
Relational Topographic Maps

Alexander Hasenfuss and Barbara Hammer

Clausthal University of Technology – Department of Informatics
Clausthal-Zellerfeld, Germany

{hasenfuss,hammer}@in.tu-clausthal.de

Abstract. We introduce relational variants of neural topographic maps
including the self-organizing map and neural gas, which allow clustering
and visualization of data given as pairwise similarities or dissimilarities
with continuous prototype updates. It is assumed that the (dis-)similarity
matrix originates from Euclidean distances, however, the underlying em-
bedding of points is unknown.Batch optimization schemes for topographic
map formations are formulated in terms of the given (dis-)similarities and
convergence is guaranteed, thus providing a way to transfer batch opti-
mization to relational data.

1 Introduction

Topographic maps such as the self-organizing map (SOM) constitute a valuable
tool for robust data inspection and data visualization which has been applied in
diverse areas such as telecommunication, robotics, bioinformatics, business, etc.
[16]. Alternative methods such as neural gas (NG) [20] provide an efficient clus-
tering of data without fixing a prior lattice. This way, subsequent visualization
such as multidimensional scaling, e.g. Sammon’s mapping [18,26] can readily be
applied, whereby no prior restriction of a fixed lattice structure as for SOM is
necessary and the risk of topographic errors is minimized. For NG, an optimum
(nonregular) data topology is induced such that browsing in a neighborhood
becomes directly possible [21].

In the last years, a variety of extensions of these methods has been proposed
to deal with more general data structures. This accounts for the fact that more
general metrics have to be used for complex data such as microarray data or
DNA sequences. Further it might be the case that data are not embedded in a
vector space at all, rather, pairwise similarities or dissimilarities are available.

Several extensions of classical SOM and NG to more general data have been
proposed: a statistical interpretation of SOM as considered in [4,14,28,29] allows
to change the generative model to alternative general data models. The resulting
approaches are very flexible but also computationally quite demanding, such that
proper initialization and metaheuristics (e.g. deterministic annealing) become
necessary when optimizing statistical models. For specific data structures such
as time series or recursive structures, recursive models have been proposed as
reviewed e.g. in the article [9]. However, these models are restricted to recursive
data structures with Euclidean constituents. Online variants of SOM and NG

M.R. Berthold, J. Shawe-Taylor, and N. Lavrač (Eds.): IDA 2007, LNCS 4723, pp. 93–105, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



94 A. Hasenfuss and B. Hammer

have been extended to general kernels e.g. in the approaches presented in [24,31]
such that the processing of nonlinearly preprocessed data becomes available.
However, these versions have been derived for kernels, i.e. similarities and (slow)
online adaptation only.

The approach [17] provides a fairly general method for large scale applica-
tion of SOM to nonvectorial data: it is assumed that pairwise similarities of
data points are available. Then the batch optimization scheme of SOM can be
generalized by means of the generalized median to a visualization tool for gen-
eral similarity data. Thereby, prototype locations are restricted to data points.
This method has been extended to NG in [2] together with a general proof of
the convergence of median versions of clustering. Further developments concern
the efficiency of the computation [1] and the integration of prior information if
available to achieve meaningful visualization and clustering [5,6,30].

Median clustering has the benefit that it builds directly on the derivation
of SOM and NG from a cost function. Thus, the resulting algorithms share the
simplicity of batch NG and SOM, its mathematical background and convergence.
However, for median versions, prototype locations are restricted to the set of
given training data which constitutes a severe restriction in particular for small
data sets. Therefore, extensions which allow a smooth adaptation of prototypes
have been proposed e.g. in [7]. In this approach, a weighting scheme is introduced
for the points which represent virtual prototype locations thus allowing a smooth
interpolation between the discrete training data. This model has the drawback
that it is not an extension of the standard Euclidean version and it gives different
results when applied to Euclidean data in a real-vector space.

Here,we use an alternativeway to extendNGto relational data givenbypairwise
similarities or dissimilarities, respectively, which is similar to the relational dual
of fuzzy clustering as derived in [12,13]. For a given Euclidean distance matrix or
Gram matrix, it is possible to derive the relational dual of topographic map forma-
tion which expresses the relevant quantities in terms of the given matrix and which
leads to a learning scheme similar to standard batch optimization. This scheme
provides identical results as the standard Euclidean version if an embedding of
the given data points is known. In particular, it possesses the same convergence
properties as the standard variants, thereby restricting the computation to known
quantities which do not rely on an explicit embedding in the Euclidean space.

In this contribution, we first introduce batch learning algorithms for standard
clustering and topographic map formation derived from a cost function: k-means,
neural gas, and the self-organizing map for general (e.g. rectangular, hexagonal,
or hyperbolic) grid structures. Then we derive the respective relational dual
resulting in a dual cost function and batch optimization schemes for the case of
a given distance matrix of data or a given Gram matrix, respectively.

2 Topographic Maps

Neural clustering and topographic maps constitute effective methods for data pre-
processing and visualization. Classical variants deal with vectorial data x ∈ R

n
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which are distributed according to an underlying distribution P in the Euclidean
plane. The goal of neural clustering algorithms is to distribute prototypes wi ∈
R

n, i = 1, . . . , k among the data such that they represent the data as accurately as
possible. A new data point x is assigned to the winner wI(x) which is the prototype
with smallest distance ‖wI(x)−x‖2. This clusters the data space into the receptive
fields of the prototypes.

Different popular variants of neural clustering have been proposed to learn
prototype locations from given training data [16]. The well known k-means con-
stitutes one of the most popular clustering algorithms for vectorial data and can
be used as a preprocessing step for data mining and data visualization. How-
ever, it is quite sensitive to initialization. Unlike k-means, neural gas (NG) [20]
incorporates the neighborhood of a neuron for adaptation. Assume the number
of prototypes is fixed to k. The cost function is given by

ENG(w) =
1

2C(λ)

k∑

i=1

∫
hλ(ki(x)) · ‖x − wi‖2 P (dx)

where
ki(x) = |{wj | ‖x − wj‖2 < ‖x − wi‖2}|

is the rank of the prototypes sorted according to the distances, hλ(t)=exp(−t/λ)
scales the neighborhood cooperation with neighborhood range λ > 0, and C(λ)
is the constant

∑k
i=1 hλ(ki(x)). The neighborhood cooperation smoothes the

data adaptation such that, on the one hand, sensitivity to initialization can be
prevented, on the other hand, a data optimum topological ordering of prototypes
is induced by linking the respective two best matching units for a given data point
[21]. Classical NG is optimized in an online mode. For a fixed training set, an
alternative fast batch optimization scheme is offered by the following algorithm,
which in turn computes ranks, which are treated as hidden variables of the cost
function, and optimum prototype locations [2]:

init wi

repeat
compute ranks ki(xj) = |{wk | ‖xj − wk‖2 < ‖xj − wi‖2}|
compute new prototype locations wi =

∑
j hλ(ki(xj)) · xj/

∑
j hλ(ki(xj))

Like k-means, NG can be used as a preprocessing step for data mining and visual-
ization, followed e.g. by subsequent projection methods such as multidimensional
scaling.

The self-organizing map (SOM) as proposed by Kohonen uses a fixed (low-
dimensional and regular) lattice structure which determines the neighborhood
cooperation. This restriction can induce topological mismatches if the data
topology does not match the prior lattice [16]. However, since usually a two-
dimensional regular lattice is chosen, this has the benefit that, apart from clus-
tering, a direct visualization of the data results by a representation of the data
in the regular lattice space. Thus SOM constitutes a direct data inspection and
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visualization method. SOM itself does not possess a cost function, but a slight
variation thereof does, as proposed by Heskes [14]. The cost function is

ESOM(w) =
1
2

k∑

i=1

∫
δi,I∗(x) ·

∑

k

hλ(n(i, k))‖x − wk‖2 P (dx)

where n(i, j) denotes the neighborhood structure induced by the lattice and
hλ(t) = exp(−t/λ) scales the neighborhood degree by a Gaussian function.
Thereby, the index I∗(x) refers to a slightly altered winner notation: the neuron
I∗(x) becomes winner for x for which the average distance

∑

k

hλ(n(I∗(x), k))‖x − wk‖2

is minimum. Often, neurons are arranged in a graph structure which defines the
topology, e.g. a rectangular or hexagonal tesselation of the Euclidean plane resp.
a hyperbolic grid on the two-dimensional hyperbolic plane, the latter allowing
a very dense connection of prototypes with exponentially increasing number of
neighbors. In these cases, the function n(i, j) often denotes the length of a path
connecting the prototypes number i and j in the lattice structure. Original SOM
is optimized in an online fashion. As beforehand, for fixed training data, batch
optimization is possible by subsequently optimizing assignments and prototype
locations.

It has been shown in e.g. [2] that batch optimization schemes of these cluster-
ing algorithms converge in a finite number of steps towards a (local) optimum of
the cost function, provided the data points are not located at borders of receptive
fields of the final prototype locations. In the latter case, convergence can still be
guaranteed but the final solution can lie at the border of basins of attraction.

3 Relational Data

3.1 Median Clustering

Relational data xi are not embedded in a Euclidean vector space, rather, pairwise
similarities or dissimilarities are available. Batch optimization can be transferred
to such situations using the so-called generalized median [2,17]. Assume, distance
information d(xi, xj) is available for every pair of data points x1, . . . , xm. Me-
dian clustering reduces prototype locations to data locations, i.e. adaptation
of prototypes is not continuous but takes place within the space {x1, . . . , xm}
given by the data. We write wi to indicate that the prototypes need no longer
be vectorial. For this restriction, the same cost functions as beforehand can be
defined whereby the Euclidean distance ‖xj −wi‖2 is substituted by d(xj , wi) =
d(xj , xli) whereby wi = xli . Median clustering substitutes the assignment of
wi as (weighted) center of gravity of data points by an extensive search, set-
ting wi to the data points which optimize the respective cost function for fixed
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assignments. This procedure has been tested e.g. in [2,5]. It has the drawback
that prototypes have only few degrees of freedom if the training set is small.
Thus, median clustering usually gives inferior results compared to the classical
Euclidean versions when applied in a Euclidean setting.

3.2 Training Algorithm

Here we introduce relational clustering for data characterized by pairwise simi-
larities or dissimilarities, whereby this setting constitutes a direct transfer of the
standard Euclidean training algorithm to more general settings allowing smooth
updates of the solutions. The essential observation consists in a transformation
of the cost functions as defined above to their so-called relational dual.

Assume training data x1, . . . , xm are given in terms of pairwise distances dij =
d(xi, xj)2. We assume that it originates from a Euclidean distance measure in a
possibly high dimensional embedding, that means, we are able to find (possibly
high dimensional) Euclidean points xi such that dij = ‖xi − xj‖2. Note that
this notation includes a possibly nonlinear mapping (feature map) xi �→ xi

corresponding to the embedding in a Euclidean space, which is not known, such
that we cannot directly optimize the above cost functions. The key observation
is based on the fact that optimum prototype locations wj for k-means and
batch NG can be expressed as linear combination of data points. Therefore, the
unknown distances ‖xj − wi‖2 can be expressed in terms of known values dij .

More precisely, assume there exist points xj such that dij = ‖xi − xj‖2.
Assume the prototypes can be expressed in terms of data points wi =

∑
j αijx

j

where
∑

j αij = 1 (as is the case for NG, SOM, and k-means). Then

‖xj − wi‖2 = (D · αi)j − 1/2 · αt
i · D · αi (∗)

where D = (dij)ij constitutes the distance matrix and αi = (αij)j the coeffi-
cients. This fact can be shown as follows: assume wi =

∑
j αijx

j , then

‖xj − wi‖2 = ‖xj‖2 − 2
∑

l

αil(xj)txl +
∑

l,l′

αilαil′ (xl)txl′ .

On the other hand,

(D · αi)j − 1/2 · αt
i · D · αi

=
∑

l ‖xj − xl‖2 · αil − 1/2 ·
∑

ll′ αil‖xl − xl′‖2αil′

=
∑

l ‖xj‖2αil − 2 ·
∑

l αil(xj)txl +
∑

l αil‖xl‖2 −
∑

ll′ αil′αil′‖xl‖2

+
∑

ll′ αilαil′ (xl)txl′

= ‖xj‖2 − 2
∑

l αil(xj)txl +
∑

l,l′ αilαil′(xl)txl′

because of
∑

j αij = 1.
Because of this fact, we can substitute all terms ‖xj − wi‖2 using the equa-

tion (∗) in batch optimization schemes provided optimum prototypes can be
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expressed in terms of data points as specified above. For optimum solutions of
NG, k-means, and SOM, it holds wi =

∑
j αijx

j whereby

1. αij = δi,I(xj)/
∑

j δi,I(xj) for k-means,
2. αij = hλ(ki(xj))/

∑
j hλ(ki(xj)) for NG, and

3. αij = hλ(n(I∗(xj), i))/
∑

j hλ(n(I∗(xj), i) for SOM.

This allows to reformulate the batch optimization in terms of relational data
using (∗). We obtain the algorithm

init αij with
∑

j αij = 1
repeat

compute the distance ‖xj − wi‖2 = (D · αi)j − 1/2 · αt
i · D · αi

compute optimum assignments based on this distance matrix
α̃ij = δi,I(xj) (for k-means)
α̃ij = hλ(ki(xj)) (for NG)
α̃ij = hλ(n(I∗(xj), i)) (for SOM)

compute αij = α̃ij/
∑

j α̃ij .

Hence, prototype locations are computed only indirectly by means of the coef-
ficients αij . Every prototype is represented by a vector which dimensionality is
given by the number of data points. The entry at position l of this vector can be
interpreted as the contribution of the data point l to this prototype. Thus, this
scheme can be seen as an extension of median clustering towards solutions, where
the prototypes are determined by a (virtual) mixture of data points instead of
just one point.

3.3 Mapping, Quantization Error, Convergence

For clustering, it is also necessary to assign a new data point x (e.g. a data point
from the test set) to classes given pairwise distances of the point to the training
data dj = d(x, xj)2 corresponding to the distance of x from xj . As before, we
assume that this stems from a euclidean metric, i.e. we can isometrically embed
x in Euclidean space as x with d(x, xj)2 = ‖x − xj‖2. Then the winner can be
determined by using the equality

‖x − wi‖2 = (D(x)t · αi) − 1/2 · αt
i · D · αi

where D(x) denotes the vector of distances D(x) = (dj)j = (d(x, xj)2)j . This
holds because of

‖x − wi‖2 = ‖x‖2 − 2
∑

l

αilx
txj +

∑

ll′

αilαil′(xl)txl′

and
(D(x)t · αi) − 1/2 · αt

i · D · αi

=
∑

l αil‖x − xl‖2 − 1/2
∑

ll′ αilαil′‖xl − xl′‖2

= (D(x)t · αi) − 1/2 · αt
i · D · αi,

because of
∑

l αil = 1.
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Note that also the quantization error can be expressed in terms of the given
values dij by substituting ‖xj −wi‖2 by (D ·αi)j −1/2·αt

i ·D ·αi. Thus, relational
clustering can be evaluated by the quantization error as usual.

Relational learning gives exactly the same results as standard batch optimiza-
tion provided the given relations stem from a euclidean metric. Hence, conver-
gence is guaranteed in this case since it holds for the standard batch versions. If
the given distance matrix does not stem from a euclidean metric, this equality
does no longer hold and the terms (D · αi)j − 1/2 · αt

i · D · αi can become nega-
tive. In this case, one can correct the distance matrix by the γ-spread transform
Dγ = D + γ(1 − I) for sufficiently large γ where 1 equals 1 for each entry and I
is the identity.

3.4 Kernels

This derivation allows to use standard clustering agorithms for euclidean dis-
similarity data even if the embedding is not known. A dual situation is present
if data are characterized by similarities rather than similarities, i.e. the Gram
matrix of a kernel or dot product. Since every positive definite kernel induces a
euclidean metric, this setting is included in the one described above (the converse
is not valid, compare e.g. [27]). A simpler derivation (with the same results) can
be obtained substituting distances

‖xj −wi‖2 = ‖xj −
∑

l

αilx
l‖2 = (xj)txj −2

∑

l

αil(xj)txl +
∑

l,l′

αilαil′(xl)txl′ .

This directly leads to a kernelized version of batch clustering, see e.g. [11].

3.5 Complexity

Unlike standard Euclidean clustering, relational clustering has time complexity
O(k · m2) for one epoch and space complexity O(k · m) where k is the num-
ber of prototypes and m the number of data points. Hence, as for the discrete
median versions, the complexity becomes quadratic with respect to the training
data instead of a linear complexity for the Euclidean case. For small data sets
(where ‘virtual’ interpolation of training data is necessary to obtain good proto-
type locations), this is obviously not critical. For large data sets, approximation
schemes should be considered such as a restriction of the non-zero positions of
the vectors αi to the most prominent data points. We are currently investigating
this possibility.

4 Experiments

4.1 Artificial Euclidean Benchmark

As stated before, the relational methods yield the same results as standard batch
optimization provided the given relations originate from a Euclidean metric.
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Fig. 1. Quantization errors on the Euclidean Synthetic 2D dataset for different variants
of NG. The discussed effects on the performance of the different variants can clearly be
observed. Standard Batch (36.42) and the Relational variant (36.27) are virtually on
the same level, but the Median version (38.26) is slightly behind due to limited number
of locations in discrete data space.

We demonstrate this fact for neural gas on a synthetic dataset taken from [25]
consisting of 250 data points. Six neurons were trained for 150 epochs.

The results are depicted in Fig. 1 and 2. It can be clearly observed that the
neurons for standard neural gas and relational neural gas are located nearly on
the same spots, whereas the median neurons are slightly off due to the limited
number of potential locations in the discrete data space. The quantization error
is also virtually on the same minimum level for the Euclidean and relational
variant, however, the median version is slightly behind again.

4.2 Classification of Protein Families

K-means, neural gas, and SOM, as well as their relational variants presented
in this article, perform unsupervised clustering. However, in practice they are
often applied to classification tasks. Certainly, the performance of unsupervised
prototype-based methods for that kind of task is strongly dependent on the
class structures of the data space. Nevertheless, it seems that many real-world
datasets are good natured in this respect.

Here, we present results for a classification task in bioinformatics. The data
is given by the evolutionary distance of 226 globin proteins which is determined
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Fig. 2. Prototype locations on the Euclidean Synthetic 2D dataset for different variants
of NG. The discussed effects on the location of the prototypes can clearly be observed.
Standard Batch and the Relational variant are nearly on the same spots, but the
Median version is slightly off due to limited number of locations in discrete data space.

by alignment as described in [22]. These samples originate from different protein
families: hemoglobin-α, hemoglobin-β, myoglobin, etc. Here, we distinguish five
classes as proposed in [10]: HA, HB, MY, GG/GP, and others. For training we
use 45 neurons and 150 epochs per run. The results reported in Table 1 are gained
from repeated 10-fold stratified cross-validation averaged over 100 repetitions.
For comparison, a (supervised) 1-nearest neighbor classifier yields an accuracy
91.6 for our setting (k-nearest neighbor for larger k is worse; [10]).

The advantage of the relational variants with continuous prototype updates
for (dis-)similarity data can be observed immediately in terms of better accuracy.

4.3 Topographic Mapping of Protein Families

The Protein dataset as described above is mapped by a Relational SOM with 29
neurons and a hyperbolic grid structure. Figure 3 shows the grid projection to
the Euclidean plane, the neurons are labeled with class information determined
by a majority vote on their receptive fields.

Note that the different clusters can easily be identified. The Relational SOM
provides an improved technique to explore dissimilarity data, revealing the struc-
tures of interest.
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Table 1. Classification accuracy on the Protein Data Set and the Copenhagen Chro-
mosomes dataset, respectively, for posterior labeling

Median Median Relational Relational
k-Means Batch k-Means Batch

NG NG

Accuracy (Proteins)
Mean 76.1 76.3 88.0 89.9
StdDev 1.3 1.8 1.8 1.3

Accuracy (Chromosomes)
Mean 82.3 82.8 90.6 91.3
StdDev 2.2 1.7 0.6 0.2

Fig. 3. Mapping of the non-Euclidean Protein dataset by a Relational SOM with hy-
perbolic grid structure
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4.4 Chromosome Images

The Copenhagen chromosomes database is a benchmark from cytogenetics [19]. A
set of 4200 human nuclear chromosomes from 22 classes (the X resp. Y sex chro-
mosome is not considered) are represented by the grey levels of their images and
transferred to strings representing the profile of the chromosome by the thickness
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of their silhouettes. Thus, this data set consists of strings of different length. The
edit distance is a typical distance measure for two strings of different length, as
described in [15,23]. In our application, distances of two strings are computed us-
ing the standard edit distance whereby substitution costs are given by the signed
difference of the entries and insertion/deletion cost are given by 4.5 [23].

The algorithms were tested in a repeated 2-fold cross-validation using 100
neurons and 100 epochs per run. The results presented are the mean accuracy
over 10 repeats of the cross-validation. Results are reported in Tab. 1. As can
be seen, relational clustering achieves an accuracy of more than 90% which is an
improvement by more 8% compared to median variants. This is comparable to
the classification accuracy of hidden Markov models as reported in [15].

5 Discussion

We have introduced relational neural clustering which extends the classical Eu-
clidean versions to settings where pairwise Euclidean distances (or similarities) of
the data are given but no explicit embedding into a Euclidean space is known. By
means of the relational dual, batch optimization canbe formulated in terms of these
quantities only. This extends previous median clustering variants to a continuous
prototype update which is particularly useful for only sparsely sampled data.

The general framework as introduced in this article opens the way towards the
transfer of further principles of SOM and NG to the setting of relational data: as
an example, the magnification factor of topographic map formation for relational
data transfers from the Euclidean space, and possibilities to control this factor
as demonstrated for batch clustering e.g. in the approach [8] can readily be used.

Since these relational variants rely on the same cost function as the standard
Euclidean batch optimization schemes, extensions to additional label information
as proposed for the standard variants [5,6] become available.

One very important subject of future work concerns the complexity of compu-
tation and sparseness of prototype representation. For the approach as introduced
above, the complexity scales quadratic with the number of training examples. For
SOM, it would be worthwhile to investigate whether efficient alternative compu-
tation schemes such as proposed in the approach [1] can be derived. Furthermore,
the representation contains a large number of very small coefficients, which corre-
spond to data points for which the distance from the prototype is large. Therefore
it can be expected that a restriction of the representation to the close neighbor-
hood is sufficient for accurate results.
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