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Abstract. For conventional ships, the mono-variable autopilot controls the 
heading of the ship in the presence of disturbances. During the heading control, 
there are many moments of time when the rudder command to control the yaw 
angle has a negative influence on roll oscillations. The prediction of the wave 
influence on the roll motion can be used to implement an intelligent heading 
control system, which is added to the mono-variable autopilot, generating only 
rudder commands with damping or non-increasing effects over roll movements. 
In this paper, aspects of roll angle and roll rate prediction using feed-forward 
neural networks are discussed. A neural network predictor of the roll rate, based 
on measured values of the roll angle, is proposed. The neural architecture is 
analyzed using different training data sets and noise conditions. The predictor 
has on-line adaptive characteristics and is working well even if both training 
and testing sets are affected by measurement noise. 

Keywords: neural networks, time series prediction, neural predictor, intelligent 
course control. 

1   Introduction 

The conventional ships, like supply vessels, have one main aft thruster, which 
produces surge forces to control the ship forward motion, and a rudder actuated by the 
steering machine (SM), which generates yaw moments to control the yaw angle. The 
autopilot generates the rudder commands to control the heading of the ship in the 
presence of disturbances, during course-keeping or course-changing maneuvers [1]. 

A ship in open sea is a very complex dynamic system, affected by many types of 
perturbations. The waves are the most important disturbances, and they have a double 
effect on the ship: a zero-mean oscillatory movement induced by the first order 
waves, and a low frequency drift effect caused by the second order waves. The 
cumulated drift effect can be compensated by the control law of the autopilot system. 
Hence, in this paper only first order waves are considered as external perturbations. 

The model parameters depend on the ship loading conditions and ship’s forward 
speed, while the wave characteristics change frequently. In addition, the wave 
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influence on the ship motions depends on the relative frequency between the wave 
and the ship, which is modified by the incidence angle and the ship’s speed [2]. 
Therefore, the prediction of the wave influence is important for intelligent control 
systems and it can be achieved by nonparametric approaches, like neural networks 
(NN). 

The commands of the rudder affect simultaneously the yaw and roll movements of 
the ship. The double control problem of using the rudder for simultaneous heading 
control and roll reduction have been analyzed by many authors [3], [4]. This is an 
under-actuated control problem, as there is only one actuator to achieve two 
objectives, which can be separated in the frequency domain [5], [6]. The main 
drawback is that the control systems take into account only one motion of the ship. 
There are many moments of time when the rudder command to control the yaw angle 
has negative influence on roll oscillations [7].  

It is important for the autopilot to generate only rudder commands with damping or 
non-increasing effects over roll movements. For this, an intelligent control system can 
be added to conventional SISO autopilot, modifying the rudder command so that, roll 
damping effects to be obtained [8]. It takes into account the noisy measurements of 
roll angle and the estimation of roll rate. A more complex control law can be used, if 
the wave influence on roll motion can be predicted several steps ahead.  

Neural networks, including feed-forward neural networks (FFNN) [11], [12], are 
widely applied for prediction problems [9], [10] due to their universal approximation 
and generalization capabilities. In particular, there are many applications reported in 
the literature of using NNs for time series prediction [13], [14], [15].  

In this paper, aspects of roll angle and roll rate prediction using feed-forward 
neural networks are discussed. A neural network predictor of the roll rate is proposed, 
based on noisy measured values of the roll angle. The neural architecture is analyzed 
using different prediction steps, input dimensions, training data sets and noise 
conditions. The predictor has on-line adaptive characteristics and it is working well 
even if both training and testing sets are affected by measurement noise. 

The paper is organized as follows. Section 2 provides mathematical models of the 
ship, steering machine and wave disturbances. In Section 3, the intelligent heading 
control problem is introduced. In Section 4, aspects of neural prediction techniques of 
roll motion are discussed. Section 5 describes the prediction results based on noisy 
measured values of the roll angle. Conclusions are presented in Section 6. 

2   Preliminaries and Mathematical Models 

The underactuated ship control problem is inherently nonlinear due to the 
uncontrollability of linear models. Moreover, the underactuated ships cannot be 
asymptotically stabilized by a linear time-invariant feedback control law [16]. 
Therefore, adaptive nonlinear control law must be considered. 

The models for the ship dynamics, steering machine and disturbances had to be 
generated for simulation purposes. By connecting the models, a nonlinear extended 
model for the underactuated ship is obtained, as shown in Fig. 1.  
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Fig. 1. Nonlinear model of an underactuated ship 

The ship model is linear with parametric uncertainties. The model inputs are the 
rudder angle (δ) and wave disturbances (w), and the outputs are the yaw angle (ψ) and 
roll angle (ϕ ). The rudder command (δC ) is generated by the autopilot.  

By using the Newton’s laws and expressing the conservation of hydrodynamic 
forces and moments, the equations describing the horizontal motion of the ship can be 
derived. A two degree-of-freedom linear model with parametric uncertainties can be 
identified [17]. Considering the wave disturbances (w), the Laplace equations of the 
ship’s linear model are: 
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The transfer functions Hδψ  and Hδϕ  describe the transfer from the rudder angle 

(δ), to the yaw angle (ψ) and roll angle (ϕ ), respectively. The transfer functions Hwψ  

and Hwϕ  represent the wave influence, being in general unknown. Hence, the wave 
influence on ship motions must be predicted. The function parameters depend on the 
ship load conditions, speed of the ship (u) and incidence angle (γ). The roll angle 
represents a damping oscillatory movement, with natural frequency ωn = 0.64 (rad/s).  

The steering machine model is nonlinear and it is based on a two-loop electro-
hydraulic steering subsystem, common on many ships, as illustrated in Fig. 2. The 
model of the SM includes also a rudder angle limiter which is not represented in the 
figure, because the rudder angle is small enough and it is not limited, for all 
simulations. A common low performance SM is used in simulations, with maximum 
rudder deflection of ±35 (deg) and a maximum rudder rate of ±2.5 (deg/s). 

Considering only the yaw angle and mono-variable autopilots, the first loop of SM 
can be disregarded, but for roll movements, the first loop increases the phase lag and 
decreases the rudder force moment on roll angle [18]. Therefore, the first loop can not 
be disregarded and the nonlinear steering machine model is considered. 
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Fig. 2. Nonlinear model of the steering machine 
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In general, the wave disturbance can be regarded as an ergodic random process 
with elevation ζ(t) and zero mean. The wave can be modeled as the sum of a limited 
number of sinusoidal waves, based on the wave spectrum φζζ(ω): 

∑
=

+⋅⋅=
N

i
iii tAtw

1

)(sin)( ϕω ,   ωωφζζ Δ⋅⋅= )(A ii 2  , (3) 

where Ai and ω i are the amplitude and angular frequency of the i-th component, and 
ϕi is the phase angle drawn randomly from a uniform density distribution. The 
relative frequency between the wave and the ship modifies the wave spectrum φζζ (ω) 
and this transformation must be taken into account for the wave model generation [2]. 

3   Aspects of Intelligent Heading Control 

The two objectives of using the rudder for simultaneous heading control and roll 
reduction can be separated in the frequency domain, based on the frequency 
characteristics of the rudder influence on yaw and roll motions, as shown in Fig. 3. 
Low frequencies are used for heading control, and high frequencies for roll reduction. 
Thus, the problem is divided into two mono-variable control systems, 
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Fig. 3. Separated closed loops for rudder-yaw and rudder-roll controls 

The main drawback of the frequency separation principle is that the mono-variable 
autopilot and the rudder-roll controller take into account only one motion of the ship 
and ignore the other one. There are many moments of time when the command of the 
rudder to control the yaw angle (δ yaw) has negative influence on roll oscillations [9].  

It is important for the autopilot to generate only the rudder commands with 
damping or non-increasing effects over roll movements, with acceptable small errors 
of the yaw angle. For this, a fuzzy rudder-roll damping (FRRD) system can be added 
to conventional SISO autopilot, which modifies the autopilot commands based on the 
noisy measurements of the roll angle and the estimation of the roll rate [10].  

In addition, if the wave influence on the roll motion can be predicted several steps 
ahead, a more complex intelligent control law can be implemented. In this paper, 
some aspects of the roll angle and roll rate prediction using feed-forward neural 
networks are discussed, based on measured values of the roll angle, as illustrated in 
Fig. 4. 
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Fig. 4. Neural Network Predictor and FRRD System for Intelligent Heading Control 

4   Neural Prediction of the Roll Motion 

For the intelligent heading control, the roll angle and roll rate are of interest. Eq. 2 
describes the influences of the rudder angle and the additive wave perturbations on 
the roll motion of the ship. The influence of the rudder can be identified at the 
beginning of the ship voyage, but the wave influence changes frequently and must be 
predicted on-line, based on the measured values of the roll angle. 

Theoretically, if the roll angle is not affected by measurement noise, the roll rate 
can be obtained by numerical computation from roll angle. The roll angle and roll rate 
without measurement noise are illustrated in the left side of Fig. 5. The wave was 
generated based on the ITTC spectrum with significant height h1/3 = 4 m. The wave 
spectrum was corrected with the ship’s speed U = 7.2 m/s (14 knots) and the 
incidence angle of the wave γ = 135 deg, resulting the corrected wave, denoted wc. 

Practically, the measured values of the roll angle (φm ) are affected by additive 
measurement noise (φp ), which is considered white noise with different power levels: 

(s)(s)(s)(s) pwδm ϕϕϕϕ ++=  (4) 

Using numerical computation based on the measured values of the roll angle, the 
resulted roll rate is useless and is overwhelmed by noise, as shown in the right side of 
Fig. 5. Hence, the roll rate must be estimated. The noise amplitude was considered 
10% from the maximum value of the theoretical roll angle. The sample period was 
chosen T = 0.1 s.  

The wave influence on the roll motion can be predicted, based on the measured 
values of roll angle, by placing the rudder angle to zero: 

pw0δm ϕϕϕ +==  (5) 

The roll angle samples represent a time series, φm(1), φm(2), ... φm(k), illustrated on 
the second row in the right side of Fig. 5. Using the time series as noisy input data set, 
the roll angle and roll rate can be predicted several steps ahead using neural networks.  
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Fig. 5. Roll Angle and Roll Rate without and with measurement noise 

In general, the simplest approach for learning the time series model by means of a 
NN is to provide its time-delayed samples to the input layer of the NN. The output 
represents the predicted value at k+m time moment: 

( ))(,...),1(),()(ˆ nkykykyfmky −−=+  (6) 

The more complex the series are, the more information about the past is needed, 
and the size of the input layer (n+1) is increased, depending also on the prediction 
step m. For every step k+m, the prediction error e(k+m) is computed based on the 
measured and predicted values of the output, which is  used in the neural network 
training: 

m)(kym)(kym)e(k m +−+=+ ˆ  (7) 

5   Simulation Results 

In this paper, the neural prediction of the noisy roll rate is discussed. The FFNN 
predictor receives (n+1) time-delayed samples of the measured roll angle, φm(k-n), ... 
φm(k), as shown in Fig. 4. The output is the m step predicted value of the roll rate, 

)(ˆ mkm +ϕ .  

The FFNN has one hidden layer with Nhn = 10 linear neurons and is trained using 
Levenberg-Marquardt back-propagation algorithm. The performance function is mse, 
the mean squared error of the predicted roll rate related to initial noisy roll rate. 
During the learning and testing of the NN, the same performance criterion is used, 
denoted msel and mset, respectively. To illustrate the filtering properties of the NN, 
mset2 is used, based on the prediction error to real value of the roll rate. The 
prediction error on the testing data set and its normalized autocorrelation function are 
used for model validation. 

Several neural architectures are tested, for different prediction steps (m = 1, 5, 10), 
input dimensions (n+1 = 5, 10, 20), training data sets and noise conditions. Training 
data sets are selected from the first time interval (0-20 s) of the noisy roll angle for 
input data and the roll rate for desired output, shown in the right side of Fig. 5.  

Three training sets are used, with the number of learning vectors Nlv: 50, 100 and 
200. The testing set has 500 vectors selected from the rest of the time series (50 s). 
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During training, the performance goal is msep = 25 and a maximum of 300 epochs 
are allowed.  

The measurement noise of the roll angle generates an initial mean squared error of 
the computed roll rate related to the real roll rate value, denoted msen, which is the 
base for the performance analysis of the neural predictor. Three indices are computed: 
I1=msel/msen, I2=mset/msen, I3=mset2/msen. If indices are close to 1, the output 
performance is close to the initial roll rate noise. The results are represented in Table 1. 

Table 1. The network performance for different neural predictors 

n+1 = 5 n+1 = 10 n+1 = 20 
m Nlv 

I1 I2 I3 I1 I2 I3 I1 I2 I3 
50 0.972 1.004 0.149 0.883 1.303 0.113 0.712 1.652 0.645 

100 0.978 1.148 0.050 0.947 1.067 0.081 0.865 1.196 0.178 1 
200 1.023 1.072 0.041 0.980 1.066 0.026 0.962 1.112 0.045 
50 0.946 0.965 0.104 0.859 1.507 0.252 0.739 1.652 0.472 

100 0.959 1.191 0.059 0.935 1.000 0.096 0.814 1.187 0.177 5 
200 1.007 1.083 0.044 0.987 1.076 0.028 0.930 1.183 0.080 
50 0.905 1.404 0.153 0.859 1.392 0.279 0.647 1.432 0.596 

100 1.037 1.032 0.033 0.872 1.303 0.155 0.800 1.502 0.243 10 
200 1.018 1.089 0.026 0.989 1.087 0.032 0.883 1.260 0.129 

 
The performance goal is reached very fast and the prediction is good for the entire 

testing set. The testing index I2 has values close to 1, which means that the prediction 
error is within the noise range of initial computed roll rate. The prediction error, 
related to similar training index I1, can be decreased by choosing a bigger training 
data set. Bigger values for prediction step m impose bigger values for n and Nhn. 
Also, the prediction error increases with m and it depends on the number Nlv.  

An important feature is the filtering property of the NN, observed at index I3, 
which is based on prediction error related to the real value of the roll rate. For the 
selected neural architecture (m=5, n+1=10, Nlv=200), the initial time series of the 
computed roll rate and the training and testing results are illustrated in Fig. 6. The 
time ranges of training and testing prediction results are marked distinctly. 
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Fig. 6.  Training and testing results for the selected neural predictor 
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6   Conclusions 

The wave influence on the roll motion of a ship can be predicted, and a feed-forward 
neural network was chosen for this task. The predictor is working well even if the 
training is done on-line and the samples are affected by measurement noise. After 
training, the prediction remains good for a wide time horizon and the estimated error 
is within the noise range. Also, the neural predictor is robust, working well for 
different levels of the input noise. 
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