
Reflecting on Aspect-Oriented Programming,
Metaprogramming, and Adaptive Distributed

Monitoring�

Bill Donkervoet and Gul Agha

Open Systems Laboratory
Department of Computer Science

University of Illinois at Urbana-Champaign
{donkervo,agha}@uiuc.edu

Abstract. Metaprogramming and computational reflection are two
related techniques that allow the programmer to change the semantics
of a program in a modular fashion. Although the concepts have been ex-
plored by researchers for some time, a form of metaprogramming, namely
aspect-oriented programming, is now being used by some practitioners.
This paper is an attempt to understand the limitations of different forms
of computational reflection in concurrent and distributed computing.
It specifically studies the use of aspect-oriented programming and re-
flective actor libraries, and their relation to full reflection. We choose
distributed monitoring as the primary example application because its
requirements nicely fit the abilities of the two systems as well as illustrate
their limitations.

1 Introduction

Addressing software complexity through modular decomposition is an old idea.
Objects provide one mechanism for modularity–namely, support for abstract
data types, thus separating the interface from the representation. The notion
of objects generalizes to components and supports a functional decomposition
of large software systems. However, the functional behavior of a system rep-
resents only one ‘aspect’ of this decomposition. Observe that concurrency is
common in real-world systems and sequential computation is simply a degen-
erate case of concurrent computation; therefore, we focus only on concurrent
and distributed systems. Concerns in concurrent systems include synchroniza-
tion, fault-tolerance, scheduling, real-time, coordination, etc. Code to implement
these requirements is a major cause of software complexity.

For almost two decades, programming language researchers have explored
mechanisms to support a separation of concerns. The goal of separating code
to implement functional (or transformational) requirements from code to satisfy
other concerns is motivated by the usual advantages of components: namely to
� This research has been supported in part by NSF under grant CNS 05-09321 and by

ONR under DoD MURI award N0014-02-1-0715.

F.S. de Boer et al. (Eds.): FMCO 2006, LNCS 4709, pp. 246–265, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Reflecting on AOP, Metaprogramming, and Adaptive Distributed Monitoring 247

simplify the process of building complex software systems and to facilitate reuse
of software modules in different contexts. Researchers have proposed a number
of techniques to facilitate a separation of design concerns; these include compu-
tational reflection [35,29], metaprogramming [10], generative programming [14],
aspect-oriented programming [13], filters [2], coordination constraints [22] and
circuits [3]. From a theoretical perspective, all these techniques can be under-
stood as forms of metaprogramming although many of them are far more re-
strictive than (full) computational reflection.

The idea of metaprogramming is to allow the manipulation of computational
structures containing a representation of a program and its data [35]. With
computational reflection (or simply reflection, a program may inspect and modify
itself while running.Reflection and metaprogramming, two related concepts, are
tools that not only simplify certain problems but make it possible to address
problems requiring dynamic program adaptation. The basis for computational
reflection is provided by a foundational concept in the theory of computation as
well as computer architecture: namely, that programs are data and may therefore
be stored and manipulated as other data. The semantics and architecture of
different programming languages and frameworks provide different kinds and
degrees of reflection.

On the more static end of the metaprogramming spectrum lies generative
programming. Generative programming is a form of metaprogramming where
additional code is generated based on a high-level specification and the appli-
cation source code. This generated code is then added to the original source
code before interpretation or compilation. Aspect-oriented programming may be
thought of as a kind of generative programming, enabling code insertion at cer-
tain, well-specified points in a program. AOP allows clean, modular specification
of both the primary task and other orthogonal aspects, which are then woven
together into a single program either at compile-time or runtime.

Our goal is to further the understanding of the semantics of languages and
frameworks supporting a separation of design concerns. We focus on two pro-
gramming concepts that support a separation of concerns: reflection and aspect-
oriented programming. Reflection is a powerful programming mechanism with
a formal semantics that has been studied in sequential programming languages
(e.g., [20,8]) and in concurrent (actor-based) programming languages [5,16].

One way to understand the expressive power of two programming languages
is to encode one in the other and show that equivalence relations hold in the
translated system. An example of this kind of semantic analysis can be found
in [30], which shows that an actor language with remote procedure calls and
local synchronization constraints can be translated into a pure actor language
(as is done in [27]) without modifying the actor semantics. From a translational
perspective, it is straightforward to represent aspect-oriented programming using
reflection [9]. Thus, the interesting problem is to understand the limitations of
aspect-oriented programming. The approach we take is to pick an example and
study its implementation in a reflective actor system and in a programming
system supporting aspects in Java.

248 B. Donkervoet and G. Agha

In order to best understand the strengths and weaknesses of various forms of
reflection, we choose an example of a concurrent program that illustrates mod-
ularity, orthogonality, and dynamicity. Specifically, we will explore, compare,
and contrast these attributes using distributed monitoring. Distributed moni-
toring of error conditions and constraint violations is a difficult and, as yet, only
partially solved problem. Distributed monitoring requires each node (actor) in
a distributed system to record and communicate its knowledge of the world,
checking for specified conditions. The necessary knowledge may be communi-
cated efficiently by piggybacking state information along with regular messages,
thus propagating state knowledge to acquaintances [33].

Although monitoring of statically defined constraints is relatively straightfor-
ward, the ability to add and modify such constraints during runtime requires an
added level of flexibility. Past solutions have utilized aspect oriented program-
ming to provide insertion of error checks and modification of message format at
compile time. We will describe this and other approaches and then discuss the
problem of runtime insertion or modification of monitors. It is our conjecture
that such flexibility can only be supported in a fully reflective architecture.

The outline of the paper is as follows. Section 2 introduces metaprogramming,
leading into a discussion of reflection in Section 3. Aspect-oriented programming
is discussed in Section 4. Section 5 addresses reflection’s relation to concurrent
programming with threads and with actors. Section 6 introduces the case study
problem of distributed monitoring and Section 7 describes our implementation.
Section 8 surveys related work and the final section concludes with a summary
and discussion of open research problems.

2 Metaprogramming

A metaprogram is a program that creates or manipulates another program (pos-
sibly itself), where the latter program is represented as data. As mentioned
earlier, examples of metaprogramming techniques are reflection [35] in which a
program can inspect and modify its own behavior, and generative programming,
in which the output of a program is the source code for another program [15].

2.1 Meta-architectures

A meta-architecture is a representation that not only captures knowledge about
a task being performed but also captures knowledge about the performance of
the task. Meta-architectures provide access to metadata, i.e., access to informa-
tion about the data. A meta-architecture provides knowledge about a program
beyond the information relevant to the application domain. An example of meta-
data in operating systems is information about a file–such as its creation date,
owner, and access information–that is generally stored with the application data.

Access to metadata can enable certain tasks that are not otherwise possible.
For example, metadata is useful for governing control-flow in programs as well
as for debugging [24]. Every runtime system necessarily maintains some meta-
data and thus can be thought of as a meta-architecture. The meta-architecture

Reflecting on AOP, Metaprogramming, and Adaptive Distributed Monitoring 249

interface greatly affects the flexibility of a system and thus the types of prob-
lems a program can address. The systems of interest in this paper are ones that
explicitly provide access to not only information about the program’s data but
also information about the program and its execution.

2.2 Metaobjects

Object-oriented programming languages often maintain metadata in the form of
metaobjects. Metaobjects contain metadata about their associated objects that
specifies how the system is to interpret the data, typically information about the
use or representation of associated objects. For example, in Java, the metaobject
protocol encodes additional information about methods and variables to allow
access by name, information that is typically removed by the compiler.

Because metaobjects are objects themselves, there can also be metametaob-
jects, metametametaobjects, and so on. Each additional meta-level adds more
flexibility and possibilities, but at some point languages ground the hierarchy;
for example, a metaobject’s meta may itself also be a metaobject, thus eliminat-
ing the need for an infinite number of meta-levels. Accessing these metaobjects
allows a program to inspect and even modify information about itself.

Smalltalk. Smalltalk is an object oriented language offering strong reflective
capabilities using a well-defined metaobject protocol [32]. The metaobject of a
Smalltalk object is its class. In Smalltalk, an object may gain an understanding
of its structure and behavior by viewing its class. The class of an object provides
access to the object’s instance variables and methods; thus modification of the
class results in immediate modifications to the object’s state or behavior.

Because everything is an object in Smalltalk, even a class is an object and has
an associated metaobject. The metaobject for a Class object is a Metaclass
object. In order to prevent the need for an infinite number of meta-levels,
the metaobject for Metaclass is Metaclass Class, whose metaobject is again
Metaclass. Thus the Smalltalk class meta-hierarchy is limited to three levels.

For example, the 3.14 is a Float object with an associated Float Class
metaobject. Modification of the Float results in the expected modification of
the number. However, modification of the Float Class results in redefinition
of the behavior of all Float objects. The metaobject of the Float Class is
Metaclass and the metaobject of Metaclass is Metaclass Class.

The ability for a program to view or manipulate its metadata provides pow-
erful yet complex programming techniques. This model of programming is able
to address many tasks that are otherwise difficult or impossible.

3 Reflection

With sufficient access to metadata, reflective programming becomes possible.
Different systems provide different levels of reflection because of how they limit
access to metadata. In order for a program to be fully reflective, modifications to

250 B. Donkervoet and G. Agha

the program’s metadata should be reflected in modifications to the data itself.
Similarly, modifications to metadata about the program should be reflected in
the execution of the program. This produces a causal relationship between the
data and the metadata.

Full reflection is composed of two properties: introspection and intercession
[32]. Introspection is the ability of a program entity to view its internal state or
representation. Intercession allows program entities to modify their representa-
tion, thereby changing the program’s behavior. Since introspection is easier to
implement than intercession, some languages (including Java) offer only intro-
spection. On the other hand, languages offering intercession also offer introspec-
tive capabilities. This is not surprising given that intercession requires a more
complex reflective system.

The use of reflection can be illustrated by the following: Consider a robotic
arm; a computer maintains data structures that represent the location and posi-
tion of the arm; these structures are metadata, they simply exist as the program’s
internal representation of the arm, whereas the actual data is the arm’s physical
position. Modification of the internal data results in an external movement of
the arm. Similarly, external manipulation of the arm results in modification of
the internal data. Extending this causal relationship beyond program data to
runtime data allows similar modification of the computation itself.

Fig. 1. An illustration of reflective capabilities of various systems. Java and its related
systems offer only introspection whereas Smalltalk and CLOS-based systems offer much
fuller reflective capabilities.

3.1 Reification

Reification is the process of creating a concrete representation of something
abstract. Reification is a necessary step for reflection. In the context of reflection,
reification is the act of creating a data representation of the program’s internal
data (including current state). Once a reification of the program is created,
viewing the reification by the program is reflective introspection. Similarly, if
the reification is modifiable by the program, reflective intercession is possible.

Reflecting on AOP, Metaprogramming, and Adaptive Distributed Monitoring 251

3.2 Reflection in the Real World

Since reflection allows modification of the program and how the program is
interpreted, full reflection even allows modification of the interpreter and runtime
system. Thus, most reflective systems offer only a subset of reflective capabilities.
For example, Java reflection primarily allows observation of objects and very
little modification [23]. Java objects can determine class information, list and
access methods and fields, and create new objects. Fields can be accessed and
modified but methods cannot be changed so program modification is not possible.
Thus, Java offers introspection but not intercession.

On the other hand, Smalltalk has much more powerful reflective capabilities–
allowing both introspection and intercession [19]. Objects can dynamically mod-
ify their behaviors, change their methods, fields, and even their class. Since the
Smalltalk compiler is part of the Smalltalk library, the entire runtime system
can be modified–giving the program almost total flexibility. Even so, there are
still reflective facilities not offered by Smalltalk for the sake of efficiency and
simplicity: in particular, the limited recursion of metaobjects as described in
Section 2.2.

4 Aspect Oriented Programming

Aspect-oriented programming (AOP) is a metaprogramming paradigm that al-
lows separation of concerns through code cross-cutting. Different modules of the
program are specified, ideally each addressing a singular concern, and these as-
pects are woven into the main code to produce a single program addressing all
concerns. For example, a program can use clean, simple communication method
calls and security concerns can later be woven into the program using a security
aspect. This not only greatly simplifies the original program but also eases mod-
ifications caused by changing specifications; in particular, the original program
need not be changed if only some of its aspects change. Similarly, modification
of the original program is simplified as it contains only the program logic and
not the orthogonal aspect code.

AOP weaves aspects together with the main program at joinpoints, points
in the program that meet a programmer’s specification. Such points must be
at designated “control points” such as entry to method calls, exit from method
calls, or object creation or deletion [13]. In the above example of network security,
encryption wrappers can be applied to a message at the call joinpoint of the
network send method and decryption can take place at the return joinpoint
of the network receive method. Although the idea of aspect weaving is very
standard, the method can vary substantially and be either very dynamic, using
reflection, or completely static, using code generation.

4.1 Code Weaving

One form of AOP weaves aspects into the program code statically in the compi-
lation process as a form of generative programming, which requires no runtime

252 B. Donkervoet and G. Agha

meta-architecture. This form of aspect weaving can generate woven programs in
the original language or in bytecode. This is then run with the aspects compiled
directly and permanently into the program as if the aspects had been hardcoded
in initially.

Fig. 2. An example of static code weaving using the secure network example. On the
left are two aspects, above and below the regular program code. To the right the code
is woven together ready to be compiled and run.

4.2 Reflective AOP

However, if the aspect weaving is done during runtime, certain meta-architectural
facilities are necessary. Runtime weaving requires modification of joinpoint be-
havior and may also require modification of variables.

This behavior modification is achieved through modification of the metadata
controlling program execution, although only introspection and a very basic level
of self-modification is required. AspectJ, an aspect-oriented language based on
Java, utilizes Java’s reflective facilities to enable AOP through creating hooks
at all specified joinpoints. In the case of a method call joinpoint, the method
name and arguments are analyzed to determine if a match occurs and, if so, the
aspect code is called before, after, or around the regular method code.

5 Reflection in Concurrency

Because reflection is often a feature of a programming language, some aspects
of reflection are unaffected by concurrency. Distributed systems that provide
reflection not through a language but through a library often respect the logical

Reflecting on AOP, Metaprogramming, and Adaptive Distributed Monitoring 253

bounds of concurrent structures. Reflection need not change the behavior of the
entire system but of individual actors [6] or of a group of actors [42]. In case of
actors, formal models of reflection have been developed.

5.1 Threads and Objects

A number of languages that have been designed primarily for sequential comput-
ing provide concurrency through threading. One example of such of a language
is Java. A Java object can be assigned a thread by implementing the Runnable
interface or subclassing the Thread class. However, within that thread and its
‘member’ objects, all communication is synchronous using regular method calls.
Because of this, metaobject protocols in Java typically remain unchanged in
the presence of concurrency. Because reflection respects the bounds of objects,
procedures, and functions just as threads do, concurrency and reflection are non-
conflicting. Any reflection is done entirely within the bounds of a single thread;
as a consequence, reflection has no effect on the concurrency in the program.

However, in situations where reflection is able to modify the interpreter, com-
piler, or runtime system, the effect of reflection can drastically affect how the
entire system (including threads) behave. For example, the ability to reflectively
modify the runtime system means that the scheduler may be modified, influ-
encing thread behavior. Modern operating systems often export some reflective
facilities to programs–in particular, this includes access to the scheduler. As a
consequence, processes and threads have the ability to modify their priorities
and choose the scheduling policy. In some cases, even greater access is granted:
processes may modify the scheduler algorithm [28]. Using these system-wide
reflective facilities can greatly influence concurrency in multithreaded programs.

5.2 Actors

Actors are a model of concurrent computation that encapsulate not only data
and behavior (as objects do) but also have their own locus of control [1]. Actors
can send and receive messages, process messages, create new actors, and com-
pute. Because of their simplicity and inherently concurrent nature, they are a
natural model for distributed systems.

Just as object oriented languages introduce metaobjects, actor frameworks
and languages often provide meta-actors [37]. These are simply the ‘meta’ equiv-
alents of actors. Meta-actors allow access to base-actor internals and behavior.
Typically meta-actors only intercept incoming and outgoing messages, delaying,
modifying, or discarding them to alter the behavior of the actor system. Such
modification of message delivery affects the scheduling of actors, and can be used
to modularly provide atomicity or enforce a precedence order in the processing
of messages. Another form of reflection in actors is providing the ability to copy
state. With this additional reflective capability, arbitrary protocol stacks can be
defined [5]. The techniques have been applied to provide separate specification
and dynamic composition of dependability protocols (security, fault-tolerance,
reliability) with distributed application code [38].

254 B. Donkervoet and G. Agha

For message interception, the actor send and receive methods are modified so
that both incoming and outgoing messages are routed through the meta-actor.
The normal operational semantics for sending messages in actors are:

send: [R[send(t, m)], ∅]a → [R[nil], ∅]a, < t ⇐ m >

where R is a reduction context, t is the target, m is the message, a is the local
actor, and ∅ signifies that there is no associated meta-actor.

When a meta-actor, â, is installed to intercept messages, the semantics of
sending messages are modified so that, rather than sending directly to the mes-
sage target, the message is passed to the meta-actor using a transmit message.

send (with meta): [R[send(t, m)], â]a → [R[nil], â]a, < â ⇐ (transmit(t, m)) >
transmit (on meta): [R[transmit(t, m)], b]â → [R[send(t, m)], b]â

The default transmit semantics on a meta-actor are simply to propagate the
message on to the target. b is either another meta-actor or ∅. since meta-actors
can be layered, as in the Russian dolls model [31], these semantics apply re-
gardless of whether there is another higher level of meta-actor. In the case that
b �= ∅, â’s overloaded send method simply passes the message to the next higher
meta-actor. The transmit semantics can be overridden to achieve other tasks
such as modifying the outgoing message.

Similarly, receive semantics are modified. Normal operational semantics of
receive allow an actor a in a wait state to receive and apply message m:

rcv: [R[wait()], ∅]a, < a ⇐ m >→ [R[app(m)], ∅]a

In a reflective system, the semantics of receiving messages is replaced by two
methods that allow interaction with the meta-actor:

rcv (with meta): < a ⇐ m >→< (â ⇐ dlv(m)) >
where meta(a) = â

proc (with meta): [R[wait()], â]a, < a ⇐ m >meta→ [R[app(m)], â]a

rcv redirects the incoming message to the meta-actor in dlv, a deliver message.
proc is the second half of the receive, when the message is actually delivered to
the actor by it’s meta-actor. < a ⇐ m >meta is a special message transmission
from a meta-actor to its associated base. This is required because a message sent
using the traditional means would again be redirected to the meta-actor.

The final piece of the actor/meta-actor communication is the meta-actor se-
mantics for a message receive.

dlv (on meta): [R[dlv(m)], b]â → [R[nil], b]â, < a ⇐ m >meta

where meta(a) = â

Similarly to transmit, the dlv message can be overridden to achieve desired
meta-actor functionality.

Reflecting on AOP, Metaprogramming, and Adaptive Distributed Monitoring 255

Two-level Actor Model. Although the above semantics allow for any num-
ber of meta-actors, as in object-oriented languages, actor systems often limit
the number of meta-levels for practical reasons. In the Two-Level Actor Model
(TLAM), there is a base-level actor and an optional meta-actor [39]. This two-
level, reflective architecture provides a dynamic, flexible distributed system in
which the meta-actor may alter or enhance the behavior of the base-actor [40].

For c, t actor ids, n a number
States: T (n) Messages: tick, time@c, reply(n)
Reaction Rules:

(t|T (n)) : < t ⇐ tick >→ (t|T (n + 1)) : < t ⇐ tick >
(t|T (n)) : < t ⇐ time@c >→ (t|T (n)) : < c ⇐ reply(n) >

Fig. 3. Tick base-level actors in TLAM

Figures 3 and 4 show an example TLAM system borrowed from [39]. The base-
level actors (Figure 3), respond to tick messages by incrementing their internal
counter and sending another tick message to themselves; they respond to time@c
messages by maintaining their previous state and sending the current counter
value to address c. The meta-level actors are used as a logging service and to
manipulate a base-level actor by resetting its counter to zero (Figure 4). The first
meta-actor rule dictates that on delivering a time@c message to its base-actor,
the meta-actor logs the event and participants by sending a log message to the
observer o. On receipt of a reset message, the meta-actor resets the value of its
base-level actor’s counter to zero and sends a resetAck message to o.

For t, o, c actor ids, n, m numbers
States: M(t, o, m) Messages: log(t, n, m, c), reset, resetAck
Reaction Rules:

(tm|M(t, o, m)) : dlv((t|T (n)) : < t ⇐ time@c >) →
(tm|M(t, o, m + 1)) : < o ⇐ log(t, n, m + 1, c) >

(tm|M(t, o, m)) : < tm ⇐ reset >→
(tm|M(t, o, 0)) : {/t := T (0)}, < o ⇐ resetAck >

Fig. 4. Tick Monitor using meta-actors in TLAM

The logging example shows how meta-actors can be used to address secondary
concerns in a modular manner. A more involved problem that has been addressed
by TLAM is that of garbage collection [40]. Using meta-actors to create a reach-
ability snapshot, unreachable base-level actors can be detected and garbage col-
lected. Meta-actor functionality may be composed with the TLAM migration
service to provide garbage collection that works in the presence of migration.
Another application of the model has been to provide modular specification and
implementation for Quality of Service requirements in multimedia [41].

256 B. Donkervoet and G. Agha

6 Case Study: Distributed Monitoring

To understand the strengths and weaknesses of various reflective techniques, we
choose to study a specific example. The task implemented by reflection should
be orthogonal to the functional (transformational) behavior of an application.
However, the reflective behavior needs to be related to the primary task in such
a way that it must make use of the state or other internals of the primary task.
If there were not such a relation, there would be no reason for the primary and
reflective tasks to be joined; they would simply be separate programs.

Considering all of these requirements, we’ve chosen distributed monitoring as
a case study. Distributed monitoring involves runtime observation of safety or er-
ror conditions of a distributed system. There are several monitoring approaches,
each with advantages and disadvantages. Each approach also requires a different
level of reflection, thus offering a different level of flexibility and dynamicity.

6.1 Monitoring Details

Distributed monitoring may be done either centrally or in a decentralized man-
ner. Centralized approaches maintain a single monitor to which all distributed
nodes report. This provides a global, sequential view of the entire system and
makes monitoring extremely simple. However, this also violates the goals of a
distributed system by providing a single point of failure and a system bottleneck
hindering scalability.

Distributed monitoring of a distributed system requires monitors local to each
distributed node. In order to perform the monitoring task, the monitors must
each maintain a view of the entire monitored system. Thus, state data for mon-
itoring is propagated with normal messages between nodes.

Because each node maintains recent state information gathered from messages
from remote nodes, it may not have the actual current global state. Thus, the
distributed monitor is causally correct as it maintains causally consistent data
whereas a centralized monitor is able to assure that the monitor is sequentially
correct by maintaining sequentially consistent data [25].

Throughout this section we will use the terms static and dynamic; by static
monitors we refer to the fact that the installation of monitors must be done
at compile time. Dynamic monitors means that the monitor may be installed
or removed during runtime without redeploying the system. Unfortunately, the
terms static and dynamic are somewhat overloaded–even a statically installed
monitor observes the system at runtime. Moreover, the dynamicity of a monitor
also depends on other factors: a monitor may adapt to changes in a distributed
system, such as nodes joining and leaving system. Finally, we wish to address
the ability of the monitoring system as a whole to adapt and cooperate through
inter-monitor messaging.

Sen et al. introduce past-time distributed temporal logic, PT-DTL, as a lan-
guage for defining monitors to specify restrictions on past or currently-known
values at local or remote nodes [34]. Monitor code is generated from the logic
requirements that is then woven into the code for deployment.

Reflecting on AOP, Metaprogramming, and Adaptive Distributed Monitoring 257

6.2 Past-Time Distributed Temporal Logic

PT-DTL is a logic for specifying passive monitor conditions using traditional logi-
cal and propositional operators. Past-time temporal operators for dictating pre-
vious states include previously, always in the past, happens-after, and
at some time in the past. These sets of operators form past-time linear tem-
poral logic, PT-LTL. In order to address distributed computation, the epistemic
operators @∀JFJ , @∃JFJ , and @j(somefunction) are added to complete PT-DTL.

For example, the following formula tests for the safety of leader election:

@i(leaderElected → ((state = leader) → (@{∀j|j �=i}(state �= leader))))

where the beginning of every PT-DTL statement is @i, stating that the following
constraint is being monitored at the local node. leaderElected, state, and
leader are local keywords in the monitored process. Finally, the @{∀j|j �=i}... is
the epistemic component; evaluating based on the local knowledge of the most
recently known states of other nodes in the system.

Although PT-DTL is a simple distribution of PT-LTL, its distributed nature
means that it has a looser consistency model than PT-LTL or a centralized ap-
proach. PT-DTL must maintain not only the current values of all other nodes but
also the evaluation of past-time logic expressions in order to maintain history.

In addition to the operators provided by PT-DTL, our implementation also pro-
vides a means of communication between monitors, allowing cooperation and
synchronization. Using this added ability, monitors may perform model-based
monitoring where the global monitoring scheme changes in response to the cur-
rent system state. The new scheme is communicated via this monitor channel
and each monitor adapts accordingly. Thus, we require a small logic extension
to PT-DTL, which we hope to address in the near future.

6.3 Example Application

Suppose we have a network of distributed temperature monitors to assure a
safe operating environment. We wish to ensure that the temperature at any
one monitor is not greater than 110% of the average temperature. The PT-DTL
formula for such a monitor would be:

@i(temp < (1.10 ∗ avg(@{j|j is any process}(temp))))

Assuming the datatype holding the knowledge vector is sufficiently flexible
to address joining and leaving nodes, this should maintain our operating con-
straints. However, as simple a change as modifying the alarm threshold to 125%
requires flexibility of the monitor itself. In this case, such flexibility could be
provided easily enough by using a variable to set the alarm tolerance.

However, using variables, flexible data types, and foresight can only address
problems to a point before the amount of flexibility required pushes design re-
quirements into the reflective realm. For example, if instead of monitoring the
system as a whole, we wish to monitor each individual room:

@i(temp < (1.10 ∗ avg(@{j|i,j∈room(J)}(temp))))

258 B. Donkervoet and G. Agha

or the global system and each individual room with different tolerances:

@i ((temp < (1.25 ∗ avg(@{j|j is any process}(temp))))
∧(temp < (1.10 ∗ avg(@{j|i,j∈roomJ}(temp))))

It quickly becomes evident that a more flexible system is necessary.
Using a computationally reflective system, it would be possible to modify

methods instead of just modifying variable values. In the above example, the
monitor method could be changed on the fly to accommodate for the changing
requirements. Using a non-reflective system, the method change would have to
be done in code, recompiled, and then deployed.

6.4 AOP in Distributed Monitoring

Many current distributed monitoring applications use aspect oriented program-
ming to weave the monitor code in with the program code [12,34]. In these
systems, monitors are often compiled from a monitor logic into aspects, which
are then woven into the primary task’s program code in appropriate places.

AOP keeps monitor code orthogonal to program code as stated in our case
study requirements. Additionally, aspects have access to program internals such
as state and variables allowing program monitoring and can even maintain their
own state, which is useful for model-based monitors. Although the AOP approach
can address monitoring requirements, it is not as flexible as other reflective
approaches. Namely, since aspects must be woven into program code, they cannot
be added, modified, or removed at runtime but are set at compile time.

6.5 Reflection in Distributed Monitoring

Reflection offers the flexibility necessary to address the distributed monitoring
problem. Besides being dynamic enough to allow growing knowledge vectors,
sufficient reflection can also allow in-place modification and removal of monitors.

Suppose a distributed system uses the actor framework, monitors could be im-
plemented as meta-actors. Unmonitored actors would remain untouched while
actors with installed meta-actors as monitors would have modified semantics.
Note that meta-actors, being actors themselves, would use normal actor seman-
tics unless they have installed monitors, and thus meta-actors, of their own.

Using the semantics given in Section 5.2, the meta-actor transmit semantics
can be overridden to modify the outgoing message to include the knowledge
vector, in the case of our monitors.

transmit (on monitor): [R[transmit(t, m)], b]â → [R[send(t, m′′)], b]â
m′′ = KV m(m, kv(a))

In order to deal with the knowledge vectors on a monitor, we simply remove
kv(a) and propagate the original message to the recipient actor:

dlv (on monitor): [R[dlv(KV m(m, kv(t))], b]â → [R[nil], b]â, < a ⇐ m >meta

where meta(a) = â

Reflecting on AOP, Metaprogramming, and Adaptive Distributed Monitoring 259

Monitors as meta-actors would have access to actors’ internal states, also
needed for the knowledge vectors. With all of this, the monitors would be able
to track distributed system computation and check for errors. Because the meta-
actors can reflectively modify themselves during runtime, monitors can be mod-
ified or removed on the fly without the need to redeploy monitored processes.

7 Implementation of Adaptive Monitors

A proof-of-concept implementation was done building upon Actor Architecture.
Although the implementation language does not provide strong reflective capa-
bilities, reflection using a library and indirection enabled us to achieve our goal
of a dynamic distributed monitoring system.

7.1 Actor Architecture

The Actor Architecture (AA) is a Java actor framework providing a full actor
implementation running on one or more systems [26]. AA handles message rout-
ing and actor migration and consists of two main parts: the platform, which
provides all of the ‘background’ services, and the actor itself.

Actors in AA are simply Java subclasses of the Actor class. The ActorThread
sleeps until a message is inserted into its mail queue by the local MessageManager.
The ActorThread then processes the message by parsing the requested method
and the corresponding arguments. If the method exists with the correct number
of arguments in the actor object, the method is called.

7.2 Monitor Installation

Once an actor is created, a monitor is installed by sending a message. The mes-
sage simply provides the monitor name and calls the actor class’ addMonitor()
method. This method uses Java’s reflective facilities to create a new instance of
the class named by the string argument. The newly created monitor object is
then added to the list of this actor’s monitors.

Although this installation method requires the monitor bytecode to be present
on the system, there is no reason this is necessary. It is feasible to serialize the
monitor and send it with the message to each actor. However, both schemes are
equally flexible and only differ in when the monitor code is transferred. The class
also has a method removeMonitor() to remove currently installed monitors.

7.3 Knowledge Vectors

The KnowledgeVector class is a collection of KVEntry objects. Each KVEntry
contains only a value and a timestamp and the KnowledgeVector keeps a map-
ping between the entries and the associated actor names.

Scattered throughout the Actor and ActorThread code are calls to the
updateKV(KnowledgeVector)method. This method call is necessary every time
the local knowledge vector can change. Thus, every time a message is received at

260 B. Donkervoet and G. Agha

an actor, the local knowledge vector is compared with the message’s piggybacked
knowledge vector and necessary updates are incorporated.

After message processing and the corresponding call have completed, the ac-
tor’s updateLocalKV() method is called in order to assure that the local knowl-
edge vector contains the most current entries for local variables. Ideally, the
knowledge vector update would be triggered by modification of any monitored
variables but since actors are purely reactive, any modification must occur as
a result of a message. Thus, updating the knowledge vector after completion of
message processing guarantees that all variable modifications are recorded.

In order to update the local portions of the knowledge vector, the method
iterates through each locally monitored variable and reflectively reads it. Java
reflection is necessary in order to obtain references to the variables by only the
string identifier. The updateLocalKV() method then records the current values
and the current timestamp in the knowledge vector.

7.4 Actor Monitor

The ActorMonitor is an abstract class containing methods and variables related
to the monitors. A monitor is created by extending the ActorMonitor class and
implementing the evaluateMonitor() method.

Aside from the evaluate method, there are also two methods for getting and
setting the list of monitored variables. Monitored variables are stored as a string
that is the concatenation of the actor name or local and the variable name.
The local keyword specifies that the variable will be evaluated at each actor
locally whereas the standard actor names specify that the variable will only be
evaluated at the specified actor.

public MyMonitor(){
setMonitoredVariable("uan://127.0.0.1:2/counter");
setMonitoredVariable("local/counter");

}

Fig. 5. The monitor’s constructor showing manual listing of monitored variables

The setMonitoredVariable() modifier is only used within the constructor
of the monitor to initially create the list of variables used in the monitor for-
mula. The getMonitoredVariables() accessor is used in the above mentioned
updateLocalKV() method to access the locally monitored variables.

Each time the knowledge vector is updated, the actor evaluates its installed
monitors. The list of monitors is iterated through and each one is evaluated in
turn using the newly updated values.

The evaluateMonitor() method does the actual evaluation of the monitor
formula. The method pulls out the most currently known variable values from
the local knowledge vector. Using these values, the formula is evaluated and a
boolean value stating the result of the formula is returned. In the case where the
knowledge vector is too sparse to evaluate the monitor, the method simply gives

Reflecting on AOP, Metaprogramming, and Adaptive Distributed Monitoring 261

up and returns success. In addition to the knowledge vector, the local actor name
is also passed in for determining which entries correspond to the local actor.

public boolean evaluateMonitor(KnowledgeVector kv, String locActorName){

try{
int myCnt = kv.get(localActorName + "/counter").getValue();
int remoteCnt = kv.get("uan://127.0.0.1:2/m_iSum").getValue();

if(myCnt > remoteCnt)
System.err.println("MONITOR FAILS!!!! at " + localActorName);

else if(myCnt > THRESHOLD)
aboveTH = true;

else
aboveTH = false;

}
catch(NullPointerException e){

// just ignore it if the knowledge vector is not full enough
}
return(new KVEntry(timestamp++, new Boolean(aboveTH)));

}

Fig. 6. The monitor’s evaluate method. This monitor ensures that the counter value
at every node is never greater than the counter value at actor 127.0.0.1:2.

The evaluateMonitor() method returns a KVEntry, which is then added
to the node’s knowledge vector. This provides means of communication between
monitors allowing them to cooperate and communicate state information. In this
way, monitors can cooperatively execute model-based monitoring.

7.5 Implementation Discussion

Currently, the evaluateMonitor() method and the monitored variables must
be written by hand. However, we intend to incorporate automatic generation of
these from a provided PT-DTL formula.

This implementation provides dynamic, adaptive distributed monitoring but
is still constrained by Java’s limited reflection. Objects can be created and passed
around and their methods may be called but a more reflective language would
allow even greater flexibility. For instance, implementation in Smalltalk would
allow program modification in addition to program introspection.

With the Java implementation, any monitor adaptability has to be coded into
the monitor. Monitors cannot simply be installed on any distributed application,
the application must be designed with monitoring in mind. An analogy would be
having to design an application for debugging versus being able to use a symbolic
debugger on any application. Because of Java’s weak reflective capabilities, all
actors in our implementation must contain code to process knowledge vectors
whether a monitor is installed or not.

262 B. Donkervoet and G. Agha

With a sufficient level of reflection, any application can be monitored without
any special design through reflectively overriding the appropriate methods. The
send and receive methods would not need to handle knowledge vectors in the case
where no monitor is installed but would be modified upon monitor installation.
A Smalltalk implementation is currently underway that uses reflection and meta-
actors. Using these, monitors may be installed on any actor implementing these
two methods without any special design to accommodate monitors.

8 Related Work

We have used distributed monitoring as a case study to demonstrate the need for
and different faces of reflection. As with any problem, there are many possible
solutions, each with its own advantages and disadvantages. Many previous sys-
tems have offered various solutions to distributed monitoring utilizing different
levels of reflection, allowing varying capabilities.

Chen and Rosu introduce Monitor Oriented Programming (MOP), which sep-
arates monitor specification from the program, much like AOP [12]. In addition
to the program implementation, a formal specification is provided. This specifi-
cation is translated into runtime monitors that are installed similarly to aspects.
Should any constraints be violated, user specified code will run to recover from
or report the error. However, also like AOP, only limited reflective capabilities
are utilized. Indeed, the current implementation of MOP, JavaMOP, compiles
the specifications into AspectJ code and thus is constrained by its limitations.

Another area in which reflection is frequently used is active monitoring. The
monitors described thus far in this paper are all passive in that they in no way af-
fect the regular operation of the system but monitor quietly in the background.
Active monitors visibly affect and participate in the operation of their moni-
tored nodes. Synchronization constraints are one form of active monitor used for
distributed synchronization [21]. Meta-actors simply delay delivery of messages
until a specified condition is met and then delivery continues as normal.

Similarly Aksit et al. introduce an AOP model permitting composition of mul-
tiple filters [2]. Filters are meta-level objects that intercept messages to program
objects, apply specified conditions and then allow or disallow message delivery or
perform a specified action. Program objects can be reified by a filter permitting
observation or modification of the object. Filters can be layered to achieve com-
plex functionality while still maintaining logical encapsulation and code reuse
much like layering of meta-actors.

Broadway is an extension to C++ simplifying distributed systems develop-
ment by providing an actor and meta-actor framework [36]. Since C++ is not
a reflective language, reflection is accomplished through use of a library and
changing function pointers. Using this scheme, a fully reflective actor system is
created enabling redefinition of send, receive, and become methods.

Using Broadway, Sturman created DIL, a high-level language that can be
used to define protocols as wrappers to actors [37]. These protocol wrappers
are applied and enforced through meta-actors to capture and modify incom-
ing and outgoing messages. Similarly, Astley introduced Distributed Connection

Reflecting on AOP, Metaprogramming, and Adaptive Distributed Monitoring 263

Language as a method of connecting distributed components through use of
meta-actors to transform and route data [4].

9 Discussion

Reflective programming is, although a powerful tool, difficult to use and complex
to reason and verify. Part of the reason reflective facilities are so limited in real
languages is this complexity, for both the programmer and the runtime developer.
Between this complexity and performance issues, reflection has had limited reach.

As mentioned in Section 3.2, most reflective languages limit the amount of
reflection offered. Reflective facilities provide great flexibility but at a cost to
performance, security, and ease of programming. Because of the necessity for
program and metadata to be mutable, reflective runtime systems must be either
interpreted or provide much indirection, both of which reduce performance and
efficiency [17].

The flexibility and dynamicity provided by reflection also raise security and
correctness concerns. Reflection and metaprogramming have been used to pro-
vide security and for verification purposes [7,18,2]. However, these start with the
assumption that the reflective system itself is secure and correct. Much work
remains to be done on verification and security of reflective systems themselves.
Some security work has been done on Java’s reflective system [11]. However, dif-
ferent security issues are raised by fully reflective systems, given their dynamicity
and the possibility of interference between concurrent applications. Correctness
and verification of reflective programs are especially important given the diffi-
culty of programming these dynamic systems.

In general, fully reflective programming is useful for research and experimen-
tation to determine what is useful and turn that into simpler programming tools
and paradigms (e.g., AOP, TLAM). We believe that such simpler programming
paradigms and tools will be essential to address the complexity of coordination in
large-scale concurrent and distributed systems. Such systems are of increasing
performance as web services and applications, sensor networks, and multicore
architectures continue to grow in importance.

Acknowledgements

We would to thank Carolyn Talcott, MyungJoo Ham, Rajesh Kumar, and
Sameer Sundresh for their helpful comments on an earlier draft.

References

1. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT
Press, Cambridge, MA (1986)

2. Aksit, M., Wakita, K., Bosch, J., Bergmans, L., Yonezawa, A.: Abstracting Ob-
ject Interactions Using Composition Filters. In: Nierstrasz, O. (ed.) ECOOP 1993.
LNCS, vol. 707, pp. 152–184. Springer, Heidelberg (1993)

264 B. Donkervoet and G. Agha

3. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14(03), 329–366 (2004)

4. Astley, M. Customization and Composition of Distributed Objects: Policy Man-
agement in Distributed Software Architectures. PhD thesis, University of Illinois
at Urbana-Champaign (1999)

5. Astley, M., Agha, G.: Customization and composition of distributed objects: Mid-
dleware abstractions for policy management. In: Sixth International Symposium
on the Foundations of Software Engineering, ACM SIGSOFT (1998)

6. Astley, M., Sturman, D., Agha, G.: Customizable middleware for modular dis-
tributed software. Communications of the ACM 44, 99–107 (2001)

7. Bandinelli, S., Fuggetta, A.: Computational reflection in software process model-
ing: The SLANG approach. In: Proceedings of 15th International Conference on
Software Engineering, pp. 144–154 (1993)

8. Bawden, A.: Reification without evaluation. In: LFP ’88: Proceedings of the 1988,
ACM conference on LISP and functional programming, pp. 342–349 (1988)

9. Brant, J., Foote, B., Johnson, R.E., Roberts, D.: Wrappers to the Rescue. In: Jul,
E. (ed.) ECOOP 1998. LNCS, vol. 1445, pp. 396–417. Springer, Heidelberg (1998)

10. Cameron, R., Ito, M.: Grammar-Based Definition of Metaprogramming Systems.
ACM Transactions on Programming Languages and Systems 6, 1 (1984)

11. Caromel, D., Vayssiere, J.: Reflections on MOPs, Components, and Java Security.
In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 256–274. Springer,
Heidelberg (2001)

12. Chen, F., Rosu, G.: Java-MOP: A monitoring oriented programming environment
for Java. In: Proceedings of the 11th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (2005)

13. Cointe, P., Amiot, A., Denier, S.: From (meta) objects to aspects: from Java to
AspectJ. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2004. LNCS, vol. 3657, pp. 70–94. Springer, Heidelberg (2005)

14. Czarnecki, K., Eisenecker, U.W.: Generative programming. Springer, Heidelberg
(2000)

15. Czarnecki, K., Eisenecker, U.W.: Components and generative programming. In:
Proceedings of 7th European software engineering conference and 7th ACM SIG-
SOFT symposium on Foundations of software engineering, pp. 2–19 (1999)

16. Denker, G., Meseguer, J., Talcott, C.: Rewriting semantics of meta-objects and
composable distributed services. Futatsugi [139], 407–427 (1999)

17. Deutsch, L., Schiffman, A.: Efficient implementation of the smalltalk-80 system.
In: Proceedings of the 11th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pp. 297–302 (1984)

18. Fabre, J.C., Perennou, T.: A metaobject architecture for fault-tolerant distributed
systems: the FRIENDS approach. IEEE Transactions on Computers 47(1), 78–95
(1998)

19. Foote, B., Johnson, R.E.: Reflective facilities in Smalltalk-80. ACM SIGPLAN
Notices 24(10), 327–335 (1989)

20. Friedman, D., Wand, M.: Reification: Reflection without metaphysics. In: Proceed-
ings of the 1984 ACM Symposium on LISP and functional programming (1984)

21. Frølund, S.: Inheritance of Synchronization Constraints in Concurrent Object-
Oriented Programming Languages. In: Madsen, O.L. (ed.) ECOOP 1992. LNCS,
vol. 615, pp. 185–196. Springer, Heidelberg (1992)

22. Frølund, S., Agha, G.: A language framework for multi-object coordination. In:
Nierstrasz, O. (ed.) ECOOP 1993. LNCS, vol. 707, pp. 346–360. Springer, Heidel-
berg (1993)

Reflecting on AOP, Metaprogramming, and Adaptive Distributed Monitoring 265

23. Green, D.: Trail: The Reflection API. In: The Java Tutorial Continued: The Rest
of the JDK (TM). Addison-Wesley Pub. Co., Reading (1998)

24. Hennessy, J.: Symbolic Debugging of Optimized Code. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 4(3), 323–344 (1982)

25. Hutto, P., Ahamad, M.: Slow memory: weakening consistency to enhance concur-
rency indistributed shared memories. In: Proceedings of 10th International Con-
ference on Distributed Computing Systems, pp. 302–309 (1990)

26. Jang, M.: The Actor Architecture Manual (2004)
27. Kim, W., Agha, G.: Compilation of a highly parallel actor-based language. In: The

Fifth International Workshop on Languages and Compilers for Parallel Computing,
pp. 1–12 (1992)

28. Lea, R., Yokote, Y., Itoh, J.-I.: Adaptive operating system design using reflection.
In: HOTOS ’95: Proceedings of the Fifth Workshop on Hot Topics in Operating
Systems (HotOS-V), p. 95 (1995)

29. Maes, P.: Computational Reflection. Springer, London (1987)
30. Mason, I.A., Talcott, C.: A semantically sound actor translation. In: Degano,

P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256,
Springer, Heidelberg (1997)

31. Meseguer, J., Talcott, C.L.: Semantic Models for Distributed Object Reflection. In:
Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 1–36. Springer, Heidelberg
(2002)

32. Rivard, F.: Smalltalk: a Reflective Language. In: Proceedings of Reflection, pp.
21–38 (1996)

33. Sen, K., Rosu, G., Agha, G.: Runtime safety analysis of multithreaded programs.
In: Proceedings of the 9th European software engineering and 11th ACM SIGSOFT
symposium on Foundations of software engineering, pp. 337–346 (2003)

34. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Efficient Decentralized Monitoring of
Safety in Distributed Systems. In: Proceedings of the 26th International Conference
on Software Engineering, pp. 418–427 (2004)

35. Smith, B.C.: Reflection and semantics in LISP. ACM Press, New York (1984)
36. Sturman, D.: Fault-adaptation for systems in unpredictable environments. Master’s

thesis, University of Illinois at Urbana-Champaign (1994)
37. Sturman, D.: Modular Specification of Interaction Policies in Distributed Comput-

ing. PhD thesis, University of Illinois at Urbana-Champaign (1996)
38. Sturman, D., Agha, G.: A protocol description language for customizing failure

semantics. In: Proceedings of the 13th Symposium on Reliable Distributed Systems,
pp. 148–157 (1994)

39. Talcott, C., Venkatasubramarian, N.: A Semantic Framework for Specifying and
Reasoning about Composable Distributed Middleware Services (2001)

40. Venkatasubramanian, N., Talcott, C.: Reasoning about meta level activities in
open distributed systems. In: Proceedings of the 14th annual ACM symposium on
Principles of distributed computing, pp. 144–152 (1995)

41. Venkatasubramanian, N., Talcott, C., Agha, G.: A formal model for reasoning
about adaptive QoS-enabled middleware. ACM Transactions on Software Engi-
neering and Methodology (TOSEM) 13(1), 86–147 (2004)

42. Watanabe, T., Yonezawa, A.: An Actor-Based Metalevel Architecture for Group-
Wide Reflection. In: Proceedings of the REX School/Workshop on Foundations of
Object-Oriented Languages, pp. 405–425 (1990)

	Reflecting on Aspect-Oriented Programming, Metaprogramming, and Adaptive Distributed Monitoring
	Introduction
	Metaprogramming
	Meta-architectures
	Metaobjects

	Reflection
	Reification
	Reflection in the Real World

	Aspect Oriented Programming
	Code Weaving
	Reflective AOP

	Reflection in Concurrency
	Threads and Objects
	Actors

	Case Study: Distributed Monitoring
	Monitoring Details
	Past-Time Distributed Temporal Logic
	Example Application
	AOP in Distributed Monitoring
	Reflection in Distributed Monitoring

	Implementation of Adaptive Monitors
	Actor Architecture
	Monitor Installation
	Knowledge Vectors
	Actor Monitor
	Implementation Discussion

	Related Work
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

