the session key.

Mutual Authentication. The server authenticates the client by Flow3, and
the client authenticates the server by Flow4.

4 Security of Our Protocol

In this section, we deal with the semantic security goal in the non-concurrent
setting, including the basic security of the protocol, mutual authentication goal,
and forward-secrecy.
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4.1 Basic Security

Theorem 1. Let P be the protocol in Figure 1, where passwords are chosen
from a dictionary P of size N , and let k and k′ be the security parameters. Let
A be an adversary which asks qex queries to Execute oracle, qs queries to Send
oracle, and qh queries to the hash oracles. Then, in the non-concurrent setting:

AdvPAKE
A < (qex + qh + qs)εddh +

qs

2k′−1
+

2qs

N

Proof Idea. We give our proof using similar techniques as described in [2,1]. We
define a series of hybrid experiments, starting with the real attack and ending in
an experiment in which the adversary’s advantage is 1/2, and for which we can
bound the difference in the adversary’s advantage between any two consecutive
experiments. From these experiments, we can see that the Execute, Send, and
Reveal oracle cannot help the adversary. Due to the lack of space, we give the
proof in the full version [23].

4.2 Mutual Authentication

The following theorem shows that our protocol ensures mutual authentication,
that is, a server/client instance will never accept a non-corresponding/non-
expected client/server instance with non-negligible probability. We denote that
AuthC/AuthS is the probability that a server/client instance accepts a non-
corresponding/non-expected client/server instance.

Theorem 2. Let us consider our protocol, where P is a finite dictionary of size
N equipped with the uniform distribution. Let A be an an adversary against the
security of our protocol, with less than qs Send queries, qex Execution queries,
and qh hash queries. Then in the non-concurrent setting, we have

AuthC < (qex + qs)εddh +
qs

2k′−1
+

qs

N
,

AuthS < (qex + qs)εddh +
qs

2k′−1
+

2qs

N
.

Due to the lack of space, we give the proof in the full version [23].

4.3 Forward Secrecy

In this section, in order to deal with forward secrecy, we introduce a new kind
of query named the Corrupt-query [2]:

Corrupt(I): This query models the adversary A have succeeded at getting the
password pwd of the entity I. However, A does not get internal data of I.
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Now, we say an instance is a fresh instance if before the Corrupt-query has
been asked, the instance has accepted and neither it nor its partner is queried
to a Reveal Oracle.

Forward-secrecy ensures that the adversary can not get any information about
the session keys established before the password pwd is revealed. We use the same
game in Section 2 to define forward-secrecy, and denote the advantage of A to
be

AdvPAKE−FS
A = |Pr|b = b′| − 1/2|.

Forward-secrecy means that any efficient adversary’s AdvPAKE−FS
A is negligible.

Theorem 3. Let us consider our protocol, where P is a finite dictionary of size
N equipped with the uniform distribution. Let A be an an adversary against the
security of our protocol, with less than qs Send queries, qex Execution queries,
and qh hash queries. Then in the non-concurrent setting, we have

AdvPAKE−FS
A < (qex + qh + qs)εddh +

qs

2k′−1
+

2qs

N
.

Due to the lack of space, we give the proof in the full version [23].

5 Comparison

In this section, we will compare our proposalwith the scheme in [13] (named IEEE)
and the scheme in [1] (named AP05). From our viewpoint, the hash functions are
not the public information, but the common sense, like the operator “+” in algebra.
Since in our proposal, no matter which special finite cyclic group G = 〈g〉 is, we
can always use the hash function SHA − 1 only. For example, set H0 : SHA −
1(client||server||RC ||RS ||R||0),H1 : SHA−1(client||server||RC||RS ||R||1), and
H2 : SHA − 1(client||server||RC ||RS ||R||2).

Table 1. Comparison of PAKEs between with and without public information

Our proposal IEEE AP05

public information None G, g, q, (Ek, Dk) G, g, q, M , N

the total number of round 4 3 2

Authentication Mutual Unilateral None

Computation Costs Client’s side 4Te
a + 1Tm

b 2Te 3Te + 2Tm

Server’s side 5Te + 1Tm 2Te 3Te + 2Tm

Communication Costsc Client’s side 6 2 1
Server’s side 3 2 1

a Time for a modular exponentiation computation
b Time for a modular multiplication computation
c Since the schemes all work in a finite cyclic group G = 〈g〉 of order a k-bit prime

number q, hence, we just consider the total number of data unit.
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From Table 1, compared with IEEE and AP05, our proposal is a little bit
inefficient than these two protocols.

– Its computational overhead is five more modular exponentiation computa-
tions than that in IEEE, and three more modular exponentiation compu-
tations than that in AP05. Since in our proposal, the server has to check
the validity of Flow1, and the client has to check the validity of Flow2, but
IEEE and AP05 do not need to do this.

– Its communication costs on client’s side are more than that in IEEE and
AP05. Since in our proposal, the client’s terminal does need transmit the
parameters. If we want to reduce the length of transmitting data, we can use
the cyclic finite group on the elliptic curve.

– Since our proposal provides full functions including mutual authentication,
while IEEE and AP05 do not. Hence, the total number of round in our
proposal is more than that in IEEE and AP05.

6 Discussion

The Parameters Can Be Reused. Now, let us think more about our new
kind of PAKE. We can find that there is no need for the client’s terminal to
generate new parameters each time. Since every server can perform the same
as the proposed scheme suggests, hence, it allows the client to choose its own
parameters once and re-use them for several different servers. In fact, if the client
has a device with the parameters, then the same parameters can be used every
time. We think it is very flexible and pretty attractive to users.

Generating And Testing The Parameters. In our proposal, the client’s
terminal should generate G, q, g, and the server’s terminal should verify these
parameters. For the client’s terminal, since the user can reuse the parameters,
the time for generating the parameters is not a problem in our proposal. For
the server’s terminal, checking whether an element g in a cyclic finite group
is a generator with a prime order q is fast, which just needs a exponentiation
computation in the underlying cyclic finite group (gq ?= 1). On the other hand,
there exist fast algorithms to test primality [24,22]. As a result, the time for
testing the parameters is not a problem in our proposal, neither.

Is There Existing PAKE Without Public Information? The answer is
“Yes”. Most PAKEs based on RSA [3,19,25] can be considered as the PAKE
without public information, since the public key of RSA (n, e) is chosen by the
client, and the client sends them to the server. However, our proposal is the first
provable-secure PAKE without public information, only sharing password, based
on Diffie-Hellman key exchange.

Can All PAKEs Be Changed Into The PAKE Without Public Infor-
mation? The answer is also “Yes”. If the protocol just needs one generator of
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the underlying finite cyclic group, it can be changed into the PAKE without pub-
lic information by the method in our proposal. If the protocol needs more than
one generators, it should need more communication and computation to com-
pute the generators, such as performing a standard Diffie-Hellman key exchange
[8] to get a generator.

7 Conclusion

In this paper, to remove the disadvantages raised by getting valid public infor-
mation, we have proposed an efficient password-based authenticated exchange
protocol without public information. Furthermore, we gave its security proof in
the non-concurrent setting, including basic security, mutual authentication, and
forward secrecy, by using the random oracle model.

Compared with the PAKEs with public information, our proposal is a little bit
inefficient in terms of computational complexity. However, since the parameters
can be reused in our proposal, it is very flexible and attractive to users.
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Abstract. We revisit the problem of “sending information into the future” by
proposing an anonymous, non-interactive, server-based Timed-Release Encryp-
tion (TRE) protocol. We improve upon recent approaches by Blake and Chan,
Hwang et al., and Cathalo et al., by reducing the number of bilinear pairings that
users must compute, and by enabling additional pre-computations. Our solution
compares favorably with existing schemes in terms of computational efficiency,
communication cost and memory requirements, and is secure in the random ora-
cle model.

Keywords: timed-release encryption, bilinear pairings, pre-computations, multi-
ple receivers.

1 Introduction

Timed-Release Encryption (TRE) is a special field of cryptography that studies the
problem of “sending information into the future”, i.e., encrypting a message so that it
cannot be decrypted by anyone, including the designated recipients, until a future time
chosen by the sender. This problem was originally posed in [22] and then explored
further in [27].

There are numerous applications in distributed computing and networks that require
TRE, such as sealed-bid auctions in which one seeks to provide assurance that bids
cannot be opened by anyone (including the auction board) before the end of the bid-
ding period [27], payment schedules, and key escrow. Other examples include the re-
lease of important documents (e.g., memoirs, wills, press articles) [27]; e-voting which
requires delayed opening of votes [26]; internet programming contests, where partici-
pating teams cannot access the challenge problem before the beginning of the contest
[3]; delayed verification of signed documents, such as lottery [29] and check cashing,
contract signing [14], and verification of online card game results [13].

Solutions to the TRE problem follow one of two basic techniques. The first is based
on so-called time-lock puzzles [24,27,1], [8,18,19], where the receiver must perform
non-stop, non-parallelizable computation in order to recover a message. Although this
approach does not involve a trusted third party, it puts immense computational overhead
on the receiver, it makes encryption dependent on the receiver’s CPU speed, and does
not guarantee that the message will be retrieved at a precise moment in the future.
To sidestep these problems, a second approach developed, based on the use of trusted
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time-servers. The server-based approach relieves the receiver from performing non-
stop computation, and can specify the decryption time with precision. The trade-off is
the required interaction between the (trusted) server and the users. To ensure security,
scalability and anonymity, a time-server should have as little interaction as possible with
the users. Ideally, this server should not be involved in the encryption or decryption
process, and should only provide a common time reference by periodically releasing
unforgeable, time-embedded information, which will be used to decrypt timed-release
ciphertexts. The vast majority of the early attempts at TRE did not satisfy this last
requirement.

In the early nineties, [22] proposed a system where the server is a trusted escrow
agent, storing messages and releasing them to the designated recipients at specified
times. That approach did not provide anonymity, and the server knew the content of the
message and its release time. Another approach, combining symmetric and asymmetric
encryption, was proposed by [27]; it required active interaction between senders and
server, and thus guaranteed anonymity only for receivers. To provide sender anonymity,
[16] proposed a solution in which interaction was needed between the server and the
receiver only. In that scheme, the receiver’s anonymity is compromised because server
and receiver must engage in a conditional oblivious transfer protocol.

Recently, there have been attempts to use bilinear pairing-based schemes for TRE.
The work in [7] mentioned TRE as one of the possible applications of Identity Based
Encryption (IBE), and [25] implemented that idea. Although IBE is certificate-less,
their scheme was not scalable, because the server must generate and transmit to each
receiver a unique secret key, corresponding to a specific time instant. Other TRE ap-
proaches allow the recovery of past time-specific trapdoors from a current trapdoor.
Among them are the protocol in [6] which uses the tree-like structure of [9] backwards,
and [13] which uses a hash chain for the construction of the trapdoors. In both cases, the
root of the tree-like structure and the hash chain, respectively, correspond to the “last”
time instant for which a trapdoor can be produced, which implies an upper bound on
the lifetime of their systems.

The first attempt at scalable, server-passive, user-anonymous TRE was due to Blake
and Chan [3], as recently as three years ago. The breakthrough of that pairing-based
approach is that the server does not interact with either the sender or the receiver; its
sole responsibility is to provide a common time reference by releasing time-specific
universal (i.e., receiver-independent) trapdoors. In fact, the server need not even be
aware of the existence of a sender or receiver; hence, user anonymity and message
privacy are guaranteed. That work has formed the basis for the majority of modern TRE
schemes [26]. Hwang, Yum and Lee [20] proposed a user-anonymous TRE scheme
that had similarities with that of Blake and Chan but could also provide a pre-open
capability, meaning that the sender can decide to allow “early” decryption by issuing
to the receiver a secondary trapdoor (different from the one to be given later by the
time server). Another efficient anonymous TRE scheme that can take advantage of pre-
computations1 — and forms the point of departure for this work — was proposed by
Cathalo, Libert and Quisquater [10].

1 By pre-computation we mean that some of the calculations necessary to run a protocol can be
performed off-line, prior to specifying a message or a receiver.



Improved Anonymous Timed-Release Encryption 313

The contribution of this paper is to combine the desirable properties of existing TRE
schemes in order to create a new, efficient, server-passive, provably-secure, pairing-
based, user-Anonymous TRE protocol (termed AnTRE). A key advantage of our proto-
col is its simple public key format which enables pairing pre-computations and leads to
significant computational savings. Recently-proposed TRE schemes either use a more
complex public key format [3,10], thus requiring pairing-based verification of users’
public keys, or lack support for pre-computations [3,20]. In terms of computational ef-
ficiency, our protocol is more than twice as fast as the best existing approaches when
sending to unknown receivers, while also comparing favorably when sending the same
information to multiple (more than two) receivers. Moreover, under our approach, the
amount of data (public keys and pre-computed values) to be stored in the sender’s ma-
chine is very small compared to that of other schemes [10]. In our scheme, as in [3],
the time-server does not need to store any of the required trapdoors, since it can gen-
erate them on demand, using its own private key. Moreover, the time-server has a pas-
sive role and its sole responsibility is to periodically publish time-specific trapdoors,
avoiding any interaction at all with either the sender or the receiver, thus providing
user-anonymity.

The remainder of this paper is organized as follows. In Section 2 we define our
model for anonymous TRE. In Section 3 we describe the proposed protocol and its
security properties. Section 4 compares our protocol with three of the best-known TRE
approaches in terms of computational efficiency and memory usage.

2 TRE Model

2.1 Modeling a User-Anonymous TRE Scheme

There are two types of entities involved in a general TRE scheme: a trusted time-server
that periodically issues authenticated time-specific trapdoora, and users that act either
as senders or as receivers. In this work, we assume that ciphertexts always contain in-
formation about their release-time. We will let T ∈ {0,1}τ, τ ∈ N denote time. For
instance, T could indicate the τ-bit string representation of a specific time instant (e.g.
T = “10:00AM, October 10, 2007 GMT from the Denver Atomic Clock used in Global
Positioning System (GPS)” ). Based on these assumptions, an anonymous TRE scheme
(AnTRE) consists of a quintuple of polynomial-time algorithms:

AnTRE.Setup: It is run by the time-server; it takes as input a security parameter 1k,
and returns system parameters params that include the server’s public key, spub, for
which the corresponding private key, spr, is securely stored, to be used in the genera-
tion of all time-specific trapdoors.

AnTRE.ReleaseT is run by the time-server; given the server’s private key spr, and
a time T ∈ {0,1}τ, it returns a verifiable time trapdoor sT .

AnTRE.KeyGen: This is a key generation algorithm run by a user. Its inputs are a
security parameter 1k and the system parameters params; it returns a private/public
key pair (upr,upub).
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AnTRE.Enc is run by the sender of a message m. It takes as inputs the system parame-
ters params, the message m, the release time T ∈ {0,1}τ, and the public keys of both
receiver and time server (upub and spub respectively), and returns a ciphertext C that
the recipient must be unable to decrypt before being given the trapdoor that is to be
published by the server at a later time.

AnTRE.Dec: This is a decryption algorithm that takes as inputs a ciphertext (C,T ),
the system parameters params, a private key upr, and a time-specific trapdoor sT , and
returns a plaintext m or an error message.

2.2 Adversarial Models

We distinguish between two kinds of adversaries. One is a so-called outside attacker
that models a “curious” time-server (i.e., one that knows the time-specific trapdoor for
any time) trying to decrypt a ciphertext he may have intercepted. This attacker is chal-
lenged on a random user’s public key for which he is equipped with a decryption oracle.
A second adversary is an inside attacker that models a malicious, “impatient” receiver,
trying to decrypt a ciphertext before its designated release time. In that case, the ad-
versary has knowledge of the receiver’s private key, but does not have any information
about the time-server’s private key and the specific trapdoor that will be published at
the appointed time. We assume that an inside attacker can freely choose the public key
on which he is challenged in a “find-then-guess” game, to be made precise shortly. The
adversary can also access a release-time oracle returning trapdoors for any time pe-
riod, except the one for which the challenge ciphertext is computed. Furthermore, in a
chosen-ciphertext scenario, he is given access to an oracle decrypting other ciphertexts
than the challenge. In the AnTRE model, this adversary is called chosen-time period
and ciphertext attacker (CTCA).

Definition 1 ([10]). Let A be an outside adversary. An AnTRE scheme is said to be se-
cure against chosen-ciphertext attacks (IND-CCA secure) if no polynomially bounded
adversary A has a non-negligible advantage in the following game:

1. A challenger, CH, takes a security parameter 1k and runs AnTRE.Setup(1k) and
AnTRE.KeyGen to obtain a list of public parameters, params, and a key pair (upr,
upub). The public key upub, params, and the server’s private key, spr, are given to A ,
while the private key, upr, is kept secret.

2. A has access to a decryption oracle, AnTRE.Decrypt(.), which given a ciphertext
(C, T ) and the time-specific trapdoor sT (always computable by anyone who knows
spr), returns the decryption of C using the private key upr. At some point, A outputs
two equal-length messages m0, m1 and a challenge time-period T ∗. He gets a cipher-
text (C∗,T ∗) = AnTRE.Encrypt(mb,upub, params,T ∗), for b

R←−{0,1}, computed un-
der the public key upub.

3. A issues a new sequence of queries but is prohibited from asking for the decryp-
tion of the challenge for the time period T ∗. He eventually outputs a bit b

′
, and wins if

b
′
= b. His advantage is AdvIND−CCA

AnTRE,A (A) := |Pr[b
′
= b]−1/2|.



Improved Anonymous Timed-Release Encryption 315

Definition 2 ([10]). Let A be an inside adversary. An AnTRE scheme is said to be se-
cure against chosen-time period and ciphertext attacks (IND-CTCA secure) if no poly-
nomially bounded adversary, A , has a non-negligible advantage in the following game:

1. The challenger, CH, takes the security parameter 1k and runs AnTRE.Setup(1k) to
return the resulting public parameters params to A . The server’s public key, spub, is
given to A , while the corresponding private key, spr, is kept secret.

2. A has access to a release-time oracle AnTRE.ReleaseT(.) returning trapdoors sT

for any time T . A is also given access to a decryption oracle, AnTRE.Dec(.), which
given a ciphertext C and a receiver’s public key, upub, provided by A , computes the de-
cryption of C using sT , but without knowing the corresponding user’s private key upr.
At some moment, A outputs messages m0,m1, an arbitrary public key u∗pub, and a time
instant T ∗ that has not been submitted to the AnTRE.ReleaseT oracle. He receives the
challenge (C∗,T ∗) =AnTRE.Enc(mb, u∗pub, params, T ∗), for a hidden bit b

R←−{0,1}.

3. A issues a new sequence of release-time queries for any time instant T ∗ and de-
cryption queries for any ciphertext but the challenge (C∗,T ∗), for the public key u∗pub.

He eventually outputs a bit b
′
and wins if b

′
= b. His advantage is AdvIND−CTCA

AnTRE,A (A) :=

|Pr[b
′
= b]−1/2|.

3 Proposed Protocol

In order to construct time-specific trapdoors, we will use the short signature scheme
from [4] and [30]. This scheme was initially used in the selective-ID secure IBE in [5]
which was proven to be secure without random oracles. In our case, the proposed TRE
protocol detailed below is based on the anonymous TRE protocol in [10], the first to
make use of such signature schemes for TRE purposes. Its security proofs hold in the
random oracle model [2]. In the following, we describe the proposed protocol, named
AnTRE. We will sometimes refer to AnTRE as the “full” version of our protocol, in
order to distinguish it from its simpler, “basic” counterpart which is used in the security
proofs and is included in Appendix A.

3.1 Preliminaries

For the purposes of this work, we will require an abelian, additive finite group G1, of
prime order q, and an abelian multiplicative group, G2, of the same order. For example,
G1 may be the group of points on an elliptic curve. We will let P denote the generator
of G1. Also, H1, H2, H3, H4 will be four secure hash functions, with H1 : {0,1}τ �→ Z∗q,
H2 : {0,1}n �→ {0,1}k, H3 : G2 �→ Z∗q, H4 : G1 �→ {0,1}n+k0, where n,k0 ∈ N. Finally,
e : G1×G1 �→G2 will be a bilinear pairing, defined below.

Definition 3. Let G1 be an additive cyclic group of prime order q generated by P, and
G2 be a multiplicative cyclic group of the same order. A map ê : G1×G1 �→G2 is called
a bilinear pairing if it satisfies the following properties:
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– Bilinearity: ê(aV,bQ) = ê(bV,aQ) = ê(abV,Q) = ê(V,abQ) = ê(V,Q)ab for all
V,Q ∈G1 and a,b ∈ Z∗q .

– Non-degeneracy: there exist V,Q ∈G1 such that ê(V,Q) �= 1.
– Efficiency: there exists an efficient algorithm to compute the bilinear map.

Admissible bilinear pairings can be constructed via the Weil and Tate pairings [21].
For a detailed description of pairings and conditions under which they can be applied
to elliptic curve cryptography, see [21,28].

3.2 Full Version of AnTRE

To send a message m that will be decrypted at (or after) a pre-defined time instant T ,
the following protocol is to be executed (see also [12] for tabular form):

AnTRE.Setup: given security parameters k and k0, where k0 is polynomial in k, the
setup algorithm:
1. Outputs a k-bit prime number q, two groups G1, G2 of order q, an admissible bilinear
map ê : G1×G1 �→G2 and an arbitrary generator P ∈G1.
2. Chooses the cryptographic hash functions H1 : {0,1}τ �→ Z∗q, H2 : {0,1}n+k0+τ �→
{0,1}2k, H3 : G2 �→ Z∗q, H4 : G1 �→ {0,1}n+k0+2k for some n,τ ∈ N. These functions
will be treated as random oracles when it comes to security considerations.
3. Generates the time-server’s private key, s

R←−Z∗q, and the corresponding public key,
S = sP ∈G∗1.
4. Chooses the message space M = {0,1}n and the ciphertext space C = G1×G1×
{0,1}n+k0+2k+τ.
The public parameters are params := {k,k0,q,G1,G2,P,S, ê,H1,H2,H3,H4,n,M,C}.

AnTRE.ReleaseT: given a time instant T ∈ {0,1}τ, its hash value t = H1(T ), and the
server’s private key s, it returns the time-specific trapdoor sT = (s+ t)−1P ∈G∗1.

AnTRE.KeyGen: given params, it chooses a private key b ∈ Z∗q and produces re-
ceiver’s public key B = bP ∈G∗1.

AnTRE.Enc: to encrypt m ∈ {0,1}n using the time information T ∈ {0,1}τ and the
receiver’s public key B, the sender executes the following:
1. Choose x

R←−{0,1}k0 , compute t = H1(T ) ∈ Z∗q and h = H2(m||x||T ) ∈ {0,1}2k and
get r1,r2 ∈ Z∗q, where r1||r2 = h̄, where h̄ denotes the 2k-bit integer value of h.
2. Compute c1 = r1S + r1tP ∈G∗1 and c2 = r2P ∈G∗1.
3. Compute d = H3(ê(P,P)r1) ∈ Z∗q.
4. Compute K = H4(dr2B)∈ {0,1}n+k0+2k and then c3 = (m||x||h)⊕K ∈ {0,1}n+k0+2k.
The ciphertext is C := 〈c1,c2,c3,T 〉.

AnTRE.Dec:givenC := 〈c1,c2,c3,T 〉, the trapdoor sT and his private key b, the recipient
computes d = H3(ê(c1,sT )) ∈ G1, and the session key K = H4(dbc2) ∈ {0,1}n+k0+2k.
He is then able to retrieve the message as m||x||h = K⊕ c3. To verify the message, he
checks whether H2(m||x||T ) = h.
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The following two theorems (proofs are included in Appendix B) concern the secu-
rity properties of AnTRE. In particular, the proposed protocol is secure against IND-
CTCA and IND-CCA attackers.

Theorem 1. Assume that a polynomial-time IND-CTCA attacker has a non-negligible
advantage ε(k) against AnTRE when making qHi queries to random oracles Hi ∀i ∈
{1,2,3,4} and qT time server queries. Then the q-BDHI2 problem can be solved (in
polynomial time) with non-negligible probability.

Theorem 2. Assume that a polynomial-time IND-CCA attacker has a non-negligible
advantage ε(k) against AnTRE when making qHi queries to random oracles Hi ∀i ∈
{1,2,3,4}. Then the CDH 3 problem can be solved (in polynomial time) with non-
negligible probability.

4 Comparisons

In this section, we compare AnTRE with three of the best-known existing approaches to
non-interactive server-based anonymous TRE: the BC-TRE scheme proposed by Blake
and Chan [3], HYL-TRE proposed by Hwang, Yum and Lee [20,15], and CLQ-TRE 4

proposed by Cathalo, Libert and Quisquater [10].

4.1 Computational Efficiency

Because some of the protocols mentioned previously allow for pre-computations under
certain circumstances, we distinguish between three cases of anonymous TRE: i) mes-
sage transmission to unknown receivers, ii) transmission to known receivers (in which
case there is no need to verify their public keys), and iii) messages sent to multiple
recipients with the same release-time.

For the purposes of calculating the computing time needed to run each protocol, we
will let Pa denote the pairing operation, Sm scalar multiplication in G1, PSm parallel
scalar multiplication of the form aP + bQ in G1, Ex exponentiation in G2, Mt p map-
to-point hashing, and Inv inversion in Zq. To make a fair comparison, the cost of each
operation will be related to that of an elliptic curve scalar multiplication (M). Table 1
summarizes the benchmarking results using the MIRACL open-source library [23], con-
sidering an order-q subgroup of a supersingular elliptic curve E over Fp, where p is a
512 bit prime and q is a 160 bit prime. Pairing values belong to a finite field of 1024
bits.

If we assume that ê(P,P) is computed in advance and included among the public
parameters, then the encryption phase of AnTRE requires the following operations: 1
PSm to compute c1, 1 Sm for c2, 1 Ex for d, and 1 Sm to compute K. That is, no pairing
computations are necessary at execution time, and the total cost of the encryption phase

2 The q-Bilinear Diffie-Hellman Inversion Problem (q-BDHI) is: given (Q,aQ,a2Q, ...,aqQ) ∈
G

q+1
1 , compute ê(Q,Q)a−1 ∈G2.

3 The Computational Diffie-Hellman Problem (CDH) is: given Q ∈G1, aQ, bQ for some a,b ∈
Z∗q, compute abQ ∈G1.

4 We note that [10] uses multiplicative notation for the groups G1 and G2.
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Table 1. Cost of basic operations in relation to that of an elliptic curve scalar multiplication

Operation Notation Cost

Bilinear Pairing Pa 9M
Parallel Scalar Multiplication in G1 PSm 1.2M
Scalar Multiplication in G1 Sm 1M
Exponentiation in G2 Ex 1M
Map-To-Point Mt p 0.7M
Inversion in Zq Inv 0.4M

is equivalent to 4.2M. In the decryption phase, the recipient must perform 1 Pa operation
to calculate the point value d, and 1 Sm to produce K, thus the total decryption cost is
approximately 10M. Tables 2 and 3 summarize the comparisons of computational cost
for the cases of unknown and known receivers, respectively.

Table 2. Computational cost comparison of BC-TRE, HYL-TRE, CLQ-TRE, and proposed
AnTRE protocol (sending to unknown receivers)

Protocol Encryption Decryption Total

BC-TRE 3Pa+2Sm+1Mt p = 29.7M 1Pa+1Ex = 10M 39.7M
HYL-TRE 1Pa+1PSm+2Sm+1Mt p = 12.9M 2Pa+1Sm = 19M 31.9M
CLQ-TRE 2Pa+1PSm+1Ex = 20.2M 1Pa+1PSm+1Ex = 11.2M 31.4M
Proposed 1PSm+2Sm+1Ex = 4.2M 1Pa+1Ex = 10M 14.2M

Table 3. Computational cost comparison of BC-TRE, HYL-TRE, CLQ-TRE, and proposed
AnTRE protocol (sending to known receivers)

Protocol Encryption Decryption Total

BC-TRE 1Pa+2Sm+1Mt p = 11.7M 1Pa+1Ex = 10M 21.7M
HYL-TRE 1Pa+1PSm+2Sm+1Mt p = 12.9M 2Pa+1Sm = 19M 31.9M
CLQ-TRE 1PSm+1Ex = 2.2M 1Pa+1PSm+1Ex = 11.2M 13.4M
Proposed 1PSm+2Sm+1Ex = 4.2M 1Pa+1Ex = 10M 14.2M

Remarks: Wenote thatneitherBC-TREnorHYL-TREsupportpairingpre-computations,
because the sender must compute a pairing that depends on the release time. Moreover,
these two protocols require a special hash function, map-to-point, which is needed for
mapping strings onto cyclic groups, and which is much less efficient than plain hash func-
tions [30,10,23]. Furthermore, unlike BC-TRE and CLQ-TRE, AnTRE retains the same
efficiency whether or not the receivers are known entities. It is also worth mentioning that
BC-TRE and CLQ-TRE use a slightly different public key format, with users’ public key
consisting of two points in G1 instead of one (as in conventional cryptographic schemes).
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This means that on the first use of any public key (for transmitting to an unknown receiver)
the sender must verify the validity of this two-point public key, to ensure that the recipi-
ent will be able to decrypt the message. Such verification is not needed in our proposed
protocol or in HYL-TRE.5

Transmitting to multiple receivers. AnTRE is practical for encrypting a message to
multiple receivers with the same release-time (e.g., in an Internet programming con-
test). In our approach, the value of d (in AnTRE.Dec) can be calculated by anyone who
knows the time-specific trapdoor sT . Also, the session key, K, depends on d, c2 (sent
in the clear), and the recipient’s private key, upr. Thus, if one wishes to use AnTRE
to send a message to multiple receivers, he is able to use the same random values r1

and r2 for all of them. In that case, the computed session key K (and thus c3 as well)
will differ from receiver to receiver; the corresponding ciphertexts will be of the form
C < c1,c2,c3.1...c3.N ,T >. Finally, because c1, c2 and d are computed only once, the
total encryption cost per receiver will be 3.2M

N +1M, where N is the number of receivers.
Compared to CLQ-TRE [10] suitably modified for multiple receivers (it costs approx-
imately 2.2M for known receivers), our approach is more efficient, even in the special
case of known receivers, if the number of designated recipients is greater than two. Al-
though BC-TRE and HYL-TRE can be modified for improved efficiency when sending
to multiple receivers, neither of them can avoid the pairing computation during the en-
cryption process (to the best of our knowledge), and thus they appear to be less efficient
compared to AnTRE and CLQ-TRE.

4.2 Communication Cost

In order to compare the communication complexity of the four TRE schemes, we must
take into account the bit-length of both the transmitted public keys and the ciphertext.
As we have mentioned in Section 4.1, in BC-TRE and CLQ-TRE the users’ public keys
consist of two elliptic curve points, i.e., upub ∈G1×G1, while in the proposed AnTRE
and HYL-TRE protocols upub ∈G1. Consequently, if the recipient is an unknown entity,
the cost to download the recipient’s public key from a public database for BC-TRE and
CLQ-TRE is twice that of the proposed AnTRE and HYL-TRE schemes.

The ciphertext space (including transmission of time information) of each scheme
is:

– IND-CCA secure BC-TRE:6 CBC−T RE = G1×{0,1}n+k0+τ.
– HYL-TRE: CHY L−T RE = G1×G1×G2×{0,1}n+k0+τ.
– CLQ-TRE: CCLQ−T RE = G1×{0,1}n+k0+τ.
– Proposed AnTRE: CAnTRE = G1×G1×{0,1}n+k0+2k+τ.

5 When comparing the cost of implementations of the above approaches, we did not include the
cost of a group membership test for the public keys. We note, however, that the schemes [3,10]
use two points in their public keys (ours uses only one) and would thus require some additional
checking

6 As the basic BC-TRE has not been proven to be secure against IND-CCA attacks, it could be
modified using the technique in [17].
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BC-TRE and CLQ-TRE have a smaller ciphertext space than AnTRE (about 1 elliptic
curve point less), while the ciphertext space of HYL-TRE is the largest because of the
pairing value (e.g., 1024 bits) that must be transmitted.

4.3 Storage Requirements

In settings where TRE needs to be executed in low-end, limited-memory computing
systems (e.g., smartcards and other handheld computing devices), the memory/storage
requirements of the protocol(s) to be used must be taken into account. As noted in
Section 4.1, the user’s public key space for AnTRE and HYL-TRE is a single elliptic
curve point upub ∈ G1, while for the other two protocols it consists of two points, i.e.,
upub ∈G1×G1. As a result, BC-TRE and CLQ-TRE require twice the memory to store
the public keys for known receivers. Moreover, CLQ-TRE and AnTRE are the only two
of the protocols considered here that enable pre-computations at a minor cost of storing
ê(P,P) ∈G2, leading to increased efficiency.7

5 Conclusions

We have presented a new, server-based cryptographic scheme for anonymous timed-
release encryption, and proved that is IND-CCA and IND-CTCA secure in the ran-
dom oracle model. Our protocol requires no interaction between users and the server,
whose sole responsibility is to publish time-specific trapdoors that correspond to spe-
cific time instants. We compared our approach with three of the best-known existing
TRE schemes; the main advantage of the proposed protocol is its low computational
cost and memory storage requirements. Other properties of the proposed scheme in-
clude scalability and practicality when sending a message to multiple receivers.
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A Basic Version of the Protocol

A “basic” version of AnTRE, termed BasicAnTRE, will be useful when discussing
the security of our protocol (Appendix B). The ReleaseT and KeyGen algorithms of
BasicAnTRE are identical to those of AnTRE (Sec. 3.2). The Setup, Encryption and
Decryption primitives are as follows:

AnTRE.Setup: given security parameters k and k0, where k0 is polynomial in k, the
setup algorithm:
1. Outputs a k-bit prime number q, two groups G1, G2 of order q, an admissible bilinear
map e : G1×G1 �→G2 and an arbitrary generator P ∈G1.
2. Chooses the following cryptographic hash functions: H1 : {0,1}τ �→Z∗q, H2 : {0,1}n �→
{0,1}k0 , H3 : G2 �→ Z∗q, H4 : G1 �→ {0,1}n+k0 for some n ∈ N. These functions will be
treated as random oracles when it comes to security considerations.
3. Generates the time-server’s private key s

R←−Z∗q and the corresponding public key
S = sP ∈G∗1.
4. Chooses the message space to be M = {0,1}n and the ciphertext space is C =
G1×G1×{0,1}n+k0.
The public parameters are params := {k,k0,q,G1,G2,P,S, ê,H1,H2,H3,H4,n,M,C}.

AnTRE.Enc: to encrypt m ∈ {0,1}n using the time information T ∈ {0,1}τ and the
receiver’s public key B, the sender executes the following:
1. Choose random r1,r2 ∈ Z∗q, compute t = H1(T ) ∈ Z∗q.
2. Compute h = H2(m).
3. Compute c1 = r1S + r1tP ∈G∗1 and c2 = r2P ∈G∗1.
4. Compute d = H3(ê(P,P)r1) ∈ Z∗q.
5. Compute K = H4(dr2B) ∈ {0,1}n+k0 and then c3 = (m||h)⊕K ∈ {0,1}n+k0.
The ciphertext is C := 〈c1,c2,c3,T 〉.

AnTRE.Dec: given C := 〈c1,c2,c3,T 〉, the trapdoor sT and his private key b, the recip-
ient computes d = H3(ê(c1,sT )) ∈G1 and the session key K = H4(dr2B) ∈ {0,1}n+k0.

http://eprint.iacr.org/2004/231
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Then, he is able to retrieve the message as m||h = K⊕ c3. To verify the message, he
checks whether H2(m) = h.

B Security Proofs for AnTRE

Our proofs are in the random oracle model, and follow those of Theorems 2 and 3 of
[11] (an extended version of [10]). We will first consider the security of BasicAnTRE,
described in Appendix A. As in [10], AnTRE results from a variant of the first Fujisaki-
Okamoto transform [17] applied to BasicAnTRE, by hashing the message m, a random
number x, and a time T , and using the resulting bits in order to encrypt. This conver-
sion is slightly different from the one in [17] because the hash function H2 takes as an
additional input the time T . Including T among the inputs is necessary (the encryption
algorithm of BasicAnTRE is parameterized by T ) and enables a knowledge extractor to
simulate the behavior of a decryption oracle with the same probability as the plaintext
extractor in the security proof of the Fujisaki-Okamoto conversion [17]. Our security
proofs apply the modified version of Theorem 3 from [17], established in [11].

B.1 Proof of Theorem 1 - Security Against “Impatient” Recipients

We first show that BasicAnTRE is secure against chosen time and plaintext attacks (IND-
CTPA)8 [10], using a slightly modified form of the security proof in [11,10] (similar to
[4], [5]). Assuming an IND-CTPA attacker A which succeeds against BasicAnTRE with
non-negligible probability, ε(k), we will construct an algorithm B which takes as inputs
< P,αP,α2P, α3P, ...,αqP >, for some interger q, and computes ê(P,P)α−1

with non-
negligible probability.

Let qT be the number of queries made by A to the time server. Without loss of
generality, we will assume that qT = qH1 − 1 = q− 1 (if qT < qH1 − 1, then B can
issue dummy queries to the time-server broadcast oracle for itself). Initially, B chooses
�

R←−{1, ...,q} and a,b
R←−Z∗q and sets I� = ab ∈ Z∗p. Then, he chooses Ii

R←−Z∗q and

computes wi = I�−Ii
a ∀ i ∈ {1, ...,q}\{�}.

Next, B uses its input to compute a generator Q ∈G1 and a server public key spub =
xQ for some x ∈ Z∗q, such that B can know all of the qT pairs (Ii,(Ii + x)−1Q), i �= �,
as in [4]. He does this in the following manner. B expands the polynomial f (z) =
∏q

i=0,i�=�(z+ wi) = ∑q−1
j=0 c jz j, to find c j’s. Then, Q, U ∈G1 are obtained as

Q =
q−1

∏
j=0

(α jP)c j = f (α)P ∈G1, U =
q

∏
j=1

(α jP)c j−1 = α f (α)P = αQ.

Similarly to [4], the qT pairs (wi,Qi = (wi +α)−1Q) can then be obtained from expand-

ing fi(z) = f (z)
z+wi

= ∑q−2
j=0 d jz j and computing

Qi =
q−2

∏
j=0

(α jP)d j = fi(α)P =
f (α)

a + wi
P = (α+ wi)−1Q, ∀ i ∈ {1, ...,q}\{�}.

8 This type of adversary is defined similarly to IND-CTCA, but without access to a decryption
oracle .
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Now, B chooses the time-server’s public key to be spub = −aU − I�Q = (−a)αQ−
abQ = −a(α + b)Q. Thus, the server’s private key (which is unknown to B), is x =
−a(α+ b) =−aα− I� ∈ Z∗q, and for all i ∈ {1, ...,q}\{�}we have:

(Ii,−a−1Qi) = (Ii,(Ii−aα− I�)−1Q)

and
(Ii,(Ii + x)−1Q) = (Ii,(Ii−aα− I�)−1Q),

thus
(Ii,−a−1Qi) = (Ii,(Ii + x)−1Q).

B now has knowledge of all qT pairs (Ii,(Ii + x)−1Q) because he can compute
Ii,Q,Qi from (P,αP,α2P,α3P, ....αqP) as described above. Armed with this informa-
tion, he will be able to provide correctly formed values each time A queries H1 for a
given time, or requests the trapdoor value for the same time. To proceed, B starts A on
input spub = (−aU− I�Q) and initializes a counter, v = 0. During the game we assume
that: i) all H1 queries are distinct, and ii) A produces her challenge request at T ∗, for
which he asks the hash value H1(T ∗). B answers queries to random oracles as follows:

– H1: B answers Iv and increments v = 1,2, ....
– For i = 2,3,4 (Hi): On input γλ, λ = 1,2, ...,qHi , B selects a random ηi,λ and stores

(γλ,η2,λ) into a list Li. Each incoming query input is matched against those already
on the corresponding list; if the same query has been asked again, B returns the
same value as before.

– Queries to time-server: On input Tv,v = 1,2, ..., if v = �, B stops and reports “fail-
ure”; otherwise returns the trapdoor value for Tv, −a−1Qv = (In + x)Q, to A .

After the find stage, A outputs < m0,m1,T ∗ > and a valid public key upub to be
challenged on. If T ∗ �= T� (B did not guess correctly which Ti the attack will occur
on), then B stops and reports “failure”. Otherwise, he selects σ R←− ∈ Z∗q and a random
string c3

∗ to return the challenge C∗ :< c1
∗, c2

∗, c3
∗>, with c1

∗ =−aσQ, c2
∗ = r2Q. To

elucidate B’s choice of c∗1, recall that B should send something of the form c1
∗ = r1(t +

x)Q, c2
∗ = r2Q, with t = I� (corresponding to H1(T ∗)) and x = −aα− I� (unknown

server’s private key). In the simulation set up by B , it would be c1
∗ = r1(I� − aα−

I�)Q = r1(−aα)Q, for r1 random. Now, assume that r1 = σ
α , so that σ = r1α. Then,

sending c1
∗ = −aσQ to A , for random σ, would be precisely the same as if we had

used r1 = σ
α to encrypt. Realizing that c3

∗ is not properly formatted, would require
A to query H4(dβc2) with non-negligible probability (if not, one could construct an
algorithm for inverting the XOR function with non-negligible probability). Whether or
not the private key β is known to A , it can be easily shown that computing the “correct”
input to H4 (which is dβr2Q) with non-negligible probability, implies that A must query
H3 on input ê(Q,Q)r1 with non-negligible probability to compute d, the latter being the
output of a random oracle. B has the opportunity to detect that event and use ê(Q,Q)r1

to compute ê(Q,Q)a−1
.

If A is successful in guessing the hidden bit with non-negligible probability, then
using standard arguments it can be shown that A is very likely to query H3 on ê(Q,Q)r1

at some time of the game, if the latter mimics perfectly the real attack environment. To
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produce its output, B selects a random γ from its L3 list, so that with probability ε(k) 1
qH3

,

γ is ê(Q,Q)r1 . Then, γ = ê(Q,Q)r1 = ê(P,P)
σ f 2(α)

α . If we let f 2(z) = ∑2q−2
j=0 φ jz j so that

f 2(α)/α = φ0/α+ ∑2q−2
j=1 φ jα j−1, then we can solve for ê(P,P)a−1

from γ, as:

ê(P,P)a−1
=

(

γσ−1
2q−2

∏
j=1

ê(P,P)(α
j−1)(−φ j)

)φ−1
0

,

where the φ j can be computed from the known coefficients of f (z), and the ê(P,P), . . .,
ê(P,P)2q−3 are computed from B’s inputs< P,αP,α2P,α3P, ...,αqP>. This contradicts
the assumption that the q-BDHI problem is hard. We conclude that BasicAnTRE is
IND-CTPA secure. Now, the IND-CTPA security of BasicAnTRE implies IND-CTCA
security of AnTRE using a Lemma very similar to Lemma 2 of [11] (itself derived from
Theorem 3 of [17]) with minor modifications. The proof (omitted here because of space
limitations) can be found in a fuller version of this paper [12].

Lemma 1. In the random oracle model, an IND-CTCA attacker A having non-negligible
advantage ε against AnTRE when making qD decryption queries and qHi queries to or-
acles Hi,(i = 1, ...,4), implies an IND-CTPA attacker B with non-negligible advantage
against BasicAnTRE.

We note that the proof [12] of the last lemma addresses the single-receiver case. If
a message is sent to N > 1 receivers, then the corresponding ciphertexts differ only
in their c3 parts, and a malicious receiver may attempt to read his message early by
obtaining multiple c3,i values, i = 1, ...,N, for the same message m and time T . Doing
so can be shown to be computationally difficult [12]. The complete argument is omitted
because of space limitations.

B.2 Proof of Theorem 2 - Security Against “Curious” Servers

We first show that BasicAnTRE is secure against chosen plaintext attacks (IND-CPA)9

[10]. Assume that there exists a polynomial-time IND-CPA attacker A which has a non-
negligible advantage, ε(k), against BasicAnTRE, asking ni queries to random oracles
hi, i = 1, ...,4. We will show that there exists an algorithm, B , which solves the CDH
problem with non-negligible probability, in polynomial time, using A as a subroutine.
The algorithm B will accept as inputs P, aP and bP, and will compute abP, for a,b∈Z∗q.
Our scheme follows the proof of Theorem 3 in Cathalo et. al [10], where B uses part
of the challenge ciphertext, c1,c2 to elicit A to make a random oracle query with the
desired input, in this case a known multiple of abP.

B operates by assigning any valid key pair (s,S = sP), to the time server, and starts
A with inputs P, bP (public key against which A is to be tested), and the server’s secret
key, s. B answers A’s queries to H1,...,H4, as follows. For each Hi, i = 1, ...,4, B answers
each query at random; each time, B records the input and the reply it gave on a list, Li,
so that if an oracle is queried again on the same input, B will return the same number.

9 This type of adversary is defined similarly to IND-CCA, but without access to a decryption
oracle.
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After finishing its queries, A outputs m0,m1,T ∗. At that point, B creates a challenge
ciphertext to return to A as follows. He chooses r1 at random and a message m also at
random. He checks whether H1 has previously been queried on T ∗, in which case he
sets t to its prior response, found in the list L1. If the opposite is true, then B assigns t to
be a random number, which he records in L1. B then sets c1 = r1S + r1tP, and c2 = aP.
To produce c3, B first checks whether the value ê(c1,(s + t)−1P) = ê(P,P)r1 has been
presented by A as a query to H3. If so, B finds its previous reply from the list L3 and
sets d to that number, otherwise he sets d to a random number which it records on L3,
as specified previously. Finally, B chooses K at random, sets c3 = (m||H2(m))⊕K and
then sends the challenge (c1,c2,c3,T ∗) to A .

From A’s point of view, the challenge appears to be properly formated. To recognize
that c3 is not an encryption of either m0 or m1, A would have to request H4(dbc2),
for d = H3(ê(c1,sT )), known to B ; doing so would enable B to obtain the solution
to the CDH problem by computing d−1dbc2 = abP. On the other hand, because the
simulation set up by B mimics a genuine attack environment perfectly, one can show
using standard arguments that if A succeeds in guessing the hidden bit b, it is very likely
to query oracle H4 on input dr2bP (e.g., if that were not the case, A could be used to
produce an algorithm that inverts the XOR operation with non-negligible probability),
and in particular, the probability of A doing so is some ε′(k), non-negligible. In that
case, B has the chance to detect A’s query and compute the CDH solution. Thus, when
A halts, B ignores her result, and selects at random an entry from his list L4. For the
number, g, that was his reply to the corresponding query, he computes and outputs
d−1g, having correctly guessed at the value of abP with probability ε′(k)/n4, where n4

is a polynomial bound on the number of H4 queries made by A during her attack. This
contradicts the assumed hardness of the CDH problem. We conclude that BasicAnTRE
is IND-CPA secure.

The IND-CCA security of AnTRE follows from the IND-CPA security of Basi-
cAnTRE, via a result whose proof is very similar to that of Lemma 1 and is omitted.

Lemma 2. In the random oracle model, an IND-CCA attacker A having non-negligible
advantage ε against AnTRE when making qD decryption queries and qHi queries to
oracles Hi,(i = 1..4), implies an IND-CPA attacker B with non-negligible advantage
against BasicAnTRE.

As in the case of Lemma 1, the proof of Lemma 2 must account for the fact that if
a message is sent to N > 1 receivers, then a malicious server might then have access
to multiple c3,i values, i = 1, ...,N, for the same message m and time T , from which
he could attempt to read the message. An argument for why this is computationally
difficult is given in [12].



Encryption Techniques for Secure Database

Outsourcing

Sergei Evdokimov and Oliver Günther

Humboldt-Universität zu Berlin
Spandauer str. 1, 10178 Berlin, Germany
{evdokim,guenther}@wiwi.hu-berlin.de

Abstract. While the idea of database outsourcing is becoming increas-
ingly popular, the associated security risks still prevent many potential
users from deploying it. In particular, the need to give full access to one’s
data to a third party, the database service provider, remains a major ob-
stacle. A seemingly obvious solution is to encrypt the data in such a way
that the service provider retains the ability to perform relational opera-
tions on the encrypted database. In this paper we present a model and
an encryption scheme that solves this problem at least partially. Our
approach represents the provably secure solution to the database out-
sourcing problem that allows operations exact select, Cartesian product,
and projection, and that guarantees the probability of erroneous answers
to be negligible. Our scheme is simple and practical, and it allows effec-
tive searches on encrypted tables: For a table consisting of n tuples the
scheme performs search in O(n) steps.

1 Introduction

In this paper we consider the problem in which one party (Alice) owns a database
and wants to outsource it to a second party (Bob), even though the trust of
Alice in Bob is limited. Alice wants to be sure that the data she outsources is
exposed neither to another party nor to Bob. Legal options, such as contracts,
are available, but their effectiveness is often limited [1].

If, for example, the database is acquired by other company, it may be unclear
whether the new owner is bound by the contract [2]. As Amazon says it: ”In
the unlikely event that Amazon.com Inc., or substantially all of its assets are
acquired, customer information will of course be one of the transferred assets“.
If the data were encrypted, this problem could not arise.

Ideally, Alice would like to have the data encrypted and only give the ci-
phertext to Bob, the database service provider. But if Bob is not trusted, he
cannot participate in the encryption/decryption process. Usually Bob does not
just store the data, but also processes non-trivial queries sent by Alice and there-
fore should be able to process these queries without decrypting the stored data.
About 30 years ago, Rivest et al. [3] described a possible approach for solving
such a problem they called privacy homomorphism. They proposed a scheme to
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encrypt data in such a way that certain operations can be performed on the
ciphertext without decrypting it.

In this paper we present privacy homomorphism for the relational operations
exact select, projection and Cartesian product. Additionally the scheme allows
insert, exact delete, exact update and union with duplicates. Exact select, exact
delete and exact update are variants of select, delete and update operations with
condition predicates (WHERE-part of the corresponding SQL queries) restricted
to a combination of equalities connected by AND or OR. The result of a union
with duplicates is the union of two relations without duplicate tuples being
removed.

Our approach displays the following key characteristics

- Our scheme is provably secure and can sustain a chosen-plaintext and a
posteriori chosen-ciphertext attacks.

- Our scheme reveals nothing but the number of tuples that share a queried
value while performing an exact select .

- Our scheme allows to efficiently perform the supported operations on an
encrypted database. The scheme does not affect the time needed to perform
projection, Cartesian product and insert operations. Checking whether a tuple
satisfies an equality condition of an exact select requires O(1) operations; there-
fore exact update, exact delete and exact select require O(n) operations, where
n is the number of tuples in the queried relation.

- Our scheme also avoids a problem of many previous solutions, such as the
outsourcing approach of Hacıgümüş et al. [4] or the search algorithms on en-
crypted data of Goh [5] and Song et al. [6]. All those solutions may return
erroneous tuples that do not satisfy the select condition. This requires Alice
each time to perform postfiltering of the received result set, which reduces the
performance and complicates the development process of a client software. This
especially becomes an issue when Alice uses a mobile device for accessing the en-
crypted database. The only scheme that allows to perform search on encrypted
data and does not require postfiltering is described in [7]. This scheme, however,
can hardly be applied to databases since a search on encrypted data is restricted
to the search with predefined keywords, which constitutes a severe limitation.
The scheme we are proposing also may include erroneous tuples in the result set
of an exact select operation but the probability of such an error is negligible.

2 Relevant Definitions Notions of Security

In this section we briefly introduce some cryptographic primitives and definitions
used in the paper. We use the standard cryptography definitions; see, e.g., [8],[9].

By {0, 1}n we define the set of all binary strings of length n. By k
R← K we

say that k is randomly and uniformly chosen from set K.

Definition 1 (pseudo-random function). A mapping F : K×X �→ Y, where
K = {0, 1}n, is a pseudo-random function if for every PPT oracle algorithm
A, every positive polynomial p(n), and all sufficiently large n, the advantage
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AdvA < 1/p(n). The advantage is defined as

AdvA = |Pr[AFk = 1]− Pr[Aφ = 1]|,

where φ is a function chosen randomly and uniformly from the set of all functions
that map X to Y.

A function that after a certain point decreases faster than one over any polyno-
mial is called negligible. Thus, it also can be said that the advantage is negligible.

Consider now set of plaintexts X = {0, 1}m, set of ciphertexts Y = {0, 1}l

and set of keys K = {0, 1}n.

Definition 2 (symmetric encryption scheme). An encryption scheme is
a triple (K, E,D), where E : K × X �→ Y is a PPT algorithm (encryption
algorithm) that maps a key k ∈ K and a plaintext x ∈ X into a corresponding
ciphertext c ∈ Y and D : K×Y �→ X is a polynomial-time algorithm (decryption
algorithm) that maps a key k and a ciphertext c into a corresponding plaintext
x. It must hold that Dk(Ek(x)) = x. Keys are chosen randomly and uniformly
from the key space K. The bit length n of the keys is called security parameter
of the scheme.

The security of an encryption scheme is defined as follows:

Definition 3 (indistinguishability of encryptions). An encryption scheme
(K, E,D) is indistinguishably secure if for every x, y ∈ X , every PPT algo-
rithm A, every positive polynomial p, and all sufficiently large n, the advantage
AdvAxy < 1/p(n). The advantage is defined as

AdvAxy = |Pr [A(Ek(x)) = 1]− Pr [A(Ek(y)) = 1]|.

In our paper we will also use a construct called pseudo-random permutation,
an indistinguishably secure encryption scheme that is a bijection and for which
X = Y.

Definition 3 guarantees security only if a key is used once. In order to securely
encrypt several messages, a new key should be generated for each new encryption.
But often it should be possible to securely encrypt several messages using the
same key. Encryption schemes that allow this are called indistinguishably secure
for multiple messages:

Definition 4 (indistinguishability of encryptions for multiple
messages). An encryption scheme (K, E,D) is indistinguishably secure for
multiple messages if for every x̄ = (x1, . . . , xt), ȳ = (y1, . . . , yt), every PPT algo-
rithm A, every positive polynomial p, and all sufficiently large n, the advantage
AdvAx̄ȳ < 1/p(n). The advantage is defined as

AdvAx̄ȳ = |Pr [A(Ēk(x̄)) = 1]− Pr [A(Ēk(ȳ)) = 1]|.

Ēk(x̄) denotes the sequence of ciphertexts that are produced by encrypting each
xi with encryption algorithm Ek: Ēk(x̄) = (Ek(x1), . . . , Ek(xt)).
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The indistinguishability definitions provided so far guarantee the protection
only from a ”passive“ adversary. But in real applications the adversary can also
be ”active“ and additionally cause the sender to encrypt a message of her choice
(chosen-plaintext attack) or even cause the receiver to decrypt the ciphertext of
her choice (chosen-ciphertext attack). Formally this is described as the ability
of the adversary to query the encryption (decryption) oracle in case of a chosen-
plaintext (chosen-ciphertext) attack.

Definition 5 (indistinguishability under chosen-plaintext attack (IND-
CPA)). An encryption scheme (K, E,D) is indistinguishably secure under a
chosen-plaintext attack if for every x, y ∈ X , every PPT algorithm AEk with
access to encryption oracle Ek, every positive polynomial p, and all sufficiently
large n, advantage AdvAEk

xy < 1/p(n). The advantage is defined as

AdvAEk
xy = |Pr [AEk(Ek(x)) = 1]− Pr [AEk(Ek(y)) = 1]|.

According to [9], Definition 4 and Definition 5 are equivalent: If an encryption
scheme is indistinguishably secure for multiple messages then the scheme is also
IND-CPA secure.

A chosen-ciphertext attack can be represented as the following game:

1. The challenger generates key k: k R← K.
2. The adversary asks the decryption oracle for the plaintexts corresponding to

the ciphertexts of her choice.
3. The challenger generates two plaintext strings and gives the adversary the

encryption of one of them.
4. The adversary may additionally ask the oracle for the decryption of some

ciphertexts except for the decryption of the received challenge.
5. The adversary tries to guess which of the two strings he was given and halts.

The described attack is called posteriori chosen-ciphertext attack (IND-CCA2).
When step 4 is omitted, the attack is called a-priori chosen-ciphertext attack
(IND-CCA). It is clear that security against IND-CCA2 attack guarantees se-
curity against IND-CCA attack. Further in the paper, when speaking about
chosen-ciphertext indistinguishability we will suggest IND-CCA2.

Definition 6 (posteriori chosen-ciphertext attack indistinguishability
(IND-CCA2)). An encryption scheme (K, E,D) is indistinguishable with re-
spect to posteriori chosen-ciphertext attack if for every x, y ∈ X , every PPT
algorithm ADk with access to decryption oracle Dk, every positive polynomial p,
and all sufficiently large n, the advantage AdvADk

xy < 1/p(n). The advantage is
defined as

AdvADk
xy = |Pr [ADk(Ek(x)) = 1]− Pr [ADk(Ek(y)) = 1]|.

Usually, in scenarios where a chosen-ciphertext attack is possible, a chosen-
plaintext attack is possible too. Therefore, when speaking about chosen-
ciphertext attacks we will also assume the possibility of a chosen-plaintext
attack. Also, when speaking about indistinguishable security, we will imply in-
distinguishable security for multiple messages or IND-CPA security.
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3 Related Work and Security Analysis of Existing
Approaches

As mentioned, the idea of a privacy homomorphism was first described by Rivest
et al. [3]. There it was also mentioned that one of the most promising applica-
tions of privacy homomorphisms could be encryption of databases. If the privacy
homomorphism preserved some of the relational operations, then it would be
possible to process encrypted relations without decrypting them.

In 2001 Hacıgümüş et al. [4] described an encryption scheme that allowed to
perform all relational operations on an encrypted database and made the sta-
tistical attack on the scheme less obvious as in the example described above.
According to the scheme, the domain of each attribute is partitioned into inter-
vals, and each attribute value is mapped to the interval that contains it. Then the
intervals are deterministically encrypted and attached to the secure encryptions
of the tuples. Thus, some information about the attribute values is preserved
and can be used for the query processing. For example, an exact select opera-
tion will return the tuples with the attribute values contained in the interval that
is stated as the argument of the select operation. This requires Alice (the user)
to perform postfiltering in order to remove the tuples that have the attribute
values that belong to the queried interval and are not equal to the argument of
the original select operation.

It is easy to show that the proposed approachdoes not comply with Definition 4.
Consider two tables:

ID salary
171 4900
481 1200
Table 1

ID salary
171 4900
481 4900
Table 2

According to the scheme, the salaries in the first table are likely to be mapped to
different intervals. The salaries in the second table will be mapped to the same
interval. Since the intervals are encrypted deterministically, the ciphertexts that
correspond to the intervals of the ”salary“ attribute of the first table will be
different and the analogous intervals’ encryptions for the second table will be
identical. Hence, algorithm A can determine to which table corresponds the re-
ceived ciphertext: If the ciphertexts that correspond to the “salary” intervals are
different, A outputs 0; otherwise 1. Clearly, the advantage for such an algorithm
is non-negligible.

In modern cryptography, the weakest requirement for an encryption scheme
to have any practical applications is IND-CPA security. In case of IND-CCA2
security, it may seem that the assumption of an adversary’s ability to decrypt
ciphertexts of her choice is very unlikely to be satisfied. However, the success-
ful chosen-ciphertext attack on the widely used internet security protocol SSL
discovered by Bleichenbacher [10] demonstrates the relevancy of IND-CCA2 se-
curity.

The encryption scheme that allows to perform exact selects on encrypted re-
lations and is IND-CPA and IND-CCA2 secure is described in [11]. The scheme
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is based on encryption techniques that allow to perform searches on encrypted
data [5],[6]. It uses the similarity between searching for text documents that
contain a defined keyword and exact select operation for databases. The idea
behind the scheme is to bijectively map tuples of the relation to text documents
by treating each attribute value as a sequence of characters or ”word“, encrypt
the resulting documents with the scheme that supports searches on encrypted
data, and, instead of issuing exact selects, issue the corresponding search opera-
tions. E.g, Table 1 from the example above can be mapped to the following set
of documents:

171#ID4900SL
1200SL481#ID

In this example each attribute value is mapped to the word consisting of 6
symbols where ’#’ is the padding symbol and ”ID“ and ”SL“ are identifiers that
help to map the words back to the values of the corresponding attributes (ID
and salary). The mapping of the tuples to the documents define the way exact
selects are converted to the search operations: E.g., in order to process the exact
select SELECT * FROM Table1 WHERE salary=4900Bob performs the search for
documents that contain word ”4900SL“.

Disadvantages of the proposed method include the necessity of postfiltering
of an exact select results (since the schemes [5], [6] allow with high probability
the inclusion of erroneous tuples in the result of a search operation) and the
infeasibility of projection and Cartesian product, due to the impossibility to
concatenate and split encrypted tuples.

In [12] Yang et al. proposed the encryption scheme similar to the one we
discuss in this paper. In their work they introduce own security model and base
the security analysis of the scheme on the different notion of security. However,
though the approach they take for building the encryption scheme is correct, the
analytical part of the paper contains several serious flaws. So, as it can be easily
illustrated by a counterexample, the definition of security on which the authors
base their reasoning in fact does not require a database to be encrypted at all.
Additionally, the authors mistakenly suppose that their scheme does not include
erroneous tuples in the resulting set of a processed query. For the more detailed
analysis of this work refer to Appendix A.

4 Secure Database Encryption

In this section we show how to construct an encryption scheme that can serve
as a privacy homomorphism for a well-defined subset of relational operations.
First we show how to perform encryption and decryption of a database, then
we provide the proof of IND-CPA security of the scheme. Algorithms for the
relational operators follow in Section 5.

4.1 Construction

We build our scheme as the combination of cryptographic primitives. The term
cryptographic primitive describes an elementary cryptographic algorithm that
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Table 1. Corresponding attributes and data types

Attribute of R Attribute of RE Type of Attribute

ID f4FR32 int

Name aSC3f7 string[100]

. . .

Address sF3nD4 String[200]

satisfies certain security requirements and is used as a building block for encryp-
tion schemes.

Our encryption scheme uses the following cryptographic primitives:

– (K, E,D), K = {0, 1}m, X = {0, 1}m, E : K×X �→ Y is a symmetric encryp-
tion schema that is IND-CPA secure and key space and space of plaintexts
are identical.

– (K0, E0, D0), E0 : K0 × X �→ Y0 is a symmetric encryption schema that is
IND-CPA secure.

– P : K′×X �→ X , X = {0, 1}m is a pseudo-random permutation. Since K = X
we can also write P : K′ ×X �→ K

Key generation. Alice generates the encryption key k̂ that is a triple (k0, k1, k2),
where k0

R← K0, k1
R← K′, k2

R← K′: k0 is the key for encryption scheme
(K0, E0, D0), k1, k2 are the keys for pseudo-random permutation P (k1, k2 are
chosen independently).

Encryption. Suppose that Alice wants to encrypt a relational database that
consists of several relations. The idea behind the scheme is to augment encryp-
tions of every attribute value with an additional piece of information, viz., a
search tag that will allow Bob to execute search on the ciphertexts without
getting any information about the corresponding plaintext values.

Each relation is encrypted separately, so we describe the encryption algorithm
for an arbitrary attribute value of a relation R(a1 : D1, . . . , al : Dl). Without
loss of generality we suppose that Di∩Dj = ∅, i �= j.1 The encryption algorithm
maps the relation R to an encrypted relation RE that has the same number of
attributes but the domains of the attributes are changed to binary strings. Since
the information about the domains will be not available after encryption, Alice is
responsible for saving this information and performing correct type conversions
during the decryption process (this will be discussed later in more detail).

Before starting the encryption, Alice generates key k̂ and then performs tuple-
by-tuple encryption of relation R, separately encrypting each attribute value.
Let x ∈ Di be a plaintext value of attribute ai. The encryption algorithm treats
plaintext x as a binary value and encrypts it by performing the following steps:

1. Plaintext x is encrypted with encryption function E0 and key k0: c = E0
k0

(x).

1 If not, then elements of each domain Di can be appended with bits that uniquely
identify attribute ai within the table.
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2. Pseudo-random permutation P generates key ks: ks = Pk1(x). Key ks will
be used for generating the search tag.

3. Plaintext x is deterministically encrypted by pseudo-random permutation P
with key k2: s = Pk2(x)

4. Using ciphertext s and key ks the search tag is generated: t = Eks(s).
5. The output of the algorithm is the pair (t, c).

With Ê denoting the encryption algorithm, whole procedure can be described
as

Êk̂(x) := (EPk1 (x)(Pk2(x)), E
0
k0

(x)), (1)

where k̂ = (k0, k1, k2).
After the encryption procedure was applied to each attribute value of tu-

ple < a1 : x1, . . . , al : xl >, the resulting ciphertexts form a new tuple < aE
1 :

(t1, c1), . . . , aE
l : (tl, cl) > that belongs to relation RE . In order to hide the struc-

ture of the database, the names of the attributes should be changed (ai �= aE
i ).

To correctly decrypt the encrypted relation, Alice should store the information
about the correspondences between the attributes of relation R and the at-
tributes of the relation RE . Also, as mentioned earlier, the encryption changes
the domains of the attributes to a raw binary data. The information about the
domains of original attributes should also be maintained by Alice (Table 1).

In order to use the described encryption scheme for encrypting values of dif-
ferent attributes, the domains of relation RE should be of the same length.
That means that, before being encrypted, the values should be padded up to
the length of the domain that has the longest binary representation. Note that
it is very unlikely that an attribute containing very long values will be used by
an exact select (e.g., attributes that contain full address, long text, multimedia
data etc.). Such attributes should either be split into several shorter attributes
or encrypted with a conventional secure encryption scheme if no select queries
are expected for them.

Decryption. The decryption is performed by decrypting the attribute values of
every tuple of relationRE and filling relationR with the corresponding plaintexts
tuples taking into account the information from Table 1. The decryption of
ciphertext (t, c) is performed straightforwardly:

D̂k̂(t, c) := Dk0(c) = x, (2)

where k̂ = (k0, k1, k2).
Using the information stored in Table 1 the plaintext is converted to the

appropriate type and saved as the value of the corresponding attribute.
The final scheme is defined as (K̂, Ê, D̂), where Ê is defined according to (1),

D̂ is defined according (2) and K̂ = (K0 ×K′ ×K′).

4.2 Proofs of Security

Theorem 1. Encryption scheme (K̂, Ê, D̂) is IND-CPA secure.
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A proof of the theorem is presented in the full version of the paper.
Even though the encryption scheme (K̂, Ê, D̂) provides IND-CPA security, the

scheme is vulnerable to IND-CCA2 attack. Even if we strengthen the security of
cryptographic primitives and require IND-CCA2 security for encryption schemes
(K, E,D) and (K0, E0, D0) the resulting scheme (K̂, Ê, D̂) will still be vulnerable
to a posteriori chosen-ciphertext attack that can allow an adversary to recover
the plaintext from a given ciphertext.

Theorem 2. Encryption scheme (K̂, Ê, D̂) is not IND-CCA2 secure.

Proof sketch. For our scheme, where Êk̂(x) = (t, c), the distinguishing algorithm
proceeds as follows:

1. The algorithm queries the encryption oracle for x and gets ciphertext (t′, c′).
2. The algorithm queries the decryption oracle for (t′, c). This query is allowed

and returns some α (note that if the algorithm is input x, then α = x).
3. If α = x the algorithm outputs 1; otherwise 0.

Clearly, the advantage of the algorithm is non-negligible. '�
The scheme can be easily modified to be IND-CCA2 secure. There exist stan-
dard techniques that make an IND-CPA secure encryption scheme secure against
CCA2 attack. The underlying idea is to make it infeasible for an adversary hav-
ing access to a decryption oracle to forge a legitimate ciphertext. One of the
possibilities is to augment the ciphertext with a tag containing “Message Au-
thentication Code” (MAC). A ciphertext is considered legitimate if in a pair (c,
MAC), MAC is the valid authentication code of c. The simplest way for gen-
erating MAC for a ciphertext is to input the ciphertext into a pseudo-random
function and use the output as the authentication code.

We define the IND-CCA2 secure version of encryption scheme (K̂, Ê, D̂) as
(K̂′, Ê′, D̂′) and construct it as follows:

Let F : KF × Y × Y0 �→ Y × Y0 or FkF (t, c) = a, kF ∈ KF , t ∈ Y, c ∈ Y0,
a ∈ Y × Y0.

Key generation. k̂′ R← K̂′, where K̂′ = K̂ × KF = K ×Kp ×Kp ×KF .

Encryption. Ê′
k̂′ (x) = (Êk̂(x), FkF (Êk̂(x))) = (t, c, FkF (c, t)) = (t, c, a), where

k̂′ = (k̂, kf ) = (k, k1, k2, kF ).

Decryption. D̂′
k̂′(t, c, a) = D̂k̂(t, c) = Dk(c) if FkF (t, c) = a otherwise the

ciphertext is not legitimate and is thus rejected.
According to [9], the encryption scheme (K̂′, Ê′, D̂′) is IND-CCA2 secure.
Since the only difference between schemes (K̂, Ê, D̂) and (K̂′, Ê′, D̂′) is the

authentication tag that is simply attached to the ciphertext, all the opera-
tions that are feasible under scheme (K̂, Ê, D̂) will remain feasible under scheme
(K̂′, Ê′, D̂′). Note that unlike scheme (K̂, Ê, D̂) that does not require search tag
for decryption, in order to perform decryption of ciphertext (t, c, a), the scheme
(K̂′, Ê′, D̂′) needs all the members of the triple in order to check the legiti-
macy of the ciphertext. That means that if a database is encrypted with scheme
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(K̂′, Ê′, D̂′), the complete triples (t, c, a) should be sent to Alice, thus tripling
the amount of transferred data compared to the case when the scheme (K̂, Ê, D̂)
is used.

5 Operations on Encrypted Relational Databases

In this section we discuss the relational operations that are feasible under the
proposed scheme and security implications that arise when some of operations
are performed.

5.1 Allowed Operations

The encryption schema described above allows to perform the following subset of
relational operations on encrypted relations: exact select, projection, Cartesian
product and equijoin. Also the scheme allows to perform union with duplicates,
exact update, exact delete and insert.

Exact Select. The proposed encryption scheme allows to perform exact selects
(SELECT...FROM...WHERE <attribute name>=<value>) on the encrypted re-
lation without decrypting it. Exact selects with more than one selection attribute
connected by AND or OR are discussed at the end of this section.

Suppose, that exact select σai.xq should be performed on relation R that is
encrypted and stored as RE . Then the following actions should be performed:

1. Alice transforms the query σai.xq into the following triple

(q, kq, a
E
i ) = (Pk2 (xq), Pk1(xq), aE

i ), (3)

where aE
i is the name of the attribute of relation RE that corresponds to

attribute ai. The corresponding attributes are taken from the structure anal-
ogous to Table 1.

2. Tuple by tuple, Bob checks every value (t, c) of attribute aE
i for the following

equality:
Dkq(t) = q. (4)

The tuples that satisfy the equality are marked.
3. After all the tuples of the relation RE are checked, Bob sends the marked

tuples to Alice. The search tags of the attribute values are not needed for
the decryption and can thus be discarded. That would reduce the amounts
of the data transferred to Alice by about half.

4. Using key k0, Alice decrypts the received ciphertexts.

Recall that, when encrypting plaintext x, the encryption algorithm Ê gener-
ates a key ks = Pk1(x) and a ciphertext s = Eks(Pk2 (x)). If the ciphertext (t, c),
whose search tag was checked at step 2, is the encryption of xq, then ks = kq,
s = q, and equality (4) holds true due to

Dkq(t) = Dkq(Eks(s)) = Dkq(Eks(Pk2(xq))) = Pk2(xq) = q.
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Therefore, all the tuples that have encryption of xq as the value of attribute aE
i

will be marked and included in the result set.
Note that the triple provided by Alice does not contain any plaintext values.

That allows Bob to perform search for ai.xq without ai.xq itself being revealed.
However, we cannot call this scheme privacy homomorphism in a strict sense,

since the set of marked tuples may contain tuples that do not belong to the
actual solution. This can happen due to following collision:

DPk1 (xq)(EPk1 (x)(Pk2(x))) = Pk2 (xq), (5)

where xq �= x, k̂ = (k0, k1, k2).
In general the probabilities of such collisions vary depending on encryption

scheme (K, E,D). A good candidate to minimize this probability is the IND-CPA
secure one-time pad based encryption scheme constructed as follows:

– Key generation: k R← K.
– Encryption:Ek(x) := (r, fk(r)⊕x), where f : K×X �→ X is a pseudo-random

function, r R← X .
– Decryption: Dk(r, c) := fk(r) ⊕ c.

The scheme is simple, efficient and, according to [9], IND-CPA secure.
In order to use this scheme as (K, E,D) we require k, r, x ∈ {0, 1}m and

f : {0, 1}m×{0, 1}m �→ {0, 1}m. Using this implementation of (K, E,D) we can
rewrite (5) as

fPk1 (xq)(r) ⊕ fPk1 (x)(r) ⊕ Pk2(x) = Pk2(xq) ⇔ fPk1 (xq)(r)⊕ fPk1 (x)(r)

= Pk2(xq)⊕ Pk2(x).

Consider the ideal case where instead of pseudo-random functions fPk1 (xq), fPk1 (x)

random functions φ, ψ are used. Then

Pr[φ(r) ⊕ ψ(r) = Pk2(xq)⊕ Pk2(x), x �= xq, r
R← X ] =

1
2m

.

The probability that the collision (5) will not occur is the probability of the
inverse event or

Pr[φ(r) ⊕ ψ(r) �= Pk2(xq)⊕ Pk2 (x), x �= xq , r
R← X ] = 1− 2−m.

In order to estimate the probability that there will be no collisions when
equality (4) is checked for a set of different values {x1, . . . , xt(m))}, where xi �=
xq, xi �= xj , i �= j and t is a positive polynomial, we note that in the ideal case,
for each xi the random function φi is chosen independently and thus the events
that correspond to the collisions for each xi are also independent. Therefore the
probability that, when performing an exact select σxq on values {x1, . . . , xt(m)},
no collisions occur is

(1− Pr[φ(r) ⊕ ψ(r) = Pk2(xq)⊕ Pk2(x), x �= xq, r
R← X ])t(m) = (1− 2−m)t(m).
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Analogously, to each new query there corresponds a randomly chosen function
ψi. The probability of event 3 that corresponds to the absence of collisions when
querying t(m) values with s(t) different queries is

Pr(3) = (1 − Pr[φ(r) ⊕ ψ(r) = Pk2(xq)⊕ Pk2(x), x �= xq, r
R← X ])t(m)s(m)

= (1 − 2−m)t(m)s(n).

The lower bound of probability Pr(3) can be estimated as

Pr(3) =
(

1− 1
2m

)t(m)s(m)

>

(

1− t(m)s(m)
2m

)

=
(

1− p(m)
2m

)

(6)

>

(

1− 1
p(m)

)

for sufficiently large m and positive polynomial p. The probability that there
will be at least one collision is 1− Pr(3) < 1/p(m), which is negligible.

This estimation was performed for the case in which functions ψ, φ are chosen
randomly and uniformly. If instead we use pseudo-random functions
fPk1 (xq), fPk1 (x), it can be easily shown that the pair (fPk1 (xq), fPk1(x)) is in-
distinguishable from the pair (ψ, φ). Suppose that there exist a set of values
and a set of queries, such that probability 1−Pr(3) is non-negligible. Then us-
ing these sets we can build an algorithm that distinguishes between (ψ, φ) and
(fPk1 (xq), fPk1 (x)) with non-negligible probability. Due to the polynomial sizes of
the sets the algorithm works in polynomial time. That contradicts the indistin-
guishability of (ψ, φ) and (fPk1 (xq), fPk1 (x)). Therefore, when the pseudo-random
functions are used the probability of the collision is also negligible.

In order to process an exact select σai.x for a relation consisting of u tuples,
Bob should only check whether equality (4) holds true for the value of attribute
ai of every tuple. Every check requires O(1) operations and therefore processing
of the query for the whole relation will be done in O(u) operations.

Projection. Since the attributes of the relation are encrypted separately, in
order to perform projection πai,...aj (a1, . . . al), Alice simply provides the name
of the corresponding encrypted attributes and Bob performs πaE

i ,...aE
j
(aE

1 , . . . a
E
l )

on the encrypted relation.

Cartesian product. Cartesian product of two encrypted relations is carried
out just as with unencrypted relations - by returning all combinations of tuples
of the encrypted relations. Again, this is possible because the attributes are
encrypted separately and, as a result, ciphertexts can be concatenated.

Equijoin. The encryption scheme allows to perform equijoin as a combination
of of Cartesian product and exact select. The feasibility of equijoin makes it
possible to preserve the foreign key associations between the relations.

Union with duplicates. The union of two encrypted relations is performed
by simply including the tuples of both relations in the resulting one. Note that
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duplicate removal is not possible because Bob has no means to determine on his
own whether two ciphertexts correspond to identical or different tuples.

Exact update. Exact update is feasible due to the feasibility of exact select
and separate encryption of the attribute values: Exact select allows to specify
the tuples that should be updated and separate encryption allows to replace the
encrypted attribute values of the tuples with the new ones. For example, con-
sider the following update query: UPDATE table1 SET salary = 3500 WHERE
name = "John Smith". Alice transforms the query into tuple (c, aE

c , s, ks, a
E
i )

and sends it to Bob. The last three values allow to run the exact select query
for getting the tuples to be updated. The first two values are the encryption of
the new attribute value (3500) and the attribute name of the encrypted relation
that corresponds to the one that should be updated (salary).

Exact delete. In order to run exact delete, Alice sends to Bob a triple (s, ks, a
E
i )

so that Bob can find the tuples to be deleted and then remove them from the
encrypted relation.

Insert. To insert a tuple, Alice encrypts it and sends it to Bob, who simply
appends it to the corresponding relation.

Logical operations. It is also possible to run operations with conditions con-
sisting of several equalities connected by AND or OR. In case of a pair of equal-
ities connected by a logical operation α, Alice sends a pair of triples connected
by α to Bob: (si, k

si , aE
i )α (sj , k

sj , aE
j ), where α ∈ {AND,OR}. If α = AND,

Bob marks the tuple when (4) holds true for both triples. If α = OR, Bob marks
the tuple when (4) holds true for one of the triples (conditions built of more
than two equalities connected by AND or OR can be treated in an analogous
manner).

When there is a negation of the equality condition (NOT operation), Bob
marks those tuples for which (4) does not hold.

5.2 Security Analysis

It is important to understand that when an encryption scheme is a privacy ho-
momorphism the indistinguishability alone may not guarantee the security of the
encrypted data. In some cases in order to perform an operation on the encrypted
data Alice has to provide Bob with additional input that is dependent on the en-
cryption key or the data itself. To see how this can become a problem, consider
a database privacy homomorphism that encrypts a table and queries with an
indistinguishably secure encryption scheme using two independently generated
keys - one for the table and another for the queries. In order to provide Bob with
the ability to run queries issued by Alice the encrypted table is appended with
the key used for encrypting the queries and each query is appended with the key
used for encrypting the table. When Alice issues a query she encrypts the corre-
sponding SQL statement with the appropriate key and sends it to Bob. Bob, in
turn, by using the key he got with the encrypted table and the key that he has
received with the query decrypts the table and the query, runs the query and
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send the result to Alice. As a result, on the one hand we have a database privacy
homomorphism that securely encrypts the table and the queries and supports
all possible relational operations. But on the other hand that homomorphism
gives no security at all after an operation was performed.

Therefore, for a privacy homomorphism it is always necessary to estimate the
amounts of information disclosed when performing operations feasible under this
homomorphism. Concerning our case, all the feasible operations except for exact
select and those that are based on it (exact delete, exact update) do not provide
Bob with any data that depends on the keys or on the encrypted table. As for
exact select, we can show that when such queries are processed nothing except
for the frequencies of queried attribute values is revealed to Bob. Intuitively,
that means that when given an encrypted table and a sequence of queries Bob
cannot get significantly more information about the table than when he is given
the encrypted table, knows queried attributes and knows which tuples each query
returns.

To express this formally, consider a database privacy homomorphism (K, E,D)
that allows exact selects. Let mi be a message to which Alice maps exact select
qi and which is then given to Bob so that he could process this query, and let
REk(T )(mi) be a set of references pointing to the tuples of encrypted table Ek(T )
that constitute a resulting set of query mi.

Definition 7. An exact select for database privacy homomorphism (K, E,D)
reveals nothing except for the frequencies of queried attribute values if for every
PPT algorithm A there exist a PPT algorithm A′ such that for every table T ,
every polynomial p′, every sequence of exact selects q1, . . . , qt, t ≤ p′(n), every
polynomially-bounded function f , every polynomial p and all sufficiently large n

Pr [A(m1, . . . ,mt, Ek(T )) = f(T )]

< Pr [A′(REk(T )(m1), . . . , REk(T )(mt), Ek(T )) = f(T )] +
1

p(n)

And for our database privacy homomorphism (K̂, Ê, D̂) we can formulate the
following theorem

Theorem 3. Database privacy homomorphism (K̂, Ê, D̂) reveals nothing except
for the frequencies of queried attribute values.

A proof of the theorem is presented in the full version of the paper.

6 Conclusion

In this paper we presented an encryption scheme that allows the secure out-
sourcing of a substantial subset of relational database operators: exact select,
Cartesian product, projection, exact update, exact insert and exact delete. Our
approach represents the first solution to the database outsourcing problem that
is provably secure and supports such an extensive set of relational operators.
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We conclusively proved the security of our scheme and showed how to reduce
the probability of having erroneous tuples in the answer to an exact select query
to a negligible level. Moreover, we presented some thoughts on how to perform
indexing and hashing in the context of encrypted database outsourcing. The
development of efficient and secure hashing and indexing schemes for encrypted
database outsourcing remains an important topic for future research.
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exact select query q issued to table T , which is the set of coordinates of the cells
satisfying the condition of the query. Denoting the minimum information reve-
lation by RT (q) they present their version of the definition of the query protocol
revealing nothing but RT (q):

Definition 8. A one-round query protocol reveals nothing beyond the minimum
information revelation if for any polynomial poly() and all sufficiently large n,
there exists a PPT algorithm S (called a simulator) such that for any t < poly(k),
any polynomial-size circuit family {An}, any polynomial p(), and any exact select
queries q1, . . . , qt for the advantage defined as

AdvA = |Pr [An(q1, . . . , qt,m1, . . . ,mt), Ek(T )) = 1]
− Pr [An(q1, . . . , qt, S(REk(T )(E′

k′ (q1)), . . . , REk(T )(E′
Ek′ (T )(qt)), Ek(T )))) = 1]|

it holds that AdvA < 1/p(n).

However, this definition contains one serious flaw: It does not impose any require-
ments on the security of the encryption scheme that is used to encrypt table T .
As an example, consider a protocol that performs no encryption at all and op-
erates with plaintext tables and queries. In such protocol for any table T (query
qi) Ek(T ) = T (mi = qi) it is trivially to build simulator S that by observing
Ek(T ) and REk(T )(m1), . . . , REk(T )(mt) reconstructs queries q1, . . . , qt and re-
turns them with Ek(T ) as the output. Clearly, with such simulator AdvA = 0 –
thus, the protocol which gives no security at all satisfies the proposed definition.

The encryption scheme and the querying algorithm proposed by Yang et al.
exploits the approach similar to the one we proposed in Section 4. But by proving
that the described query protocol satisfies Definition 8 Yang et al. claim that
the protocol reveals only number of tuples sharing the queried value and the
queried attribute. As we have just shown, this definition, actually, says nothing
about the strength of the encryption and the level of security provided by the
protocol.

Also, without any formal argumentation Yang et al. claim that their protocol
returns those, and only those tuples that satisfy an issued exact select query.
However, by applying the same reasoning as we did in Section 5.1 one can easily
see that the protocol may allow erroneous tuples to be included in the resulting
set.

It is worth to mention that the described issues as well address the query
protocol with enhanced security, which Yang et al. construct to minimize the
amount of information leaked when the table is being queried.
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Abstract. The paper explores one of the graphical authentication tech-
niques as the possible solution to the most important problems of tradi-
tional passwords. The aim of this work is to bring together the technical
(cryptological) and non-technical (psychological) awareness into the re-
search on passwords (click passwords in this case). Security issues of any
authentication mechanism (relying on knowledge) should not be con-
sidered without analysis of the human factor − since the users’ human
nature was identified as a source of major weaknesses of conventional
authentication. The paper deals with techniques which reduce password
space and make passwords guesses feasible. Four types of pictures areas
(of graphical interfaces) were investigated in order to bring to light com-
mon vulnerabilities − three of them were identified as types, which the
graphical keypads should avoid. Statistics exposing strong tendentious-
ness in click passwords selection were presented as well. Furthermore,
the paper presents a discussion on several issues of title authentication
with regard to traditional passwords and other graphical techniques.
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1 Introduction

According to recent reports, there are many vulnerabilities typical for alphanu-
merical passwords. Statistics from actual systems and many researches show that
the users are, as usual ‘the weakest link in the security chain’. One of the major
problems is the difficulty of remembering passwords, the other, ignoring security
requirements. Users tend to create either too short passwords or passwords that
though long enough are easy to guess. There is an informal rule stating that pass-
words which are easy to remember, are mostly also easy to break. According to
Bruce Schneier [1], passwords’ length distribution based on 34,000 users (Fig.1)
shows that 65% of passwords have only up to 8 characters and almost 95% up
to 10 characters. Other research [2] shows that only 17% of the inquired IT pro-
fessionals use complex passwords (including letters, numbers and symbols) and
72% stated that they almost never or never change their access codes. Moreover,
52% of professional users tend to share their passwords and 65% of them have
only one or two passwords to access the majority of services. A study of informa-
tion contained within the passwords [3] shows that 66% of users’ passwords are

J. Biskup and J. Lopez (Eds.): ESORICS 2007, LNCS 4734, pp. 343–358, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Passwords’ length distribution of 34,000 users (according to [1])

designed making use of personal characteristics thereof, where 32% contained
names of people, places or things (three quarters of respondents used those for
some passwords). Moreover, the common constructions involve full information
in the passwords − 75%, partial − 13.5%, or combination − 7.5%. Almost all
respondents reuse passwords − particularly 4.45 passwords are used in 8.18 sys-
tems. Once again, the adage that ‘system fails when users pick the passwords for
their own’ finds many confirmations. On the other hand, strong passwords im-
posed on users bring no solution as well − because people cannot and/or would
not remember strong passwords and will write them down instead. According to
[4] and [5] we can say: there will be either about 80% remembered weak pass-
words (created by users) or strong passwords (generated by the system) in 80%
written down.

Many alternative authentication solutions have been invented and developed
to address the proper security level − in order to avoid weaknesses connected
with knowledge-based methods. One group of techniques (involving a physical
factor in the authentication process − called ‘something you have’) focuses on
utilizing all kinds of tokens, one-time passwords, magnetic stripes and proximity
cards, iButtons, cryptographic cards, etc. The other kind of research makes use of
methods (called ‘something you are’) based on biometric information like finger-
prints, voiceprints, the patterns of blood vessels on the eye retina, the topography
of the eye iris, the geometry of the hand, facial patterns, DNA codes or even
thoughts (cerebral waves). However, all of the aforementioned solutions have two
significant disadvantages. First, they may become unacceptably expensive when
a large number of users are involved. Second, access to the system is strongly
dependent on the suitable interfaces − which makes such methods comparatively
less universal (in the context of mobility) and in some cases, impossible to use.
Additionally, biometrics is extremely vulnerable to a replay attack because the
personal information cannot be changed.

In the past few years we have been observing a growing interest in graphical
authentication techniques as an alternative to the alphanumerical passwords.
There are significant advantages, which directly address well-known vulnerabil-
ities of the traditional authentication mechanisms. Regardless of their applica-
tion (in either weak or strong authentication), graphical methods might provide
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higher level of security and/or lower implementation costs. On the contrary, as
long as the discipline is still new, there is no knowledge about most possibilities
of attacks − therefore weaknesses and drawbacks should be subject to thor-
ough and careful investigation. This paper deals with the method called Click
Passwords (PassPoints, Passlogix as well).

2 Related Work

By graphical authentication we mean those of knowledge-based methods, which
include graphical aspect(s) in the authentication process. There are a few distinct
grounds, which aroused the interest in graphical techniques. On one hand, graph-
ical authentication methods are particularly useful for mobile devices or systems
that have no keyboards [6]. On the other hand, there are methods resistant to
shoulder-surfing attacks− enabling to log in ‘in the crowd’ (or in the places mon-
itored by video cameras) [7], [8]; there are also obvious advantages coming from
resistance to malware (malicious software) like key-loggers or mouse-trackers [9].
Notwithstanding, the leading inclination is still to construct authentication sys-
tem, which will prevent from choosing trivial passwords and which will allow to
remember passwords with the cryptographically proper length.

Click passwords. There are three techniques, known as Passlogix [10], Pass-
Points [11] (Fig.2) and Click passwords [12] based essentially on the same idea
− users create passwords by choosing several arbitrary points in the picture.
The login process requires performing the right sequence of clicked points with
an assumed tolerance. One of the main problems is the need for picture’s area’s
decomposition (arbitrary chosen polygons − groups of pixels), because of two
simultaneous facts. First, there is a tolerance to inaccuracy of chosen points
(screen pixels), second, we are not allowed to keep the coordinates of password
points (only hash function results). As a consequence, a few schemes of picture
decomposition were invented (some illustrated on Fig.3).

Fig. 2. Examples od graphical interfaces of Passlogix, [10] and PassPoints, [11]
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The main goal of the click password systems (according to [12]) is to improve
security (to maximize the password space). The password space through a proper
chosen picture and through proper pixels assignments (to polygons) can reach
very impressive values − even hundreds of thousands of points in the password
base − from the technical point of view. On the contrary, there appears human
tendentiousness that can significantly decrease the final space of choices − these
issues are inspected farther in this paper. Nevertheless, we still lack (statistically)
convincing evidence that click passwords can be easier to remember than the text
based (assuming the same security level).

Fig. 3. Picture decomposition methods: regular grid (left), optimized Voronoi tiling
(middle) and classification based on distance from arbitrary chosen points (right), [12]

Picture passwords. There is a group of methods where users choose and mem-
orize a sequence of graphical elements (pictures) selected from a matrix of el-
ements. With the name picture passwords we will usually identify interfaces
consisting of large groups of elements (e.g. few dozens or a hundred) − although
there are methods called graphical PINs that are usually used for small mobile
devices (with few or several elements in the password base − Fig.4). Among
picture passwords techniques there is a scheme called Déjà Vu − designed with
non-describable abstract images [13], schemes based on images denoted ‘Face’
and ‘Story’ [14], thumbnail photos (quite similar to regular polygons of click
passwords) [6] and others [15]. The general principle of those methods is essen-
tially the same − the differences can be found in the graphical material, matrices

Fig. 4. Examples of graphical PINs (sources: [16], [17], [14], [6], respectively)
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size (number of elements) and purpose. Those methods are particularly interest-
ing (according to other research [9]) because of technical possibility of preventing
users from choosing trivial passwords. On top of this, there is an approach to
make the authentication process resistant to ‘key logging’ as well as to ‘mouse
tracking’ software or hardware. Moreover, by choosing proper set of pictures,
there was also proved (in [9]) the picture password superiority.

To get a basic idea of the scope of graphical authentication techniques there
are a few more methods worth mentioning. A technique called Draw-a-secret
(DAS ) where the sequence of tap regions constitutes the password [18]. There
are methods based on drawing the signature using mouse or light pen [19]. There
are passwords (words) created as a response to automatically generated inkblots
[20] (quite close to Rorschach’s inkblots). There are other original techniques like
Pass-Go − inspired by and based on the scheme of old Chinese game [21]. There
is RAF (Recall a Formation) scheme with two-dimensional picture passwords
and Mouse Motion technique with intuitional mouse movements [15].

There is no psychological research, which can directly justify the superior-
ity of graphical authentication. Although there is a phenomenon called picture
superiority effect (term introduced by Nelson et al. in 1976, [22]) stating that
pictures are much more likely to be remembered than words. However, in the
experiments both pictures and words characterize the same concepts, e.g. word
‘sun’ vs. ‘a drawing of the sun’ − there is no knowledge about sequences of
various pictures, various picture points or alphanumerical characters. There ex-
ists the dual-coding theory (introduced by Paivio, [23], [24]) saying that both
visual and verbal information are processed differently and along distinct chan-
nels. Concrete concepts presented as pictures are encoded into both systems;
however, abstract concepts are recorded only verbally. On the basis that sep-
arate information representations are processed in each channel there exists a
part of Pavio’s theory called coding redundancy hypothesis. It states that “mem-
ory increases directly with the number of alternative memory codes available
for an item”. It can be an argument in favor of click passwords when the users
both name and picture their passwords − but also we do not know how single
characters or their sequences will be coded.

Moreover, there are series of interesting researches, which can help to under-
stand how to create efficient methods based on graphical materials. For example,
study of what kind of information will be remembered over relatively long periods
of time [25]; how people remember nonsensical material and what are the condi-
tions to improve memory for pictures [26]; what is the role of prior knowledge in
recognition [27]; what is the influence on memory when words and pictures are
or are not recognized [28]; how we recognize pictures with or without additional
details [29]; what is the influence of symmetry in the remembered material [30]
and how can we manipulate with the colour (versus b&w), high versus low in-
formation, semantic versus sensory processing [31]. These (and many more that
were omitted) can be only a clue to understand which factors should be taken
into consideration when constructing the authentication mechanism, but none of
them answers the question about strong and/or weak points of click passwords.
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Nevertheless it shows how useful for the graphical authentication mnemonics
(widespread nowadays) can be found.

3 Origins of Click Passwords Cryptanalysis

While the discipline is still in its infancy, there is no wide range of practical im-
plementations and we have no direct observations on security of click passwords.
We do not know much about possible attacks on the graphical authentication
systems. There are a few hypotheses (below) that can result in disclosure of
vulnerabilities of the picture material. An attempt has been made to identify
universal weaknesses of the keypad images use in the authentication process.
This knowledge can also result in proper design of the graphical interface by
avoiding indicate regions. The hypotheses appear to be (entirely or partially)
obvious, but as long as there are no appropriate results, we cannot refer to those
as to vulnerabilities. Apart from effects affirmations, we would like to know about
strength of those relations and on that ground conclude how dangerous potential
attacks can be.

H1. First hypothesis is based on the belief that people would not choose points
in the area where there are no footholds (spots) that can be clicked. Although
we can imagine a scenario such that someone measures the distance from some
objects and selects the password points in the flat area, even though the time
and effort necessary to memorize such points make those choices quite unreliable.
Thus, the first hypothesis states that there will be significant difference in choices
between the regular and the flat area (first & fourth area on Fig.5).

Fig. 5. Four types of examined areas (1: flat, 2: irregular, 3: structural, 4: commonplace)
and below the same areas after high frequency filtering (edge detection)

H2. In the second case we deliver spots (footholds) that can be easily pointed
in the picture. But there are two things making the memorizing difficult. First,
there is no order (regular structure) − the points are chaotically spread. Second,
the elements do not differ in particular way (easy to remember) from each other.



Click Passwords Under Investigation 349

The suitable material for such research can be provided for instance by ‘breaking
waves of the sea’ or ‘leaves on the lawn’ (as the second area on the Fig.5). High
frequency filtering shows that there are many points to be clicked, but it is
hard to believe that there is an efficient way to remember thus chosen points.
Therefore, like in H1, we do not expect that points in the second area (on Fig.5)
will be frequently chosen by the participants.

H3. The last of the examined areas is a structural region (third on Fig.5),
for which there are three criteria. First, there should be footholds that can be
easily pointed in the picture. Second, the elements must not have particular
differences. And third, there should be a quite straightforward opportunity to
memorize chosen points (as for example the number of row and column of such
arrangement). In this area we expect to observe two effects (as H3 and H4). The
first one determines H3 − just like before, there will be less interest in this area,
compared with the regular one.

H4. According to H3 and the third structural area of Fig.5, when someone
decides to make the password based on this region, the choices will be weak
from the cryptographical point of view. The tendency (expected by H4) should
be seen as a graphical arrangement of the password points − far from random
one. Similar effect was observed in [9] (research on picture passwords), where
participants selected row, column or diagonal of the picture passwords’ elements
(the more sophisticated ideas in passwords picking were based on e.g. moves of
the chess knight).

We need one more clarification − what is the fourth area type in the Fig.5
− called commonplace. Commonplaces are the regions, which are the references
areas for H1−H3 hypotheses in every keypad image. It is almost impossible to
define ‘what the areas are’, but it is quite simple to define ‘what the areas are
not’. They are none of the previous areas (1−3 on the Fig. 5) − they can consist
of those regions (as a matter of fact they have to), but only in small fragments
(not in general).

Method. One of the main requirements when exploring human tendencies is
to test a large number of subjects. In the described research the verification of
the memorized passwords was given up. On one hand there was no control over
malicious behaviour of the participants, but on the other hand, there was the
possibility to put more subjects to the test. It had been certainly assured that
the participants were convinced that in one week there would be a second part
of the experiment (remembering and reproducing passwords).

Subjects. There were 301 experiment participants − students at the Warsaw
University of Technology (Faculty of Electronics and Information Technology) in
general from third up to 10th semester of studies. Table 1 presents more accurate
characteristics of participants groups.

Apparatus. Keypad I (palace) and Keypad II (street) were created with regard
to the four hypotheses (H1−H4). First observations (of groups I and II − almost
80 participants) did not result in passwords placed in the third (structural) area
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Table 1. Characteristic of the experiment participants with regard to keypad types

Groups: I II III IV V VI Overall: 
Number of Subjects: 46 32 36 69 60 58 301

Females / Males: 0/46 3/29 1/35 3/66 3/57 4/54 14/287
Semester of study: 3 6-10 5 4 4 6 3-10
Keypad I (palace): 26 7 3 24 19 20 99
Keypad II  (street): 20 25 6 23 25 19 118
Keypad III (tower): – – 27 22 16 19 84

Rejected: 0 0 1 0 3 1 5

(there were too little choices). There was no chance to confirm the H4 hypothesis.
To address the problem of lack of choices the third keypad was created (Keypad
III − tower) where the structural area can be found nearly solely (on the sky)
with the commonplace regions reduced to minimum (existing only as the edges
of the office building). The boundaries and the percentage share of areas were
plotted on every keypad illustration.
− Keypad I − palace (size 200mm x 120mm) − Fig. 6; area types: 1, 2, 4.
− Keypad II − street (size 200mm x 120mm) − Fig. 8; area types: 1, 3, 4.
− Keypad III − tower (size 120mm x 160mm) − Fig. 10; area types: 1, 3, (4).

Procedure. Instructions attached to the keypads asked the participants to
choose and remember passwords consisting of seven picture points and the sub-
jects were informed that the picture points should be remembered in the right
order. There was no time restriction.

Results. All results (raw and processed) were presented graphically and numer-
ically. The left charts of the Figures 7, 9, 10b present hundreds of users’ real
choices (679, 812 and 581 − respectively) − but the same points (or points lo-
cated in the direct neighbourhood thereof) aren’t visible. More informative with
regard to near placed choices are two-dimensional histograms (Figures 7, 9, 10b

on the right) − consisting of the 4mm x 4mm cells. The darker cell, the more
choices were counted in favor thereof. Statistics for the area types (raw and based
on the percentage share of areas in the image), statistics for the participants’
choices (real and based on the percentage share of clicks according to the areas)
and the densities of choices depending on the area types, were collected in Tables
2, 3, 4 (on the left) − respectively to the keypads.

The major results with regard to the H1 − H3 hypotheses are located in the
last columns (Density) of aforementioned tables, where the number of choices
were standardized for the sizes of areas. Thus, the outcomes indicate the mean
numbers of choices per one square centimetre. The every keypad results show
that each of the three area types (with density from 0.13 up to 0.69 choices in
1 cm2) was chosen by participants definitely more rarely than the regular regions
(with density from 5.19 up to 5.56 choices in 1 cm2). It makes the commonplace
about ten times more attractive a region. In consequence the strength of hy-
potheses relations were:
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46,90%

25,31%

27,79%

Fig. 6. Keypad I (palace); percentage share of areas: flat, commonplace, irregular. [32]

Fig. 7. Users’ choices (left) and 51x31 ’heat map’ histogram (right) of the Keypad I

Table 2. Statistics of users’ choices based on the Keypad I (palace)

Area Choices Density 
Type of area: [cm2] [ % ] [ – ] [ % ] [c-s/cm2]

1: flat 66.70 27.79 9 1.33 0.135 
2: irregular 60.73 25.31 19 2.80 0.313 
4: commonplace 112.57 46.90 626 92.19 5.561 
0: keypad corners 0 0 25 3.68 

Histogram (heat map) area 
1 % 3 % 5 % 10% 20% 

Percent of users’ choices 
[%] [%] [%] [%] [%] 

29.0 53.9 67.0 83.5 100 

H1 − 41.2x, 7.5x and 42,7x (respectively to the Keypads I, II, III);
H2 − 17,8x (in the Keypad II);
H3 − 11,5x and 9,1x (respectively to the Keypads II and III).
H4 − unfortunately there were only nine passwords among 83 and only 4 of
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22,38%

17,54%

60,08%

Fig. 8. Keypad II (street); percentage share of areas: flat, structural, commonplace. [33]

Fig. 9. Users’ choices (left) and 51x31 ’heat map’ histogram (right) of the Keypad II

Table 3. Statistics of users’ choices based on Keypad II (street)

Area Choices Density 
Type of area: [cm2] [ % ] [ – ] [ % ] [c-s/cm2]

1: flat 53.72 22.38 37 4.56 0.689 
3: structural 42.08 17.53 19 2.34 0.451 
4: commonplace 144.2 60.01 749 92.24 5.194 
0: keypad corners 0 0 7 0.86 

Histogram (heat map) area 
1 % 3 % 5 % 10% 20% 

Percent of users’ choices 
[%] [%] [%] [%] [%] 

32.9 53.3 64.7 81.3 100 

them inside the ‘structural ’ area (what makes about 11% and 5% of all choices
respectively) that could confirm the H4 hypothesis (those passwords are illus-
trated on Fig.10 − top-right). Like before the subjects avoided the structural
area (which was selected nine times more rarely than the reference region).
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27,13%

19,37%

53,50%

0 25

Fig. 10. Keypad III (tower) and the percentage share of areas: flat, structural and block
edges (top-left); examples of passwords according to H4 (top-right); all users’ choices
(bottom-left) and 31x41 ’heat map’ histogram (bottom-right). [33]

Table 4. Statistics of users’ choices based on Keypad III (tower)

Area Choices Density 
Type of area: [cm2] [ % ] [ – ] [ % ] [c-s/cm2]

1: flat 102.7 53.5 30 5.16 0.292 
3: structural 52.1 27.1 71 12.2 1.363 
4: block edges 37.2 19.4 464 79.9 12.478 
0: keypad corners 0 0 16 2.75

Histogram (heat map) area 
1 % 3 % 5 % 10% 20% 

Percent of users’ choices 
[%] [%] [%] [%] [%] 

32.9 59.4 72.6 88.8 100 

Nevertheless there are also further observations − unintended but interesting
findings reported in this paper. As the first of unforeseen results appeared the
next type of users’ choices − the corners of the keypads. The percentage shares
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of all choices were 3.7%, 0.86% and 2.75% in accordance to the keypads’ order
(as presented in Tab. 2, 3, 4). The socond was farther tendentiousness.

There were several points (hot spots) within every keypad that were chosen
especially often. A decent illustration of this effect are the ‘heat maps ’ (Figures
7, 9, 10b − on the right) and statistics based on the 4mm x 4mm histograms
presented in the Tables 2, 3 and 4 (on the right). Those tables demonstrate the
general percentage of all keypad choices included in 1%, 3%, 5%, 10% and 20%
of histograms areas - what corresponds to the right chart on Figure 11.

Two graphs (Fig.11) were presented to exemplify how strong the tendentious-
ness of the people’s choices can be − the number of choices and percentage of
all choices with regard to the percentage of keypads areas were illustrated. It
can easily be noticed that every keypad includes more than 50% of all clicks
(choices) in merely 3% of histogram areas. Moreover particularly different key-
pads are characterized by quite similar curves − such strong tendentiousness
dramatically decreases password space and determines great vulnerability.

Fig. 11. Number of choices per one cell 4x4mm - decreasing ordered (left) and per-
centage of all choices (right), both with reference to the top 20% of histograms areas

4 Discussion of Pros and Cons

All presented results are only a small part of group of issues that should be
taken into consideration before the practical use of click passwords (and related
methods). This section is a compilation of conclusions of presented and so far
not mentioned issues − regarding to the traditional alphanumerical passwords
and picture passwords as well.

Advantages of Click Passwords

1. There are possibilities of significant enlargement of the password space of
click passwords. In the traditional passwords, the base does not exceed one
hundred ( bn − password space, b − base, n − password length,). Picture
passwords offer the password base up to ten times larger. Technically, the
click passwords space can be much greater than in the picture passwords
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(hundreds of thousands)− but including strong tendentiousness in passwords
selection, we do not know about real security strength of click passwords
(that seems to be at picture passwords level).

2. Theoretically, there are possibilities of personalizing the passwords (what in
most cases prevents from dictionary attacks) via individual interface pictures
(using various images). However, there is a threat based upon tendentious-
ness of choices − for this reason every image should be tested at least in
semi-large group of people.

3. There is a possibility to make the authentication process resistant to ‘key
logging’ − which is obvious (due to not using the keyboard).

4. Sharing passwords with other users is much more difficult as well as noting
passwords down or giving them away as a result of social engineering attack.
While traditional passwords can be easily written down or spelled out, giving
a click password out is very troublesome. This feature of click passwords is
much better than in the picture passwords.

5. The password ‘incrementation effect ’ consisting in periodic, recurrent and
obvious changes made to the passwords (e.g. a password change from “11ES-
oRiCS06” to “12ESoRiCS07 )” can be neutralized. It is because there are
no sequences or numbers when the keypad image was properly chosen (e.g.
avoiding structural areas). And even when user changes only one point of
the password − it is still hard to guess which one and where is the new one.
What is more, there is always a way to force users to significantly change
their passwords by exchange the keypad picture.

6. Likewise, rule “one system − one password” can be ensured by different
keypad images in the systems where unique password codes are required.

7. There is a possibility for undemanding and inexpensive implementation
(compared to biometric or cryptographic hardware).

Disadvantages of Click Passwords

1. Deterministic methods of picture decomposition will always result in some
percentage of irritated or frustrated users. Even dealing with the best de-
composition, there is always a probability (and statistically, certainty) that
someone chooses password point in a polygon’s border − and in half of the
tries will fail the authentication process. As a matter of fact there is a usual
trade-off between mentioned probability and the passwords space.

2. There is no technical possibility to prevent users from choosing trivial pass-
words (as distinct from picture passwords). The most important effort is to
choose the proper keypad image. But only statistical analysis based on large
(enough) group of people can confirm the right choice of the picture.

3. There is no possibility to make the authentication process resistant to ‘mouse
tracking’ (as distinct from picture passwords). Every linear transformation
of the keypad image can be easily cracked. Non-linear transformations re-
quire several more authentications but also can give the password (or its
approximation) away.

4. More time needed to enter the password. Although we can expect shortening
of the passwords (in comparison to alphanumerical passwords), we should
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not expect better time performance in entering click passwords (even after
the users have learnt the order of points).

5. Graphical interface is required − which means that the graphical authenti-
cation methods will be less universal (in terms of mobility) and troublesome
in implementation (in comparison to traditional passwords).

6. There is no resistance to shoulder-surfing attacks − there is a better chance
to observe the password entered on the screen than the alphanumerical pass-
word typed with traditional keyboard. (There are some picture passwords
techniques dealing with shoulder-surfing attacks though).

7. There are many people who dislike: changes, giving up their habits, technical
novelties, graphical interfaces (i.e. unix or linux users) and ”compulsion to
better life” (as in ”we know what is better for you”).

8. As for today, the discipline is still new and there may be many attacks, of
which we cannot be aware at the present time.

5 Conclusions

In the paper four hypotheses were investigated in order to reveal universal weak-
nesses of the click password interfaces − three of them were proved right. The re-
sults determined three types of areas that will significantly decrease the password
space. Additionally there was (unintentionally) distinguished strong tendentious-
ness of chosen passwords. Every of three keypad images indicates several common
points that were chosen much more likely by the participants. It was shown that
only 3% of the keypad image area includes more than 50% of all users’ choices.
On one hand, the possibilities of attacks on the authentication mechanism based
on click passwords were exposed; on the other hand, the same results are useful
as a way to improve security of this kind of authentication mechanisms.

A variety of technical and non-technical issues and conclusions, regarding click
passwords, picture passwords and traditional passwords, was discussed in the
paper. In order to understand peoples choices better and identify the potential
causes of tendentiousness in click passwords selection, the eye tracking system
will be further investigated.
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Abstract. We propose and examine the usability and security of Cued
Click Points (CCP), a cued-recall graphical password technique. Users
click on one point per image for a sequence of images. The next image
is based on the previous click-point. We present the results of an initial
user study which revealed positive results. Performance was very good in
terms of speed, accuracy, and number of errors. Users preferred CCP to
PassPoints (Wiedenbeck et al., 2005), saying that selecting and remem-
bering only one point per image was easier, and that seeing each image
triggered their memory of where the corresponding point was located.
We also suggest that CCP provides greater security than PassPoints be-
cause the number of images increases the workload for attackers.

Keywords: Graphical Passwords, Computer Security, Authentication,
Usable Security, User Study.

1 Introduction

Various graphical password schemes [14] have been proposed as alternatives to
text-based passwords. Research and experience have shown that text-based pass-
words are fraught with both usability and security problems that make them less
than desirable solutions [21]. Psychology studies have revealed that the human
brain is better at recognizing and recalling images than text [8]; graphical pass-
words are intended to capitalize on this human characteristic in hopes that by
reducing the memory burden on users, coupled with a larger full password space
offered by images, more secure passwords can be produced and users will not
resort to unsafe practices in order to cope.

In this paper, we propose a new click-based graphical password scheme called
Cued Click Points (CCP). It can be viewed as a combination of PassPoints [19,20],
Passfaces [9], and Story [5]. A password consists of one click-point per image for a
sequence of images. The next image displayed is based on the previous click-point
so users receive immediate implicit feedback as to whether they are on the correct
path when logging in. CCP offers both improved usability and security.

We conducted an in-lab user study with 24 participants and a total of 257
trials. Users had high success rates, could quickly create and re-enter their
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passwords, and were very accurate when entering their click-points. Partici-
pants rated the system positively and indicated that they preferred CCP to
a PassPoints-style system. They also said that they appreciated the immedi-
ate implicit feedback telling them whether their latest click-point was correctly
entered.

A preliminary security analysis of this new scheme is also presented. Hotspots
(i.e., areas of the image that users are more likely to select) are a concern in
click-based passwords [6,16], so CCP uses a large set of images that will be diffi-
cult for attackers to obtain. For our proposed system, hotspot analysis requires
proportionally more effort by attackers, as each image must be collected and
analyzed individually. CCP appears to allow greater security than PassPoints;
the workload for attackers of CCP can be arbitrarily increased by augmenting
the number of images in the system. As with most graphical passwords, CCP is
not intended for environments where shoulder-surfing is a serious threat.

Section 2 provides background information on related techniques. Cued Click
Points (CCP) is described in Section 3, the user study and its results are available
in Sections 4 and 5 respectively, and an initial security analysis is given in Section
6. Section 7 provides an interpretation and discussion of the results including
possible enhancements, while conclusions and future work appear in Section 8.

2 Background and Related Work

Graphical password schemes can be grouped into three general categories based
on the type of cognitive activity required to remember the password: recogni-
tion, recall, and cued recall [5,12]. Recognition is the easiest for human memory
whereas pure recall is most difficult since the information must be accessed from
memory with no triggers. Cued recall falls somewhere between these two as it
offers a cue which should establish context and trigger the stored memory [12].

Among existing graphical passwords, CCP most closely resembles aspects of
Passfaces [9], Story [5], and PassPoints [19,20]. Therefore these graphical pass-
word schemes are presented in more detail. Conceptually, CCP is a blend of the
three; in terms of implementation, it is most similar to PassPoints. It also avoids
the complex user training requirements found in a number of graphical password
proposals, such as that of Weinshall [18].

Passfaces [9] is a graphical password scheme based primarily on recognizing
human faces. During password creation, users select a number of images from a
larger set. To log in, users must identify one of their pre-selected images from
amongst several decoys. Users must correctly respond to a number of these chal-
lenges for each login. Davis et al. [5] implemented their own version called Faces
and conducted a long-term user study. Results showed that users could accu-
rately remember their images but that user-chosen passwords were predictable
to the point of being insecure.

Davis et al. [5] proposed an alternative scheme, Story, that used everyday
images instead of faces and required that users select their images in the cor-
rect order. Users were encouraged to create a story as a memory aid. It fared



Graphical Password Authentication Using Cued Click Points 361

somewhat worse than Faces for memorability [5], but user choices were much
less predictable.

The idea of click-based graphical passwords originated with Blonder [2] who
proposed a scheme where a password consisted of a series of clicks on predefined
regions of an image. Later, Wiedenbeck et al. [19,20] proposed PassPoints,wherein
passwords could be composed of several (e.g., 5) points anywhere on an image.
They also proposed a “robust discretization” scheme [1], with three overlapping
grids, allowing for login attempts that were approximately correct to be accepted
and converting the entered password into a cryptographic verification key.

Wiedenbeck et al. [19,20] examined the usability of PassPoints in three sepa-
rate in-lab user studies to compare text passwords to PassPoints, test whether
the choice of image impacted usability, and determine the minimum size of the
tolerance square. The overall conclusion was that PassPoints was a usable au-
thentication scheme.

We recently conducted two user studies [3] on a PassPoints-style system. Our
initial lab study revisited the original usability claims, explored usability of such
passwords on a wider range of images (17 images), and gathered information
about users’ password choices. Next, we conducted a large-scale field study that
examined click-based graphical passwords in practice.

Intuitively, it seems obvious that some areas of an image are more attractive
to users as click-points [13]. If this phenomenon is too strong, the likelihood
that attackers can guess a password significantly increases. If attackers learn
which images are being used, they can select a set of likely hotspots through
image processing tools or by observing a small set of users on the target image
and then building an attack dictionary based on those points [6,16]. For further
discussion, see Section 6.

3 Cued Click Points

Cued Click Points (CCP) is a proposed alternative to PassPoints. In CCP, users
click one point on each of c = 5 images rather than on five points on one image. It
offers cued-recall and introduces visual cues that instantly alert valid users if they
have made a mistake when entering their latest click-point (at which point they
can cancel their attempt and retry from the beginning). It also makes attacks
based on hotspot analysis more challenging, as we discuss later. As shown in
Figure 1, each click results in showing a next-image, in effect leading users down
a “path” as they click on their sequence of points. A wrong click leads down an
incorrect path, with an explicit indication of authentication failure only after the
final click. Users can choose their images only to the extent that their click-point
dictates the next image. If they dislike the resulting images, they could create a
new password involving different click-points to get different images.

We envision that CCP fits into an authentication model where a user has
a client device (which displays the images) to access an online server (which
authenticates the user). We assume that the images are stored server-side with
client communication through SSL/TLS. For further discussion, see Section 6.



362 S. Chiasson, P.C. van Oorschot, and R. Biddle

Fig. 1. CCP passwords can be regarded as a choice-dependent path of images

For implementation, CCP initially functions like PassPoints. During password
creation, a discretization method (e.g., see [1]) is used to determine a click-point’s
tolerance square and corresponding grid. For each click-point in a subsequent
login attempt, this grid is retrieved and used to determine whether the click-
point falls within tolerance of the original point. With CCP, we further need to
determine which next-image to display.

Similar to the PassPoints studies, our example system had images of size
451x331 pixels and tolerance squares of 19x19 pixels. If we used robust dis-
cretization [1], we would have 3 overlapping candidate grids each containing
approximately 400 squares and in the simplest design, 1200 tolerance squares
per image (although only 400 are used in a given grid). We use a function
f(username, currentImage, currentT oleranceSquare) that uniquely maps each
tolerance square to a next-image. This suggests a minimum set of 1200 images
required at each stage. One argument against using fewer images, and having
multiple tolerance squares map to the same next-image, is that this could po-
tentially result in misleading implicit feedback in (albeit rare) situations where
users click on an incorrect point yet still see the correct next-image.

Each of the 1200 next-images would have 1200 tolerance squares and thus
require 1200 next-images of their own. The number of images would quickly
become quite large. So we propose re-using the image set across stages. By re-
using images, there is a slight chance that users see duplicate images. During
the 5 stages in password creation, the image indices i1, ..., i5 for the images in
the password sequence are each in the range 1 ≤ ij ≤ 1200. When computing
the next-image index, if any is a repeat (i.e., the next ij is equal to ik for some
k < j), then the next-image selection function f is deterministically perturbed
to select a distinct image.

A user’s initial image is selected by the system based on some user char-
acteristic (as an argument to f above; we used username). The sequence is
re-generated on-the-fly from the function each time a user enters the password.
If a user enters an incorrect click-point, then the sequence of images from that
point onwards will be incorrect and thus the login attempt will fail. For an
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attacker who does not know the correct sequence of images, this cue will not be
helpful.

We expect that hotspots [6,16] will appear as in PassPoints, but since the
number of images is significantly increased, analysis will require more effort
which increases proportionally with the configurable number of images in the
system. For example, if attackers identify thirty likely click-points on the first
image, they then need to analyze the thirty corresponding second images (once
they determine both the indices of these images and get access to the images
themselves), and so on, growing exponentially.

A major usability improvement over PassPoints is the fact that legitimate
users get immediate feedback about an error when trying to log in. When they see
an incorrect image, they know that the latest click-point was incorrect and can
immediately cancel this attempt and try again from the beginning. The visual
cue does not explicitly reveal “right” or “wrong” but is evident using knowledge
only the legitimate user should possess. As with text passwords, PassPoints can
only safely provide feedback at the end and cannot reveal the cause of error.
Providing explicit feedback in PassPoints before the final click-point could allow
PassPoints attackers to mount an online attack to prune potential password
subspaces, whereas CCP’s visual cues should not help attackers in this way.
Another usability improvement is that being cued to recall one point on each of
five images appears easier than remembering an ordered sequence of five points
on one image.

4 User Study

We conducted an in-lab user study of CCP with 24 participants. The method-
ology was reviewed and approved by the university’s research ethics committee.
The participants (12 females and 12 males) were university students with diverse
backgrounds. None were specifically studying computer security but all were reg-
ular web users. They ranged in age from 17 to 26 years. Two had participated
in our previous in-lab study [3], testing a PassPoints-style system.

All participants completed an individual one-hour session in our usability lab.
They first read and signed the consent form and were given an introduction to the
tasks they would be completing during the session. This introduction included
showing them an example image with superimposed squares, demonstrating how
accurate they needed to be when re-entering their points. The tolerance squares
used in this study were 19x19 pixels. We also explained that the next image
in the sequence depended on where they clicked on the current image. They
were told that if they suddenly saw an image they did not recognize during the
Confirm or Login phases, then they were likely on the wrong path. Participants
completed two practice trials followed by at most 12 real trials. In total, 257 real
CCP trials were completed.

A trial consisted of the following steps. The phases indicated in steps 1, 2,
and 5 represent the password phases used in later analysis.
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1. Create phase: Create a password by clicking on one point in each of five
system-selected images presented in sequence.

2. Confirm phase: Confirm this password by re-entering it correctly. Users in-
correctly confirming their password could retry the confirmation or return
to Step 1. A new password started with the same initial image, but generally
included different images thereafter, depending on the click-points.

3. Two questions: Answer two 10-point Likert-scale questions on the computer
about their current password’s ease of creation and predicted memorability.
Likert-scale questions ask respondents to indicate their level of agreement
with the given statement on a scale ranging from strongly agree to strongly
disagree.

4. MRT: Complete a Mental Rotations Test (MRT) puzzle [10]. This paper-
based task was used to distract users for a minimum of 30 seconds by giving
them a visual task to complete in order to clear their working memory.

5. Login phase: Log in with their current password. If users noticed an error
during login, they could cancel their login attempt and try again. Alterna-
tively, if they did not know their password, they could create a new password,
effectively returning to Step 1 of the trial with the same initial image as a
starting point. If users felt too frustrated with the particular images to try
again, they could skip this trial and move on to the next trial.

Participants completed as many trials as they wished in the one-hour session,
to a maximum of 14 (2 practice + 12 real trials). At the midpoint, participants
took a break and completed a demographics questionnaire. The last ten minutes
of the session were devoted to completing a Likert-scale and open-ended ques-
tionnaire about their perceptions and opinions of these graphical passwords. For
each participant, data from the two practice trials were discarded, so all results
reported in this paper are based on data from the subsequent trials.

When time remained in the one-hour session, participants were given one
further task: to complete a trial with our PassPoints-style system, where they
selected five points on one image. The experimenter was careful to identify the
second system as “the other system we are looking at” rather than the “old”
system, to not bias participants into thinking that they should rate CCP more
favourably. Users were then asked which version they preferred.

A prototype application was developed in J#. A set of 330 images was com-
piled from personal collections as well as from websites providing free-for-use
images. The prototype system did not hash the passwords or use a discretiza-
tion method as would a real system, but simply stored the exact pixel coordinates
so that the users’ choice of click-points and their accuracy on re-entry could be
examined. The system also implemented an improvised image selection process
to reduce the size of the required image set since with several unique trials per
participant, we would have needed several thousand images to implement the
proposed scheme. The first time a user clicked on a point, a new image was
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associated with that point. If a user clicked within the tolerance region of that
point again, either for re-entering or for resetting a password, the same image
was shown. Once associated with a click-point, an image was not re-used for
any other click-point during the entire session. Only areas where the user clicked
had images associated with them, therefore reducing the total number of images
required while still behaving in a manner consistent with the actual proposed
scheme from the user’s perspective.

Consistent with published PassPoints results, the images were 451x331 pixels
in size and were displayed on a 19-inch screen with its resolution set to 1024x768
pixels. We used tolerance squares of size 19x19 (PassPoints studies report a
20x20 pixel tolerance).

Three methods were used to collect data in this study: system logs, question-
naires, and observations. The system recorded the exact pixel coordinates of each
click-point on every image visited by participants for every Create, Confirm, or
Login attempt, along with the time of each event.

A post-test questionnaire was used to gather information about users’ per-
ceptions and opinions. A second questionnaire was used to collect demographic
data to help frame the results of the study. Users were also asked two online
questions immediately after successfully confirming their password to get an im-
mediate reaction of how easy it was to create the password and how difficult
they expect it would be to remember their password in a week.

Finally, an observer sat with each participant throughout the session, noting
any difficulties or unexpected behaviour as well as comments made by the par-
ticipants. While participants were not instructed to use a talk-aloud protocol,
they were not discouraged from speaking if they had comments as they worked.
Because comments may have slowed down completion times, any questions by
the observer were asked between trials where they would not affect the timings.

5 Collected Results

Restarts. Participants used the reset button as soon as they saw an incorrect
image and realized they were on the wrong path. This effectively cancelled the
current attempt and returned them to the first image where they could start
entering their password again. A few times, participants restarted even when
they saw the correct image because they had forgotten the image. Failed login
attempts (where users pressed the login button and were explicitly told that their
password was incorrect) occurred only when users clicked on the wrong point
for the last image since they did not receive any implicit feedback for that click-
point. Because these were so few, failed login attempts are included in the restart
counts. Participants said that confirming the password helped them to remember
it. Once they had successfully confirmed the password, logging on even after the
distraction task was relatively easy. This fact is reflected in Table 1 which shows
that the vast majority of restarts occurred during the Confirm phase.

Four participants completed all their trials without any restarts, i.e., they
made no errors during the entire session. In total, 201 of 257 trials (79%) were
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Table 1. Total number of restarts, success rates, and completion times per phase

Create Confirm Login

Total Number of Restarts 7 101 14

Success Rates 251/257 (98%) 213/257 (83%) 246/257 (96%)

Mean Time (SD)(in seconds) 24.7 (16.4) 10.9 (13.1) 7.4 (5.5)

Median Time (in seconds) 19.1 7.4 6.0

completed without restarts in any phase. The success rates were high for all
phases, as shown in Table 1. Success rates were calculated as the number of
trials completed without errors or restarts over the total number of trials.

Accuracy. Participants were extremely accurate in re-entering their passwords.
As a measure of accuracy, all individual click-points in the Confirm and Login
phases were evaluated. This totalled 1569 click-points for the Confirm phase
and 1325 click-points for the Login phase. For each point, the accuracy was
computed as the maximum of |xoriginal − xcurrent| and |yoriginal − ycurrent|. All
click-points were considered in the analysis, even those that were unsuccessful. A
few times, participants reached an incorrect image and still proceeded to click on
a point. These were included in the 51+ category since the point was obviously
forgotten. As indicated in Figure 2, 86% of points were within 4 pixels of the
original click-point for the Confirm phase compared to 92% for the Login phase.
Falling within 4 pixels of the original point means that these click-points would
have been accepted within a tolerance square of 9x9 pixels.

Fig. 2. Accuracy for each phase

Times for password entry. As expected, participants took longest to create
their password and then were progressively quicker in entering it during the
Confirm and Login phases. The reported times encompass from the first click in
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a phase until the last click, including any restarts. The mean and median times
reflected in Table 1 are slightly elevated because some participants paused to
comment as they were entering their password, which slowed their performance.
Despite this fact, login times are well below 10 seconds and the total time to
create and confirm a CCP password is approximately half a minute, which we
expect would be quite acceptable in many applications or environments.

Questionnaires. Participants completed two sets of Likert-scale questions.
Ten-point Likert scales were used, where 1 indicted strong disagreement and
10 equalled strong agreement with the given statement. First they answered two
online questions immediately after successfully confirming each of their pass-
words. They gave both “ease of creating a password” and “ease of remembering
their password in a week” median scores of 5 (means of 4.6). Secondly, they
completed a post-test questionnaire at the end of the one-hour session. In Table
2, we report on a subset of the questions, corresponding to the questions re-
ported in our study of a PassPoints-style system [3]. Some of the questions were
inverted to avoid bias; as a result the scores for the statements marked with (*)
were reversed before calculating the means and medians. A higher score always
indicates a more positive result for CCP.

Table 2. Questionnaire responses. Scores are out of 10. * indicates scale was reversed.

Questions Mean Median

I could easily create a graphical password 8.2 8.5

* Someone who knows me would be better at guessing my graphical
password than a stranger

4.4 5

Logging on using a graphical password was easy 7.5 7

Graphical passwords are easy to remember 7.2 6.5

* I prefer text passwords to graphical passwords 3.6 5

* Text passwords are more secure than graphical passwords 4.4 5

I think that other people would choose different points than me for a
graphical password

8.0 8

With practice, I could quickly enter my graphical password 8.3 9

All post-test questionnaire questions had median values of neutral or higher,
with several questions showing high levels of satisfaction. Participants showed
some concern over the perceived security of graphical passwords and indicated a
preference for text-based passwords. Looking at the two online questions shows
that users initially felt that it was somewhat difficult to select passwords. In-
terestingly, by the time they responded to the post-test questionnaire, they felt
much better about password creation. They also showed some hesitation about
whether they would be able to remember their password in a week. This may
have been exacerbated by the fact that they were creating multiple passwords
in a row and did not feel that they would be able to remember all of them. Ad-
ditionally, in [3] we show that long-term memorability of click-based passwords
did not appear to be an issue.
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Preference between CCP and PassPoints. When time permitted, par-
ticipants were introduced to a PassPoints-style system and asked which they
preferred. Ten participants attempted a trial with the PassPoints-style system.
An additional two people had participated in our earlier study [3]. Of these 12
people, 9 strongly preferred CCP, one preferred PassPoints, and two felt that
PassPoints was easier but that CCP was more secure.

User choice. Users were told in the preamble to the session to pretend that
their passwords were protecting bank information and as such they should choose
points that were memorable to them but difficult for others to guess. Users took
these instructions seriously and many commented on how they were avoiding
certain areas because they would be too easy to guess or because they felt that
others would select the same points.

Users developed strategies for selecting their points. Some tried to pick geo-
metric patterns that applied across images such as selecting items in a row along
the bottom of the images, but most talked about picking things that have mean-
ing to them such as their initial from a sign or a familiar toy. One participant
made up elaborate stories about each of the click-points. Users indicated that
they preferred to click on things that were small and “clickable”, such as centers
of letters or circles.

Participants felt strongly about the suitability of some images, with strongest
reactions to images they disliked. They preferred images that were not too clut-
tered, that contained a variety of distinct items, that had small well-defined
areas, and that featured contrasting colors. The most disliked images were those
that were uniform and repetitive, such as a circuit board or field of flowers, that
were highly cluttered, or that had few items with well-defined borders.

6 Preliminary Security Analysis

Any proposed authentication scheme needs to be evaluated in terms of possible
threats. We begin by clarifying our target scenario for CCP and the particular
assumptions made about the system.

We recommend that CCP be implemented and deployed in systems where
offline attacks are not possible, and where any attack will be made against an
online system that can limit the number of guesses made per account in a given
time period (this limit should include restarts as well). This follows related com-
ments by Davis et al. [5] regarding Faces and Story, even though we expect the
security of CCP to be substantially stronger than those schemes. We further as-
sume that all communication between the client and server will be made securely
through SSL, maintaining secrecy of selected click-points and corresponding im-
ages, therefore avoiding simple attacks based on network sniffing.

We suggest that the image mappings (the mapping of tolerance squares to
next-images based on f) be done on a per-user basis as a function of the user-
name, as a form of salting to complicate the construction of general attack
dictionaries. We also suggest that the image set across all users is a superset
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containing a very large number of images and that users are assigned a subset
of these images for their image-maps.

General attacks against such a system, where attackers try to break into any
account [11], are slowed due to the precautions mentioned above. We assume that
the function f would eventually become known to attackers. Hotspot analysis
might be used to increase the efficiency of an attack dictionary but images would
need to be collected and such a dictionary would need to be generated on a per-
user basis. Online attacks against specific users are more worrisome and require
further examination. Even for online systems where the account is locked after
t failed login attempts, non-trivial security is still necessary to guard against
system-wide attacks over W accounts since an attacker gets t ∗W guesses per
time window [11]. Several scenarios are discussed below.

Shoulder-surfing and other information capture from users. Most graph-
ical passwords are vulnerable to shoulder-surfing attacks [15]. With today’s small
cameras and camera phones, it is easy to video-capture a user’s screen or key-
board as they are logging in. CCP is also susceptible to such attacks and indeed
in its present form the change in images may be easier to see from further away
than mouse pointer movements in PassPoints. With knowledge of which images
to look for in systems allowing sufficient numbers of online guesses, attackers
could try a brute-force attack of clicking on points until the correct next image
appears and use this in a divide-and-conquer password recovery.

If the username, the image sequence, and the click-points are observed through
shoulder-surfing then an attacker has all of the information needed to break in
to the account, as is the case with PassPoints and most other password systems.
Having a compromised computer is also a threat because malware may capture
the login information and relay that information elsewhere. Whereas a keylogger
suffices for text passwords, for graphical passwords software is needed to capture
the images and the cursor positions.

When only some of the information is known, it can be used to narrow the
search for a correct guess. With PassPoints, knowing the username is enough to
retrieve the user’s sole image. Hotspot analysis [6,16] can then be conducted on
that particular image. With CCP, the username and an online guess reveal only
the first image so hotspot analysis of this image gives only limited information
to an attacker.

Knowing some images and their position in a user’s sequence allows prun-
ing of an attack dictionary. The more images are known, the smaller the attack
dictionary and the easier the attacker’s job. Thus CCP is not suitable in en-
vironments where shoulder-surfing is a realistic threat, or environments where
user images can otherwise be recorded (e.g., by insiders, malicious software on
the client machine, etc.).

Hotspots and dictionary attacks. In cases where attackers are not in a
position to capture information from the user, they are limited to what they can
deduce through image analysis.

Hotspots are specific areas in the image that have a higher probability of being
selected by users as part of their passwords. If attackers can accurately predict
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the hotspots in an image, then a dictionary of passwords containing combina-
tions of these hotspots can be built. Hotspots are known to be problematic for
PassPoints [6,16]; further analysis is needed to determine whether precautions
such as carefully selecting images can minimize this threat.

Our example system had 400 tolerance squares per grid for a given image.
Because the chosen grid is stored during password creation, the correct grid is
always retrieved by the system during login so the fact that there are several
grids (and 1200 images) does not come into play. This means that for each
image, there is a 1/400 chance of clicking within the correct tolerance square.
However, due to hotspots some of these have a much higher probability of being
correct than others. Knowing the hotspots would allow an attacker to modify an
attack dictionary to test passwords with higher probability first. For example,
re-examining the data from our larger PassPoints-style study [3] we found that,
as a general result across 17 images used, the 30 largest hotspots on an image
cover approximately 50% of user-chosen click-points. Assuming that attackers
are first able to extract the necessary images and perform hotspot analysis, there
is approximately a 3% (.55) chance that a password is contained in a dictionary
of 225 entries built entirely from hotspots.

A key advantage of CCP over PassPoints is that attackers need to analyze
hotspots on a large set of images rather than only one image since they do not
know the sequence of images used for a given password. Secondly, using different
subsets of images for different users means that an attacker must somehow gather
information about the specific subset assigned to the current user.

Further testing is required to gather a larger sample of click-points per image
for CCP, but preliminary analysis provides evidence that users are no more likely
to select a popular hotspot as their click-point in CCP than with PassPoints.
When presented with the same images, users selected similar points in both our
CCP and PassPoints-style [3] user studies.

7 Further Discussion

From a usability point of view, CCP appears quite successful. Participants were
satisfied, their performance was good in terms of success rates and accuracy, and
they felt that using this type of password was getting easier as they progressed
through the session. The median time required to create (19.1 seconds) and
confirm a password (7.4 seconds) is acceptable and login times (6.0 seconds) are
reasonable as well. Success rates were high, with 96% of logins being successful.

Users appreciated the implicit feedback. As soon as they saw an unfamiliar
image, they knew they were on the wrong path and restarted. They liked being
able to narrow down exactly which click was erroneous. They also felt that seeing
each image triggered the memory of where they had clicked.

Participants were surprisingly accurate in their targeting of click-points. Dur-
ing the Login phase, 92% of click-points fell within a 9x9 pixel square of the
original click-points. In agreement with our earlier studies with a PassPoints-
style system [3], the accuracy findings for CCP provide further evidence that
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tolerance squares as small as of 9x9 pixels may be acceptable terms of usabil-
ity. Our previous studies [3] also showed that varying screen resolutions did not
appear to impact performance so we predict that the same will apply to CCP.

We can also compare results of CCP with our own PassPoints-style user stud-
ies [3]. When comparing only the lab studies, participants performed similarly
well in terms of login accuracy and success rates. The median login click-time
for our PassPoints-style system was 7.0 seconds while for CCP it was 6.0 sec-
onds but CCP’s time also included “think-time” as each image appeared (as
opposed to PassPoints where the majority of “think-time” occurred before the
first click and as such is not included in these click-time results). Of those par-
ticipants who tried both systems, a strong preference for CCP was evident. The
most common reasons were because seeing each image triggered their memory
of their click-point, there was no need to remember the order of the click-points,
and they received implicit feedback about the correctness of their latest click.
This comparison is somewhat biased since users had much more practice with
one system than the other, but these responses do correspond to what would
intuitively be expected.

7.1 Potential Improvements

With any password-based authentication scheme, a primary goal is to maximize
the effective password space (i.e., that subset of the full password space actually
used in practice) in order to make it more resistant to attack. A few alternatives
exist to increase the effective password space for CCP.

Adding more click-points. As with PassPoints, one way to increase the pass-
word space is to increase the number of click-points contained in a password.
This comes at the cost of increasing the memory burden on users. Although we
have no empirical evidence to support this hypothesis, it seems that the neg-
ative impact would be less with CCP than with PassPoints since a one-to-one
mapping between images and click-points in CCP would appear to be easier for
users to manage. Therefore moving to 6 click-points may be a reasonable strat-
egy for CCP. Alternatively it is possible to enforce a minimum number of clicks
(images) but allow users to decide for themselves how many clicks their pass-
word contains, similar to minimum password lengths for text-based passwords.
In this case, the system would continue to show the next image in the sequence
but the user would determine at which point to stop clicking and press the login
button. Granted, most users would probably pick the minimum length, but a
user concerned about security could build a longer password. If k bits of security
are assumed per image used, then for a password using c images, the security
would be c ∗ k.

Adjusting the image and tolerance sizes. A simple way of enlarging the
password space is to use larger images or reduce the tolerance. Both have the
effect of adding squares to the grids. Tolerance cannot be reduced past a certain
threshold because it becomes impossible for users to enter their passwords. Re-
sults of this and our earlier study [3] however indicate that it may be possible
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to reduce tolerance more than was originally believed [19] (at least on full-sized
monitors) since users were very accurate in targeting their click-points. For exam-
ple, with images of size 451x331 as used in these studies, there are approximately
400 19x19 pixel grid squares, giving 28.6 squares per image. If we reduced the tol-
erance squares to 9x9 pixels, this would increase to 210.9 squares per image. With
CCP, we can multiply by 5 for the number of images in the password sequence,
increasing from 243 to 254.5 choices. Enlargement of the image is restricted by the
size of the screen used. Increasing the size of the image may also make it more
susceptible to shoulder-surfing. Zooming, which has been suggested elsewhere,
including by Wiedenbeck et al. [20] for PassPoints, often has usability problems
of its own, and thus we hesitate to propose it here.

Using a larger set of images. At minimum, the size of CCP’s total image set
should match the number of squares in a tolerance grid (i.e., 400 in our example
system). This strategy would imply that the set of images in the system is re-used
across users and at each stage in the password for each user.

In this case, if users make a mistake during login, there is a small chance
that they accidentally see an image belonging somewhere else in their password
sequence. They may realize the mistake immediately or subsequently when an
unknown next-image appears. The possibility of such collisions can be reduced
or eliminated if the number of images is increased to reduce the overlap between
password stages. However, depending on implementation details, this could im-
ply that the entire sequence could be deduced from knowing only the last image
in a password as discussed below.

As suggested earlier, it is possible to have a larger set of images in the system
and to use a subset for each user. Additionally, the subset for each user may
also hold extra images so that not every image is re-used at each stage. This
can reduce the possibility of collisions during incorrect login. It also increases
the amount of work required by attackers to identify images and determine
hotspots as this work increases proportionally with the number of images used
in the system. If attackers are using a brute-force attack where a dictionary is
built from all possible combinations of images and click-points, then this also
forces a larger dictionary of size totalImages ∗ totalGridSquares ∗ totalClicks.
In comparison, with PassPoints only one image needs to be analyzed per user
and this image is accessible by simply knowing the username.

If attackers know the image-mapping function f and the set of images used,
then having more images has no effect on the password space beyond requiring
more processing time to determine hotspots. However, even if attackers know f ,
collecting the set of images still poses a challenge because they must either have
insider access to the system or they must discover the images one at a time by
selecting different click-points during login attempts on the particular account.
This can prove time-consuming since the number of unsuccessful login attempts
allowed on a particular account can be restricted (e.g., see [17]). When both f
and the image set are known, the password space is determined by the number
of paths through the image-map tree (generated by f), based on the number of
squares in the tolerance grid, not the number of images available. If a dictionary
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was built containing all paths through the tree, the number of entries would be
the same (243 for grids containing 400 squares and 5 clicks) regardless of the
number of images used (although the entries would be different).

In cases where attackers know f and the set of images used, as well as one
or more images in the password (gathered through shoulder-surfing or malware
installed on the client machine), then having a very large set of images for a
given user actually reduces the attacker’s search space (although the amount of
work required for hotspot analysis is still increased). Since not all images will
be used within each image-map, attackers can use this information to eliminate
branches of the image-map tree that do not contain the known image at the
correct stage. At the extreme case where there are no duplicate images, then
knowing the last image of a sequence would identify a unique path through the
tree and reveal the password. Conversely, when all images are re-used at each
stage then no branches can be eliminated and knowing the last image will not
result in a unique path.

Another alternative for increasing the number of images available is to use
larger images but crop them differently for each user. This would complicate
hotspot analysis for attackers because the coordinates of hotspots determined
for one account could not be applied directly to other accounts.

8 Conclusions and Future Work

The proposed Cued Click Points scheme shows promise as a usable and memo-
rable authentication mechanism. By taking advantage of users’ ability to recog-
nize images and the memory trigger associated with seeing a new image, CCP
has advantages over PassPoints in terms of usability. Being cued as each image
is shown and having to remember only one click-point per image appears easier
than having to remember an ordered series of clicks on one image. In our small
comparison group, users strongly preferred CCP.

We believe that CCP offers a more secure alternative to PassPoints. CCP
increases the workload for attackers by forcing them to first acquire image sets
for each user, and then conduct hotspot analysis on each of these images. Fur-
thermore, the system’s flexibility to increase the overall number of images in the
system allows us to arbitrarily increase this workload.

Future work should include a thorough assessment of the viability of CCP as
an authentication mechanism, including a long term study of how these pass-
words work in practice and whether longer CCP passwords would be usable.
The security of CCP also deserves closer examination, and should address how
attackers might exploit the emergence of hotspots.
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Abstract. Obligations are pervasive in modern systems, often linked to access
control decisions. We present a very general model of obligations as objects with
state, and discuss its interaction with a program’s execution. We describe several
analyses that the model enables, both static (for verification) and dynamic (for
monitoring). This includes a systematic approach to approximating obligations
for enforcement. We also discuss some extensions that would enable practical
policy notations. Finally, we evaluate the robustness of our model against stan-
dard definitions from jurisprudence.

1 Introduction

Modern society recognizes a strong linkage between rights and responsibilities, or be-
tween privileges and corresponding obligations. This connection between rights and
obligations carries over to computer systems also: when a system is given the right
to perform a certain action, there is often a corresponding obligation on the system’s
subsequent behavior. For instance, when a system is permitted to access a particular
resource, such as a file descriptor, the obligation may vary from having to return that
resource, not over-use that resource, or not share that resource. In fact, in computer sys-
tems, the mere attempt to obtain a right may incur an obligation: for instance, when a
password-guarded access is denied, the system may be obliged to log the denial.

This connection between rights and obligations ought to be reflected in our descrip-
tions of access-control policies. A popular modern access control language such as
XACML [1] (and similarly, EPAL [2]) repeatedly associates obligations with decisions
and provides a syntactic element for specifying them, but then says,

There are no standard definitions for these actions in version 2.0 of XACML.
(<Obligations>) elements are returned to the PEP [policy enforcement point]
for enforcement.

and provides little further information on the structure or interpretation of obligations.
This paper contributes in three respects: by providing a rich model of obligations; by

linking these to program actions; and by defining how to perform verification and mon-
itoring of the resulting systems. Our model is unique in several ways: obligations are
stateful entities, reflecting the fact that they can change over time; obligations are linked
to program actions while still permitting separate expression of policy from program;
and the model is abstract enough to encompass a tremendous variety of obligations,
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which we demonstrate by employing the taxonomy of a standard American legal refer-
ence, Black’s Law Dictionary [3].

2 Motivating Examples

Obligations impose many kinds of constraints. Some of these constraints are positive
(that a person repay a loan; once a file is read, subsequent messages must be encrypted),
while others are negative (that companies not sell email addresses to third parties; once
a file is read, no messages can be sent). Some require a single action in bounded time
(return a library book within 3 weeks), while others require repeated behaviors (renew
a subscription annually). Some carry penalties for violation (interest on late payments),
while others bear no repercussion (failing to acknowledge a closed bug report). The
following examples are representative of the constraints in realistic systems:

Example 1 (File check-out and return). A code versioning tool restricts which devel-
opers may check out critical files. Furthermore, at most one developer can have
write permission for a critical file at any time. When a developer is given access to
a file, she is obligated to eventually check the file back in.

Example 2 (Logging following access denial). When a user attempts to access a docu-
ment for which he lacks the required credentials, every subsequent attempt to access
documents by that user must be logged.

Example 3 (Delegation in a bug tracker). In a bug-tracking system for a software com-
pany, users submit bug reports online. An employee scans each report and delegates
responsibility for handling the bug to an appropriate developer. As developers work
on bugs, they in turn may delegate the handling to other developers. Each devel-
oper is obligated to eventually close every bug report they are assigned to that is
not awaiting additional input from some user.

Example 4 (Incremental payment). An online store allows customers to accumulate
balances in their accounts and pay them off incrementally. Purchasing an item ob-
ligates the buyer to pay the seller the purchase price.

A viable model of obligations should capture and support reasoning about all of these
examples, yet no prior model does. Example 1 is generally supported, but rarely the
others. Example 2 arises on a denied, rather than permitted action. Examples 3 and 4
require obligations to have state. Section 7 provides more detail in evaluating related
work using these criteria.

3 Foundational Model

Obligations arise in response to user or program actions. In our model we will assume
that actions triggering obligations are governed by access-control policies, though this
assumption can be relaxed with only minimal changes to our formalism. We treat oblig-
ations as constraints on future behavior, and do not address provisions (constraints on
current or past behaviors) except insofar as these are used in access control. We de-
scribe our model of systems and obligations abstractly, to accommodate a wide variety
of concrete implementations.



Obligations and Their Interaction with Programs 377

We represent program executions by infinite sequences π of state/action pairs, or
paths:

π = (s0,a0),(s1,a1), . . .

Let ΠStates,Actions denote the set of paths over States and Actions; we will suppress the
subscript on Π when States and Actions are clear from context. In the abstract model,
the precise nature of the sets States of states and Actions of actions is irrelevant; in
particular we are not assuming a finite-state framework. In order to represent the fact
that obligations are conferred upon, and by, different agents in a system, we assume that
each action is associated with an agent, or with several agents acting concurrently.

A system S is a set of paths. If ρ ∈ S we say that ρ is a run of S . In the usual way
we can model terminating runs by incorporating a halting state which transitions only
to itself.

3.1 Policies

Obligations arise most frequently as an aspect of a rich notion of access control: “per-
missions with strings attached,” in Minsky and Lockman’s phrase [4]. Our conception
of pure access control is standard: in a given state a policy evaluates a request to perform
an action and returns a decision (possible decisions generally include Permit and Deny).
We make no assumptions about the language in which policy rules are expressed.

Since our interest in this paper is in access-control policies enriched with a notion of
obligations, henceforth the term policy will refer the following notion.

Definition 1. A policy for a system S is a tuple (Decs,Obls,P,γ), where

– Decs is a set of access decisions,
– Obls is a set of obligations,
– P : States×Actions→ Decs×2Obls, and
– γ : Obls→ 2Π.

P determines the access control decision and defines the obligations that arise at each
state-action pair. If Ω is an obligation, γ(Ω) is the set of paths which satisfy Ω; we say
that this set of paths is the obligation condition for Ω. For brevity we will often simply
use P to refer to the policy. A system together with a policy determine a policy-informed
program [5]. This definition does not stipulate how the program handles denials, but is
flexible enough to permit the pruning of such paths from the obligation condition.

Consider Example 1 from Section 2. Assume the system maintains information about
availability and credentials in relations Available(f) and MayEdit(d,f), where f and d de-
note files and developers, respectively. Let states of the system be sets of facts (closed
atomic formulas) over these relations. Assume the system recognizes actions RequestE-
dit(d,f) and CheckIn(d,f) to denote that developers want to check out and return files,
respectively. The following policy elements formally capture this scenario:

– Obls contains one obligation Od, f for each developer d and file f .
– P(s,RequestEdit(d,f)) = 〈Permit,{Od, f }〉 if Available(f) and MayEdit(d,f) are both

true in s, otherwise P(s,RequestEdit(d,f)) = 〈Deny, /0〉.
– γ(Od, f ) = the set of all paths that contain (at some stage) action CheckIn(d,f).



378 D.J. Dougherty, K. Fisler, and S. Krishnamurthi

As obligations specify behavior that a system may or may not respect, we introduce
terminology for various relationships between systems and the obligations arising from
policies.

Definition 2. If π = (s0,a0),(s1,a1), . . . is a path and P is a policy, we say that oblig-
ation Ω is created at stage i > 0 of π if Ω ∈ P(si−1,ai−1); in this case π satisfies Ω if
the path (si,ai),(si+1,ai+1), . . . is in γ(Ω). The path π obeys the policy P if it satisfies
each obligation created at each stage of the path. A system obeys a policy P if each of
its runs obeys P.

These definitions treat obligations as constraints on entire paths. As such it does not,
in general, make sense to speak about them being true or false at a specific state of
a computation. But we do note that sometimes it makes intuitive sense to speak of an
obligation being discharged at a certain time (e.g., making a log entry) or being violated
at a certain time (e.g., publishing a file in violation of a privacy policy). This can be
captured formally as follows.

Definition 3. Let S be a system, let ρ = (s0,a0),(s1,a1), . . . be a run of S , and let Ω
be an obligation created at stage i of ρ. The obligation Ω is discharged at a stage n ≥ i
of π if every run of S with prefix (s0,a0), . . . ,(sn,an) satisfies Ω. The obligation Ω is
violated at stage n≥ i of ρ if no run of S with prefix (s0,a0), . . . ,(sn,an) satisfies Ω.

According to the standard taxonomy of system properties defined in Alpern and Schnei-
der [6] an obligation is violable if and only if its condition is a safety condition; it is easy
to see that an obligation is dischargeable if and only if the negation of its condition is
a safety condition; following Manna and Pnueli [7] we refer to these as guarantee con-
ditions. (What Manna and Pnueli term an “obligation”, however, is merely a boolean
combination of safety and guarantee conditions.)

It is often useful to be able to monitor a system for policy compliance, especially
when dealing with black-box components or those running on untrusted platforms. It
is precisely the safety obligations that, in principle, can be the target of runtime mon-
itoring. In Section 5 we consider the problems of detecting whether an obligation is a
safety or guarantee obligation, and if not, how to compute an appropriate “best approx-
imation.”

3.2 Aren’t Obligations Just Fairness Properties?

Our view of obligations as constraining future execution behaviors (paths) of a system
suggests a theoretical connection between obligations and the notion of fairness. We
cannot, however, reduce obligations to fairness for a few reasons. For one, fairness is a
static and global property of a system’s execution (usually of the environment), whereas
obligations arise dynamically based on actions. This marks obligations as a special
class of progress properties. More subtly, fairness is treated as an assumption (which
may be verified) so that, for instance, a verifier excludes unfair paths; in contrast, while
obligations should be met, systems expect them to be violated and seek compensation.
Video rental stores, for example, oblige customers to return videos by a deadline, but
a priori specify late fees because they expect some customers to violate the obligation
(and benefit financially from their doing so!).
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3.3 Path Specifications

In fact, our formal model has avoided fixing any particular language for paths at all. In-
stead, it allows any specification of paths for describing conditions; standard languages
for paths, such as automata and temporal logic, seem natural concrete choices. If we do
choose to use temporal logic, the set of obligations that arise in practice suggest that a
minimal set of operators for capturing conditions should include those of LTL, including
both the strong and weak variants of the until operator, as well as the unless operator
(the dual of until). Example 1 of Section 2 is naturally specified using the “eventually”
operator of LTL, while Example 2 clearly requires the “globally” operator.

The application at hand may require that actions of particular agents lead to oblig-
ations being fulfilled. See Example 3. LTL is not rich enough to capture the nuances
of having several agents, but temporal logics such as ATL* [8] do offer such capabili-
ties. Situations such as Example 4 require something more than propositional temporal
logics; this will be explored in detail in the next section.

Finally, many obligations involve bounded time, or intervals of time. Examples in-
clude requiring someone to pay by a particular time, or to reverify contact information
on an annual basis. While LTL can express such constraints using the next-state operator,
such specifications are often clumsy. Other logics [9] provide more nuanced handling
of time constraints; the choice of language for describing time is closely tied to to the
choice of program model.

The main point of this discussion is to highlight the range of path specification lan-
guages that may be useful in devising a concrete language for obligations. We strongly
believe that a useful theoretical treatment of obligations should be independent of, or
at least parameterized over, the program models and path specifications that arise in
particular applications.

4 Obligations Have State

Many interesting notions of obligation go beyond requiring that a single action be taken
(or forbidden). This leads us to confront some subtle issues concerning modeling the
interaction of policies and programs. Consider Example 4. Suppose A buys an item
from B for 10 dollars. Describing the obligation condition as a payment action for 10
dollars isn’t right, because debt can be paid in installments. Therefore, tracking the
obligation may require maintaining state. In addition to enabling obligations to track
state, we should also permit policy authors to use a different vocabulary than that of the
program’s internal data structures (for instance, the obligation may be in terms of what
is owed, while the program only tracks what has been paid).

To make this precise we now settle on some notation for describing program states
and the structure of individual obligations. First we tackle the problem of distinct vo-
cabularies. By a signature Σ we mean a graded set of relation symbols and constants; we
let FactsΣ denote the set of all closed atomic formulas over such a signature. We assume
that states of a system are Herbrand structures over signatures; so states are subsets of
the set FactsΣS of all facts over signature ΣS. Other recent works have employed similar
models of software as transition systems over relational facts [10,11].
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The policy author works over a different relational signature ΣO of the terms that
capture the state of an obligation. States in policy-informed programs are comprised of
facts over ΣS∪ΣO; let StatesOb denote the set of all such states.

We can now model the state associated with each obligation as follows.

Definition 4. An obligation state over ΣO for a system over States and Actions is a tuple
containing at least two fields: (1) a representation of a set of paths in ΠStatesOb,Actions
(capturing the condition) and (2) a subset of FactsO. The set of all such states is denoted
ObStates.

The “at least” in this definition allows a particular policy language to store additional
information with an obligation. Section 6 gives examples of such extensions that arise
in practice.

When a policy author defines ΣO in order to express obligations, she also needs to
specify how the obligation state evolves based on system states and actions. This is
given in the form of a function.

Definition 5. An update function for ΣO, States and Actions is a function U of type
States×Actions×FactsO → FactsO. UOb denotes this function lifted to States×Actions
×ObStates→ ObStates by applying U to each element of FactsO in an ObStates.

Consider Example 4 again. Let Pay(A,B,n) be a program action denoting A paying n
dollars to B, and Owes(A,B,x) denote the internal state of the obligation that records
the current debt. The update function is the natural one: most actions leave the balance
unaltered, but an action Pay(A,B,y) transforms the state of the debt to Owes(A,B,(x-y)).

Example 3 regarding delegation also highlights the importance of state in obligations.
The state of the obligation associated with a bug would include a field for the agent
currently responsible for the obligation. This field can be written by the update function
in response to a system action corresponding to delegation of responsibility for the
bug. Section 6 discusses why creating separate obligations on each delegation is not
necessarily an appropriate alternative to capturing state.

Having refined what it means to be an obligation, we must now refine what it means
for a path to satisfy an obligation (thereby refining Definition 2). We first define a func-
tion U∗ that maps paths over (States×Actions) to paths over (StatesOb×Actions) as
follows.

Definition 6. Let U be an update function, and let β0 be a subset of FactsO. When π is
a path over (States×Actions), the path U∗(π,β0) is the path whose actions are the same
as that of π and whose states are given by

s∗0 = (s0,β0)
s∗n+1 = (sn+1,U(sn,an))

Definition 7. Let Ω be an obligation with condition φ and initial set of ΣO facts β0.
Then Ω is satisfied in a path π over ΣS if and only if U∗(π,β0) satisfies φ.

5 Static Analysis and Monitoring of Obligations

We now discuss two styles of analyses, one static and the other dynamic.
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5.1 Automata-Theoretic Static Analyses

Having provided a basic model of obligations, we now turn to some analyses we might
want to perform.

1. Does a certain run of the system satisfy a given obligation Ω?
2. Does there exist a run of the system in which Ω is satisfied?
3. At a particular state in a run, has obligation Ω been discharged or violated?
4. Does a given model of a policy-informed program satisfy all of its obligations?

(This is useful as different models of the same system and its environment may
satisfy different obligations.)

5. For a given system condition φ, is φ satisfied by all runs of the system that satisfy
their obligations?

6. When does one obligation imply another in the context of the given system? Are
two given obligations contradictory? Does one obligations policy entail another in
an absolute sense? Does one obligations policy entail another in the context of the
given system?

In this section we assume a finite-state representation of programs and policies. In
particular we assume that for a given policy P the set Obls of obligations is finite. We
further assume that the obligations in question do not involve different agents in any
essential way. The generalization of the automata-based techniques [12] of this section
to the multi-agent setting is a topic of future work.

In this setting the essential strategy for answering questions such as those above is
to capture obligations by automata. In this section we show in Corollary 9 that for each
obligation Ω we can construct a Büchi automaton AΩ that accepts precisely those paths
that satisfy Ω. In Theorem 10 we show how to combine such automata for the individual
obligations to build a Büchi automaton AP that accepts precisely those paths that satisfy
(all of the obligations in) policy P.

Now suppose that the set of runs of the system S is given by a Büchi automaton AS .
If we then take the cross product of AS with AΩ then the resulting automaton accepts
precisely the system runs that satisfy Ω. Questions such as 1, 2, and 3 can then be
answered using standard algorithms over Büchi automata. If we instead take the cross
product of AS with AP we can address questions such as 4 and 5. Questions such as 6
are equivalent to questions of language containment for Büchi automata, for which
algorithms are well-known [13].

The rest of this section develops these ideas formally.

Definitions. A Büchi automaton is a tuple A = (Σ,Q,Q0,Δ,F) where Q is a finite set of
states, Q0⊆Q is a set of initial states, Σ is a input alphabet, Δ⊆Q×Σ×Q is a transition
relation, and F ⊆ Q is the set of fair states. A run of A on an infinite word α ∈ Σω is
an infinite sequence r of states from Q such that r(0) ∈ Q0 and (r(i),α(i),r(i+1)) ∈ Δ
for all i ≥ 0. Such a run is accepting if r(i) ∈ F for infinitely many i. The word α is
accepted by A if there is an accepting run of A on α.

Let ΦO abbreviate |FactsO|, the number of facts over the signature ΣO.
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Proposition 8. Let A be a Büchi automaton over 2FactsS∪FactsO; let β0 be a set of ΣO

facts. Then there is a Büchi automaton A∗ over 2FactsS such that for every path π over
(States×Actions)

A∗ accepts π if and only if A accepts U∗(π,β0)

The size of A∗ is |A | ·2ΦO.

Proof. This is an instance of a general construction, which will be easier to outline in a
more abstract setting.

Let ΣA and ΣB be alphabets, and suppose u : ΣA → ΣB. Then from any ω-sequence
α = a0,a1, . . . over ΣA and initial element b0 from ΣB we can build an ω-sequence
u∗(α,b0) over ΣA×ΣB: (a0,b0),(a1,b1) . . . where each bi+1 is u(ai).

It will suffice to show in this setting that given a Büchi automaton A over ΣA×ΣB we
can build a Büchi automaton A∗ over ΣA such that for every sequence such as α above,

A∗ accepts α if and only if A accepts u∗(α,b0)

since we may take ΣA to be 2FactsS , ΣB to be 2FactsO (note that 2FactsS∪FactsO is naturally
isomorphic to 2FactsS ×2FactsO ), b0 to be β0 and u to be U∗.

Let A be ((ΣA×ΣB),Q,Q0,Δ,F). Define A∗ to be (ΣA,(Q×ΣB),(Q0×{β0}),Δ∗,
(F×ΣB)) where Δ∗ is defined by

Δ∗((s,b),a) = (Δ(s,(a,b)),u(a))

To see that this works, consider a sequence α and let r be any run of A∗ on α, r =
(s0,b0),(s1,b1), . . . . First note that each bi+1 is precisely u(ai). It is then easy to see
that the sequence s0,s1, . . . obtained by taking the first component of each pair in r is
a run of A on u∗(α,b0), and furthermore all such A-runs can be obtained in this way.
This establishes the desired relation between A∗ and A .

Corollary 9. Let Ω be an obligation for system S whose condition is expressed as a
temporal logic formula of size |Ω|. We can build a Büchi automaton AΩ accepting
precisely those paths π ∈ 2Π that satisfy Ω. The size of AΩ is bounded by 2|Ω|+ΦO.

Proof. Let A be a Büchi automaton over 2FactsS∪FactsO corresponding to the obligation
condition for Ω, and let β0 be the initial FactsO facts for Ω. As is well-known, the
size of A is bounded by 2|Ω|. The automaton A∗constructed as in Proposition 8 is of
size 2|Ω| · 2ΦO = 2|Ω|+ΦO and accepts those paths π such that A accepts U∗(π,β0). By
Definition 7 these are the paths that satisfy the condition for Ω, so we may take AΩ to
be A∗.

Note that the factor of 2ΦO above is a generous bound: the actual set of ΣO facts arising
in the states of A∗ is the set of facts which can arise in a sequence of U-updates to the
initial ΣO facts in the obligation Ω.

It is not surprising that a given obligation can be represented as an automaton. Each
of the infinitely many paths through a system, though, induces its own sequence of
obligations to be fulfilled. Hence, it is perhaps surprising that these obligation automata
can be combined into a single finite-state automaton for the whole system.
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Theorem 10. Let P be a policy for system S . We can build a Büchi automaton AP

accepting precisely those paths π ∈ 2Π that satisfy P.

Proof. Given AΩ, define the automaton A ′
Ω which, intuitively, “sleeps” until a system

transition is taken that creates the obligation Ω. Formally, we construct A ′
Ω by starting

with AΩ and adding a new state q0 to AΩ, which will serve as the sole initial state.
The transition relation Δ′ is the extension of the transition function Δ of AΩ defined as
follows.

For each pair (s,a):

– Add {(q0,(s,a),q0)} to Δ′;
– if obligation Ω arises due to action a out of s, that is, if Ω ∈ P(s,a), then add
{(q0,(s,a),r) | r was an initial state of AΩ} to Δ′.

The automaton AP is the product ∏{A ′
Ω |Ω ∈ Obls}.

5.2 Dynamic Monitoring of Safety and Guarantee Obligations

We have seen that a violable obligation is one whose condition is a safety condition, and
a dischargeable obligation is one whose condition is a guarantee condition. Under the
natural topology on the set ΠStates,Actions of all paths of a system the safety conditions
are precisely the closed sets and the liveness conditions are precisely the open sets [6].

The previous notions generalize immediately to the set of runs of a system S : we
simply take the subspace topology. In this way we may define the notion of S -safety
condition and S -guarantee condition. A set of paths might define a safety condition (for
example) relative to a system even if it fails to be a safety condition in the absolute sense.
This yields the appropriate notions of safety and guarantee relevant to obligations being
discharged or to be violated in a system. In general, obligations that forbid some action
are S -safety conditions, while obligations that demand some action eventually are S -
guarantee conditions. Any obligation with a deadline is both S -safety and S -guarantee.
Some obligations are neither: the canonical examples are LTL “until” conditions.

Suppose that S is finite-branching, that is, for every state s there are only finitely
many pairs of the form (s,a) that can arise in the system. By an easy application of
Kőnig’s Lemma, if P is both an S -safety and an S -guarantee and S is finite-branching
then Ω has a “deadline”. That is, there is a single i such that for every run ρ of S , Ω is
either discharged or violated before stage i.

Approximating Obligations for Monitoring. When a policy cannot be monitored pre-
cisely (such as one that is neither safety nor guarantee) and must be approximated, it is
valuable to construct a “best” approximation.

Definition 11. Let P be any condition. The S -safety closure P̂ of P is the intersection
of all S -safety conditions containing P . The S -interior P o of P is the union of all S -
guarantee conditions contained in P .

The S -safety closure of a condition is a safety condition: it is closed just because closed
sets are closed under intersection. Clearly P̂ is the smallest S -safety condition contain-
ing P . Of course, when P is a S -safety condition, P̂ = P . Similarly, the S -interior P o

of a condition is the largest S -guarantee condition contained in P .
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Given an arbitrary P , the monitoring system can monitor the S -safety condition P̂ .
If a run fails P̂ it certainly fails P and, by definition, P̂ is the smallest condition which
can be used to soundly check P -failure. By an analogous argument we may view P o as
the best dischargeable approximation to P : if a run satisfies P o then it is guaranteed to
satisfy P , and P o is the largest S -guarantee condition with this property.

Computing the Approximations. Alpern and Schneider [14] characterized the Büchi
automata that accept safety properties. It is easy to see from their analysis how to con-
struct, from a given automaton A , an automaton accepting the closure of the language
of A . So to generate an automaton characterizing the S -safety closure of an obligation
Ω, construct AΩ as in Section 5.1 and compute its closure. Complementation yields an
algorithm for S -guarantee approximation.

6 Evaluation: Modeling Black’s

The American legal community has a well-developed taxonomy of obligations in their
standard reference, Black’s Law Dictionary [3, pages 1104-5]. It is therefore useful to
consider how many of Black’s obligation types can be captured in the framework we
have defined.

Black’s describes 30 distinct types of obligations (plus several synonyms and one,
correal, that combines other types). Two of these (moral and natural) discuss concepts
that lie outside the scope of computing systems. Four (contractual, conventional, obedi-
ential, and statutory) capture the source or rationale for introducing an obligation. Some
models of programs and their environments could include sufficient information to cap-
ture these variations, while others do not. We therefore do not consider these in our
analysis, but the data structure for obligations in our model could hold the information
needed to distinguish these forms given sufficient program models. The rest fall into 21
classes that have different implications for a model of obligations, including how they
arise and evolve. Figure 1 describes these classes and their implications for modeling.

The model that we have presented supports all but two of the Black’s classes once
obligation states are taken to be arbitrary data structures. Divisible obligations are not
supported, as we assume a single obligation condition. Substitute obligations could
be encoded, but are not supported naturally. Natural support would require the update
function to be able to change the condition, which is beyond the scope of the current
model (due to the type of the update function). While defining such an update function
is easy, defining the semantics of satisfying obligations in this context is harder. Assume
that conditions were expressed as temporal logic formulas; our definition of satisfaction
requires each condition to hold from the state at which it was created. If the condition
could change before being satisfied, the formula would have to be rewritten to capture a
statement roughly corresponding to “the specified formula holds unless the conditions
occur to change the condition”. One could encode a substitute obligation by writing
such a condition formula at the outset, but an explicit specification through the update
function would be clearer, and we believe preferable.

The Black’s classes illustrate that the structure of obligations is both subtle and
important. Consider an obligation of the form “do A; otherwise do B and C”. This
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Category Description Requires
absolute condition must be discharged as origi-

nally stated, with no modification
update function cannot modify agents or
condition

accessory incidental to another obligation link obligations in data structure
alternative obliged may satisfy one of

several conditions
data structure with multiple conditions
or disjunction in condition formulas

bifactoral,
joint,
community,
solidary

multiple obligated or obligating agents
party to a single condition

data structure with multiple obligated or
obligating agents

conditional arises from an event that might
not occur

conditions in creation rules

conjunctive multiple conditions required which
may be enforced separately

data structure with multiple conditions;
conjunction in formulas insufficient as
sub-obligations have separate identity

current currently enforceable but not past due recognize when obligation is created
determinate condition refers to objects by identity object identity in condition language
divisible can be divided into parts (without the

consent of the parties)
ability to change condition and to
associate different subconditions with
different obligated agents

heritable successor of obligated may
become liable

ability to update agents

indeterminate condition refers to objects by attribute object attributes in condition language
perfect legally enforceable and binding “strong” interpretation of condition,

capturable in formulas
personal obligated must personally

fulfill obligation
notion of which agents act to fulfill
obligations (e.g., as expressed in ATL*)

primary arises from essential purpose
of an action

nothing

primitive must be satisfied before some others capture ordering on obligations and refer
to order during analysis

pure enforceable and past due detecting when obligations are created,
satisfied, discharged and violated

secondary incident to a primary obligation or
compensates for other
unsatisfied obligation

link obligations in data structure;
creation policy checks other obligations’
status

several different conditions required for dif-
ferent agents (obligated or obligating)

data structure groups obligations

simple arises unconditionally creation rules without conditions
single no penalty for non-fulfillment “weak” interpretation of condition,

capturable in formulas
substitute replaces another, extinguished,

obligation
ability to delete obligations and to tie
creation to status of other obligations

Fig. 1. Classes of obligations in Black’s and their implications for a comprehensive model

is a default obligation with a conjunctive obligation in its secondary clause. Because
of such conditions, we cannot rely on just the conjunction of top-level obligations to



386 D.J. Dougherty, K. Fisler, and S. Krishnamurthi

capture all the desired obligation structure. Identity is critical for understanding divisi-
ble obligations: the Black’s description is ambiguous on whether the component oblig-
ations should have separate identities, but whether they do has implications for formal
analysis of obligations. In either case, it is clear that our model needs to have a way to
refer to an obligation as an identifiable entity, even as its condition potentially evolves.
This justifies our model containing both a set of obligations (effectively naming indi-
vidual obligations) and a separate association of obligation states with obligations.

7 Related Work

Deontic logic [15] is a formal system concerned with reasoning about obligations. In-
deed, deontic logic has frequently been used to analyze the structure of normative rea-
soning in the law. Standard deontic logic is a modal logic, with a unary modality ob,
so if φ is a formula then (ob φ) is a formula. Formulas are interpreted over Kripke
structures, where states represent possible worlds. Permission is precisely the dual of
obligation in this logic, so it is natural that several authors ([16,17,18] and others) have
approached the interaction between authorization and obligations in computing systems
from this perspective. The approach we pursue here is crucially different from the modal
logic approach. Since we view obligations as expressing constraints on computations,
it does not make sense to ask whether an obligation “holds” at a state.

Minsky and Lockman recognized the essential association of obligations with per-
missions some time ago [4]. Their informal syntax and semantics supports a rich taxon-
omy of obligations (including deadlines and both positive and negative obligations), but
does not handle state. Mont’s [19] rich taxonomy of privacy obligations for enterprises
provides more detailed implementation requirements and state contents for obligations
than ours, but lacks formal semantics and our theoretical treatment of analysis. Mont’s
model supports some features, such as compensatory actions and additional require-
ments on future actions, that are not cleanly expressible in our policy notations.

Irwin, Yu, and Winsborough [20] propose a formal model of obligations inspired by
the idea that an obligation is a contract between a system and a subject. They define
a notion of secure system state based the concept of accountability for violation of an
obligation, and explore the complexity of checking accountability properties. Though
there are many similarities between their approach and ours, we have a somewhat more
general system model and a richer semantics of obligations.

Several works focus mainly on specifying, rather than analyzing, obligations. Park
and Sandhu [21] view obligations as current or past conditions constraining access re-
quests (resembling provisions [22]). Constraints on future behavior are limited to a
predicate that must hold so long as the system retains access to an object. Our model
divorces obligations from the lifetime of permissions, and can also associate them with
denied requests. Sloman [23] distinguishes authorization (actions that may occur) from
obligation (actions that must or must not occur). The Ponder policy language [24] views
obligations as actions that must be executed when certain events occur, but these con-
ditions do not support temporal operators. Kudo and Hada [25] fix a set of primitive
obligations (such as logging) that happen when access is granted, but also fail to sup-
port temporal operators.
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Some models support analysis of obligations policies outside the context of program
models. Abrahams, et al.’s [26] model allows for obligations to not be satisfied, and can
associate obligations with denials. Temporal constructs on obligations are implicit and
limited to eventuality (for positive obligations) and globally (for negative obligations).
Schaad and Moffett [27,28,29] explore interactions between agents in the context of
obligations, addressing delegation, review and supervision, and revocation. They rep-
resent and analyze obligations using Alloy [30] but do not present a general formal
semantics for them. Bettini, et al. [22] model access-control policies with both pro-
visions and obligations. Their model, like ours, links obligations to policy rules and
defines them using a separate signature of terms. It includes actions to be executed
when an obligation is satisfied or fulfilled. They focus on a semantics for when obliga-
tions apply, but assume that atomic obligations are interpreted by a server, which they
do not model. Backes, et al. [31] extend EPAL with a model of obligations and contain-
ment between them, and also assume a server for atomic obligations. This assumption
makes monitoring possible at the expense of less expressive obligations (Section 5.2).
Neither work accounts for the stateful nature of obligations, which this paper shows is
extremely valuable for modeling numerous scenarios (and complicates the definition of
obligations).

Work that explores obligations in the context of program models tends to focus on
the impact of programs on obligations, whereas our more general model supports rea-
soning about the impact of obligations on programs. These works also fail to capture
obligations with state. Hilty, Basin and Pretschner [32] explore the role of obligations
for data providers, focusing on privacy and intellectual property management. They
specify obligations using Distributed Temporal Logic (DTL) [33], which supports a rich
notion of agents. They discuss a variety of strategies for enforcing non-monitorable
obligations by weakening them; we have outlined a systematic approach for approxi-
mating obligations motivated by enforcement. May, et al. [34] model privacy policies
with obligations using an extension of the classical access-control matrix. Their work
explores the interactions of policies and programs, but not the implications of this in-
teraction on the structure of obligations (as in our Section 4). Barth, et al. [35] model
privacy policies as rules conditioned on both past and future behaviors and programs
as sequences of events that transmit information. Unlike us, they assume agents cannot
violate obligations.

8 Conclusion and Future Work

This paper has presented a model of obligations and their interaction with an ambient
system. Obligations are viewed as a means for expressing constraints on the future
behavior of a system, have state, and can fail to be fulfilled. The combination of these
assumptions, the generality of our model, and our model of system-policy interaction
distinguish our work from other treatments of obligations. The paper has demonstrated
several useful analyses including a systematic means for approximating obligations for
monitoring.

Although the paper has demonstrated that this model of obligations is quite rich, it
cannot support some kinds of obligations that arise in practice, such as divisible and
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substitute obligations (see Section 6), and obligations that require new behavior (such
as additional authentication checks) on every subsequent execution of a particular ac-
tion [19]. The latter reflects a fundamental assumption in our model that the policy
does not add, remove, or alter behaviors of the system. Relaxing this assumption is an
important topic for future work.

Next, because obligations may not be fulfilled, it is natural to speak of compensatory
actions (akin to those used in database transactions). While these can be encoded in the
obligation conditions in our model, they enjoy no distinguished status and thus cannot
be reasoned about directly. It could be useful to ask, for example, whether a system that
fails some property in the presence of unfulfilled obligations will satisfy the property
under a specific set of compensations, or to try to synthesize information about the
compensations that could cover all unfulfilled obligations.

Further, the ability to decide various questions about obligations using automata the-
ory points the way to a logic of obligations. This would offer a contrast to attempts to
apply deontic logic to obligations.

Finally, we would like to support richer notions of agents and analyses that account
for them. Section 3.3 raised the question of whether a particular agent could fulfill its
obligations. It would also be interesting to try synthesizing minimal models of agents
that guarantee satisfaction of their obligations. Both questions require closer attention to
agent-aware logics like ATL* for specifying conditions and their corresponding models
of system behavior.
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Abstract. A formal treatment to the privacy of concealed data aggregation (CDA)
is given. While there exist a handful of constructions, rigorous security models
and analyses for CDA are still lacking. Standard security notions for public key
encryption schemes, including semantic security and indistinguishability against
chosen ciphertext attacks, are refined to cover the multi-sender nature and aggre-
gation functionality of CDA in the security model. A generic CDA construction
based on public key homomorphic encryption is given, along with a proof of its
security in the proposed model. The security of two existing schemes is also an-
alyzed in the proposed model.

1 Introduction

Concealed data aggregation (CDA) in which multiple source nodes send encrypted data
to a sink along a concast tree with ciphertext aggregation performed en route is an active
research problem, particularly in sensor networks [1,3,10,26]. Privacy and message au-
thentication are the two main security goals of CDA. This work focuses on the security
model for privacy of CDA.

The privacy goal is two-fold. First, the privacy of the data has to be guaranteed end-
to-end, that is, only the sink could learn about the final aggregation result and only a
negligible amount of information about the final aggregate should be leaked out to any
eavesdropper or node along the path. Each node should only have knowledge about its
data, but no information about the data of other nodes. Second, to reduce communica-
tion overhead, the data from different source nodes have to be efficiently combined by
intermediate nodes (i.e. aggregation) along the path. Nevertheless, these intermediate
nodes should not learn any information about the final aggregate in an ideal scheme. It
appears that these two goals are in conflict. As a result, deliberate study on the secu-
rity definitions and rigorous analyses on CDA schemes are necessary. While there are a
handful of CDA constructions [1,3,10,26] achieving various levels of privacy-efficiency
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tradeoff, a rigorous treatment to the security definitions, notions and analyses of CDA
is still lacking. This work aims to fill the gap.

While there has been a solid foundation in cryptography for both private-key
[23,17,16] and public-key [13,20,5,12] encryption, a refinement to the standard secu-
rity models is needed to cover the salient features in the CDA scenario: First, a CDA
scheme can be based on private key or public key cryptography. That is, the encryption
function of a CDA scheme could be public or private. Second, CDA is a many-to-one
(multi-sender single-receiver) cryptosystem while cryptosystems in the literature are
either one-to-one [16,13] or one-to-many [24,8]. Third, CDA includes the aggregation
functionality on encrypted data whose adversary model needs a new definition. In this
paper, we extend the standard security notions of semantic security and indistinguisha-
bility against chosen-ciphertext attacks to the CDA setting and analyze existing schemes
[3,26].

1.1 Related Work

Westhoff et. al gave the first CDA construction in [26,10] based on the Domingo-Ferrer
private key homomorphic encryption [6] and coined the term CDA. The scheme al-
lows additive aggregation. Castelluccia et. al [3] constructed a stream cipher like CDA
scheme for additive aggregation. In [1], Westhoff et. al. gave a private aggregation
scheme for comparing encrypted data; however, the security of the proposed scheme
is not reasonably high. It is fair to say that, despite the existence of these CDA con-
structions, a rigorous security model and analysis for CDA are still missing in the
literature.

1.2 Our Contributions

The main contribution of this paper is the formalization of CDA. We extend the stan-
dard security notions of encryption schemes to cover the CDA scenario. Our security
model covers both private-key and public-key based CDA constructions and takes into
account the possibility of insider attacks due to compromised source nodes, as com-
pared to [26,10] which do not explicitly consider the threat of compromised nodes.
It also includes the case in which the global randomness for encryption is prescribed
beforehand or chosen by the sink and broadcast to the source nodes [3].

We also give a generic CDA construction based on any public key homomorphic
encryption scheme. Provided that the underlying homomorphic encryption scheme is
semantically secure, the CDA construction achieves semantic security against any coali-
tion with up to n − 1 compromised nodes where n is the total number of nodes in the
system.1

Based on the CDA security model proposed in this paper, we analyze two existing
schemes, namely, WGA [26] and CMT [3]. We show that WGA is only secure when
there is no compromised node. Whereas, if the underlying pseudorandom function fam-
ily (used for key generation) is (computationally) indistinguishable from a truly random

1 In a general scenario, not all of the n nodes need to report in a given slot; only a subset of the n
nodes contribute to the final aggregate. Without loss of generality, we assume all the n nodes
contribute in the aggregation in the following discussion.
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function, CMT can be proven to be semantically secure even when there are n−1 com-
promised nodes. For the pseudorandom function assumption to be held, it appears that
a larger modulus size is needed as compared to that used in the original scheme. As an
alternative, a hash variant of CMT which does not require a revision on the modulus
size is given. Security preserves in the hashed variant if, given a uniformly distributed
input, the hash function output follows a uniform distribution.

The rest of the paper is organized as follows. We give a brief introduction to the
notations used in this paper in the next section. The definition of CDA and related
security notions are presented in Sections 3 and 4 respectively. In Section 5, a generic
CDA construction is given. The security of two existing schemes is analyzed in Section
6. We conclude the paper in Section 7.

2 Notations

We follow the notations for algorithms and probabilistic experiments that originate in
[14]. A detailed exposition can be found there. We denote by z ← A(x, y, . . .) the
experiment of running probabilistic algorithm A on inputs x, y . . ., generating output
z. We denote by {A(x, y, . . .)} the probability distribution induced by the output of A.
The notations x← D and x ∈R D are equivalent and mean randomly picking a sample
x from the probability distribution D; if no probability function is specified for D, we
assume x is uniformly picked from the sample space. We denote by N the set of non-
negative integers. As usual, PPT denote probabilistic polynomial time. An empty set is
always denoted by φ.

3 Definitions

A typical CDA scheme includes a sink R and a set U of n source nodes (which are
usually sensor nodes) where U = {si : 1 ≤ i ≤ n}. Denote the set of source identities
by ID; in the simplest case, ID = [1, n]. In the following discussion, hdr ⊆ ID is
a header indicating the source nodes contributing to an encrypted aggregate. Given a
security parameter λ, a CDA scheme consists of the following polynomial time algo-
rithms.

Key Generation (KG). Let KG(1λ, n) → (dk, ek1, ek2, . . . , ekn) be a probabilistic
algorithm. Then, eki (with 1 ≤ i ≤ n) is the encryption key assigned to source
node si and dk is the corresponding decryption key given to the sink R.

Encryption (E). Eeki(mi) → (hdri, ci) is a probabilistic encryption algorithm taking
a plaintext mi and an encryption key eki as input to generate a ciphertext ci and a
header hdri ⊂ ID. Here hdri indicates the identity of the source node performing
the encryption; if the identity is i, then hdri = {i}.
We sometimes denote the encryption function by Eeki(mi; r) to explicitly show by
a string r the random coins used in the encryption process.

Decryption (D). Given an encrypted aggregate c and its header hdr ⊆ ID (which
indicates the source nodes included in the aggregation), Ddk(hdr, c) → m/ ⊥ is a
deterministic algorithm which takes the decryption key dk, hdr and c as inputs and
returns the plaintext aggregatem or possibly ⊥ if c is an invalid ciphertext.
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Aggregation (Agg). With a specified aggregation function f , the aggregation algo-
rithm Aggf (hdri, hdrj , ci, cj) → (hdrl, cl) aggregates two encrypted aggregates
ci and cj with headers hdri and hdrj respectively (where hdri ∩hdrj = φ) to cre-
ate a combined aggregate cl and a new header hdrl = hdri ∪hdrj . Suppose ci and
cj are the ciphertexts for plaintext aggregatesmi andmj respectively. The output cl
is the ciphertext for the aggregate f(mi,mj), namely, Ddk(hdrl, cl)→ f(mi,mj).
Note that the aggregation algorithm does not need the decryption key dk or any of
the encryption keys eki as input; it is a public algorithm.

Depending on constructions, the aggregation function f could be any associative
function, for instance, f could be the sum, multiplicative product, max, etc.. Leverag-
ing on the associativity property, we abuse the notation in this paper: we denote the
composition of multiple copies of f simply by f(m1,m2, . . . ,mi) irrespective of the
order of aggregation and call it the f -aggregate on m1,m2, . . . ,mi; to be precise, it
should be written as f(f(f(m1,m2), . . .),mi) with a certain aggregation order.

It is intentional to include the description of the header hdr in the above definition so
as to make the CDA security model as general as possible (to cover schemes requiring
headers in their operations). Nonetheless, generating headers or including headers as
input to algorithms should not be treated as a requirement in the actual construction or
implementation of CDA algorithms. For constructions which do not need headers (such
as the generic construction given in Section 5), all hdr’s can simply be treated as the
empty set φ in the security model and the discussions in this paper still apply.

Typical CDA Operation. The operation of CDA runs as follows. In the initialization
stage, the sink R runs KG to generate a set of encryption keys {eki : 1 ≤ i ≤ n} and
the corresponding decryption key dk and distributes each one of the encryption keys
to the corresponding source, say, eki to si. Depending on constructions, the encryption
keys eki could be private or public, but the decryption key dk has to be private in all
cases.

At a certain instant, the sink selects a subset S ⊆ U of the n sources to report their
data. Each si ∈ S uses its encryption key eki to encrypt its data represented by the
plaintext mi, giving a ciphertext ci. We do not pose restrictions on whether global or
local random coins should be used for encryption. If each source generates its random
coins individually, the random coins are said to be local; if the random coins are chosen
by the sink and broadcast to all source nodes, they are global. Global random coins
are usually public. When global random coins are used, we do not pose restriction on
the reuse of randomness despite that, in practice, each global random coin is treated as
nonce, that is, used once only. The generic construction given in Section 5 uses local
random coins whereas the CMT scheme [3] uses a global nonce.

Usually, the source nodes form a concast tree over which the encrypted data are
sent. In order to save communication cost, aggregation is done en route to the sink
whenever possible. When a node si in the tree receives x ciphertexts, say (hrdi1 ,
ci1), . . . , (hdrix , cix), from its children nodes2 (with identities i1, . . . , ix ∈ S), it ag-
gregates these ciphertexts along with its own ciphertext (hdri, ci) by running Aggf

2 It is possible that some of these ciphertexts are already the encryption of aggregated data rather
than the encryption of a single plaintext.
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successively. The concast tree structure ensures that any pair of these headers have an
empty intersection. Suppose ci1 , . . . , cix are the ciphertexts for the plaintext aggregates
mi1 , . . . ,mix . The resulting ciphertext is: (hdrl, cl) where hdrl = hdri1∪. . .∪hdrix∪
hdri and cl is the encryption of the aggregate f(mi1 , . . . ,mix ,mi).

Eventually, a number of encrypted aggregates will arrive at the sink which combines
them through running Aggf to obtain a single encrypted aggregate csink and then ap-
plies the decryption algorithm to csink to get back the plaintext aggregate f(. . . ,mi, . . .)
with si ∈ S. We require the CDA be correct in the sense that when the encryption and
decryption are performed with matched keys and correct headers and all the aggrega-
tions are run properly, the decryption should give back an f -aggregate of all the data
applied to the encryption.

4 Security Notions

Two types of oracle queries (adversary interaction with the system) are allowed in the
security model, namely, the encryption oracleOE and the decryption oracle OD. Their
details are as follows:

Encryption OracleOE(i,m). For fixed encryption and decryption keys, on input an
encryption query 〈i,m〉, the encryption oracle retrieves si’s encryption key eki and
runs the encryption algorithm on m and replies with the ciphertext Eeki (m; r) and
its header hdr. In case global random coins are used, the random coins r are part
of the query input to OE .

Decryption Oracle OD(hdr, c). For fixed encryption and decryption keys, on input
a decryption query 〈hdr, c〉 (where hdr ⊆ ID), the decryption oracle retrieves
the decryption key dk and runs the decryption algorithm D and sends the result
Ddk(hdr, c) as the reply.

The encryption oracle is needed in the security model since the encryption algo-
rithm in some CDA could use private keys, for examples [3,26]. In case the encryption
algorithm does not use any secret information, an adversary can freely generate the
ciphertext on any message of his choice without relying on the encryption oracle.

4.1 Security Against Chosen Ciphertext Attacks (CCA)

To define security (more precisely, indistinguishability) against adaptive chosen cipher-
text attacks (IND-CCA2), we use the following game played between a challenger and
an adversary, assuming there is a set U of n source nodes. If no PPT adversary, even
in collusion with at most t compromised node (with t < n), can win the game with
non-negligible advantage (as defined below), we say the CDA scheme is t-secure.3

Definition 1. A CDA scheme is t-secure (indistinguishable) against adaptive chosen
ciphertext attacks if the advantage of winning the following game is negligible in the
security parameter λ for all PPT adversaries.

3 The adversary is allowed to freely choose parameters n and t.
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Collusion Choice. The adversary chooses to corrupt t source nodes. Denote the set
of these t corrupted nodes and the set of their identities by S′ and I ′

respectively.
Setup. The challenger runs KG to generate a decryption key dk and n encryption keys

{eki : 1 ≤ i ≤ n}, and gives the subset of t encryption keys {ekj : sj ∈ S′} to
the adversary but keeps the decryption key dk and the other n− t encryption keys
{ekj : sj ∈ U\S′}.

Query 1. The adversary can issue to the challenger two types of queries:4

– Encryption Query 〈ij ,mj〉. The challenger responds with Eeij
(mj).

– Decryption Query 〈hdrj , cj〉. The challenger responds with Ddk(hdrj , cj).
Challenge. Once the adversary decides that the first query phase is over, it selects a

subset S of d source nodes (whose identities are in the set I) such that |S\S′| > 0,
and outputs two different sets of plaintexts M0 = {m0k : k ∈ I} and M1 =
{m1k : k ∈ I} to be challenged. The only constraint is that the two resulting
plaintext aggregates x0 and x1 are not equal where x0 = f(. . . ,m0k, . . .) and
x1 = f(. . . ,m1k, . . .).

The challenger flips a coin b ∈ {0, 1} to select between x0 and x1. The chal-
lenger then encrypts5 each mbk ∈ Mb with ekk and aggregates the resulting ci-
phertexts in the set {Eekk

(mbk) : k ∈ I} to form the ciphertext C of the ag-
gregate, that is, Ddk(I, C) = xb, and gives (I, C) as a challenge to the adver-
sary.

Query 2. The adversary is allowed to make more queries (both encryption and decryp-
tion) as previously done in Query 1 phase but no decryption query can be made on
the challenged ciphertext C. Nevertheless, the adversary can still make a decryp-
tion query on a header corresponding to the set S except that the ciphertext has to
be chosen different from the challenged ciphertextC.

Guess. Finally, the adversary outputs a guess b′ ∈ {0, 1} for b.
Result. The adversary wins the game if b′ = b. The advantage of the adversary is

defined as: AdvA =
∣
∣Pr[b′ = b]− 1

2

∣
∣.

Note that in CDA what the adversary is interested in is the information about the
final aggregate. Consequently, in the above game, the adversary is asked to distinguish
between the ciphertexts of two different aggregates x0 and x1 as the challenge, rather
than to distinguish two different sets of plaintexts M0 and M1. By picking elements
for M0 and M1, the adversary is essentially free to choose x0 and x1. Allowing the
adversary to choose the two sets M0,M1 is to give him more flexibility in launching
attacks. When an adversary cannot distinguish between the ciphertexts of two differ-
ent aggregates (of his choice) with probability of success non-negligibly greater than
1/2, this means, in essence, he can learn no information about an aggregate from its
ciphertext.

4 In case global random coins are used, the adversary is allowed to choose and submit his choices
of random coins for both encryption and decryption queries. Depending on whether the encryp-
tion keys are kept secret, the encryption queries may or may not be needed.

5 In case global random coins are used for encryption, the challenger chooses and passes them
to the adversary. If a nonce is used, the global random coins should be chosen different from
those used in the Query 1 phase and no query on them should be allowed in the Query 2 phase.
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4.2 Semantic Security

Semantic security, which is equivalent to indistinguishability against chosen plaintext
attacks (IND-CPA), is defined by the same game as in the definition of security against
chosen ciphertext attacks in Section 4.1 except that no query to the decryption oracle
OD is allowed. Similar to the definition in Section 4.1, a CDA scheme is said to be
t-secure when it can still achieve semantic security against a PPT adversary corrupting
at most t compromised nodes.

For a CDA scheme to be useful, it should at least achieve semantic security. In the
notion of semantic security, the main resource for an adversary is the encryption oracle
OE . In some schemes like [26,3], the adversary may not know the encryption keys,
meaning he might not have access to the encryption oracle in the real environment.
Nevertheless, in sensor networks, he is able to obtain the encryption of any plaintext
of his choice by manipulating the sensing environment and recording the sensed value
using his own sensors. Hence, chosen plaintext attacks are still a real threat to CDA.

4.3 One-Wayness

One-wayness is the weakest possible security notion for encryption. A CDA scheme is
t-secure in one-wayness if no PPT attacker, corrupting at most t nodes, should be able,
with non-negligible probability of success, to recover the plaintext aggregate matching
a given ciphertext. To define one-wayness more formally, we can use the same game in
Section 4.1 except that no query is allowed and the adversary can make no choice in
the challenge phase but is given a ciphertext of a certain aggregate x (encrypted using
at least one encryption key not held by the adversary) and asked to recover x.

5 A Generic CDA Construction

In this section, a generic construction of semantically secure CDA (using local random
coins) is given based on any semantically secure public-key homomorphic encryption.
The result is not surprising but could be useful. Note that an asymmetric key homomor-
phic encryption is used in this construction, compared to the symmetric key encryption
used in the WGA construction [26]. An asymmetric key encryption is necessary in order
to guard against possible insider attacks from compromised nodes.

5.1 Public Key Homomorphic Encryption

A public key homomorphic encryption scheme is a 4-tuple (KG,E,D,A). The key
generation algorithm KG receives the security parameter 1λ as input and outputs a
pair of public and private keys (pk, sk). E and D are the encryption and decryption
algorithms. Given a plaintext x and random coins r, the ciphertext is Epk(x; r) and
Dsk(Epk(x; r)) = x. The homomorphic property allows one to operate on the cipher-
texts using the poly-time algorithm A without first decrypting them; more specifically,
for any x, y, rx, ry , A can generate from Epk(x; rx) and Epk(y; ry) a new ciphertext of
the form Epk(x⊗ y; s) for some s. The operator⊗ could be addition, multiplication or
others depending on specific schemes; for instance, it is multiplication for RSA [22] or
ElGamal [7] and addition for Paillier [21].
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As observed in previous work in the literature, due to the homomorphic property,
achieving IND-CCA2 security could be impossible for homomorphic encryption. The
notion of security against CCA1 attacks is not often considered in practical construc-
tions. Hence, semantic security or the equivalent notion of IND-CPA security appears
to be the de facto security notion for homomorphic encryption schemes. In brief, the
IND-CPA notion can be described by the following game: in the Setup phase, the chal-
lenger runsKG(1λ) to generate a pair of public and private keys, gives the public key to
the adversary but keeps the private key. The adversary can freely encrypt any message of
his choice using the public key. The adversary chooses two different messages m0,m1

and gives them to the challenger which flips a coin b ∈ {0, 1} and gives Epk(mb; r) to
the adversary. The adversary has to output a guess b′ for b and his advantage of winning
the game is defined as

∣
∣Pr[b′ = b]− 1

2

∣
∣. If the advantage of winning the above game

is negligible in the security parameter λ for all PPT adversaries, then the scheme is
IND-CPA secure.

5.2 Concealed Data Aggregation from Public Key Homomorphic Encryption

Assume there are n source nodes in total. Suppose there exists a semantically se-
cure public-key homomorphic encryption scheme (KGHE , EHE , DHE , AHE) with
homomorphism on operator ⊗. We can construct a semantically secure CDA scheme,
tolerating up to n − 1 compromised nodes, with aggregation function of the form:
f(mi,mj) = mi ⊗ mj . The construction is as follows: (The headers are included
in the following description for completeness; they are not needed in the construction.
In fact, all these hdri’s are the empty set φ.)

Key Generation (KG). RunKGHE(1λ) to generate (pk, sk). Set the CDA decryption
key dk = sk and each one of the CDA encryption keys to be pk, that is, eki =
pk, ∀i ∈ [1, n].

Encryption (E). Given a plaintext data mi, toss the random coins ri needed for EHE

and output ci = EHE
pk (mi; ri). Set the header hdri = φ. Output (hdri, ci).

Decryption (D). Given an encrypted aggregate c and its header hdr, run DHE using
the private key sk to decrypt c and output x = DHE

sk (c) as the plaintext aggregate.
Aggregation (Agg). Given two CDA ciphertexts (hdri, ci) and (hdrj , cj), the aggre-

gation can be done using the homomorphic property of the encryption scheme.
Generate cl = AHE(ci, cj) and hdrl = hdri ∪ hdrj . Output (hdrl, cl).

Correctness. Without loss of generality, we consider the case with only two plaintext
messages mi and mj and ignore the header part as it is always equal to φ. The corre-
sponding ciphertexts for mi and mj are ci = EHE

pk (mi; ri) and cj = EHE
pk (mj ; rj) for

some random coins ri, rj . If the aggregation is done using Agg as described above, the
aggregation result cl should be equal to EHE

pk (mi ⊗ mj ; s) for some s. In essence,
this value is EHE

pk (f(mi,mj), s) . With the correctness property of the homomor-
phic encryption scheme, DHE

sk (cl) should give back mi ⊗ mj which is the aggregate
f(mi,mj).

The security of the CDA construction is best described by the following theorem.
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Theorem 1. For a total of n source nodes, the above CDA construction is semanti-
cally secure against any collusion of at most n− 1 compromised nodes, assuming that
the underlying homomorphic encryption scheme is semantically secure. The advantage
for any PPT adversary in breaking the semantic security of the CDA construction is
bounded above by the advantage achievable (by all PPT adversaries) in breaking the
semantic security of the underlying homomorphic encryption scheme.

Proof. It is trivial that security against n − 1 compromised nodes implies security
against t < n − 1 compromised nodes, and the advantages are related by a constant
factor with respect to λ. Hence, we consider the case with n− 1 compromised nodes.

We prove by contradiction. Assume the underlying homomorphic encryption is se-
mantically secure, that is, all PPT algorithms have negligible advantage to break the
semantic security of the scheme. Suppose there exists a PPT adversary A which, in
coalition with n − 1 nodes, can break the semantic security property of the CDA con-
struction with non-negligible advantage. We show how to use A to construct another
algorithmA′ to break the semantic security of the homomorphic encryption as follows:

AlgorithmA′
Setup. Receive the public key pk from the challenger and pass it to the n source nodes.

Allow the adversaryA to choose any n− 1 nodes to corrupt.
Query. Since no private key is needed for encryption, no OE query is necessary.
Challenge. In the challenge phase, receive from A two sets of plaintext messages

M0 = {m01,m02, . . . ,m0n} and M1 = {m11,m12, . . . ,m1n} . Since A has
corrupted n − 1 nodes, |M0| and |M1| have to be equal to n. Compute x0 =
f(m01,m02, . . . ,m0n) and x1 = f(m11,m12, . . . ,m1n) and output x0, x1 to the
challenger for a challenged ciphertext c. (Note that the constraint posed on the chal-
lenge in Definition 1 in Section 4.1 assures that x0 �= x1.)

Guess. Let the challenged ciphertext c = EHE
pk (xb; r) for some unknown random coins

r where b ∈ {0, 1} is unknown. Pass c as the challenge for A. When A outputs b′,
output b′ as a guess for b to the challenger.

In the above simulation, the challenge c is generated by first aggregating the plaintext
and then encrypting the plaintext aggregate with some random coins r. In a real attack,
each mbi ∈ Mb is encrypted with some random coins ri and the resulting ciphertexts
are then aggregated to generate c, which in essence is the ciphertext for the plaintext ag-
gregate encrypted with some random coins s whose relationship with ri’s is unknown.
If these ri’s are independently picked at random, then the resulting randomness s would
have the same distribution as a randomly picked r. Hence, the distributions of the chal-
lenge c generated by the two processes are indistinguishable. In other words, the view
of the adversaryA in the above simulation is essentially the same as that in a real attack.

LetAdvCDA-IND-CPA
A (λ) be the advantage of the adversaryA in breaking the semantic

security of the CDA construction. The advantage AdvHE-IND-CPA
A′ (λ) of A′ in breaking

the semantic security of the underlying homomorphic encryption is then:

AdvHE-IND-CPA
A′ (λ) = AdvCDA-IND-CPA

A (λ).

If AdvCDA-IND-CPA
A (λ) is non-negligible, so is AdvHE-IND-CPA

A′ (λ) (a contradiction). '�
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6 Security Analysis of Existing Schemes

In this section, we analyze two practical schemes in the literature in the proposed secu-
rity model, and propose modifications to one of them in Section 6.3.

6.1 WGA [26]

WGA uses Domingo-Ferrer’s symmetric-key homomorphic encryption as a building
block. Each source node uses the same encryption key ek and the sink’s decryption
key dk = ek. When there is no compromised node, if the underlying symmetric-key
homomorphic encryption is semantically secure, then WGA achieves semantic security.
The analysis is straightforward. Suppose there is an adversary A which can break the
semantic security of WGA. It is trivial that A can be used as a subroutine of another
algorithmA′ to break the semantic security of the underlying encryption. Besides, any
encryption oracle query from A can be answered easily by A′ using the query result
from the challenger of the underlying encryption scheme; in other words, the view toA
in this simulation is indistinguishable from that in the real attack.

However, as few as one node is compromised, the adversary knows the decryption
key and can gain the knowledge of all future aggregates by just passive eavesdropping,
that is, not even one-wayness can be achieved if there exists compromised nodes.

6.2 CMT [3]

CMT can be considered as a practical modification of the Vernam cipher or one-time
pad [25] to allow plaintext addition to be done in the ciphertext domain. Basically,
there are two modifications. First, the exclusive-OR operation is replaced by an addition
operation. By choosing a proper modulus, multiplicative aggregation is also possible in
CMT.6 Second, instead of uniformly picking a key at random from the key space, the
key is generated by a certain deterministic algorithm (with an unknown seed) such as
a pseudorandom function [11]. As a result, the information-theoretic security (which
requires the key be at least as long as the plaintext) in the Vernam cipher is replaced
with a security guarantee in the computational-complexity theoretic setting in CMT.

The operation of the CMT scheme is as follows: (The description could be slightly
different from the original scheme [3] as the procedures to generate the encryption keys
from a pseudorandom function are filled in.) Let p be a large enough integer used as the
modulus. Assume the key length is λ bits. Then p could be 2λ. Besides, global random
coins are used in CMT, that is, the sink chooses and broadcasts a public nonce to all
nodes.

In the following description, let F = {Fλ}λ∈N be a pseudorandom function family
where Fλ = {fs : {0, 1}λ → {0, 1}λ}s∈{0,1}λ is a collection of functions indexed
by a key s ∈ {0, 1}λ. For details on pseudorandom functions, [11] has a comprehen-
sive description. Loosely speaking, given a function fs from a pseudorandom function
ensemble with unknown key s, any PPT distinguishing procedure allowed to get the
values of fs(·) at (polynomially many) arguments of its choice should not be able to

6 CMT can achieve either additive or multiplicative aggregation but not both at the same time.
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tell (with non-negligible advantage in λ) whether the answer of a new query (with the
argument not queried before) is supplied by fs or randomly picked from {0, 1}λ.

Key Generation (KG). Randomly pick K ∈ {0, 1}λ and set it as the decryption key
dk. For each i ∈ [1, n], eki = fK(i) is the encryption key for source node si with
identity i.

Encryption (E). Given an encryption key eki, a plaintext data mi and a broadcast
nonce r from the sink, output ci = (mi + feki(r)) mod p. Set the header hdri =
{i}. Output (hdri, ci). Note: each r has to be used once only.

Decryption (D). Given the ciphertext (hdr, c) of an aggregate and a nonce r used in
the encryption, generate eki = fK(i), ∀i ∈ hdr. Output the plaintext aggregate
x = (c−

∑
i∈hdr feki(r)) mod p.

Aggregation (Agg). Given two CDA ciphertexts (hdri, ci) and (hdrj , cj), compute
cl = (ci + cj) mod p and hdrl = hdri ∪ hdrj and output (hdrl, cl).

How good the CMT scheme achieves IND-CPA security relies on how good the un-
derlying key generation function is as a pseudorandom function. As a consequence,
the required modulus size is determined mainly by the parameters of the conjectured
pseudorandom function family used, rather than the size of the largest plaintext aggre-
gate. There are various constructions of pseudorandom functions [18,19,15,2], each of
which is based on a different computational assumption and requires different compu-
tational resources; it is therefore difficult to evaluate the efficiency of the CMT scheme
without seeing the actual implementation. The security of the CMT can be summarized
by the following theorem.

Theorem 2. The CMT scheme is semantically secure against any collusion with at most
n − 1 compromised nodes, assuming Fλ = {fs : {0, 1}λ → {0, 1}λ}s∈{0,1}λ is a
pseudorandom function.

Proof. Without loss of generality, we prove the security of a modified version of CMT
in which each encryption key is uniformly picked from {0, 1}λ, compared with keys
generated by a pseudorandom function in the actual CMT scheme. We then provide a
justification why the inference applies to the actual CMT implementation.

Indistinguishability Property of a Pseudorandom Function. Assume f is taken from
a pseudorandom function. Then for a fixed input argument x and and an unknown, ran-
domly picked keyK , the following two distributions are computationally indistinguish-
able provided that polynomially many (say q) evaluations of fK(·) have been queried:

{y = fK(x) : y}, {y← {0, 1}λ : y}.

That is, the output fK(x) is computationally indistinguishable from a randomly picked
number from {0, 1}λ to any PPT distinguisher who has knowledge of the input argu-
ment x and a set of polynomially many 2-tuples (xi, fK(xi)) where xi �= x. More
formally, for any PPT distinguisherD,

|Pr[y = fK(x) : D(x, y) = 1]− Pr[y ← {0, 1}λ : D(x, y) = 1]| < ε(λ)

where ε(λ) is a negligible function in λ.
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Suppose there exists a PPT adversary D which can break the semantic security of
CMT with non-negligible advantage AdvCMT

D . We show in the following how D can
be used to construct an algorithmD′ which can distinguish the above distributions with
non-negligible advantage. Assume the key K in question is unknown to D′.

Algorithm D′

Setup. Allow the adversary D to choose any n− 1 sources to corrupt. Randomly pick
n−1 encryption keys eki ∈R {0, 1}λ and pass them to the adversary. Assume node
n is uncorrupted. The encryption key for node n is taken to be K , the key of the
pseudorandom function D′ is being challenged with. That is, K is unknown to D′.

Query. Upon receiving an encryption query 〈ij ,mj〉 with nonce rj , return
cj = (fekij

(rj) + mj) mod p if ij �= n. Otherwise, pass rj to query the pseudo-
random function to get back fK(rj) and reply with cj = (fK(rj) +mj) mod p.

Challenge. In the challenge phase, receive from D two sets of plaintext messages
M0 = {m01,m02, . . . ,m0n} and M1 = {m11,m12, . . . ,m1n}.
Randomly pick a number w and output it to the pseudorandom function challenger
to ask for a challenge. Notew is the nonce used for CDA encryption in the challenge
for D. The pseudorandom function challenger flips a coin b ∈ {0, 1} and returns
tb, which is fK(w) when b = 0 and randomly picked from {0, 1}λ when b = 1.
These two cases corresponds to the two distributions discussed above.
Randomly flip a coin d ∈ {0, 1}, and return the challenge ciphertext cd to D where
cd =

∑n
i=1mdi +

∑n−1
i=1 feki(w) + tb.

Guess. D returns its guess b′. Return b′′ which is 0 when b′ = d and 1 otherwise.

Obviously, if D is PPT, then D′ is also PPT. Denoting the expression
∑n

i=1mdi +
∑n−1

i=1 feki(w) by Xd, the challenge passed to D can be expressed as cd = Xd + tb.
When b = 0, tb = fK(w); when b = 1, tb is a randomly picked number from {0, 1}λ.
In the following discussion, we denote the output of D on input cd by D(cd). The
probability of success for D′ to distinguish between fK(w) and a random number is:

PrPRF
D′ [Success] = Pr[b′′ = b]

= 1
2{Pr[b′′ = 0|b = 0] + Pr[b′′ = 1|b = 1]}

= 1
4{Pr[b′′ = 0|b = 0, d = 0] + Pr[b′′ = 0|b = 0, d = 1]

+Pr[b′′ = 1|b = 1, d = 0] + Pr[b′′ = 1|b = 1, d = 1]}
= 1

4{Pr[D(t0 +X0) = 0] + Pr[D(t0 +X1) = 1]
+Pr[D(t1 +X0) = 1] + Pr[D(t1 +X1) = 0]}

= 1
4{Pr[D(t0 +X0) = 0] + Pr[D(t0 +X1) = 1]

+1 + Pr[D(t1 +X0) = 1]− Pr[D(t1 +X1) = 1]}
= 1

4{2PrCMT
D [Success] + 1

+(Pr[D(t1 +X0) = 1]− Pr[D(t1 +X1) = 1])}.

Note that t0+X0 and t0+X1 are valid CMT ciphertexts for the two challenges plaintext
setsM0 andM1 respectively. In the last step, we make use of the fact that the probability
of success for D to break the semantic security of CMT is given by:

PrCMT
D [Success] =

1
2
Pr[D(t0 +X0) = 0] +

1
2
Pr[D(t0 +X1) = 1].
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Rearranging terms, we have

4PrPRF
D′ [Success] = 2PrCMT

D [Success] + 1
+Pr[D(t1 +X1) = 1]− Pr[D(t1 +X0) = 1]
4(PrPRF

D′ [Success]− 1
2 ) = 2(PrCMT

D [Success]− 1
2 ).

+Pr[D(t1 +X1) = 1]− Pr[D(t1 +X0) = 1]

Taking absolute value on both sides and substitute AdvPRF
D′ = |PrPRF

D′ [Success]− 1
2 |

and AdvCMT
D = |PrCMT

D [Success]− 1
2 |, we have

2AdvPRF
D′ +

1
2
|Pr[D(t1 +X1) = 1]− Pr[D(t1 +X0) = 1]| ≥ AdvCMT

D .

Since t1 is a randomly picked number, {t1 + X0} and {t1 + X1} are identically
distributed. That is, for any PPT algorithmD, Pr[D(t1+X0) = 1] = Pr[D(t1+X1) =
1]. Hence,

2AdvPRF
D′ (λ) ≥ AdvCMT

D (λ).

Note also that:

∣
∣Pr[y=fK(x) : D′(x, y)=1]− Pr[y ← {0, 1}λ : D′(x, y) = 1]

∣
∣ = 2AdvPRF

D′ (λ).7

If AdvCMT
D is non-negligible in λ, then so is AdvPRF

D′ . As a result, if D can break the
semantic security of CMT with non-negligible advantage,D′ could distinguish between
the output of pseudorandom function f and a random number. Equivalently, |Pr[y =
fK(x) : D′(x, y) = 1] − Pr[y ← {0, 1}λ : D′(x, y) = 1]| is non-negligible (a
contradiction to the indistinguishability property of a pseudorandom function).

The above security argument applies to the actual CMT implementation since the
view of the adversaryD in the above simulation is in essence the same as that in the ac-
tual CMT scheme. For each one of the n−1 corrupted node, the encryption key is fK′(i)
( 1 ≤ i ≤ n− 1) for some randomly picked master key K ′. By the property of pseudo-
random function, fK′(i) is indistinguishable from a randomly picked key (as used in the
above simulation game) for all PPT distinguisher algorithms. For the uncorrupted node,
its output for encryption is now ffK′ (n)(x) instead of fK(x) (with randomly pickedK)
as used in the above simulation game. It can be shown by a contrapositive argument that,
for fixed n and given x, the two distributions are computationally indistinguishable, that
is,

{K ′ ← {0, 1}λ : (x, ffK′ (n)(x))}
c≡ {K ← {0, 1}λ : (x, fK(x))}.

The argument is as follows: Assume f is a pseudorandom function. That is, A =
{K ′ ← {0, 1}λ : fK′(n)} is indistinguishable from B = {K ← {0, 1}λ : K} for

7 The derivation is as follows.
�
�Pr[y = fK(x) : D′(x, y) = 1]− Pr[y ← {0, 1}λ : D′(x, y) = 1]

�
�

=
�
�1− Pr[y = fK(x) : D′(x, y) = 0]− Pr[y ← {0, 1}λ : D′(x, y) = 1]

�
�

=
�
�1− 2PrPRF

D′ [Success]
�
�

= 2 ·
�
�PrPRF

D′ [Success]− 1
2

�
�

= 2 ·AdvPRF
D′ (λ)
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all PPT distinguishers. If there exists a PPT distinguisher D which can distinguish be-
tween X = {K ′ ← {0, 1}λ : (x, ffK′ (n)(x))} and Y = {K ← {0, 1}λ : (x, fK(x))},
we can useD to distinguish betweenA andB. The idea is when we receive a challenge
s which could be from A or B, we send x and fs(x) as a challenge for D. If s belongs
toA, (x, fs(x)) belongs toX , and if s belongs toB, (x, fs(x)) belongs to Y . We could
thus distinguish X from Y (a contradiction). '�

6.3 A Hashed Variant of CMT

As discussed in the previous section, when pseudorandom functions are used to gen-
erate encryption keys for CMT, the modulus size has to be revised and the advantage
of short ciphertext in CMT is lost. In order to maintain the same ciphertext size, the
output of the pseudorandom function can be hashed down by some good hash function
h : {0, 1}λ → {0, 1}l where λ is the security parameter for the pseudorandom func-
tion and l is the size of the maximum plaintext aggregate. Instead of using the output
of the pseudorandom function directly for encryption, its hashed value is input to the
encryption algorithm. For a given plaintextmi, a nonce r and an encryption key ei, the
ciphertext of the hashed CMT is: ci = (mi + h(fei(r))) mod p′ where |p′| = l. The
decryption algorithm is modified accordingly to hash the output of the pseudorandom
function and then subtract the hash values from the ciphertext.

Requirement on the Hash Function. In order to preserve semantic security for the
hashed CMT scheme, the hash function h : {0, 1}λ → {0, 1}l needs to satisfy the
following property: {t← {0, 1}λ : h(t)} has a uniform distribution over {0, 1}l.

We can actually view h as a length-compressing function which matches the out-
put length of a pseudorandom function with the size of the modulus in use. While the
idealized hash function in the random oracle model is sufficient to fulfill the above
mentioned requirement, it is probably more than necessary.

Note that for an ideal pseudorandom function family, h might simply be imple-
mented by truncating the pseudorandom function output to fit the modulus size. How-
ever, to take into account of the imperfectness of the conjectured pseudorandom
function families used in practice, it could be preferable if the pseudorandom func-
tion output is divided into small segments which are then combined by taking exclusive
OR. Of course, the output size of the pseudorandom function has to be a multiple of the
modulus size to implement this approach.

Security of the Hashed CMT. Only a few modifications to the security proof in Sec-
tion 6.2 are needed in order to prove the security of the hashed variant.

First, in the algorithm D′, all cipertexts are now generated using the hashed val-
ues of the pseudorandom function outputs or replies from the challenger of D′. With
such changes, we now denote the expression

∑n
i=1mdi +

∑n−1
i=1 h(feki(w)) byXd. Of

course, the modulus size would be l instead of λ.
Second, the challenge passed to D would be: cd = Xd + h(tb). Then the derivation

for the advantage expressions is essentially the same as that for CMT.
Third, the security proof of CMT relies on the fact that {t1 ← {0, 1}λ : t1 + X0}

and {t1 ← {0, 1}λ : t1 +X1} are identical distribution. On the contrary, to prove the
security of hashed CMT, we need the following distributions to be identical:
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{t1 ← {0, 1}λ : h(t1) +X0}, {t1 ← {0, 1}λ : h(t1) +X1}.

If h fulfills the requirement mentioned above, then {t1 ← {0, 1}λ : h(t1)} is the uni-
form distribution over {0, 1}l. Consequently, the above two distributions are identical.
This thus conclude the proof that hashed CMT is semantically secure.

The modification of the hash variant of CMT shares similarities with the hashed
Diffie-Hellman scheme to get rid of the group encoding problem [4,9] in the algebraic
group used. While the hash function has to be modeled as a random oracle in order
to prove the security of the hashed Diffie-Hellman scheme, the security proof of CMT
applies to the hash variant of CMT without relying on the random oracle model. The
main reason for the difference is: in the security proof for the hashed Diffie-Hellman
scheme, the random oracle is used for answering queries to the decryption oracle, while
in hashed CMT, no decryption oracle access is allowed in the security model as we only
prove hashed CMT achieves semantic security.

7 Conclusions

In this paper, we give a rigorous treatment to the CDA problem. More specifically, we
extend standard privacy notions to cover the CDA scenario which is a multiple-sender
cryptosystem and supports aggregation. We also give a generic CDA construction based
on any semantically secure public key encryption scheme and prove that it achieves se-
mantic security. Besides, we analyze the security of two existing constructions, namely
WGA and CMT, in the proposed model. We also propose a hashed variant of CMT to
achieve security and efficiency simultaneously. As future work, we will study security
model for aggregate authenticity; however, secure versions of the natural extension of
MAC [2] (supporting message aggregation) may not exist. The reason is that if such a
MAC scheme exists, it can be used to construct, from any semantically secure CDA, an
IND-CCA2 secure CDA (which may not be achievable).
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Abstract. We propose a general transformation that maps a crypto-
graphic protocol that is secure in an extremely weak sense (essentially
in a model where no adversary is present) into a protocol that is secure
against a fully active adversary which interacts with an unbounded num-
ber of protocol sessions, and has absolute control over the network. The
transformation works for arbitrary protocols with any number of partic-
ipants, written with usual cryptographic primitives. Our transformation
provably preserves a large class of security properties that contains se-
crecy and authenticity.

An important byproduct contribution of this paper is a modular
protocol development paradigm where designers focus their effort on an
extremely simple execution setting – security in more complex settings
being ensured by our generic transformation. Conceptually, the trans-
formation is very simple, and has a clean, well motivated design. Each
message is tied to the session for which it is intended via digital sig-
natures and on-the-fly generated session identifiers, and prevents replay
attacks by encrypting the messages under the recipient’s public key.

1 Introduction

Cryptographic protocols are small programs designed to ensure secure commu-
nications over an untrusted network. Their security is of crucial importance due
to their widespread use in critical systems and in day-to-day life. Unfortunately,
designing and analyzing such protocols is a notoriously difficult and error-prone
task, largely due to the potentially unbounded behavior of malicious agents.

In this paper we contribute to a popular technique that has been developed to
cope with this problem. Under the paradigm that we study, one can start with
the design of a simple version of a system intended to work in restricted envi-
ronments (i.e. with restricted adversaries) and then obtain, via a generic trans-
formation, a more robust system intended to work in arbitrary environments.
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More specifically, we introduce one such transformation that takes as input a
protocol that is secure (in a sense that we discuss below) in a single execution of
the protocol, with no adversary present (not even a passive eavesdropper). The
output of the transformation is a protocol that withstands a realistic adversary
with absolute control of the communication between an unbounded number of
protocol sessions. The details of our transformation are useful to understand how
security is transfered from the simple to the more complex setting.

Our transformation. At a high level, the transformation works by first dynam-
ically generating a unique session identifier for the session, bounding messages
to sessions by signing their concatenation with the identifier of the session for
which they are intended, and finally, hiding the message from the adversary
using encryption under the public key of the recipient. More specifically, the
transformation is as follows. Consider a protocol with k participants A1, . . . , Ak

and n exchanges of messages.
Ai1 → Aj1 : m1

...
Ain → Ajn : mn

The transformed protocol starts with a preliminary phase, where each partici-
pant Ai broadcasts a fresh nonce Ni to all others participants. The concatena-
tion of the nonces with the identities of the participants forms a session identifier
sessionID = 〈A1, A2, . . . , Ak, N1, N2, . . . , Nk〉. Note that the adversary may in-
terfere with this preliminary phase and may, for instance, intercept and replace
some of the nonces. Such a behavior would however be detected in the next
phase. The remainder of the protocol works roughly as the original one except
that each message is sent together with a signature on the message concate-
nated with the session identifier, and the whole construct is encrypted under the
recipient’s public key:

Ai1 → Aj1 : {[m1, [[m1, p1, sessionID]]sk(Ai1 )]}pk(Aj1 )

...
Ain → Ajn : {[mn, [[mn, pn, sessionID]]sk(Ain )]}pk(Ajn )

where the pi’s are the current control points in the participant’s programs. We
write [[m]]sk(A) for the message m tied with its signature with the signing key of
A and {[m]}pk(A) for the encryption of m under the public encryption key of A.

Security preservation. Intuitively, our transformation ensures that an active ad-
versary cannot tamper with the messages sent during an execution of the (trans-
formed) protocol between honest participants. The transformation also ensures
that the adversary cannot learn these messages. In turn, these properties imply
that many security statements that hold about a single execution of the protocol,
in the absence of an adversary, are inherited by the transformed protocol, even
if executed in the presence of an active adversary. Clearly, the transformation
does not preserve all imaginable security properties (for example, any anonymity
that the original protocol might enjoy is lost due to the use of public key encryp-
tion). We identify a class of logic formulas which if satisfied in single executions
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of the original protocol are also satisfied by the transformed protocol in the
presence of active adversaries. The class that we consider is interesting in that
it includes standard formulations for secrecy and authentication (for example
injective agreement and several other weaker variants [14]).

Simple protocol design. Our transformation enables more modular and man-
ageable protocol development. One can start by building a protocol with the
desirable properties built-in, and bearing in mind that no adversary is actually
present. Then, the final protocol is obtained using the transformation that we
propose. We remark that designers can easily deal with the case of single ses-
sion and it is usually the more involved setting (multi-party, many-session) that
causes the real problems. Our transformation can be applied to any kind of pro-
tocols, with any number of participants (although, the number of participants
in each session should not be too large for efficiency).

Simple protocol verification. In standard protocol design, the potentially un-
bounded behavior of malicious agents makes verification of protocols an ex-
tremely difficult task. Even apparently simple security properties like secrecy are
undecidable in general [9]. One obvious approach to enable verifiability is to con-
sider restrictions to smaller protocol classes. For example, it can be shown that
for finite number of parallel sessions secrecy preservation is co-NP-complete [17].
Most automatic tools are based on this assumption, which is often sufficient to
discover new attacks but does not allow in general to prove security properties. It
is also possible to ensure verifiability of protocols even for unbounded number of
sessions by restricting the form of messages, and/or the ability to generate new
nonces, e.g. [9,3,4], but only a few such results do not make this unreasonably
strong assumption [15,16].

For the class of protocols obtained via our transformation, security verification
is significantly trivialised. Indeed, for a single, honest execution, security is in
fact closer to correctness, and should be easily carried out automatically.

Related work. The kind of modular design paradigm that we propose is rather
pervasive in cryptographic design. For example, Goldreich, Micali, and Wigder-
son show how to compile arbitrary protocols secure against participants that
honestly follow the protocol (but may try to learn information they are not
entitled to) into protocols secure against participants that may arbitrarily de-
viate from the protocol [10]. Bellare, Canetti, and Krawczyk have shown how
to transform a protocol that is secure when the communication between par-
ties is authenticated into one that remains secure when this assumption is not
met [2]. All of the above transformations have a different goal, apply to protocols
that need to satisfy stronger requirements than ours, and are also different in
their design.

Our work is inspired by a recent compiler introduced by Katz and Yung [12]
which transforms any group key exchange protocol secure against a passive ad-
versary into one secure against an active adversary. Their transformation is, in
some sense, simpler since they do not require that the messages in the trans-
formed protocol are encrypted. However, their transformation is also weaker
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since although it requires that the protocol be secure against passive adversaries,
these adversaries still can corrupt parties adaptively (even after the execution
has finished). Furthermore, while their transformation is sufficient for the case
of group key exchange, it fails to guarantee the transfer of more general security
properties. The reason for the failure is that an adversary can obtain a message
(e.g. a ciphertext) from a session with only honest participants, and get infor-
mation about the message (e.g. the underlying plaintext) by replaying it in some
other sessions for which he can produce the necessary digital signatures.

Our transformation might be viewed as a way of transforming protocols into
fail-stop protocols, introduced by Gong and Syverson [11], where any interference
of an attacker is immediately observed and causes the execution to stop. But
for fail-stop protocols, it is still necessary to consider the security issues related
to the presence of passive adversaries. Here we achieve more since we obtain
directly secure protocols. Moreover, a major difference is that we provide formal
proof of the security of the resulting protocols while the approach of [11] is
rather a methodology for prudent engineering. In particular, there are no proved
guarantees on the security of the resulting protocols.

Datta, Derek, Mitchell, and Pavlovic [8] propose a methodology for modu-
lar development of protocols where security properties are added to a protocol
through generic transformations. In contrast, our transformation starts from
protocols where the security property is built-in. Abadi, Gonthier, and Fournet
give a compiler for programs written in a language with abstractions for secure
channels into an implementation that uses cryptography [1] and is similar to
ours in the sense that it aims to eliminate cryptographic security analysis in
involved settings. However the overall goal is different.

2 Protocols

In this section we give a language for specifying protocols and define their exe-
cution in the presence of passive and active adversaries. For simplicity of presen-
tation, we use a model that does not directly capture probabilistic primitives.
Nevertheless, our theorems and proofs easily extend to a model that models
randomness explicitly (e.g. through the use of labels as in [6]).

2.1 Syntax

We consider protocols specified in a language similar to the one of [6] allow-
ing parties to exchange messages built from identities and randomly generated
nonces using asymmetric and symmetric encryption and digital signatures.

Consider the algebraic signature Σ with the following sorts. A sort ID for
agent identities, sorts SigKey,VerKey,AsymEKey,AsymDKey, SymKey containing
keys for signing, verifying, public-key encryption, public-key decryption, and
symmetric encryption algorithms. The algebraic signature also contains sorts
Nonce, Ciphertext, Signature, and Pair for nonces, ciphertexts, signatures, and
pairs, respectively. The sort Term is a supersort containing, besides all other
sorts enumerated above, a sort Int for integers having Z as the support set. There
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are eight operations: the four operations ek, dk, sk, vk are defined on the sort ID
and return the asymmetric encryption key, asymmetric decryption key, signing
key, and verification key associated to the input identity. The other operations
that we consider are pairing, public and symmetric key encryption, and signing.
Their ranges and domains are as follows.

– 〈 , 〉 : Term× Term → Pair
– {[ ]} : AsymEKey× Term → Ciphertext
– {{ }} : SymKey × Term→ Ciphertext
– [[ ]] : SigKey× Term→ Signature

Let X.a,X.n,X.k,X.c,X.s,X.t be sets of variables of sort agent, nonce, (sym-
metric) key, ciphertext, signature and term respectively, and X = X.a ∪ X.n ∪
X.k ∪ X.c ∪ X.s ∪ X.t. Protocols are specified using the terms in TΣ(X) of the
free algebra generated by X over the signature Σ. We suppose that pairing is
left associative and write 〈m1,m2, . . . ,ml〉 for 〈〈〈m1,m2〉,m3〉 . . . ,ml〉. When
unambiguous, we may omit the brackets.

Throughout the paper we fix a constant k ∈ N that represents the num-
ber of protocol participants and we write [k] for the set {1, 2, . . . , k}. Fur-
thermore, without loss of generality, we fix the set of agent variables to be
X.a = {A1, A2, . . . , Ak }, and partition the set of nonce (and key) variables,
according to the party that generates them. Formally:

X.n = ∪A∈X.aXn(A) where Xn(A) = {N j
A | j ∈ N}

X.k = ∪A∈X.aXk(A) where Xk(A) = {Kj
A | j ∈ N}

This partition avoids to have to specify later which of the nonces (symmetric
keys) are generated by the party executing the protocol, or are expected to be
received from other parties.

Roles and protocols. The messages that are sent by participants are specified
using terms inTΣ(X). The individual behavior of each protocol participant is
defined by a role describing a sequence of message reception/transmission which
we call steps or rules. A k-party protocol consists of k such roles together with
an association that maps each step of a role that expects some message m to the
step of the role where the message m is produced. Notice that this association
essentially defines how the execution of a protocol should proceed in the absence
of an adversary.

Definition 1 (Roles and protocols). The set of roles is defined by Roles =(
({ init }∪TΣ(X))×(TΣ(X)∪{ stop })

)∗. A k-party protocol is a pair Π = (R,S)
where R is a mapping R : [k] → Roles that maps i ∈ [k] to the role executed
by the i’th protocol participant and S : [k] × Z ↪→ [k] × Z is a partial mapping
that returns for each role/control-point pair (r, p), the role/control-point pair
(r′, p′) = S(r, p) which emits the message to be processed by role r at step p.

We assume that a protocol specification is such that the r’th role of the protocol
R(r) = ((rcv1

r, snt1r), (rcv
2
r, snt2r), . . .), is executed by player Ar. Informally, the
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above definition says that at step p, Ar expects to receive a message of the form
specified by rcvp

r and returns the message sntpr . It is important to notice that the
terms rcvp

r and sntpr are not actual messages but specify how the message that is
received and the message that is output should look like. The messages init and
stop are used to initiate and signal successful termination of role executions. We
note that for technical reasons we sometimes use negative control points (with
negatively indexed role rules).

Example 1. The Needham-Schroeder-Lowe protocol [13]

A→ B : {[Na, A]}ek(B)

B → A : {[Na, Nb, B]}ek(A)

A→ B : {[Nb]}ek(B)

is specified as follows: there are two roles R(1) and R(2) corresponding to the
sender’s role and the receiver’s role.

R(1) :
(
init, {[N1

A1
, A1]}ek(A2)

)
S(1, 1) = (0, 0)

(
{[N1

A1
, N1

A2
, A2]}ek(A1), {[N1

A2
]}ek(A2)

)
S(1, 2) = (2, 1)

R(2) :
(
{[N1

A1
, A1]}ek(A2), {[N1

A1
, N1

A2
, A2]}ek(A1)

)
S(2, 1) = (1, 1)

(
{[N1

A2
]}ek(A2), stop

)
S(2, 2) = (1, 2)

Executable protocols. Clearly, not all protocols written using the syntax
above are meaningful. We only consider the class of executable protocols, i.e.
protocols for which each role can be implemented in an executable program,
using only the local knowledge of the corresponding agent. This requires in par-
ticular that any sent message (corresponding to some sntpr) is always deducible
from the previously received messages (corresponding to rcv1

r, . . . , rcv
p
r). Also we

demand that S is consistent. In particular, this means that for a fixed role r,
S(r, p) is defined on exactly |R(r)| consecutive integers, where |S| denotes the
cardinality of the set S.

2.2 Formal Execution Model

We start with the description of the execution model of the protocol in the
presence of an active attacker. The model that we consider is rather standard.
The parties in the system execute a (potentially unbounded) number of protocol
sessions with each other. The communication is under the complete control of
the adversary who can intercept, drop, or modify the messages on the network.

The messages transmitted between parties are terms of the algebra Tf freely
generated over the signatureΣ by an arbitrary fixed set of identities Tf

ID together
with the sets for types SymKey and Nonce defined by:

Tf
SymKey = {ka,j,s | a ∈ Tf

ID, j ∈ N, s ∈ N} ∪ {kj | j ∈ N}
Tf

Nonce = {na,j,s | a ∈ Tf
ID, j ∈ N, s ∈ N} ∪ {nj | j ∈ N}

Informally, one should think of the constant ka,j,s (respectively na,j,s) as the j’th
key (respectively nonce) generated by party a in session s. Constants kj and nj

represent keys and nonces produced by the adversary.
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To each protocol we associate the set of its valid execution traces. First we
clarify what execution traces are and then present the association.

A global state of an execution is given by a triple (SId, f,H). Here, SId is the
set of role session ids currently executed by protocol participants, f is a global
assignment function that keeps track of the local state of each existing session
and H is the set of messages that have been sent on the network so far.

More precisely, each role session has an associated unique session identifier
s ∈ N. However, by language abuse (and overloading the notion), we say that
a session id is a tuple of the form (s, r, (a1, a2, . . . , ak)), where s is the unique
identifier for the session, r is the index of the role that is executed in the session
and a1, a2, . . . , ak ∈ Tf

ID are the identities of the parties that are involved in the
session. We write SID for the set (N× N× (Tf

ID)k) of all session ids.
Mathematically, the global assignment f is a function f : SId → ([X ↪→

Tf ] × N × Z), where SId ⊆ SID represents the session ids initialized in the
execution. For each such session id sid ∈ SId, f(sid) = (σ, r, p) returns its local
state. Here, r is the same role index as in sid, the function σ is a substitution,
that is a partial instantiation of the variables of the role R(r) and p ∈ Z is the
control point of the program. We sometimes write Xσ for σ(X). We denote by
GA the set [SID ↪→ ([X ↪→ Tf ]× N× Z)] of all possible global assignments.

Finally, the messages that may be sent on the network can be essentially any
element of Tf , so we write Msgs for the set 2Tf

(where 2S is the power set of S).
An execution trace is a sequence

(S0, f0, H0)
α1−→ (S1, f1, H1)

α2−→ . . .
αn−−→ (Sn, fn, Hn)

such that for each 0 ≤ i ≤ n, (Si, fi, Hi) ∈ (2SID×GA×Msgs) and αi is one of the
actions corrupt,new, and send with appropriate parameters that we clarify
below. This corresponds to the intuition that transitions between two global
states are caused by actions of the adversary who can corrupt users, initiate new
sessions of the protocol between users that he chooses, and send messages to
existing sessions.

For a k-party protocol Π , the transitions between global states are as follows:

– The adversary corrupts agents: (SId, f,H)
corrupt(a1,...,al)−−−−−−−−−−−→ (SId, f,H ′) where

a1, . . . , al ∈ Tf
ID and H ′ = ∪1≤j≤lkn(aj) ∪ H . Here, kn(aj) denotes the

knowledge of aj: if A is a variable, or a constant of sort agent, we define its
knowledge by kn(A) = {dk(A), sk(A)} i.e. an agent knows its secret decryp-
tion and signing key. The adversary corrupts parties by outputting a set of
identities. In return, the adversary receives the secret keys corresponding to
the identities. In this paper we are only concerned with the case of static
corruption so this transition only occurs at the beginning of an execution
trace.

– The adversary initiates new sessions: (SId,f,H)
new(r,a1,...,ak)−−−−−−−−−−→ (SId′,f ′,H)

where 1 ≤ r ≤ k, a1, . . . , ak ∈ Tf
ID, and f ′ and SId′ are defined as follows.

Let s = |SId| + 1, be the session identifier of the new session. Then SId′ =
SId ∪ {(s, r, (a1, . . . , ak))} and the function f ′ is defined by:
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m ∈ S
S � m

j ∈ N
S � a, ek(a), vk(a), kj , nj Initial knowledge

S � m1 S � m2

S � 〈m1 , m2〉

S � 〈m1 , m2〉
i ∈ {1, 2}

S � mi

Pairing and unpairing

S � k S � m

S � {{m}}k

S � {{m}}k S � k

S � m
Sym. encryption/decryption

S � m

S � {[m]}ek(a)

S � {[m]}ek(a) S � dk(a)

S � m
Asym. encryption/decryption

S � sk(a) S � m

S � [[m]]sk(a)

S � [[m]]sk(a)

S � m
Signature

Fig. 1. Deduction rules for the formal adversary. In the above, a ∈ Tf
ID

• f ′(sid) = f(sid) for every sid ∈ SId.
• f ′(s, r, (a1, . . . , ak)) = (σ, r, p0) where p0 is the initial control point of

role r and σ is a partial function σ : X ↪→ Tf defined by σ(Aj) = aj for
1 ≤ j ≤ k, σ(N j

Ar
) = nar ,j,s for j ∈ N and σ(Kj

Ar
) = kar,j,s for j ∈ N.

We recall that the principal that executes role R(r) is represented by
variable Ar thus, in that role, every variable of the form Xj

Ar
represents

a nonce or a symmetric key generated by Ar.

– The adversary sends messages to sessions: (SId,f,H)
send(sid,m)−−−−−−−→ (SId, f ′, H ′)

where sid ∈ SId and m ∈ Tf . H ′ and f ′ are defined as follows. We define
f ′(sid′) = f(sid′) for every sid′ ∈ SId\ {sid}. Let f(sid) = (σ, r, p) for some σ,
r and p, and let R(r)=

(
(rcv1

r, snt1r), . . . , (rcv
kr
r , sntkr

r )
)

be the role executed
in this session. There are two cases:
• Either there exists a substitution σ′ such that m = rcvp

rσ
′ and σ′ extends

σ, that is, Xσ′ = Xσ whenever σ is defined on X . Then f ′(sid) =
(σ′, r, p+ 1) and H ′ = H ∪ {sntprσ

′}. We say that m is accepted.
• Or we let f ′(sid)=f(sid) and H ′=H (the state remains unchanged).

As usual, we are only interested in valid execution traces – those traces where
the adversary only sends messages that he can compute out of his knowledge
and the messages it had seen on the network. The adversary can derive new
information using the relation �. Intuitively, S � m means that the adversary
is able to compute the message m from the set of messages S; the adversarial
abilities are captured by the definition in Figure 1. The only rule that is per-
haps less standard is the last one. It essentially states that out of a signature
an adversary could compute the message that is signed, which is theoretically
possible for any secure digital signature scheme.

The set of valid execution traces is described by the following definition.
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Definition 2 (Valid execution traces). An execution trace (SId0, f0, H0) −→
. . . −→ (SIdn, fn, Hn) is valid if
– H0 = SId0 = ∅, (SId0, f0, H0)→ (SId1, f1, H1) for one of the three transitions

described above and for every 1 ≤ i ≤ n, (SIdi, fi, Hi)→ (SIdi+1, fi+1, Hi+1)
for one of the last two transitions described above;

– moreover, the messages sent by the adversary can be computed using �,
i.e. whenever (SIdi, fi, Hi)

send(sid,m)−−−−−−−→ (SIdi+1, fi+1, Hi+1) then Hi � m.

Given a protocol Π, we write Exec(Π) for the set of valid execution traces of Π.

Example 2. Playing with the Needham-Schroeder-Lowe protocol described in
Example 1, an adversary can corrupt an agent a3, start a new session for the
second role with players a1, a2 and send the message {[n(a3, 1, 1), a1]}ek(a2) to the
player of the second role. The corresponding valid trace execution is:

(∅, f1, ∅)
corrupt(a3)−−−−−−−−→ (∅, f1,kn(a3))

new(2,a1,a2)−−−−−−−−→ ({sid1}, f2,kn(a3))
send(sid1,{[n3,a1]}ek(a2))−−−−−−−−−−−−−−−→

(
{sid1}, f3,kn(a3) ∪ {{[n3, n2, a2]}ek(a1)}

)
,

where sid1 = (1, 2, (a1, a2)), n2 = n(a2, 1, 1), n3 = n(a3, 1, 1), and f2, f3 are
defined as follows: f2(sid1) = (σ1, 2, 1), f3(sid1) = (σ2, 2, 2) where σ1(A1) = a1,
σ1(A2) = a2, σ1(N1

A2
) = n2, and σ2 extends σ1 by σ2(N1

A1
) = n3.

Given an arbitrary trace tr = (SId0, f0, H0)
α1−→ . . .

αn−−→ (SIdn, fn, Hn) with
n ∈ N, we define the set of corrupted agents of a trace tr by CA(tr) = {a1, . . . , al}
if α1 = corrupt(a1, . . . , al) and CA(tr) = ∅ otherwise. The set SIdh(tr) of honest
session identifiers is the set of session identifiers that correspond to sessions
between non-corrupt agents:

SIdh(tr) = {sid ∈ SIdn | sid = (s, r, (a1, . . . , ak)),CA(tr) ∩ {a1, . . . , ak} = ∅}.

Also, for a trace tr we denote by I(tr) the set of indexes i of the transitions
and global states of tr. For example the above trace has I(tr) = {0, 1, . . . , n}. If
sid is a session id then we denote by Ag(sid) the set of agents involved in this
session, that is Ag(sid) = {a1, . . . , ak} when sid = (·, ·, (a1, . . . , ak)).

3 Security Properties

We use a simple logic introduced in [5] to express security properties for protocols
specified in the language given in the previous section. We recall this logic, define
its semantics and provide several examples of security properties that can be
expressed within.

3.1 A Logic for Security Properties

The formulas of logic capture trace properties and, in particular, they allow
quantification over the local states of agents. We define the set of local states
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[[NC(tr, a)]] =

�����
����

1 if a does not appear in a corrupt action,

i.e. if e1
corrupt(a1,...,al)−−−−−−−−−−−→ e2, intr = (e1, e2, . . . , en),

we have a �= ai,∀1 ≤ i ≤ l,

0 otherwise

[[∀LSr,p(tr).ς φ(tr)]] =

�
1 if ∀(σ, r, p) ∈ LSr,p(tr), we have [[φ(tr)[σ/ς ]]] = 1,

0 otherwise.

[[∃LSr,p(tr).ς φ(tr)]] =

�
1 if ∃(σ, r, p) ∈ LSr,p(tr), s.t. [[φ(tr)[σ/ς ]]] = 1,

0 otherwise.

[[∃!LSr,p(tr).ς φ(tr)]] =

��
�

1 if ∃! sid ∈ SId(tr),∃i ∈ I(tr) s.t.
fi(sid) = (σ, r, p) and [[φ(tr)[σ/ς ]]] = 1,

0 otherwise.

Fig. 2. Interpretation of formulas in L

of a trace tr = (SIdi, fi, Hi)1≤i≤n for role r at step p by LSr,p(tr) � {(σ, r, p) |
∃i ∈ [n], ∃sid ∈ SIdi, s.t. fi(sid) = (σ, r, p)}. Note that the cardinality of this
set equals the number of agents that are playing role r and that have reached
control point p.

We assume an infinite set XSub of meta-variables for substitutions. The logic
contains tests between terms where variables are substituted by variable substi-
tutions. More formally, let TSub be the algebra defined by:

TSub ::= ς(X) | g(TSub) | h(TSub,TSub)

where ς ∈ XSub, X ∈ X, and g, h ∈ Σ of arity 1 and 2 respectively.
Besides standard propositional connectors, the logic has a predicate to specify

honest agents, equality and inequality tests between terms, and existential and
universal quantifiers over the local states of agents.

Definition 3. The formulas of the logic L are defined by induction as follows:

φ(tr) ::= NC(tr, ς(A)) | t1 = t2 | ¬φ(tr) | φ(tr) ∧ φ(tr) | φ(tr) ∨ φ(tr)
| ∀LSr,p(tr).ς φ(tr) | ∃LSr,p(tr).ς φ(tr) | ∃!LSr,p(tr).ς φ(tr)

where tr is a parameter of the formula, A ∈ X.a, ς ∈ XSub, t1, t2 ∈ TSub and
r, p ∈ N. As usual, we may use φ1 ⇒ φ2 as a shortcut for ¬φ1 ∨ φ2.

Here the predicate NC(tr, ς(A)) is used to specify non corrupted agents. The
quantifications ∀LSr,p(tr).ς and ∃LSr,p(tr).ς are over local states of agent r at
step p in trace tr, and they bound the variable substitution ς. The semantics of
our logic is defined for closed formula as follows: standard propositional connec-
tors and negation are interpreted as usual. Equality is syntactic equality. The
interpretation of quantifiers and the predicate NC is shown in Figure 2.

A security property φ should be seen in this paper as an abstraction of the
form φ � λtr.φ(tr), where the tr parameter is used only to define the semantics
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of such formulas. By abuse of notation we therefore ignore this parameter and
write φ ∈ L for a security property. Informally, a protocol Π satisfies φ if φ(tr)
is true for all traces of Π . Formally:

Definition 4 (Satisfiability). Let Π be a protocol and φ ∈ L be a security
property. We say that Π satisfies the security property φ, and write Π |= φ if
for any trace tr ∈ Exec(Π), [[φ(tr)]] = 1.

3.2 Examples of Security Properties

In this section we show how to specify secrecy and several variants of authenti-
cation, including those from Lowe’s hierarchy [14], in the given security logic.

A secrecy property. Let Π be a k-party executable protocol. To specify our
secrecy property we use a standard encoding. Namely, we add a role to the
protocol, R(k+ 1) = (Y, stop), where Y is a new variable of sort Term. It can be
seen as some sort of witness as it does nothing but waits for receiving a piece of
public data.

Informally, the definition of the secrecy property φs states that, for any local
state of an agent playing role r in which a nonce (or a key) X was created in
an honest session, a witness (i.e. an agent playing role k + 1) cannot gain any
knowledge on X . Formally, the property is specified by the following formula:

φs(tr)=∀LSr,1(tr).ς
( ∧

l∈[k]

NC(tr, ς(Al)) ⇒ ∀LSk+1,2(tr).ς ′
(
ς(X) �= ς ′(Y )

))

Intuitively, the formula states that for all local states of an agent executing role r
(in session ς) and being at his initial control point (i.e. 1), if only honest agents
are playing in ς then for all local states of an agent executing role k + 1 (in
session ς ′) and being at his final control point (i.e. 2), the value of the secret
(i.e. X) in ς is different from the value of the received message (i.e. Y ) in ς ′.

As a side remark, notice that it is possible to also model the secrecy of a
data X received during an honest session: we would simply specify the control
point p (instead of 1) at which the date is received by the role r. Moreover, in
both cases (that is, X created or received) the formula is always true for honest,
single session traces. It will follow that our transformation preserves secrecy of
all nonces or keys used in sessions that involve only honest parties.

Authentication properties. We show how to use the logic defined above to
specify the injective agreement [14] between two parties A and B. Informally, this
property states that whenever an A completes a run of the protocol, apparently
with B, then there is unique run of B apparently with A such that two agents
agree on the values of some fixed variables, provided that A and B are honest.
As usual nothing is guaranteed in sessions involving corrupted agents.

Let p1 be the length of A’s role and p2 be the control point at which B should
have received all data items from A. Then, the above intuition is captured by
the following formula:
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φa(tr) � ∀LS1,p1(tr).ς
(
NC(tr, Aς) ∧ NC(tr, Bς)⇒

∃!LS2,p2(tr).ς ′
(
(Aς=Aς ′) ∧ (Bς=Bς ′) ∧

∧
1≤i≤n(Xiς=Xiς

′)
))

Intuitively, the formula states that for all local states of an agent having finished
executing the first role (in session ς), if the two agents (executing the two roles
in ς) are honest in ς then there exists an unique local state of an agent having
finished executing the second role (in session ς ′) and such that the agents agree
on their identitites and on the values of the variables that are common to the
two roles.

It is easy to modify this formula in order to obtain formulas corresponding to
the other variants of authentication from Lowe’s hierarchy.

4 Transformation of Protocols

The core idea of the transformation is to have parties agree on some common,
dynamically generated, session identifier s, and then transmit the encryption of
a message m of the original protocol accompanied by a signature on m||s.

The modification of the source protocol is performed in two steps. We first
introduce an initialization phase, where each agent generates a fresh nonce which
is distributed to all other participants. The idea is that the concatenation of all
these nonces and all the identities involved in the session plays the role of a unique
session identifier. To avoid underspecification of the resulting protocol we fix a
particular way in which the nonces are distributed. First, each agent generates a
fresh nonce and then sends the nonces he received so far together with his nonce
to the next agent. That is, in Alice-Bob notation, Ai → Ai+1 : NA1 , ... , NAi , for
all i in the sequence 1, . . . , k − 1. Then, once the last agent received all nonces,
each agent forwards the concatenation of all nonces to its predecesor. That is,
Ai → Ai−1 : NA1 , . . . , NAk

, for all i in the sequence k, . . . , 2. In this way, at the
end of this first phase all agents know each other’s nonces.

We remark that the precise order in which participants send these nonces does
not really matter, and we do not require that these nonces be authenticated in
some way. In principle an active adversary is allowed to forward, block or modify
the messages sent during the initialization phase, but behaviours that deviate
from the intended execution of the protocol are detected in the next phase.

In the second phase of the transformed protocol, the execution proceeds as
prescribed byΠ with the difference that to each messagem that needs to be sent,
the sending parties also attaches a signature [[m, p, nonces]]sk′(a) and encrypts the
whole construct with the intended receiver public key. p is the current control
point and nonces is the concatenation of the nonces received during the first
phase with the identities of the participants involved in the protocol.

Intuitively, the adversary cannot impersonate users in honest sessions (since
in this case it would need to produce digital signatures on their behalf), and
cannot learn secrets by replaying messages from one session to another (since
messages are encrypted, and any blindly replayed message would be rejected due
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to un-matching session identifiers). The control-point p plays within a session
the same role as nonces between sessions: messages not matching the correct
control point are rejected.

To avoid confusion and unintended interactions between the signatures and
the encryptions produced by the compiler and those used in the normal execution
of the protocol, the former use fresh signatures and public keys. Formally, we
extend the signatureΣ with four new function symbols sk′, vk′, ek′ and dk′ which
have exactly the same functionality (that is the same sort and similar deduction
rules) with sk, vk, ek and dk respectively.

This formalizes the assumption that in the transformed version of Π each
agent a has associated two pairs of verification/signing keys ((vk(a), sk(a)) and
(vk′(a), sk′(a))) and two pairs of encryption/decryption keys ((ek(a), dk(a)) and
(ek′(a), dk′(a))) and that these new pairs of keys were correctly distributed pre-
viously to any execution of the protocol. We assume that source protocols are
constructed over Σ only.

Definition 5 (Transformed protocol). Let Π = (R,S) be a k-party exe-
cutable protocol such that the nonce variables N0

Ak
do not appear in R (which

can be ensured by renaming the nonce variables of Π) and all the initial control
points are set to 1 (which can be ensured by rewriting the function S).

The transformed protocol Π̃ = (R̃, S̃) is defined as follows: R̃(r)=Rinit(r) ·
R′(r) and S̃ = S init∪S where · denotes the concatenation of sequences and Rinit,
R′ and S init are defined as follows:

Rinit(r) =
(
(noncesr−1, noncesr), (noncesk, noncesk)

)
, ∀1 ≤ r < k,

S init(r,−1) = (r − 1,−1), S init(r, 0) = (r + 1, 0), ∀1 ≤ r < k,
Rinit(k) =

(
(noncesk−1, noncesk)

)
S init(k, 0) = (k − 1,−1)

with nonces0 = init and noncesj = 〈N0
A1
, N0

A2
, . . . , N0

Aj
〉 for 1 ≤ j ≤ k.

Let R(r) =
(
(rcvp

r , sntpr)
)

p∈[kr ]
. Then R′(r) =

(
(r̃cvp

r , s̃nt
p

r)
)

p∈[kr]
such that

if rcvp
r = init then r̃cvp

r = fake, if sntpr = stop then s̃nt
p

r = stop and otherwise

r̃cvp
r = {[rcvp

r , [[rcv
p
r , p

′, nonces]]sk′(Ar′)]}ek′(Ar),

s̃nt
p

r = {[sntpr , [[sntpr , p, nonces]]sk′(Ar)]}ek′(Ar′′ )

where (r′, p′)=S(r, p), (r, p)=S(r′′, p′′) and nonces=〈A1, . . . , Ak, noncesk〉.
The initial control point is now set to −1 (or 0 for Ak) since actions have been
added for the initialization stage. The special message fake is used to model for
example the situation where an agent waits for more than one message in order
to reply or when an agent sends more than one reply.

5 Main Result

We identify a class of executions, which we call honest, single session executions
which, intuitively, correspond to traces where just one session is executed, session
in which all parties are honest and there is no adversary. Our only hypothesis
will be that the initial protocol has to be secure in this very weak setting.
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Definition 6 (Honest, single session trace). Let Π = (R,S) be a k-party
protocol and tr = (SId0, f0, H0)

α1−→ . . .
αn−−→ (SIdn, fn, Hn) be a valid trace of Π.

The trace tr is an honest, single session trace if there are k agent identities
a1, . . . , ak such that

– for 1 ≤ i ≤ k, αi = new(i, a1, . . . , ak),
– for k+1 ≤ i ≤ n, αi = send(sid,m), m = rcvp

rσ where fi(sid) = (σ, r, p+1),
and there exists j < i such that fj(sid′) = (σ′, r′, p′), S(r, p) = (r′, p′), and
m = sntp

′

r′σ′ for some sid′.

Let Execp,1(Π) be the set of honest, single session traces of Π .

Definition 7 (Passive, single session satisfiability). Let Π be a protocol
and φ ∈ L be a security property. We say that Π satisfies the security property φ
for passive adversaries and a single session, and write Π |=p,1 φ if for any trace
tr ∈ Execp,1(Π), [[φ(tr)]] = 1.

Transferable security properties. We identify a fragment L′ of the logic L
defined in Section 3 whose formulas specify the properties that can be transferred
from the honest, single session case to the full active adversary case.

Definition 8. The set L′ consists of those formulas φ(tr) with

φ(tr)=∀LSr,p(tr).ς
( ∧

l∈[k]

NC(tr, ς(Al))⇒
∧

i∈I

(
Qi LSri,pi(tr).ςi

∧

j∈Ji

τ i
j(u

i
j , v

i
j)
))

where Qi ∈ {∀, ∃, ∃!}, and for all i ∈ I, for all j ∈ Ji, if Qi = ∀ then τ i
j ∈ {�=}

and if Qi ∈ {∃, ∃!} then τ i
j ∈ {=, �=}; moreover, for each i ∈ I, if Qi = ∀

(respectively Qi = ∃!) then for all (there is) j ∈ Ji we have that (such that
τ i
j ∈ {=} and) there exists at least a subterm ς(X) in ui

j or vi
j with X a nonce

or key variable.

As usual, we require security properties to hold in sessions between honest agents.
This means that no guarantee is provided in a session where a corrupted agent
is involved. But this does not prevent honest agents from contacting corrupted
agents in parallel sessions. Properties that can be expressed in our fragment L′

are correspondence relations between (data in) particular local states of agents
in different sessions. It is a non-trivial class since e.g. the logical formulas given
in Section 3 for expressing secrecy and authentication are captured by the above
definition.

Transference result. The main result of this paper is the following trans-
ference theorem. It informally states that the formulas of L′ that are satisfied
in single, honest executions of a protocol are also satisfied by executions of the
transformed protocol in the presence of a fully active adversary.

Theorem 1. Let Π be a protocol and Π̃ the corresponding transformed protocol.
Let φ ∈ L′ be a security property. Then Π |=p,1 φ ⇒ Π̃ |= φ.
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The main intuition behind the proof is that any execution in the presence of an
active adversary is closely mirrored by some honest execution (i.e. an execution
with no adversarial interference plus some additional useless sessions). We define
honest executions next.

Honest executions. Recall that we demand that protocols come with an in-
tended execution order, in which the designer specifies the source of each message
in an execution. Roughly, in an honest execution trace one can partition the set
of session ids in sets of at most k role sessions (each corresponding to a different
role of the protocol) such that messages are exchanged only within partitions,
and the message transmission within each partition follows the intended execu-
tion specification. Since we cannot prevent an intruder to create new messages
and sign them with corrupted signing keys, clearly the property can hold only
for session identifiers corresponding to honest participants. The above ideas are
captured by the following definition.

Definition 9 (Honest execution traces). Let Π be an executable protocol.
An execution trace tr = (SId0, f0, H0)

α1−→ . . .
αn−−→ (SIdn, fn, Hn) is honest if

it is valid and there is a partition PrtSId of the honest role session identifiers
SIdh(tr) such that:

1. for all S ∈ PrtSId, for all sid, sid′ ∈ S with sid �=sid′ and sid=(s, r, (a1, . . . ,
ak)) and sid′ = (s′, r′, (a′1, . . . a

′
k)), we have r �= r′, and aj = a′j for all

1 ≤ j ≤ k; that is, in any protocol session each of the participants execute
different roles1 and the agents agree on their communication partners;

2. whenever (SIdi−1, fi−1, Hi−1)
send(sid,m)−−−−−−−→ (SIdi, fi, Hi) with sid ∈ SIdh(tr), m

accepted, m �= fake and m = rcvp
rσ, p≥1, we have that there are sid′ ∈ [sid]

and i′ < i such that m = sntp
′

r′σ′ and S(r, p) = (r′, p′) where fi(sid) = (σ, r,
p+1), fi′(sid′) = (σ′, r′, p′), and [sid] is the partition to which sid belongs to.

Notice that the above definition considers partial executions in which not all
roles finish their execution, and where not all roles in a protocol session need to
be initialized. The following lemma states that for any transformed protocol, an
active intruder cannot interfere with the execution of honest sessions.

Lemma 1. Let Π be a protocol and Π̃ the corresponding transformed protocol.
In Π̃, any valid execution trace is an honest execution trace.

Then it remains to show that any property expressed in L′ that holds for
one honest, single session trace also holds for any honest execution trace of
the transformed protocol. It relies in particular on the fact that due to en-
cryption, fresh values of honest sessions cannot occur in dishonest sessions.
Moreover, honest execution traces actually correspond to the honest, single
session trace of the initial protocol. More details and full proofs are available
in [7].

1 Consequently, each partition consists of at most k role sessions.
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1 Introduction

Cryptographic tasks, such as contract signing [1,15,8] and other related tasks,
need to ensure complex, branching time properties, i.e., properties of the overall
structure of the set of all possible executions of a protocol (as opposed to prop-
erties of single execution traces). Examples of such properties are balance [11]
and abuse-freeness [15]. Defining such properties requires to cope with several
challenges that are typically not addressed in cryptographic models. The main
challenges include: modeling non-deterministic behavior of honest parties, re-
silient (non-adversarially controlled) channels, fair executions in which no party,
honest or dishonest, can unreasonably be precluded to perform its actions, and
strategies of adversaries to achieve certain goals against all possible behaviors of
resilient channels and honest parties; the existence or absence of such strategies
is a branching time property of a protocol, not a property of a single execution
trace. Providing a computational model that deals with all such challenges and
applying it to branching time properties of contract signing protocols is the main
purpose of this paper.

We illustrate the above points via the balance property for (two-party) op-
timistic contract signing protocols as first defined by Chadha et al. [11] in a
symbolic (Dolev-Yao based) model. These protocols can be used by two parties,
A and B, to obtain each other’s signature on a previously agreed contractual
text with the help of a trusted third party (TTP), which, however, is only con-
tacted in case of a problem. If and when the TTP is contacted depends on
non-deterministic decisions of the parties. For example, A may decide to send
an abort request to the TTP in case she doesn’t want to wait any longer for
a message from B, or suspects that B is dishonest. Contract signing protocols
typically assume that A and B communicate with the TTP over resilient (non-
adversarially controlled) channels: without such channels an adversary could
block all messages from/to the TTP. Now, balance for an honest party A and a
dishonest party B, as defined by Chadha et al., requires that in a protocol run
it is not possible to reach a state where B has both i) a strategy to obtain a
signed contract from A (no matter how A, the TTP, and the resilient channels
behave) and ii) a (possibly different) strategy to prevent A from obtaining a
signed contract from B (no matter how A, the TTP, and the resilient channels
behave). Since, when following one of these strategies, the adversary, i.e., B, has
to achieve his goal—obtaining a signed contract or preventing A from obtaining
a signed contract—against the behavior of other entities that he cannot control
or foresee (non-deterministic choices of A and delivery of messages on resilient
channels), in a computational model it is necessary to determine the behavior of
these entities by a scheduler which is independent of the adversary, and in fact,
may work against the adversary. Moreover, for the balance property to make
sense, the scheduler should not stop the run of a system if one of the entities in
the system (A, the TTP , the resilient channels, the adversary) “can still take
an action”. In other words, the scheduling should be fair for all entities (both
honest and dishonest). For example, if at some point A could still contact the
TTP, then the scheduler should not stop the run of the system at this point
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but should eventually schedule A: contacting the TTP might enable A to get
the contract. Stopping the system before scheduling A would be unfair and un-
realistic since no one stops A from contacting the TTP in a real protocol run.
Note that a scheduler is just an imaginary entity that is only needed to model
how things are potentially scheduled in a real protocol run. Conversely, if B (the
adversary) wants to send a message to the TTP, the scheduler should not stop
the run of the system but eventually schedule B: sending a message to the TTP
might enable B to obtain a signed contract which he otherwise might not be
able to get. Again, stopping the system before scheduling B would be unfair and
unrealistic since no one stops B from contacting the TTP in a real protocol run.
Note that B is an arbitrary adversary (machine), and hence, a general notion of
fair scheduling is needed to capture whether “B can still take an action” (e.g.,
send a message).

Clearly, standard cryptographic models, in which only one adversary is con-
sidered controlling the complete communication network, and honest principals
can not make non-deterministic choices are insufficient for dealing with the class
of protocols and properties considered here. Some cryptographic models take
some (not all) of the above aspects into account, but with a different focus and
in a way not suitable for the classes of protocols and properties we consider (see
the related work).

Contribution of this paper. In this paper, we propose a computational
model that deals with the challenges mentioned above and allows to specify
complex, branching time properties.

More precisely, our model is based on a general computational model for sys-
tems of interactive Turing machines (ITMs). The model is presented in Section 3.
Based on this model, we define a security-specific model (see Section 4) where
we use ITMs to capture the behavior of the honest principals, the adversary, the
network and resilient channels, and the scheduler. The purpose of the scheduler
is to resolve non-deterministic behavior of honest principals, to schedule the re-
silient channels, and to trigger the adversary. As explained above, modeling the
scheduler as an entity independent of the adversary is important. The adversary
and the scheduler are each equipped with what we call a view oracle which can
be invoked by these entities to obtain a view on the history of the run of the
protocol so far, and hence, to adapt their actions accordingly; typically, the ad-
versary and the scheduler have different view oracles, and hence, different views
on the history. The view of the adversary typically includes all messages on the
network channels and only messages on those resilient channels which are not
required to be read-protected. Conversely, the scheduler might have complete
information about the resilient channels. The exact definition of the views (view
oracles) depends on the security properties considered and can be adapted de-
pending on the strength of the security guarantee desired. The ITMs that we
use cannot be exhausted and can respond to an unbounded number of requests,
as for example needed when modeling the TTP in contract signing protocols.
Also, this, for example, ensures that the scheduler cannot exhaust the adversary



A Cryptographic Model for Branching Time Security Properties 425

or honest parties, which otherwise would lead to unrealistic runs (recall that the
scheduler is only an imaginary entity that is used to model reality).

As mentioned, fair scheduling is an important ingredient in the definition
of many security properties, and it is non-trivial to define in computational,
resource-bounded settings. We provide a general definition of when a scheduler
is fair for a system of ITMs (see Section 5). We emphasize that our definition
is independent of the specific structure of the system or the specific ITMs used
in the system. This is important as we need to capture fair scheduling also
for arbitrary dishonest parties, i.e., adversary machines. Intuitively, we call a
scheduler fair for a system if it does not stop the run of the system at a point
where at least one of the other machines in the system, e.g., honest parties, the
adversary, resilient channels, “can still take an action”, e.g., an honest princi-
pal could (non-deterministically) decide to start an abort protocol, a resilient
channel could deliver a message, or the adversary is ready to send a message
to an honest principal. We formalize that a machine “can still take an action”
in a general way as follows: We say that a machine can take an action if the
machine can be activated by the scheduler with some input so that at the end
of the activation the machine has changed its local configuration, and hence,
performed some action. (We note that according to our definition of ITMs, if
an ITM outputs a message, then it changes its local configuration.) The above
definition in particular applies to adversary machines and also to honest parties
and resilient channels. For example, if at some point A in a contract signing
protocol could either wait for a message from B or contact the TTP to run the
abort protocol and the scheduler schedules A to run the abort protocol with
TTP, then A changes its local configuration, e.g., goes from state qwait to state
qabort. While there does not exist a fair scheduler for every system, we identify
sufficient, reasonable conditions for a system to have a fair scheduler. The way
fair scheduling is defined here appears to be new and is of interest independent
of its application to branching time properties (see also the related work).

Based on our computational model and the notion of fair schedulers, we pro-
vide a definition for balance of (contract signing) protocols (see Section 6). In
this definition, we need to quantify (universally and existentially) over two dif-
ferent schedulers. The first scheduler may be unfair and may collude with the
adversary in order to reach a certain point in the protocol run. The second one
has to be fair, but tries to prevent the adversary from achieving his goal. As
a proof of concept, we apply our definition to the ASW two-party optimistic
contract-signing protocol [1], which is presented in Section 2, and show it to
be balanced when implemented with primitives that satisfy standard security
assumptions (see Section 6.2). Our proof of balance of this protocol is the first
computational proof of this (now rigorously defined) property for a contract
signing protocol.

We point the reader to the long version of our paper [13] for further details.

Related work. Rigorous models, security definitions as well as analysis meth-
ods and tools for branching time properties of contract signing protocols have
been proposed in [11,22,21,25,22,5,12,19,20]. However, all these works are based
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on the symbolic (Dolev-Yao) model and do not consider the more involved com-
putational case.

Backes et al. [7] (see also [6]) proposed a definition of fair scheduling in a com-
putational model. While they only consider fair scheduling of channels (which is
insufficient for branching time properties), our definition is concerned with fair
scheduling of arbitrary machines. Other works that use some kind of fairness in
specific settings are [3] and [16]. None of the mentioned works, [7,6,3,16], studies
branching time properties or properties of contract signing protocols.

Asokan, Shoup, and Waidner [2] propose a fair contract signing protocol and
present a computational model to study fairness of their protocol. However, the
model and the notion of fair scheduling that they use is tailored to their specific
setting and does not apply to branching time properties.

Canetti et al. [10] study a computational model based on probabilistic I/O
automata (PIOAs) in which non-deterministic behavior of principals can be mod-
eled. However, they focus on simulation-based security and do not study fairness
issues or branching time properties.

2 A Running Example: The ASW Protocol

In this section, we provide an informal description of the ASW protocol [1].
This protocol is our running example which we use throughout the paper to
provide intuition for the models and the notions that we introduce. A more
formal description in terms of the model that we propose in this paper can be
found in [13].

Cryptographic primitives. The ASW protocol uses concatenation, signa-
tures and hashing. We denote the concatenation of bit strings m1, . . . ,mn by
〈m1, . . . ,mn〉, and sometimes by m1, . . . ,mn. We assume that every mi can
uniquely be recovered from the concatenation. Verification and signing keys of
principal P are denoted by vP and sP , respectively. The signature of m gener-
ated using sP is denoted by sigvP

(m). We require for the associated signature
verification algorithm sigver(·, ·, ·) that sigver(m, s, vP ) = true if s is a signature
on m generated using sP , and that sigver(m, s, vP ) = false otherwise. We write
sig[m, vP ] for 〈m, sigvP

(m)〉, and write h(m) for the hash of message m.

Protocol description. The ASW protocol enables two principals A (the orig-
inator) and B (the responder) to obtain each other’s signature on a previously
agreed contractual text text (a fixed bit string) with the help of a trusted third
party (TTP) T , which however is only invoked in case of problems. In other
words, the ASW protocol is an optimistic two-party contract-signing protocol.

There are two kinds of valid contracts: the standard contract, which is of the
form 〈sig[mA, vA], NA, sig[mB, vB ], NB〉, and the replacement contract, which
is of the form sig[〈sig[mA, vA], sig[mB, vB]〉, vT ], where NA and NB are nonces,
generated by A and B, respectively, mA = 〈vA, vB , vT , text, h(NA)〉 and mB =
〈sig[mA, vA], h(NB)〉.

The ASW protocol consists of three subprotocols: the exchange, abort, and
resolve protocol. These subprotocols are explained next.
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Exchange protocol. First A sends the message sig[mA, vA] indicating A’s interest
to sign the contract. By sending this message, A “commits” to signing the con-
tract. Then, similarly, B indicates his interest to sign the contract, by replying
with sig[mB, vB ]. Finally, first A and then B reveal NA and NB, respectively.

Abort protocol. If, after A has sent her first message, B does not respond, A
may contact T to abort, i.e., A runs the abort protocol with T . Note that A
may wait as long as she wants before contacting T (non-deterministic action).
In the abort protocol, A first sends aA = sig[〈aborted, sig[mA, vA]〉, vA]. If T
has not received a resolve request before (see below), then T sends back to A
the abort token aT = sig[〈aborted, aA〉, vT ]. Otherwise (if T received a resolve
request, which in particular involves the messages sig[mA, vA] and sig[mB, vB ]
from above), it sends the replacement contract rT = sig[r, vT ] to A, where r =
〈sig[mA, vA], sig[mB, vB]〉.

Resolve protocol. If, after A has sent the nonce NA, B does not respond, A may
contact T to resolve, i.e., A runs the resolve protocol with T . Again, A may
wait for as long as she wants before contacting T (non-deterministic action).
In the resolve protocol, A sends the message r to T . If T has not sent out an
abort token before, then T returns the replacement contract rT , and otherwise
T returns the abort token aT . Analogously, if, after B has sent the nonce NB, A
does not respond, B may contact T to resolve, i.e., B runs the resolve protocol
with T similarly to the case for A.

We note that the communication with T (for both A and B) is carried out
over resilient channels. More specifically, these channels are authenticated, so
the adversary can read their content but he is not entitled to modify, delete, or
delay messages sent over these channels.

3 The General Computational Model

Our general computational model is defined in terms of systems of interactive
Turing machines (ITMs) and is related to the models in [4,9,14,17]. However,
our exposition follows more closely that of [24].

ITMs. An (inexhaustible) interactive Turing machine (ITM, for short) M is a
probabilistic Turing machine with the following tapes: a security parameter tape
for storing the security parameter, a random tape for storing random coins, zero
or more input and output tapes, and work tapes. The input and output tapes
have names; different tapes have different names. These determine how ITMs are
connected in a system of ITMs. If an ITM sends a message on an output tape
named c, then only an ITM with an input tape named c can receive this message.
An ITM M may use oracles, called the oracles associated with the ITM. If the
oracles O1, . . . ,On are associated with M we sometimes write M(O1, . . . ,On)
instead of M to emphasize this fact. The runtime of an ITM is polynomially
bounded per activation (in the security parameter, the current input, and the
size of the current configuration). This allows the ITM to “scan” the complete
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incoming message and its complete current configuration. Hence, an ITM can
not be exhausted (therefore the name inexhaustible interactive Turing machine).

Systems of ITMs. A system S of ITMs is a parallel compositionM1 || · · · ||Mn

of ITMs Mi, i = 1, . . . , n. These machines communicate over input and output
tapes; at every time only one ITM is active and all other ITMs wait for new
input. A machine is activated when it receives input on one of its input tapes.
If a machine does not activate another machine (by outputting a message), the
so-called master ITM is triggered. We require w.l.o.g. that if a machine outputs
a message, then its local configuration changes. Given S = M1 || · · · ||Mn, we
write S(1η, r1, . . . , rn) for the system obtained from S by writing a security
parameter η on the security parameter tapes and random coins ri ∈ {0, 1}∗ on
the random tapes of the Mi. A run of S(1η, r1, . . . , rn) is defined to be a sequence
of global configurations q where a global configuration q is a tuple (q1, . . . , qn) of
the configurations qi of the single machines Mi, for every i = 1, . . . , n.

In general, a run of a system does not necessarily terminate. For example, if
in S = M1 ||M2 the ITMs M1 and M2 are connected via enriching input tapes,
then they can send message back and forth between each other forever.

We say that a system S is a polynomial-time system if there exists a prob-
abilistic Turing machine which simulates runs of S and whose runtime is poly-
nomially bounded in the security parameter with overwhelming probability. For
polynomial-time systems, we denote by S(η) the random variable that returns
runs of S with security parameter η where the coins for the ITMs in S are chosen
uniformly at random. We write S(η) � q to say that the final global configura-
tion in a run returned by S(η) is q. If q′ is a global configuration for S(η), we write
Sq′(η) to denote the distribution of runs obtained when the initial configuration
of the ITMs in S are defined according to q′ (with possibly random coins added
on random tapes if needed). In case q′ is drawn from a family D = {Dη}η of dis-
tributions, we write SD(η) for the random variable that returns a run according
to the following experiment: q′ R← Dη, output Sq′(η). We define Sq′ (η) � q and
SD(η) � q analogously to S(η) � q. Here, and in the rest of the paper we only
consider families of distributionsD that are polynomially samplable, i.e., that are
the output of a probabilistic polynomial-time Turing machine.

Given a system S, we call an ITM E an environment for S if i) the runtime of
E is polynomial in the security parameter alone (and independent of the length
of the input that E receives) and ii) E is I/O-compatible with S, i.e., E only
writes to external input tapes of S and E only reads from external output tapes
of S. Adopting terminology from [18], we call S reactively polynomial if S || E is
a polynomial-time system for every environment E of S where E does not have
an associated oracle.

4 The Security-Specific Model

Based on the general computational model introduced above, we define below
the security-specific model. In this model, we consider specific systems of ITMs,
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called protocol systems. These systems consist of protocol machines, which de-
termine the actions of honest principals, an adversary machine, a scheduler, and
buffers for network and resilient channels. The adversary does not have com-
plete control over the communication. Specifically, while we let the adversary
control the network, he does not control resilient channels, i.e., the adversary
can not modify, delete, or delay messages sent on this channel. (We often allow
the adversary to read messages sent on resilient channels, though.) The purpose
of the scheduler is to schedule messages sent over resilient channels, i.e., the
scheduler decides when and which messages written on the resilient channel are
delivered. Also, the scheduler resolves non-deterministic choices made by hon-
est principals, e.g., whether to wait for a message of another party or to abort
the protocol. Furthermore, the scheduler determines when the adversary is ac-
tivated. In particular, the adversary is not necessarily scheduled as soon as an
honest principal outputs a message. Instead some message sent on a resilient
channel or an honest principal that needs to make a non-deterministic decision
might be scheduled first (by the scheduler). However, if the adversary sends a
message to an honest principal this principal is activated right away. Allowing the
scheduler to first schedule other entities (honest principals or resilient channels)
would significantly weaken the power of the adversary.

Protocols. A protocol Π is defined by a tuple (H,D, {Hi}i∈H) where H and D
are finite disjoint sets of names of honest and dishonest principals, respectively,
and {Hi}i∈H is a family of ITMs, called protocol machines (see below), which
specify honest principals; dishonest principals will be simulated by the adversary.
We define P = H∪D to be the set of all principals. We note that Hi may specify
the actions of principal i in one session of a specific protocol, e.g., it specifies one
session of the initiator of the ASW protocol, or multiple sessions of i in possibly
different roles.

Protocol systems. A system induced by Π consists of the protocol machines
of Π , an adversary machine A, a scheduler machine S, and buffer machines for
the network and resilient channels. More precisely, a (protocol) system S for Π
is of the form

S = ( || i∈HHi) || ( || i∈H,j∈PNeti
j) || ( || i∈H,j∈PRCi

j) || A || S

where Hi, i ∈ H, is a protocol machine of Π modeling an honest principal, Neti
j ,

i ∈ H, j ∈ P is a network buffer (machine) on which i sends messages over the
network intended for j, RCi

j , i ∈ H, j ∈ P is a resilient channel buffer (machine)
on which i sends messages intended for j, A is the adversary (machine), and S
the scheduler (machine). We call S the system induced by Π, A, and S and
denote it by S(Π,A,S). We refer to the system S with A and S removed by
S(Π). Analogously, we refer to the system S with S removed by S(Π,A). We
now explain informally how the machines of S(Π,A,S) work and how they are
connected via tapes (see [13] for details).

A network buffer machine Neti
j receives messages from Hi and stores them.

The adversary has typically access to these messages.
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A resilient channel buffer machine RCi
j stores messages and interacts with

Hi just as Neti
j . In addition, RCi

j is scheduled by the scheduler who determines
which messages are delivered. The adversary may or may not have access to
RCi

j . This depends on whether or not RCi
j should be read-protected.

A protocol machine Hi may send messages to the network buffers Neti
j and

the resilient channel buffers RCi
j for every j ∈ P as explained above. If Hi does

not produce output, the scheduler S is activated. A protocol machine Hi can be
activated by messages from the network (the adversary), the resilient channels
(these messages are guaranteed to be authentic), and the scheduler. Messages
from the scheduler are meant to resolve non-deterministic choices made by Hi

(these messages are assumed to come from a fixed, finite set of messages).
The adversary machine A is associated with an oracle, called the view oracle,

which can be invoked by A to obtain a view on the history of the run of the
overall system so far. The view usually does not contain full information about
the history. It is typically restricted to the content of the network buffers so far
and the content of (some) of the resilient channel buffers, depending on whether
these channels are supposed to be read-protected. In addition to invoking the
view oracle, A can send messages to honest principals either via network (unau-
thenticated) or resilient channel connections (authenticated). A message sent
by the adversary on one of these channels is delivered directly. The adversary
machine A can only be activated by the scheduler. We only allow adversary
machines for which the system S(Π,A) is reactively polynomial.

The scheduler S is also associated with a view oracle which provides S with
a view on the history of the run of the overall system so far. Typically this view
will be different from the view of the adversary and depending on the security
property may contain full information about the history, no information at all,
or something in between. As explained above, the purpose of S is to resolve non-
deterministic choices of honest principals (Hi), to schedule messages on resilient
channels, and to determine when the adversary A is triggered. For this purpose,
S sends appropriate messages to these machines.

5 Fair Schedulers

Intuitively, we define a scheduler to be fair if it does not stop the run of a system
when at least one of the (other) machines in the system can still take an action,
e.g., an honest principal could start an abort protocol, a resilient channel could
deliver a message, or the adversary is ready to output a message to an honest
principal. As already explained in the introduction, fair scheduling is important
in the definition of many security properties, such as fairness and balance for
contract signing protocols.

The problem of defining fair schedulers is to make precise what it means that
a machine “can still take an action”. Notice that we need a general definition
that works for arbitrary machines (honest principal machines, resilient chan-
nel machines, and adversary machines) not only for specific machines, such as
specific buffers as in [7,6].
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Roughly speaking, we say that a machine “can still take an action” if the
machine can be activated by the scheduler with some input so that at the end of
the activation the machine has changed its local configuration, i.e., scheduling
the machine causes it to make some progress or to perform some action. (Recall
from Section 3 that if an ITM sends out a message, then it changes its local
configuration.) For example, if an adversary machine wants to send a message
to an honest principal, then when it is triggered by the scheduler it would send
the message and change its local configuration. Hence, a fair scheduler has to
eventually trigger the adversary as the adversary “can still take an action” in
the above sense. Similarly, a fair scheduler has to eventually trigger a protocol
machine that does not receive a message from the network but has the option
of contacting the TTP, as contacting the TTP causes the protocol machine to
change its local configuration.

We note that a scheduler does not necessarily know when a machine, including
the adversary, “can still take an action” in the sense just explained. Hence, it
might schedule such a machine even though this machine does not want to take
an action. However, a machine can always read the message received from the
scheduler (possibly even query the view oracle in case of the adversary) and, in
case it does not want to take an action, it can return to its old local configuration.
Note that here we use that ITMs cannot be exhausted. In case of exhaustible
ITMs unrealistic runs would occur.

The above discussion motivates the following definition of fair schedulers.
Roughly speaking, the definition below says that if the run of a system stops,
then even if in the system the old scheduler is replaced by a new one (even
one with full information on the history of the run), the new scheduler cannot
continue the run of the system (at least not with non-negligible probability)
such that one of the ITMs in the system changes its local configuration. In other
words, a fair scheduler may only stop the run of a system if no ITM in the
system (other than the scheduler itself) can or wants to take a further action,
i.e., no other scheduler can cause an ITM to change its local configuration. We
state this definition for general systems rather than only for protocol systems
(Section 4). In this definition, we use what we call a full-information oracle.
Called at some point in a run of a system, a full-information oracle returns the
whole history of the run so far for all machines involved including the random
coins used so far by the ITMs. We state the definition for the case that the initial
global configuration comes from a family D = {Dη}η of distributions. This is
useful for modeling, for example, an initialization phase.

Definition 1. Let Q be a reactively polynomial system which does not contain
a master ITM. An ITM S is a fair scheduler for Q and a family D = {Dη}η of
distributions on (initial) global configurations if it is an environment for Q and
if for every environment S′ for Q which has access to a full-information oracle
the probability that the following experiment returns 1 is negligible in the security
parameter η:
Exp(η,S,S′):

Run Q with S, i.e.: SD(η) � q′ with S = Q ||S
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Continue the run with S′ instead of S, i.e.: S′
q′′ (η) � q′′′ with S′ = Q ||S′ and q′′

is obtained from q′ by replacing the configuration of S by the initial configuration
of S′ and writing the history of the run so far on one of the work tapes of S′.

If there exists an ITM M in Q such that the local configuration of M in q′

is different from the corresponding local configuration in q′′′, then output 1, and
otherwise, output 0.

Applied to protocol systems (Section 4), a fair scheduler may only stop if i) the
resilient channel buffers are empty, ii) triggering a protocol machine with any
message (among the finite set of possible once, e.g., abort) does not change the
local configuration of this machine, and iii) triggering the adversary machine with
the message schedule does not change the local configuration of this machine
(which means that the adversary does not want to take a step anymore).

Since ITMs cannot be exhausted they might change their local configuration
whenever they are invoked. Hence, a fair scheduler would never be allowed to
stop. Thus, we observe:

Observation 1 There are systems for which no fair scheduler exists.

Systems with fair schedulers. We now identify some reasonable restrictions
on protocols and adversaries as to ensure the existence of a fair scheduler. Due to
space limitations, we only provide informal definitions. First, we put a restriction
on the adversary.

Definition 2. (informal) An adversary machine for a protocol Π, view oracles
Oadv, Osch, and a family of distributions D = {Dη}η on (initial) global con-
figurations D is fairness-enabling if the number of configuration changes of the
adversary in every run of the system S = S(Π,A(Oadv),S(Osch)) (and hence,
the number of actions, such as sending messages, the adversary can perform)
can be bounded by a polynomial which is independent of the scheduler S(Osch).

The immediate analog to the definition above for protocol machines would be
too restrictive since the number of configuration changes of a protocol machine
might depend on the number of interactions with the adversary, and hence,
depends on the adversary. For example, if a TTP is modeled in such a way that
it reacts to all requests (which could come from the adversary), then the number
of configuration changes of the TTP depends on the adversary. This motivates
the following definition.

Definition 3. (informal) Given oracles Oadv and Osch, and a family of distri-
butions D = {Dη}η on (initial) global configurations, a protocol Π is fairness-
enabling if the number of configuration changes of protocol machines in Π in
every run of the system S = S(Π,A(Oadv),S(Osch)) can be bounded by a poly-
nomial which may depend on A(Oadv) but not on S(Osch).

The following theorem states that for every fairness-enabling protocol and every
fairness-enabling adversary, there exists a fair scheduler (even without access to a
view oracle). Hence, for systems built from fairness-enabling protocols and adver-
saries, fair scheduling is possible. In the rest of the paper, we concentrate on such



A Cryptographic Model for Branching Time Security Properties 433

systems, which seem to capture all realistic cases. In order to state and prove the
theorem, we first need to be more precise about the view oracle of adversaries.

A view oracle is called an adversary view oracle if it is a deterministic
polynomial-time algorithm which when invoked in a run of a protocol system
gets as input the history of the run so far, except for the history of the sched-
uler, i.e., the history of the configurations (including the random coins used so
far) of all machines in the system, except for the history of the configurations
of the scheduler. We require that if the configurations of the ITMs, other than
the scheduler, in a run of the protocol system have not changed from one point
in the run to the next step in the run, then the adversary view oracle returns
the same view as before. Note that even if the adversary view oracle obtains as
input the full history of the system (excluding the scheduler) it typically will
only return a restricted view on that history to the adversary.

Theorem 2. For every fairness-enabling protocol Π, view oracle Osch, adver-
sary view oracle Oadv, polynomially samplable family of distributions D = {Dη}η

on (initial) global configurations, and fairness-enabling adversaries A=A(Oadv),
there exists a scheduler S (even one without access to a view oracle) that is fair
for S(Π,A) and D.

6 Balanced Protocols and Results for the ASW Protocol

In this section, we define the notion of balance and show that the ASW protocol
is balanced. The definition makes use of the previously introduced concept of
fair scheduling.

6.1 Definition of Balance

The notion of balance for (two-party) contract-signing protocols was first intro-
duced by Chadha et al. [11] in the symbolic (Dolev-Yao) setting. In a nutshell,
their definition says that a protocol is balanced for an honest signer, say A, if
no “unbalanced” state can be reached in a run of the contract-signing protocol
where a run involves A, the Dolev-Yao intruder playing the role of the dishonest
signer B, the TTP, the network and resilient channels. A state is unbalanced (for
A) if in this state B has both i) a strategy to obtain a signature on the contract
from A and ii) a (possibly different) strategy to prevent A from obtaining a
signature on the contract from B. In other words, B can unilaterally determine
the outcome of the protocol, which puts him in an advantageous position, for
example, when making a deal with another party. In the first phase—reaching
an (unbalanced) state— the non-deterministic choices made by honest princi-
pals and the way messages on resilient channels are scheduled might help B to
reach the (unbalanced) state. However, in the second phase, B needs to have
the mentioned strategies to achieve the two goals—obtaining a valid contract
and preventing A from obtaining a valid contract—, and these strategies have to
work no matter what non-deterministic choices the honest principals make and
no matter how messages on resilient channels are scheduled.
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Now, we introduce a computational analogue of the notion that we sketched
above. We measure the success probability of an adversary that tries to un-
dermine the balancedness of the protocol via an experiment which works in
two phases (see below for a formal definition): In the first phase, the protocol
runs along with the adversary A and a scheduler S which may resolve non-
deterministic choices of honest principals and schedule messages on resilient
channels and the adversary in a way that helps A. At the end of this phase, a
state (global configuration), say q, is reached. Now, one of the two goals (having
the contract or preventing the other party from getting one) is picked (by some
function challenge) and the adversary is asked to reach the chosen goal, start-
ing from q but now running with a different scheduler which will try to resolve
non-deterministic choices of honest principals and schedule resilient channels and
the adversary in a way that is disadvantageous for A. Intuitively, for balanced
protocols, from any state q that is reached, at least for one of the two goals the
probability that the adversary can reach this goal should be low.

In the following definition, we require that the scheduler used in the second
phase of the experiment is fair in order to ensure that protocol runs are in fact
completed both by honest parties and the adversary. This is crucial for two
reasons: On the one hand, the adversary might otherwise be prevented from
taking further actions, but these actions may be necessary for the adversary to
achieve the required goal. Hence, the scheduling would be unfair for the adver-
sary. And in fact, it would be unrealistic since in real protocol runs no one stops
the adversary from taking further actions. On the other hand, honest principals
might otherwise be prevented from taking counter-measures to the misbehavior
of the adversary. Hence, the scheduling would be unfair (and again unrealistic)
for the honest parties. Note that achieving fair scheduling for both honest parties
and the adversary is guaranteed by our definition of fair scheduling (Section 5).
However, a notion only based on fair message delivery [7,6] would be insufficient.

In order to ensure that, in the second phase, fair scheduling is possible, we
split the adversary in two parts, A (for the first phase) and A′ (for the second
phase) and require that A′ is fairness-enabling. The scheduler used in the first
phase is not required to be fair (in particular it can stop at arbitrary points),
and adversary A is not assumed to be fairness-enabling.

The definition of balance is parameterized by two deterministic polynomial-
time algorithms, goal1 and goal2, the goal functions, which given a global con-
figuration return 1 (goal reached) or 0 (failed to reach the goal), e.g., goal1 might
formalize “A does not have a signed contract from B” and goal2 might formalize
“B has a signed contract from A” (see Section 6.2). Parameterizing the defini-
tion of balance by the goal functions seems unavoidable since, for example, what
a signed contract is and what it means for a party to have a signed contract are
details that may differ from one protocol to another (see, e.g., [1] and [15]). We
call a deterministic polynomial-time algorithm which given a global configuration
returns 1 (requiring the adversary to achieve goal1) or 2 (requiring the adversary
to achieve goal2) a challenge function.
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Definition 4. Let Π be a protocol and goal1 and goal2 be deterministic poly-
nomial-time algorithms as above. LetOsch andO′

sch be view oracles, andOadv and
O′

adv be adversary view oracles. Then, Π is called balanced w.r.t. goal1, goal2,
Oadv, O′

adv, Osch, and O′
sch if for all adversary machines A = A(Oadv) and

A′ = A′(O′
adv) for Π, and all (not necessarily fair) schedulers S = S(Osch) for

Π, there exists a challenge function challenge such that if A′ is fairness-enabling
for Π, O′

sch, Oadv, and a family D = {Dη}η of distributions on (initial) global
configurations defined below, then there exists a scheduler S′ = S′(O′

sch) fair for
S(Π,A′) and D such that the probability that the following experiment returns 1
is negligible in the security parameter η.

Exp(η,Π,A,A′,S,S′, goal1, goal2, challenge):

S(η) � q where S = S(Π,A,S).
i = challenge(q).
S′

q′(η) � q′′ where S′ = S(Π,A′,S′), the initial configuration of A′ is obtained
by writing i and the current configuration of A on the work tape of A′, and q′ is
obtained from q by replacing the configuration of S by the initial configuration of
S′ and the configuration of A by the initial configuration of A′.
Return goali(q

′′).
The distributionDη is defined to be the distribution of q′ in the above experiment.

(Note that D = {Dη} is polynomially samplable.)

We emphasize that the above experiment can be simulated in polynomial time.
This is a crucial fact when trying to show that a protocol is balanced via a proof
by reduction. Note that while one could provide challenge and S′ with more in-
formation, giving them less information only makes the balance property stronger.
We also point out that in typical applications of the above definition the protocol
Π will be fairness-enabling w.r.t. O′

sch, O′
adv, and D, and hence, fair scheduling

is possible in the second phase of the experiment.

6.2 The ASW Protocol Is Balanced

We prove that the ASW protocol is balanced for i) the case that an honest initiator
A runs an instance of the protocol with a dishonest responder B (modeled as the
adversary) and an honest TTP T , and ii) the case that an honest responderB runs
an instance of the protocol with a dishonest initiatorA (modeled as the adversary)
and an honest TTP T . More formally, we need to specify the protocols, oracles,
and functions used as parameters in the balance definition.

Let ΠASW-A denote the protocol with honest parties A, T , and W , and dishon-
est party B where A acts as an initiator, T as a TTP, and W as a “watch dog”.
Formal specifications of A and T in terms of ITMs can be found in [13]. We note
thatA writes Contract on some of her work tapes if according to the specification
of the protocol she has a valid contract (standard or replacement) with B and T
on the contractual text. The watch dog W is used to check whether the adver-
sary (dishonest B) has a valid contract. The protocolΠASW-B is defined similarly,
except that now A is dishonest and B is honest. The formal specification of the
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responder B as ITM can be found in [13]. It is not hard to check that ΠASW-A and
ΠASW-B are fairness-enabling w.r.t. the distribution used in Definition 4 and that
S(ΠASW-A) and S(ΠASW-A) are reactively polynomial.

We define the view oracles OASW
adv and OASW

adv′ for the adversary to be adversary
view oracles (Section 5) which return the history of all network and resilient chan-
nel buffers in the system (but no other machines). In particular, resilient channel
buffers are not required to be read protected.

To get strong security guarantees, we allow the scheduler in the first phase of the
definition of the balance property to see what the adversary sees plus the history
of the configurations of the adversary (including the random coins used by the
adversary); OASW

sch is defined accordingly. Conversely, we make the scheduler in
the second phase weak by defining OASW

sch′ in such a way that it does not provide
any information about the history. For a global configuration q let goal1(q) = 1
iff the honest party (A in ΠASW-A and B in ΠASW-B) does not have a contract,
i.e., Contract is not written on one of its work tapes. Let goal2(q) = 1 iff the
adversary has a valid contract, i.e., Contract is written on a work tape of the
watch dog.

We are now ready to state the theorem on balance of the ASW protocol. The
theorem holds for instances of the protocol implemented with primitives that sat-
isfy standard cryptographic assumptions (see [13] for precise definitions).

Theorem 3. If the signature scheme is existentially unforgeable under chosen
message attacks and the hash function is preimage resistant, then ΠASW-A and
ΠASW-B are balanced w.r.t. goal1, goal2, OASW

adv , OASW
adv′ , OASW

sch , and OASW
sch′ .

The theorem should extend to the case that a party runs multiple copies of the
protocol provided that different instances of the protocol use unique session iden-
tifiers (see [13]).
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Abstract. The Trusted Platform Module TPM is a basic but never-
theless very complex security component that can provide the founda-
tions and the root of security for a variety of applications. In contrast
to the TPM, other basic security mechanisms like cryptographic algo-
rithms or security protocols have frequently been subject to thorough
security analysis and formal verification. This paper presents a first me-
thodic security analysis of a large part of the TPM specification. A formal
automata model based on asynchronous product automata APA and a
finite state verification tool SHVT are used to emulate a TPM within
an executable model. On this basis four different generic scenarios were
analysed with respect to security and practicability: secure boot, secure
storage, remote attestation and data migration. A variety of security
problems and inconsistencies was found. Subsequently, the TPM speci-
fication was adapted to overcome the problems identified. In this paper,
the analysis of the remote attestation scenario and some of the problems
found are explained in more detail.

1 Introduction

The Trusted Platform Module TPM as specified by the Trusted Computing
Group TCG [3] provides basic security mechanisms like protected storage areas,
computation of cryptographic functions and attestation of integrity measure-
ment. The TPM specification is highly complex and it is diffcult to verify that
secure architectures can be based on it. Consequently, (and rather unsurpris-
ingly), errors, inaccurate descriptions and inconsistencies were found in previous
versions of the specification. However, as the TPM is supposed to be a trust and
security anchor it is necessary that the specification defines a secure TPM. Pre-
vious work on analysing the security of the TPM has so far only covered small
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details. The goal of the work presented in this paper was to provide a first sys-
tematic, scenario-based security analysis covering large parts of the specification.
A variety of problems was found and documented. All of them were discussed
within the TCG (in particular with the TPM and Infrastructure working groups)
and resulted in changes, amendments and corrections to revision 94 and newer
versions of the TPM specifications.

In the first step of the project, TPM-based protocols were developed for four
generic scenarios, namely secure boot, secure storage, remote attestation and
data migration. The particular sequences of TPM commands were documented
in detail and simulated using the SH Verification Tool [8,5]. Subsequently, attack
scenarios were developed for all scenarios and the previously developed proto-
cols were analysed with respect to these attack scenarios. Finally, the study was
completed by analysing several generic attack scenarios and general, scenario-
independent issues concerning TPM commands and data structures. The cho-
sen analysis approach was a combination of formal, tool-supported analysis and
thorough review by security experts. The scenarios use the different TPM autho-
risation protocols (e.g. object independent OIAP and object specific OSAP) and
allowed to consider the interplay of the different TPM commands and security
mechanisms for the security analysis.

In the following sections we give a short overview of the TPM and the au-
tomata model for the analysis. Because it is impossible for space reasons to
elaborate on our results of all four generic scenarios we chose a concrete ”re-
mote attestion” scenario as an illustrative example to demonstrate the analysis
approach and to explain some of the problems that were found.

Finally, the mitigation strategies and changes to the TPM specification that
resulted from the problems are explained.

2 A Short Introduction to TPM Technology

A TPM [3] usually is implemented as a chip integrated into the hardware of
a platform (such as a PC, a laptop, a PDA, a mobile phone). A TPM owns
shielded locations (i.e. no other instance but the TPM itself can access the stor-
age inside the TPM) and protected functionality (the functions computed inside
the TPM can not be tampered with). The TPM can be accessed directly via
TPM commands or via higher layer application interfaces (the Trusted Software
Stack, TSS).

The TPM offers two main basic mechanisms: it can be used to provide evi-
dence of the current state of the platform it is integrated in and applications that
are running on the platform, and it can protect data on the platform (such as
cryptographic keys). For realizing these mechanisms the TPM contains a crypto
co-processor, a hash and an HMAC algorithm, a key generator, etc.

In order to prove a certain platform configuration, all parts that are engaged
in the boot process of the platform (BIOS, master boot record, etc.) are mea-
sured (e.g. integrity check hash values for software) by a so-called root of trust
for measurement (RTM) on the platform, and the final result of the accumu-
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lated hash values is stored inside the TPM in a so-called Platform Configuration
Register (PCR). An entity that wants to verify that the platform is in a certain
configuration requires the TPM to sign the content of the PCR using a so-called
Attestation Identity Key (AIK), a key particularly generated for this purpose.
The verifier checks the signature and compares the PCR values to some reference
values. Equality of the values proves that the platform is in the desired state.
Finally, in order to verify the trustworthiness of an AIK’s signature, the AIK has
to be accompanied by a certificate issued by a trusted Certification Authority,
a so-called Privacy CA (P-CA). Note that an AIK does not prove the identity
of the TPM owner.

Keys generated and used by the TPM have different properties: Some (so-
called non-migratable keys) can not be used outside the TPM that generated
them, some (like AIKs) can only be used for specific functions. Particularly
interesting is that keys can be tied to PCR values (by specifying PCR number
and value in the key’s public data). This has the effect that such a key will only
be used by the TPM if the platform configuration (or some application) is in
a certain state (i.e. if the PCR the key is tied to contains a specific value). In
order to prove the properties of a particular key, for example to prove that a
certain key is tied to specific PCR values, the TPM can be used to generate a
certificate for this key by signing the key properties using an AIK.

TPM keys have a defined structure whose one part contains public information
like the key’s public part or binding to specific PCR values. The sensitive part
of the key contains information like the key’s private part and authorization
data. It is encrypted by the key’s parent key, whose sensitive information is
again encrypted by its parent, thus constituting a key hierarchy whose root is
the so-called Storage Root Key (SRK).

In order for any key to be used by a TPM (e.g. for decryption), the key’s
usage authorization value has to be presented to the TPM. This together with
the fact that the TPM specification requires a TPM to prevent dictionary attacks
provides the property that only entities knowing the key’s authorization value
can use the key.

Non-migratable keys are especially useful for preventing unauthorized access
to some data stored on the platform. Binding such a key to specific PCR values
and using it to encrypt data to be protected achieves two objectives: The data can
not be decrypted on any other platform (because the key is non-migratable), and
the data can only be decrypted when the specified PCR contains the specified
value (i.e. when the platform is in a specific secure configuration and is not
manipulated).

3 Description of a Concrete “Remote Attestation”
Scenario

The following concrete scenario is used throughout the rest of paper for explana-
tion of the security analysis that was originally carried out on more generic sce-
narios. The example scenario reflects a typical corporate IT environment where
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the use of TPMs can actually improve security processes. We consider two em-
ployees Bob and Alice. Bob’s PC is equipped with a Trusted Platform Module
TPM protecting information on the PC and measuring the PC’s configuration.
Alice’s PC may or may not be equipped with a TPM. The TPMs of the com-
pany are owned by the company’s IT administration (ITadmin), i.e. the process
of “taking ownership” of the TPM was executed by the IT administration and
the TPM’s Owner Authorisation value is only known to ITadmin. Bob and ITad-
min are having local (physical) and remote access to Bob’s PC.

The main goal of using the TPM in this is to give Alice the ability to bind
data to a particular configuration of Bob’s PC. This way Alice shall be assured
that her security requirements are satisfied by Bob’s PC although it is not under
Alice’s control. These requirements concern data Alice wants to make available
to Bob, in particular Alice has the following requirements:

– The data shall only be available on a platform determined by herself (i.e. on
Bob’s PC). Therefore, initially during the attestation a particular identity
key (actually providing pseudonymity) associated with a particular platform
(i.e. with TPM) is fixed and the data shall not be available on any other
platform.

– Furthermore, Alice requires that the data shall only be readable by Bob, i.e.
that no other actor (neither on Bob’s PC nor on any other platform) shall
be able to read the data without Bob’s or Alice’s consent.

This results in the security requirement that the data shall be confidential for
Alice and Bob, i.e. nobody else shall ever get to know the data, in particular it
shall not be known by ITadmin.

We use the following assumptions:

1. Alice trusts the Privacy CA used for attestation and trusts a TPM certified
by P-CA in that it acts according to the specification.

2. Processes on a specifically configured platform PF (i.e. Bob’s PC) and Al-
ice’s own PC do not make available any data to other processes, platforms,
platform users or devices.

3. Alice trusts Bob not to deliberately or accidently make the data available to
others.

4. Bob does not make available any key usage authorization data he knows to
other TPM users or to ITadmin.

To prohibit that the data leaves Bob’s PC it is configured in a specific way
known to Alice. The main mechanism to provide platform configuration infor-
mation is by using the TPM Quote command and sending the result, i.e. current
PCR information signed with a certified identity key AIK. This process is one
of the basic TPM mechanisms. More details on TPM Quote can be found in
part 3 of the TPM specification [2]. One practical example of secure boot with
description of the attestation can be found in the work of Sailer et al. [11]. Ad-
ditionally, in order to enforce the security policies, Alice needs to ensure that
the configuration is still the same when data is decrypted by the TPM. This
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Alice’s PC
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Bob’s PC Bob’s TPM

PC−B TPM

request key (non−migratable,
PCR−Info), request cert(nonce)

TPM OSAP(...)

TPM_CreateWrapKey(PCR−Info,
authData)

keyBlob

TPM_OIAP

TPM_LoadKey2(keyBlob)

keyHandle(keyB)

TPM_OIAP

TPM_LoadKey2(AIK)

keyHandle(AIK)
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Cert(keyB)

pubKey,Cert(keyB),Cert(AIK)

verify certs, encrypt
data using pubKey

data blob

TPM_OIAP

TPM_loadKey2(keyBlob)

keyHandle(keyB)

TPM_UnBind(keyHandle(keyB,
data blob)

check PCRs

data

msc Provision of data to Bob

Fig. 1. MSC visualising a sequence of TPM commands
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can be achieved by binding a key to particular PCR values that allow the TPM
to use it only after having checked that platform and system state meet certain
conditions, and to use this key for encryption of the data.

This can be achieved as follows:

– Alice requires Bob to provide a TPM generated key (more precisely, the
public part of such a key) that is non-migratable and bound to certain PCR
values reflecting the correct state of Bob’s PC. Additionally Alice requires a
certificate for this key in order to be able to verify the key’s properties.

– Alice uses this key to encrypt the data she wants to make available to Bob.
– For decrypting the data, Bob loads the key into his TPM, the TPM returns

a key handle and then Bob can reference the key through the key handle
and use the TPM for decryption. Only if his PC is in the state acceptable
to Alice the TPM will actually decrypt the data.

The message sequence (MSC) chart in Figure 1 shows a more detailed de-
scription of the command sequences.

4 Security Evaluation Using Asynchronous Product
Automata (APA)

In this section we introduce the Fraunhofer SIT approach for security evalua-
tion. We model the entities of a system using asynchronous product automata
(APA). APA are a universal and very flexible operational description concept for
cooperating systems [9]. It “naturally” emerges from formal language theory [8].
APA are supported by the SH-verification tool (SHVT) that provides compo-
nents for the complete cycle from formal specification to exhaustive analysis and
verification [9].

Asynchronous product automata (APA) and the SHVT have been successfully
used in the past to model and analyse the security of cryptographic protocols
(see for example [6] or [5]). This section gives an introduction in the previous
work on cryptographic protocols that provides the foundations for the security
validation of TPM based scenarios.

4.1 Specification of Cryptographic Protocols Using APA

An APA can be seen as a family of elementary automata. The set of all possible
states of the whole APA is structured as a product set; each state is divided into
state components. In the following the set of all possible states is called state
set. The state sets of elementary automata consist of components of the state set
of the APA. Different elementary automata are “glued” by shared components
of their state sets. Elementary automata can “communicate” by changing the
content of shared state components.

Figure 2 shows a graphical representation of an APA for a system that contains
Bob’s PC and TPM and the TPM owner ITadmin. The boxes are elementary
automata and the ellipses represent their state components.
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PC_BobState_PC

Goals_Bob

State_Bob

Bob

Goals_IT

State_IT
ITadmin

TPM PC_MemoryTPM_Memory

       TPM_Interface

Fig. 2. APA model with Bob’s PC and TPM and ITadmin

The neighbourhood relation N (graphically represented by an arc) indicates
which state components are included in the state of an elementary automaton
and may be changed by a state transition of this automaton. For example, au-
tomaton TPM may change TPM Interface but cannot read or change the state
of State IT.

Each protocol participant P is modelled by an appropriate number of elemen-
tary automata that perform the agent’s actions, accompanied by an adequate
number of state components. What is appropriate depends on the environment
and the attack model that shall be modelled. In order to reduce the state space
it is often convenient to use one elementary automaton per agent. In the model
shown in Figure 2, each agent (i.e. the TPM, Bob, Bob’s PC and ITadmin) owns
a state component for storing keys and other data specifying its current state.
The state component Goals is used to add predicates describing goals the agents
shall reach with the protocol (see Section 4.2).

The figure shows the structure of the APA. Communication of the automata
is achieved by adding to and removing data from shared state components. By
providing PC Bob and ITadmin with access to TPM Interface and PC Memory
(modelling storage space on Bob’s PC) we model the fact that both agents have
access to the TPM and to Bob’s PC. Also, TPM has access to these shared
components.

The full specification of the APA includes the state sets (the data types), the
transition relations of the elementary automata and the initial state, which we
will explain in the following paragraphs.

State sets, messages and cryptography. The basic message sets, symbolic
functions, messages, state component sets etc. depend on the scenario to be analysed.
For what is needed to analyse classical protocols like Needham-Schroeder (sym-
metric and public key) [7], Otway-Rees [10] etc., we refer the reader to [5]. For
protocols using other cryptographic primitives and needing other attack models,
the definitions can be adapted easily. Examples of more complex protocols that
have been analysed include fair non-repudiation protocols [6]. In the following we
will concentrate on the details concerning the analysis of TPM scenarios.

State sets of components. For the definition of the domains of the state com-
ponents as well as for the definition of the set of messages, we use as basicsets
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a set of natural numbers, a set of agents’ names, a set of random numbers and
nonces, a set of constants. We use key names and flags to model various dif-
ferent key types, and a set of security predicates on global states. For TPM
analysis, we additionally use a set containing all TPM structures (see [1] for
their specification).

The union of all sets of agents, constants, etc., represents the set of atomic
messages, based on which we construct a set M of messages by concatenation
and application of symbolic functions.

Symbolic functions. We use a system of formal cryptographic primitives. This
allows to specify a system in a very realistic way because all variables of the pro-
tocol are considered. A good system of axioms is necessary to represent a cryp-
tographic model as real as possible. Each of these symbolic functions models one
specific kind of cryptographic system. An HMAC for example (HMACs are used
to protect TPM commands and answers) is defined by HMAC(key1, data1) =
HMAC(key2, data2) implying key1 = key2 and data1 = data2. All these prop-
erties together define for each m ∈ M a unique shortest normal form (up to
commutativity). The set Messages is the set of all these normal forms of ele-
ments m ∈ M.

Now elements of Messages constitute the content of the state components
except the agents’ Goals component which contains predicates on global states.
For the formal definition of state sets and further symbolic functions we refer
the reader to [5].

State transition relations and initial state. To specify the agents’ actions
we use so-called state transition patterns describing state transitions of the cor-
responding elementary automaton. As an example of a state transition pattern,
Table 1 shows the specification of a state transition where the TPM receives
the command TPM OSAP. We use internal state components new nonce and
new handle to model the generation of nonces and session handles by the TPM.

The lines above TPM→ indicate the necessary conditions for automaton TPM
to transform a state transition, the lines behind specify the changes of the state.
↪→ and ←↩ denote that some data is added to and removed from a state compo-
nent, respectively. TPM does not perform any other changes within this state
transition. The syntax and semantics of state transition patterns for APA is
explained in more detail in [4].

Finally, the initial state has to be specified. It contains in particular all data
stored in TPM Memory when taking ownership. We do not go into further detail
here.

The above specification can now be executed in the SH Verification Tool.
Thus, the correctness of the specification can be verified and the behaviour vi-
sualised. The following section explains how this specification is extended to
include malicious behaviour in order to evaluate the security of the TPM com-
mand sequence.
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Table 1. TPM receives command TPM OSAP

(TPM OSAP ) Pattern name

(X, entityType,entityV alue, entity, nonceOddOSAP,
nonces, nonceEven, nonceEvenOSAP, sharedSecret,
authSecret, authHandle) Variables used in the pattern

(entityV alue, entity) ∈ TPM Memory, TPM checks that entity the
OSAP shall authorize is loaded

TPM→ state transition is performed by
TPM

(X, TPM, (′TPM OSAP ′, entityType,entityV alue, OSAP command is removed
nonceOddOSAP ))←↩ TPM Interface, from TPM Interface
authSecret := get authData(entityType,entity), entity auth value is

assigned to authSecret
nonces←↩ new nonce, Nonce (handle) list is removed
authHandle←↩ new handle, from new nonce(new handle)

and assigned to nonces
(authHandle)

nonceEven := head(nonces), nonceEven/nonceEvenOSAP
nonceEvenOSAP := head(tail(nonces)), are assigned a new nonce
tail(tail(nonces)) ↪→ new nonce, Rest of the nonces (handles)
tail(authHandle) ↪→ new handle, are returned to new nonce

(new handle)
sharedSecret := hmac(authSecret, sharedSecret is assigned the
(nonceEvenOSAP, nonceOddOSAP )), OSAP secret
(TPM OSAP, head(authHandle), nonceEven, TPM stores session secret and
nonceEvenOSAP, sharedSecret) ↪→ TPM Memory, nonces inTPM Memory
(TPM,X, (head(authHandle), nonceEven, TPM returns authHandle and
nonceEvenOSAP )) ↪→ TPM Interface nonces to caller

4.2 Security Goals and Malicious Behaviour

Security goals. In our model, the state components Goals are used to specify
security goals. Whenever an agent P performs a state transition after which a
specific security goal shall hold from the agent’s view, a predicate representing
the goal is added to the respective Goals component. Note that the content of
Goals has no influence on the system behaviour, i.e. on the occurrence of state
transitions.

A system is secure (within the scope of our model) if a predicate is true
whenever it is element of a Goals component. In the SH Verfication Tool, a
generic break condition continuously evaluates all predicates in Goals during
the computation of the reachability graph. The computation is stopped as soon
as an attack is found, i.e. one of the predicates is not satisfied in the current
state.

For the analysis of the scenario introduced in Section 3, it is, for example,
necessary to consider confidentiality. The confidentiality of a message m in



Security Evaluation of Scenarios Based on the TCG’s TPM Specification 447

state s can directly be decided by looking at the content of state components.
As long as the dishonest agent (or agents) does not own the cleartext of m,
this message can be considered confidential. In order to express that agent P
considers message m to be confidential, the predicate (P, conf,m) is added to
Goals.

Introducing dishonest behaviour. In order to perform a security evaluation, our
model includes the explicit specification of dishonest behaviour, i.e. behaviour
that contradicts the protocol specification. For each type of dishonest behaviour,
the APA includes one elementary automaton with the respective state compo-
nents and state transition relations for specifying the concrete actions. The be-
haviour of the attack APA depends on the attack model we want to use. As will
be explained in Section 5, various different scenarios have to be considered, e.g.
whether or not the attacker has access to the TPM of the agent to be attacked.
Our APA model can capture any combination of these scenarios.

The elementary automaton of a dishonest agent is specified according to the
attack model to be considered. This usually includes the ability of the automaton
to read all tuples from state components it has access to, to extract any parts
from the tuples, add them to its knowledge and use this to construct new tuples
and to add these to state components it has access to. It also includes the ability
to apply symbolic functions to messages it knows and to decrypt ciphertext it
knows provided it knows the necessary key as well. For the particular TPM
attack model the elementary automaton of a malicious agent knows all TPM
command structures and can generate TPM commands and other messages by
concatenation of data it knows.

5 TPM Evaluation

5.1 General Considerations

In this section we discuss the various attack possibilities that have to be con-
sidered for scenario based on TPM functionality. They are concerned with the
question of who knows key authorization data as well as with questions related
to particular TPM commands.

The specific intentions of an attacker may be different: First of all, an attacker
may be interested in getting access to certain secret data, i.e. in breaking data
confidentiality, e.g. authorization data necessary to execute certain TPM com-
mands. Another attacker’s strategy may consist of breaking data integrity. In
this case, he does not directly want to get access to certain secret data but just
wants to forge certain data protected by the TPM or the contents of a TPM
command causing the TPM to perform another action than the one intended by
the honest actor. Furthermore, an attacker may just want to be able to use the
TPM for certain actions he is not authorized to perform, independently of any
specific confidential data.

Before using a key, the TPM requires authorization data for this key. The
derivation and quality of this authorization data is not specified by the standard.
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Therefore, one has to assume that an attacker can get hold of one or more
authorization data. Thus independently of a specific scenario the consequences
of combinations of the following cases have to be considered:

1. An attacker E knows TPM owner authorization.
2. An attacker E knows SRK authorization.
3. An attacker E knows the authorization data of the key to be used.
4. An attacker E knows the authorization data of the key to be used plus

authorization data for all keys in the above key hierarchy.
5. An attacker E does not know any key authorization data.
6. An attacker E owns/does not own another TPM2.
7. An attacker E has access to the TPM.
8. An attacker E has no access to the TPM, but to PF.

Knowing authorization data. An attacker knowing the TPM owner autho-
rization may execute certain TPM commands explicitly reserved for the owner.
This includes the possibility of changing the owner authorization data and the
authorization data for the SRK. By doing this, the use of all TPM keys is blocked
for other users and the TPM owner. This is particularly relevant if an application
is using the TPM and key usage authorization fails. Knowing the SRK autho-
rization alone enables an attacker to load a large amount of keys since the SRK
is typically used as a parent key for many other keys. However, it is not sufficient
to change the SRK authorization data.

If an attacker only knows the authorization data of a key other than the
SRK he can use the key with the TPM (e.g. for decryption of data) provided
that the key is already loaded to the TPM. For being able to also load a key,
he additionally needs to know the authorization data of all keys in the above
key hierarchy up to a key already loaded (or the SRK). Knowing a key’s and
its parent’s authorization data and being able to load the parent enables an
attacker to change the key’s authorization data, again with the effect that the
key can not be used by anybody else. Attacks based on the knowledge of key
authorization data are highly relevant for breaking data confidentiality.

Attacks without knowledge of authorization data. An attacker not know-
ing any authorization data will not be able to directly access any confidential
data or to directly execute any specific TPM functions. He may just be able to
forge data or manipulate communication between an honest actor and the TPM
where no authorization data are needed (like changing PCR values). In case the
attacker knows the public part of a TPM storage key and has access to the plat-
form, he can generate data or key blobs using this key and substitute other data
or key blobs that have this key as parent. Even if the attacker does not know
any public TPM key but has access to the platform, he can substitute blobs
by appropriate data he knows from earlier activities. This is highly relevant for
breaking the data integrity of key or data blobs.

Attacks with additional TPM. Owning another TPM2 enables an attacker
to perform other specific malicious actions: By placing his TPM2 in a state as
desired by the honest actor he can give the actor the impression that the target
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TPM is in the desired state although it is not. In general, this attack strategy may
be followed independent of having access to TPM, and it is especially interesting
in combination with manipulation of the platform. Such attacks are especially
relevant for the scenarios of Secure Boot and Attestation where the control of
the platform state plays an important role.

5.2 Evaluation of the Scenario

For the analysis of the example scenario we assume that Bob and Alice have
determined a unique AIK to use for attestation. In our attack model we consider
the case where ITadmin acts dishonestly and tries to get hold of the data intended
for Bob. We concentrate on the situation where ITadmin does not use a further
TPM. Other attack models are possible, the attacker may be some outside entity
having or not having access to Bob’s PC and TPM and owning or not owning
another TPM. The corresponding APA model is shown in Figure 3.

PC_BobState_PC

Alice

Goals_Alice

State_Alice

Network Goals_Bob

State_Bob

Bob

Goals_IT

State_IT
ITadmin

TPM PC_MemoryTPM_Memory

       TPM_Interface

Fig. 3. APA attack model: ITadmin attacks Bob

Manipulation of TPM key handles. The aim of ITadmin is to be able to decrypt
the data intended for Bob. Recall that Bob needs to transfer the public part of
his key keyB to Alice which is used by Alice to encrypt the data. According to
the MSC shown in Section 3, Bob first creates keyB, then loads it, and then lets
the TPM generate a certificate for this key, using the AIK both Bob and Alice
agreed on. We assume that ITadmin does not own this AIK, i.e. does not know
its authorization data. This allows the following to happen:

– Bob (i.e. Bob’s PC) loads keyB and receives the key handle.
– Bob loads his AIK and receives its key handle.
– Bob sends TPM CertifyKey command including the following parameters:

• key handles of AIK and of keyB,
• Alice’s nonce,
• HMAC based on the usage authorization data of the AIK, according to

the TPM specification Part 3 [2] not covering the key handles,
• HMAC based on the usage authorization data of his own key keyB, also

not covering the key handles.
– ITadmin blocks this command.
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– ITadmin then loads its own key keyIT , receiving a key handle for this key.
– Then ITadmin removes the HMAC authorizing keyB and the key handle for
keyB from the TPM CertifyKey command and adds the key handle for its
own key keyIT and a new HMAC authorizing this key.

– Now the TPM generates a certificate not for keyB but for keyIT , using
Bob’s AIK, and returns this certificate, accompanied by an HMAC based on
the AIK authorization data and a second HMAC based on the authorization
data of keyIT .

– ITadmin blocks this message again, thus Bob’s PC will never receive any
reply (it would not accept the certificate anyway since it expects the second
HMAC to be based on the authorization data of Bob’s own key keyB which
ITadmin can not generate).

– ITadmin can now send the public part of keyIT to Alice, accompanied by a
certificate generated with an AIK not owned by ITadmin.

– Alice accepts this key since it has the required properties and since Alice has
no way of knowing who actually owns the key.

Why does the TPM accept the manipulated command TPM CertifyKey? In
general HMACs that protect the integrity of the commands never cover the key
handles that are used in the command. The reason for this lies outside of the
actual TPM specification. It is motivated by what is called virtualization of key
handles: Because of memory restrictions, the TPM can not handle more than a
certain amount of keys at a time. Thus the TPM might have to delete keys that
are still needed by an application. Each time a key is loaded again it usually is
assigned a different key handle. So in order to release higher level applications
from the task of having to re-load keys and to handle different key handles,
these applications just use one virtual key identifier. The process of re-loading
keys and managing the relation between this one identifier and the changing key
handles is kept by lower layer software, for example by the TPM Software Stack
(TSS), that provides an API to the application on one hand and communicates
with the TPM on the other hand. Nevertheless, applications shall be able to
construct and check HMACs for TPM commands. As this cannot be done with
the virtual key handle, key handles are not included.

Since the key handles of TPM CertifyKey are not covered by the HMACs,
exchanging the key handle for keyB and the corresponding HMAC does not
invalidate the HMAC corresponding to the AIK. Hence both HMACs are valid
and the TPM processes the command. In Section 6 we will explain how this
attack can be avoided.

Integrity of key blobs. As explained in Section 2, keys generated by the TPM
have a certain structure. The public part contains information like the key being
or not being migratable, like PCR values the key may be bound to, it contains the
actual public key part, etc. The sensitive part is encrypted using the key’s parent
and contains the private key part, the key authorization data, etc. However, this
structure does not allow to identify the key other than by its public key part.
Hence the integrity of a key can not be protected by TPM functionality, i.e. if
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no additional measures are taken the exchange of one key by another key that
has the same parent will not be noticed.

We assume now that between the creation of Bob’s key and its loading into
the TPM some time passes, i.e. that meanwhile the key is stored in PC Memory.
We assume further that ITadmin knows the parent key of keyB (e.g. because it
is the SRK). Thus ITadmin can generate its own key blob for some key keyIT
using the parent key of keyB. It can now substitute the key blob of keyB stored
in PC Memory by its own, unnoticed by Bob (and Bob’s PC). Now the following
command sequence can happen:

– Bob (i.e. Bob’s PC) loads ITadmin’s destination key keyIT instead of his
own and receives the key handle.

– Bob loads his AIK.
– Bob sends TPM CertifyKey command including the key handles of his AIK

and of keyIT , Alice’s nonce, an HMAC based on the usage authorization
data of the AIK, again not covering the key handles, and an HMAC based
on the usage authorization data of his own key keyB, also not covering the
key handles.

– ITadmin blocks this command, removes the HMAC authorizing keyB and
adds a new HMAC authorizing its own key keyIT .

– The rest of the process is as described above: TPM generates a certificate
for keyIT , using Bob’s AIK, and returns this certificate.

– ITadmin blocks this message again and then can send keyIT to Alice, ac-
companied by a certificate generated with an AIK not owned by ITadmin.

In both cases described above ITadmin and not Bob will receive the data
intended for Bob. The case where ITadmin has a further TPM3 for his own
platform PF3 available does not make any difference in this attack scenario.

6 Risk Mitigation in the Further Evolution of the TPM
Specification

As explained in the introduction, the security problems introduced here are the
result of work conducted for the German Federal Office for Information Security
(BSI). We introduced the results of our work into the TPM working group of
the TCG (the ones explained in this paper and others as well). In consequence
newer revisions of the TPM specification include remarks that point out the
encountered problems and and give hints as to how they can be avoided.

In order to avoid the possibility to manipulate the TPM CertifyKey com-
mand a so-called transport session can be established that encrypts command
and response data. To do this, before starting the command sequence shown in
Figure 1, the TPM user that wants the TPM to generate a certificate for a key
has to do the following (for example directly before sending the TPM CertifyKey
command, see Figure 1).

– start an OIAP session with TPM OIAP and load a key she owns with
TPM LoadKey
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– use the public part of this key to encrypt a symmetric key to be used within
the transport session (inside or outside of the TPM),

– set the TPM TRANSPORT ENCRYPT flag within TPM TRANSPORT
ATTRIBUTES which is contained in TPM TRANSPORT PUBLIC, one of
the parameters of the TPM command,

– send TPM EstablishTransport to the TPM containing TPM TRANSPORT
PUBLIC and the encrypted session key.

The TPM generates a transport session handle, decrypts the session key and
stores both for later use (note that for transport sessions as well as for OIAP and
OSAP sessions, a so-called rolling nonce procedure is used, we omit the technical
details here). It then returns the transport handle (among other information).

Now instead of sending TPM CertifyKey in clear, the command has to be
wrapped with the established session key and included as wrappedCmd parameter
in TPM ExecuteTransport, refering to the transport session using the respective
handle. The TPM decrypts the command, processes it as usual and returns the
wrapped response. Note that wrapping the command means that encryption is
performed only on the command data, i.e. key handles and HMACs etc. are kept
in cleartext. Hence this does not yet prohibit to manipulate TPM CertifyKey.
However, if the command parameter TPM NONCE that can be used to ensure
the freshness of the certificate indeed contains a nonce which is additionally
not known to a possible attacker, she can exchange the key handle but can not
produce the respective HMAC since this has to cover the nonce as well. So confi-
dentiality of the nonce is an important precondition for prohibiting manipulation
of TPM CertifyKey using a transport session.

Preserving the integrity of key blobs is more difficult and depends on the
actual context the key shall be used in. In our scenario where the key is not used
by the TPM but only certified, one possibility to verify the key’s integrity is to
load the key and then use it, for example for verifying a signature generated with
this key. In cases where the key shall actually be used by the TPM different key
usage authorization data will reveal that the wrong key blob has been loaded.

7 Conclusions

The Trusted Platform Module TPM, used accurately, provides the means to
considerably enhance the security of platforms and systems. Yet it is highly
complex and hence the specification is difficult to understand. Previous work
on the security evaluation of TPM functionality has covered only small details.
In this paper we presented some results of a first systematic security evaluation
covering large parts of the specification. Our work revealed certain problems
that can lead to security flaws and resulted in later revisions of the specification
containing remarks that address these problems. Work by the TPM working
group of the TCG on the specification is still in progress, our future work will
address security evaluations of next generation TPM specifications.
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Abstract. Side channel cryptanalysis is a collective term for implemen-
tation attacks aiming at recovering secret or private keys from a crypto-
graphic module by observing its physical leakage at run-time. Stochastic
methods have already been introduced for first order differential side
channel analysis. This contribution provides a compendium for the use
of stochastic methods on masked implementations, i.e., on implementa-
tions that use internal random numbers in order to effectively prevent
first order side channel attacks. Practical evidence is given that stochas-
tic methods are also well suited for analyzing masked implementations,
especially, as they are capable of combining several chosen components
of different internal states for a multivariate side channel analysis.

Keywords: Side Channel Cryptanalysis, Stochastic Methods, Boolean
Masking, Multivariate Side Channel Analysis, Higher-Order Side Chan-
nel Analysis.

1 Introduction

Traditionally, cryptanalysis employs mathematical tools to evaluate the secu-
rity claims by cryptographers. However, once cryptographic schemes are imple-
mented in integrated circuits such as smartcards, the resulting cryptographic
implementation can no longer be solely seen as a mathematical object. More-
over and much more impressively, recent research results in the last decade have
demonstrated that implementation attacks are a serious threat to cryptographic
modules.

In reality, information flow also occurs on measurable physical channels such
as the execution time, the power consumption, and the electromagnetic ema-
nation of a cryptographic implementation. These channels are known as side
channels in literature and may leak information on internal states of a crypto-
graphic implementation at run-time. An adversary is said to be successful if side
channel cryptanalysis yields to a critical entropy loss of a secret or private key
used in a cryptographic implementation.
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This contribution deals with the usage of instantaneous physical observables
in the immediate vicinity of the cryptographic device, e.g., power consumption
or electromagnetic radiation [9,6]. The underlying working hypothesis for side
channel cryptanalysis assumes that measurable observables depend on the in-
ternal state of a cryptographic algorithm whereby this dependency is specific
for each implementation. This dependency can be predicted, e.g., by assuming
a standard leakage model such as the Hamming weight or Hamming distance
of internal states [2] at key recovery. More powerful attacks, however, aim at
learning the exploitable side channel leakage prior to key recovery.

Such advanced attacks have been proposed by [4,15]. They consist of two
stages, a so-called profiling stage and a key recovery stage. Both stages use the
same implementation, but usually differ in assumptions on the available know-
ledge. In the context of this contribution it is assumed that plaintext (or cipher-
text), keys and masking values are known at the profiling stage. At key recovery
only plaintext (or ciphertext) is assumed to be known to the adversary. Both
approaches [4,15] have in common that key recovery applies the maximum like-
lihood principle based on multivariate Gaussian probability densities that have
been estimated during profiling. Reference [4] introduces template attacks that
acquire empirical probability densities for each key dependency. For use with
block ciphers, stochastic methods [15] approximate the probability density by
considering selected basis functions of internal states for profiling, thus offering
a significant reduction of required efforts. Additionally, by testing suitable basis
functions a developer can gain insights in the nature of the side channel leak-
age. Reference [7] provides a performance analysis for templates and stochastic
methods. It concludes that T-Test based templates are usually the method of
choice, however, stochastic methods are of importance in case the adversary is
limited at profiling. Limitations at profiling may be caused by a low number of
measurements or by a high number of subkey dependencies for a given cipher.

In response to Differential Side Channel Analysis (DSCA) developers of cryp-
tographic implementations may include randomization techniques such as secret
splitting or masking schemes, e.g., [3,5]. These randomization techniques shall
prevent from predicting any relevant bit in any cycle of the implementation. As
result, statistical tests using physical observables at one instant, i.e., first order
side channel analysis, cannot be assumed to be successfully applied in key re-
covery. However, as already indicated in [9] high-order differential analysis can
combine multiple instants from within a measurement trace. Previous work on
second-order DSCA [11,17] constructs a new leakage signal by multiplying (or
subtracting) the observables at related time instants before statistics is applied.
This reduction generally loses information if compared to a multivariate analysis.
By assuming that the leakage signals follow the n-bit Hamming weight model [8]
provided a derivation on the height of the expected second-order DPA signals and
[14] uses predicted probability density functions to improve second-order power
analysis. Further practical results for second- and higher-order DPA acting on the
Hamming weight assumption are given by [13,16]. Moreover, Template-enhanced
DPA attacks were introduced in [1] to defeat masking under the assumption that
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the adversary has access to an implementation with a biased random number
generator during profiling. Reference [12] evaluates different types of template
attacks attacks on masked implementations and concludes that a template based
DPA attack leads to the best results.

This contribution elaborates stochastic methods for analyzing masked imple-
mentations and provides experimental case studies for a boolean masking scheme
in Section 3.

2 Stochastic Methods on a Masked Implementation

2.1 Introduction to the Stochastic Model

The stochastic model [15] for non-masked implementations assumes that the
adversary measures physical observables at time t in order to guess a subkey
k ∈ {0, 1}s. The letter x ∈ {0, 1}d denotes a known part of the data, i.e.,
plaintext or ciphertext, respectively. A physical observable It(x, k) at time t is
seen as a random variable

It(x, k) = ht(x, k) +Rt . (1)

The first summand ht(x, k) quantifies the deterministic part of the measure-
ment as far it depends on x and k. The term Rt denotes a random variable
that does not depend on x and k. Rt includes all kinds of noise as there are
intrinsic and external noise, noise of the measurement apparatus and algorith-
mic noise that stems from deterministic contributions that do not depend on x
and k. The random variable It(x, k) is interpreted as ‘displaced’ noise Rt with
mean displacement ht(x, k). Without loss of generality one may assume that
E(Rt) = 0 since otherwise one could replace ht(x, k) and Rt by ht(x, k) + E(Rt)
and Rt − E(Rt), respectively. It follows E(It(x, k)) = ht(x, k). In this contribu-
tion, random variables are denoted with capital letters while their realizations,
i.e. measured quantities, are denoted with the respective small letters.

Stochastic methods profile the real physical leakage by approximation within
a suitable chosen vector subspace that is spanned by basis functions of one or
several intermediate results of the cryptographic implementation. For practical
purposes, it is important to note that the subkey space is chosen to be sufficiently
small as at key recovery all subkey hypotheses have to be tested.

Example 1. For an unmasked implementation of AES, one may use the inter-
mediate result x0 := S(x ⊕ k), i.e. the 8-bit output of the AES S-box S given
8-bit data x and an 8-bit subkey k. A suitable vector subspace is spanned by the
constant function 1 and the single bits of x0. See [15] for more details.

In the stochastic model profiling aims to determine a function h∗t (·, ·) that is
‘close’ to the unknown function ht(·, ·). For simplicity, attention is restricted to
the set of functions Fu;t, that is a real vector subspace spanned by u known
functions gtl : {0, 1}d × {0, 1}s → R for each instant t:

Fu;t := {h′ : {0, 1}d × {0, 1}s → R |
u−1∑

l=0

βlgtl with βl ∈ R} (2)
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One may assume that the functions gtl are linearly independent so that Fu;t is
isomorphic to Ru.

2.2 The Stochastic Model for Masked Implementations

As already outlined in [15] the stochastic model of Section 2.1 can be generalized
to the presence of masking. This generalized model assumes that the adversary
measures physical observables at time t that additionally depend on a mask
y ∈ {0, 1}v. A physical observable It(x, y, k) at time t is seen as a random
variable

It(x, y, k) = ht(x, y, k) +Rt (3)

The first summand ht(x, y, k) quantifies the deterministic part of the measure-
ment as far it depends on x, y, and k. The term Rt denotes a random variable
that does not depend on x, y, and k and fulfills E(Rt) = 0.

For the approximation at masked implementation, a real vector subspace Fu;t

is used that is spanned by u known functions gtl : {0, 1}d×{0, 1}v×{0, 1}s → R
for each instant t:

Fu;t := {h′ : {0, 1}d × {0, 1}v × {0, 1}s → R |
u−1∑

l=0

βlgtl with βl ∈ R} (4)

The detailed algorithms for profiling masked implementations are provided in
SubSect. 2.3. SubSect. 2.4 presents decision strategies for key recovery.

2.3 Profiling

Under the assumption that the adversary has access to the random numbers used
for masking profiling works similar to [15]. In the context of this explanation,
we assume that the adversary uses a known static key k for all N measurement
vectors that are assumed to be available at the profiling stage. Alternatively, it
is possible to use known variable keys instead that are loaded randomly for each
measurement.

Profiling is split into up to three tasks:

1. Estimation of the deterministic part ht(x, y, k),
2. Selection of (relevant) instants for a multivariate characterization, and
3. Estimation of the multivariate noise.

This contribution considers the two main methods of the stochastic model [15]:
the minimum principle and the maximum likelihood principle. Both differ in
certain parts of the profiling and key recovery phase. While it is sufficient for
the minimum principle to profile the deterministic side channel leakage and to
select relevant instants, the maximum likelihood principle additionally requires
an estimation of the multivariate noise. Table 1 summarizes the differences.
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Table 1. Tasks for the minimum principle and the maximum likelihood principle. Note
that the number of measurements N is split into two disjoint subsets N1 and N2 with
N1 + N2 = N for the maximum likelihood principle.

Method Minimum Principle Maximum Likelihood
Principle

Estimation of the deterministic part yes (N samples) yes (N1 samples)
Selection of instants yes (N samples) yes (N1 samples)

Estimation of the noise no yes (N2 samples)

Estimation of the deterministic part: For the following explanations a p×N
matrix I is introduced that is defined by the N measurement vectors ii ∈ Rp

with 1 ≤ i ≤ N :

I =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

i11(x1, y1, k) i12(x1, y1, k) . . . . iip(x1, y1, k)
i21(x2, y2, k) i22(x2, y2, k) . . . . i2p(x2, y2, k)

. . .

. . .

. . .
iN1(xN , yN , k) iN2(xN , yN , k) . . . . iNp(xN , yN , k)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5)

The i-th row vector is the original i-th measurement vector. For each row vec-
tor there is an associated plaintext (or ciphertext) xi ∈ {0, 1}d and an as-
sociated mask yi ∈ {0, 1}v. The j-th column vector of matrix I is ij

col :=
(i1j , i2j, . . . , iNj)T and includes all measurement values for the same instant j.
In the following, the notation iij(xi, yi, k) is used instead of it(xi, yi, k). Profil-
ing of the deterministic part is done separately for each instant, i.e., for profiling
purposes the column vector ij

col is the starting point.
For each sampled instant j ∈ {1, . . . , p}, the adversary chooses uj functions gjl

with 0 < l ≤ uj that span the vector subspace Fuj ;j . In the presence of masking
the vector subspace is reasonably spanned by two (or more) intermediate results
that occur during computation. This yields a joint probability density of the side
channel leakage at two (or more) intermediate results.

Example 2. One choice for profiling is to choose the n-bit intermediate results y
and x ⊕ y ⊕ k in case of a boolean masking scheme (see Section 3 for details).
One may define a 2n + 1 dimensional vector subspace that is spanned by the
constant function 1 and the single bits of y and x⊕ y ⊕ k.

The fitting problem to be solved is to find real valued coefficients βj := (βj0, . . . ,
βj,uj−1)T such that the measurement quantities iij(xi, yi, k) and controlled quan-
tities gj0(xi, yi, k), . . . , gj,uj−1(xi, yi, k) are linked by

iij(xi, yi, k) = βj0 +
uj−1∑

l=1

βjlgjl(xi, yi, k) ∀i ∈ {1, . . . , N}

in Fuj ;j . This then yields an approximation on the deterministic part of the
side channel for the instantiation of the stochastic variable Ij at sampled instant
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j given the controlled variables gj0(x, y, k), . . . , gj,uj−1(x, y, k) with gj0(x, y, k)
being the constant function 1. The coefficient βj0 gives the expectation value
of the non-data dependent signal part. The coefficients βjl with l �= 0 are the
data dependent signal portions, thereby indicating the points in time where
exploitable side channel leakages occurs.

The coefficients βj are approximated with least squares estimates. The N×uj

design matrix for this problem is

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 gj1(x1, y1, k) gj2(x1, y1, k) . . . gj,uj−1(x1, y1, k)
1 gj1(x2, y2, k) gj2(x2, y2, k) . . . gj,uj−1(x2, y2, k)
. . .
. . .
. . .
1 gj1(xN , yN , k) gj2(xN , yN , k) . . . gj,uj−1(xN , yN , k)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (6)

The solution to the general linear least square problem is then given by

β∗
j =

(
MTM

)−1
MT ij

col (7)

provided that MT M is regular. As result, for each sampled instant j ∈ {1, . . . , p}
the deterministic part is estimated by

h̃∗j (x, y, k) =
uj−1∑

l=0

β∗
jlgjl(x, y, k) . (8)

Selection of (relevant) instants: It is highly desirable to sort out instants
that do not contribute to the deterministic leakage in order to reduce noise
as well as the dimension of the characterization problem for the maximum
likelihood approach. Instant selection algorithms aim to find the points of in-
terest j with significant contributing coefficients β∗

jl for l > 0. An appropri-
ate method for selecting contributing instants is based on the T-Test and can
be found in [7]. Previous algorithms based on the squared Euclidean norm
‖b‖2 := ‖(β∗

j1, β
∗
j2, ..., β

∗
j,uj−1)‖2 =

∑uj−1
i=1 β∗

ji
2 of contributing coefficients are

given in [15].

Estimation of the multivariate noise: For the maximum likelihood principle
one needs to determine a multivariate density. Therefore, it is assumed that
the random vector Rt is jointly normally distributed with covariance matrix
C = (cuv)1≤u,v≤m, i.e. cuv := E(RtuRtv) − E(Rtu)E(Rtv ). For this task the
adversary uses a complementary set that consists of N2 = N −N1 measurement
curves to estimate the distribution of the m-dimensional random vector Rt =
It(X,Y, k) − ht(X,Y, k). Herein, the vector t stands for (t1, . . . , tm), i.e., the
m selected instants. Rt and It denote the random vector (Rt1 , . . . , Rtm) and
(It1 , . . . , Itm), respectively. For the estimation of the covariance matrix C, the
adversary computes the N2 vectors zi := it(xi, yi, k)− h̃

∗
t (xi, yi, k).
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If the covariance matrix C is regular the random vector Rt is estimated to
have the m-dimensional density f̃C with

f̃C : Rm → R f̃C(z) =
1

√
(2π)m detC

exp
(

−1
2
zT C−1z

)

. (9)

2.4 Key Recovery

Key recovery targets the same implementation that is now loaded with an un-
known key k◦ and uses internally generated random numbers for masking. For
the analysis, N3 measurements are assumed to be available. In the key recovery
phase, however, knowledge of the masks y1, . . . , yN3 cannot be assumed. Note
that the measured quantities it(xi, yi, k

◦) depend on two unknown values, the
ever-changing value yi and the fixed value k◦.

From a logical point of view masking reduces the adversary’s information. At
a non-masked implementation the adversary is able to predict any intermediate
result if the guessed subkey k is equal to k◦ [15]. Therefore the adversary is able
to estimate on h̃

∗
t(xi, k) and to obtain a probability measure to indeed observe

each subkey k. At a masked implementation the actual intermediate result has
to be treated as an unknown number in the most general case. Instead of one
intermediate result and therefore one estimated density a masked intermediate
result can attain all outcomes h̃

∗
t(xi, 0, k) up to h̃

∗
t(xi, 2v − 1, k). The best ad-

versarial strategy is to use all possible outcomes weighted with the probability
for each random number y′ ∈ {0, 1}v. If these random numbers are unbiased and
independent then P(yi = y′) = 2−v for all i ≤ N3 and y′ ∈ {0, 1}v.

Minimum Principle: The adversary evaluates

αMP (x1, . . . , xN3 ; k) :=
1
N3

N3∑

i=1

min
y′∈{0,1}v

‖it(xi, yi, k
◦)− h̃

∗
t (xi, y

′, k)‖2 (10)

and decides for the subkey k′ ∈ {0, 1}s that minimizes αMP (x1, . . . , xN3 ; k):

k′ = arg min
k∈{0,1}s

αMP (x1, . . . , xN3 ; k) . (11)

Equations (10) and (11) are referred to as the minimum principle in the pres-
ence of masking. Small values of the squared Euclidean norm ‖it(xi, yi, k

◦) −
h̃
∗
t(xi, y

′, k)‖2 indicate small deviations of the side channel leakage from the de-
terministic part and therefore enhance the probability for indeed observing the
event of y′ = yi and k = k◦. Accordingly, the guess of a subkey k is probably
not correct if high values of the term ‖it(xi, yi, k

◦)− h̃
∗
t(xi, y

′, k)‖2 are attained
for all possible masks.

Maximum Likelihood Principle: The adversary hence decides for the subkey

k′ = arg max
k∈{0,1}s

αMLP (x1, . . . , xN3 ; k) (12)
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that maximizes the term

αMLP (x1, . . . , xN3 ; k) :=
N3∏

i=1

∑

y′∈{0,1}v

P(yi = y′)f̃C
(
it(xi, yi, k

◦)− h̃
∗
t(xi, y

′, k)
)

(13)
among all k ∈ {0, 1}s. The mixture of densities on the right-hand side of (13)
also depends on the unknown random numbers y1, . . . , yN3 .

Maximizing the term αMLP (x1, . . . , xN3 ; k) in (13) is equivalent to maximizing
ln (αMLP (x1, . . . , xN3 ; k)). By setting zi,y′,k = it(xi, yi, k

◦)− h̃
∗
t(xi, y

′, k) in the
multivariate Gaussian density and neglecting constant factors of the Gaussian
distribution in equation (9), ln (αMLP ) := ln (αMLP (x1, . . . , xN3 ; k)) results in

ln (αMLP ) :=
N3∑

i=1

ln

⎛

⎝
∑

y′∈{0,1}v

P(yi = y′) · exp
(

−1
2
· zT

i,y′,kC
−1zi,y′,k

)
⎞

⎠ .

(14)
For high values of N3, using the term in (14) is the practical method of choice
for guessing the subkey

k′ = arg max
k∈{0,1}s

ln (αMLP (x1, . . . , xN3 ; k)) . (15)

3 Experimental Analysis of a Masked Implementation

Parameters with an impact on efficiency in side channel cryptanalysis include
(i) the quantity of inherent leakage (chip dependent), (ii) the quality of the lab-
oratory equipment (lab dependent), and (iii) the algorithms’ ability to extract
information (method dependent). Among them, this experimental analysis deals
with the method dependent part. Experiments have been carried out with a
standard microcontroller that is commercially available and does not incorpo-
rate any hardware side channel countermeasures. These experiments are used
for a proof of concept of our proposed algorithms. The absolute success rates
given here are specific for our implementation. Moreover, improvements of the
laboratory equipment used may be conceivable and the analysis of physically
secured integrated circuits may require significantly enhanced efforts. For a fair
comparison of different methods in the presence of masking, e.g., with the dif-
ferent types of template attacks in [12] it is absolutely necessary to use the
same set of measurement vectors. The concrete physical leakage function of the
cryptographic implementation has presumably also an impact on efficiency, i.e.,
some previously proposed methods may work nicely only if the physical leakage
corresponds to the Hamming weight.

This section focuses on an application of the most general case for higher
order analysis in the presence of masking, i.e., an implementation of boolean
masking is considered that is typically the first step of, e.g., a masked AES or
DES implementation. At a masked cryptographic implementation it is further
necessary to switch the mask at non-linear or arithmetic operations which is not
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x

Time

k

y

Fig. 1. Process of boolean masking

considered as part of this experimental analysis. Then the situation is even more
favorable because of additional leakage signals, e.g., caused by S-Box processing
or the use of a restricted form of masking.

The implementation done on an 8-bit microprocessor AT90S8515 proceeds as
shown in Fig. 1. Note that there are different implementation choices of masking.
Alternatively, it can be assumed that x⊕ y is computed first before adding the
key k, as, e.g., done in [11]. The motivation for the choice of this implementation
in Fig. 1 is based on the fact that neither x⊕k nor x⊕y should be observable at
a single point in time. Leakage on y, k, x, y⊕ k and y⊕ k⊕ x, however, remains
observable at single instants.

The physical channel used is the power consumption of the 8-bit microproces-
sor AT90S8515. By using the estimation of the deterministic part it was assured
that first order differential analysis is prevented by verifying that leakage of the
intermediate results k ⊕ x and y ⊕ x at single instants is negligible if any.

3.1 Profiling Phase

Concretely, four measurement series were recorded with N = 10, 000 measure-
ments each using different fixed keys. Further, one additional measurement series
includes N = 20, 000 measurements with varying keys drawn randomly from a
uniform distribution. All these series were used for profiling purposes.

For profiling a ‘white-box’ model is assumed, i.e., x, k, and y are known.
Profiling applies the stochastic model at the two intermediate results y ∈ {0, 1}8
and (y ⊕ k ⊕ x) ∈ {0, 1}8. More concretely, the vector subspace is spanned by
the constant function 1, the bits of y, and the bits of x ⊕ y ⊕ k yielding an 17
dimensional vector subspace. In a first try, the deterministic part h∗j (x, y, k) was
approximated by

h̃∗j (x, y, k) = β∗
j0 · 1 +

8∑

l=1

β∗
jl · gl(y) +

16∑

l=9

β∗
jl · gl−8(x⊕ y ⊕ k) . (16)

Herein, the function gl : {0, 1}8 → {0, 1} outputs the l-th bit of an 8-bit data item
with a bit ordering from the most significant bit (l = 1) to the least significant
bit (l = 8). The coefficients β∗

jl are determined by solving (7). As result, it turned
out that leakage signals of y and x⊕ y⊕ k are well separated in time. Therefore,
it is appropriate to reduce the number of dimensions during profiling which helps
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Fig. 2. Squared Euclidean norm ‖b‖2 = ‖(β∗
j1, β

∗
j2, ..., β

∗
j16)‖2 of the bit depending coef-

ficients as result of profiling according to equation (17) by using the measurement series
with varying key data. Note that this computation includes two sets of basis functions
in subsequent, but separated time frames. High values for ‖b‖2 indicate instants with
significant deterministic side channel leakage.

in suppressing noise in the estimation process. For the refined application of (7),
the chosen vector subspace depends on the time instant j, i.e., y is profiled if
0 < j ≤ 2500 and x⊕ y ⊕ k is profiled if 2500 < j ≤ 10000:

h̃∗j (x, y, k) =

{
β∗

j0 · 1 +
∑8

l=1 β
∗
jl · gl(y) if 0 < j ≤ 2500

β∗
j0 · 1 +

∑16
l=9 β

∗
jl · gl−8(x⊕ y ⊕ k) if 2500 < j ≤ 10000

(17)

Accordingly, the coefficients β∗
jl are set to zero if not profiled in the given time

frame:

β∗
jl :=

{
0 if (9 ≤ l ≤ 16) and (0 < j ≤ 2500)
0 if (1 ≤ l ≤ 8) and (2500 < j ≤ 10000)

Fig. 2 shows the squared Euclidean norm of the data dependent coefficients β∗
jl

with l > 0 as result of solving (7) given the vector subspaces of (17).
Profiling by using the vector subspace given in (17) was also applied to four

measurement series with different fixed keys. By comparing experimental pro-
filing results it turned out that the estimated coefficients β∗

jl differ significantly
for different measurement series at a few instants (see Fig. 3). There are even
leakage contributions that are completely suppressed in the series with varying
keys, thus indicating that there is key dependent leakage which averages to zero
if considering profiling based on varying keys. The selection of relevant instants
for the series with varying keys yielded ten instants. For the series with fixed keys
two additional signals were found and included in the set of selected instants.

According to Table 1, all N measurements were used for estimating β∗
jl for

the minimum principle. Profiling for the maximum likelihood principle uses the
setting N1 = N2 = N/2, i.e., half of the measurements were used for estimating
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Fig. 3. Squared Euclidean norm ‖b‖2 = ‖(β∗
j1, β

∗
j2, ..., β

∗
j16)‖2 of the bit depending

coefficients after profiling for different series. In these time frames, e.g., in the upper
plot around offset 2260 and 2480, profiling results with fixed keys give a signal part
that is wiped out if profiling is done with varying keys. The lower plot shows resulting
differences in the estimation for fixed keys. For each series, 10, 000 single measurements
were used.

β∗
jl. For the maximum likelihood principle, based on the selected instants, the

covariance matrix for the multivariate Gaussian density was then computed as
described in SubSect. 2.3.

3.2 Key Recovery Phase

At key recovery, the adversary generally only knows x and aims at retrieving the
fixed key k◦. Key recovery was done at a series with fixed keys provided that
the series assigned for profiling was different. As far as key recovery according
to the maximum likelihood principle is concerned equations (14) and (15) were
used.

Maximum Likelihood Principle: Results for ‘varying key’ profiling are based
on a ten-dimensional covariance matrix and are summarized in Table 2.

Note that in case of misses of the correct key value often a closely related
key value differing only at one bit is obtained instead, especially at high values
of N3. Such an observation is reasonable, as differential side channel analysis
on a boolean operation yields to related key hypotheses [10]. Results for ‘fixed
key’ profiling can be found in Table 3 by using a twelve-dimensional covariance
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Table 2. Success Rate (SR) that the correct key value is the best candidate as result
of (14) by using N3 randomly chosen measurements (100 repetitions). Profiling was
done with variable keys with N1 = N2 = 10000.

N3 SR Series no. 1 SR Series no. 2 SR Series no. 3 SR Series no. 4

10 8 % 9 % 5 % 6 %
20 20 % 24 % 14 % 13 %
30 26 % 33 % 22 % 24 %
50 53 % 53 % 36 % 34 %
100 82 % 78 % 55 % 62 %
200 92 % 95 % 79 % 82 %
400 98 % 99 % 93 % 96 %

Table 3. Profiling with fixed key for series no 2, no. 3, and no. 4 with N1 = N2 =
5000 and key recovery on series no 1. Success Rate (SR) that the correct key value
is the best candidate as result of (14) by using N3 randomly chosen measurements
(100 repetitions).

N3 SR Profiling Series no. 2 SR Profiling Series no. 3 SR Profiling Series no. 4

10 0 % 4 % 4 %
20 5 % 11 % 12 %
30 11 % 25 % 17 %
50 6 % 21 % 32 %
100 24 % 53 % 53 %
200 42 % 78 % 76 %
400 50 % 96 % 86 %

matrix. Table 3 applies three different probability densities (obtained from series
no. 2, 3, and 4) to series no. 1 yielding results of various quality. This is a clear
indicator for a lack of symmetry at some instants. If comparing Table 2 with
Table 3 the average success rate for key recovery is 69 % for ‘varying key’ profiling
while it is 43 % for ‘fixed key’ profiling at N3 = 100. Trial classifications on the
profiling series themselves, however, yield success rates of 97 % at N3 = 100.
These results lead to two conclusions. First, it is indicated that profiling for all
subkeys will clearly increase success rates and second, the use of a measurement
series with varying keys is advantageous if profiling for all subkeys is not feasible,
e.g., because of limitations at the profiling stage.

Maximum Likelihood Principle with Known Masking Values: Here, we
consider an artificial case that key recovery can be done with known masking
values, i.e., masking is completely ineffective. This might be a realistic case if
the random number generator used for generating masking values is predictable,
e.g., as result of physical modification or of special insights in the construction.
The procedure for key recovery was modified in such a way that y is known
and is equivalent to a first order side channel analysis. Results are presented in
Table 4. For example, for N3 = 10 the success rate to obtain the correct key
value is 62.0 %. Among the key misses, a total amount of 25.5 % aggregates
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Table 4. Summarizing the results of key recovery with knowledge of masking values.
Success Rate (SR) that the correct key value is the best candidate (1000 repetitions)
on series no. 1.

N3 SR (Known masking values)

2 8.8 %
3 17.2 %
5 31.3 %
7 46.0 %
10 62.0 %
20 89.1 %
30 97.3 %
50 99.5 %

Table 5. Summarizing the results of the application of the minimum principle. Profiling
was done on the series with varying keys and it was N = 20, 000. Success Rate (SR)
that the correct key value is the best candidate (100 repetitions) on series no. 1.

N3 SR (Minimum Principle)

10 5 %
20 11 %
30 12 %
50 14 %
100 42 %
200 65 %
400 89 %

at eight related key values differing only by one bit from the correct key value.
The security gain of masking in terms of N3 can be quantified if comparing to
Table 2, series no. 1. If considering success rates of about 90 %, N3 is enlarged
by roughly a factor of ten.

Minimum Principle: For the application of the minimum principle, the series
with varying keys was used for profiling and the choice of time instants was
identical to the application of the maximum likelihood principle. The results
give evidence that the minimum principle works in practice. Success rates of
42 % if N3 = 100 and of 89 % if N3 = 400 were obtained by using series no. 1
(see Table 5). These results can be compared with the column for series no. 1
in Table 2 and reveal a noticeable efficiency loss if compared to the maximum
likelihood principle.

4 Conclusion

This contribution provides a compendium for the application of stochastic meth-
ods on masked implementations. Stochastic methods do not require any assump-
tion of the physical leakage model, instead they provide an approximation of
the side channel leakage in any given vector subspace as result of the profiling
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stage. Because of that, stochastic methods are indeed a practical alternative
for analyzing masked cryptographic implementations and may be important for
a developer of a masked cryptographic implementation in order to figure out
remaining side channel leakage.
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Abstract. Most wireless communication techniques rely on broadcast
media on the physical layer, i.e., the actual signal can be received by
any party in a certain coverage area. Furthermore, there are cable-based
networks, such as HFC (hybrid fiber/coaxial) networks that use a shared
transmission medium (coaxial cable) to bridge the last mile.

A common means to perform secure unicast (point-to-point) commu-
nication over such wireless or shared transmission media is by applying
cryptographic protocols on higher layers of the protocol stack. As of to-
day, a common assumption in the design and analysis of such communica-
tion protocols is that both end-points (user and carrier) behave correctly
according to the cryptographic protocol, because they want to preserve
security against outsiders who might be sniffing private communication
of legitimate users. However, under certain conditions users may not be
interested in protecting their unicast communication against outsiders.
Instead, users may try to extend their communication power/resources
by means of insider attacks against the communication protocol.

Such insider attacks pose new threats to providers of communication
services and have, to the best of our knowledge, been neglected so far.
In this paper we will discuss insider attacks against several communi-
cation systems that can break the unicast communication enforced by
cryptographic means by the carrier of the communication infrastructure.

1 Introduction

Most wireless communication techniques rely on broadcast media on the phys-
ical layer, i.e., the actual signal can be received by any party in a certain cov-
erage area. Furthermore, there are cable-based networks, such as HFC (hybrid
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fiber/coaxial) networks that use a shared transmission medium (coaxial cable)
to bridge the last mile.

A common means to perform secure unicast (point-to-point) communication
over such wireless or shared transmission media is by applying cryptographic
protocols on higher layers: both communication end-points (user and carrier)
set up a session key, which is then used to build secure (private and authentic)
unicast communication by means of encryption and message authentication. As
of today, a common assumption in the design and analysis of such communication
protocols is that both end-points (user and carrier) behave correctly according
to the cryptographic protocol, because they want to preserve security against
outsiders.

However, if carriers have more power/resources in terms of bandwidth or
coverage, users may not be interested in protecting their unicast communica-
tion against outsiders. Instead, users may try to extend their communication
power/resources by means of insider attacks against the communication proto-
col. Such insider attacks pose new threats to these protocols and have, to the
best of our knowledge, been neglected so far.

In this paper we present insider attacks, which can break the unicast commu-
nication enforced by the carrier of the communication infrastructure. We define a
corresponding abstract communication model and sketch concrete instantiations
that are deployed in practice: satellite ISPs, WIMAX ISPs and cable (DOCSIS)
ISPs. We illustrate the effects of insider attacks mainly in terms of satellite ISPs,
because here the effects of insider attacks are most striking: the user normally
has a terrestrial link to the carrier and no means to broadcast data at all, while
the carrier can broadcast its signals over huge footprints, covering millions of
square kilometers. Our strongest insider attack may allow any end-user to make
clear-text satellite broadcasts via the ISP’s satellite, even if the downlink (data
sent from the satellite to earth) is properly encrypted by the satellite ISP, thereby
breaking the unicast communication structure enforced by the satellite ISP.

1.1 Outline

In Section 2 we introduce the general communication and attacker model and dis-
cuss state-of-the-art instantiations of this abstract communication model. Special
emphasis is on satellite ISPs, as we consider them the most interesting scenario
for insider attacks. In Section 3 we discuss several possible insider attacks against
communication protocols that allow an insider attacker to broadcast messages
via the ISP, although the ISP applies encryption. Section 4 we consider state-
of-the-art communication systems and show that they are susceptible to our
attacks. We conclude in Section 5.

2 Communication Models

Before going into the details of our analysis, we introduce the abstract commu-
nication model assumed in the remainder of this paper.
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2.1 Abstract Communication Model

The abstract communication model is as follows (cf. Figure 1): the carrier of the
communication infrastructure (also referred to as ISP), has a direct connection
to the Internet and offers Internet connectivity to its users. We consider one
of these legitimate users to be the insider attacker. The carrier/ISP communi-
cates to its users via a physical broadcast medium or shared medium. As such,
the communication (signals) from the carrier to its users can be received by
any outsider in range of the broadcasted signals or having access to the shared
medium. However, outsiders do not have access to the broadcasted message as
it is normally encrypted with a key shared between user and carrier to preserve
confidentiality against outsiders. Communication from the users to the carrier
may be either via broadcast/shared-medium (visible to outsiders) or via a private
communication link (not visible to outsiders).

Goal of the insider attacker is to make the carrier broadcast any message he
likes, such that it can be received by outsiders.

Below we review wireless- and shared-medium-based ISPs and communication
technologies that are state-of-the-art instantiations of this abstract communica-
tion model and, as such, susceptible to the attacks considered in our contribution.
Throughout the paper we assume that the insider attacker has read-access to its
key-material, which in practice might require hardware tampering if the protocol
is implemented completely in hardware.

More specifically, we will review three types of ISPs: Satellite ISPs, WIMAX
ISPs and Cable ISPs. As satellite-based ISPs have the biggest asymmetry in
terms of coverage, we consider them the most attractive target for insider attacks
as discussed below. Therefore, we will mainly focus on satellite-based ISPs to
illustrate these attacks. However, it is important to note that our attacks also
apply to other wireless/shared-medium communication protocols.

Fig. 1. Abstract Communication and Attacker Model
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2.2 Satellite ISPs

A satellite is a specialised wireless transmitter placed in terrestrial orbit for
television broadcast, radio communications and data services, such as Internet
access. Especially in low-infrastructure areas with limited physical/terrestrial
networks, satellites provide high-speed access to the Internet. Some of the ex-
isting digital communication satellites transmit TV signals together with data
communication so a user can use her dish and digital receiver for TV reception
as well as one-way Internet access. Satellite-based Internet access comes in two
flavours:

– One-Way with PSTN/ISDN up-link (asymmetric): In this lower cost option
the satellite handles only the data downstream with outbound data travelling
via modem/ISDN offering high download bandwidth1 and a rather small
terrestrial up-link bandwidth (up to 2 · 64 KBit/s).

– Two-Way with DVB-RCS up-link (symmetric): The more expensive two-
way access requires a satellite terminal, e.g., a VSAT (Very Small Aperture
Terminal), at the user’s side and yields higher bandwidth for up-links (up to
2 MBit/s). Other types of return channels are under consideration, but are
not broadly available yet (examples are Return Channel Cable and Return
Channel Terrestrial).

Independent of the flavour (one-way or two-way), users and provider of
satellite-based data services have highly asymmetric capabilities, both in terms
of bandwidth (45 MBit/s downlink vs. 2MBit/s up-link) and in terms of cov-
erage: the user normally has a terrestrial link to the carrier and no means to
broadcast data at all.2 The carrier, on the other hand, can broadcast its sig-
nals from the exposed orbital satellite position all over a huge footprint, covering
millions of square kilometers and hundreds of millions receiver.

Below we consider the operation of an (asymmetric) one-way satellite ISP,
because it is still more relevant. To illustrate how one-way satellite-based ISPs
operate, consider the setting where a user fetches a file from a web server. A
user establishes a small bandwidth dial-up Internet connection, e.g., using an
ISDN line to some ISP (which is not necessarily the same as the satellite ISP).
In order to initiate a download a request is sent through the dial-up line to
an ISP proxy server (Fig. 2, Step 1), which relays the request to the desired
destination (Fig. 2, Step 2). The reply coming from the server (e.g., a HTML
page) (Fig. 2, Step 3) is re-routed by the satellite ISP so that it will not come
back to the user’s PC through the dial-up line. Instead it will be encapsulated
1 The current bandwidth (applying the Digital Video Broadcasting (DVB) standards

[5]) offers a maximum data transfer rate of 45 MBit/s on one transponder frequency
being shared among several users for the downstream. However the provider often
limits the downstream bandwidth per user to a certain value, e.g., 1024 KBit/s.

2 Even if the user had a VSAT being able to send data, this would not allow broadcasts
with a comparable coverage, both because the transmitting power is significantly
lower and, even more importantly, the dish is located on earth, allowing only to
broadcast to a limited area (line of sight).
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Fig. 2. How a satellite Internet connection works

together with the user’s specific IP address into a signal based on the DVB
standard and the ISP ground station relays it to the satellite (Figure 2, Step 4).
The satellite broadcasts it and the user, having a satellite dish, a usual DVB
card and a dedicated proxy software, decodes the response on his PC. The proxy
software completes the TCP communication transparently for the application or
operating system (Fig. 2, Step 5).

Due to the broadcast character of satellite signals, the signal dedicated for
this user can be received by anyone in the footprint of the satellite.

2.2.1 Performance vs. Security
Satellite communication links differ in several characteristics from terrestrial
channels used for Internet communication [3]: Firstly, satellite communication
links have a relative large latency, due to the large altitude of satellites.3

This large latency also results in a long feedback loop between sending a TCP
packet and receiving the corresponding acknowledgement. Another important
characteristic is that satellite channels have a higher bit-error rate than wired
terrestrial networks.

As these characteristics would result in a significant performance degradation
of the TCP protocol4, performance enhancing techniques have to be applied
by the satellite ISP in order to achieve a satisfactory performance. Important
examples for performance enhancing techniques are

– local TCP acknowledgements by the ISP’s proxy (to speed up TCP slow start),
– local negative acknowledgements to improve error recovery,
– local TCP retransmissions from the satellite ISP to the client if a packet was

lost on the satellite link (improve error recovery),

For details, we refer the interested reader to [2,3,4].

3 According to [2] many satellites are located at the Geostationary Orbit with an
altitude of approx. 36.000 km. This results in a propagation delay of at least 279 ms
for one hop (station-to-satellite-to-ground).

4 As delayed feedbacks and transmission errors are interpreted as signals of network
congestion, TCP would automatically reduce the transmission rate. For more details
see [3].
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Satellite ISPs use a combination of performance enhancing techniques along
this line to improve the overall performance of their Internet access. Moreover,
application layer improvements, such as prefetching objects embedded in HTML
documents that have been requested by a user, are in place. Unfortunately, these
performance enhancements, implemented in performance enhancing proxies
(PEPs) and operated by satellite ISPs, are not compatible with standard low-level
security measures such as IPSEC because PEPs break the end-to-end semantics
of a connection and the proxy interferes with the transport layer security mea-
sures, e.g., by sending pre-acknowledgements. Therefore, some PEPs also include
proprietary security protocols to encrypt and authenticate communication.

2.3 WIMAX ISPs

The first WIMAX standard, known as 802.16-2001, incorporated a pre-existing
standard, DOCSIS (Data Over Cable Service Inferface Specification). However,
due to the different threat models of wired and wireless communication, security
of the original 802.16-2001 standard failed to provide adequate protection. John-
ston and Walker [7] discuss several security weaknesses of the original standard,
some of which are:

– use of 56-Bit DES encryption in CBC-mode (cipher block chaining)
– lack of mutual authentication: base station does not have to authenticate

itself
– no formally defined and weak authorization security association, paving the

way for replay attacks

This security level had been considered sufficient, because 802.16 had origi-
nally been designed to be a line-of-sight point-to-multipoint communication sys-
tem. As new features, such as mobility and non-line/near-line of sight (NOLS)
were to be included in the standard, these security weaknesses became increas-
ingly pressing and have been addressed by improving the 802.16 security mech-
anisms in the new version of the standard IEEE 802.16-2004.

The security sublayer consists of two main components: first, the PKM (Pri-
vacy and Key Manangement) protocol, providing network access control (authen-
tication based on public key cryptography and X.509 certificates) and secure key
distribution from the base station (BS) to the subscriber station (SS). Second,
the encapsulation protocol, defining a set of supported cryptographic suites and
rules for applying these suites to encrypt (and authenticate) MAC PDU payload.
Besides DES CBC packet data encryption, 802.16-2004 defines AES encryption
in CCM (Counter Mode with Cipher Block Chaining MAC) mode as an addi-
tional packet data encryption algorithm.

3 Insider Attacks and Countermeasures

3.1 A General Definition

Classically, insider attackers are able to use a given computer system with a level
of authority granted to them and violate their organization’s security policy [11].
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The insider attack is often considered as the primary human threat to computer
systems since users that operate inside an organization have specific motives and
legitimate access to systems that are detached from public networks. The com-
monly held views that most attacks come from the inside is a myth, though [10].

In the following we consider a different class of insider attacks, where the
insider does not compromise a system from the inside of an organization but
rather misuses a communication protocol for his own purposes, actively attacking
security mechanisms established by the carrier.

3.2 What Is the Motivation for Attackers?

There are several answers to this questions: first, attackers may want to break
the unicast communication to get improved broadcast capabilities, which they
do not have otherwise. This motive applies mainly to Satellite ISPs or Cable
ISPs.

Second, even if the capabilities of users and carriers are more or less equal, an
insider attacker may try to make the carrier broadcast illegal content, rather than
broadcasting the content himself. This motive applies to all use-cases, including
Satellite ISPs, WIMAX ISPs and Cable ISPs.

3.3 Why Is This a Problem for Carriers?

Again, there are several answers to this question. First, breaking the unicast
structure may destroy the carrier’s business model, because they may want to sell
broadcasts at a significantly higher price than unicast communication. Loosing
the ability to enforce unicast communication may destroy such business models.

The second reason is the carrier’s potential liability for clear-text data broad-
casts triggered by users. Even if the carrier disclaimed liability of such ”unau-
thorized” broadcasts, these broadcasts may still significantly harm the carrier’s
reputation. Furthermore, doing broadcasts normally requires permissions by gov-
ernment, e.g. the FCC (Federal Communications Commission) in the U.S. By
breaking the unicast communication insider attackers can misuse the carrier’s
infrastructure to perform their own broadcasts without such permission. By op-
erating such susceptible infrastructure, carriers may be held liable as well.

Moreover, according to ”Data Retention” legislation carriers of telecommuni-
cation infrastructures are (or will be required)5 to retain, amongst others, data
necessary to trace and identify the destination of a communication. Given the
perfect receiver anonymity provided by broadcasts, carriers can not even collect
this data.

5 In Europe the so called ”Data Retention Directive”, issued on 15th of March 2006,
will harmonise the data retention obligations of providers of publicly available elec-
tronic communications services or of public communications networks. This directive
has to be adopted by national legislation in EU countries until September 15th 2007.
In the U.S., according to the ”Electronic Communication Transactional Records Act
18 USC s 2703(f)”, ISPs have to retain records for 90 days upon request of a gov-
ernment entity.
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Finally, the ability to perform data broadcasts, having the same coverage as
the carrier itself, may be used to attack other services, operated by the same car-
rier. Consider, as an example the satellite-based broadcast of Pay-TV. There are
well-known attacks, referred to as card-sharing attacks, where a legitimate Pay-
TV customer that paid for the TV broadcast, sends the required decryption keys
to its peers. Today, the latter is mostly done via unicast Internet communica-
tion, which does not scale to large groups. However, as we will see below, insider
attackers may misuse Satellite ISPs to broadcast Pay-TV keys using the same
satellite infrastructure that distributes the encrypted Pay-TV content. This may
significantly harm the business model of the Pay-TV provider and, indirectly,
the business model of the carrier operating the satellite.

3.4 Insider Attacks on Crypto-Enforced Unicast-Communication

Crypto-based communication protocols distinguish two phases in general:

1. first, the key-agreement phase, where a common session key is set up between
user and carrier and,

2. second, the actual encrypted transmission phase, where the session key is used
to encrypt messages before transmission over the broadcast/shared-medium.

Insider attacks may address both phases and we will consider them separately
in the following sub-sections.

3.5 Leaking the Key

Leaking the encryption key is always a straightforward option for an insider and
there are several ways to leak the key material to outsiders. Besides sending
the key material to the outsiders directly, it is also possible to distribute the
session-key in a more advanced way.

– Send the key to the outsiders via direct communication: This is
a straightforward way, but requires the insider attacker to communicate to
each outsider individually. For large groups of outsiders, this seems to be in-
feasible. Furthermore, if the overall goal of the insider attacker is to preserve
the anonymity of the outsiders (receivers of its communication), he must not
communicate with the outsiders directly.

– Publish the key in a newsgroup or electronic message board: This
is a straightforward way to publish the secret key, while preserving the
anonymity of outsiders. However, it requires each outsider to access the pub-
lished key.

– Build a covert channel to broadcast the key via the broadcast/
shared-medium: Here, the insider attacker may for example build a covert
timing channel by sending/requesting (encrypted) data packets via the
broadcast/shared-channel and encoding the key by following a certain tim-
ing pattern. Outsiders may observe the timing-pattern of these (encrypted)
packets and reconstruct the key, allowing them to decrypt the packets after-
wards.
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Although this approach seems viable, it certainly involves a certain over-
head to communicate the key. On the other hand, it preserves the perfect
receiver anonymity offered by broadcast channels and allows receivers (out-
siders) to stay completeley passive and, thus, untraceable.

These methods are most efficient, if the communication protocol uses long-term
secrets and there are no session-keys or session-keys are distributed via the
broadcast/shared-medium. In this case it is sufficient to distribute the long-term
secrets once. This applies to the following types of key-agreement:

– point-to-point key update using symmetric encryption. a long-term
symmetric key is used to distribute all further short-lived (session) keys.
Here, the insider attacker can leak the long-term key once, such that all
further (session) key updates leak to outsiders if the key-update is done via
the broadcast/shared-channel.

– Key-predistribution schemes are always vulnerable if the leakage of pre-
distributed keys is sufficient for the outsiders to derive the short-lived keys.
This is for instance the case for Blom’s symmetric key pre-distribution sys-
tem, the Otway-Rees protocol or the Needham-Schroeder public-key
protocol.

Countermeasures. Since the intentional leakage of an agreed two-party session
key to a third party by one of the parties cannot ultimately be prevented, coun-
termeasures can only complicate the insider attacker’s task, either by forcing
the insider to communicate directly to the group of outsiders or increasing the
data-rate necessary to distribute the key, or deter the insider from publishing
his key. We consider the following countermeasures:

– Use private channel for key agreement. The party intending to compli-
cate the insider attack (the carrier in our setting) can use non-broadcast/non-
shared channels (e.g., the dial-up connection in case of one-way satellite ISPs)
for key agreement purposes. Regarding satellite ISPs the dial-up connection
should be favored for key-exchange. Therefore, outsiders can not benefit from
knowing long-term keys if the session key is updated via a non-broadcast
channel. Instead, the insider attacker has to distribute each key-update sep-
arately, as described above, or attack the actual key-agreement protocol (see
below).

– Increasing the rate of key-updates also increases the rate in which the
insider attacker has to send the updated keys to the outsiders. As the rate
of key-updates increases, insider attacks become less attractive.

– Include sensitive data that the insider attacker probably does not want
to disclose to the group of outsiders. If, as an example, the insider attacker is
forced to include information, such as credit card numbers, account balances,
date-of-birth or authentication credentials into his keys, he needs to disclose
all this information to other parties that he might not trust in extensively.
The need to disclose confidential data does then discourage insider attackers.
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3.6 Insider Attacks on Key-Agreement

Besides leaking keys to outsiders, the insider attacker may try to attack the
key-exchange protocol itself in order to always yield a fixed key that is known
a-priori to the outsiders - so there is no need to communicate it to the outsiders.
However, as two-party key establishment is inevitably insecure when the secret
key is revealed by one of the parties after running the key-agreement protocol,
two-party key-agreement protocols often do not address insider attacks.

Nevertheless, the setting has been considered before and Menezes et al. ([9],
Chap. 12) refer to it as key control : ”In some protocols (key transport), one
party chooses a key value. In others (key agreement), the key is derived from
joint information, and it may be desirable that neither party be able to control
or predict the value of the key”. Obviously, the inside attacker favors the setting
where he (or the eavedroppers) can predict the value of a key.

Certain widely-used key agreement protocols have not been designed to pre-
vent insider attackers and, therefore, should not be used in the communication
models considered in this paper.

– Shamir’s no-key protocol. Shamir’s no-key protocol is a key transport
protocol that does not require any shared or public keys and provides pro-
tection from passive attackers.6

The protocol works as follows: the first party A selects the secret key K,
chooses a random value a (co-prime to p − 1) and sends Ka mod p to the
second party B. When B receives Ka mod p he chooses a random value
b and sends (Ka)b mod p to A. Finally, A sends Kb mod p = (Kab)a−1

mod p to B, who can decrypt K = (Kb)b−1
mod p.

If the insider attacker starts the protocol he can always select a fixed
key K, e.g., x12345678, known a-priori to the outsiders. Otherwise, if the
carrier acts as A, initiates the protocol and selects a good key K, the insider
attacker B can choose a fixed value b = 1, such that outsiders can intercept
Kb = K1 in the last step of the protocol. In the latter case the insider attack
works only if the key-exchange is done via the broadcast or shared medium
(e.g., WIMAX-, Cable- or symmetric Satellite ISPs).

– Diffie-Hellman key agreement. Let p be an appropriate prime and let
g be a generator of Z∗

p. The basic Diffie-Hellman key agreement works as
follows: first, A chooses a random secret a and sends ga mod p to B. Then
B chooses a random secret b and sends gb mod p to A. Now A computes
K = (gb)a = gab and B computes K = (ga)b = gab.

Here, the insider attacker A can always select a fixed ”random” secret a,
known a-priori to outsider outsiders. This allows outsiders to compute the
agreed fresh keyK = (gb)a mod p for every random secret b chosen by party
B. Furthermore, the insider attacker may choose secrets a of small order or

6 As the parties do not share any shared or public keys, the protocol is not secure
against active attackers as messages cannot be authenticated, which paves the way
for man-in-the-middle attackers.
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even a = 0. The former restricts the order of the overall key K (cf. Menezes
et al [9]) and the latter always yields the degenerate key K = g0 = 1.

The latter attack even works if the key-agreement is not performed via
the broadcast/shared-medium, but e.g., via the dial-up connection in the
one-way Satellite-ISP setting.

Note, that there exist checks to detect this kind of attack. The point
is that these checks are not necessary to protect communication against
outsiders, but they are mandatory to prevent insider attacks.

3.7 Insider Attacks on Encrypted Transmission

As discussed above, one possibility to break the crypto-enforced unicast commu-
nication is to give the outsiders access to the encryption key, either by distrib-
uting the encryption key or by attacking the key-agreement protocol in order to
yield keys that are a-priori known to outsiders.

In addition to these attacks it is also possible to attack the actual encrypted
transmission phase. The basic idea is to make the carrier broadcast the desired
messages as its ciphertexts. To achieve this the insider attacker may request
specially crafted messages from the carrier, which, upon encryption by the car-
rier, result in the attacker’s desired message. The carrier will then broadcast the
attacker’s messages as part of the encrypted payload. In this way, the insider
attacker can make the carrier broadcast any message he likes. In the following
we will consider this attack in more details.

Let m be a message, let E be the encryption function used by the carrier and
let k be the (symmetric) encryption key. The ”attack” depends on the following
observation: for many encryption algorithms E it is straightforward to compute
a function E−1, such that

E(k,E−1(k,m)) = m

holds for any key k and any message m.
Assuming that the carrier uses an encryption algorithm E having this prop-

erty, our idea is as follows: the insider attacker, wanting the carrier to broadcast
m, computes d = E−1(k,m) and requests a download of d (e.g., from its own
server) via the carrier. The carrier fetches d from the insider attacker’s server.
Before sending it back to the attacker via the broadcast/shared-medium, the
carrier encrypts d, which results in the desired cipher-text m, which the carrier
finally sends over the broadcast/shared-medium. The overall attack is illustrated
in Figure 3 in terms of asymmetric Satellite ISPs.

Below we consider some well-known, commonly used encryption algorithms
and show that they are susceptible to this insider attack.

1. Block Ciphers in Electronic Codebook mode (ECB): In ECB mode of
operation the message is divided into blocks that are encrypted individually
by applying the block cipher to each block. For block ciphers there is an
encryption function E and a decryption function D, such that the following
holds: m = E(k, d) and d = D(k,m). Therefore, in this case, E−1() is
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Fig. 3. Attack on encrypted transmission

Fig. 4. CBC Mode of Operation (Source [8])

Fig. 5. E−1 for CBC Mode of Operation

identical to the decryption algorithm D, i.e., if an insider attacker wants the
carrier to broadcast a certain ”ciphertext” m, he simply has to request a
crafted message d = D(k,m) via the carrier.

2. Stream Ciphers: If the carrier applies a stream cipher, XORing the mes-
sage with a pseudo-random key stream PRNG(k) generated from k, the user
may simply XOR the message m with the same pseudo-random key stream
to get the desired crafted message d = m⊕ PRNG(k).

Practical examples of such stream ciphers are RC4 and block ciphers
operated in Output Feedback (OFB) or Counter Mode (CTR).7

7 Basically, CTR mode computes the key stream by encrypting a nonce and a counter
using the encryption key. As the nonce in CTR stays fixed throughout a connection
and the counter value is increased deterministically, the attacker can predict the
whole key stream once he knows the nonce.
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3. Further Block Cipher Modes of Operation: Cipher-block chaining
(CBC) mode of operation is illustrated in Figure 4 and the computation ofE−1

is straightforward, as illustrated in Figure 5.

Remark: Note, that the IV required in block cipher modes of operation is
also known to the insider attacker. It is either a part of the key, i.e., known
before applying the attack, or sent to the insider attacker when starting the
transmission. In the latter case, the insider can start its attack (crafting suitable
packets) after he received the IV at the beginning of the transmission.

Remark: Note, that the insider attacker can even make the carrier broadcast
messages that are specifically encrypted, such that only certain outsiders can
read the message. For others (carrier or police), such messages look completely
unsuspicious.

3.7.1 Countermeasures
Hardware implementations. A straightforward countermeasure is to fully imple-
ment the communication protocol, including both key-agreement and transmis-
sion phase, in hardware. A pure hardware implementation makes it harder for
the average attacker to manipulate the key-agreement protocol to enforce weak
keys or to get direct access to the session key and mount the corresponding
attacks on the encrypted transmission. Even if the hardware implementation
could be attacked by patching the hardware, this attack would not scale as good
as purely software-based attacks and, therefore, one may consider it kind of a
countermeasure for low profile attackers.
Randomising Encryption. Let m be the message stream that has been requested
by the user and that has to be forwarded to the user via the broadcast/shared-
medium.

One possible countermeasure is to let the carrier add a random prefix x of fixed
size to each message m before encrypting and forwarding it. By randomizing
the encryption the insider attacker cannot craft messages that would lead to
the desired ciphertext. On the other hand, this countermeasure is only effective
for encryption schemes where a random prefix to the plaintext affects the whole
ciphertext and it reduces the throughput of the down-link. Furthermore, it seems
to be necessary that the carrier starts the encrypted transmission of x||m only
after m has been completeley received from the Internet, because otherwise the
insider attacker could still adapt the tail of message m accordingly after he
received the prefix x.
Fresh random message keys. Another possible solution is to let the carrier choose
a fresh random message-key r for each message m and let the carrier send
Er(m)||Ek(r). Here, again it is important that the insider attacker does not
get to know r before message m has been completely received by the carrier.
Otherwise, the insider attacker may again craft m, such that encryption with
r yields at least partly to the desired ciphertext. This countermeasure seems
to be effective, but again reduces the throughput and introduces computational
overhead for the ISP due to extensive generation of message-keys. Furthermore,
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it may increase the latency, because the user cannot access a prefix of m before
Ek(r) has been received. We consider further analysis of these countermeasures
as interesting future work.

4 Case Studies

4.1 DOCSIS and WIMAX

The WIMAX key management protocol (PKM) allows key transport from car-
rier to user. Similarly, the BPI+ (Baseline Privacy Interface (Plus)) of the DOC-
SIS standard involves a key transport protocol (BPKM - Baseline Privacy Key
Management). As such, these protocols are not susceptible to insider attacks
against the key-agreement phase, where the insider attacker enforces weak, a-
priori known keys to be used. However, an insider attacker may still extract its
key and distribute it to the outsiders.

DOCSIS 1.1 packet data encryption specifies 56-Bit DES encryption in CBC
mode and according to DOCSIS 3.0 the CMTS (carrier) has to support 56-Bit
DES and 128-Bit AES, both in CBC mode. As such, Cable ISPs are susceptible
to the insider attack against encryption as illustrated above.

WIMAX (802.16-2004) specifies 56-Bit DES in CBC mode as being mandatory
to implement, whereas AES in CCM mode is not mandatory. Both CBC and
CCM, which uses Counter Mode (CTR) for encryption, are susceptible to the
insider attacks discussed above.

4.2 Satellite ISPs

Satellite ISPs offer the best gain for insider attackers, because users and satel-
lite ISPs have completely different capabilities: the satellite ISPs sends its data
through a satellite, being in an exposed orbit position, thereby being able to
broadcast its signal over a huge area. Contrary, the user can only send its data
through a terestrial uplink (point-to-point) or satellite up-link.

Although satellite signals offer no confidentiality due to their broadcast char-
acter, several satellite ISPs provide optional or no encryption at all [1], but solely
rely on MAC-filters in DVB-cards or software drivers, which blind out transmis-
sions of other users. However, similar to standard network adapters, DVB-cards
can be put in a promiscuous mode, allowing anyone to receive the complete data
downstream of a satellite. Given such weak non-cryptographic security measures,
it is very easy to break the ”enforced” unicast communication to achieve satellite
broadcasts in practice.

There are PEPs that offer encryption, but their internals are not publicly spec-
ified. This makes it harder to analyse, which security mechanisms are actually
implemented and whether these are susceptible to any of the attacks discussed
above.

An analysis of software PEPs performed at Ruhr-University of Bochum [6]
showed that it is quite straightforward to locate and extract the session key in
the PEP software during runtime. Furthermore, the analysis (and searching the
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web) revealed that these PEPs use Diffie-Hellman key exchange (which might
be susceptible as discussed above) and Blowfish encryption, which might be
susceptible, if used in a susceptible mode of operation (see above).

5 Conclusion

We considered insider attacks against crypto-enforced unicast communication via
wireless or shared communication media. Here the goal of an insider attacker is
to break the unicast-communication that is enforced by cryptographic means.

We argued that it is important for carriers of such communication infrastruc-
tures, e.g., satellite ISPs or WIMAX ISPs to enforce unicast communication by
means of strong cryptography. Current practice of some satellite ISPs that do
leave users the choice to deactivate encryption or do not offer encryption at all,
paves the way to misuse the carrier’s broadcast capabilities, e.g., to broadcast
copyrighted or illegal content over whole continents.

Even if the carrier encrypts its communication via the broadcast-/shared-
medium we showed that it is not sufficient to focus on the classical outsider
attacks when choosing key-agreement and encryption protocols. In addition to
these classical attacks, it is crucial to consider insider attacks, as discussed in this
paper. We showed that state-of-the-art communication systems such as WIMAX,
DOCSIS or satellite ISPs are susceptible to these attacks, allowing insiders to
break the crypto-enforced unicast communication and make the carrier broadcast
arbitrary data. The effect is most striking in the case of satellite ISPs, where
an insider attacker can make the carrier broadcast any message to the whole
footprint of the satellite.
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6. Haskes, T., Kopperschläger, J.: Analysis of a satellite isp client (unpublished bach-

elor theses November 2005)
7. Johnston, D., Walker, J.: Overview of ieee 802.16 security. IEEE Security & Pri-

vacy 2(3), 40–48 (2004)
8. Lunkwill: CBC illustration. Wikipedia (2004),

http://en.wikipedia.org/wiki/Image:Cbc_encryption.png
9. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-

raphy. CRC Press series on discrete mathematics and its applications. CRC Press,
Boca Raton, USA (1997)

10. Eugene Schultz, E.: A framework for understanding and predicting insider attacks.
Computers and Security 21(6), 526–531 (2002)

11. Tuglular, T., Spafford, E.H.: A framework for characterization of insider computer
misuse. Purdue University (unpublished paper, 1997)

http://www.dvb.org
http://en.wikipedia.org/wiki/Image:Cbc_encryption.png


Towards Modeling Trust Based Decisions: A

Game Theoretic Approach

Vidyaraman Sankaranarayanan, Madhusudhanan Chandrasekaran ,
and Shambhu Upadhyaya

University at Buffalo, Buffalo NY 14260, USA
Phone.: 716-645-3180, Fax.: 716-645-3464
{vs28,mc79,shambhu}@cse.buffalo.edu

Abstract. Current trust models enable decision support at an implicit
level by means of thresholds or constraint satisfiability. Decision support
is mostly included only for a single binary action, and does not explic-
itly consider the purpose of a transaction. In this paper, we present a
game theoretic model that is specifically tuned for decision support on a
whole host of actions, based on specified thresholds of risk. As opposed
to traditional representations on the real number line between 0 and +1,
Trust in our model is represented as an index into a set of actions or-
dered according to the agent’s preference. A base scenario of zero trust
is defined by the equilibrium point of a game described in normal form
with a certain payoff structure. We then present the blind trust model,
where an entity attempts to initiate a trust relationship with another
entity for a one-time transaction, without any prior knowledge or recom-
mendations. We extend this to the incentive trust model where entities
can offer incentives to be trusted in a multi-period transaction. For a
specified risk threshold, both models are analyzed by using the base sce-
nario of zero trust as a reference. Lastly, we present some issues involved
in the translation of our models to practical scenarios, and suggest a rich
set of extensions of the generalized game theoretic approach to model
decision support for existing trust frameworks.

Keywords: Decision Support, Game Theory, Incentives, Risk, Trust.

1 Introduction

The three dominant characteristics of trust are vulnerability, risk and expectation
(or uncertainty). All trust models encompass these characteristics and present
definitions, representations, evaluations and operations on the notion of trust
(see [1,2,3,4,5] and the references therein). Decision support for trust models
and frameworks must involve an accurate estimation of the uncertainty of other
agent’s actions. The level to which an agent is willing to tolerate the loss due
to the uncertainty is the risk threshold. Most trust models/frameworks enable
decision support based on threshold values or constraint satisfiability (e.g., au-
tomated trust negotiations first initiated by Winsborough et al. [6] and later
extended in [7,8,9]) or some aggregation metric of recommendations (e.g., Fuzzy
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metrics [10]) based on past history, like recommender systems (RS) [11]. In most
of the previous works that present generic trust models, the decision making
criteria, i.e., the translation from trust to action, is left to the agent, and rightly
so, because such translations are usually context dependent. Decision support
is not explicitly embedded into the trust model; rather the agent is expected to
make decisions for a single action based on thresholds or constraints, depending
on the model. Such threshold or constraint specification is for a single binary
action and is not applicable when the agent has a multitude of action choices.
The traditional trust values of 0 to +1 are not particularly conducive towards
the direct translation of trust to a multitude of actions; an additional mapping
function is required for decision support.

In this paper, we present a model of trust based decisions using a game the-
oretic approach. In our model, agents have a multitude of action choices and
interact with other agents with some (possibly zero) trust. The trust of an agent
(on other agents) is represented as an index into the action set of the agent.
Thus, the very value of trust enables decision support, even at the level of the
abstract model. In other words, the trust value describes the action to be ini-
tiated in an interaction. We extend the work of other trust models by going
beyond defining trust notions; taking our intuition from automated trust nego-
tiations [6], our model assumes that every trust interaction has a purpose, and
thus, both (and in general all) interacting agents must have something to gain
at the end of an interaction. With this purpose in mind, we first present a base
scenario/game where interacting agents do not trust each other, and thus play
at their equilibrium point in game theoretic terms. We then present the basic
blind trust model, which is a one-time transaction between two agents. Here,
an agent is assumed to trust another agent for reasons outside the scope of the
model; no assumptions on the application domain are made, neither are reasons
for trusting an agent provided. At this point, we define the notion of a desired
action (in game theoretic terms) that formalizes the expectation of a trusting
agent. We then define two types of risk in the blind trust model and evaluate
the number of rounds of sequential game play a trusting agent (or truster) may
expect to play for a given risk tolerance. Next we consider the purpose of a trust
interaction and present the incentive trust model, where agents can provide an
incentive to other agents in order to adhere to a minimal trust level that is es-
tablished or agreed upon in advance. The incentive trust model also provides
an advantage to a newly entering agent in the transaction who has no history;
instead of starting from a default low trust value, the agent may quickly build
up its reputation by offering incentives. In both these models, we use the base
scenario as a reference point for determining the loss of an agent when trust is
misplaced or violated. This loss is used to derive metrics for estimating the risk
faced by an agent. Finally, we present a rich set of models and frameworks to
which the general game theoretic approach may be extended. To the best of our
knowledge, such explicit decision support and analysis in trust models through
a game theoretic approach has not been done so far.
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In this paper, we do not explicitly define the notions of trust (and distrust),
(atomic) purpose of the trust relationship, etc. These notions have been well
defined in previous works [4,1,5] (also see [3,2] and the references therein for
a listing of previous works and models); indeed, the core notion of trust could
stem from any of the prior works that not only define fundamental concepts
well, but also provide means for evaluating and performing other operations (like
comparison) on trust through the history of past transactions. Unlike previous
approaches, the purpose of this work is to provide a game theoretic model of
trust based decisions. This work represents a natural progression of existing
trust models to provide explicit decision support for agents with a multitude of
action choices. By proper mechanism design [12,13], game theoretic models can
also subsume other models to provide a well analyzed decision support theory.

1.1 Summary of Contributions

The contributions of this paper are in the theoretical realm of trust and are
summarized as follows.

1. We present a game theoretic model for enabling trust based decision support
by defining trust as an index into the action set of a trusting agent.

2. A blind trust model is presented, where agents engage in repeated games;
two types of risk are defined and the number of rounds an agent may expect
to play is analyzed for a given risk threshold.

3. An incentive trust model, where all interacting agents stand to gain at the
end of the transaction is presented.
(a) Sufficient conditions are derived for both the agent offering the incen-

tive and the trusting agent/truster in order for the interaction to be
successful.

(b) This model offers a mechanism for a new agent to start an interaction
with a high level of trust instead of the default low value by offering
incentives.

4. We present directions for the translation of the game theoretic models for
practical applications and suggest potentially rich areas of future works.

The rest of this paper is organized as follows. Section 2 describes the related
work; Section 3 presents a brief background and intuitive description of the game
theoretic approach of our model. Section 4 presents the base scenario of zero
trust, the blind trust and incentive trust models. Section 5 presents some of the
issues involved in applying the game theoretic models to practical applications.
Concluding remarks and directions for future works are presented in Section 6.

2 Related Work

The work in this paper primarily focuses on enabling decision support for agents
operating on the notion of trust. By its very definition [1,2,3,4,5], trust implies
a certain amount of risk due to uncertainty in the interacting agents decision
criteria. Trust and risk have both been used to decide or optimize the effective
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payoff [14] or lower the expected loss [15]. Their relationship towards decision
support has been investigated in [16]. An important factor of reciprocity in terms
of trust has been experimentally investigated in [17].

Game theoretic descriptions and analysis of trust have been investigated by
[18]; some games that cannot be represented in a normal form have been investi-
gated experimentally [19]. Decision support based on trust has been investigated
for electronic transactions [20], trust negotiations [7,8,21,9,6], etc. In fact, almost
all trust models incorporate some decision criteria at least implicitly; however
most of them are binary or threshold based, in that an action may be initiated
if a certain constraint is satisfied or the trust value is above a certain threshold. In
this work, we explicitly consider the purpose of any trust transaction and assume
that all interacting entities gain at the end of the transaction. Our work is sim-
ilar to game theoretic modeling of an auction marketplace, where agents choose
actions with optimal payoffs. The work by Lam et al. [14] discusses trade in open
marketplaces using trust and risk, and is the closest to the work in this paper.
Our work substantially builds on the work of previous trust models by providing
a model for trust based decision support, particularly in situations where an agent
has a multitude of actions to choose from; agents can not only decide which ac-
tion to take based on their trust value, but also evaluate the number of rounds of
interaction (game) they can engage for a given threshold of risk.

3 Background and Overview

In order to make this paper self sufficient, we first give a brief descriptive back-
ground of a 2-player game and its corresponding Nash Equilibrium. We then
present an overview of our notion of trust in a 2-player game. A 2-player play
game is defined as a game between the players denoted as P1 and P2. Each
player is required to operate simultaneously over an action space. On the com-
pletion of an action, both players receive a payoff or a reward depending on the
actions chosen by themselves and the other player. Games where the players
have opposing goals are called non-cooperative games. The goal of each player
is to maximize his or her own payoff. Towards this goal, each player develops
a strategy over his/her actions spaces, thereby ensuring the best payoff in the
game. Assuming that both players know each others action space and their corre-
sponding payoffs, their strategy will be to choose the best response action for the
other player’s best strategy. Furthermore, assuming both players are perfectly
rational, i.e., they both can efficiently compute each others best strategy recur-
sively, their final action will be one from which each can hope to gain nothing by
deviating unilaterally. Intuitively, such a ‘final’ action results in ‘equilibrium’ for
both players; in order to maximize their payoffs, each player only need to play
that particular action, regardless of how many times the game is played. Such
an action profile is called a Nash Equilibrium.

In the interest of keeping the overview concise and intuitive, a number of
details have been omitted; e.g., not all games have a single action strategy that
results in equilibrium; there is usually a probability distribution on the action
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space that also results in equilibrium (such an action profile is called a mixed
strategy, while the previous single action equilibrium is called a pure strategy).
The reader is referred to [22,23] for a more detailed exposition on game theory.

We now describe the incorporation of trust into a standard 2-player non-zero
sum game. In any game in the equilibrium situation, players have no incentive to
deviate from their chosen actions. We formulate our model as follows. Consider
the players (P1, P2) whose equilibrium actions are (a1, b1) with a payoff of (50,
50). If P1 were to choose some other action a2, then in a typical game, there exists
a best response action b2 for playerP2 such that the effective payoff is (40,100), i.e.,
P2’s payoff would be larger than the equilibrium payoff and P1’s payoff would be
smaller (maybe negative too, but we assume positive payoffs). Now assume that
there exists an action b3, called the desired response, for player P2 such that the
payoff is (60, 70), i.e., both players stand to gain from the equilibrium payoff, but
playerP2 stands to gain lesser that the optimum best response for action a2 (which
happens to be action b2). Thus, player P1 is said to trust player P2, if on playing
a2, there is an expectation that P2 would respond with b3 instead of b2, thereby
leading to a profit on both sides, but not necessarily the maximum allowable for
playerP2. Now imagine a continuum of such actions ak, ak+1, etc., for P1 such that
P2 can respond with actions bk, bk+1, etc., such that their payoffs are increasingly
better than the equilibrium payoff, but P2’s payoff is lesser that the best response
actions bbest−response to ak, ak+1, etc. Then P1’s trust in P2 is the index k into his
action profile. If the action profiles are suitably ordered, an increasing index value
indicates an increasing level of trust.

The intuition behind our model is simple: an act of trust implies, amongst
other things, (a) a potential vulnerability on the part of the trusting agent, (b) a
threshold of risk the trusting agent is willing to tolerate and (c) an uncertainty
(or expectation) on the response of the other agent: i.e., the three dominant char-
acteristics, vulnerability, risk and expectation/uncertainty have to be embedded
into the model. The vulnerability on the part of the trusting agent is expressed
by its deviation from the equilibrium play. The extent to which the trusting
agent is willing to expose itself to the vulnerability is the risk. The responding
agent may initiate the best response (and hence violate the trust placed in him)
or initiate the desired response; thus, there is an uncertainty on the response
type. The equilibrium point/action profile forms the Base Scenario, where the
players do not trust each other.

3.1 Blind Trust and Incentive Trust Models

The blind trust model presents the scenario where an agent trusts another agent
with no assurances or guarantees. In this model, the vulnerability faced by an
agent when trusting another agent is expressed in terms of the possible loss
of payoff for one round. Then, given the risk an agent is willing to take (the
maximum vulnerability), we analyze the number of rounds of the game the player
may expect to play before getting back to the equilibrium play. Thus far, the trust
of a single player is unconditional; we now introduce the incentive trust model
where users can trade a predefined amount of their payoffs before the initiation
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of single round of the game. We now consider the interactions between players
and their decision criteria when there is an expectation of a return at a later
point in time, i.e., there is a purpose to the entire transaction and all involved
entities expect to gain something at the end of the transaction. Many trust
relationships fall under this category. Consider a customer who interacts with a
service provider; the customer may pay a premium for a service that he expects at
a later time. Thus, the customer can be said to trust the service provider to keep
his end of the contract. Such a scenario is also applicable in the security field, in
Automated Trust Negotiation mechanisms and protocols. Trust Negotiation was
first introduced by Winsborough [6] as a means for agents to negotiate their trust
with other agents in a heterogeneous environment. A commonly quoted example
is the interaction between a potential customer Alice and a service provider Bob.
The simplified scenario is as follows: a customer Alice wishes to make a purchase
from Bob, a service provider, but is initially unwilling to provide any means of
authentication (Drivers License, Credit Card Number, etc.). Bob provides Alice
with a certificate from the Better Business Bureau (BBB) stating that he is
indeed a service provider with a certain standing. The BBB certificate is verified
by Alice and it ‘helps’ her to make a trust decision about Bob; she provides
her Resellers License/Credit Card number to Bob to make a purchase. Bob
verifies her license/CC number and completes the transaction. This example
is illustrative of the general trust transaction: (a) there is a purpose to the
transaction and (b) both (and in general all) agents stand to gain at the end of
the transaction. We analyze these scenarios and present decision making criteria
for specified risk thresholds.

3.2 A Note on Mechanism Design

Finally, we conclude with a note on the concept of mechanism design [12,13] in
game theory. Loosely speaking, mechanism design can be viewed as a technique
for designing a game so that rational and selfish agents do not have an incentive
to deviate from the desired behavior of the game designer. Proper mechanism
design maps the desired behavior of agents to the equilibrium play so that no
agent can gain by deviating from the equilibrium point. From a purely game the-
oretic viewpoint, assuming agents are selfish and rational, the equilibrium play
is desirable. However, in our model, we stipulate a deviation from the equilib-
rium play, towards a play that leads to a greater, but not necessarily maximum
payoff, in order to embed the notion of vulnerability of an agent. Thus, there
is no stipulation for an agent to adhere to a specific action set; if there were
one, we would not be able to embed the notion of vulnerability and uncertainty;
indeed, a stipulation of any kind would imply determinism, which runs contrary
to free will or choice of an agent. However, there are game theoretic constructs
like satisficing game theory [24,25], amongst others, that can model users (as op-
posed to automated agents). We mention such games in Section 6 on extensions
of this model; they are not considered in this paper. Herein, we shall use the
terms agent, user or player interchangeably; they imply the same entity unless
specifically mentioned otherwise.
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4 Trust Based Decision (TBD) Model

4.1 Base Scenario: Zero Trust

We now fix the base scenario, which is a 2-player game with a Nash Equilibrium.
Our notations closely follow standard game theoretic expositions as in [26]; al-
though our models consider only 2 players, the notations are kept generic. The
trust game Gτ is defined by:

Gτ = {N, (Ai)i∈N, (ui)i∈N} (1)

where N is the set of players, Ai is the action space of player i and ui is the payoff
function for player i, defined as ui: A→ R, where A = ×i∈NAi and R is the set of
real numbers. We assume that N and Ai are finite sets. Player i has at his disposal
the actions ai ∈ Ai. We denote the action spaces of all other players other than
i as A−i = ×j∈N\{i}Aj and a single element as a−i ∈ A−i. The repeated rounds
of the game Gτ are referred to as the supergame, which consists of a finite
sequence of the game Gτ , where the players choose the actions ai(t) ∈ Ai at
time instant t. For a sequence of k plays, we denote the history of player i by
Hi(k) = {ai(1), ai(2), . . . , ai(k)}∀ai(.) ∈ Ai and each element of Hi(k) by hi(k).
The payoff of player i at the end of any round is given by ui(ai, a−i). The best
response action of player i is defined as bi(a−i) = {ai ∈ Ai : ui(ai, a−i) ≥
ui(a∗i , a−i)∀a∗i ∈ Ai}, i.e., given the plays of all the opponents a−i, the action
bi(a−i) ensures the best payoff for player i. Hereafter, bi(a−i) is denoted simply
as bi. We assume that the game’s payoff structure allows for (at least) a single
equilibrium point, at which the action profile of the players is (bi, b−i). Thus
the single round payoff of the player i is given by ui(bi, b−i). Intuitively, the
cumulative payoff of a sequence of k plays is k.ui(bi, b−i). However, for the game
Gτ , similar to [26], we define the cumulative payoff to be a discounted one, where
the weights of the payoffs of older sequences are progressively lesser.

Definition 1. The discounted cumulative payoff in the game Gτ , of player i
over a sequence of k play’s, discounted by a factor of δ ∈ (0, 1), is defined as:

Ci(δ, k) = (1− δ)
k∑

m=1

δk−mui(ai(m), a−i(m)) (2)

Unless otherwise specified, we shall denote Ci(δ, k) as Ci(δ). This formulation
places greater relevance to the most recent play (the kth play) and progressively
decreases the payoff of the past plays. From a trust game viewpoint, this is
intuitive; the closer δ is to 1, the greater the relevance to the most recent play
(due to the factor δk−m). Note that δ ∈ (0, 1) and does not ever assume the
value of 0 or 1. However, if we set δ = 0, Ci(δ) = 1; this can be interpreted as
setting no relevance at all to any of the plays, and hence the payoff incurred at
any stage is a constant: in the context of the model, setting no relevance to the
plays makes no sense and hence such a setting is invalid.1 In the base scenario,
1 We thank an anonymous reviewer for bringing out this point.
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the action taken by the players are the best responses to the action spaces of
other players; hence the cumulative payoff of player i is obtained when ai(.) = bi
and a−i(.) = b−i in Eq. 2. We denote this best response cumulative payoff as
C∗

i (δ). The two values of per round payoff, ui(bi, b−i) and cumulative discounted
payoff C∗

i (δ) are used to refer to the Base Scenario with no trust.

4.2 Blind Trust

In this model, player i wants to initiate a trust relationship with the remaining
players. His goal is now to obtain the desired response from the remaining players
as opposed to the best response b−i played by the remaining players in the Base
Scenario.

Definition 2. For an action ai ∈ Ai, the desired response di(ai) of player i is
defined as an action from the set A−i that increases the payoff of all players from
the equilibrium payoff, but does not provide the maximum possible payoff to all
the players other than possibly player i.

di(ai) = {a−i ∈ A−i : ui(ai, a−i) ≥ ui(bi, b−i),
u−i(ai, b−i) ≥ u−i(ai, a−i) ≥ ui(bi, b−i)}

(3)

The desired response of player i is also denoted simply as di, where the ac-
tion ai is understood to have been initiated. Note that di(ai) ∈ A−i and is not
necessarily unique. Depending on the application domain, there may exist mul-
tiple di(ai); however, their existence does not affect our model from a decision
theoretic viewpoint.

Definition 3. The index value τ of actions aτ
i ∈ Ai in a strictly increasing

ordering given by ui(a1
i , di) ≤ ui(a2

i , di) ≤ · · · ≤ ui(aτ
i , di) ≤ · · · ≤ ui(aT

i , di) is
defined as the trust that player i places on the remaining players.

Note that the desired action di for aτ
i is not (necessarily) the same for all index

values. In situations where the context is clear, the symbol τ is used to represent
the trust of player i ; in more generic terms, τ(i→-i) represents the cumulative
trust of player i on the remaining players, while τ(i→j ) represents the trust
of player i on player j. In the interest of keeping the formulation generic and
extensible, the notations of i and -i have been used; herein, we shall restrict
ourselves to N = 2, i.e., there are two players in the game Gτ ; thus i ∈ {1,2}
(-i denotes the ‘other’ player). In the formulations that follow, replacing i = 1
and -i = 2 represents the model for the two player scenario. The trust value τ
∈ {1, T}, where T is the maximum index. As a technical device, we may also
include a zero value in τ where the index value of zero is associated with the
best response action (and hence no trust).

In the basic blind trust scenario, player i assigns a trust value τ = 1, and
waits for the response from player -i . From the game theoretic viewpoint, this
game is a turn based game, where player -i knows the action taken by player i
before his turn to play. We call this model a blind trust model since there is no
prior communication between the two players for a contractual agreement on the
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action set, etc. Player i blindly trusts player -i and hopes for a reciprocation. At
this point, player -i may reciprocate by initiating the desired response di or the
best response b−i. The initiation of the desired response indicates the beginning
of a trust relationship.

From this basic blind trust Model, we wish to address several questions. First,
given that an agent (player i) wishes to initiate a trust relationship, what is
the vulnerability faced by player i? Secondly, assume that player i initiates a
blind trust relationship in the hopes of a future collaboration. Initially, player
-i may simply act in a ‘rational’2 manner and initiate the best response action,
but may eventually reconsider or ‘understand’ that player i wishes to initiate
a trust relationship. The reasons for the establishment and evolution of the
trust relationship are contextual and application/domain dependent, and are
hence outside the scope of this paper. However, the relevant question is: given
the amount of risk (maximum vulnerability) that player i is willing to tolerate,
what is the number of rounds of play that player i may expect to play? Towards
answering this question, we first define two types of risk and then evaluate the
expected number of rounds.

Instantaneous Per-Round and Cumulative Risk: The risk faced by a
player i are categorized into two types: the instantaneous per-round risk and
the cumulative k-stage risk.

Definition 4. The instantaneous per-round risk ρi of player i when initiating
action aτ

i with a trust τ on player -i is defined as the ratio of the difference
between the equilibrium payoff ui(bi, b−i) and the best response ui(aτ

i , bi) to the
equilibrium payoff.

ρi(τ) = (1− ui(aτ
i , b−i)

ui(bi, b−i)
) (4)

Note that, by the very definition of best response actions, ui(aτ
i , b−i) ≤ ui(bi, b−i)

(otherwise, aτ
i = bi). Thus, ρi(τ) is the risk faced by the player i when trusting

player -i with a value of τ . Intuitively, the simplified cumulative k-stage risk is
k.ρi(τ), assuming that the player -i plays the best response for all the k sequences
of the game.

Recall that we have defined a cumulative discounted payoff for the game Gτ

in definition 1, Eq. 2, i.e., the payoff of the kth round is discounted by a factor
(1 − δ). Towards this, a discounted cumulative k -stage risk is defined, similar
to definition 4. We first derive the discounted cumulative k -stage equilibrium
payoff and best response payoff. The discounted cumulative k-stage equilibrium
payoff of player i can be derived by substituting ai(m) = bi and a−i(m) = b−i

∀ m = {1,2,. . . ,k} in Eq. 2.

Ceq
i (δ) = (1 − δ)

k∑

m=1

δk−mui(bi, b−i) = ui(bi, b−i)(1− δk) (5)

2 ‘Rational’ in the game theoretic sense, not in the context of the application domain.
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Note that the discounted equilibrium payoff is in fact the same as the equilibrium
payoff for any single round if δ →0, in which case, it is almost independent of
the number of rounds over which the game is played. Similarly, the discounted
cumulative k-stage best response payoff of player i can be derived by substituting
ai(m) = aτ

i and a−i(m) = b−i ∀ m = {1,2,. . . ,k} in Eq. 2.

Cbest
i (δ) = (1− δ)

k∑

m=1

δk−mui(aτ
i , b−i) = ui(aτ

i , b−i)(1 − δk) (6)

Definition 5. The discounted cumulative k-stage risk σi(τ, k) of player i over a
sequence of k plays of the game Gτ for the histories Hi(k) and H−i(k) is defined
as the ratio of the difference between the equilibrium payoff Ceq

i (δ) and the best
response payoff Cbest

i (δ) to the equilibrium payoff.

σi(τ, k) =
Ceq

i (δ)− Cbest
i (δ)

Ceq
i (δ)

= ρi(τ) (7)

Usually, the cumulative risk is evaluated until player -i plays the desired action
di(aτ

i ).

Expected Number of Plays: Consider the situation when player i wishes to
initiate a trust relationship and initiates the action aτ

i instead of bi. Assume that
the maximum amount of risk the player i is willing to undertake is ri. We now
evaluate the number of rounds that player i may expect to play.

Consider the simplified cumulative k-stage risk, k.ρi(τ). In this case, the max-
imum number of rounds player i can afford to play is kmax = ρi(τ)

ri
. Now assume

that at any round of the k stages, the probability that player -i switches from
b−i to di is p. This probability is available to the player i through some context
specific mechanism, also called a belief in game theoretic literature. The prob-
ability that player -i switches from b−i to di at the kth round is p(1 − p)k−1.
Thus the number of rounds player i may expect to play is

∑kmax

m=1 mp(1−p)m−1.
Thus, considering the simplified cumulative k-stage risk, the number of rounds
player i may expect to play is:

E[k] =
1− (kmax + 1)(1− p)kmax + kmax(1− p)kmax+1

p
(8)

where kmax = ρi(τ)
ri

. Now, lets consider the discounted cumulative k-stage risk
σi(τ, k), which is equal to ρi(τ). It can be observed trivially, that if the risks are
discounted for past rounds of the game, then player i may continue to play the
game infinitely if ri > ρi(τ), just one round if ri = ρi(τ) and may not play at all
if ri < ρi(τ); i.e., the expected number of rounds is 1. Thus, for the discounted
case, the specification of the player’s absolute risk is not useful to determine the
maximum number of rounds. Instead, we define the discounted loss (in payoff)
for the player i for k rounds as:

Li(k) = Ceq
i (δ) − Cbest

i (δ) = (ui(bi, b−i)− ui(aτ
i , b−i))(1 − δk) (9)
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Let the loss that player i is willing to sustain in the trust initiative be li. Thus,
the maximum number of rounds is given by:

Li(kmax) = li ⇒ kmax =
log(1− li

ui(bi,b−i)−ui(aτ
i ,b−i)

)

log δ
(10)

Note that the loss li is not the absolute loss, but is the (maximum) an agent is
willing to sustain relative to the best response action b−i; hence li < (ui(bi, b−i)−
ui(aτ

i , b−i). Note also that kmax is inversely proportional to log δ, i.e., a players
maximum number of rounds depends on the extent to which he is willing to
discount past payoffs (or equivalently, losses). The expected number of rounds,
assuming that the probability that player -i switches from b−i to di is p, is given
by:

E[k] =
1− (kmax + 1)(1− p)kmax + kmax(1− p)kmax+1

p
(11)

where kmax is given by Eq. 10.

Compensatory Update Strategy: Once the player -i responds with di, player
i may update the value of τ . Given that we are dealing with payoff values, we may
use an update strategy that assigns τ based on the payoff values. Our previous
work [27] describes a Compensatory Trust Model (CTM), where the trust value
may be updated as part of a compensation given to player -i based on his forgone
payoff. We briefly describe the intuition behind the update strategy based on the
CTM. When player -i initiates the desired action di at a particular round, denote
his loss of payoff as l−i = (u−i(aτ

i , b−i) − u−i(aτ
i , di)), and the gain in payoff of

player i as gi = (ui(aτ
i , di) − ui(aτ

i , b−i)). To ’share’ the loss and gain equally,
player i would have to transfer a payoff of l−i + 1

2 (gi − l−i) to player -i. This
transfer may be made figuratively by updating the trust value proportionally,
for some δ ∈ (0,1), τ = δ(l−i + 1

2 (gi− l−i)), i.e., the trust update is proportional
to the discount δ of the payoffs. This is the ’compensation’ that player i pays
to player -i ; hence the name Compensatory Update Strategy. This scheme can
be extended to include the risk faced by player i or the loss of payoff in a k -
stage game. As mentioned before, we do not present new trust assignment and
update methodologies; apart from the CTM update described above, any update
mechanism may be used to assign and update trust.

4.3 Incentive Trust

The incentive trust model considers the purpose of a trust transaction and mod-
els the scenario where agents may provide incentives to be trusted. Consider
the game Gτ with the players i and -i. The basic philosophy behind the trust
transaction, unlike the blind trust model, is the expectation of a return in trust
or value/payoff by a player. Towards this, we recast the game play described in
[28] to fit into our model. The incentive trust model is a game played over three
time periods. The play of the incentive trust model is described as follows:
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Initial Setup: Player -i wants player i to (a) trust him with a level of τ(i→-
i), hereafter denoted as τ and (b) initiate the action aτ

i . Towards this, player
-i states p−i, his stated probability that he will respond with the action di, the
desired action instead of b−i, the best response action. q−i is the true probability
that player -i will respond with the action di, the desired action instead of b−i,
the best response action. In a similar vein, let pi be the stated probability (while
qi is the real probability) that player i will initiate action aτ

i . Both p−i and pi

are public knowledge.

Time Period 1:Player -i transfers a payoff of f(p−i) as a support/proof of
his commitment to respond with the desired action di, where f(.) is a function
whose specification is to be determined.

Time Period 2: Player i, on receiving the support of f(p−i) initiates the action
aτ

i .

Time Period 3: Player -i, in turn, initiates the desired action di.
The expected payoff of player i, w(p−i) can be split into the following com-

ponents:

1. Player i gets a payoff of f(p−i) in time period 1.
2. Player i gets a payoff of only (1 − p−i)qiui(aτ

i , b−i) if player -i cheats and
responds with the best response b−i instead of the desired response.

3. Player i gets a payoff of qip−iui(aτ
i , di) if he acts with action aτ

i and player
-i responds with the desired action.

Thus, the expected payoff of player i is given as:

w(p−i) = f(p−i) + qi{(1− p−i)ui(aτ
i , b−i) + p−iui(aτ

i , di)} (12)

Similarly, the expected payoff of player -i, z(pi) can be split into the following
components:

1. If Player i initiates an action of aτ
i ,

(a) Player -i gets a payoff of pi(1− q−i)u−i(aτ
i , b−i) if he responds with the

best action b−i.
(b) Player -i gets a payoff of piq−iu−i(aτ

i , di) if he responds with the desired
action di.

2. If Player i does not initiate an action of aτ
i , then player -i loses a payoff of

(1− pi)f(p−i).

Thus, the expected payoff of player -i is given as:

z(pi) = pi(1− q−i)u−i(aτ
i , b−i) + piq−iu−i(aτ

i , di)− (1− pi)f(p−i) (13)

Analysis: Consider the entire transaction and the purpose of the model: from
the viewpoint of player i, we would like to obtain an optimal guarantee f(p−i)
from player -i. Player -i, on the other hand, would like to ensure he at least
has a non-zero payoff from the entire transaction. Since Player i has the first
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position advantage, given p−i, he can fix the value of f(p−i) that he receives from
player -i. The optimal value fopt(p−i) is thus given by the first-order condition
w′(p−i) = 0.

fopt(p−i) = p−iqi{ui(aτ
i , b−i)− ui(aτ

i , di)}+ c (14)

where c is a constant such that c ≥ 0. If f(p−i) satisfies Eq. 14, then player i
can expect a payoff of w(p−i) = qiui(aτ

i , b−i) + c, independent of p−i. From the
viewpoint of player -i, the condition to be satisfied is z(pi) ≥ 0. Thus, we derive
the condition for q−i, taking into account the value of f(p−i) given in Eq. 14.

q−i ≥
piu−i(aτ

i , b−i) + (1− pi)c
pi(u−i(aτ

i , b−i)− u−i(aτ
i , di)) + (1 − pi)p−i(ui(aτ

i , b−i)− ui(aτ
i , di))

(15)

Note that q−i is not only dependent on pi, but also on p−i, on account of its
dependence on f(p−i). Since player -i is the initiator in this model, it is his
responsibility to ensure a high enough value of q−i in order to ‘break even’ in
the transaction.

5 From Theory to Practice: Some Issues

The translation of game theoretic models to practical application scenarios is not
without its problems [29]. Although the blind trust and incentive trust models
capture the purpose of a trust transaction at an intuitive level, there are some
issues that should be addressed before its translation to practical scenarios. We
illustrate some of these issues and suggest directions for practical usage.

1. We have assumed that each user’s payoff is transferable to the other user;
e.g., in the incentive trust model player -i initially transfers an amount of
f(p−i). Games where players can transfer their payoffs to others can be
modeled by a class of games called Transferable Utility (TU) games, which
also permit coalitions among groups of players. In practical scenarios, trans-
ferable payoffs have to be defined either in terms of monetary values or
resources/services/QoS-guarantees, etc., depending on the application do-
main.

2. We have not defined the semantics of the game which would indicate the
relevance of the equilibrium (or no trust) plays. The semantics of the game
must be defined for the particular application domain where the model is
applied to.

3. The most difficult part is the cohesion of the semantics of the game with
the zero trust interaction. In practical scenarios, zero trust usually implies
a lack of interaction and thus, no game plays at all. Bridging the game
semantics so that game plays occur in all scenarios is a challenging task;
in particular, the process of mechanism design must accurately map to the
scenarios so that the evaluation of iterated plays is relevant to the situation
under consideration. Of particular interest here is to model games which also
specify distrust.
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4. The specification or formulation of the utility functions is the first step to-
wards enabling decision support based on trust. Depending on the appli-
cation domain, utility functions may be formulated in functional form or,
if feasible, can be specified in discrete form for each action in the action
set. The works [30,31] provide methodologies for the construction of utility
functions depending on the history of an agent’s utility realization.

5. One of the pitfalls of game theoretic analysis is the existence of recursive
reasoning about the other agent’s knowledge [32]. The manifestation of this
pitfall is best illustrated with the incentive trust model. For example, player
i decides f(p−i) based on the value of p−i, the stated probability of player
-i that he will play the desired action di instead of the best response b−i.
Although, there is a constant c ≥ 0 involved in Eq. 12 which gives player
i a leeway in choosing f(p−i), it may be argued that player -i can quote a
low value of p−i and hence, the value of c must be chosen by player i, de-
pending, amongst other factors, on player i ’s belief in the value of p−i. Such
an analysis path usually leads to recursive reasoning and as illustrated by
experimental evidence [32,33,34], is not advisable in modeling what essen-
tially is a subjective concept, beyond maybe two or three levels. Obviously,
if p−i <

1
2 , player i would not even consider entering into the transaction;

neither would player -i enter the transaction if f(p−i) is too high.

6 Conclusion and Future Work

The purpose of most trust models and frameworks is to provide some form of de-
cision support for an agent or user. Previous works in trust models have focused
on defining the notion of trust and evaluating it based on parametric representa-
tions, recommendations, etc. They provide decision support at an implicit level,
either through threshold based schemes or constraint satisfiability. This paper
provides a game theoretic approach to model trust based decisions. The model
takes a holistic view of a trust interaction by considering the ultimate purpose of
the transaction which may be spread over multiple periods. The very definition
of trust as an index into the agent’s action set provides decision support. Re-
search in this direction has a potential to provide quantitative decision support
for trust frameworks with a multitude of actions choices. Future work on this
model comprise of two distinct paths: extensions and practical applications. Trust
decisions that are taken based on the recommendations of other players can be
incorporated into the model by means of an information structure. Furthermore,
the generic game Gτ assumes the existence of at least one equilibrium point; the
model can be improved by defining games with predefined payoff structures [35]
that imply the existence of a pure equilibrium point. Lastly, trust negotiations
that are made by people instead of automated agents have properties different
from automated agents. Satisficing game theory provides a mathematical basis
for user preferences/negotiations [24], which also account for the interests of
users in the welfare of other users.
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Abstract. We are experiencing the emergence of federated approaches to re-
source sharing. In these approaches, trust links are established among different
autonomous organizations in order to grant users in any of them access to shared
resources with a single identity, stated by the organization the user belongs to.
However, some of those federations are working using different schemas for rep-
resenting user attributes, both from a semantic and a syntax point of view. This
fact makes difficult the interoperability of heterogeneous federations based on
different authorization systems. The work presented in this paper benefits from
an existing proposal for building confederations, eduGAIN, to address that issue.
As we will see, it will be necessary a way to establish the relationships between
attributes and technologies from different federations and to define how those re-
lationships can be published and managed. We present the required conversion
policy, the entities in charge of the conversion process, and the communication
protocols for conversion requests and for publishing the policies.

1 Introduction

In recent years, a significant number of federated approaches to resource sharing have
raised in large organizations. In these approaches, trust links are established among
those different autonomous organizations in order to grant access to shared resources
according to the user’s identity, stated by the organization the user belongs to. Important
examples of these approaches are the establishment of academic federations worldwide,
such as eduroam [21] or MAMS [3]. In those scenarios where users are moving among
the different organizations, it is important to take into account what kind of credentials
are exchanged among those domains and how these credentials will be managed by
each organization.

It is worth noting that one of the main objectives of federations is to create collec-
tions of resources and users from geographically distributed organizations. Although
those distributed organizations can make use of independent authorization systems for
local purposes, all of them must be unified to provide a common authorization service
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at federation level. To address the drawbacks related to the use of different authoriza-
tion technologies, we must define a service for converting identities, names, attributes,
resources, actions, policies, and formats between administrative domains.

During this paper, we are going to consider two federations based on different au-
thentication and authorization technologies. For example, we can think in a Shibboleth-
based federation [20], such as MAMS [3] or Haka [2], and an eduroam-based federation,
which is based on RADIUS technology [19]. Many other examples can be found using
technologies or solutions such as PAPI [14], PERMIS[5], etc. These federations need
to establish a trust relationship for resource sharing.

As we show in this paper, the trust fabric among those organizations can be defined
by means of eduGAIN [15], which provides with the required entities, protocols and
technologies that can get in touch those federations. eduGAIN provides an easy way
to locate the authentication and authorization services. For example, Alice, a U.S. re-
searcher belonging to the Shibboleth-based federation, from now on Home Institution
(HI), wants to access to the wireless network in an eduroam-enabled institution, from
now on Remote Institution (RI), during a conference that takes place in an European
university. In this case, RI will probably access to the authentication and authorization
services located in HI, the former in order to obtain an authentication statement defining
Alice as a valid user, the latter to obtain Alice attributes in HI, i.e. role, entitlement, etc.
All this information is required in RI in order to take the right access control decision.

While eduGAIN provides a protocol for exchanging credentials between federations,
even for solving the WAYF (Where Are You From?) problem of locating the authen-
tication and authorization points for each federation, there is still an open issue: the
way heterogeneous credentials from federations, based on different technologies or lan-
guages, should be managed. Following the previous example, roles for Alice might be
expressed in HI by means of a SAML AttributeStatement sentence [9], which contains
attribute eduPersonEntitlement with value urn:mace:ri.edu:researchgrant:55523981,
that is, Alice works in RI with research grant number 55523981. However, this kind
of information might be represented in the RI federation, also by means of SAML
statements, but using attribute urn:mace:terena.org:schac:personalPosition with value
urn:mace:terena.org:schac:personalPosition:es:hi.edu:research. Furthermore, another
practical example could be found when the HI is based on the PERMIS system, where a
X.509 Attribute Certificate [10], containing a permisRole attribute, should be translated
into the previous SAML sentence.

It is needed, therefore, a way to establish the relationships between attributes and
technologies from different federations and to define how those relationships can be
published and managed by those institutions. The first issue requires a conversion pol-
icy able to define whether attribute A from HI, in a specific format, is equivalent to
attribute B in RI, in a different one. The second issue implies the definition of entities in
charge of the conversion process, where those entities would be located (inside/outside
federations, etc.), and the communication protocols for conversion requests and for pub-
lishing conversion policies.

The rest of this paper is structured as follows. Section 2 provides an overview of the
eduGAIN infrastructure. Section 3 introduces the Credential Conversion Service, which
defines a generic conversion process for authorization credentials. Section 4 defines
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how the conversion service can be integrated in the eduGAIN infrastructure, defining
the architectural components, how the required information is published, and the com-
munication profile. Section 5 describes an example of conversion policies by means
of the XACML specification [7]. Section 6 gives an overview of the different existing
schemas for user attributes and, finally, section 7 presents our main remarks.

2 eduGAIN

The main aim of eduGAIN [15] is to build an interoperable Authentication and Au-
thorization Infrastructure (AAI) to interconnect different existing federations. In this
way, eduGAIN is responsible for finding the federation where a roaming user belongs
to, translates the messages between the federation internal protocols and eduGAIN and
vice versa, and establishes the trust fabric among the participating institutions.

Fig. 1. eduGAIN infrastructure

The main goal is achieved defining a set of common services, where it is included
the MetaData Service (MDS), and a confederation-aware element, called Bridging Ele-
ment (BE), responsible for connecting the different federations to eduGAIN. As Figure
1 shows, metadata related to federations are published by means of the MDS. These
metadata include information for locating the authentication and authorization points
of the federation. Then, the appropriate authentication and authorization requests are
routed by the remote BE toward the user’s home institution. This scheme is also valid
in order to communicate different institutions belonging to the same federation, as [13]
describes for Universal Single Sign On purposes.

The specific way the authentication and authorization processes are carried out in
eduGAIN are defined by different profiles. Currently, a profile compatible with Shibbo-
leth, called Web SSO, and another one that does not require human intervention, called
Automated Client, are defined. Moreover, additional profiles are being developed, as for
instance a DAMe [1] profile based on NAS-SAML [17].
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3 A Generic Credential Conversion Service

The proposal presented in this paper is based on a previous work defining a generic
Credential Conversion Service (CCS) [6], which describes a bridge between heteroge-
neous authorization systems. In order to define how a target institution could manage
credentials coming from a source institution (source credentials), and to translate them
into an internal representation (target credentials), we can consider several alternatives
from an authorization management point of view:

1. Policy Enforcement Points (PEP) and Policy Decision Points (PDP) of the target
institution must be able to understand every kind of source credentials. In this way,
no conversion is needed. However, depending on the number of PEPs, PDPs, end
users, resources, or actions, this option can present several problems derived from
scalability and complexity, as bridging policies must be made widely available and
applications must be developed with full support for several authorization propos-
als.

2. Authorities of the source institution must be able to generate whatever kind of as-
sertion containing the privileges related to their end users, which might be further
interpreted by the PEPs and PDPs of the target institution. This involves that these
authorities should know lots of details about the target scenario, such as URIs for
actions and resources, attribute designators, confirmation methods, etc.

3. To make use of a special credential conversion service, provided at a common level,
in order to translate source credentials into target credentials. In this way, the con-
version (or bridging) policy is enforced by a central element (although the service
can be replicated among different nodes), minimizing the drawbacks associated
to scalability and complexity. This conversion service is trusted by the PEPs and
PDPs of the target scenario, an therefore they consider the converted credentials as
trustworthy as the rest of statements.

The generic CCS system adopted this last point of view (which is really suitable for
eduGAIN since there is a specific set of common services) and defined the set of profiles
and statements that will be needed in order to deploy such a service. Specifically, it is
composed by two different profiles (pull and push based) governing how to exchange
and to embed SAML assertions, and by several architectural entities involved in the
conversion process. In order to be adapted to eduGAIN, the proposal has been slightly
modified using the pull profile, as we will see in next sections.

It is worth mentioning the SAML statements that were designed for CCS purposes,
as they will be used here for eduGAIN. Those extensions are two new SAML elements
defined in the CCS namespace: ccs:WrappedStatement is used to encapsulate the cre-
dentials; and ccs:ConversionQuery is the representation format of a conversion request
sent to the CCS.

WrappedStatements are formed by the following components:

– StatementType defines the type of credential being wrapped. Following the SAML
rules, it is defined as a URI. The prefix is urn:ccs:names:credential,
and some defined values are x509, x590ac, saml, sdsi, spki. The pre-
fix urn:ccs:names is experimental and, once eCCS consolidated, it would be
added to the eduGain namespace urn:geant:edugain.
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– Encoding specifies the encoding used to express the credential. Usually, every cer-
tification standard has its own encoding formats, such as DER encoding for X.509
certificates, canonical s-expressions for SPKI certificates, or XML for SAML as-
sertions. It is also defined as a URI (prefix urn:ccs:names:encoding).

– WrappedData. This field contains one or more credentials of type StatementType,
which are formatted using Encoding method. As several credentials can be related
to a specific target scenario, the number of occurrences of this field is unbounded.

On the other hand, ConversionQuery extends saml:SubjectQuery and also includes
the following components:

– Recipient is a new attribute defining the entity that will receive the resulting SAML
assertions. Following the SAML rules, it is defined as a URI that makes reference
to some well known architectural entity. The recipient is an optional element, and
if it is not specified the CCS will send the SAML assertions to the default entity
specified in the conversion policy.

– The samlp:RespondWith element contained in every SAML request should be used
to specify the type of SAML assertion that will be generated in response to the
conversion query.

– An element to include the WrappedStatements.

4 A Credential Conversion Service for eduGAIN

Once we have presented both eduGAIN and the generic CCS, this section defines a new
Credential Conversion Service for eduGAIN (eCCS).

Two main issues need to be addressed by this service: first, to use an inter-federation
credential representation, able to represent the set of credentials defined by each fed-
eration in a common language; second, to define where this eCCS will be located, the
interaction with the rest of components and the kind of information to be exchanged.

Regarding the first issue, it is required to define a common credential representation,
from now on eduGAIN Common Credentials (eCC), which will be managed by the
eduGAIN infrastructure. HI will need to define the relationship between the internal
credentials and eCC. In the same way, RI has to publish how its internal credentials
can be translated into eCC. For example, in academic federations, a good choice for
eCC is the set of attributes defined in the DAMe project [1], which is based on both the
SCHAC [18] and eduPerson [12] proposals, and tries to homogenize an inter-federation
set of attributes. Following the previous example, HI’s attributes will be based on the
eduPerson schema. Therefore, eduPersonEntitlement, for example, will be translated
into the eCC attribute urn:mace:terena.org:schac:personalPosition.

Regarding the second issue, the first step is to make eCCS available. Here we can
find two approaches: the first one is where eCCS is a centralized service belonging to
the common eduGAIN services; the second one is where it is a distributed service be-
longing to each federation. The former is more transparent for federation institutions
whereas the latter provides more flexibility and functionality to those institutions. This
work describes the first one as the generic case which provides the more wide vision
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of the problem. The second one would be a specific case where for example, the publi-
cation of conversion policies is not necessary. In eduGAIN those common services are
located in the Common eduGAIN Services component.

The second step is to define how each federation will publish the relationship be-
tween its internal credentials and eCC. It is an in advance step before the real interaction
between federations occurs, and it is described in section 4.2.

Following the generic approach, once all this information has been published in the
MDS, the system operates as follows. A user coming from HI tries to gain access to a
protected Resource located in RI. The user will be authenticated (following the eduroam
hierarchy, for example), and the Resource will use the eduGAIN infrastructure (BE in
remote institution, RBE) in order to locate where the user attributes can be retrieved
from and, if necessary, how they could be converted to the eCC format. Then, a check
is performed in order to determine whether the source credentials have to be converted.
In that case, the MDS will return the location of a BE in the home institution (HBE)
where credentials in source format can be obtained from. It is worth noting that HI
can define one single BE to obtain both attributes in source and non-source format, or
to define different BEs. Consequently, the RBE, after obtaining the source credentials,
will make use of the new eCCS module in order to convert them to the needed schema.

The eCCS operates as follows. It will receive the conversion request and will make a
double conversion process: first, translating the source credentials into the eCC format;
second translating the eCC credentials into the target format. The whole process is
described in next sections.

4.1 Proposed Architecture

Figure 2 shows how the new module named eCCS has been added to the Common
eduGAIN Services, and the relationship with the rest of components.

– Resource: Protected resource belonging to a federation which requires valid au-
thentication and attribute credentials in order to grant access to end users.

– Policy Decision Point, PDP: This component checks the Resource Access Policy re-
lated to the protected resource. Authorization decisions are based on user attributes.

– Attribute Authority (AA): Also known as the Identity Provider. This component uses
an Attribute Release Policy in order to decide which user attributes can be released
under specific circumstances.

– Bridging Elements (BE): BEs (located in home and remote institutions) establish
trust links among authentication and authorization components and user applica-
tions. In this case, we extend this component in order to integrate the conversion
process. The main aim of a RBE in this scenario is to locate the user attributes and
to issue Credential Conversion Requests to the corresponding eCCS. This module
will receive an Attribute Response including the user’s credentials in a valid inter-
nal representation (target format).

– eduGAIN Credential Conversion Service: The eCCS entity is responsible for the
credential conversion process. Conversion requests received from an institution
must include the following elements: the source credentials to be converted and
the identifiers of the home and target institutions. With this information, the eCCS
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Fig. 2. CCS for eduGAIN architecture

will carry out the double conversion process previously described. If the conversion
process is successful, the eCCS will respond with an Attribute Response message.

– Federation Peering Points (FPPs): FPPs are the components responsible for pub-
lishing the relationship between the source format and the common credential for-
mat, that is, the conversion policy. That publication has to be done prior to any
interaction between federations. It is important to note that if the eCCS were a dis-
tributed service it would be connected to the FPP in order to define the metadata
environment for this federation, and the publication process would not be neces-
sary.

Finally, it is worth noting that this centralized approach can be distributed among the
different federations using the same basic components. The CCS element could be part
of the FPPs, and therefore performing the conversion in a distributed way. However, we
still need a policy to express the conversion process and an interface to exchange the
conversion messages between the CCS and the BE. As we will see, the design provided
in this paper is also suitable for this approach as it addresses the same functionality.

4.2 Publication of Metadata Related to the eCCS

In the general case, in order to allow foreign institutions to make use of the user cre-
dentials defined in a federation, each institution/federation has to publish the following
information:
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– A conversion policy which defines how the credentials used in the institution can
be translated into the common representation (eCC).

– Expected credential format. This format represents the internal credential format
of an institution. It will be used by the MDS to process the received information
requests. MDS will compare the expected credential format published by the home
institution with the one specified in the information request. If both formats are
different, MDS will return the location of a BE able to return the user credentials
in a wrapped statement, which will be later translated by the eCCS.

– The Bridging Element which will return user credentials in source format (by
means of wrapped statements).

The FPP of each institution will make use of the MetaDataPublish message, defined
by eduGAIN, and extended in order to convey such information. eduGAIN MetaData
follows the format defined in SAML v2.0 [8].

Fig. 3. Credential conversion publication

Figure 3 describes the example of a publication message used by an institution, in this
case HI (md:Organization). HI publishes two AttributeServices, the first one (Source-
Format) will return the user attributes in source format, which is not the case of this
work. On the other hand, the second service (WrappedFormat) is in charge of return-
ing the attributes as described in section 3. Each service describes its location and the
protocol binding required to access the service, in this case, the SOAP protocol.

The AttributeAuthorityDescriptor also specifies the kind of attribute schema used
in the HI. In this case, following the previous example, HI is based on the eduPerson
scheme. Finally, HI has to publish the conversion policy, which is based on XACML
and described in section 5.

It is important to note that this publication process is not necessary when the eCCS
service is distributed among federations. The next section describes the interaction
among components and how the conversion process is carried out.
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4.3 CCS Profile for eduGAIN

This section describes a conversion profile for the eduGAIN architecture. It shows the
communication between components and the kind of information exchanged.

In this profile, due to RI defines the access control rules based on the user authentica-
tion and authorization processes (the former by means of the authentication credentials
and the latter by means of attribute credentials), it needs to obtain the user attributes
before taking the right decision. As already mentioned, source and target credential
formats are different, so RI will need to use the eCCS in order to translate the user
credentials into a suitable representation.

Following the previous example, HI will be based on Shibboleth, where user at-
tributes follow the eduPerson specification, and they will be represented by means of
SAML assertions. RI will be based on the eduroam infrastructure, where the DAMe
project has defined a the set of attributes mainly based on SCHAC, and they are also
represented by means of SAML. For the sake of simplicity, we will suppose the eCC is
also based on SCHAC.

Fig. 4. CCS profile for eduGAIN

First, user authentication must be performed. In our example, the user could present
either a login/password pair or a X.509 identity certificate credentials, which could be
authenticated by means of a direct trust relationship among institutions or the use of a
pre-established certification hierarchy. During the process of discovering HI’s informa-
tion, RBE will receive the attribute solicitation point (HBE). It is important to note that,
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inside the Home Lookup message, RBE has to include the expected kind of credentials
(schema). If MDS discovers those credentials are different to the ones provided by HI,
it will return the location of the HBE which will return the user credentials as wrapped
statements. The communication protocol between BEs and MDS is based on the REST
[11] protocol, and it is widely described in [16].

Once the user is authenticated, user attributes must be obtained. RBE is aware of
users who do not belong to HI, for example, by means of information included in their
authentication credentials, so their attributes have to be recovered from their home do-
main. Then, RBE queries the HBE in order to obtain the user attributes.

The query contains an AttributeRequest message defined by eduGAIN, which in-
cludes the user’s subject and the kind of attributes expected by Resource and, option-
ally, a resource identification. The binding used in the inter-federation communication
will depend on the particular scenario. A common solution is to use SOAP/HTTP.

HBE receives the AttributeRequest message and, through the internal Attribute Au-
thority located in HI, it recovers the user attributes. Following the example previously
described, those attributes, which are based on eduPerson, need to be wrapped in some
way in order to be transported to RI. In this case, the AttributeResponse message sent
by the HBE is based on the WrappedStatement sentence presented in section 3.

RBE detects those credentials are in source format (they are included in the Wrapped-
Statement), so it has to invoke the conversion service. RBE sends them to the eCCS,
whose location was obtained from the MDS. It generates a ConversionRequest mes-
sage, also presented in section 3, signs this request and sends it to the eCCS module
located in the Common eduGAIN Services. It is important to note that the invocation of
the eCCS could not be necessary if the RBE was able to manage very simple conversions
between credentials, and it would depend on the specific scenario and the functionality
of the RBE.

Once eCCS receives the ConversionRequest, it has to follow the following steps:
First, to detect the user home institution (HI) and the remote institution (RI); second,
to convert the source user credentials into the eCC type and format; third, to convert
the user credentials in eCC format into the target credentials type and format; finally,
eCCS will respond to the RBE with the converted credentials. HI is detected by means
of the information contained in the wrapped statement, and RI is detected by means of
information contained in the conversion request. The credential conversion process is
based on conversion policies, which will be introduced in the next section.

5 Credential Conversion Policies

Following the design described in [6], the conversion policies will be structured accord-
ing to a common schema. Depending on the type of conversion (from a source format to
the common format or vice versa) the information contained in the policies will change.
These are the main fields:

– Subject: Two subjects specifying the source and destination domains. One of them
must make reference to the eduGAIN common credentials (eCC), depending on the
direction of the specific conversion rules.
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– Resource: The resource elements represent the attributes issued by the source do-
main that need to be translated into target attributes.

– Action: This policy contains only the convert action.
– Obligation: Every permitted conversion will involve an obligation, which specifies

how to translate the credentials.

Fig. 5. Conversion Policy example

Figure 5 shows a simple Conversion Policy to translate Shibboleth attributes into
eCC credentials (SCHAC-based). For example, ToCommon defines an attribute that can
be translated from the domain o=ShibDomain,c=C to the common domain. There is
only an allowed action, convert. The involved domains are specified using the Subject
element, and for each attribute of the source domain it is necessary to define a con-
version policy. This specific policy defines the Rule element specifying the attribute to
be translated (type and value), and an Obligation element specifying the target eCC
attribute. For example, the policy described in figure 5 defines that the ShibDomain at-
tribute type eduPersonEntitlement and value urn:mace:ri.edu:researchgrant:55523981
must be translated into the eCC pair attribute type schac:personalPosition, with value
urn:mace:terena.org:schac:personalPosition:es:hi.edu:research.

It is worth noting that the addition of home domains involves additional PolicySet
elements, and more attributes per domain requires more Policy elements.

Regarding to scalability, the use of XACML do not necessarily involves that the size
of the conversion policy might run into megabits. In fact, the number of attributes to
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be considered for authorization purposes is usually low, and the set of values that can
be assigned to those attributes is also reduced. Moreover, the conversion rules will be
applicable in most cases for large sets of users without requiring the modification of the
policy, taken profit of the XACML structure.

6 Related Work

This work is mainly influenced by the different existing schemas for user attributes, and
therefore a general analysis of those schemas would be worthy.

Attributes are most commonly of a descriptive nature and associate a characteristic
with an entity. User attributes provide information about users that can be used in ad-
dition to or instead of the user’s unique identity to make authorization decisions. Such
attributes are used in combination with access policy to offer rights to specific resources.

As we show in this paper, user information is transmitted between different domains
for authorization purposes. There is a set of the user information that is relevant to the
specific protected resource and the environment. The selection of the user attributes will
be realistic, and in this case will be mainly based on educational attributes.

There has been a lot of effort done by several research groups which are also aligned
with the technologies (Shibboleth, eduGAIN) used in this proposal. Shibboleth relies
on the eduPerson [12] schema, a schema for higher educational user attributes defined
by Internet2 and EDUCAUSE initiative. eduGAIN, on the other hand, has focused its
user attributes interest on the so called Schema for Academia. SCHAC [18] has been
defined by TERENA initiative with the aim of carrying out some work in the area of
attributes coordination.

Thanks to the definition of the eduPerson and SCHAC, higher educational institu-
tional directories are provided with a common list of attributes and definitions, also
very helpful for inter-institutional data exchange. Additionally, eduPerson and SCHAC
are not independent each other. SCHAC, which has been developed after eduPerson
had been released, covers the eduPerson schema as a subset of its defined attributes.
SCHAC covers from specific defined attributes to other general already defined attribute
schemas. This relationship benefits inter-institutional interoperability between SCHAC
and eduPerson compliant institutions.

As we have previously commented, the DAMe project mainly focuses on a roaming
environment where user attributes are used to provide access control to the network.
eduGAIN and DAMe contributors have considered as a basic set of attributes, which
are basically a subset of SCHAC attributes, and that we called eduGAIN Common
Credentials (eCC).

7 Conclusions and Future Work

The proposal presented in this paper has been designed to provide an interoperability
service for confederations of heterogeneous federations. We provide the elements, poli-
cies and communication profiles needed to address this challenge, using eduGAIN as
the most suitable starting point. Our work is mainly focused on the educational envi-
ronment, but it can be considered appropriate for any other scenario since it does not
depend on the specific semantic behind the attributes or resources.
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As a statement of direction, a suitable scenario where this approach would very use-
ful is the Grid computing. The integration of eCCS with technologies such as VOMS
[4] will allow the relationship of Grid federations based on the different technologies in
an easy and scalable way.
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Abstract. The problem of key management in access hierarchies studies ways
to assign keys to users and classes such that each user, after receiving her secret
key(s), is able to independently compute access keys for (and thus obtain access
to) the appropriate resources defined by the hierarchical structure. If user privi-
leges additionally are time-based, the key(s) a user receives should permit access
to the resources only at the appropriate times. This paper presents a new, prov-
ably secure, and efficient solution that can be used to add time-based capabilities
to existing hierarchical schemes. It achieves the following performance bounds:
(i) to be able to obtain access to an arbitrary contiguous set of time intervals, a
user is required to store at most 3 keys; (ii) the keys for a user can be computed by
the system in constant time; (iii) key derivation by the user within the authorized
time intervals involves a small constant number of inexpensive cryptographic op-
erations; and (iv) if the total number of time intervals in the system is n, then the
server needs to maintain public storage larger than n by only a small asymptotic
factor, e.g., O(log∗ n log log n) with a small constant.

1 Introduction

This work addresses the problem of key management in access control systems, with
the emphasis on time-based access control policies. Consider a system where all users
are divided into a set of disjoint classes, and a user is granted access to a specific access
class for a period of time specified by its beginning and end. In such systems, it is com-
mon for the access classes to be organized in a hierarchy, and a user obtains access to
the resources at her own class and the resources associated with all descendant classes
in the hierarchy. When a user joins the system and is granted access to a certain class
for a specific duration of time, she is given a key (or a set of keys) which allows her
to independently derive access keys for all resources she is entitled to have access dur-
ing her time interval. For hierarchically organized user classes this means that the key
allows the user to access objects at her access class and all descendant classes in the
hierarchy during the time interval specified. Note that the time interval is user-specific
and might be different for each user in the system.

There is a wide range of applications that follow this model and which would ben-
efit from automatic enforcement of access policies through efficient key management.

J. Biskup and J. Lopez (Eds.): ESORICS 2007, LNCS 4734, pp. 515–530, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Such applications include (among others) role-based access control (RBAC) models,
subscription-based services, content distribution, and cryptographic directories or file
systems. In all of these examples we use the current time to enforce time-based poli-
cies. Additionally, instead of being based on the current time, access control policies
can be based on the time in the past and permit access to historical data. For example, a
user might buy access to data such as historical transactions, prices, legal records, etc.
for a specified time interval in the past, e.g., the year of 1920. These different notions
of time can be combined, e.g., a user buys access to 1920 data and is entitled to access
it for two weeks starting from today.

If we let the lifetime of a system be partitioned into n short time intervals, the ex-
istence of time-based access control policies requires the access keys to be changed
during each time interval. In this work, we concentrate on applications where the sys-
tem is setup to support a large number of such time intervals. For example, access key
to a video stream might change at least once a day (thus, permitting users to subscribe
on any given day). If the system is setup for a few years, this results in n being in thou-
sands. Likewise, if the application of interest is access to historical data, say, for the last
century, the number of time intervals will tend to be even higher. Thus, a small number
of keys per user and efficient access with large n’s is the goal of this work.

The notion of security for time-based hierarchical key assignment (KA) schemes was
formalized only recently by Ateniese et al. [5]. Thus, in the current paper we use their
security definitions and provide a new efficient solution to the problem of key manage-
ment in systems with time-based access control policies. The approach we propose is
provably secure and relies only on the security of pseudo-random functions (PRFs). In
addition, our solution does not impose any requirements or constraints on the mecha-
nisms used to enforce policies in systems where access control is not time-based (e.g.,
for a hierarchy of user classes). This means that our solution can be built on top of an
existing scheme to make it capable of handling time. In the rest of this paper, we refer
to a scheme without the support for temporal access control as a time-invariant scheme,
and we refer to a scheme that supports temporal access control policies as time-based.

Existing efficient time-invariant key management schemes for user hierarchies are
based on the notion of key derivation: a user receives a single key, and all other access
keys a user might need to possess according to her privileges can be derived from that
key. In the most general formulation of the problem, inheritance of privileges is modeled
through the use of a directed graph, where a node corresponds to a class and a parent
node can derive the keys of its descendants. In this paper we follow the same model,
but, unlike previous work, apply key derivation techniques to time.

In a setup with n time intervals, the server is likely to maintain information linear
in n. By building a novel data structure, we only slightly increase the storage space at
the server beyond the necessary O(n) and at the same time are able to achieve other
attractive characteristics. In more detail, our solution enjoys the following properties:

– To be able to obtain access to an arbitrary contiguous set of time intervals, a user is
required to store at most 3 keys.

– The above-mentioned keys to be given to a user can be computed in constant time
from that user’s authorized set of contiguous time intervals.
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– Key derivation within the authorized time intervals involves a small constant num-
ber of cryptographic operations and thus is independent of the number of time
intervals in the systems or the number of time intervals in the user’s access rights.

– If the total number of time intervals in the system is n, then the increase of the
public storage space at the server due to our solution is only by a small asymptotic
factor, e.g., O(log∗ n log logn) with a small constant.

– All operations are very efficient, and no expensive public-key cryptography is used.

We provide several solutions with slightly different characteristics, where the difference
is due to the building blocks used in our construction. These solutions are summarized
in Table 3. An extension of our techniques also allows to support access rights that can
be stated as periodic expressions.

While the results given above correspond to a time-based key assignment scheme
with a single resource or user class, we can use them to construct a time-based key
assignment scheme for a user hierarchy. We show that our construction favorably com-
pares to existing schemes and provides an efficient solution to the problem (the compar-
ison is given at the end of the paper in Section 7). Additionally, our scheme is balanced
in the sense that all resource consumption such as the client’s private storage, compu-
tation to derive keys, and the server public storage are minimized with tradeoffs being
possible. This allows the scheme to work even with very weak clients and not to burden
the server with excessive storage. Furthermore, our scheme is provably secure under
standard complexity assumptions.

In the rest of the paper, we first review related literature in Section 2. In Section 3
we define the model and give some preliminaries. Section 4 gives a preliminary data
structure, which we use in Section 5 to build our improved scheme. Thus, the core of
our solution lies in Section 5 along with its analysis. In Section 6 we show how to use
the scheme to build a time-based key assignment scheme for a user hierarchy. Finally,
Section 7 compares our solution with other existing schemes and concludes. Several
extensions of our scheme and security proofs can be found in [4].

2 Related Work

The literature on time-invariant key assignment (KA) schemes in a user hierarchy is
extensive, and its survey is beyond the scope of this paper. For an overview of such
publications, see, e.g., [2] and [11].

While the list of publications on time-invariant KA schemes is very large, the number
of publications that consider time-based policies and provide schemes for them is rather
modest. The time-based setting and the first scheme was introduced by Tzeng [17].
The scheme, however, was later shown to be insecure against collusion of multiple
users [22]. Subsequent work of Huang and Chang [12], Chien [10], and Yeh [20] was
also shown to be insecure against collusion (in [16], [21,14], and [5], respectively).

Among very recent publications, Wang and Laih [19] present a time-based hierar-
chical KA scheme. While their scheme is shown to be collusion-resilient, the notion of
security, however, is not formalized and no clear adversarial model is given in that work.
Tzeng [18] also describes a time-based hierarchical key assignment scheme, which is
used as a part of an anonymous subscription system. The scheme is proven to resist
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collusion attacks; however, no formal model of adversarial behavior is provided. The
work of Ateniese et al. [5] is the first result that provides a formal framework for time-
based hierarchical KA schemes and gives provably secure solutions, both secure against
key recovery and with pseudo-random keys. Concurrently with and independently from
this work, time-based solutions have been developed by De Santis et al. [15]. Section 7
compares all solutions.

There is extensive literature on broadcast encryption and multicast security, which
might be considered applicable here. There are, however, crucial differences in the
models, which prevent us from using solutions from those domains. First, broadcast
encryption and multicast security schemes permit access to a single resource instead
of a hierarchy and cannot be composed in an obvious way to solve our problem. More
importantly, they assume that each client obtains key updates for each time interval,
which is impossible in our model: no private channels between the server and a client
after the initial issuance of the user keys is assumed, the client is allowed to remain
off-line, and can access the resources at her own discretion. The only exception from
the above online requirement that we are aware of is the work of Briscoe on multicast
key management [9]. That solution builds a binary tree from the time intervals, thus
achievingO(log n) secret keys and O(log n) key derivation time.

Finally, the access control literature has a large body of work on temporal access
control models (see, e.g., [7,8]). These models, however, concentrate on policy specifi-
cation and not on key assignment and derivation mechanisms.

3 Problem Description and Preliminaries

3.1 The Model

While the motivation for this work comes from the need to support access control poli-
cies with temporal constraints in user hierarchies, the problem does not need to be
limited to this particular setting. That is, an efficient solution to the key management
problem in temporal access control can find use in other domains. Therefore, we provide
a very general formulation of the problem, without any assumptions on the environment
in which it is used. Of course, access control in user hierarchies remains the most im-
mediate and important application of our techniques. Thus, in Section 6 we will show
how our solution can be used to realize temporal access control for user hierarchies.

Now let us assume that we are given a resource, and the owner of this resource would
like to control user access to that resource using time-based policies. For that purpose,
the lifetime of the system is partitioned into short time intervals (normally, of a length
of a day or shorter), and the access key for that resource changes every time interval.
Let n denote the number of time intervals in the system, T = {t1, . . ., tn} denote the
intervals, and K = {kt1 , . . ., ktn} denote the corresponding access keys.

Now assume that a user U is authorized to access that resource during a contiguous
set of time intervals TU ⊆ T , where TU = {tstart, . . ., tend}. Following the notation
of [5], we use the interval-set over T , denoted by P , which is the set of all non-empty
contiguous subsequences of T , i.e., TU ∈ P for any TU . With such access rights, U
should receive or should be able to compute the keys KTU ⊆ K , where for each t ∈
TU the key kt ∈ KTU . We denote the private information that U receives by STU .
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Obviously, storing |TU | keys at the user end is not always practical, and significantly
more efficient solutions are possible. Then a time-based key assignment scheme assigns
keys to the time intervals and users, so that time-based access control is enforced in
a correct and efficient manner. Such key generation is assumed to be performed by a
central authority CA, but once a user is issued the keys, there is no interaction with
other entities. More formally, we define a time-based KA scheme as follows:

Definition 1. Let T be a set of distinct time intervals and P be the interval-set over T .
A time-based key assignment scheme consists of algorithms (Gen,Assign,Derive) s.t.:

Gen is a probabilistic algorithm, which, on input a security parameter 1κ and the set
of time intervals T , outputs (i) a key kt for any t ∈ T ; (ii) secret information Sec
associated with the system; and (iii) public information Pub. Let (K, Sec,Pub)
denote the output of this algorithm, where K is the set of all keys.

Assign is a deterministic algorithm, which, on input a time sequence TU ∈ P and
secret information Sec, outputs private information STU for TU .

Derive is a deterministic algorithm, which, on input a time sequence TU , time interval
t ∈ TU , private information STU , and public information Pub, outputs the key kt

for time interval t. The correctness requirement is such that, for each time sequence
TU ∈ P , each time interval t ∈ TU , each private information STU , each key kt ∈
K , and each public information Pub that Gen(1κ, T ) and Assign(TU , Sec) can
output, Pr[Derive(TU , t, STU ,Pub) = kt] = 1.

Note that in many cases the Assign algorithm can be a part of the Gen algorithm, i.e.,
private values STU for every TU ∈ P are generated at the system initialization time. We,
however, separate these algorithms to account for cases where retrieving STU from Sec
is not straightforward (which is the case in our scheme). In such cases, merging these
two algorithms together will needlessly complicate Gen.

Also note that since a user accesses the server’s public storage for key derivation
purposes, there is no need for additional time synchronization mechanisms between
the user and the server: the current time interval can be stored as a part of the public
information the server maintains.

We distinguish between two different notions of security for a time-based KA scheme:
security against key recovery and security with respect to key indistinguishability (i.e.,
schemes with pseudo-random keys). A time-based KA scheme can also be secure against
static or adaptive adversaries. In [5], however, it was shown that the security of a time-
based hierarchical KA scheme against a static adversary is polynomial-time equivalent
to the security of that scheme against an adaptive adversary for both security goals (key
recovery and key indistinguishability). While in the current discussion we are not con-
cerned with hierarchical schemes, our setting can be considered to be a special case of
a hierarchy with a single class. Thus, in this work we only provide definitions of a time-
based KA scheme secure against a static adversary; and a proof of security under such
definitions will imply security against an adaptive adversary.

In our definition of a scheme secure against static adversary, let adversaryAst attack
the security of the scheme at time t ∈ T . Ast is allowed to corrupt all users with no
access to kt and, when finished, is asked to guess kt. We consider a scheme to be secure
only if Ast has at most negligible probability in outputting the correct key.
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In addition to the security requirements, an efficient KA scheme is evaluated by the
following criteria: (i) The size of the private data a user must store; (ii) The time it
takes the system to assign a user its keys; (iii) The amount of computation necessary
for a user to generate an access key for the target time interval; and (iv) The amount of
information the service provider must maintain for public access.

3.2 Key Derivation

Our approach relies heavily on the notion of key derivation. In our solution, we use the
same key derivation techniques that were used in [1]. The crucial difference, however,
is that in [1] key derivation was used between user classes (to provide a time-invariant
scheme for a user hierarchy), while in this work we use key derivation for the data
structures that we build. This is possible because the techniques of [1] work for an
arbitrary directed acyclic graph (DAG), and we review them next.

Assume that we are given a DAG denoted by G = (V,E), where V is the set of
nodes and E is the set of edges. Let Anc(v,G) denote the set of ancestors of node
v in G including v itself, and let Desc(v,G) denote the set of descendants of v in G
including v itself. Let Fκ : {0, 1}κ×{0, 1}∗ → {0, 1}κ, for a security parameter κ, be
a family of pseudo-random functions (PRFs) that, on input of a κ-bit key and a string,
outputs a κ-bit string that is indistinguishable from a random string (note that a PRF
can be implemented very efficiently as HMAC [6] or CBC MAC). For brevity, instead
of Fκ(k, x), we may write Fk(x). Also, when the graphG is clear from the context, we
may omit it in the ancestry functions and use Anc(v) and Desc(v).

To be able to derive keys, we need two algorithms:

– Set is an algorithm for assigning keys to the graph which takes as input a security
parameter 1κ and a DAG G = (V,E) and outputs (i) an access key kv for each
v ∈ V , (ii) secret information Sv for each v ∈ V , and (iii) public information Pub.

– Derive is an algorithm for deriving keys which takes as input nodes v, w ∈ V ,
secret information Sv for v, and public information Pub. It outputs the access key
kw for w, if w ∈ Desc(v,G).

The derivation method we use is from [1], and is sufficient to achieve security against
key recovery:

– Set(1κ, G): For each node v ∈ V , select a random secret key kv ∈ {0, 1}κ and
set Sv = kv . For each node v ∈ V , select a unique public label �v ∈ {0, 1}κ and
store it in Pub. For each edge (v, w) ∈ E, compute public information yv,w =
kw ⊕ Fkv (�w), where ⊕ denotes bitwise XOR, and store it in Pub.

– Derive(v, w, Sv ,Pub): Let (v, w) ∈ E. Given Sv = kv and Pub, derivation of
kw can be performed as kw = Fkv (�w) ⊕ yv,w, where �w and yv,w are publicly
available in Pub. More generally, if there is a directed path between nodes v and u
in G, u’s key can be derived from v’s key by considering each edge on the path.

3.3 Shortcut Techniques

Our constructions use the so-called shortcut edges: a shortcut edge is an edge that is
not in the original graphG but is in the transitive closure of G. Such edges are added to
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Table 1. Performance of shortcut schemes for one-dimensional graphs

Private Key Public
Scheme storage derivation storage
2HS [2] 1 2 op. O(n log n)

3HS [1] 1 3 op. O(n log log n)

4HS [2] 1 4 op. O(n log∗ n)

log∗HS [2] 1 O(log∗n) op. O(n)

G for performance reasons. Note that addition of shortcut edges does not affect partial
order relationship between the nodes, i.e., we may add a shortcut edge (v, w) to the
graph only if there is already a directed path from node v to w in the original graph.

In this work we rely on efficient shortcut techniques from prior literature for a graph
of dimension 1 (i.e., a total order), reviewed in [4]. Here we only summarize the per-
formance of existing schemes, any of which can be used as a building block in our
constructions. Consider a directed graph of dimension 1 consisting of n vertices. The
performance of known solutions for such graphs is given in Table 1. In the table, we
denote by sHS a solution where the distance between any two nodes (i.e., the diameter
of the graph) is at most s, i.e., a so-called s-Hop Scheme.

Throughout this work we may use S1(n) to denote any shortcut scheme for graphs
of dimension 1 applied to a total order of size n. We also use space(S1(n)) and
time(S1(n)) to denote its public storage and key derivation complexity, respectively.

4 Building Basic Data Structure

As was mentioned above, all of our constructions are based on the notion of key deriva-
tion in a graph. Throughout the rest of the paper, when we say that there is a directed
edge from v to w inG, it implies that v is capable of derivingw’s key using its own key.
This means that, for the data structures that we build (all of which are DAGs), there will
be a public and secret information associated with each node, and there will be public
information corresponding to each edge.

Our preliminary data structure is rather simple and consists of two main steps: build-
ing a grid of size n × n (where n is the number of time intervals in the system) and
applying one-dimensional shortcut techniques to parts of the grid. A more detailed de-
scription follows.

1. Build half of a grid of dimension n× n with the time intervals t1, . . ., tn being on
its diagonal (see Figure 1). In the grid, we denote by v1,1 the root node; node vi,j

is located at the row i and column j (i.e., v2,1 is “below” v1,1 and v1,2 is “on the
left” of v1,1). There is a directed edge from each vi,j to vi+1,j , and from each vi,j

to vi,j+1. The time interval ti corresponds to the node vi,n−i.
From this data structure it should be clear that, given a key for vi,j , all keys for

time intervals ti, . . ., tn−j+1 can be derived from it (in the worst-case O(n) time).
2. Next, we apply a one-dimensional shortcut scheme S1 to each row and column of

the grid (see Figure 2). More precisely, we add shortcuts to the data structure to be
able to derive vi,x’s key from vi,y’s key for any x > y (and similarly vx,j’s key
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Fig. 1. Building a grid for the ba-
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Fig. 2. Adding shortcuts to the grid

Table 2. Performance of the basic (and preliminary) scheme

Underlying Private Key Public
scheme storage derivation storage

2HS 1 ≤ 4 op. O(n2 log n)

3HS 1 ≤ 6 op. O(n2 log log n)

4HS 1 ≤ 8 op. O(n2 log∗ n)

log∗HS 1 O(log∗n) op. O(n2)

from vy,j’s key for any x > y) in a small number of steps instead of previousO(n)
time. This is done at the expense of O(space(S1(n))) additional shortcuts per row
or column and therefore O(n · space(S1(n))) total shortcuts.

Having this, now a user entitled to have access during time intervals TU =
{tx, . . ., ty} ∈ P can receive a single key corresponding to node vx,n−y+1. Key
derivation of the key corresponding to the current time interval ti ∈ TU now con-
sists of at most 2 · time(S1(n)) steps: at most time(S1(n)) steps are needed to
derive vi,n−y+1’s key from that of vx,n−y+1, and then at most time(S1(n)) steps
are needed to derive vi,n−i+1’s key (which corresponds to ti) from that of vi,n−y+1.

Table 2 summarizes the performance of the basic scheme, when used with various one-
dimensional schemes.

5 An Improved Scheme

This section describes a solution that achieves significantly better performance than the
previous scheme. We first present a new data structure and then fill other parts in to
provide a full-fledged time-based KA scheme.

At a high level, to build a new data structure, we partition all time intervals in the
system into coarse “chunks” (

√
n chunks of

√
n time intervals each) and apply the basic

scheme to the chunks. If access is to be granted to a large time interval that spans across
boundaries of these chunks, we can use this level of granularity to assign keys. If, on
the other hand, the interval to which the user should obtain access is contained within
a chunk, we recursively apply this procedure to the time intervals within each chunk
to support time-based access control of finer granularity. If a time interval spans across
different chunks, but contains partial chunks at the beginning and at the end of the user’s
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sequence of time intervals, then we utilize the coarse chunk’s keys along with two new
types of keys that are introduced later.

5.1 Reducing Storage Space

This section describes the tree data structure we build; how it is used is covered in
the next sections. For the purposes of presentation of this work, we let n = 22q

for
some integer q. This allows us to avoid using rounding notation 0x1 and ,x- through-
out the algorithms and results in a cleaner presentation (note that this assumption is
purely to make the presentation cleaner, and the solution will work without this as-
sumption). Our procedure for building the data structure takes as inputs a node v and
the set T = {t1, . . . , tn}, and then recursively builds a tree for the set rooted at v.
Due to the recursive nature of this function, we use T̂ to denote the working set of the
current function invocation and |T̂ | to denote the size of T̂ . Then the data structure is
constructed as described below:

Algorithm DataStructBuild(v, T̂ ):
1. If |T̂ | = 2 (i.e., q = 0), then return. Otherwise, continue with the steps below.

2. Partition T̂ into
√

|T̂ | sets of
√

|T̂ | contiguous time intervals each, call these

T̂1, . . . , T̂√|T̂ |. That is, if T̂={t1, . . ., t|T̂ |}, then T̂i={ti
√

|T̂ |+1
, . . . , t

i
√

|T̂ |+
√

|T̂ |}.
Create a node vi for each T̂i, and make vi a child of v.

3. Generate a problem Coarse(T̂ ), derived from T̂ by treating each T̂i as a black box
(i.e., “merging” the constituents of T̂i into a single item). Note that the size of set

Coarse(T̂ ) is
√

|T̂ |.
4. Store at node v an instance of the basic scheme for Coarse(T̂ ), denoted D(v).
D(v) supports performance of: 1 key, O(time(S1(|T̂ |))) key derivation, and
O(space(S1(|T̂ |))) space; butD(v) can only process an interval if it is the union of
a contiguous subset of Coarse(T̂ ) (i.e., it cannot handle intervals whose endpoints
are inside the T̂i’s, as it cannot “see” inside a T̂i).

5. Also store at node v two solutions of one-dimensional problems on T̂ : One is for
intervals all of which start at the right boundary of T̂ and end inside T̂ (we call
this the right-anchored problem and denote the one-dimensional structure for it by
R(v)); another is for intervals all of which start at the left boundary of T̂ and end
inside T̂ (we call this the left-anchored problem and denote the one-dimensional
structure for it by L(v)). Note that having R(v) and L(v) enables the handling of
an interval that lies within T̂ and also has its left or right endpoint at a boundary
of T̂ , with performance of: 1 key, O(time(S1(|T̂ |))) steps per key derivation, and
O(space(S1(|T̂ |))) space.

6. Recursively apply the scheme to each child of T̂; that is, callDataStructBuild(vi, T̂i)

in turn for each i = 1, 2, . . . ,
√

|T̂ |.
Figure 3 gives an illustration of how the data structure is built. The total space of the data
structure satisfies the recurrence S(n) ≤

√
nS(

√
n) + c1 · space(S1(n)) if n > 2 and

S(2) = c2, where c1 and c2 are constants. Thus, S(n) = O(space(S1(n)) log logn).
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(c) State after Step 3.
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Fig. 3. Construction of the data structure for the improved scheme (first level of recursion)

5.2 Key Assignment

We now turn our attention to which keys are given to a user with access to an arbitrary
TU ∈ P . In what follows, v is a node of the above tree data structure, T̂ is the set of
time intervals associated with v, and I is a sequence of time intervals for which the keys
must be given. The recursive procedure below, when invoked on any TU and our data
structure, returns a set of (at most 3) keys associated with TU .

Algorithm AssignKeys(I, v, T̂ ):
1. If v is a leaf, then return a key for each of the (at most two) time intervals in I .

Otherwise, continue with the next step.
2. Let v1, . . . , v√|T̂ | be the children of v, and let T̂1, . . . , T̂√|T̂ | be the respective sets

of times associated with these children. We distinguish two cases:
(a) I overlaps with only one set T̂i. Then we return the keys from the recursive call

AssignKeys(I, vi, T̂i).
(b) I overlaps with all of T̂k, T̂k+1, . . . , T̂k+�, where � ≥ 1. These �+ 1 intervals

are handled in 3 different ways: Those completely contained in I are collec-
tively processed using the D(v) structure, resulting in one key. If T̂k overlaps
with I , but is not contained in I , then it is right-anchored and is processed us-
ingR(vk), resulting in one key. If T̂k+� overlaps with I , but is not contained in
I , then it is left-anchored and is processed using L(vk+�), resulting in one key.
Those (at most) 3 keys are returned.

One can also lower the time complexity of the above algorithm to O(time(S1(n)))
(e.g., it can be constant). We show how to achieve this in [4].

All keys given to users must be labeled with the level at which they were retrieved in
the data structure, i.e., the distance from the root node. This is necessary for achieving
constant-time computation of access keys, which will be explained in the next section.
To make key derivation simpler, we also label user keys with their type; namely:D, R,
or L. In addition, if a user receives more than a single key for her time sequence TU ,
each key is labeled with a range of time intervals to which it permits access.

To summarize, we assume that a key given to a user will be labeled with four values
(lev, type, ta, tb), where 0 ≤ lev ≤ log logn, type ∈ {R,L,D}, and ta, tb ∈ T such
that ta < tb. For example, if a user with access rights to TU = {tstart, . . ., tend} is
given private information consisting of three keys STU = {k1, k2, k3}, then k1 could be
labeled with (l, R, tstart, ta), k2 with (l−1, D, ta+1, tb), and k3 with (l, L, tb+1, tend).
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5.3 Content Distribution

At time t ∈ T , the service provider wants to make certain content (possibly very volu-
minous) available to the users with access rights at time interval t. To do so, the content
is encrypted with the access key kt using a symmetric encryption scheme and is made
available to all users in the encrypted form (by placing it in a public location, broad-
casting it to the users, or by other means). In our scheme the server also needs to ensure
that the keys that users derive for t allow them to derive kt. There areO(log logn) such
keys for t in the data structure access to which should allow access to kt. Since the data
structure has (log logn+ 1) levels, such keys are:

– Keys from R(v), for some v in the data structure, one from each level.
– Keys from L(v), similarly, for a single v per level.
– Keys corresponding to D(v), one from each level l, 0 ≤ l ≤ log logn− 1.

We refer to these keys as enabling keys. The server places in the public domain infor-
mation that permits derivation of kt from any of the enabling keys above. Additionally,
the server labels the public derivation information associated with each of the enabling
keys with the level and the type (i.e., R, L, or D) of the corresponding enabling key.
This is needed to permit fast constant-time derivation of the access key.

5.4 Key Derivation

A user U with access to the sequence of time intervals TU = {tstart, . . ., tend} ∈ P
receives private information STU consisting of 1, 2, or 3 keys that permit her to derive
enabling keys for each t ∈ TU . In the most general (and common) case, such private
information consists of 3 keys – denoted by k1, k2, and k3 – labeled as (l, R, tstart, ta),
(l − 1, D, ta+1, tb), and (l, L, tb+1, tend), respectively, for some l, a, and b. Let us
assume, without loss of generality, that if the number of keys is less than 3, then the
missing keys are set to empty strings with k1 remaining of type R, key k2 of type D,
and key k3 of type L. Then to obtain the enabling key for a time interval ti ∈ TU , U
executes a derivation algorithm which we sketch here:

Algorithm DeriveKey(TU , ti, STU ,Pub):
1. Parse STU as k1(l, R, tstart, ta), k2(l − 1, D, ta+1, tb), k3(l, L, tb+1, tend).
2. If ti ∈ {tstart, . . ., ta}, find the node v at level l such that R(v) permits access to ti

(note that such node v can be computed in constant time using index i of the time
interval ti). Use k1 and the public information about the edges in Pub to derive the
key corresponding to ti and return that enabling key.

3. Similarly, if ti ∈ {tb+1, . . ., tend}, locate the node v at level l s.t. L(v) permits
access to ti. Use k3 and Pub to derive an enabling key for ti and return that key.

4. Finally, if ti ∈ {ta+1, tb}, locate v at level l − 1 such that D(v) permits access to
ti; use k2 and Pub to derive an enabling key for ti and return it.

Key derivation complexity in all of the above cases is O(time(S1(n))).

5.5 Putting Everything Together

In this section we summarize our construction and show its performance. All proofs
corresponding to our security theorems can be found in [4]. Figure 4 gives a complete
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Algorithm Gen(1κ, T ):
1. Create a root node root for the data structure and run DataStuctBuild(root, T ). Let G =

(V, E) denote the tree structure returned.
2. For each v ∈ V , randomly choose a secret key kw ∈ {0, 1}κ and a unique public label

�w ∈ {0, 1}κ associated with each node w in D(v), R(v), and L(v).
3. For each v ∈ V , construct public information for each edge in D(v), R(v), and L(v) us-

ing the key derivation method, e.g., for an edge (w, u), its public value is yw,u ∈ {0, 1}κ.
4. For each t ∈ T , randomly choose a secret key kt ∈ {0, 1}κ and a unique public label

�t ∈ {0, 1}κ.
5. For each t ∈ T , let Vt ⊂ V denote the set of nodes in G access to which implies access

to t. Then for each Vt, for each v ∈ Vt:
(a) find in D(v) the node corresponding to the time interval t; call it w.
(b) create an edge from w to t by computing public information using enabling key kw,

t’s secret key kt, public label �t, and the key derivation method. Mark such an edge
with the level of v and type D.

(c) repeat (a) and (b) for R(v) and L(v), using types R and L, respectively.
6. Let K consist of the secret keys kt for each t ∈ T and Sec consist of the remaining secret

keys kw. Also let Pub consist of G, all public labels (of the form �w and �t), and public
information about all edges generated above.

Algorithm Assign(TU , Sec):
1. Execute AssignKeys(TU , root, T ), where root is the root node of G.
2. Set STU to the keys computed and return STU .

Algorithm Derive(TU , t, STU , Pub):
1. If t �∈ TU , return a special rejection symbol ⊥.
2. Execute DeriveKey(TU , t, STU , Pub) to compute an enabling key for t; call it k′

t.
3. Use k′

t along with its (level-type) label and Pub to derive key kt.

Fig. 4. Proposed time-based key assignment scheme

description of our time-based KA scheme. In addition to the algorithms given in pre-
vious sections, we specify how they are used. Table 3 summarizes performance of our
solution. The security of our solution comes from the way key derivation is performed
in a DAG and is not due to the details of the data structures built.

Theorem 1. Assuming the security of the family of PRFs Fκ, the time-based key as-
signment scheme given in Figure 4 is both complete and sound with respect to key
recovery in the presence of a static adversary.

To achieve a stronger notion of key indistinguishability, our solution will require a
slightly different key derivation method. Intuitively, we decouple the keys used in the
public information from the actual access keys, so that now it is not feasible to test ac-
cess keys using the public information. The separation is performed using an additional
invocation of a PRF, where the keys to be used in Pub are computed as F (0||k) and the
access keys are computed as F (1||k). This key derivation method is described in [1]
(full version only).

Then in our scheme of Figure 4, we use this enhanced key derivation method in
Step 3 of the Gen algorithm (i.e., in data structures D(v), R(v), and L(v)). This means
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Table 3. Performance of the improved scheme

Underlying Private Key Public
scheme storage derivation storage

2HS ≤ 3 ≤ 5 op. O(n log n log log n)

3HS ≤ 3 ≤ 7 op. O(n(log log n)2)

4HS ≤ 3 ≤ 9 op. O(n log∗ n log log n)

log∗HS ≤ 3 O(log∗ n) op. O(n log log n)

that now someone with access to a certain key in, for instance, R(v) and who guesses
an unauthorized key correctly, cannot use the public information for that data structure
to test the key. This change implies the corresponding change in the Derive algorithm.

So far we devised a solution to support access rights that span across a contiguous se-
quence of intervals. It is also possible to support periodic access rights that span across a
contiguous set of time periods but the time intervals themselves might be discontinuous
within a period. If we treat time as a single dimension and the solution presented in this
work as a solution to one-dimensional problem, it is possible to extend our approach
to higher dimensions. An extension to dimension 2, which is useful in the geo-spatial
context, is presented in [3]. This two-dimensional solution can be used to conveniently
address the problem of periodic access rights with a small number of keys per user: we
use one dimension to specify periods in user access rights and the other dimension to
specify individual time slots within a period. We omit further details here.

Full version [4] gives extensions to this solution. In particular, we show how to ex-
tend the lifetime of the system beyond the original n time intervals and how to general-
ize the scheme to further decrease the public space using a key-space tradeoff.

6 Temporal Access Control for a User Hierarchy

In systems with hierarchically organized access classes, such a hierarchy is normally
modeled as a directed acyclic access graph which we denote by GU . In such a graph,
each node corresponds to an access class and the edges form a partial order relationship
between the classes. An edge from node v to node w means that the parent node v
inherits privileges of the node w (while the converse is not true). This implies that a
user with access to a specific class obtains access to the resources at that class and the
resources at all of the descendant classes in the hierarchy. With this setup, it is possible
to assign each class a single secret key and let users obtain keys of their descendant
classes through a key derivation process. Similar to a general graph, in an access graph
GU a directed path from node v to w means that w’s keys are derivable from v’s key.

Now if we equip the model with time-based policies, in addition to computing keys
of descendant classes, a user should be able to compute keys based on time. That is,
a user U entitled to access class v ∈ VU during a sequence of time intervals TU ∈ P
obtains private information that permits her to compute keys kv,t for her access class v
and each t ∈ TU (time-based key derivation). In addition, the private information allows
U to compute, for each t ∈ TU , keys kw,t for each descendant access class w in the
user hierarchy (class-based key derivation). Thus, key derivation now consists of two
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Table 4. Comparison of time-based hierarchical KA schemes

Public Private in- Key Operation Complexity
Scheme information formation derivation type assumption

Encryption-based O(|VU |2|T |3) 1 1 decryp- one-way
[5] tion functions

Pairing-based [5] O(|VU |2) O(|T |) 1 pairing Bilinear Diffie-
evaluation Hellman

Binary tree O(|EU ||T |) O(log |T |) O(log |T |+ PRF one-way
diam(GU )) functions

ISPIT+(3,1)-CSBT O(|EU ||T | + |VU ||T |· ≤ 3 O(diam(GU )) decryp- IND-P1-CO
+EBC [15] log |T |(log log |T |)2) tion encryption [13]

Our 4HS-based O(|EU ||T | + |VU ||T |· ≤ 3 O(diam(GU )) PRF one-way
log∗ n log log |T |) functions

ISPIT+(3,1)-CSBT O(|EU ||T | + |VU ||T |· ≤ 3 O(log∗ |T |+ decryp- IND-P1-CO
+EBC [15] log |T | log log |T |) diam(GU )) tion encryption [13]

Our log∗HS-based O(|EU ||T | + |VU ||T |· ≤ 3 O(log∗ |T |+ PRF one-way
log log |T |) diam(GU )) functions

dimensions, which can potentially be performed using drastically different techniques.
We give details on how to extend out current scheme to this hierarchically-temporal
based model in the full version [4].

7 Comparison with Existing Solutions

Table 4 compares performance of our scheme with other existing solutions; only se-
curity against recovery was considered. In the table, diam(GU ) denotes the diameter
of the graph (i.e., maximum distance between nodes) that bounds the number of op-
erations necessary to derive a descendant class’s key in the user hierarchy GU . Also,
|EU | denotes the number of edges in GU . The table does not list private storage at the
server since it is equivalent for all solutions. Before proceeding with comparing existing
results, we briefly explain what these parameters mean.

In the great majority of cases, the depth of user hierarchies is a small constant, re-
sulting in small constant diam(GU ). In cases where the depth of the original graphGU

is fairly large and it is unacceptable to have the user perform diam(GU ) operations,
the graph can be modified to significantly reduce diam(GU ). This is done by insert-
ing shortcut edges at random (if diam(GU ) = O(VU )) or using the techniques of [1]
and [2] that reduce diam(GU ) to a small constant at the expense of small increase in
the public storage associated with the hierarchy1. Thus, in this case diam(GU ) is also a
small constant, and parameter |EU |will need to be replaced with a slightly larger value.

We also would like to mention that the schemes [19,18] are not listed in the table
due to the difference in the expressive power. These solutions allow a user to obtain
access to an arbitrary subsequence of time intervals, but require significantly slower
key derivation of O(|VU | · |T |) modular exponentiations.

1 The techniques of [1] and [2] may fail on hierarchies of high dimensions, but we believe that
such cases are very rare for the applications we consider in this work.
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Considering that small private user storage and fast key derivation, followed by reason-
ableserverstorageare themainevaluationcriteria,wecananalyze thesolutionsasfollows.
The Pairing-based scheme of [5] will have the slowest key derivation time among all of the
schemes listed, as it uses pairing evaluation rather than fast encryption or PRF operations.
Additionally, the number of secret keys a user has to maintain is large. Compared to the
Encryption-based scheme of [5], our key derivation time is higher by a constant fac-
tor, private storage is similar (i.e., three keys instead of one), but the amount of public
information the server must maintain in our scheme is much lower than in that scheme.

While the simple binary-tree approach has asymptotically higher performance, for
small values of |T | it will be preferred due to its simplicity. However, for the applica-
tions we envision, other solutions exhibit better performance. Thus, our recommenda-
tion is to use the simplest approach suitable for a particular setup.

The work of De Santis et al. [15] lists solutions with different performance parame-
ters, and we include only selected two here. We chose two schemes that require a user to
store 3 private keys (like in our solutions) and where time-based key derivation involves
O(1) and O(log∗ n) decryptions, respectively. This allows us to directly compare the
schemes of [15] with our schemes. As can be seen from the table, the solutions exhibit
very similar performance with CSBT-based constructions having an additional factor
of log |T | in the public storage space. Moreover, they do not discuss key assignment,
but it does not look like their key assignment can be done in constant time, whereas our
scheme allows constant time key assignment.

To summarize, our solution offers very attractive characteristics and superior perfor-
mance compared to other existing solutions: each user in the system receives a small
(≤ 3) number of keys, constant-time key assignment to a user, (off-line) computation
of any access key involves a small number of very efficient operations, and the public
storage required by our solution is only slightly higher than the number of access keys
that the system must maintain.
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Abstract. We present the Obligation Specification Language (OSL), a
policy language for distributed usage control. OSL supports the formal-
ization of a wide range of usage control requirements. We also present
translations between OSL and two rights expression languages (RELs)
from the DRM area. These translations make it possible to use DRM
mechanisms to enforce OSL policies. Furthermore, the translations en-
hance the interoperability of DRM mechanisms and allow us to apply
OSL-specific monitoring and analysis tools to the RELs.

1 Introduction

Many kinds of digitally stored and processed data should only be used in re-
stricted ways. Personal data, for example, is collected during activities such as
online shopping, using loyalty cards, interaction with public administrations, and
using mobile phones. To protect the privacy of the data subjects, there exist laws
and regulations governing the use of personal data. Private businesses also have
a keen interest in protecting their trade secrets, which turns out to be difficult,
for example, when different corporations collaborate in virtual enterprises. Sim-
ilarly, the creators of music, video, or other artistic works want their intellectual
property rights to be respected when others use their creations.

Usage control [23,25] is an extension of access control that covers not only
who may access which data, but also how the data may or may not be used
afterwards. We study usage control in the context of distributed systems with
different actors who take the roles of data providers (who distribute data) and
data consumers (who request and receive data). When a data provider gives a
data item to a data consumer, certain conditions apply. Provisions are those
conditions that refer to the past and are concerned with whether the data item
may be released in the first place. Other conditions govern the future usage
of the data, so-called obligations [4]. Examples of obligations include “do not
distribute document D to anyone outside of the organization,” “play movie M
at most 5 times,” and “notify the author whenever document D is modified.”
In this paper, we focus exclusively on obligations because provisions have been
thoroughly studied in the area of access control.
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There are two strategies for enforcing obligations [15]. A control mechanism
is a consumer-side component that makes sure that obligations cannot be vio-
lated. Existing control mechanisms have been developed in the DRM area. An
observation mechanism consists of a consumer-side signaling mechanism and a
provider-side monitor. When the monitor detects the violation of an obligation,
it can trigger a compensating action such as a penalty [14].

Problem Statement. We address three related problems. The first is the lack
of a general-purpose policy language for usage control that provides adequate
support for the common structures encountered in usage control requirements.
While there exist specification languages both in the area of privacy (e.g., EPAL
[2] and P3P [30]) and DRM (e.g., ODRL [28] and XrML [31]), these languages
are special-purpose and only cover requirements that are encountered in their
respective areas. The second is that policy languages usually lack a semantics
that can be used for specifying or configuring enforcement mechanisms or for
checking the adherence to policies. Conversely, for many mechanisms, it is not
always clear what sort of policies they can enforce. The third problem is that the
different specification languages and enforcement mechanisms in usage control
(particularly DRM) are often not interoperable.

Contributions. We present the Obligation Specification Language (OSL),
a language for expressing requirements from many application areas of usage
control. This includes constraints on the duration of a usage and the kinds of
permission-like statements that are often used in digital rights management. We
also define a formal semantics for OSL. Together with other results [14,15]—
which include a model of enforcement mechanisms, analysis techniques for rea-
soning about policies and mechanisms, and an approach to monitoring whether
obligations expressed in OSL are adhered to—this language builds a framework
that provides tools for specifying, reasoning about, and enforcing usage control
requirements.

We also show how to define translations between OSL and a REL, which
we have implemented for subsets of the two most widely used rights expression
languages, namely XrML and ODRL. This yields a formal semantics for these
RELs and has additional benefits. First, defining the translation from a REL to
OSL makes it possible to use the analysis and monitoring techniques mentioned
above for the REL. Second, RELs are often used to configure DRM mechanisms.
By being translating OSL into a REL, we can employ the mechanisms that use
this REL to enforce OSL policies. We have implemented a proof of concept
Microsoft’s RMS [20], which uses XrML. Third, once the translations between
OSL and several RELs are defined, we can use OSL as an intermediate language
to translate between the different RELs. This is a step towards increasing the
interoperability of DRM mechanisms.

Structure. We analyze usage control requirements in §2 and present the syntax
andsemanticsofOSL in§3. In§4,we showhow to translatebetweenOSLandaREL.
Relatedwork is surveyed in§5and in§6,we concludewithanoutlookon futurework.
An extended version of this paper is available as a technical report [15].
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2 Usage Control Requirements

We have performed a requirements study in usage control based on interviews
with public administrations, data protection officers, health care providers, mil-
itary organizations, and numerous commercial organizations [13]. We have also
carried out a detailed study on usage control requirements in mobile commu-
nication [16]. We present the distilled results of our requirements analysis with
respect to obligations. Afterwards, we discuss the two modalities that play a
central role in describing usage control requirements.

2.1 Obligations

Obligational formulae are conditions on the usage of data, e.g., “delete document
D within 30 days” or “do not give D to anybody else.” Examples for data usage
are the processing, rendering, execution, management, or distribution of such
data. An obligational formula becomes an obligation once a data consumer has
received the data and committed to the conditions. We refer to this process of
data reception and commitment as the activation of an obligational formula.
An obligation has thus the form “if (activation) then (obligational formula).” In
OSL, we specify obligational formulae but refer to them as obligations for the
sake of simplicity. Similarly, we also talk about the activation of an obligation.

Obligations can take two different forms. Usage restrictions prohibit certain
usages under given circumstances, and action requirements express mandatory
actions that must be executed either unconditionally (i.e., not in direct connec-
tion with a usage) or after a specified usage has been performed.

Conditions specify circumstances under which usage restrictions or action re-
quirements apply. They are divided into time conditions, cardinality conditions,
event-defined conditions, purpose conditions, and environment conditions. Us-
age restrictions are statements of a form equivalent to “if condition then not
usage.” Examples are “document D must not be printed after more than 20
days” and “movie M may only be played once.” Action requirements are state-
ments of a form equivalent to “if condition then action.” Examples are “delete
data D 30 days after reception” and “notify the data owner after each usage of
data D.” Note that action requirements and usage restrictions may look similar.
For example, “notify the data owner before each usage of data D” is a usage
restriction because it prohibits using D if the notification has not been not sent
before. We briefly discuss each type of condition below. In the examples given,
the respective conditions are typeset in italics.

Time Conditions include, for example, “file F must be deleted within 7
days”, “F must never be distributed”, or “movie stream M must not be viewed
for more than a total of 5 hours.” We have not encountered examples like “action
A must eventually be executed” where no time limit is given for the execution of
an action. Instead, one sets a time limit like “action A must be executed within 2
years.” Cardinality Conditions refer to the number of occurrences of given
events. Examples include “movie M may only be played once” or “view trailer
D at most twice before the movie M is paid.” Event-Defined Conditions
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define situations in terms of the occurrence of events. An example of an event-
defined condition is “if the data provider revokes document D, the document must
not be used anymore,” or “document D must not be further distributed until
the author officially releases D.” Purpose Conditions refer to the purpose of
use. For example, objects that are labelled “for personal use only” must not be
used in a business context. Environment Conditions relate to the internal
and external environment of the data consumer. This includes the adherence to
technical or organizational standards (e.g., Common Criteria or the Sarbanes-
Oxley Act) as well as aspects of the physical environment such as the data
consumer’s geographical location. An example is “document D may only be
opened within Europe.”

Conditions can be combined to describe complex circumstances. For example,
the obligation “movie M may be viewed at most 3 times and only within 30
days” combines a time condition and a cardinality condition. Moreover, usage
restrictions and action requirements can be combined to form complex policy
statements. For example, the following obligational formula combines an action
requirement with a time condition and a usage restriction with a purpose con-
dition: “document D needs to be deleted within 7 days and must not be shown
in public.”

2.2 Modalities

There are different ways of specifying policies. One approach, which is often em-
ployed in informal regulations (e.g., privacy regulations) and system specifica-
tions, is to explicitly define requirements on the system execution. This approach
uses a “must” modality in the sense that every requirement must be satisfied. In
contrast, a REL specifies exclusive rights to execute given actions under specific
conditions. Such rights specify what may happen with data and therefore use
a “may” modality. An exclusive right to perform a usage implies that all other
usages are forbidden, but the prohibited usages are not specified explicitly.

Many usage control requirements are not equally easy to express in both
modalities. In the DRM area, where typically only a few usages are allowed,
rights are often easier to specify. This is particularly the case if the set of prohib-
ited usages is large or even unbounded (e.g., if usages are parameterized). In the
privacy area, where the laws and regulations often express explicit prohibitions,
it is rather the other way around. Furthermore, the requirements document for
ODRL version 2.0 [21] states that expressing prohibitions can also be desirable
in the DRM area. As a consequence, we support both modalities in OSL. The
“must” modality is inherited from temporal logic, and the “may” modality has
been included via dedicated permission operators.

3 The Obligation Specification Language (OSL)

We introduce the syntax and semantics of OSL. We formalize both in Z, a formal
language based on typed set theory and first-order logic with equality. We have
chosen Z because of its rich notation, which we explain as it is encountered. We
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have also given a more user-friendly syntax to OSL [15], which we do not present
in this paper due to space restrictions. The current version of OSL supports all
usage control requirements identified above, except environment conditions.

3.1 Events and Traces

The semantics of our language is defined over traces with discrete time steps. At
each time step, a set of events can occur. An event corresponds to the execution
of an action and we use these two terms interchangeably. We formalize different
aspects of events and traces.

Event Classes and Parameters. Each Event has a name and parameters,
specifying additional details about the event. For example, a usage event can
indicate on which data item it is performed or by which device. Parameters are
represented using a partial function ( �→) from parameter names to parameter
values. We often describe parameters by their function graph. An example of an
event in this syntax is (play, {(object ,m)}), where play is the event name and
the parameter with name object has value m (i.e., the object m is played).

Each event belongs to an event class. Possible event classes include usage and
other, the latter standing for all non-usage events, e.g., payments or notifications.
This distinction enables us to prohibit all usages on a data item while still
allowing other events such as payments. The definition of events in Z is shown
below. EventName, ParamName, and ParamValue define basic types for event
names, parameter names, and parameter values, respectively. In Z, basic types
are defined by listing their names in square brackets.

[EventName, ParamName,ParamValue]

EventClass == {usage, other}
getclass : EventName → EventClass

Params : ParamName �→ ParamValue
Event == EventName × Params

Indexed Events. An important usage control requirement is the restriction of
the accumulated usage time. To cater for usages that last a specified time, we
introduce indexed events. We assume that at each step of a trace, there is an
indexed event for each usage that is currently executed. The start of the usage is
represented by an indexed event with the index start, and all following indexed
events have the index ongoing. For example, if the time step is 1 minute and a
user plays a movie m for 3 minutes, the resulting indexed events occurring in
the trace are ((play, {(object ,m)}), start), ((play, {(object ,m)}), ongoing), and
((play, {(object ,m)}), ongoing). In OSL, we can explicitly refer to the start of
an event or to all parts of it (cf. §3.2). IndEvent defines indexed events and
Trace defines traces. The formalization of the above assumption is omitted due
to space limitations but can be found in the technical report [15].

IndEvent == Event × {start , ongoing} Trace : N→ P IndEvent

Event Declarations. So far, we have not defined what events can occur in
a concrete system. To this end, we introduce event declarations. An event dec-
laration contains the event name, the event class, and a partial function that



536 M. Hilty et al.

defines the name and possible values of each parameter. Note that such an event
declaration is purely syntactic and says nothing about the meaning of an event,
i.e., which event in a real system it describes. The specification of dedicated
ontologies is outside the scope of this paper.

EventDecl == EventName × EventClass × (ParamName �→ P ParamValue)

3.2 Syntax

An OSL policy consists of a set of event declarations and a set of obligational
formulae. Each obligational formula consists of the data consumer’s name and a
logical expression. SubID is the set of possible names of data consumers.

OSLPolicy == P EventDecl × P OblFormula
OblFormula == SubID × Φ

Φ defines the syntax of the logical expressions contained in obligational for-
mulae. Efst (e) refers to the start of an event e and Eall (e) to ongoing events as
well (cf. §3.1). Z allows EBNF-style definitions as used below.

Φ ::= true | false | Efst 〈〈Event〉〉 | Eall 〈〈Event〉〉 | not〈〈Φ〉〉 | and〈〈Φ× Φ〉〉 | or〈〈Φ× Φ〉〉 |
implies〈〈Φ× Φ〉〉 | until〈〈Φ× Φ〉〉 | always〈〈Φ〉〉 | after〈〈N× Φ〉〉 | within〈〈N× Φ〉〉 |
during〈〈N× Φ〉〉 | repmax 〈〈N× Φ〉〉 | repuntil〈〈N× Φ× Φ〉〉 |
permitonlyevname〈〈PEventName × Params〉〉 |
permitonlyparam〈〈PParamValue × ParamName × EventName × Params〉〉

We define an additional restriction on the policy syntax (omitted here): we
demand that all events that are mentioned in a policy are compliant with the
event declaration, i.e., they may only contain parameters that are declared and
corresponding values. Fewer parameters are allowed in a policy, because of the
implicit universal quantification over unspecified parameters (cf. §3.4).

3.3 Informal Semantics

We first informally describe the semantics of OSL’s operators. They are classi-
fied into propositional operators, temporal operators, cardinality operators, and
permit operators. An example for a complete OSL policy is given in Section 4.2.

Propositional Operators. The operators not , and , or , and implies have the
same semantics as their propositional counterparts ¬,∧,∨, and ⇒.

Temporal Operators. The until operator corresponds to the weak until op-
erator from LTL [24]. We use the weak version of the until operator because it is
better suited for expressing usage control requirements (cf. §2.1). We generalize
the next operator of LTL to after , which takes a natural number n as input
and refers to the time after n time steps. With after , we can express concepts
like during (something must hold constantly during a given time interval) and
within (something must hold at least once during a given time interval).
Cardinality Operators. Cardinality operators restrict the number of occur-
rences of a specific event or the accumulated duration of an event. The repuntil
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operator limits the maximum number of times an event may occur until another
event occurs. For example,

repuntil (3,Efst (play , {(object , m)}),
Efst ((pay , {(currency , USD), (amount , 10), (recipient , r)})))

states that the movie m must not be played more than 3 times until a payment
of $10 is made to r . With repuntil , we can also define repmax , which is syntactic
sugar for defining the maximum number of times an event may occur in the
unlimited future. For example,

repmax (5,Eall (play , {(object , s)}))

requires that the movie stream s must not be played for more than 5 time steps.
This example shows that by using Eall instead of Efst , the cardinality opera-
tors can be used to limit accumulated usage time. In the semantics definition
below, we restrict the cardinality operators to arguments of these two forms.
The reason for this restriction is that we allow multiple similar events to occur
within one time step. For example, the movie m may be played on two devices
simultaneously, which counts twice in the repuntil example above.

Permit Operators. In OSL, we support both the “must” and the “may”
modalities. The former is given by OSL’s LTL-like semantics, and the latter
is supported by two designated operators: these operators allow one to specify
that out of a given set of usages events, only selected usage events are allowed.
The operator permitonlyevname defines the names of the usage events that are
exclusively allowed with a set of given parameters. For example, the expression

permitonlyevname
�
{play , print}, {(object , oid)}

�

states that the only usages permitted on the object oid are play and print. It
does not say anything about non-usage events or events with different parameters
(e.g., if a usage is applied to a different data object). Similarly, permitonlyparam
only allows certain values for a given parameter of an event. It prohibits all other
values for this parameter. For example, the expression

permitonlyparam
�
{s1, s2}, recipient , send , {(object , doc)}

�

specifies that out of all send events with doc as the “object” parameter, only
those where the “recipient” parameter has the value s1 or s2 are allowed. In other
words, doc may only be sent to s1 or s2. The first argument of permitonlyparam
is the set of allowed parameter values, the second argument is the name of the
parameter whose values should be restricted, and the third and fourth argument
define an underspecified event.

3.4 Formal Semantics

When specifying events in obligations, we implicitly quantify over unmentioned
parameters. For example, if an obligation prohibits event (play, {(object , objB)}),
then the event (play, {(object , objB), (device, dev123)}) is prohibited as well. To
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specify this, we define the relation refinesEv, which checks whether one event e2

refines another event e1. This is the case iff both have the same event name and
all parameters of e1 have the same value in e2. e2 can also have additional para-
meters. With the help of refinesEv, we can also define the satisfaction relation
for event expressions, |=e . This defines whether an indexed event corresponds to
an expression of the form Efst (e) or Eall (e), where e is an event. The semantics
of a logical expression ϕ : Φ is defined by the binary relation |=f .

The relations refinesEv, |=e , and |=f are defined in Figure 1. We specify them
using an axiomatic definition in Z: the upper part of an axiomatic definition
contains the signature and in the lower part, the properties of the functions
and relations are specified. In Z, relations are declared with ↔. We also use the
following Z notation: e1.2 refers to the second component of e1, # denotes the
size of a set, and dom refers to the domain of a function.

A policy is satisfied by a trace iff all obligations specified in the policy are
satisfied by the trace. The definition of obligation satisfaction builds on the above
semantics but requires a system model that includes activations of obligations
(cf. §2.1). Such a system model is presented in [15].

4 Language Translations

In this section, we present translations between OSL and the most widely used
rights expression languages, ODRL and XrML. We use the term license for
policies expressed in a REL. We start by explaining our reasons for translating
between OSL and rights expression languages, show how to define such trans-
lations, and highlight several key issues using the example of the translations
between OSL and a subset of ODRL. We have published the formal specifica-
tion of these translations in a technical report [15]. We have also implemented
these translations in software, both for the ODRL subset mentioned above and
for a comparable subset of XrML.

4.1 Purpose

There are several reasons for defining the translations between OSL and different
RELs. The first reason is the need for enforcing OSL policies. Current enforce-
ment mechanisms are almost exclusively from the DRM area and use licenses
or rights objects written in a REL. Thus, the ability to translate OSL policies
into rights objects makes it possible to re-use such mechanisms to enforce OSL
policies. As OSL is not limited to DRM, this opens the door to automatically
enforcing non-DRM policies (e.g., privacy policies) with DRM mechanisms. By
defining translations from privacy policy languages into OSL (which is future
work), we will be able to close the gap between the areas of privacy and DRM,
which are seen as antipodes by many people.

The second reason for providing translation schemes is that the translation
from a REL to OSL gives a formal semantic to the REL. While the formal
semantics for some parts of ODRL and XrML have been defined in earlier work,
the translations that we present immediately provide a formal semantics to parts
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refinesEv : Event ↔ Event

∀ e1, e2 : Event • e2 refinesEv e1 ⇔ e1.1 = e2.1 ∧ e1.2 ⊆ e2.2

|=e : IndEvent ↔ Φ

∀ ie : IndEvent ; ϕ : Φ • ie |=e ϕ ⇔
∃ e : Event • ie.1 refinesEv e

∧ ((ϕ = Efst(e) ∧ ie.2 = start) ∨ ϕ = Eall(e))

|=f : (Trace × N)↔ Φ

∀ t : Trace; n : N; ϕ : Φ • (t ,n) |=f ϕ ⇔
ϕ = true
∨ ∃ e : Event ; ie : IndEvent • (ϕ = Efst(e) ∨ ϕ = Eall(e)) ∧ ie ∈ t(n) ∧ ie |=e ϕ

∨ ∃ψ : Φ • ϕ = not(ψ) ∧ ¬ ((t ,n) |=f ψ)

∨ ∃ψ, χ : Φ • ϕ = or(ψ, χ) ∧ ((t ,n) |=f ψ ∨ (t ,n) |=f χ)

∨ ∃ψ, χ : Φ • ϕ = until(ψ, χ)

∧ (∃ u : N | n ≤ u • (t , u) |=f χ ∧ (∀ v : N | n ≤ v < u • (t , v) |=f ψ)

∨ (∀ v : N | n ≤ v • (t , v) |=f ψ))

∨ ∃ i : N; ψ : Φ • ϕ = after(i , ψ) ∧ (t ,n + i) |=f ψ

∨ ∃ l : N; ψ, χ : Φ; e : Event •
ϕ = repuntil(l , ψ, χ) ∧ (ψ = Efst(e) ∨ ψ = Eall(e))

∧ (∃ u : N | n ≤ u • (t , u) |=f χ ∧ (∀ v : N | n ≤ v < u • ¬((t , v) |=f χ))

∧ (

u

j=0

#{ie : IndEvent | ie ∈ t(n + j ) ∧ ie |=e ψ}) ≤ l)

∨ (

∞

j=0

#{ie : IndEvent | ie ∈ t(n + j ) ∧ ie |=e ψ}) ≤ l

∨ ∃ ex : P EventName; ps : Params • ϕ = permitonlyevname(ex , ps)
∧ ∀ en : EventName | getclass(en) = usage ∧ en /∈ ex •

(t ,n) |=f always(not(Eall((en, ps))))
∨ ∃ ex : P ParamValue; pn : ParamName; en : EventName; ps : Params •

ϕ = permitonlyparam(ex , pn, en, ps) ∧ pn /∈ dom ps
∧ ∀ pv : ParamValue | pv /∈ ex •

(t ,n) |=f always(not(Eall((en, ps ∪ {(pn, pv)}))))
∨ ∃ψ, χ : Φ • ϕ = and(ψ, χ) ∧ (t ,n) |=f not(or(not(ψ),not(χ)))

∨ ∃ψ, χ : Φ • ϕ = implies(ψ, χ) ∧ (t ,n) |=f or(not(ψ), χ)

∨ ∃ψ : Φ • ϕ = always(ψ) ∧ (t ,n) |=f until(ψ, false)

∨ ∃ i : N; ψ : Φ • ϕ = within(i , ψ) ∧ (t ,n) |=f

n−1

i=0

after(i , ϕ)

∨ ∃ i : N; ψ : Φ • ϕ = during(i , ψ) ∧ (t ,n) |=f

n−1

i=0

after(i , ϕ)

∨ ∃ l : N; ψ : Φ • ϕ = repmax(l , ψ) ∧ (t ,n) |=f repuntil(l , ψ, false)

Fig. 1. Semantics of OSL
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of ODRL, including parts for which this has not yet been done (cf. §5). It is
important to note that the formal semantics of OSL makes it possible to perform
logical analysis on policies [15] and to check for adherence to obligations at
runtime [14]. So we gain both (1) the possibility to use control mechanisms from
the DRM area to enforce OSL policies as described above and (2) the possibility
to analyze DRM licenses and to use our observation mechanisms to enforce them.

Finally, there is a need for more interoperability among DRM technologies
in order to increase user acceptance. One problem in this area is that different
mechanisms use different languages for describing their licenses [18,10]. There are
two possible solutions to this problem. One solution is to standardize a language
for describing licenses and use it for all developed mechanisms. However, such
a solution is currently not on the horizon. The other solution is to translate
between the different RELs. Some attempts have been made to directly translate
between RELs (e.g., [8]). In contrast, by defining translations from OSL to the
different RELs and vice versa, we enable the use of OSL as an intermediate
language for translating between different RELs. This approach scales up well
and is not only limited to XrML and ODRL, but also other RELs like PDRL
[1] or Octopus [19]. However, we have not yet defined the translations for more
languages; this remains as future work.

4.2 Specification and Implementation

We have implemented the translations between OSL and a subset of ODRL as
well as between OSL and a subset of XrML. The XrML subset used is comparable
to the ODRL subset, which is described below. As the translations for ODRL
and XrML are similar, we focus here on ODRL and use this example to point out
the strengths and weaknesses of our approach. More details about translating
ODRL into OSL are published in a technical report [15].

A Brief Introduction to ODRL. ODRL [28] is an XML-based language for
describing the terms and conditions of using intellectual property in digital form.
We give a short, incomplete overview of ODRL. ODRL subjects are intellectual
property rights holders and end users. Data objects are called assets. ODRL
expresses offers, which are proposals from rights holders for specific rights on
their assets, and agreements, which result when two parties commit to a set of
rights on an asset. Agreements in ODRL can be compared to obligations, while
offers are outside of the scope of this paper.

A permission is the right to perform certain activities with an asset and can
be accompanied by constraints and requirements. Examples of activities are play,
print, display, and execute. In our model, these activities correspond to usages.
Constraints express conditions that the end user must satisfy to be allowed to
perform the corresponding activity, and requirements specify additional actions
that the end user must execute, such as payments. An example for an ODRL
license is provided at the end of this section.

The ODRLc Subset of ODRL.We have defined the translations for a subset
of ODRL to keep the definition of the translation reasonably sized and because
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ODRL contains concepts that are not within the scope of OSL. The subset we
consider, ODRLc (“ODRL compact”), is very close to the REL used by the
Open Mobile Alliance (OMA) [22] and therefore of practical relevance. We have
introduced a few structural simplifications with regard to the OMA REL that
do not limit the expressiveness of the language. Also, we have not included those
elements of the OMA REL that are not part of ODRL. However, we also support
a few ODRL concepts that are not included in the OMA REL. For example, we
have included a reduced set of payment requirements in ODRLc to illustrate
that such requirements can easily be expressed in OSL. We also support device
constraints, which restrict the set of devices that are allowed to perform a usage.
A more detailed description of ODRLc can be found in [15].

Translating ODRLc into OSL. The translation from ODRLc to OSL is
defined for all ODRLc licenses because OSL is strictly more expressive than
ODRLc. Since both OSL policies and ODRL licenses are tree structured, we
define the translation top-down on the ODRLc tree. Because an ODRL license
specifies rights, we use a permitonlyevname expression to prohibit all usages
not explicitly permitted in the license. In ODRL, all specified constraints and
requirements must be simultaneously satisfied and therefore form a logical con-
junction. In OSL, we create a separate obligation for each of them. Since all
obligations inside an OSL policy are implicitly conjoined, the conjunction of the
constraints and requirements naturally follows.

Translating OSL into ODRLc. Because OSL is strictly more expressive than
ODRLc as mentioned above, only a subset of OSL can be translated to ODRLc.
Identifying this subset is the difficult part of defining the translation. We take
a pragmatic approach to this by employing pattern matching over syntax. For
example, all formulae of the form

(
sid , repmax (n,Efst (ue))

)
, where sid is a sub-

ject ID, n ∈ N, and ue is a usage event, are translated into a <count> con-
straint in ODRL, which expresses a cardinality condition. The problem is that(
subjA, and(repmax (n,Efst ((backup, {(object ,mov)}))), true)) is semantically a

cardinality condition as well, but not a syntactic instance of the above pattern.
Because syntactic pattern matching requires obligations to be in an implicitly
defined canonical form, the translation for this obligation is therefore undefined.

This limitation on the translation could be lifted by extending it to semanti-
cally equivalent representations. This would, however, involve computationally
expensive deductive reasoning. In particular, since LTL can be completely em-
bedded into OSL and checking the semantic equivalence of two LTL formulae is
PSPACE-complete [29], checking the semantic equivalence of two OSL formulae
is PSPACE-hard.

Example. We now show an example of a translation from ODRLc to OSL. The
corresponding ODRLc license is shown below. This license states that Alice may
play the movie mov for at most 5 hours, and only on player pl . Furthermore,
Alice may create at most one backup of the movie. No usage other than play
and backup is allowed.
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<o-ex:rights>
<o-ex:agreement>
<o-ex:asset>

<o-ex:context><o-dd:uid>mov</o-dd:uid></o-ex:context>
</o-ex:asset>
<o-ex:permission>

<o-dd:play>
<o-ex:constraint><o-dd:accumulated>P5h</o-dd:accumulated></o-ex:constraint>
<o-ex:constraint><o-dd:hardware>

<o-ex:context><o-dd:uid>pl</o-dd:uid></o-ex:context>
</o-dd:hardware><o-ex:constraint>
<o-ex:constraint><o-dd:individual>Alice</o-dd:individual></o-ex:constraint>

</o-dd:play>
<o-dd:backup>

<o-ex:constraint><o-dd:count>1</o-dd:count></o-ex:constraint>
<o-ex:constraint><o-dd:individual>Alice</o-dd:individual></o-ex:constraint>

</o-dd:backup>
</o-ex:permission>

</o-ex:agreement>
</o-ex:rights>

This ODRL license is translated into the OSL policy shown below. The first
obligation prohibits all usages except play and backup. The second one corre-
sponds to the <accumulated> constraint on the play action, the third one to
the <hardware> constraint on the play action, and the fourth obligation to the
<count> constraint on the backup action. In the OSL policy shown below, we
assume that the time step in a trace is set to 1 hour.

�
{ �

play , usage, {(object , ObjID), (device, DevID)}
�
,�

backup, usage, {(object , ObjID), (device,DevID)}
�
,

}, { �
Alice,permitonlyevname({play , backup}, {(object , mov)})

�
,�

Alice, repmax (5, Eall((play , {(object , mov)})))
�
,�

Alice,permitonlyparam({pl}, device, play , {(object , mov)})
�
,�

Alice, repmax (1, Efst ((backup, {(object , mov)})))
�

}
�

Summary of the Results. While the translation from ODRLc to OSL is
total, the translation in the other direction is only partial. This is partly be-
cause OSL is more expressive than ODRLc and partly because the translation
is defined by syntactic pattern matching. Using deductive reasoning to compute
semantic equivalence classes would allow us to extend the translation, but this is
computationally expensive. The same issues also apply to the translations that
we have implemented for XrML.

The translation from ODRLc to OSL yields a formal semantics for a signifi-
cant subset of ODRL. Within the limitations mentioned above, the translations
from OSL to ODRL and XrML enable us to issue licenses for existing DRM
mechanisms based on OSL policies. We have implemented both translations in
Java. On the basis of the OSL-XrML translator, we have implemented a proof of
concept that automatically creates licenses for Microsoft’s RMS [20] from OSL
policies.
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The translations between OSL and ODRL/XrML can be composed to trans-
late between ODRL and XrML, using OSL as an intermediate language. We
have done this using the above mentioned implementations. Of course, this only
works for requirements that can be expressed in both RELs. For the subsets we
have defined for ODRL and XrML, this is not a problem because they are similar
in their expressivity. But generally, this issue must be taken into account.

There is one more additional point worth noting: XrML contains so-called state-
ful conditions that use an external piece of data to store the effect of previous us-
ages on the license. For example, cardinality conditions may be specified with the
help of an external counter that has to be checked each time a usage is attempted.
This approach mixes the specification of a requirement (how many times a usage
may be performed in total) with the implementation of its enforcement (where
the counter is located and when it must be decremented). Because OSL is a pure
specification language, we have excluded state references from the XrML subset
we use in the translations and only specify the initial values instead.

5 Related Work

Some specification languages for usage control requirements have been developed
in the area of privacy protection. P3P [30] is a language for stating the privacy
practices of websites. It is tailored to this domain and not extensible. EPAL [2] is
a more flexible language for privacy policies that adds the purpose of use to the
access decision. It also allows for obligations, but does not treat them in detail.
We have already mentioned XrML [31] and ODRL [28] as the most prominent
policy languages in DRM.

There have been previous attempts to give a formal semantics to ODRL and
XrML. Pucella and Weissman [27] give a formal semantics to a subset of ODRL
by a translation into many-sorted first-order logic. They treat temporal aspects
rather rudimentarily and the duration of events is not considered. Furthermore,
their semantics is not suited for monitoring the adherence to policies at runtime.
Holzer et al. [17] present a semantics based on automata. They present automata
for different conditions but do not define how they compose for multiple rights and
conditions.For example, theautomatonpresentedon the lowerhalfofpage7cannot
cope with events other than display. Garćıa et al. [9] formalize ODRL policies using
the OWL-based framework IPROnto [7], which is an ontology for DRM. Like other
approaches, this formalization cannot, in its current state, be used for checking the
adherence to complex policies at runtime and does not consider the duration of
usage. We are only aware of one formal semantics that has been defined for
XrML. Halpern and Weissman [12] have chosen an approach similar to the one
for ODRL mentioned above [27], with similar strengths and weaknesses.

Gunter et al. [11] present a semantics for DRM licenses that is based on se-
quences of events, but they do not apply this semantics to any existing REL.
Chong et al. [5] present LicenseScript, a language for expressing DRM licenses.
The main difference between LicenseScript and OSL is that OSL is a language
for specifying policies (i.e., we describe which executions are allowed), whereas
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LicenseScript can express complicated licenses (e.g., involving cardinalities) only
by including instructions that concern the enforcement of the licenses (i.e., de-
creasing counters). Therefore, licenses expressed in LicenseScript do not explic-
itly tell the data consumer what is allowed and what is not allowed. Pucella
and Weissman [26] present a logic for reasoning about digital rights based on
temporal logic. The main focus of their work is to define whether a set of poli-
cies permits or obligates certain actions. Only one action is permitted per time
step and neither temporal conditions nor cardinality conditions can be expressed
conveniently. Barth et al. [3] have developed a privacy policy language that is
based on LTL and has data subjects as a central concept. Their language is only
concerned with the distribution of data.

UCON [23,32] extends access control with the concepts of decision continuity
and attribute mutability. In UCON, an access can last for some duration with
multiple related and subsequent actions, for example, performing calculations
on data on a server. Access decisions can be made before or during the access
(decision continuity) and subject or object attributes can change during an ac-
cess (attribute mutability). While in OSL, we specify what the data consumer
is allowed to do (for example, playing a movie for at most 20 minutes), UCON
can be used to specify how a mechanism counts the elapsed time and compares
it to the maximal allowed value. In this regard, UCON is complementary to
our approach because it can be used for implementing mechanisms on different
devices. What UCON cannot cover, however, are action requirements. For ex-
ample, UCON-based mechanisms cannot enforce that a piece of data is deleted
after 30 days, independently of whether it is used during that time. Also, we can
use OSL to specify that the above movie may be played for maximal 20 minutes
even if different players are involved, which cannot be expressed in UCON.

Cooper and Montague [6] discuss differences between ODRL and XrML and
suggest that the usage of profiles that reduce a language to the part that
can be translated into the other language is a good way to proceed. Other
interoperability-related work is surveyed in §4.1.

6 Conclusions

We have presented OSL, a rich language that can specify policies from many
different application areas. We have determined the usage control requirements
that OSL supports in dedicated requirements studies. The semantics of OSL is
based on temporal logic, which enables the use of different analysis methods
and runtime monitoring techniques, as has been shown in related work [14,15].
The translations that we have presented allow us to enforce, in part, policies
specified in OSL using existing enforcement mechanisms from the DRM area.
Our goal is to be able to flexibly employ different mechanisms for enforcing OSL
policies, depending on which mechanism is applicable to a given requirement.
The proof of concept that we have implemented for RMS is just a first step in
this direction. The formal semantics we get for the RELs goes beyond what has
been previously defined for XrML and ODRL and we have also provided a step
towards more interoperability in DRM.
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We conclude by discussing current limitations of OSL and suggest directions
for future work. From the types of conditions we have identified in our require-
ments study, OSL cannot fully cover environment conditions. Some environment
conditions can be expressed with the help of event parameters but others would
require the introduction of subject attributes into our model, which is future
work. The fact that OSL uses abstract events instead of concrete system events
comes at a cost: the need to define the semantics of these events. One prob-
lem here is that the mapping from abstract events like “play” or “display” to
concrete events of a system is usually done by the mechanism vendors and is
not transparent. This complicates the selection of suitable mechanisms for a
given requirement. The definition of dedicated ontologies for events is an area
for future work. It is not entirely clear how to assign a semantics to events and,
while it seems desirable to have device-independent policies, the device-specific
semantics cannot be ignored. Additional areas for future work are addressing
rights propagation, defining a translation based on semantic equivalence classes
of OSL policies, defining translation schemes for additional RELs, and the im-
plementation of these translations. Last but not least, the ideas presented in this
paper should be evaluated in case studies.
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Abstract. Anonymous communications provides an important privacy
service by keeping passive eavesdroppers from linking communicating
parties. However, using long-term statistical analysis of traffic sent to
and from such a system, it is possible to link senders with their re-
ceivers. Cover traffic is an effective, but somewhat limited, counter strat-
egy against this attack. Earlier work in this area proposes that privacy-
sensitive users generate and send cover traffic to the system. However,
users are not online all the time and cannot be expected to send con-
sistent levels of cover traffic, drastically reducing the impact of cover
traffic. We propose that the mix generate cover traffic that mimics the
sending patterns of users in the system. This receiver-bound cover helps
to make up for users that aren’t there, confusing the attacker. We show
through simulation how this makes it difficult for an attacker to discern
cover from real traffic and perform attacks based on statistical analysis.
Our results show that receiver-bound cover substantially increases the
time required for these attacks to succeed. When our approach is used
in combination with user-generated cover traffic, the attack takes a very
long time to succeed.

Keywords: privacy-enhancing technologies, cover traffic, anonymity.

1 Introduction

Anonymity systems are fundamentally challenging to build on top of the exist-
ing Internet architecture. The simplest and most secure approaches require all
participants to send messages at the same rates, e.g. one message per given time
interval. Users without a message to send must send fake messages, known as
cover traffic or dummies, to ensure anonymity for themselves as well as for oth-
ers. This provides no allowance for the realities of node failure, network partition,
and simple user unwillingness to provide so many messages. Additionally, the
costs of these messages can cause the system to not scale well with the number
of users. In anonymity, this is a substantial matter for security, as the greater
the number of users, the larger the crowd into which one can blend [1].

Existing implementations based on the mixes paradigm introduced by
Chaum [2] remove this unrealistic requirement for constant participation, but
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at a cost to their security. The changing group of users can be observed, along
with outgoing messages, leading to powerful intersection attacks. In these at-
tacks, differences in the membership of the set of users are matched with the
differences in the message-sending behavior, leading to links between users and
their receivers. Effectively, the attacker can observe information leaks over time.

The statistical disclosure attack is a particularly effective form of intersection,
in which the attacker isolates his attack against a single user, which we will
call Alice. The statistics used in this attack are the frequencies with which each
recipient gets a message from the system. By taking differences between the
frequencies observed when Alice is active and those observed when she is not
active, the attacker can estimate Alice’s contribution to the recipient set. This
attack has been studied previously and is well-understood [3,4,5].

In this work, we explore defenses against intersection attacks such as statistical
disclosure. In particular, we study the relative effectiveness of different defenses,
and we present the first in-depth study of the idea of sending cover traffic to
recipients that are outside of the system. To date, the possible defenses against
intersection attacks have been limited to two basic techniques: the user sending
more cover traffic into the network and increasing random delays for messages
in the system. We explore the idea of how the presence and cover traffic of other
users surprisingly fails to provide any help to the user. We also demonstrate
that, with some additional cost, the system can significantly improve its defense
against intersection attacks by sending dummies to recipients outside of the
system. As this may not be appreciated by all recipients, we discuss ways in
which this technique could be made practical.

In the next section, we describe our model and the statistical disclosure attack
in more detail. We then motivate the two types of cover traffic that we are
studying and analyze their effects in Section 3. Section 4 presents our simulation
model and results. Discussion and analysis of the feasibility and costs of the cover
traffic methods is presented in Section 6. We discuss related work in Section 7
and then conclude.

2 Statistical Disclosure

The Statistical Disclosure Attack (SDA) described by Danezis [4] is a long-term
intersection attack against mix-based systems. SDA is an extension of the dis-
closure attack introduced by Kesdogan [3]. In this section, we first explain the
network model used, then describe statistical disclosure attacks. We discuss why
cover traffic delays statistical disclosure and how it can be used to counter this
attack.

2.1 Model

Let us assume that there are N senders that wish to communicate with a set of
R recipients using a mix network. We will generally set R = N for simplicity, but
the relationship between senders and receivers is many-to-many. The mix network
may consist of a single mix or a network of connected mixes. The attacker is a
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global adversary who can observe all links from senders to the mix and all links
from the mix to recipients. The target of the adversary is the sender Alice and the
adversary’s aim is to expose the set of recipients with whom Alice communicates.

In each round, b senders, sometimes including Alice, send messages to a set
of recipients via the mix. The attacker observes a number of rounds, including
rounds with and without Alice’s participation, and tries to identify Alice’s recip-
ients. The attacker can observe only the incoming and outgoing links from the
mix and cannot observe activity inside the mix network. This assumption is for
the simplicity of the model, as there are many configurations for a mix network,
but also because the statistical disclosure attack is effective without observations
of activity in the network. We abstract away the mix-system details and refer to
a single mix or a cascade of mixes as a mix.

2.2 Statistical Disclosure

Danezis’ SDA is a probability-based approach to the disclosure attack and is a
practical way to expose Alice’s set of recipients [4]. The attacker makes observa-
tions in a number of rounds in which Alice participates and in each round records
the recipient set in an observation vector −→o . Each element of −→o contains the
probability that the corresponding recipient has received a message from Alice
in that round. The attacker models the behavior of senders other than Alice,
known as the background, by recording their activity when Alice does not par-
ticipate. Vector −→u captures the background model, in which a given element of
−→u is the probability with which background senders send to the corresponding
recipient. The attacker records −→o values over a large number of observations
and takes the mean of −→o as O. The mean of the background traffic observations
is obtained and stored in U . Alice’s likely set of recipients can be determined by
solving the below equation for vector −→v :

O =
m.−→v + (n−m)−→u

n

Here m is the average number of messages sent by Alice in each round and n
is the average total number of messages sent by all senders, including Alice, in
each round. The vector −→v denotes the sending behavior of Alice. Each element
of −→v is the probability that Alice sends a message to the corresponding recipient
in some round. An element of −→v will have a value of 0 for a recipient who is not
in Alice’s recipient set and will have a value greater than 0 and less than 1 for
a recipient who belongs to Alice’s recipient set. −→v is obtained from the above
equation by substituting U , the mean of background traffic, and O, the mean of
attacker observations in each round. The indices with the highest values in −→v
correspond to the most likely recipients of Alice.

Mathewson and Dingledine extend SDA to pool mixes [5]. Their work relaxes
some of the assumptions made in the original work [4]. A pool mix, as described
in [6], operates by dispersing incoming messages from a given round across a
number of later rounds. In each round, the mix chooses a set of messages with
uniform probability and sends them to their respective recipients. When Alice



550 N. Mallesh and M. Wright

sends dummy messages along with real messages, it becomes more difficult for
the attacker to successfully perform statistical analysis. Dummy messages in-
crease the average number of messages from the sender per round, as seen by
the attacker, which substantially affects the results of statistical analysis. The
attacker needs more observations to compensate for the presence of dummies and
hence it takes a significantly longer time for the attacker to correctly identify
Alice’s set of recipients.

We model the relationships between senders and receivers as a scale-free net-
work, in which the distribution of node degrees follows a power law relation-
ship [7]. This means that most senders communicate with a few well-known
recipients in addition to other less-known recipients. The well-known recipients
hence communicate with many senders and thus receive more messages during
their communication lifetime. Background senders tend to send more messages
to their more well-known recipients rather than to the lesser-known ones. Alice,
however, sends messages equally to all of her recipients.

In reality, most senders are not online all of the time. It is difficult for many
users to consistently send cover traffic, as it requires them to be online all the
time, without fail. This problem is potentially alleviated when the mix carries
the onus of sending cover traffic. In the rest of this paper, we use the model of
Mathewson and Dingledine to study the effectiveness of padding generated by
the users and by the mix.

3 Cover Traffic

Cover traffic consists of dummy messages that are inserted into the network
along with real user messages. Dummy messages have long been recognized as a
useful tool to increase anonymity provided by mix-based systems. In the context
of our model, cover traffic can be classified into three types based on where it is
generated. user cover is cover traffic generated by Alice herself and background
cover is cover traffic generated by other senders connecting to the mix. On
the other hand, receiver-bound cover (RB) is generated by the mix and sent to
message recipients.

Mathewson et.al. have shown that user cover helps delay statistical analysis [5].
When Alice generates cover traffic with a geometric distribution, she can signifi-
cantlydelaySDA.Amore effective approach is forAlice to senda thresholdnumber
of messages in every round. If the number of real messages is less than the thresh-
old, then Alice inserts dummy messages to compensate for the shortage. Both of
these approaches become more effective as the mix exhibits higher delay variabil-
ity, since thenumber of possibilities that the attackermust consider increases.Even
if the sender is online 100% of the time, however, sender-originateddummy packets
alone are not enough to protect against statistical analysis.

3.1 Background Cover Traffic

Background cover is created when many mix users generate dummies along with
their real messages. Cover traffic from users other than Alice could be seen as
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providing cover for Alice’s messages. Note that the users have a strong incentive
to provide these dummies, as it helps to protect their own privacy. As we show
in Section 5, this can be very effective in confusing a naive attacker. However,
a slightly more sophisticated attacker can account for background cover and
reduce its effectiveness.

We now describe how the naive attacker proceeds in the presence of back-
ground cover traffic. The attacker uses the Equation 2.2 to find −→v which con-
tains an estimate of Alice’s recipients. In each round, the attacker observes a
number of messages entering and exiting the mix. He estimates the number of
(i) Alice messages exiting the mix, nAlice and (ii) the number of background
messages exiting the mix per round, nBackground. These estimates are calculated
from the mix’s delay policy and on the number of messages seen entering the mix
from Alice and from the other users. The attacker records the set of recipients
who receive messages in each round in −→r , which contains an element for every
recipient in the system. −→r [i] contains the number of messages received by the
ith recipient in a particular round. O is updated each round as follows:

O[i] =
−→r [i] ∗ nAlice

nAlice + nBackground

When background dummies are sent, the attacker sees more messages entering
the mix. The dummies get dropped inside the mix and do not exit the mix along
with real messages. The attacker, however, expects the messages to exit the mix
and wrongly estimates the value of nBackground. As a result the calculation of
O is upset, thereby affecting the number of rounds to correctly identify Alice’s
recipients.

To counter background cover, the attacker can discount away a percentage of
incoming messages that he knows are dummies. We assume that the background
user’s policies for sending dummies are known to the attacker. This can be
reasonable in many systems, as only the aggregate behavior is needed. Such
policies may be observed by subtracting the number of real output messages
from the number of input messages over a period of time in which Alice is not
active. We show in Section 5 that background dummies do not help against this
informed attacker, and that Alice cannot rely on help from her fellow users.

3.2 Receiver-Bound Cover Traffic

Receiver-bound (RB) cover consists of dummy messages generated by the mix.
The dummies are inserted into outgoing user traffic in every round. The mix
chooses the recipients of cover traffic uniformly and randomly from the list of
recipients. O[i] contains the probability that a message received by the ith recip-
ient has originated at Alice. The attacker updates elements in O in every round
according to Equation 3.1. When RB dummies are present, elements in O are
wrongly updated for messages that were in fact never sent by any sender. This
upsets the attackers’ statistical calculations. In order for the attack to be suc-
cessful, the number of rounds the attacker must observe increases significantly.
We discuss the practical issues with this approach in Section 6.
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4 Simulation

Using the basic sender-mix-receiver model described in Section 2, we simulated
the process of sending messages and the corresponding SDA. We first discuss the
three main elements of the simulation design, which are the attacker algorithm,
the generation of real traffic, and our metrics for attacker success. We then
describe how we generate cover traffic.

4.1 Simulator Design

We built our simulations around the core simulator used by Mathewson and
Dingledine, and we refer the reader to that paper for further detail [5].

Attacker Algorithm. The attacker algorithm is based on the statistical analy-
sis approach Attacking pool mixes and mix networks described in [5]. Beyond this,
we assume that the attacker makes reasonable adjustments to the algorithm in
response to changes in the system, such as adjustments to background dummies
described in Section 3.

Real Message Generation. Major elements in the simulated generation of
real messages include:

– Background Traffic: To ensure comparability with previous empirical work,
the number of messages sent by the background follows a normal distribution
with mean 125 and standard deviation of 12.5. Additionally, we consider a
more active set of users, with means of 1700 and 9000 messages per round.
The senders follow a scale-free model in sending to recipients. We first created
a scale-free network and then created a weighted recipient distribution for
background senders. The weighted distribution allows background senders to
send more messages to popular recipients. A uniform recipient distribution is
created for Alice, which allows Alice to send uniformly to all of her recipients.

– Alice’s Traffic: Alice has a recipient set of 32 recipients. In each round she
sends messages to recipients chosen with uniform probability from this set.
Alice generates real messages according to a geometric distribution with a
distribution parameter of 0.6, which means that she sends about 1.5 real
messages per round.

– Mix Behavior: In each round, the pool mix receives messages from a number
of senders. Alice may or may not participate in a given round. At the end
of each round, the mix chooses outgoing messages from the pool with equal
probability. Pdelay is the probability that a message in the mix pool remains
in the pool until it is sent out in a later round. The mix applies Pdelay to
each message in the pool and decides if the message will exit the mix in the
current round or not [6]. For our simulations we varied Pdelay from 0.1 to
0.9. For simulations where Pdelay does not vary, we set Pdelay = 0.1.

Measuring Attacker Success. For most of our experiments, we measure the
number of rounds that the attacker takes to correctly identify ten of Alice’s
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recipients. This is a deviation from prior work, which chose to determine when
the attacker correctly identified all 32 of her recipients. The latter is, in our
opinion, an unnecessarily high bar for the attacker to meet. In particular, we
discovered that finding the final recipient was a particularly challenging task that
took many additional rounds of communication in most experiments. Worse, the
variance for obtaining this final recipient is quite high, as it may depend on just
a few messages that are sent with low probability.

We propose the lower threshold of ten recipients, although arbitrary, as a point
at which the attacker has identified a substantial fraction of Alice’s recipients.
At this point, the attacker can correctly identify not only the popular members
of Alice’s recipient set, but also several of the less popular members as well.
The attacker may not have the full profile that he seeks, but some of Alice’s
privacy has been lost, as the attacker has some picture of Alice’s communication
patterns. Since the attack could take many rounds, a partial picture may be all
that the attacker could attain in a reasonable time frame.

It should be noted that we stop all runs after one million rounds. This could
equate to almost one hundred and fifteen years, at one hour per round, or nearly
two years at one minute per round. If the attacker cannot identify 10 of Alice’s
recipients in this time, the attack is taking very long. Even if the attacker is
that patient, and Alice is that consistent, we focus our attention on stopping the
attacker from defeating the system in a faster time frame. When we have strong
methods for doing that, longer term attacks can be considered.

4.2 Cover Traffic Scenarios

The simulations in [5] focus mainly on the effects of user cover traffic. In this
study, we describe the effects of RB cover and background cover. We use three
scenarios to evaluate the effect of cover traffic on statistical analysis.

Alice and Background Cover Traffic. We first study how dummy messages
sent by users other than Alice affects statistical analysis. We set N = 216 be
the number of senders. Each of the N − 1 other senders apart from Alice, called
background senders, generate 0 or more dummy messages in every round. Senders
choose the number of dummies according to a geometric distribution with a
parameter varying from 0.1 to 0.9. This means each sender sends between 0.11
to 9 dummy messages per round on average.

Alice also generates a number of dummy messages in each round that she
participates. Like other senders, Alice follows a geometric distribution to select
the number of dummies to send per round. Alice’s dummy parameter, Pdummy,
is varied from 0.1 to 0.9. In simulations where Alice’s dummy traffic does not
vary, we set Pdummy to 0.6, which is about 1.5 messages/round. The geometric
distribution parameters for Alice dummies and background dummies are inde-
pendent of each other. Cover traffic generated by senders is sent to the mix like
real traffic. The mix can recognize real messages from dummies and drops all
dummies that it receives. Hence, dummies sent from the users are dropped inside
the mix network and are not propagated to any receivers.
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Receiver-bound Cover Traffic. We also evaluate how RB cover traffic orig-
inating at the mix impacts statistical analysis. At the end of each round, the
mix selects a subset of messages in its pool and sends them to their respective
recipients. In addition to the real messages, the mix adds a number of dummy
messages to the outbound stream. The recipients for the dummy messages are
chosen uniformly at random from the set of recipients. For our simulations we
used the following dummy generation policy at the mix:

Receiver-bound Cover Policy. We ran simulations with the number of dummy
messages per round at 100%, 200%, and 300% additional traffic. In all cases, the
mix observes the number of real messages in each round and sends between one
to three dummy messages for each real message, according to the amount of RB
cover traffic desired. Fractional amounts are possible by sending according to a
uniform distribution. We use these fixed values for simplicity; in reality, the mix
must choose a random number of RB dummies per round based on a function
of the number of real messages exiting the mix in that round.

The recipient of each dummy message is chosen uniformly at random from the
set of recipients. This is somewhat unrealistic, as the mixes may not know the
full set, but a reasonable approximation can be constructed by using previously
observed recipients and a selection of recipient addresses from the general popu-
lation. Dummy messages travel from the mix to the recipient and are observed as
part of the outgoing traffic by the passive attacker. However, since the attacker
cannot distinguish dummy messages from real messages, dummies are included
in the attackers analysis. Dummy messages reach the destination nodes and are
dropped by the recipient.

Alice and Receiver-bound Cover. In this scenario, Alice sends cover traffic
to the mix along with her real messages. These messages are dropped inside the
mix. The mix in turn generates dummy messages independent of Alice’s dummy
messages. The mix dummies are sent out with real outbound user messages.

5 Results

In this section we present the results of our simulations. Please note the use of
logarithmic scales in our graphs.

5.1 Degree of Disclosure

It is easier for an attacker to obtain a subset of Alice’s recipients than to find all
of Alice’s recipients. We ran simulations to evaluate how different cover traffic
approaches affect the attackers ability to expose a number of Alice’s recipients.
The graph in Figure 1 shows that as the attacker tries to expose more number of
recipients, the amount of observation rounds significantly increases. In compari-
son, Figure 2 shows that with more active background senders, the effectiveness
of cover traffic is more pronounced. When RB cover is used, the number of rounds
sharply increase when more than 70% of her recipients are exposed. When only
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Alice sends dummies, the rise in number of rounds is more modest when com-
pared to when RB cover is also used. In our remaining experiments, we fix the
number of recipients to be exposed at 30% which we simplify to 10 recipients.

5.2 Effect of Background Senders

The graph in Figure 3 illustrates the effect of background dummy messages
on the number of rounds needed to correctly identify 10 of Alice’s recipients.
Alice generates dummies according to a geometric distribution. Alice’s dummy
distribution parameter varies from 0.1 to 0.9 as seen along the x-axis. The effect
of background traffic volume (BG) is clearly visible in this graph. When BG =
125, the effect of background and Alice dummy messages is very low. In the
case when BG = 1700, cover traffic has a greater impact. As Alice’s dummy
volume increases, the number of rounds needed to identify Alice’s recipients
increases. Further, we see that when the background senders also send cover
traffic, it becomes increasingly difficult for the attacker to successfully identify
Alice’s recipients. When the background senders generate cover traffic at 10%
of real traffic and Alice increases her dummy distribution parameter to 0.9, it
takes more than one million rounds to correctly identify ten of Alice’s recipients.

Attacker Adjustment. The attacker can counter the effect of background
cover by estimating the number of dummies that the background sends per
round. The attacker can observe the number of senders sending per round and
has knowledge of their dummy policy. Once the estimate is obtained, the attacker
simply has to subtract the number of estimated dummies from the number of
observed background messages and continue as if there were no dummies. Figure
3 shows how attacker adjustment can completely negate the effect of background
cover, even if background senders use 50% or 100% dummies.
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The estimation of total background dummies per round is simple if all senders
use the same dummy volume parameter. If senders use arbitrary dummy vol-
ume parameters, selected independently or even randomly varied over time, it
becomes more difficult for the attacker to estimate the background dummy vol-
ume. The attacker could attempt to subtract the average system output from the
average system input, as this provides an average of the sum of the background
dummies plus Alice’s dummies. This suggests another benefit of RB cover traffic,
as the attacker would have greater difficulty in measuring the background cover
traffic if the number of real messages is hidden in the system output as well.
To gain this benefit, a dynamic amount of background cover traffic is required,
rather than the fixed percentage of real traffic that we have studied in this paper.

Larger Number of Participants. Figure 4 shows that as the number of partic-
ipants in the mix increases, the anonymity of individual participants correspond-
ingly increases. In this simulation we increased the volume of background traffic
from a normal distribution with mean 1700 to a normal distribution with mean
9000 messages per round. As observed in the graph, the time for the attacker
to expose the same number of recipients more than doubles when participants
send messages more frequently.

5.3 Effect of Receiver-Bound Cover

Figures 5 and 6 show the effect of RB cover traffic. The mix generates RB dum-
mies equal to the number of real messages per round. We also studied whether the
presence or absence of cover traffic from Alice would affect the number of rounds
needed to identify Alice’s recipients. As Figure 6 shows, cover traffic from Alice
alone does not have a significant impact on number of rounds. When Alice sends
dummies in the presence of RB cover the effects are more pronounced. Compared
with Figure 5, we see the extent to which increasing the number of background
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messages helps improve the effectiveness of RB cover. When BG = 125, RB
cover up to 300% does not significantly degrade the attack.

Figures 7 and 8 shows how the increase in delay distribution at the mix
makes the attack harder. As before, there is greater benefit in increasing Pdelay

is when the background senders are more active. When the mix exhibits a delay
probability higher than 0.5, the number of rounds increases more rapidly. When
RB cover is increased to 200% and Pdelay is more than 0.3, the attack takes more
than one million rounds.
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6 Discussion

In Section 5, we show how RB cover traffic can be used to successfully delay
statistical analysis. We now touch upon the implementation aspects that RB
cover should exhibit in real-world networks. There are three main considerations:

– Cover traffic must resemble real traffic in order for it to effectively anonymize
user traffic.

– Receivers must tolerate the presense of dummy messages.
– The costs of the cover traffic should not be too high for the mixes or the

receivers.

We study these both in the context of high-latency and low-latency mixes, as
intersection attacks apply to both types of system. The two forms of cover traffic
that we can use are encrypted and unencrypted, each with different advantages
and applications.

6.1 Encrypted Dummies

Making cover traffic that looks like real traffic is challenging. Content, timing,
and receiver selection must all appear to be the same as users’ messages. Re-
alistic content is relatively easy to generate if it is encrypted. For high-latency
message delivery, such as anonymous email, we can craft packets that appear
to be encrypted using PGP [8] or S-Mime [9] but with random payload bytes
(in Radix-64). The receiver could attempt to decrypt the random payload and
discard the email when it doesn’t decrypt properly. There is some cost to the
receiver in this case, although email clients could automate this process and
remove most of the cost that the receiver actually notices.

One problem with only sending dummies designed to appear encrypted is that,
if some of the real messages are not encrypted, the attacker can discount the
presence of those encrypted messages. The attacker takes an estimate d′ of the
number of RB dummies (say, d), based on knowledge of the mixes’ distribution
of sending those dummies. If the total number of messages is n, and the number
of unencrypted real messages is u, which are both measurable, then the chance
that any packet with a random payload is a real message is estimated as p′real =
(n − u − d′)/(n − u). p′real becomes a discounting factor on the additions to
vector −→o in each round. The impact of this depends on the ratio of encrypted
real messages to total real messages. If the ratio is high, we may be able to
increase the number of dummies to compensate. If the ratio is low, i.e. there are
few real encrypted messages, the attacker can discount much of the cover traffic.

6.2 Unencrypted Dummies

As real traffic may also be unencrypted, we propose the use of unencrypted dum-
mies for some applications. There are many applications where users often do not
use encryption, including email. In such a case, the mix has to generate cover
traffic that carefully replicates real traffic. Messages with randomly-generated
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payloads would be useless since they can be easily differentiated from real traf-
fic.

For email, messages must be constructed that look like real messages. Mes-
sages could be replayed, but the attacker could detect this. The techniques of
email spammers could be employed fruitfully here, as copying real text passages,
randomization, and receiver customization could all be used to avoid detection
by automated systems. Further, the word choice can be designed to match non-
spam emails perfectly, as the emails do not need to sell anything. This negates
many of the standard Bayesian filtering methods for detecting spam [10,11,12].
While attackers could use humans to determine which messages are real, and
which are dummies, this would be expensive and might require knowledge about
the receiver.

A useful tool to help generate realistic dummies is the behavior of real users.
In email, this could mean keeping a record of messages sent to each receiver,
and then using this record to help generate new messages with appropriate key
words.

6.3 Making Receiver-Bound Dummies Acceptable

Another critical issue in the use of RB cover traffic is their acceptance by the
set of receivers. We have implicitly added some costs to receivers for the privacy
of the senders, which may be classified as spam and cause the system to get
unwanted negative attention. There are a number of issues and possible solutions
which we touch on briefly here.

One way to cast to the problem is to note that RB cover traffic increases
the anonymity of the senders connecting to the receivers. It is in the interest
of anonymity for these users, so a receiver should allow anonymity networks to
send cover traffic to it. Receivers who don’t wish to help provide anonymous
communications can block messages from the system. Some recipients block
connections coming from anonymity systems like Tor [13] exit nodes. We could
publish a ’White List’ of servers that allow connections from the anonymity
systems, so users can connect to those services via systems like Mixminion [14].

Another way to see the issue is in the light of spam. Today we see that a
large percentage of network traffic consists of spam messages [15]. Receivers
have developed a number of effective ways to drop or ignore spam messages. RB
cover traffic would be a tiny addition to the millions of unwanted messages that
flood the network. Further, these unwanted messages help enhance sender and
receiver anonymity. Reciever-bound cover would be a small price to pay for the
greater benefit of anonymity that it provides to network users. In some cases,
especially in Web-browsing, the extra traffic could generally go unnoticed.

Anonymity systems have become popular over the past few years and the
number of users participating these systems is continuing to grow. Currently,
however, these users remain a small part of the global Internet community.
The volume of traffic exiting anonymity systems is low as compared to non-
anonymous traffic in the network. RB cover traffic generated to anonymize this
fraction of Internet traffic would hardly burden the massive network resources
that are in place.
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7 Related Work

We are not the first to propose sending cover traffic to receivers. Berthold et.
al have users send pre-generated dummy messages to the recipient when the
sender is offline [16]. Mathewson and Dingledine suggest, and then dismiss, this
approach in a footnote of their work on statistical disclosure [5]. They cite prob-
lems with the user sending to all receivers, which we avoid by having the mix
generate the cover traffic. Shmatikov and Wang propose cover traffic sent to re-
ceivers to prevent active and passive timing analysis attacks in low-latency mix
networks [17]. In their approach, senders generate the dummies in advance and
send them to the mix, which later sends them when cover traffic is needed. The
authors point out that dummy packets sent on the link between the mix and
recipient can be easily recognized and dropped by the recipient. Mix-generated
cover traffic is also useful in protecting reverse paths from malicious clients that
use the Overlier-Syverson attack. The results from Section 5 of our work indicate
that this approach can also help prevent intersection attacks.

System for anonymous peer-to-peer services, such as GNUnet [18], Freenet [19],
and APFS [20], include receivers in the system by their nature. Sending cover
traffic to receivers would be very reasonable in such systems. P5 is an anonymity
system that provides sender, receiver, and sender-receiver anonymity[21]. P5 cre-
ates a hierarchy of broadcast channels with each level providing a different level
of tradeoff between anonymity and communication performance. In P5, noise
(dummy) messages are added to prevent statistical correlation of sources and
sinks of a communication stream. Real messages and noise messages move from
the source to the sink hop by hop across different nodes. Intermediate nodes can-
not distinguish real packets from dummy packets and treat all transiting packets
similarly. Furthermore, intermediate nodes are also sources and insert dummy
packets into outgoing streams. Dummies are dropped at the final destination.
By using these channels, each sender effectively creates a form of receiver-bound
cover traffic, as each message is sent to a group of receivers. While this multi-
cast approach would be one way to do receiver-bound cover traffic in mix-based
anonymity systems, it would only work in non-encrypted communications.

8 Conclusions and Future Work

Anonymous communications remain challenging in the face of determined and
powerful attackers. No matter how secure the process of mixing becomes, incon-
sistent usage patterns can give the attacker enough information to link users with
their communication partners over time. Prior work had developed the notion of
statistical disclosure as a powerful form of this attack. In this work, we explored
defenses against this attack in greater depth. We found that the cover traffic
of other users is surprisingly ineffective in protecting Alice, our user of interest;
techniques to hide the amount of real traffic could help. Alice’s own cover traffic
has a limited effect on its own, or in combination with greater delays in the mix
system. We proposed receiver-bound cover traffic and showed that it can have a
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substantial benefit to the user. We then discussed in detail the implications of
using such an approach; we believe that it is feasible, and that the improvement
in privacy could well be worth the costs.

Much work remains before receiver-bound cover traffic could be put into place.
First, we need to have a deeper study of the use of unencrypted receiver-bound
dummies. It is unclear whether it is a pure arms race between defense and
attack, or whether one side has a clear advantage. We suggest that the attacker
would find that deep content analysis does not scale well, while creating realistic
automated messages is a well-understood problem from spam email generation.
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Abstract. In this paper we design renewable traitor tracing scheme for
anonymous attack. When pirated copies of some copyrighted content or
content decrypting key are found, a traitor tracing scheme could identify
at least one of the real users (traitors) who participate in the construction
of the pirated content/key. When traitors are identified, the renewable
scheme can revoke and exclude the decryption keys used by the trai-
tors during piracy. Moreover, the revocation information included in the
newly released content needs not only to disallow traitors to playback
the new content, but also provide new tracing information for continuous
tracing. This trace-revoke-trace system is the first such system for anony-
mous attack. It poses new challenges over the trace-revoke system that
has extensively studied in the literatures for the pirate decoder attack.
We hope the technologies described in this paper can shed new insights
on future directions in this area for academia research.

Keywords: Content protection, traitor tracing, broadcast encryption,
anti-piracy.

1 Introduction

This paper is concerned with the protection of copyrighted materials. There are
many business scenarios that content needs to be distributed through broadcast
channels. Examples of these business models include pay-TV systems (Cable
companies) or movie rental companies like Netflix, and massively distributing
prerecorded and recordable media. A broadcast encryption and traitor tracing
scheme can be used to protect the content copyright and make sure the content
can only be recovered by a privileged group of users. Since broadcast content
is usually large, hybrid encryption system can be used to keep asymptotically
optimal transmission rate (i.e., the ratio between cipher text size and plaintext
size). More concretely, each device is assigned a set of unique secret keys (called
device keys) but the broadcaster selects another random key (called media key)
to indirectly encrypt the content. Distributed together with the content is a
structure called Media Key Block (MKB) where the media key is encrypted by
valid device keys again and again. Only those enabled devices can decrypt the
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MKB and obtain the correct media key to decrypt the content. The disabled
devices, with their device keys revoked, cannot decrypt the MKB correctly to
access the content. Traitor tracing schemes are used to identify who have involved
in the pirate attack when the disclosed pirate evidence is recovered.

There are three major pirate attacks in the above content protection system.
The forensic evidences are different for different pirate attacks, which correspond
to different types of traitor tracing system.

1. Pirates disclose secret device keys by building a clone pirate decoder.
2. Pirates disclose content encrypting key (media key): pirates stay anonymous.
3. Pirates disclose decrypted content: pirates stay anonymous.

The first type of pirate attack has been studied extensively. It is called ”pi-
rate decoder attack”. Attackers hack legitimate players, extract secret device
keys from the players and build a pirate decoder that will decrypt and extract
the plaintext content. The pirates could widely redistribute the pirate decoders
so that anyone can extract the clear content for themselves. For example, pi-
rate attackers broke the CSS ( Content Scrambling System), built and widely
distributed DeCSS, a pirate program for decrypting encrypted DVD content.
In order to find out which device keys are in the decoder, the tracing scheme
interacts with the pirate decoder using carefully crafted cipher text (we call it
”forensic MKB”) and observes the decoder’s outcome. Most existing broadcast
encryption and traitor tracing schemes [2,3,4,5,6,7,8,9,10,11,12] targeted on this
type of ”pirate decoder attack”. Some of these schemes are combinatorial [4,5,2],
some are algebraic [6,9,11,12].

In this paper we are concerned with a different attack, namely, anonymous
attack. In anonymous attack, instead of distributing a pirate decoder, attackers
redistribute the actual content encrypting key or the decrypted content. Keep
in mind when using hybrid encryption the content encrypting key and the clear
content is same for every user/player and cannot be used to identify traitors. To
defend against these types of anonymous attacks, one needs different versions of
the content and decryption keys (media key) for different users.

Unfortunately in most one-to-many content distribution channels, like mas-
sively distributing DVDs, it is generally infeasible to prepare and send individu-
alized (e.g., watermarked) movie discs to each user. On the other hand, it is also
infeasible, usually for security reasons, to customize each copy at the receiving
end1. A feasible technical approach is to choose certain points in the movie and
create different variations for each of those points. Each variation is differently
encrypted. The movie is thus augmented by all the variations. Each user receives
the same bulk-encrypted movie. However, each user can only decrypt one of the
variations at each point. In other words, each recipient would follow a different
path through the variations during playback time. It effectively creates multi-
ple versions of a movie. Over time, when recovering enough pirate movies, it
may be possible to detect the players in a copyright attack by examining the
1 Unauthorized copies generally imply a break the correct operation of the client. How

can a broken client be expected to correctly generate the customizing marks?
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variations recovered in the unauthorized copies of the movies. We together with
[15,16,17,18,19] use this model to defend against anonymous attack. It is inter-
esting to notice that all schemes for this attack are combinatorial. Traitor tracing
schemes can be public-key based or secret symmetric key based. Combinatorial
systems are typically designed for secret key setting.

AACS [1], Advanced Access Content System, was founded in July 2004 by
eight companies, Disney, IBM, Intel, Matsushita, Microsoft, Sony, Toshiba, and
Warner Brothers. It develops content protection technology for the next gen-
eration of high-definition DVD optical discs. Compared to the previous DVD
CSS system, which could not revoke users because it is a shared-key scheme,
AACS adopts a broadcast encryption scheme shown in [2]. The pirate attack
this scheme was concerned with is the pirate decoder attack. The mechanism is
designed to exclude clones pirate devices, such as the infamous “DeCSS” applica-
tion used for copying “protected” DVD Video disks. It utilizes hybrid encryption
and media key block (MKB). Once the attackers have been detected, they are
excluded from newly released content because the new media key blocks in the
new content exclude the keys known to the attackers. The detection of the trai-
tors is performed by the traitor tracing approach in the scheme [2] when a pirate
decoder is found. This responds to the first pirate attack mentioned above.

However, the AACS founders do not believe that it is sufficient to only respond
to pirate decoder attack. AACS found it desirable to be able to respond to the
anonymous attacks discussed above. To have a practical useful system, AACS
is concerned with problems arise during the lifetime of a traitor tracing system.
Basically AACS demands a traitor tracing system for anonymous attack that not
only traces traitors, but also revokes traitors and can continue tracing traitors
throughout its lifetime. Unfortunately existing schemes [16,17,15] for anonymous
attack focus on the first part of a ”trace-revoke-trace” system. They assume the
detected traitor can be disconnected from the system in some way and the tracing
can simply be repeated. The multiple needs from AACS on a practical tracing
system are therefore still unsatisfied. AACS needs a complete trace-revoke-trace
system for anonymous attack. That is the focus on this paper.

1.1 Main Results

The main contribution of this paper is that we provided a complete and practical
trace-revoke-trace system to meet AACS’ demand to defend against anonymous
attack. The technologies we will describe in this paper have been adopted by
this new industry content protection standard to protect the next generation of
high-definition optical DVDs.

We build our trace-revoke-trace system on top of an existing tracing scheme
[20] for anonymous attack. The first part ”trace” of our trace-revoke-trace system
uses the key assignment described in [20]. On top of that, we go on adding
revocation capability similar to the design of Media Key Block in a broadcast
encryption system. The traitor tracing keys serve the role of the device keys in
a broadcast encryption system, and the actual content encrypting keys in our
traitor tracing scheme serve the role of the media key in a broadcast encryption
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system. Of course, there are multiple versions of content encrypting key in our
scheme while there is only one media key in a normal broadcast encryption
system. Unfortunately, the above combined scheme cannot support multi-time
continued tracing. It is possible that the license agency does not gain any useful
information to continue detecting the unexposed traitors. We identified this new
challenge and improved our scheme to support multi-time tracing.

Adding renewability and continued traceability was a crucial enabling factor
for this first time adoption for large scale commercialization of a tracing traitor
technology for anonymous attack. We hope the experience we gained when devel-
oping this complete system can shed new insights on future research directions
on some problems that we believe have been overlooked by research community
so far. We will discuss a little bit on these issues in the concluding Section 7.

In rest of the paper, we will describe our trace-revoke-trace system in three
continuous sections. Section 3 is for the first part ”trace” in the trace-revoke-
trace system. We will summarize the existing tracing scheme shown in [20].
Section 4 is for the second ”revoke” part of our trace-revoke-trace system. We
will show how to add renewability into the scheme. Section 5 is for the third part
of our trace-revoke-trace system, there we will show the challenges to provide
continued traceability and show our solution to support multi-time tracing. We
analyze the revocation capability and continued traceability in Section 6. We
conclude in Section 7 with future work.

2 Pirate Model

AACS founders find it acceptable to makes the following marking assumption
on the pirate model. Given two variants v1 and v2 of a segment, the pirate can
only use v1 or v2, not any other valid variant vi. The exact reason that has made
AACS to accept this model is outside the scope of this paper. Indeed, this so-
called marking assumption is often made by other traitor tracing schemes shown
in the literatures. Also, in a key attack, the first model says it is impossible
to calculate a valid random cryptographic key from combining two other valid
random keys–which is obviously true.

3 First Part: Trace

In this section we show the restrictions on designing a practical traitor tracing
system for AACS, and show how AACS can use the scheme shown in [20] as its
first part.

In the AACS context, each movie is divided into multiple segments, among
which n segments are chosen to have differently marked variations. Each of these
n segments has q possible variations. Each playing device receives the same disc
with all the small variations at chosen points in the content. However, each device
plays back the movie through a different path, which effectively creates a different
movie version. Each version of the content contains one variation for each seg-
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ment. Each version can be denoted as an n-tuple or codeword (x0, x1, . . . , xn−1),
where 0 ≤ xi ≤ q − 1 for each 0 ≤ i ≤ n− 1.

As one can imagine, the variations take extra space on the disc. A practical trai-
tor tracing scheme on a prerecorded optical movie disc should take no more than
10% of the space on the disc to store the variations. For a normal 2-hour movie,
it corresponds to 8 additional minutes (480 seconds) of video. This puts practical
restriction on the number of variations one can put into a movie. The market for
such discs is huge, involving literally a billion playing devices or more. This means
a tracing scheme needs to be able to accommodate large number of devices.

Unfortunately these requirements are inherently conflicting. Let us show some
intuition on the conflicts between these parameters. Take a look at a code [n, k, d],
where n is the length of the codewords, k is the source symbol size and d is the
Hamming distance of the code, namely, the minimum number of symbols by
which any two codewords differ. q is the number of variations. Mathematically
these parameters are connected to each other. The number of codewords is qk,
and Hamming distance has the property that d <= n − k + 1. q is also related
to n, for example, for a “maximal difference separable” (MDS) code, n <= q.
We know the number of variations q decides the extra bandwidth needed for
distributing content. Without variations, q = 1. The extra bandwidth needed
for the content is (q− 1) ∗ length of each variation ∗n. The Hamming distance
d decides its traceability. To defend against a collusion attack, intuitively we
would like the variant assignment to be as far apart as possible. In other words,
the larger the Hamming distance is, the better traceability of the scheme. On the
other hand, to accommodate a large number of devices, e.g. billions, intuitively
either q or k or both have to be relatively big. Unfortunately a big q means
big bandwidth overhead and a big k means smaller Hamming distance and thus
weaker traceability. It is inherently difficult to defend against collusions.

In order to meet these practical requirements, AACS uses the key assignment
scheme shown in [20]. The basic idea there is to use two-level assignment and
concatenate them. For each movie, there is an ”inner code” used to assign the
different variations at the chosen points of the movie; it effectively creates dif-
ferent movie versions. For example, 16 variations are created at each of the 15
points in the movie, its ”inner code” generates 256 versions for each movie out of
all the possible 1615 combinations. Any two of the 256 versions are guaranteed
to differ at 14 points out of the entire 15 points in the movie. For a sequence
of movies, there is an ”outer code” used to assign movie versions to different
players. For example, each player is assigned one of the 256 versions for each
movie in a sequence of 255 movies. By concatenating the two levels of codes,
the scheme managed to avoid having a big number of variations at any chosen
point but can still accommodate the billions of devices we anticipate. The inner
code and outer code assignments can be random or systematic. For example,
both inner and outer codes can use Reed-Solomon codes. Suppose each varia-
tions takes 2-second clip, the extra video needed in this example is 450 seconds,
within the 10% constraint placed by the studios. This example can accommodate
more than 4 billion devices. In fact, there does not exist a single level MDS code
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that can satisfy all the practical requirements. The two-level concatenated code
is essential to meet the practical requirements for AACS.

During playback time, each device needs to decrypt exactly one variation for
each segment. Using the above parameters, a device needs to know 255 ∗ 15
variation encrypting keys. 255 corresponds to the outer code length for the 255
movies in the sequence, 15 corresponds to the inner code length. However, by
adding a level of indirection, each device only stores 255 movie version keys
corresponding to the 255 movies in the sequence. For each movie, the device can
use its movie version key to unlock a table on the DVD disc that contains the
actual variation encrypting keys for that movie. In other words, the variation
encrypting keys which are assigned using ”inner code” are embedded on the
DVD disc. These movie version keys which are assigned using ”outer side” are
burned into the devices during manufacture time. Those outer code keys are
called ”sequence keys” in AACS.

The sequence keys for AACS are assigned from a large matrix. Each column
corresponds to a movie. The number of columns corresponds to the number of
movies considered in the sequence. The rows for each column correspond to mul-
tiple versions of the sequence keys for that movie. For example, if the variations
inside the movie segments create 256 versions for each movie and we consider 255
movies in a sequence, then the matrix is 255 by 256. Each device is assigned a set
of 255 keys, exactly one key from each column, corresponding to the 255 movies in
the sequence. The key for each column has 256 versions. Many players will receive
any given sequence key, but no two players will receive exactly the same set of 255
keys. Again, these sequence keys are placed in the players at manufacturing time.
Figure 1 is an example of the matrix organization of the keys.

Based on the pirate model we mentioned in Section 2, the attackers can collude
and construct the pirate copy of the content/key based on the available versions to
them. When the license agency recovers pirated movies/keys, it tries to match the
recovered movies/keys with the versions assigned to the devices to detect traitors.
This detection algorithm must handle the collusion attack when attackers collude
in the piracy. It is possible to use the typical highest-score approach as shown
in [20,16]. AACS chose to use a more efficient detection algorithm. However, the
actual detection algorithm is out of the scope of this paper.

X

    X

    

     
X

    X

movie #1 movie #2 movie #3 movie #4

version #1

version #2

version #16

player A: (1,9,15,3)

Fig. 1. Key assignment from a matrix
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Fig. 2. Sample SKB

4 Second Part: Revocation

A traitor tracing scheme is defined to be finding at least a traitor if though
there may exist a coalition. Indeed, all traitor tracing schemes [15,16,17,20] for
anonymous attack stop when they detect a traitor. They assume this traitor can
be disconnected in some way. If there still is piracy, the same scheme just needs
to be repeated.

In reality, how does one disconnect a traitor technically? It is by rendering the
compromised keys no longer usable for future content. In other words, a traitor
tracing system must also be able to revoke compromised keys to be actually
useful in real world.

Of course, many devices might share a single compromised key. Therefore,
revocation of a single key is impossible. On the other hand, revocation of a
unique set of keys is very possible; in fact, that is precisely what the Sequence
Key Block (SKB) achieves.

The fundamental principle is that no two devices have many keys in common,
so even if the system has been heavily attacked and a significant fraction of the
Sequence Keys is compromised, all innocent devices will have many columns in
which they have uncompromised keys. The purpose of the Sequence Key Block is
to give all innocent devices a column they can use to calculate the correct answer,
while at the same time preventing compromised devices (who have compromised
keys in all columns) from getting to the same correct answer.

In an SKB there are actually many correct answers, one for each variation
in the content. For the purpose of explanation, however, it is helpful to imagine
that a single SKB is producing a single answer. We will call that answer the
output key.

As shown in Figure 2, the SKB begins with a first column, called the uncon-
ditional column. By column, we mean a column of Sequence Keys in the matrix
will be used to encrypt. (To be precise, the key used to encrypt is derived from
the Sequence Key, not the Sequence Key itself.) The first column will have an
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encryption of the output key (denoted K in the figure) in every uncompromised
Sequence Keys cell. Devices that do not have compromised keys in that column
immediately decrypt the output key. Devices, both innocent and otherwise, that
do have compromised keys instead decrypt a key called a link key that allows them
to process a further column in the SKB. To process the further column they need
both the link key and their Sequence Key in that column. Thus the subsequent
columns are called conditional columns because they can only be processed by
the device if it were given the necessary link key in a previous column.

The subsequent additional conditional columns are produced the same way
as the first column: They will have an encryption of the output key in every
uncompromised Sequence Keys cell. Devices with a compromised key will get
a further link key to another column instead of the output key. However, after
some number of columns depending on the actual number of compromised keys,
the AACS licensing agency will know that only compromised devices would be
getting the link key; all innocent devices would have found the output key in
this column or in a previous column. At this point, rather than encrypting a
link key, the agency encrypts a 0, and the SKB is complete. All innocent devices
will have decrypted the output key, and all compromised devices have ended up
decrypting 0.

How do the devices know they have a link key versus the output key? The
short answer is they do not, at least not at first. Each conditional column has a
header of known data (for example, ”DEADBEEF16”) encrypted in the link key
for that column. The device decrypts the header with the key it currently has. If
the header decrypts correctly, the device knows it has a link key and processes
the column. If it does not decrypt correctly, the device knows it has either the
output key or a link key for a different column. When the device reaches the end
of the SKB without decrypting 0, it knows it must have an output key. Note
that this device logic allows the licensing agency to send different populations
of devices to different columns by having more than one link key output from a
single column. For example, in the figure, column (1) links to both column (2)
and column (5). This flexibility can help against certain types of attacks.

The preceding description is the basics of an AACS SKB and described in a
simplified version. In an actual AACS SKB there is not a single output key, but
multiple output keys called Variant Data Dv.

The SKB is generated by the AACS license agency and allows all compliant
devices, each using their set of secret Sequence Keys to calculate the Variant
Data, Dv, which in turn allows them to indirectly decrypt a table that contains
the actual movie variation encrypting keys for the playback path of the movie
assigned to that device. If a set of Sequence Keys is compromised in a way
that threatens the integrity of the system, an updated SKB can be released
that causes a device with one or more compromised sets of Sequence Keys to
calculate invalid Variant Data. In this way, the compromised Sequence Keys
are revoked by the new SKB. In fact, if a device correctly processes an SKB
using Sequence Keys that are revoked by that SKB, the resulting final Dv will
have the special value 0000000000000000000016. This special value will never
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be an SKBs correct final Dv value, and can therefore always be taken as an
indication that the devices Sequence Keys are revoked. Device behavior in this
situation is implementation defined. As an example, a device could exhibit a
special diagnostic code, as information to a service technician. If at any point, a
device calculates a Dv value of zero, it should discontinue processing of the SKB
and may conclude that it has been revoked.

5 Third Part: Trace Again After Revocation

The above solution provides a key management scheme that not only can trace
traitors but also can revoke compromised keys. A real world traitor tracing sys-
tem must be able to trace again after revocation. Although none of the existing
traitor tracing system for anonymous attack even provides revocation capability,
there are quite some trace-revoke systems out there for pirate decoder attack.
Unfortunately there is big difference when coming to design a trace-and-revoke
system for clone decoder attack and anonymous attack. In this section, we shall
describe the new challenge and our solution for that.

5.1 Another Type of Collusion Attack: Combine Revoked Keys
with Non-revoked Keys in Future Attacks

For pirate decoder attack, the license agency has the clone box in the testing
lab. The tracing agency carefully produces some testing messages (called forensic
Media Key Blocks) and feeds into the box in order to trace keys contained in the
clone box. The real production MKB and the forensic MKB are two different
things. Forensic MKBs are for tracing purpose only, they are not necessary pro-
duction MKBs. On the other hand, real production MKB used in a broadcast
encryption scheme, like [2], only needs to contain the revocation information
and disable the detected compromised keys. It itself doesnt have to be able to
trace. However, for anonymous attack, it demands the same SKB containing the
revocation information in the newly broadcasted content to not only revoke the
compromised keys but also enable continued tracing of new traitors. It poses
new challenges to our design.

This is best understood by example. The bulk of a movie is encrypted by the
media key, which in turn is calculated by each device using its set of device keys.
At the point of variations in the movie, the media key alone does not suffice, the
device must also use the variant key it has at that point. In a clone decoder attack,
all that is needed is to exclude the clone’s compromised device keys. The clone can
no longer play the movie. In an anonymous attack, it is necessary but not sufficient
to exclude the attacker’s device keys; the attacker’s variant keys must also be made
unusable. If not, if the attackers are able to obtain a new set of device keys, they
simply combine them with the previously-used variant keys and give the tracing
agency no new information. This tactic is useless against the clone decoder attack
because the tracing agency already has the clone in the lab.

The challenge here is to make sure the newly released SKB can continue to
provide tracing information to the license agency to enable continued tracing.
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Fig. 3. It is possible that the new SKB will not provide new tracing information for
continued tracing

As we know, each column in a SKB contains an encryption of the output key
in every uncompromised sequence key’s cell. More precisely, in every uncompro-
mised sequence key’s cell in each column, it contains an encryption of one of
the variant data Dvi(0 ≤ i < k), k is the number of different variant data in
the system. Notice the same set of variant data are encrypted in each column,
although they are distributed differently in different columns. For a particular
variant data Dvi, it can be obtained from any column in the SKB. An uncom-
promised device will process SKB and obtain a correct variant data from the
first column in SKB that it has a non-revoked key. However, when attackers
collude and the system still has undetected attackers at large. The attacker can
mix-and-match their revoked keys and non-revoked keys when processing SKB.
In turn they have multiple ways to process SKB and get a valid variant data
to play back the content. They can choose in which column they want to use
a non-revoked key to get a valid variant data. It does not have to be in the
first column. Moreover, different keys need to be used in different columns to
obtain the same variant Dvi. When the license agency observes a pirate copy
corresponding to a particular variant data Dvi, since it can be obtained from
any column, the license agency has no way to know which key has been used in
obtaining that variant data. The entire path that the undetected traitors goes
through to process SKB can even look like from an innocent device or from a
path that was never assigned to any device, thus untraceable.

The figure 3 illustrates the issue discussed here. Keep in mind that the output
key has multiple valid versions. If the attackers combine the revoked keys with
the keys that have not been detected, it is not always possible to know from
which column the SKB processing ends to get a valid key.

To force the undetected traitors to reveal the keys they use when processing
SKB, we must make sure each column gets different variations so that when
recovering a key/variation, the scheme knows from which column it comes from.
Only by observing that, the tracing scheme can continue tracing. Unfortunately
that means the q variations have to be distributed among the columns contained
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in the SKB. Each column only effectively gets q/c variations where c is the
number of columns in the SKB. It is clear that traceability degrades when the
effective q decreases. When the number of columns c becomes big enough, the
traceability degrades to so low that it basically becomes untraceable. The scheme
is overwhelmed and broken in that case. As a result, that puts a limit on the
revocation capability of the scheme.

5.2 Improved Solution

In order to improve the above scheme and lift the limit on revocation capability,
we have designed a two phase defense. In order to use this defense, the scheme
assigns the sequence keys as shown in Figure 4 instead of Figure 1.

Basically we used a new concept called “slot”. Now the rows in the key matrix
are grouped into clusters. A slot is defined to be an assignment of row clusters,
one cluster for each column. At any given column, two slots are either identical
or completely disjoint. Slots can be assigned to individual manufacturers/models
and the keys within the clusters are assigned to the devices made by the manufac-
turer/model. In effect, the outer code that is used to assign sequence keys todevices
is now itself a two-level code. The first level codes assign clusters to the manufac-
turer/models X and Y and the second level codes assign keys to players A,B within
model X, and players C, D within model Y. Model X gets the slot (1,3,4,1), which
means it is assigned cluster #1 for movie #1, cluster #3 for movie #2, and etc.
Note that the second level code is the assignment inside the cluster. For example,
player A gets (1,1,3,3) within the clusters assigned to model X, which makes its
actual key assignment be (1, 9, 15, 3) from the key matrix.

In AACS context, we anticipate about 4000 manufacturers/models. We divide
all the rows in each column to have 64 clusters. Using Reed-Solomon code,
q = 64, it takes k = 2 to accommodate 642 slots. Suppose we have 4K keys in
each column, there will be 64 keys in each cluster. Again using Reed-Solomon
code, q = 64, it takes k = 3 to accommodate 643 devices within each slot. The
assignment can totally accommodate 645 devices. Each slot can be assigned to
one manufacturer/model, A big manufacturer would, of course, overflow a single
slot. He would just have more than one slot.
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In the two-phase defense, when pirated movies/keys are found, the first SKB’s
would determine the slot used in the attack (or slots, but that is unlikely). Since
the slot is assigned from the first level by using Reed-Solomon code q = 64, k = 2,
there are only 64 variations needed per column in this case. Recall the ”inner
code” generates totally 256 variations for each movie. One can use 4 columns
in the SKB and there is no problem with dividing the 256 variations across 4
columns. Each column would get 64 variations, which is all we need per column.
By Reed-Solomon code’s property, it takes only two (k = 2) movies to uniquely
detect the slot. The above attack scenario does not work here.

Once the licensing agency detects the slot, it can produce new SKB’s that are
only trying to detect the device within the slot. In the SKB, all other slots in
the column(s) would go to a single variation that we would expect would never
be recovered. We would use all the remaining variations within the single slot.
Again, the above attack scenario is not much a problem, because we can get up
to 4 columns and still have unique keys for each variation. As long as we only
need 4 columns in SKB, the above attack cannot work.

However, it still puts a limit on how many devices the scheme can revoke before
it is overwhelmed. A single slot can be overwhelmed if it gets a lot of attacks.
For example, if there are just 32 devices revoked from a single manufacturer,
then 50% of the keys in the slot are compromised, and the SKB takes about 18
columns to winnow out that manufacturer’s innocent devices. The 18 columns
means the above attack can cause a problem, even with the two-phase approach.
Because of this, a larger number of keys per column is preferred, for example,
16K keys/column would be a better number. These keys are still grouped by 64
clusters for slot purposes. Each slot can have 256 keys instead of 64 keys. Then
we would be back down to 6 columns. Of course, anything more than 4 columns
introduces the above attack problem, but it is still manageable.

6 Revocation Capability and Traceability

More formally, the revocation capability is calculated by the following formula.
Suppose the number of rows in the matrix is m, p is the acceptable maximum
probability for an innocent device to be revoked when revoking the actual guilty
devices. r is the number of guilty devices to be revoked in SKB. c is the number
of columns in SKB. The system still survives when the following holds.

(1− (1− 1/m)r)c < p (1)

This formula can be used to determine how many columns c needed in a
SKB when the licensing agency wants to revoke r devices. Due to the above
attack scenario, there is a limit on the number of columns. We can also easily
see that, the limit on the number of columns c in SKB induces a limit on the
number of revoking devices that the system can survive. For example, suppose
sequence keys are assigned from a matrix of 4096 by 256, there are 4096 rows.
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Fig. 5. Traceability with different q

We divide rows into 64 clusters for slot assignment. Suppose the acceptable rate
for revoking innocent devices is 1/1, 000, 000. Suppose there can be at most 18
columns in SKB. In the case of random hacking where we assume the attackers
are distributed randomly from any slot and there is no evil manufacturers, Sub-
stituting m = 4096 gives us that maximum number of guilty devices that the
system can revoke but still get useful tracing information for continued tracing.
In the case of evil manufacturers or most hacking occurs in one slot, breaking
one slot breaks the entire system. In the above example, there are 64 cluster
in a 4096X256 matrix, there are 64 rows in each cluster for slot assignment.
Substituting m = 64 gives us that the system can maximally survive up to 32
revoked devices within a slot.

We have performed preliminary simulation on how many columns the scheme
needs in its SKB in terms of the number of devices that needs to be revoked. It
confirms the above formula 1.

The traceability is measured by the number of movies it takes to recover in
order to detect traitors in a coalition of T traitors. Of course the traceability
depends on the actual detection algorithm used when a series of pirated movies
are recovered. We didnt show the actual traitor detection algorithm in this pa-
per since it is out of the scope of this paper. However, we have used the same
detection algorithm on different q to show the impact of deceased q on traceabil-
ity. The traceability result is shown in graph 5. It includes both the two-phase
solution and the basic single-phase scheme. There is different traceability in the
life of the system depending on how many devices are currently being revoked
in the SKB. The more devices revoked, the more columns it needs in SKB, the
smaller the effective q is, the worse traceability.
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7 Conclusions

In this paper, we study the problem of traitor tracing for anonymous attack
where the legitimate users (traitors) illegally redistributing the clear content or
the decryption keys on the Internet. This is a different type of attack with the
pirate decoder attack which has been extensively studied in literature. In this
paper we designed a complete trace-revoke-trace system for anonymous attack.
Our system has been adopted by the new industry content protection standard
AACS to protect the next generation DVDs.

Existing schemes for anonymous attack only focus on detecting a traitor. They
assume the detected traitor can be disconnected in some way. In this paper we
designed a system that can actually disable the detected traitor by revoking
the identified compromised keys. We also studied the continued tracing problem
which has been overlooked by existing schemes. They assumed that the tracing
can simply be repeated for new traitors and the traceability will be same as
before. We showed why this is not always possible to perform multi-time tracing
and how traceability can be decreased. We have also analyzed its traceability and
revocation capability. The revocation and continued tracing capability is one of
the enabling factor for its adoption to be the first large scale commercialization
of tracing traitor technology for anonymous attack.

We hope our work described in this paper sheds new insights on future direc-
tions in this area. So far, revocation is considered inside a broadcast encryption
system, and tracing is considered inside a traitor tracing system. Broadcast
encryption and traitor tracing have been viewed as two orthogonal problems.
However, our experience working on a solution for real world has taught us that
a traitor tracing scheme without revocation capability is practically useless in
real world. Revocation should be considered together with tracing.

In fact, this is also true in the case of pirate decoder attack. Even though
pirate decoder attack has been studied very extensively in literatures, they did
not realize that tracing must be accompanied by revocation in order to be useful.
Furthermore it is not always easy to add revocation on top of tracing if revocation
is an afterthought. For example, for the very recent traitor tracing scheme [8]
appeared in Eurocrypto 2006, if one needs to revoke a detected hacking device i,
one would also have to revoke devices i+ 1...N . Of course this is unacceptable.

Furthermore, a traitor tracing system must provide multi-time continued
traceability in order to be useful. It is not as easy as simply repeating the same
tracing. Again this issue can arise for pirate decoder attack too [11]. For ex-
ample, after a pirate decoder of certain type is brought to the testing lab and
rendered unusable, if there are undetected traitors in a coalition out there, the
attackers can build a new clone decoder combining the previously revoked keys
with untraced keys. This may or may not put difficulty on providing continued
traceability. We believe this issue needs to be further studied in the future.

In the future, we will also continue to improve our revocation capability as
well as traceability, not only theoretically, but also by taking into considerations
of other features existing in a real system.
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Abstract. Security policies, in particular access control, are fundamental ele-
ments of computer security. We address the problem of authoring and analyzing
policies in a modular way using techniques developed in the field of term rewrit-
ing, focusing especially on the use of rewriting strategies. Term rewriting sup-
ports a formalization of access control with a clear declarative semantics based
on equational logic and an operational semantics guided by strategies. Well-
established term rewriting techniques allow us to check properties of policies
such as the absence of conflicts and the property of always returning a decision.
A rich language for expressing rewriting strategies is used to define a theory of
modular construction of policies, in which we can better understand the preserva-
tion of properties of policies under composition. The robustness of the approach
is illustrated on the composition operators of XACML.

1 Introduction

Access control is at the heart of computer security. It has grown beyond mediating
operating-system interactions between users and files and now plays a central role in
web-based systems, privacy policies, and business rules. Accompanying these expanded
applications of access control, our conception of the mechanism of authorization now
goes beyond the classical model [28] of access-control matrices, and we view access
control decisions as the embodiment of a set of rules. We call such a set of rules an
access-control policy. Although monitoring and enforcement mechanisms are impor-
tant aspects of the study of access control, the size and complexity of the systems being
treated mean that the policies themselves are interesting software artifacts in their own
right. They are sensitive to complex conditions on the policy environment, which rep-
resents the data that a program respecting the policy manipulates, such as attributes of
subjects and resources and relations among these. They are not easy to get right.

In light of these considerations, it is now typical in large or complex systems to dis-
entangle policy from application code. Policies are written in domain-specific, typically
declarative languages, such as the industrial standard XACML [34], and reasoning about
the correctness of policies is a subtle matter. It is common wisdom that a key to design-
ing, reasoning about, and maintaining a large system is modularity, with corresponding
attention to the mechanisms by which the models in a system interact.

� LORIA: UMR 7503 CNRS-INPL-INRIA-Nancy2-UHP; Nancy, France.

J. Biskup and J. Lopez (Eds.): ESORICS 2007, LNCS 4734, pp. 578–593, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Modular Access Control Via Strategic Rewriting 579

In this paper, we are interested in the question of building access-control policies in a
modular fashion, and taking some initial steps towards a theory of how parts of a policy
interact.

We propose term rewriting [6, 2] as a formalism for representing access control poli-
cies. Rewriting is a well-established paradigm whose applications include theoretical
foundations for functional programming languages and theorem provers. It is flexible
and expressive enough to capture a wide range of policy frameworks arising in practice
and indeed it is a universal model of computation. It has a clean declarative semantics,
based on equational logic. There is an active research community supporting efficient
implementations and tools for reasoning about properties such as termination and con-
fluence of rewrite systems. One can view rewrite systems as an intermediate language
for policies; our thesis in this paper is that some of the more interesting aspects of
reasoning about policies are profitably viewed in this context.

Indeed, rewriting is not a single formalism but rather a family of variations on a
robust paradigm of directed equality. It is easy to see that simple term rewriting can
capture policies such as Unix file-permissions rules, the richer setting of conditional
rewriting is as rich as the language of Datalog explored by several authors (notably in
trust-management research), and—as sketched below—core XACML policies can be
captured by rewriting under strategy.

To give a flavor of how term rewriting can capture policy rules, we may consider
the following rules, adapted from the XACML specification [34]: - A person, identified
by his or her social security number, may read any record for which he or she is the
designated patient:

req(patient(x), read, record(x))→permit.

Here patient names the function from patient numbers to patients as Subjects and record
is a function from patient numbers to health records as Resources, while read is a con-
stant symbol, of sort Actions.

The variable x is implicitly universally quantified, so that the rewriting above cap-
tures the generality of the access rule; and the repetition of the variable as a parameter
has the effect of enforcing the binding between the patient and his record.

- An administrator shall not be permitted to write to medical elements of a patient
record:

req(admin(x), write, record(y))→deny.

Here any administrator, named perhaps by his employee number, is denied write access
to any health record: note the use of distinct variables in the rule. Also note the use of
explicit deny as a decision. It is crucially important to modularity of policies that deny
is not treated as the negation of permit: this will be further illustrated in the body of the
paper.

- It is straightforward to capture certain notions of authorization hierarchy. For ex-
ample, to say that subject s2 inherits from subject s1 all access rights involving resource
r, it suffices to have the following rule in a policy:

req(s1, x, r)→req(s2, x, r)
Here x is a variable ranging over actions. Note that this rule is a refinement of the
type of inheritance typically incorporated into a Role-based Access Control Model (in
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which one role may inherit all privileges from another, uniformly across all actions and
resources).

In a large organization, there are many classes of “Subjects” with different needs for
access to an immense variety of “Resources”. For example, in a hospital there are rules
governing the access of patients to their health records, their financial records, and the
like, while at the same time, there are rules for employee access to these same records as
well as to resources quite different from health records. Meanwhile, other entities such
as insurance carriers are subject to yet another set of rules for access to these data and
more. The different constituencies (patients, staff, insurers) are almost certainly going to
have somewhat different —even competing— requirements on their use of the data and
place different emphases on the security goals (confidentiality, availability, integrity) of
policies. It is natural to imagine that the sets of rules describing these various modes
of access should not be authored and maintained in a single monolithic policy. In this
setting, the theory of composition of policies becomes crucially important.

As a very simple example, imagine that rules for patient data access and rules for staff
data access are composed in separate policy documents, ℘p and ℘s respectively. What
should we say about the decision of ℘p in the context of a request by an administrator
to write a health record? Assuming ℘p will not explicitly compute a decision (permit
or deny) upon such a request, we must uniformly assume a default decision, perhaps
default-deny, for all requests not handled directly. But this immediately leads to the
conclusion that composing policies is something more subtle than taking their union.
Consider by contrast a request by an administrator to read the next-of-kin information
for a patient. A default-deny by ℘p for this request would mean that when ℘p was
combined with ℘s, which may explicitly compute a permit for this request, the resulting
logical theory, taken in a naive sense, would be contradictory.

So at the very least, one must make a distinction between a policy decision which
is computed in a “direct” way from the policy rules, and one taken as a default. The
situation is even more interesting if two modules of a policy compute contradictory
decisions: if the policy is to be coherent in practice there must be a principled way
to combine the modules, a mechanism that lends itself to clean design and supports
analysis and verification. The combination method we explore in this paper is that of
rewriting strategies.

The remaining sections of this paper are organized as follows: we recall in Section 2
the main notions on rewrite rules and strategies used in this paper. In Section 3 we
give the definition, suitable properties and examples of an access control policies ex-
pressed in the rewrite-based framework. We formalize policy composition in Section 4,
its suitable properties, and we illustrate our approach on the composition operators of
XACML. We discuss related and further works in Section 5.

2 Background

Basic definitions on term rewriting can be found in [6, 2]. Let us recall those which
are used in the following. A many-sorted signature (S,F), or F for short, is a set of
sorts S and a set of function symbolsF . Each f ∈ F has a profile f : S1×. . .×Sn→S,
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where S1, . . . Sn, S ∈ S, and is associated to a natural number by the arity function
(ar : F → N). When ar(f) = 0, the function symbol f is called a constant.
T (F ,X ) is the set of well-sorted terms built from a given finite set F of function

symbols and a denumerable setX of variables. The set of variables occurring in a term t
is denoted by Var(t). If Var(t) is empty, t is called a ground term and T (F) is the set
of ground terms. For f ∈ F , f(T (F), . . . , T (F)) denotes the set of ground terms with
f as top symbol.

A substitution σ is an assignment from X to T (F ,X ), with a finite domain {x1, . . . ,
xk} and written σ = {x1 �→ t1, . . . , xk �→ tk}.

A rewrite rule is an ordered pair of terms, denoted as l→r, l, r ∈ T (F ,X ), where l is
not a variable and Var(r) ⊆ Var(l) such that l and r belong to a same sort. The terms
l and r are respectively called the left-hand side and the right-hand side of the rule. A
rewrite system R on T (F ,X ) is a (finite or infinite) set of rewrite rules. Rules can be
labeled to easily distinguish among them. A rewrite rule l→r is a collapsing rule if r is
a variable. It is a duplicating rule if there exists a variable that has more occurrences in
r than in l. A function symbol which is not the top symbol of any rule in R is called a
constructor. Other symbols are called defined functions.

Given a rewrite system R, a term t rewrites to a term t′, which is denoted t→Rt
′

if there exists a rewrite rule l→r of R, a position ω in t, a substitution σ, satisfying
t|ω = σ(l), such that t′ = t[σ(r)]ω .

A rewriting derivation of the rewrite system R is any sequence of rewriting steps
t1→Rt2→R . . .. The source of such a derivation is t1. When the derivation is finite, its
last term is called its target. R induces a derivability relation

∗−→R on terms: t
∗−→R t′

if there exists a rewriting derivation from t to t′. If the derivation contains at least one

step, it is denoted by
+−→R. A rewrite system is terminating (or strongly normalizing)

if all rewriting derivations are finite. A term t is R-normalized (or in R-normal form)
when the empty derivation is the only one with source t; a derivation is normalizing
when its target is R-normalized. A rewrite system R is weakly terminating if every
term t is the source of a normalizing derivation. It is confluent if for all terms t, u ,v,
t

∗−→R u and t
∗−→R v implies u

∗−→R s and v
∗−→R s, for some s. When it is clear

from the context, we may omit the index R.
The notion of strategy used in this paper is fundamental in rewriting, and we give

here a general presentation of the main ideas. We adopt a general definition, slightly
different from the one used in [6]: a rewrite strategy ζ for the rewrite system R is a
subset of the set of all derivations of R. The application of a strategy ζ on a term t
is denoted [ζ](t) and defined as the set of all targets t′ of the derivations of source t
in ζ. We denote [ζ](t)↓ its subset that contains only the targets in normal form. The
domain of a strategy is the set of terms that are source of a derivation in ζ. When no
derivation in ζ has source t, we say that the strategy application on t fails. The result of
the application of a failing strategy on a term t is the empty set.

In this paper, we will consider only strategies that are stable by concatenation (i.e.
t

∗−→R t′ ∈ ζ and t′ ∗−→R t′′ ∈ ζ implies t
∗−→R t′ ∗−→R t′′ ∈ ζ). A strategy could

be described by enumerating all its elements or more suitably by a strategy language.
From elementary strategies expressions directly issued from a rewrite system R, more
elaborated strategies expressions are built like in ELAN [24], Stratego [39], Tom [3, 33]
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or more recently MAUDE [30]. The semantics of such a language is naturally described
in the rewriting calculus [9, 10]. We describe below the main elements of the strategy
language of interest in this paper.

Given a rewrite system R over T (F ,X ), rewrite rules in R are elementary or atomic
strategies. For instance, if a and b are constants, the application of the rewrite rule a→b
to the term a is denoted [a→b](a) and evaluates to {b}.

A strategy expression ζ may take arguments ζ1, . . . , ζn, and the resulting expression
is expressed functionally: ζ(ζ1, . . . , ζn). Notice that this is consistent with the notation
ζ(R) as soon as the definition of ζ does not depend on its arguments order. When it is
clear from the context, we identify the strategy expression and the strategy (i.e. the set
of derivations it represents). In a consistent way, the application of a strategy expression
to a term is defined as the application of the strategy it represents.

A simple strategy is the sequential application of two rules. It is described by the
concatenation operator “seq”. For instance [seq(l1→r1, l2→r2)](t) denotes [l2
→r2]([l1→r1](t)). This strategy operator extends naturally to multiple arguments:

[seq(ζ1, . . . , ζn)](t) = [ζn]([ζn−1](. . . [ζ1](t)))

Identity and failure are strategies easy to understand:

[id](t) = {t} [fail](t) = ∅

The strategy computing all derivations obtained by application of a rewrite system R is
called universal; it takes as argument the set of rules under consideration:

[universal(R)](t) = {t′ | t ∗−→R t′}

For instance, we have:

[universal(a→a)](a) = {a}
[universal(f(x)→f(f(x))](f(a)) = {f(a), f(f(a)), f(f(f(a))), . . .}

One can successively try to apply several strategies using the choice operator: its
first argument is applied if it does not fail, otherwise the second one is applied (and may
fail too).

[choice(ζ1, ζ2)](t) = [ζ1](t) if [ζ1](t) �= ∅
[choice(ζ1, ζ2)](t) = [ζ2](t) if [ζ1](t) = ∅

Clearly choice is associative and therefore its syntax is extended to be applicable to
a list of strategies:

choice(ζ1, ζ2, . . . , ζn) = choice(ζ1, choice(ζ2, . . . , ζn))

Other strategies allow controlling the application of rules over sub-terms of a term.
The strategy one must succeed on at least one of the sub-terms of a term. On the other
hand, all application must succeed on each sub-term, otherwise, the result is failure:

[one(ζ)](f(t1, . . . , tn)) = f(t1, . . . , [ζ](ti), . . . , tn), if [ζ](ti) �= ∅
[all(ζ)](f(t1, . . . , tn)) = f([ζ](t1), . . . , [ζ](tn)), if ∀i ∈ {1, . . . , n}, [ζ](ti) �= ∅
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Using the above set of operators, we can define recursive ones which iterate the appli-
cation of a strategy to a term, for example:

try(ζ) = choice(ζ, id) repeat(ζ) = try(seq(ζ, repeat(ζ)))

It is worth noticing that try and repeat never fail. Other high-level strategies im-
plement term traversal and normalization on terms and are well-known in the rewrite
system literature:

topDown(ζ) = seq(ζ, all(topDown(ζ)))
bottomUp(ζ) = seq(all(bottomUp(ζ)), ζ)
OnceTopDown(ζ) = choice(ζ, one(OnceTopDown(ζ)))
OnceBottomUp(ζ) = choice(one(OnceBottomUp(ζ)), ζ)
innermost(ζ) = repeat(onceBottomUp(ζ))
outermost(ζ) = repeat(onceTopDown(ζ))

Example 1. Some examples of strategy application are:

[universal(a→b, a→c)](a) = {a, b, c}
[choice(a→b, a→c)](a) = {b}
[choice(a→c, a→b)](b) = ∅
[try(b→c)](a) = {a}
[repeat(choice(b→c, a→b))](a) = {c}

3 Rewrite-Based Policies

Recent developments in access control are aimed to express various constraints on the
environment where policies run, in order to capture real world requirements from policy
authors, such as time, location, and any other condition involving attributes of principals
and objects.

In this context, it is important to embark expressive computational power in the def-
inition of policies. As the notion of rule is quite natural in the context of policy specifi-
cations, we propose here a quite general definition of access control.

In our model, rewrite rules transform input terms representing access requests into
access decision terms. In order to take the raw computational power of term rewriting
and to enhance the agility of the policy specification language, we use strategies to ex-
plicitly control the rule application. We define rewrite-based policies as follows, where
Q stands for queries (or requests) and D for decisions.

Definition 1 (Security Policy). An access control security policy, ℘, is a 5-tuple (F ,
D,R,Q, ζ) such that:

1. F is a signature;
2. D is a non-empty set of closed terms: D ⊆ T (F);
3. R is a set of rewrite rules over T (F ,X );
4. Q is a set of terms from T (F): Q ⊆ T (F);
5. ζ is a rewrite strategy for R.
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Let us explain the main design choices made in this definition.

– First we consider that the policy specification and its environment are described
as terms built over the signature F . The set of possible decisions to be taken by
the policy is denoted by D. Indeed, D is often a set of constants and the two
main constants in D are usually permit and deny. But since it is crucial to model
also policies that do not directly take decision, it can be useful to have a constant
not applicable that simply expresses the fact that the current policy in the current
context cannot decide about the access. Moreover, the result returned by a policy
could be more elaborated than just a constant and can be in general a term con-
taining further information like the time and duration the access is granted. What is
significant is not treating the failure to derive a permission as a denial. In contrast
to [20] for example, in which this later design is followed, we can treat explicitly
decisions such as deny and not applicable. This is a crucial advantage for merging
rules, since in purely logic-based works, there is no way to handle in the theory
what happens when a policy which derives deny for a request q is merged with
another which then derives permit explicitly, for the same q.

– The rewrite systemR describes the behavior of the policy as well as some necessary
computations which explain how its environment evolves. The role of the strategy
is to point derivations of R whose interest is to produce decisions.

– The requests are a subset of terms. They typically express questions of the form:
should a certain entity be granted access to a resource given the current configura-
tion of the policy environment.

– The last component is the strategy which allows one to finely specify the evaluation
order of the policy rules.

One of the main nice consequences of this approach, in addition to its expressivity,
which we illustrate on the examples below, is that it allows us to take advantage of all
the results obtained by the rewriting community since the last thirty years. Amongst
such results, we investigate in this section confluence, termination and sufficient com-
pleteness.

Example 2. This example is taken from the NetFilter how-to 1. Suppose an Internet user
wants to set his firewall to block any traffic coming from the exterior to the local net-
work. Since the interface associated to Internet connections is usually ppp0, a simple
method is to reject all new packets coming from this source. In order to demonstrate the
fact that it might be convenient for a policy to contain rules beyond those which directly
compute decisions, we also give some additional rules which allow two different local
computers to share the same external IP address: for each outgoing packet whose origin
is a local machine, its head is rewritten to a single address.

– Let the policy signature be:

pckt : Address×Address × State → Packet
filter : Packet → Decision
new, established : → State
drop, accept : → Decision
eth0, ppp0 : → Address

1 http://www.netfilter.org

http://www.netfilter.org
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– The set of of constant symbols representing decisions is D = {accept, drop}
– Consider R as the following rules, where src, dst : Address, and s : State are

variables:

filter(pckt(src, dst, established))→ accept
filter(pckt(eth0, dst, new)) → accept
filter(pckt(ppp0, dst, new)) → drop
pckt(10.1.1.1, ppp0, s) → pckt(123.123.1.1, ppp0, s)
pckt(10.1.1.2, ppp0, s) → pckt(123.123.1.1, ppp0, s)

– The set Q contains ground terms with top symbol filter.
– A possible strategy for this policy, among others that guarantee a normalization

process, is ζ = innermost(R).

This defines a security policy as all conditions of Definition 1 are satisfied.

Example 3. As already suggested in the introduction, we can model a policy for a clin-
ical system (this example is adapted from the XACML specification [34], and first pre-
sented in the rewrite-based formalism in [12]).

– The policy signature F contains the following symbols:

accs : Request× Condition → Decision
req : Subject×Action×Object → Request
read, write : → Action
permit, deny, na : → Decision
patient, phy : Number → Subject
admin, per : Number → Subject
record : Number → Object
guard : Subject× Subject → Condition,
respPhy : Subject× Subject → Condition
urgency : → Condition

– The set of decisions is D = {permit, deny, na}.
– R is the following set of rules, where variables are x, y : Number; r : Object; c :
Condition:

accs(req(patient(x), read, record(x)), c) → permit
accs(req(per(x), read, record(y)), guard(per(x), patient(y)))) → permit
accs(req(phy(x), read, record(y)), respPhy(phy(x), patient(y))) → permit
accs(req(phy(x), write, record(y)), respPhy(phy(x), patient(y))) → permit
accs(req(admin(x), read, r), c) → deny
accs(req(admin(x), write, r), c) → deny.

In the order of appearance, these rules state that: a patient can read his own record,
the guardian of a person can read the record for that person, the responsible physi-
cian of a patient can read or write data for his record, the last two rules deny any
access of administrators to records.

– The set of requests Q is the set of all terms of the form accs(T (F), T (F)).
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– One can adopt the strategy ζ = choice(R, accs(q, c)→na), which introduces a
default rule for this policy, where q : Request. The terms in Q which are not
reduced by the rules from R will be rewritten into na. The example presented here
is a security policy according to Definition 1.

The policy illustrated in this example has some desirable properties; for example the
evaluation of a request is guaranteed to return a unique result, as will be demonstrated
shortly.

A security policy is consistent if it computes at most one access decision:

Definition 2 (Consistency). A security policy ℘ = (F , D,R,Q, ζ) is consistent if for
every query q ∈ Q, ζ applied to q returns at most one result: ∀q ∈ Q, the cardinality of
[ζ](q) ∩D is less than or equal to 1.

This means that for every query evaluation, a deterministic result is computed by the
application of ζ on the terms of Q. In the case where the strategy leads to a derivation
that does not terminate on q, the cardinality of [ζ](q) is 0, the policy is still considered
as consistent.
Example 4. Consider the following policy:

℘1 = ( F1 = {g : Decision×Decision→Decision, permit, deny : Decision},
D1 = {permit, deny},
R1 = {g(x, y)→x, g(x, y)→y},
Q1 = g(T (F), T (F)),
ζ1 = universal(R))

Then ℘1 is a security policy under the conditions expressed in Definition 1, but it clearly
fails to be consistent, since [ζ](g(permit, deny)) = {permit, deny}.

Since we assume strategies to be closed by concatenation, confluence under strategy
can be simply expressed:

Definition 3 (Confluence under strategy). A rewrite system R is confluent under a
strategy ζ when ∀u, v1, v2 ∈ T (F ,X ) such that {v1, v2} ⊆ [ζ](u) then [ζ](v1) ∩
[ζ](v2) �= ∅.
If we consider the universal strategy, the above definition reduces to the usual one of
confluence. Therefore:

Proposition 1. The policy (F , D,R,Q, universal) is consistent as soon asR is con-
fluent on T (F ,X ).

A second fundamental property is termination:

Definition 4 (Termination). A security policy ℘ = (F , D,R,Q, ζ) is terminating if
for every q ∈ Q, all derivations of source q in ζ are finite.

A fundamental property is that terminating and confluent term-rewriting systems eval-
uate any term to an unique normal form.

Example 5. The policy from Example 3 is terminating and confluent, which can be
easily checked by analyzing the rules in R. This guarantees that the evaluation of any
request will return a unique decision.
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Example 6. Consider the policy:

℘2 = ( F2 = {a : Decision, permit : Decision, deny : Decision},
D2 = {permit, deny},
R2 = {a→a, a→deny},
Q2 = {a},
ζ2 = universal(R))

℘2 is a security policy. In contrast to the previous example, this policy is consistent
(since the corresponding rewrite relation is confluent), but it is not terminating.

Some simple sufficient conditions allows us to apply termination results from rewrite
theory:

Proposition 2. A policy (F , D,R,Q, ζ) terminates provided that all derivations in ζ
are finite or if R is strongly terminating (i.e. all derivations in universal(R) are
finite).

To ensure strong termination, classical quite powerful termination tools can be used
like recursive path orderings [13] or dependency pairs [1]. Termination allows one to
localize confluence check following Newmann’s lemma and this can be made opera-
tional via the completion algorithm [25]. Therefore we inherit sufficient conditions for
confluence and termination of policies using the universal strategy. Since in general
we may use the finer notion of termination and confluence under strategies, this opens
new research questions to establish sufficient conditions also for rich strategies.

Another expected property of a policy strategy is that it is able to evaluate every
incoming request into at least one decision, following its strategy. This is expressed
through the decision completeness property:

Definition 5 (Decision Completeness). A security policy ℘ = (F , D,R,Q, ζ) is deci-
sion complete if ∀q ∈ Q, [ζ](q) �= ∅ and [ζ](q)↓ ⊆ D.

This definition is close to the definition of sufficient completeness of a rewrite system,
which states that every ground term evaluates to a term exclusively built with construc-
tors and possibly variables [11, 23]. Several algorithms have been developed to check
sufficient completeness or to complete a set of patterns to ensure this property [8].

Proposition 3. A policy (F , D,R, T (F), universal(R)) is decision complete pro-
vided that D is the set of terms built from constructors only and that R is terminating
and sufficiently complete.

An alternative set of conditions ensuring completeness is that R is weakly terminating
and that an innermost strategy is used, as shown in [17].

4 Policy Composition

Let us now focus on the problem of combining policies in a modular way, relying on
the long history of research in combining rewrite systems. This combination consists
in taking the union of signatures and rules of the two policy components, choosing
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the sets of requests and decisions, and building a strategy for the combination of the
two strategies in each component of the composition. However, combining naively
access-control policies can result in inconsistent or non-terminating policies and we
show how syntactic conditions and strategies may help to keep these suitable properties
for the composition of two policies. Based on the example of XACML policy combin-
ers, we explore the idea of a rich combination language for policies based on rewriting
strategies.

Definition 6 (Policy Composition). A composition of the two policies ℘i = (Fi, Di,
Ri, Qi, ζi) (i = 1, 2) is any policy ℘ = (F , D, R, Q, ζ), where:

1. F1 ∪ F2 ⊆ F;
2. D1 ∪D2 ⊆ D ⊆ T (F);
3. R1 ∪R2 ⊆ R;
4. Q1 ∪Q2 ⊆ Q ⊆ T (F);
5. ζ is a rewrite strategy for R.

Observe that when combining policies it may be convenient to introduce symbols not
occurring in the original policies. The set of requests for the combined policy contains
terms of the form determined by its sub-policies, but may also contain any additional
well-formed closed terms that can be constructed from the combined policy signature.
For example, suppose that F1 = {0, f}, Q1 = f(T (F1)) and F2 = {g}, Q2 =
g(T (F2)), then a valid request would be g(f(0)).

The combination strategy is in charge of defining how the composed policy rewrites
request terms. It may or not be built in a modular way by composing ζ1 and ζ2. It often
can be expressed as a functional composition of component strategies.

Example 7. Based on the policy from Example 3, let us show how we can extend it
with additional rules. Consider the access control rules R′ below:

auth(req(phy(x), write, r), urgency) → permit
auth(q, c) → na

A strategy ζ′ = choice(R′, R, auth(q, c)→na) extends the previous policy by en-
forcing the rule for urgency cases first, and at the same time does not interfere with the
decisions generated by the previous set of rules. In the case rule application fails for
any of these cases, the combined policy delivers the not-applicable decision. This is a
direct consequence of the semantics of the choice strategy.

The next example illustrates that much care must be taken in composing two policies.

Example 8. Consider the policies ℘1, from Example 4, and the policy ℘3 below.

℘3 = ( F3 = { f : Decision×Decision×Decision→Decision,
permit : Decision, deny : Decision}

D3 = {permit, deny}
R3 = {f(permit, deny, x)→f(x, x, x),

f(deny, permit, x)→f(x, x, x),
f(x, x, x)→x},

Q3 = f(T (F2), T (F2), T (F2)),
ζ3 = universal(R2) )
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The composition ℘ of ℘1 and ℘2 can be defined in a straightforward way as ℘ =:

(F = F1 ∪F3, D = D1 = D3, R = R1 ∪R3, Q = T (F1 ∪F3), ζ = universal(R))

These two policies are clearly terminating and share only symbols permit and
deny. It is therefore quite intuitive to believe that their composition will be also
terminating. But this is false since the following request has an infinite derivation:
f(g(permit, deny), g(permit.deny), g(permit, deny))→f(permit, g(permit, deny),
g(permit, deny))→f(permit, deny, g(permit, deny))→f(g(permit, deny),
g(permit.deny), g(permit, deny)) . . .

A property of rewrite systems is said to be modular if it is preserved under composition
of systems. Many modularity results for confluence and termination of rewrite systems
have been produced and the interested reader can refer for instance to [35] for a survey.
Confluence and termination are in general not modular properties for rewrite systems.
In the context of rewrite systems on disjoint signatures, confluence is modular, while
termination is not [37]. However, adding syntactic conditions on rewrite rules or on the
existence of a simplification ordering, allows getting positive results. Relying on the
results of the rewrite system community [38, 36, 31, 18, 26], we can state the following
useful results about composition of security policies.

Proposition 4. Let us consider two policies ℘i = (Fi, Di, Ri, Qi, universal(Ri))
(i = 1, 2) such that F1 and F2 are disjoint and their composition ℘ = (F1 ∪ F2, D1 ∪
D2, R1 ∪ R2, T (F1 ∪ F2), universal(R)). If ℘1 and ℘2 are consistent, then ℘ is
consistent. If ℘1 and ℘2 are terminating, then so is ℘, provided:

1. neither R1 nor R2 contain collapsing rules, or
2. neither R1 nor R2 contain duplicating rules, or
3. R1 or R2 contains neither collapsing rules nor duplicating rules, or
4. termination of R1 and of R2 are proved by a simplification ordering.

Relaxing the disjointness assumption of signatures in the previous results led to consider
constructor-sharing systems [27], composable systems [32] or hierarchical combina-
tions of rewrite systems generalizing the previous ones by allowing a certain sharing of
defined symbols [14].

The interest of rewriting strategies appears again in their composition. For instance,
in contrast to termination, innermost termination has a nice modular behavior, for dis-
joint unions, constructor-sharing systems, composable systems and for certain hierar-
chical combinations. We can take advantage of such results about innermost termination
[19] to state the following result:

Proposition 5. Let us consider two policies ℘i = (Fi, Di, Ri, Qi, innermost(Ri))
(i = 1, 2) such that F1 and F2 are disjoint or share only constructors, and ℘ be their
composition (F1 ∪ F2, D1 ∪D2, R1 ∪R2, T (F1 ∪F2), innermost(R1 ∪R2)). Then
℘ is terminating as soon as ℘1 and ℘2 are.

Example 9. Let us consider again the policies ℘1, from Example 4 and ℘3, from Exam-
ple 8, but now with different strategies ζ′1 =innermost(R1) and ζ′3 =innermost(R3).
Their combination ℘ = (F1 ∪F3, D,R1 ∪R3, T (F1 ∪F3), innermost(R)) is termi-
nating according to Proposition 5.
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Semantics of XACML Policy Combiners. In this paragraph, we show that the rewrit-
ing approach can capture the behavior of the access-control language XACML. Using
rewriting and strategies it is easy to simulate the basic evaluation of XACML, com-
puting permit or deny on a given request via a single policy. We do not present the
translation from XACML to rewrite systems here due to the lack of space; details can
be found in [15]. Instead, we show how the XACML policy combiners can be captured.
The main combiners are listed below.

– permit-overrides: whenever one of the policies answers to a request with a granting
decision, the final authorization for the composed policy will be granted. The policy
will generate a denial only in the case at least one of the sub-policies denies the
request, and all others return not-applicable.

– deny-overrides: this combiner has a similar semantics to permit-overrides, with the
difference that denials take precedence.

– first-applicable: the decision produced by the combined policy corresponds to the
authorization determined by the first sub-policy that does not fail, and whose deci-
sion is different from not-applicable.

To simulate permit-overrides, consider the following set of rules Rpo.

po(permit, y) → permit
po(x, permit) → permit
po(deny, na) → deny
po(na, deny) → deny
po(na, na) → na

We add an additional rule, Rwrap, whose purpose is to wrap any incoming request
with the po function:

q(x)→po(q(x), q(x))

In order to encode the permit-overrides combiner over two sub-policies, we can write
the following strategy:

[ζpo](q) = seq([Rwrap](q), onceBottomUp(ζ1), onceBottomUp(ζ2), Rpo)

It means that the global policy intercepts requests before they are evaluated by the sub-
policies. This builds a new term (of the form po(t, t)), containing two subterms, which
will be separately evaluated in a bottom-up fashion by the component sub-policy strate-
gies ζ1 and ζ2, then the reductions with Rpo occur in the top position of the wrapped
term, generating a final decision.

Therefore, given two policies ℘i = (Fi, {permit, deny, na}, Ri, Qi, ζi)(i = 1, 2)
the permit-overrides combiner is defined as

1. F = F1 ∪ F2 ∪
{po : Decision×Decision→Decision, q : Request→Decision};

2. D = {permit, deny, na};
3. R = R1 ∪R2 ∪Rpo ∪Rwrap ;
4. Q = {q(t) | t ∈ Q1 ∪Q2};
5. ζ = ζpo.
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Clearly, deny-overrides can be simulated in an analogous way. In order to simulate
the first-applicable combining algorithm, we need only to construct the strategy that
schedules the rules in the order they appear in the policy file.

5 Related and Further Work

There are numerous proposals for languages in which to express access-control policies,
many of them “logic-based”. References [16, 20, 21, 22] represent a small sample of
those.

With respect to policy composition, a number of works have a close relationship
with the formalization introduced here. Bonatti et al. [7] address the composition prob-
lem through an algebra of composition operators that is able to define policy templates,
among other operations; Wijesekera and Jajodia [40] take a similar approach. The oper-
ator definitions can be adapted to several languages and situations, since their definition
is orthogonal to the underlying authorization language. On the other hand, we have
shown how to deliver fine-grained control over the rule interaction of sub-policies.

Another alternative for composing access control policies is implemented by the
Polymer system [5], which proposes rather classical operators on policies (conjunc-
tion, precedence, etc), and that allows reusing the policy objects, modifying them by
executing additional actions, in order to specialize or enforce the policy.

A completely different approach to composition is taken by Lee et al in [29], based on
the non-monotonic properties of defeasible logics. Here a single operator is proposed,
which takes into account a precedence relation among the policies. We advocate that
this kind of composition can also be achieved using rewriting strategies, which can
readily define priorities on the rules.

Future work. We are using the Tom system to prototype and study the behavior of
rewrite-based policies. Tom can also support the compilation process of our access
control policies into JAVA classes, through the formal island framework [4]. The con-
cepts presented in this paper provide a formal basis for reasoning about policies. This
opens the way to the application of automated analysis tools to proving properties of
policies.
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Abstract. Although there exist informal design guidelines and formal
development support, security protocol development is time-consuming
because design is error-prone. In this paper, we introduce Shrimp, a
mechanism that aims to speed up the development cycle by adding au-
tomated aid for protocol diagnosis and repair. Shrimp relies on existing
verification tools both to analyse an intermediate protocol and to com-
pute attacks if the protocol is flawed. Then it analyses such attacks to pin-
point the source of the failure and synthesises appropriate patches, using
Abadi and Needham’s principles for protocol design. We have translated
some of these principles into formal requirements on (sets of) protocol
steps. For each requirement, there is a collection of rules that transform
a set of protocol steps violating the requirement into a set conforming
it. We have successfully tested our mechanism on 36 faulty protocols,
getting a repair rate of 90%.

1 Introduction

Although there exists formal development support, as well as informal design
guidelines, a lot of protocols, whether recent or not, are faulty. Further aid
for protocol development is thus required. In this paper, we introduce Shrimp,
a Smart metHod for Repairing IMperfect security Protocols. Shrimp aims at
speeding up the formal software development cycle, bridging the gap between
design and analysis by means of diagnosis and repair. It offers benefits to practis-
ing security engineers, including getting a better insight into a protocol flaw and
enabling incremental protocol design. These features are all of interest because
nowadays protocols are more complicated than just 3—5 steps (e.g. the SET
protocol) and their various parts are intertwined, making it hard for a human
to cope with all the subtle dependencies.
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Shrimp relies on existing state-of-the-art tools both to analyse an (interme-
diate) protocol and, if the protocol is flawed, to find one or more of protocol
runs violating a given security requirement, called an attack. It then analyses
the protocol and the attack1 to pinpoint the faulty steps of the protocol and
synthesises appropriate changes to fix them. This yields an improved version
of the protocol that should be analysed and potentially patched again until no
further flaws can be detected.

To identify and patch a protocol flaw, we have translated some of the informal
principles for the design of security protocols of Abadi and Needham [1] into
formal requirements on sets of protocol steps. For each requirement, there is a
collection of rules that transform a set of protocol steps violating the requirement
into a set conforming it. The correction of security protocols incorporates the
use of several of these rules. However, the patches are not independent and the
application of a rule requires preconditions to be applicable and should guarantee
postconditions once it has been applied. As a general framework to organise the
application of such rules, we have adopted the proof planning methodology [4],
developed to automate inductive theorem proving.

We have hitherto focused on automatically fixing protocols subject to a replay
attack,2 since many known faulty protocols fail to resist it.3 This paper intro-
duces two patching methods which, together with a generalisation of that pre-
sented in [10], almost deal with the full class of replay attacks proposed by Syver-
son [14] (the only exception being the type flaw subclass.4) We have successfully
tested Shrimp on 36 protocols, 21 out of which were borrowed from the Clark
and Jacob library, obtaining a repair rate of 90%. Since our approach to protocol
repair requires an attack to reason about, to analyse a protocol and to get an at-
tack whenever it was faulty, we used AVISPA, http://www.avispa-project.org/.
So throughout this paper we shall refer to AVISPA’s hierarchy of authentication.

The rest of this paper is organised as follows: §2 describes the types of flaws we
want to automatically patch and describes the theoretical framework underlying
our approach to protocol repair. Shrimp is presented in §3. We recapitulate the
experimental results found throughout our investigation in §4 and discuss related
work in §5. Conclusions and indications for further work appear in §6.

2 Fixing Faulty Security Protocols

2.1 Abadi and Needham’s Principles

Abadi and Needham postulated 11 principles for the prudent design of security
protocols [1] after noticing common features amongst protocols they found hard
1 Our experiments show that it is not necessary to explicitly consider the property the

protocol fails to satisfy; this might be attributable to that such a property is already
implicit in the attack.

2 A replay attack is a form of attack where a data transmission is repeated or delayed.
3 Most of the attacks reported in the Clark-Jacob library [7] are of type replay.
4 A type flaw attack is an attack where a participant confuses a (field of a) message

containing data of one type with a message data of another.

http://www.avispa-project.org/
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to analyse. We use some of these principles to diagnose the cause of an attack. In
particular, Shrimp takes care of replay attacks where the message being reused
is a cypher-text, dealing with the following protocol flaws:

1. Two or more different cypher-texts of the same protocol cannot be distin-
guished from one another. This flaw violates principle 10, recognising mes-
sages and encodings, which prescribes being careful about the format of a
message: principals should be able to associate which step or which run a
message corresponds to, regardless of whatever protocol they are running;

2. The originator/recipients of a cypher-text in one message of the protocol
cannot be distinguished. This flaw violates principle 3, agent naming, which
prescribes that the agent names relevant for a message should all be derivable
either from the format of a message or from its content; and

3. Two or more different runs of the same protocol cannot be distinguished from
one another. Upon reception, a participant cannot separate which run the
message belongs to. This flaw violates principle 10, since the message cannot
be bound to a particular run of the protocol. It also violates principles 6—8,
since the protocol does not guarantee association or temporal succession.

2.2 Strand Spaces

In order to reason about non-trivial messages and their intended role in a pro-
tocol, Shrimp uses a formalisation of individual message notations. Most this
formalisation has already been developed for protocol verification (e.g. strand
spaces [15] or Paulson’s logic [12]). Shrimp’s constructs might be accommodated
within any logic. Here we choose strand spaces, because the method for fixing a
protocol without a proper message encoding can be theoretically justified using
authentication tests [9]. In the sequel, we assume knowledge of strands spaces,
though notation and authentication tests are recalled below.

Messages, ranged over by M1,M2, . . ., are also called terms. The set of terms,
A, is freely generated from two disjoint sets, the set of texts (T) and the set of
keys (K), by means of concatenation, M1;M2, and encryption, {|M |}K (K ∈ K).
T contains nonces, Na, Nb, . . ., timestamps, Ta, Tb, . . ., agent names, A,B, . . .,
and tags, �a, �b, . . .. There are two functions, one maps principals, A,B, . . ., to
their public keys, K+

a ,K
+
b , . . ., and the other a pair of principals, 〈A,B〉, to their

symmetric shared key, Kab. K comes with an inverse operator mapping each
member of a key pair for an asymmetric cryptosystem to the other, (K+

a )−1 =
K−

a , and each symmetric key to itself, (Kab)−1 = Kab. Let Safe denote the
set of keys that are safe and Safea denote the set of keys known by a regular,
non-compromised agent A.

The subterm relation, %, is the least relation such that M %M , M % {|M1|}K

if M % M1, and M % M1;M2 if M % M1 or M % M2. Notice that, for any
K ∈ K, K % {|M |}K only if K %M . A message is atomic if it is not an encrypted
term or a concatenated one. A message M0 is a component of M if M0 %M , M0

is not a concatenated term, and for every M1 �= M0 such that M0 % M1 % M
implies that M1 is a concatenated term.
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A strand is a sequence of nodes, each denotes a communicating event, where
transmission (respectively reception) of a termM is denoted as +M (respectively
−M). So a node is either positive or negative. Let s be a strand and let 〈s, i〉 and
〈s, i+1〉 denote the i-th and the i+1-th nodes of s. Then 〈s, i〉 ⇒ 〈s, i+1〉. ⇒+

and⇒∗ are used to respectively denote the transitive and the transitive-reflexive
closure of ⇒. n→ n′ denotes inter-strand communication; it requires the nodes
to be complementary one another, in terms of polarity, sign(n) = + �= sign(n′),
and matching, in terms of the message being exchanged, msg(n) = msg(n′). A
strand space Σ is a set of strands, where ⇒ and → impose a graph structure on
the nodes of Σ. Each strand represents a protocol run from the local perspective
of a participant. If the participant is honest, the strand, as well as the strand
nodes, is said to be regular and penetrator otherwise. A term M originates at
a node n if sign(n) = +; M % msg(n); and M �% msg(n′), for every n′ ⇒+ n. M
is said to be uniquely originating if it originates on only one node in the strand
space. uniques is the set of terms uniquely generated at strand s.

A finite, acyclic graph, B = 〈N , (→ ∪⇒)〉, is a bundle if for every n2 ∈ N , i)
if sign(n2) = −, then there is a unique n1 ∈ N with n1 → n2; and ii) if n1 ⇒ n2

then n1 ∈ N and n1 = 〈s, i〉 and n2 = 〈s, i + 1〉. Let B be a bundle, then ≺B
and �B denote respectively the transitive and the transitive-reflexive closure of
(→ ∪ ⇒).

For brevity, protocols will be specified by a sequence of steps, each of the
form q. A → B : M , meaning that, at step q, agent A sends message M to
agent B, which B receives. Similarly, an attack will be given as a sequence of
steps, each affixed with their session: s : q. A → B stands for the q-th step of
the s-th run of a protocol. We find it convenient to respectively use S and Spy
to refer to the server and the penetrator. So A→ Spy(B) : M and Spy(A) → B
respectively denote interception of M and impersonation of A. We will use Ka

as an abbreviation for Kas.
Suppose that A is a participant in a protocol. Suppose that at node n0 A

creates a new term N , builds M = {|M ′|}K , such that N % M and M is a
component of msg(n0), and then transmits msg(n0). Suppose that N is uniquely
generated, that M is not a subterm of a component of any regular node in the
protocol and that the decryption key is safe, K−1 ∈ Safe. If N is later received,
at node n1, outside the form {|M ′|}K , then only a honest participant, not the
penetrator, must have been responsible for N to have gone out of this form. The
edge n0 ⇒+ n1 is an outgoing test for N in M . If, instead, N is sent possibly in
clear and it later is received in encrypted form {|. . . ;N ; . . .|}K′ , where K ′ ∈ safe,
then only a honest participant, not the penetrator, must have been responsible
for N to have entered to this form. The edge n0 ⇒+ n1 is an incoming test for
N in {|. . . ;N ; . . .|}K′ .

2.3 Shrimp’s Meta-logic

Shrimp analyses the encoding of a message to determine when a cypher-text
may be used to arm a replay and how it should be changed to prevent a replay.
In the following we introduce a notion of similarity of messages and how messages
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can be modified to break a given similarity. Let � be a special symbol that is
not an atomic message and S be a set of keys. The pattern [2] p of a message M
visible wrt. S is given by:

pS(M) = {|pS(M)|}K if M = {|M |}K ∧K−1 ∈ S pS(M) = M if M is atomic
pS(M) = pS(M1, S); pS(M2) if M = M1;M2 pS(M) = � otherwise

Definition 1 (Similarity). Two messages M and M ′ are similar wrt. S, writ-
ten M ∼S M

′, iff there is a bijective replacement α on patterns (with �α = �),
mapping symbols from M to M ′, such that pS(M)α = pSα(M ′) holds.

Definition 2 (Visible Content). The visible content ctS(M) of a message M
wrt. a set of keys S is given by:

ctS(M) = {M} if M is atomic ctS(M1;M2) = ctS(M1) ∪ ctS(M2)
ctS({|M |}K) = ctS(M) if K−1 ∈ S ctS(M) = ∅ if K−1 /∈ S

Two messages M and M ′ are equivalent under rearrangement, M ≡ M ′ for
short, iff ctS(M) = ctS(M ′) for all sets of keys S.

Shrimp also includes symbols that allow us to compute the name of the agents
involved in the exchange of a message and to reason about the name of the
agents that can be inferred from the encoding of a message. Given a bundle B,
A is the originator (respectively recipient) of a term M , A�B M , (respectively
A�BM) iff there is a positive (respectively negative) node n in a strand played
by A of B such that M originates at n (respectively M ∈ ctS(msg(n)), S being
the keys known to A.)

Definition 3 (Correspondents). Let B be a bundle. The participants involved
in the exchange of M in B, called the correspondents of M , Partners([M ])B, is
given by {A : A�B M ∨A�B M}.

Definition 4. The names of the agents that can be (safely) deduced from the
encoding of a message is given by:

Agents({|M |}K) = {A} ∪Agents(M) if K = K+
a ∨K = K−

a

Agents({|M |}Kab
) = Agents(M)

Agents(M1;M2) = Agents(M1) ∪Agents(M2)
Agents(M) = {M} if M is a name
Agents(M) = { } otherwise

Notice that we do not infer names from symmetric encryption, because the flow
of the message cannot be determined.

Shrimp finds bugs in protocols by analysing a bundle containing a penetrator
strand. Often this analysis suggests a change in the structure of a message and
in that case Shrimp identifies the node originating such message considering a
bundle denoting an intended protocol run. With this, we compute the changes to
be done in one such a regular bundle, which we then propagate to the protocol
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description. The following definitions aim at a meta-theory to allow for tracing
the consequences of changing all the nodes in the set of strands depending on
changes to a particular node.

Let Pos(M) be the set of all positions π in M . Elements in Pos are sequences
and · denotes sequence concatenation. Two positions π, π′ are independent if
there is no π′′ that either π = π′ ·π′′ or π′ = π ·π′′ holds. M|π is the submessage
of M at position π and M [π ← M ′] is the message obtained by replacing M|π
in M by M ′.

Definition 5 (Explicit Replacement). A set ζ = {(π1,M1), . . . , (πn,Mn)}
is an explicit replacement iff for all 1 ≤ i ≤ n : πi ∈ Pos and Mi are messages
and for all i �= j: πi and πj are independent. ER denotes the set of all explicit
replacements.
ζ = {(π1,M1), . . . , (πn,Mn)} ∈ ER is an explicit replacement for a message

M iff πi ∈ Pos(M) for all 1 ≤ i ≤ n. The application of ζ on a message M is
given by ζ(M) = M [π1 ←M1, . . . , πn ←Mn].

Changing a message that is sent from A to B changes the knowledge of B
and thus its abilities to construct consecutive messages. If B should forward an
encrypted messages coming from A and this latter message is changed in the
protocol, then we also have to change the message forwarded by B. Hence we
need a mapping between an old encrypted (sub-)message and the corresponding
new message:

Definition 6 (P-Assignment). A position π of a message M is protected
wrt. a set of keys S iff M|π has the form {|M ′|}K and K−1 �∈ S. A protected
position is minimal iff all smaller positions are not protected wrt. S. ProtS(M)
denotes the set of all submessages of M at minimal protected positions of M
wrt. S.

Two messages M and M ′ are p-assigned wrt. S iff for each {|N |}K ∈ ProtS(M)
there is a unique message N ′ with {|N ′|}K ∈ ProtS(M ′). The p-assignment
ΔM,M ′,S of M and M ′ is the set of pairs ({|N |}K , {|N ′|}K) of corresponding
terms at minimal protected positions of M and M ′.

In many cases, a protocol change will simply enrich the messages exchanged by
the principals with additional information. We capture this property as follows:

Definition 7 (Monotonicity). Let M,M ′ be messages and let A0 ⊆ A. M ≤A0

M ′ iff ctS(M) ⊆ ctS(M ′) and ctS(M ′) ⊆ ctS(M) ∪ ctS(A0) for all S ⊆ K.
An explicit replacement ζ is monotone for M wrt. A0 iff M ≤A0 ζ(M) holds.

ζ is strongly monotone iff for all S ⊆ K and all ({|N |}K , {|N ′|}K) ∈ ΔM,M ′,S:
N ≤A0 N

′ holds.

Definition 8 (Collision Freeness). Let S be a set of keys, M a message
and let A0 ⊆ A be a set of messages. M is collision free to A0 iff ∀M ′ ∈
ctS(M). ∀M ′′ ∈ A0. (M ′ �∼S M

′′).

Given a set of keys S, a set ΔM,M ′,S = {(M1, N1), . . . (Mn, Nn)} denotes also a
term replacement function which maps messages to messages. Given a message
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N , we obtain ΔM,M ′,S(N) by replacing each occurrence of Mi in a minimal
protected position of N by Ni.

Definition 9 (Admissibility). An explicit replacement ζ for M is admissible
for M wrt. a set of keys S iff M and ζ(M) are p-assigned. Let ζ be admissible for
M then ΔM,ζ(M),S is the corresponding term replacement function of ζ wrt. M
and S.

Given a term replacement function Δ, a set of keys S and a node n with
M = msg(n) then Δn,S = {(π1, Δ(M|π1)), . . . , (πn, Δ(M|πn

))} with {π1, . . . πn}
being all minimal protected positions π of M wrt. S with Δ(M|π) �= M|π.

Definition 10 (Representativeness). A bundle B = 〈NB, (→B ∪ ⇒B)〉 over
a protocol is representative iff it is regular and for every node 〈s, i〉 ∈ B and
s = rαs the replacement application operator αs is injective and rα ⊆ NB.

Definition 11 (Adaption). Let B = 〈NB, (→B ∪ ⇒B)〉 be a representive bun-
dle over a protocol. The adaption ζ of B for an explicit replacement ζ0 in a
positive node n0 ∈ NB maps each node of the bundle to an explicit replacement
and is defined as follows:

ζ[n] = ∅ if n �B n0 and n �= n0 ζ[n] = ζ0 if n = n0

ζ[n] = ζ[n′] if n′ → n ζ[n] = Δn,S if n0 ≺B n and n is positive

where Δ =
⋃

n′∈NΔmsg(n′),ζ[n′](msg(n′)),S with N being the set of all negative
nodes n′ with n′ ⇒ n and S is the set of keys known by the principal playing the
role associated with the strand where n lies, at the moment of sending msg(n).
ζ is admissible on B iff, for all n ∈ B, ζ[n] is admissible on msg(n).

Given a representative bundle and an injective function αs mapping a strand s
of the protocol to nodes of the bundle we can easily use the adaption of these
nodes in order to change the strand s itself by applying ζ[〈s, i〉]α−1

s to each node
〈s, i〉 of s. Given an adaption ζ on a representive bundle for P we write ζ(P ) to
denote the protocol that resuls after the application of ζ[〈s, i〉]α−1

s .
Using this procedure, Shrimp is able to modify a protocol description, starting

from the node originating the message that suggested the enhancement to all
the successor nodes where the changes endure. This yields a path, we call a
change enduring path. A change enduring path is guaranteed to be finite and
acyclic both because bundles are also finite and acyclic and because changes are
propagated considering only inter-strand transitions.

Proposition 1 (Monotonicity of Bundles). Let B = 〈NB, (→B ∪ ⇒B)〉
be a representive bundle over a protocol and ζ be an adaption for an explicit
replacement ζ0 in a positive node n0 ∈ NB. If ζ0 is strongly monotone for msg(n0)
wrt. a set of messages A0 then ζ[n] is strongly monotone for msg(n) wrt. A0 for
all n ∈ NB.

Proof (Outline). The proof is done by induction on the length of ≺B. As one
base case we assume n ≺B n0. Thus ζ[n] = ∅ and the proposition holds trivially.
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As another base case consider n0 = n then again the proposition holds triv-
ially due to the given assumptions on ζ0. Suppose n is negative and ∃n′. n′ →
n. As an induction hypothesis we assume that ζ[n′] is strongly monotone for
msg(n′) and S wrt. A. Since msg(n′) = msg(n) we conclude that ζ[n] = ζ[n′]
is strongly monotone for msg(n) and S wrt. A. Now suppose n is positive
and different from n0. As an induction hypothesis we assume that ζ[n′] is
strongly monotone for all negative nodes n′ with n′ ⇒+ n. Thus, N ≤A0 N ′

for all ({|N |}K , {|N ′|}K) ∈ Δmsg(n′),ζ[n′](msg(n′)),S and arbitrary S ∈ K. Hence,
N ≤A0 N ′ for all ({|N |}K , {|N ′|}K) ∈ Δ holds and ζ[n] = Δn,S is strongly
monotone wrt. A0. '�

2.4 Patch Planning Faulty Security Protocols

A patch method is a 5-tuple (name, input, preconditions, patch, effect). The first
component is the name of the method. The second component is the input, which
is often the description of a faulty protocol P , a bundle BA describing the attack,
and a representive bundle BR describing the intended run of the protocol. The
third component is the preconditions, a formula written in a meta-logic that the
input objects must satisfy. Shrimp uses these preconditions to predict whether
the associated patch will make the protocol no longer susceptible to the attack.
The fourth component is the patch, a procedure specifying how to mend the
input protocol. Finally, the fifth component is the effects, a formula specifying
required properties of the newer version of the protocol.

Methods can be compound by invoking other methods using methodicals
(functions that link methods together to control search). A compound method
is a 4-tuple (name, input, preconditions, method). It involves the name of the
compound method, the input, the preconditions, and then the method build
from methodicals, mostly in our case orelse meth. orelse meth meth1 meth2 tries
meth1 and if that fails tries meth2.

3 Fixing Faulty Protocols Subject to a Replay Attack

The chief method of Shrimp is the replay compound method, see Fig. 1. It in-
vokes three sub-methods: message encoding, agent naming and session binding.
The order in which methods are attempted is important as it imposes a hierar-
chy in terms of the complexity of implementing the patch. message encoding is
more viable because when modifying a protocol message it may not introduce
additional components. agent naming is more viable than session binding be-
cause it only modifies protocol messages. By contrast, session binding involves
the insertion of protocol steps.

3.1 Patching Protocols Violating Principle 10

The message encoding method, see Fig. 2, repairs a faulty protocol that portrays
two or more cypher-texts that are different one another but have similar structure
and so violates principle 10. The adversary may exploit this vulnerability by
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Name: replay
Input: P ∈ Σ, BA, BR

Preconditions:
% Spy reuses cypher-text {|M |}K:
∃i, j, k, M, K.
〈sr, i〉 �B 〈sp, j〉 ≺B 〈sq, k〉 ∧ {|M |}K " msg(〈sr, i〉) ∧ {|M |}K " msg(〈sp, j〉)

% sp is the penetrator while sq the principal being deceived
∧〈sr, i〉 and 〈sq, k〉 are regular but 〈sp, j〉 is not
∧sign(〈sr, i〉) = + = sign(〈sp, j〉) but sign(〈sq, k〉) = −

Method:
orelse meth message encoding(P,BA,BR, M, K, 〈sq, k〉)
orelse meth agent naming(P,BA,BR, M, K, 〈sq, k〉)

session binding(P,BA,BR, M, K, 〈sq, k〉)

Fig. 1. The replay compound method

making one cypher-text play the role of the other. An example faulty protocol
with this vulnerability is Wide-Mouth Frog (WMF): (part of) the initiator’s
first message can be reused to mimic the result of another request the server has
acted upon. AVISPA proves WMF fails to guarantee weak authentication of B
to A, yielding:

WMF Attack

1. A→ S : A; {|B;Ta;Kab|}Ka
1:1. A→ Spy(S) : A; {|B;Ta;Kab|}Ka

2. S→ B : {|A;Ta+d;Kab|}Kb
2:2. Spy(S) → A : {|B;Ta;Kab|}Ka

To remove the protocol flaw, it suffices to break this similarity. When input
WMF and the attack above, message encoding successfully repairs it returning:5

1. A→ S : A; {| Ta;B ;Kab|}Ka 2. S→ B : {|A;Ta + d;Kab|}Kb
(1)

Proposition 2. Let ζ be the adaption of the representive bundle BR as given
in Fig. 2. and P ′ = ζ(P ) be the corresponding revised protocol. Then ζ({|M |}K)
cannot be used to arm a message encoding replay attack on P ′.

Proof (outline). ζ({|M |}K) is not similar to any other component. Then, only the
execution of a specific step in P ′ may cause ζ({|M |}K) to appear on the traffic,
if ever. If P satisfies security property φ then so will P ′, because extra elements
in ζ({|M |}K), if any, are all innocuous tags. �

3.2 Patching Protocols Violating Principles 6—10

The session binding method deals with faulty protocols that contain a message
which cannot be associated with a particular protocol run. An attack exploiting
this flaw, called replay protection, causes an agent to consider that another is
5 Protocol changes are enclosed within a solid box to ease reference.
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Name: message encoding
Input: P ∈ Σ, BA, BR, n ∈ BA ∩ BR, π ∈ Pos(msg(n))

% n lies on strand of deceived agent where msg(n)|π = {|M |}K is the
% message used to elaborate replay

Preconditions:
% different cypher-texts cannot be distinguished:
Let S = Safer

∃n′ ∈ BA, ∃M ′, K′.
({|M ′|}K′ ∈ msg(n′) ∧ {|M ′|}K′ ∼S {|M |}K ∧ {|M

′|}K′ �= {|M |}K)
Patch:

% Break similarity of {|M |}K:
select M ′′ such that M ≤A0 M ′′, A0 is a minimal set of tags, and
{|M ′′|}K is collision free with L = {{|M ′|}K′ : {|M ′|}K′ " msg(n), n ∈ BR}
With ζ0 = {(π, {|M ′′|}K)} and ζ be the adaption of B for ζ0 in n
let P ′ = ζ(P ).

Fig. 2. The message encoding method

trying to set up a simultaneous session, when he is not [11]. Two example pro-
tocols subject to this type of attack, because none satisfies strong authentication
of B to A, are (1) and the Denning-Sacco Shared Key (DSSK) protocol. The
DSSK protocol and the attack that AVISPA finds are as follows:

DSSK Attack

1. A → S : A; B 1:1. A → S : A; B
2. S → A : {|B; Kab; Ts; 1:2. S → A : {|B; Kab; Ts;

{|B; Kab; A; Ts|}Kb
|
}

Ka
{|B; Kab; A; Ts|}Kb

|
}

Ka

3. A → B : {|B; Kab; A; Ts|}Kb
1:3. A → B : {|B; Kab; A; Ts|}Kb

2:3. Spy(A) → B : {|B; Kab; A; Ts|}Kb

Notice that both the DSSK and the WMF protocol prescribe the responder, B,
to react upon an unsolicited test [9].

Shrimp is equipped with a repair method that introduces a nonce-flow re-
quirement to fix this flaw [1,13,11,9] (c.f. principle 7.) This requirement is realised

by transforming the unsolicited test into an authentication one. Let A
M

−−→ B

denote the step at which the replay is realised and let A M1−−→ B
M2−−→ C abbre-

viate two consecutive protocol steps: q. A → B : M1 and q + 1. B → C : M2.
Then, the nonce-flow requirement is introduced via the following transformation
rules, called nonce flow and tried to be applied in the order of appearance:

A
M1−−→ B

M2
−−−→ C � A

M1−−→ C

M1 ; {|C; Nc, h(M1)|}
K

+
b

−−−−−−−−−−−−−−−→ B

M2 ; {|C; Nc; h(M2)|}
K

−
b

−−−−−−−−−−−−−−−→ C

B
M1
−−−→ C � B

M1−−→ C

{|C; Nc; h(M1)|}
K

+
b

−−−−−−−−−−−−→ B

{|C; Nc|}
K

−
b

−−−−−−−−→ C

where h(M) denotes a one-way, collision-resistant hash function, which is used
to tie each test component to the current run. Notice that if A = C then the first
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two steps of the right-hand side of the first rule merge. Also notice that if A M−→
B � A

M ′
−−→ C

M ′′
−−→ B, the strands ought to be modified as follows: i) for A and

B, ∃na ∈ sa, nb ∈ sb. msg(na) = msg(nb) = M , so we shall have msg(na) = M ′

and msg(nb) = M ′′; and ii) for C, two nodes, nc1 and nc2 , are inserted such that
msg(nc1) = M ′ and msg(nc2) = M ′′ with sign(nc1) = − �= sign(nc2). The rule
identifies where these nodes are to be inserted: c.f. C’s participation, previous
to the attack. Any other transformation is handled similarly.

We now introduce two refinements to this transformation. First, notice that
applying nonce flow without considering the structure of M1 or M2 may add un-
necessary components. We shrink the message M1; {|C;Nc;h(M1)|}K+

b
(respec-

tively M2; {|C;Nc;h(M2)|}K−
b

) as follows:

shrnk(M,M ′) = shrnk0(M,M ′) if shrnk0(M,M ′) �= M
shrnk(M,M ′) = M ;M ′ otherwise

where

shrnk0(A,M) = A if A is atomic
shrnk0(M1;M2,M

′) = shrnk0(M1,M
′); shrnk0(M2,M

′)
shrnk0({|M |}K , {|C;Nc;M ′|}K) = {|C;Nc;M |}K

shrnk0({|M |}K−
c
, {|C;Nc;M ′|}K+

b
) = {|shrnk0(M, {|C;Nc;h(M)|}K+

b
)}K−

c

shrnk0({|M |}K+
c
, {|C;Nc;M ′|}K−

b
) = {|shrnk0(M, {|C;Nc;h(M)|}K−

b
)}K+

c

where we assume that C originates the message M1; {|C;Nc;h(M1)|}K+
b

(respec-
tively M2; {|C;Nc;h(M2)|}K−

b
), the challenger, and B is the recipient, the cham-

pion. Second, notice that applying nonce flow when the server is involved in the
replay may yield a clumsy protocol. This is because the protocol would involve
too many server participations and provide guarantees to the server rather than
to the participants. We get around this situation by applying a very specific
patching strategy, due to Lowe [11], which consists of making the participants
handshake. The handshake messages are cyphered using the session key, similar
to a key confirmation step. nonce flow is thus attempted only if the following
rules, called handshake, are not applicable:

S
M(K)

−−−−→ Xi � S
M(K) ; T

−−−−−−→ Xi

����Xi; Xj ; Nj

���
�

K

−−−−−−−−−−→ Xj

����Xj ; Nj

���
�

K

−−−−−−−→ Xi

Xk

M′

−−−→ S
M(K)−−−−→ Xi � Xk

M ′
−−→ S

M(K) ; T

−−−−−−→ Xi

����Xi; Xj ; Nj

���
�

K

−−−−−−−−−−→ Xj

����Xj ; Nj

���
�

K

−−−−−−−→ Xi

where T = {|T ′;h(M(K))|}Ki
and where the last two steps of the protocol struc-

ture on the right-hand side are applied for all j �= i and so are actually rounds of
messages. Notice that for handshake to be applicable the messageM should carry
a session key. This patching strategy is known to be susceptible to a known-key
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Name: session binding
Input: P ∈ Σ,B,BR, M, K, n = 〈s, k〉
Preconditions:

% The deceived participant, associated to strand s,
% receives an unsolicited test :
∀n0 ∈ B if n0 ≺B n then ∀M ′ " msg(n0). (M

′ �" M ∨M ′ /∈ uniques)
Method:

% Introduce nonce-flow requirement, transforming unsolicited test
% into an authentication one:
orelse meth handshake nonce flow

Fig. 3. The session binding method

attack,6 but the insertion of the timestamp, T ′, makes it very difficult for an
adversary to timely realise the replay.

Two consecutive applications of session binding, Fig. 3, on input DSSK yield:

1. A→ B : A;B
2. B → S : A;B; {|Nb;A|}Kb

3. S→ A : {|B;Kab; Ts ; {| Nb ;B;Kab;A; Ts |}Kb
|}Ka

4. A→ B : {| Nb ;B;Kab;A; Ts |}Kb
; {|A;B;Na|}Kab

5. B → A : {|B;Na|}Kab

Step 2., together with Nb, is inserted in the first application, preventing a replay
protection attack on B, while the handshake à la Lowe is inserted in the second
one, preventing a replay protection attack on S.

Proposition 3. Let P ′ be the revised version of the protocol and let N be the
nonce introduced by an application of nonce flow on the replay of M . If N ∈
uniques then M cannot be used to elaborate a replay.

Proof (outline). Take the first rule, so M = M2 . Let node+a (M ′) (respectively
node−a (M ′)) denote the positive (respectively negative) node of strand A at
which message M ′ is sent (respectively received), then if K−

b is safe:

node+c (M1 ; {|C;Nc;h(M1)|}K+
b

)⇒+ node−c (M2 ; {|C;Nc;h(M2)|}K−
b

)

is an outgoing test for Nc in {|C;Nc, h(M1)|}K+
b
. Then by proposition 19 of [9]

only a regular participant must have been responsible for N to exit the cypher-
text {|C;Nc;h(M1)|}K+

b
and then enter to {|C;Nc;h(M2)|}K−

b
. Any occurrence

of Mi (i = 1, 2) is thus tied via h(Mi) to a unique test and so the result follows.
The proof for the other rule is similar. �

6 A known-key attack is an attack whereby, once getting knowledge of a session key,
the adversary is able, if passive, to compromise keys of other sessions or, if active,
to impersonate one of the (honest) protocol parties.
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3.3 Patching Protocols Violating Principle 3

In this section, we generalise the method introduced in [10], designed to fix a
faulty protocol containing a message without proper naming. Our generalisation
consists of introducing the names of the correspondents of the reused message,
rather than the names of the initiator or the responder in the protocol.

When input the NSPK protocol, agent naming, Fig. 4, will add the name of
the agent originating message 2, B in this case, arriving at Lowe’s fix:

1. A→ B : {|Na, A|}K+
b

2. B → A : {| B ,Na, Nb|}K+
a

3. A→ B : {|Nb|}K+
b

Name: agent naming
Input: P,BA,BR, n ∈ BA ∩ BR with msg(n)|π = {|M |}K

Preconditions:

A∈Partners([{|M|}K ])

A /∈ Agents({|M |}K)

Patch:
Select M ′′ such that:
M ≤I M ′′ with I = Partners([{|M |}K ]) \Agents({|M |}K)
{|M ′′|}K is collision free with {{|M ′|}K′ : {|M ′|}K′ " msg(n), n ∈ BR} wrt. Safer

With ζ0 = {(π, {|M ′′|}K)} and ζ be the adaption of B for ζ0 in n, let P ′ = ζ(P ).
Effects:

Partners([ζ({|M |}K)]) = Agents(ζ({|M |}K))

Fig. 4. The agent naming method

Proposition 4. Let P ′ and ζ({|M |}K) be the revised protocol and cypher-text.
Then, ζ({|M |}K) may not be used to arm a naming replay attack.

Proof (outline). Let P (R, x−→) denote the set of strands of role R in P instantiated
with parameters x−→. Effects guarantee that ∀R ∈ Partners([ζ({|M |}K)]).P ′(R, x−→) ⊆
P (R, x−→), because the parameters agree at least on the associated names of the
correspondents of ζ({|M |}K). It follows that the cypher-text cannot be used to
arm a naming replay. �

4 Results

Table 1 summarises our results. We considered 36 experiments, of which 20 in-
volve protocols borrowed from the Clark-Jacob library;7 4 are variants of some
of these protocols (annotated with �); and 12 are protocols output by Shrimp,
a next-generation of an input protocol. Next-generation protocols are shown in
a separate row within the associated entry.
7 The Clark-Jacob library comprehends 50 protocols, 26 out of which are known to be

faulty. So our validation test set contains all but 6 of these security protocols. The
faulty protocols that were left out are not susceptible to a replay attack.
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Table 1. Experimental results

before after
Protocol s wai sai war sar M s wai sai war sar

ASRPC T T T T F B1 T T T T T
BAN ASRPC T F X X X N T T T T T
CCITTX.509(1) T F X X X N T T X X X

T T F X X B1 T T T T T
CCITTX.509(3) T F X T T N T T T T T
DSSK T T F X X B1 T T T T X

T T T T F B2 T T T T T
NSSK T T X T F B1 T T X T T

T T F† T T B2 T T T T T
DSPK T F X X X N T T X X X

T T F X X B2 T T T X X
Kao Chow A. v1 T T F† T T B2 T T T T T
KSL T F X X X E T T T T T
NSPK F X X T T N T T T T T
BAN OR T F X X X N T T X X X
Splice/AS T X X F X N T T X T X

T T F T X B2 T T T T T
CJ Splice T F X T T B2 T T T T T
HC Splice T X X F X N T X X T X
WMF T F X X X E T T X X X

T T F X X B2 T T T T T
WMF++ � T T F X X B2 T T T T T
ASRPC prune � T F X X X N T T X X X

T T X F X N T T X T X
T T X T F B1 T T X T T
T T F T T B1 T T T T T

WLM T F X X X E T T T T T
BAN Yahalom T T T F X E T T T T T
A. DH � T X X F X N T X X T X

T X X T F B1 T X X T T
2steps SK � T X X F X N T X X T X

T X X T F B1 T T X T T
T T F T T B1 T T T T T

Each row displays the result
of testing a protocol against
a (hierarchical) collection of
properties: secrecy, s, weak
authentication of the initia-
tor, wai (respectively respon-
der, war) and strong authen-
tication of the initiator, sai

(respectively responder sar),
where wai < sai (respectively
war < sar.) The table sep-
arates the verification results
for the original protocol, be-
fore, and the mended protocol,
after, as output by Shrimp.
The field value that exists at
the intersection between a pro-
tocol P and a property φmight
be either T, meaning P satis-
fies φ, F, meaning P does not
satisfy φ, or X, meaning this
property was not tested (be-
cause P was not expected to satisfy it.) Column M specifies the method that was
applied to modify each faulty protocol: message (E)ncoding, agent (N)aming or
session (B)inding. For the latter method, B1 refers to rule nonce flow and B2 to
rules handshake. In all our experiments, the application of a patch method yielded
a revised protocol able to satisfy the security property that the original one did
not. Whenever applicable, each mended protocol was then further requested to
satisfy the remaining, stronger properties in the hierarchy, thus explaining why
some entries have several runs. Note that in the discovery of some attacks we had
to specify the possibility of losing a session key (annotated with †.)

Shrimp is thus able to identify a flaw and a successful candidate patch
in 33 faulty protocols out of 36. Of these experiments, it applied 12 times
agent naming, 4 times message encoding, 9 times rules nonce flow and 8 times
handshake. The protocols Shrimp fails to fix, namely: Neumann-Stubblebine,
Otway-Rees and Woo-Lam Pi, are all susceptible to the type flaw subclass of
replay attack. It would be misleading to dismiss message encoding on account of
the few protocols it patched. This is because while applying the other methods
we use it to ensure the patch did not incur in an infringement of principle 10.

We have recently made Shrimp try to patch the IKEv2-DS protocol, which
is part of AVISPA’s library and an abstraction of IKEv2. We found that if we
abstract out the equational issues inherent to the AVISPA attack, Shrimp suc-
cessfully identifies a violation to a good practice for protocol design: the omission
of principal names. While the revised protocol is up to satisfy strong authentica-
tion on the session key, this patch may be subject to a criticism because IKEv2
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was deliberately designed so that no principal should mention the name of its
corresponding one. We then deleted agent naming and re-ran our experiment;
this time Shrimp applied handshake suggesting a protocol similar to IKEv2-DSx,
which also is part of AVISPA’s library and attack-free.

5 Comparison to Related Work

R. Choo [6] has also looked at the problem of automated protocol repair. His de-
velopment framework applies a model checker to perform state-space analysis on
an (indistinguishableness-based) model of a protocol, encoded using asynchro-
nous product automata. If the protocol is faulty, Choo’s approach automatically
repairs it. A fair comparison between Choo’s approach and ours cannot be con-
ducted mainly because so far there is not an archival publication of [6].

When considering an automatic protocol repair mechanism like ours, one won-
ders whether there is an upper bound as to the information that every message
should include to avoid a replay. If there is one, we could simply ensure that
every message conforms it previous to any verification attempt. Carlsen [5] has
looked into this upper bound. He suggested that to avoid replays every message
should include five pieces of information: protocol-id, session-id, step-id, message
subcomponent-id and primitive type of data items. In a similar vein, Aura [3]
suggested one should also use several cryptalgorithms in one protocol and hash
any authentication message and any session key. Protocol designers, however,
find including all these elements cumbersome. By comparison, Shrimp only in-
serts selected pieces of information considering the attack at hand but may add
steps to the protocol if necessary to fulfil a stronger security property.

Complementary to ours is the work of Perrig and Song [13], who have devel-
oped a system, called APG, for the synthesis of security protocols. The synthe-
sis process, though automated, is generate and test: APG generates (extends) a
protocol step by step, taking into account the security requirements, and then
discards those protocols that do not satisfy them. APG is limited to generate
only 3-party protocols (two principals and one server). As a reduction technique,
it uses an impersonation attack and so rules out protocols that (trivially) fail to
provide authenticity. The main problem to this tool is the combinatorial explo-
sion (the search space is of the order 1012 according to the authors).

6 Conclusions and Further Work

In this paper, we have presented Shrimp, a method for automatically repair-
ing faulty security protocols. Shrimp consists of a collection of patch planning
methods. Each patch method is designed to transform a set of protocol steps vi-
olating a design principle into one conforming it, while ruling out the possibility
of violating other principles. We have carried out a large number of experiments
to validate Shrimp, finding that it successfully deals with the class of replay
attacks, except for the subclass type flaw. Ongoing research thus is concerned
with extending Shrimp to cope with this type of attack. Ongoing research also is
concerned with extending Shrimp to account for more cryptographic primitives,
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including the equational properties thereof, and a greater variety of protocols.
Patch methods are independent of the global security requirements required
from the security protocol under investigation and the local change of one or
two protocol steps may cause flaws in combination with other protocol steps
which have been not considered at that point. Therefore, ongoing research in-
volves considering global rules that may change a protocol depending on these
global requirements to be achieved, controlling the local patch process.
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Abstract. We define a framework to reason about implementations of equa-
tional theories in the presence of an adaptive adversary. We particularly focus
on soundess of static equivalence. We illustrate our framework on several equa-
tional theories: symmetric encryption, XOR, modular exponentiation and also
joint theories of encryption and modular exponentiation. This last example relies
on a combination result for reusing proofs for the separate theories. Finally, we
define a model for symbolic analysis of dynamic group key exchange protocols,
and show its computational soundness.

1 Introduction

It is well-known that even simple security protocols are extremely error-prone. This is
mainly due to the fact that they are executed in a hostile environment, e.g., the Internet.
The need for rigorous proofs was recognized very early and two distinct, competing
approaches have been developed. The symbolic approach considers an abstract model,
where messages and cryptographic primitives are modeled by a term algebra. The ad-
versary manipulates terms according to a pre-defined set of rules, typically an inference
system. The computational approach considers a more detailed execution model. Pro-
tocol messages are modeled as bitstrings and cryptographic primitives are polynomial-
time algorithms. The adversary is an arbitrary probabilistic polynomial-time Turing
machine. Security of a protocol is measured as the adversary’s success probability.

Proofs in the symbolic model can be (partially) automated, but it is not clear whether
this abstract model captures all possible attacks. Proofs in the computational model pro-
vide stronger security guarantees but are generally harder and difficult to automate. A
recent trend tries to get the best of both worlds: an abstract model with strong compu-
tational guarantees. In their seminal paper, Abadi and Rogaway [4] have shown a first
such soundness result for symmetric encryption in the presence of a passive attacker.

Recently, Baudet et al. [9] presented a general framework for reasoning about sound
implementations of equational theories. Instead of a fixed set of cryptographic prim-
itives, they allow a specification by the means of an equational theory. The formal
indistinguishability relation they consider is static equivalence, a well-established se-
curity notion coming from cryptographic pi calculi [3] whose verification can often be
automated [2,10]. Studying soundness of equational theories is motivated by the nu-
merous recent works on extending the classical Dolev-Yao result with equations which
are intended to capture algebraic properties of cryptographic primitives (see [17] for a
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survey ). Showing a soundness result for an equational theory proves that indeed
“enough” equations have been considered in the symbolic model.

In this paper we consider the question of soundness of static equivalence in the pres-
ence of an adaptive adversary, rather than a purely passive one. This extends the work
by Baudet et al. in a similar way as the work of Micciancio and Panjwani [24] ex-
tended the work of Abadi and Rogaway [4]. An adaptive adversary is allowed to choose
the messages whose implementation he will be given. The choice of the messages can
hence depend on previously observed distributions. We illustrate the usefullness of such
a model on dynamic group key exchange protocols.

More precisely the contributions of our paper are as follows. We define the notion of
adaptive soundness of static equivalence in a general framework. The definition is para-
meterized by the equational theory and the concrete algebra implementing the symbolic
model. Our notion is strictly stronger than the purely passive soundness from [9]. We
also develop a combination based proof technique: it allows us to reuse soundness re-
sults of two disjoint abstract signatures and conclude soundness of the joint signature.
While the conditions under which such a combination works are of course restrictive
they nevertheless match cases of practical interest. We give adaptive soundness results
for several theories: symmetric encryption provided that the encryption scheme respects
a length-conceiling IND-CPA security notion (this is similar to the main result in [24]),
exclusive or (XOR), modular exponentiation in an Abelian group provided that the De-
cisional Diffie-Hellman (DDH) assumption is verified. Finally, we use our combination
technique to derive adaptive soundness for the joint theory of encryption and modular
exponentiation. We believe these are the first adaptive soundness results for modular
exponentiation. Their importance is motivated by real-life protocols such as SSL/TLS
that rely on Diffie-Hellman key exchange and thus use modular exponentiation.

To illustrate the usefulness of adaptive adversaries we define a symbolic model for
dynamic group key exchange (DKE) protocols. A DKE protocol is a suite of protocols
which allows three actions: exchange of an initial key between a group of users, joining
and leaving the group. A typical example of DKE is the AKE1 protocol [12]. In our
symbolic model we assume static corruption, as it was the case in [24], and allow the
adversary to schedule these subprotocol and decide which users initially exchange the
key, join, respectively leave the group. We use our adaptive soundness result to show
that this symbolic model is sound with respect to a corresponding computational model.

Related work. As discussed above this paper generalizes both work by Baudet et al. [9]
and Micciancio and Panjwani [24]. Abadi et al. [1] also use the framework of [9] to
show soundness of an equational theory useful for reasoning about offline guessing at-
tacks modeled in terms of static equivalence. In [8], Bana et al. argue that the notion of
static equivalence is too coarse and not sound for many interesting equational theories.
As an example they show that the DDH assumption is not sufficient to imply soundness
of static equivalence. They introduce a general notion of formal indistinguishability re-
lation. In this paper we prefer to stick to static equivalence which has the advantage of
being a well-established, tool-supported equivalence relation. We address the problems
highlighted in [8] by proving soundness for a restricted set of well-formed frames (in
the same vein Abadi and Rogaway used restrictions to forbid key cycles). Regarding
the theory of XOR, Backes and Pfitzmann [6] have shown an impossibility result in
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the reactive simulatability framework with active attackers and a soundness result for
passive attackers. Note that we use the same model as [9] and restrict ourselves to the
XOR of pure random values and not arbitrary payloads. While this is a restriction, it
may nevertheless be useful for computing keys as the XOR of two random values when
combining XOR and encryption. Concerning modular exponentiation, a soundness re-
sult in the style of Abadi and Rogaway [4] has recently been shown in [13]. However
using the same proof technique for the adaptive case seems difficult as the security
model of [13] is tightly linked to the passive adversary model: challenges cannot be
chosen adaptively by the adversary.

There have also been numerous works considering an active adversary using ap-
proaches. Without being exhaustive this work includes reactive simulatability providing
universally composable results in [7,15], soundness results (but not universal
composability) for an automated tool are presented in [18], cryptographically sound
type systems [23], a Protocol Composition Logic in [19] and an automatic tool that
aims at directly generating cryptographic proofs via sequences of games in [11]. How-
ever these works stick to classical cryptographic primitives: digital signatures, symmet-
ric and asymmetric encryption. We are not aware of any general results for equational
theories in the active case. Considering an active adversary is technically more involved
although incomparable to an adaptive adversary. The case of a both active and adaptive
adversary is a challenging problem and a topic of active research.

Because of lack of space, proofs are omitted. They are available in [22].

2 Abstract and Computational Algebras

We introduce our model, which is the same up to some minor changes as in [9].

2.1 Abstract Algebras

Our abstract models—called abstract algebras—consist of term algebras defined over
a many-sorted first-order signature and equipped with equational theories.

Specifically, a signature (S,F) is made of a set of sorts S = {s, s1 . . .} and a set of
symbols F = {f, f1 . . .} together with arities of the form ar(f) = s1 × . . .× sk → s,
k ≥ 0. Symbols that take k = 0 arguments are called constants; their arity is simply
written s. We fix a set of names N = {a, b . . .} and a set of variables X = {x, y . . .}.
Names and variables are given with sorts and an infinite number of names and variables
are available for each sort. The set of terms of sort s is defined inductively by

t ::= term of sort s
| x variable x of sort s
| a name a of sort s
| f(t1, . . . , tk) application of symbol f ∈ F

where for the last case, we further require that ti is of sort si and ar(f) = s1×. . .×sk →
s. We also allow subsorts: if s2 is a subsort of s1 we allow a term of sort s2 whenever a
term of sort s1 is expected. We write sort(t) for the sort of term t. We define root(t) to
be f if t = f(t1, . . . , tn) and t otherwise, i.e. if t is either a name or a variable. We write
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var(t) and names(t) for the set of variables and names occurring in t, respectively. A
term t is ground or closed if var(t) = ∅.

Substitutions are written σ = {x1 �→ t1, . . . , xn �→ tn} with domain dom(σ) =
{x1, . . . , xn}. We only consider well-sorted, cycle-free substitutions. Such a σ is closed
if all of the ti are closed. We let var(σ) =

⋃
i var(ti), names(σ) =

⋃
i names(ti), and

extend the notations var(.) and names(.) to tuples and sets of terms and substitutions
in the obvious way. The application of a substitution σ to a term t is written σ(t) =
tσ and is defined in the usual way. As usual the set of positions pos(t) of a term t
is defined inductively as pos(c) = pos(a) = pos(x) = {ε} where ar(c) = s and
pos(f(t1, . . . , tn)) = {ε} ∪

⋃
1≤i≤n i · pos(ti). If p is a position of t then expression

t|p denotes the subterm of t at the position p, i.e., t|ε = t and f(t1, . . . , tn)|i·p = ti|p.
Symbols in F are intended to model cryptographic primitives, whereas names in N

are used to model secrets, e.g., keys. The abstract semantics of symbols is described
by an equational theory E, i.e, an equivalence relation (also written =E) which is sta-
ble by application of contexts and substitutions of variables. For instance, symmetric
encryption can be modeled by the classical theoryEenc = {dec(enc(x, y), y) = x}.

2.2 Deducibility and Static Equivalence

We use frames [3,2] to represent sequences of messages observed by an attacker. For-
mally, a frame is an expression ϕ = νã.{x1 = t1, . . . , xn = tn} where ã is a set of
bound (or restricted) names, and for each i, ti is a closed term of the same sort as xi.
For simplicity, we only consider frames ϕ = νã.{x1 = t1, . . . , xn = tn} which restrict
every name in use, i.e., ã = names(t1, . . . , tn). A name a may still be disclosed explic-
itly by adding a mapping xa = a to the frame. Thus we assimilate such framesϕ to their
underlying substitutions σ = {x1 �→ t1, . . . , xn �→ tn} also denoted {xi �→ ti}1≤i≤n.

Definition 1 (Deducibility). A (closed) term t is deducible from a frame ϕ in an equa-
tional theoryE, written ϕ �E t, iff there exists a termM such that var(M) ⊆ dom(ϕ),
names(M) ∩ names(ϕ) = ∅, and Mϕ =E t.

For simplicity we only consider deducibility problems ϕ �E t such that names(t) ⊆
names(ϕ). For instance, let ϕ1 = {x1 �→ enc(k1, k2), x2 �→ enc(k4, k3), x3 �→ k3}:
under the the theory Eenc name k4 is deducible from ϕ1 since dec(x2, x3)ϕ1 =Eenc k4

but neither are k1 nor k2. As also argued in [2] deducibility is not always sufficient to
account for the knowledge of an attacker. For instance, it lacks partial information on
secrets. That is why another classical notion in formal methods is static equivalence.

Definition 2 (Static equivalence). Two frames ϕ1 and ϕ2 are statically equivalent in a
theoryE, written ϕ1 ≈E ϕ2, iff dom(ϕ1) = dom(ϕ2), and for all termsM andN such
that var(M,N) ⊆ dom(ϕ1) and names(M,N)∩names(ϕ1, ϕ2) = ∅,Mϕ1 =E Nϕ1

is equivalent to Mϕ2 =E Nϕ2.

For instance, let 0 and 1 be two constants (which are known by the attacker). Then
{x �→ enc(0, k)} ≈Eenc {x �→ enc(1, k)}. However ϕ = {x �→ enc(0, k), y �→ k} and
ϕ′ = {x �→ enc(1, k), y �→ k} are not statically equivalent forEenc: letM = dec(x, y)
andN = 0.M andN use only variables defined by ϕ and ϕ′ and do not use any names.
MoreoverMϕ =Eenc Nϕ but Mϕ �=Eenc Nϕ. The test M ?

=N distinguishes ϕ from ϕ′.
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2.3 Concrete Semantics

We now give terms and frames a concrete semantics, parameterized by an implemen-
tation of the primitives. Provided a set of sorts S and a set of symbols F as above, a
(S,F )-computational algebra A consists of

– a non-empty set of bit-strings [[s]]A ⊆ {0, 1}∗ for each sort s ∈ S; moreover, if s2
is a subsort of s1 we require that [[s2]]A ⊆ [[s1]]A;

– a computable function [[f ]]A : [[s1]]A × . . . × [[sk]]A → [[s]]A for each f ∈ F with
ar(f) = s1 × . . .× sk → s;

– an effective procedure to draw random elements from [[s]]A, denoted x
R←− [[s]]A.

Assume a fixed (S,F )-computational algebra A. We associate to each frame ϕ =
{x1 �→ t1, . . . , xn �→ tn} a distribution ψ = [[ϕ]]A, of which the drawings ψ̂

R←− ψ are
computed as follows:

1. for each name a of sort s appearing in t1, . . . , tn, draw a value â
R←− [[s]]A;

2. for each xi (1 ≤ i ≤ n) of sort si, compute t̂i ∈ [[si]]A recursively on the structure

of terms: ̂f(t′1, . . . , t′m) = [[f ]]A(t̂′1, . . . , t̂′m);
3. return the value ψ̂ = {x1 �→ t̂1, . . . , xn �→ t̂n}.

Such values φ = {x1 = e1, . . . , xn = en} with ei ∈ [[si]]A are called concrete
frames. We extend the notation [[.]]A to (tuples of) closed terms in the obvious way. We
also generalize the notation to terms with variables, by specifying the concrete values
for all of them: [[.]]A,{x1=e1,...,xn=en}.

In the rest of the paper we focus on asymptotic notions of cryptographic security and
consider families of computational algebra (Aη) indexed by a complexity parameter
η ≥ 0. (This parameter η might be thought of as the size of keys and other secret
values.) The concrete semantics of a frame ϕ is a family of distributions over concrete
frames ([[ϕ]]Aη ). We only consider families of computational algebras (Aη) such that
each required operation on algebras is feasible by a (uniform, probabilistic) polynomial-
time algorithm in the complexity parameter η. This ensures that the concrete semantics
of terms and frames is efficiently computable (in the same sense).

Families of distributions (ensembles) over concrete frames benefit from the usual
notion of cryptographic indistinguishability. Intuitively, two families of distributions
(ψη) and (ψ′

η) are indistinguishable, written (ψη) ≈ (ψ′
η), if and only if no probabilistic

polynomial-time adversary A can guess whether he is given a sample from ψη or ψ′
η

with a probability significantly greater than 1
2 . Formally, we ask the advantage of A,

AdvIND
A (ψη, ψ

′
η) =

∣
∣
∣P[ψ̂ R←− ψη : A(ψ̂) = 1] − P[ψ̂ R←− ψ′

η : A(ψ̂) = 1]
∣
∣
∣

to be a negligible function of η, that is, to remain eventually smaller than any η−n (n >
0) for sufficiently large η. By convention, the adversaries are given access implicitly to
as many fresh random coins as needed, as well as the complexity parameter η.
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3 Adaptive Soundness

In this section, we recall the original notion of soundness for static equivalence which
considers a passive adversary [9] and then extend it to an adaptive adversary. We show
relations between the classical soundness and our new adaptive soundness and also
provide a combination result which allows us, under some hypotheses, to prove adaptive
soundness of computational algebras (Aη) from adaptive soundness of parts of (Aη).

3.1 Soundness Definitions

Definition 3 (≈E-soundness). Let E be an equational theory. A family of computa-
tional algebras (Aη) is ≈E-sound iff for every frames ϕ1, ϕ2 with the same domain,
ϕ1 ≈E ϕ2 implies that ([[ϕ1]]Aη ) ≈ ([[ϕ2]]Aη ),

Similarly, Baudet et al. [9] define soundness for =E and �E . We here concentrate on
soundness of static equivalence. As shown in [9], for many theories soundness of static
equivalence implies all of the other notions. Baudet et al. also introduce a strong notion
of soundness that holds without restriction on the computational power of adversaries.

Definition 4 (Unconditional ≈E-soundness). Let E be an equational theory. A fam-
ily of computational algebras (Aη) is unconditionally ≈E-sound iff for every frames
ϕ1, ϕ2 with the same domain, ϕ1 ≈E ϕ2 implies ([[ϕ1]]Aη ) = ([[ϕ2]]Aη ).

Unconditional soundness stipulates that for any pairs of equivalent frames, the related
distributions are equal. Hence even an adversary which is not polynomially bounded
cannot distinguish these two distributions.

3.2 Adaptive Security

We extend soundness of static equivalence to the adaptive setting from [24] where the
adversary observes the computational value of a sequence of adaptively chosen terms.

The adaptive setting is formalized through the following cryptographic game. Let
(Aη) be a family of computational algebras and A be an adversary. A has access to a
left-right evaluation oracle OLR which given a pair of symbolic terms (t0, t1) outputs
either the implementation of t0 or of t1. This oracle depends on a selection bit b and uses
a local store to record values generated for the different names (these values are used
when processing further queries). With a slight abuse of notation, we omit this store and
write: Ob

LR,Aη
(t0, t1) = [[tb]]Aη . Adversary A plays an indistinguishability game with

the objective of finding the value of b. Formally the advantage of A is defined by:

AdvADPT
A,Aη

(η) =
∣
∣
∣P

[
AO1

LR,Aη = 1
]
− P

[
AO0

LR,Aη = 1
]∣
∣
∣

Without further restrictions on the queries of the adversary, having a non-negligible
advantage is easy in most cases. For example the adversary could submit a pair (0, 1)
to his oracle. We therefore require the adversary to be legal.

Definition 5 (Adaptive soundness). An adversary A is legal if for any sequence of
queries (ti0, t

i
1)1≤i≤n made by A to its left-right oracle, queries are statically equiv-

alent:
{
x1 �→ t10, . . . , xn �→ tn0

}
≈E

{
x1 �→ t11, . . . , xn �→ tn1

}
. A family of computa-

tional algebras (Aη) is
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– ≈E-ad-sound iff AdvADPT
A,Aη

(η) is negligible for any probabilistic polynomial-time
legal adversary A.

– unconditionally≈E-ad-sound iff AdvADPT
A,Aη

(η) is 0 for any legal adversary A.

Adaptive soundness implies the original soundness notion for static equivalence.

Interestingly, for unconditional soundness, the adaptive and non-adaptive case coincide.

Proposition 2. Let (Aη) be a family of computational algebras. Aη is unconditionally
≈E-ad-sound iff Aη is unconditionally≈E-sound.

3.3 Combination Result

Our objective here is to provide a combination result of the form: let Σ1 and Σ2 be
two signatures that do not share any symbol. If A1

η is ≈E1-ad-sound and A2
η is ≈E2-

ad-sound, then the combination of A1
η and A2

η denoted A1
η × A2

η is ≈E1∪E2-ad-sound.
However this is false in general. Therefore, we provide restrictions under which com-
bination is possible: we consider disjoint signatures as well as layered signatures.

Definition 6 (Disjoint signatures). Let Σ1 = (S1,F1) and Σ2 = (S2,F2) be two
signatures. We say that Σ1 and Σ2 are disjoint iff F1 ∩ F2 = ∅ and S1 ∩ S2 = ∅.

We denote by Σ1 ∪Σ2 = (S1 ∪ S2,F1 ∪ F2) the union of the signature Σ1 with Σ2.

Definition 7 (Signature combination, layered signatures). Let Σ1 = (S1,F1) and
Σ2 = (S2,F2) be two disjoint signatures. A subsort relation S is a signature combi-
nation for Σ1 and Σ2 if S ⊆ S2 × S1. Then Σ = Σ1 ∪ Σ2 is a (Σ1, Σ2)S-layered
signature.

Intuitively, if a signature is layered then a constructor of F1 never occurs under a con-
structor of F2 and S defines which sorts of Σ2 can be used as subsort of Σ1. Given a
(Σ1, Σ2)S-layered signatureΣ and a term t overΣ we define the set of Σ1 positions of
t, posΣ1(t) = {p | p ∈ pos(t), sort(t|p) ∈ S1} and the set of Σ2 minimal positions of
t, pos�

Σ2
(t) = {p | p ∈ pos(t), sort(t|p) ∈ S2, p = p′ · i⇒ sort(t|p′ ) �∈ S2}.

As an example consider a theory with symmetric encryption and a pseudo-random
generator. Signature Σ1 contains a sort Data and two symbols enc and dec, both of
arity Data×Data → Data. Signature Σ2 contains one sort Rand and a symbol prg
(a pseudo-random generator) of arity Rand → Rand. The signature combination S
contains a single element (Rand,Data): elements of sort Rand can be used as keys or
as plaintext. Σ1 and Σ2 are disjoint, and Σ = Σ1 ∪ Σ2 is (Σ1, Σ2)S-layered. Given
the term t = enc(enc(prg(r), k), prg(prg(r′))) where k ∈ Data and r, r′ ∈ Rand, t
is indeed a valid term of Σ. However, the term t′ = prg(enc(r, k)) is not a term of Σ
as it is not well sorted. We have that posΣ1(t) = {ε, 1, 12} and pos�

Σ2
= {11, 2}.

Definition 8 (Hybrid functions). Let Σ1, Σ2 be two disjoint signatures and S a signa-
ture combination such that Σ = Σ1 ∪ Σ2 is (Σ1, Σ2)S-layered. Let E1, E2 be equa-
tional theories over Σ1 and Σ2 respectively. A (E1, E2)-hybrid function for a set F of
pairs of frames is a function σ from lists of terms over Σ to terms over Σ such that:
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– for any frame ϕ occurring in F , ϕ ≈E1 σ(ϕ) where we naturally extended σ
over frames by σ({x1 �→ t1, . . . , xn �→ tn}) = {x1 �→ σ([t1]), . . . , xn �→
σ([t1 . . . tn])};

– for any (ϕ,ϕ′) ∈ F , if ϕ ≈E1∪E2 ϕ
′ then let ϕ = {x1 �→ t1, . . . , xn �→ tn} and

ϕ′ = {x1 �→ u1, . . . , xn �→ un}. We have that for all i in [1, n],
• posΣ1(σ([t1 . . . ti])) = posΣ1(σ([u1 . . . ui])) = P and for any p ∈ P

root(σ([t1 . . . ti])|p) = root(σ([u1 . . . ui])|p)

• pos�
Σ2

(σ([t1 . . . ti])) = pos�
Σ2

(σ([u1 . . . ui])) = Q and we have that

{xq �→ σ([t1 . . . ti])|q}q∈Q ≈E2 {xq �→ σ([u1 . . . ui])|q}q∈Q

Moreover σ has to be computable in polynomial time (in its input).

Adaptive soundness may not hold on all frames, but only on a subset of well-formed
frames, e.g., when considering encryption one typically discards all frames that contain
key cycles. Therefore we say that an abstract algebra Aη is ≈E-ad-sound for a set F of
pair of frames if the advantage AdvADPT

A,Aη
(η) of any polynomial-time legal adversaryA,

whose sequence of queries (ti0, t
i
1)i verifies that the pair ({xi �→ ti0}i, {xi �→ ti1}i) is in

F , is negligible. We typically show soundness for the set of all pairs of “well-formed”
frames (the notion of well-formed frames depends on the particular equational theory).

Proposition 3 (Combination). Let Σ1 and Σ2 be two disjoint signatures and S be a
signature combination for Σ1 and Σ2. Let E1 and E2 be equational theories over Σ1

and Σ2 respectively. We consider a family of computational algebras (A1
η) for Σ1 and

another family (A2
η) forΣ2 respecting S, i.e. (s2, s1) ∈ S implies that [[s2]]A2

η
⊆ [[s1]]A1

η
.

Let F be a set of pair of frames over Σ1 ∪ Σ2 and σ be a (E1, E2)-hybrid function
for F . If A1

η × A2
η is ≈E1-ad-sound for G = {(ϕ, σ(ϕ)) | ϕ occurs in F} and A2

η is
≈E2-ad-sound for frames on Σ2, then A1

η ×A2
η is ≈E1∪E2-ad-sound for F .

The idea of the proof is that if an adversary A against E1 ∪ E2-ad-soundness queries
his oracle with a pair of frames (ϕ,ϕ′) in F then it is possible to build an adver-
sary B1 against E1-ad-soundness who submits (ϕ, σ(ϕ)) to his oracle, an adversary
B2 against E2-ad-soundness who submits (σ(ϕ), σ(ϕ′)) and an adversary B3 against
E1-ad-soundness who submits (σ(ϕ′), ϕ′) such that the advantages of A, B1, B2 and
B3 are related. This combination result will be useful in Section 4 when combining
encryption with modular exponentiation.

4 Adaptively Sound Theories

We now present adaptive soundness results for several equational theories. We consider
probabilistic symmetric encryption and try to be as close as possible to the models
from [4] and from [24]. We assume that the implementation of the symmetric encryption
scheme is semantically secure [21] and use a relevant formal theory.
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Symbolic model. Our symbolic model consists of the set of sorts S = {Data}, an
infinite number of names for sort Data called keys and the function symbols:

enc, dec : Data×Data→ Data samekey : Data×Data→ Data
pair : Data×Data→ Data tenc, tpair : Data → Data
πl, πr : Data → Data 0, 1 : Data

We consider the equational theory Esym generated by:

dec(enc(x, y), y) = x πl(pair(x, y)) = x
πr(pair(x, y)) = y samekey(enc(x, y), enc(z, y)) = 1

tenc(enc(x, y)) = 1 tpair(pair(x, y)) = 1

Intuitively, the function symbols tenc, tpair are type testers. The meaning of the re-
maining symbols should be clear. As usual enc(t, k) is also written {t}k and pair(t, t′)
is also written (t, t′). A name k is used at a key position in a term t if there exists a
sub-term enc(t′, k) of t. Else k is used at a plaintext position.

Well-formed frames and adversaries. The importance of key cycles was already de-
scribed in [4]. In general IND-CPA is not sufficient to prove any soundness result in
the presence of key cycles. Thus, as in numerous previous work, we forbid the formal
terms to contain such cycles. Let ≺ be a total order among keys. A frame ϕ is acyclic
for ≺ if for any subterm {t}k of ϕ, if k′ occurs in t then k′ ≺ k. (Another possibility to
handle key cycles is to consider stronger computational requirements like Key Depen-
dent Message – KDM – security as done in [5].) Moreover as noted in [24], selective
decommitment [20] can be a problem. The classical solution to this problem is to re-
quire keys to be sent before being used to encrypt a message or they must never appear
as a plaintext. A frame ϕ = {x1 �→ t1, . . . , xn �→ tn} is well-formed for ≺ if

– ϕ is acyclic for≺;
– the terms ti only use symbols enc, pair, 0 and 1, and only names are used at key

positions;
– if k is used as plaintext in ti, then k cannot be used at a key position in tj for j < i.

An adversary is well-formed for ≺ if the sequence of queries (ti0, t
i
1)1≤i≤n that he

makes to his oracle yields two well-formed frames {x1 �→ t10, . . . , xn �→ tn0} and
{x1 �→ t11, . . . , xn �→ tn1} for ≺.

Concrete model. A symmetric encryption scheme SE is defined by three algorithms
KG, E andD. The key generation algorithm takes as input the security parameter η and
outputs a key k. The encryption algorithm E is randomized. It takes as input a bit-string
s, a key k and returns the encryption of s using k. The decryption algorithm D takes
as input a bit-string c (a ciphertext), a key k and outputs the corresponding plaintext.
Given k ← KG(η), for any bit-string s, if c← E(k, s) then D(c) = s.

The family of computational algebras (Aη) giving the concrete semantics depends
on a symmetric encryption scheme SE = (KG, E ,D). The concrete domain [[Data]]Aη

contains all the possible bit-strings and is equipped with the distribution induced byKG.
Interpretation for constants 0 and 1 are respectively bit-strings 0η and 1η. The enc and
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dec function are respectively interpreted using algorithm E andD. We assume the exis-
tence in the concrete model of a concatenation operation which is used to interpret the
pair symbol. The corresponding left and right projections implement πl and πr. Finally,
as we are only interested in well-formed frames, we do not provide any computational
interpretation for tenc, tpair and samekey.

Semantic security. In this paper we use schemes that satisfy length-concealing semantic
security. The definition that we recall below uses a left-right encryption oracle LRb

SE .
This oracle first generates a key k using KG. Then it answers queries of the form
(bs0, bs1), where bs0 and bs1 are bit-strings. The oracle returns ciphertext E(bsb, k).
The goal of the adversaryA is to guess the value of bit b. His advantage is defined as:

Advcpa
SE,A(η) =

∣
∣
∣P

[
ALR1

SE = 1
]
− P

[
ALR0

SE = 1
]∣
∣
∣

Encryption scheme SE is IND-CPA secure if the advantage of any adversaryA is negli-
gible in η. The difference with standard semantic security is that we require the scheme
to hide the length of the plaintext (and therefore we do not restrict bs0 and bs1 to have
equal length). By abuse of notation we call the resulting scheme also IND-CPA secure.

Proposition 4. Let ≺ be a total order among keys. In the remainder of this proposition
we only consider well-formed adversaries for≺. Let (Aη) be a family of computational
algebras based on a symmetric encryption scheme SE . (Aη) is ≈Esym-ad-sound if SE
is IND-CPA but the converse is false.

4.1 Exclusive OR

We study the adaptive soundness problem for the usual theory and implementation of
the Exclusive Or (XOR) in the same model as given in [9]. The symbolic model Σ⊕
consists of a single sort Data⊕, an infinite number of names, the infix symbol ⊕ :
Data⊕×Data⊕ → Data⊕ and two constants 0⊕, 1⊕ : Data⊕. Terms are equipped
with the equational theory E⊕ generated by:

(x⊕ y)⊕ z = x⊕ (y ⊕ z) x⊕ y = y ⊕ x x⊕ x = 0⊕ x⊕ 0⊕ = x

As an implementation, we define the computational algebras Aη: the concrete domain
[[Data⊕]]Aη is {0, 1}η equipped with the uniform distribution; ⊕ is interpreted by the
usual XOR function over {0, 1}η, [[0⊕]]Aη = 0η, [[1⊕]]Aη = 1η. This implementation of
XOR enjoys unconditional adaptive soundness with respect to ≈E⊕ .

Proposition 5. The usual implementation for E⊕ is unconditionally≈E⊕-ad-sound.

The result follows directly from unconditionally ≈E⊕-soundness shown in [9] and
Proposition 2.

4.2 Modular Exponentiation

As a third application, we study soundness of modular exponentiation. The underlying
cryptographic assumption is hardness of the Decisional Diffie-Hellman (DDH) prob-
lem: given gx and gy , it is difficult for any feasible computation to distinguish between
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gxy and gr, when x, y and r are selected at random. The original Diffie-Hellman pro-
tocol has been used as a building block for several key agreement protocols that are
widely used in practice (e.g. SSL/TLS and Kerberos V5) as well as for group key ex-
change protocols such as AKE1 [12] or the Burmester-Desmedt protocol [14].

Symbolic model. The symbolic model consists of sortsG (group elements) andR (ring
elements), an infinite number of names forR (but no name for sort G) and the symbols:

exp : R→ G exponentiation +, · : R ×R→ R add, mult
∗ : G×G→ G mult in G − : R→ R inverse

0R, 1R : R constants

We consider the equational theory EDH generated by:

x+ y = y + x x · y = y · x (x+ y) + z = x+ (y + z)
x · (y + z) = x · y + x · z (x · y) · z = x · (y · z) x+ (−x) = 0R

0R + x = x 1R · x = x exp(x) ∗ exp(y) = exp(x+ y)

There exists a direct correspondence between terms of sortR and the set of polynomials
Z[NR] where NR is the set of names of sort R. An integer i simply corresponds to
1R + . . .+ 1R︸ ︷︷ ︸

i times

if i > 0, to −(1R + . . .+ 1R︸ ︷︷ ︸
i times

) if i < 0 and to 0R if i = 0. We also write

xn for x · . . . · x︸ ︷︷ ︸
n times

.

We put two restrictions on formal terms: products have to be power-free, i.e., xn is
forbidden for n > 1, and products must not contain more than l elements for some
fixed bound l, i.e. x1 · ... · xn is forbidden for n > l. Both restrictions come from the
DDH assumption and seem difficult to avoid [13]. Furthermore we are only interested
in frames using terms of sort G. Any frame containing only terms of sort G can be
rewritten as {x1 �→ exp(p1), ..., xn �→ exp(pn)} by orienting the last equation form left
to right. For such frames there is an immediate characterization of static equivalence.
Two frames are statically equivalent if they satisfy the same linear equations.

Proposition 6. We have that {x1 �→ exp(p1), ..., xn �→ exp(pn)} ≈EDH {x1 �→
exp(q1), ..., xn �→ exp(qn)} iff for any sequence of integer a0, a1, . . . an we have
a0 +

∑n
i=1 aipi = 0 ⇔ a0 +

∑n
i=1 aiqi = 0

This characterization can be used to decide static equivalence efficiently.

Concrete model. An Instance Generator IG is a polynomial-time (in η) algorithm that
outputs a cyclic group G (defined by a generator g, an order q and a polynomial-time
multiplication algorithm) of prime order q. The family of computational algebras (Aη)
depends on an instance generator IG which generates a cyclic group G of generator g
and of order q: the concrete domain [[R]]Aη is Zq with the uniform distribution. Symbols
+ and · are the classical addition and multiplication over Zq , exp is interpreted as
modular exponentiation of g. Constants 0R and 1R are interpreted by integers 0 and 1
of Zq . The domain [[G]]Aη contains all bit-string representations of elements of G.

A family of computational algebras satisfies the DDH assumption if its instance gen-
erator satisfies the assumption: for every probabilistic polynomial-time adversaryA, his
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advantage AdvDDH
IG,A(η) = |P

[
(g, q)← IG(η) : a, b← Zq : A(ga, gb, gab) = 1

]
−

P
[
(g, q)← IG(η) : a, b, c← Zq : A(ga, gb, gc) = 1

]
| is negligible in η. In the re-

mainder, we generally suppose that for any η there is a unique group given by IG. We
show that the DDH assumption is necessary and sufficient to prove adaptive soundness.

Proposition 7. A family of computational algebras (Aη) is ≈EDH-sound iff (Aη) is
≈EDH-ad-sound iff (Aη) satisfies the DDH assumption.

The proof of this result uses an adaptive variant of DDH called 3DH: it generalizes
several previously used variants of DDH. The main difficulty in this proof consists in
relating DDH and 3DH. Note that while adaptive soundness and (classical) soundness
are not equivalent for symmetric encryption, they coincide in this case.

4.3 Combining Encryption with Exponentiation

We illustrate our combination result (Proposition 3) by establishing a joint soundness
result for symmetric encryption and modular exponentiation.

Symbolic model. We consider an equational theory E containing both EDH and Esym.
Let Σ1 be the signature for symmetric encryption and Σ2 be the signature for modular
exponentiation, then signature Σ = Σ1 ∪ Σ2 is (Σ1, Σ2)S-layered where S contains
only one element (G,Data).

Well-formed frames. Let≺ be a total order between keys and exponentiations. A frame
ϕ (on Σ) is well-formed for ≺ if:

– ϕ does not contain any dec, tenc, tpair, πl, πr or ∗ symbol, only names and expo-
nentiations are used at key position.

– For any subterm exp(p) of ϕ used at a key position, p is linearly independent of
other polynomials p′ such that exp(p′) is a subterm of ϕ.

– For any subterm {t}t′ of ϕ, if t′′ is a subterm of t which is a name of sort Data or
an exponentiation then t′′ ≺ t′.

Concrete model. The concrete model is given by the models for symmetric encryp-
tion and modular exponentiation. We need to reflect that exponentiations can be used as
symmetric keys. The family of computational algebras (Aη) giving the concrete seman-
tics is parameterized by a symmetric encryption scheme SE and an instance generator
IG. We require that the key generation algorithm of SE randomly samples an ele-
ment of IG(η). Giving an IND-CPA encryption scheme SE ′, it is possible to build an-
other IND-CPA scheme SE which indeed uses such a key generation algorithm. This is
achieved by using a key extractor algorithm Kex [16]. This algorithm (usually a univer-
sal hash function used with the entropy smoothing theorem) transforms group elements
into valid keys for SE ′. The new encryption and decryption algorithms of SE apply the
Kex algorithm to the group element which is used as key. This produces a symmetric
key which can be used with the encryption and decryption algorithms of SE ′.

The family of computational algebras (Aη) implementing encryption with exponen-
tiation is said EE-secure if the encryption scheme SE is secure against IND-CPA and



622 S. Kremer and L. Mazaré

uses a key generation algorithm as described above and IG satisfies the DDH assump-
tion. Soundness is proven by applying Proposition 3.

Proposition 8. Let≺ be a total order between keys and exponentiations. An EE-secure
family of computational algebras (Aη) is ≈E-ad-sound for well-formed frames for ≺.

A similar result is given for symmetric encryption and XOR in the full version [22].

5 Analysis of Dynamic Group Key Exchange

Micciancio and Panjwani exemplified their adaptive soundness result from [24] on mul-
ticast protocols. We propose another application: dynamic group key exchange protocols
(DKE) such as the AKE1 protocol [12]. To keep the symbolic security notion as sim-
ple as possible we define security for protocols using only modular exponentiation: we
consider a subtheoryE ofEDH (Section 4.2) without +,−, 1R and 0R symbols and the
related equations. However our definitions and soundness results can be adapted to other
equational theories (e.g. symmetric encryption joint with modular exponentiation).

5.1 Dynamic Group Protocols

We take a simple model for DKE in the adaptive setting. A DKE protocol is described
by four operations which specify the protocol. We suppose that this specification is
given by four polynomial-time algorithms (S,J ,L,K):

– S initializes a new group. The algorithm takes as an input a list of users and outputs
the internal state s0 of the protocol as well as a list of formal terms which model
the messages that have been exchanged during the setup phase.

– J and L take as input the state of the protocol s and a list of users U1 to Un (to be
respectively added to or suppressed from the group) and output the updated state of
the protocol s′ as well as a list of formal terms representing message exchanges.

– K takes as input the state of the group s and outputs a formal term representing the
shared key of the group.

The internal state of the protocol can be thought of as the internal state of the four
algorithms that describe the protocol.

We partition the set of names of sort R according to the users: nj
i , j ∈ N, are the

nonces generated by user Ui. We require that the formal term output by K only uses
nonces for users that are currently in the group.

5.2 Security in the Symbolic Model

In our symbolic setting, the security property is expressed as reachability in a transition
system. We represent the states of this transition system as a triple 〈L,C, T 〉 where

– L is the list of users that are currently in the group;
– C is the set of corrupted users;
– T is the list of formal terms sent during the protocol execution.
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We suppose that the internal state of the protocol can be recovered from the state
〈L,C, T 〉 and tend to assimilate these two notions of state. We now describe the possible
transitions. For convenience, we use set notations for manipulating lists.

1. 〈∅, C, ∅〉 c(U)−−−→ 〈∅, C ∪ {U}, ∅〉: corruption of user U .

2. 〈∅, C, ∅〉 s(U)−−−→ 〈U , C, T 〉: setup of the group given by the list of users U , i.e.,
〈U , C, T 〉 is computed by S(〈∅, C, ∅〉,U).

3. 〈L,C, T 〉 j(U)−−→ 〈L∪U , C, T 〉∪T ′: join of users in the list U , i.e., 〈L∪U , C, T ∪T ′〉
is computed by J (〈L,C, T 〉,U).

4. 〈L,C, T 〉 l(U)−−→ 〈L \ U , C, T ∪ T ′〉: exclusion of the users in the list U , i.e., 〈L \
U , C, T ∪ T ′〉 is computed by L(〈L,C, T 〉,U).

To simplify things up, we consider a static corruption model, i.e., corruption transitions
only occur at the beginning of the protocol. Then a setup transition is taken followed by
leave and join transitions. A DKE protocol is secure if it is impossible for an adversary
to get any bit of information on the group key when no corrupted users are in the group.

Definition 9. We define a DKE protocol to be symbolically secure if for any state
〈L,C, T = {t1, ..., tn}〉 reachable from 〈∅, ∅, ∅〉 and such that C ∩ L = ∅ we have

{x1 �→ t′1, ..., xn �→ t′n, y �→ K(〈L,C, T 〉)} ≈E {x1 �→ t′1, ..., xn �→ t′n, y �→ exp(r)}

where r is a fresh nonce, N = {nj
i | Ui ∈ C} and t′i is as ti but nonces from N

have been removed, i.e. if t = exp(m1 · . . . ·m�) then t′ = exp(m′
1 · . . . ·m′

�′) where
{m′

1, . . . ,m
′
�′} = {m1, . . . ,m�} \N .

5.3 Security in the Concrete Model

We use a simplified version of the security model from [12]: some oracles in [12] are not
useful anymore in the adaptive setting. Let (S,J ,L,K) be a DKE and (Aη) a family
of computational algebras. AdversaryA interacts with the group via the following five
oracles which store the current state s of the group and use a challenge bit b.

– Setup(U1, ..., Un): initializes the group using S(U1, ..., Un) which produces the
new state s and a list of formal terms t1 to tm.A is given [[ti]]Aη for any i in [1,m].

– Join(U1, ..., Un): users U1 to Un join the group. J (s, U1, ..., Un) is executed and
outputs state s and a list of terms t1 to tm. A is given [[ti]]Aη for any i in [1,m].

– Leave(U1, ..., Un): usersU1 to Un leave the group.L(s, U1, ..., Un) is executed and
outputs state s and a list of terms t1 to tm. A is given [[ti]]Aη for any i in [1,m].

– Corrupt(U): A corrupts user U ; all nonces generated by U are given to A. As A
works in polynomial time, a polynomial number of values is sufficient.

– Test: A either receives the key of the group (output by K(s)) if b = 1 or a random
key if b = 0. This oracle can only be queried once.

As we consider a static corruption model, queries to the Corrupt oracle have to be done
before all further queries. Then the Setup oracle is called and after that the adversary
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interleaves queries to the Join and Leave oracles. The adversary makes a final call to
the Test oracle. Let Ob denote the oracles with challenge bit b. The advantage of an
adversaryA is given by: Adv(S,J ,L,K)

A,Aη
(η) = P

[
AO1 = 1

]
− P

[
AO0 = 1

]
. A DKE is

secure in the concrete model if the advantage of any adversary is negligible in η.

5.4 Soundness Result

Our symbolic model for DKE is computationally sound: if a DKE algorithm is secure
in the symbolic model, then it is secure in the computational model, provided that static
equivalence is adaptively sound (remember that we consider only modular exponentia-
tion hence static equivalence is adaptively sound under DDH).

Proposition 9. Let (Aη) be a family of computational algebras andΠ = (S,J ,L,K)
be a DKE. If (Aη) is ≈E-ad-sound and Π is secure in the symbolic model, then Π is
secure in the concrete model.
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static equivalence. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006 and ETAPS 2006.
LNCS, vol. 3921, pp. 398–412. Springer, Heidelberg (2006)

2. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational theories.
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Atallah, Mikhail J. 515
Atts, Marion 438

Barthe, Gilles 2
Basin, D. 531
Bauer, Lujo 19
Becker, Moritz Y. 203
Bertino, Elisa 72
Biddle, Robert 359
Blanton, Marina 515

Cánovas, Óscar 501
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