i
L
o0
c
o puy
i
o

A 'S

LRl //97 SONT

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4677

Alessandro Aldini Roberto Gorrieri (Eds.)

Foundations
of Security Analysis
and Design IV

FOSAD 2006/2007 Tutorial Lectures

@ Springer

Volume Editors

Alessandro Aldini

Universita degli Studi di Urbino “Carlo Bo”
Istituto di Scienze e Tecnologie dell’ Informazione
Piazza della Repubblica 13, 61029 Urbino, Italy
E-mail: aldini @sti.uniurb.it

Roberto Gorrieri

Universita degli Studi di Bologna
Dipartimento di Scienze dell’Informazione
Mura Anteo Zamboni 7, 40127 Bologna, Italy
E-mail: gorrieri @cs.unibo.it

Library of Congress Control Number: 2007933834

CR Subject Classification (1998): D.4.6, C.2, K.6.5, K.4,D.3, F3,E.3
LNCS Sublibrary: SL 4 — Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-74809-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74809-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12119967 06/3180 543210

International School on
Foundations of Security Analysis and Design

The last decade has witnessed a widespread shifting of real-life and usual practice
operations, which are moving from the real-world scenario toward the Internet
world, as shown for instance by the success of electronic payments and Internet
banking. At the same time, this fast-growing interest toward the new technolo-
gies is open to criticism whenever it is not accompanied with an adequate de-
velopment of the security machinery, as shown in the past by malfunctions in
electronic voting and shopping systems.

The critical aspect of security of computer systems is dealt with by an increas-
ing number of academic and industrial research groups, scientific conferences and
events. The “International School on Foundations of Security Analysis and De-
sign” (FOSAD, for short) has been one of the foremost events established with
the objective of disseminating knowledge in this critical area and favoring the
study of foundations for the analysis and the design of security aspects. FOSAD
is mainly addressed to young scientists and graduate students at their initial
approaches to the field, but also to researchers aiming at establishing novel sci-
entific collaborations and scientists coming from less-favored and non-leading
countries in this field.

FOSAD is held annually at the Residential Centre of Bertinoro, Italy, in the
fascinating scenario of a former convent and episcopal fortress that has been
transformed into a modern conference facility with computing services and In-
ternet access. The first edition of FOSAD was held in 2000, and since then
another six editions (including the present one in September 2007) followed, by
attracting about 350 participants and 70 leading scientists of the computer se-
curity community worldwide. The Web site of the FOSAD series is available at
http://www.sti.uniurb.it/events/fosad/.

The present volume gathers a collection of tutorial lectures from FOSAD
2006 and FOSAD 2007. In the past, three volumes published in the Springer
LNCS series were dedicated to FOSAD: LNCS 2171 for FOSAD 2000, LNCS
2946 for FOSAD 2001 and 2002, and LNCS 3655 for FOSAD 2004 and 2005.
The contributions to this volume, which range from formal methods to software
and critical infrastructures security and from identity-based cryptography to
trust and reputation systems, are detailed as follows.

The opening paper by Martin Abadi is an introduction to the design and
analysis of security protocols. The author presents the principles of protocol
design and of a formalism for protocol analysis. Massimo Bartoletti, Pierpaolo
Degano, Gian Luigi Ferrari, and Roberto Zunino present a formal framework
for designing and composing secure services. The authors show how to employ
a core functional calculus for services and a graphical design language in order
to correctly plan secure service orchestrations. Daniel Le Métayer provides an

VI Preface

overview of the best industrial practices in IT security analysis. In particular, the
paper presents recent research results in the area of formal foundations and pow-
erful tools for security analysis. The contribution by Ulfar Erlingsson outlines the
general issues of low-level software security. Concrete details of low-level attacks
and defenses are given in the case of C and C++ software compiled into machine
code. Fabio Martinelli and Paolo Mori describe a solution to improve the Java
native security support. Two examples of the application of the proposed solu-
tion, with history-based monitoring of the application behavior, are given in the
case of grid computing and mobile devices. The purpose of the chapter by Javier
Lopez, Cristina Alcaraz, and Rodrigo Roman is to review and discuss critical
information infrastructures, and show how to protect their functionalities and
performance against attacks. As an example, the chapter also discusses the role
of wireless sensor networks technology in the protection of these infrastructures.
The paper by Liqun Chen is a survey in the area of asymmetric key crypto-
graphic methodologies for identity-based cryptography. Audun Jgsang gives an
overview of the background, current status, and future trend of trust and reputa-
tion systems. In the following chapter, Marcin Czenko, Sandro Etalle, Dongyi Li,
and William H. Winsborough present the trust management approach to access
control in distributed systems. In particular, they focus on the RT family of role-
based trust management languages. Chris Mitchell and Eimear Gallery report
on the trusted computing technology for the next-generation mobile devices.

We would like to thank all the institutions that have promoted and founded
this school and, in particular, the IFIP Working Group 1.7 on “Theoretical
Foundations of Security Analysis and Design,” which was established to promote
research and education in security-related issues. FOSAD 2007 was sponsored
by CNR-IIT, Universita di Bologna, and the EU project ARTIST2, and was
supported by EATCS-IT, EEF, and ERCIM Working Group on Security and
Trust Management. Finally, we also wish to thank the entire staff of the Univer-
sity Residential Centre of Bertinoro for the organizational and administrative
support.

July 2007 Alessandro Aldini
Roberto Gorrieri

Table of Contents

Foundations of Security Analysis and Design

Security Protocols: Principles and Calculi Tutorial Notes.............. 1
Martin Abadi

Secure Service Orchestration 24
Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari, and
Roberto Zunino

IT Security Analysis Best Practices and Formal Approaches 75
Daniel Le Métayer

Low-Level Software Security: Attacks and Defenses 92
Ulfar Erlingsson

Enhancing Java Security with History Based Access Control........... 135
Fabio Martinelli and Paolo Mori

On the Protection and Technologies of Critical Information
Infrastructures. 160
Javier Lopez, Cristina Alcaraz, and Rodrigo Roman

An Interpretation of Identity-Based Cryptography 183
Liqun Chen
Trust and Reputation Systems.......... 209

Audun Jgsang

An Introduction to the Role Based Trust Management Framework

R 246
Marcin Czenko, Sandro FEtalle, Dongyi Li, and
Willeam H. Winsborough

Trusted Mobile Platforms i 282
Eimear Gallery and Chris J. Mitchell

Author Index 325

Security Protocols: Principles and Calculi

Tutorial Notes

Martin Abadi

Microsoft Research
and
University of California, Santa Cruz

Abstract. This paper is a basic introduction to some of the main themes in the
design and analysis of security protocols. It includes a brief explanation of the
principles of protocol design and of a formalism for protocol analysis. It is in-
tended as a written counterpart to a tutorial given at the 2006 International School
on Foundations of Security Analysis and Design.

1 Introduction

Over the last 30 years, work on security protocols has led to a number of ideas and
techniques for protocol design, to a number of protocol implementations, and also to
many attacks. Gradually, it has also led to mature techniques for analyzing protocols,
and to an understanding of how to develop more robust protocols that address a range
of security concerns.

These notes are based on a tutorial on security protocols given at the 2006 Inter-
national School on Foundations of Security Analysis and Design. The tutorial was an
introduction to the following topics:

security protocols (informally),

some design principles,

a formal calculus for protocol analysis: the applied pi calculus,
automated proof methods and tools, such as ProVerif.

The slides from the tutorial are available on-line [[1]]. These notes are essentially a sum-
mary of the material presented there. They do not aim to provide a balanced survey of
the entire field, nor to explain some of its advanced points, which are covered well in
research papers. Instead, the notes aim to introduce the basics of security protocols and
the applied pi calculus. They may help readers who are starting to study the subject,
and may offer some perspectives that would perhaps interest others.

The next section is a general description of security protocols. Section 3 gives an
example, informally. Section [4] explains a few principles for the design of protocols.
Section[3is an introduction to informal and formal protocol analysis. Sections[6] and[7]
present the applied pi calculus and the ProVerif tool, respectively. Section [§]revisits the
example of Section[3] Section[9]concludes by discussing some further work.

A. Aldini and R. Gorrieri (Eds.): FOSAD 2006/2007, LNCS 4677, pp. 1 2007.
(© Springer-Verlag Berlin Heidelberg 2007

2 M. Abadi

2 Security Protocols

Security protocols are concerned with properties such as integrity and secrecy. Primary
examples are protocols that establish communication channels with authenticity and
confidentiality properties—in other words, communication channels that protect the
integrity and secrecy of the data sent between the intended protocol participants. Other
examples include protocols for commerce and for electronic voting.

This section describes security protocols in a little more detail. It introduces a pro-
tocol due to Needham and Schroeder, which serves as a running example in the rest of
these notes.

2.1 Cryptography

In distributed systems, security protocols invariably employ some cryptography [65],
so they are sometimes called cryptographic protocols. We call them security protocols
in order to emphasize ends over means, and also in order to include some exchanges
in which cryptography is not needed or not prominent. For the purposes of these notes,
only very simple cryptography is needed.

We focus on symmetric cryptosystems (such as DES and AES). In these, when two
principals communicate, they share a key that they use for encryption and for decryp-
tion. Therefore, symmetric cryptosystems are also called shared-key cryptosystems.
When integrity is required, as it often is, a shared key also serves for producing and
for checking message authentication codes (MACs). A MAC is basically a signature,
with the limitation that only the principals that know the corresponding shared key can
check it, and that any of these principals could produce it. So, although any principal
that knows the shared key could convince itself that some other principal has produced
a given MAC, it may not be able to convince a judge or some other third party.

In SSL [46] and other practical protocols, multiple shared keys are often associated
with each communication channel. For instance, for each point-to-point connection, we
may have two shared keys for encryption, one for communication in each direction, and
two for MACs, again one per direction. However, these four keys may all be derived
from a shared master key. Furthermore, protocols often rely on both symmetric cryp-
tosystems and asymmetric cryptosystems (such as RSA). While we may not explicitly
discuss them, many of these variants do fall within the scope of the methods presented
in these notes.

As in many informal protocol descriptions, below we assume that the encryption
function provides not only secrecy but also authenticity. In other words, we proceed as
though the encryption function includes a built-in MAC.

2.2 Other Machinery

There is more to the mechanics of protocols than cryptography. Moreover, protocols ex-
ist and should be understood in the context of other security machinery, such as auditing
and access control.

Protocols often include timestamps or other proofs of freshness. They may also in-
clude sequence numbers for ordering messages. At a lower level, practical protocols

Security Protocols: Principles and Calculi 3

also include key identifiers (so that the recipient of an encrypted message knows which
key to try), message padding, and facilities for message compression, for instance.

Furthermore, protocols often rely on trusted third parties. These trusted third parties
may function as certification authorities, as trusted time servers, and in other roles. Trust
is not absolute, nor always appropriate—so protocols often aim to eliminate trusted
third parties or to limit the trust placed in them.

2.3 Authentication Protocols

In systems based on the access-control model of security [S8]], authorization relies on
authentication, and protocols that establish communication channels with authenticity
and confidentiality properties are often called authentication protocols. There are many
such protocols. They typically involve two principals (hosts, users, or services) that
wish to communicate, and some trusted third parties. In particular, the two principals
may be a client and a server, and the purpose of the channel may be to convey requests
and responses between them.

Despite these commonalities, there are also a number of differences across authenti-
cation protocols; no single authentication protocol will be suitable for all systems. For
performance, designers consider communication, storage, and cryptographic costs, and
sometimes trade between them. The choice of cryptographic algorithms is influenced
by these cost considerations, and also by matters of convenience and law. In addition,
systems rely on synchronized clocks to different extents.

At a higher level, no single authentication protocol will be suitable for all purposes.
Protocols vary in their assumptions, in particular with respect to trusted third parties.
They also vary in their objectives:

— Some protocols achieve mutual authentication; others achieve only one-way
authentication, and in some cases guarantee the anonymity of one of the parties
(typically the client).

— Data secrecy is sometimes optional.

— A few protocols include protection against denial-of-service attacks. This protec-
tion aims to ensure that protocol participants cannot be easily burdened with many
costly cryptographic operations and other expensive work.

— Going beyond the basic security properties, some protocols aim to ensure non-
repudiation (so participants cannot later deny some or all of their actions), for in-
stance. A few protocols aim to support plausible deniability, which is roughly the
opposite of non-repudiation.

3 An Example

We describe a protocol due to Needham and Schroeder as an example. The protocol is
the first from their seminal paper on authentication [74]; it relies on a symmetric cryp-
tosystem. Throughout, we refer to this protocol as the Needham-Schroeder protocol,
because of its importance and because we do not consider other protocols by the same
authors.

4 M. Abadi

The Needham-Schroeder protocol is one of the classics in this field. It has served as
the basis for the Kerberos system [68,/56]] and much other subsequent work. Many of
its ingredients occur in other protocols, including many recent ones. Recent protocols,
however, typically have more moving parts—more modes, options, and layers.

3.1 Model
Needham and Schroeder set out the following informal model:

We assume that an intruder can interpose a computer in all communication
paths, and thus can alter or copy parts of messages, replay messages, or emit
false material.

We also assume that each principal has a secure environment in which to
compute, such as is provided by a personal computer or would be by a secure
shared operating system.

The first assumption is common across the field, and is probably even more reasonable
now than it was when it was first formulated. The second assumption is also common,
but unfortunately it is often somewhat questionable because of the widespread software
failures that viruses and worms exploit.

3.2 The Protocol

In this protocol, A and B are two principals that wish to establish a secure communica-
tion session. An authentication server S is a trusted intermediary.

Initially the principals A and B share K 45 and Kpg with S, respectively. The goal
of the protocol is to establish a session key K 45 for A and B.

In the course of the protocol, A and B invent the nonces N4 and Np, respectively.
Nonces are quantities generated for the purpose of being fresh. In particular, A can
reason that any message that includes N4 was manufactured after N4’s invention; so
A can conclude that any such message belongs in the current protocol session, and is
not a replay from a previous session. The use of nonces dispenses with the requirement
of a single network clock; nonces are still prevalent today, in protocols such as SSL and
IKE [46./53].

Figure [Tl depicts the message exchange. Here, we write { X } x for an encryption of
the plaintext X under the key K, and X, Y for the concatenation of X and Y (with
markers, as needed, in order to avoid ambiguities).

Only A contacts the server S, in Message 1. This message includes IV 4. Upon receipt
of this message, S generates K 45, which becomes the session key between A and B.
In Message 2, S provides this session key to A, under K 45. This message includes
A’s nonce, as a proof of freshness. Message 2 also includes a certificate (or a “ticket”,
in Kerberos parlance) under K gg that conveys the session key and A’s identity to B.
Message 3 transmits this certificate from A to B. After decrypting Message 3 and ob-
taining the session key, B carries out a handshake with A, in Messages 4 and 5. The
use of Np — 1 in Message 5 is somewhat arbitrary; almost any function of Ng would
do as long as B can distinguish this message from its own Message 4.

3.3

Security Protocols: Principles and Calculi 5

1.A, B, Na

2.{Na, B, Kap,{Kap, A}Kkps}Kas

3. {Kap, Alkps

4. {NB}KAgp

5.{N — 1}k,p

Fig. 1. The Needham-Schroeder protocol

A Limitation

As Denning and Sacco observed [41], this protocol has a serious limitation:

Suppose that an attacker has a log of the messages exchanged during a protocol
run.

Suppose further that, long after a run, the attacker may discover the session key
K op somehow—for instance, through a long brute-force attack or as a result of
the careless exposure of old key material.

The attacker may then replay Message 3 to B. Unless B remembers K 4p or has
some external indication of the attack, B is not able to distinguish the replay from
a legitimate, new instance of Message 3.

The attacker may then conduct a handshake with B. Although B uses a fresh nonce
for this handshake, the attacker is able to produce a corresponding response because
it knows K 4.

Subsequently, the attacker may continue to communicate with B under K 4, im-
personating A.

In order to address this limitation, one may try to make K 45 strong, and to change
K pg often, thus limiting the window of vulnerability. One may however prefer to use
an improved protocol, in which B and S interact directly (as Needham and Schroeder
suggested [73]]), or in which messages include timestamps (as Denning and Sacco pro-
posed, and as done in Kerberos).

As this example illustrates, most security protocols have subtleties and flaws. Many
of these have to do with cryptography, but many of these do not have to do with the

6 M. Abadi

details of cryptographic algorithms. For design, implementation, and analysis, a fairly
abstract view of cryptography is often practical.

4 Principles of Protocol Design

While protocol design often proceeds informally, it need not be entirely driven by trial
and error. Some general principles can guide the creation and understanding of proto-
cols (e.g., [9,14.[791[15])). Such principles serve to simplify protocols and to avoid many
mistakes. They also serve to simplify informal reasoning about protocols and their for-
mal analysis [[76,28].

In this section we explain some of these principles, with reference to our example.

4.1 Explicit Messages

In the early logics of authentication, an informal process of idealization turned loose
protocol narrations into formulas that expressed the perceived intended meanings of
messages [37]]. Over time, it was noticed that many attacks were identified in the course
of this informal process—even more than during the later formal proofs. More broadly,
it was noticed that many attacks appeared because of gaps between the actual contents
of messages and their intended meanings. This realization and much experience led to
the following principle [9]:

Every message should say what it means: the interpretation of the message
should depend only on its content.

In other words, the meaning of the message should not depend on implicit informa-
tion that is presumed clear from context. Such presumptions are often unreliable in the
presence of attackers that do not play by the rules.

As an important special case of this principle, it follows:

If the identity of a principal is important for the meaning of a message, it is
prudent to mention the principal’s name explicitly in the message.

For instance, Message 2 of the Needham-Schroeder protocol consists of the cipher-
text {Na, B, Kap,{Kap, A}k i.s- The first three fields N4, B, K4p of the
plaintext message are intended as a statement to A that K 4p is a good key for a ses-
sion with B sometime after the generation of N4. The name A is implicit, and can be
deduced from K 4. Making it explicit would not be costly, and it would lead to a more
robust protocol—allowing, for instance, the possibility that the key K 45 would be a
key for a node with multiple users (A1, Aa, ...). On the other hand, the name B is and
must be explicit. Omitting it enables an attack, as follows.

— Suppose that an attacker C' intercepts Message 1, replaces B with C, and sends the
modified message to S.

- Inresponse, Message 2 includes { K ac, A} ks, Where Kcg is known to C, rather
than {Kap, A} k... However, A cannot detect this substitution: A can check its
nonce V4, and obtains K 4¢ and this certificate, but the certificate is opaque to A.
The subscript C' in K 4¢ is merely a meta-notation; nothing in the key itself indi-
cates that it is shared with C' rather than with B.

Security Protocols: Principles and Calculi 7

— Suppose further that C' intercepts Message 3 in which A forwards { Kac, A}k
to B. Then C obtains K 4¢ and can conduct a handshake with A, in B’s place.

— Subsequently, C' may continue to communicate with A under K 4¢, impersonat-
ing B.

Many successful attacks against published protocols resemble this one, and stem from
the omission of some names.

Similarly, Message 3 of the Needham-Schroeder protocol consists of the ciphertext
{KaB, A} Kk, To B, this message should mean that K 4 is a good key for a session
with A. Again, one of the names (B in this case) is implicit, while the other (A) is
explicit and is needed in order to thwart an attack. (The attack is left as an easy exercise
for the reader.) Remarkably, the meaning of this message does not specify at which time
K 4 p is a good key. While the handshake has something to do with timeliness, the exact
significance of {Np}k,, and {Np — 1}k, is a little unclear. Denning and Sacco
exploited these shortcomings in their attack.

Often, the meanings of messages pertain to the goodness of keys. As Needham noted,
years later, much progress can be made without further elaboration on what is a good
key [73[]:

The statement that a key was “good” for certain communication bundles up
all sorts of useful notions—that it was made by a careful agent, had not been
scattered about, had sufficient variety, and so forth.

Still, if several kinds of good keys are possible (from different cryptosystems, or with
different parameters), then messages should be explicit on which kind is intended.

4.2 Explicit Design

Cryptography is a powerful tool, but a proper understanding of its guarantees, nuances,
and limitations is required for its effective use in protocols. Accordingly, the next prin-
ciple concerns the use of cryptography, rather than the specifics of particular crypto-
graphic algorithms [9]].

Be clear as to why encryption is being done.
Encryption is not synonymous with security.

In protocols, encryption and other cryptographic functions are used for a variety of
purposes.

— Encryption is sometimes used for confidentiality. For example, in Message 2, en-
cryption protects the secrecy of K 4.

— Encryption is sometimes used in order to guarantee authenticity. For example,
A may reason that Message 2 is an authentic message from S because of the
encryption.

— Encryption sometime serves for proving the presence of a principal or the posses-
sion of a secret. Message 5 exemplifies this use.

— Encryption may also serve for binding together the parts of a message. In Mes-
sage 2, the double encryption may be said to serve this purpose. However, in this ex-
ample, rewriting the message to {Na, B, Kap}k.s,{KaB, A}k, would work

8 M. Abadi

just as well. Double encryption is not double security—and indeed sometimes it is
a source of confusion and insecurity, as in the Woo-Lam protocol [9,|82,/81]].

— Encryption is sometimes used in random-number generation, in defining MACs,
and in other cryptographic tasks. It is generally best to leave those uses for the
lower-level constructions of cryptographic primitives, outside the scope of protocol
design.

While the principle above refers to encryption, it also applies to other cryptographic
functions. More generally, it is desirable that not only messages but also the protocol
design be explicit [[14]:

Robust security is about explicitness; one must be explicit about any properties
which can be used to attack a public key primitive, such as multiplicative ho-
momorphism, as well as the usual security properties such as naming, typing,
freshness, the starting assumptions and what one is trying to achieve.

5 Analysis

The development of methods for describing and analyzing security protocols seems
to have started in the early 1980s (e.g., [30, 183,142l 140,166, 55]). The field matured
considerably in the 1990s. Some of the methods rely on rigorous but informal frame-
works, sometimes supporting sophisticated complexity-theoretic definitions and argu-
ments (e.g., [30,47,183,19]). Others rely on formalisms specially tailored for this task
(e.g., [37,80]). Yet others are based on temporal logics, process algebras such as CSP
and the pi calculus, and other standard formalisms, sometimes in the context of various
theorem-proving tools, such as Isabelle (e.g., [52,(78}18,161L[76,164]]). The next section
presents the applied pi calculus as an example of this line of work.

Overall, the use of these methods has increased our confidence in some protocols. It
has also resulted in the discovery of many protocol limitations and flaws, and in a better
understanding of how to design secure protocols.

Many of these methods describe a protocol as a program, written in a programming
notation, or as the corresponding set of executions. In addition to the expected prin-
cipals, this model of the protocol should include an attacker. The attacker has various
standard capabilities:

it may participate in some protocol runs;

it may know certain data in advance;

it may intercept messages on some or all communication paths;
it may inject any messages that it can produce.

The last of these is the most problematic: in order to obtain a realistic model, we should
consider non-deterministic attackers, which may for example produce keys and nonces,
but without such luck that they always guess the keys on which the security of the
protocol depends.

One approach to this problem consists in defining the attacker as some sort of proba-
bilistic program that is subject to complexity bounds. For instance, the attacker may be a
probabilistic polynomial-time Turing machine. Such a machine is not able to explore an

Security Protocols: Principles and Calculi 9

exponentially large space of possible values for secret keys. This approach can be quite
successful in providing a detailed, convincing model of the attacker. Unfortunately, it
can be relatively hard to use.

Going back to early work on decision procedures by Dolev and Yao [42], formal
methods adopt a simpler solution. They arrange that non-deterministic choice of a key
or a nonce always yields a fresh value (much like object allocation in object-oriented
languages always returns a fresh address). In this respect, keys and nonces are not or-
dinary bitstrings. Accordingly, cryptographic operations are treated formally (that is,
symbolically). Some assumptions commonly underly these formal methods. For in-
stance, for symmetric encryption, we often find the following assumptions:

- Given K, anyone can compute { M } x from M.

— Conversely, given K, anyone can compute M from {M } k.

— {M} k cannot be produced by anyone who does not know M and K.

— M cannot be derived from { M } x by anyone who does not know K (and K cannot
be derived from { M} k).

— An attempt to decrypt {M }x with an incorrect key K’ will result in an evident
failure.

Here, M, K, and { M } represent formal expressions. The first assumption says that
anyone with the expressions K and M can obtain the expression { M} k; the opera-
tion applied is a symbolic abstraction of encryption, rather than a concrete encryption
operation on bitstrings. Similarly, the second assumption corresponds to a symbolic ab-
straction of decryption, and the fifth assumption to a related symbolic check. The third
and the fourth assumptions are reflected in the absence of any operations for encrypting
or decrypting without the corresponding key.

Despite their somewhat simplistic treatment of cryptography, formal methods are
often quite effective, in part because, as noted above, a fairly abstract view of cryptog-
raphy often suffices in the design, implementation, and analysis of protocols. Formal
methods enable relatively simple reasoning, and also benefit from substantial work on
proof methods and from extensive tool support.

The simplistic treatment of cryptography does imply inaccuracies, possibly mistakes.
The separation of keys and nonces from ordinary data implies that attackers cannot do
arbitrary manipulations on keys and nonces. For instance, attackers may not be allowed
to do bitwise shifts on keys, if that is not represented as a symbolic operation somehow.
Thus, attacks that rely on shifts are excluded by the model, rather than by proofs.

A recent research effort aims to bridge the gap between complexity-theoretic meth-
ods and formal methods. It aims to provide rigorous justifications for abstract treat-
ments of cryptography, while still enabling relatively easy formal proofs. For instance,
a formal treatment of encryption is sound with respect to a lower-level computational
model based on complexity-theoretic assumptions [[LO]. The formal treatment is sim-
ple but fairly typical, with symbolic cryptographic operations. In the computational
model, on the other hand, keys and all other cryptographic data are bitstrings, and
adversaries have access to the full low-level vocabulary of algorithms on bitstrings.
Despite these additional capabilities of the adversaries, the secrecy assertions that can
be proved formally are also valid in the lower-level model, not absolutely but with high
probability and against adversaries of reasonable computational power. Further research

10 M. Abadi

in this area addresses richer classes of systems and additional cryptographic functions
(e.g., [16,167,59,60,39]). Further research also considers how to do automatic proofs in
a computational model, starting from formal protocol descriptions but with semantics
and proof principles from the complexity-theoretic literature (e.g., [26L129])).

6 The Applied Pi Calculus

This section introduces the applied pi calculus [6], focusing on its syntax and its infor-
mal semantics. Section[7 describes ProVerif, a tool for the applied pi calculus; Section|[§]
gives an example of the use of the applied pi calculus.

6.1 Security Protocols in the Pi Calculus

The pi calculus is a minimal language for describing systems of processes that commu-
nicate on named channels, with facilities for dynamic creation of new channels [[70,69].
We use it here without defining it formally; some definitions appear below, in the con-
text of the applied pi calculus. As usual, we write ¢(. ..) for a message emission and
¢(...) for a message reception, “.” for sequential prefixing, “|”” for parallel composi-
tion, and “v” for name restriction. Equations like A = ..., B =...,and P = ... are
definitions outside the pi calculus: the operator “=""is not part of the calculus itself.

At an abstract level, the pi calculus is sufficient for describing a wide range of sys-
tems, including security protocols. For instance, we may describe an abstract version of
a trivial one-message protocol as follows:

A = (V)
= c(x).d()
P ey (A | B)

Here, A is a process that sends the message V' on the channel ¢, and B is a process that
receives a message on the channel ¢ (with x as the argument variable to be bound to
the message), then signals completion by sending an empty message on the channel d.
Finally, P is the entire protocol, which consists of the parallel composition of A and B
with a restriction on the channel ¢ so that only A and B can access c.

The attacker, left implicit in the definitions of this example, is the context. It may be
instantiated to an arbitrary expression () of the pi calculus, and put in parallel with P,
asin P | Q.

This process representation of the protocol has properties that we may interpret as
security properties. In particular, in any context, P is equivalent to a variant P’ that
sends V" in place of V, for any other message V. Indeed, P and P’ are so trivial that
they are equivalent to d(). Thinking of the context as an attacker, we may say that this
property expresses the secrecy of the message V' from the attacker.

In more complicated examples, the security properties are less obvious, but they
can still be formulated and established (or refuted) using the standard notations and
proof techniques of the pi calculus. In particular, the formulations rely on universal
quantification over all possible attackers, which are treated as contexts in the pi calculus.
This treatment of attackers is both convenient and generally useful.

Security Protocols: Principles and Calculi 11

6.2 The Applied Pi Calculus

As in the small example above, the pi-calculus representations of protocols often model
secure channels as primitive, without showing their possible cryptographic implemen-
tations. In practice, the channel c of the example may be implemented using a public
channel plus a key K shared by A and B. Sending on c requires encryption under K,
and receiving on c requires decryption with /K. Additional precautions are necessary,
for instance in order to prevent replay attacks. None of this implementation detail is
exposed in the pi-calculus definitions.

Moreover, even with the abstraction from keys to channels, some protocols are hard
to express. The separation of encryption from communication (an important aspect of
the work of Needham and Schroeder) can be particularly problematic. For instance,
Message 2 of the Needham-Schroeder protocol, from S to A, includes { K ap, A} kps»
to be forwarded to B. This message component might be modeled as a direct message
from S to B on a secure channel—but such a model seems rather indirect, and might
not be sound.

One approach to addressing this difficulty consists in developing encodings of en-
cryption in the pi calculus [8,17]. While this approach may be both viable and interest-
ing, it amounts to a substantial detour.

Another approach to addressing this difficulty relies on extensions of the pi calcu-
lus with formal cryptographic operations, such as the spi calculus [8] and the applied
pi calculus. The applied pi calculus is essentially the pi calculus plus function sym-
bols that can be used for expressing data structures and cryptographic operations. The
spi calculus can be seen as a fragment that focuses on a particular choice of function
symbols. In both cases, the function symbols enable finer protocol descriptions. These
descriptions may show how a secure channel is implemented with encryption, or how
one key is computed from another key. Next we introduce the syntax and the informal
semantics of the applied pi calculus.

We start with a sort of variables (such as x and y) and a sort of names (such as n).
We use meta-variables v and v to range over both names and variables. We also start
with a set of function symbols, such as f, encrypt, and pair. These function symbols
have arities and types, which we generally omit in this presentation. In addition to
arities and types, the function symbols come with an equational theory (that is, with an
equivalence relation on terms with certain closure properties). For instance, for binary
function symbols senc and sdec, we may have the usual equation:

sdec(senc(z,y),y) =z

If in addition we have a binary function symbol scheck and a constant symbol ok, we
may have the additional equation:

scheck(senc(z,y),y) = ok

Intuitively, senc and sdec stand for symmetric encryption and decryption, while scheck
provides the possibility of checking that a ciphertext is under a given symmetric key.

12 M. Abadi

The set of terms is defined by the grammar:

UV = terms

c,d,n,s, K, N,... name

z,y, K, ... variable

fUy,...,0) function application
where f ranges over the function symbols and Uy, ..., U; match the arity and type
of f. Terms are intended to represent messages and other data items manipulated in
protocols.

The set of processes is defined by the grammar:

PQ,R:= processes
nil null process
PlQ parallel composition
P replication
(vn)P name restriction (“new’)
if U=V then P else @ conditional
w(xy, ..., x,).P message input
w(Vi,...,Vp).P message output

Informally, the semantics of these processes is as follows:

The null process nil does nothing.

P | Q is the parallel composition of P and Q.

The replication | P behaves as an infinite number of copies of P running in parallel.
The process (vn)P generates a new name n then behaves as P. The name n is
bound, and subject to renaming.

The use of v is not limited to generating new channel names. We often use v
more broadly, as a generator of unguessable values. In some cases, those values
may serve as nonces or as keys. In others, those values may serve as seeds, and
various transformations may be applied for deriving keys from seeds.

— The conditional construct if U =V then P else @ is standard. Here, U = V rep-
resents equality in the equational theory, not strict syntactic identity. We abbreviate
it if U =V then P when Q) is nil.

— The input process u(z1, . .., x,).P is ready to input a message with n components
from channel u, then to run P with the actual message components replaced for
the formal parameters 1, ..., ,. We may omit P when it is nil. The variables
z1,...,Zy are bound, and subject to renaming.

— The output process u(V7,...,V;).P is ready to output a message with n compo-
nents V7, ..., Vi, on channel u, then to run P. Again, we may omit P when it
is nil.

Processes are intended to represent the components of a protocol, but they may also
represent attackers, users, or other entities that interact with the protocol.

As an abbreviation, we may also write let x+ = U in P. It can be defined as
we)(e(U) | e(x).P), where c is a name that does not occur in U or in P.

As these definitions indicate, the applied pi calculus is rather abstract. It allows us
to omit many details of cryptography and communication. On the other hand, both

Security Protocols: Principles and Calculi 13

cryptography and communication are represented in the applied pi calculus. We can
describe every message, under what circumstances it is sent, how it is checked upon
receipt, and what actions it triggers.

Research on the spi calculus and the applied pi calculus includes the development of
formal semantics, the study of equivalences and type systems, the invention of decision
procedures for particular problems, the definition of logics, other work on proof tech-
niques and tools, and various applications (e.g., [34,5L2L[18,136L135,1431144.149.150,154]).
Research on related formalisms touches on many of these topics as well (e.g., [43[13]
12,177, 138]]). We discuss only a fraction of this work in the present notes, and refer the
reader to the research literature for further material on these topics.

7 ProVerif

A variety of methods for protocol analysis rely at least in part on tool support. They are
effective on abstract but detailed models of important protocols. Many of them employ
elaborate proof techniques—some general, some specific to this area.

Since the work of Dolev and Yao, there has been much research on special decision
procedures. In recent years, these have been most successful for finite-state systems
(e.g., [18]). Since the mid 1990s, general-purpose model-checking techniques have
also been applied in this area (e.g., [62,(71]). Again, they are usually most effective
for finite-state systems. There has also been research on proofs with semi-automatic
proof assistants (e.g., [76,133]]). These proofs can require a fair amount of expert human
guidance. On the other hand, they can produce sophisticated theorems and attacks, even
for infinite-state systems.

Several other approaches rely on programming-language techniques, such as typing,
control-flow analysis, and abstract interpretation (e.g., [72,131,12]). These techniques
are often incomplete but useful in examples and (relatively) easy to use. It turns out
that some of these techniques are equivalent, at least in theory [32,[2]. We give a brief
description of ProVerif [2311241[25,1277]], as an important example of this line of work.

ProVerif is an automatic checker for the applied pi calculus. It features a somewhat
modified input syntax, in which function symbols are categorized as constructors and
destructors. Pairing and encryption are typical examples of constructors, while projec-
tion operations and decryption are examples of destructors.

Internally, ProVerif translates from the applied pi calculus to Horn clauses, and thus
represents protocols as logic programs. For example, if a process sends the name A
on channel ¢ when it receives the name B on channel d, then the Horn clauses that
represent the protocol will imply

mess(d, B) — mess(c, A)

where mess is a predicate that indicates the possible presence of a message on a chan-
nel. Some of the Horn clauses deal with communication and with cryptography (not
specifically to a protocol). For example, we may have:

attacker(x) A attacker(y) — mess(x,y)
attacker(x) A attacker(y) — attacker(senc(zx,y))

where attacker is a predicates that characterizes the knowledge of an attacker.

14 M. Abadi

ProVerif then applies automated analysis techniques based on resolution to these
Horn clauses. It contains proof methods for certain classes of properties. These include
secrecy and authenticity properties. In particular, the secrecy of a name s may be for-
mulated in terms of whether or not attacker(s) is provable.

ProVerif has been effective on a wide range of examples. For instance, it can treat
the Needham-Schroeder protocol without much difficulty, using definitions similar to
those presented in Section [8l More advanced examples include a protocol for certi-
fied email [3]], the JFK protocol [[L1] for keying for IP security [4]], some password-
based protocols [27]], some electronic-voting protocols [57], and several web-services
protocols [63,20]]. ProVerif seems to be fairly accessible to new users. Remarkably, it
has also served as a powerful basis for sophisticated tools for analyzing web-services
protocols [22].

ProVerif proofs typically take seconds or minutes, though longer proofs are possible
too. ProVerif guarantees termination only in certain cases [28]]. Manual arguments are
sometimes combined with automatic proofs.

8 An Example, Revisited

As an example, we write the Needham-Schroeder protocol in the applied pi calculus.

An analysis of this example may be done by hand, using a variety of proof techniques
for the applied pi calculus that go beyond the scope of these notes. An analysis may also
be done automatically with ProVerif, as mentioned above.

8.1 Preliminaries

We assume that e is a public channel on which all principals may communicate. There-
fore, we do not restrict the scope of e with the v operator. We do not represent the details
of addressing and routing. In our formulation of the code, it is possible for a principal to
receive a message intended for some other principal, and for the processing to get stuck.
It is straightforward to do better. We choose this simplistic model because the details of
addressing are mostly orthogonal to the primary security concerns in this protocol. In
other protocols, the details of addressing may be more important, for instance if one is
interested in hiding the identities of the principals that communicate, in order to obtain
privacy guarantees (e.g., [7]]).
We use the following function symbols:

— We use constant symbols A, B, ... for principal names.

— We also use the function symbols introduced above for symmetric cryptography
(senc, sdec, scheck, and ok).

— We use two unary function symbols that we write in postfix notation, as —1 and
+1, with the equation (x — 1) +1 = z.

While this equation may not seem surprising, it is worth noting that it is not
essential to writing the processes that represent the protocol. We introduce it be-
cause we wish to emphasize that anyone (including an attacker) can invert the —1
function. Without this equation, —1 might appear to be a one-way function, so one
might wrongly expect that it would be impossible to recover N4 from N4 — 1.

Security Protocols: Principles and Calculi 15

Similarly we could add other equations, such as (x + 1) — 1 = x. We return to the
subject of choosing equations in Section [8.4l

— We also assume tupling and the corresponding projection operations. We write
(Us,...,U,) for the tuple of Uy, ..., Uy, for any n, and write p; for the projection
function that retrieves U;, for ¢ = 1..n, with the equation p;((z1, ..., z,)) = ;.

— Finally, we introduce a binary function symbol skeygen. We use skeygen to map
a master key and a principal name to a symmetric key. Relying on this mapping,
the server .S needs to remember only a master key K, and can recover K 45 by
computing skeygen(Kg, A) and K gg by computing skeygen(Kg, B).

Thus, we model a practical, modern strategy for reducing storage requirements
at S. An alternative set of definitions might encode a table of shared keys at S.

8.2 A First Version

As an initial attempt, we may model the messages in the protocol rather directly. We
write a process for each of A, B, and S, then combine them.

The code for A includes a top-level definition of K 45 (formally introduced as a
variable, not a name). We do not model more realistic details of how A may obtain K 4.
We write the code for A in terms of auxiliary processes Aj, Ao, Basically, A;
represents A at Message i of a protocol execution. For instance, A; generates NV 4, then
sends A, B, N4 on e, then proceeds to As. In turn, A, receives a message x, checks that
it is a ciphertext under the expected key, decrypts it, extracts four components from the
plaintext, and checks that N4 is the first component and B the second, then proceeds
to As; a failure in any of the verifications causes the processing to stop. Each of these
auxiliary processes may have free names and variables bound in previous processes; for
instance N 4 is bound in A; and used in As.

A =let Kas = skeygen(Kg, A) in Ay
Ay = (V.NA)6<A7 B, NA>.A2
Ag = e(z).if scheck(z, Ka5) = ok then
let ' = sdec(z, K 45) in
let 1 = p1(2') in

let xo = pa(x') in
let z3 = p3(z’) in
let x4 = pa(a’) in

if xt1 = Na then

if xo = B then As
Ag = 6<$4>.A4
Ay = e(ws).if scheck(xs, x3) = ok then As
As = e(senc((sdec(zs, x3) — 1), x3))

Similarly, we write the code for S as follows:

S =05

Sl = 6(%1, $271'3).52

Sy = wK)let 2’ = senc((K, z1), skeygen(Kg, x2)) in
e(senc((xs3, z2, K, '), skeygen(Kg, z1)))

16 M. Abadi

Here the key K stands for the new symmetric key for communication between clients
(named K 4 g above for clients A and B).
Finally, we write the code for B as follows:

B = let Kps = skeygen(Kg, B) in Bs
Bs = e(z).if scheck(z, Kpg) = ok then
let ' = sdec(x, Kpg) in
let 1 = p1(a’) in
let zo = pa(a’) in By
By = (VNB)e<senc(NB7 1’1)>.B5
By = e(y).if scheck(y,z1) = ok then
if sdec(y,z1) —1 = Np — 1 then nil

We assemble the pieces so as to represent a system with A, B, and S:

P=wKs)(A|B|S)

8.3 A Second Version
The first version of the code is not entirely satisfactory in several respects.

— A appears to initiate a session with B spontaneously, and communication stops
entirely after a shared key is established. For instance, B checks the last message,
but stops independently of whether the check succeeds.

A more complete model of the protocol would show that A initiates a session
because of some event. This event may for example come from a process R 4 that
represents an application that uses the protocol at A. Upon completion of a success-
ful exchange, the resulting key may be provided to the application. (Alternatively,
the protocol could include its own layer for encrypted data communications, like
SSL’s record layer.) Similarly, upon completion of a successful exchange, the re-
sulting key and the identity of the other endpoint could be passed to a process Rp
at B, which may check the identity against an access-control policy. Thereafter, R 4
and Rp may use the session key; they should never use the master key Kg.

— If the possibility of session-key compromise is important, as indicated by Denning
and Sacco, then it should be modeled. For instance, upon completion of a successful
exchange, the session key may be broadcast. An analysis of the protocol without
such an addition would not detect the possibility of an attack that relies on the
compromise of old session keys.

In a model with user processes R4 and Rp, we may simply consider the possi-
bility that one of these processes leaks old session keys.

— A should not be limited to initiating one session, and the identity of the principals
A and B should not be fixed. Rather, each principal may engage in the protocol in
the role of A or B, or even in both roles simultaneously, multiple times.

Therefore, the code for these roles should use, as a parameter, the claimed name
of the principal that is running the code. In addition, the code should be replicated.

Security Protocols: Principles and Calculi 17

We arrive at the following variant of our definitions for A:

A(za) = weywd)(Ra | let Kas = skeygen(Kg,xa) in lc(xp). A1)
A1 = wNyelxa,xp, Na).As
Ay = as above, except for the last line, which becomes
if xo = xp then As
Az = as above
Ay = as above
Ay = e(senc((sdec(xs, x3) — 1), x3)).d{x3,xB)

Here the variables x 4 and xp represent A’s and B’s names, respectively. Channels ¢
and d are for communication between R 4 and the rest of the code. Channel ¢ conveys
the identity of the other endpoint; channel d returns this identity and a session key;
R4 may then use the session key, and perhaps leak it. A replication indicates that an
unbounded number of sessions may be initiated.

Similarly, we revise the code for B as follows:

B(zp) = wd)(Rp | let Kpg = skeygen(Kg,zp) in !B3)
B3 = as above
B4 = as above
By = e(y).if scheck(y,x1) = ok then
if sdec(y,z1) — 1 = Np — 1 then d{(x1, z2)

As in the code for A, channel d conveys the session key and the identity of the other
endpoint. Again, a replication indicates that an unbounded number of sessions may be
initiated.

In S, only an extra replication is needed:

S =159
S1 = as above
Sy = as above

Suppose that we wish to represent a system with client principals named C1, ..., Cp,
all of them able to play the roles of A and B, and all of them with the same application
code for each for the roles. The corresponding assembly is:

P =wKg)(A(Ch) | B(Ch) | ... | A(Cr) | B(Cr) | S)

Many variants and elaborations are possible. For instance, some of the checks may
safely be removed from the code. Since the applied pi calculus is essentially a program-
ming language, protocol models are enormously malleable. However, complex models
are rarely profitable—the point of diminishing returns is reached fairly quickly in the
analysis of most protocols.

8.4 Discussion

As in the pi calculus, scoping can be the basis of security properties for processes in
the applied pi calculus. Moreover, attackers can be treated as contexts for processes. In

18 M. Abadi

our example, the scoping on K g reflects that it cannot be used by attackers. Principals
other than S use Kg only as prescribed in their code, which is given explicitly as part
of the process P above.

On the other hand, the added expressiveness of the applied pi calculus enables writ-
ing detailed examples, such as this one. Not only we can represent cryptographic op-
erations, but we need not commit to a particular cryptosystem: we can introduce new
function symbols and equations as needed. The awareness of such extensibility is far
from new: it appears already in Merritt’s dissertation [66, page 60]. This extensibility
can be a cause of concerns about soundness. Indeed, we may want to have a method
for deciding whether a given set of rules captures “enough” properties of an underly-
ing cryptosystem. At present, the most attractive approach to this problem consists in
developing complexity-theoretic foundations for formal methods.

The applied pi calculus also gives rise to the possibility that a process may reveal
a term that contains a fresh name s without revealing s itself. For instance, in our ex-
ample, the process reveals an encryption of a session key, by sending this encryption
on the public channel e, without necessarily disclosing the session key. This possibility
does not arise in the pure pi calculus, where each name is either completely private
to a process or completely known to its context. Technically, this possibility is a sig-
nificant source of complications in reasoning about security in the applied pi calculus.
These complications should not be too surprising, however: they reflect the difficulty of
reasoning about security protocols.

9 Outlook

The development of new security protocols remains active. As mentioned in Section 3
recent protocols typically have many moving parts—many modes, options, and layers.
Their complexity can be a source of serious concerns. Moreover, from time to time,
security protocols are used in new contexts, in which their assumptions may not hold
exactly. We may therefore conjecture that understanding how to design and analyze
security protocols will remain important in the coming years. What new research will
be necessary and most fruitful remains open to debate.

The applied pi calculus and its relatives are idealized programming languages. As
formal analysis matures, it becomes applicable to more practical programming lan-
guages, at least for protocol code written in a stylized manner [51,21,/48]]. For such
code, it is possible to translate to the applied pi calculus—more specifically to the di-
alect understood by ProVerif—and to obtain automatic proofs. We may expect that
these stylistic requirements will be relaxed over time. We may also expect that general-
purpose static analysis techniques (not specifically developed for security) will be help-
ful in this progress. Moreover, in light of some of the research described in Section [5]
we may expect to obtain not only formal but also complexity-theoretic security results.
With this further development, formalisms may ultimately be externally visible neither
in protocol descriptions (which would be in ordinary programming languages) nor in
security guarantees.

Security Protocols: Principles and Calculi 19

Acknowledgments

These notes are largely based on joint work with Bruno Blanchet, Mike Burrows, Cédric
Fournet, Andy Gordon, and Roger Needham. Bruno Blanchet, Cédric Fournet, and
Andy Gordon commented on a draft of these notes. I am grateful to all of them.

I am also grateful to the organizers of the 2006 International School on Foundations

of Security Analysis and Design for inviting me to lecture and then for the encourage-
ment to write these notes.

This work was partly supported by the National Science Foundation under Grants

CCR-0208800 and CCF-0524078.

References

10.

11.

12.

13.

14.

15.

. Abadi, M.: Security protocols: Principles and calculi. Lectures at 6th International School

on Foundations of Security Analysis and Design, (September 2006), Slides at http://
www.sti.uniurb.it/events/fosad06/papers/Abadi-fosad06.pdf

. Abadi, M., Blanchet, B.: Analyzing security protocols with secrecy types and logic programs.

Journal of the ACM 52(1), 102-146 (2005)

. Abadi, M., Blanchet, B.: Computer-assisted verification of a protocol for certified email.

Science of Computer Programming 58(1-2), 3-27 (2005)

. Abadi, M., Blanchet, B., Fournet, C.: Just Fast Keying in the pi calculus. ACM Transactions

on Information and System Security (to appear, 2007)

. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational theories.

Theoretical Computer Science 367(1-2), 2-32 (2006)

. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: 28th ACM

Symposium on Principles of Programming Languages (POPL’01), pp. 104—115 (January
2001)

. Abadi, M., Fournet, C.: Private authentication. Theoretical Computer Science 322(3), 427—

476 (2004)

. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus. Informa-

tion and Computation 148(1), 1-70 (1998) (An extended version appeared as Digital Equip-
ment Corporation Systems Research Center report No. 149, January 1998)

. Abadi, M., Needham, R.: Prudent engineering practice for cryptographic protocols. IEEE

Transactions on Software Engineering 22(1), 615 (1996)

Abadi, M., Rogaway, P.: Reconciling two views of cryptography (The computational sound-
ness of formal encryption). Journal of Cryptology 15(2), 103-127 (2002)

Aiello, W., Bellovin, S.M., Blaze, M., Canetti, R., loannidis, J., Keromytis, A.D., Reingold,
O.: Just Fast Keying: Key agreement in a hostile internet. ACM Transactions on Information
and System Security 7(2), 242-273 (2004)

Amadio, R., Lugiez, D.: On the reachability problem in cryptographic protocols. In:
Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 380-395. Springer, Heidelberg
(2000)

Amadio, R., Prasad, S.: The game of the name in cryptographic tables. In: Thiagarajan, P.S.,
Yap, R.H.C. (eds.) ASTAN 1999. LNCS, vol. 1742, pp. 15-27. Springer, Heidelberg (1999)
Anderson, R., Needham, R.: Robustness principles for public key protocols. In: Coppersmith,
D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 236-247. Springer, Heidelberg (1995)

Aura, T.: Strategies against replay attacks. In: 10th IEEE Computer Security Foundations
Workshop, pp. 59-68 (1997)

http://www.sti.uniurb.it/events/fosad06/papers/Abadi-fosad06.pdf
http://www.sti.uniurb.it/events/fosad06/papers/Abadi-fosad06.pdf

20

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

M. Abadi

Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library with nested
operations. In: 10th ACM conference on Computer and Communications security (CCS’03),
pp- 220-230 (October 2003)

Baldamus, M., Parrow, J., Victor, B.: Spi calculus translated to pi-calculus preserving may-
tests. In: 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04), pp. 22-31
(July 2004)

Baudet, M.: Sécurité des protocoles cryptographiques: aspects logiques et calculatoires. PhD
thesis, Ecole Normale Supérieure de Cachan (2007)

Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.)
CRYPTO 1993. LNCS, vol. 773, pp. 232-249. Springer, Heidelberg (1994)

Bhargavan, K., Fournet, C., Gordon, A.D.: Verifying policy-based security for web services.
In: ACM Conference on Computer and Communications Security (CCS’04), pp. 268-277
(October 2004)

Bhargavan, K., Fournet, C., Gordon, A.D.: Verified reference implementations of WS-
security protocols. In: Bravetti, M., Nufiez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS,
vol. 4184, pp. 88-106. Springer, Heidelberg (2006)

Bhargavan, K., Fournet, C., Gordon, A.D., Pucella, R.: TulaFale: A security tool for web
services. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2003.
LNCS, vol. 3188, pp. 197-222. Springer, Heidelberg (2004)

Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In: 14th
IEEE Computer Security Foundations Workshop, pp. 82-96 (June 2001)

Blanchet, B.: From secrecy to authenticity in security protocols. In: Hermenegildo, M.V.,
Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 342-359. Springer, Heidelberg (2002)
Blanchet, B.: Automatic proof of strong secrecy for security protocols. In: 2004 IEEE Sym-
posium on Security and Privacy, pp. 86—100 (May 2004)

Blanchet, B.: A computationally sound mechanized prover for security protocols. In: 2006
IEEE Symposium on Security and Privacy, pp. 140-154 (May 2006)

Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equivalences for
security protocols. Journal of Logic and Algebraic Programming (to appear, 2007)
Blanchet, B., Podelski, A.: Verification of cryptographic protocols: Tagging enforces termi-
nation. In: Gordon, A.D. (ed.) Foundations of Software Science and Computation Structures:
6th International Conference, FOSSACS 2003, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003.
LNCS, vol. 2620, pp. 136-152. Springer, Heidelberg (2003)

Blanchet, B., Pointcheval, D.: Automated security proofs with sequences of games. In:
Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 537-554. Springer, Heidelberg (2006)
Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo random
bits. In: 23rd Annual Symposium on Foundations of Computer Science (FOCS 82), pp. 112—
117 (1982)

Bodei, C., Degano, P., Nielson, F., Nielson, H.: Flow logic for Dolev-Yao secrecy in crypto-
graphic processes. Future Generation Computer Systems 18(6), 747-756 (2002)

Bodei, C.: Security Issues in Process Calculi. PhD thesis, Universita di Pisa (January 2000)
Bolignano, D.: Towards a mechanization of cryptographic protocol verification. In: Grum-
berg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 131-142. Springer, Heidelberg (1997)
Boreale, M., De Nicola, R., Pugliese, R.: Proof techniques for cryptographic processes.
SIAM J. Comput. 31(3), 947-986 (2001)

Borgstrom, J., Briais, S., Nestmann, U.: Symbolic bisimulation in the spi calculus. In: Gard-
ner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 161-176. Springer, Heidel-
berg (2004)

Borgstrom, J., Nestmann, U.: On bisimulations for the spi calculus. In: Kirchner, H., Ringeis-
sen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 287-303. Springer, Heidelberg (2002)

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Security Protocols: Principles and Calculi 21

Burrows, M., Abadi, M., Needham, R.: A logic of authentication. Proceedings of the Royal
Society of London A 426, 233-271 (1989) (A preliminary version appeared as Digital Equip-
ment Corporation Systems Research Center report No. 39, February 1989)

Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: A derivation system and compositional
logic for security protocols. Journal of Computer Security 13(3), 423-482 (2005)

Datta, A., Derek, A., Mitchell, J.C., Roy, A.: Protocol composition logic (PCL). Electronic
Notes in Theoretical Computer Science 172(1), 311-358 (2007)

DeMillo, R.A., Lynch, N.A., Merritt, M.: Cryptographic protocols. In: 14th Annual ACM
Symposium on Theory of Computing, pp. 383—400 (1982)

Denning, D.E., Sacco, G.M.: Timestamps in key distribution protocols. Communications of
the ACM 24(7), 533-535 (1981)

Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions on Infor-
mation Theory IT-29(12), 198-208 (1983)

Durante, L., Sisto, R., Valenzano, A.: A state-exploration technique for spi-calculus testing-
equivalence verification. In: Formal Techniques for Distributed System Development,
FORTE/PSTV. IFIP Conference Proceedings, vol. 183, pp. 155-170. Kluwer, Dordrecht
(2000)

Durante, L., Sisto, R., Valenzano, A.: Automatic testing equivalence verification of spi cal-
culus specifications. ACM Transactions on Software Engineering and Methodology 12(2),
222-284 (2003)

Focardi, R., Gorrieri, R.: The compositional security checker: A tool for the verification
of information flow security properties. IEEE Transactions on Software Engineering 23(9),
550-571 (1997)

Freier, A.O., Karlton, P., Kocher, P.C.: The SSL protocol: Version 3.0 (November 1996),
http://www.mozilla.org/projects/security/pki/nss/ssl/
draft302.txt

Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sci-
ences 28, 270-299 (1984)

Gordon, A.D.: Provable implementations of security protocols. In: 21st Annual IEEE Sym-
posium on Logic in Computer Science (LICS’06), pp. 345-346 (2006)

Gordon, A.D., Jeffrey, A.: Authenticity by typing for security protocols. In: 14th IEEE Com-
puter Security Foundations Workshop, pp. 145-159 (June 2001)

Gordon, A.D., Jeffrey, A.: Types and effects for asymmetric cryptographic protocols. In: 15th
IEEE Computer Security Foundations Workshop, pp. 77-91 (June 2002)

Goubault-Larrecq, J., Parrennes, F.: Cryptographic protocol analysis on real C code. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 363-379. Springer, Heidelberg (2005)
Gray 111, J.W., Ip, K.EE., Lui, K.-S.: Provable security for cryptographic protocols—exact
analysis and engineering applications. In: 10th IEEE Computer Security Foundations Work-
shop, pp. 45-58 (1997)

Harkins, D., Carrel, D.: RFC 2409: The Internet Key Exchange (IKE) (November 1998),
http://www.ietf.org/rfc/rfc2409.txt

Hiittel, H.: Deciding framed bisimilarity. In: 4th International Workshop on Verification of
Infinite-State Systems (INFINITY 02), pp. 1-20 (August 2002)

Kemmerer, R.A., Meadows, C., Millen, J.K.: Three systems for cryptographic protocol anal-
ysis. Journal of Cryptology 7(2), 79-130 (1994)

Kohl, J., Neuman, C.: RFC 1510: The Kerberos network authentication service (v5) (Septem-
ber 1993), ftp://ftp.isi.edu/in-notes/rfcl510. txt

Kremer, S., Ryan, M.D.: Analysis of an electronic voting protocol in the applied pi calcu-
lus. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 186-200. Springer, Heidelberg
(2005)

http://www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt
http://www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt
http://www.ietf.org/rfc/rfc2409.txt
ftp://ftp.isi.edu/in-notes/rfc1510.txt

22

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

M. Abadi

Lampson, B.W.: Protection. In: 5th Princeton Conference on Information Sciences and Sys-
tems, pp. 437443 (1971)

Laud, P.: Symmetric encryption in automatic analyses for confidentiality against active
adversaries. In: 2004 IEEE Symposium on Security and Privacy, pp. 71-85 (May 2004)
Laud, P.: Secrecy types for a simulatable cryptographic library. In: 12th ACM Conference on
Computer and Communications Security (CCS’05), pp. 26-35 (November 2005)

Lincoln, P., Mitchell, J., Mitchell, M., Scedrov, A.: A probabilistic poly-time framework
for protocol analysis. In: 5th ACM Conference on Computer and Communications Security
(CCS’98), pp. 112-121 (1998)

Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In:
Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147-166. Springer, Hei-
delberg (1996)

Lux, K.D., May, M.J., Bhattad, N.L., Gunter, C.A.: WSEmail: Secure internet messaging
based on web services. In: ICWS ’05: Proceedings of the IEEE International Conference on
Web Services, pp. 75-82 (2005)

Lynch, N.: I/O automaton models and proofs for shared-key communication systems. In:
12th IEEE Computer Security Foundations Workshop, pp. 14-29 (1999)

Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography.
CRC Press, Boca Raton (1996)

Merritt, M.J.: Cryptographic Protocols. PhD thesis, Georgia Institute of Technology (Febru-
ary 1983)

Micciancio, D., Warinschi, B.: Soundness of formal encryption in the presence of active ad-
versaries. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 133-151. Springer, Heidelberg
(2004)

Miller, S.P., Neuman, B.C., Schiller, J.1., Saltzer, J.H.: Kerberos authentication and authoriza-
tion system, Project Athena technical plan, section E.2.1. Technical report. MIT, Cambridge
(1987)

Milner, R.: Communicating and Mobile Systems: the w-Calculus. Cambridge University
Press, Cambridge (1999)

Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts I and II. Information
and Computation, 100, 1-40, 41-77 (1992)

Mitchell, J.C., Shmatikov, V., Stern, U.: Finite-state analysis of SSL 3.0. In: 7th USENIX
Security Symposium, pp. 201-216 (January 1998)

Monniaux, D.: Abstracting cryptographic protocols with tree automata. Science of Computer
Programming 47(2-3), 177-202 (2003)

Needham, R.M.: Logic and over-simplification. In: 13th Annual IEEE Symposium on Logic
in Computer Science, pp. 2-3 (1998)

Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large networks of
computers. Communications of the ACM 21(12), 993-999 (1978)

Needham, R.M., Schroeder, M.D.: Authentication revisited. Operating Systems Re-
view 21(1), 7 (1987)

Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Journal of Com-
puter Security 6(1-2), 85-128 (1998)

Ramanathan, A., Mitchell, J., Scedrov, A., Teague, V.: Probabilistic bisimulation and equiv-
alence for security analysis of network protocols. In: Walukiewicz, I. (ed.) FOSSACS 2004.
LNCS, vol. 2987, pp. 468-483. Springer, Heidelberg (2004)

Schneider, S.: Security properties and CSP. In: 1996 IEEE Symposium on Security and Pri-
vacy, pp. 174-187 (1996)

Syverson, P.: Limitations on design principles for public key protocols. In: 1996 IEEE Sym-
posium on Security and Privacy, pp. 62-73 (1996)

80.

81.

82.

83.

Security Protocols: Principles and Calculi 23

Thayer Fabrega, F.J., Herzog, J.C., Guttman, J.D.: Strand spaces: Why is a security protocol
correct? In: 1998 IEEE Symposium on Security and Privacy, pp. 160-171 (May 1998)
Woo, T.Y.C., Lam, S.S.: Authentication for distributed systems. Computer 25(1), 39-52
(1992)

Woo, T.Y.C., Lam, S.S.: A lesson on authentication protocol design. Operating Systems Re-
view 28(3), 24-37 (1994)

Yao, A.C.: Theory and applications of trapdoor functions. In: 23rd Annual Symposium on
Foundations of Computer Science (FOCS 82), pp. 80-91 (1982)

Secure Service Orchestration

Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari, and Roberto Zunino

Dipartimento di Informatica, Universita di Pisa

Abstract. We present a framework for designing and composing ser-
vices in a secure manner. Services can enforce security policies locally,
and can invoke other services in a “call-by-contract” fashion. This mech-
anism offers a significant set of opportunities, each driving secure ways to
compose services. We discuss how to correctly plan service orchestrations
in some relevant classes of services and security properties. To this aim,
we propose both a core functional calculus for services and a graphical
design language. The core calculus is called \™ [I0]. It features prim-
itives for selecting and invoking services that respect given behavioural
requirements. Critical code can be enclosed in security framings, with
a possibly nested, local scope. These framings enforce safety properties
on execution histories. A type and effect system over-approximates the
actual run-time behaviour of services. Effects include the actions with
possible security concerns, as well as information about which services
may be selected at run-time. A verification step on these effects allows
for detecting the viable plans that drive the selection of those services
that match the security requirements on demand.

1 Introduction

The Web service protocol stack (WSDL, UDDI, SOAP, WSBPEL) offers basic
support for the development of service-oriented architectures, including facilities
to publish, discover and orchestrate services. Although this has been extremely
valuable to highlight the key innovative features of the service-oriented approach,
experience has singled out several limiting factors of the service protocol stack,
mainly because of the purely “syntactic” nature of standards. This has lead to
the idea of extending the stack with higher level, “semantic” functionalities. For
instance, the design and exploitation of service ontologies is a first attempt to
address these concerns.

A challenging issue of the service approach is how to orchestrate existing
services into more complex ones, by properly selecting and configuring services
so to guarantee that their composition enjoys some desirable properties. These
properties may involve functional aspects, speaking about the goals attained by
a service, and also non-functional aspects, like e.g. security, availability, perfor-
mance, transactionality, quality of service, etc. [45].

In this paper we describe a semantics-based framework to model and orches-
trate services in the presence of both functional and non-functional constraints,
with a special concern for security properties. The formal foundation of our work

A. Aldini and R. Gorrieri (Eds.): FOSAD 2006/2007, LNCS 4677, pp. 24 2007.
© Springer-Verlag Berlin Heidelberg 2007

Secure Service Orchestration 25

is A™? [10J6], a core calculus for securely orchestrating services. The A™? calculus
extends the A-calculus with primitive constructs to describe and invoke services
in a call-by-contract fashion. Services are modelled as functions with side effects.
These side effects represent the action of accessing security-critical resources, and
they are logged into histories. A run-time security monitor may inspect histories,
and forbids those executions that would violate the prescribed policies.

Unlike standard discovery mechanisms that match syntactic signatures only,
ours also implements a matchmaking algorithm based on service behaviour. This
algorithm exploits static analysis techniques to resolve the call-by-contract in-
volved in a service orchestration. The published interface of a service takes the
form of an annotated type, which represents both the signature of the service
(i.e. its input-output information) and a suitable semantic abstraction of the ser-
vice behaviour. In our call-by-contract selection, the client is required to know
neither the service name nor its location. Operationally, the service registry is
searched for a service with a functional type (the service signature) matching
the request type; also, the semantic abstraction must respect the non-functional
constraints imposed by the request. Our orchestration machinery constructs a
plan for the execution of services, e.g. a binding between requests and service
locations, guaranteeing that the properties on demand are always satisfied.

We envisage the impact of our approach on the service protocol stack as fol-
lows. First, it requires extending services description languages: besides the stan-
dard WSDL attributes, service description should include semantic information
about service behaviour. Moreover, the call-by-contract invocation mechanism
adds a further layer to the standard service protocol stack: the planning layer.
This layer provides the orchestrator with the plans guaranteeing that the orches-
trated services always respect the required properties. Hence, before starting the
execution of the orchestration, the orchestrator engines collects the relevant ser-
vice plans by inquiring the planning layer. These plans enable the orchestration
engine to resolve all the requests in the initiator service, as well as those in the
invoked services.

1.1 Service Interfaces and Contracts

In our approach, the published interface of a service is an annotated functional

type, of the form 7 EiR T9. When supplied with an argument of type 7y, the
service evaluates to an object of type mo. The annotation H is a history ez-
pression, a sort of context-free grammar that abstractly describes the possible
run-time histories of the service. Thus, H will be exploited to guide the selection
of those services that respect the requested properties about security or other
non-functional aspects. Since service interfaces are crucial in the implementation
of the call-by-contract primitive, they have to be certified by a trusted party,
which guarantees that the abstract behaviour is a sound over-approximation of
the actual service behaviour. For instance, service interfaces can be mechanically
inferred through a type and effect system, as shown in Section [8l

A contract ¢ is a regular property of execution histories. We express contracts
as languages accepted by finite state automata. Although in this paper we mainly

26 M. Bartoletti et al.

focus on security policies, in the general case contracts can be arbitrary safety
properties (e.g. resource usage constraints [7]).
To select a service matching a given contract ¢, and with functional type

T1 — T2, a client issues a request of the form req (7 RN 72). The call-by-contract

mechanism ensures that the selected service, with interface 7 A, To, will always
respect the contract ¢, i.e. that all the histories represented by H are recognized
by the automaton defining .

Since service interactions may be complex, it might be the case that a local
choice for a service is not secure in a broader, “global” context. For instance,
choosing a low-security e-mail provider might prevent you from using a home-
banking service that exchanges confidential data through e-mail. In this case,
you should have planned the selection of the e-mail and bank services so to
ensure their compatibility. To cope with this kind of issues, we define a static
machinery that determines the viable plans for selecting services that respect all
the contracts, both locally and globally. A plan resolves a call-by-contract into a
standard service call, and it is formalized as a mapping from requests to services.

1.2 Planning Service Composition

Our planning technique acts as a trusted orchestrator of services. It provides a
client with the viable plans guaranteeing that the invoked services always respect
the required properties. Thus, in our framework the only trusted entity is the
orchestrator, and neither clients nor services need to be such. In particular,
the orchestrator infers functional and behavioural types of each service. Also,
it is responsible for certifying the service code, for publishing its interface, and
for guaranteeing that services will not arbitrarily change their code on the fly:
when this happens, services need to be certified again. When an application is
injected in the network, the orchestrator provides it with a viable plan (if any),
constructed by composing and analysing the certified interfaces of the available
services. The trustworthiness of the orchestrator relies upon formal grounds, i.e.
the soundness of our type and effect system, and the correctness of the static
analysis and model-checking technique that infers viable plans.

As said above, finding viable plans is not a trivial task, because the effect of
selecting a given service for a request is not always confined to the execution of
that service. Since each service selection may affect the whole execution, we can-
not simply devise a viable plan by selecting services that satisfy the constraints
imposed by the requests, only. We have then devised a two-stage construction for
extracting viable plans from a history expression. Let H be the history expres-
sion inferred for a client. A first transformation of H, called linearization, lifts
all the service choices to the top-level of H. This isolates from H the possible
plans, that will be considered one by one in the second stage: model-checking
for validity. Projecting the history expression H on a given plan 7 gives rise to
another history expression H’, where all the service choices have been resolved
according to 7. Validity of H' guarantees that the chosen plan 7 will drive ex-
ecutions that never go wrong at run-time (thus run-time security monitoring
becomes unneeded). To verify the validity of H’, we first smoothly transform it

Secure Service Orchestration 27

into a Basic Process Algebra. We then model-check this Basic Process Algebra
with a finite state automaton, specially tailored to recognize validity. The cor-
rectness of all these steps (type safety, linearization, model-checking) has been
formally proved in [6].

1.3 Contributions

We briefly summarize the key features of our approach.

1.

Taxonomy of security aspects. We discussed some design choices that affect
security in Web Services. These choices address rather general properties of
systems: whether services maintain a state across invocations or not, whether
they trust each other or not, whether they can pass back and forth mobile
code, and whether different threads may share part of their state or not. Each
of these choices deeply impacts the expressivity of the enforceable security
properties, and the compositionality of planning techniques.

. Design Methodology. We introduced a formal modelling language for design-

ing secure services. Our graphical formalism resembles UML activity dia-
grams, and it is used to describe the workflow of services. Besides the usual
workflow operators, we can express activities subject to security constraints.
The awareness of security from the early stages of development will foster
security through all the following phases of software production. Diagrams
have a formal operational semantics, that specifies the dynamic behaviour of
services. Also, they can be statically analysed, to infer the contracts satisfied
by a service. Our design methodology allows for a fine-grained characteri-
zation of the design choices that affect security (see Section P2]). We support
our approach with the help of some case study scenarios. The design of UML
profiles is currently under development.

Planning and recovering strategies. We identified several cases where design-
ers need to take a decision before proceeding with the execution. For instance,
when a planned service disappears unexpectedly, one can choose to replan,
so to adapt to the new network configuration. Depending on the boundary
conditions and on past experience, one can choose among different tactics.
We comment on the feasibility, advantages and costs of each of them.

Core calculus for services. We extended the A-calculus with primitives for
selecting and invoking services that respect given security requirements. Ser-
vice invocation is implemented in a call-by-contract fashion, i.e. you choose
a service for its (certified) behaviour, not for its name. Security policies are
arbitrary safety properties on execution histories. A key point is that our
policies are applied within a given scope, so we called them local policies.
They are more general than traditional global policies. Instead of having
a single, large, monolithic policy, simple requirements on security can be
naturally composed. Also, local policies are better than local checks. Pro-
grammers are not required to foresee the exact program points where security
violations may occur.

Planning secure orchestration. We defined a three-step static analysis that
makes secure orchestration feasible. An abstraction of the program behaviour

28 M. Bartoletti et al.

is first extracted, through a type and effect system. This abstract behaviour
is a history expression that over-approximates the possible run-time histories
of all the services involved in an orchestration. The second and third steps
put this history expression in a special form, and then model-checks it to
construct a correct orchestrator that securely coordinates the running ser-
vices. Studying the output of the model-checker may highlight design flaws,
suggesting how to revise the call-by-contract and the security policies. All
the above is completely mechanizable, and we have implemented a proto-
type to support our methodology. The fact that the tool is based on firm
theoretical grounds (i.e. A™9 type inference and verifier) positively impacts
the reliability to our approach.

The paper is organized as follows. In Section 2] we introduce a taxonomy of
security aspects in service-oriented applications. Sections Bl M and [l present our
design methodology. In particular, Section [introduces our design notation and
the operational semantics of diagrams; Section [4] presents service contracts, and
outlines how they can be automatically inferred; Section [l illustrates how to se-
lect services under the call-by-contract assumption, and discusses some planning
and recovering strategies. A car repair scenario for secure service composition
is presented in Section [6l Sections [7, [and @ formally introduce the calculus
A" and the planning machinery. Specifically, Sections [formalizes the syntax
and the operational semantics of A" ; Section [§] gives semantics to history ex-
pressions, defines a type and effect system for A™? , and states its type safety;
Section [@ shows our model-checking technique for planning. We conclude the pa-
per with some remarks (Section [[1]) about the expected impact of our proposal.
Portions of this paper have appeared in [T0J6].

2 A Taxonomy of Security Aspects in Web Services

Service composition heavily depends on which information about a service is
made public, on how to choose those services that match the user’s requirements,
and on their actual run-time behaviour. Security makes service composition even
harder. Services may be offered by different providers, which only partially trust
each other. On the one hand, providers have to guarantee that the delivered
service respects a given security policy, in any interaction with the operational
environment, and regardless of who actually called the service. On the other
hand, clients may want to protect their sensitive data from the services invoked.

In the history-based approach to security, the run-time permissions depend on
a suitable abstraction of the history of all the pieces of code (possibly partially)
executed so far. This approach has been receiving major attention, at both levels
of foundations [BI27/43] and of language design/implementation [1124].

The observations of security-relevant activities, e.g. opening socket connec-
tions, reading and writing files, accessing memory critical regions, are called
events. Sequences of events are called histories. The class of policies we are
concerned with is that of safety properties of histories, i.e. properties that are

Secure Service Orchestration 29

expressible through finite state automata. The typical run-time mechanisms for
enforcing history-based policies are reference monitors, which observe program
executions and abort them whenever about to violate the given policy. Reference
monitors enforce exactly the class of safety properties [41].

Since histories are the main ingredient of our security model, our taxonomy
speaks about how histories are handled and manipulated by services. We focus
on the following aspects.

Stateless / Stateful Services

A stateless service does not preserve its state (i.e. its history) across distinct
invocations. Instead, a stateful service keeps the histories of all the past invoca-
tions. Stateful services allow for more expressive security policies, e.g. they can
bound the number of invocations on a per-client basis.

Local / Global Histories

Local histories only record the events generated by a service locally on its site.
Instead, a global history may span over multiple services. Local histories are the
most prudent choice when services do not trust other services, in particular the
histories they generate. In this case, a service only trusts its own history — but
it cannot constrain the past history of its callers, e.g. to prevent that its client
has visited a malicious site. Global histories instead require some trust relation
among services: if a service A trusts B, then the history of A may comprise that
of B, and so A may check policies on the behaviour of B.

First Order / Higher Order Requests

A request type 7 % 7/ is first order when both 7 and 7/ are base types (Int,
Bool, etc.). Instead, if 7 or 7" are functional types, the request is higher order. In
particular, if the parameter (of type 7) is a function, then the client passes some
code to be possibly executed by the requested service. Symmetrically, if 7/ is a
function type, then the service returns back some code to the caller. Mobility
of code impacts the way histories are generated, and demands for particular
mechanisms to enforce security on the site where the code is run. A typical
protection mechanism is sandboxing, that consists in wrapping code within an
execution monitor that enforce a given security policy. When there is no mobile
code, more efficient mechanisms can be devised, e.g. local checks on security-
critical operations.

Dependent / Independent Threads

In a network of services, several threads may run concurrently and compete for
services. Independent threads keep histories separated, while dependent threads
may share part of their histories. Therefore, dependent threads may influence
each other when using the same service, while independent threads cannot. For

30 M. Bartoletti et al.

instance, consider a one-shot service that can be invoked only one time. If threads
are independent, the one-shot service has no way to enforce single use. It can
only check that no thread uses it more than once, because each thread keeps
its own history. Dependent threads are necessary to correctly implement the
one-shot service.

3 Designing Secure Services

The basic entity in our design formalism is that of services. A service is repre-
sented as a box containing its code. The four corners of the box are decorated
with information about the service interface and behaviour. The label ¢ : 7
indicates the location ¢ where the service is made available, and its certified
published interface T (discussed later on in Section H]). The other labels instead
are used to represent the state of a service at run-time.

l: . . .
T T {:71 service location ¢ + interface 7
T orchestration plan
n event history
(m,®) monitor flag m + sequence @ of active policies
B service code
n (m,P)

Fig. 1. Execution state of a service

The label n = a7 -+ - ay is an abstraction of the service execution history. In
particular, we are concerned with the sequence of security-relevant events «;
happened sometimes in the past, in the spirit of history-based security [I]. The
label (m, @) is a pair, where the first element is a flag m representing the on/off
status of the execution monitor, and the second element is the sequence ;- - - ¢,
of active security policies. When the flag is on, the monitor checks that the service
history 7 adheres to the policy ¢; (written n = ¢;) for each i € 1..k. Security
policies are modelled as regular properties of event histories, i.e. properties that
are recognizable by a Finite State Automaton. Since our design notation does
not depend on the logic chosen for expressing regular properties of histories, we
shall not fix any logic here. However, in our examples (e.g. Fig. @ in Section [{])
we find convenient to describe policies through the template usage automata
of [1].

The block B inside the box is an abstraction of the service code. Formally, it is
a special control flow graph [40] with nodes modelling activities, blocks enclosing
sets of nodes, and arrows modelling intra-procedural flow.

Nodes can be of two kinds, i.e. events or requests. Events «, 3, ... abstract
from some security-critical operation. An event can possibly be parametrized,

Secure Service Orchestration 31

e.g. aq(foo) for writing the file foo, sgn(f) for a certificate signed by ¢, etc. A
service request takes the form req, 7. The label r uniquely identifies the request
in a network, and the request type 7 is defined as:

Tou=b 157

where b is a base type (Int, Bool, . ..). The annotation ¢ on the arrow is the query
pattern (or “contract”) to be matched by the invoked service. For instance, the
request type 7 2, 7' matches services with functional type 7 — 7', and whose
behaviour respects the policy ¢.

Blocks can be of two kinds: security blocks ¢[B] enforce the policy ¢ on
B, i.e. the history must respect ¢ at each step of the evaluation of B; planning
blocks { B} construct a plan for the execution of B (see Section[d for a discussion
on some planning strategies). Blocks can be nested, and they determine the scope
of policies (hence called local policies [5]) and of planning.

The label 7 is the plan used for resolving future service choices. Plans may
come in several different shapes [9], but here we focus on a very simple form of
plans, mapping each request to a single service. A plan formalises how a call-
by-contract req, 7 is transformed into a call-by-name, and takes the form of a
function from request identifiers r to service locations ¢. Definition [I] gives the
syntax of plans.

Definition 1. Syntax of plans

mr = 0 empty
r[f] service choice
r[?] unresolved choice
7 | ' composition

The plan 0 is empty; the plan r[¢] associates the service published at site £ with
the request labelled r. The plan r[?] models an unresolved choice for the request
r: we call a plan complete when it has no unresolved choices. Composition | on
plans is associative, commutative and idempotent, and its identity is the empty
plan 0. We require plans to have a single choice for each request, i.e. r[¢] | r[¢]
implies £ = ¢'.

Note that in this design language, we do not render all the features of A™ (see
Section [)). In particular, we neglect variables, conditionals, higher-order func-
tions, and parameter passing. However, we feel free to use these features in the
examples, because their treatment can be directly inherited from A™9.

3.1 Graph Semantics

We formally define the behaviour of services through a graph rewriting seman-
tics [4]. In this section, we resort to an oracle that provides the initiator of a

32 M. Bartoletti et al.

computation with a viable plan. The oracle guarantees that the overall execution
satisfies all the contracts and the security policies on demand, unless services be-
come unavailable. In the following sections, we will discuss a static machinery
that will enable us to correctly implement the oracle, guaranteeing that an ex-
pression will never go wrong. We will also show some strategies to adopt when
services disappear unexpectedly.

The semantics is defined through graph rewriting. The graph semantics for
the case of dependent threads is depicted in Fig. @] and in Fig. Bl We shall
briefly discuss the case of independent threads in Section All the remaining
axes in the taxonomy are covered by our semantics; in particular, Fig. [3] defines
the behaviour of requests and returns according to the possible choices in the
taxonomy.

An overlined block B means that the first node in B is going to be executed;
similarly, an underlined block B means that the last node in B has just been
executed. A service with a slashed box (rule FAIL) is unavailable, i.e. either is
down, unreachable or removed from the directory.

We now briefly discuss the graph rewritings in Fig. 2

— The evaluation of an event « (rule Ev) consists in appending « to the current
history. It is also required that the new history obeys all the policies ¢ in @
(denoted na = @), if the execution monitor is on.

— The rule SEQ says that, after a block B has been evaluated, the next instruc-
tion is chosen non-deterministically among the blocks intra-procedurally con-
nected with B. Note that branching is a special case of SEQ, where the block
B is a conditional or a switch.

— Entering a security block ¢[B] results in appending the policy ¢ to the
sequence of active policies. Leaving ¢[B] removes ¢ from the sequence. In
both cases, as soon as a history is found not to respect ¢, the evaluation gets
stuck, to model a security exception (for simplicity, we do not model here
exceptions and exception handling. Extending our formalism in this direction
would require to define how to compensate from aborted computations, e.g.
like in Sagas [28/20]).

— A request req,7 under a plan r[¢'] | m looks for the service at site £'. If the
service is available (rule REQ), then the client establishes a session with that
service (dashed arrow), and waits until it returns. Note that the meaning of
the labels ' and @’ is left undefined in Fig.[2 since it depends on the choice
made on the security aspects discussed in Section 21 The actual values for
the undefined labels are shown in Fig.[3l In particular, the initial history of
the invoked service is: (i) empty, if the service is stateless with local history;
(ii) the invoker history, if the service has a global history; (iii) the service
past history, if the service is stateful, with local history.

— Returning from a request (rule RET) requires suitably updating the history
of the caller service, according to chosen axes in the taxonomy. The actual
values for 7" are defined in Fig.

Secure Service Orchestration 33

T l s l
Rzl
if m is on,
na =@
(m,® na (m, ®) n
s 14 s 0 s l s

17 m} o[olB] olB]
(m, ®) n (m, Pp) n (m, Pp) n (m, ®)
r[¢']|m 4 14 rl¢] |~ v r[t] |«
Teq, 7 B req,T B
n',®" in Fig. 3
(m, @) 7l n (m, @) n (m, ")
m A w’ L ' v
req, T -~ B IE:F> req, T B
n” in Fig. 3
(m, @) n (m’, @) n" (m’, @) n

Fig. 2. Semantics of services: events, branches, policies, requests and returns

Stateless services Stateful services
Local histories Global histories Local histories Global histories

/ / / — /

n=c n =n n =1 n =n
REQ P —¢ = P —¢ e
R,ET 77//:77 77//:77 77//:77 77//:77/

Fig. 3. Histories and policies in four cases of the taxonomy

The cases FAIL, PLG IN and PLG OUT are defined in Fig. Bl and they have

many possible choices. When no service is available for a request (e.g. because
the plan is incomplete, or because the planned service is down), or when you
have to construct a plan for a block, the execution may proceed according to
one of the strategies discussed in Section

34 M. Bartoletti et al.

A plan is viable when it drives no stuck computations. Under a viable plan,
a service can always proceed its execution without attempting to violate some
security policy, and it will always manage to resolve each request.

3.2 Semantics of Independent Threads

To model independent threads, each service must keep separate histories of all
the initiators. Therefore, histories take the form ¢; : n, {¢; : n;}, where the first
item represents the current thread (initiated at site £;) and its history 7, while
{¢; : m;} is the set of the histories associated with the other threads. The rule
depicted in Fig. @ for the case REQ shows that (stateful) services must maintain
all the histories of the various threads. The actual value of 7’ is defined as in
Fig.[Bl The rule RET is dealt with similarly.

¢]| ¢ ¢ r[€] | v]| =
req, T B req, T B
Lr:m {45 s mj} DR RURE DR USE Lrom’ {45 75}

Fig. 4. Maintaining separate histories in the case of independent threads

4 Service Contracts

A service is plugged into a network by publishing it at a site £, together with its
interface 7. We assume that each site publishes a single service, and that inter-
faces are certified, e.g. they are inferred by the type and effect system defined
in Section Bl Also, we assume that services cannot invoke each other circularly,
since this is quite unusual in the SOC scenario. The functional types are anno-
tated with history expressions H that over-approximate the possible run-time

histories. When a service with interface 7 — 7 is run, it will generate one of
the histories denoted by H. Note that we overload the symbol 7 to range over
both service types and request types 7 - 7. The syntax of types and history
expressions is summarized in Definition [21

History expressions are a sort of context-free grammars. They include the
empty history e, events «, and H - H' that represents sequentialization of code,
H + H’ for conditionals and branching, security blocks ¢[H], recursion ph.H
(where p binds the occurrences of the variable h in H), localization ¢ : H, and
planned selection {my > Hy -« - > Hy}.

A history expression represents a set of histories 7, possibly carrying security
annotations in the form ¢[n]. We formally define the semantics of history expres-
sions in Section B} here we just give some intuition. The semantics of H - H’
(denoted by [H - H']) is the set of histories nn’ such that n € [H] and o' € [H'].

Secure Service Orchestration 35

Definition 2. Service interfaces: types and history expressions

T, T = types
base type
r & annotated function
H H = history expressions
€ empty
h variable
e} access event
H-H sequence
H-+H choice
wlH]| security block
wh.H recursion
{:H localization

{7‘1’1[>H1-~-7Tkl>Hk}

planned selection

The semantics of H+ H' comprises the histories n such that n € [H]U[H']. The
last three constructs (recursion, localization and planned selection) will benefit
of some extra explanation.

— The semantics of a recursion ph. H is the usual fixed point construction. For

instance, the semantics of ph. (y+a-h-[3) consists of all the histories a™v3",
for n >0 (i.e. v, ayf, aayBp,...).

— The construct ¢ : H localizes the behaviour H to the site . For instance,
£:a- (0 :d)- B denotes two histories: af occurring at location ¢, and o/
occurring at location ¢’.

— A planned selection abstracts from the behaviour of service requests. Given a
plan 7, a planned selection {m;>H; - - - > Hy, } chooses those H; such that 7
includes ;. For instance, the history expression H = {r[¢1]>H, r[{2]>Ha} is
associated with a request req, 7 that can be resolved into either ¢; or £5. The
histories denoted by H depend on the given plan 7: if m chooses ¢ (resp. £2)
for r, then H denotes one of the histories represented by H; (resp. Hs). If w
does not choose either ¢; or {5, then H denotes no histories.

Typing judgments have the form H F B : 7. This means that the service

with code B has type 7, and has execution histories included in the semantics
of the effect H. Note that only the initiators of a computation may have H # ¢;

all the other services have typing judgments of the form ¢ - B : b Iy,
Typing judgments for our diagrams can be directly derived from those of the
A" calculus (see Section B3)).

In Section B4 we will state two fundamental results about our type and ef-
fect system. First, it correctly over-approximates the actual run-time histories.
Second, it enjoys the following type safety property. We say that an effect H is

36 M. Bartoletti et al.

valid under a plan m when the histories denoted by H, under the plan 7, never
violate the security policies in H. Type safety ensures that, if (statically) a ser-
vice B is well-typed and its effect is valid under a plan 7, then (dynamically)
the plan 7 is viable for B, i.e. it only drives safe computations.

In Section [we will present a model-checking technique to verify the validity
of history expressions, and to extract the viable plans.

5 Service Selection

We now consider the problem of choosing the appropriate service for a block of
requests. While one might defer service selection as long as possible, thus only
performing it when executing a request, it is usually advantageous to decide
how to resolve requests in advance, i.e. to build a plan. This is because “early
planning” can provide better guarantees than late service selection. For instance,
consider a block with two consecutive requests 71 and ro. It might be that, if we
choose to resolve r; with a particular service £1, later on we will not be able to
find safe choices for ro. In this case we get stuck, and we must somehow escape
from this dead-end, possibly with some expensive compensation (e.g. cancelling
a reservation). Early planning, instead, can spot this kind of problem and try to
find a better way, typically by considering also ry when taking a choice for r;.

More in detail, when we build a complete viable plan 7 for a block B, we ensure
that B can be securely executed, and we will never get stuck unless a service
mentioned in 7 becomes unavailable. Furthermore, we will need no dynamic
checks while executing B, and thus the execution monitor can be kept off, so
improving the overall performance. This is a consequence of the type safety result
for A™? | formally proved in [6]. When we cannot find a complete viable plan,
we could fall back to using an incomplete plan with unresolved requests r[?]. In
this case, we get a weaker guarantee than the one above, namely that we will
not get stuck until an unresolved request must actually be executed.

The rule PLN IN in Fig. [l defines the semantics for constructing plans. The
actual values for the labels «’, m' and &' are defined in Fig. [l To provide
graceful degradation in our model, the FAIL rule considers the unfortunate case
of executing a request r when either (2) r is still unresolved in the plan, or (i¢) r is
resolved with an unavailable service. Therefore, we will look for a way to continue
the execution, possibly repairing the plan as shown in Fig. 6l The rules DOwN
and UP say that a service may become unavailable, and then available again.
We assume that transitions from available to unavailable state (and viceversa)
can only happen when a service is not fulfilling a request.

Several strategies for constructing or repairing a plan are possible, and we
discuss some of them below. Note that no strategy is always better than the
others, since each of them has advantages and disadvantages, as we will point
out. The choice of a given strategy depends on many factors, some of which
lie outside of our formal model (e.g. availability of services, cost of dynamic
checking, etc.).

Secure Service Orchestration 37

¢ rll] |~ ¢ l w v
req,T Teq,T
' m!, &
" (m.) R A)
¢ T ¢ L l T ¢ s

{B}

&
&

7 m!,

in Fig. 7

B

3
3
&
3
5

n (m, P)

=
3
%

)

~

o
=
*
o

n
L r[?] | m 4 r[?] | m l:T
HFB:T
e T {req, 7} ¢ fresh
7', m/, P
o (e eSO () :

Fig. 5. Semantics of services: failing, planning and becoming up/down

We devise four main classes of strategies:

Greyfriars Bobby Follow loyally a former plan. If a service becomes
unavailable, just wait until it comes back again. This strategy is always safe,
although it might obviously block the execution for an arbitrarily long time
— possibly forever.

! In 1858, a man named John Gray was buried in old Greyfriars Churchyard. For
fourteen years the dead man’s faithful dog kept constant watch and guard over the
grave until his own death in 1872. The famous Skye Terrier, Greyfriars Bobby was
so devoted to his master John Gray, even in death, that for fourteen years Bobby
lay on the grave only leaving for food.

38 M. Bartoletti et al.

Patch. Try to reuse as much as possible the current plan. Replace the un-
available services with available ones, possibly newly discovered. The new
services must be verified for compatibility with the rest of the plan.

Sandbox. Try to proceed with the execution monitor turned on. The new
plan only respects a weak form of compatibility on types ignoring the ef-
fect H, but it does not guarantee that contracts and security policies are
always respected. Turning on the execution monitor ensures that there will
not be security violations, but execution might get stuck later on, because
of attempted insecure actions.

Replan. Try to reconstruct the whole plan, possibly exploiting newly discov-
ered services. If a viable plan is found, then you may proceed running with
the execution monitor turned off. A complete plan guarantees that contracts
and security policies will be always respected, provided than none of the
services mentioned in the plan disappear.

In Fig. [6] we describe the effects of these strategies in the context of the FAIL
rule. There, we also make precise the recovered plan 7’ and the labels m’ and &’
appearing in the rule. For the “Greyfiars Bobby” strategy, we patiently wait for
the service to reappear; on timeout, we will try another strategy. The Patch
strategy mends the current plan with a local fix. Note that the Patch strategy
is not always safe: in the general case, it is impossible to change just the way
to resolve the failing request r and have a new safe plan. We shall return on
this issue later on. However, as the figure shows, in some cases this is indeed
possible, provided that we check the new choice for resolving r, to ensure the
plan is valid again. The Replan strategy is safe when a suitable plan is found,
but it could involve statically re-analysing a large portion of the system. When
all else fails, it is possible to run a service under a Sandbox, hoping that we will
not get stuck.

From now onwards, we use the following abbreviations for the various alter-
natives described in Section[Z} stateless (1) / stateful (w), local (L) / global (G),
first order (F) / higher-order (H), dependent (D) / independent (I). For in-
stance, the case IFL1 in the figure is the one about independent threads, first
order requests, local histories, and stateless services.

In Fig. [we list the strategies for the rule PLN IN, describing how to build a
plan for a block B. Note that, when we construct a new plan 7’ we already have
a plan 7 | mg, where 75 only plans the requests inside B. We can then reuse the
available information in 7 and 7p to build 7/. The former plan 7 | 75 can be
non-empty when using nested planning blocks, so reusing parts from it is indeed
possible. Since we can reuse the old plan, the strategies are exactly the same of
those for the FAIL case.

The “Greyfriars Bobby” strategy waits for all the services mentioned in the
old plan to be available at planning time. This is because it might be wise not
to start the block, if we know that we will likely get stuck later. Instead, if
some services keep on being unavailable, we should rather consider the other
strategies.

Secure Service Orchestration 39

STRATEGY STATE UPDATE CASE CONDITION
Greyfriars Bobby ; all The current plan 7 has a choice for r
IFL1 p[H;] is valid
7 |] IFLw p[H;] is valid, and ¢; ¢ 7
Patch @ IFG1 ne[H,) is valid
DFL1 p[H;] is valid
Sandbox (7:)7|1 Tg;]) all The service ¢; has type 7 — 7’
/
Replan (o ﬁﬂ B) all The new plan 7’ has a choice for r

Fig. 6. Failure handling strategies for a request req, 7 R

As for the FAIL rule, the Patch strategy is not always safe, but we can still
give some conditions that guarantee the safety of the plan update, which is local
to the block B. The Replan strategy, instead, can change the whole plan, even
for the requests outside B. If possible, we should always find a complete plan.
When this is not the case, we might proceed with some unresolved requests r[?],
deferring them to the FAIL rule. As a last resort, when no viable plan can be
found, or when we deem Replan to be too expensive, we can adopt the Sandbox
strategy that turns on the execution monitor.

We now show a situation where the Patch strategy is not safe. We consider
the case IFLw case (independent threads, first order requests, local histories,
stateful services). The initiator service, in the middle of Fig. B performs two
requests 1 and ro in sequence. The two requests have the same contract, and
thus they can be resolved with the stateful services ¢; and ¢3. The service at fo
performs an event «, within a security block ¢. If ¢ allows only a single a, we

STRATEGY STATE UPDATE CASE CONDITION
Greyfriars Bobby m| ‘;B all The plan 7 has a choice for all r;
IFL1 p[H;] is valid, for all ¢
Patch m | rilli] | -+ IFLw ¢;[H;] are valid, ¢; are distinct, and all ¢; & 7
] IFG1 i H;] are valid, for all 4
DFL1 wi[H;] are valid, for all i
m | rifl] | - orvices /. L
Sandbox (on, o) all The services ¢; have type 7; — 7;
nH valid under 7’ , where
’ . .
Replan T all 7 is the current history, and

(off, Pp) H approximates the future behaviour
(may need to refine the analysis)

Fig. 7. Planning strategies for a block B involving requests Teq, Ti RAN T

40 M. Bartoletti et al.

b7 s ri[] | mafls]
req, T
req,,T

m Dy

Fig. 8. An unsafe use of the Patch strategy

should be careful and invoke the (stateful) service ¢ at most once. The current
plan m = r1[¢1] | r2[f2] is safe, since it invokes ¢ exactly once.

Now, consider what happens if the service £; becomes unavailable. The FAIL
rule is triggered: if we apply Patch and replace the current plan with r[¢2] |
ro[f2], then this patched plan is not viable. Indeed, the new plan invokes /o
twice, so violating ¢. The safety condition in Fig. [0l is false, because ¢o € T
therefore, this dangerous patch is correctly avoided.

6 A Car Repair Scenario

To illustrate some of the features and design facilities made available by our
framework, we consider a car repair scenario, where a car may break and then
request assistance from a tow-truck and a garage.

In this scenario, we assume a car equipped with a diagnostic system that
continuously reports on the status of the vehicle. When the car experiences some
major failure (e.g. engine overheating, exhausted battery, flat tyres) the in-car
emergency service is invoked to select the appropriate tow-truck and garage
services. The selection may take into account some driver personalized policies,
and other constraints, e.g. the tow-truck should be close enough to reach both
the location where the car is stuck and the chosen garage.

The main focus here is not on the structure of the overall system architecture,
rather on how to design the workflow of the service orchestration, taking into
account the specific driver policies and the service contracts on demand.

The system is composed of three kinds of services: the CAR-EMERGENCY ser-
vice, that tries to arrange for a car tow-trucking and repair, the TOW-TRUCK
service, that picks the damaged car to a garage, and the GARAGE service, that
repairs the car. We assume that all the involved services trust each other’s his-
tory, and so we assume a shared global history, with independent threads. We
also design all the services to be stateful, so that, e.g. the driver can personalize
the choice of garages, according to past experiences.

We start by modelling the CAR-EMERGENCY service, i.e. the in-vehicle service
that handles the car fault. This service is invoked by the embedded diagnosis
system, each time a fault is reported. The actual kind of fault, and the geographic

Secure Service Orchestration 41

Fault x Location — Bool

¢BL |)
req, 1

1

e (fit)
— 51

req,, 1

repair ok ?

[no]

[yes] aBL

s

Fig.9. The CAR-EMERGENCY service and the black-listing policy ¢nr

location where the car is stuck, are passed as parameters — named fit and loc.
The diagram of the CAR-EMERGENCY service is displayed on the left-hand side
of Fig. @

The outer policy ¢pr, (black-list) has the role of enforcing a sort of “quality
of service” constraint. The CAR-EMERGENCY service records in its history the
list of all the garages used in past repair requests. When the selected garage ¢
completes repairing a car, it appends to the history its own signature sgn({g).
When the user is not satisfied with the quality (or the billl) of the garage,
the garage is black-listed (event apr). The policy ppr ensures that a black-
listed garage (marked by a signature sgn({g) followed by a black-listing tag
apr) cannot be selected for future emergencies. The black-listing policy ¢pr,
is formally defined by the template usage automaton [7] in Fig. [@ right-hand
side. Note that some labels in ¢p;, are parametric: sgn(z) and sgn(Z) stands
respectively for “the signature of garage z” and “a signature of any garage
different from z”, where x can be replaced by an arbitrary garage identifier. If,
starting from the state qp, a garage signature sgn(z) is immediately followed
by a black-listing tag apr, then you reach the state g3. From ¢o, an attempt to
generate again sgn(x) will result in a transition to the non-accepting sink state gs.
For instance, the history sgn(f1)sgn(¢2)apr - - - sgn(f2) violates the policy ¢pr,.

The crucial part of the design is the planning block. It contains two requests:
rp (for the tow-truck) and rg (for the garage), to be planned together. The
contract oy, (loc) requires that the tow-truck is able to serve the location loc
where the car is broken down. The contract ¢ (flt) selects the garages that can
repair the kind of faults fit.

The planning block has the role of determining the orchestration plan for
both the requests. In this case, it makes little sense to continue executing with

42 M. Bartoletti et al.

Z1Pq---ZIP REPq---REP, - £
fp 1 1%k lo: 1 1 noonle)
ZI1P, vz |
: REP;
ZIP), ‘
l REP,,

[available trucks ? }

sgn(€c)
[yes] [no]

Fig. 10. The Tow-TRUCK (left) and GARAGE (right) services

an incomplete plan or with sandboxing: you should perhaps look for a car rental
service, if either the tow-truck or the garage are unavailable. Therefore, a mean-
ingful planning strategy is trying to find a couple of services matching both rp
and rqg, and wait until both the services are available.

The diagram of the TOW-TRUCK service is displayed in Fig. [0, on the left.
The service will first expose the list of geographic locations ZIPy, ..., ZIPy it
can reach. Each zip code ZIP; is modelled as an event. The contract or(loc)
imposed by the CAR-EMERGENCY service ensures that the location loc is covered
by the truck service. Formally, @7 (loc) checks if the zip code loc is contained in
the interface of the tow-truck service (we omit the automaton for pr(loc) here).
Then, the TOW-TRUCK may perform some internal activities (irrelevant in our

model), possibly invoking other internal services. The exposed interface is of the

form 1 22120k 1 where 1 is the void type.

The GARAGE service (Fig. [[0 right) exposes the kinds of faults REPq, ...,
REP,, the garage can repair, e.g. tyres, engine, etc. The request contract pg(fit)
ensures that the garage can repair the kind of fault fit experienced by the car.
The GARAGE service may perform some internal bookkeeping activities to handle
the request (not shown in the figure), possibly using internal services from its
local repository. After the car repair has been completed, the garage ¢ signs
a receipt, through the event sgn(fq). This signature can be used by the CAR-
EMERGENCY service to implement its black-listing policy.

The GARAGE service exploits the policy pgz (for Garage-Zip) to ensure that
the tow-truck can reach the garage address. If the garage is located in the area
identified by ZIPg, the policy ¢gz checks that the tow-truck has exposed the
event ZIP¢ among the locations it can reach. When both the contract ¢r(loc)
and the policy p¢z are satisfied, we have the guarantee that the tow-truck can
pick the car and deposit it at the garage.

Lo AR (Pisa, Tyres)

req,. . 1

req, 1

[no]

es
esl) o,

¥BL eLIPPD)
RS Al <8 £2N

@ (REP yres) 1
EF tyres)

sgn(LU)apr,

(on, opr)

Secure Service Orchestration

43

£r1 ‘12
ZIPpp, ZIPpp
ZIP g
ZIPp; ZIPLu
seeilable trucks 7
[yes] [no] [ves] [no]
LrL ‘Lu
PGz (FL) vGz (LU)
REP tyres REP ¢pgine
REPjqstery REP tyres
sgn(pr) sgn(Lru)

Fig.11. The CAR-EMERGENCY client ({car), two tow-truck services (¢r1,fr2), and

two garages (Yrr,lLU)

In Fig. Idl we show a system composed by one car £cag, two TOW-TRUCK
services {71 and f79, and two GARAGE services gy, and £1yy. The car has expe-
rienced a flat tyres accident in Pisa (ZIPpy), and it has black-listed the garage
in Lucca, as recorded in the history sgn(LU) apr,. The tow-truck service 71 can
reach Florence and Pisa, while ¢1o covers three zones: Pisa, Siena and Lucca.
The garage ¢ry, is located in Florence, and it can repair tyres and batteries; the

garage ¢y is in Lucca, and repairs engines and tyres.

We now discuss all the possible orchestrations:

— theplanrr[¢r1] | ra[fru]isnot viable, because it violates the policy ¢az (LU).
Indeed, the tow-truck can serve Florence and Pisa, but the garage is located in

Lucca.

— similarly, the plan ro[lrs] | rg[¢rL] violates oGz (FL).

— the plan r7[lp2] | rq[fry] is not viable, because it violates the black-listing
policy ¢pr,. Indeed, it would give rise to a history sgn(LU) apyr, - - - sgn(LU),
not accepted by the automaton in Fig.

— finally, the plan rr[lr1] | r¢[€r1] is viable. The tow-truck can reach both the
car, located in Pisa, and the garage in Florence, which is not black-listed.

44 M. Bartoletti et al.

7 A Core Calculus for Services

In this Section we describe A™7 | a core calculus for secure service orchestration.
The version of A™? we present here has stateless services, local histories, higher-
order requests, and independent threads. We first define the syntax of services
and the stand-alone operational semantics, i.e. the behaviour of a service in
isolation. We then define the syntax and operational semantics of networks.

7.1 Services

A service is modelled as an expression in a A-calculus enriched with primitives
for security and service requests. Security-relevant operations (i.e. the events)
are rendered as side-effects in the calculus. Roughly speaking, A\™? services e im-
plement the specification of blocks B in the graphical notation (Section). Note
that A™? augments the features of the design language with recursion (instead
of loops), parameter passing and higher-order functions.

The abstract syntax of services follows. To enhance readability, our calculus
comprises conditional expressions and named abstractions (the variable z in ¢/ =
A.x. e stands for €’ itself within e, so allowing for explicit recursion). We assume
as given the language for guards in conditionals, and we omit its definition here.

Definition 3. Syntax of services

e,/ =1 variable
a access event
if bthenecelsee conditional
Az € abstraction
ee application
©le] safety framing
{e} planning
req,T service request
waitl wait reply
N/A unavailable

The values v of our calculus are the variables, the abstractions, and the requests.
We write x for a distinguished value, and \.e for Az. e, for x not free in e. The
following abbreviation is standard: e;e’ = (A.¢’) e. Without loss of generality,
we assume that framings include at least one event, possibly dummy.

The stand-alone evaluation of a service is much alike the call-by-value seman-
tics of the A-calculus; additionally, it enforces all the policies within their fram-
ings. Since here services are considered in isolation, the semantics of requests
is deferred to Section The configurations are triples n,m,e. A transition
n,m,e — n',m’, ¢ means that, starting from a history n and a monitor flag m,
the service e evolves to €', extends n to 7, and sets the flag to m’. We assume
as given a total function B that evaluates the guards in conditionals.

Secure Service Orchestration 45

Definition 4. Service semantics (stand-alone)

n,m, (Ax.e)v — n,m,e{v/x, \x.e/z}

7, MM, O — 0L, M, %

n,m,if btheney elseey — 1, m, epm)

n,m,C(e) —n',m',C(e) ifn,me—n" ,m' e andm' = off Vi & &)
1m,m, C(plv]) = n,m,C(v) if m = off Vi l=

where C is an evaluation context, of the following form:
C == o|Ce|vC|y[C]
and @(C) is the set of active policies of C, defined as follows:

P(Ce) =2(vC) =2(C) (p[C]) = {p} US(C)

The first rule implements (-reduction. Notice that the whole function body
A.x. e replaces the self variable z after the substitution, so giving an explicit
copy-rule semantics to recursive functions. The evaluation of an event a consists
in appending « to the current history, and producing the no-operation value .
A conditional if btheney elseepy evaluates to ey (resp. eg) if b evaluates to
true (resp. false). The form of contexts implies call-by-value evaluation; as usual,
functions are not reduced within their bodies. To evaluate a redex enclosed in
a set of active policies @(C), the extended history 7’ must obey each ¢ € &(C),
when the execution monitor is on. A value can leave the scope of a framing ¢ if
the current history satisfies . When the monitor is on and the history is found
not to respect an active policy ¢, the evaluation gets stuck.

7.2 Networks

A service e is plugged into a network by publishing it at a site ¢, together with
its interface 7. Hereafter, £{e : 7) denotes such a published service. Labels £ can
be seen as Uniform Resource Identifiers, and they are only known by the orches-
trator. We assume that each site publishes a single service, and that interfaces
are certified, i.e. they are inferred by the type system in Sect. Recall that
services cannot invoke each other circularly. A client is a special published ser-
vice £{e : unit). As we will see, this special form prevents anyone from invoking
a client. A network is a set of clients and published services.
The state of a published service (e : 7) is denoted by:

le:T):m>n,m,ée

46 M. Bartoletti et al.

where 7 is the plan used by the current instantiation of the service, 7 is the his-
tory generated so far, m is the monitor flag, and e’ models the code in execution.
When unambiguous, we simply write £ for (e : 7) in states.

The syntax and the operational semantics of networks follows; the operator ||
is associative and commutative. Given a network {¢;(e; : 7;)}ic1. .k, & network
configuration N has the form:

by im>n,ma, ey || oo || ko T D Nk, M, €

abbreviated as {¢; : m;>n;, m;, €, }ic1. k. To trigger a computation of the network,
we need to single out a set of initiators, and fix the plans m; for each of them. We
associate the empty plan to the other services. Then, for all i € 1..k, the initial
configuration has n; = €, m; = off, and e}, = x if ¢; is a service, while e} = e; if
¢; is an initiator.

We now discuss the semantic rules of networks in Definition[Bl A transition of
a stand-alone service is localized at site £ (rule STA), regardless of a plan . The
rule NET specifies the asynchronous behaviour of the network: a transition of a
sub-network becomes a transition of the whole network. Rule PUB inserts a new
service in the network, by publishing its interface 7, certified by the type and
effect system. The rules DOwN/UP make an idle service unavailable/available.
The rules REQ and RET model successful requests and replies. A request r,
resolved by the current plan with the service ¢/, can be served if the service is
available, i.e. it is in the state £ : 0 > €,*. In this case, a new activation of
the service starts: e is applied to the received argument v, under the plan 7/,
received as well from the invoker. The special event o signals that the service
has started. The invoker waits until £/ has produced a value. When this happens,
the service becomes idle again. Since we follow here the stateless approach, we
clear the history of a service at each activation (indeed, statefullness could be
easily obtained by maintaining the history n’ at ¢ in the last rule). Rule UNRES
triggers the construction of a new plan, in case of an unresolved choice. The rules
PLN and FAIL exploit the planning/failing strategies to obtain a plan in case of
a planned expression {e} and of a chosen service which has become unavailable.
The actual implementations of the auxiliary functions plan and fail may vary;
in Section B we shall show a simple case that mixes replan and sandboxing.

Note that each service has a single instance in network configurations. We
could easily model replication of services, by creating a new instance for each
request. Note also that a network evolves by interleaving the activities of its
components, which only synchronize when competing for the same service. It is
straightforward to derive a truly concurrent semantics from the above one, e.g.
using C/E Petri nets.

8 Static Semantics

In this Section we define a static analysis for our core calculus. The analysis
takes the form of a type and effect system [29139/44] where the effects, called

Secure Service Orchestration 47

Definition 5. Network semantics

/ ’ /
n,m,e—1mn,m,e

[STA]
L:n>nme—L:a>n,m, e

N1 %N{

[NET| ,
Ni|[N2 — Ni|| N2
[PuB| N —= Nl le:71):0>¢,ff,* iflfreshandbse:T
[DowN] le:T):0>e,m,x — £le:T):0>¢e,m,N/A
[Up] Le:T):0>e,mN/A—Lle:T):0>¢e,m,x*
[REQ] C:(r[l] | m)>n,m,C(req.pv) || £'{e:T): 0>e,m' x —
L:(rll] | m)>n,m,C(waitl') || £'{e: 7): (r[l'] | ®) > o,m,ev

[RET] Cim>n,mywaitl || 7' >0, m/ v —

Limnm o]l :0>e,m *x
(UNRES] €3 (7] | 7) B 1y, Clreap 0) — £: (r[2] | 7) & 1,m,C({req,p v})
[PLN] C:m>n,m,{e} —L:n' >n,m e if (n',m') = plan(m,m,e)

[Far) £ (r[l'] |) >n,m,C(req.pv) || £{e:T): 0>e,m" N/A —
L' >n,m ,C(req,pv) | '{e:7): 0>¢e,m" ,N/A

if («',m’) = fail(r[€'] | 7, m, Teq,p)

history expressions, represent all the possible behaviour of services, while the
types extend those of the A-calculus.

In Section BJ] we formally give semantics to history expressions, introduced
in Section @ In Section we define walidity of history expressions: roughly,
a history expression is valid when the histories it represents do not violate any
security constraint. In Section B3] we introduce our type and effect system, and
in Section [B.4] we establish type safety.

8.1 History Expressions

The denotational semantics of a history expression is a set, written (¢; : H;)er.
The intended meaning is that the behaviour of the service at location ¢; is
approximated by the set of histories H; (I is a finite set of indexes). Technically,
'H belongs to the lifted cpo of sets of histories [47], ordered by (lifted) set inclusion
C, (where L C; H for all H, and H C; H’ whenever H C H'). The least upper
bound between two elements of the cpo is standard set union U, assuming that
1 UH = H. The set of events is enriched with framing events of the form [,, |,,

48 M. Bartoletti et al.

Definition 6. Semantics of history expressions
(H)" ={L:{(n) IneH}|t:He[H]}

_n ifoén
here) = {<<no>>u<<m>> if = oo

[e]6 = (7: {e}) [ads = (7:{a}) [¢: H]§ = [H]5{¢/7}
[o[Hs = ¢l[HIE] [H-H']5 = [H]s © [H']E

[l =0(h) [H+H']; =[H]; & [H']G

[uhH]5 = J £ ({€: - {1}}:) where f(X) = [H]5{x/n)

n>0

[{m e Homes HE = @@ [{mi> Hi}j
i€l..k

[{o>H}p =[H]E [molm > HIE = [{mo > H}]Z © [{m > H}[7

H]; ifr=r[|x
(?: 1) otherwise

[{rie) > H3]E = {

that denote the opening and closing of a framing ¢|[- - - |. For example, the history
n = af,a’], represents a computation that (i) generates an event c, (ii) enters
the scope of ¢, (iii) generates o’ within the scope of ¢, and (iv) leaves the scope
of ¢. Also, a history may end with the truncation marker ! (bang). The history
n! represents a prefix of a possibly non-terminating computation that generates
the sequence of events 7. We assume that histories are indistinguishable after
truncation, i.e. n! followed by 7’ equals to n!. For notational convenience, we
feel free to omit curly braces when writing singleton sets, and we write p[H] for
{lenle In€eM}

The stateless semantics (H)™ of a closed history expression H depends on
the given evaluation plan 7, and is defined in two steps. In the first, we define the
stateful semantics [H]j (in an environment 6 binding variables), i.e. a semantics
in which services keep track of the histories generated by all the past invoca-
tions. A simple transformation then yields {H)™, in which each invocation is
instead independent of the previous ones, i.e. it always starts with the empty
history.

We first comment on the rules for [H]j. The meaning of an event « is the
pair (? : {a}), where ? is dummy and will be bound to the relevant location.
The rule for localizing H at ¢ records the actual binding: the current location /¢
replaces “?”. The semantics of a sequence H - H' is a suitable concatenation of

Secure Service Orchestration 49
Definition 7. Auxiliary operators ® and &

Ui Hibro(?:L)=7:L)=":L)®{€i: Hi}s
{b-Hitr o - Hyto ={0i: HiHibins UL - Hitns UL - H oo

{f-b : Hz}[(&) {ZJ H;}J = {Zl H; U’Hg}mJ U {Zl H; U{E}}[\J U{f]‘ H; U {E}}J\I

the histories denoted by H and H' site by site (the operator ® is defined below).
Similarly for the semantics of choices H + H’, that joins the histories site by site
through the operator @. The semantics of ph. H is the least fixed point of the
operator f above, computed in the cpo obtained by coalesced sum of the cpos
of sets of histories H . The semantics of a planned selection {m; > H;};cr under
a plan 7 is the sum of the semantics of those H; such that 7 resolves ;.

The sequentialization ® of (¢; : H;)ier and (¢; : H;)je] comprises /; : HiH;
for all i = j (ie. & : {mm' | n € Hiyn' € H. }), and it also comprises ¢; : H; and
£ H for alli ¢ J and j & I. As an example, ({o : {ao}, €1 : {1, 51}) © (41 :
{71}, 42 : {as}) = (bo : {0}, 41 : {11,817}, €2 : {az}). The choice operator
@ is pretty the same, except that union replaces language concatenation. For

example, (6o : {ao}) ® (lo : {Bo}, €1 : {B1}) = (bo : {@0, Bo}, €1 : {B1}). Note that
both ® and & are strict.

Example 1. Consider the history expression:
H=1{ly:ap {rl1]>¥1:0-a1,r[le] >4l :0 a2} Bo
The stateful semantics of H under plan 7 = r[¢;] is:
[ao - {r[l1] > b1 :0-ai,r[la] >4l :0-az}- Bo] {l/?}
=((7:{ao}) O[{r[ta) > b1 : 0 - a1, r[la] > Ly s 0 - az}]™
@ (?:{Bo})) {0/ 7}
(7 {ao) @[l :0-ar]" O (7: {Bo}){lo/7}
((?:{ao}) © (b1 : {oar}) © (7 : {Bo})){bo/?}
(7 : {aofo}, b1 : {oar}){lo/?}
= by : {afo}, t1: {oar})

In this case, the stateless semantics just removes the event o, i.e.:
(H)™ = (bo : {aoBo}, t1: {a1}) O
Example 2. Consider the history expression:

H:fol(ﬂh.,@0+a0~{T[fl]D€120"@1}-h)

50 M. Bartoletti et al.

This represents a service £y that recursively generates oy and raises a request r
(which can be served by ¢; only). Let © = r[{1]. Then:

[H]" =[to : ph.Bo+ o -{rla] >4 :0-aq}-h]™
= [[,U,hﬁo + aq - {T[ﬁﬂ >0 :0- Oq} . h]]ﬂ—{go/?}
= (Unso L™l : {1} &2 - {1H]"){to/?}
where f(X) = [Bo + ao - {r[ta] > {1 : 0 on} - h]]y/;,- The first approximation
frlo : {1}, 60 - {1}) is:
[Bo + co - {rea] > €y o ar} - AT 101000013 /0y
= [Bo]™ @ ([owo]™ © [{r{ta] > b1 : 0 - 1 }]™ © (AT (0o 0y,00- 011y 0))
=(7:{Bo})® ((?: o) © (b1 : {oar}) © (o : {1}, 61 : {1}))
=7:{Bo})® (?:{ao'}, l1:{ocar!})
= (?:{Bo, 0!}, ¥y : {e,001!})
The fixed point of f, after the substitution {¢y/?}, is:

(Lo = {Bo, !, o Bo, o, oo, voapey! . ..},

by :{e,oa1, 001!, 001001, 0001001),...})
The stateless semantics (H)™ is the set:
(Lo : {Bo, ap!, apfo, apag!, ...}, b1 : {e, a1, a1!}) O
Example 3. Consider the history expression:
H = {r[to] > {y : o} - {r'[t1] > 3}
The stateful semantics of H under 7 = r[{y] | r'[¢2] is:
[H]™ = [{rlto] > Lo : a}]™ © [{r'[ta] > B}]"

=(ly:{a})O(?:1)
=(7:1)

In this case there are no o, so the stateless and the stateful semantics coincide. O

8.2 Validity

We now define when histories are valid, i.e. they arise from viable computa-
tions that do not violate any security constraint. Consider for instance 79 =
Q[], where @ requires that no write «a,, occurs after a read «,. Then,
No is not valid according to our intended meaning, because the rightmost v,
occurs within a framing enforcing ¢, and ay,a,a,, does not obey ¢. To be valid,
a history n must obey all the policies within their scopes, determined by the
framing events in 7.

Secure Service Orchestration 51

Definition 8. Safe sets and validity

The safe sets S(n) of a history n are defined as:
Se)=0 Stma)=5m) Selm)) = SMom) Vel 1)?
A history 7 is valid (= n in symbols) when:
pHleS) = Vn'eM : 0 o
A history expression H is w-valid when:
HY™ # (25 1) and Ve : Vne (H) @0 :

where (fz : Hi)ie]@ Ej = Hj.

We formally define validity through the notion of safe set. For example, the
safe set of ng is @[{awar, awaray,}]. Intuitively, this means that the scope of
the framing o[- - - | spans over the histories o, and au,a-q,,. For each safe set
©[H], validity requires that all the histories in H obey .

Some notation is now needed. Let 7 be the history obtained from 7 by eras-
ing all the framing events, and let 7° be the set of all the prefixes of 7, in-
cluding the empty history . For example, if 79 = aua,¢[ay], then (nd)? =
((awaT[gpaw}g,)b)a = (Qpa,ay)? = {e, aw, @y, ayaray, . Then, the safe set
S(n) and validity of histories and of history expressions are defined as in Def. 8

Note that validity of a history expression is parametric with the given evalua-
tion plan 7, and it is defined location-wise on its semantics. If the plan contains
unresolved choices for requests mentioned in H, then H is not w-valid, because
the operators ® and @ are strict on L.

Ezample 4. The safe sets of the history expression H = ¢[ag - {r[l1] > a1, r[l2] >
¢ [az]}] - a3, with respect to plans r[¢1] and r[fs], are:

SH)") = S([paoan]pas) = { ¢l[{e, a0, avan}] }
S(«H»T[ZZ]) = S([paolpras]e]pas)
= { vl{&, 20, w2}], ¢'[{0, w02} }

Let ¢ require “never a3”, and let ¢’ require “never ay”. Then, H is r[¢]-valid,
because the histories €, ag, and apa; obey . Instead, H is not r[fz]-valid,
because the history apas in the safe set ¢'[{ag, apasz}] does not obey ¢'. O

8.3 Type and Effect System

We now introduce a type and effect system for our calculus, building upon [g].
Types and type environments, ranged over by 7 and I', are mostly standard and

52 M. Bartoletti et al.

are defined in the following table. The history expression H in the functional

type T L, 7 describes the latent effect associated with an abstraction, i.e. one
of the histories represented by H is generated when a value is applied to an
abstraction with that type.

Definition 9. Types and Type Environments

=1L
rs=0|rz:7 where x € dom(I")

For notational convenience, we assume that the request type p in req,p is a

special type. E.g. we use 1 2l (1 LGN 1) for the request type of a service

obeying ¢ and returning a function subject to the policy ¢’. Additionally, we put
some restrictions on request types. First, only functional types are allowed: this
models services being considered as remote procedures (instead, initiators have
type 1, so they cannot be invoked). Second, no constraints should be imposed
over pg in a request type po 2, p1, i.e. in po there are no annotations. This is
because the constraints on the selected service should not affect its argument.

A typing judgment I, H - e : 7 means that the service e evaluates to a value
of type 7, and produces a history denoted by the effect H. The auxiliary typing
judgment I H Fy e : 7 is defined as the least relation closed under the rules
below, and we write I, (¢ : H) F e : 7 when the service e at ¢ is typed by
I''H kg e : 7. The effects in the rule for application are concatenated according
to the evaluation order of the call-by-value semantics (function, argument, latent
effect). The actual effect of an abstraction is the empty history expression, while
the latent effect is equal to the actual effect of the function body. The rule for
abstraction constraints the premise to equate the actual and latent effects, up to
associativity, commutativity, idempotency and zero of +, associativity and zero
of -, a-conversion, and elimination of vacuous p-binders. The next-to-last rule
allows for weakening of effects. Note that our type system does not assign any
type to wait expressions: indeed, waits are only needed in configurations, and
not in service code.

We stipulated that the services provided by the network have certified types.
Consequently, the typing relation is parametrized by the set W of services ¢{e : T)
such that 0, F, e : 7. We assume W to be fixed, and we write -, instead of
F¢.w. To enforce non-circular service composition, we require W to be partially
ordered by <, where £ < ¢’ if ¢ can invoke ¢’; initiators are obviously the least
elements of <, and they are not related to each other. Note that the up-wards
cone of < of an initiator represents the (partial) knowledge it has of the network.

Example 5. Consider the following A\"™? expression:

e = if b then \,z.«a else \,x.a/

Secure Service Orchestration 53
Definition 10. Typing services

I"Hltpe: T

if e is published at ¢
It:Hkbe:T

Febgx:1 Nakja:l INetgx: I'(x)

Taz:imz:r 7 Hbge:r F,Hl—gezr—>H” v H' bpe T
Tebedz.e:m 5 I''H -H -H'lpee : 7
I''HbFpe:T I''HbFje:m IN'Hbpe @7 I''HbFpe: T

I o[H] Fe ple] : T I''H '+, if btheneelsee : 7 I''H+H' Fpe: 1

T=W{pB 7 |Detpe:m L<{e:T) p=7'} INHbtge:T
I'netyreqp:T I''Hbg{e}: 7

Let r=1,and I'={z: 7 ota, 7;x : 7}. Then, the following typing derivation

is possible:

Nakta:r Iodbtao:r
I'a+dkFa:r ' +abkad:71
’ !
+
@,al—/\zax.azrﬂr etz o 7 255 7

(et ifbthen \,xz.aelse N, xz.a : T ate L

Note that we can equate the history expressions a+ o’ and o’ + «, because + is
commutative. The typing derivation above shows the use of the weakening rule
to unify the latent effects on arrow types. Let now:

¢ = M\pw.if b then * elsew(ex)

Let I' = {w: 7 a, T,z : T}, where H is left undefined. Then, recalling that
e-H' = H' = H'- ¢ for any history expression H’', we have:
% F,e}—ezrﬂw' IekFx:T
Letw:T >
I'a+d Fex:T
I'a+d) -HFrwlex): T
Ipllata) - Hl Fplw(ex)] : 7

I'e+o[(a+ o) - H F if b/ then * elseplw(ex)] : 7

Lebkx:1
