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Abstract. We present a novel approach for Fuzzy-Input Fuzzy-Output
classification. One-Against-All Support Vector Machines are adapted to
deal with the fuzzy memberships encoded in fuzzy labels, and to also
give fuzzy classification answers. The mathematical background for the
modifications is given. In a benchmark application, the recognition of
emotions in human speech, the accuracy of our F2-SVM approach is
clearly superior to that of fuzzy MLP and fuzzy K-NN architectures.
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1 Introduction

Support Vector Machines (SVMs) have become a popular method in pattern
classification and were originally developed for the discrimination of two-class
problems [1]. They work by projecting the data into a higher dimensional feature
space using kernel functions, then finding the hyperplane that separates the two
classes while providing the widest margin in which no sample points lie (see [2]
for an introduction). Later, considerable research has been carried out to find
ways to make use of the principle of SVMs in multi class problems (see recently
[3]), and architectures like One-Against-One, DAG-SVMs or One-Against-All
are widely used nowadays (see [4] for a comparison).

The previously mentioned approaches work with data that features hard, or
“crisp”, labels, that is, each training sample belongs to exactly one class. Now
one could easily imagine situations where the data is not labeled in that way,
for example when the labelling expert is given the choice to spread his opinion
over multiple classes, or to give an indication how certain he is in his decision.
The latter case has now been addressed by Lin and Wang [5] and Huang and
Liu [6], although both articles developed the method with a different goal in
mind: their fuzzy memberships respectively membership values are not given,
but constructed from the hard labeled data to solve special problems, here the
weighting of samples in time series or the decrease of the impact of (detected)
outliers in the data. The outputs of those SVMs however remain hard, they
“produce an uncalibrated value that is not a probability”. Having observed this,
Platt [7] developed a method that transforms the observed distances using a
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parametric form of a sigmoid function. The parameters are fit using maximum
likelihood estimation on the training set.

So far, those SVMs can not be put to work on the task of fuzzy-fuzzy clas-
sification where the training data carries only soft labels, meaning each sample
point can be assigned to multiple classes in varying degrees, and such a soft out-
put is also expected from the algorithm. Motivated by a real-world application,
the fuzzy classification of emotion in recordings of spoken sentences, we devel-
oped a method that will accomplish this fuzzy-fuzzy classification with the use
of Support Vector Machines. Very recently, a similar method was presented by
Borasca et al. [8], although our approach to deal with the multi class problem is
much less computationally expensive. But we would like to take up their naming
and call the fuzzy-input fuzzy-output Support Vector Machine F2-SVM in the
following.

The F2-SVMs will be derived and explained in the following section, then
in section 3 the emotion-recognition application is presented and experiments
reported that compare the performance of our method to more established ones.
Some interesting findings will be highlighted. Then, in section 4, a promising
venue of further research using One-Class SVMs will be presented. In the closing
statement, we explain why it is well worth to use the F2-SVM.

2 Fuzzy-Input Fuzzy-Output SVMs

2.1 Basic SVMs

As a foundation for the following introduction of our F2-SVMs, we will briefly
review the basic theory behind Support Vector Machines (see also in [2] or [9]).

As mentioned above, SVMs were developed to solve two-class problems. That
is, there is a training set S given as

S = {(xμ, lμ )| μ = 1, . . . , M, xμ ∈ IRN , lμ ∈ {−1, +1} }, (1)

which can be divided up into two sets by a separating hyperplane. Such a hyper-
plane is determined by a weight vector w ∈ IRN and a bias or threshold w0 ∈ IR
satisfying the separating constraints

lμ (xT
μ w + w0) ≥ 1, μ = 1, . . . , M. (2)

The hyperplane has a margin on both sides within which no training points lie.
The idea now is to maximise this margin of width 2/||w||, which leads to the
following minimisation problem that is subject to the constraints just mentioned
(2):

Θ(w) = wT w/2 → min (3)

But, if the constraints do not hold for some data points, the problem is not
linearly separable, and we have to soften them by introducing slack variables
ξμ (this is called the “soft margin” approach). For some data points, it is now
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permissible to lie within the margin (0 ≤ ξμ < 1) or even on the wrong side of
the hyperplane (ξμ > 1). The optimisation problem and the constraints become:

Θ(w, ξ) = wT w/2 + C

M∑

μ=1

ξμ → min (4)

lμ (xT
μ w + w0) ≥ 1 − ξμ, ξμ ≥ 0, μ = 1, . . . , M (5)

Note the free parameter C > 0 which regulates the amount of margin-violations
the SVM has to tolerate in finding the optimal hyperplane.

A very important feature of SVMs is the use of so-called kernel functions K. A
Mercer kernel function (see [1]) implicitly transforms the data points of the input
space to a high dimensional Hilbert space, where now it might be possible to
find a separating hyperplane, if we do not manage to do so in the original input
space. Calculating the dot-product in Hilbert space using the kernel function, is
the so-called kernel trick:

〈φ(x1), φ(x2)〉 = K(x1, x2), x1, x2 ∈ IRN (6)

The transformation function φ from input space to Hilbert space does not need
to be evaluated, since the dot-product is given implicitly by the chosen kernel
function K.

2.2 Deriving Fuzzy-Input SVMs

Now we want to make use of data where samples are not hard labeled, but asso-
ciated with multiple classes each. As the basic SVM architecture is specialised
on discriminating between two classes, we rest in the binary case for now, the
extension to any desired number of classes will be explained in section 2.3. In
our approach there are two membership values, m−

μ and m+
μ , associated with

each training sample xμ ∈ S. These values indicate to what extent the sample
point belongs to each of the two classes {−1, +1}. These memberships are incor-
porated into our minimisation problem (4) by weighting the importance of the
error-indicating slack variables ξμ accordingly:

Θ(w, ξ+, ξ−) = wT w/2 + C
M∑

μ=1

(ξ+
μ m+

μ + ξ−μ m−
μ ) → min (7)

For the fuzzy SVM, a separating hyperplane has to be calculated under the
following constraints:

wT xμ + w0 ≥ 1 − ξ+
μ , μ = 1, . . . , M (8)

wT xμ + w0 ≤ −(1 − ξ−μ ), μ = 1, . . . , M (9)

ξ+
μ ≥ 0 and ξ−μ ≥ 0, μ = 1, . . . , M (10)
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Because this primal problem is very hard to solve with quadratic programming,
we introduce the Lagrange multipliers α+, α− and β+, β− for our constraints,
so that now the problem becomes finding the saddle point of the Lagrangian L:

L(w, w0, ξ
+, ξ−, α+, α−, β+, β−) = wwT /2 + C

M∑

μ=1

(ξ+
μ m+

μ + ξ−μ m−
μ )

−
M∑

μ=1

α+
μ ((wT xμ + w0) − (1 − ξ+

μ )) +
M∑

μ=1

α−
μ ((wT xμ + w0) + (1 − ξ−μ ))

−
M∑

μ=1

β+
μ ξ+

μ −
M∑

μ=1

β−
μ ξ−μ

(11)

Differentiating L with respect to the variables w, w0, ξ
+, ξ− of our primal opti-

misation problem, and setting the resulting terms equal to zero, we obtain the
following necessary conditions:

∂L

∂w
= w −

M∑

μ=1

α+
μ xμ +

M∑

μ=1

α−
μ xμ = 0 ⇒ w =

M∑

μ=1

(α+
μ − α−

μ )xμ (12)

∂L

∂w0
= −

M∑

μ=1

α+
μ +

M∑

μ=1

α−
μ = 0 ⇒

M∑

μ=1

(α+
μ − α−

μ ) = 0 (13)

∂L

∂ξ+
μ

= Cm+
μ − α+

μ − β+
μ = 0,

∂L

∂ξ−μ
= Cm−

μ − α−
μ − β−

μ = 0 (14)

Inserting (12) into (11), multiplying out and reordering yields

L = −
M∑

μ=1

α+
μ w0 +

M∑

μ=1

α−
μ w0

︸ ︷︷ ︸
=0 because of (13)

+
M∑

μ=1

α+
μ (1 − ξ+

μ ) +
M∑

μ=1

α−
μ (1 − ξ−μ ) + C

M∑

μ=1

(ξ+
μ m+

μ + ξ−μ m−
μ ) −

M∑

μ=1

β+
μ ξ+

μ −
M∑

μ=1

β−
μ ξ−μ

−
M∑

μ=1

M∑

ν=1

α+
μ (α+

ν − α−
ν )xT

ν xμ +
M∑

μ=1

M∑

ν=1

α−
μ (α+

ν − α−
ν )xT

ν xμ

+ 1/2
M∑

μ=1

M∑

ν=1

(α+
μ − α−

μ )(α+
ν − α−

ν )xT
μ xν .

(15)
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Simplifying the quadratic parts at the end and reordering yields

L = −1/2
M∑

μ=1

M∑

ν=1

(α+
μ − α−

μ )(α+
ν − α−

ν )xT
μ xν

+
M∑

μ=1

(α+
μ − α+

μ ξ+
μ + Cξ+

μ m+
μ − β+

μ ξ+
μ︸ ︷︷ ︸

=0 because of (14)

)+
M∑

μ=1

(α−
μ − α−

μ ξ−μ + Cξ−μ m−
μ − β−

μ ξ−μ︸ ︷︷ ︸
=0 because of (14)

) .

(16)

According to the Karush-Kuhn-Tucker theory, with α+
μ , α−

μ , β+
μ , β−

μ ≥ 0, the dual
problem is now to maximise

L(α) =
M∑

μ=1

α+
μ +

M∑

μ=1

α−
μ − 1/2

M∑

μ=1

M∑

ν=1

(α+
μ − α−

μ )(α+
ν − α−

ν )xT
μ xν (17)

with the product xT
μ xν at the end calculated using a kernel function (6), and

subject to
M∑

μ=1

(α+
μ − α−

μ ) = 0 from (13) and (18)

0 ≤ α+
μ ≤ Cm+

μ , 0 ≤ α−
μ ≤ Cm−

μ from (14). (19)

The difference to ordinary SVMs is that we have doubled the number of
sample points mμ, by having each as positive and negative sample, and that
each Lagrange multiplier αμ is now not bounded simply by the fix, a priori set
C, but by a function (19) that takes into account the membership for each point.
For less important samples, αμ has now a smaller range to be selected from.

The Karush-Kuhn-Tucker conditions for the problem now are (with μ =
1, . . . , M):

α+
μ ((wT xμ + w0) − (1 − ξ+

μ )) = 0, α−
μ ((wT xμ + w0) + (1 − ξ−μ )) = 0 (20)

β+
μ ξ+

μ =
(14)

(Cm+
μ − α+

μ )ξ+
μ = 0, β−

μ ξ−μ =
(14)

(Cm−
μ − α−

μ )ξ−μ = 0 (21)

Those samples xμ associated with a combined Lagrange multiplier αμ = (α+
μ −

α−
μ ) 	= 0 are the important Support Vectors SV , which determine the separating

hyperplane (compare with condition 12):

w =
M∑

μ=1

(α+
μ − α−

μ )xμ (22)

Support Vectors xμ with α+
μ = m+

μ C or α−
μ = m−

μ C will be situated, according
to (21), within the margin or even beyond the separating hyperplane. With
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increasing association of samples to multiple classes, this should be expected to
happen quite frequently.

Now, using an on-the-margin Support Vector in (20) to obtain w0, the final
decision function f to classify a new sample z is

f(z) = sign(wT z + w0) . (23)

Again, all samples are projected into the higher-dimensional Hilbert space H
using a kernel function K. In this case the final decision function is (see (22)
and (6) ):

f(z) = sign(
∑

i∈SV

(α+
i − α−

i ) K(z, xi) + wH
0 ) (24)

So far, the fuzzy-input Support Vector Machines only deal with two classes at
a time. To extent this to the multi class case, with k classes, we will be using
the One-Against-All architecture. It works by building k different SV Mi, each
of which is capable of separating one class i from all others. As training data,
we still have our training set S = {(xμ, lμ)|μ = 1, . . . , M}, still with xμ ∈ IRN ,
but now

lμ = (l1,μ, l2,μ, . . . , lk,μ), li,μ ∈ [0, 1],
k∑

i=1

li,μ = 1. (25)

That is, each sample xμ now belongs to a different degree to each of the k classes.
The training data Strain

i for a SV Mi is now constructed by taking all samples
points twice, as explained at the beginning of this section, only using a part of
the label, li, to form the membership values mi,μ:

Strain
i = {(xμ, m+

i,μ)|m+
i,μ = li,μ} ∪ {(xμ, m−

i,μ)|m−
i,μ = 1 − li,μ}, μ = 1, . . . , M

(26)
Each of the SV Mi is now trained. How their outputs to a sample z are again
transformed into the appropriate estimation for lμ is covered in the next section.

At this point, it is appropriate to mention the differences between our One-
Against-All approach and the One-Against-One architecture used in [8]. In the
latter case, it is necessary to build k (k−1)/2 Support Vector Machines, that each
distinguish between two classes, while with our approach, we have k machines.
The number of samples used to train the individual machines is the same for
both strategies, 2 M , so our fuzzy One-Against-All approach will be considerably
faster for problems with more than three classes. On the other hand, it will
have to be determined experimentally if the bigger One-Against-One architecture
could not yield a higher accuracy with very complex data sets.

2.3 Obtaining the Fuzzy-Output

Now suppose we have trained the fuzzy SVM architecture as described above. If
we feed a new sample z to the SV Mi, i = 1, . . . , k, the result will be values di ∈
IR, one from each of the One-Against-All SVMs. These di represent the distances
in kernel space of the sample z to the separating hyperplanes determined for the
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machines. To transform them into fuzzy output labels oi, we make use of a
sigmoid function, as recommended in [7]:

oi(z) = 1/(1 + exp(−AT
i z + Bi)), i = 1, . . . , k (27)

The parameters Ai ∈ IRN and Bi ∈ IR are estimated for each SV Mi to minimise
the mean squared error on the training data Strain

i between the original label
and the sigmoid output:

errori =
1
M

∑

xμ∈Strain
i

( oi(xμ) − li,μ)2 (28)

Estimation is accomplished via a batch gradient descent technique that stops
if there are only slight adjustments of the parameters between iterations. The
resulting update rules with learning rate η are:

ΔAi = (oi(xμ) − li,μ) η o2
i (xμ)(−xμ)

ΔBi = (oi(xμ) − li,μ) η o2
i (xμ)

(29)

Note that the fuzzy output labels oi are normalised to sum up to 1.

3 Experiments and Conclusions

The aim of our experiments was to evaluate the performance of our F2-SVMs
and compare it against other established fuzzy classification methods, expecially
fuzzy K-Nearest-Neighbour (KNN) and fuzzy Multi-Layer Perceptron (MLP).
But to be thorough, we also included comparisons with standard hard SVMs.

As application, we chose the detection and classification of emotions in human
speech, where it is very natural to have multiple emotions to varying degrees at
the same time, motivating our use of fuzzy labels. The scenario is a setting where
two humans carry on a conversation in front of a computer, with its special task
being to give restaurant recommendations. The utilised speech corpus has been
recorded within the project ‘Perception and Interaction in Multi-User Environ-
ments’ [10] at the competence centre Perception and Interactive Technologies
(PIT). This corpus contains over 400 German utterances which are basically
short sentences recorded from 4 different speakers (1 female and 3 male). The
enacted emotions are hot-anger, happiness, fear, sadness, disgust, boredom and
neutral. Sadness and fear were omitted from most experiments, since they are
not necessary in our application setting. Sentences for producing the database
were collected from everyday communications with semantically neutral con-
text. Complementary, a human emotion recognition performance test has been
conducted on the data, not only as a benchmark for the automatic emotion
recognisers, but also for the fuzzy-labelling of the sentences. The answers of 10
test persons were recorded for each utterance and after aggregation and normal-
isation then formed the soft labels for our data.
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Table 1. Performance of the different classifiers. The accuracy is measured against
defuzzified soft labels. The Euclidean distance is measured against soft labels, as well
as the S1 similarity measure. (S1 was defined in [15] as S1(A, B) =‖ A∩B ‖ / ‖ A∪B ‖.)
Our F2-SVM algorithm does clearly outperform the non-SVM algorithms.

SVM Fuzzy MLP Fuzzy KNN F2-SVM
Accuracy (in %) 54.1 33.1 29.5 55.6
Euclidean distance 0.566 2.132 0.724 0.541
S1 Min/Max 0.361 0.141 0.248 0.395

Many researchers have already investigated the acoustic cues of emotions in
speech which have predictable effects on speech, especially on pitch, timing and
voice quality (see for example [11] or [12]). To obtain the features for our clas-
sification example, each sentence of the corpus was analysed based on a time
window of a length of 30ms with an overlap of 20ms. The results of the analy-
sis yielded different parameters regarding the acoustics of the uttered sentences
such as pitch (fundamental frequency, computed using the SIFT algorithm [13]
which performed satisfactory), the first derivative of the pitch, energy and the
first three formant contours. From each parameter, statistical features such as
mean, percentiles, maximum and minimum, were extracted. Other characteris-
tics, for example voiced and unvoiced segments and the temporal aspects of the
utterances, were statistically analysed as well, leading to a total of 37 scalar
statistical features for each utterance.

We shall be giving some details on our experimental setup: For all of our
experiments, we used 10 times 10 fold cross validation. The SVMs were trained
using the SMO algorithm by Platt [14]. The fuzzy KNN considers the fuzzy labels
of the 5 nearest samples in the training data, sums their labels and normalises
them. The fuzzy MLP has 30 neurons in its hidden layer, minimising the mean
square error between network output and the fuzzy labels using backpropagation
over 20 epochs (more iterations did not decrease the error significantly).

In our experiments, we made several interesting observations. For one, it was
straightforward to chose a polynomial kernel function K with a degree of three.
The linear and RBF kernels did never reach a comparable performance, and the
RBF kernel was also very sensitive to changes of its width parameter.

As could be expected, the choice of C was crucial for the performance of the
classifier. If this were not the case, we could not hope to get better results by
modifying the weight of individual samples in the error term via memberships
(see (7)). Using cross validation experiments, we determined the optimal values
for C in the standard- respectively F2-SVMs to be 10-3 and 10-2, out of a range
of [10-4; 103]. New experiments [16] suggest that, at least for two-class problems,
the choice of C is not important for very high-dimensional problems.

One of the most important questions was wether the F2-SVMs would yield a
better classification rate on the defuzzified1 decisions than SVMs trained with

1 Defuzzification here means that the fuzzy labels or decisions were converted using
the maximum rule, hence they would each indicate one winner-class only.
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defuzzified labels. This turned out to be the case, pairwise experiments showed
that the accuracy of the F2-SVMs was 1.55 percent points higher on average, out
of the 100 runs it lost only in 30, a tie was reached in 16 runs. This shows that
even when a hard final output is necessary, it is beneficial to use the F2-SVMs
trained with fuzzy labels.

For our data, we did not only have the soft labels produced by multiple humans
giving their opinion on the emotion expressed in each sentence, but also hard
labels with the emotion the speakers were told to express. The defuzzified soft
labels coincide only in 80% of the cases with the original hard labels. Now,
training with the soft labels, and comparing the defuzzified final outputs to the
two kinds of test labels, defuzzified fuzzy and original hard, it turned out that
the performance on both was about the same. The accuracy against the original
hard labels was even slightly higher. So, the classifier has never seen the original
hard labels, which are somewhat different to the soft labels, but delivers an equal
accuracy on them. This is a strong indication that the fuzzy labels really help
the SVMs in capturing the emotion distribution.

4 Future Approaches

Another kind of Support Vector Machine lends itself to be adapted for fuzzy-in
fuzzy-out classification, the so-called One-Class SVMs. They work by not finding
a separating hyperplane, but fitting all data samples from one class within one
circle (in kernel space, of course) with radius R. Again we can, analogue to
equation 7, introduce a weighting of the slack variables ξμ with the membership
mμ of the samples:

Θ(R, ξ) = R2 + C

M∑

μ=1

ξμmμ → min (30)

Construction the Lagrangian and differentiating it with respect to ξμ yields the
following condition, analogue to equation 14:

Cmμ − αμ − βμ = 0 (31)

This is a nice result and means that the One-Class SVMs can really be adapted
to use fuzzy class labels, still allowing optimisation via the SMO algorithm. We
plan to pursue this venue in future research.

5 Summary

We proposed a new method to deal with fuzzy labels in classification, making
good use of the power that kernels provide. Our F2-SVMs perform better than
standard hard-trained SVMs in pairwise experiments and have a much higher
accuracy than fuzzy MLP or fuzzy K-NN classifiers. Unlike earlier approaches,
we do not set a certainty value for each sample, but use memberships that allow
each sample to be associated with multiple classes to a different degree. The
SVM training formula we derived is analogue to standard SVMs, hence they
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and the One-Against-All architecture we used could be adapted to our approach
without major problems. The F2-SVMs are full fuzzy-in fuzzy-out classifiers.
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