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Abstract. The increasing availability of streaming data is a consequence
of the continuing advancement of data acquisition technology. Such data
provides new challenges to the various data analysis communities. Cluster-
ing has long been a fundamental procedure for acquiring knowledge from
data, and new tools are emerging that allow the clustering of data streams.
However the dynamic, temporal components of streaming data provide
extra challenges to the development of stream clustering and associated
visualisation techniques. In this work we combine a streaming clustering
framework with an extension of a static cluster visualisation method, in or-
der to construct a surface that graphically represents the clustering struc-
ture of the data stream. The proposed method, OpticsStream, provides
intuitive representations of the clustering structure as well as the manner
in which this structure changes through time.

1 Introduction

Advances in technology have resulted in an increasing number of application ar-
eas generating streaming data, that is, data obtained by observation of multiple
indefinitely long and time-evolving sequences. These applications areas include
astronomy and earth sciences, telecommunications and network monitoring. In-
formation visualisation techniques have provided a means to help the exploration
of large data sets [4]. As such there is a need to develop visual data analysis meth-
ods that can deal successfully with the challenges arising from the dynamically
changing nature of streaming data.

Clustering is the process of partitioning a data set into homogeneous subsets
called clusters. Since the publication of the first comprehensive study of cluster-
ing algorithms [14], these methods have been applied to a wide variety of fields,
ranging from text mining [6] to genomics [7].

Cluster visualisation for two dimensional data is readily achieved using simple
scatter plots. To handle higher dimensional data most methods try to determine
two- or three-dimensional projections of the data that retain certain properties of
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the high-dimensional clusters. Dendrograms, produced by hierarchical clustering
algorithms, are a popular visualisation techniques despite the quadratic time
required to construct them [9]. However such techniques become difficult to
apply in large, high-dimensional data sets, particularly when the clusters are
not clearly separated. More sophisticated techniques have been developed to
address such issues [3,8].

Although there has been some effort [10] to extend cluster visualisation to
streaming data, the focus has been applications with a relatively stable, pe-
riodically updated environment. In detail they assume a permanent database
to which insertions and deletion operations occur. Moreover, they are designed
with the assumption that all the data can be stored and retrieved whenever it
is required. Furthermore they do not incorporate any forgetting mechanism. As
such, almost all the foundational streaming data problems are not addressed by
such approaches.

In this paper we present an extension of the OPTICS algorithm [3] to the
streaming data model. OPTICS uses a density identification method to create
a one-dimensional cluster-ordering of the data. We will show that embodying
this idea in a stream clustering method can provide new insights into both the
current clustering structure and the structure evolution. This is a critical issue in
this area since the basic assumption of a data stream model is the dynamically
changing nature of the streams. Thus, such an algorithm should have the capacity
to adapt its visualisation medium to rapidly changing dynamics of the sequences.
Finally, scalability in the number of sequences is becoming increasingly desirable,
as data collection technology develops.

The paper proceeds as follows: the next section provides a description of clus-
ter visualisation in static data sets. Stream clustering is described in Section 3,
along with the proposed visualisation method, called OpticsStream. Next, in
Section 4, we demonstrate the behaviour of the OpticsStream with an experi-
mental analysis of both artificial and real data sets. The paper concludes with a
discussion in Section 5.

2 Visualising Clusters in Static Data

Unlike many other procedures, the OPTICS algorithm [3] (Ordering Points To
Identify the Clustering Structure) does not produce an explicit clustering of a
data set, but instead creates an augmented ordering of the data representing
its density-based clustering structure. For medium sized data sets, this cluster-
ordering can be represented graphically, a fact that allows interactive exploration
of the intrinsic clustering structure and thereby offering additional insight into
the distribution of the data

Consider a data set X ⊂ R
d of n vectors (objects), and a metric distance

function dist : X × X → R. Additionally, for each object p ∈ X and a value
ε ∈ R, we define the set Nε(p) = {q ∈ X |dist(p, q) � ε}, as the ε-neighbourhood
of p. ε is a user defined parameter closely related to the application, the distance
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metric and the dimensionality of the data. For more details about reasonable
values for this refer to [12].

The OPTICS point ordering is constructed using two quantities, the “core-
level” and the “reachability-distance”, that are computed for each object p in
the database. These quantities are defined as follows:

Definition 1. (core-level) Let ε ∈ R, μ ∈ N, be user defined parameters and
distμ(p) be the distance from p to its μ-nearest neighbour. The core-level of p,
CLev(p) is defined as:

CLev(p)
{

∞ if |Nε(p)| < μ
distμ(p) otherwise

Where |Nε(p)| is the number of objects from the database in the ε-neighbourhood
of p. μ is the user defined that combined with value of ε, separates the data as
outliers or not. If in the ε-neighbourhood around a point less than μ points
reside then this corresponds to an outlier [12]. Next we define the “reachability-
distance”, for each pair of objects in the database.

Definition 2. (reachability) For two objects p, q in the database the reachability
of p wrt q is defined as RDist(p, q) = max{CLev(p), dist(p, q)}.
Under these definition the cluster ordering of the data is constructed through
the following definition:

Definition 3. (cluster ordering) Let ε ∈ R, μ ∈ N, and CO be a totally ordered
permutation of the n objects of X. Each o ∈ X, is assigned the additional at-
tributes Pos(o), Core(o), and Reach(o), where Pos(o), symbolizes the position
of o in CO. The ordering CO is called a cluster ordering wrt ε and μ if the
following three conditions hold:

1. ∀p ∈ CO : Core(p) = CLev(p)
2. ∀o, x, y ∈ CO : Pos(x) < Pos(o) ∧ Pos(y) > Pos(o) ⇒ RDist(x, y) �

RDist(o, x)
3. ∀p ∈ CO : Reach(p) = inf{RDist(p, o)|o ∈ CO and Pos(o) < Pos(p)}.

In the cluster ordering defined this way each object is positioned in the order-
ing so that it has minimum reachability distance to all preceding objects in the
ordering. The cluster-ordering of a data set can be represented and understood
graphically. In principle, one can see the clustering structure of a data set if the
reachability-distance values r are plotted for each object against the correspond-
ing cluster-ordering CO. An example of a very simple 2-dimensional data set is
depicted in Fig. 1(a). The CO for this dataset is depicted in Fig. 1(b), where in
the y-axis correpsonds to the reachability distance. A detailed description of the
workings of the OPTICS algorithm is given by [3].

3 Stream Clustering

There are a large number of highly efficient and effective clustering methods [9].
However, most are batch methods originally designed for static data and there-
fore relying on the assumption that data are available in a permanent memory
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(a) (b)

Fig. 1. Reachability Distance ordering (right) of a 2-dimensional data set with 4 clus-
ters (left)

structure from which information can be retrieved at any time. Streaming data
is more demanding, requiring a one-pass scan of the data. Thus, many standard
clustering methods are not directly applicable to streaming data. More recent ap-
proaches have focused precisely on the streaming data model – accommodating
both dynamics and the memory limitation issues [5,13].

There are very few methods for stream clustering visualisation. One example
is described by [1], where so-called velocity density estimation is proposed to
provide a visual diagnosis of changes in a data stream. Here, the idea is to
estimate the rate of change (“velocity”) of a kernel density estimate at each
spatial location. This is obviously an extremely computer-intensive procedure.
Moreover, to make the method applicable in greater than two dimensions, a
projection technique is proposed, which increases the computational complexity
of the algorithm still further.

A widely used and important concept in stream clustering is micro-clusters.
These are quantities that try to summarise the data arriving over a continuous
stream. In the next paragraph we present a micro-cluster framework.

3.1 The Micro-clustering Framework

Among the various models developed for data stream clustering the micro-
clustering framework has been successfully employed by various different al-
gorithms [2,5]. In this framework the weight of each data point in the stream
decreases exponentially with time t via a fading function Tλ(t) = 2−λt, where
λ > 0. The parameter λ control the rate that historic data is down-weighted.
The smaller the value of λ, the greater importance is given to historical data. To
this end we can extend both the notions of “core-level” and “reachability” used
in static clustering algorithms [3,12] to the data stream setting.

For a spatio-temporal data set X ′ = {{x1, t1}, . . . , {xn, tn}}, where xi is a
vector and ti is the corresponding time-stamp, a micro-cluster is defined by
the quantities w, c, r, which attempt to summarise information about the data
density of a particular area. Two distinct types of micro-clusters are considered,
based on the values of r, w, and the additional user-defined parameters ε and μ. If
r < ε and w > μ, then the micro-cluster is considered to be a core-micro-cluster,
that accounts for a “dense” region of the data. Otherwise the micro-cluster
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is called an outlier-micro-cluster, that accounts for less dense regions of data.
Formally we can define these micro-clusters as follows:

Definition 4. (core-micro-cluster) A micro-cluster MCt(w, c, r) is defined as
a core-micro-cluster CMCt(w, c, r) at time t for a group of streaming points
{xi, ti}, i = 1, . . . , n, and parameters ε, μ when w � μ and r � ε. Where w =∑n

i=1 Tλ(ti) be the micro-cluster’s weight, c =
∑ n

i=1 xiTλ(ti)
w , be its center and r

its (weighted) mean radius, r =
∑n

i=1
Tλ(ti)‖c−xi‖

w .

The intuition behind the micro-clustering framework is to maintain a description
of the data streams by a list of micro-clusters. As data points are instantiated
at each time step from the stream, they are merged to their nearest micro-
clusters provided that they are sufficiently close. Otherwise new micro-clusters
are spawned in order to merge possible future similar data, and thus capture
the density structure of the stream. The quantities w, c, r, can be incremen-
tally computed for each micro-cluster. Consider a micro-cluster for which no
points were merged between time step tp and the current time tc, where the
point xc is being considered for merging. Thus wtc = 2−λ(tc−tp)wp, where wp

is the weight value at time tp. Incrementally computing c, r involves the use
of two quantities, CF1t = {

∑n
i=1 xi,jTλ(ti)}, for each coordinate j of the data

point xi ∈ R
d, and CF2t = {

∑n
i=1 x2

i,jTλ(ti)}. The quantities CF1t, CF2t can
be incrementally computed at time tc as CF1tc = 2−λ(tc−tp)CF1tc + xc, and
CF2tc = 2−λ(tc−tp)CF2tp + x2

c .
Note that the weight of core-micro-clusters must be greater than or equal to

μ and the radius must be less than or equal to ε, in order to represent “dense”
regions of the data space.

In an evolving data stream the role of clusters and outliers, that is points
that do not participate in clusters, often exchanges. To compensate for this
phenomenon, two types of micro-clusters are used [5]:

– Potential core-micro-clusters, when wc � βμ and r � ε,
– Outlier-micro-clusters, when wc > βμ and r > ε,

where β is a user defined parameter. As described above, the difference be-
tween these micro-clusters relates to the constraints on the weight and the ra-
dius of each micro-cluster. Maintaining two lists; one for the potential core-
micro-clusters, and one for outlier-micro-clusters, and updating them on-line
can provide a density description of the data space, that can be further queried
to provide knowledge of the clustering structure. These two lists are maintained
using the following procedure:

Procedure ListMaintain
1. Initialise two lists PL, OUL; one for the potential core-micro-clusters, and

the other for the outlier-micro-clusters.
2. Each time a new point p = {x, t} arrives do one of the following:

(a) Attempt to merge p into its nearest potential core-micro-cluster cp: If
the resulting micro-cluster has a radius r > ε then the merge is omitted.
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Cluster 1 of core−micro−clusters

points of the data stream
core−micro−clusters

outlier−micro−clusters

outlier−micro−clusters

Cluster 2  of core−micro−clusters

outlier−micro−clusters

Fig. 2. An example of the result of the micro-clustering framework

(b) Attempt to merge p into its nearest outlier-micro-cluster op: if r > ε the
merge is omitted. Otherwise, if the subsequent weight w of op exceeds
μ, then move op to PL.

(c) A new outlier-micro-cluster is created, centered at p.
3. Periodically prune from PL and OUL those micro-clusters for which wc � βμ

and wc � ξ.

Periodic pruning of the micro-clusters can occur sufficiently often such that the
available memory in not exceeded. [5] proposes to conduct this pruning based on a
so called time-span parameter of potential core-micro-clusters.Note also that ξ is a
user-defined parameter that determines the lower limit for the weight of an outlier-
micro-clusters before it is pruned, and its value can be connected with Tp [5].

Following the procedure outlined above, the micro-clusters maintained on-line
capture the dense areas of data streams. An example is demonstrated in Fig. 2.
Around each micro-cluster the ε area is depicted with a dashed circle, while the
computed radius r of each micro-cluster is depicted with a solid circle.

3.2 Stream Cluster Visualisation

We now propose a stream clustering visualisation methodology. This approach
can potentially operate in a real-time environment and can produce a time-
sensitive map representing the clustering structure in an understandable format.
To achieve this, the OPTICS methodology and the micro-clustering framework
described above are combined, to provide a 3-dimensional plot that depicts the
evolution of the stream cluster structure over time.

In short, we apply the concepts behind the OPTICS algorithm to the potential
core-micro-cluster list, translated to the streaming data context. First, we need
to define the core-micro-cluster neighbourhood:

Definition 5. (Micro-cluster neighbourhood) Let ε ∈ R, be a user defined pa-
rameter and PL a potential core-micro-cluster list. Then for a potential core-
micro-cluster cp, we define the micro-cluster neighbourhood of cp, as

N(cp) = {cq ∈ PL|dist(cp, cq) � 3.0ε}.
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The function dist(cp, cq), returns the Euclidean distance between the centers of
cp and cq.

Note that the distance between the centers of two neighbouring micro-clusters is
required to be less than 3 times the ε parameter. Intuitively, this considers micro-
clusters to constitute contiguous high density areas when the distance between
the ε radius spheres around them is less than ε. Although this is a crude way
of defining neighborhoods, it is possible to use other measures that take into
consideration the radius of each micro-cluster. We can also extend the definition
of core-level distance to the micro-cluster framework as follows:

Definition 6. (Micro-cluster core-level) Let ε ∈ R, β ∈ R, μ ∈ N. The core-level
of cp, CLev(cp) is defined as:

CLev(cp) = radius of cp

The difference here is that there is no need to compute core-level of a micro-
cluster from the neighbourhood of cp, as such information has already been in-
corporated into the radius of cp. Both the definitions of micro-cluster reachability
and ordering remain the same as definitions 2 and 3, respectively. Assuming the
existence of a potential micro-cluster list PL we can construct an order list OL
from it by applying the following algorithm:

Procedure StreamOptics
1. While there is still a micro-cluster cp in PL that has a neighbourhood size

|N(cp)| > 1, initialize a list S of all the micro-clusters in N(cp).
2. Remove cp from PL and add to OL.
3. Remove all micro-clusters in N(cp) from PL.
4. For each cl in S, compute RDist(cl, cp).
5. For each cl in S, insert all the micro-clusters in N(cl) to S.
6. Remove from PL all the micro-clusters in S.
7. Remove the object cl from S with the smallest RDist(cl, cp), and insert it

OL , until S is empty.

The changes which occur at each step of the micro-cluster maintenance procedure
produce insertions and deletions into the PL list that should affect only a limited
subset of the ordering in OL. If we employ incremental techniques such as those
proposed in [10], the computational effort to maintain the OL list though time is
very small compared to the reward of the mined information, since this depends
only on the change to the data structure rather than on the dimensionality or
size of the data stream.

In this way the StreamOptics methodology developed here maintains an or-
dered list OL, of core-micro-clusters, based on their reachability distance. To
this end, at each time step, we can use the methodology of OPTICS to produce
a reachability plot that depicts the current micro-cluster structure. By keep-
ing track of every such ordering, we can have a record of how the ordering of
micro-clusters, and hence the clusters in the data steam, are changing in time.
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The reachability plots produced by the OPTICS approach are 2-dimensional.
Since we are tracking how these plots change through time, we consider time
as being an extra dimension and combine these to form a 3-dimensional plot.
Essentially, we combine the reachability “curve” at each time t in order to create
a 3-dimensional surface plot, the reachability surface, RS : T × N → R, where
each point (t, i) depicts the reachability distance of the ith micro-cluster in the
ordering at time t. In order to better visualise the cluster structure represented
by this 3-dimensional surface, we can represent it as a contour plot, to provide
further insight into how the clusters are changing in time.

However we should note that the StreamOptics methodology does not guaran-
tee that the position of the micro-clusters remains the same, even when nothing
changes in the stream. However, this effect is minimized if the the order of the
micro-clusters in PL is re-arranged so that it matches OL. This way when or-
dering is re-constructed the optical changes should be minimal.

4 Experimental Results

We now provide some results produced by StreamOptics, for both synthetic and
real data sets.

4.1 Spawning Clusters

In this section we use the 2-dimensional synthetic data set, Dset2d. It initially
consists of random points drawn sequentially from a finite mixture of two Gaus-
sian distributions randomly placed in [100, 200]2. At time point 2000, we simulate
the spawning of a new cluster by introducing one more Gaussian component into
the model. In Fig 3, we illustrate the results of StreamOptics at two different
time instances. In the top row, 500 data points are drawn from the Gaussian
mixture at times 2000, 2100 and 3000, from left to right, respectively. Clearly
at time 2100 the points instantiated from the newly introduced Gaussian com-
ponent start to have an apparent effect in the mixture. In the second row of
the figure, the reachability surfaces are exhibited, for the time ranges [0, 2000],
and [2000, 4000], from left to right respectively. Finally in the 3rd row the latter
surfaces are exhibited as contour plots. As illustrated, the reachability surface
attains a constant two valey form as long as the clustering structure remains
steady. This is the expected behaviour since nothing is changing in the data
stream. Interestingly, when the new component is introduced, this change af-
fects the surface in both the time and ordering dimensions, since new micro-
clusters are introduced to capture the appearance of the new cluster. Gradually
a new peak is introduced in the reachability surface, that demonstrates the birth
of the new component in the mixture. Finally the surface stabilises again when
the new structure of the data is described adequately. There is some case where
the surface seems to mess the ordering however this does not seem to affect the
acquired knowledge.
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Fig. 3. Dset2d along with the reachability surface produced by StreamOptics for dif-
ferent time instances

4.2 Disappearing Clusters

In this section we apply the algorithm to a case in which clusters disappear. The
simulated data set, Dset5d, consists of 5-dimensional vectors, initially drawn
from a finite mixture of 10 Gaussian distributions randomly positioned in a
closed subset of R

5. From time step 3000, to time step 4000, 7 of the clusters
disappear, gradually every 100 time steps. In Fig. 4, we display a contour plot
of the reachability surface, as in this case it is more informative. The plot shows
that micro-clusters start to disappear. However the surface finally stabilizes,
resulting in a stable plot after time 4500.

4.3 The Forest CoverType Data

To examine the algorithm’s capabilities with real-world data we employ the
Forest CoverType real world data set, obtained from the UCI machine learning
repository [11]. This data set, DsetForest, is comprised of 581012 observations
of 54 attributes, where each observation is labeled as one of seven forest cover
classes. We retain the 10 numerical attributes. In Fig. 5, the reachability surface
is displayed, between time steps 2000 and 2200. Note that there is a peak in
the plot around the 34th-36th micro-cluster in Fig. 5(a). To examine the class
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Fig. 4. The contour plot of the reachability surface produced by StreamOptics for
Dset5d

(a) (b)

(c)

Fig. 5. The results on DsetForest
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correspondence, in Fig. 5(b), the class of each point in the stream between time
steps 2000 and 2200, is plotted against their nearest micro-cluster in the ordering,
using a histogram. The latter figure shows that the correspondence of the classes
changes at the 34th-36th micro-cluster as was anticipated by the peak present in
the same position of the reachability surface. To obtain a wider view of how this
structure evolves over time, in Fig 5(c) the reachability surface between times
2000 and 2500 is shown. Clearly, the data set has a somewhat stable clustering,
mostly embodied in 3 different clusters, that is persistent through time.

5 Concluding Remarks

Clustering, as one of the most fundamental procedures for extracting informa-
tion from data, plays a key role in the understanding of massive data streams.
Clustering methods have recently been extended [2,5,13], to address some of the
problems that emerge with streaming data. However, methods that can visualise
the change of the clustering structure through time have only been investigated
in lower dimensional situations or via projection [1].

In this work, we hybridise a stream clustering framework with an extension of
OPTICS, a successful technique for the visualisation of static clustering [3]. The
resulting method is shown through experimental investigation to provide insight
into both the clustering structure and its evolution in time. The plots produced
by our OpticsStream algorithm allow the user to identify the change in cluster
structure in the case of both emerging and fading clusters. The results are also
evaluated in a real world setting, where a-priori determined class information is
used as a validation measure.
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