
Performance Analysis of the REAchability
Protocol for IPv6 Multihoming

Antonio de la Oliva1, Marcelo Bagnulo2, Alberto Garćıa-Mart́ınez1,
and Ignacio Soto1

1 Universidad Carlos III de Madrid�

2 Huawei Lab at Universidad Carlos III de Madrid
{aoliva,marcelo,alberto,isoto}@it.uc3m.es

Abstract. There is ongoing work on the IETF aimed to provide sup-
port for different flavors of multihoming configurations, such as SHIM6
for multihomed sites, multiple CoAs support in MIP for multihomed mo-
bile nodes and HIP for multihomed nodes and sites. A critical aspect for
all the resulting multihoming protocols is to detect failures and gain in-
formation related with the paths available between two hosts. The Failure
Detection and Locator Path Exploration Protocol (in short REAchabil-
ity Protocol, REAP) being defined in the SHIM6 WG of the IETF is a
good candidate to be included as a reachability detection component on
protocols requiring this functionality. Performance study is performed by
combining analytical estimations and simulations to evaluate its behav-
ior and tune its main parameters.

Keywords: multihoming, failure detection, SHIM6, REAP.

1 Introduction

So far, IPv4 has failed to provide a scalable solution to preserve established
communications for arbitrarily small-size sites connected to the Internet through
different providers after an outage occurs. This is so because the current IPv4
multihoming solution, based on the injection of BGP [BGPMULT] routes in
order to make a prefix reachable through different paths, would collapse if the
number of managed routing entries would increase to accommodate small sites
and even hosts. In particular, this restriction prevents end hosts equipped with
different access interfaces, such as IEEE 802.11, UMTS, etc, connected to dif-
ferent providers, to benefit from fault tolerance, traffic engineering, etc. On the
other hand, the huge address space provided by IPv6 has enabled the config-
uration of public addresses from each of the providers of an end host. A step
further is been taken in the SHIM6 WG of the IETF to develop a framework
to manage in an end-to-end fashion the use of the different addresses between
a communication held by two hosts. To achieve this, a SHIM6 layer is included

� This work was supported by IST FP6 Project OneLab and by the Spanish MEC
through Project CAPITAL (TEC2004-05622-C04-03).

Y. Koucheryavy, J. Harju, and A. Sayenko (Eds.): NEW2AN 2007, LNCS 4712, pp. 443–454, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

444 A. de la Oliva et al.

inside the IP layer to assure that the same IP address pair is provided to the
upper layers to identify a given communication, while the packets flowing in the
network can use different IP addresses (locators) to be able to enforce different
paths. The SHIM6 [SHIM] [SHIMAPP] layers of two communicating nodes that
want to benefit from the multihoming capabilities first execute a four-way hand-
shake to exchange in a secure way the relevant information for managing the
IP addresses that play the roles of identifiers and locators. Once this exchange
has been performed, both SHIM6 layers use the REAP (REAchability Protocol)
protocol to timely detect failures in the currently used path, and once a failure is
detected to select a new path through which the communication could be contin-
ued. Note that while the REAP protocol is being defined as a component of the
SHIM6 multihoming solution, it is envisioned that such a protocol could became
a generic component in different scenarios in which end-to-end path validation
is of paramount concern, such as HIP [HIP] or Mobile IPv6 with registration
of multiple CoAs [MONAMI].It is straightforward to conclude from the frame-
work presented above that the REAP protocol determines the performance that
upper layers perceive when an outage occurs in the communication path. The
path failure detection function of the REAP protocol relies on timers driven by
the inspection of upper layer traffic, and by specific Keep Alive probe packets
when upper layer traffic is too sparse. The current specification of the REAP
protocol lacks of experimental support to properly configure the timers of the
protocol and to fully understand the interaction with transport layers such as
UDP or TCP. In this paper we simulate the protocol with the OPNET1 tool and
we analyze the configuration of these timers and the impact on different type of
applications. The remainder of the paper is organized as follows: A description of
the REAP protocol is given in section 2. The scenario used in the simulation, as
well as the details of the simulation environment are shown in section 3. Section
4 presents the results obtained regarding the behavior of UDP (section 4.1) and
TCP (section 4.2) protocols, providing an analysis of several application types.
Finally in section 5 we provide the conclusions of our work.

2 Failure Detection and Path Exploration in the SHIM6
Architecture

The SHIM6 architecture is currently being defined by the IETF to provide mul-
tihoming between hosts with multiple provider independent addresses. The ar-
chitecture defines a shim sublayer, placed in the IP layer, which is responsible
for ensuring that the same local and remote addresses are provided to the up-
per layers for the peers involved in a given communication, while at the same
time different addresses can be used to allow the usage of different paths. As a
consequence, two roles are assumed by the IP addresses. The term identifier is
used for addresses passed to transport and application layers, and the term lo-
cator is reserved for the actual addresses used for IP forwarding. SHIM6 defines

1 OPNET University Program, http://www.opnet.com/services/university/

Performance Analysis of the REAchability Protocol 445

two components to manage the identifier/locator relationship in two commu-
nicating peers: the secure exchange between the peers of information related
with identifiers and locators, performed by the SHIM6 protocol [SHIM], and
the identification of communication failures and the exploration of alternative
paths.Failure detection does not need specific tools if traffic is flowing between
two hosts. On the other hand, when a node has no packets to send, it is irrele-
vant for the node if the locator pair is properly working or not, since it has no
information to transmit. So, a potential relevant failure situation occurs when a
node is sending packets but it is not receiving incoming packets. Such situation
does not necessarily imply a failure, since a unidirectional flow may be being
received, but this is indistinguishable from a failure without additional tests.
In this case, the node needs to perform an explicit exchange of probe packets
to discover if the current locator pair is properly working. This exchange is de-
scribed in the REAchability Protocol, REAP [REAP] specification. The REAP
protocol relies on two timers, the Keep Alive Timer and the Send Timer, and
a probe message, namely the Keepalive message. The Keep Alive Timer TKA

is started each time a node receives a data packet from its peer, and stopped
and reset, each time the node sends a packet to the peer. When the Keep Alive
Timer expires, a Keep Alive message is sent to the peer. The Send Timer TSend,
defined roughly as three times the Keep Alive Timer plus a deviation to ac-
commodate the Round Trip Time, is started each time the node sends a packet
and stopped each time the node receives a packet from the peer. If no answer
(either a Keep Alive or data packet) is received in the Send time period a failure
is assumed and a locator path exploration is started. Consequently, the Send
timer reflects the requirement that when a node sends a payload packet there
should be some return traffic within Send Timeout seconds. On the other hand,
the Keepalive timer reflects the requirement that when a node receives a pay-
load packet there should a similar response towards the peer within Keepalive
seconds (if no traffic is interchanged, there is no Keep Alive signaling). As a con-
sequence, there is a tight relationship between the values of the timers defined
by the REAP protocol and the time required by REAP to detect a failure. The
current specifications suggest a value of 3 seconds for the Keepalive Timer, and
of 10 seconds for the Send Timer, although these values are supported by neither
analytical studies nor experimental data.Once a node detects a failure, it starts
the path exploration mechanism. A Probe message is sent to test the current
locator pair, and if no responses are obtained during a period of time called
Retransmission Timer TRTx, the nodes start sending Probes testing the rest of
the available address pairs, using all possible source/destination address pairs.
Currently, a sequential algorithm is defined to drive the exploration of locator
pairs, behavior that will be assumed for the rest of the paper. So far the REAP
specification process has focused on functionality, without paying too much at-
tention to performance metrics in common operation conditions, such as the
time required to detect a failure and recover it. An experimental analysis would
provide relevant guidelines to tune the main parameters that define the REAP
behavior when combined with different types of applications. In particular,

446 A. de la Oliva et al.

interaction with applications using TCP should be considered, in order to char-
acterize the interactions between REAP and the flow and congestion control
mechanisms provided by this protocol. When UDP transport is considered, the
resulting behavior is driven mainly by the application protocol; in this case rel-
evant applications should be analyzed. In the next sections we perform some
simulations that try to provide valuable information related with REAP timer
configuration for applications using UDP and TCP.

3 Simulation Setup

In this section we present the scenario used to test the path failure detection
functionality of the REAP protocol. Figure 1 shows two nodes, Node A and B,
each one with two interfaces and an IPv6 address configured on each interface.
All simulations have been performed by establishing a communication through
the pair (IPA1, IPB1). All traffic exchanged between these IP addresses goes
through Cloud 1 and 2. At a certain time, the link connecting Cloud 1 and 2
fails, this is detected by REAP and after a path exploration, the communication
is continued using the IP pair (IPA2, IPB2). Tests performed involve the TCP

Fig. 1. Simulated Scenario

and UDP protocols. The TCP tests, designed to evaluate the TCP behavior in
cases with high and low data rates, are performed using an FTP file download
application and a Telnet application. The traffic used to evaluate UDP behavior
corresponds to either a Voice over IP (VoIP) application showing bidirectional
packet exchange or to an unidirectional voice flow. Note that unidirectional flows
result in increased exchange of REAP specific packets.For TCP, the Windows
XP model defined in OPNET has been used. For UDP, a VoIP conversation,
using the codec G.729 with a compression delay of 0.02 seconds.

The RTT in both paths is the same, it has been implemented as a normal
distribution with mean 80ms and 20ms variance. The failure event occurs at
a time defined by an uniform distribution between 75 and 125 seconds. All
simulations have been run for 250 seconds, the presented results are the average

Performance Analysis of the REAchability Protocol 447

of 45 samples. The real values are within ±10% (on the worst case) of the
estimated values with a confidence interval of 95%.

4 Analysis of the Results

In order to find the values for the REAP timers that optimize the behavior of
TCP and UDP when a path failure occurs, several measures have been per-
formed. The main metric used through the analysis is the Application Recovery
Time. This metric is defined as the difference in time between the last packet
arriving through the old IP locators (addresses) and the first packet arriving
through the new ones. This metric accurately measures the time to recover from
a path failure when there is continuous traffic. The analysis is structured in the
following items:

– UDP behavior: To fully understand the behavior of applications using UDP,
two types of traffic have been considered, bidirectional traffic (VoIP conver-
sation) and unidirectional traffic (streaming of audio).

– TCP behavior: TCP incorporates several characteristics such as congestion
control and reliability that determines the resulting performance when a
valid path is provided as a result of the REAP operation. To understand the
behavior of applications using TCP two traffic types have been considered,
a FTP download from a server and a telnet session showing sparse traffic
exchange. With these two traffic types the behavior of applications with high
traffic demands and applications with low traffic profiles are considered.

4.1 UDP Behavior

Consider that a failure occurs, when the TSend timer expires, the node tries to
reach the peer by sending a probe to the IP address that is currently in use.
This probe expires after TRTx seconds. At this time, a second probe is sent to
the secondary IP address. The path exploration mechanism finalizes after the
exchange of 3 probes per peer, directed to the secondary IP addresses. The time
required to finalize the path exploration mechanism is almost constant (there is
some variation due to the RTT variance) with a value of 0.7 seconds2. Figure 2
shows the Recovery time for different TSend (TKA = TSend/3) values and for two
types of UDP applications, Voice Over IP (VoIP) and an unidirectional VoIP
flow. The results follow the expected behavior, being the relation between the
Recovery Time and the TSend linear. This relation was expected to be linear
since UDP is not reactive to path conditions and once the path is restored traf-
fic is immediately sent through the new IP locators. Note that in figure 2 the
Recovery Time of the unidirectional traffic is lower than the bidirectional one.
The difference between them can be quantified and, in mean, it is approximately

2 This value is obtained by experimental results, although it can be computed as
0.5sec + 3RTT .

448 A. de la Oliva et al.

Fig. 2. UDP Recovery Time

equal to TKA

2 . This behavior is due to the fact that when there is only unidi-
rectional traffic, Keep Alive messages are always exchanged in a regular basis.
When a failure occurs, the last Keep Alive was probably received at the peer
side some time before the failure. So the TSend was started when the first packet
after the reception of the Keep Alive is sent, and thus is, probably, some time
before the failure. On the other hand, if we have continuous traffic in both ways,
the TSend timer is probably started closer to the time of the failure (the last
time a packet was sent after the reception of a packet from the other side).

Keep Alive Signaling on the unidirectional case. The worst case scenario
related with the overhead on signaling introduced by REAP is the unidirectional
communication traffic case. If the traffic is unidirectional, Keep Alive messages
are exchanged in a regular basis to maintain the relation updated. Once a packet
is received, the TKA timer is initiated, after this time period without sending
any packet, a Keep Alive message is sent. The timer is not set again until a new
packet arrives, hence the number of Keep Alive messages sent is dependant on
the transmission rate of the source. If we call δ the time between two consecutive
packets sent by the source, δ is an upper boundary to the time between sending a
Keep Alive message and starting the Keep Alive timer again. Finally, the formula
providing the number of Keep Alive messages sent per second is 1

TKA+δ .

4.2 TCP Behavior

FTP Application. Figure 3 shows the Recovery Time achieved while vary-
ing the TSend timer. Note that the results for TCP traffic are not linear with

Performance Analysis of the REAchability Protocol 449

Fig. 3. TCP Recovery Time

the TSend parameter as occurred with the UDP values (figure 2). This behav-
ior is due to the mechanisms implemented in TCP for congestion detection and
avoidance, in particular dependent on the retransmission timeout of TCP. TCP
interprets a retransmission timeout as an indication of congestion in the network,
so it uses an exponential back-off to retransmit the packets to avoid increasing
the congestion. This mechanism affects the Recovery Time, since although the
path has been reestablished, the packets will not be retransmitted until the re-
transmission timeout expires. To show a detailed explanation of this behavior we
present figure 4(a). Figure 4(a) presents, for a given experiment (TSend = 10sec),
the Retransmission Timeout, Congestion Window and traffic sent through both
paths. Traffic starts being sent through the primary path, until the link fails.
At this moment the congestion window decreases and the retransmission timer
increases. When the path exploration mechanism ends, the retransmission timer
set up to 8 seconds has not expired. When it expires, packets are sent accord-
ing to the slow start policy set for TCP. Figure 5 shows the difference in time
between the arrival of a packet in a connection with a failure and the arrival of
the same packet if no failure in the path occurs. As can be observed, packets
suffer a big delay when the link fails (this delay is equivalent to the time needed
to discover the failure and complete a path exploration mechanism), and then
it remains roughly constant. This effect is due to the increase in the conges-
tion window after the communication is recovered, packets will start to be sent
faster until the congestion window reaches its top, after this packets are sent in
a constant way, this behavior can be observed in figures 4(a) and 5. Due to the
explanation presented above, we argue that the stair shaped graph in figure 3
is caused by the impact of the backoff mechanism of the retransmission timer
of TCP. Figure 6, presents the backoff mechanism used by TCP to set up the

450 A. de la Oliva et al.

(a) Normal TCP operation

(b) TCP operation resetting the retransmission timeout

Fig. 4. TCP behavior explanation

retransmission timer. As the number of retransmissions increases, the retrans-
mission timer duplicates its value. We argue that as the TSend varies, the instant
in time when the path is recovered falls in one of the steps presented in figure
6, this is the cause of the differences in time presented in figure 3.To improve

Performance Analysis of the REAchability Protocol 451

Fig. 5. Difference in time between packets in a communication with path failure and
without path failure

Fig. 6. TCP Retransmission Timeout

the performance, we propose to reset the retransmission timer of TCP after a
new path is chosen for the communication (figure 4(b)). Notice that this is not
only more efficient, but also appropriate as the retransmission timer value is
dependant on the properties of the path. In the simulator, we implemented a

452 A. de la Oliva et al.

Fig. 7. UDP vs TCP (resetting the retransmission timer) Recovery Time

hook in the TCP stack to allow REAP to reset the retransmission timer forc-
ing TCP to start retransmitting packets immediately. The experimental results
of this proposal are presented in figure 7 along with the previous results for UDP
bidirectional VoIP traffic and TCP traffic to easy the comparison. As expected,
the relation between the TCP Recovery Time and TSend is linear, and even more,
the TCP modified behavior is very similar to UDP.

Telnet Application. To conclude the TCP study, an application with low data
traffic has been analyzed. The chosen application is Telnet, in which usually long
periods of time without packet transmission occurs. The design of REAP tries
to minimize signalling overhead, so no Keep Alive probing is performed when
no upper layer traffic is exchanged, due to this behavior, REAP will notice the
failure after a time, defined by TSend, of the first packet sent after the failure. To
show this behavior figure 8 is presented. The Application Recovery Time metric,
refers to the time elapsed between the first packet (using the old locators) sent
after the failure and the first packet sent using the new locators. On this time
period, the failure discovery and path exploration mechanisms are performed.
The recovery procedure start time offset depends on the time between the path
failure and the time when the application first tries to send a packet, but this
offset is not important since the application is not affected by the failure because
it was not trying to exchange any traffic. Figure 8 presents a similar trend to
figure 3, presented on this figure for comparison purposes. The impact on the
Application Recovery time of resetting the retransmission timer of TCP is shown
in figure 8. As can be seen the effect is similar to the one presented on figure 7,
being it a noticeable decrease on the Recovery Time of the application.

Performance Analysis of the REAchability Protocol 453

Fig. 8. Recovery time in a telnet application

TCP Reset Time. One of the most important characteristics of the REAP
protocol to work in a TCP environment is to handle the recovery before the TCP
session expires. In order to measure how much address pairs may be checked in
the path exploration phase before TCP resets the connection, several tests have
been done, using the default TCP configuration of a Microsoft Windows Server
2003 machine. The TCP stack implemented on it, resets the TCP connection if a
limit of 53 retransmissions is reached. The time between the failure detection and
the reset of the connection is of 75 seconds in mean.The REAP specification sets a
backoff mechanism to handle the retransmission in the path exploration protocol.
This mechanism follows Tout = 2n where n is the number of the retransmission
count. This exponential backoff starts when the number of addresses proved is
higher than 4, for the first 4 retransmissions a Tout of 0.5 seconds is used. The
exponential backoff has a limit of 60 seconds, where it reaches the maximum,
being the Tout for the rest of the retransmissions of 60 seconds.Taking into
account the backoff mechanism, the number of possible IP address pairs explored
is of 10. It is worth to notice that the first try of the REAP protocol is to check
the current IP pair being used.As the previous results prove, the REAP protocol
can check a big number of IP addresses before the TCP session expires, providing
a mechanism to restore the communication.

5 Conclusion and Future Work

This paper presents details of the appropriate timer configuration of the REAP
protocol as well as the effect of the protocol configuration in the two main
3 http://technet2.microsoft.com/WindowsServer/

454 A. de la Oliva et al.

transport protocols, TCP and UDP. We also present a possible modification
to the TCP stack which enables TCP to take advantage of the REAP proto-
col providing a faster Recovery Time. The results show a clear increase in the
performance of the failure detection over TCP, being comparable to UDP.

As future work, there are several issues to be analyzed such as the aggressive-
ness of the path exploration mechanism (for example, explore alternative paths
on parallel instead of serially) or a timer configuration based on the RTT which
will decrease the Recovery Time while minimizing false positives on failure de-
tection. We are also interested on increasing the information provided by the
REAP protocol, going for path availability to gather some characteristics of the
path (RTT could be the simplest example), and finally to study the combina-
tion of REAP with other protocols and scenarios, for example Mobile IP with
multiple registrations and mobility.

References

[REAP] Arkko, J., van Beijnum, I.: Failure Detection and Locator Pair Exploration
Protocol for IPv6 Multihoming; IETF draft; draft-ietf-shim6-failure-detection-06
(September 2006)

[LOCSEL] Bagnulo, M.: Default Locator-pair selection algorithm for the SHIM6 pro-
tocol; IETF draft; draft-ietf-shim6-locator-pair-selection-01 (October 2006)

[HIP] Moskowitz, R., Nikander, P.: Host Identity Protocol (HIP) Architecture; Request
for Comments: 4423

[MIP] Johnson, D., Perkins, C., Arkko, J.: Mobility Support in IPv6; Request for
Comments: 3775

[SHIM] Nordmark, E., Bagnulo, M.: Level 3 multihoming shim protocol; IETF draft;
draft-ietf-shim6-proto-06 (November 2006)

[SHIMAPP] Abley, J., Bagnulo, M.: Applicability Statement for the Level 3 Multihom-
ing Shim Protocol(shim6); IETF draft; draft-ietf-shim6-applicability-02 (October
2006)

[BGPMULT] Van Beijnum, I.: BGP: Builiding Reliable Networks with the Border
Gateway Protocol; Ed O’Reilly (2002)

[MONAMI] Wakikawa, R., Ernst, T., Nagami, K.: Multiple Care-of Addresses Regis-
tration; IETF draft; draft-ietf-monami6-multiplecoa-01 (October 2006)

	Performance Analysis of the REAchability Protocol for IPv6 Multihoming
	Introduction
	Failure Detection and Path Exploration in the SHIM6 Architecture
	Simulation Setup
	Analysis of the Results
	UDP Behavior
	TCP Behavior

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

