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Abstract. The article investigates the influence of the way packets are
chosen to be dropped (end of the tail, head of the tail) on the perfor-
mance, i.e. response time for in case of RED and DSRED queues - two
representative active queue management mechanisms used in IP routers.
In particular, the self-similar traffic is considered. The quantitative analy-
sis is based on simulation and Markov chain models solved numerically.

1 Introduction

The algorithms of queue management at IP routers determine which packet
should be deleted when necessary. The active queue management, recommended
now by IETF, enhances the efficiency of transfers and cooperate with TCP con-
gestion window mechanism in adapting the flows intensity to the congestion at
a network [1]. In classic RED the incoming packet is considered to be dropped
or marked. In [2] S. Floyd wrote: ”when RED is working right the average queue
size should be small, and it shouldn’t make too much different one way or an-
other whether you drop a packet at the front of the queue or at the tail”. Here,
we reconsider the problem of choosing either tail or front packets in presence of
self-similar traffic. Sections 2 gives basic notions on active queue management,
Section 3 presents briefly a self-similar model used in the article. Section 4 gives
Markov chain and simulation models of the considered two active queue man-
agement schemes: RED and Double-Slope RED (DSRED). Section 5 discusses
numerical results, some conclusions are given in Section 6.

2 Active Queue Management

In passive queue management, packets coming to a buffer are rejected only if
there is no space in the buffer to store them, hence the senders have no earlier
warning on the danger of growing congestion. In this case all packets coming
during saturation of the buffer are lost. The existing schemes may differ on the
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choice of packet to be deleted (end of the tail, head of the tail, random). During
a saturation period all connections are affected and all react in the same way,
hence they become synchronised. To enhance the throughput and fairness of
the link sharing, also to eliminate the synchronisation, the Internet Engineering
Task Force (IETF) recommends active algorithms of buffer management. They
incorporate mechanisms of preventive packet dropping when there is still place
to store some packets, to advertise that the queue is growing and the danger of
congestion is ahead. The probability of packet rejection is growing together with
the level of congestion. The packets are dropped randomly, hence only chosen
users are notified and the global synchronisation of connections is avoided. A
detailed discussion of the active queue management goals may be found in [1].

The RED (Random Early Detection) algorithm was proposed by IETF to
enhance the transmission via IP routers. It was primarily described by Sally
Floyd and Van Jacobson in [3]. Its performance is based on a drop function
giving probability that a packet is rejected. The argument avg of this function is a
weighted moving average queue length, acting as a low-pass filter and calculated
at the arrival of each packet as

avg = (1 − w)avg′ + wq

where avg′ is the previous value of avg, q is the current queue length and w is a
weight determining the importance of the instantaneous queue length, typically
w � 1. If w is too small, the reaction on arising congestion is too slow, if w is too
large, the algorithm is too sensitive on ephemeral changes of the queue (noise).
Articles [3,4] recommend w = 0.001 or w = 0.002, and [5] shows the efficiency
of w = 0.05 and w = 0.07. Article [6] analyses the influence of w on queueing
time fluctuations, obviously the larger w, the higher fluctuations. In RED drop
function there are two thresholds Minth and Maxth. If avg < Minth all packets
are admitted, if Minth < avg < Maxth then dropping probability p is growing
linearly from 0 to pmax :

p = pmax
avg − Minth

Maxth − Minth

and if avg > Maxth then all packets are dropped. The value of pmax has also a
strong influence on the RED performance: if it is too large, the overall throughput
is unnecessarily choked and if it’s too small the danger of synchronisation arises;
[4] recommends pmax = 0.1. The problem of the choice of parameters is still dis-
cussed, see e.g. [7,8]. The mean avg may be also determined in other way, see [9]
for discussion. Despite of evident highlights, RED has also such drawbacks as low
throughput, unfair bandwidth sharing, introduction of variable latency, deterio-
ration of network stability. Therefore numerous propositions of basic algorithms
improvements appear, their comparison may be found e.g. in [10].

DSRED (double-slope RED) introduced in [11] and developed in [12] is one
of these modifications. Three thresholds Kl, Km and Kh (usually Km = (Kl +
Kh)/2) and parameter γ determine two slopes of the DSRED drop function:
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p(avg) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if avg < Kl

α(avg − Kl) if Kl ≤ avg < Km

1 − γ + β(avg − Km) if Km ≤ avg < Kh

1 if Kh ≤ avg ≤ N

where

α =
2(1 − γ)
Kh − Kl

, β =
2γ

Kh − Kl

The double slope function makes the algorithm more elastic (more parameters
to fix); gentle at the beginning (for low congestion) drop function enhances
throughput and reduces queue waiting times.

In this article, we present analytical (based on Markov chain) and simulation
models of RED and DSRED. We assume either Poisson or self-similar traffic. Be-
cause of the difficulty in analyzing RED mathematically [13], RED and DSRED
are studied in an open-loop scenario.

3 Self-similarity of Network Traffic

Measurements and statistical analysis of network traffic, e.g. [14,15] show that it
displays a self-similar character. It is observed on various protocol layers and in
different network structures. Self-similarity of a process means that the change of
time scales does not affect the statistical characteristics of the process. It results
in long-range dependence and makes possible the occurrence of very long periods
of high (or low) traffic intensity. These features have a great impact on a network
performance. They enlarge the mean queue lengths at buffers and increase the
probability of packet losses, reducing this way the quality of services provided
by a network. Also TCP/IP traffic is characterised by burstiness and long-term
correlation, [16], its features are additionally influenced by the performance of
congestion avoidance and congestion management mechanisms, [17,18].

Let a process Xk represent the traffic intensity measured in fixed time intervals
and let the aggregated process X

(m)
k be the average of the basic process over a

group of m consecutive samples: X
(m)
k = 1

m (Xk·m−m+1 + ... + Xk·m), where
k ≥ 1. There are several methods used to check if a process is self-similar.
The easiest one is a visual test: one can observe the behaviour of the basic
process Xt and the aggregated process X

(m)
k . If these processes have the same

character - the increase of m does not smooth the process, the process is self-
similar. More formally, the difference between short-range dependent and long-
range dependent (self-similar) process is as follows [15]: for the first process
the sum of covariance

∑k=∞
k=0 cov(k) is convergent, the spectrum of the process

S(ω) =
∑k=∞

k=−∞ R(k)e−jωk, where R(k) is the autocorrelation function of the

process, is finite at ω = 0, and the variance var(X(m)
k ) tends asymptotically for

large m to the function var(X)
m . In the case of long-range dependent process, the

sum of covariance
∑k=∞

k=0 cov(k) is divergent, S(0) is singular, and var(X(m)
k )
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tends asymptotically to var(X)
mβ , where 0 < β < 1. The parameter β is related

to the Hurst parameter H (often used to characterise the self-similarity of a
process): H = 1 − β

2 [15]. For 0.5 < H ≤ 1 process is self-similar; the closer H is
to 1, the greater is the degree of persistence of long-range dependence.

To represent the self-similar traffic we use here a model introduced by S.
Robert [19,20]. The time of the model is discrete and divided into unit length
slots. Only one packet can arrive during each time-slot. In the case of memoryless,
geometrical source, the packet comes into system with fixed probability α1. In
the case of self-similar traffic, packet arrivals are determined by a n-state discrete
time Markov chain called modulator. It was assumed that modulator has n = 5
states (i = 0, 1, . . .4) and packets arrive only when the modulator is in state
i = 0. The elements of the modulator transition probability matrix depend only
on two parameters: q and a – therefore only two parameters should be fitted to
match the mean value and Hurst parameter of the process. If pij denotes the
modulator transition probability from state i to state j, then it was assumed
that p0j = 1/aj, pj0 = (q/a)j , pjj = 1 − (q/a)j where j = 1, . . . , 4, p00 =
1− 1/a− . . .− 1/a4, and remaining probabilities are equal to zero. The passages
from the state 0 to one of other states determine the process behaviour on one
time scale, hence the number of these states corresponds to the number of time-
scales where the process may by considered as self-similar.

The model was fitted to real data [21]. This model enables us to represent,
with the use of few parameters, a network traffic which is self-similar over several
time-scales.

4 Analytical and Simulation Models of RED and DSRED

The RED or DSRED queue mechanisms are represented by a single-server model
based either on discrete-time Markov chain or simulation. The service time rep-
resents the time of a packet treatment and dispatching. Its distribution is geo-
metric. The model of incoming traffic was presented above. For both considered
in comparisons cases, i.e. for geometric interarrival time distribution (which cor-
responds to Poisson traffic in case of continuous time models) and self-similar
traffic, the considered traffic intensities are the same. A detailed discussion of
the choice of model parameters is also presented in [22].

In Markov model, the Markov chain state is defined by the number of packets
in the queue, the integer part of the avg value and by four flags u1, u2, u3, u4
approximating the rest of this value (as avg is a real number, it is impossible
to attribute a state to each of the infinite number of its possible values) in the
following way:

[(i − 1) ∗ 0.25] + (i ∗ 0.25)
2

where i is the number of non-zero flag. If all flags are null, we assume the integer
value of avg. In case of self-similar traffic this state definition is supplemented
by a variable denoting the state of the modulator.
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The vector p of state probabilities is given by a system of linear equations

p = p ∗ P

where P is the transition probability matrix which is generally large (the num-
ber of states, hence the order of the matrix P may be hundreds of thousands
or millions), sparse and ill conditioned, and the use of well known and broadly
used numerical algorithms for algebraic and differential equation systems gives
poor results. That is why a projection method using Krylov subspaces, as rec-
ommended in [23] was chosen.

The method of Arnoldi is an orthogonal projection process onto the Krylov
subspace. It may be used to compute approximations to the unit eigenvalue
and the corresponding eigenvector of the matrix P . The matrix Hm (upper
Hessenberg matrix) represents the restriction of the linear transformation P to
the subspace Km. Approximation of the eigenvalue of P can be obtained from
the eigenvalue of Hm. We often use the so-called Rayleigh-Ritz procedure for
extracting eigenvalue and eigenvector approximations from a given subspace. If
λi is an eigenvalue of Hm and pi the corresponding eigenvector, i.e.,

Hmpi = λipi,

then λi is taken as an approximation to an eigenvalue of P , and Vmpi as an
approximation to the corresponding eigenvector of P .

To simplify the notation, we denote: v = p(ti), and w = p(ti+1). The solution
should have the form w = eP v (for simplicity, we omit here the constant τi =
ti+1 − ti).

Following the observation that a truncated series of order m−1 (or, more gen-
erally, that approximating eP v by a polynomial of degree m−1, notice that this
polynomial is a linear combination of the vectors v, Pv, ..., Pm−1v), will yield an
element of the Krylov subspace:

Km(P, v) ≡ Span{v, Pv, ..., Pm−1v}
The method is reduced to find such as element Km(P, v) of this space, that best
approximates w = eP v. The set of base vectors of these subspace is denoted by
Vm = [v1, v2, ..., vm], v1 = v/β where β =‖ v ‖2, v = βVme1 and:

w ≈ Vm

[
(V T

m Vm)−1V T
m eP Vm

]
βe1 (1)

In vector ei the i-th element is equal 1 and the others are null. The set of base
vectors Vm is obtained via Arnoldi’s procedure [23]:
1. v1 = v/ ‖ v ‖2
2. For j=1,2,...,m do

z = Pvj

For i = 1, 2, ..., j do
hij = vT

i z
z = z − hijvi

hj+1,j =‖ z ‖2
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vj+1 = z/hj+1,j

The above algorithm is the modified Gram-Schmidt orthogonalization proce-
dure, the obtained vectors vi are orthonormal, and the upper Hessenberg matrix
Hm (its dimension is m × m) which is composed of coefficients hij holds the
equation:

PVm = VmHm + hm+1,mvm+1e
T
m (2)

The set of vectors Vm is orthonormal, hence we can simplify the eq. (1):

w ≈ βVm(V T
m eP Vm)e1

If we approximate V T
m eP Vm by eV T

m PVm the sought vector w will become:

w ≈ βVmeV T
m PVme1

Also, because the set of vectors is orthonormal Vm we may rewrite (1) as:

Hm = V T
m PVm (3)

and the solution may be expressed as:

w ≈ βVmeHme1

This solution still needs the calculation of matrix exponential but the size of the
matrix is considerably smaller (m - the dimension of Krylov subspace is signif-
icantly smaller than n - the number of states of the considered system). Hence
we can use any method advised for small systems. e.g. Padé approximation.

In the above description the constant τ was omitted. It may be easily put to
the obtained solution because V T

m (Pτ)Vm = Hm, and Krylov subspaces related
to P and Pτ are indentical.

Hence, the use of the Krylov subspaces for transient states consists in:

– the use of Arnoldi procedure to obtain the orthonormal set of base vectors
Vm and Hessenberg matrix Hm.

– the use of Padé approximation to obtain eHmτ .
– calculation of the state probability vector approximated by βVmeHmτe1.

To validate the Markovian results, we used a simulation packet OMNET++,
written in C++ by A. Varga [http://www.omnetpp.org/]. Below we present some
numerical results.

5 Numerical Results

Our goal is to capture the influence of the way a packet is chosen to be deleted
(end of the tail, head of the tail) on the RED and DSRED queueing times. Input
traffic intensity (for geometric and self-similar traffic) was chosen as α = 0.5,



The Drop-From-Front Strategy in AQM 67

and due to the modulator characteristics, the Hurst parameter of self-similar
traffic was fixed to H = 0.78.

The RED parameters had the following values: buffer size 250 packets, thresh-
old values Minth = 100 and Maxth = 200, pmax = 0.1, w = 0.002 or w = 0.07.
Parameter μ of geometric distribution of service times (probability of the end of
service within a current time-slot) was μ = 0.25 or μ = 0.5. Due to the changes
of μ, two different traffic loads (low and high) were considered.

In case of DSRED policy, the traffic pattern and the buffer size are the same,
parameters Kl = Minth = 100 and Kh = Maxth = 200, intermediate threshold
Km = 150. The shaping parameter γ had three values γ = 0.15, 0.5, 0.85.

Fig. 1 displays a comparison of analytical and simulation results. They are
almost identical if probabilities are greater then 10−10, for smaller values the
simulation results are not significant (the simulation run involved 250 millions
of packets) while Markov model is able to give probabilities of very rare events.

If the mean queue length is relatively low, the influence of dropping scheme
on queueing time is negligible: the introduction of drop-from-front strategy gives
0.7% shorter mean queueing time in case of RED and 0.8% shorter mean queue-
ing time in case of DSRED, see Fig. 2.
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Fig. 1. Queue distribution for RED queue: geometric source, α = 0.5, μ = 0.25, w =
0.07, analytic and simulation results

Naturally, the introduction of DSRED gives shorter mean queue length and
shorter mean queueing time compared to RED. However, when the Poisson traffic
is replaced by self-similar one with the same intensity and preserving the same
parameters of RED, the length of the queue grows and the influence of the
dropping scheme is more visible: drop-from-front strategy reduces mean queueing
time by 16.4%. A comparison of response time distributions for RED queue, for
both strategies is presented in Fig. 3 (left). The same comparison in case of
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Fig. 2. Waiting times for RED (left) DSRED (right) queues: drop-from-front and drop-
from-tail strategies, geometric source, α = 0.5, μ = 0.5, w = 0.07, γ = 0.5.
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Fig. 3. Waiting times for RED (left) and DSRED (right) queues: drop-from-front and
drop-from-tail strategies, self-similar source, α = 0.5, μ = 0.5, w = 0.07, γ = 0.5.
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Fig. 4. Waiting times for RED (left) and DSRED (right) queues: drop-from-front and
drop-from-tail strategies, self-similar source, α = 0.5, μ = 0.5, w = 0.002, γ = 0.5.

DSRED queue is presented in Fig. 3 (right). In this case the response time with
drop-from-front strategy is 18.1% shorter then for tail-drop mechanism.
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Fig. 5. Waiting times for RED (left) and DSRED (right) queues: drop-from-front and
drop-from-tail strategies, geometric source, α = 0.5, μ = 0.25, w = 0.07, γ = 0.5.
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Fig. 6. Waiting times for RED (left) and DSRED (right) queues: drop-from-front and
drop-from-tail strategies, self-similar source, α = 0.5, μ = 0.25, w = 0.07, γ = 0.5.
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Table 1. Comparison of RED and DSRED (geometric and self-similar traffic)

Mean
queue
length

Variation
of queue
length

Loss prob-
ability

Mean
waiting
time

Variance
of waiting
time

RED μ = 0.5
w = 0.002

GEO 64.92 1562.07 0.00389652 132.34 6340.05

SELF-S 130.61 6484.46 0.150939 308.49 16866.7

DSRED γ = 0.5
μ = 0.5 w = 0.002

GEO 54.65 1077.13 0.00455001 111.8 4385.54

SELF-S 89.53 3703.73 0.168627 218.26 10063.2

RED μ = 0.25
w = 0.002

GEO 199.84 82.33 0.500013 803.35 3731.58

SELF-S 169.86 5056.31 0.551741 760.58 34059.4

DSRED γ = 0.5
μ = 0.25 w = 0.002

GEO 150.01 131.036 0.500066 604.09 3910.51

SELF-S 136.21 3962.95 0.55552 617.071 31355

RED μ = 0.5
w = 0.07

GEO 64.43 1504.8 0.00390818 131.375 6109.14

SELF-S 123.79 5570.37 0.151645 293.89 13634.1

DSRED γ = 0.15
μ = 0.5 w = 0.07

GEO 53.07 977.58 0.004675 108.63 3985.63

SELF-S 76.1 2202.89 0.175138 186.39 4924.46

DSRED γ = 0.85
μ = 0.5 w = 0.07

GEO 54.87 1018.47 0.00457423 110.67 4150.01

SELF-S 83.01 2628.08 0.170974 202.25 6025.25

DSRED γ = 0.85
μ = 0.5 w = 0.07

GEO 57.91 1182.4 0.00426957 118.314 4811.09

SELF-S 100.03 3731.86 0.162186 240.73 8821.86

RED μ = 0.25
w = 0.07

GEO 199.75 3.47 0.500006 803 2467.85

SELF-S 163.2 4497.22 0.55187 735.69 25134.7

DSRED γ = 0.15
μ = 0.25 w = 0.07

GEO 129.41 24.57 0.499999 521.63 1958.88

SELF-S 109.52 2313.9 0.559453 501.39 14030.4

DSRED γ = 0.85
μ = 0.25 w = 0.07

GEO 150 40.05 0.499999 603.98 2554.41

SELF-S 130.26 3100.71 0.555498 590.9 18972.3

DSRED γ = 0.85
μ = 0.25 w = 0.07

GEO 170.59 24.58 0.499999 686.33 2453.79

SELF-S 144.43 3642.48 0.554022 652.57 21408.3

The change of wq value (from 0.07 to 0.002) in computation of moving aver-
age results in longer response time and mean queue – see the Table – but the
introduction of drop-from-front in place of tail-drop gives about 1% of changes.
A comparison of queueing time distributions in these cases is given in Fig. 4 (left
- RED) and (right - DSRED).

In case of heavy traffic, for both mechanisms RED/DSRED, irrespective of the
wq value and of the traffic self-similarity, drop-from-front strategy gives two times
shorter mean queueing times. Queueing time distributions for all considered cases
are presented in Figs. 5, 6, 7.
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6 Conclusions

Drop-from-front strategy, when applied in place of tail-drop one, results in re-
duction of mean queueing time in RED/DSRED mechanisms of active queue
management. In case of light load, the difference is more visible for self-similar
traffic. In case of heavy load, the difference is also substantial for short-dependent
traffic. Hence the application of drop-from-front strategy in AQM mechanisms
may be recommended for connections with real-time requirements, even if the
quantitative results depend on the distribution of the packet size and thus may
differ slightly from presented here.
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