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Abstract. This paper is a basic introduction to some of the main themes in the
design and analysis of security protocols. It includes a brief explanation of the
principles of protocol design and of a formalism for protocol analysis. It is in-
tended as a written counterpart to a tutorial given at the 2006 International School
on Foundations of Security Analysis and Design.

1 Introduction

Over the last 30 years, work on security protocols has led to a number of ideas and
techniques for protocol design, to a number of protocol implementations, and also to
many attacks. Gradually, it has also led to mature techniques for analyzing protocols,
and to an understanding of how to develop more robust protocols that address a range
of security concerns.

These notes are based on a tutorial on security protocols given at the 2006 Inter-
national School on Foundations of Security Analysis and Design. The tutorial was an
introduction to the following topics:

– security protocols (informally),
– some design principles,
– a formal calculus for protocol analysis: the applied pi calculus,
– automated proof methods and tools, such as ProVerif.

The slides from the tutorial are available on-line [1]. These notes are essentially a sum-
mary of the material presented there. They do not aim to provide a balanced survey of
the entire field, nor to explain some of its advanced points, which are covered well in
research papers. Instead, the notes aim to introduce the basics of security protocols and
the applied pi calculus. They may help readers who are starting to study the subject,
and may offer some perspectives that would perhaps interest others.

The next section is a general description of security protocols. Section 3 gives an
example, informally. Section 4 explains a few principles for the design of protocols.
Section 5 is an introduction to informal and formal protocol analysis. Sections 6 and 7
present the applied pi calculus and the ProVerif tool, respectively. Section 8 revisits the
example of Section 3. Section 9 concludes by discussing some further work.
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2 Security Protocols

Security protocols are concerned with properties such as integrity and secrecy. Primary
examples are protocols that establish communication channels with authenticity and
confidentiality properties—in other words, communication channels that protect the
integrity and secrecy of the data sent between the intended protocol participants. Other
examples include protocols for commerce and for electronic voting.

This section describes security protocols in a little more detail. It introduces a pro-
tocol due to Needham and Schroeder, which serves as a running example in the rest of
these notes.

2.1 Cryptography

In distributed systems, security protocols invariably employ some cryptography [65],
so they are sometimes called cryptographic protocols. We call them security protocols
in order to emphasize ends over means, and also in order to include some exchanges
in which cryptography is not needed or not prominent. For the purposes of these notes,
only very simple cryptography is needed.

We focus on symmetric cryptosystems (such as DES and AES). In these, when two
principals communicate, they share a key that they use for encryption and for decryp-
tion. Therefore, symmetric cryptosystems are also called shared-key cryptosystems.
When integrity is required, as it often is, a shared key also serves for producing and
for checking message authentication codes (MACs). A MAC is basically a signature,
with the limitation that only the principals that know the corresponding shared key can
check it, and that any of these principals could produce it. So, although any principal
that knows the shared key could convince itself that some other principal has produced
a given MAC, it may not be able to convince a judge or some other third party.

In SSL [46] and other practical protocols, multiple shared keys are often associated
with each communication channel. For instance, for each point-to-point connection, we
may have two shared keys for encryption, one for communication in each direction, and
two for MACs, again one per direction. However, these four keys may all be derived
from a shared master key. Furthermore, protocols often rely on both symmetric cryp-
tosystems and asymmetric cryptosystems (such as RSA). While we may not explicitly
discuss them, many of these variants do fall within the scope of the methods presented
in these notes.

As in many informal protocol descriptions, below we assume that the encryption
function provides not only secrecy but also authenticity. In other words, we proceed as
though the encryption function includes a built-in MAC.

2.2 Other Machinery

There is more to the mechanics of protocols than cryptography. Moreover, protocols ex-
ist and should be understood in the context of other security machinery, such as auditing
and access control.

Protocols often include timestamps or other proofs of freshness. They may also in-
clude sequence numbers for ordering messages. At a lower level, practical protocols
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also include key identifiers (so that the recipient of an encrypted message knows which
key to try), message padding, and facilities for message compression, for instance.

Furthermore, protocols often rely on trusted third parties. These trusted third parties
may function as certification authorities, as trusted time servers, and in other roles. Trust
is not absolute, nor always appropriate—so protocols often aim to eliminate trusted
third parties or to limit the trust placed in them.

2.3 Authentication Protocols

In systems based on the access-control model of security [58], authorization relies on
authentication, and protocols that establish communication channels with authenticity
and confidentiality properties are often called authentication protocols. There are many
such protocols. They typically involve two principals (hosts, users, or services) that
wish to communicate, and some trusted third parties. In particular, the two principals
may be a client and a server, and the purpose of the channel may be to convey requests
and responses between them.

Despite these commonalities, there are also a number of differences across authenti-
cation protocols; no single authentication protocol will be suitable for all systems. For
performance, designers consider communication, storage, and cryptographic costs, and
sometimes trade between them. The choice of cryptographic algorithms is influenced
by these cost considerations, and also by matters of convenience and law. In addition,
systems rely on synchronized clocks to different extents.

At a higher level, no single authentication protocol will be suitable for all purposes.
Protocols vary in their assumptions, in particular with respect to trusted third parties.
They also vary in their objectives:

– Some protocols achieve mutual authentication; others achieve only one-way
authentication, and in some cases guarantee the anonymity of one of the parties
(typically the client).

– Data secrecy is sometimes optional.
– A few protocols include protection against denial-of-service attacks. This protec-

tion aims to ensure that protocol participants cannot be easily burdened with many
costly cryptographic operations and other expensive work.

– Going beyond the basic security properties, some protocols aim to ensure non-
repudiation (so participants cannot later deny some or all of their actions), for in-
stance. A few protocols aim to support plausible deniability, which is roughly the
opposite of non-repudiation.

3 An Example

We describe a protocol due to Needham and Schroeder as an example. The protocol is
the first from their seminal paper on authentication [74]; it relies on a symmetric cryp-
tosystem. Throughout, we refer to this protocol as the Needham-Schroeder protocol,
because of its importance and because we do not consider other protocols by the same
authors.



4 M. Abadi

The Needham-Schroeder protocol is one of the classics in this field. It has served as
the basis for the Kerberos system [68, 56] and much other subsequent work. Many of
its ingredients occur in other protocols, including many recent ones. Recent protocols,
however, typically have more moving parts—more modes, options, and layers.

3.1 Model

Needham and Schroeder set out the following informal model:

We assume that an intruder can interpose a computer in all communication
paths, and thus can alter or copy parts of messages, replay messages, or emit
false material.

We also assume that each principal has a secure environment in which to
compute, such as is provided by a personal computer or would be by a secure
shared operating system.

The first assumption is common across the field, and is probably even more reasonable
now than it was when it was first formulated. The second assumption is also common,
but unfortunately it is often somewhat questionable because of the widespread software
failures that viruses and worms exploit.

3.2 The Protocol

In this protocol, A and B are two principals that wish to establish a secure communica-
tion session. An authentication server S is a trusted intermediary.

Initially the principals A and B share KAS and KBS with S, respectively. The goal
of the protocol is to establish a session key KAB for A and B.

In the course of the protocol, A and B invent the nonces NA and NB , respectively.
Nonces are quantities generated for the purpose of being fresh. In particular, A can
reason that any message that includes NA was manufactured after NA’s invention; so
A can conclude that any such message belongs in the current protocol session, and is
not a replay from a previous session. The use of nonces dispenses with the requirement
of a single network clock; nonces are still prevalent today, in protocols such as SSL and
IKE [46, 53].

Figure 1 depicts the message exchange. Here, we write {X}K for an encryption of
the plaintext X under the key K , and X, Y for the concatenation of X and Y (with
markers, as needed, in order to avoid ambiguities).

Only A contacts the server S, in Message 1. This message includes NA. Upon receipt
of this message, S generates KAB , which becomes the session key between A and B.
In Message 2, S provides this session key to A, under KAS. This message includes
A’s nonce, as a proof of freshness. Message 2 also includes a certificate (or a “ticket”,
in Kerberos parlance) under KBS that conveys the session key and A’s identity to B.
Message 3 transmits this certificate from A to B. After decrypting Message 3 and ob-
taining the session key, B carries out a handshake with A, in Messages 4 and 5. The
use of NB − 1 in Message 5 is somewhat arbitrary; almost any function of NB would
do as long as B can distinguish this message from its own Message 4.
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Fig. 1. The Needham-Schroeder protocol

3.3 A Limitation

As Denning and Sacco observed [41], this protocol has a serious limitation:

– Suppose that an attacker has a log of the messages exchanged during a protocol
run.

– Suppose further that, long after a run, the attacker may discover the session key
KAB somehow—for instance, through a long brute-force attack or as a result of
the careless exposure of old key material.

– The attacker may then replay Message 3 to B. Unless B remembers KAB or has
some external indication of the attack, B is not able to distinguish the replay from
a legitimate, new instance of Message 3.

– The attacker may then conduct a handshake with B. Although B uses a fresh nonce
for this handshake, the attacker is able to produce a corresponding response because
it knows KAB .

– Subsequently, the attacker may continue to communicate with B under KAB, im-
personating A.

In order to address this limitation, one may try to make KAB strong, and to change
KBS often, thus limiting the window of vulnerability. One may however prefer to use
an improved protocol, in which B and S interact directly (as Needham and Schroeder
suggested [75]), or in which messages include timestamps (as Denning and Sacco pro-
posed, and as done in Kerberos).

As this example illustrates, most security protocols have subtleties and flaws. Many
of these have to do with cryptography, but many of these do not have to do with the
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details of cryptographic algorithms. For design, implementation, and analysis, a fairly
abstract view of cryptography is often practical.

4 Principles of Protocol Design

While protocol design often proceeds informally, it need not be entirely driven by trial
and error. Some general principles can guide the creation and understanding of proto-
cols (e.g., [9,14,79,15]). Such principles serve to simplify protocols and to avoid many
mistakes. They also serve to simplify informal reasoning about protocols and their for-
mal analysis [76, 28].

In this section we explain some of these principles, with reference to our example.

4.1 Explicit Messages

In the early logics of authentication, an informal process of idealization turned loose
protocol narrations into formulas that expressed the perceived intended meanings of
messages [37]. Over time, it was noticed that many attacks were identified in the course
of this informal process—even more than during the later formal proofs. More broadly,
it was noticed that many attacks appeared because of gaps between the actual contents
of messages and their intended meanings. This realization and much experience led to
the following principle [9]:

Every message should say what it means: the interpretation of the message
should depend only on its content.

In other words, the meaning of the message should not depend on implicit informa-
tion that is presumed clear from context. Such presumptions are often unreliable in the
presence of attackers that do not play by the rules.

As an important special case of this principle, it follows:

If the identity of a principal is important for the meaning of a message, it is
prudent to mention the principal’s name explicitly in the message.

For instance, Message 2 of the Needham-Schroeder protocol consists of the cipher-
text {NA, B, KAB, {KAB, A}KBS}KAS . The first three fields NA, B, KAB of the
plaintext message are intended as a statement to A that KAB is a good key for a ses-
sion with B sometime after the generation of NA. The name A is implicit, and can be
deduced from KAS . Making it explicit would not be costly, and it would lead to a more
robust protocol—allowing, for instance, the possibility that the key KAS would be a
key for a node with multiple users (A1, A2, . . . ). On the other hand, the name B is and
must be explicit. Omitting it enables an attack, as follows.

– Suppose that an attacker C intercepts Message 1, replaces B with C, and sends the
modified message to S.

– In response, Message 2 includes {KAC , A}KCS , where KCS is known to C, rather
than {KAB, A}KBS . However, A cannot detect this substitution: A can check its
nonce NA, and obtains KAC and this certificate, but the certificate is opaque to A.
The subscript C in KAC is merely a meta-notation; nothing in the key itself indi-
cates that it is shared with C rather than with B.
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– Suppose further that C intercepts Message 3 in which A forwards {KAC, A}KCS

to B. Then C obtains KAC and can conduct a handshake with A, in B’s place.
– Subsequently, C may continue to communicate with A under KAC , impersonat-

ing B.

Many successful attacks against published protocols resemble this one, and stem from
the omission of some names.

Similarly, Message 3 of the Needham-Schroeder protocol consists of the ciphertext
{KAB, A}KBS . To B, this message should mean that KAB is a good key for a session
with A. Again, one of the names (B in this case) is implicit, while the other (A) is
explicit and is needed in order to thwart an attack. (The attack is left as an easy exercise
for the reader.) Remarkably, the meaning of this message does not specify at which time
KAB is a good key. While the handshake has something to do with timeliness, the exact
significance of {NB}KAB and {NB − 1}KAB is a little unclear. Denning and Sacco
exploited these shortcomings in their attack.

Often, the meanings of messages pertain to the goodness of keys. As Needham noted,
years later, much progress can be made without further elaboration on what is a good
key [73]:

The statement that a key was “good” for certain communication bundles up
all sorts of useful notions—that it was made by a careful agent, had not been
scattered about, had sufficient variety, and so forth.

Still, if several kinds of good keys are possible (from different cryptosystems, or with
different parameters), then messages should be explicit on which kind is intended.

4.2 Explicit Design

Cryptography is a powerful tool, but a proper understanding of its guarantees, nuances,
and limitations is required for its effective use in protocols. Accordingly, the next prin-
ciple concerns the use of cryptography, rather than the specifics of particular crypto-
graphic algorithms [9].

Be clear as to why encryption is being done.
Encryption is not synonymous with security.

In protocols, encryption and other cryptographic functions are used for a variety of
purposes.

– Encryption is sometimes used for confidentiality. For example, in Message 2, en-
cryption protects the secrecy of KAB.

– Encryption is sometimes used in order to guarantee authenticity. For example,
A may reason that Message 2 is an authentic message from S because of the
encryption.

– Encryption sometime serves for proving the presence of a principal or the posses-
sion of a secret. Message 5 exemplifies this use.

– Encryption may also serve for binding together the parts of a message. In Mes-
sage 2, the double encryption may be said to serve this purpose. However, in this ex-
ample, rewriting the message to {NA, B, KAB}KAS , {KAB, A}KBS would work
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just as well. Double encryption is not double security—and indeed sometimes it is
a source of confusion and insecurity, as in the Woo-Lam protocol [9, 82, 81].

– Encryption is sometimes used in random-number generation, in defining MACs,
and in other cryptographic tasks. It is generally best to leave those uses for the
lower-level constructions of cryptographic primitives, outside the scope of protocol
design.

While the principle above refers to encryption, it also applies to other cryptographic
functions. More generally, it is desirable that not only messages but also the protocol
design be explicit [14]:

Robust security is about explicitness; one must be explicit about any properties
which can be used to attack a public key primitive, such as multiplicative ho-
momorphism, as well as the usual security properties such as naming, typing,
freshness, the starting assumptions and what one is trying to achieve.

5 Analysis

The development of methods for describing and analyzing security protocols seems
to have started in the early 1980s (e.g., [30, 83, 42, 40, 66, 55]). The field matured
considerably in the 1990s. Some of the methods rely on rigorous but informal frame-
works, sometimes supporting sophisticated complexity-theoretic definitions and argu-
ments (e.g., [30, 47, 83, 19]). Others rely on formalisms specially tailored for this task
(e.g., [37, 80]). Yet others are based on temporal logics, process algebras such as CSP
and the pi calculus, and other standard formalisms, sometimes in the context of various
theorem-proving tools, such as Isabelle (e.g., [52, 78, 8, 61, 76, 64]). The next section
presents the applied pi calculus as an example of this line of work.

Overall, the use of these methods has increased our confidence in some protocols. It
has also resulted in the discovery of many protocol limitations and flaws, and in a better
understanding of how to design secure protocols.

Many of these methods describe a protocol as a program, written in a programming
notation, or as the corresponding set of executions. In addition to the expected prin-
cipals, this model of the protocol should include an attacker. The attacker has various
standard capabilities:

– it may participate in some protocol runs;
– it may know certain data in advance;
– it may intercept messages on some or all communication paths;
– it may inject any messages that it can produce.

The last of these is the most problematic: in order to obtain a realistic model, we should
consider non-deterministic attackers, which may for example produce keys and nonces,
but without such luck that they always guess the keys on which the security of the
protocol depends.

One approach to this problem consists in defining the attacker as some sort of proba-
bilistic program that is subject to complexity bounds. For instance, the attacker may be a
probabilistic polynomial-time Turing machine. Such a machine is not able to explore an
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exponentially large space of possible values for secret keys. This approach can be quite
successful in providing a detailed, convincing model of the attacker. Unfortunately, it
can be relatively hard to use.

Going back to early work on decision procedures by Dolev and Yao [42], formal
methods adopt a simpler solution. They arrange that non-deterministic choice of a key
or a nonce always yields a fresh value (much like object allocation in object-oriented
languages always returns a fresh address). In this respect, keys and nonces are not or-
dinary bitstrings. Accordingly, cryptographic operations are treated formally (that is,
symbolically). Some assumptions commonly underly these formal methods. For in-
stance, for symmetric encryption, we often find the following assumptions:

– Given K , anyone can compute {M}K from M .
– Conversely, given K , anyone can compute M from {M}K .
– {M}K cannot be produced by anyone who does not know M and K .
– M cannot be derived from {M}K by anyone who does not know K (and K cannot

be derived from {M}K).
– An attempt to decrypt {M}K with an incorrect key K ′ will result in an evident

failure.

Here, M , K , and {M}K represent formal expressions. The first assumption says that
anyone with the expressions K and M can obtain the expression {M}K ; the opera-
tion applied is a symbolic abstraction of encryption, rather than a concrete encryption
operation on bitstrings. Similarly, the second assumption corresponds to a symbolic ab-
straction of decryption, and the fifth assumption to a related symbolic check. The third
and the fourth assumptions are reflected in the absence of any operations for encrypting
or decrypting without the corresponding key.

Despite their somewhat simplistic treatment of cryptography, formal methods are
often quite effective, in part because, as noted above, a fairly abstract view of cryptog-
raphy often suffices in the design, implementation, and analysis of protocols. Formal
methods enable relatively simple reasoning, and also benefit from substantial work on
proof methods and from extensive tool support.

The simplistic treatment of cryptography does imply inaccuracies, possibly mistakes.
The separation of keys and nonces from ordinary data implies that attackers cannot do
arbitrary manipulations on keys and nonces. For instance, attackers may not be allowed
to do bitwise shifts on keys, if that is not represented as a symbolic operation somehow.
Thus, attacks that rely on shifts are excluded by the model, rather than by proofs.

A recent research effort aims to bridge the gap between complexity-theoretic meth-
ods and formal methods. It aims to provide rigorous justifications for abstract treat-
ments of cryptography, while still enabling relatively easy formal proofs. For instance,
a formal treatment of encryption is sound with respect to a lower-level computational
model based on complexity-theoretic assumptions [10]. The formal treatment is sim-
ple but fairly typical, with symbolic cryptographic operations. In the computational
model, on the other hand, keys and all other cryptographic data are bitstrings, and
adversaries have access to the full low-level vocabulary of algorithms on bitstrings.
Despite these additional capabilities of the adversaries, the secrecy assertions that can
be proved formally are also valid in the lower-level model, not absolutely but with high
probability and against adversaries of reasonable computational power. Further research
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in this area addresses richer classes of systems and additional cryptographic functions
(e.g., [16,67,59,60,39]). Further research also considers how to do automatic proofs in
a computational model, starting from formal protocol descriptions but with semantics
and proof principles from the complexity-theoretic literature (e.g., [26, 29]).

6 The Applied Pi Calculus

This section introduces the applied pi calculus [6], focusing on its syntax and its infor-
mal semantics. Section 7 describes ProVerif, a tool for the applied pi calculus; Section 8
gives an example of the use of the applied pi calculus.

6.1 Security Protocols in the Pi Calculus

The pi calculus is a minimal language for describing systems of processes that commu-
nicate on named channels, with facilities for dynamic creation of new channels [70,69].
We use it here without defining it formally; some definitions appear below, in the con-
text of the applied pi calculus. As usual, we write c〈. . .〉 for a message emission and
c(. . .) for a message reception, “.” for sequential prefixing, “|” for parallel composi-
tion, and “ν” for name restriction. Equations like A = . . ., B = . . ., and P = . . . are
definitions outside the pi calculus: the operator “=” is not part of the calculus itself.

At an abstract level, the pi calculus is sufficient for describing a wide range of sys-
tems, including security protocols. For instance, we may describe an abstract version of
a trivial one-message protocol as follows:

A = c〈V 〉
B = c(x).d〈〉
P = (νc)(A | B)

Here, A is a process that sends the message V on the channel c, and B is a process that
receives a message on the channel c (with x as the argument variable to be bound to
the message), then signals completion by sending an empty message on the channel d.
Finally, P is the entire protocol, which consists of the parallel composition of A and B
with a restriction on the channel c so that only A and B can access c.

The attacker, left implicit in the definitions of this example, is the context. It may be
instantiated to an arbitrary expression Q of the pi calculus, and put in parallel with P ,
as in P | Q.

This process representation of the protocol has properties that we may interpret as
security properties. In particular, in any context, P is equivalent to a variant P ′ that
sends V ′ in place of V , for any other message V ′. Indeed, P and P ′ are so trivial that
they are equivalent to d〈〉. Thinking of the context as an attacker, we may say that this
property expresses the secrecy of the message V from the attacker.

In more complicated examples, the security properties are less obvious, but they
can still be formulated and established (or refuted) using the standard notations and
proof techniques of the pi calculus. In particular, the formulations rely on universal
quantification over all possible attackers, which are treated as contexts in the pi calculus.
This treatment of attackers is both convenient and generally useful.



Security Protocols: Principles and Calculi 11

6.2 The Applied Pi Calculus

As in the small example above, the pi-calculus representations of protocols often model
secure channels as primitive, without showing their possible cryptographic implemen-
tations. In practice, the channel c of the example may be implemented using a public
channel plus a key K shared by A and B. Sending on c requires encryption under K ,
and receiving on c requires decryption with K . Additional precautions are necessary,
for instance in order to prevent replay attacks. None of this implementation detail is
exposed in the pi-calculus definitions.

Moreover, even with the abstraction from keys to channels, some protocols are hard
to express. The separation of encryption from communication (an important aspect of
the work of Needham and Schroeder) can be particularly problematic. For instance,
Message 2 of the Needham-Schroeder protocol, from S to A, includes {KAB, A}KBS ,
to be forwarded to B. This message component might be modeled as a direct message
from S to B on a secure channel—but such a model seems rather indirect, and might
not be sound.

One approach to addressing this difficulty consists in developing encodings of en-
cryption in the pi calculus [8,17]. While this approach may be both viable and interest-
ing, it amounts to a substantial detour.

Another approach to addressing this difficulty relies on extensions of the pi calcu-
lus with formal cryptographic operations, such as the spi calculus [8] and the applied
pi calculus. The applied pi calculus is essentially the pi calculus plus function sym-
bols that can be used for expressing data structures and cryptographic operations. The
spi calculus can be seen as a fragment that focuses on a particular choice of function
symbols. In both cases, the function symbols enable finer protocol descriptions. These
descriptions may show how a secure channel is implemented with encryption, or how
one key is computed from another key. Next we introduce the syntax and the informal
semantics of the applied pi calculus.

We start with a sort of variables (such as x and y) and a sort of names (such as n).
We use meta-variables u and v to range over both names and variables. We also start
with a set of function symbols, such as f , encrypt, and pair. These function symbols
have arities and types, which we generally omit in this presentation. In addition to
arities and types, the function symbols come with an equational theory (that is, with an
equivalence relation on terms with certain closure properties). For instance, for binary
function symbols senc and sdec, we may have the usual equation:

sdec(senc(x, y), y) = x

If in addition we have a binary function symbol scheck and a constant symbol ok, we
may have the additional equation:

scheck(senc(x, y), y) = ok

Intuitively, senc and sdec stand for symmetric encryption and decryption, while scheck
provides the possibility of checking that a ciphertext is under a given symmetric key.
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The set of terms is defined by the grammar:

U, V ::= terms
c, d, n, s, K, N, . . . name
x, y, K, . . . variable
f(U1, . . . , Ul) function application

where f ranges over the function symbols and U1, . . . , Ul match the arity and type
of f . Terms are intended to represent messages and other data items manipulated in
protocols.

The set of processes is defined by the grammar:

P, Q, R ::= processes
nil null process
P | Q parallel composition
!P replication
(νn)P name restriction (“new”)
if U = V then P else Q conditional
u(x1, . . . , xn).P message input
u〈V1, . . . , Vn〉.P message output

Informally, the semantics of these processes is as follows:

– The null process nil does nothing.
– P | Q is the parallel composition of P and Q.
– The replication !P behaves as an infinite number of copies of P running in parallel.
– The process (νn)P generates a new name n then behaves as P . The name n is

bound, and subject to renaming.
The use of ν is not limited to generating new channel names. We often use ν

more broadly, as a generator of unguessable values. In some cases, those values
may serve as nonces or as keys. In others, those values may serve as seeds, and
various transformations may be applied for deriving keys from seeds.

– The conditional construct if U = V then P else Q is standard. Here, U = V rep-
resents equality in the equational theory, not strict syntactic identity. We abbreviate
it if U = V then P when Q is nil .

– The input process u(x1, . . . , xn).P is ready to input a message with n components
from channel u, then to run P with the actual message components replaced for
the formal parameters x1, . . . , xn. We may omit P when it is nil . The variables
x1, . . . , xn are bound, and subject to renaming.

– The output process u〈V1, . . . , Vn〉.P is ready to output a message with n compo-
nents V1, . . . , Vn on channel u, then to run P . Again, we may omit P when it
is nil .

Processes are intended to represent the components of a protocol, but they may also
represent attackers, users, or other entities that interact with the protocol.

As an abbreviation, we may also write let x = U in P . It can be defined as
(νc)(c〈U〉 | c(x).P ), where c is a name that does not occur in U or in P .

As these definitions indicate, the applied pi calculus is rather abstract. It allows us
to omit many details of cryptography and communication. On the other hand, both
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cryptography and communication are represented in the applied pi calculus. We can
describe every message, under what circumstances it is sent, how it is checked upon
receipt, and what actions it triggers.

Research on the spi calculus and the applied pi calculus includes the development of
formal semantics, the study of equivalences and type systems, the invention of decision
procedures for particular problems, the definition of logics, other work on proof tech-
niques and tools, and various applications (e.g., [34, 5, 2, 18, 36, 35, 43, 44, 49, 50, 54]).
Research on related formalisms touches on many of these topics as well (e.g., [45, 13,
12, 77, 38]). We discuss only a fraction of this work in the present notes, and refer the
reader to the research literature for further material on these topics.

7 ProVerif

A variety of methods for protocol analysis rely at least in part on tool support. They are
effective on abstract but detailed models of important protocols. Many of them employ
elaborate proof techniques—some general, some specific to this area.

Since the work of Dolev and Yao, there has been much research on special decision
procedures. In recent years, these have been most successful for finite-state systems
(e.g., [18]). Since the mid 1990s, general-purpose model-checking techniques have
also been applied in this area (e.g., [62, 71]). Again, they are usually most effective
for finite-state systems. There has also been research on proofs with semi-automatic
proof assistants (e.g., [76,33]). These proofs can require a fair amount of expert human
guidance. On the other hand, they can produce sophisticated theorems and attacks, even
for infinite-state systems.

Several other approaches rely on programming-language techniques, such as typing,
control-flow analysis, and abstract interpretation (e.g., [72, 31, 2]). These techniques
are often incomplete but useful in examples and (relatively) easy to use. It turns out
that some of these techniques are equivalent, at least in theory [32, 2]. We give a brief
description of ProVerif [23, 24, 25, 27], as an important example of this line of work.

ProVerif is an automatic checker for the applied pi calculus. It features a somewhat
modified input syntax, in which function symbols are categorized as constructors and
destructors. Pairing and encryption are typical examples of constructors, while projec-
tion operations and decryption are examples of destructors.

Internally, ProVerif translates from the applied pi calculus to Horn clauses, and thus
represents protocols as logic programs. For example, if a process sends the name A
on channel c when it receives the name B on channel d, then the Horn clauses that
represent the protocol will imply

mess(d, B) → mess(c, A)

where mess is a predicate that indicates the possible presence of a message on a chan-
nel. Some of the Horn clauses deal with communication and with cryptography (not
specifically to a protocol). For example, we may have:

attacker (x) ∧ attacker (y) → mess(x, y)
attacker (x) ∧ attacker (y) → attacker (senc(x, y))

where attacker is a predicates that characterizes the knowledge of an attacker.
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ProVerif then applies automated analysis techniques based on resolution to these
Horn clauses. It contains proof methods for certain classes of properties. These include
secrecy and authenticity properties. In particular, the secrecy of a name s may be for-
mulated in terms of whether or not attacker(s) is provable.

ProVerif has been effective on a wide range of examples. For instance, it can treat
the Needham-Schroeder protocol without much difficulty, using definitions similar to
those presented in Section 8. More advanced examples include a protocol for certi-
fied email [3], the JFK protocol [11] for keying for IP security [4], some password-
based protocols [27], some electronic-voting protocols [57], and several web-services
protocols [63, 20]. ProVerif seems to be fairly accessible to new users. Remarkably, it
has also served as a powerful basis for sophisticated tools for analyzing web-services
protocols [22].

ProVerif proofs typically take seconds or minutes, though longer proofs are possible
too. ProVerif guarantees termination only in certain cases [28]. Manual arguments are
sometimes combined with automatic proofs.

8 An Example, Revisited

As an example, we write the Needham-Schroeder protocol in the applied pi calculus.
An analysis of this example may be done by hand, using a variety of proof techniques

for the applied pi calculus that go beyond the scope of these notes. An analysis may also
be done automatically with ProVerif, as mentioned above.

8.1 Preliminaries

We assume that e is a public channel on which all principals may communicate. There-
fore, we do not restrict the scope of e with the ν operator. We do not represent the details
of addressing and routing. In our formulation of the code, it is possible for a principal to
receive a message intended for some other principal, and for the processing to get stuck.
It is straightforward to do better. We choose this simplistic model because the details of
addressing are mostly orthogonal to the primary security concerns in this protocol. In
other protocols, the details of addressing may be more important, for instance if one is
interested in hiding the identities of the principals that communicate, in order to obtain
privacy guarantees (e.g., [7]).

We use the following function symbols:

– We use constant symbols A, B, . . . for principal names.
– We also use the function symbols introduced above for symmetric cryptography

(senc, sdec, scheck, and ok).
– We use two unary function symbols that we write in postfix notation, as −1 and

+1, with the equation (x − 1) + 1 = x.
While this equation may not seem surprising, it is worth noting that it is not

essential to writing the processes that represent the protocol. We introduce it be-
cause we wish to emphasize that anyone (including an attacker) can invert the −1
function. Without this equation, −1 might appear to be a one-way function, so one
might wrongly expect that it would be impossible to recover NA from NA − 1.
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Similarly we could add other equations, such as (x + 1) − 1 = x. We return to the
subject of choosing equations in Section 8.4.

– We also assume tupling and the corresponding projection operations. We write
(U1, . . . , Un) for the tuple of U1, . . . , Un, for any n, and write pi for the projection
function that retrieves Ui, for i = 1..n, with the equation pi((x1, . . . , xn)) = xi.

– Finally, we introduce a binary function symbol skeygen. We use skeygen to map
a master key and a principal name to a symmetric key. Relying on this mapping,
the server S needs to remember only a master key KS , and can recover KAS by
computing skeygen(KS, A) and KBS by computing skeygen(KS , B).

Thus, we model a practical, modern strategy for reducing storage requirements
at S. An alternative set of definitions might encode a table of shared keys at S.

8.2 A First Version

As an initial attempt, we may model the messages in the protocol rather directly. We
write a process for each of A, B, and S, then combine them.

The code for A includes a top-level definition of KAS (formally introduced as a
variable, not a name). We do not model more realistic details of how A may obtain KAS .
We write the code for A in terms of auxiliary processes A1, A2, . . . . Basically, Ai

represents A at Message i of a protocol execution. For instance, A1 generates NA, then
sends A, B, NA on e, then proceeds to A2. In turn, A2 receives a message x, checks that
it is a ciphertext under the expected key, decrypts it, extracts four components from the
plaintext, and checks that NA is the first component and B the second, then proceeds
to A3; a failure in any of the verifications causes the processing to stop. Each of these
auxiliary processes may have free names and variables bound in previous processes; for
instance NA is bound in A1 and used in A2.

A = let KAS = skeygen(KS , A) in A1
A1 = (νNA)e〈A, B, NA〉.A2
A2 = e(x).if scheck(x, KAS) = ok then

let x′ = sdec(x, KAS) in
let x1 = p1(x′) in
let x2 = p2(x′) in
let x3 = p3(x′) in
let x4 = p4(x′) in
if x1 = NA then
if x2 = B then A3

A3 = e〈x4〉.A4
A4 = e(x5).if scheck(x5, x3) = ok then A5
A5 = e〈senc((sdec(x5, x3) − 1), x3)〉

Similarly, we write the code for S as follows:

S = S1
S1 = e(x1, x2, x3).S2
S2 = (νK)let x′ = senc((K, x1), skeygen(KS , x2)) in

e〈senc((x3, x2, K, x′), skeygen(KS , x1))〉
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Here the key K stands for the new symmetric key for communication between clients
(named KAB above for clients A and B).

Finally, we write the code for B as follows:

B = let KBS = skeygen(KS, B) in B3
B3 = e(x).if scheck(x, KBS) = ok then

let x′ = sdec(x, KBS) in
let x1 = p1(x′) in
let x2 = p2(x′) in B4

B4 = (νNB)e〈senc(NB, x1)〉.B5
B5 = e(y).if scheck(y, x1) = ok then

if sdec(y, x1) − 1 = NB − 1 then nil

We assemble the pieces so as to represent a system with A, B, and S:

P = (νKS)(A | B | S)

8.3 A Second Version

The first version of the code is not entirely satisfactory in several respects.

– A appears to initiate a session with B spontaneously, and communication stops
entirely after a shared key is established. For instance, B checks the last message,
but stops independently of whether the check succeeds.

A more complete model of the protocol would show that A initiates a session
because of some event. This event may for example come from a process RA that
represents an application that uses the protocol at A. Upon completion of a success-
ful exchange, the resulting key may be provided to the application. (Alternatively,
the protocol could include its own layer for encrypted data communications, like
SSL’s record layer.) Similarly, upon completion of a successful exchange, the re-
sulting key and the identity of the other endpoint could be passed to a process RB

at B, which may check the identity against an access-control policy. Thereafter, RA

and RB may use the session key; they should never use the master key KS .
– If the possibility of session-key compromise is important, as indicated by Denning

and Sacco, then it should be modeled. For instance, upon completion of a successful
exchange, the session key may be broadcast. An analysis of the protocol without
such an addition would not detect the possibility of an attack that relies on the
compromise of old session keys.

In a model with user processes RA and RB , we may simply consider the possi-
bility that one of these processes leaks old session keys.

– A should not be limited to initiating one session, and the identity of the principals
A and B should not be fixed. Rather, each principal may engage in the protocol in
the role of A or B, or even in both roles simultaneously, multiple times.

Therefore, the code for these roles should use, as a parameter, the claimed name
of the principal that is running the code. In addition, the code should be replicated.
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We arrive at the following variant of our definitions for A:

A(xA) = (νc)(νd)(RA | let KAS = skeygen(KS , xA) in !c(xB).A1)
A1 = (νNA)e〈xA, xB, NA〉.A2
A2 = as above, except for the last line, which becomes

if x2 = xB then A3
A3 = as above
A4 = as above
A5 = e〈senc((sdec(x5, x3) − 1), x3)〉.d〈x3, xB〉

Here the variables xA and xB represent A’s and B’s names, respectively. Channels c
and d are for communication between RA and the rest of the code. Channel c conveys
the identity of the other endpoint; channel d returns this identity and a session key;
RA may then use the session key, and perhaps leak it. A replication indicates that an
unbounded number of sessions may be initiated.

Similarly, we revise the code for B as follows:

B(xB) = (νd)(RB | let KBS = skeygen(KS , xB) in !B3)
B3 = as above
B4 = as above
B5 = e(y).if scheck(y, x1) = ok then

if sdec(y, x1) − 1 = NB − 1 then d〈x1, x2〉

As in the code for A, channel d conveys the session key and the identity of the other
endpoint. Again, a replication indicates that an unbounded number of sessions may be
initiated.

In S, only an extra replication is needed:

S = !S1
S1 = as above
S2 = as above

Suppose that we wish to represent a system with client principals named C1, . . . , Cn,
all of them able to play the roles of A and B, and all of them with the same application
code for each for the roles. The corresponding assembly is:

P = (νKS)(A(C1) | B(C1) | . . . | A(Cn) | B(Cn) | S)

Many variants and elaborations are possible. For instance, some of the checks may
safely be removed from the code. Since the applied pi calculus is essentially a program-
ming language, protocol models are enormously malleable. However, complex models
are rarely profitable—the point of diminishing returns is reached fairly quickly in the
analysis of most protocols.

8.4 Discussion

As in the pi calculus, scoping can be the basis of security properties for processes in
the applied pi calculus. Moreover, attackers can be treated as contexts for processes. In
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our example, the scoping on KS reflects that it cannot be used by attackers. Principals
other than S use KS only as prescribed in their code, which is given explicitly as part
of the process P above.

On the other hand, the added expressiveness of the applied pi calculus enables writ-
ing detailed examples, such as this one. Not only we can represent cryptographic op-
erations, but we need not commit to a particular cryptosystem: we can introduce new
function symbols and equations as needed. The awareness of such extensibility is far
from new: it appears already in Merritt’s dissertation [66, page 60]. This extensibility
can be a cause of concerns about soundness. Indeed, we may want to have a method
for deciding whether a given set of rules captures “enough” properties of an underly-
ing cryptosystem. At present, the most attractive approach to this problem consists in
developing complexity-theoretic foundations for formal methods.

The applied pi calculus also gives rise to the possibility that a process may reveal
a term that contains a fresh name s without revealing s itself. For instance, in our ex-
ample, the process reveals an encryption of a session key, by sending this encryption
on the public channel e, without necessarily disclosing the session key. This possibility
does not arise in the pure pi calculus, where each name is either completely private
to a process or completely known to its context. Technically, this possibility is a sig-
nificant source of complications in reasoning about security in the applied pi calculus.
These complications should not be too surprising, however: they reflect the difficulty of
reasoning about security protocols.

9 Outlook

The development of new security protocols remains active. As mentioned in Section 3,
recent protocols typically have many moving parts—many modes, options, and layers.
Their complexity can be a source of serious concerns. Moreover, from time to time,
security protocols are used in new contexts, in which their assumptions may not hold
exactly. We may therefore conjecture that understanding how to design and analyze
security protocols will remain important in the coming years. What new research will
be necessary and most fruitful remains open to debate.

The applied pi calculus and its relatives are idealized programming languages. As
formal analysis matures, it becomes applicable to more practical programming lan-
guages, at least for protocol code written in a stylized manner [51, 21, 48]. For such
code, it is possible to translate to the applied pi calculus—more specifically to the di-
alect understood by ProVerif—and to obtain automatic proofs. We may expect that
these stylistic requirements will be relaxed over time. We may also expect that general-
purpose static analysis techniques (not specifically developed for security) will be help-
ful in this progress. Moreover, in light of some of the research described in Section 5,
we may expect to obtain not only formal but also complexity-theoretic security results.
With this further development, formalisms may ultimately be externally visible neither
in protocol descriptions (which would be in ordinary programming languages) nor in
security guarantees.
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33. Bolignano, D.: Towards a mechanization of cryptographic protocol verification. In: Grum-

berg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 131–142. Springer, Heidelberg (1997)
34. Boreale, M., De Nicola, R., Pugliese, R.: Proof techniques for cryptographic processes.

SIAM J. Comput. 31(3), 947–986 (2001)
35. Borgström, J., Briais, S., Nestmann, U.: Symbolic bisimulation in the spi calculus. In: Gard-

ner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 161–176. Springer, Heidel-
berg (2004)

36. Borgström, J., Nestmann, U.: On bisimulations for the spi calculus. In: Kirchner, H., Ringeis-
sen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 287–303. Springer, Heidelberg (2002)



Security Protocols: Principles and Calculi 21

37. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. Proceedings of the Royal
Society of London A 426, 233–271 (1989) (A preliminary version appeared as Digital Equip-
ment Corporation Systems Research Center report No. 39, February 1989)

38. Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: A derivation system and compositional
logic for security protocols. Journal of Computer Security 13(3), 423–482 (2005)

39. Datta, A., Derek, A., Mitchell, J.C., Roy, A.: Protocol composition logic (PCL). Electronic
Notes in Theoretical Computer Science 172(1), 311–358 (2007)

40. DeMillo, R.A., Lynch, N.A., Merritt, M.: Cryptographic protocols. In: 14th Annual ACM
Symposium on Theory of Computing, pp. 383–400 (1982)

41. Denning, D.E., Sacco, G.M.: Timestamps in key distribution protocols. Communications of
the ACM 24(7), 533–535 (1981)

42. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions on Infor-
mation Theory IT-29(12), 198–208 (1983)

43. Durante, L., Sisto, R., Valenzano, A.: A state-exploration technique for spi-calculus testing-
equivalence verification. In: Formal Techniques for Distributed System Development,
FORTE/PSTV. IFIP Conference Proceedings, vol. 183, pp. 155–170. Kluwer, Dordrecht
(2000)

44. Durante, L., Sisto, R., Valenzano, A.: Automatic testing equivalence verification of spi cal-
culus specifications. ACM Transactions on Software Engineering and Methodology 12(2),
222–284 (2003)

45. Focardi, R., Gorrieri, R.: The compositional security checker: A tool for the verification
of information flow security properties. IEEE Transactions on Software Engineering 23(9),
550–571 (1997)

46. Freier, A.O., Karlton, P., Kocher, P.C.: The SSL protocol: Version 3.0 (November 1996),
http://www.mozilla.org/projects/security/pki/nss/ssl/
draft302.txt

47. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sci-
ences 28, 270–299 (1984)

48. Gordon, A.D.: Provable implementations of security protocols. In: 21st Annual IEEE Sym-
posium on Logic in Computer Science (LICS’06), pp. 345–346 (2006)

49. Gordon, A.D., Jeffrey, A.: Authenticity by typing for security protocols. In: 14th IEEE Com-
puter Security Foundations Workshop, pp. 145–159 (June 2001)

50. Gordon, A.D., Jeffrey, A.: Types and effects for asymmetric cryptographic protocols. In: 15th
IEEE Computer Security Foundations Workshop, pp. 77–91 (June 2002)

51. Goubault-Larrecq, J., Parrennes, F.: Cryptographic protocol analysis on real C code. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 363–379. Springer, Heidelberg (2005)

52. Gray III, J.W., Ip, K.F.E., Lui, K.-S.: Provable security for cryptographic protocols—exact
analysis and engineering applications. In: 10th IEEE Computer Security Foundations Work-
shop, pp. 45–58 (1997)

53. Harkins, D., Carrel, D.: RFC 2409: The Internet Key Exchange (IKE) (November 1998),
http://www.ietf.org/rfc/rfc2409.txt
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