

Lecture Notes in Computer Science 4709
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Frank S. de Boer Marcello M. Bonsangue
Susanne Graf Willem-Paul de Roever (Eds.)

Formal Methods
for Components
and Objects

5th International Symposium, FMCO 2006
Amsterdam, The Netherlands, November 7-10, 2006
Revised Lectures

13

Volume Editors

Frank S. de Boer
Centre for Mathematics and Computer Science, CWI
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
E-mail: F.S.de.Boer@cwi.nl

Marcello M. Bonsangue
Leiden University
Leiden Institute of Advanced Computer Science
2300 RA Leiden, The Netherlands
E-mail: marcello@liacs.nl

Susanne Graf
VERIMAG
2 Avenue de Vignate, 38610 Grenoble-Gières, France
E-mail: Susanne.Graf@imag.fr

Willem-Paul de Roever
University of Kiel
Institute of Computer Science and Applied Mathematics
Hermann-Rodewald-Str. 3, 24118 Kiel, Germany
E-mail: wpr@informatik.uni-kiel.de

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.2, D.3, F.3, D.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-74791-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74791-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12119530 06/3180 5 4 3 2 1 0

Preface

Large and complex software systems provide the necessary infrastructure in all
industries today. In order to construct such large systems in a systematic manner,
the focus in the development methodologies has switched in the last two decades
from functional issues to structural issues: both data and functions are encap-
sulated into software units which are integrated into large systems by means of
various techniques supporting reusability and modifiability. This encapsulation
principle is essential to both the object-oriented and the more recent component-
based software engineering paradigms.

Formal methods have been applied successfully to the verification of medium-
sized programs in protocol and hardware design. However, their application to
the development of large systems requires more emphasis on specification, mod-
eling and validation techniques supporting the concepts of reusability and mod-
ifiability, and their implementation in new extensions of existing programming
languages like Java.

The fifth international symposium on Formal Methods for Components and
Objects (FMCO 2006) was held in Amsterdam, The Netherlands, June 7–11,
2007. The program consisted of invited keynote lectures and tutorial lectures se-
lected through a corresponding open-call. The latter provide a tutorial perspec-
tive on recent developments. In contrast to many existing conferences, about half
of the program consisted of invited keynote lectures by top researchers sharing
their interest in the application or development of formal methods for large-scale
software systems (object or component oriented). FMCO does not focus on spe-
cific aspects of the use of formal methods, but rather it aims at a systematic and
comprehensive account of the expanding body of knowledge on modern software
systems.

This volume contains the contributions submitted after the symposium by
both the invited and selected lecturers. The proceedings of FMCO 2002, FMCO
2003, FMCO 2004 and FMCO 2005 have already been published as volumes
2852, 3188, 3657, and 4111 of Springer’s Lecture Notes in Computer Science. We
believe that these proceedings provide a unique combination of ideas on software
engineering and formal methods which reflect the expanding body of knowledge
on modern software systems.

Finally, we thank all authors for the high quality of their contributions, and
the reviewers for their help in improving the papers for this volume.

June 2007 Frank de Boer
Marcello Bonsangue

Susanne Graf
Willem-Paul de Roever

Organization

The FMCO symposia are organized in the context of the project Mobi-J, a
project founded by a bilateral research program of The Dutch Organization
for Scientific Research (NWO) and the Central Public Funding Organization for
Academic Research in Germany (DFG). The partners of the Mobi-J projects are:
the Centrum voor Wiskunde en Informatica, the Leiden Institute of Advanced
Computer Science, and the Christian-Albrechts-Universität Kiel.

This project aims at the development of a programming environment which
supports component-based design and verification of Java programs annotated
with assertions. The overall approach is based on an extension of the Java lan-
guage with a notion of component that provides for the encapsulation of its
internal processing of data and composition in a network by means of mobile
asynchronous channels.

Sponsoring Institutions

The Dutch Organization for Scientific Research (NWO)
The Royal Netherlands Academy of Arts and Sciences (KNAW)
The Dutch Institute for Programming research and Algorithmics (IPA)
The Centrum voor Wiskunde en Informatica (CWI), The Netherlands
The Leiden Institute of Advanced Computer Science (LIACS), The Netherlands

Table of Contents

Testing

Model-Based Testing of Environmental Conformance of Components . . . 1
Lars Frantzen and Jan Tretmans

Exhaustive Testing of Exception Handlers with Enforcer 26
Cyrille Artho, Armin Biere, and Shinichi Honiden

Model-Based Test Selection for Infinite-State Reactive Systems 47
Bertrand Jeannet, Thierry Jéron, and Vlad Rusu

Program Verification

Verifying Object-Oriented Programs with KeY: A Tutorial 70
Wolfgang Ahrendt, Bernhard Beckert, Reiner Hähnle,
Philipp Rümmer, and Peter H. Schmitt

Rebeca: Theory, Applications, and Tools . 102
Marjan Sirjani

Learning Meets Verification . 127
Martin Leucker

Trust and Security

JACK—A Tool for Validation of Security and Behaviour of Java
Applications . 152

Gilles Barthe, Lilian Burdy, Julien Charles, Benjamin Grégoire,
Marieke Huisman, Jean-Louis Lanet, Mariela Pavlova, and
Antoine Requet

Towards a Formal Framework for Computational Trust 175
Vladimiro Sassone, Karl Krukow, and Mogens Nielsen

Models of Computation

On Recursion, Replication and Scope Mechanisms in Process Calculi . . . 185
Jesús Aranda, Cinzia Di Giusto, Catuscia Palamidessi, and
Frank D. Valencia

Bounded Session Types for Object Oriented Languages 207
Mariangiola Dezani-Ciancaglini, Elena Giachino,
Sophia Drossopoulou, and Nobuko Yoshida

VIII Table of Contents

Distributed Programming

Reflecting on Aspect-Oriented Programming, Metaprogramming, and
Adaptive Distributed Monitoring . 246

Bill Donkervoet and Gul Agha

Links: Web Programming Without Tiers . 266
Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop

Author Index . 297

Model-Based Testing of Environmental

Conformance of Components

Lars Frantzen1,2 and Jan Tretmans2,3

1 Instituto di Scienza e Tecnologie della Informazione “Alessandro Faedo”
Consiglio Nazionale delle Ricerche, Pisa – Italy

lars.frantzen@isti.cnr.it
2 Institute for Computing and Information Sciences
Radboud University Nijmegen – The Netherlands

{lf,tretmans}@cs.ru.nl
3 Embedded Systems Institute
Eindhoven – The Netherlands

jan.tretmans@esi.nl

Abstract. In component-based development, the correctness of a sys-
tem depends on the correctness of the individual components and on their
interactions. Model-based testing is a way of checking the correctness of
a component by means of executing test cases that are systematically
generated from a model of the component. This model should include
the behaviour of how the component can be invoked, as well as how the
component itself invokes other components. In many situations, how-
ever, only a model that specifies how others can use the component, is
available. In this paper we present an approach for model-based testing
of components where only these available models are used. Test cases
for testing whether a component correctly reacts to invocations are gen-
erated from this model, whereas the test cases for testing whether a
component correctly invokes other components, are generated from the
models of these other components. A formal elaboration is given in the
realm of labelled transition systems. This includes an implementation
relation, called eco, which formally defines when a component is correct
with respect to the components it uses, and a sound and exhaustive test
generation algorithm for eco.

1 Introduction

Software testing involves checking of desired properties of a software product
by systematically executing the software, while stimulating it with test inputs,
and observing and checking the execution results. Testing is a widely used tech-
nique to assess the quality of software, but it is also a difficult, error-prone,
and labor-intensive technique. Consequently, test automation is an important
area of research and development: without automation it will not be feasible to
test future generations of software products in an effective and efficient manner.
Automation of the testing process involves automation of the execution of test
cases, automation of the analysis of test results, as well as automation of the
generation of sufficiently many and valid test cases.

F.S. de Boer et al. (Eds.): FMCO 2006, LNCS 4709, pp. 1–25, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 L. Frantzen and J. Tretmans

Model-Based Testing. One of the emerging and promising techniques for
test automation is model-based testing. In model based testing, a model of the
desired behavior of the implementation under test (IUT) is the starting point for
test generation and serves as the oracle for test result analysis. Large amounts
of test cases can, in principle, be algorithmically and completely automatically
generated from the model. If this model is valid, i.e., expresses precisely what
the implementation under test should do, all these tests are valid, too. Model-
based testing has recently gained increased attention with the popularization of
modeling itself.

Most model-based testing methods deal with black-box testing of functional-
ity. This implies that the kind of properties being tested concern the functional-
ity of the system. Functionality properties express whether the system correctly
does what it should do in terms of correct responses to given stimuli, as opposed
to, e.g., performance, usability, or reliability properties. In black-box testing, the
specification is the starting point for testing. The specification prescribes what
the IUT should do, and what it should not do, in terms of the behavior observ-
able at its external interfaces. The IUT is seen as a black box without internal
detail, as opposed to white-box testing, where the internal structure of the IUT,
i.e., the program code, is the basis for testing. Also in this paper we will restrict
ourselves to black-box testing of functionality properties.

Model-based testing with labelled transition systems. One of the formal theo-
ries for model-based testing uses labelled transition systems as models, and a
formal implementation relation called ioco for defining conformance between
an IUT and a specification [10,11]. A labelled transition system is a structure
with states representing the states of the system, and with transitions between
states representing the actions that the system may perform. The implementa-
tion relation ioco expresses that an IUT conforms to its specification if the IUT
never produces an output that cannot be produced by the specification. In this
theory, an algorithm for the generation of test cases exists, which is provably
sound for ioco-conformance, i.e., generated test cases only detect ioco errors,
and exhaustive, i.e., all potential ioco errors can be detected.

Testing of Components. In component-based development, systems are built
by gluing components together. Components are developed separately, often by
different manufacturers, and they can be reused in different environments. A
component is responsible for performing a specific task, or for delivering a spec-
ified service. A user requesting this service will invoke the component to provide
its service. In doing so, the component may, in turn, invoke other components
for providing their services, and these invoked components may again use other
components. A component may at the same time act as a service provider and
as a service requester.

A developer who composes a system from separate components, will only know
about the services that the components perform, and not about their internal
details. Consequently, clear and well-specified interfaces play a crucial role in

Model-Based Testing of Environmental Conformance of Components 3

component technology, and components shall correctly implement these inter-
face specifications. Correctness involves both the component’s role as a service
provider and its role as a service requester: a component must correctly provide
its specified service, as well as correctly use other components.

Component-based testing. In our black-box setting, component-based testing
concerns testing of behavior as it is observed at the component’s interfaces. This
applies to testing of individual components as well as to testing of aggregate
systems built from components, and it applies to testing of provided services, as
well as to testing of how other services are invoked.

When testing aggregated systems this can be done ”bottom-up”, i.e., starting
with testing the components that do not invoke other components, and then
adding components to the system that use the components already tested, and so
forth, until the highest level has been reached. Another approach is to use stubs
to simulate components that are invoked, so that a component can be tested
without having the components available that are invoked by the component
under test.

Model-based testing of components. For model-based testing of an individual
component, we, in principle, need a complete model of the component. Such a
model should specify the behavior at the service providing interface, the behavior
at the service requesting interface, and the mutual dependencies between actions
at both interfaces. Such a complete model, however, is often not available. Spec-
ifications of components are usually restricted to the behavior of the provided
services. The specification of how other components are invoked is considered
an internal implementation detail, and, from the point of view of a user of an
aggregate system, it is.

Goal. The aim of this paper is to present an approach for model-based testing of
a component at both the service providing interface and the requesting interface
in a situation where a complete behavior model is not available. The approach
assumes that a specification of the provided service is available for both the
component under test, and for the components being invoked by the component
under test. Test cases for the provided service are derived from the corresponding
service specification. Test cases for checking how the component requests services
from other components are derived from the provided service specifications of
these other components.

The paper builds on the ioco-test theory for labelled transition systems, it
discusses where this theory is applicable for testing components, and where it is
not. A new implementation relation is introduced called environmental confor-
mance – eco. This relation expresses that a component correctly invokes another
component according to the provided service specification of that other compo-
nent. A complete (sound and exhaustive) test generation algorithm for eco is
given.

Overview. Section 2 starts with recalling the most important concepts of the
ioco-test theory for labelled transition systems, after which Section 3 sets the

4 L. Frantzen and J. Tretmans

scene for formally testing components. The implementation relation eco is intro-
duced in Section 4, followed by the test generation algorithm in Section 5. The
combination of testing at different interfaces is briefly discussed in Section 6.
Concluding remarks are presented in Section 7.

2 Testing for Labelled Transition Systems

Model-based testing deals with models, correctness (or conformance-) relations,
test cases, test generation algorithms, and soundness and exhaustiveness of the
generated test cases with respect to the conformance relations. This section
presents the formal test theory for labelled transition systems using the ioco-
conformance relation; see [10,11]. This theory will be our starting point for the
discussion of model-based testing of components in the next sections.

Models. In the ioco-test theory, formal specifications, implementations, and test
cases are all expressed as labelled transition systems.

Definition 1. A labelled transition system with inputs and outputs is a 5-
tuple 〈Q, LI , LU , T, q0〉 where Q is a countable, non-empty set of states; LI is a
countable set of input labels; LU is a countable set of output labels, such that
LI ∩ LU = ∅; T ⊆ Q × (LI ∪ LU ∪ {τ}) × Q, with τ /∈ LI ∪ LU , is the transition
relation; and q0∈Q is the initial state.

The labels in LI and LU represent the inputs and outputs, respectively, of a
system, i.e., the system’s possible interactions with its environment1. Inputs are
usually decorated with ‘?’ and outputs with ‘!’. We use L = LI ∪ LU when we
abstract from the distinction between inputs and outputs.

The execution of an action is modeled as a transition: (q, μ, q′)∈T expresses
that the system, when in state q, may perform action μ, and go to state q′ . This is
more elegantly denoted as q μ−−→ q′. Transitions can be composed: q μ−−→ q′ μ′

−−→ q′′,
which is written as q μ·μ′

−−−→ q′′.
Internal transitions are labelled by the special action τ (τ /∈ L), which is

assumed to be unobservable for the system’s environment. Consequently, the
observable behavior of a system is captured by the system’s ability to perform
sequences of observable actions. Such a sequence of observable actions, say σ, is
obtained from a sequence of actions under abstraction from the internal action
τ , and it is denoted by σ=⇒ . If, for example, q a·τ ·τ ·b·c·τ−−−−−−−→ q′ (a, b, c∈L), then we
write q

a·b·c===⇒ q′ for the τ -abstracted sequence of observable actions. We say that
q is able to perform the trace a·b·c∈L∗. Here, the set of all finite sequences over
L is denoted by L∗, with ε denoting the empty sequence. If σ1, σ2∈L∗ are finite
sequences, then σ1·σ2 is the concatenation of σ1 and σ2. Some more, standard
notations and definitions are given in Definitions 2 and 3.

1 The ‘U’ refers to ‘uitvoer’, the Dutch word for ‘output’, which is preferred for his-
torical reasons, and to avoid confusion between LO (letter ‘O’) and L0 (digit zero).

Model-Based Testing of Environmental Conformance of Components 5

Definition 2. Let p = 〈Q, LI , LU , T, q0〉 be a labelled transition system with
q, q′∈Q, μ, μi∈L ∪ {τ}, a, ai∈L, and σ∈L∗.

q μ−−→ q′ ⇔def (q, μ, q′)∈T
q μ1·...·μn−−−−−−→ q′ ⇔def ∃q0, . . . , qn : q = q0

μ1−−→ q1
μ2−−→ . . . μn−−→ qn = q′

q μ1·...·μn−−−−−−→ ⇔def ∃q′ : q μ1·...·μn−−−−−−→ q′

q
μ1·...·μn−−−−−−−→/ ⇔def not ∃q′ : q μ1·...·μn−−−−−−→ q′

q
ε=⇒ q′ ⇔def q = q′ or q τ ·...·τ−−−−→ q′

q
a=⇒ q′ ⇔def ∃q1, q2 : q

ε=⇒ q1
a−→ q2

ε=⇒ q′

q
a1·...·an======⇒ q′ ⇔def ∃q0 . . . qn : q = q0

a1==⇒ q1
a2==⇒ . . .

an==⇒ qn = q′

q
σ=⇒ ⇔def ∃q′ : q

σ=⇒ q′

q
σ

=⇒ ⇔def not ∃q′ : q
σ=⇒ q′

In our reasoning about labelled transition systems we will not always distinguish
between a transition system and its initial state. If p = 〈Q, LI , LU , T, q0〉, we will
identify the process p with its initial state q0, and, e.g., we write p

σ=⇒ instead
of q0

σ=⇒ .

Definition 3. Let p be a (state of a) labelled transition system, P a set of states,
A ⊆ L a set of labels, and σ∈L∗.

1. traces(p) =def { σ∈L∗ | p
σ=⇒ }

2. p after σ =def { p′ | p
σ=⇒ p′ }

3. P after σ =def
⋃

{ p after σ | p∈P }
4. P refuses A =def ∃p∈P, ∀μ∈A ∪ {τ} : p

μ−−→/

The class of labelled transition systems with inputs in LI and outputs in LU is
denoted as LTS(LI , LU). For technical reasons we restrict this class to strongly
converging and image finite systems. Strong convergence means that infinite
sequences of τ -actions are not allowed to occur. Image finiteness means that the
number of non-deterministically reachable states shall be finite, i.e., for any σ,
p after σ shall be finite.

Representing labelled transition systems. To represent labelled transition systems
we use either graphs (as in Fig. 1), or expressions in a process-algebraic-like
language with the following syntax:

B ::= a ; B | i ; B | Σ B | B |[G]| B | P

Expressions in this language are called behavior expressions, and they define
labelled transition systems following the axioms and rules given in Table 1.

In that table, a∈L is a label, B is a behavior expression, B is a countable set
of behavior expressions, G ⊆ L is a set of labels, and P is a process name, which
must be linked to a named behavior expression by a process definition of the
form P := BP . In addition, we use B1 � B2 as an abbreviation for Σ{B1, B2} ,
stop to denote Σ ∅ , ‖ as an abbreviation for |[L]| , i.e., synchronization on
all observable actions, and ||| as an abbreviation for |[∅]| , i.e., full interleaving
without synchronization.

6 L. Frantzen and J. Tretmans

Table 1. Structural operational semantics

a ;B a−→ B i ;B τ−→ B
B

μ−→ B′

Σ B μ−→ B′ B∈B, μ∈L ∪ {τ}

B1
μ−→ B′

1

B1 |[G]| B2
μ−→B′

1 |[G]| B2

B2
μ−→ B′

2

B1 |[G]| B2
μ−→B1 |[G]| B′

2
μ∈(L∪{τ})\G

B1
a−→ B′

1, B2
a−→ B′

2

B1 |[G]| B2
a−→B′

1 |[G]| B′
2

a∈G
BP

μ−→ B′

P
μ−→ B′ P := BP , μ∈L∪{τ}

Input-output transition systems. In model-based testing there is a specification,
which prescribes what an IUT shall do, and there is the IUT itself which is a
black-box performing some behavior. In order to formally reason about the IUT’s
behavior the assumption is made that the IUT behaves as if it were some kind of
formal model. This assumption is sometimes referred to as the test assumption
or test hypothesis.

In the ioco-test theory a specification is a labelled transition system in
LTS(LI , LU). An implementation is assumed to behave as if it were a labelled
transition system that is always able to perform any input action, i.e., all inputs
are enabled in all states. Such a system is defined as an input-output transi-
tion system. The class of such input-output transition systems is denoted by
IOTS(LI , LU) ⊆ LTS(LI , LU).

Definition 4. An input-output transition system is a labelled transition system
with inputs and outputs 〈Q, LI , LU , T, q0〉 where all input actions are enabled in
any reachable state:

∀σ, q : q0
σ=⇒ q implies ∀a∈LI : q

a=⇒

A state of a system where no outputs are enabled, and consequently the system
is forced to wait until its environment provides an input, is called suspended, or
quiescent. An observer looking at a quiescent system does not see any outputs.
This particular observation of seeing nothing can itself be considered as an event,
which is denoted by δ (δ /∈ L ∪ {τ}); p δ−→ p expresses that p allows the obser-
vation of quiescence. Also these transitions can be composed, e.g., p

δ·?a·δ·?b·!x========⇒
expresses that initially p is quiescent, i.e., does not produce outputs, but p does
accept input action ?a, after which there are again no outputs; when then input
?b is performed, the output !x is produced. We use Lδ for L ∪ {δ}, and traces
that may contain the quiescence action δ are called suspension traces.

Definition 5. Let p = 〈Q, LI , LU , T, q0〉∈LTS(LI , LU).

1. A state q of p is quiescent, denoted by δ(q), if ∀μ∈LU ∪ {τ} : q
μ−−→/

Model-Based Testing of Environmental Conformance of Components 7

2. pδ =def 〈 Q, LI , LU ∪ {δ}, T ∪ Tδ, q0 〉,
with Tδ =def { q δ−→ q | q∈Q, δ(q) }

3. The suspension traces of p are Straces(p) =def { σ∈L∗
δ | pδ

σ=⇒ }

From now on we will usually include δ-transitions in the transition relations, i.e.,
we consider pδ instead of p, unless otherwise indicated. Definitions 2 and 3 also
apply to transition systems with label set Lδ.

The implementation relation ioco. An implementation relation is intended to
precisely define when an implementation is correct with respect to a spec-
ification. The first implementation relation that we consider is ioco, which
is abbreviated from input-output conformance. Informally, an implementation
i∈IOTS(LI , LU) is ioco-conforming to specification s∈LTS(LI , LU) if any ex-
periment derived from s and executed on i leads to an output (including quies-
cence) from i that is foreseen by s. We define ioco as a special case of the more
general class of relations iocoF , where F ⊆ L∗

δ is a set of suspension traces,
which typically depends on the specification s.

Definition 6. Let q be a state in a transition system, Q be a set of states,
i∈IOTS(LI , LU), s∈LTS(LI , LU), and F ⊆ (LI ∪ LU ∪ {δ})∗, then

1. out(q) =def { x∈LU | q x−−→ } ∪ { δ | δ(q) }
2. out(Q) =def

⋃
{ out(q) | q∈Q }

3. i iocoF s ⇔def ∀σ∈F : out(i after σ) ⊆ out(s after σ)
4. i ioco s ⇔def i iocoStraces(s) s

!liq

?but

k1

?but

k2 k3

!liq

?but

!choc

?but
l0

l1

l3

l2

l4

l5

!liq

?but

?but

?but

!choc

?but

?but ?but

Fig. 1. Example labelled transition systems

Example 1. Figure 1 presents three examples of labelled transition systems mod-
eling candy machines. There is an input action for pushing a button ?but , and
there are outputs for obtaining chocolate !choc and liquorice !liq : LI = {?but}
and LU = {!liq , !choc}.

Since k1, k2∈IOTS(LI , LU) they can be both specifications and implemen-
tations; k3 is not input-enabled, and can only be a specification. We have that
out(k1 after ?but) = {!liq} ⊆ {!liq , !choc} = out(k2 after ?but); so we get now

8 L. Frantzen and J. Tretmans

k1 ioco k2, but k2 /ioco k1. For k3 we have out(k3 after ?but) = {!liq , δ} and
out(k3 after ?but ·?but) = {!choc}, so both k1, k2 /ioco k3.

The importance of having suspension actions δ in the set F over which ioco
quantifies is also illustrated in Fig. 2. It holds that out(r1 after ?but ·?but) =
out(r2 after ?but ·?but) = {!liq, !choc}, but we have out(r1 after ?but ·δ·?but) =
{!liq , !choc} ⊃ {!choc} = out(r2 after ?but ·δ·?but). So, without δ in these traces
r1 and r2 would be considered implementations of each other in both directions,
whereas with δ, r2 ioco r1 but r1 /ioco r2.

Underspecification and the implementation relation uioco. The implementation
relation ioco allows to have partial specifications. A partial specification does not
specify the required behavior of the implementation after all possible traces. This
corresponds to the fact that specifications may be non-input enabled, and inclu-
sion of out-sets is only required for suspension traces that explicitly occur in the
specification. Traces that do not explicitly occur are called underspecified. There
are different ways of dealing with underspecified traces. The relation uioco does
it in a slightly different manner than ioco. For the rationale consider Example 2.

Example 2. Consider k3 of Fig. 1 as a specification. Since k3 is not input-enabled,
it is a partial specification. For example, ?but ·?but ·?but is an underspecified
trace, and any implementation behavior is allowed after it. On the other hand,
?but is clearly specified; the allowed outputs after it are !liq and δ. For the trace
?but ·?but the situation is less clear. According to ioco the expected output
after ?but ·?but is out(k3 after ?but ·?but) = {!choc}. But suppose that in the
first ?but -transition k3 moves nondeterministically to state l1 (the left branch)
then one might argue that the second ?but -transition is underspecified, and that,
consequently, any possible behavior is allowed in an implementation. This is
exactly where ioco and uioco differ: ioco postulates that ?but ·?but is not an
underspecified trace, because there exists a state where it is specified, whereas
uioco states that ?but ·?but is underspecified, because there exists a state where
it is underspecified.

Formally, ioco quantifies over F = Straces(s), which are all possible suspension
traces of the specification s. The relation uioco quantifies over F = Utraces(s) ⊆
Straces(s), which are the suspension traces without the possibly underspecified
traces, i.e., all suspension traces σ of s for which it is not possible that a prefix
σ1 of σ (σ = σ1·a·σ2) leads to a state of s where the remainder a·σ2 of σ is
underspecified, that is, a is refused.

Definition 7. Let i∈IOTS(LI , LU), and s∈LTS(LI , LU).

1. Utraces(s) =def { σ∈Straces(s) | ∀σ1, σ2∈L∗
δ, a∈LI :

σ = σ1·a·σ2 implies not s after σ1 refuses {a} }
2. i uioco s ⇔def i iocoUtraces(s) s

Example 3. Because Utraces(s) ⊆ Straces(s) it is evident that uioco is not
stronger than ioco. That it is strictly weaker follows from the following example.
Take k3 in Fig. 1 as a (partial) specification, and consider r1 and r2 from Fig. 2 as
potential implementations. Then r2 /ioco k3 because !liq∈out(r2 after ?but ·?but)

Model-Based Testing of Environmental Conformance of Components 9

!liq

?but

r1

?but

?but

?but

?but

!choc

?but ?but

!liq
?but

!liq

r2

!choc

?but

?but

?but

?but

?but

?but

?but

/ioco

ioco

Fig. 2. More labelled transition systems

and !liq /∈ out(k3 after ?but ·?but). But r2 uioco k3 because we have ?but ·?but /∈
Utraces(k3). Also r1 /ioco k3, but in this case also r1 /uioco k3. The reason for
this is that we have ?but ·δ·?but∈Utraces(k3), !liq∈out(r1 after ?but ·δ·?but) and
!liq /∈ out(k3 after ?but ·δ·?but).

Test Cases. For the generation of test cases from labelled transition system spec-
ifications, which can test implementations that behave as input-output transition
systems, we must first define what test cases are. Then we discuss what test ex-
ecution is, what it means to pass a test, and which correctness properties should
hold for generated test cases so that they will detect all and only non-conforming
implementations. A test generation algorithm is not given in this section; for ioco
anduioco test generation algorithms we will refer to other publications. In Sect. 5,
this paper will give a test generation algorithm for the new implementation rela-
tion eco for component conformance, which will be defined in Sect. 4.

A test case is a specification of the behavior of a tester in an experiment
carried out on an implementation under test. The behavior of such a tester is
also modeled as a special kind of input-output transition system, but, naturally,
with inputs and outputs exchanged. Consequently, input-enabledness of a test
case means that all actions in LU (i.e., the set of outputs of the implementation)
are enabled. For observing quiescence we add a special label θ to the transition
systems modeling tests (θ /∈ L).

Definition 8. A test case t for an implementation with inputs LI and outputs
LU is an input-output transition system 〈Q, LU , LI ∪{θ}, T, q0〉∈IOTS(LU , LI ∪
{θ}) generated following the next fragment of the syntax for behavior expressions,
where pass and fail are process names:

t ::= pass
| fail
| Σ { x ; t | x∈LU ∪ {a} } for some a∈LI

| Σ { x ; t | x∈LU ∪ {θ} }
where pass := Σ { x ; pass | x∈LU ∪ {θ} }

fail := Σ { x ; fail | x∈LU ∪ {θ} }

10 L. Frantzen and J. Tretmans

The class of test cases for implementations with inputs LI and outputs LU is
denoted as T TS(LU , LI). For testing an implementation, normally a set of test
cases is used. Such a set is called a test suite T ⊆ T TS(LU , LI).

Test Execution. Test cases are run by putting them in parallel with the imple-
mentation under test, where inputs of the test case synchronize with the outputs
of the implementations, and vice versa. Basically, this can be modeled using the
behavior-expression operator ‖ . Since, however, we added the special label θ
to test cases to test for quiescence, this operator has to be extended a bit, and
is then denoted as �| .

Because of nondeterminism in implementations, it may be the case that testing
the same implementation with the same test case may lead to different test
results. An implementation passes a test case if and only if all its test runs lead
to a pass state of the test case. All this is reflected in the following definition.

Definition 9. Let t∈T TS(LU , LI) and i∈IOTS(LI , LU).

1. Running a test case t with an implementation i is expressed by the parallel

operator �| : T TS(LU , LI) × IOTS(LI , LU) → LTS(LI ∪ LU ∪ {θ}) which

is defined by the following inference rules:

i
τ−→ i′

t�| i τ−→ t�| i′
t

a−→ t′, i
a−→ i′

t�| i a−→ t′�| i′ a∈LI ∪ LU
t

θ−→ t′, i
δ−→

t�| i θ−→ t′�| i
2. A test run of t with i is a trace of t�| i leading to one of the states pass or

fail of t:

σ is a test run of t and i ⇔def ∃i′ : t�| i σ=⇒pass�| i′ or t�| i σ=⇒ fail�| i′

3. Implementation i passes test case t if all test runs go to the pass-state of t:

i passes t ⇔def ∀σ∈L∗
θ, ∀i′ : t�| i

σ

=⇒ fail�| i′

4. An implementation i passes a test suite T if it passes all test cases in T :

i passes T ⇔def ∀t∈T : i passes t

If i does not pass a test case or a test suite, it fails.

Completeness of testing. For ioco-testing a couple of algorithms exist that can
generate test cases from labelled transition system specifications [10,12,8]. These
algorithms have been shown to be correct, in the sense that the test suites
generated with these algorithms are able to detect all, and only all, non-ioco
correct implementations. This is expressed by the properties of soundness and
exhaustiveness. A test suite is sound if any test run leading to fail indicates
an error, and a test suite is exhaustive if all possible errors in implementations
can be detected. Of course, exhaustiveness is merely a theoretical property: for
realistic systems exhaustive test suites would be infinite, both in number of test
cases and in the size of test cases. But yet, exhaustiveness does express that
there are no ioco-errors that are undetectable.

Model-Based Testing of Environmental Conformance of Components 11

Definition 10. Let s be a specification and T a test suite; then for ioco:

T is sound ⇔def ∀i∈IOTS(LI , LU) : i ioco s implies i passes T
T is exhaustive ⇔def ∀i∈IOTS(LI , LU) : i ioco s if i passes T

3 Towards Formal Component-Based Testing

Correctness of components. In component-based testing we wish to test com-
ponents. A component is a (software) entity that provides some service to a
potential user. A user can invoke, or request this service. The service is pro-
vided via some interface of the component, referred to as the service interface,
providing interface, called interface, or upper interface. A component, in turn,
may use other components in its environment, i.e., the component acts as a user
of, or requests a service from another component, which, in turn, provides that
service. The services provided by these other components are requested via an-
other interface, to which we refer as required interface, calling interface, or lower
interface; see Fig. 3(a).

For a service requester it is transparent whether the component i invokes
services of other environmental components, like k, at its lower interface, or not.
The service requester is only interested whether the component i provides the
requested service at the service interface in compliance with its specification s.

On the other hand, the environmental component k that is being invoked via
the lower interface of i, does not care about the service being provided by the
component i. It only cares whether the component i correctly requests for the
services that the environmental component k provides, according to the rules
laid down in k’s service specification e.

Yet, although the correctness requirements on the behavior of a component
can be clearly split into requirements on the upper interface and requirements on
the lower interface, the correctness of the whole component, naturally, involves
correct behavior on both interfaces. Moreover, the behavior of the component
on both interfaces is in general not independent: a service request to an envi-
ronmental component at the lower interface is typically triggered by a service
request at the upper interface, and the result of the latter depends on the result
of the first.

When specifying components, the emphasis is usually on the specification of
the provided service, since this is what the component must fulfill and what a user
of the component sees. The component’s behavior at the lower interface is often
not specified. It can only be indirectly derived from what the environmental
component expects, i.e., from the provided service specification of that used
component. In this paper we will formalize model-based testing of components at
their lower interface using the upper interface specification of the environmental
component that is invoked. By so doing, we strictly split the requirements on
the lower interface from the requirements on the upper interface, since this is
the only passable way to go when only specifications of the provided services are
available.

12 L. Frantzen and J. Tretmans

simulator

L↑

I
L↑

Us

tester

t

t

tester

tester

t

its ”lower-level” environment k.

(a) A component i with (b) A composed system of i

and k tested at the service level.

(c) A component i tested

with a stub at its lower interface.

(d) A component i tested concurrently at

the service- and lower interface in a ”horse-shoe”.

user
component

environmental
component

e

component

k

e

k

environmental

i

component

L↓

U
L↓

I

L↑

U
L↑

I

i

component

L↑

U
L↑

I

L↓

U
L↓

I

s s

i

component

L↓
U

L↓
I

L↑

I
L↑

Us

e

i

component

L↓
U

L↓
I

environment
stub

Fig. 3. Component-based testing

This is also the approach of recent, service-oriented testing frameworks like
audition [2]. This framework assumes behavioral specifications of the provided
service interfaces. Based on these specifications, a testing phase is introduced
when services ask for being published at a service registry – the service under-
goes a monitored trial before being put “on stage”. During this testing phase,
the service under test is actively tested at its upper interface, and it is addi-
tionally tested, whether the service correctly invokes other services via its lower
interface.

Model-Based Testing of Environmental Conformance of Components 13

If, instead, one wants to take requirements on the interdependency between
the interfaces into account, more complete specifications are needed. This is not
treated in this paper. For a survey of component-based testing see [9,6].

Formalizing components. We will formalize the behavior of component services
in the realm of labelled transition systems. Fig. 3(a) gives a first step towards
the formalization of these concepts. The component under consideration is a
component implementation denoted by i; i is an input-output transition system,
or, more precisely, the implementation i, which is seen as a black-box, is assumed
to behave as an input-output transition system (cf. Section 2: test assumption).
The actions that can occur at the upper interface are inputs L↑

I and outputs L↑
U ,

whereas L↓
I and L↓

U represent the inputs and outputs, respectively, at the lower
interface. Thus i∈IOTS(L↑

I ∪ L↓
I , L

↑
U ∪ L↓

U).
The service to be provided by the component at the upper interface is specified

by s, which only involves the upper interface: s∈LTS(L↑
I , L

↑
U). The behavior of

the provided service of the environmental component used by i is specified by
e∈LTS(L↓

U , L↓
I), and implemented by k∈IOTS(L↓

U , L↓
I). Only the actions at the

lower interface of i, which correspond to the actions of the upper interface of the
invoked environmental component k, but with inputs and outputs exchanged, are
involved here. Of course, the environmental component, in turn, may have a lower
interface via which it will invoke yet other components, but for the component
i, being just a service requester for e, this is transparent. In addition, in realistic
situations i will usually request services from several different components, but
we restrict our discussion to only one service being called. Considering several
environmental components can in this setting, for instance, be expressed as their
parallel (interleaved) composition, leading again to a single component.

Typically, input actions at the upper interface model the request for, i.e., the
start of a service, whereas output actions model the result provided by that
service. Conversely, at the lower interface the output actions model requests to
an environmental component, whereas input actions model the results provided
by the environmental component.

Testing components. A component can be tested in different ways. The simplest,
and often used way is to test at the upper interface as in Fig. 3(b). This leads
to a ”bottom-up” test strategy, where the components that do not invoke other
components, are tested first. After this, components are added that use these
already tested components, so that these subsystems can be tested, to which
then again components can be added, until all components have been added
and tested. In principle, this way of testing is sufficient in the sense that all
functionality that is observable from a service requester (user) point of view is
tested. There are some disadvantages of this testing method, though. The first
is that the behavior at the lower interface of the component is not thoroughly
tested. This apparently did not lead to failures in the services provided (because
these were tested), but it might cause problems when a component is replaced
by a new or other (version of the) component, or if a component is reused in
another environment. For instance, one environmental component may be robust

14 L. Frantzen and J. Tretmans

enough to deal with certain erroneous invocations, whereas another component
providing the same service is not. If now the less forgiving one substitutes the
original one, the system may not operate anymore. This would affect some of the
basic ideas behind component-based development, viz., that of reusability and
substitutability of components. A second disadvantage is that this test strategy
leads to a strict order in testing of the components, and to a long critical test
path. Higher level components cannot be tested before all lower level components
have been finished and tested.

Fig. 3(c) shows an alternative test strategy where a lower level component is
replaced by a stub or a simulator. Such a stub simulates the basic behavior of the
lower level component, providing some functionality of e, typically with hard-
coded responses for all requests which i might make on e. The advantage is that
components need not to be tested in a strict bottom-up order, but still stubs
are typically not powerful enough to guarantee thorough testing of the lower
interface behavior of a component, in particular concerning testing of abnormal
behavior or robustness. Moreover, stubs have to be developed separately.

The most desirable situation for testing components is depicted in Fig. 3(d): a
test environment as a wrapper, or ”horse-shoe”, around the component with the
possibility to fully control and observe all the interfaces of the component. This
requires the development of such an environment, and, moreover, the availability
of behavior specifications for all these interfaces. The aim of this paper is to work
towards this way of testing in a formal context with model-based testing.

Model-based testing of components. For model-based testing of a component in a
horse-shoe we need, in principle, a complete model of the behavior of the compo-
nent specified at all its interfaces. But, as explained above, the specification of a
component is usually restricted to the behavior at its upper interface. We indeed
assume the availability of a specification of the upper interface of the component
under test: s∈LTS(L↑

I , L
↑
U). Moreover, instead of having a specification of the

lower interface itself, we use the specification of the upper interface of the en-
vironmental component that is invoked at the lower interface: e∈LTS(L↓

U , L↓
I).

This means that we are not directly testing what the component under test
shall do, but what the environmental component expects it to do. Besides, what
is missing in these two specifications, and what is consequently also missing in
the model-based testing of the component, are the dependencies between the
behaviors at the upper and the lower interfaces.

For testing the behavior at the upper interface the ioco- or uioco-test theory
with the corresponding test generation algorithms can directly be used: there is
a formal model s∈LTS(L↑

I , L
↑
U) from which test cases can be generated, and the

implementation is assumed to behave as an input-enabled input-output transi-
tion system; see Sect. 2. Moreover, the implementation relations ioco and uioco
seem to express what is intuitively required from a correct implementation at the
upper interface: each possible output of the implementation must be included in
the outputs of the specification, and also quiescence is only allowed if the speci-
fication allows that: a service requester would be disappointed if (s)he would not
get an output result if an output is guaranteed in the specification.

Model-Based Testing of Environmental Conformance of Components 15

For testing the behavior at the lower interface this testing theory is not di-
rectly applicable: there is no specification of the required behavior at the lower
interface but only a specification of the environment of this lower interface:
e∈LTS(L↓

U , L↓
I). This means that we need an implementation relation and a

test generation algorithm for such environmental specifications. An issue for
such an implementation relation is the treatment of quiescence. Whereas a ser-
vice requester expects a response when one is specified, a service provider will
usually not care when no request is made when this is possible, i.e., the provider
does not care about quiescence, but if a request is received it must be a correct
request. In the next section we will formally elaborate these ideas, and define
the implementation relation for environmental conformance eco. Subsequently,
Sect. 5 will present a test generation algorithm for eco including soundness and
exhaustiveness, and then Section 6 will briefly discuss the combined testing at
the upper- and lower interfaces thus realizing a next step in the ”horse-shoe”
approach.

4 Environmental Conformance

In this section the implementation relation for environmental conformance eco
is presented. Referring to Fig. 3(d) this concerns defining the correctness of the
behavior of i at its lower interface with respect to what environment specification
e expects. Here, we only consider the lower interface of i that communicates
with the upper interface of e (or, more precisely, with an implementation k of
specification e). Consequently, we use LI to denote the inputs of i at its lower
interface, which are the outputs of e, and LU to denote the outputs if i at its
lower interface, which correspond to the inputs of e. The implementation i is
assumed to be input enabled: i∈IOTS(LI , LU); e is just a labelled transition
system with inputs and outputs: e∈LTS(LU , LI).

An implementation i can be considered correct with respect to an environment
e if the outputs that i produces can be accepted by e, and, conversely, if the
outputs produced by e can be accepted by i. Since i is assumed to be input
enabled, the latter requirement is trivially fulfilled in our setting. Considering
the discussion in Sect. 3, quiescence of i is not an issue here, and consequently
it is not considered as a possible output: if i requests a service from e it should
do so in the correct way, but i is not forced to request a service just because
e is ready to accept such a request. Conversely, quiescence of e does matter.
The implementation i would be worried if the environment would not give a
response, i.e., would be quiescent, if this were not specified. This, however, is an
issue of the correctness of the environment implementation k with respect to the
environment specification e, which is not of concern for eco.

For the formalization of eco we first have to define the sets of outputs (without
quiescence), and inputs of a labelled transition system. Note that the set of
outputs after a trace σ, uit(p after σ), collects all outputs that a system may
nondeterministically execute, whereas for an input to be in in(p after σ) it
must be executable in all nondeterministically reachable states (cf. the classical

16 L. Frantzen and J. Tretmans

may- and must -sets for transition systems [4]). This is justified by the fact that
outputs are initiated by the system itself, whereas inputs are initiated by the
system’s environment, so that acceptance of an input requires that such an
input is accepted in all possible states where a system can nondeterministically
be. The thus defined set of inputs is strongly related to the set of Utraces (Def. 7
in Sect. 2), a fact that will turn out to be important for proving the correctness
of test generation in Sect. 5.

Definition 11. Let q be (a state of) an LTS, and let Q be a set of states.

1. in(q) =def { a∈LI | q
a=⇒ }

2. in(Q) =def
⋂

{ in(q) | q∈Q }
3. uit(q) =def { x∈LU | q

x=⇒ }
4. uit(Q) =def

⋃
{ uit(q) | q∈Q }

Proposition 1

1. in(q after σ) = { a∈LI | not q after σ refuses {a} }
2. uit(q after σ) = out(q after σ)\{ δ }
3. Utraces(p) = { σ∈Straces(s) | ∀σ1, σ2∈L∗

δ , a∈LI :
σ = σ1·a·σ2 implies a∈in(p after σ1) }

Using these definitions we define eco: it expresses that after any possible Utrace
(without quiescence) of the environment e the outputs that implementation i
may produce shall be specified inputs in all possible states that e may (nonde-
terministically) reach.

Definition 12. Let i∈IOTS(LI , LU), e∈LTS(LU , LI).

i eco e ⇔def ∀σ∈Utraces(e) ∩ L∗ : uit(i after σ) ⊆ in(e after σ)

Now we have the desired property that after any common behavior of i and e, or
of i and k, their outputs are mutually accepted as inputs. As mentioned above,
some of these properties are trivial because our implementations are assumed to
be input-enabled (we take the ”pessimistic view on the environment”, cf. [1]).

Definition 13. p∈LTS(LI , LU) and q∈LTS(LU , LI) are mutually receptive iff
∀σ∈L∗, ∀x∈LU , ∀a∈LI , ∀p′, q′ we have

p ‖ q
σ=⇒ p′ ‖ q′ implies (p′ !x==⇒ implies q′ ?x==⇒)

and q′ !a==⇒ implies p′ ?a==⇒))

Proposition 2. Let i∈IOTS(LI , LU), e∈LTS(LU , LI), k∈IOTS(LU , LI).

1. i eco e implies i and e are mutually receptive
2. i eco e and k uioco e implies i and k are mutually receptive

Model-Based Testing of Environmental Conformance of Components 17

supplier1

?instock

supplier3

?item

?quant
!instock

warehouse

?instock!item

supplier2

!item

!quant

?instock

?soldout

?soldout!soldout

?soldout

Fig. 4. Exemplifying eco

Example 4. To illustrate the eco implementation relation, a simple function-
ality of a warehouse component is given in Fig. 4 (top left). For a provided
item and quantity the warehouse component reports either !instock or !soldout.
A supplier component now may use this warehouse component to answer re-
quests of customers. Such a supplier implementation must be input enabled for
the outputs of the warehouse (!instock and !soldout). It communicates via its
lower interface with the warehouse. The figure shows three supplier implemen-
tations; supplier1 never sends any message to the warehouse, it is just input
enabled for the possible messages sent from the warehouse. This is fine, we have
supplier1 eco warehouse, because eco does not demand a service requester to
really interact with an environmental component. The only demand is that if
there is communication with the warehouse, then this must be according to the
warehouse specification.

Bottom left gives supplier2. To keep the figures clear, a non-labelled self-loop
implicitly represents all input labels that are not explicitly specified, to make
a system input-enabled. Here, the service implementer forgot to also inform
the warehouse of the desired quantity, just the item is passed and then either
an ?instock or ?soldout is expected. What will happen is that supplier2 will
not get any answer from the warehouse after having sent the !item message
since the warehouse waits for the ?quant message – both wait in vain. In other
words, supplier2 observes quiescence of the warehouse. The warehouse does
not observe anything since quiescence is not an observation in eco. Thus, also
here we have supplier2 eco warehouse, since this supplier does never sent a
wrong message to the warehouse. That the intended transaction (requesting the

18 L. Frantzen and J. Tretmans

warehouse for an item and quantity, and receiving an answer) is not completed
does not matter here; see also Sect. 6: Limitations of eco.

Finally, in supplier3 the implementer confused the order of the messages
to be sent to the warehouse: instead of sending the ?item first and then the
?quant it does it in the reverse order. Here the specification is violated since we
have uit(supplier3 after ε) = {!quant} and in(warehouse after ε) = {?item}.
Hence we get !quant /∈ {?item}, and we have supplier3 eco warehouse.

5 Test Generation

Having a notion of correctness with respect to an environmental component,
as expressed by the environmental conformance relation eco, our next step is
to generate test cases for testing implementations according to this relation.
Whereas for ioco (and uioco) test cases are derived from a specification of the
implementation under test, test cases for eco are not derived from a specifica-
tion of the implementation but from a specification of the environment of the
implementation. The test cases generated from this environment e should check
for eco-conformance, i.e., they should check after all Utraces σ of the environ-
ment, whether all outputs produced by the implementation i – uit(i after σ) –
are included in the set of inputs – in(e after σ) – of e.

Algorithm 1 (eco test generation). Let e∈LTS(LU , LI) be an environmen-
tal specification, and let E be a subset of states of e, such that initially E =
e after ε .

A test case t∈T TS(LU , LI) is obtained from a non-empty set of states E by
a finite number of recursive applications of one of the following three nondeter-
ministic choices:

1.

LU ∪ θ

pass

t := pass
2.

fail

xj /∈ in(E)

fail

xi∈in(E)

ta txi

xj

tx1

xi

a

x1

t := a ; ta
� Σ { xj ; fail | xj∈LU , xj /∈ in(E) }
� Σ { xi ; txi | xi∈LU , xi∈in(E) }

where a∈LI is an output of e, such that E after a = ∅, ta is obtained by
recursively applying the algorithm for the set of states E after a , and for

Model-Based Testing of Environmental Conformance of Components 19

each xi∈in(E), txi is obtained by recursively applying the algorithm for the
set of states E after xi .

3.

fail fail

θ

xi∈in(E) xj /∈ in(E)

tx1 txi tθ

xjxi
x1

t := Σ { xj ; fail | xj∈LU , xj /∈ in(E) }
� Σ { xi ; txi | xi∈LU , xi∈in(E) }
� θ ; tθ

where for each xi∈in(E), txi is obtained by recursively applying the algorithm
for the set of states E after xi , and tθ is obtained by repeating the algorithm
for E.

Algorithm 1 generates a test case from a set of states E. This set represents
the set of all possible states in which the environment can be at the given stage of
the test case generation process. Initially, this is the set e after ε = e0 after ε ,
where e0 is the initial state of e. Then the test case is built step by step. In each
step there are three ways to make a test case:

1. The first choice is the single-state test case pass, which is always a sound
test case. It stops the recursion in the algorithm, and thus terminates the
test case.

2. In the second choice test case t attempts to supply input a to the imple-
mentation, which is an output of the environment. Subsequently, the test
case behaves as ta. Test case ta is obtained by recursive application of the
algorithm for the set E after a , which is the set of environment states that
can be reached via an a-transition from some current state in E. Moreover,
t is prepared to accept, as an input, any output xi of the implementation,
that might occur before a has been supplied. Analogous to ta, each txi is
obtained from E after xi , at least if xi is allowed, i.e., xi∈in(E).

3. The third choice consists of checking the output of the implementation. Only
outputs that are specified inputs in in(E) of the environment are allowed;
other outputs immediately lead to fail. In this case the test case does not
attempt to supply an input; it waits until an output arrives, and if no output
arrives it observes quiescence, which is always a correct response, since eco
does not require to test for quiescence.

Now we can state one of our main results: Algorithm 1 is sound and exhaustive,
i.e., the generated test cases only fail with non-eco-conforming implementations,
and the test suite consisting of all test cases that can be generated detects all
non-eco-conforming implementations.

20 L. Frantzen and J. Tretmans

fail fail

pass

?quant

?item

?quant

θ?item

?quant
?item

?quant

θ?item

θ

fail pass

fail pass

failfail

!instock

Fig. 5. An eco test case derived from the warehouse specification

Theorem 2. Let i∈IOTS(LI , LU), e∈LTS(LU , LI), and let Te ⊆ TTS(LU , LI)
be the set of all test cases that can be generated from e with Algorithm 1, then
we have

1. Soundness: i eco e implies ∀t∈Te : i passes t
2. Exhaustiveness: i /eco e implies ∃t∈Te : i fails t

Example 5. We continue with Example 4 and Fig. 4, and give an eco-test case
derived by Algorithm 1 from the warehouse specification; see Fig. 5. At the
beginning, no input can be applied to the implementation since no outputs are
specified in the initial state of the warehouse. Note that for the warehouse we
have inputs LU = {?item, ?quant} and outputs LI = {!instock, !soldout}, and
that an output from the warehouse is an input to the implementation. First, the
third option of the algorithm is chosen (checking the outputs of the implemen-
tation). Because ?quant is not initially allowed by the warehouse this leads to
a fail. Observing quiescence (θ) is always allowed, and the test case is chosen
to stop afterwards via a pass (first option). After observing ?item the test case
continues by again observing the implementation outputs. Because ?item is not
allowed anymore, since ?item /∈ in(warehouse after ?item), this leads here to
a fail. After ?quant is observed, again the third option is chosen to observe
outputs. Now only quiescence is allowed since there is no implementation out-
put specified in the set in(warehouse after ?item·?quant). Finally, the second
option is chosen (applying an input to the implementation). Both !instock and
!soldout are possible here. The input !instock to i is chosen, and then the test
case is chosen to end with pass.

Model-Based Testing of Environmental Conformance of Components 21

6 Combining Upper and Lower Interface Testing

For testing the behavior at the lower interface of a component implementation i,
we proposed the implementation relation eco in Sect. 4 with corresponding test
generation algorithm in Sect. 5. For testing the behavior at the upper interface we
proposed in Sect. 3 to use one of the existing implementation relations uioco or
ioco with one of the corresponding test generation algorithms; see Sect. 2. Since
uioco is based on Utraces like eco, whereas ioco uses Straces, it seems more
natural and consistent to choose uioco here. Some further differences between
uioco and ioco were discussed in Examples 2 and 3; more can be found in [3].

Now we continue towards testing the whole component implementation in the
”horse-shoe” test architecture of Fig. 3(d). This involves concurrently testing for
uioco-conformance to the provided service specification s at the upper interface,
and for eco-conformance to the environment specification e at the lower inter-
face. Here, we only indicate some principles and ideas by means of an example,
and by discussing the limitations of eco. A more systematic treatment is left for
further research.

!cancel

fullsupplier

?ware2

supplier

?ware1

!ware1 ?confirm
?cancel

?cancel
θ

pass pass

fail fail
?confirm

fail

test case tu

!confirm
!cancel

!item

!quant

!cancel?ware1

?soldout?instock

!confirm

?ware2

Fig. 6. An upper supplier specification, an implementation covering both interfaces,
and an upper-interface test case

The specifications of the upper and lower interfaces are more or less indepen-
dent, and can be considered as acting in a kind of interleaving manner (it is “a
kind of” interleaving because s specifies i directly, and e specifies the environ-
ment of i, which implies that it does not make sense to just put s ||| e, using the

22 L. Frantzen and J. Tretmans

parallel operator ||| of Sect. 2). This independence also holds for the derived
test cases: we can generate the upper and lower test cases independently from s
and e, respectively, after which they can be combined in a kind of interleaving
manner. We will show this in Example 6.

Example 6. Fig. 6 shows in supplier a specification of the upper interface of a
supplier component. This supplier can handle two different warehouses, and
requests whether items are in stock. This is done by indicating the favored
warehouse via a ?ware1 or ?ware2 message at the upper interface. The supplier
is supposed to query the indicated warehouse and either return !confirm if the
item is in stock, or !cancel otherwise. We abstract from modeling the specific
items since this does not add here.

A supplier implementation called fullsupplier is given at the right-hand side
of the figure. This supplier is connected at its lower interface with a warehouse
component as being specified in Fig. 4. Its label sets are: L↑

I = {?ware1, ?ware2},
L↑

U = {!confirm, !cancel}, L↓
I = {?instock, ?soldout}, L↓

U = {!item, !quant}.
Here we deal with both the upper and the lower interface, therefore the

fullsupplier must be input enabled for both input sets L↑
I and L↓

I . For some
reason this supplier cannot deal with a second warehouse, that is why it al-
ways reports !cancel when being invoked via ?ware2. For ?ware1 it contacts the
warehouse component, and behaves as assumed.

Fig. 6 also shows a uioco-test case tu for the upper interface; Fig. 5 specified
an eco-test case for the lower interface. Now we can test the fullsupplier in
the horse-shoe test architecture by executing both test cases concurrently, in
an interleaved manner. Fig. 7 shows the initial part of such a test case. After
!ware1·?item·?quant it can be continued with lower-interface input !instock af-
ter which either ?confirm or ?cancel shall be observed by the test case. We
deliberately did not complete this test case as a formal structure in Fig. 7, since
there are still a couple of open questions, in particular, how to combine quies-
cence observations in an ”interleaved” manner: is there one global quiescence for
both interfaces, or does each interface have its own local quiescence? Analogous
questions occur for mioco, which is a variant of ioco for multiple channels [7].

Limitations of eco. It is important to note that we are talking here only about
local conformance at the upper and lower interfaces, and not about complete cor-
rectness of the component implementation i. The latter is not possible, simply,
because we do not have a complete specification for i. In particular, as was al-
ready mentioned in the introduction, the dependencies between actions occurring
at the upper and lower interfaces are not included in our partial specifications
s and e. And where there is no (formal) specification of required behavior there
will also be no test to check that behavior.

For instance, in Example 6 the fullsupplier relates the ware1 input at its
upper interface with a query at the warehouse component at its lower interface.
This relation is invisible to eco and uioco/ioco. In other words, it is not pos-
sible to test requirements like “the supplier must contact a specific warehouse
component when, and only when being invoked with message ?ware1”. In Fig. 7,

Model-Based Testing of Environmental Conformance of Components 23

pass pass failfail

!ware1 ?confirm

?cancel

?quant

?item

?item

?quant ?confirm ?cancel

θ

pass pass failfail

fail fail fail

?item

?quant ?confirm ?cancel

θ

Fig. 7. Initial part of a combined test case

this is reflected in the sequence of actions !ware1·?confirm, which necessar-
ily leads to pass; there is no way to guarantee that the warehouse was really
queried. In general, requirements like “the supplier queries the right warehouse
with the right product” are not testable when only independent specifications of
both interfaces are available.

Another noteworthy feature of eco is that quiescence cannot be observed by
environmental components for several theoretical and practical reasons. For in-
stance, it is not straightforward anymore to indirectly measure quiescence via
timeouts here. This again means that a component can always choose to stop
communicating with an environmental component. This is not always the desired
behavior, since usually a chain of exchanged messages corresponds to a trans-
action that should be entirely performed. For instance, the warehouse from
Example 4 only gives an answer (!instock or !soldout) when being queried with
first ?item and then ?quant. Hence, the transaction that the warehouse offers, is
“send first an item followed by a quantity, and then the availability is returned”.
To enforce such transactions, the environmental component must be able to ob-
serve quiescence at certain steps within the transaction. For instance, after the
reception of ?item the requesting service must not be quiescent, it must send
?quant. Future research might allow to define a transaction-specific notion of
quiescence which allows to test also for transactional behavior.

7 Conclusions

When testing a component, standard testing approaches only take the provided
interface into account. This is due to the fact that usually only a specification
of that interface is available. How the component interacts with environmental

24 L. Frantzen and J. Tretmans

components at its lower interface is not part of the test interest. By so doing, it
is not possible to test if a component obeys the specifications of its environment.
This is particularly problematic when this misbehavior at the lower interface
does not imply an erroneous behavior at the upper interface.

We have introduced a new conformance relation called eco which allows to
test the lower interface based on specifications of the provided interfaces of the
environment. Together with the sound and exhaustive test generation algorithm,
this allows to detect such malpractice.

Another important aspect is that a tester for eco can be automatically gen-
erated from the provided service specifications. In other words, it is possible to
generate fully automatic replacements of components which behave according
to their specification. This is very useful when implementations of such compo-
nents are not yet available, or if for reasons like security or safety, a simulated
replacement is preferred. The audition framework for testing Web Services [2]
is currently instantiated with a test engine which combines symbolic versions
of the ioco [5] and eco techniques to allow for sophisticated testing of Service
Oriented Architectures.

Modeling and testing components which interact with their environment is
not a trivial extension of the standard testing theories like ioco for reactive
systems. In this paper we pursued the most simple and straightforward path
to gain a testing theory which allows for basic testing of both the upper and
the lower interface of a component. Though, there are still open questions on
how to fully combine eco with, for instance, uioco or ioco on the level of
combined specifications and test generation. This should lead to a notion of
correctness at the upper interface which takes the lower interface into account.
For instance, a deadlock at the lower interface (waiting for a message from an
environmental component which never comes) does propagate to quiescence at
the upper interface. Also, enriching the lower interface with the ability to observe
quiescence of the environment is conceivable.

Finally, important concepts for components are reusability and substitutabil-
ity. On a theoretical level these correspond to the notions of (pre-)congruences.
It was already shown in [3] that without additional restrictions ioco is not a
precongruence, yet for component based development it is desirable that such
properties do hold. More investigations are necessary in this respect, e.g., in-
spired by the theory of interface automata [1] were such notions like congruence,
replaceability, and refinement are the starting point.

Acknowledgments

The inspiration for this work came from two practical projects where model-
based testing of components is investigated. In the first, the Tangram project
(www.esi.nl/tangram), software components of wafer scanners developed by
ASML (www.asml.com) are tested. It turned out to be difficult to make complete
models of components with sufficient detail to perform model-based testing. In
the second, the Plastic project (EU FP6 IST STREP grant number 26955;

Model-Based Testing of Environmental Conformance of Components 25

www.ist-plastic.org), one of the research foci is the further elaboration of the
audition framework with advanced testing methods for services in ubiquitous
networking environments.

Lars Frantzen is supported by the EU Marie Curie Network Tarot (MRTN-
CT-2004-505121), and by the Netherlands Organization for Scientific Research
(NWO) under project Stress – Systematic Testing of Realtime Embedded Soft-
ware Systems.

Jan Tretmans carried out this work as part of the Tangram project under
the responsibility of the Embedded Systems Institute. Tangram is partially sup-
ported by the Netherlands Ministry of Economic Affairs under grant TSIT2026.

References

1. de Alfaro, L., Henzinger, T.A.: Interface Automata. SIGSOFT Softw. Eng.
Notes 26(5), 109–120 (2001)

2. Bertolino, A., Frantzen, L., Polini, A., Tretmans, J.: Audition of Web Services
for Testing Conformance to Open Specified Protocols. In: Reussner, R., Stafford,
J.A., Szyperski, C.A. (eds.) Architecting Systems with Trustworthy Components.
LNCS, vol. 3938, pp. 1–25. Springer, Heidelberg (2006)

3. van der Bijl, M., Rensink, A., Tretmans, J.: Compositional Testing with ioco. In:
Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 86–100. Springer,
Heidelberg (2004)

4. De Nicola, R.: Extensional Equivalences for Transition Systems. Theoretical Com-
puter Science 24, 211–237 (1987)

5. Frantzen, L., Tretmans, J., Willemse, T.A.C.: A Symbolic Framework for Model-
Based Testing. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) Formal
Approaches to Software Testing and Runtime Verification. LNCS, vol. 4262, pp.
40–54. Springer, Heidelberg (2006)

6. Gross, H.-G.: Component-Based Software Testing with UML. Springer, Heidelberg
(2004)

7. Heerink, L.: Ins and Outs in Refusal Testing. PhD thesis, University of Twente,
Enschede, The Netherlands (1998)

8. Jard, C., Jéron, T.: TGV: Theory, Principles and Algorithms. Software Tools for
Technology Transfer 7(4), 297–315 (2005)

9. Rehman, M.J., Jabeen, F., Bertolino, A., Polini, A.: Testing Software Components
for Integration: A Survey of Issues and Techniques. In: Software Testing Verification
and Reliability, John Wiley & Sons, Chichester (2007)

10. Tretmans, J.: Test Generation with Inputs, Outputs and Repetitive Quiescence.
Software—Concepts and Tools 17(3), 103–120 (1996)

11. Tretmans, J.: Model Based Testing with Labelled Transition Systems. Technical
Report ICIS–R6037, Institute for Computing and Information Sciences, Radboud
University Nijmegen, The Netherlands (2006)

12. de Vries, R.G., Tretmans, J.: On-the-Fly Conformance Testing using Spin. Software
Tools for Technology Transfer 2(4), 382–393 (2000)

Exhaustive Testing of Exception Handlers with

Enforcer

Cyrille Artho1, Armin Biere2, and Shinichi Honiden3

1 Research Center for Information Security (RCIS),
National Institute of Advanced Industrial Science and Technology (AIST),

Tokyo, Japan
2 Johannes Kepler University, Linz, Austria

3 National Institute of Informatics, Tokyo, Japan

Abstract. Testing application behavior in the presence of I/O failures
is extremely difficult. The resources used for testing usually work without
failure. Failures typically cannot be initiated on the test suite level and
are usually not tested sufficiently. Essentially, each interaction of the
application with the environment can result in a failure. The Enforcer
tool identifies such potential failures and automatically tests all relevant
outcomes of such actions. It combines the structure of unit tests with
coverage information and fault injection. By taking advantage of a unit
test infrastructure, performance can be improved by orders of magnitude
compared to previous approaches. This paper introduces the usage of the
Enforcer tool.

1 Introduction

Testing is a scalable, economic, and effective way to uncover faults in soft-
ware [28,29]. Even though it is limited to a finite set of example scenarios, it
is very flexible and by far the most widespread quality assurance method today.
Testing is often carried out without formal rigor. However, coverage measurement
tools provide a quantitative measure of the quality of a test suite [14,29]. Un-
covered (and thus untested) code may still contain faults. Tested code is known
to have executed successfully under at least one occasion. For this reason, it is
desirable to test each block of code at least once.

A severe limitation of testing is non-determinism, given by both the thread
schedule and the actions of the environment. The Enforcer tool targets non-
determinism given by potential I/O failures of the underlying system [2]. For
system calls, there are usually two basic outcomes: success or failure. Typically
the successful case is easy to test, while the failure case can be nearly impossible
to trigger. For instance, simulating network outage is non-trivial. Enforcer does
not try to cause underlying system calls to fail, but instead it injects a failure into
the program at run-time to create the same behavior that would have resulted
from a system failure.

Assume that a mechanism exists to identify a test case that executes a par-
ticular call. In that case, testing both outcomes of that call will be very efficient,

F.S. de Boer et al. (Eds.): FMCO 2006, LNCS 4709, pp. 26–46, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Exhaustive Testing of Exception Handlers with Enforcer 27

only requiring a duplication of a particular test case. Existing ad-hoc approaches
include factoring out small blocks of code in order to manually test exception
handlers, or adding extra flags to conditionals that could trigger outcomes that
are normally not reachable by modeling test data alone. Figure 1 illustrates this.
In the first example, any exception handling is performed by a special method,
which can be tested separately, but does not have access to local variables used
by the caller. In the second example, which has inspired our work, the unit test
has to set a special flag which causes the exception handling code to run artifi-
cially. Enforcer automates the tasks of fault injection and controlling the fault
for the selected test cases.

try {
 socket = new ServerSocket();
} catch (IOException e) {
 handleIOException();
 // error handling code
}

try {
 if (testShouldFail) {
 throw new IOException();
 }
 socket = new ServerSocket();
} catch (IOException e) {
 // error handling code
}

Factoring out exception handling. Extra conditional for testing.

Fig. 1. Two manual approaches for exception handler coverage

Similar tools exist that inject faults into the program and thus improve cov-
erage of exception handlers [7,17]. However, previous tools have not taken the
structure of unit tests into account and thus required re-running the entire test
suite for each uncovered exception. Therefore, for m unit tests and n uncovered
exceptions, previous approaches had a run-time of O(m · n). Enforcer repeats
only one unit test per uncovered exception, yielding a run-time of O(m + n),
improving performance by several orders of magnitude [2]. The tool operates in
three stages, which are described in detail in previous work [2]:

1. Code instrumentation, at compile time or at class load time. This includes
injecting code for coverage measurement and for execution of the repeated
test suite.

2. Execution of unit tests. Coverage information is now gathered.
3. Re-execution of certain tests, using selective fault injection. This has to be

taken into account by coverage measurement code, in order to require only
a single instrumentation step.

This document as organized as follows: Section 2 gives the necessary back-
ground about sources of failures considered here, and possible implementation
approaches. Section 3 gives an overview of the implementation of the tool, while
Section 4 introduces its usage. Section 5 describes related work. Section 6 con-
cludes, and Section 7 outlines future work.

28 C. Artho, A. Biere, and S. Honiden

2 Background

This section introduces the necessary terminology used in the rest of this ar-
ticle, covering exceptions, fault injection, and various technologies used by our
approach.

2.1 Exceptions

An exception as commonly used in many programming languages [19,26,27,33]
indicates an extraordinary condition in the program, such as the unavailability of
a resource. Exceptions are used instead of error codes to return information about
the reason why a method call failed. Java also supports errors, which indicate
“serious problems that a reasonable application should not try to catch” [19]. A
method call that fails may “throw” an exception by constructing a new instance
of java.lang.Exception or a subtype thereof, and using a throw statement to
“return” this exception to the caller. At the call site, the exception will over-
ride normal control flow. The caller may install an exception handler by using
the try/catch statement. A try block includes a sequence of operations that
may fail. Upon failure, remaining instructions of the try block are skipped, the
current method stack frame is replaced by a stack frame containing only the
new exception, and control is transferred to the exception handler, indicated in
Java by the corresponding catch block. This process will also be referred to as
exception handling.

The usage and semantics of exceptions covers a wide range of behaviors. In
Java, exceptions are used to signal the unavailability of a resource (e.g., when a
file is not found or cannot be written), failure of a communication (e.g., when
a socket connection is closed), when data does not have the expected format,
or simply for programming errors such as accessing an array at an illegal index.
Two fundamentally different types of exceptions can be distinguished: Unchecked
exceptions and checked exceptions. Unchecked exceptions are of type Runtime-
Exception and do not have to be declared in a method. They typically concern
programming errors, such as array bounds overflows, and can be tested through
conventional means. On the other hand, checked exceptions have to be declared
by a method which may throw them. Failure of external operations results in
such checked exceptions [7,16]. This work therefore focuses on checked excep-
tions. For the remainder of this paper, a checked method call refers to a call to
a method which declared checked exceptions.

When an exception is thrown at run-time, the current stack frame is cleared,
and its content is replaced with a single instance of type Exception (or a subtype
thereof). This mechanism helps our goal in two ways:

– Detection of potentially failed system calls is reduced to the analysis of ex-
ceptions.

– No special context data is needed except for information contained in the
method signature and the exception.

Exhaustive Testing of Exception Handlers with Enforcer 29

2.2 Fault Injection

Fault injection [21] refers to influencing program behavior by simulation of fail-
ures in hardware or software. In hardware and software, fault injection is most
useful when applied to prototypes or implementations. This allows for accu-
rate evaluation of fault handling mechanisms. Fault injection thus also serves to
study and measure the quality of exception handling and dependability mecha-
nisms [21].

On a hardware level, fault injection can simulate various kinds of hardware
corruption, such as bit flips or stuck-at faults (where the output of a gate is stuck
at a particular value). These types of fault injection are important for producing
highly reliable hardware, where redundancy can compensate for physical com-
ponent failures caused by power surges, radiation, or other influences. Certain
types of software fault injection have the same target, e. g. simulation of storage
data corruption or other machine-level defects [21]. The specific notion of faults
in hardware as just described is slightly different from the more common one
used in the context of automatic test pattern generation (ATPG). ATPG aims
at finding test patterns that verify a chip against faults that are induced during
the physical production process [6].

This article targets higher-level problems, arising from failures of system calls.
An unexpected result of a system call is typically caused by incorrect parameters
or by an underlying network communication problem. Because such failures are
difficult to produce, they are often poorly tested. Testing a failure of a system call
may take a large amount of effort (during the test process) to set up. In the case
of network communications, shutting down network resources will affect other
processes on the same host and is therefore not practical in a real-life situation.

Because of these problems, faults are typically injected into an application
by an automated tool, which relieves the tester from the burden of injecting
faults and capturing their effect. In modern programming languages, such faults
manifest themselves on the application level as exceptions [7,16,17]. They can
be simulated by modifying the application or library code.

Code instrumentation consists of modifying existing application code or in-
jecting additional code into an application, in order to augment its behavior.
The goal is typically to leave the original behavior unchanged, or to change
it in a very limited way. It corresponds to a generic form of aspect-oriented
programming [22], which organizes code instrumentation into a finite set of op-
erations. Program steering [23] allows overriding normal execution flow. Program
steering typically refers to altering program behavior using application-specific
properties [23], or as schedule perturbation [32], which covers non-determinism
in thread schedules. This technique is very similar to fault injection. Instead of
faults, either cross-cutting code or randomized delays are injected.

2.3 Problem Scope

A unit test is a procedure to verify individual modules of code. A test harness
executes unit tests. Test suites combine multiple unit tests (also called test cases)

30 C. Artho, A. Biere, and S. Honiden

into a single set. Execution of a single unit test is defined as test execution,
running all unit tests as test suite execution. In this paper, a repeated test suite
denotes an automatically generated test suite that will re-execute certain unit
tests, which will be referred to as repeated tests.

Coverage information describes whether a certain piece of code has been ex-
ecuted or not. In this paper, only coverage of checked method calls is relevant.
The goal of our work was to test program behavior at each location where excep-
tions are handled, for each possible occurrence of an exception. This corresponds
to the all-e-deacts criterion [31]. Treating each checked method call individually
allows distinction between exception handling before and after a resource, or
several resources, have been allocated. Figure 2 illustrates the purpose of this
coverage criterion: In the given try/catch block, two operations may fail. Both
the read and the close operation may throw an IOException. The applica-
tion is likely going to be in a very different state before and after reading from
the resource, and again after having closed the stream. Therefore, it is desirable
to test three possible scenarios: Successful execution of statements (1) and (2),
success of statement (1) but failure of statement (2), and failure of statement
(1), whereupon statement (2) is never executed. This corresponds to full branch
coverage if the same semantics are encoded using if statements.

try {
 /* (1) */ input = stream.read();
 /* (2) */ stream.close();
} catch (IOException e) {
 // exception handling
}

Fig. 2. Illustration of the all-e-deacts coverage criterion

The first source of potential failures considered by our fault injection tool are
input/output (I/O) failures, particularly on networks. The problem is that a
test environment is typically set up to test the normal behavior of a program.
While it is possible to temporarily disable the required resources by software,
such as shell scripts, such actions often affect the entire system running, not
just the current application. Furthermore, it is difficult and error-prone to co-
ordinate such system-wide changes with a test harness. The same applies to
certain other types of I/O failures, such as running out of disk space, packet loss
on a User Datagram Protocol (UDP) connection, or communication timeout.
While the presence of key actions such as resource deallocations can be checked
statically [12,36], static analysis is imprecise in the presence of complex data
structures. Testing can analyze the exact behavior.

The second source of potential failures are external programs. It is always
possible that a system call fails due to insufficient resources or for other reasons.
Testing such failures when interacting with a program through inter-process
communication such as pipes is difficult and results in much test-specific
code.

Exhaustive Testing of Exception Handlers with Enforcer 31

Our tool, Enforcer, is written in Java and geared towards failures which are
signaled by Java exceptions. Certain operations, such as hash code collisions, are
also very difficult to test, but do not throw an exception if they occur. A hash
code collision occurs when two distinct data objects have the same hash code.
Exhaustive testing of such a collision could be addressed by similar means, but
is not covered by our tool that deals with exceptions only.

Finally, there exist hard-to-test operations that are not available in Java: In C
programs, pointer arithmetic can be used. The exact address returned by memory
allocation cannot be predicted by the application, causing portability and testing
problems for low-level operations such as sorting data by their physical address.
Other low-level operations such as floating point calculations may also have
different outcomes on different platforms.

3 Implementation

Exceptions can be tested manually. This approach guarantees optimal perfor-
mance but is not practical when many exceptions have to be tested. Therefore,
testing should be automated. Automation is possible for unit test suites hav-
ing idempotent tests. These are tests that can be executed independently many
times, producing the same result each time. For such tests, Enforcer automates
testing of exceptional outcomes while still maintaining optimal performance.

3.1 Manual Testing of Exceptions

The use of unit tests for fault injection has been inspired by unit testing in
the JNuke project. JNuke contains a Java model checker implemented in C.
Exceptions or failed system calls are handled using conventional control flow
constructs. JNuke heavily uses unit testing to ensure its quality [3]. Test coverage
of exceptional outcomes is achieved by manual instantiations of a given test.

Figure 3 illustrates manual fault injection in JNuke. Function unpack takes a
32-bit integer value containing a floating point number encoded according to the
IEEE standard, and returns its floating point value (lines 6 – 20). Internal func-
tions convert this value to a floating point value of the desired precision. This
precision can be configured prior to compilation. For performance reasons, float-
ing point values with a precision of 32 bits are usually represented with the same
number of bits on the target machine. However, the way floating point numbers
are represented may differ, even for the same size. Therefore, it is possible that
an underflow occurs for small values: a small number is truncated to zero. This
is very rare, but occurred on some less common hardware architectures in our
tests. When an underflow is detected, a brief message is printed to the screen
(lines 12 – 18).

Most processors will never generate an underflow for 32-bit floating point
numbers because an identical representation is used internally. This makes it
impossible to test the “exception handler” (in lines 15 – 17) that is triggered for
an underflow.

32 C. Artho, A. Biere, and S. Honiden

 1 /* convert constant pool representation (IEEE 754) to C float */
 /* endian conversion performed by caller */

 static int force_insufficient_precision = 0;
 5
 JFloat unpack (unsigned int bytes) {
 JFloat result;

 result = convert_bytes(bytes);
10
 /* check against underflow */
 if (underflow_detected(result, bytes)
 /* manual fault injection */
 || force_insufficient_precision) {
15 fprintf (stderr, "unpack: Cannot represent float value"
 " due to insufficient precision.\n");
 return 0;
 }
 return result;
20 }

 /* test cases */
 int testSuccess (JNukeTestEnv * env) {
 int res;
25 res = !JFloat_compare (unpack(FLOAT_1_0), 1.0);
 return res;
 }

 int testFailure (JNukeTestEnv * env) {
30 int res;
 /* activate fault injection */
 force_insufficient_precision = 1;

 res = !JFloat_compare (unpack(SMALL_FLOAT), 0.0);
35 /* return value always == 0 due to fault injection */

 /* disable fault injection */
 force_insufficient_precision = 0;
 return res;
40 }

Fig. 3. Manual testing of a library call that can generate an exception

In order to avoid a gap in test coverage, fault injection was implemented manu-
ally. An extra test executes the“exception handler”. The test code is implemented
in lines 22 – 40. The first test case, testSuccess, succeeds on any platform. The
second test case, testFailure, is designed to execute the “exception handler”
that is triggered on underflow. On some architectures, this happens if a small
value known to cause an underflow is used. However, this is not sufficient to test
the function in question on most platforms. Therefore, fault injection is used
to simulate an underflow (flag force_insufficient_precision on lines 14, 32,
and 38). This manual approach works fairly well when used sparsely, but carries
many intrinsic problems:

Exhaustive Testing of Exception Handlers with Enforcer 33

– Fault injection code is added inside the application and test code. This re-
duces readability, and may even interfere with normal code. Non-interference
of fault injection code can only be checked through inspection (or the use of
preprocessor directives in C).

– Not necessarily the same test case is used to test the success and failure
cases.

– Fault injection has to be done manually: Fault injection has to be enabled
(and disabled!) at the right points in the test code.

For the remainder of this paper, we will again use Java to illustrate exception
handling. Typical code tested by Enforcer uses I/O operations that can throw
an exception in Java. Figure 4, which is an extended version of the example
in Fig. 1, shows how two unit tests can execute the successful and the failure
scenario of a given operation. The application code of this example (lines 1–15)
contains a try block because the I/O operation in line 10 might fail. Usually, it
is successful, so a normal unit test will never execute the corresponding catch
block.

In order to address this problem, the test code (lines 17 – 27) contains two
test cases: The first test case is a conventional unit test, which executes the
method in question. Because it is assumed that the I/O operation will return
successfully, another test case is added. This test case covers the failure scenario

 1 class ApplicationCode {
 static boolean socketShouldFail = false;

 public void operationUsingIO() {
 5 ServerSocket socket;
 try {
 if (socketShouldFail) {
 throw new IOException();
 }
10 socket = new ServerSocket();
 } catch (IOException e) {
 // exception handling code
 }
 }
15 }

 class TestApplicationCode extends TestCase {
 public void testOperationUsingIO_success() {
 operationUsingIO();
20 }

 public void testOperationUsingIO_failure() {
 ApplicationCode.socketShouldFail = true;
 operationUsingIO();
25 ApplicationCode.socketShouldFail = false;
 }
 }

Fig. 4. Manual testing of a library call that can generate an exception

34 C. Artho, A. Biere, and S. Honiden

by setting a flag socketShouldFail prior to execution of the application code.
The artificially induced failure results in an exception being thrown. Again, care
has to be taken to reset that flag after test execution. Since that flag is static
(global), it would affect all subsequent test cases if it was not reset.

In the example in Fig. 4, manual fault injection results in about nine additional
lines of code (when not counting whitespace). This 60 % increase is of course an
extreme figure that is much lower in average real-world scenarios. In the JNuke
project where similar code was used [3], only about 0.25 % of the total code
contributes to such testing of I/O failures or similar operations. This figure is
rather low because JNuke does not use a lot of I/O operations, and I/O code is
limited to 7 out of about 165 classes. Nonetheless, in one class, the extra code
needed for a manual approach already affects the readability of the application
code, due to various flags and conditionals being introduced. Three methods of
the application code of that class have an overhead of over 30 % of extra test
code covering I/O failures. This hampers readability and maintainability of that
code, and clearly calls for automation of testing I/O failures.

3.2 Automation

Java-based applications using JUnit [25] for unit testing have been chosen as the
target for this study. Java bytecode is easy to understand and well-documented.
JUnit is widely used for unit testing. In terms of programming constructs, the
target consists of any unthrown exceptions, i.e., checked method calls where a
corresponding catch statement exists and that catch statement was not reached
from an exception originating from said method call. Only checked exceptions
were considered because other exceptions can be triggered through conventional
testing [7,16]. Artificially generated exceptions are initialized with a special string
denoting that this exception was triggered by Enforcer.

A key goal of the tool is to avoid re-execution of the entire test suite after
coverage measurement. In order to achieve this, the test process executes in three
stages:

1. Code instrumentation, at compile time or at class load time.
2. Execution of unit tests. Coverage information is now gathered.
3. Re-execution of certain tests, with selective fault injection.

Coverage information gathered during test execution serves to identify a unit test
u that executes a checked method call, which could trigger a particular exception
e. For each such exception that has not been triggered during normal unit testing,
Enforcer then chooses to re-run one unit test (such as u) with exception e being
injected. This systematically covers all exceptions by re-running one unit test of
choice for each exception.

This approach assumes that unit tests are independent of each other and
idempotent. What this means is that a unit test should not depend on data
structures that have been set up by a previous unit test. Instead, standardized
set-up methods such as setUp (in JUnit) must be used. Furthermore, a unit test

Exhaustive Testing of Exception Handlers with Enforcer 35

should not alter persistent data structures permanently, i. e., the global system
state after a test has been run should be equal to the system state prior to that
test. This behavior is specified in the JUnit contract [25] and usually adhered to
in practice, although it is not directly enforced by JUnit. JUnit does not check
against global state changes and executes all unit tests in a pre-determined order.
Therefore, it is possible to write JUnit test suites that violate this requirement,
and it is up to the test engineer to specify correct unit tests. Tools such as
DbUnit [11] can ensure that external data, such as tables in a data base, also
fulfill the requirement of idempotency, allowing for repeated test execution.

As a consequence of treating each checked method call rather than just each
unit test individually, a more fine-grained behavior is achieved. Each unit test
may execute several checked method calls. Our approach allows for re-executing
individual unit tests several times within the repeated test suite, injecting a dif-
ferent exception each time. This achieves better control of application behavior,
as the remaining execution path after an exception is thrown likely no longer
coincides with the original test execution. Furthermore, it simplifies debugging,
since the behavior of the application is generally changed in only one location for
each repeated test execution. Unit tests themselves are excluded from coverage
measurement and fault injection, as exception handlers within unit tests serve
for diagnostics and are not part of the actual application.

The intent behind the creation of the Enforcer tool is to use technologies that
can be combined with other approaches, such that the system under test can
be tested in a way that is as close to the original test setup as possible, while
still allowing for full automation of the process. Instrumentation is performed
directly on Java bytecode [37]. Injected code has to be designed carefully for the
two dynamic stages to work together. Details about the architecture of the tool
are described in previous work [2].

3.3 Comparison to Stub-Based Fault Injection

Faults can also be injected at library level. By using a stub that calls the regular
code for the successful case and throws an exception for the failure case, code
instrumentation would not be necessary. The only change in the code would
consist of the “redirection” of the original method call to the stub method. Code
modification could therefore be done at the callee rather than at each call site.
This way, only library code would be affected, and the application could be run
without modification1.

A stub-based approach is indeed a much simpler way to achieve fault injection.
However, it cannot be used to achieve selective fault injection, which is dependent
on coverage information. Coverage of exception handlers (catch blocks) concerns
method calls and their exception handlers. As there are usually several method
calls for a given method, coverage of checked method calls can only be measured
1 This idealizing proposition assumes that the application itself does not provide

any library-like functionality, i. e., the application does not interface directly with
any system calls or produce other types of exceptions that cannot be tested
conventionally.

36 C. Artho, A. Biere, and S. Honiden

at the call site, not inside the callee. The same argument holds for code that
performs selective fault injection, using run-time information to activate injected
exceptions when necessary.

Therefore, most of the functionality heavily depends on the caller context and
concerns the call site. While it is conceivable to push such code into method call
(into the library code), this would require code that evaluates the caller context
for coverage measurement. Such code requires run-time reflection capabilities and
would be more complex than the architecture that is actually implemented [2].
Therefore, it does not make sense to implement unit test coverage inside the
library.

For this reason, the application code is modified for coverage measurement.
By also implementing fault injection at the caller, modification of the callee (the
library) is avoided. Avoiding modification of the library makes it possible to use
native and signed (tamper-proof) library code for testing. A stub-base approach
cannot modify such code.

Coverage data in Enforcer is context-sensitive. It is not only important which
blocks of code (which checked method calls and which exception handlers) are
executed, but also by which unit test. This requires more information than a
typical coverage measurement tool provides. After all, the test to cover previously
uncovered exceptions is chosen based on this coverage information. Such a test,
if deterministic, is known to execute the checked method call in question. As
coverage information includes a reference to a test case, that test case can be
used for fault injection.

3.4 Complexity

The complexity incurred by our approach can be divided into two parts: Coverage
measurement, and construction and execution of repeated test suites. Coverage
is measured for each checked method call. The code which updates run-time data
structures runs in constant time. Therefore, the overhead of coverage measure-
ment is proportional to the number of checked method calls that are executed
at run-time. This figure is negligible in practice.

Execution of repeated test suites may incur a larger overhead. For each un-
covered exception, a unit test has to be re-executed. However, each uncovered
exception incurs at most one repeated test. Nested exceptions may require multi-
ple injected faults for a repeated test, but still only one repeated test per distinct
fault is required [2]. The key to a good performance is that only one unit test,
which is known to execute the checked method call in question, is repeated. If a
test suite contains m unit tests and n uncovered exceptions, then our approach
will therefore execute m + n unit tests. This number is usually not much larger
than m, which makes the tool scalable to large test suites.

Large projects contain thousands of unit tests; previous approaches [7,16,17]
would re-execute them all for each possible failure, repeating m tests n times,
for a total number of m · (n + 1) unit test executions2. Our tool only re-executes

2 This includes the original test run where no faults are injected.

Exhaustive Testing of Exception Handlers with Enforcer 37

one unit test for each failure. This improves performance by several orders of
magnitude and allows Enforcer to scale up to large test suites. Moreover, the sit-
uation is even more favorable when comparing repeated tests with an ideal test
suite featuring full coverage of exceptions in checked method calls. Automatic re-
peated execution of test cases does not require significantly more time than such
an ideal test suite, because the only minor overhead that could be eliminated lies
in the instrumented code. Compared to manual approaches, our approach finds
faults without incurring a significant overhead, with the additional capability of
covering outcomes that are not directly testable.

3.5 Nested Control Structures

Enforcer treats nested exceptions by repeating the same unit test that covered
the initial exception. Using an iterative approach, incomplete coverage inside an
exception handler can be improved for exception handlers containing checked
method calls inside nested try/catch statements [2].

However, an exception handler may contain nested control structures other
than try/catch, such as an if/else statement, or more complex control struc-
tures. When encountering an if/else statement inside an exception handler,
Enforcer works as follows: After the initial test run, a chosen unit test is re-
peated to cover the exception handler in question. This way, the if condition is
evaluated to one of the two possible outcomes. Unfortunately, the other outcome
cannot be tested by repeating the same test case, as a deterministic test always
results in the same outcome of the predicate. Program steering cannot be used
to force execution of the other half of the if/else block: A bit flip in the if
condition would evaluate its predicate to a value that is inconsistent with the
program state3.

Therefore, a different unit test would have to be chosen, one where the predi-
cate evaluates to a different value. A priori, it cannot be guaranteed that such a
unit test exists in the first place, as this would imply a solution to the reachabil-
ity problem. A search for a solution would therefore have to be exhaustive. An
exhaustive search executes all unit tests that could possibly trigger a given ex-
ception, hoping that one of the tests (by chance) covers the alternative outcome.
This is undesirable, because it negates the performance advantage of Enforcer,
which is based on the premise of only choosing one test per exception. Other
possible solutions are:

– Manual specification of which unit test to choose for those special cases.
– Refactoring the exception handler in question so it can be tested manually.
– Finally, possible values for which a given if condition evaluates to a different

value could be generated by perturbing an existing unit test case. Such a
guided randomization would be similar to “concolic testing”, which combines
concrete and symbolic techniques to generate test cases based on a previous
test run [18,30].

3 Because of this, the elegant approach to nested exceptions is defeated for the purpose
of treating conventional control structures.

38 C. Artho, A. Biere, and S. Honiden

The problem of efficiently treating complex control structures inside exception
handlers is therefore still open.

4 Usage of the Enforcer Tool

The Enforcer tool is fully automated. The functionality of the tool is embedded
into the application by code instrumentation. Code instrumentation can occur
after compilation or at load time. After execution of the normal unit test suite,
exception coverage is shown, and repeated tests are executed as necessary. To
facilitate debugging, an additional feature exists to reduce the log file output that
an application may generate. As experiments show, the Enforcer tool successfully
finds faults in real applications.

4.1 Running the Tool

Fundamentally, the three steps required to run the tool (instrumentation, cov-
erage measurement, repeated test execution) can be broken down into two cat-
egories: Static code analysis, which instruments method calls that may throw
exceptions, and run-time analysis. Run-time analysis includes coverage measure-
ment and re-execution of certain unit tests.

Code instrumentation is entirely static, and can be performed after compila-
tion of the application source code, or at class load time. Enforcer supports both
modes of operation. Static instrumentation takes a set of class files as input and
produces a set of instrumented files as output. Class files requiring no changes
are not copied to the target directory, because the Java classpath mechanism
can be used to load the original version if no new version is present.

Alternatively, Enforcer can be invoked at load-time. In this mode, the new
Java instrumentation agent mechanism is used [34]. Load-time instrumentation
is very elegant in the sense that it does not entail the creation of temporary
files and reduces the entire usage of the enforcer tool to just adding one extra
command line option. There is no need to specify a set of input class files because
each class file is instrumented automatically when loaded at run-time.

For execution of repeated tests, no special reset mechanism is necessary. In
JUnit, each test is self-contained; test data is initialized from scratch each time
prior to execution of a test. Therefore re-execution of a test just recreates the
original data set. After execution of the original and repeated tests, a report is
printed which shows the number of executed methods calls that can throw an
exception, and the number of executed catch clauses which were triggered by
said method calls. If instrumentation occurs at load time, then the number of
instrumented method calls is also shown. The Enforcer output is shown once the
JUnit test runner has finished (see Fig. 5).

4.2 Evaluation of Results

Figure 5 shows a typical output of the Enforcer tool. First, the initial test suite
is run. If it is deterministic, it produces the exact same output as when run by

Exhaustive Testing of Exception Handlers with Enforcer 39

Time: 0.402
OK (29 tests)
*** Total number of instrumented method calls: 37
*** Total number of executed method calls: 32
*** Total number of executed catch blocks: 20
*** Tests with uncovered catch blocks to execute: 12
............
Time: 0.301
OK (12 tests)
*** Total number of executed method calls: 32
*** Total number of executed catch blocks: 32
*** Tests with uncovered catch blocks to execute: 0

Fig. 5. Enforcer output when running the wrapped JUnit test suite

the normal JUnit test runner. This output, resulting in a dot for each successful
test, is not shown in the figure. After the JUnit test suite has concluded, JUnit
reports the total run time and the test result (the number of successful and failed
tests). After the completed JUnit test run, Enforcer reports exception coverage.

If coverage reported is less than 100 %, a new test suite is created, which
improves coverage of exceptions. This repeated test suite is then executed in
the same way the original test suite was run, with the same type of coverage
measurements reported thereafter.

The output can be interpreted as follows: 37 method calls that declare excep-
tions were present in the code executed. Out of these, 32 were actually executed,
while five belong to untested or dead code. 12 uncovered paths from an executed
method call to their corresponding exception handler exist. Therefore, 12 tests
are run again; the second run covers the remaining paths. Note that the sec-
ond run may have covered additional checked method calls in nested try/catch
blocks. This would have allowed increased coverage by launching another test
run to cover nested exceptions [2].

4.3 Suppression of Stack Traces

Exception handlers often handle an exception locally before escalating that ex-
ception to its caller. The latter aspect of this practice is sometimes referred to as
re-throwing an exception, and is quite common [2]. In software that is still under
development, such exception handlers often include some auxiliary output such
as a dump of the stack trace. The reasoning is that such handlers are normally
not triggered in a production environment, and if triggered, the stack trace will
give the developer some immediate feedback about how the exception occurred.
Several projects investigated in a previous case study used this development ap-
proach [2]. If no fault injection tool is used, then this output will never appear
during testing and therefore does not constitute a problem in production usage.

Unfortunately, this methodology also entails that a fault injection tool will
generate a lot of output on the screen if it is used on such an application. While

40 C. Artho, A. Biere, and S. Honiden

it is desirable to test the behavior of all exception handlers, the output containing
the origin of an exception typically does not add any useful information. If an
uncaught exception occurs during unit testing, the test in which it occurs is
already reported by the JUnit test runner. Conversely, exceptions which are
caught and then re-thrown do not have to be reported unless the goal is to get
some immediate visual information about when the exception is handled (as
debugging output).

The stack trace reported by such debugging output may be rather long, and
the presence of many such stack traces can make it difficult to evaluate the
new test log when Enforcer is used. Therefore, it may be desirable to suppress
all exception stack traces that are directly caused by injected faults. The latest
version of the Enforcer tool implements this feature.“Primary”exceptions, which
were injected into the code, are not shown; “secondary”exceptions, which result
as a consequence of an incorrectly handled injected fault, are reported. In most
cases, this allows for a much easier evaluation of the output. Of course it is still
possible to turn this suppression feature off in case a complete report is desired.

4.4 Experiments

Table 1 shows the condensed results of experiments performed [2]. For each case,
the number of tests, the time to run the tests, and the time to run them un-
der Enforcer (where the outcome of exceptions are tested in addition to normal
testing) are shown. Note that out of a certain number of calls to I/O methods,
typically only a small fraction are covered by original tests. Enforcer can cover
most of the missing calls, at an acceptable run-time overhead of factor 1.5 – 5.
(The reason why certain calls are not covered is because tests were not al-
ways fully deterministic, due to concurrency problems or unit tests not being
idempotent.)

Table 1. Results of unit tests and injected exception coverage

Application # Time Time, # exec. # unex. Cov. Cov. Faults
or library tests [s] Enforcer [s] calls catch (orig.) (Enforcer) found

Echomine 170 6.3 8.0 61 54 8 % 100 % 9
Informa 119 33.2 166.6 139 136 2 % 80 % 2
jConfig 97 2.3 4.7 169 162 3 % 61 % 1
jZonic-cache 16 0.4 0.7 8 6 25 % 100 % 0

SFUtils 11 76.3 81.6 6 2 67 % 100 % 0

SixBS 30 34.6 94.3 31 28 10 % 94 % 0

Slimdog 10 228.6 n/aa 15 14 7 % n/a 1
STUN 14 0.06 0.7 0 0 0 % 0 % 0

XTC 294 28.8 35.5 112 112 0 % 92 % 0

a Repeated unit tests could not be carried out successfully because the unit
test suite was not idempotent, and not thread-safe. Enforcer found one fault
before the test suite had to be aborted due to a deadlock.

Exhaustive Testing of Exception Handlers with Enforcer 41

With previous tools [7,17], re-execution of the entire test suite would have
lead to an overhead proportional to the number of test cases, which is orders of
magnitudes higher even for small projects. For instance, the Informa test suite
comprises 119 tests taking about 33 seconds to run. When analyzing that test
suite with a previous-generation fault injection tool, the entire test suite would
have had to be run another 136 times (once for each unexecuted exception), tak-
ing at about an hour and a half, rather than three minutes when using Enforcer.
Enforcer found 12 faults in the given example applications, using only existing
unit tests and no prior knowledge of the applications [2].

5 Related Work

Test cases are typically written as additional program code for the system under
test. White-box testing tries to execute as much program code as possible [28]. In
traditional software testing, coverage metrics such as statement coverage [14,29]
have been used to determine the effectiveness of a test suite. The key problem
with software testing is that it cannot guarantee execution of parts of the sys-
tem where the outcome of a decision is non-deterministic. In multi-threading,
the thread schedule affects determinism. For external operations, the small pos-
sibility of failure makes testing that case extremely difficult. Traditional testing
and test case generation methods are ineffective to solve this problem.

5.1 Static Analysis and Model Checking

Static analysis investigates properties “at compile time”, without executing the
actual program. Non-deterministic decisions are explored exhaustively by veri-
fying all possible outcomes. An over-approximation of all possible program be-
haviors is computed based on the abstract semantics of the program [10]. For
analyzing whether resources allocated are deallocated correctly, there exist static
analysis tools which consider each possible exception location [36].

Model Checking explores the entire behavior of a system by investigating each
reachable state. Model checkers treat non-determinism exhaustively. Results of
system-level operations have been successfully modeled this way to detect failures
in applications [9] and device drivers [5]. Another project whose goal is very close
to that of Enforcer verifies proper resource deallocation in Java programs [24].
It uses the Java PathFinder model checker [35] on an abstract version of the
program, which only contains operations relevant to dealing with resources.

Static analysis (and model checking, if used on an abstract version of the pro-
gram) can only cover a part of the program behavior, such as resource handling.
For a more detailed analysis of program behavior, code execution (by testing) is
often unavoidable. Execution of a concrete program in a model checker is possi-
ble, at least in theory [35]. However, model checking suffers from the state space
explosion problem: The size of the state space is exponential in the size of the
system. In addition to program abstraction, which removes certain low-level or
local operations from a program, non-exhaustive model checking can be applied.

42 C. Artho, A. Biere, and S. Honiden

By using heuristics during state space exploration, states where one suspects an
error to be likely are given preference during the search [20]. The intention is to
achieve a high probability of finding faults even if the entire state space is far
larger than what can be covered by a model checker.

Such heuristics-based model checking, also called directed model checking,
shows interesting similarities to our approach. By being able to store a copy of
the program state before each non-deterministic decision, it can also selectively
test for success or failure of an I/O call. Furthermore, model checking covers all
interleavings of thread executions. The difference to fault injection is that model
checking achieves such coverage of non-determinism on a more fine-grained level
(for individual operations rather than unit tests) and includes non-determinism
induced by concurrency. Model checking does not have to re-execute code up
to a point of decision, but can simply use a previously stored program state to
explore an alternative. However, the overhead of the engine required to store
and compare a full program state still makes model checkers much slower than
normal execution environments such as a Java virtual machine [4]. Model check-
ers also lack optimization facilities such as just-in-time compilers, because the
work required to implement such optimizations has so far always been beyond
the available development capacity.

5.2 Fault Injection

Even though fault injection cannot cover concurrency and has to re-execute
a program up to a given state, it scales much better in practice than model
checking. Fault injection in software is particularly useful for testing potential
failures of library calls [21]. In this context, random fault injection as a black-box
technique has shown to be useful on an application level [15]. Because our goal
is to achieve a high test coverage, we target white-box testing techniques.

In software, two types of fault injection exist: low-level fault injection and high-
level fault injection. Low-level fault injection targets mechanisms on an operating
system level, such as timeouts and processor interrupts. Such fault injection
tools simulate these mechanisms by leveraging corresponding functionality of
the operating system or hardware [8]. Low-level tools are easier to deploy, but
inherently more limited than high-level fault injection tools, which focus on the
application level, where a failure of underlying system code typically manifests
itself as an exception [7,16,17]. High-level tools are more powerful because they
can modify the application code itself. In most cases, the higher-level semantics
of injected faults makes failure analysis easier.

Java is a popular target for measuring and improving exception handling, as
exception handling locations are well defined [19]. Our approach of measuring ex-
ception handler coverage corresponds to the all-e-deacts criterion [31]. The static
analysis used to determine whether checked method calls may generate excep-
tions have some similarity with a previous implementation of such a coverage
metric [17]. However, our implementation does not aim at a precise instrumen-
tation for the coverage metric. We only target checked exceptions, within the
method where they occur. As the generated exceptions are created at the caller

Exhaustive Testing of Exception Handlers with Enforcer 43

site, not in the library method, an interprocedural analysis is not required. Un-
reachable statements will be reported as instrumented, but uncovered checked
method calls. Such uncovered calls never incur an unnecessary test run and are
therefore benign, but hint at poor coverage of the test suite. Furthermore, unlike
some previous work [17], our tool has a run-time component that registers which
unit test may cause an exception. This allows us to re-execute only a particular
unit test, which is orders of magnitude more efficient than running the entire
test suite for each exception site. Finally, our tool can dynamically discover the
need for combined occurrences of failures when exception handling code should
be reached. Such a dynamic analysis is comparable to another fault injection
approach [7], but the aim of that project is totally different: It analyzes failure
dependencies, while our project targets code execution and improves coverage of
exception handling code.

Similar code injection techniques are involved in program steering [23], which
allows overriding the normal execution flow. However, such steering is usually
very problematic because correct execution of certain basic blocks depends on
a semantically consistent program state. Thus program steering has so far only
been applied using application-specific properties [23], or as schedule pertur-
bation [13,32], which covers non-determinism in thread schedules. Our work is
application-independent and targets non-determinism induced by library calls
rather than thread scheduling.

6 Conclusions

Calls to system libraries may fail. Such failures are very difficult to test. Our
work uses fault injection to achieve coverage of such failures. During initial test
execution, coverage information is gathered. This information is used in a re-
peated test execution to execute previously untested exception handlers. The
process is fully automated and still leads to meaningful execution of exception
handlers. Unlike previous approaches, we take advantage of the structure of unit
tests in order to avoid re-execution an entire application. This makes our ap-
proach orders of magnitude faster for large test suites. The Enforcer tool, which
implements this approach, has been successfully applied to several complex Java
applications. It has executed previously untested exception handlers and uncov-
ered several faults. Furthermore, our approach may even partially replace test
case generation.

7 Future Work

Improvements and extensions to the Enforcer tool are still being made. Cur-
rently, a potential for false positives exists because the exact type of a method
is not always known at instrumentation time. Instrumentation then conserva-
tively assumes that I/O failures are possible in such methods. This precision
could be improved by adding a run-time check that verifies the signature of the

44 C. Artho, A. Biere, and S. Honiden

actual method called. Of course this would incur some extra overhead. An im-
provement w. r. t. execution time could be achieved by an analysis of test case
execution time, in order to select the fastest test case for re-execution. Further-
more, an analysis of unit test dependencies could help to eliminate selection of
problematic unit tests, which violate the JUnit contract specifying that a test
should be self-contained and idempotent.

The idea of using program steering to simulate rare outcomes may even be
expanded further. Previous work has made initial steps towards verifying the
contract required by hashing and comparison functions, which states that equal
data must result in equal hash codes, but equal hash codes do not necessarily
imply data equality [1,19]. The latter case is known as a hash code collision, where
two objects containing different data have the same hash code. This case cannot
be tested effectively since hash keys may vary on different platforms and test
cases to provoke such a collision are hard to write for non-trivial hash functions,
and practically impossible for hash functions that are cryptographically secure.
Other mathematical algorithms have similar properties, and are subject of future
work. It is also possible that such ideas can be expanded to coverage of control
structures inside exception handlers, which is still an open problem.

Finally, we are very interested in applying our Enforcer tool to high-quality
commercial test suites. It can be expected that exception coverage will be in-
complete but already quite high, unlike in cases tested so far. This will make
evaluation of test results more interesting.

References

1. Artho, C., Biere, A.: Applying static analysis to large-scale, multithreaded Java
programs. In: Proc. 13th Australian Software Engineering Conference (ASWEC
2001), Canberra, Australia, pp. 68–75. IEEE Computer Society Press, Los Alamitos
(2001)

2. Artho, C., Biere, A., Honiden, S.: Enforcer – efficient failure injection. In: Misra, J.,
Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, Springer, Heidelberg
(2006)

3. Artho, C., Biere, A., Honiden, S., Schuppan, V., Eugster, P., Baur, M., Zweimüller,
B., Farkas, P.: Advanced unit testing – how to scale up a unit test framework. In:
Proc. Workshop on Automation of Software Test (AST 2006), Shanghai, China
(2006)

4. Artho, C., Schuppan, V., Biere, A., Eugster, P., Baur, M., Zweimüller, B.: JNuke:
Efficient Dynamic Analysis for Java. In: Alur, R., Peled, D.A. (eds.) CAV 2004.
LNCS, vol. 3114, pp. 462–465. Springer, Heidelberg (2004)

5. Ball, T., Podelski, A., Rajamani, S.: Boolean and Cartesian Abstractions for Model
Checking C Programs. In: Margaria, T., Yi, W. (eds.) ETAPS 2001 and TACAS
2001. LNCS, vol. 2031, pp. 268–285. Springer, Heidelberg (2001)

6. Bushnell, M., Agrawal, V.: Essentials of Electronic Testing for Digital, Memory
and Mixed-Signal VLSI Circuits. Kluwer Academic Publishers, Dordrecht (2000)

7. Candea, G., Delgado, M., Chen, M., Fox, A.: Automatic failure-path inference:
A generic introspection technique for Internet applications. In: Proc. 3rd IEEE
Workshop on Internet Applications (WIAPP 2003), Washington, USA, p. 132.
IEEE Computer Society Press, Los Alamitos (2003)

Exhaustive Testing of Exception Handlers with Enforcer 45

8. Carreira, J., Madeira, H., Gabriel Silva, J.: Xception: A technique for the experi-
mental evaluation of dependability in modern computers. Softw. Engineering 24(2),
125–136 (1998)

9. Colby, C., Godefroid, P., Jagadeesan, L.: Automatically closing open reactive pro-
grams. In: Proc. SIGPLAN Conf. on Programming Language Design and Imple-
mentation (PLDI 1998), Montreal, Canada, pp. 345–357 (1998)

10. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. 4th
ACM Symposium on Principles of Programming Languages (POPL 1977), Los
Angeles, USA, pp. 238–252. ACM Press, New York (1977)

11. DBUnit (2007), http://www.dbunit.org/
12. Engler, D., Musuvathi, M.: Static analysis versus software model checking for bug

finding. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 191–210.
Springer, Heidelberg (2004)

13. Farchi, E., Nir, Y., Ur, S.: Concurrent bug patterns and how to test them. In: Proc.
20th IEEE Int’l Parallel & Distributed Processing Symposium (IPDPS 2003), Nice,
France, p. 286. IEEE Computer Society Press, Los Alamitos (2003)

14. Fenton, N., Pfleeger, S.: Software metrics: a rigorous and practical approach, 2nd
edn. PWS Publishing Co, Boston, USA (1997)

15. Forrester, J.E., Miller, B.P.: An empirical study of the robustness of windows NT
applications using random testing. In: 4th USENIX Windows System Symposium,
Seattle, USA, pp. 59–68 (2000)

16. Fu, C., Martin, R., Nagaraja, K., Nguyen, T., Ryder, B., Wonnacott, D.: Compiler-
directed program-fault coverage for highly available Java internet services. In: Proc.
2003 Int’l Conf. on Dependable Systems and Networks (DSN 2003), San Francisco,
USA, pp. 595–604 (2003)

17. Fu, C., Ryder, B., Milanova, A., Wonnacott, D.: Testing of Java web services for
robustness. In: Proc. ACM/SIGSOFT Int’l Symposium on Software Testing and
Analysis (ISSTA 2004), Boston, USA, pp. 23–34 (2004)

18. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random testing.
In: Proc. ACM Int’l Conf. on Programming Language Design and Implementation
(PLDI 2005), Chicago, USA, pp. 213–223 (2005)

19. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd
edn. Addison Wesley, Reading (2005)

20. Groce, A., Visser, W.: Heuristics for model checking java programs. Int’l Journal
on Software Tools for Technology Transfer (STTT) 6(4), 260–276 (2004)

21. Hsueh, M., Tsai, T., Iyer, R.: Fault injection techniques and tools. IEEE Com-
puter 30(4), 75–82 (1997)

22. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An
overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–355. Springer, Heidelberg (2001)

23. Kim, M., Lee, I., Sammapun, U., Shin, J., Sokolsky, O.: Monitoring, checking, and
steering of real-time systems. In: Proc. 2nd Int’l Workshop on Run-time Verification
(RV 2002). ENTCS, vol. 70, Elsevier, Amsterdam (2002)

24. Li, X., Hoover, H., Rudnicki, P.: Towards automatic exception safety verification.
In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp.
396–411. Springer, Heidelberg (2006)

25. Link, J., Fröhlich, P.: Unit Testing in Java: How Tests Drive the Code. Morgan
Kaufmann, San Francisco (2003)

26. Meyer, B.: Eiffel: the language. Prentice-Hall, Upper Saddle River (1992)

http://www.dbunit.org/

46 C. Artho, A. Biere, and S. Honiden

27. Microsoft Corporation: Microsoft Visual C# .NET Language Reference. Microsoft
Press, Redmond, USA (2002)

28. Myers, G.: Art of Software Testing. John Wiley & Sons, Chichester (1979)
29. Peled, D.: Software Reliability Methods. Springer, Heidelberg (2001)
30. Sen, K., Agha, G.: CUTE and jCUTE: Concolic unit testing and explicit path

model-checking tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 419–423. Springer, Heidelberg (2006)

31. Sinha, S., Harrold, M.: Criteria for testing exception-handling constructs in Java
programs. In: Proc. IEEE Int’l Conf. on Software Maintenance (ICSM 1999), Wash-
ington, USA, p. 265. IEEE Computer Society Press, Los Alamitos (1999)

32. Stoller, S.: Testing concurrent Java programs using randomized scheduling. In:
Proc. 2nd Int’l Workshop on Run-time Verification (RV 2002), Copenhagen, Den-
mark. ENTCS, vol. 70(4), pp. 143–158. Elsevier, Amsterdam (2002)

33. Stroustrup, B.: The C++ Programming Language, 3rd edn. Addison-Wesley Long-
man Publishing Co, Boston, USA (1997)

34. Sun Microsystems: Santa Clara, USA. Java 2 Platform (Standard edn.) (J2SE) 1.5
(2004), http://java.sun.com/j2se/1.5.0/

35. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Automated Software Engineering Journal 10(2), 203–232 (2003)

36. Weimer, W., Necula, G.: Finding and preventing run-time error handling mistakes.
In: Proc. 19th ACM SIGPLAN Conf. on Object-Oriented Programming Systems,
Languages & Applications (OOPSLA 2004), Vancouver, Canada, pp. 419–431.
ACM Press, New York (2004)

37. White, A.: SERP, an Open Source framework for manipulating Java bytecode,
(2002), http://serp.sourceforge.net/

http://java.sun.com/j2se/1.5.0/
http://serp.sourceforge.net/

Model-Based Test Selection for Infinite-State

Reactive Systems�

Bertrand Jeannet1, Thierry Jéron2, and Vlad Rusu2

1 INRIA Rhônes-Alpes, Montbonnot, France
Bertrand.Jeannet@inrialpes.fr

2 IRISA/INRIA, Campus de Beaulieu, Rennes, France
{Thierry.Jeron,Vlad.Rusu}@irisa.fr

Abstract. This paper addresses the problem of off-line selection of test
cases for testing the conformance of a black-box implementation with
respect to a specification, in the context of reactive systems. Efficient so-
lutions to this problem have been proposed in the context of finite-state
models, based on the ioco conformance testing theory. An extension of
these is proposed in the context of infinite-state specifications, modelled
as automata extended with variables. One considers the selection of test
cases according to test purposes describing abstract scenarios that one
wants to test. The selection of program test cases then consists in syn-
tactical transformations of the specification model, using approximate
analyses.

1 Introduction and Motivation

Testing is the most used validation technique to assess the correctness of reactive
systems. Among the aspects of software that can be tested, e.g., functionality,
performance, timing, robustness, etc, the focus is here on conformance testing
and specialized to reactive systems. This activity has been precisely described
in the context of telecommunication protocols [15].

Conformance testing consists in checking that a black-box implementation of
a system, only known by its interface and its interactions with the environment
through this interface, behaves correctly with respect to its specification. Con-
formance testing then relies on experimenting the system with test cases, with
the objective of detecting some faults with respect to the specification’s external
behaviour, or improve the confidence one may have in the implementation.

Despite the importance of the testing activity in terms of time and cost in
the software life-cycle, testing practice most often remains ad hoc, costly and
of rather poor quality, with severe consequences on the cost and quality of soft-
ware. One solution to improve the situation is to automatize some parts of the
testing activity, using models of software and formal methods. In this context,
for more than a decade, model-based testing (see e.g., [6]) advocates the use of
formal models and methods to formalize this validation activity. The formaliza-
tion relies on models of specifications, implementations and test cases, a formal
� This paper is partly based on [27,18,28].

F.S. de Boer et al. (Eds.): FMCO 2006, LNCS 4709, pp. 47–69, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

48 B. Jeannet, T. Jéron, and V. Rusu

definition of conformance, or equivalently a fault model defining non-conformant
implementations, test selection algorithms, and properties of generated test cases
with respect to conformance.

In the context of reactive systems, the system is specified in a behavioral
model which serves both as a basis for test generation, and as an oracle for
the assignment of verdicts in test cases. Testing theories based on finite-state
models such as automata associated to fault models (see e.g., the survey [20]),
or labelled transition systems with conformance relations (see e.g., [29]) are now
well understood.

Test generation/selection algorithms have been designed based on these the-
ories, and tools like TorX [2], TGV [16], Gotcha [3] among others, have been
developed and successfully used on industrial-size systems.

Despite these advances, some developments are still necessary to improve the
automation of test generation. Crucial aspects such as compositionality (see
e.g., [30]), distribution, real-time or hybrid behavior have to be taken into ac-
count for complex software. In this paper some recent advances made in our
research group are reviewed, which cope with models of reactive systems with
data.

In this paper, models of reactive systems called Input/Output Symbolic Tran-
sition Systems (ioSTS) are considered. These are automata extended with vari-
ables, with distinguished input and output actions, and corresponding to reactive
programs without recursion. Their semantics can be defined in terms of infinite-
state Input/Output Labelled Transition Systems (ioLTS). For ioLTS, the ioco
testing theory [29] defines conformance as a partial inclusion of external be-
haviours (suspension traces) of the implementation in those of the specification.
Several research works have considered this testing theory and propose test gen-
eration algorithms. The focus here is on off-line test selection, where a test case
is built from a specification and a test purpose (representing abstract behaviours
one wants to test), and further executed on the implementation. Test cases are
built directly from the ioSTS model rather than from the enumerated ioLTS
semantic model. This construction relies on syntactical transformations of the
specification model, guided by an approximation of the set of states co-reachable
from a set of final state.

2 Modelling Reactive Systems with Data Using ioSTS

The work presented in this paper targets reactive systems. A model inspired by
I/O automata [24] is proposed and called ioSTS for Input/Output Symbolic Tran-
sition Systems. This model extends labelled transition systems with data, and is
adequate as an intermediate model for imperative programs without recursion
and communicating with their environment. The syntax is first presented, then
its semantics in terms of transition systems, and the section finishes with the
definition of the visible behavior of an ioSTS for testing.

Model-Based Test Selection for Infinite-State Reactive Systems 49

2.1 Syntax of the ioSTS Model

An ioSTS is made of variables, input and output actions carrying communication
parameters carried by actions, guards and assignments. As will be seen later, this
model will serve for specifications, test cases and test purposes. One thus needs
a model general enough for all these purposes.

One important feature of this model is the presence of variables, for which
some notations need to be fixed. Given a variable v and a set of variables V =
{v1, . . . , vn}, Dv denotes the domain in which v takes its values, and DV the
product domain Dv1 × . . .×Dvn . An element of DV is thus a vector of values for
the variables in V . The notation Dv is used for a vector v of variables. Depending
on the context, a predicate P (V) on a set of variables V may be considered either
as a set P ⊆ DV , or as a logical formula, the semantics of which is a function
DV → {true, false}. An assignment for a variable v depending on the set of
variables V is a function of type DV → Dv. An assignment for a set X of
variables is then a function of type DV → DX .

Definition 1 (ioSTS). An Input/Output Symbolic Transition System M is de-
fined by a tuple (V, Θ, Σ, T) where:

– V = Vi ∪ Vx is the set of variables, partitioned into a set Vi of internal
variables and a set Vx of external variables.

– Θ is the initial condition. It is a predicate Θ ⊆ DVi defined on internal
variables. It is assumed that Θ has a unique solution in DVi .

– Σ = Σ? ∪ Σ! is the finite alphabet of actions. Each action a has a signature
sig(a), which is a tuple of types sig(a) = 〈t1, . . . , tk〉 specifying the types of
the communication parameters carried by the action.

– T is a finite set of symbolic transitions. A symbolic transition t =
(a, p, G, A), also written [a(p) : G(v, p) ? v′

i := A(v, p)], is defined by
• an action a ∈ Σ and a tuple of (formal) communication parameters p =

〈p1, . . . , pk〉, which are local to a transition; without loss of generality, it
is assumed that each action a always carries the same vector p, which is
supposed to be well-typed w.r.t. the signature sig(a) = 〈t1, . . . , tk〉; Dp is
denoted by Dsig(a);

• a guard G ⊆ DV × Dsig(a), which is a predicate on the variables (inter-
nal and external) and the communication parameters. It is assumed that
guards are expressed in a theory in which satisfiability is decidable;

• an assignment A : DV × Dsig(a) → DVi , which defines the evolution of
the internal variables. Av : DV × Dsig(a) → Dv denotes the function in
A defining the evolution of the variable v ∈ Vi.

This model is rather standard, except for the distinction between internal and
external variables. The external variables allow an ioSTS M1 to play the rôle of
an observer (used later to formalize test purposes) by inspecting the variables of
another ioSTS M2 when composed together with it. There is no explicit notion
of control location in the model, since the control structure of an automaton can
be encoded by a specific program counter variable (this will be the case in all
examples).

50 B. Jeannet, T. Jéron, and V. Rusu

Example 1. A simple example of ioSTS, that will serve as a running example, is
described in Figure 1. The ioSTS S has two internal variables x and y, plus a
program counter pc taking its values in {Rx, Ry, Cmp, End}. It has one input
action in and three output actions end, ok and nok, and a communication pa-
rameter p. For readability, inputs are prefixed by ? and outputs by ! in examples
and figures, but these marks do not belong to the alphabet.

Initially, x and y are set to 0, and pc to the location Rx. In Rx, the process
either sends an output end and stops in End, or waits for an input in, carrying
a value of the parameter p which is stored in x, and moves to Ry. In Ry, the
value of the input parameter p of in is stored in y and the process moves to
Cmp. In Cmp, either y − x ≥ 2 and the output ok is sent with this difference,
or y − x < 2 and nok is sent. In both cases the process loops back in Rx.

x = y = 0

!nok(p)

!end

CmpRyRx

End
!ok(p)

p = y − x ∧ p ≥ 2

p = y − x ∧ p < 2

x := p

?in(p)

y := p

?in(p)

Fig. 1. ioSTS example S

The use of external variables is motivated by the ioSTS of Figure 4 which
represents an observer T P for S. It has no internal variable (but could have, e.g.
a counter), but has an external variable x observing the internal variable x of S
by synchronization of S and T P .

2.2 Semantics of ioSTS

The ioSTS model is a syntactic model allowing to define infinite-state transition
systems. The semantics of an ioSTS is an input/output labelled transition sys-
tems (ioLTS), i.e. a labelled transition systems (LTS) with distinguished inputs
and outputs. This ioLTS semantics is formally defined as follows:

Definition 2 (ioLTS semantics of an ioSTS). The semantics of an ioSTS
M = (V, Θ, Σ, T) is an ioLTS �M� = (Q, Q0, Λ, →) where:

– Q = DV is the set of states;
– Q0 = {ν = 〈νi, νx〉 | νi ∈ Θ ∧ νx ∈ DVx} is the subset of initial states;
– Λ = {〈a, π〉 | a ∈ Σ ∧ π ∈ Dsig(a)} is the set of valued actions partitioned

into valued inputs Λ?, and valued outputs Λ!;

Model-Based Test Selection for Infinite-State Reactive Systems 51

– the transition relation → is defined by

(a, p, G, A) ∈ T ν = 〈νi, νx〉 ∈ DV π ∈ Dsig(a) ν ′ = 〈ν ′
i, ν

′
x〉 ∈ DV

G(ν , π) ν ′
i = A(ν, π)

ν
〈a,π〉→ ν ′

(Sem)

A state of the ioLTS is composed of a valuation of the internal and external vari-
ables of the ioSTS. In the initial state, the value of internal variables is uniquely
defined by Θ, while the value of external variables is arbitrary. Transitions are
labeled by valued actions composed of an action name and a valuation of com-
munication parameters. The rule (Sem) says that a transition (a, p, G, A) of an
ioSTS can be fired in a state ν = 〈νi, νx〉, if there exists a valuation π of the
communication parameters p such that 〈ν, π〉 satisfies the guard G; in such a
case, the valued action 〈a, π〉 is taken, the internal variables are assigned new
values as specified by the assignment A. External variables behave similarly as
volatile variables in the C language, by taking arbitrary values when a transition
is taken. This reflects the fact that their value is defined by another ioSTS.

The semantics of an ioSTS may be an infinite-state ioLTS, because variables
may have infinite domains. These ioLTS may also have infinite branching as
communication parameters may also have infinite domains.

Notations, runs and traces. Given this semantics, some notions and properties
of ioSTS are defined in terms of their underlying ioLTS semantics. As usual for
ioLTS, q

α→ q′ is used for (q, a, q′) ∈→ and q
α→ for ∃q′, q α→ q′. For a sub-alphabet

Λ′ ⊆ Λ, a state q of M is said Λ′-complete if ∀α ∈ Λ′ : q
α→. It is complete if

it is Λ-complete. The ioLTS �M� is Λ′-complete (resp. complete) if all its states
are Λ′-complete (resp. complete). Note that these completeness conditions can
be defined on ioSTS: an ioSTS M is Σ′-complete for Σ′ ⊆ Σ, if for any a ∈ Σ′,∧

(a,p,G,A)∈T ¬G is unsatisfiable (otherwise said ∀a ∈ Σ′,
∨

(a,p,G,A)∈T G = true).
Using the ioLTS semantics, one can now define the behavior of an ioSTS. A

run of an ioSTS M is an alternate sequence of states and valued actions ρ =
q0α0q1 . . . αn−1qn ∈ Q0.(Λ.Q)∗ s.t. ∀i, qi

αi→ qi+1. For a set F ⊆ Q, the run ρ is
accepted in F if qn ∈ F . Runs(M) denotes the set of runs of M and RunsF (M)
denotes the set of accepted runs in F . When modelling the testing activity, we
consider that variables and locations, thus states of the ioLTS semantics, cannot
be observed by the environment. So abstractions of runs have to be considered,
where states are abstracted away. A trace of a run ρ ∈ Runs(M) is the projection
proj Λ(ρ) of ρ on actions. Traces(M) � proj Λ(Runs(M)) denotes the set of
traces of M and TracesF (M) � proj Λ(RunsF (M)) is the set of traces of runs
accepted in F .

The notion of trace leads to the notion of determinism and to the determiniza-
tion operation. Determinism can be defined at the syntactical level for ioSTS.

Definition 3 (Deterministic ioSTS). An ioSTS M = (V, Θ, Σ, T) is deter-
ministic if for any action a ∈ Σ, and any pair of transitions t1 = (a, p, G1, A1)

52 B. Jeannet, T. Jéron, and V. Rusu

and t2 = (a, p, G2, A2) carrying the same action, the conjunction of the guards
G1 ∧ G2 is unsatisfiable.

Whether an ioSTS is deterministic or not can thus be decided as soon as satis-
fiability of guards is decidable. Note that an ioSTS M = (V, Θ, Σ, T) with only
internal variables, i.e., V = Vi (this will be the case for specifications) is deter-
ministic if and only if �M� is deterministic. When the set of external variables
Vx is non-empty this is not true anymore, as assignments do not constrain Vx.

For the sake of simplicity, we already restricted our attention to ioSTS with
no internal actions. We focus further to deterministic ioSTS specifications. In-
ternal actions can be handled if there is no loop of internal actions, and non-
deterministic ioSTS may be handled, at least for a sub-class of ioSTS where
non-determinism can be solved with bounded look-ahead. For this class, there
is a determinization procedure that transforms a non-deterministic ioSTS in a
deterministic one with same set of traces [19].

2.3 Visible Behaviour for Testing

During conformance testing, the tester stimulates inputs of the system under
test, and observes its outputs. In testing practice, absence of output, called qui-
escence, is also observed using timers, with the assumption that timeout values
are large enough such that, if a timeout occurs, the system is indeed quiescent.
The tester should indeed be able to distinguish between specified and unspeci-
fied quiescence. But as trace semantics does not preserve quiescence in general,
possible quiescence should be made explicit on the specification. This trans-
forms traces into suspension traces [29] (i.e., traces with possible quiescence
between actions). For ioLTS, the transformation, denoted Δ consists in adding
a self-loop labelled with a new output δ in each quiescent state. Suspension is
defined as follows for ioSTS with the expected effect on the ioLTS semantics
(i.e. �Δ(M)� = Δ(�M�)):

Definition 4 (Suspension for ioSTS). For an ioSTS M = (V, Θ, Σ, T) with
alphabet Σ = Σ!∪Σ?, the suspension of M is the ioSTS Δ(M) = (V, Θ, Σδ, Tδ)
where

– the alphabet is increased by a new output: Σδ = Σδ
! ∪Σ? with Σδ

! = Σ! ∪{δ},
– new loop transitions labelled by δ are added: Tδ = T ∪ {〈δ, Gδ, IdV 〉} with

Gδ = ¬

⎛

⎝
∨

(a,p,G,A)∈T, a∈Σ!

∃π ∈ Dsig(a) : G(ν, π)

⎞

⎠

Gδ evaluates to true when no value ν of variables and π of communication
parameter can be chosen such that an output can be fired. Transition δ can thus
be fired when no output can be fired, and loops in the same state1.
1 Note that the satisfiability of Gδ is decidable, as it is the negation of the conjunction

of guards G, which satisfiability is assumed decidable.

Model-Based Test Selection for Infinite-State Reactive Systems 53

Example 2. The suspension ioSTS of the ioSTS S of Figure 1 is represented in
Figure 2. In this example guards of δ actions are either true in locations End
and Ry, or false and discarded in other locations.

!δ

!nok(p)

!end

CmpRyRx

End
!ok(p)

p = y − x ∧ p ≥ 2

p = y − x ∧ p < 2

x := p

?in(p)

y := p

?in(p)

x = y = 0

!δ

Fig. 2. Suspension ioSTS Δ(S)

For an ioSTS M modelling a reactive system, the visible behaviour considered
for testing is then composed of the traces of its suspension Δ(M). This is denoted
STraces(M) � Traces(Δ(M)). This set of suspension traces is considered as the
reference behavior for testing conformance with respect to S.

3 Conformance Testing Theory

The ioco testing theory of [29] can be reformulated in the context of specifications
described by ioSTS. This mainly consists in precising how to model specifications,
implementations and test cases, in formally defining conformance as a relation
between specification and implementations, and last in modelling test executions
and defining their verdicts.

Additionally, properties of test cases that relate verdicts of test executions
to conformance should be required: rejection by a test case should mean non-
conformance and any non-conformance should be detectable. These properties
should be satisfied by the test cases which are automatically generated by our
algorithms.

In terms of models for specifications, implementations and test cases, the
following is assumed:

– the specification is a deterministic ioSTS S = (V S , ΘS , Σ, T S), with Σ =
Σ! ∪ Σ? and V S

x = ∅ (S has only internal variables), with ioLTS semantics
�S� = S = (Q, Q0, Λ, →) with Λ = Λ! ∪ Λ?.

– the implementation is modelled by a (possibly non-deterministic) ioLTS I =
(QI , Q

0
I , Λ! ∪Λ?, →I) having the same interface as S. I is also assumed to be

54 B. Jeannet, T. Jéron, and V. Rusu

Λ?-complete2, and let Δ(I) be its suspension ioLTS. Implementations are
indeed unknown, but in order to reason about conformance, specification
models need to be related to models of implementations. This is the classical
test hypothesis.

– A test case for the specification ioSTS S is a deterministic ioSTS T C =
(V TC , ΘTC , ΣTC , TTC), where ΣTC

? = Σ! and ΣTC
! = Σ? (actions are

mirrored w.r.t. S), equipped with a variable Verdict ∈ V TC of the enu-
merated type {none, fail, pass, inconc}. Intuitively, fail means rejection,
pass means that some targeted behaviour has been reached (this will be
clarified later) and inconc means that targeted behaviours cannot been
reached anymore. T C is assumed to be ΣTC

? -complete in all states where
Verdict = none. This means that T C is ready to react to any output of the
implementation, except when a verdict is reached and the execution stops.
Let TC = �T C� = (QTC , qTC

0 , ΛTC , →TC) denote the ioLTS semantics of
T C. One denotes by Fail = (Verdict = fail), Pass = (Verdict = pass), and
Inconc = (Verdict = inconc) the subsets of QTC where verdicts are emitted.

Conformance relation. In this setting, a conformance relation defines the set of
correct ioLTS implementations I of an ioSTS specification S. In this paper, the
usual ioco relation of Tretmans [29] is considered. This relation defines confor-
mance as a partial inclusion of suspension traces. A definition which is equivalent
to the original one can be given as follows.

Definition 5 (Conformance). Let I be an implementation and S a specifica-
tion of I. The ioco conformance relation is defined as:

I ioco S � STraces(I) ∩ NC STraces(S) = ∅

where NC STraces(S) = STraces(S) · (Λ! ∪ {δ}) \ STraces(S).

The set of traces NC STraces(S) thus exactly characterizes the set of non-
conformant behaviours: I is non-conformant as soon as it may exhibit a sus-
pension trace of S extended with an unspecified output or unexpected quies-
cence. Interestingly, this formulation of ioco explicits the fact that conformance
to a given specification is indeed a safety property of I in the usual meaning:
conformance w.r.t. S is violated if I exhibits a finite trace in NC STraces(S).

It is possible to characterize NC STraces(S) by an ioSTS observer accepting
exactly this set of traces. This ioSTS called canonical tester is built from Δ(S)
as follows:

Definition 6 (Canonical Tester). Let S = (V S , ΘS , Σ, T S) be a deter-
ministic ioSTS for the specification and Δ(S) = (V S , ΘS , Σδ, T S

δ) its sus-
pension. The canonical tester for S is the (deterministic) ioSTS Can(S) =
(V Can , ΘCan , ΣCan , TCan) such that

2 This ensures that the composition of I with a test case TC never blocks because of
non-implemented inputs.

Model-Based Test Selection for Infinite-State Reactive Systems 55

– V Can = V S ∪{Verdict} where Verdict is of the enumerated type {none, fail}
– ΘCan = ΘS ∧ Verdict = none;
– ΣCan

? = Σδ
! and ΣCan

! = Σ? (the input-output alphabet is mirrored w.r.t.
Δ(S))

– TCan is defined by the rules:

t ∈ T S

t ∈ TCan (Keep T S)

a ∈ Σδ
! = ΣCan

? Ga =
∧

(a,p,G,A)∈T S ¬G
[
a(p) : Ga(v, p) ? Verdict′ := fail

]
∈ TCan

(Input-completion)

It is easy to see that Can(S) is a test case by itself: it is deterministic and
ΣCan

? -complete in all states where Verdict = none. Moreover it exactly char-
acterizes non-conformant behaviours as TracesFail(Can(S)) = NC STraces(S).
Consequently conformance can be written:

I ioco S ⇐⇒ STraces(I) ∩ TracesFail(Can(S)) = ∅

If I was known, verifying conformance could be reduced to a reachability
problem: check whether Fail is reachable in the synchronous product of ioLTS
I × �Can(S)�. This may be difficult when �Can(S)� is infinite.

However, as I is unknown, one can only make experiments with selected test
cases, providing inputs and checking that outputs and quiescences of I are speci-
fied in S. This entails that, except in simple cases, conformance cannot be proved
by testing, only non-conformance witnesses can be exhibited.

Example 3. The Figure 3 represents an abstract view of the canonical tester of
the example specification S of Figure 1. For example, in location Cmp, there
should be a transition labelled by the input ?ok with guard p �= y − x ∨ p < 2,
a transition labelled by the input ?nok with guard p �= y − x ∨ p ≥ 2 and
a transition labelled by the input ?end with guard true, all these transitions
having the assignment Verdict := fail. Rather than explicitly describing guards
of added transitions, all these transitions are represented by a single transition
with label ?otherwise and target location Fail from the meta-location composed
of all locations.

Test execution. The execution of a test case on an implementation is now con-
sidered. This execution is naturally modelled as a composition of processes. As
quiescence of I is observed during testing, the composition is with Δ(I) which
explicits this quiescence. Formally, the execution of a test case T C on an imple-
mentation I is modelled by the parallel composition of TC = �T C� with Δ(I)
with synchronization on common actions.

Definition 7 (Test execution). Let Δ(I) = (QI , QI
0, Λ! ∪ {δ} ∪ Λ?, →Δ(I))

and TC = (QTC , qTC
0 , Λ? ∪ Λ! ∪ {δ}, →TC). The test execution of TC on the

implementation I is modelled by the parallel composition of Δ(I) and TC , which

56 B. Jeannet, T. Jéron, and V. Rusu

?otherwise

CmpRyRx

End
p = y − x ∧ p ≥ 2

p = y − x ∧ p < 2

x := p y := px = y = 0

Fail

?δ ?end

?ok(p)

!in(p)!in(p)

?δ

?nok(p)

Fig. 3. Canonical tester Can(S)

is the ioLTS Δ(I)‖TC = (QI × QTC , QI
0 × {qTC

0 }, Λ! ∪ {δ} ∪ Λ?, →Δ(I)‖TC)
where →Δ(I)‖TC , is defined by the rule:

α ∈ Λ! ∪ {δ} ∪ Λ? q1
α→Δ(I) q2 q′1

α→TC q′2
(q1, q′1)

α→Δ(I)‖TC (q2, q′2)

With this definition, it is clear that Traces(Δ(I)‖TC) = STraces(I) ∩
Traces(TC) = STraces(I) ∩ Traces(T C). For P ∈ {Fail, Pass, Inconc}, one also
has TracesQI×P (Δ(I)‖TC) = STraces(I) ∩ TracesP (TC).

A test case rejects an implementation when the Verdict variable reaches the
value fail. The possible rejection of I by TC is then defined by the fact that
Δ(I)‖TC may lead to Fail in TC : TC mayfail I � TracesQI×Fail(Δ(I)‖TC) �= ∅
which is equivalent to STraces(I) ∩ TracesFail(TC) �= ∅. Similar definitions can
be given for maypass and mayinconc.

Test case properties. Test generation/selection algorithms should produce test
cases with properties relating rejection with non-conformance. Formally,

Definition 8 (Soundness, exhaustiveness). Let TS be a set of test cases.
TS is said complete if it is both sound and exhaustive where:

– TS is sound � ∀I : (I ioco S =⇒ ∀TC ∈ TS : ¬(TC mayfail I)), i.e., only
non-conformant implementations can be rejected by a test case in TS.

– TS is exhaustive � ∀I : (¬(I ioco S) =⇒ ∃TC ∈ TS : TC mayfail I), i.e.,
any non-conformant implementation can be rejected by a test case in TS.

Using the facts that I ioco S is equivalent to STraces(I)∩TracesFail(Can(S)) = ∅
and that TC mayfail I is equivalent to STraces(I) ∩ TracesFail(TC) �= ∅, one
can prove the following properties:

Model-Based Test Selection for Infinite-State Reactive Systems 57

Proposition 1. Let TS be a set of test cases for the specification S,
TS is sound iff

⋃
TC∈TS TracesFail(TC) ⊆ TracesFail(Can(S)),

TS is exhaustive iff
⋃

TC∈TS TracesFail(TC) ⊇ TracesFail(Can(S)).

The proposition says that sound test cases are sub-observers of Can(S), and that
an exhaustive test suite must reject all implementations rejected by Can(S), and
thus should cover all these non-conformance detections. It immediately follows
that the canonical tester Can(S) alone forms a complete test suite. In some sense
Can(S) is the most general testing process for conformance w.r.t. S.

Taking a close look at test generation algorithms for ioco which define com-
plete test suites, one notice that all these algorithms produce an infinite number
of unfoldings of Can(S) covering all Fail traces.

Despite the nice properties of Can(S), in practice it cannot be used directly
as a test case. In fact, one wants to select individual test cases focused on some
particular behaviour. In particular one often avoids the choice between two out-
puts in a test case, as outputs are controllable by the tester. Selection of a sound
test suite will then be based on the selection of sub-behaviours of Can(S). A
consequence of this selection is that exhaustiveness is often lost if only a finite
number of test cases is selected. However, the selection algorithm should remain
limit exhaustive: for any non-conformant implementation, the algorithm should
be able to select a test case that could reject this implementation. In other
words, the infinite set of test cases that could be selected should be exhaustive.
This is important as this guarantees that any non-conformance is detectable.
The contrary would mean that the selection algorithm is too weak, or that the
conformance relation is too strong compared to the capability of test cases to
distinguish between conformant and non-conformant behaviors.

4 Test Selection for ioSTS

In this section, the selection of ioSTS test cases from an ioSTS specification
S is explained. As explained previously, test selection consists in extracting a
sub-observer of the non-conformance observer Can(S). The first step consists in
constructing the ioSTS Can(S), using Definition 6.

4.1 Test Purposes and Test Selection Problem

Several means have been investigated for test selection including random or
non-deterministic generation, test purposes, coverage criteria, etc. This paper
focuses on the selection of test cases by test purposes. Intuitively, a test purpose
describes some abstract behaviours one wants to test. A test purpose is here
formally defined as an ioSTS equipped with a set of accepting locations playing
the role of a non-intrusive observer.

Definition 9 (Test purpose). A Test Purpose for a specification ioSTS S =
(V, Θ, Σ = Σ! ∪ Σ?, T), is a deterministic ioSTS T P = (V TP , ΘTP , Σδ, TTP)
such that

58 B. Jeannet, T. Jéron, and V. Rusu

– V TP
x = V S

i : test purposes are allowed to observe the internal state of S;
– V TP

i ∩ V S
i = ∅ and V TP

i contains a program counter variable pcTP with
accept ∈ DpcTP . Its set of accepting states is denoted by Accept = (pcTP =
accept).

– T P should be complete except when pcTP = accept, which means that for
any action a ∈ Σδ, pcTP �= accept ⇒

∨
(a,p,G,A)∈TTP G = true. This en-

sures that T P does not restrict the runs of S before they are accepted (if
ever).

Example 4. An example of test purpose is described in Figure 4. It specifies
that one wants to select behaviors of S ending with ok(2) when the value of x is
greater than 3, without any output nok and no output ok(p) with p �= 2 or when
x < 3. The label “*” is used for completion, and means “any action with guard
being the negation of the conjunction of guards on specified transitions carrying
this action”. This test purpose describes behaviors in an abstract way since one
can focus on some actions of interest without explicitly specifying intermediate
ones.

accept

∗

true

!ok(p)

¬(p = 2 ∧ x ≥ 3)
!nok(p)

!ok(p)

p = 2 ∧ x ≥ 3

Wait

Sink ∗

Fig. 4. ioSTS test purpose T P

The role of a test purpose is to select runs of Can(S) accepted by T P. Re-
member that runs are languages where both actions and states have meanings.
The usual way to define such an intersection of languages in the case of ioLTS,
is to perform a synchronous product. This can be extended to runs by synchro-
nizing states. An operation with similar effect on the ioLTS semantics, can be
defined on ioSTS, thus defined at a syntactical level, where transitions with same
actions synchronize on the conjunction of their guards, and synchronization of
states is preformed by the observation of external variables. A general definition
could be given, but it is specialized here to the product of the canonical tester
of a specification and a test purpose, for its use in test selection. Formally,

Definition 10 (Synchronous product of ioSTS). Let Can(S) =
(V Can , ΘCan , Σδ, TCan) be the canonical tester of S and T P =
(V TP , ΘTP , Σδ, TTP) a test purpose with V TP

x = V Can
i . The synchronous prod-

uct of Can(S) and T P is the ioSTS P = Can(S) × T P = (V P , ΘP , ΣCan , T P)
where

Model-Based Test Selection for Infinite-State Reactive Systems 59

– V P = V P
i ∪ V P

x , with V P
i = V Can

i ∪ V TP
i and V P

x = ∅;
– ΘP (〈vCan , vTP 〉) = ΘCan(vCan) ∧ ΘTP (vTP);
– T P is defined by the following inference rule:

[a(p) : Gc(vc, p) ? (vc
i)

′ := Ac(vc, p)] ∈ TCan

[a(p) : Gt(vt, p) ? (vt
i)

′ := At(vt, p)] ∈ TTP

[a(p) : Gc(vc, p) ∧ Gt(vt, p) ?
(vc

i)
′ := Ac(vc, p), (vt

i)
′ := At(vt, p)] ∈ T P

Let P ′ be the ioSTS obtained by adding the assignment Verdict := pass to all
transitions with assignment pc′ := accept.

Example 5. The synchronous product of Can(S) and T P for our running exam-
ple is (partly) described in Figure 5. Note for example the synchronization on
the input ok of guards p = y − x ∧ p ≥ 2 of S with p = 2 ∧ x ≥ 3 from T P .

V erdict = none

x = y = 0
Rx,Wait

?in(p)

x := p
Ry,Wait

?in(p)

y := p
Cmp,Wait

Rx,Sink

!δ

Fail

!otherwise

p = y − x ∧ p < 2

!ok(p)

¬(p = 2 ∧ x ≥ 3)∧
p = y − x ∧ p ≥ 2

p = y − x ∧ p ≥ 2
p = 2 ∧ x ≥ 3∧

!ok(p)
!nok(p)

!end

!δ

End,Wait

Rx, accept
V erdict := pass

Fig. 5. Synchronous product Can(S) × T P

As T P is non-intrusive (it observes but does not modify S variables),
one gets Traces(P ′) ⊆ Traces(Can(S)) and TracesFail(P ′) = Traces(P ′) ∩
TracesFail(Can(S)). This means that P ′ detects every non-conformance along
its traces. It is thus a sound test case.

One also has TracesPass(P ′) = TracesAccept(P) ⊆ STraces(S) ∩
TracesAccept(T P). This inclusion on traces comes from an equality on runs, lost
by projection: even if a run of Can(S) has the same trace as an accepted run, it
may be not accepted by T P because of a condition on its variables observed by
T P . Depending on the considered distinguished states Fail or Pass, the ioSTS
observer P ′ is both an observer of non-conformant traces and an observer of
traces of accepted runs.

It has been shown that P ′ is a sound test case. However, as it is an unfolding
of Can(S), no selection has been performed yet. Selection is now needed by

60 B. Jeannet, T. Jéron, and V. Rusu

focusing on traces accepted in Pass. Ideally, one would like to select exactly
TracesPass(P ′), plus unspecified outputs prolonging prefixes of these traces into
Fail (i.e., traces in NC STraces(S)), denoting detection of non-conformance.

However, the implementations which are considered, even if they are determin-
istic, are non-controllable: their output behaviour is not completely determined
by inputs. Thus, after a trace, the tester should consider all possible outputs:
those from which Pass is reachable or Fail is reached, but also those after which
Pass is not reachable anymore. In this last case, this divergence should be de-
tected as soon as possible, and the Inconc verdict should be set.

This reduces to the problem of computing the set coreach(Pass) of states
from which Pass is reachable. This set can be described by a least fix-point:
coreach(Pass) = lfp(λX.Pass ∪ pre(X)) where pre(X) = {q | ∃q′ ∈ X, ∃α ∈ Λ :
q

α→ q′} is the set of states from which X can be reached in one transition. The
computation of coreach(Pass) is easy for finite-state systems and can be solved
with graph algorithms, as is done in the context of test selection for (finite-
state) ioLTS by the TGV tool [16]. However, coreach(Pass) is not computable
for ioSTS models which have an infinite-state ioLTS semantics. Coping with
this computability problem is the subject of the next subsection.

4.2 Approximate Analysis for Test Selection

Faced to this non-computability problem, the proposed solution consists in re-
lying on an over-approximate co-reachability analysis. Using this approximate
analysis, the ioSTS P ′ is transformed into a test case ioSTS T C by constraining
outputs and detecting inconclusive inputs using syntactical transformations of
guards of transitions.

Let P ′ = (V P ′
, ΘP ′

, ΣCan , T P ′
) as defined by Def. 10. Assume that an over-

approximation coreachα ⊇ coreach(Pass) of the exact set of states co-reachable
from Pass has been computed. It is assumed that coreachα is represented by a
logical formula.

Moreover, given a set of states X ∈ Dv represented by a formula X(v), let
pre(A)(X)(v, p) denote the precondition of X by an assignment A : Dv × Dp

→ Dv:

pre(A)(X)(v, p) = ∃v′ : X(v′) ∧ v′ = A(v, p) = X(A(v, p))

In other words, pre(A)(X)(v, p) represents the set of values of variables v and
parameters p from which X is reached after the assignment A. Note that the
operator pre(A) is monotone. Let preα(A)(X) ⊇ pre(A)(X) denote a monotone
over-approximation of pre(A)(X).

In this context, preα(A)(coreachα) is an over-approximation of the set of val-
ues for variables and parameters which allow to stay in coreach(Pass) when taking
a transition (a, p, G, A), or in other words it is a necessary condition to stay in
coreach(Pass). Its negation is thus a sufficient condition to leave coreach(Pass).

Using these approximate analyses, and the remarks above, a test case can
be constructed from P ′ as follows. The test case for S and T P is the ioSTS

Model-Based Test Selection for Infinite-State Reactive Systems 61

T C = (V P ′
, ΘP ′

, ΣCan , T T C) where T T C is defined by

(a, p, G, A) ∈ T P ′
a ∈ ΣCan

!
G′ = preα(A)(coreachα)
(a, p, G ∧ G′, A) ∈ T T C

(Select)

(a, p, G, A) ∈ T P ′
a ∈ ΣCan

? AVerdict = Verdict′ := fail
(a, p, G, A) ∈ T T C (Fail)

(a, p, G, A) ∈ T P ′
a ∈ ΣCan

? AVerdict �= Verdict′ := fail
G′ = preα(A)(coreachα)

(a, p, G ∧ G′, A), (a, p, G ∧ ¬G′, A′) ∈ T T C

where A′ is defined by
{

A′
Verdict = Verdict′ := inconc,

A′
v = Av for v �= Verdict,

(Split)

The rule (Select) constrains the guards of all output transitions such that
their post-conditions lead to coreachα, which is an over-approximation of the
set of states leading to pass. The intuition is that the tester controls its output
transitions, thus may restrict them in G′ = preα(A)(coreachα) so as to have a
chance to stay in the over-approximate co-reachable state-space coreachα after
the transition is fired. The rule (Fail) keeps input transitions leading to the
fail verdict. The rule (Split) is illustrated by Figure 6. The rule splits the input
transitions not leading to Fail using a conjunction with guards G′ and ¬G′: for
values of variables and parameters that certainly do not lead to coreachα (i.e.,
when ¬G′ is true), the inconc verdict is emitted, while for values of variables
and parameters that may lead to coreachα (i.e., when G is true) nothing is
changed. The intuition is that input transitions cannot be controlled, but the
bad situations from which the verdict pass is not reachable may still be detected.
In such a case, the verdict inconc is emitted. Note that the ioLTS semantics of
T C is different from the semantics of P ′, in particular some output transitions
have been removed by rule (Select).

The test case can be further simplified (but without modifying its seman-
tics) with an over-approximation reachα(ΘP ′

) of its reachable states reach(ΘP ′
)

where reach(ΘP ′
) = lfp(λX.ΘP ′ ∪ post(X)) with post(X) = {q′ | ∃q ∈ X, ∃α ∈

Λ : q
α→ q′} being the set of states reachable from X in one transition. The

simplification consists in removing transitions of which the guards are unsatis-
fiable in the over-approximation reachα(ΘP ′

) of the set of reachable states i.e.,
transitions (a, p, G, A) where G ∧ reachα(ΘP ′

) simplifies to false.

Example 6. The computation of coreachα for our running example is described
in Figure 7 where the formula is split in boxes attached to each location. The
resulting test case, obtained after this co-reachability analysis is represented in
Figure 8 (in this figure formulas in boxes will be considered later). In this simple
case, an over-approximate analysis based on polyhedra gives an exact result.
The effect of the analysis and application of rules is to constrain the guard of
the first output in with p ≥ 3 (thus to remove the controllable output in with
guard p < 3 as this certainly leads outside coreach(Pass)), and to constrain the

62 B. Jeannet, T. Jéron, and V. Rusu

G

v′ := A(v, p)Verdict′ := inconcv′ := A(v, p)

coreachα

Inconc

G ∧ G′
?a(p)

G ∧ ¬G′
?a(p)

v′ := A(v, p)?a(p)
coreach(Pass)

Pass

Fig. 6. Illustration of the rule (Split)

V erdict := pass

x = y = 0
Rx,Wait

x := p
Ry,Wait

y := p
Cmp,Wait

Rx,Sink

?δ

Fail

?otherwise

!in(p) !in(p) p = y − x ∧ p ≥ 2
p = 2 ∧ x ≥ 3∧

?ok(p)

¬(p = 2 ∧ x ≥ 3)∧
p = y − x ∧ p ≥ 2

?ok(p) ?nok(p)

p = y − x ∧ p < 2

x ≥ 3
x ≥ 3
y − x = 2

false

false

truetrue

?end

?δ

End,Wait

Rx, accept
V erdict = none

Fig. 7. Computation of coreachα

second output in with p = x + 2 (thus remove the controllable output in with
p �= x + 2 as this certainly leads outside coreach(Pass)).

A reachability analysis on the resulting test case (in boxes attached to loca-
tions in Figure 8) allows to further simplify the test case into the one represented
in Figure 9). The two transitions from Cmp, Wait to Inconc can be removed: in
fact reachability in Cmp, Wait gives y − x = 2 ∧ x ≥ 3, thus the guard of the
transition labelled by nok (p = y −x∧p < 2) simplifies to false in this context,
as well as the guard of ok. This illustrates the fact that constraining the guards
of outputs using an over-approximate co-reachability analysis can suppress some
paths not leading to Pass.

In such a case where the analysis is exact, the resulting test case is optimal
(but not perfect) with respect to its ability to force the reachability to Pass.
Nevertheless some uncontrollable actions leading to Inconc may persist: this is the
case in our example for the end input which cannot be avoided. A less accurate
approximation would give a less selected test case with more possibilities to

Model-Based Test Selection for Infinite-State Reactive Systems 63

V erdict = none

x = y = 0
Rx,Wait

x := p
Ry,Wait

y := p
Cmp,Wait

?δ

Fail

?δ

?nok(p)

p = y − x ∧ p < 2

?ok(p)

?otherwise

x ≥ 3
y = 0

y − x = 2
x ≥ 3

true

true

x = y = 0

x = y = 0

p = y − x ∧ p ≥ 2
p = 2 ∧ x ≥ 3∧

¬(p = 2 ∧ x ≥ 3)∧
p = y − x ∧ p ≥ 2

?ok(p)

Pass

?end

Inconc

Inconc

V erdict := pass

!in(p)

p ≥ 3

!in(p)

p = x + 2

V erdict := inconc V erdict := inconc

V erdict := inconc

Fig. 8. Resulting test case T C and computation of reach(ΘP ′
)

V erdict := inconc

Rx,Wait Ry,Wait Cmp,Wait

Fail

Inconc

?δ

?otherwise

p = x + 2

!in(p)

y := p

p = 2

?ok(p)

?end

PassV erdict := pass

p ≥ 3

!in(p)

x := px = y = 0

V erdict = none

Fig. 9. Resulting test case T C after simplification

reach Inconc with ok or nok. For example, an analysis which ignores the values
of variables would not enforce guards at all, giving as test case the ioSTS P ′ of
Figure 7 with transitions leading to End, Wait and Rx, Sink producing Inconc.

4.3 Test Case Properties

It has already been proved that Can(S) is sound. It is also easy to see that this
property is preserved by the synchronous product P ′ and selection of T C, as these
transformations cannot add any case of rejection. Thus all test cases are sound.
Moreover, one can prove the stronger property TracesFail(T C) = Traces(T C) ∩
TracesFail(Can(S)), which is preserved from the same property applied to P ′.
This property says that only non-conformant implementations can be rejected,
and that this rejection happens as soon as possible.

64 B. Jeannet, T. Jéron, and V. Rusu

Limit exhaustiveness comes from the following construction: by definition
of ioco, for any non-conformant implementation I, there exists a trace σ.a
in STraces(I) ∩ NC STraces(S). The prefix σ is thus a trace of Δ(S), while
σ.a ∈ TracesFail(Can(S)). As Δ(S) has no quiescence (Δ(Δ(S)) = Δ(S)), there
exists an output b such that σ.b is in STraces(S) and thus in Traces(Can(S)) but
not in TracesFail(Can(S)). It then suffices to construct a test purpose T P such
that the trace σ.b leads to Accept. Now, let T C be the test case obtained from
S and T P . One then gets σ.a ∈ STraces(I) ∩ TracesFail(T C) which by definition
means that T C may reject I.

Soundness and exhaustiveness restrict properties to the relation of Fail
verdicts to conformance. When using test purposes however, one is also in-
terested in properties of test case verdicts Pass and Inconc w.r.t. the test
purposes. This is where over-approximation has an influence. It is perhaps
surprising to see that Pass verdicts are always exact in the following sense:
TracesPass(T C) = Traces(T C) ∩ TracesAccept(P). What is lost by the over-
approximation of coreach(Accept), compared with an (hypothetical) exact
computation, is the ability to provide the most adequate inputs to the imple-
mentation, and the ability to detect infeasible traces to Accept as soon as this
happens, thus to give Inconc verdicts as soon as possible. A detailed study of the
influence of the precision of the analysis on the accuracy of test cases is presented
in [18]. It is not surprising that the more precise the approximation is, the more
accurate test cases are.

4.4 Test Execution

Test cases produced so far are ioSTS. In particular the values of communica-
tion parameters of test cases are not instantiated. During test execution, values
of communication parameters have to be chosen for outputs of the test cases,
among values satisfying the guard (e.g. p = 5 for p ≥ 3 in the example). This is
performed by a constraint solver. Conversely, when receiving an input from the
implementation, or when observing quiescence, as the test case is input complete
and deterministic, one has to check which transition can be fired, by checking
the guard with the value of the received communication parameter (e.g. go to
Pass if p = 2, and Fail otherwise).

4.5 The STG Tool

The principles of test selection described in this paper are implemented
in a new version of the STG tool [8] (see http://www.irisa.fr/vertecs/
software.html#STG). STG implements the main operations needed for selec-
tion: the synchronous product and test selection. This selection is based on ap-
proximate co-reachability and reachability analyses. These analyses are provided
by an interface with the NBac tool [17] using abstract interpretation [9].

Notice that these analyses can be improved using the dynamic partitioning
facility of NBac, allowing to separate locations with respect to the analysis ac-
cording to some criteria. This has proved very useful in some case studies.

Model-Based Test Selection for Infinite-State Reactive Systems 65

5 Related Work

Recently, attempts have been made to generate test cases from models of reactive
systems with data [26,10,11]. The challenge here is to generate test cases without
enumerating their state space, but rather by working directly on the higher-level
specification models, and thus avoiding the state-space explosion problem.

These models, whether they are called extended finite-state machines or
symbolic transition systems are essentially automata that manipulate variables
(integers, booleans, aggregate types, ...) and correspond to programs without
recursive procedure calls and without memory allocation. Testing theories stay
unchanged, being based on the semantics of the models in terms of (infinite)
transition systems. But the algorithms must be adapted to cope with data in a
symbolic way.

Some pioneering approaches were based on extended finite-state machines
(EFSM) (see e.g. [20]), but the data and control parts were mostly treated sepa-
rately. An exception is the work of [26] in which the authors explore the problem
of generating confirming configuration sequences that distinguish a configuration
(global state) with a set of configurations, on an EFSM model. They use product
of machines, projections on variables and model-checking techniques to derive
such sequences.

[10] is an attempt to lift the ioco testing theory of LTS to finitely branching
Symbolic Transition Systems (STS). In STS, data are specified by algebraic data
types. This paper proposes an on-the-fly test generation algorithm à la TorX,
based on this specification model. This formalization however does not avoid the
(partial) enumeration of the LTS semantics of STS.

Several approaches are based on symbolic execution [5,14] and constraint res-
olution. In [12], the principle of the DART tool is to combine symbolic execution
of a program with random testing. Starting from a random test case, a sym-
bolic execution is computed on the program for this execution, giving rise to
a new test case by negating the last condition of the symbolic execution path.
By repeating this principle, the main execution paths are covered. The PET
tool [13] also uses constraint solving to produce test cases as solutions to path
conditions produced from a flow-chart specification and an extended automaton
specifying a property. In [11] the authors use symbolic execution on ioSTS spec-
ification models to build a symbolic execution tree representing all behaviors
of the specification (assuming this is possible), and test purposes or coverage
criteria extracted from this execution tree. This is implemented in the Agatha
tool [23]. Other approaches, such as [25] or [21], respectively implemented in
Gatel and BZ-TT, rely on constraint solving techniques to compute paths to a
goal. These approaches are limited to deterministic systems, and consider finite
unfoldings of systems by limiting the search depth. In [22] the authors use se-
lection hypotheses combined with operation unfolding for algebraic data types
and predicate resolution to produce test cases from Lotos specifications. Com-
pared to our approach, these techniques based on constraint solving may produce
more precise test cases. However, constraint solving does not allow to cope with
loops as is possible with abstract interpretation, but have to limit the unfolding

66 B. Jeannet, T. Jéron, and V. Rusu

to a bounded depth. Nevertheless, these should not be considered as opposite
methods, but as complementary ones. Test selection with test purposes using
approximate analyses can be seen as a front-end used to select an abstract test
case, where information on non-conformance is preserved. Then constraint solv-
ing techniques can be used to search for instantiated test cases, by limiting the
unfolding of remaining loops.

Some approaches are mostly based on abstraction. In the context of extended
LTS, [27] is a pioneering work, an initial attempt of the one presented here. But
test selection was based on a very basic abstraction. In [18], a short version of the
work presented here was introduced, with emphasis on the relation between test
case accuracy and the precision of the approximation. In [28], the approach is
combined with verification. Observers of suspension traces are used to describe
negation of safety properties, and model-checked on the specification. Even if
this does not succeed, test cases are selected from the specification according
to these observers, using the approach described here. Selected test cases can
then both detect non-conformance and violation of the safety property by the
implementation, but also violation of the safety property by the specification if
the model-checking phase was not complete.

In most other approaches funded on abstractions, one tries to generate instan-
tiated test cases, i.e., with fixed values for input and output parameters, that
exercise particular executions of the system. This is the case for [7], where the
idea is first to build an abstraction of a μCRL specification, to generate abstract
test cases by reusing the TGV enumerative technique on this abstraction, and
then to concretize these test cases on the concrete specification using constraint
solving techniques. In the context of white-box testing, Ball [1] uses a combina-
tion of predicate abstraction, reachability analysis and symbolic execution.

6 Conclusion and Perspectives

There is still very little research on model-based test generation which is able to
cope with models containing both control and data without enumerating data
values.

In the present paper, an approach to the off-line selection of test cases from
specification models with control and data (ioSTS) and test purposes specified in
the same model has been presented. The main advantage of this test generation
technique is to avoid the state explosion problem due to the enumeration of data
values. Test selection reduces to syntactical operations on these models and relies
on an over-approximate analysis of the co-reachable states to a target location.
Test cases are generated in the form of ioSTS, thus representing non-instantiated
test programs. During execution of test cases on the implementation, constraint
solving is used to choose output data values. For simplicity, the theory exposed in
this paper is restricted to deterministic specifications. However, non-determnistic
specifications can be taken into account with some restrictions [19].

Among the perspectives of this work, more powerful models of systems with
features such as time, recursion and concurrency should be considered. For test

Model-Based Test Selection for Infinite-State Reactive Systems 67

generation, one problem to address in these models is partial observability, which,
as for ioSTS, entails the identification of determinizable sub-classes correspond-
ing to applications.

Some ideas of these technique can also be used in other contexts, in particular
for structural white box testing where test cases are generated from the source
code of the system. One of the main problems of these techniques which is to
avoid infeasible paths, could be partly solved by techniques similar to those
presented here.

Other challenges are the combination of these techniques with coverage-based
test selection. Some attempts have been made to define some test coverage cri-
teria by observers [4], which are very similar to test purposes. A combination
with our techniques could be beneficial. Another direction should be to use the
dynamic partitioning facility (provided by the tool Nbac used by STG) as an
aid for test selection with respect to coverage criteria having a deeper semantic
meaning.

Acknowledgment

We wish to thank the Organizing Committee of FMCO’06 for this invitation,
the reviewers for their useful remarks, as well as all our colleagues for their
participation in the work described in this paper.

References

1. Ball, T.: A theory of predicate-complete test coverage and generation. In: de Boer,
F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2004. LNCS,
vol. 3657, pp. 2–5. Springer, Heidelberg (2005)

2. Belinfante, A., Feenstra, J., de Vries, R.G., Tretmans, J., Goga, N., Feijs, L., Mauw,
S., Heerink, L.: Formal test automation: A simple experiment. In: 12th Int. Work-
shop on Testing of Communicating Systems, Kluwer Academic Publishers, Dor-
drecht (1999)

3. Benjamin, M., Geist, D., Hartman, A., Mas, G., Smeets, R., Wolfsthal, Y.: A
study in coverage-driven test generation. In: Proceedings of the 36th ACM/IEEE
Conference on Design Automation (DAC’99) (1999)

4. Blom, J., Hessel, A., Jonsson, B., Pettersson, P.: Specifying and generating test
cases using observer automata. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004.
LNCS, vol. 3395, pp. 137–152. Springer, Heidelberg (2005)

5. Boyer, R.S., Elspas, B., Levitt, K.N.: SELECT: a formal system for testing and
debugging programs by symbolic execution. In: Proceedings of the International
Conference on Reliable Software, pp. 234–245. ACM Press, New York (1975)

6. Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-
Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005)

7. Calamé, J.R., Ioustinova, N., van de Pol, J., Sidorova, N.: Data abstraction and
constraint solving for conformance testing. In: Proc. of 12th Asia-Pacific Software
Engineering Conference (APSEC’05), Taipei, Taiwan, pp. 541–548 (2005)

8. Clarke, D., Jéron, T., Rusu, V., Zinovieva, E.: STG: a symbolic test generation
tool. In: Katoen, J.-P., Stevens, P. (eds.) ETAPS 2002 and TACAS 2002. LNCS,
vol. 2280, pp. 470–475. Springer, Heidelberg (2002)

68 B. Jeannet, T. Jéron, and V. Rusu

9. Cousot, P., Cousot, R.: Abstract intrepretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: 4th ACM
Symposium on Principles of Programming Languages (POPL’77), Los Angeles,
CA, pp. 238–252 (1977)

10. Frantzen, L., Tretmans, J., Willemse, T.: Test generation based on symbolic spec-
ifications. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395,
Springer, Heidelberg (2005)

11. Gaston, C., Le Gall, P., Rapin, N., Touil, A.: Symbolic execution techniques for
test purpose definition. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom
2006. LNCS, vol. 3964, Springer, Heidelberg (2006)

12. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. In:
PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on Programming
Language Design and Implementation, pp. 213–223. ACM Press, New York (2005)

13. Gunter, E., Peled, D.: Model checking, testing and verification working together.
Formal Aspects of Computing 17(2), 201–221 (2005)

14. Howden, W.E.: Theoretical and empirical studies of program testing. In: Proceed-
ings of the 3rd international conference on Software engineering (ICSE ’78), pp.
305–311. IEEE Press, Piscataway, NJ (1978)

15. ISO/IEC 9646: Conformance Testing Methodology and Framework (1992)

16. Jard, C., Jéron, T.: TGV: theory, principles and algorithms, a tool for the automatic
synthesis of conformance test cases for non-deterministic reactive systems. Software
Tools for Technology Transfer (STTT) (octobre 6, 2004)

17. Jeannet, B.: Dynamic partitioning in linear relation analysis. Formal Methods in
System Design 23(1), 5–37 (2003)

18. Jeannet, B., Jéron, T., Rusu, V., Zinovieva, E.: Symbolic test selection based on
approximate analysis. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, Springer, Heidelberg (2005)

19. Jéron, T., Marchand, H., Rusu, V.: Symbolic determinisation of extended au-
tomata. In: 4th IFIP International Conference on Theoretical Computer Science,
2006, Santiago, Chile. SSBM (Springer Science and Business Media) (August 2006)

20. Lee, D., Yannakakis, M.: Principles and Methods of Testing Finite State Machines
- A Survey. In: Proceedings of the IEEE, vol. 84(8), IEEE Computer Society Press,
Los Alamitos (1996)

21. Legeard, B., Peureux, F., Utting, M.: Automated boundary testing from Z and
B. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, Springer,
Heidelberg (2002)

22. Lestiennes, G., Gaudel, M.-C.: Testing processes from formal specifications with
inputs, outputs and data types. In: 13th International Symposium on Software
Reliability Engineering (ISSRE’02), Annapolis, Maryland, IEEE Computer Society
Press, Los Alamitos (2002)

23. Lugato, D., Bigot, C., Valot, Y.: Validation and automatic test generation on uml
models: the AGATHA approach. Electronics Notes in Theoretical Computer Sci-
ence 66(2) (2002)

24. Lynch, N., Tuttle, M.: Introduction to IO automata. CWI Quarterly 3(2) (1999)

25. Marre, B., Arnould, A.: Test sequences generation from LUSTRE descriptions: GA-
TEL. In: 15th IEEE International Conference on Automated Software Engineering
(ASE’00), p. 229. IEEE Computer Society, Los Alamitos, CA (2000)

26. Petrenko, A., Boroday, S., Groz, R.: Conforming configurations in EFSM testing.
IEEE Transactions on Software Engineering 30(1) (2004)

Model-Based Test Selection for Infinite-State Reactive Systems 69

27. Rusu, V., du Bousquet, L., Jéron, T.: An approach to symbolic test generation. In:
Grieskamp, W., Santen, T., Stoddart, B. (eds.) IFM 2000. LNCS, vol. 1945, pp.
338–357. Springer, Heidelberg (2000)

28. Rusu, V., Marchand, H., Jéron, T.: Automatic verification and conformance testing
for validating safety properties of reactive systems. In: Fitzgerald, J.A., Hayes, I.J.,
Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, Springer, Heidelberg (2005)

29. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence.
Software—Concepts and Tools 17(3), 103–120 (1996)

30. Tretmans, J.: Model-based testing with transition systems. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2006. LNCS, vol. 4111,
Springer, Heidelberg (2006)

Verifying Object-Oriented Programs with KeY:

A Tutorial

Wolfgang Ahrendt1, Bernhard Beckert2, Reiner Hähnle1, Philipp Rümmer1,
and Peter H. Schmitt3

1 Department of Computer Science and Engineering,
Chalmers University of Technology and Göteborg University

{ahrendt,reiner,philipp}@chalmers.se
2 Department of Computer Science,

University of Koblenz-Landau
beckert@uni-koblenz.de

3 Department of Theoretical Computer Science,
University of Karlsruhe
pschmitt@ira.uka.de

Abstract. This paper is a tutorial on performing formal specification
and semi-automatic verification of Java programs with the formal soft-
ware development tool KeY. This tutorial aims to fill the gap between
elementary introductions using toy examples and state-of-art case studies
by going through a self-contained, yet non-trivial, example. It is hoped
that this contributes to explain the problems encountered in verifica-
tion of imperative, object-oriented programs to a readership outside the
limited community of active researchers.

1 Introduction

The KeY system is the main software product of the KeY project, a joint ef-
fort between the University of Karlsruhe, Chalmers University of Technology
in Göteborg, and the University of Koblenz. The KeY system is a formal soft-
ware development tool that aims to integrate design, implementation, formal
specification, and formal verification of object-oriented software as seamlessly as
possible.

This paper is a tutorial on performing formal specification and semi-automatic
verification of Java programs with KeY. There is already a tutorial introduction
to the KeY prover that is set at the beginner’s level and presupposes no knowl-
edge of specification languages, program logic, or theorem proving [3, Chapt. 10].
At the other end of the spectrum are descriptions of rather advanced case stud-
ies [3, Chapt. 14 and 15] that are far from being self-contained. The present
tutorial intends to fill the gap between first steps using toy examples and state-
of-art case studies by going through a self-contained, yet non-trivial, example.
We found few precisely documented and explained, yet realistic, case studies
even for other verification systems. Therefore, we believe that this tutorial is
of interest in its own right, not only for those who want to know about KeY.

F.S. de Boer et al. (Eds.): FMCO 2006, LNCS 4709, pp. 70–101, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

beckert@uni-koblenz.de
pschmitt@ira.uka.de

Verifying Object-Oriented Programs with KeY: A Tutorial 71

We hope that it can contribute to explain the problems encountered in verifica-
tion of imperative, object-oriented programs to a readership outside the limited
community of active researchers.

We assume that the reader is familiar with the Java programming language,
with first-order logic and has some experience in formal specification and verifica-
tion of software, presumably using different approaches than KeY. Specifications
in the Java Modeling Language (JML) [16] and expressions in KeY’s program
logic Java Card DL [3, Chapt. 3] are explained as far as needed.

In this tutorial we demonstrate in detail how to specify and verify a Java ap-
plication that uses most object-oriented and imperative features of the Java lan-
guage. The presentation is such that the reader can trace and understand almost
all aspects. To this end, we provided the complete source code and specifications
at www.key-project.org/fmco06. We strongly encourage reading this paper
next to a computer with a running KeY system. Recently, version 1.0 of the KeY
system has been released in connection with the KeY book [3]. The KeY tool is
available under GPL and can be freely downloaded from www.key-project.org.
Information on how to install the KeY tool can also be found on that web site.
The experiments in this tutorial were performed with KeY version 1.1 which has
improved support for proof automation. It is available at the location mentioned
above together with the case study.

The tutorial is organised as follows: in Section 2 we provide some background
on the architecture and technologies employed in the KeY system. In Section 3
we describe the case study that is used throughout the remaining paper. It is
impossible to discuss all verification tasks arising from the case study. Therefore,
in Section 4, we walk through a typical proof obligation (inserting an element
into a datastructure) in detail including the source code, the formal specification
of a functional property in JML, and, finally, the verification proof. In Section 5
we repeat this process with a more difficult proof obligation. This time around,
we abstract away from most features learned in the previous section in favour
of discussing some advanced topics, in particular complex specifications written
in Java Card DL, handling of complex loops, and proof modularisation with
method contracts. We conclude with a brief discussion.

2 The KeY Approach

The KeY Program Verification System. KeY supports several languages for spec-
ifying properties of object-oriented models. Many people working with UML and
MDA have familiarity with the specification language OCL (Object Constraint
Language), as part of UML 2.0. KeY can also translate OCL expressions to nat-
ural language (English and German). Another specification language supported
by KeY, which enjoys popularity among Java developers and which we use in
this paper, is the Java Modeling Language (JML). Optional plugins of KeY into
the popular Eclipse IDE and the Borland Together CASE tool suite are avail-
able with the intention to lower initial adoption cost for users with no or little
training in formal methods.

www.key-project.org/fmco06
www.key-project.org

72 W. Ahrendt et al.

The target language for verification in KeY is Java Card 2.2.1. KeY is the only
publicly available verification tool that supports the full Java Card standard
including the persistent/transient memory model and atomic transactions. Rich
specifications of the Java Card API are available both in OCL and JML. Java 1.4
programs that respect the limitations of Java Card (no floats, no concurrency,
no dynamic class loading) can be verified as well.

The Eclipse and Together KeY plugins allow to select Java classes or methods
that are annotated with formal specifications and both plugins offer to prove
a number of correctness judgements such as behavioural subtyping, partial and
total correctness, invariant preservation, or frame properties. In addition to the
JML/OCL-based interfaces one may supply proof obligations directly on the
level of Java Card DL. For this, a stand-alone version of the KeY prover not
relying on Eclipse or Together is available.

The program logic Java Card DL is axiomatised in a sequent calculus. Those
calculus rules that axiomatise program formulas define a symbolic execution en-
gine for Java Card and so directly reflect the operational semantics. The calculus
is written in a small domain-specific so-called taclet language that was designed
for concise description of rules. Taclets specify not merely the logical content
of a rule, but also the context and pragmatics of its application. They can be
efficiently compiled not only into the rule engine, but also into the automation
heuristics and into the GUI. Depending on the configuration, the axiomatisation
of Java Card in the KeY prover uses 1000–1300 taclets.

The KeY system is not merely a verification condition generator (VCG), but
a theorem prover for program logic that combines a variety of automated rea-
soning techniques. The KeY prover is distinguished from most other deductive
verification systems in that symbolic execution of programs, first-order reason-
ing, arithmetic simplification, external decision procedures, and symbolic state
simplification are interleaved.

At the core of the KeY system is the deductive verification component, which
also can be used as a stand-alone prover. It employs a free-variable sequent
calculus for first-order Dynamic Logic for Java. The calculus is proof-confluent,
i.e., no backtracking is necessary during proof search.

While we constantly strive to increase the degree of automation, user interac-
tion remains inexpendable in deductive program verification. The main design
goal of the KeY prover is thus a seamless integration of automated and interac-
tive proving. Efficiency must be measured in terms of user plus prover, not just
prover alone. Therefore, a good user interface for presentation of proof states
and rule application, a high level of automation, extensibility of the rule base,
and a calculus without backtracking are all important features.

Syntax and Semantics of the KeY Logic. The foundation of the KeY logic is
a typed first-order predicate logic with subtyping. This foundation is extended
with parameterised modal operators 〈p〉 and [p], where p can be any sequence
of legal Java Card statements. The resulting multi-modal program logic is called
Java Card Dynamic Logic or, for short, Java Card DL [3, Chapt. 3].

Verifying Object-Oriented Programs with KeY: A Tutorial 73

As is typical for Dynamic Logic, Java Card DL integrates programs and for-
mulas within a single language. The modal operators refer to the final state of
program p and can be placed in front of any formula. The formula 〈p〉φ expresses
that the program p terminates in a state in which φ holds, while [p]φ does not
demand termination and expresses that if p terminates, then φ holds in the final
state. For example, “when started in a state where x is zero, x++; terminates
in a state where x is one” can be expressed as x

.= 0 −> 〈x++;〉(x .= 1). The
states used to interpret formulas are first-order structures sharing a common
universe.

The type system of the KeY logic is designed to match the Java type sys-
tem but can be used for other purposes as well. The logic includes type casts
(changing the static type of a term) and type predicates (checking the dynamic
type of a term) in order to reason about inheritance and polymorphism in Java
programs [3, Chapt. 2]. The type hierarchy contains the types such as boolean ,
the root reference type Object, and the type Null, which is a subtype of all
reference types. It contains a set of user-defined types, which are usually used
to represent the interfaces and classes of a given Java Card program. Finally,
it contains several integer types, including both the range-limited types of Java
and the infinite integer type Z.

Besides built-in symbols (such as type-cast functions, equality, and operations
on integers), user-defined functions and predicates can be added to the signa-
ture. They can be either rigid or non-rigid. Intuitively, rigid symbols have the
same meaning in all program states (e.g., the addition on integers), whereas the
meaning of non-rigid symbols may differ from state to state.

Moreover, there is another kind of modal operators called updates. They can
be seen as a language for describing program transitions. There are simple func-
tion updates corresponding to assignments in an imperative programming lan-
guage, which in turn can be composed sequentially and used to form parallel or
quantified updates. Updates play a central role in KeY: the verification calcu-
lus transforms Java Card programs into updates. KeY contains a powerful and
efficient mechanism for simplifying updates and applying them to formulas.

Rule Formalisation and Application. The KeY system has an automated-proof-
search mode and an interactive mode. The user can easily switch modes during
the construction of a proof.

For interactive rule application, the KeY prover has an easy to use graphical
user interface that is built around the idea of direct manipulation. To apply a
rule, the user first selects a focus of application by highlighting a (sub-)formula
or a (sub-)term in the goal sequent. The prover then offers a choice of rules
applicable at this focus. This choice remains manageable even for very large rule
bases. Rule schema variable instantiations are mostly inferred by matching. A
simpler way to apply rules and give instantiations is by drag and drop. If the
user drags an equation onto a term the system will try to rewrite the term with
the equation. If the user drags a term onto a quantifier the system will try to
instantiate the quantifier with this term.

74 W. Ahrendt et al.

The interaction style is closely related to the way rules are formalised in the
KeY prover. There are no hard-coded rules; all rules are defined in the “taclet
language” instead. Besides the conventional declarative semantics, taclets have a
clear operational semantics, as the following example shows—a “modus ponens”
rule in textbook notation (left) and as a taclet (right):

φ, ψ, Γ =⇒ Δ
φ, φ → ψ, Γ =⇒ Δ

\find (p −> q ==>) // implication in antecedent
\assumes (p ==>) // side condition
\replacewith(q ==>) // action on focus
\heuristics(simplify) // strategy information

The find clause specifies the potential application focus. The taclet will be
offered to the user on selecting a matching focus and if a formula mentioned in
the assumes clause is present in the sequent. The action clauses replacewith
and add allow modifying (or deleting) the formula in focus, as well as adding ad-
ditional formulas (not present here). The heuristics clause records information
for the parameterised automated proof search strategy.

The taclet language is quickly mastered and makes the rule base easy to
maintain and extend. Taclets can be proven correct against a set of base taclets
[4]. A full account of the taclet language is given in [3, Chapt. 4 and Appendix
B.3.3].

Applications. Among the major achievements using KeY in the field of pro-
gram verification so far are the treatment of the Demoney case study, an elec-
tronic purse application provided by Trusted Logic S.A., and the verification
of a Java implementation of the Schorr-Waite graph marking algorithm. This
algorithm, originally developed for garbage collectors, has recently become a
popular benchmark for program verification tools. Chapters 14 and 15 of the
KeY book [3] are devoted to a detailed description of these case studies. A case
study [14] performed within the HIJA project has verified the lateral module
of the flight management system, a part of the on-board control software from
Thales Avionics.

Lately we have applied the KeY system also on topics in security analysis [7],
and in the area of model-based test case generation [2,10] where, in particular,
the prover is used to compute path conditions and to identify infeasible paths.

The flexibility of KeY w.r.t. the used logic and calculus manifests itself in
the fact that the prover has been chosen as a reasoning engine for a vari-
ety of other purposes. These include the mechanisation of a logic for Abstract
State Machines [17] and the implementation of a calculus for simplifying OCL
constraints [13].

KeY is also very useful for teaching logic, deduction, and formal methods.
Its graphical user interface makes KeY easy to use for students. They can step
through proofs with different degrees of automation (using the full verification
calculus or just the first-order core rules). The authors have been successfully
teaching courses for several years using the KeY system. An overview and course
material is available at www.key-project.org/teaching.

www.key-project.org/teaching

Verifying Object-Oriented Programs with KeY: A Tutorial 75

Related Tools. There exist a number of other verification systems for object-
oriented programs. The KIV1 tool [1] is closest to ours in that it is also inter-
active and also based on Dynamic Logic. Most other systems are based on a
verification condition generator (VCG) architecture and separate the transla-
tion of programs into logic from the actual proof process. A very popular tool
of this kind is ESC/Java22 (Extended Static Checker for Java2) [12], which uses
the Simplify theorem prover [8] and attempts to find run-time errors in JML-
annotated Java programs. ESC/Java2 compromises on completeness and even
soundness for the sake of ease of use and scalability. Further systems are JACK
[5], Krakatoa [11], LOOP [18], which can also generate verification conditions
in higher order logic that may then be proved using interactive theorem provers
like PVS, Coq, Isabel, etc. Like KeY, JACK, Krakatoa, and LOOP support
JML specifications. With JACK, we moreover share the focus on smart card
applications.

3 Verification Case Study: A Calendar Using Interval
Trees

In this tutorial, we use a small Java calendar application to illustrate how spec-
ifications are written and programs are verified with the KeY system. The ap-
plication provides typical functionality like creating new calendars, adding or
removing appointments, notification services that inform about changes to a
particular appointment or a calendar, and views for displaying a time period
(like a particular day or month) or for more advanced lookup capabilities.

The class structure of the calendar application is shown in Fig. 1 and 2. It
consists of two main packages: a datastructure layer intervals, that provides
classes for working with (multisets of) intervals, and a domain layer calendar,
that defines the actual logic of a calendar. Intervals (interface Interval) are the
basic entities that our calendars are built upon. In an abstract sense, each entry
or appointment in a calendar is primarily an interval spanned by its start and
its end point in time. A calendar is a multiset of such intervals. For reasons of
simplicity, we represent discrete points of time as integers, similarly to the time
representation in Unix (the actual unit and offset are irrelevant here). Further,
we use the observer design pattern (package observerPattern) for being able
to observe all modifications that occur in a calendar entry.

Interval Datastructures. The most important lookup functionality that our cal-
endar provides, is the ability to retrieve all entries that overlap a certain query
time interval (i.e., have a point of time in common with the query interval). Such
queries are used, for instance, when displaying all appointments for a particular
day. We consequently store intervals in an interval tree datastructure [6] (class

1 www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv/
2 http://secure.ucd.ie/products/opensource/ESCJava2/

www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv/
http://secure.ucd.ie/products/opensource/ESCJava2/

76 W. Ahrendt et al.

c
a
l
e
n
d
a
r

o
b
s
e
r
v
e
r
P
a
t
t
e
r
n

i
n
t
e
r
v
a
l
s

<
<
i
n
t
e
r
f
a
c
e
>
>

In
te

rv
al

+
g
e
t
S
t
a
r
t
(
)
:

i
n
t

+
g
e
t
E
n
d
(
)
:

i
n
t

In
te

rv
al

T
re

e

C
al

en
da

rE
nt

ry

-
s
t
a
r
t
:

i
n
t

-
e
n
d
:

i
n
t

-
d
e
s
c
r
i
p
t
i
o
n
:

S
t
r
i
n
g

+
m
o
v
e
E
n
t
r
y
(
n
e
w
S
t
a
r
t
:
i
n
t
,
n
e
w
E
n
d
:
i
n
t
)

C
al

en
da

r

+
a
d
d
(
e
:
C
a
l
e
n
d
a
r
E
n
t
r
y
)

+
r
e
m
o
v
e
(
e
:
C
a
l
e
n
d
a
r
E
n
t
r
y
)

+
g
e
t
C
o
m
p
l
e
t
e
V
i
e
w
(
)
:

S
o
r
t
e
d
C
a
l
e
n
d
a
r
V
i
e
w

S
ub

je
ct

+
a
d
d
O
b
s
e
r
v
e
r
(
o
:
O
b
s
e
r
v
e
r
)

+
r
e
m
o
v
e
O
b
s
e
r
v
e
r
(
o
:
O
b
s
e
r
v
e
r
)

<
<
i
n
t
e
r
f
a
c
e
>
>

C
al

en
da

rL
is

te
ne

r

+
a
d
d
e
d
E
n
t
r
y
(
e
:
C
a
l
e
n
d
a
r
E
n
t
r
y
)

+
r
e
m
o
v
e
d
E
n
t
r
y
(
e
:
C
a
l
e
n
d
a
r
E
n
t
r
y
)

<
<
i
n
t
e
r
f
a
c
e
>
>

O
bs

er
ve

r

+
p
r
e
p
a
r
e
F
o
r
M
o
d
i
f
i
c
a
t
i
o
n
(
s
:
S
u
b
j
e
c
t
)

+
u
p
d
a
t
e
d
(
s
:
S
u
b
j
e
c
t
)

<
<
i
n
t
e
r
f
a
c
e
>
>

C
al

en
da

rV
ie

w

+
g
e
t
E
n
t
r
i
e
s
(
)
:

C
a
l
e
n
d
a
r
E
n
t
r
y
S
e
q

S
or

te
dC

al
en

da
rV

ie
w

+
g
e
t
O
v
e
r
l
a
p
p
i
n
g
E
n
t
r
i
e
s
(
i
v
:
I
n
t
e
r
v
a
l
)
:

C
a
l
e
n
d
a
r
E
n
t
r
y
S
e
q

T
im

eF
ra

m
eC

al
en

da
rV

ie
w

-
t
i
m
e
F
r
a
m
e
:

I
n
t
e
r
v
a
l

C
al

en
da

rM
od

ifi
ca

tio
nS

er
ve

r

+
r
e
g
i
s
t
e
r
L
i
s
t
e
n
e
r
(
l
:
C
a
l
e
n
d
a
r
L
i
s
t
e
n
e
r
)

+
u
n
r
e
g
i
s
t
e
r
L
i
s
t
e
n
e
r
(
l
:
C
a
l
e
n
d
a
r
L
i
s
t
e
n
e
r
)

#
f
i
r
e
A
d
d
e
d
E
n
t
r
y
(
e
:
C
a
l
e
n
d
a
r
E
n
t
r
y
)

#
f
i
r
e
R
e
m
o
v
e
d
E
n
t
r
y
(
e
:
C
a
l
e
n
d
a
r
E
n
t
r
y
)

C
al

en
da

rE
nt

ry
S

eq

+
s
i
z
e
(
)
:

i
n
t

+
a
t
(
i
:
i
n
t
)
:

C
a
l
e
n
d
a
r
E
n
t
r
y

+
i
n
s
e
r
t
(
e
:
C
a
l
e
n
d
a
r
E
n
t
r
y
)

+
r
e
m
o
v
e
F
i
r
s
t
(
e
:
C
a
l
e
n
d
a
r
E
n
t
r
y
)
:

b
o
o
l
e
a
n

{o
rd

er
ed

,b
ag

}

T
im

eF
ra

m
eD

is
pl

ay

-
t
i
m
e
F
r
a
m
e
V
i
e
w
:

T
i
m
e
F
r
a
m
e
C
a
l
e
n
d
a
r
V
i
e
w

+
a
d
d
(
e
n
t
r
y
:
C
a
l
e
n
d
a
r
E
n
t
r
y
)
:

v
o
i
d

*

1

1

1

*

* co
nt

en
ts

en
tr

ie
s

1

F
ig

.1
.
T

h
e

p
a
ck

a
g
es

o
b
s
e
r
v
e
r
P
a
t
t
e
r
n

a
n
d
c
a
l
e
n
d
a
r

o
f
th

e
ca

le
n
d
a
r

ca
se

st
u
d
y

Verifying Object-Oriented Programs with KeY: A Tutorial 77

intervals

<<interface>>

Interval

+getStart(): int

+getEnd(): int

SimpleInterval

-start: int

-end: int

IntervalSeq

+size(): int

+at(i:int): Interval

+insert(iv:Interval)

+removeFirst(iv:Interval): boolean

SortedIntervalSeq

+getBoundary(iv:Interval): int

+collectLeq(seq:IntervalSeq,p:int)

+collectGeq(seq:IntervalSeq,p:int)

SortedByStartIntervalSeq

+getBoundary(iv:Interval): int

SortedByEndIntervalSeq

+getBoundary(iv:Interval): int

IntervalTree

+size(): int

+insert(iv:Interval)

+remove(iv:Interval): boolean

+getOverlappingIntervals(iv:Interval): IntervalSeq

root 0 .. 1

left

0 .. 1

right

0 .. 1

1

sortedByStart

sortedByEnd

1

*

contents

{ordered,bag}

IntervalTreeNode

-cutPoint: int

 size(): int

 insert(iv:Interval)

 remove(iv:Interval): boolean

 collectOverlappingIntervals(seq:IntervalSeq,
 iv:Interval)

Fig. 2. The package intervals of the calendar case study

IntervalTree in Fig. 2), which allows to retrieve overlapping entries with loga-
rithmic complexity in the size of the calendar. An interval tree is a binary tree,
in which each node (class IntervalTreeNode) stores (a) the multiset of inter-
vals that include a certain point (the cutPoint) and (b) pointers to the subtrees
that handle the intervals strictly smaller (association left) resp. strictly bigger
(association right) than the cut point. The intervals belonging to a particular
node have to be stored both sorted by the start and by the end point, which is
further discussed in Sect. 4.

Package Calendar. The two primary classes that implement a calendar are
CalendarEntry for single appointments (an implementation of the interface
Interval) and Calendar for whole calendars. The basic Calendar provides the
interface CalendarView for accessing all entries that are part of the calendar in
an unspecified order. A more advanced lookup interface, SortedCalendarView,
can be accessed through the method getCompleteView of Calendar. It allows
to retrieve all entries that overlap with a given interval. This interface is realised
using the interval trees from package intervals.

A further view on calendars is TimeFrameCalendarView, which pre-selects all
appointments within a given period of time, and which is based on the class
SortedCalendarView. Both Calendar and TimeFrameCalendarView also pro-
vide a notification service (CalendarModificationServer) that informs about
newly added and removed entries. We illustrate the usage of this service (and
of TimeFrameCalendarView) in class TimeFrameDisplay, which is further dis-
cussed and verified in Sect. 5.

78 W. Ahrendt et al.

4 First Walk-Through: Verifying Insertion into Interval
Sequences

In this section, we zoom into a small part of the scenario described above, namely
the insert() method belonging to the class IntervalSeq and its subclasses. In
the context of that method, we demonstrate the different basic stages of formal
software development with the KeY system. We discuss the formal specification
of the insert() method, the generation of corresponding proof obligations in
the used program logic, and the formal verification with the KeY prover. Along
with demonstrating the basic work-flow, we introduce the used formalisms on
the way, when they appear, but just to the extent which allows to follow the
example. These formalisms are: the specification language JML (Java Model-
ing Language) [16], the program logic Java Card DL, and the corresponding
calculus3.

As described in Section 3, the basic data structure of the case study scenario
is a tree, the nodes of which are instances of the class IntervalTreeNode. Each
such node contains one integer number (representing a point in time, the “cut
point” of the node), and two interval sequences, both containing the same in-
tervals (all of which contain the cut point of the node). The difference between
the two sequences is that the contained intervals are sorted differently, once by
their start, and once by their end.

Correspondingly, the two sequences contained in each node are instances of
the classes SortedByStartIntervalSeq and SortedByEndIntervalSeq, respec-
tively. Both are subclasses of SortedIntervalSeq, which in turn is a subclass
of IntervalSeq. One of the basic methods provided by (instances of) these
classes is insert(Interval iv). In this section, we discuss, as an example, the
implementation and specification of that method, as well as the verification of
corresponding proof obligations.

The specification of the insert() method of the class SortedIntervalSeq
also involves the superclass, IntervalSeq, because parts of the specification are
inherited from there. Later, in the verification we will also be concerned with the
two subclasses of SortedIntervalSeq, which provide different implementations
of a method called by insert(), namely getBoundary().

4.1 Formal Specification and Implementation

Within the Class ��������	�
. This class is the topmost one in this small
hierarchy, instances of which represent a sequence of intervals. Internally, the
sequence is realised via an array contents of type Interval[]. This array can
be longer than the actual size of the interval sequence. Thereby, we avoid having
to allocate a new array at each and every increase of the sequence’s size. Instead,
size points to the index up to which we consider contents be filled with “real”
intervals; only if size exceeds contents.length, a new array is allocated, into

3 All these are described in more detail in the KeY book [3]: JML in Section 5.3,
Java Card DL and the calculus in Chapter 3.

Verifying Object-Oriented Programs with KeY: A Tutorial 79

which the old one is copied. This case distinction is encapsulated in the method
incSize(), to be called by insert().

Java (1.1)

�������� ���� incSize() {
++size;
�� (size > contents.length) {
����� Interval[] oldAr = contents;
contents = ��� Interval[contents.length * 2];
��� i = 0;
����� (i < oldAr.length) {contents[i] = oldAr[i]; ++i;}

}
}

Java

We turn to the actual insert() method now. The class IntervalSeq is igno-
rant of sorting, so all we require from insert(iv) is that iv is indeed inserted,
wherever, in the sequence. To the very least, this means that, in a post state,
iv is stored at any of the indices of contents. Using mathematical standard
notation, we can write this as

∃i. 0 ≤ i ∧ i < size ∧ contents[i] = iv

Note that, already in this mathematical notation, we are mixing in elements
from the programming language level, namely the instance field names, and the
array access operator “[]”. Now, the specification language JML takes this
several steps further, using Java(like) syntax wherever possible: <= for ≤, && for
∧, == for =, != for 	=, and so on. Special keywords are provided for concepts not
covered by Java, like \exists for ∃. Altogether, the above formula is expressed
in JML as:

\exists ��� i; 0 <= i && i < size; contents[i] == iv

As we can see, quantified formulas in JML have three parts, separated by “;”.
The first declares the type of the quantified variable, the second is intended
to further restrict the range of the variable, while the third states the “main”
property, intuitively speaking. Logically, however, the second and the third part
of a JML “\exists”-formula are connected via “and” (∧).

The above formula is a postcondition, as it constrains the admissible states
after execution of insert(). A sensible precondition would be that the interval
to be inserted is defined, i.e., not null.

Even if we will later expand on the postcondition, we show already how the
formulas we have so far can syntactically be glued together, in order to form a
JML specification of insert(). In general, JML specifications are written into
Java source code files, in form of Java comments starting with the symbol “@”.
In case of pre/post-conditions, these comments precede the method they specify.
In our example, IntervalSeq.java would contain the following lines:

80 W. Ahrendt et al.

Java + JML (1.2)
/*@ ����� ���������������

@ ��
����� iv != ����;
@ ������� (������� ��� i; 0 <= i && i < size;
@ contents[i] == iv);
@*/

����� ���� insert(Interval iv) {
...

Java + JML

This is an example for a method contract in JML. For the purpose of our
example, this contract is, however, still very weak. It does, for instance, not
specify how the values of size before and after execution of insert() relate
to each other. For such a purpose, JML offers the “\old” construct, which
is used in a postcondition to refer back to the pre-state. With that, we can
state size == \old(size) + 1. Further, the contract does not yet tell whether
all (or, in fact, any) of the intervals previously contained in contents remain
therein, not to speak of the indices under which they appear. What we need to
say is (a) that, up to the index i where iv is inserted, the elements of contents
are left untouched, and (b) that all other elements are shifted by one index.
Both can be expressed using the universal quantifier in JML, “\forall”, which
is quite analogous to the “\exists” operator. Using that, (b) would translate to:

\forall ��� k; i < k && k < size;
contents[k] == \old(contents[k-1])

Note that, in case of “\forall”, the second “;” logically is an implication, not a
conjunction as was the case for “\exists”. In the above formula, i refers to the
index of insertion, which we have existentially quantified over earlier, meaning
we get a nested quantification here.

Together with an appropriate assignable clause to be explained below, we
now arrive at the following JML specification of insert():

Java + JML (1.3)
/*@ ����� ���������������

@ ��
����� iv != ����;
@ ������� size == ����(size) + 1;
@ ������� (������� ��� i; 0 <= i && i < size;
@ contents[i] == iv
@ && (������� ��� j; 0 <= j && j < i;
@ contents[j] == ����(contents[j]))
@ && (������� ��� k; i < k && k < size;
@ contents[k] == ����(contents[k-1])));
@ ���������� contents, contents[*], size;
@*/

����� ���� insert(Interval iv) {
...

Java + JML

Verifying Object-Oriented Programs with KeY: A Tutorial 81

The assignable clause, in this example, says that the insert() is allowed to
change the value of contents, the value of the element locations of contents,
and of size, but nothing else. The purpose of the assignable clauses is not so
much the verification of the method insert (in this case), but rather to keep
feasible the verification of other methods calling insert().

Within the Abstract Class 	�������������	�
. This class extends the
class IntervalSeq, augmenting it with the notion of sortedness. In particular,
this class’ implementation of insert() must respect the sorting. To specify this
requirement in JML, one could be tempted to add sortedness to both, the pre-
and the postcondition of insert(). However, such invariant properties should
rather be placed in JML class invariants, which like method contracts are added
as comments to the source code.

The following lines are put anywhere within the class SortedIntervalSeq:

JML (1.4)
/*@ ����� ���������

@ (������� ��� i; 0 <= i && i < size - 1;
@ getBoundary(contents[i]) <= getBoundary(contents[i+1]));
@*/

JML

The actual sorting criterion, getBoundary(), is left to subclasses of this class,
by making it an abstract method.

Java + JML (1.5)
�������� /*@ ���� @*/ ������� ��� getBoundary(Interval iv);

Java + JML

The phrase “/*@ pure @*/” is another piece of JML specification, stating that
all implementations of this method terminate (on all inputs), and are free of
side effects. Without that, we would not be allowed to use getBoundary() in
the invariant above, nor in any other JML formula.

Finally, we give the SortedIntervalSeq implementation of insert() (over-
riding some non-sorted implementation from IntervalSeq):

Java (1.6)
����� ���� insert(Interval iv) {

��� i = size;
incSize ();
����� ��� ivBoundary = getBoundary(iv);
����� (i > 0 && ivBoundary < getBoundary(contents[i-1])) {

contents[i] = contents[i - 1];
--i;

}
contents[i] = iv;

}

Java

82 W. Ahrendt et al.

Within the 	�������	����. . . and 	����������. . . Classes. These two
classes extend SortedIntervalSeq by defining the sorting criteria to be the
“start” resp. “end” of the interval. Within SortedByStartIntervalSeq, we
have:

Java + JML (1.7)
�������� /*@ ���� @*/ ��� getBoundary(Interval iv) {

������ iv.getStart ();
}

Java + JML

and within SortedByEndIntervalSeq, we have

Java + JML (1.8)
�������� /*@ ���� @*/ ��� getBoundary(Interval iv) {

������ iv.getEnd ();
}

Java + JML

4.2 Dynamic Logic and Proof Obligations

After having completed the specification as described in the previous section we
start bin/runProver (in your KeY installation directory) as a first step towards
verification. The graphical user interface of the KeY prover will pop up. To load
files with Java source code and JML specifications, we select File → Load . . .
(or in the tool bar). For the purposes of this introduction we navigate to
where the calender-sources4 are stored locally, select that very directory (not
any of the sub-directories), and push the open button. After an instant the
JML specification browser will appear on the screen. In the left-most of its
three window panes, the Classes pane, we expand the folder corresponding to the
package intervals and select the class IntervalSeq. The Methods pane now
shows all methods of class IntervalSeq. We select void insert(Interval iv). Now
also the Proof Obligations pane shows some entries. We select first the specification
case normal behavior and push Load Proof Obligation. This brings us back to the
KeY prover interface.

Now, the Tasks pane records the tasks we have loaded (currently one) and the
main window Current Goal shows the proof obligation. It looks quite daunting and
we use the rest of this section to explain what you see there. The construction
of the actual proof is covered in the next section. Ignoring the leading ==>, the
proof obligation is of the form shown in Fig. 3.

Java Card DL. Fig. 3 shows a formula of Dynamic Logic (DL), more pre-
cisely Java Card DL, see Section 2. The reader might recognise typical features
of first-order logic: the propositional connectives (e.g., -> and &), predicates

4 The sources can be downloaded from www.key-project.org/fmco06

www.key-project.org/fmco06

Verifying Object-Oriented Programs with KeY: A Tutorial 83

KeY

1 inReachableState
2 -> ������� intervals.Interval iv_lv;
3 {iv:=iv_lv}
4 (iv.<created> = TRUE & !iv = ����

5 | iv = ����

6 -> ������� intervals.IntervalSeq self_IntervalSeq_lv;
7 {self_IntervalSeq:=self_IntervalSeq_lv}
8 (������� jint k;
9 _old20(k) = self_IntervalSeq.contents[k - 1]

10 -> ������� jint j; _old19(j) = self_IntervalSeq.contents[j]
11 -> !self_IntervalSeq = ����

12 & self_IntervalSeq.<created> = TRUE
13 & !iv = ����

14 & . . .
15 & !self_IntervalSeq.contents = ����

16 & self_IntervalSeq.contents.length >=
17 self_IntervalSeq.size
18 & self_IntervalSeq.contents.length >= 1
19 & ������� jint i;
20 (0 <= i & i < self_IntervalSeq.size
21 -> !self_IntervalSeq.contents[i] = ����)
22 & . . .
23 & self_IntervalSeq.size >= 0
24 -> {_old17:=self_IntervalSeq.size || _old18_iv:=iv}
25 �	{self_IntervalSeq.insert(iv)@intervals.IntervalSeq;}�

26 (self_IntervalSeq.size = _old17 + 1
27 & ������ jint i; . . .)
28)
29)

KeY

Fig. 3. Proof obligation for the insert method in class IntervalSeq

(e.g., inReachableState, a predicate of arity 0), equality, constant symbols
(e.g., self_IntervalSeq), unary function symbols (e.g., size), and quanti-
fiers (e.g., \exists jint i;). The function symbol size is the logical coun-
terpart of the attribute of the same name. Note also that Java Card DL uses
dot-notation for function application, for example, self_IntervalSeq.size in-
stead of size(self_IntervalSeq) on line 17. On line 2, the quantification
\forall intervals.Interval iv_lv; introduces the quantified variable iv_lv
of type Interval (for disambiguation the package name intervals is prefixed).
What makes Java Card DL a proper extension of first-order logic are modal
operators. In the above example the diamond operator

\<{self_IntervalSeq.insert(iv)@intervals.IntervalSeq;}\>

84 W. Ahrendt et al.

occurs on line 25 (note that in KeY the modal operators <> and [] are written
with leading backslashes). In general, if prog is any sequence of legal Java Card
statements and F is a Java Card DL formula, then \<prog\>F is a Java Card DL
formula too. As already explained in Section 2, the formula \<prog\>F is true in
a state s1 if there is a state s2 such that prog terminates in s2 when started in s1
and F is true in s2. The box operator \[. . .\] has the same semantics except
that it does not require termination.

In theoretical treatments of Dynamic Logic there is only one kind of vari-
able. In Java Card DL we find it more convenient to separate logical variables
(e.g., iv_lv in the above example), from program variables (e.g. iv). Program
variables are considered as (non-rigid) constant symbols in Java Card DL and
may thus not be quantified over. Logical variables on the other hand are not
allowed to occur within modal operators, because they cannot occur as part of
Java programs.

State Updates. We are certainly not able to touch on all central points of
Java Card DL in this quick introduction, but there is one item we cannot drop,
namely updates. Let us look at line 3 in Fig. 3. Here {iv:=iv_lv} is an example
of an update. More precisely, it is an example of a special kind of update, called
function update. The left-hand side of a function update is typically a program
variable, as iv in this example, or an array or field access. The right-hand side
can be an arbitrary Java Card DL term, which of course must be compatible
with the type of the left-hand expression. Constructs like {i:=j++} where the
right-hand side would have side-effects are not allowed in updates. If {lhs:=rhs}
is a function update and F is a formula, then {lhs:=rhs}F is a Java Card DL
formula. The formula {lhs:=rhs}F is true in state s1 if F is true in state s2 where
s2 is obtained from s1 by performing the update. For example, the state s2 ob-
tained from s1 by performing the update {iv:=iv_lv} (only) differs in the value
of iv, which is in s2 the value that iv_lv has in s1. Java Card DL furthermore
allows combinations of updates, e.g., by sequential or parallel composition. An
example of such parallel updates, composed via “||”, appears in line 24 of Fig. 3.

One difference between updates and Java assignment statements is that log-
ical variables such as iv_lv may occur on the right hand side of updates. In
Java Card DL it is not possible to quantify over program variables. This is made
up for by the possibility of quantifying over logical variables in updates (as in
lines 2 and 3 in Fig. 3). Another role of updates is to store “old” values from the
pre-state, that then can be referred to in the post-state (as in lines 24 and 26). Fi-
nally, the most important role of updates is that of delayed substitutions. During
symbolic execution (performed by the prover using the Java Card DL calculus)
the effects of a program are removed from the modality \<. . .\> and turned into
updates, where they are simplified and parallelised. Only when the modality
has been eliminated, updates are substituted into the post-state. For a more
thorough discussion, we refer to the KeY book [3, Chapt. 3].

Kripke Semantics. A state s ∈ S contains all information necessary to describe
the complete snapshot of a computation: the existing instances of all types, the

Verifying Object-Oriented Programs with KeY: A Tutorial 85

values of instance fields and local program variables etc. Modal logic expressions
are not evaluated relative to one state model but relative to a collection of those,
called a Kripke Structure. There are rigid symbols that evaluate to one constant
meaning in all states of a Kripke Structure. The type jint (see e.g., line 8 in
Fig. 3) in all states evaluates to the (infinite) set of integers, also addition + on
jint are always evaluated as the usual mathematical addition. Logical variables
also count among the rigid symbols, no program may change their value. On the
other hand there are non-rigid symbols like self_IntervalSeq, iv, contents,
or at(i).

Proof Obligations. We have to add more details on Java Card DL as we go
along but we are now well prepared to talk about proof obligations. We are still
looking at Fig. 3 containing the proof obligation in the Current Goal pane that
was generated by selecting the normal behaviour specification case. Line 11 con-
tains the requires clause from the JML method specification for insert, while
the conjunction of all JML invariants for class IntervalSeq appears in lines 15
to 21. If you also need invariants of superclasses or classes that occur as the type
of a field in IntervalSeq you would tick the use all applicable invariants box
in the JML browser before generating the proof obligation. Since in the JML
semantics normal behaviour includes the termination requirement, the diamond
modality is used. Starting with line 26, the first line within the scope of the modal
operator, follows the conjunction of the ensures clauses in the JML method
specification. It is implicit in the JML specification that the above implication
should be true for all values of the method parameter iv and all instances of class
IntervalSeq as calling object. As we have already observed this is accomplished
in Java Card DL by universal quantification of the logical variables iv_lv and
self_IntervalSeq_lv and binding these values to the program variables via the
updates {iv := iv_lv} and {self_IntervalSeq := self_IntervalSeq_lv}.
Looking again at Fig. 3, we notice in lines 4 and 5 additional restrictions on
the implicitly, via iv_lv, universally quantified parameter iv. To understand
what we see here, it is necessary to explain how Java Card DL handles object
creation. Instead of adding a new element to the target state s2 of a statement
prog that contains a call to the new method we adopt what is called the con-
stant domain assumption in modal logic theory. According to this assumption
all states share the same objects for all occurring types. In addition there is
an implicit field <created> of the class java.lang.Object (to emphasise that
this is not a normal field, it is set within angled brackets). Initially we have
o.<created> = FALSE for all objects o. If a new method call is performed we
look for the next object o to be created and change the value of o.<created>
from FALSE to TRUE, which now is nothing more than any other function update.

Pre-Values of Arrays. It is quite easy to track the preconditions occurring in the
Java Card DL proof obligation to their JML origin as a requires or invariant
clause. But, there are also parts in the Java Card DL precondition that do not
apparently correspond to a JML clause, for example in Fig. 3 line 10:

\forall jint j; _old19(j) = self_IntervalSeq.contents[j]

86 W. Ahrendt et al.

This is triggered by the use of the \old construct in the following part of the
JML ensures clause:

JML
@ && (������� ��� j; 0 <= j && j < i;
@ contents[j] == ����(contents[j]))

JML

KeY handles this by introducing a new function, here _old19, and requiring it
to coincide for all arguments with self_IntervalSeq.contents. Since _old19
is not affected by the program it can be used after the diamond operator to refer
to the old values of self_IntervalSeq.contents as in:

\forall jint j; (0 <= j & j < i ->
self_IntervalSeq.contents[j] = _old19(j))

Imagine that you were to write a run-time checker for JML. That will give you
the idea for how you would implement the \old construct. Corresponding to
the JML term \old(size) the definition _old17:=self_IntervalSeq.size is
introduced. This time not as an equality, but as already mentioned above as an
update. The advantage is that the update will be automatically applied to prove
the postcondition size = \old(size) + 1. The application of the definition of
old19(j) on the other hand requires user interaction or special heuristics to
pick the needed instantiations of j.

Proper Java States. It still remains to comment on the precondition that we
skipped on first reading, inReachableState. In KeY a method contract is proved
by showing that the method terminates in a state satisfying the postcondition
when started in any state s1 satisfying the preconditions and the invariants.
This may also include states s1 that cannot be reached from the main method.
But, usually the preconditions and invariants narrow down this possibility and
in the end it does not hurt much to prove a bit more than is needed. But, there
is another problem here: the implicit fields. A state with object o and field a
such that o.<created> = TRUE, o.a != null, and o.a.<created> = FALSE is
not possible in Java, but could be produced via updates. It is the precondition
inReachableState that excludes this kind of anomalies.

Capturing JML Specifications in Java Card DL. Let us go back to the JML
specification browser and select Assignable PO for the insert method. When
proving, e.g., the normal behaviour clause of a method contract, we also take
advantage of the JML assignable clause. The current proof obligation now
checks if the assignable clauses are indeed correct. In the case at hand there
does not seem to be much to do, since all fields of class IntervalSeq (there are
just two) may change. To be precise, a call to the insert method only assigns
to these fields for the calling object, otherwise they should remain unchanged.
This is what this proof obligation states.

Now, let us select the last proof obligation in the JML specification browser,
which is named class specification. Its purpose is to make sure that, for

Verifying Object-Oriented Programs with KeY: A Tutorial 87

any state s1 that satisfies all invariants of the IntervalSeq class and the pre-
conditions of insert(iv), the invariants are again true in the end state s2 of
this method. Note that here the modal box operator is used. Termination of the
method was already part of its method contract, so we need not prove it again
here. The proof obligation requires the invariants to also hold when the methods
terminates via an exception. This is the reason why insert(iv) is enclosed in a
try-catch block. Also the inReachableState predicate is among the invariants
to be proved.

4.3 Verification

In this section, we demonstrate how the KeY prover is used to verify a proof
obligation resulting from our example. It is important to note, however, that a
systematic introduction into the usage of the prover is beyond the scope of this
paper. Such an introduction can be found in Chapter 10 of the KeY book [3].
On the other hand, the examples in that chapter are of toy size as compared to
the more realistic proof obligations we consider in this paper.

This section is meant to be read with the KeY prover up and running, to
perform the described steps with the system right away. The exposition aims
at giving an impression only, on how verification of more realistic examples is
performed, while we cannot explain in detail why we are doing what we are
doing. Again, please refer to [3, Chapt. 10] instead.

We will now verify that the implementation of the method insert() in class
SortedIntervalSeq (not in IntervalSeq) respects the contract that it inherits
from IntervalSeq. Before starting the proof, we remind ourselves of the code
we are going to verify: the implementation of insert() was given in listing (1.6)
in Sect. 4.1, and it calls the inherited method incSize(), see listing (1.1). Both
these methods contain one while loop, which we advise the reader to look at,
as we have to recognise them at some point during the verification.

We first let KeY generate the corresponding proof obligation, by following
the same steps as described at the beginning of Sect. 4.2 (from File → Load . . .
onwards), but with the difference that this time we select, in the Classes pane,
SortedIntervalSeq instead of IntervalSeq. (Apart from that, it is again the
method void insert(Interval iv) that we select in the Methods pane, and
the specification case normal behavior that we select in the Proof Obligations pane.
Before clicking on the Load Proof Obligation button, we make sure that the two
check-boxes at the bottom of the specification browser are not checked.)

Afterwards, the Current Goal pane contains a proof obligation that is very simi-
lar to the one discussed in Sect. 4.2, just that now the (translated) class invariant
of SortedIntervalSeq, see listing (1.4), serves as an additional assumption.

This now is a good time to comment on the the leading “==>” symbol in the
Current Goal pane. As described in Sect. 2, the KeY prover builds proofs based
on a sequent calculus. Sequents are of the form φ1, . . . , φn =⇒ φ′

1, . . . , φ
′
m, where

φ1, . . . , φn and φ′
1, . . . , φ

′
m are two (possibly empty) comma-separated lists of

formulas, separated by the sequent arrow =⇒ (that is written as “ ==>” in the
KeY system). The intuitive meaning of a sequent is: if we assume all formulas

88 W. Ahrendt et al.

φ1, . . . , φn to hold, then at least one of the formulas φ′
1, . . . , φ

′
m holds. We refer

to “φ1, . . . , φn” and “φ′
1, . . . , φ

′
m” as the “left-hand side” (or “antecedent”) and

“right-hand side” (or “succedent”) of the sequent, respectively.
The particular sequent we see now in the Current Goal pane has only one

formula on the right-hand side, and no formulas on the left-hand side, which
is the typical shape for generated proof obligations, prior to application of any
calculus rule. It is the purpose of the sequent calculus to, step by step, take
such formulas apart, while collecting assumptions on the left-hand side, and
alternatives on the right-hand side, until the sheer shape of a sequent makes it
trivially true. Meanwhile, certain rules make the proof branch.

We prove this goal with the highest possible degree of automation. However,
we first apply one rule interactively, just to show how that is done. In general,
interactive rule application is supported by the system offering only those rules
which are applicable to the highlighted formula, resp. term (or, more precisely,
to its top-level operator). If we now click on the leading “->” of the right-hand
side formula, a context menu for rule selection appears. It offers several rules
applicable to “->”, among them imp right, which in textbook notation looks like
this:

imp right
Γ, φ =⇒ ψ, Δ

Γ =⇒ φ −> ψ, Δ

A tool-tip shows the corresponding taclet. Clicking on imp right will apply the
rule in our proof, and the Current Goal pane displays the new goal. Moreover,
the Proof tab in the lower left corner displays the structure of the (unfinished)
proof. The nodes are labelled either by the name of the rule which was applied
to that node, or by “OPEN GOAL” in case of a goal. (In case of several goals, the
one currently in focus is highlighted in blue.) We can see that impRight has been
applied interactively (indicated by a hand symbol), and that afterwards, Update
Simplification has been applied automatically. Updates are simplified automati-
cally after each interactive step, because there is usually no reason to work with
formulas that contain unsimplified updates.

The proof we are constructing will be several thousand steps big, so we
better switch to automated proof construction now. For that, we select the
Proof Search Strategy tab in the lower left corner, and configure the proof strategy
as follows:

– Max. rule applications: 5000 (or just any big number)
– Java DL (the strategy for proving in JavaDL)
– Loop treatment: None (we want symbolic execution to stop in front of loops)
– Method treatment: Expand (methods are inlined during symbolic execution)
– Query treatment: Expand (queries in specifications are inlined)
– Arithmetic treatment: Basic (simple automatic handling of linear arithmetic)
– Quantifier treatment: Non-Splitting Instantiation

(use heuristics for automatic quantifier handling, but do not perform instan-
tiations that might cause proof splitting)

Verifying Object-Oriented Programs with KeY: A Tutorial 89

We run the strategy by clicking the button (either in the Proof Search Strategy
tab or in the tool bar). The strategy will stop after about 1000 rule applications
once the symbolic execution arrives at loops in the program (due to Loop treatment:
None). We open the Goals tab, where we can see that there are currently five goals
left to be proven.

We can view each of these goals in the Current Goal pane, by selecting one
after the other in the Goals tab. In four of the five goals, the modality (preceded
by a parallel update) starts with:

KeY (1.9)

��{method-frame(. . .): {
����� (i>0 && ivBoundary<getBoundary(contents[i-1])) {

. . .

KeY

In those four proof branches, symbolic execution is just about to “enter” the
while loop in the method insert(). In the remaining fifth branch, the same holds
for the while loop in the method incSize(). For the loop in insert(), we get
four cases due to the two existing implementations of the interface Interval and
the two concrete subclasses of the abstract class SortedIntervalSeq. All four
cases can be handled in the same way and by performing the same interactions,
to be described in the following.

In each case, we first have to process the while loop at the beginning of the
modality. It is well known that loops cannot be handled in a similarly automated
fashion as most other constructs.

Loop Invariants. Generally, for programs containing loops we have to choose
a suitable loop invariant5 (a formula) in order to prove that the loop has the
desired effect and a loop variant (an integer term) for proving that the loop
terminates. We also have to specify the assignable memory locations that can be
altered during execution of the loop. All this information can be entered as part
of an interactive proof step in KeY. However, the prover also supports the JML
feature of annotating loops with invariants, variants, and assignable locations.

Invariants typically express that the loop counter is in a valid range, and give
a closed description of the effect of the first n iterations. For the loop in the
method insert(), it is necessary to state in the invariant that:

– the loop counter i never leaves the interval [0, size),
– the interval is not inserted too far left in the array, and
– the original contents of the sequence are properly shifted to the right.

The last component of the invariant is very similar to the post-condition, see
listing (1.3), of the whole insert() method, which expresses that the argument
of the method is properly inserted in the sequent (at an arbitrary place). In
JML, we could capture this part of the loop invariant as:

5 As an alternative to using invariants, KeY offers induction, see [3, Chapt. 11].

90 W. Ahrendt et al.

JML
(������� ��� k; 0 <= k && k < i;

contents[k] == ����(contents[k])) &&
(������� ��� k; i < k && k < size;

contents[k] == ����(contents[k-1]))

JML

In this constraint, i is the loop variable. It is stated that all array components
that have already been visited by the loop are shifted to the right, whereas a
prefix of the array remains unchanged.

Due to a certain shortcoming in the current JML support within KeY, how-
ever, it is for the time being not possible to use the \old operator in JML loop
invariants. (It will be possible in future versions of KeY.) We can work around
this problem by introducing a ghost field (a specification-only variable) that
stores the old contents of the array. This is done by adding the following lines
to the class IntervalSeq:

Java + JML
//@ ����� ����� Interval[] oldContents;

/*@ ����� ���������������

@ ...
@ ��
����� contents != oldContents && oldContents != ����

@ && oldContents.length == contents.length
@ && (������� ��� i; 0 <= i && i < size;
@ contents[i] == oldContents[i]);
@*/

����� ���� insert(Interval iv) {
...

Java + JML

We can then write the complete loop invariant as shown below. Stating the
termination of the loop is simple, because the variable i is always non-negative
and decreased in each iteration. Further, we specify that the only modifiable
memory locations are the loop counter and the elements of the array contents.

Java + JML
/*@ �������������� 0 <= i && i < size &&
@ (i < size - 1 ==>
@ ivBoundary < getBoundary(contents[i])) &&
@ (������� ��� k; 0 <= k && k < i;
@ contents[k] == oldContents[k]) &&
@ (������� ��� k; i < k && k < size;
@ contents[k] == oldContents[k-1]);
@ �������� i;
@ ���������� contents[*], i;
@*/

Verifying Object-Oriented Programs with KeY: A Tutorial 91

����� (i > 0 && ivBoundary < getBoundary(contents[i-1])) {
contents[i] = contents[i - 1];
--i;

}

Java + JML

Verification Using Invariants. We continue our proof on one of the four similar
goals, all of which containing the modality of the form (1.9), such that processing
the loop in insert() is the next step. Because all these four goals can be handled
in the same way, we can pick an arbitrary one of them, by selecting it in the
Goals tab. Before proceeding, we switch to the Proof tab, to better see the effect
of the upcoming proof step.

We apply an invariant rule which automatically extracts the JML anno-
tation of our loop from the source code. For that, we click on any of the
“:=” symbols in the parallel update preceding the modality \<. . .\>, and select
while invariant with variant dec from the rules offered. A Choose Taclet Instantiation
window pops up, where we just press the Apply button.

Afterwards, the Proof tab tells us (possibly after scrolling down a bit) that
the application of this invariant rule has resulted in four proof branches:

– Invariant Initially Valid: It has to be shown that the chosen invariant holds when
entering the loop.

– Body Preserves Invariant: Under the assumption that the invariant and the loop
condition hold, after one loop iteration the invariant still has to be true.

– Termination: Under the assumption that the invariant and the loop condition
hold, the chosen variant has to be decreased by the loop body, but has to
stay non-negative.

– Use Case: The remaining program has to be verified now using the fact that
after the loop terminates, the invariant is true and the loop condition is false.

The four cases can be proven as follows. Generally, for a complex proof like
this, it is best to handle the proof goals one by one and to start the automatic
application of rules only locally for a particular branch. This is done by clicking
on a sequent arrow ==> and choosing Apply rules automatically here, or by shift-
clicking on a sequent arrow, or by right-clicking on a node in the proof tree
display and selecting Apply Strategy from the context menu. (Clicking on , in
contrast, will apply rules to all remaining proof goals, which is too coarse-grained
if different search strategy settings have to be used for different parts of the
proof.)

Also, please note that a proof branch beginning with a green folder symbol
is closed. Therefore, this symbol is a success criteria in each of the following
four cases. Moreover, branches in the Proof tab can be expanded/collapsed by
clicking on / . To keep a better overview, we advise the reader to collapse the
branches of the following four cases once they are closed.

Invariant Initially Valid. The proof obligation can easily be handled automati-
cally by KeY and requires about 100 rule applications.

92 W. Ahrendt et al.

Body Preserves Invariant. This is the goal that requires the biggest (sub-)proof
with about 11000 rule applications. In the Proof Search Strategy pane, choose a
maximum number of rule applications of 20000 and run the prover in auto-mode
on the goal as described above. This will, after a while, close the “Body Preserves
Invariant” branch.

Termination. Proceed as for the case Body Preserves Invariant (possibly after ex-
panding the branch and selecting its OPEN GOAL). This case will be closed after
about 6000 steps.

Use Case. Proceed similarly as for the case Body Preserves Invariant. At first,
calling the automated strategy will perform about 5000 rule applications. In
contrast to the other three cases, for this last branch it is also necessary to
manually provide witnesses for certain existentially quantified formulas (in the
succedent) that can neither be found by KeY, nor by the external prover Sim-
plify [9], automatically. These formulas correspond to the post-condition of the
method insert(), where a point has to be “guessed” at which a further element
has been added to the sequence. The form of the formulas is:

\exists jint i; \forall jint j; \forall jint k; F

Fortunately, for this problem, it is easy to read off the witness i that allows to
prove the formulas: the body F always contains equations of the form i = t,
where t is the desired witness. To actually perform the instantiation of the for-
mula, drag the term t to the quantifier \exists jint i and choose the rule
ex right hide in the appearing menu.6 After this instantiation step, call the auto-
mated strategy, locally, and in those cases where this does not close that very
branch, apply Simplify, only locally. A branch local call of Simplify is performed
by clicking on the sequent arrow ==>, and selecting Decision Procedure Simplify in
the context menu. In this way, handle all branches with formulas of the above
form, until the “Use Case” has a green folder at its beginning, meaning this case
is closed.

5 Second Walk-Through: Specifying and Verifying
Timeframe Displays

In this section, we practice specification and verification a second time, now with
higher speed, and coarser granularity. The example is the method add() of the
class TimeFrameDisplay.

5.1 Formal Specification and Implementation

Within the Class ���� ����!������. The class TimeFrameDisplay is a con-
crete application of the calendar view TimeFrameCalendarView, and could be

6 In case the option Options → DnD Direction Sensitive is enabled, KeY will perform
the instantiation without showing a menu.

Verifying Object-Oriented Programs with KeY: A Tutorial 93

:T
im

eF
ra

m
eD

is
pl

ay
ca

l:C
al

en
da

r
en

tr
y:

C
al

en
da

rE
nt

ry
en

tr
ie

s:
C

al
en

da
rE

nt
ry

S
eq

:S
or

te
dC

al
en

da
rV

ie
w

en
tr

yT
re

e:
In

te
rv

al
T

re
e

:T
im

eF
ra

m
eC

al
en

da
rV

ie
w

2

1

3

6

4
5

ad
d(

en
tr

y)

ad
d(

en
tr

y)

re
gi

st
er

O
bs

er
ve

r(
ca

l)

ad
dH

el
p(

en
tr

y)

in
se

rt
(e

nt
ry

)
[to

o
sm

al
l]

in
cS

iz
e(

)

fir
eA

dd
ed

E
nt

ry
(e

nt
ry

)

ad
de

dE
nt

ry
(e

nt
ry

)

in
se

rt
(e

nt
ry

)

ad
de

dE
nt

ry
(e

nt
ry

)

o=
ov

er
la

pp
in

g(
...

)

fir
eA

dd
ed

E
nt

ry
(e

nt
ry

)

ad
de

dE
nt

ry
(e

nt
ry

)

F
ig

.4
.
U

M
L

se
q
u
en

ce
d
ia

g
ra

m
sh

ow
in

g
th

e
eff

ec
t

o
f
ca

ll
in

g
T
i
m
e
F
r
a
m
e
D
i
s
p
l
a
y
:
:
a
d
d

94 W. Ahrendt et al.

(the skeleton of) a dialogue displaying a certain time period in a calendar.
On the following pages, we demonstrate how we can give a more behavioural
specification for some aspects of such a dialogue. The investigated method is
TimeFrameDisplay::add, which simply delegates the addition of a new entry to
the underlying Calendar object:

Java + JML (1.10)
����� ���� TimeFrameDisplay ���������� CalendarListener {

...
/*@ ����� ���������������

@ ��
����� entry != ����;
@ ��
����� overlapping (timeFrame, entry);
@ ������� lastEntryAdded == entry;
@*/

����� ���� add(CalendarEntry entry) {
cal.add (entry);

}
...
������� CalendarEntry lastEntryAdded = ����;
����� ���� addedEntry(CalendarEntry e) {

lastEntryAdded = e;
}

Java + JML

In this context, we would like to specify that calling add actually results in
a new calendar entry being displayed on the screen. In order to simulate this
effect, we introduce an attribute lastEntryAdded that is assigned in the method
addedEntry. The post-condition of method add, lastEntryAdded == entry,
consequently states that calling add eventually raises the signal addedEntry
with the right argument (see Fig. 4 for an illustration).

5.2 Proof Obligations and Verification

This time, we demonstrate the use of a hand-written Java Card DL proof obliga-
tion instead of importing a JML specification into KeY. Formulating a problem
directly in DL is more flexible and gives us full control over which assumptions
we want to make, but it is also more low-level, more intricate, and requires more
knowledge about the logic and the prover. Figure 5 shows the main parts of the
file timeFrameDisplayAdd.key containing the proof obligation. A full account
on the syntax used in KeY input files is given in [3, Appendix B]. As before, we
can load timeFrameDisplayAdd.key by selecting File → Load . . . (or in the
tool bar) and choosing the file in the appearing dialogue.

The KeY input file in Fig. 5 starts with the path to the Java sources un-
der investigation, and with a part that declares a number of program variables

Verifying Object-Oriented Programs with KeY: A Tutorial 95

KeY

1 ����������� "calendar-sources/";
2 ���������������� {
3 calendar.CalendarEntry entry; calendar.CalendarEntry old_entry;
4 TimeFrameDisplay self; }
5 �������� {
6 inReachableState
7 & self != ���� & self.<created> = TRUE
8 & entry != ���� & entry.<created> = TRUE
9 & TimeFrameDisplay.overlapping(self.timeFrame, entry) = TRUE

10

11 & self.cal!=���� & self.timeFrame!=���� & self.timeFrameView!=����
12 & self.timeFrameView.listenersNum = 1 & self.cal.listenersNum = 2
13 & self.timeFrameView.listeners[0] = self
14 & self.cal.listeners[0] = self.cal.completeView
15 & self.cal.listeners[1] = self.timeFrameView
16 & self.timeFrameView.timeFrame = self.timeFrame
17

18 & ������� calendar.CalendarModificationServer serv;
19 (serv != ���� & serv.<created> = TRUE
20 -> serv.listeners != ����

21 & 0 <= serv.listenersNum & 1 <= serv.listeners.length
22 & serv.listenersNum <= serv.listeners.length)
23 & ������� observerPattern.Subject subj;
24 (subj != ���� & subj.<created> = TRUE
25 -> subj.observers != ����

26 & 0 <= subj.observersNum & 1 <= subj.observers.length
27 & subj.observersNum <= subj.observers.length)
28 & ������� calendar.CalendarEntrySeq entry;
29 (entry != ���� & entry.<created> = TRUE
30 -> entry.contents != ����

31 & 0 <= entry.size & 1 <= entry.contents.length
32 & entry.size <= entry.contents.length)
33 & ������� calendar.Calendar cal;
34 (cal != ���� & cal.<created> = TRUE
35 -> cal.entries != ���� & cal.completeView != ����)
36 & ������� calendar.TimeFrameCalendarView view;
37 (view != ���� & view.<created> = TRUE
38 -> view.completeView != ���� & view.timeFrame != ����

39 & view.cal != ����)
40 & ������� calendar.SortedCalendarView view;
41 (view != ���� & view.<created> = TRUE -> view.entryTree != ����)
42

43 -> {old_entry := entry} �	{ self.add(entry)@TimeFrameDisplay; }�

44 self.lastEntryAdded = old_entry }

KeY

Fig. 5. The hand-written proof obligation for Sect. 5

96 W. Ahrendt et al.

(lines 2–4) used in the specification. The main part of the file describes one
particular scenario that we want to simulate:

– In lines 7–8, we assume that self and entry refer to proper objects of
classes TimeFrameDisplay resp. CalendarEntry. The calendar entry is also
supposed to overlap with the attribute self.timeFrame (line 9), which is
the pre-condition of the method TimeFrameDisplay::add.

– The TimeFrameDisplay object self has been properly set up and connected
to a Calendar and to a TimeFrameCalendarView (lines 11, 16). The freshly
created TimeFrameCalendarView has exactly one listener attached, namely
the object self (lines 12, 13). Likewise, the calendar self.cal does not
have any listeners registered apart from its SortedCalendarView and the
TimeFrameCalendarView (lines 12, 14, 15).

– In order to perform the verification, we need to assume a number of invari-
ants. Lines 18–32 contain three very similar class invariants for the classes
CalendarModificationServer, Subject, and CalendarEntrySeq, mostly
expressing that the arrays for storing listeners and calendar entries are
sufficiently large. In lines 33–41, we state somewhat simpler invariants for
Calendar, TimeFrameCalendarView, and SortedCalendarView that ensure
that attributes are non-null.

In this setting, we want to show that an invocation of the method self.add with
parameter entry has the effect of raising a signal addedEntry. This property is
stated in lines 43–44 using a diamond modal operator.

Loop Handling. Apart from sequential code that can simply be executed sym-
bolically, there are three loops in the system that require our attention in this
setting. The loops in the methods Subject::registerObserver (➀ in Fig. 4)
and CalendarEntrySeq::incSize (➁ in Fig. 4) are similar in shape and are
necessary for handling the dynamically growing arrays of entries and listeners:

Java + JML
����� ���� registerObserver(Observer obs) {

++observersNum;
�� (observersNum > observers.length) {
����� Observer[] oldAr = observers;
observers = ��� Observer[observers.length * 2];
��� i = 0;
����� (i < oldAr.length) {observers[i] = oldAr[i]; ++i;}

}
observers[observersNum - 1] = obs;

}
...
�������� ���� incSize() {

++size;
�� (size > contents.length) {
����� CalendarEntry[] oldAr = contents;

Verifying Object-Oriented Programs with KeY: A Tutorial 97

contents = ��� CalendarEntry[contents.length * 2];
��� i = 0;
����� (i < oldAr.length) {contents[i] = oldAr[i]; ++i;}

}
}

Java + JML

We can handle both loops in the same way (and with the same or similar in-
variants) as in Sect. 4.3. As before, it is enough to annotate the loops with JML
invariants and variants, which can be read and extracted by KeY during the
verification.

The third occurrence of a loop is in the class CalendarModificationServer
in package calendar (➂ and ➅ in Fig. 4):

KeY
�������� ���� fireAddedEntry(CalendarEntry entry) {
��� i = 0;
����� (i != listenersNum) {

listeners[i].addedEntry (entry); ++i;}
}

KeY

This loop is executed after adding a new entry to the calendar and is respon-
sible for informing all attached listeners about the new entry. In our particular
scenario, there are exactly two listeners (the objects self.cal.completeView
and self.timeFrameView), and therefore we can handle this loop by unwinding
it twice.

The Actual Verification, Step by Step. After loading the problem file shown in
Fig. 5, we select proof search options as in Sect. 4.3:

– Loop treatment: None
– Method treatment: Expand
– Query treatment: None

(we do not inline queries immediately, because we want to keep the expression
TimeFrameDisplay.overlapping(self.timeFrame,entry) that occurs in
Fig.5 for later)

– Arithmetic treatment: Basic
– Quantifier treatment: Non-splitting instantiation

Running the prover with these options and about 1000 rule applications gets
us to the point where we have to handle the loops of the verification problem.
There are three goals left, corresponding to the points ➀, ➁ and ➂ in Fig. 4,
one for each of the loops that are described in the previous paragraph. This is
due to the fact that the loops in the methods incSize and registerObserver
are only executed if it is necessary to increase the size of the arrays involved.
Consequently, the proof constructed so far contains two case distinctions and

98 W. Ahrendt et al.

three possible cases. As the loops in incSize and registerObserver can be
eliminated using invariants (exactly as in the previous section), we concentrate
on the third loop in method fireAddedEntry that is met at point ➂ in Fig. 4.

In order to unwind the loop of fireAddedEntry once, click on the program
block containing the method body and choose the rule unwind while. This dupli-
cated the loop body and guards it with a conditional statement. That is, the
loop “while(b){prog}” is replaced by “if(b){prog;while(b){prog}}”.

After unwinding the loop, we have to deal with the first object listening for
changes in the calendar, which is a SortedCalendarView. To continue, select
Method treatment: None and run the prover in automode. The prover will stop at
the invocation SortedCalendarView::addedEntry (➃ in Fig. 4), which we can
unfold using the rule method body expand. After that, continue in automode.

Method Contracts. The method SortedCalendarView::addedEntry inserts the
new CalendarEntry into an interval tree to enable subsequent efficient lookups.
Consequently, the next point where the prover stops is an invocation of the
method IntervalTree::insert. The exact behaviour of this insertion is not
important for the present verification problem, however, so we get rid of it using
a method contract that only specifies which parts of the program state could
possibly be affected by the insertion operation. Such a contract can be writ-
ten based on Dynamic Logic and is shown in Fig. 6 (it is contained in the file
timeFrameDisplayAdd.key). We specify that the pre-condition of the method
IntervalTree::insert is ivt != null & iv != null, that arbitrary things
can hold after execution of the method (the post-condition is true), but that
only certain attributes of classes in the intervals package can be modified (the
attributes listed behind the keyword \modifies).

In order to apply the method contract, we click on the program and select
the item Use Method Contract in the context menu. In the appearing dialogue, we
have to select the right contract intervalTreeInsert. This leads to two new
proof goals, in one of which it has to be shown that the pre-condition of the
contract holds, and one where the post-condition is assumed and the remaining
program has to be handled. By continuing in automode, the first goal can easily
be closed, and in the second goal the prover will again stop at point ➂ in front
of the loop of method fireAddedEntry (the second iteration of the loop).

Coming Back to TimeFrameDisplay. The next and last callback that needs to be
handled is the invocation of TimeFrameCalendarView::addedEntry at point ➄.
This method checks whether the calendar entry at hand overlaps with the time
period TimeFrameCalendarView::timeFrame, and in this case it will forward
the entry to the TimeFrameDisplay:

Java + JML
����� ���� addedEntry(CalendarEntry e) {
�� (overlapping (timeFrame, e)) fireAddedEntry (e);

}

Java + JML

Verifying Object-Oriented Programs with KeY: A Tutorial 99

KeY

���������� {
intervalTreeInsert {
���������������� {

intervals.IntervalTree ivt; intervals.Interval iv;
}
ivt != ���� & iv != ����

-> �	{ ivt.insert(iv)@intervals.IntervalTree; }�

����

������� { ivt.root,
���� intervals.IntervalTreeNode n; n.cutPoint,
���� intervals.IntervalTreeNode n; n.left,
���� intervals.IntervalTreeNode n; n.right,
���� intervals.IntervalTreeNode n; n.sortedByStart,
���� intervals.IntervalTreeNode n; n.sortedByEnd,
���� intervals.IntervalTreeNode n; n.sortedByStart.size,
���� intervals.IntervalTreeNode n; n.sortedByStart.contents,
���� (intervals.IntervalTreeNode n; �� i)

n.sortedByStart.contents[i],
���� intervals.IntervalTreeNode n; n.sortedByEnd.size,
���� intervals.IntervalTreeNode n; n.sortedByEnd.contents,
���� (intervals.IntervalTreeNode n; �� i)

n.sortedByEnd.contents[i] }
};

}

KeY

Fig. 6. Java Card DL contract for the method CalendarEntry::insert

The property overlapping(timeFrame, e) is given as a pre-condition of the
method TimeFrameDisplay::add and now occurs as an assumption in the an-
tecedent of the goal:

TimeFrameDisplay.overlapping(self.timeFrame, entry) = TRUE

We can simply continue with symbolic execution on the proof branch. Be-
cause we want the prover to take all available information into account and not
to stop in front of loops and methods anymore, select Loop treatment: Expand,
Method treatment: Expand, and Query treatment: Expand. Choose a maximum num-
ber of rule applications of about 5000. Then, click on the sequent arrow ==> and
select Apply rules automatically here. This eventually closes the goal.

6 Conclusion

In this paper we walked step-by-step through two main verification tasks of a
non-trivial case study using the KeY prover. Many of the problems encountered
here—for example, the frame problem, what to include into invariants, how to

100 W. Ahrendt et al.

modularise proofs—are discussed elsewhere in the research literature, however,
typical research papers cannot provide the level of detail that would one enable
to actually trace the details. We do not claim that all problems encountered are
yet optimally solved in the KeY system, after all, several are the target of active
research [15]. What we intended to show is that realistic Java programs actually
can be specified and verified in a modern verification system and, moreover, all
crucial aspects can be explained within the bounds of a paper while the verifi-
cation process is to a very large degree automatic. After studying this tutorial,
the ambitious reader can complete the remaining verification tasks in the case
study.

As for “future work,” our ambition is to be able to write this tutorial without
technical explanations on how the verification is done while covering at least
as many verification tasks. We would like to treat modularisation and invariant
selection neatly on the level of JML, and the selection of proof obligations in
the GUI. It should not be necessary anymore to mention Java Card DL in any
detail. From failed proof attempts, counter examples should be generated and
animated without the necessity to inspect Java Card DL proof trees. There is
still some way to go to mature formal software verification into a technology
usable in the mainstream of software development.

Acknowledgements

We would like to thank Richard Bubel for many discussions on various topics
of the paper, and for his enormous contribution to the constant improvement of
the KeY system.

References

1. Balser, M., Reif, W., Schellhorn, G., Stenzel, K., Thums, A.: Formal system devel-
opment with KIV. In: Maibaum, T.S.E. (ed.) ETAPS 2000 and FASE 2000. LNCS,
vol. 1783, Springer, Heidelberg (2000)

2. Beckert, B., Gladisch, C.: White-box testing by combining deduction-based specifi-
cation extraction and black-box testing. In: Gurevich, Y. (ed.) Proceedings, Testing
and Proofs, Zürich, Switzerland. LNCS, Springer, Heidelberg (2007)

3. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

4. Beckert, B., Klebanov, V.: Must program verification systems and calculi be ver-
ified. In: Proceedings, 3rd International Verification Workshop (VERIFY), Work-
shop at Federated Logic Conferences (FLoC), Seattle, USA (2006)

5. Burdy, L., Requet, A., Lanet, J.-L.: Java applet correctness: A developer-oriented
approach. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805,
pp. 422–439. Springer, Heidelberg (2003)

6. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms.
McGraw-Hill Higher Education, New York (2001)

7. Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach to analysis of secure
information flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS, vol. 3450,
pp. 193–209. Springer, Heidelberg (2005)

Verifying Object-Oriented Programs with KeY: A Tutorial 101

8. Detlefs, D., Nelson, G., Saxe, J.: Simplify: A Theorem Prover for Program Check-
ing. Technical Report HPL-2003-148, HP Labs (July 2003)

9. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program check-
ing. Journal of the ACM 52(3), 365–473 (2005)

10. Engel, C., Hähnle, R.: Generating unit tests from formal proofs. In: Gurevich,
Y. (ed.) Proceedings, Testing and Proofs, Zürich, Switzerland. LNCS, Springer,
Heidelberg (2007)

11. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive
program verification. In: Damm, W., Hermanns, H. (eds.) 19th International Con-
ference on Computer Aided Verification. LNCS, Springer, Berlin, Germany (2007)

12. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: Proc. ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation, Berlin, pp. 234–245. ACM
Press, New York (2002)

13. Giese, M., Larsson, D.: Simplifying transformations of OCL constraints. In: Briand,
L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, Springer, Heidelberg
(2005)

14. Hunt, J.J., Jenn, E., Leriche, S., Schmitt, P., Tonin, I., Wonnemann, C.: A case
study of specification and verification using JML in an avionics application. In:
Rochard-Foy, M., Wellings, A. (eds.) Proc. of the 4th Workshop on Java Tech-
nologies for Real-time and Embedded Systems (JTRES), ACM Press, New York
(2006)

15. Leavens, G.T., Leino, K.R.M., Müller, P.: Specification and verification challenges
for sequential object-oriented programs. Technical Report 06-14a, Department of
Computer Science, Iowa State University (August 2006) (to appear Formal Aspects
of Computing)

16. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P.: JML Reference Manual, Draft revision 1.197 (August 2006)

17. Nanchen, S., Schmid, H., Schmitt, P., Stärk, R.F.: The ASMKeY prover. Technical
Report 436, Department of Computer Science, ETH Zürich (2004)

18. van den Berg, J., Jacobs, B.: The loop compiler for java and jml. In: Margaria,
T., Yi, W. (eds.) ETAPS 2001 and TACAS 2001. LNCS, vol. 2031, pp. 299–312.
Springer, Heidelberg (2001)

Rebeca: Theory, Applications, and Tools

Marjan Sirjani1,2

1 University of Tehran, Tehran, Iran
2 IPM School of Computer Science, Tehran, Iran

Abstract. Rebeca is an actor-based language with a formal foundation
for modeling concurrent and distributed systems which is designed in
an effort to bridge the gap between formal verification approaches and
real applications. Rebeca is supported by a tool-set for model checking
Rebeca models. Inherent characteristics of Rebeca are used to introduce
compositional verification, abstraction, symmetry and partial order re-
duction techniques for reducing the state space. Simple message-driven
object-based computational model, Java-like syntax, and set of verifica-
tion tools make Rebeca an interesting and easy-to-learn model for prac-
titioners. This paper is to present theories, applications, and supporting
tools of Rebeca in a consistent and distilled form.

Keywords: Actors, Rebeca, Distributed Systems, Concurrency, Com-
positional Verification, Model Checking, Abstraction.

1 Introduction

In the last decades, computing technology has shifted from centralized main-
frames to networked embedded and mobile devices, with the corresponding shift
in applications from number crunching and data processing to the Internet and
distributed computing. Concurrent and reactive systems are increasingly used
in applications, and correct and highly dependable construction of such systems
is particularly important and challenging. A very promising and increasingly
attractive method for achieving this goal is using the approach of formal verifi-
cation. Reactive Objects Language, Rebeca [1,2], is an actor-based language
which is designed to bridge the gap between practical software engineering do-
mains and formal verification methods.

Actors. Rebeca is an operational interpretation of actor model [3,4,5]. The ac-
tor model is a mathematical model of concurrent computation that treats actors
as the universal primitives of concurrent computation: in response to a message
that it receives, an actor can make local decisions, create more actors, send more
messages, and determine how to respond to the next message received. Actors
have encapsulated states and behavior; and are capable of creating new actors,
and redirecting communication links through the exchange of actor identities.
The actor model was originally introduced by Hewitt [3] as an agent-based lan-
guage back in 1973 for programming secure distributed systems with multiple
users and multiple security domains. It has been used both as a framework for a

F.S. de Boer et al. (Eds.): FMCO 2006, LNCS 4709, pp. 102–126, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Rebeca: Theory, Applications, and Tools 103

theoretical understanding of concurrency, and as the theoretical basis for several
practical implementations of concurrent and distributed systems.

Object-oriented models for concurrent systems have widely been proposed
since the 1980s [5,6]. The actor model was developed by Agha [5,7,4] as a func-
tional concurrent object-based model. Later several imperative languages have
also been developed based on it [8,9,10]. Valuable work has been done on for-
malizing the actor model [4,11,12,13,14].

Rebeca modeling. Rebeca has a Java-like syntax and an operational formal
semantics denoted by Labeled Transition Systems (LTS) [2]. Using Rebeca, sys-
tems are modeled as concurrently executing reactive objects. Reactive objects,
called rebecs, are encapsulated objects with a set of state variables, known re-
becs, and message servers. Known rebecs are those rebecs which messages are
sent to. Communication takes place by asynchronous message passing which is
non-blocking for both sender and receiver. The sender rebec sends a message to
the receiver rebec and continues its work. There is no explicit receive statement.
The message is put in the unbounded mail queue of the receiver and is serviced
when it is taken from the queue by executing the corresponding message server.
Execution of a message server takes place atomically. Although different kinds
of synchronization patterns can be modeled using asynchronous computational
model of Rebeca, extensions of Rebeca are developed which are equipped with
statements to model synchronous patterns in a more straight forward way [15,16].

Formal verification. The current and future main challenges of formal verifi-
cation is finding the ways to tackle state explosion in model checking by using:
more efficient data structures and algorithms, composition and decomposition,
abstraction, symmetry and partial order reduction. Other attempts include de-
veloping methods for verifying parameterized designs, develop practical tools
for real-time and hybrid systems, and developing tool interfaces suitable for
system designers [17]. Formal verification can be integrated with the system de-
velopment process, from requirements analysis, to design and implementation
(refinement process), and in testing. There is a strong trend to use model check-
ing techniques for testing and debugging, or finding the performance, instead
of proving the correctness of the system. Furthermore, verification techniques
and approaches shall be provided in a more user-friendly form and be taught to
students and software practitioners, at all levels, to make it more widely used.

Rebeca verification. Formal semantics of Rebeca is a solid basis for its for-
mal verification. Compositional verification (decomposition), modular verifica-
tion (composition), abstraction, symmetry and partial order reduction are all
investigated for verifying Rebeca models, theories are established and tools are
generated [18,19,16,20,21]. Rebeca with its simple message-driven object-based
computational model, Java-like syntax, and set of verification tools is an inter-
esting and easy-to-learn model for students and practitioners. Rebeca can be
integrated in system development process by using Rebeca UML profile [22,23]
to draw the diagrams for analysis and design modeling. Models can be refined,
mapped to Rebeca, and model checked (and this process may iterate). The final

104 M. Sirjani

Rebeca code can be mapped to corresponding Java code [24]. Randomized model
checking and performance evaluation using Rebeca are ongoing research.

Rebeca applications. Different computing paradigms may be used in model-
ing distributed and concurrent systems. The network setting can be assumed to
be synchronous, asynchronous, or partially synchronous. Interprocess communi-
cation mechanism can be by shared memory or message passing [25]. Modeling
in an asynchronous setting with message passing may be more difficult than
modeling in other paradigms because of the more uncertainty involved. But,
there are applications, like network protocols and web services, where this is
the natural setting. While Rebeca can be used for modeling all patterns of con-
current systems, it can most effectively be used for modeling these kinds of
systems [26,27,28].

Rebeca tools. Rebeca is supported by a number of formal verification tools
which are now gathered in an integrated tool. There are tools to translate Re-
beca models to the modeling language of back-end model checkers [19,29,18,30],
SMV [31], Promela [32], and mCRL2 [33]. A direct model checker of Rebeca,
Modere [21], in which symmetry and partial order reduction techniques are in-
corporated [20,34] is developed. There is a tool for drawing UML diagrams of
Rebeca models [23] and then translate them to Rebeca and a tool for mapping
Rebeca to Java [24].

Key features of Rebeca. In modeling a concurrent system using Rebeca, reac-
tive objects which are building modules of the model are also the units of concur-
rency (a feature inherited from actors). This facilitates the process of modeling
a distributed and concurrent system using Rebeca. The asynchronous communi-
cation between the reactive objects makes them to be loosely coupled modules.
This feature, together with non-blocking and event-driven nature of computation
make Rebeca suitable for modeling network applications. At the same time, these
features are used to apply compositional verification and to establish reduction
techniques in model checking Rebeca models. The experimental results show that
significant reductions are gained in certain kinds of applications.

We extended Rebeca to support synchronous communication in order to cover
a wider domain of applications in a more natural way. It is made clear where using
this extended version breaks down the compositionality or applicability of reduc-
tion techniques in verification. According to our experience, the object-oriented
paradigm in modeling and its Java-like syntax make Rebeca an easy-to-use lan-
guage for practitioners (familiar with programming) comparing to algebraic or
logic-based modeling languages and even visual and graphical languages.

This is an overview paper, with the goal of putting together all the work that
has been done on Rebeca in a single and consistent piece. All the experience
of working with Rebeca are distilled and divided into sections of theories, ap-
plications and tools. A set of simple examples are provided to show concepts
of modeling and verification (not published before). For more complicated and
real-world examples we refer to the published papers. Some of the results and
discussions on modeling and verification can be applied to the other actor-based

Rebeca: Theory, Applications, and Tools 105

models, or even more general, to the concurrent models in which computation
is message-driven and asynchronous.

Layout of the paper. Section 2 describes related work. In Section 3, we first show
how to model concurrent systems using Rebeca. Then, in Section 4 formal verifica-
tion approaches for Rebeca models are discussed. Section 5 shows the application
categories which can be efficiently modeled using Rebeca and Section 6 is a brief
overview of the available tools for Rebeca. Section 7 explains the future work.

2 Related Work

Rebeca can be compared in different aspects with other modeling languages of
concurrent and distributed systems, e.g., power of computational model, ease of
use, compositionality, and formal basis (from the modeling point of view); and
verifiability of models, applicability of reduction techniques in model checking,
and availability of tools (from the verification point of view).

Examples of the modeling languages which provide powerful computational
models and formal basis are: process algebraic languages like CSP [35] and
CCS [36]; automata-based languages like I/O Automata [25], and process-based
languages like RML [37]. CSP is supported by an analysis and theorem proving
tool: FDR (Failures/Divergences Refinement) [38]. CCS models are usually ver-
ified by equivalency checking. An extension on bisimulation is used by Larsen
and Milner in [39] for a compositional correctness proof of a protocol modeled
by CCS. In [25] the authors showed how to construct modular and hierarchical
correctness proofs for I/O Automata models. RML is supported by the model
checker Mocha [40] where a subset of linear temporal logic, alternating-time tem-
poral logic, is used to specify the properties [41]. RML supports compositional
design and verification.

When the main concern is verification, sometimes subsets of programming
languages are used in modeling and are then model checked. For example,
the NASA’s Java PathFinder [42] is a translator from a subset of Java to
Promela [32]. Its purpose is to establish a framework for verification and de-
bugging of Java programs based on model checking. The Bandera Tool Set [43]
is an integrated tool which takes Java source code and the properties written in
Bandera’s temporal specification language as input, and it generates a program
model and the properties in the input language of one of the existing back-end
model-checkers.

Using modeling languages of widely used model checkers is another alterna-
tive for modeling problems. NuSMV [31] and Spin [32] are two widely used and
successful model checking tools. NuSMV is a tool for checking finite state sys-
tems against specifications in the temporal logics LTL (Linear Temporal Logic)
and CTL (Computation Tree Logic) [44]. Spin uses a high level process-based
language for specifying systems, called Promela (Process meta language) and
LTL is its property specifying langauge. These languages are designed for model
checking purposes and their formal semantics are usually not explicitly given.
Using these tools needs certain expertise.

106 M. Sirjani

Compositional verification and abstraction are ways to tackle state explosion
problem. In compositional verification, we deduce the overall property specifica-
tion of the system from local properties of its constituents [45,46,47]. Abstraction
techniques are based on abstracting away some details from the model and prov-
ing the equivalence of the original model and the abstracted one [48,49,50]. A
similar approach to ours in using abstraction techniques is used in [51] for model
checking open SDL systems.

Rebeca inherited the simplicity and power of actor computational model. Hav-
ing an imperative interpretation of actors, and a Java-based syntax make Rebeca
easy to use for practitioners. Rebeca is not compositional at modeling level, but
it is supported by a compositional verification theorem based on its formal se-
mantics. Efficient reduction and abstraction techniques are applicable due to
the object-oriented paradigm (no shared variables) and loosely coupled modules
(event-driven computation, non-blocking and asynchronous communication) of
Rebeca. Tools are available for model checking and modular verification of Re-
beca models. Experimental results show that incorporating the reduction tech-
niques in Rebeca direct model checker gives us significant reduction in state
space in a vast domain of applications.

3 Modeling

In actor-based computational model of Rebeca, each rebec is not only an encap-
sulation of data and procedures but also the unit of concurrency. This unification
of data abstraction and concurrency is in contrast to language models, such as
Java, where an explicit and independent notion of thread is used to provide con-
currency. By integrating objects and concurrency, actors free the programmer
from handling mutual exclusion to prevent harmful concurrent access to data
within an object [52].

In the following we will first show the syntax and semantics of Rebeca. Then,
extending Rebeca by a synchronization structure is briefly explained. Further,
we explain the concept of component in Rebeca and how (and if) rebecs can
be coordinated exogenously. At the end, we show how Rebeca is integrated in
software development life cycle.

3.1 Abstract Syntax

Figure 1 shows the BNF of Rebeca syntax. As shown in this figure, a Rebeca model
consists of the definitions of reactive classes and then the main part which includes
rebec instantiations. When defining a reactive class, queue length is specified. Al-
though rebec queues are unbounded in theory, this is not possible for model check-
ing, so the modeler defined a length for the queue. Reactive classes have three parts
of known rebecs, state variables, and message server definitions. A rebec can send
messages to its known rebecs. State variables build a part of the state. Each mes-
sage server has a name, a (possibly empty) list of parameters, and the message
server body which includes the statements. The statements may be assignments,
sending messages, selections, and creating new rebecs.

Rebeca: Theory, Applications, and Tools 107

Example 1 (A simple Rebeca model). A simple example is shown in Figure 2.
There are two reactive classes of Producer and Consumer. Rebecs producer and
consumer are instantiated from these reactive classes, respectively. The pro-
ducer starts by executing its initial message server in which a message produce
is sent to itself. By executing its produce message server, the producer generates
a data and sends it as a parameter of the message consume to the consumer.
Then it sends a produce message to itself which models iteration and keeps the
producer to be executed infinitely. The consumer stays idle until it receives a
message consume from the producer. The list of known rebecs of the consumer is
empty as it does not send messages to any rebec. Producing a data is modeled
as a nondeterministic assignment in the produce message server (p=?(1,2,3,4)).
It means that p gets one of the values of one to four, nondeterministically. Non-
deterministic assignments can also be used for simulating inputs of a model.
There is no explicit buffer for storing the produced data in this example, the
message queue of the consumer acts like a buffer. More complicated models of
producer-consumer example with a buffer and a dynamic buffer are shown in [2].

3.2 Semantics

In [2], the formal semantics of Rebeca is expressed as a labeled transition sys-
tem (LTS). Here, we use a simplified version of the semantics from [34]. A Re-
beca model is constructed by parallel composition of a set of rebecs, written as
R = ‖i∈Iri, where I is the set of the indices used for identifying each rebec. The
number of rebecs, and hence I, may change dynamically due to the possibility
of dynamic rebec creation. Each rebec is instantiated from a reactive-class (de-
noting its type) and has a single thread of execution. A reactive-class defines a
set of state variables that constitute the local state of its instances.

Rebecs communicate by sending asynchronous messages. Each rebec ri has
a static ordered list of known rebecs, whose indices are collected in Ki. Rebec
ri can send messages to rebec rj when j ∈ Ki. Nevertheless, rebecs may have
variables that range over rebec indices (called rebec variables). These variables
can also be used to designate the intended receiver when sending a message. By
changing the values of rebec variables, one can dynamically change the topology
of a model. The static topology of a system can be represented by a directed
graph, where nodes are rebecs, and there is an edge from ri to rj iff j ∈ Ki.

The messages that can be serviced by rebec ri are denoted by the set Mi. In the
reactive class denoting the type of ri, there exists a message server corresponding
to each element of Mi. There is at least a message server ‘initial’ in each reactive
class, which is responsible for initialization tasks. Message servers are executed
atomically; therefore, each message server corresponds to an action.

Each rebec has an unbounded queue for storing its incoming messages. A
rebec is said to be enabled if its queue is not empty. In that case, the message at
the head of the queue determines the enabled action of that rebec. The behavior
of a Rebeca model is defined as the interleaving of the enabled actions of the
enabled rebecs at each state. At the initialization state, a number of rebecs are
created statically, and an ‘initial’ message is implicitly put in their queues. The

108 M. Sirjani

Fig. 1. Rebeca Grammar (abstract)

execution of the model continues as rebecs send messages to each other and the
corresponding enabled actions are executed.

Definition 1 (LTS). R = 〈S, A, T, s0〉 is called a labeled transition system,
where:

– The set of global states is shown as S.
– s0 is the initial state.
– A denotes the set of the actions (message servers) of different reactive classes.
– The transition relation is defined as T ⊆ S × A × S.

Rebeca: Theory, Applications, and Tools 109

Fig. 2. Rebeca model of a simple Producer-Consumer

Since instances of similar reactive classes have similar actions, actions of each
rebec are indexed by the identifier of that rebec. In the case of a nondeterministic
assignment in a message server, it is possible to have two or more transitions
with the same action from a given state. We may write s

ai−→ t for (s, ai, t).

Definition 2 (Data and Rebec Variables). The variables for holding and
manipulating data are called data variables. Rebec variables are those holding
rebec indices. We may use a subscript ‘d’ to distinguish data variables and a
subscript ‘r’ to distinguish rebec variables.

Rebec variables can only be assigned to other rebec variables, compared for
(in)equality, or used to specify the receiver of a send statement. They can also
be assigned a dynamically created rebec.

Each rebec rj has a message queue q, denoted as rj .q which holds the message
id, sender id, and parameters of the message.

Definition 3 (Global State). A global state is defined as the combination of
the local states of all rebecs: s =

∏
j∈I sj.

Local state of a rebec rj is the valuation of its variables and its queue.

Definition 4 (Initial State). In the initial state s0, rj .q holds the initial mes-
sage, the sender id is null, and parameters of the initial message are in the queue
as well.

Definition 5 (Transition Relation). Transition relation T ⊆ S × A × S is
defined as follows. There is a transition s

aj−→ t in the system, iff the action a from
rebec rj is enabled (i.e., rj .q1 = a) at state s, and its execution results in state t.
The action a is executed atomically, and the sub-actions include message server
removal and the statements in the corresponding message server. We define the
different possible kinds of sub-actions that a transition s

ai−→ t may contain.

110 M. Sirjani

1. Message removal: This sub-action includes the removal of the first element
from the queue and implicitly exists in all the actions as the first sub-action.

2. Assignment: An assignment is a statement of the form ‘w = d’, where w
is a state variable in rj . If w is a data variable, d represents an expression
evaluated using the values of the data variables in state s. If w is a rebec
variable, d should be a rebec variable. As a result of this assignment, the
value of d is assigned to w in state t.

3. Dynamic rebec creation: This statement has the form ‘rv = new rc(kr) :
(p1, . . . , pz)’ , where rv is the new rebec to be created, rc is the name of a
reactive-class, kr represents the known rebecs of r, and the set of pi show the
parameters passed to the initial message. This sub-action results in a new
index v being added to I (in state t), which is assigned to the newly created
rebec. Hence, the global state t will also include the local state of rv. In state
t, the message initial is placed in rv.q, and the sender of the message is
denoted as the creator rebec.

4. Send: In dynamic Rebeca models, messages can be sent both to known re-
becs and to rebec variables. Rebec rj may send a message m with parameters
n1, . . . , nz to rk (the send statement rk.m(n1, . . . , nz)), where m ∈ Mk, and
either k belongs to Kj (known rebecs of rj) or rj has a rebec variable that
holds the value k. In addition, ni may be a data parameter or a rebec param-
eter. This send statement, results in the message m being placed in the tail
of the queue of the receiving rebec.

Example 2 (A simple Rebeca model with dynamic behavior). Figure 3 shows
an alternative model for Producer-Consumer of Example 1 where the producer
shows a dynamic behavior. If p gets the value three in the nondeterministic as-
signment, then a new producer is created. This can be interpreted as if three
means that more producers are needed. If p gets the value four, then a the mes-
sage produce will not be sent to itself, as a result of which the execution of the
producer is terminated.

3.3 Synchronous Communication (Rendezvous)

In [15] and [16] the modeling power of the asynchronous and message-driven
computational model of Rebeca is enriched by introducing a rendezvous-like syn-
chronization between rebecs. Synchronous messages are specified only in terms
of their signature: message name and parameters; they do not specify a corre-
sponding body. Synchronous message passing involves a hand-shake between the
execution of a send statement by the caller and a receive statement by the callee
in which the (synchronous) message name specified by the caller is included.
A receive statement, say receive(m1, ..., mn), denotes a nondeterministic choice
between receiving messages m1 to mn. This kind of synchronous message passing
is a two-way blocking, one-way addressing, and one-way data passing commu-
nication. It means that both sender and receiver should wait at the rendezvous
point, only sender specifies the name of the receiver, and data is passed from
sender to receiver.

Rebeca: Theory, Applications, and Tools 111

Fig. 3. Rebeca model of Producer-Consumer with dynamic behavior

For adding synchronous messages to Rebeca we have the following changes
in the grammar presented in Figure 1: a receive statement is added to the
<statements> definition, and the body part in <msgsrv-definition> becomes
optional.

Example 3 (A Rebeca model with synchronous communication). Figure 4 shows a
Rebeca code with a synchronous message. Here, we add a qualityController to the
Producer-Consumer example (Example 1). The producer sends a message to the
qualityController to control the quality of the product before passing it to the con-
sumer. The producer waits until it receives the done synchronous message from
qualityController. This pattern could be modeled without a synchronous message
by adding extra asynchronous messages to encounter the necessary synchroniza-
tion, but in a more complicated and less natural way.

3.4 Encapsulating Rebecs in Components

In [15] and [16] a component-based version of Rebeca is proposed where the
components act as wrappers that provide higher level of abstraction and encap-
sulation. The main problem in constructing a component in this object-based
configuration is the rebec-to-rebec communication and the need to know the
receiver names. In [15] and [16] components are sets of rebecs and the commu-
nication between components is via broadcasting anonymous and asynchronous
messages.

Send statements, where the receiver is mentioned are targeted to rebecs inside
the component, while an anonymous send statement, which does not indicate

112 M. Sirjani

Fig. 4. Rebeca model of Producer-Consumer with synchronous message

the name of the receiver, causes an asynchronous broadcast of the message.
This broadcast in fact will involve all the components of the system. Within a
component, this in turn, will cause sending an asynchronous message to one of its
rebecs which provides the service (non-deterministically chosen). Alternatively, it
could also be broadcasted internally to all the rebecs of the receiving component
(but the latter model is not consistent with the queue abstraction theory in
formal verification approach, explain later in Section 4).

This setting allows us to put more tightly-coupled rebecs in a set and wrap
them within a component. The rebecs within a component know each other and
may also have some kind of synchronous communication. Hence, the composi-
tional verification and abstraction techniques can still be applied where instead
of reactive objects we take components as modules. This provides a setting capa-
ble of modeling globally asynchronous and locally synchronous systems which is
supported by a modular verification approach. The modular verification theorem
helps us to have verified components to be used (and reused) in design process
(explain later in Section 4).

Example 4 (Components in a Rebeca model). In Example 3, we may put the
producer and the qualityController in a component. The syntax is adding a dec-
laration in the main part of the model which shows the set of rebecs which are
included in a component (shown in Figure 5). For this specific example there is
no messages provided to outside by the component including the producer and
the qualityController. The only provided message of producer is produce which is

Rebeca: Theory, Applications, and Tools 113

only sent to itself. The provided message of the qualityController is controlQuality
which is sent to it by the producer and hence, it is not provided for serving
outside rebecs. This example can be slightly changed such that for sending out
a product, a request shall be first sent to the producer (then this request will be
the provided message of the producer).

components:
{producer, qualityController};
{consumer};

Fig. 5. Adding components to Example 3, Figure 4

3.5 Coordinating Rebecs

Another way of defining components in Rebeca is discussed in [53]. In that work
the possibility of mapping Rebeca models into a coordination language, Reo [54],
is investigated and a natural mapping is presented. Reactive objects in Rebeca
are considered as black-box components in Reo circuits while their behavior
are specified using constraint automata [55]. Coordination and communication
among reactive objects are modeled as Reo connectors.

Reo [54] is an exogenous coordination model wherein complex coordinators,
called connectors are compositionally built out of simpler ones. The atomic con-
nectors are a set of user-defined point-to-point channels. Reo can be used as
a glue language for construction of connectors that orchestrate component in-
stances in a component based system. Reo connectors impose different patterns
of coordination on the components they connect. Constraint automata provide
a compositional semantics for Reo. Behavior of components and Reo connectors
can be both expressed by constraint automata, hence, the behavior of the whole
circuit can be compositionally built up.

This work provides a compositional semantics for Rebeca, while the LTS se-
mantics of Rebeca [2] is not compositional. Also, by re-directing or delaying
delivery of messages, rebecs can be exogenously coordinated by the Reo con-
nector. Although, the inherent behaviour of rebecs/actors which is non-blocking
execution, cannot be changed.

3.6 From Specification to Implementation

The focus in designing Rebeca is on practice as well as theory. To build up a
complete life-cycle support for developing systems, a UML profile is designed
for Rebeca models [22]. The developer can start from UML diagrams using this
profile, and then move to Rebeca code. The Rebeca code can be verified and
possible necessary modifications are done. To facilitate moving from specifica-
tion to implementation, a tool for mapping Rebeca codes to Java programs is

114 M. Sirjani

developed [24], making it possible to deploy Rebeca models on a real platform.
Non-deterministic assignments mostly models the inputs to the model or some
abstracted operation and shall be resolved for the translation. For that we need
the interference of the modeler. Figure 6 shows the process of moving from spec-
ification to implementation.

Fig. 6. From UML specification to Rebeca to Java

4 Formal Verification

Two basic approaches in formal verification are theorem proving and model
checking. In theorem proving both the system and its desired properties are
expressed in some mathematical logic and the goal is to find a proof for satisfac-
tion of properties of the system. Model checking is exploring the state space of
the system and checking whether the desired properties are satisfied. The main
problem with theorem proving is formulating a complicated real system in a
mathematical model and also the high expertise needed in proof process. The
problem with model checking is state explosion.

A combination of model checking and deduction can be exploited in a number
of ways, for example in abstraction and compositional verification. Composi-
tional verification, abstraction, and reduction techniques are applied for Rebeca
models [1,56,2,20,34]. A number of examples can be found on Rebeca Home
page [24] and published papers.

4.1 Model Checking

Rebeca models can be verified by the supporting model checkers. We use tempo-
ral logic as our property specification language. The properties should be defined
with temporal logic formulas. These formulas are based on state variables of the
rebecs. The message queue contents are not considered in the properties.

Using Spin as the back-end model checker we can specify our properties as
LTL-X (Linear Temporal Logic without next) formulas, and using Nu-SMV we

Rebeca: Theory, Applications, and Tools 115

can specify our properties as both LTL and CTL (Computational Tree Logic)
formulas. Sarir [30] makes it possible to have properties in μ-calculus. The direct
model checker, Modere, handles properties in LTL. A CTL direct model checker
for Rebeca is under development.

Example 5 (Verifying properties of a Rebeca model). In Example 2, Figure 3,
we may want to check the following properties where G denotes Globally and F
denotes Finally in LTL:

The variable p of the consumer rebec never gets the values of 3 or 4.
G(¬(consumer.p = 3) ∧ ¬(consumer.p = 4))
The variable p of the consumer rebec will finally have values of 1 or 2.
F ((consumer.p = 1) ∨ (consumer.p = 2))

Abstraction techniques in model checking Rebeca models. Finite-state model-
checkers are not able to deal with infinite state space, which is present in Rebeca
due to the unboundedness of the queues. Thus, we need to impose an abstraction
mechanism on our models: each rebec has a user-specified, finite upper bound
on the size of its queue. The queue is checked for overflow condition during the
model checking process, and in the case of overflow the queue length can be
increased by the modeler. There are also conventional data abstractions which
are regular for model checkers.

Another technique which is applied due to the special features of computation
model of Rebeca is atomic method execution. This technique builds a course
grained interleaving and causes a significant reduction in state space.

4.2 Compositional Verification

In compositional verification, the global property of a system is decomposed into
the properties of its components which are then verified separately. If we deduce
that the system satisfies each local property, and show that the conjunction
of the local properties implies the global property, then we can conclude that
the system satisfies this specification [45,46,47]. Modular verification [57,58] is
usually used as a slightly different concept. In compositional verification we de-
compose a model for verification purposes where the complete model is initially
designed. In modular verification, notion of component is used as a re-usable
off-the-shelf module, once verified it has a fixed proven specification which can
be used to build a reliable system in a bottom-up approach. The basic theories
of these two approaches are similar because they are both for verifying open sys-
tems. The notion of environment and the interface between components and the
environment shall be considered carefully and the technical details (to keep the
theories valid) may be quite different. Assume-guarantee reasoning can also be
applied where for model checking components you first assume some properties
about the environment and then guarantee the desired properties for the compo-
nents. In networks of finite state processes induction may be used to generalize
the results on desired properties.

116 M. Sirjani

In [2], components are sub-models which are the result of decomposing a closed
model in order to apply compositional verification. In decomposition, there is
no general approach in deciding about the constituent rebecs of a component.
Components have to be selected carefully to lead to a smaller state space and
to help in proving the desired global properties. In [16], modular verification is
discussed and the concept of a component is what we have in component-based
modeling which is an independent module with a well-defined interface. In both
cases we have a set of rebecs which make a component. This component is an
open system reacting with an environment. The behavior of the internal rebecs
of a component is fully modeled, except for the messages targeted to a rebec
not inside the component (external rebecs, i.e., environment). The behavior of
the environment shall be modeled as non-deterministically sending all possible
messages to the internal rebecs.

Example 6 (Compositional verification of Rebeca models). As an example for
a desired property of a component, we may consider the component including
producer and qualityController in Example 3 (Figure 4). For this component, we
want to assure that a product is not sent out (to the consumer) before quality
control is done. As the properties shall be defined based on the state variables
we may need to add some variables to show the rebec states.

4.3 Abstractions and Weak Simulation Relation

A way for state space reduction is to obtain an abstraction of a model, and then
model check it. Equivalency relations (simulation/weak simulation) and accord-
ingly property preservation shall be proved for the model and its abstraction
(using deduction). Then the satisfaction of the desired property can be checked
on the abstract model and claimed to be true for the model itself.

To model an environment which simulates all the possible behaviors of a real
environment for Rebeca models, we need to consider an environment nondeter-
ministically sending unbounded number of messages. We proved in [16,2] that
with this arbitrary environment we are over-approximating the behavior of the
component and there is a weak simulation relation between any closed model
including the component and the component composed by the above mentioned
environment.

It is clear that model checking will be impossible in this case where an envi-
ronment is filling up the queues of the rebecs of the component. To overcome
this problem, we use an abstraction technique. Instead of putting incoming mes-
sages in the queues of rebecs, they may be assumed as a constant (although
unbounded) set of requests to be processed at any time, in a fair interleaving
with the processing of the requests in the queue. This way of modeling the en-
vironment, generates a closed model which simulates the model resulting from
a general environment which nondeterministically sends unbounded number of
messages.

To formalize the discussion, consider a Rebeca model M , and a component C,
where we denote the environment of C as EC . If R(M) be the transition system

Rebeca: Theory, Applications, and Tools 117

of M = C, EC and R(Ca) be the transition system generated by the transition
relation considering queue abstraction, and R(M ′) be the transition system of
any model M ′ containing C, we have the following weak simulation relations:
R(Ca) weakly simulates R(M) (Queue Abstraction), and R(M) weakly simu-
lates R(M ′) (Component Composition). We also have the property preservation
theorem: safety properties (LTL-X, ACTL-X) are preserved due to weak simu-
lation [46]. Hence, if we prove a property for Ca by model checking, it can be
deduced that the property also holds for an arbitrary model M ′ containing C.

4.4 Symmetry and Partial Order Reduction

The actor-based message-driven and asynchronous nature of Rebeca leads to
more reduction techniques in model checking. In [20] and [34] the application of
partial order and symmetry reduction techniques to model checking dynamic Re-
beca models are investigated. A polynomial-time solution for finding symmetry-
based equivalence classes of states is found while the problem in general is known
to be as hard as graph isomorphism.

The symmetry reduction technique [59,60] takes advantage of structural simi-
larities in the state-space. Viewing an LTS as a graph, the intuitive idea is to find
those sub-graphs with the same structure, and constructing only one of these
sub-graphs during state exploration.

In a given Rebeca model, the rebecs which are instantiated from the same
reactive class exhibit similar behaviors. Considering the static communication
relation among the rebecs in a model, the symmetry among rebecs can be de-
tected automatically using known rebecs lists. This technique, called inter-rebec
symmetry, does not need any special symmetry-related input from the modeler
(unlike, for example, [60] and [61]). We can see this kind of symmetry in models
with recurrent objects in a ring topology, like in dining philosophers. The ap-
proach can be extended to cover intra-rebec symmetry with the introduction of
a notion of scalar sets to (the syntax and semantics) of Rebeca. Modeler can use
the new syntax, to exhibit the internal symmetry of rebecs. This helps us to find
symmetry in a wider range of topologies, like in star topology, where the internal
symmetry of some objects is the key to the symmetry in the whole system.

Partial order reduction is an efficient technique for reducing the state-space
size when model checking concurrent systems for Linear Temporal Logic with-
out next (LTL-X) [62,63]. In Rebeca, concurrency is modeled by interleaving of
the enabled actions from different rebecs. It is, however, not always necessary to
consider all the possible interleaved sequences of these actions. The partial order
reduction technique suggests that at each state, the execution of some of the
enabled actions can be postponed to a future state, while not affecting the satis-
fiability of the correctness property. Therefore, by avoiding the full interleaving
of the enabled actions, some states are excluded from the exhaustive state ex-
ploration in model checking [62,63]. The coarse-grained interleaving approach in
Rebeca causes considerable reductions when partial order reduction is applied.

An action is called safe if it does not affect the satisfiability of the desired
property (invisible) and is independent from all other actions of other rebecs

118 M. Sirjani

(globally independent). Intuitively, the execution of a safe action at a given
state leads to a state where all other enabled actions (from other rebecs) remain
enabled. So, the execution of other enabled actions can be postponed to the
future states; and therefore, at each state we can define a subset of the enabled
actions to be explored. In Rebeca, all the assignment statements are globally
independent (due to the no-shared-variable criteria) and they are invisible and
hence safe, if the variable in the left-hand-side of the assignment is not present
in the property. All the send statements are invisible as the properties do not
include queues (and queue contents). Send statements are globally independent
and hence safe, if the sender rebec be the only rebec which sends messages to
the receiver. The safe actions of each rebec can be statically determined and the
subset of the enabled actions to be explored at each state is specified.

The experimental results, show significant improvements in model size and
model-checking time when the techniques are applied in combination or sepa-
rately (using Modere).

Example 7 (Compositional verification, symmetry and partial order reduction
of Rebeca models). A good typical example which shows both compositional
verification benefits and symmetry application is dining philosophers. There are
n philosophers at a round table. To the left of each philosopher there is a fork,
but s/he needs two forks to eat. Of course only one philosopher can use a fork at
a time. If the other philosopher wants it, s/he just has to wait until the fork is
available again. We can model this example in Rebeca with two reactive classes
standing for the philosophers and forks. Then, we may instantiate any number
of philosophers and forks in the main part of the model. The model can then be
model checked using supporting tools.

For compositional verification of dining philosopher model we may consider
two philosophers and the fork in between them as a component. This component
can be used to prove the safety property indicating that a fork can not be in the
hands of two philosophers simultaneously (mutual exclusion). For the progress
property we shall consider two forks and the philosopher in between, and prove
that the philosopher will finally have the both forks and eat (no deadlock).
To prove the latter property we need to assume that each philosopher who
starts to eat finally finishes eating and free the forks. This is an assumption
necessary for the environment (external philosophers) sending messages to the
internal forks. It will be interpreted as: if the fork receives a request from an
external philosopher, it will eventually receives a free. This assumption helps us
to guarantee the progress (no deadlock) property. For no starvation property,
subtleties shall be considered in the Rebeca model (discussed in [34]).

In this model each philosopher knows its left and right forks (the forks are in its
known rebecs list and the philosopher sends messages to forks to acquire them).
Each fork also knows its left and right philosopher (and sends back the proper
reply to their requests). This is an example of ring topology. Intuitively, we
can see that philosophers (and similarly forks) have symmetric behavior. Also,
the components used for compositional verification have symmetric behavior.
Symmetry reduction can be applied for model checking this model. Partial order

Rebeca: Theory, Applications, and Tools 119

reduction depends on the concrete model and the safe actions shall be identified
base on the mentioned criteria.

5 Applications

Rebeca can be effectively used for concurrent, distributed, and asynchronous
applications. Network and security protocols, web-services and agent-based sys-
tems fit well in this group. Mobile computing can be also modeled using dynamic
features of Rebeca. To naturally model other kinds of applications, like for hard-
ware and system design, some kind of synchronization features may be needed.

5.1 Network and Security Protocols

The nodes in the networks have internal buffers and communicate via asyn-
chronous messages. Network protocols can be modeled by Rebeca by mapping
each node of the network to a rebec. For network protocols an intruder is modeled
as a rebec to verify the possibility of an attack.

There is an STP (Spanning Tree Protocol) definition in the IEEE 802.1D
standard, based on the algorithm that was proposed by Perlman. In [28], a
formal proof of the STP algorithm is presented by showing that finally a single
node is selected as the root of the tree and the loops are eliminated correctly.
Modular verification and induction are used in this proof. In [27] CSMA/CD
protocol is modeled and verified using Rebeca. Again, each node in the network
is modeled as a rebec.

A multi-phase Mitnick attack is modeled and model checked in [26]. The
model consists of four rebecs: a server, a client, the TCPAgent and an attacker.
Attacker sends arbitrary packets to each host in network iteratively. In Mitnick
attack a combination of simple attacks are used to reach the goal. First, the
attacker floods the client by SYN packet to prevent it to respond to the server.
Then by spoofing client address, and predicting server TCP sequence number
connects to the server and invokes its dangerous command. Unpublished works
are done on modeling and verifying Needham Schroeder attack and the security
sub-layer in IEEE 802.16.

In all these works state explosion may occur immediately even with a small
number of rebecs. To prevent this, attackers may be modeled as intelligent at-
tackers which do not send all kinds of messages. Other reduction techniques, such
as compositional verification and abstraction, are used for each specific case.

5.2 Hardware and System-Level Designs

The power of the computational model of Rebeca for modeling hardware and
system-level designs is investigated in [64] and [65]. We found it natural in higher
levels of abstraction as expected, and applicable in lower levels, and surprisingly
very close to the behavior of real hardware components.

Software systems typically have an asynchronous model of execution, while
hardware is usually designed for synchronous execution. In the higher levels

120 M. Sirjani

of abstraction in system-level design we generally have asynchronous models.
Modeling the systems using Rebeca in the higher levels of abstraction, like the
functional specification, is a natural process. At the beginning, there were doubts
on the modeling process for the hardware design.

Hardware components run concurrently and react to the changes in their
input by changing the output. This behavior naturally fits into the concept of
reactive objects. So, each hardware component, sequential or combinational, is
mapped to a rebec. Each input of a components is mapped to a state variable
and a message server in the corresponding rebec. The state variable contains the
value of the input and the message server is responsible to model the reaction
of the component to a change in the input. The outputs of a component are
provided by sending appropriate messages to the driven components (if an output
of component A is an input of component B, the component A is called the
driver and component B is called the driven component). In the rebecs which
corresponds to sequential components, there is an additional message server
reacting to the clock edge and sends messages according to its outputs. In the
rebecs which corresponds to combinational components, in each message server
related to the inputs, after setting the corresponding state variable the logic of
the circuit is coded, and then the messages for outputs are sent. The data path
of a design is mapped to the main part of the Rebeca model which includes the
rebec instantiations and known rebecs relations. In order to model sequential
circuits in which hardware components are synchronized by edges of a global
clock signal, we need to introduce two additional rebecs in our model to perform
the synchronization and clocking of the synchronous devices.

6 Tools

There is an integrated tool-set for model checking Rebeca models and a tool-set
for integrating Rebeca in software development life cycle.

6.1 Model Checker Tools

The set of model checkers tool for Rebeca is shown in Figure 7. The tools do not
yet support dynamic behaviors of Rebeca models.

Direct Model Checker: Modere. The direct model checker for Rebeca [20,21], is an
LTL (Linear Temporal Logic) model checker which consists of two components: a
translator and an engine. The Model-checking Engine of Rebeca (Modere) is the
component that performs the actual task of model checking. It is based on the
automata theoretic approach. In this approach, the system and the specification
(for the negation of the desired property) are specified each with a Büchi au-
tomaton. The system satisfies the property when the language of the automaton
generated by the synchronous product of these two automata is empty. Other-
wise, the product automaton has an accepting cycle (a cycle containing at least
one accepting state) that shows the undesired behavior of the system. In this
case, an error trace witnessing a counter-example to the property is reported

Rebeca: Theory, Applications, and Tools 121

Fig. 7. Rebeca Model Checker tools

and the modeler can change the system model until the undesired behavior is
eliminated. Given a Rebeca model and some LTL specification (for the nega-
tion of the desired property), the translator component generates the automata
for the system and the specification. These automata are represented by C++
classes. The files containing these classes are placed automatically beside the en-
gine (Modere). The whole package is then compiled to produce an executable for
model checking the given Rebeca model. Modere, applies symmetry and partial
order reduction techniques, as well as some algorithmic tricks to reduce memory
usage.

R2SMV and R2Promela. Before implementing Modere, translators have been
developed [29,19,18] to map Rebeca models to the language of back-end model
checkers NuSMV [31] and Spin [32]. These tools, specially Rebeca to Promela, are
still being used as Modere is still passing its final test phase and compositional
verification is not yet incorporated in it. The property specification language of
Spin is LTL-X (LTL without next operator) and NuSMV supports both LTL
and CTL (Computational Tree Logic).

Rebeca to mCRL2: Sarir. mCRL2 [33] is a process algebraic language and an
important goal in its design is to provide a common language for model checking
(CRL stands for Common Representation Language). The main motivation for
translating Rebeca to mCRL2 is to exploit the verification tools and the rich
theories developed for mCRL2. The reduction theories will be investigated fur-
ther to see how they can be incorporated in Rebeca direct model checker. The
mapping is applied to several case-studies including the tree identification phase
of the IEEE 1394 [30]. The results of the experiment show that the minimiza-
tion tools of mCRL2 can be effective for model checking Rebeca. The state space

122 M. Sirjani

generated by mCRL2 is given to another tool set which supports mu-calculus as
its property langauge.

6.2 UML Profile for Rebeca and Rebeca to Java

A UML profile is defined as a subset of UML concepts which is adequate to
define our reactive applications (domain) [22] and a tool is provided based on
this profile [23]. Using this tool we can convert our models to Rebeca, and then
Rebeca to Java converter can help us to generate Java code from Rebeca models.
Consequently, there would be a path from UML model to executable code that
supports verification via Rebeca. The static structure of the model is capture by
class and object diagrams and dynamic behavior is shown by sequence diagrams.
There is a sequence diagram for each message server which shows the sequence
of actions invoked by receiving a message. In each sequence diagram we have one
main rebec and its known rebecs (because they are the only possible message
receivers). The sequence of actions initiates by receiving a message from the
sender, and the rest of the diagram shows how the receiver rebec services this
message. State charts are not used in the profile, as in an abstract view, all the
rebecs start in ’idle’ state and after receiving a message go to ’waiting’ state
waiting for their turn, and then go to ’running’ state.

By Rebeca to Java tool, rebecs are mapped to distributed objects and be-
come independent Java processes. The distributed objects simulate the passing
of messages in Rebeca by invoking the remote methods in Java (RMI). The Java
process creates a thread for executing each message server. In the case that the
message server contains a send statement, sending is carried out by making a
new thread to execute the RMI.

7 Future Work

The future work is mostly focused on considering dynamic features in verification
tools, investigating for more reduction techniques, and applying Rebeca to more
real case studies in different application areas.

Acknowledgement

I wish to thank Mohammad Mahdi Jaghoori, Amin Shali, Hossein Hojjat, and
Niloofar Razavi for reading the paper carefully and for their useful comments.

References

1. Sirjani, M., Movaghar, A.: An actor-based model for formal modelling of reactive
systems: Rebeca. Technical Report CS-TR-80-01, Tehran, Iran (2001)

2. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.: Modeling and verification of
reactive systems using Rebeca. Fundamenta Informatica 63, 385–410 (2004)

Rebeca: Theory, Applications, and Tools 123

3. Hewitt, C.: Description and theoretical analysis (using schemata) of PLANNER:
A language for proving theorems and manipulating models in a robot. In: MIT Ar-
tificial Intelligence Technical Report 258, Department of Computer Science, MIT,
Cambridge (1972)

4. Agha, G., Mason, I., Smith, S., Talcott, C.: A foundation for actor computation.
Journal of Functional Programming 7, 1–72 (1997)

5. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, MA (1990)

6. America, P., de Bakker, J., Kok, J., Rutten, J.: Denotational semantics of a parallel
object-oriented language. Information and Computation 83, 152–205 (1989)

7. Agha, G.: The structure and semantics of actor languages. In: de Bakker, J.W.,
de Roever, W.P., Rozenberg, G. (eds.) Foundations of Object-Oriented Languages,
pp. 1–59. Springer, Berlin (1990)

8. Ren, S., Agha, G.: RTsynchronizer: language support for real-time specifications
in distributed systems. ACM SIGPLAN Notices 30, 50–59 (1995)

9. Yonezawa, A.: ABCL: An Object-Oriented Concurrent System. Series in Computer
Systems. MIT Press, Cambridge (1990)

10. Varela, C., Agha, G.: Programming dynamically reconfigurable open systems with
SALSA. ACM SIGPLAN Notices 36, 20–34 (2001)

11. Mason, I.A., Talcott, C.L.: Actor languages: Their syntax, semantics, translation,
and equivalence. Theoretical Computer Science 220, 409–467 (1999)

12. Talcott, C.: Composable semantic models for actor theories. Higher-Order and
Symbolic Computation 11, 281–343 (1998)

13. Talcott, C.: Actor theories in rewriting logic. Theoretical Computer Science 285,
441–485 (2002)

14. Gaspari, M., Zavattaro, G.: An actor algebra for specifying distributed systems:
The hurried philosophers case study. In: Agha, G.A., De Cindio, F., Rozenberg, G.
(eds.) Concurrent Object-Oriented Programming and Petri Nets. LNCS, vol. 2001,
pp. 216–246. Springer, Heidelberg (2001)

15. Sirjani, M., de Boer, F.S., Movaghar, A., Shali, A.: Extended rebeca: A component-
based actor language with synchronous message passing. In: Proceedings of
Fifth International Conference on Application of Concurrency to System Design
(ACSD’05), pp. 212–221. IEEE Computer Society, Los Alamitos (2005)

16. Sirjani, M., de Boer, F.S., Movaghar, A.: Modular verification of a component-
based actor language. Journal of Universal Computer Science 11, 1695–1717 (2005)

17. Clarke, E.M.: The birth of model checking. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, Springer, Heidelberg (2006)

18. Sirjani, M., Shali, A., Jaghoori, M., Iravanchi, H., Movaghar, A.: A front-end tool
for automated abstraction and modular verification of actor-based models. In: Pro-
ceedings of Fourth International Conference on Application of Concurrency to Sys-
tem Design (ACSD’04), pp. 145–148. IEEE Computer Society, Los Alamitos (2004)

19. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.: Model checking, automated ab-
straction, and compositional verification of Rebeca models. Journal of Universal
Computer Science 11, 1054–1082 (2005)

20. Jaghoori, M.M., Sirjani, M., Mousavi, M.R., Movaghar, A.: Efficient symmetry
reduction for an actor-based model. In: Chakraborty, G. (ed.) ICDCIT 2005. LNCS,
vol. 3816, pp. 494–507. Springer, Heidelberg (2005)

21. Jaghoori, M.M., Movaghar, A., Sirjani, M.: Modere: The model-checking engine of
rebeca. In: Proceedings of the 21st Annual ACM Symposium on Applied Comput-
ing (SAC 2006), Software Verificatin Track, pp. 1810–1815 (2006)

124 M. Sirjani

22. Alavizadeh, F., Sirjani, M.: Using UML to develop verifiable reactive systems.
In: Proceedings of International Workshop on the Applications of UML/MDA to
Software Systems (at Software Engineering Research and Practice - SERP’06), pp.
554–561 (2005)

23. Alavizadeh, F., HashemiNekoo, A., Sirjani, M.: ReUML: A UML profile for mod-
eling and verification of reactive systems. In: Proceedings of ICSEA’07 (2007)

24. (Rebeca homepage), http://khorshid.ut.ac.ir/∼rebeca/
25. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco, CA (1996)

26. Shahriari, H.R., Makarem, M.S., Sirjani, M., Jalili, R., Movaghar, A.: Modeling
and verification of complex network attacks using an actor-based language. In:
Proceedings of 11th Annual Int. CSI Computer Conference, pp. 152–158 (2006)

27. Sirjani, M., SeyedRazi, H., Movaghar, A., Jaghouri, M.M., Forghanizadeh, S., Mo-
jdeh, M.: Model checking csma/cd protocol using an actor-based language. WSEAS
Transactions on Circuit and Systems 3, 1052–1057 (2004)

28. Hojjat, H., Nokhost, H., Sirjani, M.: Formal verification of the ieee 802.1d spanning
tree protocol using extended rebeca. In: Proceedings of the First International Con-
ference on Fundamentals of Software Engineering (FSEN’05). Electronic Notes in
Theoretical Computer Science, vol. 159, pp. 139–159. Elsevier, Amsterdam (2006)

29. Sirjani, M., Movaghar, A., Iravanchi, H., Jaghoori, M., Shali, A.: Model checking
Rebeca by SMV. In: Proceedings of the Workshop on Automated Verification of
Critical Systems (AVoCS’03), Southampton, UK, pp. 233–236 (2003)

30. Hojjat, H., Sirjani, M., Mousavi, M.R., Groote, J.F.: Sarir: A rebeca to mCRL2
translator, accepted for ACSD07 (2007)

31. (NuSMV), http://nusmv.irst.itc.it/NuSMV
32. (Spin), Available through http://netlib.bell-labs.com/netlib/spin
33. Groote, J.F., Mathijssen, A., van Weerdenburg, M., Usenko, Y.: From μCRL to

mCRL2: motivation and outline. In: Workshop of Essays on Algebraic Process
Calculi (2006). Electronic Notes in Theoretical Computer Science, pp. 191–196.
Elsevier, Amsterdam (2006)

34. Jaghoori, M.M., Sirjani, M., Mousavi, M.R., Movaghar, A.: Symmetry and partial
order reduction techniques in model checking Rebeca (submitted to a journal)

35. Hoare, C.A.R.: Communications Sequential Processes. Prentice-Hall, Englewood
Cliffs (NJ) (1985)

36. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Information and
Computation 100, 1–77 (1992)

37. Alur, R., Henzinger, T.: Reactive Modules. Formal Methods in System Design: An
International Journal 15, 7–48 (1999)

38. Roscoe, W.A.: Theory and Practice of Concurrency. Prentice-Hall, Englewood
Cliffs (1998)

39. Larsen, K.G., Milner, R.: A compositional protocol verification using relativized
bisimulation. Information and Computation 99, 80–108 (1992)

40. Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S.: MOCHA: Modularity in
model checking. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 521–525.
Springer, Heidelberg (1998)

41. Alur, R., Henzinger, T.: Computer aided verification. Technical Report Draft
(1999)

42. Havelund, K., Pressburger, T.: Model checking Java programs using Java
PathFinder. International Journal on Software Tools for Technology Transfer 2,
366–381 (2000)

http://khorshid.ut.ac.ir/~rebeca/
http://nusmv.irst.itc.it/NuSMV
http://netlib.bell-labs.com/netlib/spin

Rebeca: Theory, Applications, and Tools 125

43. Dwyer, M., Hatcliff, J., Joehanes, R., Laubach, S., Pasareanu, C., Robby, V.W.,
Zheng, H.: Tool-supported program abstraction for finite-state verification. In: Pro-
ceedings of the 23nd International Conference on Software Engineering, pp. 177–
187 (2001)

44. Emerson, E.A.: Temporal and Modal Logic. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, vol. B, pp. 996–1072. Elsevier Science Publishers,
Amsterdam (1990)

45. Lamport, L.: Composition: A way to make proofs harder. In: de Roever, W.-P.,
Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, pp. 402–407.
Springer, Heidelberg (1998)

46. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge, Massachusetts (1999)

47. McMillan, K.L.: A methodology for hardware verification using compositional
model checking. Science of Computer Programming 37, 279–309 (2000)

48. Kesten, Y., Pnueli, A.: Modularization and abstraction: The keys to practical for-
mal verification. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS,
vol. 1450, pp. 54–71. Springer, Heidelberg (1998)

49. Rushby, J.: Integrated formal verification: Using model checking with automated
abstraction, invariant generation, and theorem proving. In: Dams, D.R., Gerth,
R., Leue, S., Massink, M. (eds.) SPIN 1999. LNCS, vol. 1680. Springer, Heidelberg
(1999)

50. Saidi, H., Shankar, N.: Abstract and model check while you prove. In: Halbwachs,
N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 443–453. Springer, Heidel-
berg (1999)

51. Ioustinova, N., Sidorova, N., Steffen, M.: Closing open SDL-systems for model
checking with DTSpin. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS,
vol. 2391, pp. 531–548. Springer, Heidelberg (2002)

52. Agha, G., Thati, P., Ziaei, R.: Actors: A model for reasoning about open distributed
systems. In: Formal methods for distributed processing: a survey of object-oriented
approaches- Section: Dynamic reconfiguration, pp. 155–176. Cambridge University
Press, Cambridge (2001)

53. Sirjani, M., Jaghoori, M.M., Baier, C., Arbab, F.: Compositional semantics of an
actor-based language using constraint automata. In: Ciancarini, P., Wiklicky, H.
(eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 281–297. Springer, Heidelberg
(2006)

54. Arbab, F.: Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14, 329–366 (2004)

55. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.: Modeling component connectors in
reo by constraint automata. Science of Computer Programming 61, 75–113 (2006)

56. Sirjani, M., Movaghar, A., Mousavi, M.: Compositional verification of an object-
based reactive system. In: Proceedings of the Workshop on Automated Verification
of Critical Systems (AVoCS’01), Oxford, UK, pp. 114–118 (2001)

57. Kupferman, O., Vardi, M.Y., Wolper, P.: Module checking. Information and Com-
putation 164, 322–344 (2001)

58. Vardi, M.Y.: Verification of open systems. In: Ramesh, S., Sivakumar, G. (eds.)
Foundations of Software Technology and Theoretical Computer Science. LNCS,
vol. 1346, pp. 250–267. Springer, Heidelberg (1997)

59. Emerson, E., Sistla, A.: Symmetry and model checking. Formal Methods in System
Design 9, 105–131 (1996)

60. Ip, C., Dill, D.: Better verification through symmetry. Formal methods in system
design 9, 41–75 (1996)

126 M. Sirjani

61. Sistla, A.P., Gyuris, V., Emerson, E.A.: Smc: a symmetry-based model checker
for verification of safety and liveness properties. ACM Transactions on Software
Engineering Methodology 9, 133–166 (2000)

62. Godefroid, P.: Using partial orders to improve automatic verification methods. In:
Clarke, E., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 176–185. Springer,
Heidelberg (1991)

63. Valmari, A.: A stubborn attack on state explosion. In: Clarke, E., Kurshan, R.P.
(eds.) CAV 1990. LNCS, vol. 531, pp. 156–165. Springer, Heidelberg (1991)

64. Hakimipour, N., Razavi, N., Sirjani, M., Navabi, Z.: Modeling and formal verifica-
tion of system-level designs. In: submited to FDL’07 (2007)

65. Kakoee, M.R., Shojaei, H., Sirjani, M., Navabi, Z.: A new approach for design
and verification of transaction level models. In: Proceedings of IEEE International
Symposium on Circuit and Sytems (ISCAS 2007), IEEE Computer Society Press,
Los Alamitos (to appear, 2007)

Learning Meets Verification

Martin Leucker

Institut für Informatik
TU München, Germany

Abstract. In this paper, we give an overview on some algorithms for
learning automata. Starting with Biermann’s and Angluin’s algorithms,
we describe some of the extensions catering for specialized or richer
classes of automata. Furthermore, we survey their recent application to
verification problems.

1 Introduction

Recently, several verification problems have been addressed by using learning
techniques. Given a system to verify, typically its essential part is learned and
represented as a regular system, on which the final verification is then carried
out. The aim of this paper is to present these recent developments in a coherent
fashion. It should serve as an annotated list of references as well as describe the
main ideas of these approaches rather than to pin down every technical detail,
as these can be found in the original literature.

From the wide spectrum of learning techniques, we focus here on learning
automata, or, as it is sometimes called, on inference of automata. We then
exemplify how these learning techniques yield new verification approaches, as
has recently been documented in the literature. Note, by verification we restrict
to model checking [21] and testing [16] techniques.

This paper consists of two more sections: In the next section, we introduce
learning techniques for automata while in Section 3, we list some of their appli-
cations in verification procedures.

In Section 2, we first recall Biermann’s so-called offline approach and An-
gluin’s online approach to learning automata. Then, we discuss variations of
the setup for online learning as well as describe domain specific optimizations.
Furthermore, we sketch extensions to Angluin’s learning approach to so-called
regular-representative systems, timed systems, and ω-regular languages. We con-
clude Section 2 by giving references to further extensions and implementations.

In Section 3, we show applications of learning techniques in the domain of
verification. We start with the problem of minimizing automata, which follows
the idea of learning a minimal automaton for a given system rather than to min-
imize the given system explicitly. Black-box checking, which renders black-box
testing as learning and (white-box) model checking, is discussed next. We con-
tinue with the idea of learning assumptions in compositional verification. Next,
we follow the idea that a (least) fixpoint of some functional might be learned
rather than computed iteratively. Implicitly, this idea has been followed when

F.S. de Boer et al. (Eds.): FMCO 2006, LNCS 4709, pp. 127–151, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

128 M. Leucker

learning network invariants or learning representations for the set of reachable
states in regular model checking [2]. We conclude Section 3 by referring to further
applications.

2 Learning Algorithms for Regular Systems

The general goal of learning algorithms for regular systems is to identify a ma-
chine, usually of minimal size, that conforms with an a priori fixed set of strings
or a (class of) machines.

Here, we take machines to be deterministic finite automata (DFAs) (over
strings), though most approaches and results carry over directly to the setting
of finite-state machines (Mealy-/Moore machines).

In general, two types of learning algorithms for DFAs can be distinguished,
so-called online and offline algorithms. Offline algorithms get a fixed set of pos-
itive and negative examples, comprising strings that should be accepted and,
respectively, strings that should be rejected by the automaton in question. The
learning algorithm now has to provide a (minimal) automaton that accepts the
positive examples and rejects the negative ones.

Gold [30] was among the first studying this problem. Typical offline algorithms
are based on a characterization in terms of a constraint satisfaction problem
(CSP) over the natural numbers due to Biermann [14].

A different approach was proposed in [54], though imposing stronger assump-
tions (prefix-closeness) on the set of examples. We also note that there are effi-
cient algorithms inferring a not necessarily minimal DFA, like [44] or [48] (known
as RPNI).

Online algorithms have the possibility to ask further queries, whether some
string is in the language of the automaton to learn or not. In this way, an
online algorithm can enlarge the set of examples in a way most suitable for the
algorithm and limiting the number of minimal automata in question, i.e., the
ones conforming to the set of examples so far.

A popular setup for an online approach is that of Angluin’s L∗ algorithm [6] in
which a minimal DFA is learned based on so-called membership and equivalence
queries. Using a pictorial language, we have a learner whose job is to come up
with the automaton to learn, a teacher who may answer whether a given string is
in the language as well an oracle answering whether the automaton H currently
proposed by the learner is correct or not. This setting is depicted in Figure 1(a).

Clearly, an online algorithm like Angluin’s should perform better than of-
fline algorithms like Biermann’s. Indeed, Angluin’s algorithm is polynomial while
without the ability to ask further queries the problem of identifying a machine
conforming to given examples is known to be NP-complete [31].

Note that there are slightly different approaches to query-based learning of
regular languages based on observation packs or discrimination trees, which are
compared to Angluin’s approach in [8,13].

In Angluin’s setting, a teacher will answer queries either positively or neg-
atively. In many application scenarios, however, parts of the machine to learn

Learning Meets Verification 129

Learner

Oracle

Teacher
Is string u
in the language?

Yes/No

Yes/Counterexample

Is H equivalent to
system to learn?

(a) The setting of L∗

Learner

Oracle

Teacher
Is string u
in the language?

Yes/No/Don’t know

Yes/Counterexample

Is H equivalent to
system to learn?

(b) The setting of ABL
∗

Fig. 1. The setup for the learning algorithms

are not completely specified or not observable. Then, queries may be answered
inconclusively, by don’t know, also denoted by ?. We term such a teacher inex-
perienced, see Figure 1(b).

In the following, we will look more closely at Biermann’s approach (in Sec-
tion 2.2), Angluin’s algorithm (Section 2.3), as well as their combinations serv-
ing the setup with an inexperienced teacher (Section 2.4). Furthermore, we will
sketch some extensions of these algorithms (Sections 2.5 – 2.9). Before, however,
we look at the fundamental concept of right congruences that is the basis for the
learning algorithms.

2.1 DFAs, Right-Congruences, and Learning Regular Systems

Let N denote the natural numbers, and, for n ∈ N, let [n] := {1, . . . , n}. For
the rest of this section, we fix an alphabet Σ. A deterministic finite automaton
(DFA) A = (Q, q0, δ, Q

+) over Σ consists of a finite set of states Q, an initial
state q0 ∈ Q, a transition function δ : Q × Σ → Q, and a set Q+ ⊆ Q of
accepting states. A run of A is a sequence q0

a1→ q1
a2→ . . .

an→ qn such that ai ∈ Σ,
qi ∈ Q and δ(qi−1, ai) = qi for all i ∈ [n]. It is called accepting iff qn ∈ Q+. The
language accepted by A, denoted by L(A), is the set of strings u ∈ Σ∗ for which
an accepting run exists. Since the automaton is deterministic, it is reasonable
to call the states Q \ Q+ also rejecting states, denoted by Q−. We extend δ to
strings as usual by δ(q, ε) = q and δ(q, ua) = δ((δ, u), a). The size of A, denoted
by |A|, is the number of its states Q, denoted by |Q|. A language is regular iff it
is accepted by some DFA.

The basis for learning regular languages is given by their characterization in
terms of Nerode’s right congruence ≡L: Let ≡L be defined by, for u, v ∈ Σ∗

u ≡L v iff for all w ∈ Σ∗ : uw ∈ L ⇔ vw ∈ L.

It is folklore, that a language L is regular iff ≡L has finite index.
Intuitively, most learning algorithms estimate the equivalence classes for a lan-

guage to learn. Typically, it assumes that all words considered so far are equiva-
lent, unless, a (perhaps empty) suffix shows that they cannot be equivalent.

130 M. Leucker

Based on Nerode’s right congruence, we get that, for every regular language
L, there is a canonical DFA AL that accepts L and has a minimal number of
states: Let uL or shortly u denote the equivalence class of u wrt. ≡L. Then the
canonical automaton of L is AL = (QL, q0L, δL, Q+

L) defined by

– QL = Σ/ ≡L is the set of equivalence classes wrt. ≡L,
– q0L = ε,
– δL : QL × Σ → Q is defined by δL(u, a) = ua,
– Q+

L = {u | u ∈ L}
We omit the subscript L provided L is known from the context.

2.2 Biermann’s Algorithm

Biermann’s learning algorithm [14] is an offline algorithm for learning a DFA A.
We are given a set of strings that are to be accepted by A and a set of strings
that are to be rejected by A. There is no possibility of asking queries and we have
to supply a minimal DFA that accepts/rejects these strings. The set of positive
and negative strings are called sample. We now formally describe samples and
Biermann’s algorithm.

A sample is a set of strings that, by the language in question, should either
be accepted, denoted by +, or rejected, denoted by −. For technical reasons,
it is convenient to work with prefix-closed samples. As the samples given to us
are not necessarily prefix closed we introduce the value maybe, denoted by ?.
Formally, a sample is a partial function O : Σ∗ → {+, −, ?} with finite, prefix-
closed domain D(O). That is, O(u) is defined only for finitely many u ∈ Σ∗ and
is defined for u ∈ Σ∗ whenever it is defined for some ua, for a ∈ Σ. For a string
u the sample O yields whether u should be accepted, rejected, or we do not know
(or do not care). For strings u and u′, we say that O disagrees on u and u′ if
O(u) �=?, O(u′) �=?, and O(u) �= O(u′).

An automaton A is said to conform with a sample O , if whenever O is defined
for u we have O(u) = + implies u ∈ L(A) and O(u) = − implies u /∈ L(A).

Given a sample O and a DFA A that conforms with O , let Su denote the
state reached in A when reading u. As long as we do not have A, we can treat
Su as a variable ranging over states and derive constraints for the assignments
of such a variable. More precisely, let CSP(O) denote the set of equations

{Su �= Su′ | O disagrees on u and u′} (C1)
∪ {Su = Su′ ⇒ Sua = Su′a | a ∈ Σ, ua, u′a ∈ D(O)} (C2)

Clearly, (C1) and (C2) reflect properties of Nerode’s right congruence: (C1) tests
u and u′ on the empty suffix and (C2) guarantees right-congruence. Let the
domain of D(CSP(O)) comprise the set of variables Su used in the constraints.

An assignment of CSP(O) is mapping Γ : D(CSP(O)) → N. An assignment Γ
is called a solution of CSP(O) if it fulfils the equations over the naturals, defined
in the usual manner. The set CSP(O) is solvable over [N] iff there is a solution
with range [N]. It is easy to see that every solution of the CSP problem over
the natural numbers can be turned into an automaton conforming with O . We
sum-up:

Learning Meets Verification 131

Lemma 1 (Learning as CSP, [14]). For a sample O, a DFA with N states
conforming to O exists iff CSP(O) is solvable over [N].

Proof. Let A = (Q, q0, δ, Q
+) be a DFA conforming with O having N states.

Without loss of generality, assume that Q = [N]. It is easy to see that assigning
the value δ(q0, u) to each Su ∈ D(CSP(O)) solves CSP(O).

On the other hand, given a solution Γ of CSP(O) with range [N], define
A = (Q, q0, δ, Q

+) by

– Q = [N],
– q0 = Sε,
– δ : Q × Σ → Q is any function satisfying δ(n, a) = n′, if there is Su, Sua ∈

D(CSP(O)) with Su = n, Sua = n′. This is well-defined because of (C2).
– Q+ ⊆ Q is any set satisfying, for Su ∈ D(CSP(O)) with Su = n, O(u) = +

implies n ∈ Q+, O(u) = − implies n /∈ Q+. This is well-defined because
of (C1).

Let us give three simple yet important remarks:

– Taking a different value for every Su, trivially solves the CSP problem. Thus,
a solution of CSP(O) within range [|D(CSP(O))|] exists.

– Then, a solution with minimum range exists and yields a DFA with a mini-
mal number of states.

– From the above proof, we see that we typically cannot expect to get a unique
minimal automaton conforming with O—in contrast to Angluin’s L∗ algo-
rithm, as we will see.

Lemma 1 together with the remarks above gives a simple non-deterministic
algorithm computing in polynomial time a DFA for a given observation, mea-
sured with respect to N := |D(CSP(O))|, which is sketched Algorithm 1. Note
that by results of Gold [31], the problem is NP complete and thus, the algorithm
is optimal.

Algorithm 1. Pseudo code for Biermann’s Learning Algorithm

1 % Input 0
2 Guess n ∈ [N], where N := |D(CSP(O))|
3 Guess assignment Γ of variables in D(CSP(O))
4 Verify that Γ satisfies (C1) and (C2)
5 Construct the DFA as described in Lemma 1

Pruning the search space of the CSP problem. While the previous algo-
rithm is of optimal worst case complexity, let us make a simple yet important
observation to simplify the CSP problem, which often pays off in practice [35].
We call a bijection ι : [N] → [N] a renaming and say that assignments Γ and Γ ′

are equivalent modulo renaming iff there is a renaming ι such that Γ = ι ◦ Γ ′.
Since names (here, numbers) of states have no influence on the accepted lan-

guage of an automaton, we get

132 M. Leucker

Lemma 2 (Name irrelevance). For a sample O, Γ : D(CSP(O)) → [N] is a
solution for CSP(O) iff for every renaming ι : [N] → [N], ι ◦ Γ is a solution of
CSP(O).

The previous lemma can be used to prune the search space for a solution: We
can assign numbers to state variables, provided different numbers are used for
different states.

Definition 1 (Obviously different). Su and Su′ are said to be obviously dif-
ferent iff there is some v ∈ Σ∗ such that O disagrees on uv and u′v. Otherwise,
we say that Su and Su′ look similar.

A CSP problem with M obviously different variables needs at least M different
states, which gives us together with Lemma 1:

Lemma 3 (Lower bound). Let M be the number of obviously different vari-
ables. Then CSP(O) is not solvable over all [N] with N < M .

Note that solvability over [M] is not guaranteed, as can easily be seen.
As a solution to the constraint system produces an automaton and in view of

Lemma 2, we can fix the values of obviously different variables.

Lemma 4 (Fix different values). Let Su1 , . . . , SuM be M obviously different
variables. Then CSP(O) is solvable iff CSP(O) ∪{Sui = i | i ∈ [M]} is solvable.

The simple observation stated in the previous lemma improves the solution of a
corresponding SAT problem defined below significantly, as described in [35].

Solving the CSP problem. It remains to come up with a procedure solving
the CSP problem presented above in an reasonable manner. An explicit solution
is proposed in [47]. In [35], however, an efficient encoding as a SAT problem
has been given, for which one can rely on powerful SAT solvers. Actually, two
different encodings have been proposed: binary and unary.

Let n be the number of strings in D(O) and N be the size of the automaton
in question. Then CSP(O) has O(n2) constraints. Using the binary SAT encod-
ing yields O(n2N log N) clauses over O(n log N) variables. Totally, the unary
encoding has O(n2N2) clauses with O(nN) variables (see [35] for details).

While the first is more compact for representing large numbers, it turns out
that the unary encoding speeds-up solving the resulting SAT problem.

2.3 Angluin’s Algorithm

Angluin’s learning algorithm, called L∗ [6], is designed for learning a regular
language, L ⊆ Σ∗, by constructing a minimal DFA A such that L(A) = L. In
this algorithm a Learner , who initially knows nothing about L, is trying to learn
L by asking a Teacher and an Oracle, who know L, respectively two kinds of
queries (cf. Figure 1(a)):

– A membership query consists of asking whether a string w ∈ Σ∗ is in L.

Learning Meets Verification 133

– An equivalence query consists of asking whether a hypothesized DFA H is
correct, i.e., whether L(H) = L. The Oracle answers yes if H is correct, or
else supplies a counterexample w, either in L \ L(H) or in L(H) \ L.

The Learner maintains a prefix-closed set U ⊆ Σ∗ of prefixes, which are candi-
dates for identifying states, and a suffix-closed set V ⊆ Σ∗ of suffixes, which
are used to distinguish such states. The sets U and V are increased when
needed during the algorithm. The Learner makes membership queries for all
words in (U ∪ UΣ)V , and organizes the results into a table T that maps each
u ∈ (U ∪ UΣ) to a mapping T (u) : V �→ {+, −} where + represents accepted
and − not accepted. In [6], each function T (u) is called a row. When T is

– closed, meaning that for each u ∈ U , a ∈ Σ there is a u′ ∈ U such that
T (ua) = T (u′), and

– consistent, meaning that T (u) = T (u′) implies T (ua) = T (u′a),

the Learner constructs a hypothesized DFA H = (Q, q0, δ, Q
+), where

(a) Q = {T (u) | u ∈ U} is the set of distinct rows,
(b) q0 is the row T (λ),
(c) δ is defined by δ(T (u), a) = T (ua), and
(d) Q+ = {T (u) | u ∈ U, T (u)(λ) = +}

and submits H as an equivalence query. If the answer is yes, the learning pro-
cedure is completed, otherwise the returned counterexample u is used to extend
U by adding all prefixes of u to U , and subsequent membership queries are per-
formed in order to make the new table closed and consistent producing a new
hypothesized DFA, etc. The algorithm is sketched in Algorithm 2.

Complexity. It can easily be seen that the number of membership queries can be
bounded by O(kn2m), where n is the number of states of the automaton to learn,
k is the size of the alphabet, and m is the length of the longest counterexample.
The rough idea is that for each entry in the table T a query is needed, and
O(knm) is the number of rows, n the number of columns. The latter is because
at most n equivalence queries suffice. To see this, check that for any closed and
consistent T , there is a single and therefore unique DFA conforming with T (as
opposed to Biermann’s approach). Thus, equivalence queries are performed with
automata of strictly increasing size.

2.4 Learning from Inexperienced Teachers

In the setting of an inexperienced teacher (cf. Figure 1(b)), queries are no longer
answered by either yes or no, but also by maybe, denoted by ?. We can easily come
a up with a learning algorithm in this setting, relying on Biermann’s approach:
First, the learner proposes the automaton consisting of one state accepting every
string.1 Then, the Learner consults the oracle, which either classifies the automa-
ton as the one we are looking for or returns a counter example c. In the latter
1 Proposing the automaton that rejects every string is equally OK.

134 M. Leucker

Algorithm 2. Pseudo code for Angluin’s Learning Algorithm

1 Function Angluin()
2 initialize (U,V,T)
3 repeat
4 while not(isClosed((U, V, T)) or not(isConsistent((U, V, T))
5 if not(isConsistent((U, V, T)) then
6 find a ∈ Γ , v ∈ V and u, u′ ∈ U such that
7 T (u) = T (u′) and T (ua)(v) �= T (u′a)(v)
8 add av to V
9 for every u ∈ U ∪ UΓ

10 ask membership query for uav
11 if not(isClosed((U,V, T)) then
12 find u ∈ U , a ∈ Γ such that T (ua) �= T (u′) for all u′ ∈ U
13 move ua to U
14 for every a′ ∈ Γ and v ∈ V
15 ask membership query for u′aa′v
16 construct hypothesized automaton H
17 do an equivalence query with hypothesis H
18 if the answer is a counterexample u then
19 add every prefix u′ of u to U .
20 for every a ∈ Γ , v ∈ V and prefix u′ of u
21 ask membership query for u′v and u′av.
22 until the answer is ’yes’ to the hypothesis H
23 Output H.

case, c as well as its prefixes are added to the sample O : c with +/− as returned
by the oracle and the prefixes with ? (unless O is already defined on the prefix),
and Biermann’s procedure is called to compute a minimal DFA consistent with O .
Again the oracle is consulted and either the procedure stops or proceeds as before
by adding the new counter example and its prefixes as before.

However, the procedure sketched above requires to create a hypothesis and
to consult the oracle for every single observation and does not make use of
membership queries at all.

Often, membership queries are “cheaper” than equivalence queries. Then, it
might be worthwhile to “round off” the observation by consulting the teacher,
as in Angluin’s algorithm.

We list the necessary changes to Angluin’s algorithm [35] yielding algorithm
ABL

∗. We keep the idea of a table but now, for every u ∈ (U ∪ UΣ), we get
a mapping T (u) : V → {+, −, ?}. For u, u′ ∈ (U ∪ UΣ), we say that rows T (u)
and T (v) look similar, denoted by T (u) ≡ T (u′), iff, for all v ∈ V , T (u)(v) �=?
and T (u′)(v) �=? implies T (u)(v) = T (u′)(v). Otherwise, we say that T (u) and
T (v) are obviously different. We call T
– weakly closed if for each u ∈ U , a ∈ Σ there is a u′ ∈ U such that T (ua) ≡

T (u′), and
– weakly consistent if T (u) ≡ T (u′) implies T (ua) ≡ T (u′a).

Learning Meets Verification 135

Angluin’s algorithm works as before, but using the weak notions of closed and
consistent. However, extracting a DFA from a weakly closed and weakly consis-
tent table is no longer straightforward. However, we can go back to Biermann’s
approach now.

Clearly, Angluin’s table (including entries with ?) can easily be translated to
a sample, possibly by adding prefixes to (U ∪ UΣ)V with value ? to obtain a
prefix-closed domain.

Catering for the optimizations listed for Biermann’s algorithm, given a table
T : (U ∪ UΣ) × V → {+, −, ?}, we can easily approximate obviously different
states: For u, u′ ∈ (U ∪ UΣ), states Su and Su′ are obviously different, if the
rows T (u) and T (u′) are obviously different.

Overall, in the setting of an inexperienced teacher, we use Biermann’s ap-
proach to derive a hypothesis of the automaton in question, but use the comple-
tion of Angluin’s observation table as a heuristic to round the sample by means
of queries.

2.5 Domain Specific Optimizations for Angluin’s Algorithm

Angluin’s L∗ algorithm works in the setting of arbitrary regular languages. If the
class of regular languages is restricted, so-called domain specific optimizations
may be applied to optimize the learning algorithm [38]. For example, if the
language to learn is known to be prefix closed, a positive string ua implies u to
be positive as well, preventing to consult the teacher for u [11].

Pictorially, such a setting can easily be described by adding an assistant be-
tween the learner and the teacher. Queries are send to the assistant who only
consults the teacher in case the information cannot be deduced from context
information [13]. Assistants dealing with independent actions, I/O systems, and
symmetrical systems have been proposed in [38].

2.6 Learning of Regular Representative Systems

Angluin’s L∗ algorithm identifies a DFA accepting a regular language. Such a
language, however, might represent a more complicated object. In [15], for exam-
ple, L∗ is used to infer message-passing automata (MPAs) accepting languages
of message sequence charts (MSCs).

Let us work out a setup that allows to learn systems using a simple modifi-
cation of Angluin’s L∗ algorithm. A representation system is a triple (E , O, L),
where

– E is a set of elements,
– O is a set of objects,
– and L : O → 2E is a language function yielding for an object o the set of

elements it represents.

The objects might be classified into equivalence classes of an equivalence relation
∼L ⊆ O×O by L: o ∼ o′ iff L(o) = L(o′). Intuitively, objects could be understood

136 M. Leucker

as subsets of E . However, like with words and automata, subsets of languages could
be infinite while automata are a finite representation of such an infinite set.

A further example is where objects are MPAs, elements are MSCs, and MPA
represent MSC languages. Then, two MPAs are considered to be equivalent if
they recognize the same MSC language.

Our goal is now to represent objects (or rather their equivalence classes) by
regular word languages, say over an alphabet Σ, to be able to use L∗. An almost
trivial case is given when there is a bijection from regular word languages to O.
As we will see, a simple framework can also be obtained, when there is bijection
of O to a factor of a subset of regular languages.

Let D be a subset of Σ∗. The motivation is that only regular word languages
containing at most words from D are considered and learned. Furthermore, let
≈ ⊆ D×D be an equivalence relation. We say that L ⊆ D is ≈-closed (or, closed
under ≈) if, for any w, w′ ∈ D with w ≈ w′, we have w ∈ L iff w′ ∈ L.

Regular Languages Objects

D

D

u ≈ u′

w′′

w ≈ w′

obj

∼

Fig. 2. Representing objects by reg-
ular languages

Naturally, D and ≈ determine the partic-
ular class RminDFA(Σ, D, ≈) := {L ⊆ D |
L is regular and closed under ≈} of regu-
lar word languages over Σ (where any lan-
guage is understood to be given by its mini-
mal DFA). Suppose a language of this class
RminDFA(Σ, D, ≈) can be learned in some
sense that will be made precise. For learning
elements of O, we still need to derive an ob-
ject from a language in RminDFA(Σ, D, ≈).
To this aim, we suppose a computable bi-
jective mapping obj : RminDFA(Σ, D, ≈) →

[O]∼ = {[o]∼ | o ∈ O} (where [o]∼ = {o′ ∈ O | o′ ∼ o}). A typical situation is
depicted in Fig 2, where the larger ellipse is closed under ≈ (w ≈ w′), whereas
the smaller circle is not, as it contains u but not u′.

As Angluin’s algorithm works within the class of arbitrary DFA over Σ, its
Learner might propose DFAs whose languages are neither a subset of D nor
satisfy the closure properties for ≈. To rule out and fix such hypotheses, the
language inclusion problem and the closure properties in question are required to
be constructively decidable, meaning that they are decidable and if the property
fails, a reason of its failure can be computed.

Let us be more precise and define what we understand by a learning setup:

Definition 2. Let (E , O, L) be a representation system. A learning setup for
(E , O, L) is a quintuple (Σ, D, ≈, obj , elem) where

– Σ is an alphabet,
– D ⊆ Σ∗ is the domain,
– ≈ ⊆ D × D is an equivalence relation such that, for any w ∈ D, [w]≈ is

finite,
– obj : RminDFA(Σ, D, ≈) → [O]∼L is a bijective effective mapping in the sense

that, for A ∈ RminDFA(Σ, D, ≈), a representative of obj (A) can be computed.

Learning Meets Verification 137

– elem : [D]≈ → E is a bijective mapping such that, for any o ∈ O,

elem(L(obj−1([o]∼L))) = L(o)

Furthermore, we require that the following hold for DFA A over Σ:

(D1) The problem whether L(A) ⊆ D is decidable. If, moreover, L(A) �⊆ D, one
can compute w ∈ L(A) \ D. We then say that Inclusion(Σ, D) is construc-
tively decidable.

(D2) If L(A) ⊆ D, it is decidable whether L(A) is ≈-closed. If not, one can
compute w, w′ ∈ D such that w ≈ w′, w ∈ L(A), and w′ �∈ L(A). We then
say that the problem EqClosure(Σ, D, ≈) is constructively decidable.

Given a regular representation system (E , O, L) for a which a learning setup
exists, let us sketch a learning algorithm that, by using membership queries for
elements e ∈ E and equivalence queries for objects o ∈ O, identifies a prede-
termined object. Let (Σ, D, ≈, obj , elem) be a learning setup for (E , O, L). To
obtain this algorithm, we rely on Angluin’s algorithm but modify it a little.
The general idea is that the algorithms learns the regular language representing
the object in question. However, membership queries for words and equivalence
queries for automata are translated thanks to elem and respectively obj . How-
ever, use these functions in a meaningful manner, we modify also the processing
of membership queries as well as the treatment of hypothesized DFAs:

– Once a membership query has been processed for a word w ∈ D (by querying
elem(w)), queries w′ ∈ [w]≈ must be answered equivalently. They are thus
not forwarded to the Teacher anymore. Again, as in Section 2.5, we might
think of an Assistant in between the Learner and the Teacher that checks
if an equivalent query has already been performed. Membership queries for
w �∈ D are not forwarded to the Teacher either but answered negatively by
the Assistant .

– When the table T is both closed and consistent, the hypothesized DFA H is
computed as usual. After this, we proceed as follows:
1. If L(H) �⊆ D, compute a word w ∈ L(H) \ D, declare it a counterex-

ample, and modify the table T accordingly (possibly involving further
membership queries).

2. If L(H) ⊆ D but L(H) is not ≈-closed, then compute w, w′ ∈ D such
that w ≈ w′, w ∈ L(H), and w′ �∈ L(H); perform membership queries
for [w]≈.

Actually, a hypothesized DFA H undergoes an equivalence test (by querying
obj (H)) only if L(H) ⊆ D and L(H) is ≈-closed. I.e., if, in the context of the
extended learning algorithm, we speak of a hypothesized DFA, we actually
act on the assumption that L(H) is the union of ≈-equivalence classes.

Let the extension of Angluin’s algorithm wrt. a learning setup as sketched
above be called ExtendedAngluin. A careful analysis shows:

138 M. Leucker

Theorem 1. Let (Σ, D, ≈, obj , elem) be a learning setup for a representation
system (E , O, L). If o ∈ O has to be learned, then invoking

ExtendedAngluin((E , O, L), (Σ, D, ≈, obj , elem))

returns, after finitely many steps, an object o′ ∈ O such that o′ ∼L o.

The theorem suggests the following definition:

Definition 3. A representation system (E , O, L) is learnable if there is some
learning setup for (E , O, L).

2.7 Learning of Timed Systems

Angluin’s algorithm has been extended to the setting of realtime systems. In [33]

and [32], learning of event-deterministic event-recording automata and, respec-
tively, event-recording automata, which both form sub-classes of timed automata
[4], is described. For learning timed systems, several obstacles have to be over-
come. First, timed strings range over pairs of letters (a, t) where a is from some
finite alphabet while t is a real number, denoting the time when a has occurred.
Thus, timed strings are sequences of letters taken from some infinite alphabet,
while the learning algorithms deal with strings over finite alphabets. To be able
to deal with strings over a finite alphabet, one joins several time points to get
a zone [33] or region [32] of time points. This allows us to work over an alpha-
bet consisting of actions and zone respectively region constraints, which, given
a greatest time point K, gives rise to a finite alphabet. These strings, which
are built-up from letters of actions and constraints, are sometimes also called
symbolic strings. It has been shown that the set of symbolic strings accepted
by an (event-deterministic) event-recording automaton forms a regular language
[27], which we call the symbolic regular language of the automaton. The sec-
ond obstacle to overcome is to derive a form or Nerode’s right congruence for
such symbolic regular languages that is consistent with a natural notion of right
congruence for timed systems. This is implicitly carried out in [33,32] by intro-
ducing sharply-guarded event-deterministic event-recording automata and simple
event-recording automata, which are both unique normal forms for all automata
accepting the same language.

This gives that Angluin’s learning algorithm can be reused to learn (symbolic
versions of) timed languages, yielding either sharply-guarded event-deterministic
event-recording automata [33] or simple event-recording automata [32]. However,
a direct application of Angluin’s algorithm employs queries for symbolic strings
that might represent complex timed behavior of the underlying system. To deal
with this obstacle, an assistant can then be used to effectively bridge the level
from symbolic timed strings (actions plus regions) to timed strings (action plus
time value).

A different approach to learning timed systems, based on decision trees, is
presented in [34].

Learning Meets Verification 139

2.8 Learning of ω-Regular Languages

Reactive systems, like a web server, are conceptually non-terminating systems,
whose behavior is best modelled by infinite rather than finite strings. In such a
setting, Angluin’s learning algorithm has to be extended to learn ω-regular lan-
guages [45]. Therefore, two main obstacles have to be overcome: First, a suitable
representation for infinite strings has to be found. Second, a suitable version of
Nerode’s right congruence has to be defined. The first obstacle is overcome by
considering only so-called ultimately periodic words, which can be described by
u(v)ω for finite words u, v ∈ Σ∗ [53]. The second obstacle is solved by restricting
the class of ω-regular languages. The given algorithm is restricted to languages
L for which both L and its complement can be accepted by a deterministic
ω-automaton, respectively. This class coincides with the class of deterministic
weak Büchi automata. We are not aware of any Biermann-style or Angluin-style
learning algorithm for the full class of ω-regular languages.

2.9 Further Extensions

Especially in communication protocols, the input/output actions of a system can
be distinguished in control sensitive or not. Some parameters of the system affect
the protocol’s state, while others are considered as data, just to be transmitted,
for example. Optimizations of Angluin’s algorithm for such a setup, in which we
are given parameterized actions, have been proposed in [12].

Angluin’s algorithm has been extended to deal with regular tree languages
rather than word languages in [26,18]. Learning of strategies for games has been
considered in [25]. A symbolic version of Angluin’s L∗ algorithm based on BDDs
[17] is presented in [5].

Learning (certain classes of) message passing automata accepting (regular)
sets of message sequence charts has been studied in [15], using ideas of regular
representations (cf. Section 2.6).

2.10 Implementations

Implementations of Angluin’s learning algorithm have been described and ana-
lyzed in [11,52].

3 Verification Using Learning

3.1 Minimizing Automata

Typical minimization algorithms for automata work on the transition graph
of the given automaton. In [50], however, a minimization algorithm for incom-
pletely specified finite-state machines was proposed, which is based on learning
techniques: Instead of simplifying a given machine, a new, minimal machine is
learned. For this, membership and equivalence queries are carried out on the
given system.

140 M. Leucker

Incremental
Learning
(Angluin)

Model Checking
wrt. current model

Check equivalence
(VC algorithm)

Compare
counterexample

with system

report
no error found

report
counterexample

No counterexample Counterexample found

Conformance established Counterexample confirmed

Model and system do not conform
Counterexample refuted

Fig. 3. Black Box Checking

Although no verification is performed in this approach, it entails one of the
main motivations for using learning techniques in verification: Instead of deriving
some object by modifying a large underlying system, one directly learns the small
result. Clearly, it depends very much on the whole setup when this idea is fruitful.

3.2 Black-Box Checking

A different motivation for using learning techniques for verification purposes is
when no model of the underlying system is given. Thus, we are faced with a
so-called black box system i.e. a system for which no model is given but whose
output can be observed for a given input. In black box checking or adaptive model
checking [49,36] these systems should be tested against a formal specification.
Conceptually, the problem can be solved by learning a (white box) model of the
black box, on which model checking can be performed. This can be done–under
strong restrictions—for example using L∗ and a conformance test like the ones
in [59,19]. In [49,36], the tasks of learning and model checking are interweaved as
explained in Figure 3, suggesting better practical performance.

First, an initial model of the system to check is learned. If model checking
stops with a counter example, this might be due to the inadequacy of the current
version of the model. However, running the counter example reveals whether
indeed a bug of the black-box system has been found, or, whether the counter
example was spurious—and should be used to improve the model.

If model checking does not provide a counter example, we have to apply a
conformance test [59,19] to make sure that no (violating) run of the black box
is missing in the model. If a missing run was detected, the model is updated,
otherwise, the correctness of the black box has been proved.

Learning Meets Verification 141

3.3 Compositional Verification

Compositional verification addresses the state-space explosion faced in model
checking by exploiting the modular structure naturally present in system designs.
One prominent technique uses the so-called assume guarantee rule: Take that we
want to verify a property ϕ of the system M1 ‖ M2, consisting of two modules M1
and M2 running synchronously in parallel, denoted by M1 ‖ M2 |= ϕ. Instead of
checking M1 ‖ M2 |= ϕ, one considers a module A and verifies that

1. M1 ‖ A |= ϕ
2. M2 is a refinement of A.

The rational is that A might be simpler than M2, in the sense that both checking
M1 ‖ A |= ϕ and M2 is a refinement of A is easier than checking M1 ‖ M2 |= ϕ.

A setup, for which the assume-guarantee rule has been proven to be sound
and complete [46], is when

1. modules can be represented as transition systems,
2. the parallel operator ‖ satisfies L(M ‖ M ′) = L(M) ∩ L(M ′), and
3. ϕ is a safety property and can thus be understood as a DFA Aϕ accepting

the allowed behavior of the system to check.

For such a setup, the assume-guarantee rule boils down to come up with some
A such that

(AG1) L(M1 ‖ A) ⊆ L(Aϕ) and
(AG2) L(A) ⊇ L(M2).

In [24] and [5], it has been proposed to employ a learning algorithm to come up
with such a module A. Here, we follow [5], which uses Angluin’s L∗ algorithm.

Whenever Angluin’s algorithm proposes some hypothesis automaton A, it is
easy to answer an equivalence query:

– if L(M1 ‖ A) �⊆ L(Aϕ), consider w ∈ L(M1 ‖ A) \ L(Aϕ). If w ∈ L(M2),
w witnesses that M1 ‖ M2 |= ϕ does not hold. Otherwise, return w as a
counterexample as result of the equivalence query.

– if L(A) �⊇ L(M2) provide a w ∈ L(A) \ L(M2) as a counterexample as result
of the equivalence query.

If both tests succeed, we have found an A showing that M1 ‖ M2 |= ϕ holds.
Membership queries are less obvious to handle. Clearly, when w ∈ L(M2) then

w must be in L(A) because of (AG2). If w /∈ L(Aϕ) but w ∈ L(M1), w must not
be in L(A) since otherwise the safety property ϕ is not met ((AG1)).Note, if in
this case also w ∈ L(M2) (i.e., w ∈ L(M1) ∩ L(M2), w �∈ L(Aϕ)), w is a witness
that M1 ‖ M2 �|= ϕ. In all other cases, however, it is not clear whether w should
be classified as + or −.

In [5], the following heuristic is proposed. Let B := M1 ∪Aϕ, where A denotes
complementation. Thus, runs of B either satisfy ϕ or are not in the behavior of
M1 and thus not in the behavior of M1 running in parallel with any module A or

142 M. Leucker

M2. Now, if M1 ‖ M2 |= ϕ then L(M2) ⊆ L(B) as M2 may only consist of words
either satisfying ϕ or ones that are removed when intersecting with M1. If, on the
other hand, M1 ‖ M2 �|= ϕ, then there is a w ∈ L(M1) ∩ L(M2) and w /∈ L(Aϕ),

meaning that w ∈ L(M1)∩L(M2)∩L(Aϕ). Hence, w ∈ L(M1) ∪ L(Aϕ)∩L(M2).
Thus, there is a w that is not in L(B) but in L(M2).

In other words, B is a module that allows to either show or disprove that M1 ‖
M2 |= ϕ. Thus, answering membership queries according to B will eventually
either show or disprove M1 ‖ M2 |= ϕ. While incrementally learning B, it is,
however, expected, that one gets a hypothesis A smaller than B that satisfies
(AG1) and (AG2) and thus shows that M1 ‖ M2 |= ϕ, or, that we get a word w
witnessing that M1 ‖ M2 |= ϕ does not hold.

The approach is sketched in Figure 4, where cex is a shorthand for counter
example.

L∗ algorithm
generating A

M1 ‖ w |= ϕ
yes, M1 ‖ M2 |= ϕ

no, M1 ‖ M2 �|= ϕ

w witnesses this

M1 ‖ A |= ϕ

L(M1) ⊆ L(A)

M1 ‖ w |= ϕ

equiv(A)

no, cex

yes, w is cex

yes/no

yes

no, let w ∈ L(M1) \ L(A)

w ∈ A?

Fig. 4. Overview of compositional verification by learning assumptions

In [5], the approach has been worked out in the context of the verification
tool NuSMV [20]. For this, a symbolic version of L∗ has been developed that is
based on BDDs [17] and carries out membership queries for sets of words rather
than individual ones. It has been shown that the approach is beneficial for many
examples. The success of the method, however, depends heavily on finding a
suitable system A while learning B.

Instead of using Angluin’s L∗ algorithm, one could think of using an inexperi-
enced teacher answering membership queries by ? whenever a choice is possible.
While the learning algorithm is computationally more expensive, smaller invari-
ants A can be expected. It would be interesting to compare both approaches on
real world examples.

In [18], the assume-guarantee reasoning for simulation conformance between
finite state systems and specifications is considered. A non-circular assume-
guarantee proof rule is considered, for which a weakest assumption can be rep-
resented canonically by a deterministic tree automaton (DTA). Then, learning
techniques for DTA are developed and examined by verifying non-trivial bench-
marks.

In [25], game semantics, counterexample-guided abstraction refinement, as-
sume-guarantee reasoning and Angluin’s L∗ algorithm are combined to yield
a procedure for compositional verification of safety properties for fragments of
sequential programs. For this, L∗ is adapted to learn (regular) game strategies.

Learning Meets Verification 143

3.4 Learning Fixpoints, Regular Model Checking, and Learning
Network Invariants

Assume that we are given a regular set of initial states Init of a system to verify
and a function Φ that computes for a given set W the set Φ(W) comprising of W
together with successor states of W . Then, the set of reachable states is the least
fixpoint limn→∞ Φn(W), where Φ0(W) := Init and Φn+1(W) := Φ(Φn(W)), for
n ≥ 0.

When proving properties for the set of reachable states, the typical approach
would be to compute the (exact) set of reachable states by computing the min-
imal fixpoint using Φ, before starting to verify their properties. However, this
approach may be problematic for two reasons:

– computing the fixpoint might be expensive, or
– the computation might not even terminate.

In regular model checking [2], for example, the set of initial states is regular (and
represented by a finite automaton) and the set of successor states is computed
by means of a transducer and thus is a regular set as well. There are, however,
examples for which the set of reachable states is no longer regular. Thus, a
straightforward fixpoint computation will not terminate.

A way out would be to consider a regular set of states over-approximating the
set of reachable states.

Here, the idea of using learning techniques comes into play: Instead of com-
puting iteratively the fixpoint starting from the initial states, one iteratively
learns a fixpoint W . Clearly, one can stop whenever

– W is a fixpoint,
– W is a superset of Init , and
– W satisfies the property to verify.

For example, if one intends to verify a safety property, i.e., none of the reach-
able states is contained in the given bad states Bad , it suffices to find any fixpoint
W that subsumes Init and does not intersect with Bad .

This general idea has been worked out in different flavors for verifying prop-
erties of infinite-state systems: Verifying safety-properties of parameterized sys-
tems by means of network invariants has been studied in [35]. Applications of
learning in regular model checking [2] for verifying safety properties [37,56] and
liveness properties [57] can also be understood as a way to find suitable fix-
points. A further application for infinite state systems is that of verifying FIFO
automata [55]. Let us understand the gist of these approaches.

Learning network invariants. One of the most challenging problems in ver-
ification is the uniform verification of parameterized systems. Given a parame-
terized system S(n) = P [1] ‖ · · · ‖ P [n] and a property ϕ, uniform verification
attempts to verify that S(n) satisfies ϕ for every n > 1. The problem is in
general undecidable [7]. One possible approach is to look for restricted families
of systems for which the problem is decidable (cf. [28,22]). Another approach is

144 M. Leucker

to look for sound but incomplete methods (e.g., explicit induction [29], regular
model checking [39,51], or environment abstraction [23]).

Here, we consider uniform verification of parameterized systems using the
heuristic of network invariants [60,43]. In simple words, a network invariant for
a given finite system P is a finite system I that abstracts the composition of
every number of copies of P running in parallel. Thus, the network invariant
contains all possible computations of every number of copies of P . If we find
such a network invariant I, we can solve uniform verification with respect to the
family S(n) = P [1] ‖ · · · ‖ P [n] by reasoning about I.

The general idea proposed in [60] and turned into a working method in [43], is
to show by induction that I is a network invariant for P . The induction base is to
prove that (I1) P � I, for a suitable abstraction relation �. The induction step
is to show that (I2) P ‖ I � I. After establishing that I is a network invariant
we can prove (P) I |= ϕ, turning I into a proper network invariant with respect
to ϕ. Then we conclude that S(n) |= ϕ for every value of n.

Coming up with a proper network invariant is usually an iterative process. We
start with divining a candidate for a network invariant. Then, we try to prove
by induction that it is a network invariant. When the candidate system is non-
deterministic this usually involves deductive proofs [42]2. During this stage we
usually need to refine the candidate until getting a network invariant. The final
step is checking that this invariant is proper (by automatically model checking
the system versus ϕ). If it is not, we have to continue refining our candidate un-
til a proper network invariant is found. Coming up with the candidate network
invariant requires great knowledge of the parameterized system in question and
proving abstraction using deductive methods requires great expertise in deduc-
tive proofs and tools. Whether a network invariant exists is undecidable [60],
hence all this effort can be done in vain.

In [35], a procedure searching systematically for a network invariant satisfying
a given safety property is proposed. If one exists, the procedure finds a proper
invariant with a minimal number of states. If no proper invariant exists, the
procedure in general diverges (though in some cases it may terminate and report
that no proper invariant exists). In the light of the undecidability result for the
problem, this seems reasonable.

Network invariants are usually explained in the setting of transition structures
[41]. However, the learning algorithms have been given in terms of DFAs (see
Section 2). Thus, we explain the approach in the setting of checking safety prop-
erties of networks that are described in terms of (the parallel product of) DFAs:
We assume that P is given as a DFA and abstraction is just language inclusion:
A � B iff L(A) ⊆ L(B). A safety property is a DFA ϕ that accepts a prefix-closed
language. Thus, a system A satisfies ϕ, denoted by A |= ϕ, iff L(A) ⊆ L(ϕ).
The parallel operator combines two given DFAs into a new one. Finally, a pro-
jection operator for A ‖ B onto B is a mapping prB

A‖B : L(A ‖ B) → L(B)
such that whenever w ∈ L(A ‖ B) then for all B′ with prB

A‖B(w) ∈ L(B′) also

2 For a recent attempt at mechanizing this step see [40].

Learning Meets Verification 145

w ∈ L(A ‖ B′). In other words, (at least) the projection of w has to be removed
from B to (eventually) remove w from the parallel product.

The careful reader observers that the proper invariant I we are looking for
is indeed a fixpoint of the operator (P ‖ ·), which subsumes the words given
by P and has empty intersection with the bad words given by L(ϕ). Thus, the
following explanation can be understood as one way of learning fixpoints.

We now describe how to compute a proper network invariant in the case that one
exists. For the rest of this section, we fix system P and a property automaton ϕ.

We only give an informal explanation, details can be found in [35]. We are using
an unbounded number of students whose job it is to suggest possible invariants,
one teaching assistant (TA) whose job is to answer queries by the students, and
one supervisor whose job is to control the search process for a proper invariant.
The search starts by the supervisor instructing one student to look for a proper
invariant.

Like in Angluin’s algorithm, every active student maintains a table (using +,
−, and ?) and makes it weakly closed and weakly consistent by asking the TA
membership queries. The TA answers with either +, −, or ?, as described below.
When the table is weakly closed and consistent, the student translates the table
to a sample O and this to a CSP problem. He solves the CSP problem using
the SAT encoding (see Section 2.2). The solution with minimum range is used
to form an automaton I that is proposed to the supervisor. The supervisor now
checks whether I is indeed a proper invariant by checking (P), (I1), and (I2). If
yes, the supervisor has found a proper invariant and the algorithm terminates
with proper invariant found. If not, one of the following holds.

1. There is a string w such that w ∈ L(I) but w /∈ L(ϕ),
2. There is a string w such that w ∈ L(P) but w /∈ L(I),
3. There a string w such that w ∈ L(P ‖ I) but w /∈ L(I).

In the first case, w should be removed from I. In the second case, the string
w should be added to I. In these cases, the supervisor returns the appropriate
string with the appropriate acceptance information to the student, who continues
in the same manner as before.

In the last case, it is not clear, whether w should be added to I or removed
from P ‖ I. For the latter, we have to remove the projection pr I

P‖I(w) from I.
Unless w is listed negatively or pr I

P‖I(w) is listed positively in the table, both
possibilities are meaningful. Therefore, the supervisor has to follow both tracks.
She copies the table of the current student, acquires another student, and asks
the current student to continue with w in I and the new student to continue
with pr I

P‖I(w) not in I.
In order to give answers, the teaching assistant uses the same methods as the

supervisor, however, whenever a choice is possible she just says ?.
Choices can sometimes yield conflicts that are observed later in the procedure.

Such a case reveals a conflicting assumption and requires the student to retire.
If no working student is left, no proper invariant exists.

146 M. Leucker

Clearly, the procedure sketched above finds a proper invariant if one exists.
However, it consumes a lot of resources and may yield a proper invariant that is
not minimal. It can, however, easily be adapted towards using only one student
at a given time and stopping with a minimal proper invariant. Intuitively, the
supervisor keeps track of the active students as well as the sizes of recently
suggested automata. Whenever a student proposes a new automaton of size N ,
the supervisor computes the appropriate answer, which is either a change of the
student’s table or the answer proper invariant found. However, she postpones
answering the student (or stopping the algorithm), gives the student priority
N , and puts the student on hold. Then the supervisor takes a student that
is on hold with minimal priority and sends the pre-computed instrumentation
to the corresponding student. In case the student’s instrumentation was tagged
proper invariant found the procedure stops by printing the final proper invariant.
Note that students always propose automata of at least the same size as before
since the learning algorithm returns a minimal automaton conforming to the
sample. Thus, whenever a proper invariant is found, it is guaranteed that the
proper invariant is eventually reported by the algorithm, unless a smaller proper
invariant is found before.

The formal details are given in [35].

Learning in regular model checking. In regular model checking [2] we are
typically faced with a finite automaton Init encoding the initial states of an
infinite-state system and a transducer τ , which yields for an automaton A, an
automaton τ(A) encoding the current and successor states of states given by
A. The set of reachable states is then given by the least fixpoint of Init under
τ . However, the set of reachable states might not be regular, implying that a
simple fixpoint computation does not terminate. Thus, for example, by so-called
acceleration techniques, supersets of fixpoints are computed [1].

The same holds for the learning approaches in [37,56,57], in which algorithms
employing an (experienced) teacher are used, in contrast to the approach of
learning network invariants.

Clearly, when learning a fixpoint A, equivalence queries are not difficult to
answer: Init ⊆ L(A) and L(τ(A)) ⊆ L(A) can easily be answered and, if applica-
ble, a counterexample can be computed. For membership queries, the situation
is more involved. In [37,56], the transducer is assumed to be length preserving,
meaning that τ applied to some word w yields words w′ of the same length.
Thus, the fixpoint of w under τ can be computed in finitely many steps. Then,
the following heuristic is used: Given a word w′ of length n, check whether there
is some w of length n such that w′ is in the fixpoint of w. It has been reported,
that this heuristic works well in practice [37,56]. However, it is not clear whether
a regular fixpoint is found in this manner, if one exists.

In [57], verifying also liveness properties in the setting of regular model check-
ing has been considered. For this, the set of reachable states together with in-
formation i on how many final states of a system encounter on a path of some

Learning Meets Verification 147

length j leaving s is learned. It has been shown that for the function computing
successor states plus this additional information, a unique fixpoint exists. Clearly,
liveness properties can be answered when the fixpoint is given. Furthermore, for
a given (s, i, j), it is easy to answer a membership query. Thus, the method
works, provided a regular description for such a fixpoint exists.

Learning for verifying branching-time properties in the context of regular
model checking asks for learning nested fixpoints and has been studied
in [58].

3.5 Further Applications

Synthesizing interface specifications. Learning interface specifications for
Java classes has been based on Angluin’s algorithm in [3]. The problem studied
is to derive (a description) of the most general way to call the methods in a
Java class while maintaining some safety property. In [3], the problem is tackled
by abstracting the class, giving rise to a partial-information two-player game.
As analyzing such games is computationally expensive, approximative solutions
based on learning are considered.

Learning versus testing. In model-based testing [16], test suites are generated
based on a model of the system under test (SUT). When no model is available,
approximations of the SUT can be learned, the model can be analyzed, and used
for test case generation. This approach, which is conceptually similar to black
box checking, has been turned into a working method in [38].

In [10], the close relationship of learning techniques and test suites has been
elaborated. In simple words, the following insight has been formalized and proved:
if a conformance test suite is good enough to make sure that the SUT conforms to
a given model, it should have enough information to identify the model. Likewise,
if the observations of a system identify a single model, the observations should
form a conformance test suite.

References

1. Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J.: Algorithmic improvements in
regular model checking. In: Hunt, Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 236–248. Springer, Heidelberg (2003)

2. Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model
checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
35–48. Springer, Heidelberg (2004)

3. Alur, R., Cerný, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications
for java classes. In: Palsberg, J., Abadi, M. (eds.) POPL, pp. 98–109. ACM Press,
New York (2005)

4. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

148 M. Leucker

5. Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional verification by learn-
ing assumptions. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS,
vol. 3576, pp. 548–562. Springer, Heidelberg (2005)

6. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987)

7. Apt, K.R., Kozen, D.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

8. Balcázar, J.L., Dı́az, J., Gavaldá, R.: Algorithms for learning finite automata from
queries: A unified view. In: Advances in Algorithms, Languages, and Complexity,
pp. 53–72. Kluwer, Dordrecht (1997)

9. Baresi, L., Heckel, R. (eds.): FASE 2006 and ETAPS 2006. LNCS, vol. 3922, pp.
27–28. Springer, Heidelberg (2006)

10. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On
the correspondence between conformance testing and regular inference. In: Ce-
rioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg
(2005)

11. Berg, T., Jonsson, B., Leucker, M., Saksena, M.: Insights to Angluin’s learning. In:
Proceedings of the International Workshop on Software Verification and Validation
(SVV 2003). Electronic Notes in Theoretical Computer Science, vol. 118, pp. 3–18
(December 2003)

12. Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines with pa-
rameters. In: Baresi and Heckel [9], pp. 107–121

13. Berg, T., Raffelt, H.: Model checking. In: Broy et al. [16]
14. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from

samples of their behaviour. IEEE Transactions on Computers 21, 592–597
(1972)

15. Bollig, B., Katoen, J.-P., Kern, C., Leucker, M.: Replaying play in and play out:
Synthesis of design models from scenarios by learning. In: Grumberg, O., Huth,
M. (eds.) ETAPS 2007 and TACAS 2007. LNCS, vol. 4424, Springer, Heidelberg
(2007)

16. Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-
Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg
(2005)

17. Bryant, R.E.: Symbolic manipulation of boolean functions using a graphical repre-
sentation. In: Proceedings of the 22nd ACM/IEEE Design Automation Conference,
pp. 688–694. IEEE Computer Society Press, Los Alamitos, CA (1985)

18. Chaki, S., Clarke, E.M., Sinha, N., Thati, P.: Automated assume-guarrantee rea-
soning for simulation conformance. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 534–547. Springer, Heidelberg (2005)

19. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
on Software Engineering 4(3), 178–187 (1978) (Special collection based on COMP-
SAC)

20. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV Version 2: An OpenSource Tool for Symbolic
Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404,
Springer, Heidelberg (2002)

21. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge, Massachusetts (1999)

Learning Meets Verification 149

22. Clarke, E.M., Talupur, M., Touili, T., Veith, H.: Verification by network decom-
position. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
276–291. Springer, Heidelberg (2004)

23. Clarke, E.M., Talupur, M., Veith, H.: Environment abstraction for parameter-
ized verification. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS,
vol. 3855, pp. 126–141. Springer, Heidelberg (2005)

24. Cobleigh, J.M., Giannakopoulou, D., Pasareanu, C.S.: Learning assumptions
for compositional verification. In: Garavel, H., Hatcliff, J. (eds.) ETAPS
2003 and TACAS 2003. LNCS, vol. 2619, pp. 331–346. Springer, Heidelberg
(2003)

25. Dimovski, A., Lazic, R.: Assume-guarantee software verification based on game
semantics. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 529–548.
Springer, Heidelberg (2006)

26. Drewes, F., Högberg, J.: Learning a regular tree language from a teacher. In: Ésik,
Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 279–291. Springer, Heidelberg
(2003)

27. D’Souza, D.: A logical characterisation of event clock automata. International Jour-
nal of Foundations of Computer Science (IJFCS) 14(4), 625–639 (2003)

28. Emerson, E., Kahlon, V.: Reducing model checking of the many to the few. In:
McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 236–254. Springer, Heidel-
berg (2000)

29. Emerson, E., Namjoshi, K.: Reasoning about rings. In: Proc. 22th ACM Symp. on
Principles of Programming Languages (1995)

30. Gold, E.M.: Language identification in the limit. Information and Control 10, 447–
474 (1967)

31. Gold, E.M.: Complexity of automaton identification from given data. Information
and Control 37(3), 302–320 (1978)

32. Grinchtein, O., Jonsson, B., Leucker, M.: Inference of timed transition systems. In:
6th International Workshop on Verification of Infinite-State Systems. Electronic
Notes in Theoretical Computer Science, vol. 138/4, Elsevier Science Publishers,
Amsterdam (2004)

33. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata.
In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS,
vol. 3253, Springer, Heidelberg (2004)

34. Grinchtein, O., Jonsson, B., Pettersson, P.: Inference of event-recording automata
using timed decision trees. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006.
LNCS, vol. 4137, pp. 435–449. Springer, Heidelberg (2006)

35. Grinchtein, O., Leucker, M., Piterman, N.: Inferring network invariants automat-
ically. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130,
Springer, Heidelberg (2006)

36. Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. In: Katoen, J.-
P., Stevens, P. (eds.) ETAPS 2002 and TACAS 2002. LNCS, vol. 2280, p. 357.
Springer, Heidelberg (2002)

37. Habermehl, P., Vojnar, T.: Regular model checking using inference of regular lan-
guages. Electr. Notes Theor. Comput. Sci. 138(3), 21–36 (2005)

38. Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learn-
ing. In: Proc. 15th Int. Conf. on Computer Aided Verification (2003)

39. Jonsson, B., Nilsson, M.: Transitive closures of regular relations for verifying
infinite-state systems. In: Schwartzbach, M.I., Graf, S. (eds.) ETAPS 2000 and
TACAS 2000. LNCS, vol. 1785, Springer, Heidelberg (2000)

150 M. Leucker

40. Kesten, Y., Piterman, N., Pnueli, A.: Bridging the gap between fair simulation and
trace inclusion. Information and Computation 200(1), 35–61 (2005)

41. Kesten, Y., Pnueli, A.: Control and data abstraction: The cornerstones of prac-
tical formal verification. Software Tools for Technology Transfer 2(4), 328–342
(2000)

42. Kesten, Y., Pnueli, A., Shahar, E., Zuck, L.: Network invariants in action. In: Brim,
L., Jančar, P., Křet́ınský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421,
Springer, Heidelberg (2002)

43. Kurshan, R.P., McMillan, K.L.: A structural induction theorem for processes. In-
formation and Computation 117(1), 1–11 (1995)

44. Lang, K.J.: Random dfa’s can be approximately learned from sparse uniform ex-
amples. In: COLT, pp. 45–52 (1992)

45. Maler, O., Pnueli, A.: On the learnability of infinitary regular sets, Esprit Basic
Reasearch Action No 3096 (1991)

46. Namjoshi, K.S., Trefler, R.J.: On the competeness of compositional reasoning.
In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 139–153.
Springer, Heidelberg (2000)

47. Oliveira, A.L., Silva, J.P.M.: Efficient algorithms for the inference of minimum size
dfas. Machine Learning 44(1/2), 93–119 (2001)

48. Oncina, J., Garcia, P.: Inferring regular languages in polynomial update time. In:
de la Blanca, N.P., Sanfeliu, A., Vidal, E. (eds.) Pattern Recognition and Image
Analysis. Series in Machine Perception and Artificial Intelligence, vol. 1, pp. 49–61.
World Scientific, Singapore (1992)

49. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: Wu, J., Chanson,
S.T., Gao, Q. (eds.) Formal Methods for Protocol Engineering and Distributed
Systems, FORTE/PSTV, pp. 225–240. Kluwer, Beijing, China (1999)

50. Pena, J.M., Oliveira, A.L.: A new algorithm for the reduction of incompletely
specified finite state machines. In: ICCAD, pp. 482–489 (1998)

51. Pnueli, A., Shahar, E.: Liveness and acceleration in parameterized verification.
In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 328–343.
Springer, Heidelberg (2000)

52. Raffelt, H., Steffen, B.: Learnlib: A library for automata learning and experimen-
tation. In: Baresi and Heckel [9], pp. 377–380

53. Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science, ch. 4, vol. B, pp. 133–191. Elsevier Science Pub-
lishers B. V, Amsterdam (1990)

54. Trakhtenbrot, B., Barzdin, J.: Finite automata: behaviour and synthesis. North-
Holland, Amsterdam (1973)

55. Vardhan, A., Sen, K., Viswanathan, M., Agha, G.: Actively learning to verify
safety for fifo automata. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS,
vol. 3328, pp. 494–505. Springer, Heidelberg (2004)

56. Vardhan, A., Sen, K., Viswanathan, M., Agha, G.: Learning to verify safety proper-
ties. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308,
pp. 274–289. Springer, Heidelberg (2004)

57. Vardhan, A., Sen, K., Viswanathan, M., Agha, G.: Using language inference to
verify omega-regular properties. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005.
LNCS, vol. 3440, pp. 45–60. Springer, Heidelberg (2005)

Learning Meets Verification 151

58. Vardhan, A., Viswanathan, M.: Learning to verify branching time properties. In:
Redmiles, D.F., Ellman, T., Zisman, A. (eds.) ASE, pp. 325–328. ACM, New York
(2005)

59. Vasilevski, M.P.: Failure diagnosis of automata. Cybernetic 9(4), 653–665 (1973)
60. Wolper, P., Lovinfosse, V.: Verifying properties of large sets of processes with

network invariants. In: Sifakis, J. (ed.) Automatic Verification Methods for Finite
State Systems. LNCS, vol. 407, pp. 68–80. Springer, Heidelberg (1990)

JACK — A Tool for Validation of Security and

Behaviour of Java Applications�

Gilles Barthe1, Lilian Burdy,Julien Charles1, Benjamin Grégoire1,
Marieke Huisman1, Jean-Louis Lanet2, Mariela Pavlova3,��,

and Antoine Requet2

1 INRIA Sophia Antipolis, France
2 Gemalto, France

3 Ludwig-Maximilians-Universität München, Germany

Abstract. We describe the main features of JACK (Java Applet Cor-
rectness Kit), a tool for the validation of Java applications, annotated
with JML specifications. JACK has been especially designed to improve
the quality of trusted personal device applications. JACK is fully in-
tegrated with the IDE Eclipse, and provides an easily accessible user
interface. In particular, it allows to inspect the generated proof obliga-
tions in a Java syntax, and to trace them back to the source code that
gave rise to them. Further, JACK provides support for annotation gen-
eration, and for interactive verification. The whole platform works both
for source code and for bytecode, which makes it particularly suitable
for a proof carrying code scenario.

1 Introduction

Motivation Over the last years, the use of trusted personal devices (TPD),
such as mobile phones, PDAs and smart cards, has become more and more
widespread. As these devices are often used with security-sensitive applications,
they are an ideal target for attacks. Traditionally, research has focused on avoid-
ing hardware attacks, where the attacker has physical access to the device to
observe or tamper with it. However, TPD are more and more connected to net-
works and moreover, provide support to execute complex programs. This has
increased the risk of logical attacks, which are potentially easier to launch than
physical attacks (they do not require physical access, and are easier to replicate
from one device to the other), and may have a huge impact. In particular, a
malicious attacker spreading over the network and massively disconnecting or
disrupting devices could have significant consequences.

An effective means to avoid such attacks is to improve the quality of the
software deployed on the device. This paper describes JACK1 (the Java Applet
� This work is partially funded by the IST programme of the European Commission,

under the IST-2003-507894 Inspired and IST-2005-015905 Mobius projects.
�� Research done while at INRIA Sophia Antipolis.
1 See http://www-sop.inria.fr/everest/soft/Jack/jack.html for download in-

structions.

F.S. de Boer et al. (Eds.): FMCO 2006, LNCS 4709, pp. 152–174, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www-sop.inria.fr/everest/soft/Jack/jack.html

JACK 153

Correctness Kit), a tool that can be used to improve the quality of applica-
tions for TPD. Such devices typically implement the Java Virtual Machine (or
one of its variations)2. Therefore JACK is tailored to applications written in
Java (bytecode). However, the described techniques are also relevant to other
execution platforms for TPD.

Characteristics of JACK. JACK allows to verify Java applications that are an-
notated with the Java Modeling Language (JML)3. An advantage of using JML
is that there is wide range of tools and techniques available that use JML as
specification language, i.e., for testing, simulation and verification (see [11] for
an overview). We distinguish two kinds of verification: at runtime, using jmlc, or
statically. Several tools provide static verification of JML-annotated programs,
adopting different compromises between soundness, completeness and automa-
tion (Section 8 provides an overview of related work). JACK implements a weak-
est precondition calculus, that automatically generates proof obligations that can
be discharged both by automatic and interactive theorem provers. The automatic
prover that is used is Simplify [22], the interactive theorem prover that is used
is Coq [39].

The development of the JACK tool started in 2002 at the formal methods
research laboratory of the French smart card producer Gemplus (now part of
gemalto). Successful case studies with ESC/Java [17] and the LOOP tool [8]
on an electronic purse smart card application [10] had sufficiently demonstrated
that verification of JML annotations could help to increase the quality of smart
card applications. However, the existing tools where either not precise enough,
or too cumbersome to use to expose application developers to them. The JACK
tool was designed to overcome these problems, in particular via the integration
of JACK within the IDE Eclipse4, and the development of a special JACK
perspective.

In 2003, the tool has been transfered to the Everest project at INRIA Sophia
Antipolis, and been further developed within this team since then. The other
features of JACK described in this paper have been developed after this transfer.

The main characteristics of JACK that distinguish it from other static verifi-
cation tools are the following:

– full integration within Eclipse IDE, including the development of a special
JACK perspective that allows to inspect the different proof obligations, and
from where in the code they originate;

– implementation of annotation generation algorithms: to generate “obvious”
annotations, and to encode high-level security properties;

– support for verification of bytecode programs; and

2 The standard Java set-up for TPD is the Connected Limited Device Configura-
tion, see http://java.sun.com/products/cldc/, together with the MIDP profile,
see http://java.sun.com/products/midp/

3 See http://www.jmlspecs.org
4 See http://www.eclipse.org

154 G. Barthe et al.

– support for interactive verification, by the development of an interface and
tactics for Coq and by use of the native construct, that allows to link JML
specifications with the logic of the underlying theorem prover.

This paper illustrates how these characteristics make JACK particularly suited
for the development of secure applications for TPD.

Application Scenarios. JACK provides different kinds of support for the appli-
cation developer, ranging from the automatic verification of common security
properties to the interactive verification of complex functional specifications.

To support the automatic verification of high-level security properties, JACK
provides an algorithm to automatically generate annotations encoding such prop-
erties, and to weave and propagate these in the application. These annotations
give rise to proof obligations, whose discharge (typically automatic) guarantees
adherence to the security policy. Since JACK also provides support for the ver-
ification of bytecode, and allows to compile source code level JML annotations
into bytecode level specifications (written in the Bytecode Modeling Language
(BML) [12]), this enables a proof carrying code scenario [35]. In such a scenario,
the applications come equipped with a specification and a proof that allow the
client to establish trust in the application. Since the applications usually are
shipped in bytecode format, also the specification and the verification process
need to be defined at this level. This scenario is even further facilitated by the
fact that the compiler from JML to BML provided by JACK basically preserves
the generated proof obligations (see also [6]). Thus, a software developer can
verify its applications at source code level, and ship them with compiled byte-
code level specifications and proofs. Notice that, provided the proof obligations
can be discharged automatically, this whole process is automatic.

However, as JACK is a general-purpose tool, it can be also be used to verify
complex functional-behaviour specifications. For this, it provides advanced sup-
port for specification development and interactive verification. Because of the
tight integration with Eclipse, the developer does not have to change tools to
validate the application. A special JACK view is provided, that allows to inspect
the generated proof obligations in different views (in a Java-like syntax, or in the
language of the prover). Moreover, syntax colouring of the original source code
allows to see to which parts of the application and specification the proof obliga-
tion relates. Further, JACK can generate “obvious” annotations that are easy to
forget, in particular preconditions that are sufficient to avoid runtime exceptions.
This helps to overcome one of the major drawbacks of using JML-like annota-
tions for specifications, namely that writing annotations is labour-intensive and
error-prone. Finally, to support interactive verification, several advanced Coq
tactics have been developed, and a Coq editor has been integrated into Eclipse.
In addition, to be able to write expressive specifications, a native construct has
been proposed for JML, that allows to link JML constructs directly with the
logic of the underlying prover. This allows to develop the theory about these
constructs directly in the logic of the theorem prover, which makes specification
and verification simpler.

JACK 155

Overview of the Paper. The next section gives a quick overview of the rele-
vant JML features. Section 3 briefly outlines the general architecture of JACK,
while Section 4 focuses on its user interface. Section 5 describes the different an-
notation generation algorithms that JACK implements. Section 6 presents the
bytecode subcomponents of JACK, while Section 7 explains the features that
JACK provides to support interactive verification. Finally, Section 8 concludes
and discusses how this work will be continued.

Parts of the results described in this paper have been published elsewhere:
[14] describes the general architecture of JACK, [37] the annotation generation
algorithm for security policies, [13] the framework for the verification of bytecode,
and [16] the native construct. However, this is the first time a complete overview
of JACK and its main features are given in a single paper.

2 A Quick Overview of JML

This section gives a short overview of JML, by means of an example. Throughout
the rest of this paper, we assume the reader is familiar with JML, its syntax and
semantics. For a detailed overview of JML we refer to the reference manual [31];
a detailed overview of the tools that support JML can be found in [11]. Notice
that JML is designed to be a general specification language that does not impose
any particular design method or application domain [29].

To illustrate the different features of JML, Figure 1 shows a fragment of a
specification of class QuickSort. It contains a public method sort, that sorts the
array stored in the private field tab. Sorting is implemented via a method swap,
swapping two elements in the array, and a private method sort, that actually
implements the quicksort algorithm.

In order not to interfere with the Java compiler, JML specifications are writ-
ten as special comments (tagged with @). Method specifications contain pre-
conditions (keyword requires), postconditions (ensures) and frame conditions
(assignable). The latter specifies which variables may be modified by a method.
In a method body, one can annotate all statements with an assert predicate
and loops also with invariants (loop_invariant), and variants (decreases).
One can also specify class invariants, i.e., properties that should hold in all vis-
ible states of the execution, and constraints, describing a relation that holds
between any two pairs of consecutive visible states (where visible states are the
states in which a method is called or returned from).

The predicates in the different conditions are side-effect free Java boolean
expressions, extended with specification-specific keywords, such as \result, de-
noting the return value of a non-void method, \old, indicating that an expression
should be evaluated in the pre-state of the method, and the logical quantifiers
\forall and \exists. Re-using the Java syntax makes the JML specifications
easily accessible to Java developers.

JML allows further to declare special specification-only variables: logical vari-
ables (with keyword model) and so-called ghost variables, that can be assigned
to in special set annotations.

156 G. Barthe et al.

public class QuickSort {
private int [] tab;

public QuickSort(int[] tab) {this.tab = tab;}

/*@ requires (tab != null) ;
@ assignable tab[0 .. (tab.length -1)];
@ ensures (\forall int i, j; 0 <= i && i <= (tab.length - 1) ==>
@ 0 <= j && j <= (tab.length - 1) ==>
@ i < j ==> tab[i] <= tab[j]) &&
@ (\forall int i; 0 <= i && i <= (tab.length - 1) ==>
@ (\exists int j; 0 <= j && j <= (tab.length - 1) &&
@ \old(tab[j]) == tab[i])); @*/

public void sort() {if(tab.length > 0) sort(0, tab.length -1);}

/*@ requires (tab != null) && (0 <= i) && (i < tab.length) &&
@ (0 <= j) && (j < tab.length);
@ assignable tab[i], tab[j];
@ ensures tab[i] == \old(tab[j]) && (tab[j] == \old(tab[i])); @*/

public void swap(int i, int j) { ... }

private void sort(int lo, int hi) { ... }
}

Fig. 1. Fragment of class QuickSort with JML annotations

Figure 1 specifies that method sort sorts the array tab from low to high, and
all elements that occurred in the array initially also occur in its afterwards5, and
that method swap swaps the contents of the array at positions i and j.

3 General Architecture of JACK

This section describes the general architecture of JACK, and how it aims at
a high level of precision. The next section then discusses how JACK has been
made accessible to application developers by integration within the IDE Eclipse,
and the development of the special JACK perspective. For the development of
the JACK architecture, the main design principles were the following:

– integration within a widely-used IDE, so that developers do not have to learn
a new environment, and do not have to switch between tools;

– automatic generation of proof obligations by implementation of a weakest
precondition (wp) calculus;

– proof obligations are first-order logic formulae; and
– prover independence, i.e., proof obligations for a single application can be

verified with different provers.
5 Note that this specification does not require that the final value of tab is a sorted

permutation of its initial value. However, this could be expressed in JML as well.

JACK 157

The wp-calculus that is implemented is a so-called “direct” calculus, mean-
ing that it works directly on an AST representation of the application, and
it does not use a transformation into guarded commands, as is done by e.g.,
ESC/Java. The wp-calculus is based on the classical wp-calculus developed by
Dijkstra [23], but adapted to Java by extending it with side-effects, exceptions
and other abrupt termination constructs (cf. e.g., [28]). Method invocations are
abstracted by their specifications, since we want verification to be modular. This
direct wp-calculus has the advantage that it is easy to generate proof obligations
for each path through a method, and then to connect the proof obligation with
the path through the method that gave rise to this particular proof obligation
(to achieve this, also some program flow information is associated to each proof
obligation). This connection makes the understanding of the generated proof
obligations easier. Another advantage of this approach is that the algorithms for
annotation generation as described below in Section 5 could make direct use of
the weakest precondition infrastructure. A drawback of this approach is that the
size of the generated proof obligation may be exponential in the size of the code
fragment being checked [27].

To avoid this blow up in the size of the proof obligation, and to ensure that
proof obligations can be generated automatically, JACK uses several new spec-
ification constructs, introduced in [14]: loops can be annotated with frame con-
ditions (loop modifies) and exceptional postconditions (loop exsures), and
any code block can be specified with a block specification (similar to a method
specification). The loop frame condition is used in the the wp-calculus to make
a universal quantification over the loop invariant when generating the appro-
priate proof obligations. Block specifications and loop exsures clauses improve
readability and reduce the number of proof obligations, because they reduce the
number of paths through a method that have to be considered.

JACK generates its proof obligations in an abstract formula language, repre-
senting first-order logic formulae. It is straightforward to translate the abstract
formulae into a proof obligation for a particular prover. Adding a new prover
as a plug-in to the tool is simple: one develops a background theory formalising
Java’s type system and memory model, and one defines how the abstract for-
mulae are translated into concrete proof obligations for this particular prover.
Initially, JACK was designed to use the AtelierB prover [1], now Simplify and
Coq are the best supported back-end provers for JACK.

4 JACK’s User Interface

One of the features that distinguish JACK from other program verification tools
is the integration in the IDE Eclipse. This ensures a seamless integration of for-
mal methods in the application development process: the application developer
does not have to learn the peculiarities of a new tool, and does not have to switch
tools to apply formal verification techniques.

The integration in Eclipse consists of two parts: an extension of the standard
Java perspective with special JACK-related actions (checking a specification,

158 G. Barthe et al.

calling an automatic prover etc.), and a special JACK perspective to inspect the
generated proof obligations.

4.1 Extension of the Java Perspective in Eclipse

The standard Java perspective of Eclipse is extended with several JACK-specific
features. Menus are added to set the defaults for the different specification con-
structs. Further, there are buttons and menu-options to “compile” a JML spec-
ification, (i.e., type check and generate proof obligations), call an automatic
prover on all the generated proof obligations (either Simplify or a special Coq
tactic), or change to the special JACK perspective.

Checking the JML specification is not done in a background mode, while
editing the file (as is done for the type checking of Java); instead the user has
to launch this action explicitly. At the time this interface was developed, adding
such automatic checks required too many changes to the internals of Eclipse,
which were not default available. However, in the mean time such a feature
has been developed within the JMLEclipse project6. This project also provides
syntax highlighting of JML specifications in Eclipse’s Java perspective. All this
could be integrated with the JACK interface.

Finally, another important constraint is the interface’s responsiveness. An IDE
is supposed to be used interactively, and the developer should never have to wait
long for a result. Proof obligation generation is no problem for this, but calling
an automatic prover on the generated proof obligations can take a significant
amount of time. Therefore, the prover is called in a non-blocking way, launching
a special window that allows to see the progress of the task.

4.2 A Proof Obligation Inspection Perspective

An important feature of JACK is that one can inspect the different generated
proof obligations. Moreover, one does not have to understand the specific spec-
ification language of the prover that is being used; instead the proof obligations
can be viewed in a Java/JML-like syntax (but of course, one can also choose to
see the proof obligations as they are generated for a specific theorem prover).

Figure 2 shows the inspection of a proof obligation for the method sort in the
QuickSort example of Figure 1. The left upper windows allows one to browse
the proof obligations for the current class. Proven obligations are ticked, the
others are marked with a cross. The right window shows the original source
code, where the path through the code that corresponds to the current proof
obligation is coloured, together with the relevant part of the method specifica-
tion. Different colours are used to indicate different cases, i.e., to distinguish
normal from exceptional execution, and to mark that extra information, such as
a method specification, or the result of a conditional expression, is available. For
example, in Figure 2 one sees the specification of the private sort method in a
pop-up box, used in the public sort method.

6 See http://jmleclipse.projects.cis.ksu.edu/

JACK 159

Fig. 2. JACK’s proof obligation inspection perspective

The bottom window shows the proof obligation: the left half contains the
hypotheses, marked with letters indicating their origin, e.g., a hypothesis marked
R originates from the method’s requires clause, while a hypothesis marked L is
derived from local declarations within the method. The right half of the window
shows the actual goal that has to be proven. The window name highlights once
again that this proof obligation originates from the postcondition. Finally, notice
that the proof obligation is displayed in Java syntax, but buttons are available
to change to Coq, Simplify or PVS syntax.

The user can use the proof obligation inspection view to inspect the different
(unproven) proof obligations, and to launch different (interactive or specialised)
provers to prove the remaining proof obligations.

160 G. Barthe et al.

/*@ requires this.tab!=null;
signals (Exception) false;

@*/
public void sort() {if(tab.length > 0) sort(0, tab.length -1);}

/*@ requires this.tab!=null && 0<=j && j<this.tab.length &&
0<=i && i<this.tab.length;

signals (Exception) false;
@*/
public void swap(int i, int j) {int tmp; tmp = tab[i];

tab[i] = tab[j]; tab[j] = tmp;}

Fig. 3. Obvious annotations generated for a fragment of class QuickSort

5 Generating JML Annotations

While JML is easily accessible to Java developers, actually writing the specifica-
tions of an application is labour-intensive and error-prone, as it is easy to forget
some annotations. There exist tools which assist in writing these annotations,
e.g., Daikon [25] and Houdini [26] use heuristic methods to produce annota-
tions for simple safety and functional invariants. However, these tools cannot
be guided by the user—they do not require any user input—and in particular
cannot be used to generate annotations from realistic security policies.

Within JACK, we have implemented several algorithms to generate anno-
tations. We can distinguish two goals for annotation generation. The first is
to reduce the burden of annotation writing by generating as much “obvious”
annotations as possible. Given an existing, unannotated, application, one first
generates these obvious annotations automatically, before developing the more
interesting parts of the specification. The second goal is to encode high-level
properties by encoding these with simple JML annotations, that are inserted at
all appropriate points in the application, so that they can be checked statically.
JACK implements algorithms for both goals, as described in this section.

5.1 Generation of Preconditions

JACK implements an algorithm to generate “obvious” minimal preconditions to
avoid null-pointer and array-out-of-bounds exceptions. This algorithm re-uses
the implementation of the wp-calculus: it computes the weakest precondition
for the specification signals (NullPointerException) false; (resp. signals
(ArrayIndexOutOfBoundsException) false;) and inserts this as annotations
in the code.

As an example, Figure 3 shows the annotations that are generated for some
methods of the class QuickSort of Figure 1. It is important to realise that the
specifications that are generated might not be very spectacular, but that they
are generated automatically.

JACK 161

The annotation generation could be further improved by applying a simple
analysis on the generated annotations. Often it is the case that the preconditions
that are generated for the fields of the class are the same for (almost) all meth-
ods. In that case, this condition is likely to be a class invariant, and instead of
generating a precondition for each method, it would be more appropriate to gen-
erate a single class invariant. For example, for the class QuickSort, this would
produce an annotation invariant this.tab!=null;.

5.2 Encoding of Security Policies

Another difficulty when writing annotations is that a conceptually simple high-
level property can give rise to many different annotations, scattered through
the code, to encode this property. This is typically the case for many security
policies. Current software practice for the development of applications for trusted
personal devices is that security policies give rise to a set of security rules that
should be obeyed by the implementation. Obedience to these rules is established
by manual code inspection; however it is desirable to have tool support for this,
because a typical security property may involve several methods from different
classes. Many of the security rules can be formalised as simple automata, which
are amenable to formal verification. Therefore, we propose a method that given
a security rule, automatically annotates an application, in such a way that if
the application respects the annotations then it also respects the security policy.
Thus, it is not necessary for the user to understand the generated annotations,
he just has to understand the security rules.

The generation of annotations proceeds in two phases: first we generate core-
annotations that specify the behaviour of the methods directly involved, and next
we propagate these annotations to all methods directly or indirectly invoking the
methods that form the core of the security policy. The second phase is necessary
because we are interested in static verification. The annotations that we generate
all use only JML static ghost variables; therefore the properties are independent
of the particular class instances available.

As a typical example of the kind of security rules our approach can handle,
we consider the atomicity mechanism in Java Card (Java for smart cards) ([37]
gives more examples of such security rules). A smart card does not include a
power supply, thus a brutal retrieval from the terminal could interrupt a compu-
tation and bring the system in an incoherent state. To avoid this, the Java Card
specification prescribes the use of a transaction mechanism to control synchro-
nised updates of sensitive data. A statement block surrounded by the methods
beginTransaction() and commitTransaction() can be considered atomic. If
something happens while executing the transaction (or if abortTransaction()
is executed), the card will roll back its internal state to the state before the
transaction was begun. To ensure the proper functioning and prevent abuse of
this mechanism, applications should respect for example the following security
rules.

No nested transactions. Only one level of transactions is allowed.

162 G. Barthe et al.

No exception in transaction. All exceptions that may be thrown
inside a transaction, should also be caught inside the transaction.
Bounded retries. No pin verification may happen within a transaction.

The second rule ensures that a transaction will always be closed; if the exception
would not be caught, commitTransaction would not be executed. The last rule
avoids the possibility to abort the transaction every time a wrong pin code has
been entered. As this would roll back the internal state to the state before the
transaction was started, this would also reset the retry counter, thus allowing an
unbounded number of retries. Even though the specification of the Java Card
API prescribes that the retry counter for pin verification cannot be rolled back,
in general one has to check this kind of properties.

Such properties can be easily encoded with automata, describing in which
states a certain method is allowed to be called. Based on this automata, we
then generate core-annotations. For example, the atomicity properties above give
rise to core-annotations for the methods related to the transaction mechanism
declared in class JCSystem of the Java Card API. A static ghost variable

/*@ static ghost int TRANS == 0; @*/

is declared, that is used to keep track of whether there is a transaction in progress.
To specify the No nested transactions property, the core-annotations for
method beginTransaction are the following.

/*@ requires TRANS == 0;
@ assignable TRANS;
@ ensures TRANS == 1; @*/

public static native void beginTransaction()
throws TransactionException;

Similar annotations are generated for commitTransaction and abortTrans-
action ([37] also describes the generated core-annotations for the other proper-
ties). After propagation, these annotations are sufficient to check for the absence
of nested transactions. To understand why propagation is necessary, suppose we
are checking the No nested transactions property for an application, contain-
ing the following fragment (where m does not call any other methods, and does
not contain any set-annotations).

void m() { ... // some internal computations
JCSystem.beginTransaction();
... // computations within transaction
JCSystem.commitTransaction(); }

When applying static verification on this code fragment, the core-annotations
for beginTransactionwill give rise to a proof obligation that the precondition of
method m implies that there is no transaction in progress, i.e., TRANS == 0 (since
TRANS is not modified by the code that precedes the call to beginTransaction).

JACK 163

The only way this proof obligation can be established is if the precondition of
beginTransaction is propagated as a precondition for method m. In contrast,
the precondition for commitTransaction (TRANS == 1) does not have to be
propagated to the specification of m; instead it has to be established by the
postcondition of beginTransaction, because the variable TRANS is modified by
this method.

In a similar way, the postcondition for the method commitTransaction is prop-
agated to the postcondition of method m. This information can then be used for
the verification of yet another method, that contains a call to method m.

The propagation method not only propagates preconditions and normal and
exceptional postconditions, it also propagates assignable clauses. We have shown
that the algorithm that we use corresponds to an abstract version of the wp-
calculus (where we only consider static variables). We have exploited this cor-
respondence in the implementation, by re-using the wp-calculus infrastructure
to implement the propagation algorithm. For a more formal treatment of the
propagation algorithm, and the correspondence statement, we refer to [37].

To illustrate the effectiveness of our approach, we tested our method on sev-
eral industrial smart card applications, including the so-called Demoney case
study, developed as a research prototype by Trusted Logic7, and the PACAP
case study [9], developed by Gemplus. Both examples have been explicitly devel-
oped as test cases for different formal techniques, illustrating the different issues
involved when writing smart card applications. We used the core-annotations as
presented above, and propagated these throughout the applications. For both
applications we found that they contained no nested transactions, and that they
did not contain attempts to verify pin codes within transactions. However, in
the PACAP application we found transactions containing uncaught exceptions.
All proof obligations generated w.r.t. these properties are trivial and can be dis-
charged immediately. However, to emphasise the usefulness of having a tool for
generating annotations: we encountered cases where a single transaction gave
rise to twenty-three annotations in five different classes. When writing these
annotations manually, it is all too easy to forget some.

6 Specification and Verification of Bytecode

JACK allows one to verify applications not only at source code level, but also
at bytecode level. This is in particular important to support proof carrying
code [35], where bytecode applications are shipped together with their specifi-
cation and a correctness proof. However, the possibility to verify bytecode also
has an interest on its own: sometimes security-critical applications are developed
directly at bytecode level, in order not to rely on the correctness of the compiler.
To be able to formally establish the correctness of such an application, one needs
support to verify bytecode directly.

This section describes the different parts in the bytecode subcomponent of
JACK. First, we present a specification language tailored to bytecode, and we
7 See http://www.trusted-logic.com

164 G. Barthe et al.

predicate ::= . . .

unary-expr-not-plus-minus ::= . . .
| primary-expr [primary-suffix]. . .

primary-suffix ::= . ident | ([expression-list]) | [expression]
primary-expr ::= #natural % reference in the constant pool

| lv[natural] % local variable
| bml-primary
| constant | super | true | false | this | null | (expression) | jml-primary

bml-primary ::= cntr % counter of the operand stack
| st(additive-expr) % stack expressions
| length(expression) % array length

Fig. 4. Fragment of grammar for BML predicates and specification expressions

specify how these specifications can be encoded in the class file format. Our
specification language, called BML for Bytecode Modeling Language [12], is the
bytecode cousin of JML. Second, we define and implement a compiler from JML
to BML specifications. Such a compiler is in particular useful in a proof carrying
code scenario, where the application developer can verify the application at (the
more intuitive) source code level, and then compile both the application and the
specification to bytecode level. Finally, we also define a verification condition
generator for bytecode applications annotated with BML, implementing a wp-
calculus for bytecode. This allows to generate the proof obligations for a bytecode
application to satisfy its BML specification.

6.1 A Specification Language for Bytecode: BML

BML has basically the same syntax as JML with two exceptions:

1. specifications are not written directly in the program code, they are added
as special attributes to the bytecode; and

2. the grammar for expressions only allows bytecode expressions.

Figure 4 displays the most interesting part of the grammar for BML predi-
cates, defining the syntax for primary expressions and primary suffixes8. Primary
expressions, followed by zero or more primary suffixes, are the most basic form
of expressions, formed by identifiers, bracketed expressions etc.

Since only bytecode expressions can be used, all field names, class names
etc., are replaced by references to the constant pool (a number, preceded by the
symbol #), while registers are used to refer to local variables and parameters.
The grammar also contains several bytecode specific keywords, such as cntr,
denoting the stack counter, st(e) where e is an arithmetic expression, denoting
the eth element on the stack, and length(a), denoting the length of array a. In
addition, the specification-specific JML keywords are also available.

To show a typical BML specification, Figure 5 presents the BML version of
the JML specification of method swap in Figure 1. Notice that the field tab has
8 See http://www-sop.inria.fr/everest/BML for the full grammar.

JACK 165

requires this.#14 != null && 0 <= lv[1] && lv[1] < length(this.#14) &&
0 <= lv[2] && lv[2] < length(this.#14) && true

assignable this.#14.[lv[2]],this.#14[lv[1]]
ensures this.#14[lv[1]] == \old(this).\old(#14)[\old(lv[2])] &&

this.#14[lv[2]] == \old(this).\old(#14)[\old(lv[1])]
0 aload_0
1 getfield #14
4 iload_1
5 iaload
6 istore_3
7 aload_0
8 getfield #14
11 iload_1
12 aload_0
13 getfield #14
16 iload_2
17 iaload
18 iastore
19 aload_0
20 getfield #14
23 iload_2
24 iload_3
25 iastore
26 return

Fig. 5. Bytecode + BML specification for method swap in class QuickSort

been assigned the number 14 in the constant pool, and that it is always explicitly
qualified with this in the specification. In the bytecode the variable this is
stored in lv[0] (thus it can be accessed by aload_0). The method’s parameters
i and j are denoted by the expressions lv[1] and lv[2], respectively. Notice
further that the BML specification directly corresponds to the original JML
specification.

6.2 Encoding BML Specifications in the Class File Format

To store BML specifications together with the bytecode it specifies, we encode
them in the class file format. The Java Virtual Machine Specification [32] pre-
scribes the mandatory elements of the class file: the constant pool, the field in-
formation and the method information. User-specific information can be added
to the class file as special user-specific attributes ([32, §4.7.1]). We store BML
specifications in such user-specific attributes, in a compiler-independent format.
The use of special attributes ensures that the presence of BML annotations does
not have an impact on the application’s performance, i.e., it will not slow down
loading or normal execution of the application.

166 G. Barthe et al.

Ghost Field attribute {
u2 attribute name index;
u4 attribute length;
u2 fields count;
{u2 access flags;
u2 name index;
u2 descriptor index;

} fields[fields count]; }

Fig. 6. Format of attribute for ghost field declarations

For each class, we add the following information to the class file:
– a second constant pool which contains constant references for the BML spec-

ification expressions;
– an attribute with the ghost fields used in the specification;
– an attribute with the model fields used in the specification;
– an attribute with the class invariants (both static and object); and
– an attribute with the constraints (both static and object).

Apart from the second constant pool, all extra class attributes basically consist
of the name of the attribute, the number of elements it contains, and a list with
the actual elements. As an example, Figure 6 presents the format of the ghost
field attribute. This should be understood as follows: the name of the attribute is
given as an index into the (second) constant pool. This constant pool entry will
be representing a string "Ghost Field". Next we have the length of the attribute
and the number of fields stored in the attribute. The fields table stores all ghost
fields. For each field we store its access flag (e.g., public or private), and its
name and descriptor index, both referring to the constant pool. The first must
be a string, representing the (unqualified) name of the variable, the latter is a
field descriptor, containing e.g., type information. The tags u2 and u4 specifies
the size of the attribute, 2 and 4 bytes, respectively. The format of the other
attributes is specified in a similar way (see [36] for more details).

6.3 Compiling JML Specifications into BML Specifications

We have implemented a compiler from JML specifications into BML specifica-
tions – stored in the class file. The JML specification is compiled separately
from the Java source code. In fact, the compiler takes as input an annotated
Java source file and the class file produced by a non-optimising compiler with
the debug flag set.

From the debug information, we use in particular the Line Number Table
and the Local Variable Table attributes. The Line Number Table links
line numbers in the source code with the bytecode instructions, while the Lo-
cal Variable Table describes the local variables that appear in a method.

JML specifications are compiled into BML specifications in several steps:

1. compilation of ghost and model field declarations;
2. linking and resolving of source data structures to bytecode structures;

JACK 167

3. locating instructions for annotation statements; this information is added as
a special index entry in the attribute (a heuristic algorithm is used to find
the entry point of a loop, for more details see [36]);

4. compilation of JML predicates, taking into account that not all source code
level primitive types are directly supported at bytecode level; and

5. generation of user-specific class attributes.

6.4 Verification of Bytecode

To generate proof obligations, we have implemented a wp-calculus for bytecode
in JACK. Just as the source code level wp-calculus, it works directly on the byte-
code; the program is not transformed into a guarded command format. Again,
this has the advantage that we can easily trace proof obligations back to the
relevant bytecode and BML fragment.

The JACK implementation supports all Java bytecode sequential instruc-
tions, except for floating point arithmetic instructions and 64 bit data (long
and double). Thus in particular, it handles exceptions, object creation, refer-
ences and subroutines. The calculus is defined over the method’s control flow
graph.

The verification condition generator proceeds as follows. For each method
proof obligations are generated for each execution path by applying the weakest
predicate transformer to every instruction where the method might end (i.e.,
return or athrow instructions), and at each loop exit point. The wp-calculus
then follows control flow backwards, until it reaches the entry point instruction.

The weakest precondition transformer takes three arguments: the instruction
for which we calculate the precondition, the instruction’s normal postcondition
ψ and the instruction’s exceptional postcondition φExc . For the full wp-calculus
for BML-annotated bytecode, and its soundness proof we refer to [36]. Here we
show as an example the wp-rule for the instruction loadi.

wp(loadi, ψ, ψExc) = ψ[cntr ← cntr+ 1][st(cntr +1) ← lv[i]]

Since the loadi instruction will always terminate normally, only the normal
postcondition is involved, after updating it to reflect the changes that are made
to the stack, i.e., the value that was stored in the local variable register lv[i] is
now at the top of the stack (at position st(cntr + 1)), and the stack counter
is increased.

Finally we would like to remark that there is a close correspondence between
the proof obligations generated by JACK at source code level, and the proof
obligations that are generated once the application and the specification are
compiled at bytecode level (provided that the application is compiled with a
non-optimising compiler): modulo names and the handling of shorts, bytes and
boolean values, the proof obligations are equivalent. This means that proofs
for proof obligations at source code level can be re-used for proof obligations
at bytecode level (see also [6] for a compilation of source code level proofs to
bytecode level proofs). This is in particular important for the proof carrying code

168 G. Barthe et al.

scenario [35], where the code producer develops a proof at source code level, and
then ships bytecode level application and specification. Modulo the necessary
re-namings, the proofs can be shipped directly, and the code client can verify
these using a verification condition generator at bytecode level.

7 Support for Interactive Verification

When verifying complex functional behaviour specifications, automatic provers
often fail to solve the proof obligations. In that case, the user can instead try
to solve the proof obligation interactively (or, in case the proof obligations is
unprovable, analyse it thoroughly to find the source of the error). JACK provides
support for interactive verification using the Coq proof assistant [19].

This section first discusses the special features of JACK’s Coq plug-in to
support interactive verification, and the special Coq editor integrated in Eclipse,
then it presents JACK’s specific annotation keyword for interactive verification:
the native keyword.

7.1 The Coq Plug-In

Proof readability and proof re-usability is crucial in interactive verification, in
contrast to automatic verification where proof obligations are simply sent to
the automatic prover and it is of no importance whether the proof obligation
is human-readable or not. Therefore we developed a set of facilities for pretty
printing proof obligations, to reuse the proofs – in particular to allow replaying
the proofs when the specifications have changed – and for proof construction.

JACK uses short variable names in proof obligations as much as possible, but
in case of ambiguity long variable names are used. Basically, JACK generates
all variable names for all proof obligations of one file in one go. However, for
interactive verification the variables only have to be considered within the scope
of a single proof obligation, thus short variable names can be used more often.
Therefore, the Coq plug-in re-disambiguates per proof obligation. This results
in better proof readability as the variable names are shorter. The main pretty
printing is done directly through Coq’s own pretty printing features.

Special attention has also been given when storing the proof obligations to a
file. First, the file has a human-readable name, so the user can easily retrieve
the proof obligation as well as its proof script. If the lemma is regenerated or
reopened, he can step through the proof (and adapt it if necessary), and it does
not have to be rewritten from scratch. The different kinds of hypotheses are
separated from each other and are given different names. This is in particular
important when a proof obligation has been modified (and is considered un-
proved) by a change to the specification: if the proof did not involve any of the
modified hypotheses, it remains valid. This facilitates greatly the reuse of proofs.

One of the key points in interactive verification is the level of difficulty to
manipulate the proof assistant in order to construct a proof. To help the user
build proof scripts that are both intuitive to read and to make, we have used

JACK 169

the tactic mechanism of Coq [21]. As JACK originally generates proof obliga-
tions for automatic verification, numerous hypotheses are added to help the
automatic theorem prover. For interactive verification these hypotheses are of-
ten useless (and annoying). Therefore we have developed tactics to clean up the
proof obligations. There are also tactics9 to solve common proof patterns gener-
ated by JACK: (i) to solve arithmetic goals, (ii) to solve proofs by contradiction,
(iii) to solve array-specific proof obligations, and (iv) to solve proof obligations
related to assignments. Finally, the Coq plug-in also allows automatic resolution
of proof obligations using generic proof scripts, and application-specific tactics
can be defined to be used both for interactive verification and with automatic
resolution.

7.2 JACK with Coq in Eclipse

An important feature of JACK is that all development can be done inside Eclipse.
Therefore, the Coq plug-in contains an editor for Coq, called CoqEditor. CoqEd-
itor provides a way to interact directly with Coq through Eclipse’s Java envi-
ronment, so the user can process and edit Coq files (containing proof scripts or
user-defined tactics). CoqEditor resembles the Isabelle plug-in in Proof General
Eclipse [40], but uses a more light-weight approach. It has keyboard shortcuts
similar to CoqIde (the current Coq graphical interface, written in OCaml10). Of
course, it provides syntax highlighting and one can interactively process a Coq
file. In addition, CoqEditor has an outline view, that summarises the structure
of the currently edited Coq file in a tree-like representation (this is especially
useful to see the modules hierarchy), and an incremental indexing feature, that
allows the user to jump directly from a keyword to its definition.

7.3 Native Specifications

When specifying complex applications, often one needs advanced data struc-
tures. It is a major challenge how to specify these in a way that is suitable for
verification (see Challenge 1 in [30]). A possible way to do this in JML is by
using so-called model classes, but this makes verification awkward, because all
operations on these data structures have to be specified by pre-post-condition
specifications. A more convenient approach is to use constructs that are specific
to the logic of the prover in which the proofs will be developed. This is exactly
the functionality provided by the native construct [16], i.e., it relates declara-
tions in the JML specification directly to the logic of the underlying prover. We
have implemented the native construct for Coq, but the same principle can be
used to support any other prover.

The native construct can be used for types and methods. A native method
is a specification-only method that has no body and no (JML) specification. It
must terminate normally and cannot have any side-effects. A native type is a
9 See http://www-sop.inria.fr/everest/soft/Jack/doc/plug-in/coq/Prelude/

for a full description of the different tactics.
10 Available via the Coq distribution (http://coq.inria.fr).

170 G. Barthe et al.

In JML we define:

/*@ public native class IntList {
public native IntList append (IntList l);
public native static IntList create();
...
public native static IntList toList (int [] tab);

} @*/

And in Coq:

Definition IntList := list t_int.
Definition IntList_create: IntList := nil.
Definition IntList_append: list t_int -> list t_int -> list t_int := app.
...

Fig. 7. The definition of the native type IntList

//@ ghost IntList list;

/*@ requires (tab!=null) && list.equals(IntList.toList(tab))
assignable tab[0 .. (tab.length -1)], list;
ensures list.equals(IntList.toList(tab)) &&

list.isSorted() && list.isInjection(\old(list));
@*/
public void sort() {if(tab.length > 0) sort(0, tab.length -1);}

Fig. 8. Specification of method sort with native construct

type to use with specification methods (native methods as well as JML’s model
methods). Both are related to constructs defined in the proof obligation’s target
language: native types are bound to types and native methods to function
definitions. When generating the proof obligations, the native constructs are
treated as uninterpreted function symbols. The user then specifies in a Coq file
how the function symbols are bound to constructs in Coq.

For example, Figure 7 defines a native type IntList and binds it to the type of
list of integers in Coq. This allows to use Coq’s list library in the proofs. Using the
native type declaration, the specification of the sort method (from Figure 1 on
page 156) can be rewritten as in Figure 8. Notice that this results in more read-
able and natural annotations, because instead of relying on arrays, we can write
it directly in the proof obligation’s target language syntax. The use of the native
construct also allows the user to define more easily auxiliary lemmas that can be
used to prove the proof obligations and to add automation to proof scripts.

8 Conclusions

This paper describes the main characteristics of JACK, the Java Applet Cor-
rectness Kit, a tool set for the validation of security and functional behaviour

JACK 171

properties for Java applications. We have focused in particular on the features
that distinguish JACK from other similar tools:

– the integration into a standard IDE;
– a user interface that helps to understand the proof obligations;
– the implementation of an algorithm to generate “obvious” annotations;
– the implementation of an algorithm to encode high-level security properties

with JML annotations;
– support for the verification of both source code and bytecode; and
– support for interactive verification, both practical (development of user in-

terface and tactics) and theoretical (native construct to link annotations
with the logic of the underlying theorem prover).

The JACK tool has been used for several small to medium-scale case studies.
First of all, we have shown how BML annotations can be used to guarantee
resource policies related to memory consumption of bytecode applications [5].
In addition, we have also shown how the verification of exception-freeness at
bytecode level can be used to reduce the footprint of Java-to-native compilation
schemes. Executable code typically contains run-time checks to decide whether
an exception should be thrown. But if it can be proven statically that the excep-
tion never will be thrown, there is no need for the executable code to contain
the run-time checks [20].

Development and maintenance of a verification tool for a realistic program-
ming language is a major effort. During the last decade several such tools have
been developed (see the related work section below). This has resulted in a dras-
tic improvement of the technologies available to verify applications. However, we
believe that now the moment has come to combine the different technologies,
and to bundle this into one powerful verification tool. Development of such a tool
is one of the goals of the IST Mobius project. It is foreseen that all technology
developed around JACK that distinguish it from other verification tools will be
integrated in this single verification tool.

Related work. Several other tools exist aiming at the static verification of JML-
annotated Java code, but JACK distinguishes itself from these tools by the
features described in this paper. We briefly describe the most relevant other
tools. ESC/Java [17] is probably the most used tool. It also aims at a high level
of automation, but makes an explicit trade-off between soundness, completeness
and automation. The Jive tool [34] uses a Hoare-logic for program verification,
requiring much more user interaction. The Key tool [7] uses a dynamic logic
approach, where program verification resembles program simulation. The LOOP
tool [8] translates both the program and the annotations into specifications in the
logic of the PVS theorem prover. Both a Hoare logic and a weakest precondition
calculus have been proven sound in PVS, and can be used to verify whether the
program respects its specification.

Krakatoa [33] translates JML-annotated programs into an intermediate for-
mat, for which the Why tool generates proof obligations. Krakatoa allows the
user to specify algebraic specifications as part of the annotations, and use these

172 G. Barthe et al.

in the verification. This resembles the native construct, however, the native
construct directly allows one to use the full expressiveness of the logic of the un-
derlying prover, and to directly reuse any (library) results already proven about
the data types. Moreover, the use of the native construct allows one to keep on
using a Java-like syntax in the annotations.

The Spec#/Boogie project [3] aims at the specification and verification of an-
notated C# programs. As JACK, the tool also provides support for verification
at source code and bytecode level. However, they do not compile source code
specifications into bytecode specifications, that can be shipped with the appli-
cation. Further, the project mainly aims at automatic verification, and does not
provide support for annotation generation.

There are several projects that aim at annotating bytecode: JVer is a tool to
verify annotated bytecode [15], but they do not have a special bytecode spec-
ification language. The Extended Virtual Platform project aims at developing
a framework that allows to compile JML annotations, to allow run-time check-
ing [2], but they do not allow to write specifications directly at bytecode level.

Most approaches to ensuring high-level security properties are based on run-
time monitoring, see e.g., [4,38,24,18]. However, run-time monitoring is not an
option for trusted personal devices: for the user it would be unacceptable to be
blocked in the middle of an application, because of a security violation.

References

1. Abrial, J.-R.: The B Book, Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Alagić, S., Royer, M.: Next generation of virtual platforms. Article in odbms.org
(October 2005), http://odbms.org/about contributors alagic.html

3. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 151–171. Springer, Heidelberg (2005)

4. Bartetzko, D., Fischer, C., Möller, M., Wehrheim, H.: Jass – Java with Asser-
tions. In: Havelund, K., Roşu, G. (eds.) ENTCS, vol. 55(2), Elsevier Publishing,
Amsterdam (2001)

5. Barthe, G., Pavlova, M., Schneider, G.: Precise analysis of memory consumption
using program logics. In: Software Engineering and Formal Methods, pp. 86–95.
IEEE Press, Los Alamitos (2005)

6. Barthe, G., Rezk, T., Saabas, A.: Proof obligations preserving compilation. In:
Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S. (eds.) FAST 2005.
LNCS, vol. 3866, pp. 112–126. Springer, Heidelberg (2006)

7. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware: The KeY Approach. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

8. van den Berg, J., Jacobs, B.: The LOOP compiler for Java and JML. In: Margaria,
T., Yi, W. (eds.) ETAPS 2001 and TACAS 2001. LNCS, vol. 2031, pp. 299–312.
Springer, Heidelberg (2001)

9. Bieber, P., Cazin, J., Girard, P., Lanet, J.-L., Wiels, V., Zanon, G.: Checking secure
interactions of smart card applets. Journal of Computer Security 10(4), 369–398
(2002)

http://odbms.org/about_contributors_alagic.html

JACK 173

10. Breunesse, C., Cataño, N., Huisman, M., Jacobs, B.: Formal methods for smart
cards: an experience report. Science of Computer Programming 55(1-3), 53–80
(2005)

11. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J.R., Leavens, G.T., Leino,
K.R.M., Poll, E.: An overview of JML tools and applications. In: Arts, T., Fokkink,
W. (eds.) Workshop on Formal Methods for Industrial Critical Systems. Electronic
Notes in Theoretical Computer Science, vol. 80, pp. 73–89. Elsevier Science, Inc,
Amsterdam (2003) Preprint University of Nijmegen (TR NIII-R0309)

12. Burdy, L., Huisman, M., Pavlova, M.: Preliminary design of BML: A behavioral
interface specification language for Java bytecode. In: Fundamental Approaches
to Software Engineering (FASE 2007). LNCS, vol. 4422, pp. 215–229. Springer,
Heidelberg (2007)

13. Burdy, L., Pavlova, M.: Java bytecode specification and verification. In: Symposium
on Applied Computing, pp. 1835–1839. Association of Computing Machinery Press
(2006)

14. Burdy, L., Requet, A., Lanet, J.-L.: Java applet correctness: A developer-oriented
approach. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805,
pp. 422–439. Springer, Heidelberg (2003)

15. Chander, A., Espinosa, D., Islam, N., Lee, P., Necula, G.: JVer: A Java Verifier.
In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, Springer,
Heidelberg (2005)

16. Charles, J.: Adding native specifications to JML. In: Workshop on Formal Tech-
niques for Java Programs (2006)

17. Cok, D., Kiniry, J.R.: ESC/Java2: Uniting ESC/Java and JML. In: Barthe, G.,
Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 108–128. Springer, Heidelberg (2005)

18. Colcombet, T., Fradet, P.: Enforcing trace properties by program transformation.
In: Principles of Programming Languages, POPL’00, pp. 54–66. ACM Press, New
York (2000)

19. Coq development team: The Coq proof assistant reference manual V8.0. Technical
Report 255, INRIA, France (mars 2004), http://coq.inria.fr/doc/main.html

20. Courbot, A., Pavlova, M., Grimaud, G., Vandewalle, J.J.: A low-footprint Java-to-
native compilation scheme using formal methods. In: Domingo-Ferrer, J., Posegga,
J., Schreckling, D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 329–344. Springer,
Heidelberg (2006)

21. Delahaye, D.: A tactic language for the system Coq. In: Parigot, M., Voronkov,
A. (eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 85–95. Springer, Heidelberg
(2000)

22. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking.
Journal of the Association of Computing Machinery 52(3), 365–473 (2005)

23. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Communications of the ACM 18(8), 453–457 (1975)

24. Erlingsson, U.: The Inlined Reference Monitor Approach to Security Policy En-
forcement. PhD thesis, Department of Computer Science, Cornell University. Avail-
able as Technical Report 2003-1916 (2003)

25. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering
likely program invariants to support program evolution. IEEE Transactions on
Software Engineering 27(2), 1–25 (2001)

26. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In:
Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer,
Heidelberg (2001)

http://coq.inria.fr/doc/main.html

174 G. Barthe et al.

27. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: Generating compact ver-
ification conditions. In: Principles of Programming Languages, pp. 193–205. New
York, USA. Association of Computing Machinery Press (2001)

28. Jacobs, B.: Weakest precondition reasoning for Java programs with JML annota-
tions. Journal of Logic and Algebraic Programming 58, 61–88 (2004)

29. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral
interface specification language for Java. ACM SIGSOFT Software Engineering
Notes 31, 1–38 (2006)

30. Leavens, G.T., Leino, K.R.M., Müller, P.: Specification and verification challenges
for sequential object-oriented programs. Formal Aspects of Computing (to appear,
2007)

31. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Kiniry, J.:
JML Reference Manual. In: Progress. Department of Computer Science, Iowa State
University (July 2005), Available from http://www.jmlspecs.org

32. Lindholm, T., Yellin, F.: The JavaTM Virtual Machine Specification, 2nd edn. Sun
Microsystems, Inc. (1999), http://java.sun.com/docs/books/vmspec/

33. Marché, C., Paulin-Mohring, C., Urbain, X.: The Krakatoa tool for certification of
Java/JavaCard programs annotated with JML annotations. Journal of Logic and
Algebraic Programming 58, 89–106 (2004)

34. Meyer, J., Poetzsch-Heffter, A.: An architecture of interactive program provers. In:
Graf, S., Schwartzbach, M. (eds.) ETAPS 2000 and TACAS 2000. LNCS, vol. 1785,
pp. 63–77. Springer, Heidelberg (2000)

35. Necula, G.C.: Proof-carrying code. In: Principles of Programming Languages, pp.
106–119, New York, USA. Association of Computing Machinery Press (1997)

36. Pavlova, M.: Specification and verification of Java bytecode. PhD thesis, Université
de Nice Sophia-Antipolis (2007)

37. Pavlova, M., Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L.: Enforcing high-level
security properties for applets. In: Paradinas, P., Quisquater, J.-J. (eds.) CARDIS
2004, Kluwer Academic Publishing, Dordrecht (2004)

38. Schneider, F.B.: Enforceable security policies. Technical Report TR99-1759, Cor-
nell University (October 1999)

39. The Coq Development Team: The Coq Proof Assistant Reference Manual – Version
V8.1 (July 2006), http://coq.inria.fr

40. Winterstein, D., Aspinall, D., Lüth, C.: Proof General/Eclipse: A generic interface
for interactive proof. In: International Workshop on User Interfaces for Theorem
Provers 2005 (UITP’05) (2005)

http://www.jmlspecs.org
http://java.sun.com/docs/books/vmspec/
http://coq.inria.fr

Towards a Formal Framework for Computational Trust
(Extended Abstract)

Vladimiro Sassone1, Karl Krukow2, and Mogens Nielsen2

1 ECS, University of Southampton
2 BRICS�, University of Aarhus

Abstract. We define a mathematical measure for the quantitative comparison of
probabilistic computational trust systems, and use it to compare a well-known
class of algorithms based on the so-called beta model. The main novelty is that
our approach is formal, rather than based on experimental simulation.

1 Introduction

Computational trust is an abstraction inspired by the human concept of trust which aims
at supporting decision-making by computational agents in the presence of unknown,
uncontrollable and possibly harmful entities and in contexts where the lack of reliable
information makes classical techniques useless. Such is for instance the case of open
networks and ubiquitous computing, where it is entirely unrealistic to assume a priori
level of understanding of the environment. Although it would be reductive to think of
computational trust as a technique limited to just security, the latter certainly provides
an important class of applications where, in general, access to resources is predicated
on control policies that depend on the trust relationships in act between their managers
and consumers.

As expected of an ine�able idea deeply linked with human emotions and experi-
ence, trust appears in computing in several very di�erent forms, from description and
specification languages to middleware, from social networks and management of cre-
dential to human-computer interaction. These rely in di�erent degrees on a variety of
underpinning mathematical theories, including e.g. logics, game theory, semantics, al-
gorithmics, statistics, and probability theory. We focus here on systems where trust in a
computational entity is interpreted as the expectation of certain future behaviour based
on behavioural patterns of the past, and concern ourselves with the foundations of such
probabilistic systems. In particular, we aim at establishing formal probabilistic models
for computational trust and their fundamental properties.

In the area of computational trust one common classification distinguishes between
‘probabilistic’ and ‘non-probabilistic’ models (cf. e.g. [1, 2, 3, 11] for the latter and
[6, 16, 10, 14] for the former). The non-probabilistic systems vary considerably and
need further classification (e.g., as social networks or cognitive); in contrast, the proba-
bilistic systems usually have common objectives and structure: they assume a particular

� BRICS: Basic Research in Computer Science (�����������), funded by the Danish
National Research Foundation.

F.S. de Boer et al. (Eds.): FMCO 2006, LNCS 4709, pp. 175–184, 2007.
c� Springer-Verlag Berlin Heidelberg 2007

176 V. Sassone, K. Krukow, and M. Nielsen

(probabilistic) model for principal behaviour at the outset, and then put forward algo-
rithms for approximating such behaviour and thus making predictions. In such models
the trust information about a principal is typically information about its past behaviour,
its history. Histories do not immediately classify principals as ‘trustworthy’ or ‘untrust-
worthy,’ as ‘good’ or ‘bad;’ rather, they are used to estimate the probability of poten-
tial outcomes arising in a next interaction with an entity. Probabilistic models (called
‘game-theoretical’ by Sabater and Sierra [16]) rely on Gambetta’s view of trust [7]:

“. . . trust is a particular level of the subjective probability with which an agent
assesses that another agent or group of agents will perform a particular action,
both before he can monitor such action (or independently of his capacity ever
to be able to monitor it) and in a context in which it a�ects his own action.”

The contribution of this paper is inspired by such a predictive view of trust, and fol-
lows the Bayesian approach to probability theory as advocated in e.g. [8] and exploited
in works such as [13, 6, 17]. In particular, we borrow ideas from information theory to
measure the quality of the behaviour-approximation algorithms and, therefore, suggest
a formal framework for the comparison of probabilistic models.

Bayesian analysis consists of formulating hypotheses on real-world phenomena of
interest, running experiments to test such hypotheses, and thereafter updating the hy-
potheses –if necessary– to provide a better explanation of the experimental observa-
tions, a better fit of the hypotheses to the observed behaviours. By formulating it in
terms of conditional probabilities on the space of interest, this procedure is expressed
succinctly in formulae by Bayes’ Theorem:

Prob(� � X) � Prob(X � �) � Prob(�)�

Reading from left to right, the formula is interpreted as saying: the probability of the
hypotheses� posterior to the outcome of experiment X is proportional to the likelihood
of such outcome under the hypotheses multiplied by the probability of the hypotheses
prior to the experiment.1 In the present context, the prior � will be an estimate of the
probability of each potential outcome in our next interaction with principal p, whilst
the posterior will be our amended estimate after one such interaction took place with
outcome X.

It is important to observe here that Prob(� � X) is in a sense a second order notion,
and we are not interested in computing it for any particular value of �. Indeed, as �
is the unknown in our problem, we are interested in deriving the entire distribution in
order to compute its expected value, and use it as our next estimate for �.

In order to make this discussion concrete, let us focus on a model of binary outcomes,
which is very often used in practice. Here � can be represented by a single probability
�p, the probability that principal p will behave benevolently, i.e., that an interaction
with p will be successful. In this case, a sequence of n experiments X � X1 � � �Xn is a
sequence of binomial (Bernoulli) trials, and is modelled by a binomial distribution

Prob(X consists of k successes) � �k
p(1 ��p)n�k�

1 We shall often omit the proportionality factor, as that is uniquely determined as the constant
that makes the right-hand side term a probability distribution. In fact, it equals Prob(X)�1.

Towards a Formal Framework for Computational Trust 177

It turns out that if the prior � follows a �-distribution, say B(�� �) � ���1
p (1��p)��1 of

parameters� and �, then so does the posterior: viz., if X is an n-sequence of k successes,
Prob(� � X) is B(��k� ��n�k), the �-distribution of parameters��k and ��n�k. This
is a particularly happy circumstance when it comes to apply Bayes’ Theorem, because
it makes it straightforward to compute the posterior distribution and its expected value
from the prior and the observations; it is known in the literature as the condition that
the �-distribution family is a conjugate prior for the binomial trials.

In [14] we extend the framework from events with binary (success�failure) outcomes
to complex, structured outcomes: namely, the configurations of finite, confusion-free
event structures. In the new framework, our Bayesian analysis relies on observing se-
quences of event structure configurations –one event at the time– to ‘learn’ (i.e., esti-
mate) the probability of each configuration occurring as the outcome of the next com-
plex (sequence of elementary) interactions.

In this paper we illustrate our main technical results from [14], viz., the definition
of a formal measure expressing the quality of probabilistic computational trust systems
in various application environments. The measure is based on the so-called Kullback-
Leibler divergence [12], also known as information divergence or relative entropy, used
in the information theory literature to measure the ‘distance’ from an approximation
to a known target probability distribution. Here we adapt it to measure how well an
computational trust algorithm approximates the ‘true’ probabilistic behaviours of com-
puting entities and, therefore, to provide a formal benchmark for the comparison of such
algorithms. As an illustration of the applicability of the theory, we present theoretical
results within the field, regarding a whole class of existing probabilistic trust algorithms.
To our knowledge, no such approach has been proposed previously (but cf. [4] for an
application of similar concepts to anonymity), and these presents the first formal results
ever in way of comparison of computational trust algorithms.

Structure of the paper. The paper is organised as follows. In �2 we make precise the
scenario illustrated informally in the Introduction, while in �3 we illustrate our results
on the formal of computational trust algorithms. We remand the reader to [14] for the
formal proofs. Finally, �4 reflects on some of the basic hypotheses of the probabilistic
models considered in the paper, and points forward to future research aimed at relaxing
them.

2 Bayesian Models for Trust

At the outset, Bayesian trust models are based on the assumption that principals behave
in a way that can profitably be approximated by fixed probabilities. Accordingly, while
interacting with principal p one will constantly experience outcomes as following an
immutable probability distribution �p. Such assumption may of course be unrealistic
in several real-world scenarios, and we shall discuss in �4 a research programme aimed
to lift it; for the moment however, we proceed to explore where such an assumption
leads us.

Our overall goal is to obtain an estimate of �p in order to inform our future policy
of interaction with p. Computational trust algorithms attempt to do this using Bayesian

178 V. Sassone, K. Krukow, and M. Nielsen

analysis on the history of past interactions with p. Let us fix a probabilistic model of
principal behaviour, that is a set of basic assumptions on the way principals behave,
say �, and then consider the behaviour of a single, fixed principal p. We shall focus
on algorithms for the following problem: let X be an interaction history x1 x2 � � � xn

obtained by interacting n times with p and observing in sequence outcomes xi out of a
set �y1� � � � � yk� of possible outcomes. A probabilistic computational trust algorithm, say
�, outputs on input X a probability distribution �(� � X) on the outcomes �y1� � � � � yk�.
That is, � satisfies:

�(yi � X) 	 [0� 1] (i � 1� � � � � k)
k�

i�1

�(yi � X) � 1�

Such distribution is meant to approximate a �p under the hypotheses �. To make this
precise, let us assume that the probabilistic model � defines the following probabilities:

Prob(yi � X �) : the probability of “observing yi in the next interaction in the
model �, given the past history X;”

Prob(X � �) : the a priori probability of “observing X in the model �.”

Now, Prob(� � X �) defines the ‘true’ distribution on outcomes for the next interac-
tion (according to the model); in contrast, �(� � X) aims at approximating it. We shall
now propose a generic measure to ‘score’ specific algorithms � against given proba-
bility distributions. The score, based on the so-called Kullback-Leibler divergence, is a
measure of how well the algorithm approximates the ‘true’ probabilistic behaviour of
principals.

3 Towards Comparing Probabilistic Trust-Based Systems

Closely related to Shannon’s notion of entropy, Kullback and Leibler’s information
divergence [12] is a measure of the distance between two probability distributions. For
p � (p1� � � � � pk) and q � (q1� � � � � qk) distributions on a set of k events, the Kullback-
Leibler divergence from p to q is defined by

DKL(p
 q) �
k�

i�1

pi log2(pi�qi)�

Information divergence resembles a distance in the mathematical sense: it can be proved
that DKL satisfies DKL(p
 q) � 0, where the equality holds if and only if p � q; how-
ever, DKL fails to be symmetric. We adapt DKL to score the distance between algorithms
by taking the its average over possible input sequences, as illustrated below.

For each n 	 �, let On denote the set of interaction histories X1 � � �Xn of length n.
Define Dn

KL, the nth expected Kullback-Leibler divergence from � to � as:

Dn
KL(�
 �) �

�
X�On

Prob(X � �) � DKL
�
Prob(� � X �)
 �(� � X)

�
�

Towards a Formal Framework for Computational Trust 179

Note that, for each possible input sequence X 	 On, we evaluate the algorithm’s per-
formance as DKL(Prob(� � X �)
 �(� � X)), i.e. we accept that some algorithms may
perform poorly on very unlikely training sequences X, whilst providing excellent re-
sults frequent inputs. Hence, we weigh the performance on each input X by the intrin-
sic probability of sequence X. In other terms, we compute the expected information
divergence for inputs of size n.

While Kullback and Leibler’s information divergence is a well-established measure
in statistics, to our knowledge measuring probabilistic algorithms via Dn

KL is new. Due
to the relation to Shannon’s information theory, one can interpret Dn

KL(�
 �) quanti-
tatively as the expected number of bits of information one would gain by knowing the
‘true’ distribution Prob(� � X �) on all training sequences of length n, rather than its
approximation�(� � X).

An example. In order to exemplify our measure, we compare the �-based algorithm of
Mui et al [13] with the maximum-likelihood algorithm of Aberer and Despotovic [5].
The comparison is possible as the algorithms share the same fundamental assumptions
that:

each principal’s behaviour is so that there is a fixed parameter � that at each in-
teraction we have, independently of anything we know about other interactions,
probability � of ‘success’ and, therefore, probability 1 � � of ‘failure.’

We refer to these as the �-model �B. With s and f standing respectively for ‘success’
and ‘failure,’ an n-fold experiment is a sequence X 	 �s� f �n, for some n � 0. The
likelihood of X 	 �s� f �n is given by

Prob(X � � �B) � �#s(X)(1 ��)# f (X)�

where #x(X) denotes the number of occurrences x in X. Using � and � to denote
respectively the algorithm of Mui et al, and of Aberer and Despotovic, we have that:

�(s � X) �
#s(X) � 1

n � 2
and �(f � X) �

f (X) � 1

n � 2
�

�(s � X) �
#s(X)

n
and �(f � X) �

f (X)

n
�

For each choice of � 	 [0� 1] and each choice of training-sequence length n, we
can compare the two algorithms by computing and comparing Dn

KL(� �B
 �) and
Dn

KL(� �B
 �).

Theorem 1. If � � 0 or � � 1, Aberer and Despotovic’s algorithm � from [5] com-
putes a better approximation of the principal’s behaviour than Mui et al’s algorithm �
from [13]. In fact, under the assumptions, � always computes the exact probability of
success on any possible training sequence.

The proof follows easily after observing that under the hypothesis on � there is only
one n-sequence with non-zero probability, viz., either f n or sn.

180 V. Sassone, K. Krukow, and M. Nielsen

Concerning the same comparison when 0 � � � 1, it suÆces to observe that �
assigns probability 0 to s on input f k for all k � 1; this results in Dn

KL(� �B
 �) � .
It follows that � provides a better approximation.

In order to explore the space of �-based algorithms further, we define a parametric
algorithm �� , for 	 � 0, that encompasses both � and �:

��(s � h) �
#s(h) � 	

�h� � 2	
and ��(s � X) �

# f (h) � 	

�h� � 2	
�

Observe that �0 � � and �1 � �.
Let us now study the expression Dn

KL(� �B
 ��) as a function of 	. It turns out
that for each � � 1�2 and independently of n there is a unique 	 which minimises the
distance Dn

KL(� �B
 ��). Furthermore, Dn
KL(� �B
 ��) is decreasing on the interval

(0� 	̄] and increasing on the interval [̄�). (Note of course that Dn
KL(� �B
 ��) �

when 	 � 0.) By definition, we have:

Dn
KL(��B
��) �

n�
i�0

�
n
i

�
�i(1 � �)n�i

�
� log

�(n � 2)
i � 	

� (1 ��) log
(1 � �)(n � 2)

n � i � 	

�
�

By di�erentiating Dn
KL(� �B
 ��) with respect to epsilon, we obtain

d
d	

Dn
KL(� �B
 ��) �

2�
n � 2	

�
n�

i�0

�
n
i

�
�i(1 � �)n�i

�
��

i � 	
�

(1 ��)�
n � i � 	

�
�

where � � log e is a positive constant obtained when di�erentiating the function log. It
is proved in [14] that 	 nullifies the derivative d Dn

KL(� �B
 ��)�d	 if and only if

� � 1�2 and 	 �
2�(1 � �)
(2� � 1)2

�

In addition to that, one can prove that in fact

d
d	

Dn
KL(� �B
 ��) � 0 i� 	 �

2�(1 � �)
(2� � 1)2

and
d
d	

Dn
KL(� �B
 ��) � 0 i� 	 �

2�(1 � �)
(2� � 1)2

Remarkably, these formulae are independent of n. We have thus the following result.

Theorem 2. For any � 	 [0� 1�2) � (1�2� 1] there exists 	 	 [0�) that minimises
Dn

KL(� �B
 ��) simultaneously for all n; viz., 	 � 2�(1 ��)�(2� � 1)2.
Furthermore, Dn

KL(� �B
 ��) is a decreasing function of 	 in the interval (0�) and
increasing in (�).

This means that unless the principal’s behaviour is completely unbiased, then there
exists a unique best �� algorithm that outperforms all the others, for all n. If instead

Towards a Formal Framework for Computational Trust 181

� � 1�2, then the larger the 	, the better the algorithm. In fact, 	 tends to as � tends
to 1�2. Regarding � and �, an application of Theorem 2 tells us that the former is
optimal for � � 1�2 � 1�

�
12, whilst –as anticipated by Theorem 1– the latter is such

for � � 0 and � � 1.
We remark here that it is not so much the comparison of algorithms � and � that

interests us; rather, the message is that using formal probabilistic models enables such
mathematical comparisons and, more in general, to investigate properties of models and
algorithms.

4 Towards a Formal Model of Dynamic Behaviour

Our main motivation for this investigation is to put on formal grounds what we have
been seeing in the literature, with the ultimate aim to exploit a sharpened understanding
on systems and models. In our view, we succeeded in this to a comforting extent, by
presenting the first ever formal framework for the comparisons of computational trust
algorithms.

However, our probabilistic models must become more realistic. For example, the �-
model of principal behaviour (which we consider to be state-of-the-art) assumes that
for each principal p there is a single fixed parameter �p so at each interaction, indepen-
dently of anything else we know, the probability of a ‘good’ outcome is �p of the one of
‘bad’ outcome is 1��p. One might argue that this is unrealistic for several applications.
In particular, the model allows for no dynamic behaviour, while in reality not only the
p is likely to change its behaviour in time, as its environmental conditions change, but
p’s behaviour in interactions with q is likely to depend on q’s behaviour in interactions
with p.

Some beta-based reputation systems attempt to deal with the first problem by in-
troducing so-called ‘forgetting factors.’ Essentially this amounts to choosing a factor
0 � Æ � 1, and then each time the parameters (�� �) of the pdf for �p are updated, they
are also scaled by Æ. In particular, when observing a single ‘good’ interaction, (�� �)
becomes (�Æ� 1� �Æ) rather than (�� �). E�ectively, this performs a form of exponential
‘decay’ on parameters. The idea is that information about old interactions is less rele-
vant than new information, as it is more likely to be outdated. This approach represents
a departure from the probabilistic beta model, where all interactions ‘weigh’ equally,
and in the absence of any mathematical explanation it is not clear what the exact ben-
efits of this bias towards newer information is. Regarding the second problem, to our
knowledge it has not yet been considered in the literature.

Let us point out some ideas towards refining such hypothesis an embracing the fact
that the behaviour of p depends on its internal state, which is likely to change over time.
Suppose we model p as a kind of Markov chain, a probabilistic finite-state system with n
states S � �1� 2� � � � � n� and n2 transition probabilities ti j 	 [0� 1], with

�n
j�1 ti j � 1. After

each interaction, p changes state according to t: it takes a transition from state i to state
j with probability ti j. Such state-changes are likely in our context to be unobservable: a
principal q does not know for certain which state principal p is in. All that q can observe,
now as before, is the outcome of its interactions with p; based on that, it must make
inferences on p’s likely state and future actions. If we accept the finite state assumption

182 V. Sassone, K. Krukow, and M. Nielsen

and the Markovian transition probabilities, we can then incorporate unobservable states
in the model by using so-called Hidden Markov Models [15].

A discrete Hidden Markov Model (HMM) is a tuple
 � (S � �� t�O� s) where S is a finite
set of states; � is a distribution on S , the initial distribution; t : S � S � [0� 1] is the
transition matrix, with

�
j�S ti j � 1; finite set O is the set of possible observations; and

where s : S � O � [0� 1], the signal, assigns to each state j 	 S , a distribution s j on
observations, i.e.,

�
o�O s j(o) � 1.

An example. Consider the HMM in Figure 1. This models a simple two-state process
with two possible observable outputs a and b. For example, this could model a channel
which can forward a packet or drop it. State 1 models the normal mode of operation,
whereas state 2 models operation under high load. Suppose that output a means ‘packet
forwarded’ and output b means ‘packet dropped.’ Most of the time, the channel is in
state 1, and packets are forwarded with probability �95; occasionally the channel will
transit to state 2 where packets are dropped with probability �95. Although this example
is just meant to illustrate a simple HMM, we expect that by tuning their parameters Hid-
den Markov Models can provide an interesting model many of the dynamic behaviours
needed for probabilistic trust-based systems.

1

�01

�� 2

�25

��

�1 � 1
B1(a) � �95
B1(b) � �05

O � �a� b�

�2 � 0
B2(a) � �05
B2(b) � �95

Fig. 1. Example Hidden Markov Model

Consider now an observation sequence, h � a10b2 (that is ten a’s followed by two
b’s), which is reasonably probable in our model on Figure 1. The final fragment con-
sisting of two consecutive occurrences of b’s makes it likely that a state-change from 1
to 2 has occurred. Nevertheless, a simple counting algorithm, say � , would probably
assign high probability to the event that a will happen next:

�(a � h) �
#a(a10b2) � 1

�h� � 2
� 11�14 � �80

However, if a state-change has indeed occurred, that probability would be as low as �05.
Suppose now exponential decay is used, e.g., as in the Beta reputation system [9],

with a factor of Æ � �5. This means that the last observation weighs approximately the
same as the rest of the history; in such a case, the algorithm would adapt quickly, and
assign probability �(a � h) � �25, which is a much better estimate. However, suppose
that we now observe bb and then another a. Again this would be reasonably likely in
state 2, and would make a state-change to 1 probable in the model. The exponential

Towards a Formal Framework for Computational Trust 183

forgetting would assign a high weight to a, but also a high weight to b, because the
last four observations were b’s. In a sense, perhaps the algorithm adapts ‘too quickly,’
it is too sensitive to new observations. So, no matter what Æ is, it appears easy to de-
scribe situations where it does not reach its intended objective; our main point here is
the same as for our comparisons of computational trust algorithms in �3: that the un-
derlying assumptions behind a computational idea (e.g., the exponential decay) need to
be specified, and that formal models for principal’s behaviour (e.g., HMMs) may serve
the purpose, allowing precise questions on the applicability of the computational idea.

5 Conclusion

Our ‘position’ on computational trust research is that any proposed system should be
able to answer two fundamental questions precisely: What are the assumptions about
the intended environments for the system? And what is the objective of the system? An
advantage of formal probabilistic models is that they enable rigorous answers to these
questions.

Among the several benefits of formal probabilistic models, we have focussed on the
possibility to compare algorithms, say � and �, that work under the same assumption
on principal behaviours. The comparison technique we proposed relies on Kullback and
Liebler’s information diverge, and consists of measuring which algorithm best approx-
imates the ‘true’ principal behaviour postulated by the model. For example, in order to
compare � and � in the model �, we propose to compute and compare

Dn
KL(�
 �) and Dn

KL(�
 �)�

Note that no simulations of algorithms� and� are necessary; the mathematics provide
a theoretical justification –rooted in concepts from Information Theory– stating e.g.
that “in environment �, on average, algorithm � outperforms algorithm � on training
sequences of length n.” Using our method we have successfully in shown a theoretical
comparison between two �-based algorithms well-known in the literature. Moreover,
we explored the entire space of �-based algorithms and illustrated constructively that for
each principal behaviour �, there exists a best approximating algorithm. Remarkably,
this does not depend on n, the length of the training sequence. More generally, another
type of property one might desire to prove using the notion of information diverge is
that limn�� Dn

KL(�
 �) � 0, meaning that algorithm � approximates the true principal
behaviour to an arbitrary precision, given a suÆciently long training sequence.

References

1. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.D.: The role of trust management
in distributed systems security. In: Vitek, J. (ed.) Secure Internet Programming. LNCS,
vol. 1603, pp. 185–210. Springer, Heidelberg (1999)

2. Carbone, M., Nielsen, M., Sassone, V.: A formal model for trust in dynamic networks. In:
Proceedings from Software Engineering and Formal Methods (SEFM’03), IEEE Computer
Society Press, Los Alamitos (2003)

184 V. Sassone, K. Krukow, and M. Nielsen

3. Carbone, M., Nielsen, M., Sassone, V.: A calculus for trust management. In: Lodaya, K.,
Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 161–173. Springer, Heidelberg
(2004)

4. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as noisy chan-
nels. In: Proceedings of TGC’06. LNCS, Springer, Heidelberg (to appear, 2007)

5. Despotovic, Z., Aberer, K.: A probabilistic approach to predict peers’ performance in P2P
networks. In: Klusch, M., Ossowski, S., Kashyap, V., Unland, R. (eds.) CIA 2004. LNCS
(LNAI), vol. 3191, pp. 62–76. Springer, Heidelberg (2004)

6. Despotovic, Z., Aberer, K.: P2P reputation management: Probabilistic estimation vs. social
networks. Computer Networks 50(4), 485–500 (2006)

7. Gambetta, D.: Can we trust trust. In: Gambetta, D. (ed.) Trust: Making and Breaking Co-
operative Relations, pp. 213–237. University of Oxford, Department of Sociology, Ch. 13.
Electronic edition (2000),

��������������������������	���������������������������

8. Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press, Cam-
bridge (2003)

9. Jøsang, A., Ismail, R.: The beta reputation system. In: Proceedings from the 15th Bled Con-
ference on Electronic Commerce, Bled (2002)

10. Krukow, K.: Towards a Theory of Trust for the Global Ubiquitous Computer. PhD thesis, Uni-
versity of Aarhus, Denmark (August 2006), Available at
����������������	��	��	��

11. Krukow, K., Nielsen, M., Sassone, V.: A logical framework for reputation systems. Journal
of Computer Security (to appear, 2007), Available online

���������������������������	���� ��

12. Kullback, S., Leibler, R.A.: On information and suÆciency. Annals of Mathematical Statis-
tics 22(1), 79–86 (1951)

13. Mui, L., Mohtashemi, M., Halberstadt, A.: A computational model of trust and reputation (for
ebusinesses). In: Proceedings from 5th Annual Hawaii International Conference on System
Sciences (HICSS’02), p. 188. IEEE, Los Alamitos (2002)

14. Nielsen, M., Krukow, K., Sassone, V.: A bayesian model for event-based trust. In: Festschrift
for Gordon D. Plotkin. ENTCS, Elsevier, Amsterdam (to appear, 2007)

15. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recog-
nition. Proceedings of the IEEE 77(2), 257–286 (1989)

16. Sabater, J., Sierra, C.: Review on computational trust and reputation models. Artificial Intel-
ligence Review 24(1), 33–60 (2005)

17. Teacy, W.T.L., Patel, J., Jennings, N.R., Luck, M.: Coping with inaccurate reputation sources:
experimental analysis of a probabilistic trust model. In: AAMAS ’05: Proceedings of the
fourth international joint conference on Autonomous agents and multiagent systems, pp.
997–1004. ACM Press, New York (2005)

http://www.sociology.ox.ac.uk/papers/gambetta213-237.pdf
http://www.brics.dk/~krukow
http://eprints.ecs.soton.ac.uk/13656/

On Recursion, Replication and Scope
Mechanisms in Process Calculi

Jesús Aranda1, Cinzia Di Giusto2, Catuscia Palamidessi3,
and Frank D. Valencia4

1 Universidad del Valle Cali, Colombia and LIX École Polytechnique
Paris�, France

jesus.aranda@lix.polytechnique.fr
2 Dip. Scienze dell’Informazione, Università di Bologna

Bologna, Italy
digiusto@cs.unibo.it

3 INRIA-LIX, École Polytechnique
Paris, France

catuscia@lix.polytechnique.fr
4 CNRS - LIX École Polytechnique

Paris, France
frank.valencia@lix.polytechnique.fr

Abstract. In this paper we shall survey and discuss in detail the work on
the relative expressiveness of recursion and replication in various process
calculi. Namely, CCS, the π-calculus, the Ambient calculus, Concurrent
Constraint Programming and calculi for Cryptographic Protocols. We
shall give evidence that the ability of expressing recursive behaviour via
replication often depends on the scoping mechanisms of the given calculus
which compensate for the restriction of replication.

1 Introduction

Process calculi such as CCS [Mil89], the π-calculus [Mil99] and Ambients [CG98]
are among the most influential formal methods for modelling and analyzing the
behaviour of concurrent systems; i.e. systems consisting of multiple computing
agents, usually called processes, that interact with each other. A common fea-
ture of these calculi is that they treat processes much like the λ-calculus treats
computable functions. They provide a language in which the structure of terms
represents the structure of processes together with an operational semantics to
represent computational steps. Another common feature, also in the spirit of the
λ-calculus, is that they pay special attention to economy. That is, there are few
process constructors, each one with a distinct and fundamental role.
� The work of Jesús Aranda has been supported by COLCIENCIAS (Instituto Colom-

biano para el Desarrollo de la Ciencia y la Tecnología "Francisco José de Caldas")
and ÉGIDE (Centre francais pour l’accueil et les echanges internationaux).

F.S. de Boer et al. (Eds.): FMCO 2006, LNCS 4709, pp. 185–206, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

186 J. Aranda et al.

For example, a typical process term is the parallel composition P | Q, which
is built from the terms P and Q with the constructor | and it represents
the process that results from the parallel execution of the processes P and Q.
Another typical term is the restriction (νx)P which represents a process P with
a private resource x—e.g., a location, a link, or a name. An operational semantics
may dictate that if P can reduce to (or evolve into) P ′, written P −→ P ′, then
we can also have the reductions P | Q −→ P ′ | Q and (νx)P −→ (νx)P ′.

Infinite behaviour is ubiquitous in concurrent systems (e.g., browsers, search
engines, reservation systems). Hence, it ought to be represented by process terms.
Two standard term representations of them are recursive process expressions and
replication.

Recursive process expressions are reminiscent of the recursive expressions used
in other areas of computer science, such as for example Functional Program-
ming. They may come in the form μX.P where P may have occurrences of X .
The process μX.P behaves as P with the (free) occurrences of X replaced by
μX.P . Another presentation of recursion is by using parametric processes of the
form A(y1, . . . , yn) each assumed to have a unique, possibly recursive, definition
A(x1, . . . , xn) def= P where the xi’s are pairwise distinct, and the intuition is that
A(y1, . . . , yn) behaves as its P with each yi replacing xi.

Replication, syntactically simpler than recursion, takes the form !P and it is
reminiscent of Girard’s bang operator; an operator used to express unlimited
number of copies of a given resource in linear-logic [Gir87]. Intuitively, !P means
P | P | · · · ; an unbounded number of copies of the process P .

Now, it is not uncommon that a given process calculus, originally presented
with one form of defining infinite behavior, is later presented with the other.
For example, the π-calculus was originally presented with recursive expressions
and later with replication [MPW92]. The Ambient calculus was originally pre-
sented with replication and later with recursion [LS03]. This is reasonable as a
variant may simplify the presentation of the calculus or be tailored to specific
applications.

From the above intuitive description it should be easy to see that μX.(P | X)
expresses the unbounded parallel behaviour of !P . It is less clear, however,
whether replication can be used to express the unbounded behaviour of μX.P .
In particular, processes that allows for unboundedly many nested restrictions as,
for example, in μX.(νx)(P | X) which behaves as (νx)(P | (νx)(P | (νx)(P |
· · ·))). In fact, the ability of expressing recursive behaviours via replication de-
pends on the particular process calculus under consideration. We shall see that
typically that scoping mechanisms such as restriction (or hiding) and name pass-
ing play a key role in the recursion vs replication expressiveness question.

The above discussion raises the issue of expressiveness. What does it mean for
one variant to be as expressive as another ? The answer to this question is definite
in the realm of computability theory via the notion of language equivalence. In
concurrency theory, however, this issue is not quite settled.

One approach to comparing expressiveness of two given process calculus vari-
ants is by comparing them w.r.t. some standard process equivalence, say ∼. If

On Recursion, Replication and Scope Mechanisms in Process Calculi 187

for every process P in one variant there is a Q in the other variant such that
Q ∼ P then we say that the latter variant is at least as expressive as the former.

Another approach consists in telling two variants apart by showing that in
one variant one can solve some fundamental problem (e.g., leader election) while
in the other one cannot. It should be noticed that, unlike computability theory,
the capability of two variants of simulating Turing Machines does not imply
equality in their expressiveness. For example, [Pal97] shows that under some
reasonable assumptions the asynchronous version of the π-calculus, which can
certainly encode Turing Machines, is strictly less expressive than the original
calculus.

In this paper, we shall survey and discuss the work on the relative expressive-
ness of recursion and replication in various process calculi. In particular, CCS,
the π-calculus, and the Ambient calculus. We shall begin with the π-calculus,
then CCS and then the Ambients calculus. For the simplicity of the presentation
we shall consider the polyadic variant of the π-calculus [Mil93]. Finally, we shall
also overview the work on this subject in related calculi such as tcc [SJG94]
and calculi for Cryptographic Protocols [HS05]. This paper is the extended and
revised version of the survey in [PV05].

2 The Polyadic Pi Calculus: pπ

One of the earliest discussions about the relative expressiveness between repli-
cation and recursion was in the context of the polyadic π-calculus [Mil93]; one
of the main calculi for mobility. It turns out that in this calculus replication is
just as expressive as recursion. This result is rather surprising since replication
seems such an elementary construct without much control power.

In what follows we shall introduce the polyadic π-calculus and the variants
relevant for this paper. The various CCS and Ambients variants will be presented
in the next sections as extension/restrictions of the polyadic π-calculus.

2.1 Finite Pi-Calculus

Names are the most primitive entities in the π-calculus. We presuppose a count-
able set of (port, links or channel) names, ranged over by x, y, For each
name x, we assume a co-name x thought of as complementary, so we decree that
x = x. We shall use l, l′, . . . to range over names and co-names. We use x to
denote a finite sequence of names x1x2 · · · xn. The other entity in the π-calculus
is a process. Process are built from names by the following syntax:

P, Q, . . . :=
∑

i∈I

αi.Pi | (νx)P | P | Q (1)

α := xy | x(y)

where I is a finite set of indexes.
Let us recall briefly some notions as well as the intuitive behaviour of the

various constructs.

188 J. Aranda et al.

The construct
∑

i∈I αi.Pi represents a process able to perform one–but only
one–of its αi’s actions and then behave as the corresponding Pi. The actions
prefixing the Pi’s can be of two forms: An output xy and an input x(y). In
both cases x is called the subject and y the object. The action xy represents the
capability of sending the names y on channel x. The action x(y), with no name
occurring twice in y, represents the capability of receiving the names on channel
x, say z, and replacing each yi with zi in its corresponding continuation.

Furthermore, in x(y).P the input actions binds the names y in P . The other
name binder is the restriction (νx)P which declares a name x private to P , hence
bound in P . Given Q we define in the standard way its bound names bn(Q) as
the set of variables with a bound occurrence in Q, and its free names fn(Q) as
the set of variables with a non-bound occurrence in Q.

Finally, the process P | Q denotes parallel composition; P and Q running in
parallel.

Convention 1. We write the summation as 0 if |I| = 0, and drop the “
∑

i∈I”
if |I| = 1. Also we write α1.P1 + · · · + αn.Pn for

∑
i∈{1,...,n} αi.Pi.

For simplicity, we omit “()” in processes of the form x().P as well as the
“.0” in processes of the form x(y).0. We use (νx1x2 · · ·xn)P as an abbreviation
(νx1)(νx2) · · · (νxn)P and

∏
i∈I Pi, where I = {i1, . . . , in}, as an abbreviation

of Pi1 | · · · | Pin . Furthermore, Pσ, where σ = {z1/y1, . . . , zn/yn}, denotes
the process that results from the substitution in P of each zi for yi, applying
α-conversion wherever necessary to avoid captures.

Reduction Semantics of Finite Processes. The above intuition about proc-
ess behaviour is made precise by the rules in Table 1. The reduction relation
−→ is the least binary relation on processes satisfying the rules in Table 1. The
rules are easily seen to realize the above intuition.

We shall use −→∗ to denote the reflexive, transitive closure of −→. A re-
duction P −→ Q basically says that P can evolve, after some communication
between its subprocesses, into Q. The reductions are quotiented by the structural
congruence relation ≡ which postulates some basic process equivalences.

Definition 1 (Structural Congruence). Let ≡ be the smallest congruence
over processes satisfying the following axioms:

1. P ≡ Q if P and Q differ only by a change of bound names (α-equivalence).
2. P | 0 ≡ P, P | Q ≡ Q | P , P | (Q | R) ≡ (P | Q) | R.
3. If x �∈ fn(P) then (νx)(P | Q) ≡ P | (νx)Q.
4. (νx)0 ≡ 0, (νx)(νy)P ≡ (νy)(νx)P .

2.2 Infinite Processes in the Polyadic Pi-Calculus

In the literature there are at least two alternatives to extend the above syntax
to express infinite behavior. We describe them next.

On Recursion, Replication and Scope Mechanisms in Process Calculi 189

Table 1. Reductions Rules

REACT:
(· · · + xz1 · · · zn.P) | (· · · + x(y1 · · · yn).Q) −→ P | Q{z1/y1, . . . , zn/yn}

PAR: P −→ P ′

P | Q −→ P ′ | Q
RES: P −→ P ′

(νx)P −→ (νx)P ′

STRUCT:
P ≡ P ′ −→ Q′ ≡ Q

P −→ Q

Pi with Parametric Recursive Definitions: pπD

A typical way of specifying infinite behavior is by using parametric recursive def-
initions [Mil99]. In this case we extend the syntax of finite processes (Equation 1)
as follows:

P, Q, . . . := . . . | A(y1, . . . , yn) (2)

Here A(y1, . . . , yn) is an identifier (also call, or invocation) of arity n. We
assume that every such an identifier has a unique, possibly recursive, definition
A(x1, . . . , xn) def= P where the xi’s are pairwise distinct, and the intuition is that
A(y1, . . . , yn) behaves as its P with each yi replacing xi. We shall presuppose
finitely many such definitions. Furthermore, for each A(x1, . . . , xn) def= P we
require

fn(P) ⊆ {x1, . . . , xn}. (3)

The reduction semantics of the extended processes is obtained simply by ex-
tending the structural congruence ≡ in Definition 1 with the following axiom:

A(y1, . . . , yn) ≡ P [y1, . . . , yn/x1, . . . , xn] if A(x1, . . . , xn) def= P. (4)

As usual P [y1 . . . yn/x1 . . . xn] results from syntactically replacing every free
occurrence of xi with yi and by applying name α-conversion, wherever needed
to avoid capture.

We shall use pπD to denote the polyadic π-calculus with parametric recursive
definitions with the above syntactic restrictions.

Pi with Replication: pπ!

A simple way of expressing infinite behaviour in the π-calculus is by using repli-
cation. We shall use pπ! to denote the polyadic π-calculus with replication.

In the pπ! case, the syntax of finite processes (Equation 1) is extended as
follows:

P, Q, . . . := . . . | !P. (5)

190 J. Aranda et al.

Intuitively !P behaves as P | P | . . . | P | !P ; unboundedly many copies
of P .

The reduction semantics for pπ! is obtained simply by extending the structural
congruence ≡ in Definition 1 with the following axiom:

!P ≡ P | !P. (6)

Barbed Bisimilarity

We shall often state expressiveness results by claiming the existence of a process
in one calculus which is equivalent to some given process in another calculus.
For this purpose, here we recall a standard way of comparing processes. We shall
use pπ! to denote the calculus with replication.

Let us begin by recalling a basic notion of observation for the π-calculus.
Intuitively, given l = x (l = x) we say that (the barb) l can be observed at P ,
written P ↓l, iff P can have an input (output) with subject x. Formally,

Definition 2 (Barbs). Define P ↓x iff ∃z, y, R : P ≡ (νz)(xy.Q | R)
and x is not in z. Similarly, P ↓x iff ∃z, y, Q, R : P ≡ (νz)(x(y).Q | R) and
x is not in z. Furthermore, P ⇓l iff ∃Q : P −→∗ Q ↓l .

Let us now recall the notion of barbed (weak) bisimilarity and congruence. Re-
member that a process context C in a given calculus is an expression with a hole
[·] such that placing a process in the hole produces a well-formed process term
in the calculus. If C is a context and P a process, we write C[P] for the process
obtained by replacing the [·] in C by P .

For technical purposes, we shall use pπD+! as the calculus whose process syn-
tax arises from extending the syntax of finite processes (Equation 1) with both
replication and recursive definitions. The reduction semantics of pπD+! of the
extended processes is obtained by extending the structural congruence ≡ in Def-
inition 1 with the axioms in Equations 4 and 6.

Definition 3 (Barbed Bisimilarity). A (weak) barbed-simulation is a binary
relation R satisfying the following: (P, Q) ∈ R implies that:

1. if P −→ P ′ then ∃Q′ : Q −→∗ Q′ ∧ (P ′, Q′) ∈ R.
2. if P ↓l then Q ⇓l .

The relation R is a barbed bisimulation iff both R and its converse R−1 are
barbed -simulations. We say that P and Q are (weak) barbed bisimilar, written
P ∼ Q, iff (P, Q) ∈ R for some barbed bisimulation R. Furthermore, we say
that P and Q are barbed congruent, written P ≈ Q, iff for each context C in
pπD+!, C[P] ∼ C[Q].

2.3 Recursive Definitions vs. Replication in Pi

Here we recall a result stating that the variants pπ! and pπD can be regarded as
being equally expressive w.r.t (weak) barbed congruence ≈ given in Definition 3.

On Recursion, Replication and Scope Mechanisms in Process Calculi 191

More precisely, the expressiveness criteria w.r.t barbed congruence we shall use
in this section can be stated as follows.

Criteria 2. We say that a π-calculus variant is as expressive as another iff for
every process P in the second variant one can construct a process [[P]] in the
first variant such that [[P]] is (weakly) barbed congruent to P .

All the results presented in this section are consequences of the expressiveness
results in [SW01].

From pπD to pπ! and Back: Encodings

We shall now provide encodings from one variant into the other and state their
correctness. We shall say that a map [[]] is a homomorphism for parallel com-
position iff [[P | Q]] = [[P]] | [[Q]]. The notion of homomorphism for the other
operators is defined analogously.

Definition 4. Let [[·]]0 be the map from pπD processes and recursive definitions
into pπ! processes given by:

[[Ai(xi)
def= Pi]]0 = ! ai(xi).[[Pi]]0,

[[Ai(yi)]]0 = aiyi,

and for all other processes [[·]]0 is a homomorphism.
Let P be an arbitrary pπD process with { A1(xi)

def= P1, . . . , An(xn) def= Pn }
as the set of recursive definitions of its process identifiers. The encoding of P ,
denoted [[P]], is defined as

[[P]] = (νa1 · · ·an)([[P]]0 |
∏

i∈{1,...,n}
[[Ai(xi)

def= Pi]]0)

where a1, . . . , an �∈ fn(P).

Intuitively, each A(y), with A(x) def= P , is translated into a particle ay which
excites a copy of P (with y substituted for x) by interacting with a replicated
resource, a provider of instances of P , of the form ! a(x).[[P]]. The correctness of
the encoding is stated below.

Theorem 3. Let [[·]] be the encoding in Definition 4. For each P in pπD, P ≈
[[P]].

Let us now give an encoding of pπ! into pπD. The idea is simple: Each !P is
translated into a process AP , recursively defined as AP (x) def= P | AP (x) which
can provide an unbounded number of copies of P .

Definition 5. Let [[·]]0 be the map from pπ! processes into pπD processes given
by:

[[!P]] = AP (x) where AP (x) def= P | AP (x) and fn(P) ⊆ {x}
and for all other processes [[·]]0 is a homomorphism.

192 J. Aranda et al.

We can now state the correctness with respect to barbed congruence.

Theorem 4. Let [[·]] be the encoding in Definition 5. For each P in pπ!, P ≈
[[P]].

2.4 Recursion vs. Replication in the Private Pi Calculus

The Private π-calculus [SW01] is a sub-calculus with a restricted form of com-
munication. The idea is that only bound-outputs are allowed; i.e, outputs of the
form (νz)xz.P . Such bound-outputs are usually abbreviated as x(z) assuming
that no name occur more than once in z.

The above syntactic restriction results in a pleasant symmetry between inputs
and outputs in that they both can be seen as binders. Moreover, the restriction
ensures that α-conversion is the only kind of substitution required in the cal-
culus. In fact, the rule REACT in Table 1, which applies a substitution to the
continuation of the input, can be replaced by the following rule:

x(z).P | x(z).P −→ (νz)(P | Q) (7)

Let us denote by Privpπ! the calculus that results from applying to pπ! the
syntactic restriction mentioned above. The PrivpπD calculus is analogously de-
fined as a restriction on pπD except that we need an extra-condition to ensure
that α-conversion is the only substitution needed in the calculus: In every invo-
cation A(z), no name may occur more than once in the vector z.

Now, if we wish an encoding [[·]] from Privpπ! into PrivpπD such that [[P]] ≈
P , we can simply take that of Definition 5 restricted to the Privpπ! case. As
shown below, however, the above restriction makes impossible the existence of
an encoding from PrivpπD into Privpπ!.

Consider for example the process P = A(z0) where

A(x) def= x(z).A(z).

The process P , in parallel with a suitable R, can perform a sequence of actions
where the object of an action is the subject of the next one. Sequences of this
form are called logical threads [SW01]. Moreover, P can perform the infinite
logical thread z0(z1).z1(z2).

Interestingly, as an application of the type theory for Privpπ!, the results
in [SW01] state that no process in Privpπ! can exhibit an infinite logical thread.
Together with P above, this property of Privpπ! can be used to prove the fol-
lowing result.

Theorem 5. There is a process P in PrivpπD such that P �≈ Q for every Q in
Privpπ!.

Therefore, we cannot have an expressiveness result of the kind we have for pπD

and pπ! in the previous section. I.e., there is no encoding [[·]] from PrivpπD proc-
esses into Privpπ! processes such that [[P]] ≈ P.

On Recursion, Replication and Scope Mechanisms in Process Calculi 193

3 The Calculus of Communicating Systems (CCS)

Undoubtedly CCS [Mil89], a calculus for synchronous communication, remains
as a standard representative of process calculi. In fact, many foundational ideas
in the theory of concurrency have sprung from this calculus. In the following we
shall consider some variants of CCS without relabelling operations.

3.1 Finite CCS

The finite CCS processes can be obtained as a restriction of the finite processes
of the Polyadic π-calculus by requiring all inputs and outputs to have empty
subjects only. Intuitively, this means that in CCS there is no sending/receiving
of links but synchronization on them. (Notice that the ability of transmitting
names is used for the encoding of recursion into replication in Definition 4.)
More, precisely, the syntax of finite CCS processes is obtained by replacing the
second line of Equation (1) with

α := x | x | τ (8)

where τ represents a distinguished action; the silent action, with the decree that
τ = τ .

The (unlabelled) reduction relation −→ for finite CCS processes can be ob-
tained from that for the π-calculus given in the previous section. However, since
α-conversion does not hold for one of the CCS variants we consider next, we
find it convenient to define −→ in terms of labelled reduction of CCS given in
Table 2. A transition P

α−→ Q says that P can perform an action α and evolve
into Q. The reduction relation is then defined as −→def= τ−→.

3.2 Infinite CCS Processes

Both recursion and replication are found in the CCS literature in the forms we
saw for the polyadic π-calculus. Nevertheless, as recursion in CCS comes in other
forms. Some forms of recursion exhibit dynamic name scoping while others, as
in the π-calculus, have static name scoping. By dynamic scoping we mean that,
unlike the static case, the occurrence of a name can get dynamically (i.e., during
execution) captured under a restriction. Surprisingly, this will have an impact
on their relative expressiveness.

In the literature there are at least four alternatives to extend the above syntax
to express infinite behavior. We describe them next.

CCS with Parametric Definitions: CCSp

The processes of CCSp calculus are the finite CCS processes plus recursion using
parametric definition exactly as in pπD. So in particular we have the restriction

194 J. Aranda et al.

Table 2. An operational semantics for finite CCS

SUM ∑
i∈I αi.Pi

αj−→ Pj

if j ∈ I RES
P

α−→ P ′

(νx)P
α−→ (νx)P ′ if α �∈ {x, x}

PAR1
P

α−→ P ′

P | Q
α−→ P ′ | Q

PAR2
Q

α−→ Q′

P | Q
α−→ P | Q′ COM

P
α−→ P ′ Q

α−→ Q′

P | Q
τ−→ P ′ | Q′

RED
P

τ−→ Q

P −→ Q

on parametric definitions in Equation 3. The calculus is the variant in [Mil99].
The rules for CCSp are those in Table 2 plus the rule:

CALL
PA[y1, . . . , yn/x1, . . . , xn] α−→ P ′

A(y1, . . . , yn) α−→ P ′
if A(x1, . . . , xn) def= PA (9)

As usual P [y1 . . . yn/x1 . . . xn] results from syntactically replacing every free oc-
currence of xi with yi renaming bound names, i.e., name α-conversion, wherever
needed to avoid capture. (Of course if n = 0, P [y1 . . . yn/x1 . . . xn] = P).

As shown in [Mil99] in CCSp we can identify process expression differing only
by renaming of bound names; i.e., name α-equivalence—hence (νx)P is the same
as (νy)P [y/x].

Constant Definitions: CCSk

We now consider the CCS alternative for infinite behavior given in [Mil89]. We
refer to identifiers with arity zero and their corresponding definitions as constant
and constant (or parameterless) definitions, respectively. We omit the “()” in
A().

Given A
def= P , requiring all names in fn(P) to be formal parameters, as we did

in pπD (Equation 3), would be too restrictive—P would not have visible actions.
Consequently, let us drop the requirement to consider a fragment allowing only
constant definitions but with possible occurrence of free names in their bodies.
The rules for this fragments are those of CCSp. We shall refer to this fragment
as CCSk. In this case Rule CALL, which for CCSk we prefer to call CONS, takes
the form

CONS
P

α−→ P ′

A
α−→ P ′

if A
def= P (10)

i.e., there is no α-conversion involved; thus allowing name captures. As illustrated
in the next section, this causes scoping to be dynamic and α-equivalence not to

On Recursion, Replication and Scope Mechanisms in Process Calculi 195

hold. This is also the reason we cannot just take the reduction relation −→ of the
π-calculus restricted to CCSk processes as such a relation assumes α-conversion
due to the structural rule.

Recursion Expressions: CCSµ

Hitherto we have seen process expressions whose recursive behavior is specified
in an underlying set of definitions. It is often convenient, however, to have ex-
pressions which can specify recursive behavior on their own. Let us now extend
the finite CCS processes to include such recursive expressions. The extended
syntax is given by:

P, Q, . . . := . . . | X | μX.P (11)

Here μX.P binds the occurrences of the process variable X in P . As for
bound and free names, the bound variables of P , bv(P) are those with a bound
occurrence in P , and the free variables of P , fv(P) are those with a non-bound
occurrence in P . An expression generated by the above syntax is said to be a
process (expression) iff it is closed (i.e., it contains no free variables). The process
μX.P behaves as P with the free occurrences of X replaced by μX.P . Apply-
ing variable α-conversions wherever necessary to avoid captures. The semantics
μX.P is given by the rule:

REC
P [μX.P/X] α−→ P ′

μX.P
α−→ P ′ (12)

We call the resulting calculus CCSμ. From [EN86] it follows that in CCSμ we
can identify processes up-to name α-equivalence.

Remark 1 (Static and Dynamic Scope: Preservation of α-Equivalence).
An interesting issue of the substitution [μX.P/X] applied to P is whether it
also requires the renaming of bound names in P to avoid captures (i.e., name
α-conversion). Such a requirement seems necessary should we want to identify
process up-to α-equivalence. In fact, the requirement gives CCSμ static scope of
names. Let us illustrate this with an example.

Example 1. Consider μX.P with P = (x | (νx)(x̄.t | X)). First, let us assume
we perform name α-conversions to avoid captures. So, [μX.P/X] in P renames
the bound x by a fresh name, say z, thus avoiding the capture of P ′s free x in
the replacement: I.e,

P [μX.P/X] = (x | (νz)(z̄.t | μX.P)) = (x | (νz)(z̄.t | μX.(x | (νx)(x̄.t | X))))

The reader may care to verify (using the rules in Table 2 plus Rule REC) that
t will not be performed; i.e., there is no μX.P

α1−→ P1
α2−→ . . . s.t. αi = t.

Now let us assume that the substitution makes no name α-conversion, thus
causing a free occurrence of x in P , shown in a box below, to get bound, dynam-
ically in the scope of the outermost restriction: I.e.,

P [μX.P/X] = (x | (νx)(x̄.t | μX.P)) = (x | (νx)(x̄.t | μX.(x | (νx)(x̄.t | X)))).

196 J. Aranda et al.

The reader can verify that now t can eventually be performed. Such an execution
of t cannot be performed by μX.Q where Q is (x | (νz)(z.t | X)) i.e, P with
the binding and bound occurrence of x syntactically replaced with z. This shows
that name α-equivalence does not hold in this dynamic scope case. �

It should be pointed out that using recursive expressions with no name α-
conversion is in fact equivalent to using instead constant definitions as in the
previous calculus CCSk. In fact, in presenting CCS, [Mil89] uses alternatively
both kinds of constructions; using Rule REC, with no name α-conversion, for
one and Rule CONS for the other. For example, by taking A

def= P with P as
in Example 1 one can verify that in CCSk, A exhibits exactly the same dyna-
mic scoping behavior illustrated in the above example. So, name α-equivalence
does not hold in CCS. Notice that the above observations imply some semantics
differences between CCS and the π-calculus. The former does not satisfy name
α-equivalence because of the dynamic nature of name scoping—see Example 1.
The latter uses static scoping and satisfies α-equivalence. �

Replication: CCS!

The processes of CCS! are those finite CCS processes plus replication exactly
as in pπ!. This variant is presented in [BGZ03]. In the context of CCS, this
operators are studied in [BGZ03,BGZ04,GSV04].

The operational rules for CCS! are those in Table 2 plus the following rule:

REP
P | !P α−→ P ′

!P α−→ P ′ (13)

From [Mil99] we know that in CCS! one can identify processes up to name
α-equivalence.

3.3 Expressiveness Results for CCS

In this section we report results from [BGZ03, BGZ04, GSV04] on the expres-
siveness for the CCS variants above.

The following theorem summarizes the expressiveness of the various calculi
and it is an immediate consequence of the results in [BGZ03] and [GSV04]. As
for the π-calculus we compare expressiveness w.r.t. barbed congruence with the
obvious restriction to CCS contexts (see Criteria 2).

Theorem 6. The following holds for the CCS variants:

1. CCSk is exactly as expressive as CCSp w.r.t barbed congruence.
2. CCSμ is exactly as expressive as CCS! w.r.t barbed congruence.
3. The divergence problem (i.e., whether a given process P has an infinite se-

quence of −→ reductions) is undecidable for the calculi in (1) but decidable
for those in (2).

On Recursion, Replication and Scope Mechanisms in Process Calculi 197

The results (1-3) are summarized in Figure 1. Let us now elaborate on the
significance and implications of the above results. A noteworthy aspect of (1)
is that any finite set of parametric (possibly mutually recursive) definitions can
be replaced by a set, finite as well, of parameterless definitions . This arises
as a result of the restricted nature of communication in CCS (e.g., absence of
mobility). Related to this result is that of [Mil89] which shows that, in the
context of value-passing CCS, a parametric definition can be encoded using an
set of constant definitions and infinite sums. However, this set is infinite.

Regarding (1) some readers may feel that given a process P with a parametric
definition D, one could simply create as many constant definitions as permuta-
tions of possible parameters w.r.t. the finite set of names in P and D. This would
not work for CCSp; the unfolding of call to D within a restriction may need α-
conversions to avoid name captures, thus generating new names (i.e., names not
in P nor D) during execution.

Regarding (2), we wish to recall the encoding [[·]] of CCSμ into CCS! which
resembles that of Definition 4 in the context of the π-calculus.

Definition 6. The encoding [[·]] of CCSμ processes into CCS! is homomorphic
over all operators in the sub-calculus defining finite behavior and is otherwise
defined as follows:

[[Xi]] = x̄i

[[μXi.P]] = (νxi)(!xi.[[P]] | x̄i)

where the names xi’s are fresh.

The above encoding is correct w.r.t. barbed congruence, i.e., [[P]] ≈ P . It is
important to notice that it would not be correct had we adopted dynamic scoping
in the Rule REC for CCSk (see Remark 1). The μX.P in Example 1 actually
gives us a counter-example.

Another noteworthy aspect of the results mentioned above is the distinction
between static and dynamic name scoping for the calculi under consideration.
Static scoping renders the calculus with recursion decidable, w.r.t. the diver-
gence problem, and no more expressive than the calculus with replication. In
contrast, dynamic scoping renders the calculus with constant definitions unde-
cidable and as expressive as that with parametric definitions. This is interesting
since as discussed in Section 3.2 the difference between the calculi with static
or dynamic scoping is very subtle. Using static scoping for recursive expressions
was discussed in the context of ECCS [EN86], an extension of CCS whose ideas
lead to the design of the π-calculus [Mil99].

It should be noticed that preservation of divergence is not a requirement
for equality of expressiveness w.r.t barbed congruence since barbed congruence
does not preserve divergence. Hence, although the results in [BGZ03] prove that
divergence is decidable for CCS! (and undecidable for CCSp), it does not fol-
low directly from the arrows in Figure 1 that it is also decidable for CCSμ.
The decidability of the divergency problem for CCSμ is proven in [GSV04].

Finally, it is worth pointing out that, as exposed in [MP03], decidability of
divergence does not imply lack of Turing expressiveness. In fact a remarkable

198 J. Aranda et al.

Fig. 1. Classification of CCS variants. An arrow from X to Y indicates that for ev-
ery P in Y one can construct a process [[P]] in X which is barbed congruent to P .
(Un)decidability is meant w.r.t. the existence of divergent computations.

result in [BGZ04] states that CCS! is Turing-complete. We shall discuss this at
length in the following section.

3.4 CCS! in the Chomsky Hierarchy

The work in [BGZ04] shows that CCS! is Turing powerful by encoding Random
Access Machines (RAM) in CCS!. The encoding is said to be non-deterministic,
or non-faithful because it may introduce non-terminating computations which
do not correspond to the expected behaviour of the modeled machine. Further-
more, the authors in [BGZ04] also show the non-existence of deterministic (or
faithful) encodings of Turing Machines–i.e., encodings which do not exhibit such
additional non-terminating computations.

In [ADNV07] the authors study the expressiveness of CCS! w.r.t. the existence
of faithful encodings of models of computability strictly less expressive than
Turing Machines. Namely, (non-deterministic) Linear-bounded, Pushdown and
Finite-State Automata.

In this section we shall single out the fundamental non-deterministic element
for the Turing-expressiveness of CCS! shown in [BGZ04]. Following [ADNV07]
we define a class CCS−ω

! of those processes which do not exhibit such kind of
non-determinism and discuss their expressiveness w.r.t the Chomsky Hierarchy.
First we need a little notation.

Notation 7. Define s=⇒, with s = α1. . . . αn ∈ L∗, as

(τ−→)∗ α1−→ (τ−→)∗ . . . (τ−→)∗ αn−→ (τ−→)∗.

For the empty sequence s = ε, s=⇒ is defined as (τ−→)∗.

We say that a process generates a sequence of non-silent actions s if it can per-
forms the actions of s in a finite maximal sequence of transitions. More precisely:

Definition 7 (Sequence and language generation). The process P gener-
ates a sequence s ∈ L∗ if and only if there exists Q such that P

s=⇒ Q and Q � α−→
for any α ∈ Act . Define the language of (or generated by) a process P , L(P), as
the set of all sequences P generates.

On Recursion, Replication and Scope Mechanisms in Process Calculi 199

Strong non-termination plays a fundamental role in the expressiveness of CCS!.
We borrow the following terminology from rewriting systems:

Definition 8 (Termination). We say that a process P is (weakly) terminating
(or that it can terminate) if and only if there exists a sequence s such that P
generates s. We say that P is (strongly) non-terminating, or that it cannot
terminate if and only if P cannot generate any sequence.

As previously mentioned, [BGZ04] provides an encoding [[·]] from Random Ac-
cess Machines (RAM) into CCS!. The encoding is called non-deterministic in the
sense that given a machine M , [[M]] may evolve into states (processes) which do
not correspond to any configuration of M . Nevertheless such states are guaran-
teed to be strongly non-terminating. Therefore, they may be thought of as being
configurations which cannot lead to a halting configuration in a non-deterministic
Turing machine M ′ that computes the same function as M .

Now rather than recalling the full encoding of RAMs from [BGZ04], let us
use a simpler example which illustrates the same non-deterministic technique.
Below we encode a typical context sensitive language in CCS!.

Example 2. Consider the following processes:

P = (νk1, k2, k3, ub, uc)(k1 | k2 | Qa | Qb | Qc)
Qa = !k1.a.(k1 | k3 | ub | uc)
Qb = k1.!k3.k2.ub.b.k2

Qc = k2.(!uc.c | ub.DIV)

where DIV is the non-terminating process (νw)(w | !w.w). It can be verified
that L(P) = {anbncn}.

Intuitively, in the process P above, Qa performs (a sequence of actions) an for
an arbitrary number n (and also produces n ub’s). Then Qb performs bm for an
arbitrary number m ≤ n and each time it produces b it consumes a ub. Finally,
Qc performs cn and diverges if m < n by checking if there are ub’s that were not
consumed. �

The Power of Non-Termination. Let us underline the role of strong non-
termination in Example 2. Consider a run

P
anbm

=⇒ . . .

Observe that the name ub is used in Qc to test if m < n, by checking whether
some ub were left after generating bm. If m < n, the non-terminating process
DIV is triggered and the extended run takes the form

P
anbmcn

=⇒ τ−→ τ−→ . . .

Hence the sequence anbmcn arising from this run (with m < n) is therefore not
included in L(P).

200 J. Aranda et al.

The tau move. It is crucial to observe that there is a τ transition arising from
the moment in which k2 chooses to synchronize with Qc to start performing the
c actions. One can verify that if m < n then the process just before that τ tran-
sition is weakly terminating while the one just after is strongly non-terminating.

The non-deterministic technique of using non-terminating processes in com-
puting illustrated above is essentially the same given in [BGZ04] for encoding
RAM’s. Since we want to prevent the use of the above technique, we define a class
which avoids moving with a τ transition from a terminating to a non-terminating
evolution.

Definition 9 (Weak Termination Preservation and CCS−ω
!). A process

P is said to be (weakly) termination-preserving (after τ moves) if and only if
whenever P

s=⇒ Q
τ−→ R: if Q is weakly terminating then R is weakly terminat-

ing. Henceforth we use CCS−ω
! to denote the set of those CCS! processes which

are termination-preserving.

Let us now survey the expressiveness result w.r.t formal language generation (see
Definition 7) of the above termination-preserving class of processes CCS−ω

! .

Language expressiveness of CCS−ω
! . We assume that the reader is famil-

iar with the notions and notations of formal grammars. A grammar G can be
specified as a quad-tuple (Σ, N, S, P) where Σ is the set of terminal symbols,
N is the set of non-terminals symbols, S the initial symbol and P the set of
production rules. The language of (or generated by) a formal grammar G, de-
noted as L(G), is defined as all those strings in Σ∗ that can be generated by
starting with the start symbol S and then applying the production rules in P
until no more non-terminal symbols are present. We recall also that in a strictly
decreasing expressive order, Types 0, 1, 2 and 3 in the Chomsky hierarchy corre-
spond, respectively, to unrestricted-grammars (Turing Machines), Context Sen-
sitive Grammars (Non-Deterministic Linear Bounded Automata), Context Free
Grammars (Non-Deterministic PushDown Automata), and Regular Grammars
(Finite State Automata).

The following theorem illustrated in Figure 2 classifies the expressiveness of
CCS−ω

! in the Chomsky Hierarchy.

Theorem 8. The following holds for the CCS−ω
! variant:

1. For every Type 3 Grammar G we can construct a CCS−ω
! process PG such

that L(G) = L(PG).
2. There exists a Type 2 Grammar G such that for every CCS−ω

! process PG

L(G) �= L(PG).
3. For every CCS−ω

! process PG there exists a Type 1 Grammar G such that
L(PG) = L(G).

Let us conclude this section by giving more details on the above classification
results. The first point of Theorem 8 follows from a rather straightforward trans-
lation from regular expressions.

On Recursion, Replication and Scope Mechanisms in Process Calculi 201

CSL
CCS−ω

!

REG
CFL

Fig. 2. CCS−ω
! in the Chomsky Hierarchy

The second one is based on a fundamental property of CCS−ω
! : If P ∈ CCS−ω

!
can perform an action c after zero or more steps then it can always perform it
after a number of steps which depends on the size of P . With the help of this
property one can prove that the Type 2 language anbnc cannot be encoded in
CCS−ω

! .
The last point follows from a CCS−ω

! property on the number of τ moves
needed to generate any given sequence of size n: It is linearly bounded. More
precisely, for every P ∈ CCS−ω

! , there exists a constant k such that if s =
α1 . . . αn ∈ L(P) then there must be a sequence

P (τ−→)m0 α1−→ (τ−→)m1 . . . (τ−→)mn−1 αn−→ (τ−→)mn �

with Σn
i=0mi ≤ kn. Using the above property, given P , one can define a non-

deterministic machine that simulates the runs of P using as many cells as the
total number of performed actions, silent or visible, multiplied by a constant
associated to P . Hence L(P) is by definition a Type 1 language.

4 The Mobile Ambients Calculus

The calculus of Mobile Ambients is a formalism for the description of distributed
and mobile systems in terms of ambients ; i.e. a named collection of active proc-
esses and nested sub-ambients.

The work in [BZ04] studies the expressiveness of recursion versus replication in
Mobile Ambients. In particular, the authors of [BZ04] study the expressive power
of ambient mobility in the (Pure) Mobile Ambients variants with replication and
recursion.

4.1 Finite Processes of Ambients

The Pure Ambient Calculus focuses on ambient and processes interaction. Unlike
the π-calculus, it abstracts away from process communication.

202 J. Aranda et al.

The syntax of the finite processes can be derived from those of the pπ-calculus
by (1) introducing ambients, and the actions for ambient and processes inter-
action, (2) eliminating the action for process communication and (3) restricting
summations to have arity at most one. In summary, we obtain the following
syntax:

P, Q, . . . := 0 | α.P | n[P] | (νx)P | P | Q (14)

α := in x | out x | open x

The intuitive behaviour of the ambient n[P] and α actions is better explained
after presenting the reduction semantics of Ambients. The intuitive behaviour
of the others constructs can be described exactly as in the π-calculus.

Reduction Semantics of Finite Processes. The reduction relation −→ for
Ambients can be obtained by adding the axiom (νn)(m[P]) ≡ m[(νn)P] if m �= n
to the structural congruence in Definition 1 and the following rules for ambients
and process interaction to the rules of the pπ-calculus in Table 1 (without the
REACT rule):

1. n[in m.P | Q] | m[R] −→ m[n[P | Q] | R]
2. m[n[out m.P | Q]|R] −→ n[P | Q] | m[R]
3. open n.P | n[Q] −→ P | Q

4.
P −→ Q

n[P] −→ n[Q]

Rules (1-3) describe ambients and their actions and Rule (4) simply says that
reduction can occur underneath ambients. Rule (1) describes how, by using the
in action, an ambient named n can enter another ambient named m. Similarly,
Rule (2) describes how an ambient named n can exit another ambient named m
by using the out action. Finally Rule (3) describes how a process can dissolve
an ambient boundary to access its contents by performing the open action over
the name n of the ambient.

4.2 Infinite Process of Ambients

Infinite behaviour in Ambients can be represented by using replication as in pπ!

or recursive expressions of the form μX.P .

The MA! Calculus

The calculus MA! extends the syntax of the finite Ambients processes with !P . Its
reduction semantics −→ is obtained by adding the structural axiom !P ≡ P | !P
to the structural axioms of finite Ambients processes.

The MAr Calculus

The calculus MAr extends the syntax of the finite Ambients processes with
recursive expression of the form μX.P exactly as in CCSμ (Section 3.2). Its

On Recursion, Replication and Scope Mechanisms in Process Calculi 203

reduction semantics −→ is obtained by adding the structural axiom μX.P ≡
P [μX.P/X] to the structural axioms of finite Ambients processes.

Notice that the issue of the substitution [μX.P/X] applied to P we discussed
in Section 3.2 arises again: Whether the substitution also requires the renaming
of bound names in P to avoid captures (i.e., name α-conversion). Such a require-
ment seems necessary should we want to identify process up-to α-equivalence–
which is included in the structural congruence ≡ for Ambients. The CCS exam-
ples in Section 3.2 (see Remark 1) can easily be adapted here to illustrate that
we obtain dynamic scoping of names if we do not perform the α-conversion in
the substitution.

It should be noticed that the above has not been completely clarified in the
literature of Ambients. In fact, it raises a technical issue in the results on ex-
pressiveness which we shall recall in the next section.

Expressiveness Results

To isolate the expressiveness of restriction and ambient actions in MA! and
MAr, [BZ04] considers the following fragments of MAc with c ∈ {!, r}: (1) MA−ν

c ,
the MAc calculus without the restriction constructor (νx)P , (2) MA−mv

c , the
MAc calculus without the in and out actions, and finally (3) MA−mv,ν

c , the
corresponding calculus with no in/out action nor restriction.

The separation results in [BZ04] among the various calculi are given in terms
of the decidability of termination; i.e., the problem of whether given a process
P does not have any infinite sequence of reductions. Obviously, if the question
is decidable in a given calculus then we know that there is no termination-
preserving encoding of Turing Machines into the calculus. The results in [BZ04]
are summarized in Figure 3.

Fig. 3. Hierarchy of Ambient Calculi

Remark 2. The undecidability of process termination for MA−mv
r is obtained by

a reduction from termination of RAM machines, a Turing Equivalent formalism.

204 J. Aranda et al.

First [BZ04] uses a CCS fragment with recursion and dynamic scope of names
to provide a termination-preserving encoding of RAMs. Then the CCS frag-
ment is claimed to be a sub-calculus of MA−mv

r . The undecidability of process
termination for MA−mv

r follows immediately.
Nevertheless, as illustrated in Section 3.2 Remark 1 such dynamic scope causes

α-equivalence not to be preserved. In principle, this may cause a technical prob-
lem in the proof of the result since MA−mv

r requires α-equivalence to be pre-
served; i.e., the CCS fragment used to simulate RAMs is not a sub-calculus of
MA−mv

r .
One way to deal with the above problem is to use a more involved notion of

α-conversion in MA−mv
r [BZ05]. Another way would be to consider parametric

recursion in MAr, as in CCSp or pπD, and then use CCSp as the sub-calculus
of MA−mv

r to encode RAMs. Nevertheless, either way we will be changing the
original semantics of MA−mv

r given in [LS03] which treats α-conversion and
recursion as in CCSμ [San05].

5 Recursion vs. Replication in Other Calculi

Here, we shall briefly survey work studying the relative expressive power of
Recursion vs Replication in other process calculi.

In the context of calculi for security protocols, the work in [HS05] uses a
process calculus to analyze the class of ping-pong protocols introduced by Dolev
and Yao. The authors show that all nontrivial properties, in particular reach-
ability, become undecidable for a very simple recursive variant of the calculus.
The recursive variant is capable of an implicit description of the active intruder,
including full analysis and synthesis of messages. The authors then show that
the variant with replication renders reachability decidable.

In the context of calculi for Timed Reactive System, the work in [NPV02]
studies the expressive power of some variants of Timed concurrent constraint
programming (tcc). The tcc model is a process calculus introduced in [SJG94]
aimed at specifying timed systems, following the paradigms of Synchronous Lan-
guages [BG92]. The work states that: (1) recursive procedures with parameters
can be encoded into parameterless recursive procedures with dynamic scoping,
and vice-versa. (2) replication can be encoded into parameterless recursive proce-
dures with static scoping, and vice-versa. (3) the languages from (1) are strictly
more expressive than the languages from (2). Furthermore, it states that behav-
ioral equivalence is undecidable for the languages from (1), but decidable for the
languages from (2). The undecidability result holds even if the process variables
take values from a fixed finite domain.

The reader may have noticed the strong resemblance of the work on tcc and
that of CCS described in the previous section; e.g., static-dynamic scoping issue
w.r.t recursion. In fact, [NPV02] had a great influence in the work we described in
this paper for CCS. In particular, in the discovery of the dynamic name scoping
exhibited by the CCS presentation in [Mil89].

On Recursion, Replication and Scope Mechanisms in Process Calculi 205

6 Final Remarks

The expressiveness differences between recursion and replication we have sur-
veyed in this paper may look surprising to those acquainted with the π-calculus
where recursion is a derived operation. Our interpretation of this difference is
that the link mobility of the π-calculus is a powerful mechanism which makes
up for the weakness of replication.

The expressiveness of the replication !P arises from unbounded parallel be-
haviour, which with recursion can be defined as μX.(P | X). The additional
expressive power of recursion arises from the unbounded nested scope of μX.P as
in R = μX.(νx)(P | X) which behaves as (νx)(P | (νx)(P | (νx)(P | · · ·))).
This, in general, cannot be simulated with replication. However, suppose that
the unfolding of recursion applies α-conversion to avoid captures as we saw in
Section 3.2. For example for the process R above we will have the unfolding
(νx1)(P [x1/x] | (νx2)(P [x2/x] | (νx3) · · ·))) and each xi will only occur in
P [xi/x]. It is easy to see the replication !(νx)P captures the behaviour of R.
Therefore, R does not really exhibit (significant) unbounded nesting of scope.

All in all, the ability of expressing recursive behaviours via replication in a
given process calculus may depend on the mechanisms of the calculus to compen-
sate for the restriction of replication as well as on how meaningful the unbounded
nesting of the recursive expressions are.

References

[ADNV07] Aranda, J., Di Giusto, C., Nielsen, M., Valencia, F.: On the Expressive-
ness of CCS with Replication. Technical Report, LIX Ecole Polytechnique
(2007), URL www.cs.unibo.it/~digiusto/research/ccsrep.pdf

[BG92] Berry, G., Gonthier, G.: The Esterel synchronous programming lan-
guage: design, semantics, implementation. Science of Computer Program-
ming 19(2), 87–152 (1992)

[BCMS01] Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification on infinite
structures. In: Handbook of process algebra, vol. 9, pp. 545–623. Elsevier,
North-Holland (2001)

[BGZ03] Busi, N., Gabbrielli, M., Zavattaro, G.: Replication vs. recursive defini-
tions in channel based calculi. In: Baeten, J.C.M., Lenstra, J.K., Parrow,
J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, Springer, Hei-
delberg (2003)

[BGZ04] Busi, N., Gabbrielli, M., Zavattaro, G.: Comparing recursion, replication,
and iteration in process calculi. In: Díaz, J., Karhumäki, J., Lepistö, A.,
Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, Springer, Heidelberg
(2004)

[BZ04] Busi, N., Zavattaro, G.: On the expressive power of movement and re-
striction in pure mobile ambients. Theoretical Computer Science 322(3),
477–515 (2004)

[BZ05] Busi, N., Zavattaro, G.: Personal Communication (May 2005)
[CG98] Cardelli, L., Gordon, A.: Mobile Ambients. In: Nivat, M. (ed.) ETAPS

1998 and FOSSACS 1998. LNCS, vol. 1378, pp. 140–155. Springer, Hei-
delberg (1998)

www.cs.unibo.it/~digiusto/research/ccsrep.pdf

206 J. Aranda et al.

[EN86] Engberg, U., Nielsen, M.: A calculus of communicating systems with
label-passing. Technical report, University of Aarhus (1986)

[Gir87] Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
[GSV04] Giambiagi, P., Schneider, G., Valencia, F.: On the expressiveness of in-

finite behavior and name scoping in process calculi. In: Walukiewicz, I.
(ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 226–240. Springer, Heidel-
berg (2004)

[Gre78] Greibach, S.A.: Remarks on Blind and Partially Blind One-Way Multi-
counter Machines. Theor. Comput. Sci. 7, 311–324 (1978)

[HS05] Huttel, H., Srba, J.: Recursion vs. replication in simple cryptographic
protocols. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O.
(eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 175–184. Springer, Heidelberg
(2005)

[LS03] Levi, F., Sangiorgi, D.: Mobile safe ambients. ACM Transactions on Pro-
gramming Languages and Systems 25(1), 1–69 (2003)

[Mil89] Milner, R.: Communication and Concurrency. International Series in
Computer Science. Prentice Hall, Englewood Cliffs (1989) (SU Fisher
Research 511/24)

[Mil93] Milner, R.: The polyadic π-calculus: A tutorial. In: Bauer, F.L, Brauer,
W., Schwichtenberg, H. (eds.) Logic and Algebra of Specification, pp.
203–246. Springer, Berlin (1993)

[Mil99] Milner, R.: Communicating and Mobile Systems: the π-calculus. Cam-
bridge University Press, Cambridge (1999)

[MP03] Maffeis, S., Phillips, I.: On the computational strength of pure ambient
calculi. In: EXPRESS’03 (2003)

[MPW92] Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Part
I + II. Information and Computation 100(1), 1–77 (1992)

[NPV02] Nielsen, M., Palamidessi, C., Valencia, F.: On the expressive power of
concurrent constraint programming languages. In: Proc. of the 4th In-
ternational Conference on Principles and Practice of Declarative Pro-
gramming (PPDP 2002), pp. 156–167. ACM Press, New York (2002)

[Pal97] Palamidessi, C.: Comparing the expressive power of the synchronous and
the asynchronous pi-calculus. In: POPL’97, pp. 256–265. ACM Press,
New York (1997)

[PV05] Palamidessi, C., Valencia, F.: Recursion vs Replication in Process Calculi.
In: Bulletin of the EATCS vol. 87, pp. 105–125 (2005)

[Pet81] Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice
Hall PTR, Englewood Cliffs (1981)

[SJG94] Saraswat, V., Jagadeesan, R., Gupta, V.: Foundations of timed concur-
rent constraint programming. In: Proc. of the Ninth Annual IEEE Sym-
posium on Logic in Computer Science, July 4-7, 1994, pp. 71–80. IEEE
Computer Society Press, Los Alamitos (1994)

[SW01] Sangiorgi, D., Walker, D.: The π−calculus: A Theory of Mobile Processes.
Cambridge University Press, Cambridge (2001)

[San05] Sangiorgi, D.: Personal Communication (May 2005)

Bounded Session Types for

Object Oriented Languages�

Mariangiola Dezani-Ciancaglini1, Elena Giachino1, Sophia Drossopoulou2,
and Nobuko Yoshida2

1 Dipartimento di Informatica, Università di Torino
dezani,giachino@di.unito.it

2 Department of Computing, Imperial College London
scd,yoshida@doc.ic.ac.uk

Abstract. Earlier work explored the introduction of session types into
object oriented languages. Following the session types literature, two
parties would start communicating, provided the types attached to that
communication, i.e. the corresponding session types, were dual of each
other. Then, the type system was able to ensure soundness, in the sense
that two communicating partners were guaranteed to receive/send se-
quences of values following the order specified by their session types.

In the current paper we improve upon our earlier work in two ways: we
extend the type system to support bounded polymorphism, and we make
the selection more object-oriented, so that control structures determine
how to continue evaluation, depending on the class of the object being
sent/received.

Interestingly, although our notion of selection is more powerful than
that in earlier work, the ensuing system turned out not to be more com-
plex, except for the notion of duality, which needed to be extended, to
correctly deal with bounded polymorphism, and to capture the new no-
tion of selection.

The paper contains an example, informal explanations, a formal de-
scription of the operational semantics and of type system, and a proof
of subject reduction.

1 Introduction

In earlier work [12], some of the authors of this paper explored the incorporation
of session types [19] into object oriented languages through Moose, a minimal
object oriented language extended with the notion of a session. A session is
established when two parties connect, using session types which are dual to

� This work was partly funded by FP6-2004-510996 Coordination Action TYPES,
by the Information Society Technologies programme of the European Commission,
Future and Emerging Technologies under the IST-2005-015905 MOBIUS project
and by EPSRC GR/T03208, GR/S55538, GR/T04724 and GR/S68071. This paper
reflects only the authors’ views and the Community is not liable for any use that
may be made of the information contained therein.

F.S. de Boer et al. (Eds.): FMCO 2006, LNCS 4709, pp. 207–245, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

208 M. Dezani-Ciancaglini et al.

each other. Session types express sequences and iterations of types of values
being received/sent. The dual of a session type is a session type where receipt is
replaced by sending with a smaller type, and vice versa.

After such a session is established, the two parties can communicate by sending
to, or receiving from, each other, objects of the types prescribed in their session
type. Through the use of such session types, we could ensure soundness, in the
sense that two communicating partners were guaranteed to receive/send values
as expected in their session type.

In the current paper we describe the language Moose<: which extends Moose

in the following two ways. Firstly, following ideas from [18,16] we support bounded
polymorphism in session types. Thus, the following fragment of a session type

?(X<:Image).!X
expresses that an object of a subclass of Image will be received, and then an
object of the same class will be sent. This clearly agrees with the standard use
of bounded polymorphism for λ-calculus [26].

Secondly, we have made the notion of selection more object-oriented, so that
it is possible to determine branch selection and iteration based on the class of
the object being sent/received. For example, the following fragment of a session
type

?(X<:Image).?�((Y<:ArrayList).!X)∗,(Z<:Image).ε�.?Address
expresses that first an object of class X, a subclass of Image, will be received, then
a value will be received. If that value is an ArrayList, then an X will be sent, and
this will be repeated until a value of class different from ArrayList, i.e. Image, is
received. After that, an Address will be received.

A significant part of the design effort for Moose<:was devoted to the design
of the type system. In order to fully exploit the expressive power of bounded
polymorphism we developed a sophisticated notion of duality between session
types. The choice based on the class of exchanged objects has required particular
care in determining the typing rules.

The type system of Moose can also achieve progress by taking into account
the current channel used to communicate [12]. Because this analysis is orthogonal
to the extensions from Moose to Moose<:, and because progress for Moose<:
could be obtained exactly as for Moose, in this work we do not explore this
issue any further.

Related Papers. Session types have been proposed first in [19] for the π-calculus
and then they have been studied for several different settings, i.e. for π-calculus-
based formalisms [28,16,20,1,24], for CORBA [29], for functional languages
[17,30,11], for object-oriented languages [13,12,10], for boxed ambients [15], and
recently, for CDL, a W3C standard description language for web services
[32,27,5,21,6]. In this paper we essentially extend the language of [12].

Bounded quantification for object-oriented programming was introduced in [7]
as a means of typing functions that operate uniformly over all subtypes of a given
type. In order to deal with recursively defined types, bounded quantification
was generalised to F-bounded quantification [4]. Pizza [25] is a strict superset of
Java that incorporates F-bounded polymorphism. The recently-released version

Bounded Session Types for Object Oriented Languages 209

1.5 of Java adds bounded polymorphism to the language. It is based on a pro-
posal known as GJ (Generic Java) [2]. C# also supports bounded polymorphism.
The language PolyTOIL [3] has match-bounded polymorphism that provides a
very flexible yet safe type discipline for object-oriented programming. In fact
the matching relation is more general than subtyping on object types. We only
consider here bounded quantification.

[18] is the first study of bounded polymorphism in the π-calculus, and the first
study of any form of polymorphism in relation to session types. In that paper
polymorphism is associated with the labels in the branching types. We instead
allow to bound all received values in session types.

The selection on the basis of the exchanged object class is reminiscent of the
semantic subtyping approach [14,9,8].

Paper structure. We express our ideas through the language Moose<:. In Sec-
tion 2 we give an example, in Sections 3, 4, 5 we give the formal system; in 5.3
we outline soundness, and in the Appendix we give the full proof.

2 Example: Collaborative Card Design

In this section, we describe Moose<: through an example, which expresses a
typical collaboration pattern, c.f. [32,5,6], and which uses our new primitives of
bounded polymorphism in session types, and branch selection according to the
dynamic type of objects.

This simple protocol contains essential features which demonstrate the ex-
pressivity of the new features of Moose<:, i.e. bounded polymorphism in ses-
sion types for object oriented languages and branch selection according to the
dynamic types of objects.

A card producer and a card customer collaborate for the design of a card that
would please the customer. The design is based on two original photos, and some

c1

c1 : photo

c1 : answer ? ArrayList

c1 : card

c2 : prodDetails

c2

c2 : c1

c1 : custAddress

c1 : delivDate

A B : connect over c

A B : send value x over c
c : x

A B : send channel c2 over c1
c1 : c2

c

Customer Producer Shipper

{loop

A B : send x over c if x is C
c : x?Cc1 : answer ? JPGImage

Fig. 1. Collaborative Card Design

210 M. Dezani-Ciancaglini et al.

card samples sent by the customer. The producer creates a new card based on the
customer’s originals and samples, and the customer examines the created card,
and sends new samples. This process repeats itself (iterates), until the customer
is satisfied. The customer expresses his satisfaction (and consequently the end of
the iteration) by sending a single image, rather than further card samples. Thus,
branch selection in control structures (here iteration) is based on the dynamic
type of an object sent.

1 session AcceptCards =

2 begin.?(X1<:Image).?(X2<:X1).?�((Y<:ArrayList).!X1)∗, (Z<:Image).ε�.
3 ?Address.!DeliveryDetails.end

4 session RequestJPGCards =

5 begin.!JPGImage.!JPGImage.!�(ArrayList.?(X<:JPGImage))∗, Image.ε�.
6 !Address.?DeliveryDetails.end

7 session RequestDelivery =

8 begin.!CardSet.!(?Address.!DeliveryDetails.end).end

9 session AcceptDelivery =

10 begin.?CardSet.?(?Address.!DeliveryDetails.end).end

Fig. 2. Session Types for the Card Producer-Customer-Shipper Example

Furthermore, the card producer needs to be capable to collaborate with cus-
tomers who use different image formats. If the customer sends two JPG originals,
then the card producer should create JPG images too. If the customer sends two
GIF originals, then the card producer should create GIF images too. The costumer
is not allowed to sent the two images in different formats, for example one JPG

and one GIF images. We express all this through bounded polymorphism.
In Fig. 1 we show a sequence diagram for the example we described above. The

CardProducer and JPGCardCustomer participants initiate interaction over channel
c1. The JPGCardCustomer sends to the CardProducer two photos in JPG format
followed by his decision, which is either a list of cards (which represent samples
and hints for the production of a new card), or just a single, chosen, card. The
CardProducer examines the decision; if it is a list of cards, then he designs a
new card and sends it to the JPGCardCustomer, and the process of card design
iterates. If the JPGCardCustomer’s decision is a single, chosen card, then the iter-
ation terminates, and the CardProducer prints the required number of copies of
the chosen card. Then the CardProducer connects with the Shipper over channel
c2 and sends him the printed cards. He then delegates his part of the remain-
ing activity with the JPGCardCustomer to the Shipper; the latter is realised by
sending c1 over c2. Now the Shipper will await JPGCardCustomer’s address, before
responding with the delivery date.

In Fig. 2 we declare the necessary session types, and in Fig. 3, Fig. 4 and
Fig. 5 we encode the given scenario in Moose<:, using one class per protocol
participant.

The session types RequestJPGCards and AcceptCards describe the communi-
cation pattern between the CardProducer and the JPGCardCustomer. The session

Bounded Session Types for Object Oriented Languages 211

type AcceptCards describes accepting a first image in any format, a second im-
age in the same format of the first one, followed by an iteration. The iteration
is repeated as long as the received object is an ArrayList, in which case an im-
age, of the same class as the two received is sent; the iteration stops if an Image

is received1. After the iteration, an address is received and the delivery details
are sent. The session type RequestJPGCards models the sending of two images
in JPG format, followed by an iteration. The iteration is repeated as long as an
ArrayList is sent, in which case an Image is received; the iteration stops if an
Image is sent2; afterwards, an address is sent and the delivery details are re-
ceived. The interesting observation is that (under the assumption that JPGImage

is a subclass of Image) the types RequestJPGCards and AcceptCards represent dual
behaviours associated with the same session, in which the sending of a value in
one end corresponds to its reception at the other.

Thus, the implementor of AcceptCards could also collaborate with a thread
which required GIF instead of JPG images. Such a thread would have a type like:

1 session RequestGIFCards =

2 begin.!GIFImage.!GIFImage.!�(ArrayList.?(X<:GIFImage))∗, Image.ε�.
3 !Address.?DeliveryDetails.end

In our terminology, AcceptCards is a dual of RequestJPGCards as well as of
RequestGIFCards. Thus, in Moose<: more than one session type may be dual of
another; therefore, our notion of duality is not standard.

Equally important is the assurance that each value received will belong to
the type expected by the receiving party, where the latter can depend on the
types of previously exchanged objects. For example, according to AcceptCards,
the object sent in the communication within the cycle will belong to a subclass
of that of the object received in the first communication.

The session type RequestDelivery describes sending the printed cards, followed
by a live session channel of remaining type ?Address.!DeliveryDetails.end. The
session type AcceptDelivery is simply RequestDelivery with all the external !
and ? exchanged.

Sessions can start when two compatible connect statements are active. In
Fig. 3, the first component of connect is the shared channel that is used to start
communication, the second is the session type, and the third is the session body,
which implements the session type. The method sellCards of class CardProducer

contains a connect statement that implements the session type AcceptCards,
while the method buyCards of class JPGCardCustomer contains a connect state-
ment over the same channel and with the session type RequestJPGCards. When
a CardProducer and a JPGCardCustomer are executing concurrently the method
sellCards and buyCards respectively, they can engage in a session, which will

1 The iteration also stops if an object is received which is neither an ArrayList nor
an Image. More in the next sections.

2 As before, the iteration also stops if an object is sent which is neither an ArrayList
nor an Image.

212 M. Dezani-Ciancaglini et al.

1 class CardProducer {

2

3 (X <: Image) createCard(X x1, Image x2, ArrayList y) {...} //impl.

omitted

4

5 void sellCards() {

6 connect c1 AcceptCards {

7 c1.receive(x1) {

8 c1.receive(x2) {

9 c1.receiveWhile(y) {

10 ArrayList � c1.send(createCard(x1, x2, y));

11 }{ Image � Image card := y;}

12 } }

13 CardSet cardSet := cardPrint(card); //impl. omitted

14 // print the required number of copies of the chosen card

15 spawn { connect c2 RequestDelivery {

16 c2.send(cardSet); c2.sendS(c1);} }

17 } /* End connect */

18 } /* End method sellCards */

19

20 }

Fig. 3. Code for the CardProducer

result in a fresh channel being replaced for occurrences of the shared channel
c1 within both session bodies; freshness guarantees that the new channel only
occurs in these two threads, therefore the objects can proceed to perform their
interactions without the possibility of external interference.

The type of method createCard of the class CardProducer is parameterized, in
that its return type is the class of its first argument, and it is a subclass of the
class Image. We simplified Java syntax for polymorphic methods in an obvious
way, and following the notation from [31].

After starting a session in the body of method sellCards(), two photos are
received using c1.receive(x1), c1.receive(x2) and replace x1, x2. Then an ob-
ject is received by the iterative expression c1.receiveWhile(y): while the received
object is an array list, a new card – designed out of the photo and of the list of
cards – is sent using c1.send(createCard(x1, x2, y)). If the received object is
an image, the iteration stops. Then, the required copies of this card are printed
and a new thread is spawned. The body of the spawn expression has a nested
connect, via which printed cards are sent to the Shipper. Then the actual run-
time channel, i.e. the channel which substituted c1 when the outer connect took
place, is sent through the construct c2.sendS(c1). The latter is an example of
higher-order session communication.

The method buyCards uses the field cardList to keep track of the cards
proposed by the CardProducer. Once the session has started, the two photos

are sent using c1.send(photo1), c1.send(photo2), and a card is received using
c1.receive(x); this card replaces x. The method examine takes cardList and it

Bounded Session Types for Object Oriented Languages 213

1 class JPGCardCustomer {

2

3 JPGImage photo1;

4 JPGImage photo2;

5 ArrayList cardList;

6 Address addr;

7 DeliveryDetails dDetails;

8

9 void buyCards(JPGImage photo) {

10 connect c1 RequestJPGCards {

11 c1.send(photo1);

12 c1.send(photo2);

13 Object answer := examine(cardList); //impl. omitted

14 c1.sendWhile(answer) {

15 Arraylist � c1.receive(x) {

16 cardList.add(x);

17 answer := examine(cardList);}

18 }{ Image � null; }

19 c1.send(addr);

20 c1.receive(z) { dDetails := z; };

21 } /* End connect */

22 } /* End method buyCards */

23

24 }

Fig. 4. Code for the JPGCardCustomer

1 class Shipper {

2

3 void delivery() {

4 connect c2 AcceptDelivery {

5 c2.receive(x) { CardSet cardSet := x };

6 c2.receiveS(x) {

7 x.receive(y) { Address custAddress := y };

8 DeliveryDetails delivDetails := new DeliveryDetails();

9 //... set state of delivDetails

10 x.send(delivDetails);

11 }

12 } /* End connect */

13 } /* End method delivery */

14

15 }

Fig. 5. Code for the Shipper

returns an answer, which is sent using c1.sendWhile(answer). If the answer is
a list of cards (this is meant to happen if the JPGCardCostumer does not like
any of the proposed cards, and then the answer is meant to contain suggestions

214 M. Dezani-Ciancaglini et al.

of changes), then a new card is received through c1.receive(x) and added to
the card list through cardList.add(x), a new answer is produced through the
call of method examine, and the iteration continues. If the answer is an image
(this is meant to contain the card chosen by the JPGCardCostumer), then the
iteration stops. Then, the customer’s address, addr, is sent and an instance of
DeliveryDetails is received.

Notice that in order to get an arbitrary number of repetitions, it is crucial to
allow objects of different classes to be sent in the different iterations of sendWhile.

3 Syntax

In Fig. 6 we describe the syntax of Moose<:, which extends the language
Moose [12] to support bounded polymorphism and choice of session communi-
cation depending on object classes. We distinguish user syntax, i.e. source level
code, and runtime syntax, which includes null pointer exceptions, threads and
heaps.

Channels. We distinguish shared channels and live channels. Shared channels
have not yet been connected; they are used to decide if two threads can commu-
nicate, in which case they are replaced by fresh live channels. After a connection
has been created the channel is live; data may be transmitted through such
active channels only.

User syntax. The metavariable t ranges over types for expressions, ρ ranges
over running session types, C ranges over class names and s ranges over shared
session types. We introduce the full syntax of types in § 5.

Class declarations are as expected, except for the restriction that object fields
cannot contain live channels. Without this restriction session would not behave
as required, as shown in Example 5.1 of [12].

(type) t ::= X | C | s | (s , s)

(class) class ::= class C extends C { f̃ t̃ ˜meth }
(method) meth ::= t m (t̃ x̃ , ρ̃ ỹ) { e } | (X <: t) m (t̃ x̃ , ρ̃ ỹ) { e }
(expression) e ::= x | v | this | e ; e | e .f := e | e .f | e . m (ẽ) | new C

| new (s , s) | NullExc | spawn { e } | connect u s {e }
| u .send (e) | u .receive (x){e } | u .sendS (u) | u .receiveS (x){e }
| u .sendCase (e){C̃ � ẽ } | u .receiveCase (x){C̃ � ẽ }
| u .sendWhile (e){C̃ � ẽ }{C̃ � ẽ }
| u .receiveWhile (x){C̃ � ẽ }{C̃ � ẽ }

(channel) u ::= c | x
(value) v ::= c | null | o
(thread) P ::= e | P | P

Fig. 6. Syntax, where syntax occurring only at runtime appears shaded

Bounded Session Types for Object Oriented Languages 215

The method declaration t m (t̃ x̃ , ρ̃ ỹ) { e } introduces a standard method,
while the method declaration (X <: t)m (t̃ x̃ , ρ̃ ỹ) { e } introduces a parame-
terized method whose result has the type of the first of its parameters and this
type is bound by t 3.

The syntax of user expressions e is standard except for the channel construc-
tor new (s , s ′), which builds a fresh shared channel used to establish a private
session, and the communication expressions, i.e. connect u s {e } and all the ex-
pressions in the last three lines.

The first line describes the syntax for parameters, values, the self identifier this,
sequence of expressions, assignment to fields, field access, method call, and object
creation. The values are channels and null. Threads may be created through
spawn { e }, in which the expression e is called the thread body.

The expression connect u s {e } starts a session: the channel u appears within
the term {e } in session communications that agree with the session type s . The
remaining eight expressions, which realise the exchanges of data, are called ses-
sion expressions, and start with “u . ”; we call u the subject of such expressions.

The expressions u .send (e) and u .receive (x){e } exchange values (which can
be shared channels): the former evaluates e and sends the result over u , while
the latter receives a value via u that will be bound to x within e . The expressions
u .sendS (u ′) and u .receiveS (x){e } exchange live channels: in u .receiveS (x){e }
the received channel will be bound to x within e , in which x is used for com-
munications.

The next four primitives are extended from those in [12]; they allow choice of
communication on the basis of the class of an object sent/received.

The expression u .sendCase (e){C1 � e 1; · · · ;Cn � e n} first evaluates the ex-
pression e to an object o , and sends o over u . It continues with e i, where i is
the smallest index in {1, ..., n} such that o is Ci, if such an i exists. Otherwise,
it returns null. The expression c .receiveCase (x){C1 � e 1; · · · ;Cn � e n} receives
an object o via channel u and binds it to x . It continues with e i[o/x], where i is
the smallest index in {1, ..., n} such that o is Ci, if such an i exists. Otherwise,
it returns null.

The expressions u .sendWhile (e){C1 �e 1; · · · ;Cn �e n}{D1 �d 1; · · · ;Dm �d m}
and u .receiveWhile (x){C1 �e 1; · · · ;Cn �e n}{D1�d 1; · · · ;Dm �d m} express iter-
ative communication. The expression u .sendWhile (e){C1�e 1; · · · ;Cn �e n}{D1�
d 1; · · · ;Dm � d m} evaluates e to an object o and sends it over u . Then it con-
tinues with e i and iterates, where i is the smallest index in {1, ..., n} such that
o is Ci, if such i exists. If no such i exists, then it continues with d j , where j is
the smallest index in {1, ..., m} such that o is Dj , if such a j exists. Otherwise, it
returns null. The meaning of the expression u .receiveWhile (x){C1 � e 1; · · · ;Cn �
e n}{D1 � d 1; · · · ;Dm � d m} is analogous.

3 We do not expect any technical difficulties in allowing standard parameterized meth-
ods. We restricted the result type in this way in order to focus on the features of the
object oriented paradigm which interact with sessions.

216 M. Dezani-Ciancaglini et al.

Runtime syntax. The runtime syntax (shown shaded in Fig. 6) extends the
user syntax: it introduces threads running in parallel; adds NullExc to expres-
sions, denoting the null pointer error; finally, extends values to allow for object
identifiers o , which denote references to instances of classes. Single and multiple
threads are ranged over by P, P ′. The expression P | P ′ says that P and P ′ are
running in parallel.

4 Operational Semantics

This section presents the operational semantics of Moose<:, which is mainly
inspired by the language Moose of [12]. We only discuss the more interesting
rules. First we list the evaluation contexts.

E ::= [] | E .f | E; e | E .f := e | o .f := E | E.m (ẽ) | o .m (ṽ , E, ẽ)
| c .send (E) | c .sendCase (E){C1 � e 1; · · · ;Cn � e n}

Fig. 7 defines auxiliary functions used in the operational semantics and typing
rules. We assume a fixed, global class table CT, which contains Object as top-most
class.

Objects and fresh channels are stored in heaps, whose syntax is given by:

h ::= [] | h :: [o �→ (C , f̃ : ṽ)] | h ::c

Heaps, ranged over h, are built inductively using the heap composition oper-
ator “::”, and contain mappings of object identifiers to instances of classes, and
channels. In particular, a heap will contain the set of objects and fresh channels,
both shared and live, that have been created since the beginning of execution.
The heap produced by composing h :: [o �→ (C , f̃ : ṽ)] will map o to the object
(C , f̃ : ṽ), where C is the class name and f̃ : ṽ is a representation for the vector
of distinct mappings from field names to their values for this instance. The heap
produced by composing h ::c will contain the fresh channel c . Heap membership
for object identifiers and channels is checked using standard set notation, we
therefore write it as o ∈ h and c ∈ h, respectively. Heap update for objects is
written h[o �→ (C , f̃ : ṽ)], and field update is written (C , f̃ : ṽ)[f �→ v].

Expressions. Fig. 8 shows the rules for execution of expressions which cor-
respond to the sequential part of the language. These are identical to the rules
of [12] except for the addition of a fresh shared channel to the heap (rule NewS-
R). In this rule we assume the two session types s and s ′ to be dual. The duality
relation � will be defined in Fig. 15. In rule NewC-R the auxiliary function
fields(C) examines the class table and returns the field declarations for C. The
method invocation rule is Meth-R; the auxiliary function mbody(m , C) looks
up m in the class C, and returns a pair consisting of the formal parameter names
and the method’s code. The result is the method body where the keyword this
is replaced by the object identifier o , and the formal parameters x̃ are replaced
by the actual parameters ṽ .

Bounded Session Types for Object Oriented Languages 217

Field lookup

fields(Object) = •
fields(D) = f̃

′
t̃ ′ class C extends D {f̃ t̃ M̃} ∈ CT

fields(C) = f̃
′
t̃ ′

, f̃ t̃

Method lookup

methods(Object) = •
methods(D) = M̃ ′ class C extends D {f̃ t̃ M̃} ∈ CT

methods(C) = M̃ ′, M̃

Method type lookup

class C extends D {f̃ t̃ M̃} ∈ CT Tm (σ̃ x̃) { e } ∈ M̃

mtype(m , C) = σ̃ → T

class C extends D {f̃ t̃ M̃} ∈ CT m �∈ M̃

mtype(m , C) = mtype(m , D)

Method body lookup

class C extends D {f̃ t̃ M̃} ∈ CT Tm (σ̃ x̃) { e } ∈ M̃

mbody(m , C) = (x̃ , e)

class C extends D {f̃ t̃ M̃} ∈ CT m /∈ M̃

mbody(m , C) = mbody(m, D)

σ is either t or ρ
T is either t or (X <: t).

Fig. 7. Lookup Functions

Threads. The reduction rules for threads, shown in Fig. 9, are given modulo
the standard structural equivalence rules of the π-calculus [23], written ≡. We
define multi-step reduction as: →→def= (−→ ∪ ≡)∗. All rules are essentially taken
from [12], except for the last three rules which support branching of the com-
munications depending on the class of the object send/received.

When spawn { e } is the active redex within an arbitrary evaluation context,
the thread body e becomes a new thread, and the original spawn expression is
replaced by null in the context.

Rule Connect-R describes the opening of sessions: if two threads require a
session on the same channel name c with dual session types, then a new fresh
channel c ′ is created and added to the heap. The freshness of c ′ guarantees
privacy and bilinearity of the session communication between the two threads.
Finally, the two connect expressions are replaced by their respective session
bodies, where the shared channel c has been substituted by the live channel c ′.

Rule ComS-R gives simple session communication: value v is sent by one
thread to another and it is bound to the variable x within the expression e at
the receiver side.

218 M. Dezani-Ciancaglini et al.

Fld-R
h(o) = (C, f̃ : ṽ)

o .fi , h −→ v i , h

Seq-R
v ; e , h −→ e , h

FldAss-R
h′ = h[o �→ h(o)[f �→ v]]

o .f := v , h −→ v , h′

NewC-R
fields(C) = f̃ t̃ o �∈ h

new C, h −→ o , h :: [o �→ (C, f̃ : ñull)]

NewS-R
s � s ′ c �∈ h

new (s , s ′), h −→ c , h ::c

Cong-R
e , h −→ e ′, h′

E[e], h −→ E[e ′], h′

Meth-R
h(o) = (C, . . .) mbody(m , C) = (x̃ , e)

o .m (ṽ), h −→ e [o/this][ṽ/̃x], h

NullProp-R
E[NullExc], h −→ NullExc , h

NullFldAss-R
null .f := v , h −→ NullExc , h

NullFld-R
null .f , h −→ NullExc , h

NullMeth-R
null.m (ṽ), h −→ NullExc , h

Fig. 8. Expression Reduction

Rule ComSS-R describes session delegation. One thread is ready to receive
a live channel, which will be bound to the variable x within the expression e ;
the other thread is ready to send such a channel. Notice that when the channel
is exchanged, the receiver spawns a new thread to handle the consumption of
the delegated session. This strategy is necessary in order to avoid deadlocks in
the presence of circular paths of session delegation, as shown in example 4.2
of [12].

To understand rule ComSCaseSuccess-R it is important to notice that in a
well-typed process for all i ∈ {1, ..., n} there is k ∈ {1, ..., m} such that Ci <: C ′

k

and vice versa. The sender thread checks if the exchanged object o belongs to
some class of its own list of classes: if i is the smallest index in {1, ..., n} such
that o is Ci, then the sender thread continues with e i. Similarly, if k is the
smallest index in {1, ..., m} such that o is C ′

k, then the receiver thread continues
with e ′

k[o/x]. If instead the object o does not belong to any of the classes Ci,C ′
k

for i ∈ {1, ..., n} and k ∈ {1, ..., m}, then rule ComSCaseFailure-R is applied:
both expressions return null. Notice that this choice is made at run time and
that it depends on the class of the exchanged object, which it is not known at
compile time.

Rule ComSWhile-R describes iteration by means of case expressions. The
iteration loops on the alternatives in the first pair of lists of classes and expres-
sions, while the second pair of lists represents default expressions which can be
possibly evaluated only once after the loop end. The typing rules assure that
for all i ∈ {1, ..., n} there is k ∈ {1, ..., n′} such that Ci <: C ′

k and vice versa.
Moreover, for all j ∈ {1, ..., m} there is l ∈ {1, ..., m′} such that Dj <: D ′

l and
vice versa. The test is on the class of the exchanged object o : if there exists
an i which is the smallest index in {1, ..., n} such that o is Ci, then the sender

Bounded Session Types for Object Oriented Languages 219

Struct
P | null ≡ P P | P1 ≡ P1 | P P | (P1 | P2) ≡ (P | P1) | P2 P ≡ P ′ ⇒ P | P1 ≡ P ′ | P1

Spawn-R
E[spawn { e }], h −→ E[null] | e , h

Par-R
P, h −→ P ′, h′

P | P0, h −→ P ′ | P0, h
′

Str-R
P ′

1 ≡ P1 P1, h −→ P2, h
′ P2 ≡ P ′

2

P ′
1, h −→ P ′

2, h
′

Connect-R
c ′ �∈ h s � s ′

E1[connect c s {e 1}] | E2[connect c s ′{e 2}], h −→ E1[e 1[c
′
/c]] | E2[e 2[c

′
/c]], h ::c ′

ComS-R
E1[u .send (v)] | E2[u .receive (x){e }], h −→ E1[null] | E2[e [v/x]], h

ComSS-R
E1[c .sendS (c ′)] | E2[c .receiveS (x){e }], h −→ E1[null] | e [c

′
/x] | E2[null], h

ComSCaseSuccess-R
h(o) = (C , . . .) C <: Ci ∀j < i(C �<: Cj) i ∈ {1, . . . , n}

C <: C ′
k ∀l < k(C �<: C ′

l) k ∈ {1, . . . , m}
E1[c .sendCase (o){C1 � e 1; · · · ;Cn � e n}] | E2[c .receiveCase (x){C ′

1 � e ′
1; · · · ; C ′

m � e ′
m}], h

−→ E1[e i] | E2[e ′
k[o/x]], h

ComSCaseFailure-R
h(o) = (C , . . .) ∀i ∈ {1, . . . , n}(C �<: Ci) ∀k ∈ {1, . . . , m}(C �<: C ′

k)

E1[c .sendCase (o){C1 � e 1; · · · ;Cn � e n}] | E2[c .receiveCase (x){C ′
1 � e ′

1; · · · ; C ′
m � e ′

m}], h
−→ E1[null] | E2[null], h

ComSWhile-R
E1[c .sendWhile (e){C1 � e 1; · · · ;Cn � e n}{D1 � d 1; · · · ; Dm � d m}] |
E2[c .receiveWhile (x){C ′

1 � e ′
1; · · · ;C ′

n′ � e ′
n′}{D ′

1 � d ′
1; · · · ;D ′

m′ � d ′
m′}], h −→

E1[c .sendCase (e){C1 � e ′′
1 ; · · · ;Cn � e ′′

n,D1 � d 1; · · · ;Dm � d m}] |
E2[c .receiveCase (x){C ′

1 � e ′′′
1 ; · · · ;C ′

n′ � e ′′′
n′ ,D ′

1 � d ′
1; · · · ;D ′

m′ � d ′
m′}], h

where e ′′
i = e i; c .sendWhile (e){C1 � e 1; · · · ;Cn � e n}{D1 � d 1; · · · ;Dm � d m}

e ′′′
j = e ′

j ; c .receiveWhile (x){C ′
1 � e ′

1; · · · ; C ′
n′ � e ′

n′}{D ′
1 � d ′

1; · · · ;D ′
m′ � d ′

m′}
(1 ≤ i ≤ n)(1 ≤ j ≤ n′)

Fig. 9. Thread Reduction

thread continues with e i, and iterates. Otherwise, if there exists a j which is
the smallest index in {1, ..., m} such that o is Dj, then the sender thread con-
tinues with d j . Last, if the object o does not belong to any of the classes Ci,Dj

for i ∈ {1, ..., n} and j ∈ {1, ..., m}, then the sender thread returns null. Dually, if

220 M. Dezani-Ciancaglini et al.

there exists a k which is the smallest index in {1, ..., n′} such that o is C ′
k, then

the receiver thread continues with e ′
k[o/x], and iterate. Otherwise if there exists

an l which is the smallest index in {1, ..., m′} such that o is D ′
l , then the receiver

thread continues with d ′
l[o/x]. Last, if the object o does not belong to any of

the classes C ′
k,D ′

l for k ∈ {1, ..., n′} and l ∈ {1, ..., m′}, then the receiver thread
returns null.

5 The Type Assignment System and Its Properties

5.1 Types

The full syntax of types is given in Fig. 10. It extends the syntax of [12] by
allowing bounded polymorphism.

Partial session types, ranged over by π, represent sequences of communica-
tions, where ε is the empty communication, and π1.π2 consists of the communi-
cations in π1 followed by those in π2. The partial session types ?(X <: t 1) and
!t 2 express respectively the reception of a value whose type is bound by type
t 1 and the sending of a value of type t 2. Analogously, the partial session types
?(X <:η1) and !(η2) represent the exchange of a live channel, and therefore of an
active session, with remaining communications bound by η1 and determined by
η2, respectively. Note that we allow bounds to be type variables; this supports
more expressive session types as shown in the example of Section 2.

The case types !�C̃ .π̃� and ?�(X̃ <: C̃).π̃� reflect in an obvious way the struc-
ture of the case expressions. The same observation applies to the iterative types
!�(C̃ .π̃)∗, C̃ .π̃� and ?�((X̃ <:C̃).π̃)∗, (X̃ <: C̃).π̃� and the while expressions.

An ended session type, η, is either a type variable or a partial session type
concatenated either with end or with a case type whose branches in turn are all
ended session types. It expresses a sequence of communications with its termi-
nation, i.e. no further communications on that channel are allowed at the end.
Ended session types guarantee that a channel is consumed, i.e. it cannot be
further used. This is essential to guarantee the uniqueness of communications in
sessions, as shown in Example 5.2 of [12].

π ::= ε | π.π | ?(X <: t) | !t | ?(X <:η) | !(η) |
!�C̃ .π̃� | ?�(X̃ <: C̃).π̃� |
!�(C̃ .π̃)∗, C̃ .π̃� | ?�((X̃ <: C̃).π̃)∗, (X̃ <: C̃).π̃� partial session type

η ::= X | π.end | π.η | !�C̃ .η̃� | ?�(X̃ <: C̃).η̃� ended session type
ρ ::= π | η running session type
τ ::= ρ |
 live session type
s ::= begin.η shared session type
θ ::= τ | s session type
t ::= X | C | s | (s , s) standard type

Fig. 10. Syntax of Types

Bounded Session Types for Object Oriented Languages 221

Class
C ∈ D(CT)

� C : tp

Wf-Session

� s : tp

Pair
s � s ′

� (s , s ′) : tp

Fig. 11. Well-formed Standard Types

We use ρ to range over both partial session types and ended session types: we
call it a running session type.

A live session type τ is either a running session type or �. We use � when
typing threads, to indicate the type of a channel which is being used by two
threads in complementary ways.

A shared session type, s , starts with the keyword begin and has one or more
endpoints, denoted by end. Between the start and each ending point, a sequence
of session parts describes the communication protocol. Shared session types are
only used to type shared channels which behave as standard values in that they
can be sent using send and can be stored in object fields. Live channels instead
can only be sent using sendS and cannot be stored in object fields.

A session type θ is either a live session type or a shared session type.
Standard types, t , are either type variables (X), class identifiers (C), shared

session types, or pairs of shared session types which are duals (i.e. (s , s ′)). Fig. 11
defines well-formed standard types. Note that D(CT) denotes the domain of the
class table CT, i.e. the set of classes declared in CT.

Δ := ∅ | Δ, X <: t | Δ, X <: ρ

SuEmp

∅ � ok

SuAdd1
Δ � ok X �∈ D(Δ)

Δ, X <: t � ok

SuAdd2
Δ � ok X �∈ D(Δ)

Δ, X <: ρ � ok

Fig. 12. Subtyping Environments

The subtyping judgements use subtyping environments which take into ac-
count the bounds of type variables. Subtyping environments (ranged over by
Δ) are defined in Fig. 12, where D(Δ) is the set of the left hand sides in the
subtyping judgements of Δ.

The subtyping judgement for standard types has the shape:

Δ � t <: t ′

and it holds if it can be derived from the axioms of Fig. 13 plus the reflexive and
transitive rules. As in [26], we assume that the subclassing is acyclic.

222 M. Dezani-Ciancaglini et al.

Δ, X <: t � X <: t

class C extends D {f̃ t̃ M̃} ∈ CT

Δ � C <: D

� (s , s ′) : tp

Δ � (s , s ′) <: s

� (s , s ′) : tp

Δ � (s , s ′) <: s ′

Fig. 13. Subtyping for Standard Types

Δ � t <: t ′

Δ � !t <:!t ′

Δ � t <: t ′

Δ � ?(X <: t ′) <:?(X <: t)

Δ � η <: η′

Δ � !(η) <:!(η′)

Δ � η <: η′

Δ � ?(X <:η′) <:?(X <:η)

Δ, X <: η � X <: η

Δ � ρi <: ρ′
i i ∈ {1, ..., n}

Δ � !�C1.ρ1, . . . ,Cn.ρn� <:!�C1.ρ
′
1, . . . ,Cn.ρ′

n�

Δ, Xi <: Ci � ρi <: ρ′
i i ∈ {1, ..., n}

Δ � ?�(X1 <:C1).ρ1, . . . , (Xn <:Cn).ρn� <:?�(X1 <:C1).ρ
′
1, . . . , (Xn <:Cn).ρ′

n�

Δ � πi <: π′
i i ∈ {1, ..., n + m}

Δ � !�(C1.π1, . . . , Cn.πn)∗,D1.πn+1, . . . ,Dm.πn+m�
<:!�(C1.π

′
1, . . . ,Cn.π′

n)∗,D1.π
′
n+1, . . . ,Dm.π′

n+m�

Δ, Xi <: Ci � πi <: π′
i i ∈ {1, ..., n} Δ, Yj <: Dj � πn+j <: π′

n+j j ∈ {1, ..., m}
Δ � ?�((X1 <:C1).π1, . . . , (Xn <:Cn).πn)∗, (Y1 <:D1).πn+1, . . . , (Ym <:Dm).πn+m�

<:?�((X1 <:C1).π
′
1, . . . , (Xn <:Cn).π′

n)∗, (Y1 <:D1).π
′
n+1, . . . , (Ym <:Dm).π′

n+m�

Δ � π <: π′

Δ � π.end <: π′.end

Δ � π <: π′ Δ � ρ <: ρ′

Δ � π.ρ <: π′.ρ′

Fig. 14. Subtyping for Running Session Types

The subtyping judgement for running session types has the shape:

Δ � ρ <: ρ′

and it holds if it can be derived from the axioms of Fig. 14 plus the reflexive
and transitive rules. It is worthwhile to notice that, in contrast with [16], our
session subtyping is covariant for outputs and contravariant for inputs with re-
spect to the standard subtyping of the communicated values. The motivation for
this is that we expect all channels whose type is a subtype of !t to be able to
communicate with channels whose type is ?(X <: t) and similarly for the other

Bounded Session Types for Object Oriented Languages 223

ρ � ρ′

begin.ρ � begin.ρ′ end � end

ρ � ρ′

ρ′ � ρ

ρ � ρ′[η/X]

!(η).ρ �?(X <:η′).ρ′

ρ � ρ′[t/X]

!t .ρ �?(X <: t ′).ρ′

&i∈{1,...,n},j∈{1,...,m} (ρi � ρ′
j [Ci � C ′

j/Xj])
∀i ∈ {1, ..., n}∃j ∈ {1, ..., m}. Ci <: C ′

j ∀j ∈ {1, ..., m}∃i ∈ {1, ..., n}. C ′
j <: Ci

!�C1.ρ1, . . . ,Cn.ρn� �?�(X1 <:C ′
1).ρ

′
1, . . . , (Xm <:C ′

m).ρ′
m�

&i∈{1,...,n},k∈{1,...,n′} (πi � π′
k[Ci � C ′

k/Xk])&

&j∈{1,...,m},l∈{1,...,m′} (πn+j � π′
n′+l[Dj � D ′

l/Yl])
∀i ∈ {1, ..., n}∃k ∈ {1, ..., n′}. Ci <: C ′

k ∀k ∈ {1, ..., n′}∃i ∈ {1, ..., n}. C ′
k <: Ci

∀j ∈ {1, ..., m}∃l ∈ {1, ..., m′}. Dj <: D ′
l ∀l ∈ {1, ..., m′}∃j ∈ {1, ..., m}. D ′

l <: Dj

!�(C1.π1, . . . , Cn.πn)∗,D1.πn+1, . . . ,Dm.πn+m� �
?�((X1 <:C ′

1).π
′
1, . . . , (Xn′ <:C ′

n′).π′
n′)∗(Y1 <:D ′

1).π
′
n′+1, . . . , (Ym′ <:D ′

m′).π′
n′+m′�

Fig. 15. Duality Relation

types. This requires the given rules for output. Similar reasons justify the rules
for inputs.

In order to guarantee protocol soundness it is crucial to introduce a dual-
ity relation between shared session types which ensures that two sessions agree
with each other with respect to the order in which data are communicated
and with respect to the types of the communicated data. The introduction of
bounded polymorphism allows to relate more than one session type to another
session type, in contrast to the systems of [1,20,30,16,12], where each session
type has a unique dual. The definition of this relation (denoted by �) is given
in Fig. 15, where we use t <: t ′ as shorthand for ∅ � t <: t ′ and similarly
for ρ <: ρ′.

Two case types !�C1.ρ1, . . . ,Cn.ρn� and ?�(X1 <:C ′
1).ρ

′
1, . . . , (Xm <:C ′

m).ρ′m�
are dual if for any arbitrary class C either C <: Ci and C <: C ′

j for some
i ∈ {1, . . . , n} and j ∈ {1, . . . , m}, or C
<: Ci and C
<: C ′

j for all i ∈ {1, . . . , n}
and j ∈ {1, . . . , m}. This condition is necessary in order to ensure applicability of
one of the two reduction rules ComSCaseSuccess-R and ComSCaseFailure-
R. We ensure this condition by requiring that for all i ∈ {1, ..., n} there exists
a j ∈ {1, ..., m} such that Ci <: C ′

j and for all j ∈ {1, ..., m} there exists a
i ∈ {1, ..., n} such that C ′

j <: Ci. Moreover, if there is a class which is a subclass
of both Ci and Cj (i.e. Ci and Cj are comparable), then we need to guarantee
that the two threads will continue the communication in a coherent way.4 This
means that ρi and ρ′j must agree as specified below. Instead, if Ci and Cj are
incomparable, then ρi and ρ′j can be unrelated. In order to express the above
conditions we define the “minimum” of two classes as follows:

4 Taking into account the order in which the classes appear we could avoid to check
some pairs of i, j. For simplicity we do not consider this refinement.

224 M. Dezani-Ciancaglini et al.

C � C ′ =

⎧
⎪⎨

⎪⎩

C if C <: C ′,
C ′ if C ′ <: C ,

⊥ otherwise.

and we require ρi � ρ′j [Ci � C ′
j/Xj] for all i ∈ {1, ..., n} and all j ∈ {1, ..., m},

with the convention ρi � ρ′j [⊥/Xj] = true.
The duality of iterative types can be explained similarly, taking into account

that we need to ensure that either both threads choose to iterate, or both threads
choose default expressions, or both threads choose null.

It is easy to verify by induction on the definition of � that subtyping preserves
duality, i.e.:

Lemma 5.1. If ρ � ρ′ and ρ′′ <: ρ′, then ρ � ρ′′.

5.2 Typing Rules

The typing judgements for expressions and threads have three environments, i.e.
they have the shape:

Δ; Γ ; Σ � e : t Δ; Γ ; Σ � P : thread

where the standard environment Γ associates standard types to this, param-
eters, objects, and shared channels, while the session environment Σ contains

Standard Environments, and Well-formed Standard Environments

Γ ::= ∅ | Γ, x : t | Γ, this : C | Γ, o : C | Γ, c : s | Γ, c : (s , s ′)

Emp

∅ � ok

EVar
Γ � ok � t : tp x �∈ D(Γ)

Γ, x : t � ok
EOid
Γ � ok C ∈ D(CT) o �∈ D(Γ)

Γ, o : C � ok

Ethis
Γ � ok C ∈ D(CT) this �∈ D(Γ)

Γ, this : C � ok
ECha1
Γ � ok � s : tp c �∈ D(Γ)

Γ, c : s � ok

ECha2
Γ � ok � (s , s ′) : tp c �∈ D(Γ)

Γ, c : (s , s ′) � ok

Session Environments, and Well-formed Session Environments

Σ ::= ∅ | Σ, u : θ

SEmp

∅ � ok

SeAdd
Σ � ok u �∈ D(Σ)

Σ, u : θ � ok

Fig. 16. Standard and Session Environments

Bounded Session Types for Object Oriented Languages 225

only judgements for channel names and variables. Fig. 16 defines well-formedness
of standard and session environments, where the domain of an environment is
defined as usual and denoted by D().

The main differences with the typing rules of [12] are the addition of bounded
polymorphism and the deletion of hot sets, which in [12] were used to guarantee
progress, a property we will not consider here. As we already discussed in the
introduction, we could add hot sets to get progress without problems.

Typing Rules for Values

Null
Γ � ok � t : tp

Δ; Γ ; ∅ � null : t

Oid
Γ, o : C � ok

Δ; Γ, o : C; ∅ � o : C

Chan
Γ, c : t � ok

Δ; Γ, c : t ; ∅ � c : t

Typing Rules for Standard Expressions

Var
Γ, x : t � ok

Δ; Γ, x : t ; ∅ � x : t

This
Γ, this : C � ok

Δ; Γ, this : C; ∅ � this : C

Fld
Δ; Γ ;Σ � e : C f t ∈ fields(C)

Δ; Γ ;Σ � e .f : t

Seq
Δ; Γ ; Σ � e : t Δ; Γ ; Σ′ � e ′ : t ′

Δ; Γ ; Σ◦Σ′ � e ; e ′ : t ′

FldAss
Δ; Γ ;Σ � e : C Δ; Γ ; Σ′ � e ′ : t f t ∈ fields(C)

Δ; Γ ;Σ◦Σ′ � e .f := e ′ : t

NewC
Γ � ok C ∈ D(CT)

Δ; Γ ; ∅ � new C : C

NewS
Γ � ok

Δ; Γ ; ∅ � new (s , s ′) : (s , s ′)

Spawn
Δ; Γ ; Σ � e : t ended(Σ)

Δ; Γ ;Σ � spawn { e } : Object

NullPE
Γ � ok � t : tp

Δ; Γ ; ∅ � NullExc : t

Meth
Δ; Γ ;Σ0 � e : C Δ; Γ ; Σi � e i : t i i ∈ {1 . . . n}

mtype(m , C) = t 1, . . . , t n, ρ1, . . . , ρm → t

Δ; Γ ;Σ0◦Σ1 . . . ◦Σn◦{u 1 : ρ1, . . . , u m : ρm} � e .m (e 1, . . . , e n, u 1, . . . , u m) : t

MethB
Δ; Γ ; Σ0 � e : C Δ; Γ ; Σi � e i : t i i ∈ {1 . . . n}

mtype(m , C) = X, t 2, . . . , t n, ρ1, . . . , ρm → X <: t Δ � t 1 <: t

Δ; Γ ;Σ0◦Σ1 . . . ◦Σn◦{u 1 : ρ1, . . . , u m : ρm} � e .m (e 1, . . . , e n, u 1, . . . , u m) : t 1

Fig. 17. Typing Rules for Expressions I

226 M. Dezani-Ciancaglini et al.

Typing Rules for Communication Expressions

Conn
Δ; Γ ; ∅ � u : begin.η Δ; Γ \ u ; Σ, u : η � e : t

Δ; Γ ; Σ � connect u begin.η {e } : t

Send
Δ; Γ ; Σ � e : t

Δ; Γ ;Σ◦{u :!t } � u .send (e) : Object

Receive
Δ, X <: t ; Γ, x : X; Σ � e : t ′ X �∈ Γ ∪ Δ ∪ Σ \ u

Δ; Γ ; {u : ?(X <: t)}◦Σ � u .receive (x){e } : t ′

SendS
Γ � ok η �= ε.end

Δ; Γ ; {u ′ : η, u : !(η)} � u .sendS (u ′) : Object

ReceiveS
Δ, X <: η; Γ \ x ; {x : X} � e : t η �= ε.end

Δ; Γ ; {u : ?(X <:η)} � u .receiveS (x){e } : Object

SendCase
Δ; Γ ; Σ0 � e : C Δ; Γ ; Σ, u : ρi � e i : t Ci <: C i ∈ {1, . . . , n}

Δ; Γ ;Σ0◦Σ, u : !�C1.ρ1, . . . , Cn.ρn� � u .sendCase (e){C1 � e 1; · · · ;Cn � e n} : t

ReceiveCase
Δ, Xi <: Ci; Γ, x : Xi; Σ, u : ρi � e i : t i ∈ {1, . . . , n}

Δ; Γ ;Σ, u :?�(X1 <:C1).ρ1, . . . , (Xn <:Cn).ρn� � u .receiveCase (x){C1 � e 1; · · · ;Cn � e n} : t

SendWhile
Δ; Γ ; ∅ � e : C Δ; Γ ; {u : πi} � e i : t Ci <: C i ∈ {1, . . . , n}

Δ; Γ ; {u : πn+j} � d j : t Dj <: C j ∈ {1, . . . , m}
Δ; Γ ; {u : !�(C1.π1, . . . ,Cn.πn)∗, D1.πn+1, . . . ,Dm.πn+m�}

� u .sendWhile (e){C1 � e 1; · · · ;Cn � e n}{D1 � d 1; · · · ;Dm � d m} : t

ReceiveWhile
Δ, Xi <: Ci; Γ, x : Xi; {u : πi} � e i : t i ∈ {1, . . . , n}

Δ, Yj <: Dj ; Γ, x : Yj ; {u : πn+j} � d j : t j ∈ {1, . . . , m}
Δ; Γ ; {u : ?�((X1 <:C1).π1, . . . , (Xn <:Cn).πn)∗, (Y1 <:D1).πn+1, . . . , (Ym <:Dm).πn+m�}

� u .receiveWhile (x){C1 � e 1; · · · ;Cn � e n}{D1 � d 1; · · · ;Dm � d m} : t

Non-structural Typing Rules for Expressions

Sub
Δ; Γ ;Σ � e : t Δ � t <: t ′

Δ; Γ ;Σ � e : t ′

WeakES
Δ; Γ ; Σ � e : t u �∈ D(Σ)

Δ; Γ ; Σ, u : ε � e : t

WeakE
Δ; Γ ; Σ, u : π � e : t

Δ; Γ ; Σ, u : π.end � e : t

Fig. 18. Typing Rules for Expressions II

Bounded Session Types for Object Oriented Languages 227

M-ok
∅; {this : C, x̃ : t̃ } ; {ỹ : ρ̃} � e : t

t m (t̃ x̃ , ρ̃ ỹ) { e } : ok in C

MS-ok
{X <: t }; {this : C, x : X, x̃ : t̃ } ; {ỹ : ρ̃} � e : X

(X <: t)m (X x , t̃ x̃ , ρ̃ ỹ) { e } : ok in C

C-ok
M̃ : ok in C

class C extends D {f̃ t̃ M̃} : ok

CT-ok
class C extends D {f̃ t̃ M̃} : ok CT : ok

CT, class C extends D {f̃ t̃ M̃} : ok

Fig. 19. Well-formed Class Tables

Start
Δ; Γ ; Σ � e : t

Δ; Γ ; Σ � e : thread

Par
Δ; Γ ;Σi � Pi : thread i ∈ {1, 2}

Δ; Γ ; Σ1||Σ2 � P1 | P2 : thread

Fig. 20. Typing Rules for Threads

In Fig. 17, Fig. 18 and Fig. 20 we give the typing rules for expressions and
threads using the lookup functions defined in Fig. 7. In the typing rules for
expressions the session environments of the conclusions are obtained from those
of the premises and possibly other session environments using the concatenation
operator, ◦, defined below. We consider different cases for the concatenation of
session types since we want to avoid to have redundant ε. As usual, ⊥ stands
for undefined.

– ρ◦ρ′ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρ if ρ′ = ε
ρ′ if ρ = ε
ρ.end if ρ′ = ε.end and ρ is a partial session type
ρ.ρ′ if ρ is a partial session type and

ρ′ is a running session type
⊥ otherwise.

– Σ \ Σ′ = {u : Σ(u) | u ∈ D(Σ) \ D(Σ′)}

– Σ◦Σ′ =

⎧
⎨

⎩

Σ \ Σ′ ∪ Σ′ \ Σ ∪ {u : Σ(u) ◦ Σ′(u) | u∈D(Σ)∩D(Σ′)}
if ∀u∈D(Σ)∩D(Σ′) : Σ(u) ◦ Σ′(u)
= ⊥;

⊥ otherwise.

The concatenation of two channel types ρ and ρ′ is the unique channel type
(if it exists) which prescribes all the communications of ρ followed by all those
of ρ′. The concatenation only exists if ρ is a partial session type, and ρ′ is a
running session type. The extension to session environments is straightforward.
The typing rules concatenate the session environments to take into account the

228 M. Dezani-Ciancaglini et al.

order of execution of expressions. We adopt the convention that typing rules are
applicable only when the session environments in the conclusions are defined.

Rule Spawn requires that all sessions used by the spawned thread are finally
consumed, i.e. they are all ended session types. This is necessary in order to
avoid configurations in which more than two threads are ready to communicate
on the same live channel. To guarantee the consumption we define:

ended(Σ) = ∀u : ρ ∈ Σ. ρ is an ended session type.

Rules Meth and MethB retrieve the type of the method m from the class
table using the auxiliary function mtype(m, C) defined in Fig. 7. The session en-
vironments of the premises are concatenated with {u 1 : ρ1, . . . , u m : ρm}, which
represents the communication protocols of the channels u 1, . . . , u m during the
execution of the method body. The difference between the two rules is the type
of the return value, which is fixed in rule Meth and instead parametrized on
the type of the first argument in rule MethB.

Rule Conn ensures that a session body properly uses its unique channel
according to the required session type. The first premise says that the shared
channel used for the session (u) can be typed with the appropriate shared session
type (begin.η). The second premise ensures that the session body can be typed in
the restricted standard environment Γ \u with a session environment containing
u : η.

Rules SendCase and ReceiveCase put together the types of the different
alternatives in the expected way. Notice that, in a specific case expression, all ρi

for i ∈ {1, ..., n} are either partial session types or ended session types – this is
guaranteed by the syntax of case session types. Similarly for rules SendWhile
and ReceiveWhile.

Rule WeakES, where ES stands for empty session, is necessary to type a
branch of a case expression where the channel which is the subject of the con-
ditional is not used. Rule WeakE, where E stands for end, allows us to obtain
ended session types as predicates of session environments in order to apply rules
Conn, Spawn and ReceiveS.

Fig. 19 defines well-formed class tables. Rules M-ok and MS-ok type-check
the method bodies with respect to a class C taking as environments the asso-
ciation between formal parameters and their types and the association between
this and C. These rules differ in the return type of the method.

In the typing rules for threads, we need to take into account that the same
channel can occur with dual types in the session environments of two premises.
For this reason we compose the session environments of the premises using the
parallel composition, ||. We define parallel composition, ||, on session types and
on session environments as follows:

θ||θ′ =
{

� if θ � θ′

⊥ otherwise.

Σ||Σ′ =

⎧
⎨

⎩

Σ \ Σ′ ∪ Σ′ \ Σ ∪ {u : Σ(u) || Σ′(u) | u∈D(Σ)∩D(Σ′)}
if ∀u∈D(Σ)∩D(Σ′) : Σ(u) || Σ′(u)
= ⊥

⊥ otherwise.

Bounded Session Types for Object Oriented Languages 229

HNull
C ∈ D(CT)

Γ ; h � null : C

HObj
h(o) = (Γ (o), ...) ∅ � Γ (o) <: C

Γ ; h � o : C

HCha
∅ � Γ (c) <: t

Γ ; h � c : t

WfObj
h(o) = (C , f̃ : ṽ) fields(C) = f̃ t̃ Γ ; h � v i : t i

Γ ; h � o

WfHeap
∀o ∈ D(h) : Γ ;h � o ∀o ∈ D(Γ) : Γ ;h � o : Γ (o)

∀c ∈ D(Σ) : c ∈ h D(Γ) ∩ D(Σ) = ∅
Γ ;Σ � h

Fig. 21. Types of Runtime Entities, and Well-formed Heaps

Note that � ||θ = θ|| �= ⊥.
Using the operator || the typing rules for processes are straightforward

(see Fig. 20). Rule Start promotes an expression to the thread level; and rule
Par types a composition of threads if the composition of their session environ-
ments is defined.

In writing session environments we assume the following operator precedence:
“,”, “◦”, “||”. For example Σ0, c : π◦Σ1||Σ2 is short for ((Σ0, c : π)◦Σ1)||Σ2.

The typing rules of Moose<: are not syntax directed, because of the non
structural typing rules and also because of the use of the “◦” and “||” operators
in composing session environments. Nevertheless, we can design a type inference
algorithm for Moose<: as we did for Moose [12].

5.3 Subject Reduction

We will consider only reductions of well-typed expressions and threads. We define
agreement between environments and heaps in the standard way and we denote
it by Γ ; Σ � h. The judgement is defined in Fig. 21. The judgement Γ ; h � v : t
guarantees that the value v has type t . The judgement Γ ; h � o guarantees
that the object o is well-formed, i.e. that its fields contain values according to
the declared field types in C, the class of that object. The judgement Γ ; Σ � h
guarantees that the heap is well-formed for Γ and Σ, i.e. that all objects are
well-formed, all o in the domain of Γ denote in the h objects of the class given
to them in Γ , all channels in the domain of Σ are channels in h, and no channel
occurs both in Γ and Σ.

We define Δ; Γ ; Σ � P ; h as a shorthand for Δ; Γ ; Σ � P : thread and
Γ ; Σ � h.

In the following we outline the proof of subject reduction, while we give full
details and proofs in the Appendix.

230 M. Dezani-Ciancaglini et al.

Standard ingredients of Subject Reduction proofs are Generation Lemmas.
The Generation Lemmas in this work are somewhat unusual, because, due to
the non-structural rules, when an expression is typed, we only can deduce some
information about the session environment used in the typing. For example,
Γ ; Σ � x : t does not imply that Σ = ∅; instead, it implies that R(Σ) ⊆
{ε, ε.end}, where R(Σ) is the range of Σ.

In order to express the Generation Lemmas, we define the partial order �
among session environments, which basically reflects the differences introduced
through the application of non-structural rules.

Definition 5.2 (Weakening Order �). Σ � Σ′ is the smallest partial order
such that:

– Σ � Σ, u : ε if u /∈ D(Σ),
– Σ, u : π � Σ, u : π.end,
– Σ, u : ε.end � Σ, u :�.

The following lemma states that the ordering relation � preserves the types of
expressions and threads, and its proof is easy using the non-structural typing
rules and Generation Lemmas.

Lemma 5.3. 1. If Σ � Σ′ and Δ; Γ ; Σ � e : t , then Δ; Γ ; Σ′ � e : t .
2. If Σ � Σ′ and Δ; Γ ; Σ � P : thread , then Δ; Γ ; Σ′ � P : thread .

Using the above lemma and the Generation Lemmas one can show that the
structural equivalence preserves typing.

Lemma 5.4 (Preservation of Typing under Structural Equivalence). If
Δ; Γ ; Σ � P : thread and P ≡ P ′, then Δ; Γ ; Σ � P ′ : thread .

Lemma 5.5 states that the typing of E[e] can be broken down into the typing of
e , and the typing of E[x]. Furthermore, Σ, the environment used to type E[x],
can be broken down into two environments, Σ = Σ1◦Σ2, where Σ1 is used to
type e , and Σ2 is used to type E[x].

Lemma 5.5 (Subderivations). If Δ; Γ ; Σ � E[e] : t , then there exist Σ1, Σ2,
t ′, x fresh in E,Γ , such that Σ = Σ1◦Σ2, and Δ; Γ ; Σ1 � e : t ′, and
Δ; Γ, x : t ′; Σ2 � E[x] : t .

On the other hand, Lemma 5.6 allows the combination of the typing of E[x] and
the typing of e , provided that the contexts Σ1 and Σ2 used for the two typing
can be composed through ◦, and that the type of e is the same as the one of x
in the first typing.

Lemma 5.6 (Context Substitution). If Δ; Γ ; Σ1 � e : t ′, and Δ; Γ, x :
t ′; Σ2 � E[x] : t , and Σ1◦Σ2 is defined, then Δ; Γ ; Σ1◦Σ2 � E[e] : t .

We can now state the Subject Reduction theorem:

Bounded Session Types for Object Oriented Languages 231

Theorem 5.7 (Subject Reduction)

1. Δ; Γ ; Σ � e : t , and Γ ; Σ � h, and e , h −→ e ′, h′ imply Δ; Γ ′; Σ � e ′ : t ,
and Γ ′; Σ � h′, with Γ ⊆ Γ ′.

2. Δ; Γ ; Σ � P ; h and P, h −→ P ′, h′ imply Δ; Γ ′; Σ′ � P ; h′ with Γ ⊆ Γ ′ and
Σ ⊆ Σ′.

The proof, given in the Appendix, is by structural induction on the derivation
e , h −→ e ′, h′ or P, h −→ P ′, h′. It uses the Generation Lemmas, the Subderiva-
tions Lemma, and the Context Substitution Lemma, as well further lemmas,
stated and proven in the Appendix, and which deal with properties of the rela-
tion “�”, of the operators “◦”, “||”, and of substitutions.

6 Conclusion and Further Work

In this paper we presented the language Moose<:, through which we studied the
addition of bounded polymorphism to an object-oriented language with session
types, and the selection of communication based on the class of objects being
sent/received. Through a case study we demonstrated how these new features
add flexibility and expressibility. Because of covariance/contravariance of out-
put/input, and the need to match cases, Moose<: subtype and duality relations
are more interesting than in most work on session types.

In terms of the type systems, there are several directions we plan to explore:
We want to extend Moose<: to incorporate generic classes in the style of GJ [22],
and allow method generic parameters to appear within class instantiations in the
argument and result types. We would also like to add union types [26] so as to
require the class of objects sent in case expressions to be one of the expected
classes and thus guarantee applicability of rule ComSCaseSuccess-R. Finally,
more refined notions of polymorphism, such as F-bounded polymorphism [4]
and match-bounded polymorphism [3], deserve investigations in the framework
of session types for object-oriented languages.

In terms of the language design, we believe that selection of communication
based on the class of objects being sent/received, rather than on the basis of a
label or a boolean, is the right design choice in the context of an object oriented
language. However, so far, we have only considered what is a natural extension of
an object oriented language. A more interesting question to tackle in the future,
is an amalgamation of object orientation with session primitives.

References

1. Bonelli, E., Compagnoni, A., Gunter, E.: Correspondence Assertions for Process
Synchronization in Concurrent Communications. Journal of Functional Program-
ming 15(2), 219–248 (2005)

2. Bracha, G., Odersky, M., Stoutamire, D., Wadler, P.: Making the Future Safe for
the Past: Adding Genericity to the Java Programming Language. In: Chambers,
C. (ed.) OOPSLA ’98, pp. 183–200. ACM Press, New York (1998)

232 M. Dezani-Ciancaglini et al.

3. Bruce, K.B., Schuett, A., van Gent, R., Fiech, A.: PolyTOIL: A Type-safe Poly-
morphic Object-oriented Language. ACM TOPLAS 25(2), 225–290 (2003)

4. Canning, P., Cook, W., Hill, W., Olthoff, W., Mitchell, J.C.: F-bounded Polymor-
phism for Object-Oriented Programming. In: FPCA’89, pp. 273–280. ACM Press,
New York (1989)

5. Carbone, M., Honda, K., Yoshida, N.: A Calculus of Global Interaction Based on
Session Types. In: DCM’06. ENTCS, Elsevier, Amsterdam (to appear, 2007)

6. Carbone, M., Honda, K., Yoshida, N.: Structured Communication-Centred Pro-
gramming for Web Services. In: De Nicola, R. (ed.) ESOP’07. LNCS, vol. 4421,
pp. 2–17. Springer, Heidelberg (2007)

7. Cardelli, L., Wegner, P.: On Understanding Types, Data Abstraction, and Poly-
morphism. Computing Surveys 17(4), 471–522 (1985)

8. Castagna, G., De Nicola, R., Varacca, D.: Semantic Subtyping for the π-calculus.
In: Panangaden, P. (ed.) LICS ’05, pp. 92–101. IEEE Computer Society Press, Los
Alamitos (2005)

9. Castagna, G., Frisch, A.: A Gentle Introduction to Semantic Subtyping. In: Bara-
hona, P., Felty, A. (eds.) PPDP’05, pp. 198–208. ACM Press, New York (2005)
(joint ICALP-PPDP keynote talk)

10. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N.: Asynchronous Session Types and
Progress for Object-Oriented Languages. In: Bonsangue, M., Johnsen, E.B. (eds.)
FMOODS 2007. LNCS, vol. 4468, pp. 1–31. Springer, Heidelberg (2007)

11. Corin, R., Denielou, P.-M., Fournet, C., Bhargavan, K., Leifer, J.: Secure Im-
plementations for Typed Session Abstractions. In: CFS’07, IEEE-CS Press, Los
Alamitos (to appear, 2007)

12. Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., Drossopoulou, S.: Session
Types for Object-Oriented Languages. In: Thomas, D. (ed.) ECOOP 2006. LNCS,
vol. 4067, pp. 328–352. Springer, Heidelberg (2006)

13. Dezani-Ciancaglini, M., Yoshida, N., Ahern, A., Drossopoulou, S.: A Distributed
Object Oriented Language with Session Types. In: De Nicola, R., Sangiorgi, D.
(eds.) TGC 2005. LNCS, vol. 3705, pp. 299–318. Springer, Heidelberg (2005)

14. Frisch, A., Castagna, G., Benzaken, V.: Semantic Subtyping. In: Plotkin, G. (ed.)
LICS’02, pp. 137–146. IEEE Computer Society Press, Los Alamitos (2002)

15. Garralda, P., Compagnoni, A., Dezani-Ciancaglini, M.: BASS: Boxed Ambients
with Safe Sessions. In: Maher, M. (ed.) PPDP’06, pp. 61–72. ACM Press, New
York (2006)

16. Gay, S., Hole, M.: Subtyping for Session Types in the Pi-Calculus. Acta Informat-
ica 42(2/3), 191–225 (2005)

17. Gay, S., Vasconcelos, V.T., Ravara, A.: Session Types for Inter-Process Communi-
cation. TR 2003–133, Department of Computing, University of Glasgow (2003)

18. Gay, S.J.: Bounded Polymorphism in Session Types. Mathematical Structures in
Computer Science (to appear, 2007)

19. Honda, K.: Types for Dyadic Interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509–523. Springer, Heidelberg (1993)

20. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Disciplines
for Structured Communication-based Programming. In: Hankin, C. (ed.) ESOP
1998 and ETAPS 1998. LNCS, vol. 1381, pp. 22–138. Springer, Heidelberg (1998)

21. Honda, K., Yoshida, N., Carbone, M.: Web Services, Mobile Processes and Types.
EATCS Bulletin 2, 160–185 (2007)

22. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a Minimal Core Calculus
for Java and GJ. ACM TOPLAS 23(3), 396–450 (2001)

Bounded Session Types for Object Oriented Languages 233

23. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Parts I and II.
Information and Computation, 100(1) (1992)

24. Mostrous, D., Yoshida, N.: Two session typing systems for higher-order mobile
processes. In: Ronchi Della Rocca, S. (ed.) TLCA 2007. LNCS, vol. 4583, Springer,
Heidelberg (2007)

25. Odersky, M., Wadler, P.: Pizza into Java: Translating Theory into Practice. In:
Felleisen, M. (ed.) POPL’97, pp. 146–159. ACM Press, New York (1997)

26. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
27. Sparkes, S.: Conversation with Steve Ross-Talbot. ACM Queue 4(2), 14–23 (2006)
28. Takeuchi, K., Honda, K., Kubo, M.: An Interaction-based Language and its Typing

System. In: Halatsis, C., Philokyprou, G., Maritsas, D., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994)

29. Vallecillo, A., Vasconcelos, V.T., Ravara, A.: Typing the Behavior of Objects
and Components using Session Types. In: Brogi, A., Jacquet, J.-M. (eds.) FO-
CLASA’02. ENTCS, vol. 68(3), pp. 439–456. Elsevier, Amsterdam (2002)

30. Vasconcelos, V.T., Gay, S., Ravara, A.: Typechecking a Multithreaded Functional
Language with Session Types. Theorical Computer Science 368(1-2), 64–87 (2006)

31. Walker, D.: Substructural Type Systems. In: Pierce, B.C. (ed.) Advanced Topics
in Types and Programming Languages, pp. 3–44. MIT Press, Cambridge (2005)

32. Web Services Choreography Working Group: Web Services Choreography Descrip-
tion Language, http://www.w3.org/2002/ws/chor/

A Proof of Subject Reduction

A.1 Generation Lemmas

Lemma A.1 (Generation for Standard Expressions)

1. Δ; Γ ; Σ � x : t implies ∅ � Σ and x : t ′ ∈ Γ for some t ′ such that
Δ � t ′ <: t .

2. Δ; Γ ; Σ � c : t implies ∅ � Σ and t = s .
3. Δ; Γ ; Σ � null : t implies ∅ � Σ.
4. Δ; Γ ; Σ � o : t implies ∅ � Σ and o : C ∈ Γ for some C such that

Δ � C <: t .
5. Δ; Γ ; Σ � NullExc : t implies ∅ � Σ.
6. Δ; Γ ; Σ � this : t implies ∅ � Σ and this : C ∈ Γ for some C such that

Δ � C <: t .
7. Δ; Γ ; Σ � e 1; e 2 : t implies Σ = Σ1◦Σ2, and t = t 2 and Γ ; Σi � e i : t i for

some Σi, t i
(i ∈ {1, 2}).

8. Δ; Γ ; Σ � e .f := e ′ : t implies Σ = Σ1◦Σ2, and Γ ; Σ1 � e : C and
Γ ; Σ2 � e ′ : t with f t ∈ fields(C) for some Σ1, Σ2, C.

9. Δ; Γ ; Σ � e .f : t implies Γ ; Σ � e : C and f t ∈ fields(C) for some C.
10. Δ; Γ ; Σ � e .m (e 1, . . . , e n) : t implies Δ; Γ ; Σ0 � e : C, and Δ; Γ ; Σi � e i : t i

for 1 ≤ i ≤ n−m, and e n−m+j = u j for 1 ≤ j ≤ m, and Σ0◦Σ1 . . . ◦Σn−m◦
{u 1 : ρ1, . . . , u m : ρm} �Σ and mtype(m , C)= t 1, . . . , t n−m, ρ1, . . . , ρm → t,
for some m (0 ≤ m ≤ n), Σi, t i, u j , ρj, C (1 ≤ i ≤ n − m, 1 ≤ j ≤ m).

11. Δ; Γ ; Σ � new C : t implies ∅ � Σ and Δ � C <: t .
12. Δ; Γ ; Σ � new (s , s) : t implies ∅ � Σ and Δ � (s , s)<: t .
13. Δ; Γ ; Σ � spawn { e } : t implies Σ′ � Σ, and ended(Σ′) and t = Object

and Δ; Γ ; Σ′ � e : t ′ for some Σ′, t ′.

http://www.w3.org/2002/ws/chor/

234 M. Dezani-Ciancaglini et al.

Proof. By induction on typing derivations, then case analysis over the shape of
the expression being typed, and then case analysis over the last rule applied. We
just show one paradigmatic case of the inductive step.

(10) If the expression being typed has the shape e .m (e 1, . . . , e n), then the
last rule applied is Meth, or one of the structural rules. We only consider the
case where the last applied rule is Consume:

Δ; Γ ; Σ, u : ε.end � e .m (e 1, . . . , e n) : t
Δ; Γ ; Σ, u :�� e .m (e 1, . . . , e n) : t

By induction hypothesis we get Δ; Γ ; Σ0 � e : C, and Δ; Γ ; Σi � e i : t i for
1 ≤ i ≤ n − m, and e n−m+j = u j for 1 ≤ j ≤ m, and

Σ0◦Σ1 . . . ◦Σn−m◦{u 1 : ρ1, . . . , u m : ρm} � Σ, u : ε.end

and mtype(m , C) = t 1, . . . , t n−m, ρ1, . . . , ρm → t , for some m (0 ≤ m ≤ n),
Σi, t i, u j, ρj , C (1 ≤ i ≤ n−m, 1 ≤ j ≤ m). By definition we also have that Σ, u :
ε.end � Σ, u :�, and from transitivity of � we obtain that Σ0◦Σ1 . . . ◦Σn−m◦{u 1 :
ρ1, . . . , u m : ρm} � Σ, u :�.

Lemma A.2 (Generation for Communication Expressions)
1. Δ; Γ ; Σ � connect u s {e } : t implies s begin.η, and Δ; Γ ; ∅ � u : begin.η and

Δ; Γ \ u ; Σ, u : η � e : t , for some η.
2. Δ; Γ ; Σ � u .send (e) : t implies t = Object and Δ; Γ ; Σ′ � e : t ′ and

Σ′◦{u : !t } � Σ for some Σ′, t ′.
3. Δ; Γ ; Σ � u .receive (x){e } : t implies Δ, X <: t ′; Γ, x : X ; Σ′ � e : t and

X
∈ Γ ∪ Δ ∪ Σ \ u and {u : ?(X <:t ′)}◦Σ′ = Σ for some X, t ′, Σ′.
4. Δ; Γ ; Σ � u .sendS (u ′) : t implies t = Object and {u ′ : η, u :!(η)} � Σ for

some η.
5. Δ; Γ ; Σ � u .receiveS (x){e } : t implies t = Object and

Δ, η <: X ; Γ \ x ; {x : η} � e : t ′ and {u : ?(X <:η)} � Σ for some X, η.
6. Δ; Γ ; Σ � u .sendCase (e){C1 � e 1; · · · ;Cn � e n} : t implies Δ; Γ ; Σ0 � e : C

and Δ, Xi <: Ci; Γ, x : Xi; Σ′, u : ρi � e i : t ∀i ∈ {1, ..., n}, and
Σ0◦Σ′, u :!�C1.ρ1, . . . ,Cn.ρn� � Σ for some C , Σ0, Σ

′, ρ1, . . . , ρn.
7. Δ; Γ ; Σ � u .receiveCase (x){C1 � e 1; · · · ;Cn � e n} : t implies

Δ, Xi <: Ci; Γ, x : Xi; Σ′, u : ρi � e i : t ∀i ∈ {1, ..., n}, and
Σ′, u :?�(X1 <:C1).ρ1, . . . , (Xn <:Cn).ρn� � Σ for some Σ′, ρ1, . . . , ρn.

8. Δ; Γ ; Σ � u .sendWhile (e){C1 � e 1; · · · ;Cn � e n}{D1 � d 1; · · · ;Dm � d m} : t
implies Δ; Γ ; ∅ � e : C, and Δ; Γ ; {u : πi} � e i : t and Ci <: C
∀i ∈ {1, . . . , n}, and Δ; Γ ; {u : πn+j} � d j : t and Dj <: C ∀j ∈ {1, . . . , m},
and {u : !�(C1.π1, . . . ,Cn.πn)∗,D1.πn+1, . . . ,Dm.πn+m�} � Σ for some
C , π1, . . . , πn+m.

9. Δ; Γ ; Σ � u .receiveWhile (x){C1 � e 1; · · · ;Cn � e n}{D1 � d 1; · · · ;Dm � d m} : t
implies Δ, Xi <: Ci; Γ, x : Xi; {u : πi} � e i : t ∀i ∈ {1, . . . , n}, and
Δ, Yj <: Dj ; Γ, x : Yj ; {u : πn+j} � d j : t ∀j ∈ {1, . . . , m}, and
{u :?�((X1 <:C1).π1, . . . , (Xn <:Cn).πn)∗, (Y1 <:D1).πn+1, . . . , (Ym <:Dm).πn+m�}
� Σ,for some X1, . . . , Xn, Y1, . . . , Ym, π1, . . . , πn+m.

Bounded Session Types for Object Oriented Languages 235

Proof. Similar to the proof of Lemma A.1.

Lemma A.3 (Generation for Threads)
1. Δ; Γ ; Σ � e :thread implies Δ; Γ ; Σ � e : t for some t .
2. Δ; Γ ; Σ � P1 | P2 : thread implies Σ = Σ1||Σ2 and Δ; Γ ; Σi � Pi : thread

(i ∈ {1, 2}) for some Σ1, Σ2.

Proof. Similar to the proof of Lemma A.1.

A.2 Types Preservation Under Structural Equivalence, and Under
Substitutions

As a convenient shorthand, for any two entities x and y which belong to a domain
that includes ⊥, we use the notation x � y to indicate that x is defined if and
only if y is defined, and if x is defined then x = y.

In Lemma 5.4 we show that structural equivalence of terms preserves types.
To prove this, we first prove in Lemma A.4 the neutrality of element ∅, and
associativity and commutativity of parallel composition of session environments.
Moreover we show in Lemma A.5 various properties of “�”, “||”, and “◦” which
easily follow from their definitions.

Lemma A.4. 1. Σ1||∅ = Σ1∅||Σ1.
2. Σ1||Σ2 � Σ2||Σ1.
3. Σ1||(Σ2||Σ3) � (Σ1||Σ2)||Σ3.

Proof. Note that for any Σ, Σ′, if Σ||Σ′ is defined, then D(Σ||Σ′) = D(Σ) ∪
D(Σ′).

(1) follows from definition of ||.
For (2) show ∀u∈ D(Σ1)∪D(Σ2) : Σ1(u)||Σ2(u) � Σ2(u)||Σ1(u). For (3) show

∀u∈ D(Σ1)∪D(Σ2)∪D(Σ3) : Σ1(u)||(Σ2(u)||Σ3(u)) � (Σ1(u)||Σ2(u))||Σ3(u).

The next Lemma, i.e. A.5, characterizes small modifications on operations that
preserve well-formedness of the session environment compositions, “||” and “◦”,
and also the preservation of the relationship “�”. It will be used in the proof of
Subject Reduction.

We define:

Σ[u �→ θ](u ′) =

{
θ if u = u ′,
Σ(u ′) otherwise.

A running type is atomic if it is of one of the following shapes:
?(X <:t), !t , ?(X <:η), !(η), !�C̃ .ρ̃�, ?�(X̃ <: C̃).ρ̃�,

!�(C̃ .π̃)∗, C̃ .π̃�, ?�((X̃ <: C̃).π̃)∗, (X̃ <: C̃).π̃�.

Lemma A.5. 1. ∅ � Σ1, and Σ1||Σ2 defined imply Σ2 � Σ1||Σ2.
2. Σ1||Σ2 � Σ, implies that there are Σ′

1, Σ
′
2 such that Σ1 � Σ′

1 and Σ2 � Σ′
2

and Σ′
1||Σ′

2Σ.
3. Σ1 � Σ′

1, and Σ′
1◦Σ2 defined, imply Σ1◦Σ2 defined, and Σ1◦Σ2 �

Σ′
1◦Σ2.

236 M. Dezani-Ciancaglini et al.

4. ended(Σ1) and (Σ1 ∪ Σ′
1)◦Σ2 defined imply

(a) Σ′
1◦Σ2 defined,

(b) (Σ1 ∪ Σ′
1)◦Σ2Σ1||Σ′

1◦Σ2.
5. Σ � Σ′ implies Σ \ u � Σ′ \ u .
6. {u : τ} � Σ implies

(a) Σ(u) ∈ {τ, τ.end, �} and R(Σ \ u) ⊆ {ε, ε.end, �};
(b) {u : τ ′} � Σ[u �→ τ ′] for all τ ′.

7. Σ, u : ρ � Σ′ and Σ′◦Σ′′ defined imply
(a) Σ′[u �→ ρ′]◦Σ′′ defined for all ρ′, proviso that ρ′ is ended only if ρ is

ended;
(b) Σ, u : ρ′ � Σ′[u �→ ρ′] for all ρ′.

8. Σ1||Σ2 defined and
(a) {u :!t }◦Σ′

1 � Σ1 and {u :?(X <:t ′)}◦Σ′
2 � Σ2 imply t <: t ′,

(b) {u :!η}◦Σ′
1 � Σ1 and {u :?(X <:η′)}◦Σ′

2 � Σ2 imply η <: η′.
9. Σ1◦Σ2||Σ3◦Σ4 defined, and Σ′

1, u : ρ � Σ1 and Σ′
3, u : ρ′ � Σ3, where ρ

and ρ′ are atomic, imply:
(a) ρ � ρ′;
(b) Σ1[u �→ ρ1]◦Σ2||Σ3[u �→ ρ2]◦Σ4 = Σ1◦Σ2||Σ3◦Σ4, for all ρ1, ρ2 such

that ρ1 � ρ2 and ρ1, ρ2 are ended only if ρ, ρ′ are ended too.
10. Σ1◦Σ2||Σ3◦Σ4 defined, and {u : π} � Σ1 and {u : π′}◦Σ′

3 = Σ3 and π � π′

imply Σ1[u �→ ε]◦Σ2||{u : ε}◦Σ′
3◦Σ4 = Σ1◦Σ2||Σ3◦Σ4.

Proof. For (1) notice that ∅ � Σ1 implies R(Σ1) ⊆ {ε, ε.end, �} and that Σ1||Σ2
defined implies Σ1(u) � Σ2(u) for all u ∈ D(Σ1) ∩ D(Σ2).

For (2) one can obtain Σ′
1 and Σ′

2 by applying to Σ1 and Σ2 the same trans-
formations which build Σ from Σ1||Σ2.

(3) follows easily from the definitions of “�” and of “◦”.
(4a) is immediate. For (4b), ended(Σ1) and (Σ1∪Σ′

1)◦Σ2 defined imply that
D(Σ1) ∩ D(Σ2) = ∅.

(5) follows from the definition of “�”.
(6a) follows from the definition of “�” and (6b) is a consequences of (6a).
(6a) implies (7a) and (7b).
The definition of “||”, (5) and (6a) imply (8a), (8b) and (9a). Points (9b) and

(10) follow from the observation that in all the equated session environments the
predicates of u are �.

Lemma 5.4 (Preservation of Typing under Structural Equivalence).
If Δ; Γ ; Σ � P : thread and P ≡ P ′ then Δ; Γ ; Σ � P ′ : thread .

Proof. By induction on the derivation of ≡.
For the case where P ′ = P | null, we use Lemma A.3(2), and obtain Σ = Σ1||Σ2

and Δ; Γ ; Σ1 � P : thread and Δ; Γ ; Σ2 � null : thread . Using Lemma A.3(1) and
Lemma A.1(3) we get Δ; Γ ; Σ2 � null : t 2, and ∅ � Σ2. Using Lemma A.5(1),
we obtain that Σ1 � Σ, and from that, with Lemma 5.3(2) we obtain that
Δ; Γ ; Σ � P : thread .

For the other two basic cases use Lemmas A.3(1) and A.4(2)-(3). For the
induction case use Lemma A.3(1) and induction hypothesis.

Bounded Session Types for Object Oriented Languages 237

The next goal is to prove that term substitution preserves types (Lemma A.6).

Lemma A.6 (Preservation of Typing under Substitution)
1. If Δ; Γ \ u ; Σ � e : t and c is fresh then Δ; Γ ; Σ[c/u] � e [c/u] : t .
2. If Δ; Γ, this : C ; Σ � e : t and Δ; Γ ; ∅ � o : C then Δ; Γ ; Σ � e [o/this] : t .
3. If Δ, X <: t ′; Γ, x : X ; Σ � e : t and Δ; Γ ; ∅ � v : t ′′ and Δ � t ′′ <: t ′,

then Δ; Γ ; Σ[t ′′
/X] � e [v/x] : t .

4. If Δ, X <: η; Γ ; {x : X} � e : t and c is fresh and Δ � η′ <: η, then
Δ; Γ ; {c : η′} � e [c/x] : t .

Proof. All points are proven by induction on derivations.

A.3 Types in Subderivations, and Substitutions Within Contexts

Lemma 5.5 (Subderivations). If Δ; Γ ; Σ � E[e] : t then there exist
Σ1, Σ2, x , t ′, x fresh in E,Γ , such that Σ = Σ1◦Σ2, and Δ; Γ ; Σ1 � e : t ′,
and Δ; Γ, x : t ′; Σ2 � E[x] : t .

Proof. By induction on E, and using Generation Lemmas. For example if E =
[]; e ′, then Δ; Γ ; Σ � e ; e ′ : t implies Σ = Σ1◦Σ2 and Γ ; Σ1; π � e : t ′ and
Γ ; Σ2; π � e ′ : t by Lemma A.1(9). Then we get Δ; Γ, x : t ′; Σ2 � x ; e ′ : t by
rules Var and Seq.

Lemma 5.6 (Context Substitution). If Δ; Γ ; Σ1 � e : t ′, and Δ; Γ, x :
t ′; Σ2 � E[x] : t , and Σ1◦Σ2 is defined, then Δ; Γ ; Σ1◦Σ2 � E[e] : t .

Proof. By induction on E, and using the Generation Lemmas.

Theorem 5.7 (Subject Reduction)
1. Δ; Γ ; Σ � e : t , and Γ ; Σ � h, and e , h −→ e ′, h′ imply Δ; Γ ′; Σ � e ′ : t ,

and Γ ′; Σ � h′, with Γ ⊆ Γ ′.
2. Δ; Γ ; Σ � P ; h and P, h −→ P ′, h′ imply Δ; Γ ′; Σ′ � P ; h′ with Γ ⊆ Γ ′ and

Σ ⊆ Σ′.

Proof. By induction on the reduction e , h −→ e ′, h′. We only consider the most
interesting cases.

Rule Spawn-R

Therefore, the expression being reduced has the form E[spawn { e }], and
0) h′ = h and P ′ = E[null] | e ,
1) Δ; Γ ; Σ � E[spawn { e }] : t ,
2) Γ ; Σ � h.

The aim of the next steps is to derive types for e and for E[null].
Applying Lemma 5.5 on 1) we obtain for some t ′, Σ1, Σ2:

3) Δ; Γ ; Σ1 � spawn { e } : t ′,
4) Σ = Σ1◦Σ2,

238 M. Dezani-Ciancaglini et al.

5) Δ; Γ, x : t ′; Σ2 � E[x] : t .
From 3) and Lemma A.1(13), we get for some t ′′, Σ′

1:
6) t ′ = Object ,
7) Δ; Γ ; Σ′

1 � e : t ′′,
8) ended(Σ′

1),
9) Σ′

1 � Σ1.
From 5), type rule Null, and Lemma 5.6, we get:

10) Δ; Γ ; Σ2 � E[null] : t .
From 10) and rule Start, and from 7) and rule Start, we obtain:

11) Δ; Γ ; Σ2 � E[null] : thread ,
12) Δ; Γ ; Σ′

1 � e : thread .
From 11), 12) and rule Par we get:

13) Δ; Γ ; Σ′
1||Σ2 � e | E[null] : thread .

The aim of the next steps is to derive types for e | E[null] in the session envi-
ronment Σ.

From 4) we obtain that Σ1◦Σ2 is defined, and therefore, from 9) and
Lemma A.5(3), we obtain:

14) Σ′
1◦Σ2 is defined, and Σ′

1◦Σ2 � Σ1◦Σ2.
Also, from 8), Lemma A.5(4b), we obtain:

15) Σ′
1||Σ2 = Σ′

1◦Σ2.
Therefore, from 13), 14), 15), and Lemma 5.3(2), we obtain:

16) Δ; Γ ; Σ � e | E[null] : thread .

The case concludes by taking Σ′ = Σ, Γ ′ = Γ and with 15) and 0).

Rule Connect-R

Then, we have that
0) P = E1[connect c s {e 1}] | E2[connect c s ′{e 2}],
1) h′ = h ::c ′, with c ′ is fresh in h,
2) P ′ = E1[e 1[c

′
/c]] | E2[e 2[c

′
/c]].

The aim of the next steps is to derive types for e 1 and for e 2.
From premises, 0) and Lemmas A.3(2), and A.3(1) we obtain for some
Σ1, Σ2, t 1, t 2:

3) Σ = Σ1||Σ2,
4) Δ; Γ ; Σi � Ei[connect c s i{e i}] : t i for (i ∈ {1, 2}),
5) Γ ; Σ � h,
where s 1 � s 2.
From 4), applying Lemma 5.5, there exist Σ11, Σ12, Σ21, Σ22, t ′

1, t
′
2, such

that:
6) Σi = Σi1◦Σi2,
7) Δ; Γ ; Σi1 � connect c s i{e i} : t ′

i (i ∈ {1, 2}),
8) Δ; Γ, x i : t ′

i; Σi2 � Ei[x i] : t i (i ∈ {1, 2}).
From 7), and Lemma A.2(1) we obtain for some η1, η2:

9) Δ; Γ ; ∅ � c : s i,
10) s i = begin.ηi,

Bounded Session Types for Object Oriented Languages 239

11) Δ; Γ \ c ; Σi1, c : ηi � e i : t ′
i (i ∈ {1, 2}).

The aim of the next steps is to derive types for P ′ in a session environment Σ′,
so that Σ ⊆ Σ′.

From 1) and 11), and Lemma A.6(1),we get:
12) Δ; Γ ; Σi1, c ′ : ηi � e i[c

′
/c] : t ′

i (i ∈ {1, 2}).
From 12), 8) and Lemma 5.6, we obtain (notice that (Σi1, c ′ : ηi)◦Σi2 is
defined by 6) since c ′ is fresh):

13) Δ; Γ ; (Σi1, c ′ : ηi)◦Σi2 � Ei[e i[c
′
/c]] : t ′

i (i ∈ {1, 2}).
Applying rules Start and Par on 13), and also the fact that

(Σ11, c ′ : η1)◦Σ12||(Σ21, c ′ : η2)◦Σ22 = Σ, c ′ :�,

since s 1 � s 2 implies η1 � η2, we obtain:
14) Δ; Γ ; Σ, c ′ :�� E1[e 1[c

′
/c]] | E2[e 2[c

′
/c]] : thread .

Take
15) Σ′ = Σ, c ′ :�.
This gives, trivially that:

16) Σ ⊆ Σ′.
Also, from 1) and 5) we obtain:

17) Γ ; Σ′ � h′.

The case concludes by considering 14), 15), 16) and 17).

Rule ComS-R

Therefore, we have that
0) P = E1[c .send (v)] | E2[c .receive (x){e }], P ′ = E1[null] | E2[e [v/x]],
1) h′ = h, Γ ; Σ � h.
From 0), and from the premises, we obtain by Lemma A.3(2) and A.3(1)
that for some Σ1, Σ2, t 1 , t 2 :

2) Δ; Γ ; Σ1 � E1[c .send (v)] : t 1,
3) Δ; Γ ; Σ2 � E2[c .receive (x){e }] : t 2,
4) Σ = Σ1||Σ2.

The aim of the next steps is to derive types for c .receive (x){e } and c .send (v),
and for E1[x] and E2[x].

From 2) and Lemma 5.5, we obtain for some Σ11, Σ12, t ′
1:

5) Δ; Γ ; Σ11 � c .send (v) : t ′
1,

6) Δ; Γ, z : t ′
1; Σ12 � E1[z] : t 1,

7) Σ1 = Σ11◦Σ12.
From 5) and Lemmas A.2(2)and A.1(2), A.1(3), A.1(4), we obtain for some
t ′′

1 :
8) Δ; Γ ; ∅ � v : t ′′

1 ,
9) {c :!t ′′

1} � Σ11.
From 3), and Lemma 5.5, we obtain for some Σ21, Σ22, t ′

2:
10) Δ; Γ ; Σ21 � c .receive (x){e } : t ′

2,
11) Δ; Γ, y : t ′

2; Σ22 � E2[y] : t 2,

240 M. Dezani-Ciancaglini et al.

12) Σ2 = Σ21◦Σ22.
From 10), by Lemma A.2(3), we obtain for some X , t ′′

2 and Σ′
21:

13) {c : ?(X <:t ′′
2)}◦Σ′

21 = Σ21,
14) Δ, X <: t ′′

2 ; Γ, x : X ; Σ′
21 � e : t ′

2.

The aim of the next steps is to derive types for E1[null] and E2[e [v/x]].
From 9), and 7), and Lemma A.5(7a) and (6b), we obtain:

15) Σ11[c �→ ε]◦Σ12 is defined,
16) {c : ε} � Σ11[c �→ ε].
By rules Null, and WeakES, we obtain Δ; Γ ; {c : ε} � null : t ′

1.
Then, by 16) and Lemma 5.3(1) we obtain:

17) Δ; Γ ; Σ11[c �→ ε] � null : t ′
1.

From 6), 15) , 17), and Lemma 5.6, we obtain:
18) Δ; Γ ; Σ11[c �→ ε]◦Σ12 � E1[null] : t 1.
From 7), 9) by Lemma A.5(3) we get:

19) {c :!t ′′
1}◦Σ12 � Σ1.

12) and 13) imply:
20) {c :?(X <:t ′′

2)}◦Σ′
21◦Σ22 = Σ2.

19), and 20) imply by Lemma A.5(8a)
21) t ′′

1 <: t ′′
2 .

Therefore, with 8) and 14) we obtain by Lemma A.6(3):
22) Δ; Γ ; Σ′

21 � e [v/x] : t ′
2,

and then by 11) and Lemma 5.6 and possibly rule WeakES:
23) Δ; Γ ; {c : ε}◦Σ′

21◦Σ22 � E2[e [v/x]] : t 2.
Furthermore, from 4), 7), 12), 9), 13), 21) and Lemma A.5(10), we obtain:

24) Σ11[c �→ ε]◦Σ12||{c : ε}◦Σ21◦Σ22 = Σ11◦Σ12||Σ21◦Σ22 = Σ.

The case concludes by applying rules Par and Start to 18) and 23) taking 24)
and 1) into account.

Rule ComSS-R

We have:
0) P = E1[c .sendS (c ′)] | E2[c .receiveS (x){e }],
1) P ′ = E1[null] | e [c ′

/x] | E2[null],
2) h′ = h, Γ ; Σ � h,
3) Δ ; Γ ; Σ � P : thread .
From 0), 3) and using Lemma A.3(2) and (1), we obtain for someΣ1, Σ2, t 1, t 2:

4) Δ ; Γ ; Σ1 � E1[c .sendS (c ′)] : t 1,
5) Δ ; Γ ; Σ2 � E2[c .receiveS (x){e }] : t 2,
6) Σ = Σ1||Σ2.

The aim of the next steps is to derive types for E1[null] and E2[null].
From 4), Lemma 5.5 and Lemma A.2(4) we get for some Σ11, Σ12, t ′

1, η
=
ε.end:

7) Δ ; Γ ; Σ11 � c .sendS (c ′) : t ′
1,

8) Δ ; Γ, y : t ′
1 ; Σ12 � E1[y] : t 1,

9) Σ1 = Σ11◦Σ12,

Bounded Session Types for Object Oriented Languages 241

10) t ′
1 = Object ,

11) {c :!(η), c ′ : η} � Σ11.
11) and Lemma A.5(5) imply

12) {c ′ : η} � Σ11 \ c ,
which gives by η
= ε.end and Lemma A.5(6a), for some Σ′

11:
13) Σ11 = Σ′

11, c
′ : η.

13) and 9) imply by Lemma A.5(4a)
14) Σ′

11◦Σ12 defined.
11) and 13) imply by Lemma A.5(5)

15) {c :!(η)} � Σ′
11.

Using rules Null, WeakES we obtain:
16) Δ ; Γ ; {c : ε} � null : t ′

1.
By 15), 14), and Lemma A.5(7a) and (6b) respectively we have:

17) Σ′
11[c �→ ε]◦Σ12 defined,

18) {c : ε} � Σ′
11[c �→ ε].

From 18), 16), and using Lemma 5.3(1) we obtain:
19) Δ ; Γ ; Σ′

11[c �→ ε] � null : t ′
1.

From 8), 19), 17) and Lemma 5.6, we obtain:
20) Δ ; Γ ; Σ′

11[c �→ ε]◦Σ12 � E1[null] : t 1.
From 5), Lemma 5.5 and Lemma A.2(5) we get for some Σ21, Σ22, t ′

2, η
′
=

ε.end:
21) Δ ; Γ ; Σ21 � c .receiveS (x){e } : t ′

2
22) Δ ; Γ, z : t ′

2 ; Σ22 � E2[z] : t 2,
23) Σ2 = Σ21◦Σ22,
24) t ′

2 = Object ,
25) {c :?(X <:η′)} � Σ21,
26) Δ, X <: η′ ; Γ \ x ; {x : X} � e : t ′.
With a proof similar to that of 20) we can show:

27) Δ ; Γ ; Σ21[c �→ ε]◦Σ22 � E2[null] : t 2.

The aim of the next steps is to type e [c ′
/x] and show that the type of c used

to type c .sendS (c ′) is dual to that used to type c .receiveS (x){e }, and that the
parallel composition of the session environments used to type E1[null], E2[null],
and e [c ′

/x] is the same as Σ.
13) and 9) imply by Lemma A.5(4b)

28) Σ11◦Σ12 = {c ′ : η}||Σ′
11◦Σ12.

6), 9), 23) and 28) imply:
29) Σ′

11◦Σ12||Σ21◦Σ22 defined.
From 29), 15), 25) by Lemma A.5(9a) we get:

30) !(η) �?(X <:η′),
which implies by definition of �:

31) η <: η′.
From 26) and 31) using Lemma A.6(4) we obtain:

32) Δ ; Γ ; {c ′ : η} � e [c ′
/x] : t ′.

Again from 29), 15), 25) by Lemma A.5(9b) we get:
33) Σ′

11[c �→ ε]◦Σ12||Σ21[c �→ ε]◦Σ22 = Σ′
11◦Σ12||Σ21◦Σ22.

242 M. Dezani-Ciancaglini et al.

6), 9), 28), 23), and 33) imply:
34) Σ = {c ′ : η}||Σ′

11[c �→ ε]◦Σ12||Σ21[c �→ ε]◦Σ22.

The case concludes by applying rules Par and Start to 20), 27), 32) by taking
into account 34) and 2).

Rule ComSCaseSuccess-R

Then, we have that:
0) P = E1[c .sendCase (o){C1 � e 1; · · · ;Cn � e n}] |

E2[c .receiveCase (x){C ′
1 � e ′

1; · · · ;C ′
m � e ′

m}],
1) h′ = h,
2) Γ ; Σ � h,
3) P ′ = E1[e i] | E2[e k[o/x]], h,
4) h(o) = (C , . . .) and C <: Ci and ∀j < i(C
<: Cj), where i ∈ {1, . . . , n},

and C <: C ′
k and ∀l < k(C
<: C ′

l), where k ∈ {1, . . . , m}.
From premises, 0) and Lemma A.3(2) and A.3(1) we obtain for some
Σ1, Σ2, t 1, t 2:

5) Σ = Σ1||Σ2,
6) Δ; Γ ; Σ1 � E1[c .sendCase (o){C1 � e 1; · · · ;Cn � e n}] : t 1,
7) Δ; Γ ; Σ2 � E2[c .receiveCase (x){C ′

1 � e ′
1; · · · ;C ′

m � e ′
m}] : t 2.

4) and 2) imply
8) Γ (o) = C .
From 6), 7) applying Lemma 5.5, there exist Σ11, Σ12, Σ21, Σ22, t ′

1, t ′
2 so

that:
9) Σ1 = Σ11◦Σ12, Σ2 = Σ21◦Σ22,
10) Δ; Γ ; Σ11 � c .sendCase (o){C1 � e 1; · · · ;Cn � e n} : t ′

1,
11) Δ; Γ, y : t ′

1; Σ12 � E1[y] : t 1,
12) Δ; Γ ; Σ21 � c .receiveCase (x){C ′

1 � e ′
1; · · · ;C ′

m � e ′
m} : t ′

2,
13) Δ; Γ, z : t ′

2; Σ22 � E2[z] : t 2.

The aim of the next steps is to find types for e i, and E1[e i].
From 10), 8), and Lemmas A.2(6) and A.1(4), we obtain for some Σ0, Σ′

11,
ρ1, . . . , ρn:

14) Δ; Γ ; Σ0 � o : C ′ for some C ′ such that C <: C ′,
15) ∅ � Σ0,
16) Δ; Γ ; Σ′

11, c : ρj � e j : t ′
1 ∀j ∈ {1, ..., n},

17) Σ0◦Σ′
11, c : !�C1.ρ1, . . . ,Cn.ρn� � Σ11.

15) and 17) imply by Lemma A.5(3) and transitivity of �:
18) Σ′

11, c : !�C1.ρ1, . . . ,Cn.ρn� � Σ11,
and then by Lemma A.5(7b) and A.5(7a) and 9)

19) Σ′
11, c : ρi � Σ11[c �→ ρi],

20) Σ11[c �→ ρi]◦Σ12 is defined.
From 16) and 19) we get by Lemma 5.3(1):

21) Δ; Γ ; Σ11[c �→ ρi] � e i : t ′
1,

which together with 11), 20) implies by Lemma 5.6:
22) Δ; Γ ; Σ11[c �→ ρi]◦Σ12 � E1[e i] : t 1.

Bounded Session Types for Object Oriented Languages 243

The aim of the next steps is to show that the type of c used to type e i is dual
to that used to type e ′

k, and to find types for e ′
k[o/x] and E2[e ′

k[o/x]].
From 12), and Lemma A.2(7), we obtain for some Σ′

21, t ′
2, ρ′1, . . . , ρ

′
m:

23) Δ, Xl <: C ′
l ; Γ, x : Xl; Σ′

21, c : ρ′l � e ′
l : t ′

2 ∀l ∈ {1, ..., m},
24) Σ′

21, c :?�(X1 <:C ′
1).ρ

′
1, . . . , (Xm <:C ′

m).ρ′m� � Σ21.
Because of 18), 24), being Σ11◦Σ12||Σ21◦Σ22 defined, and by Lemma A.5(9a)
we obtain that:

25) !�C1.ρ1, . . . ,Cn.ρn� �?�(X1 <:C ′
1).ρ

′
1, . . . , (Xm <:C ′

m).ρ′m�.
Therefore, by definition of the duality relation:

26) ρj � ρ′l[Cj � Cl/Xl] ∀j ∈ {1, ..., n} and ∀l ∈ {1, ..., m}.
4) and 8) imply by rules Oid and Sub (notice that Ci � C ′

k
= ⊥ by 4)):
27) Δ; Γ ; ∅ � o : Ci � C ′

k.
Similarly to previous case we can derive:

28) Σ21[c �→ ρ′k[Ci � C ′
k/Xk]]◦Σ22 defined,

29) Δ, Xk <: C ′
k; Γ, x : X ; Σ21[c �→ ρ′k] � e ′

k : t ′
2.

Applying Lemma A.6(3) to 29), 27), 26), and 4), taking into account that
Xk can occur only in ρ′k we derive:

30) Δ; Γ ; Σ21[c �→ ρ′k[Ci � C ′
k/Xk]] � e ′

k[o/x] : t ′
2,

which together with 13), 28) implies by Lemma 5.6:
31) Δ; Γ ; Σ21[c �→ ρ′k[Ci � C ′

k/Xk]]◦Σ22 � E2[e ′
k[o/x]] : t 2.

From 26), 9), 19), 24), 5) by Lemma A.5(9b) we obtain that:
32) Σ11[c �→ ρk]◦Σ12||Σ21[c �→ ρ′k[Ci � C ′

k/Xk]]◦Σ22 = Σ11◦Σ12||Σ21◦Σ22 =
Σ.

The case concludes by applying rules Par and Start to 22), 31), and taking into
account 32) and 1), 2).

Rule ComSWhile-R

Then, we have that:
0) P = E1[c .sendWhile (e){C1 � e 1; · · · ;Cn � e n}{D1 �d 1; · · · ;Dm �d m}] |

E2[c .receiveWhile (x){C ′
1 � e ′

1; · · · ;C ′
n′ � e ′

n′}{D ′
1 � d ′

1; · · · ;D ′
m′ � d ′

m′}],
1) h′ = h,
2) Γ ; Σ � h,
3) P ′ = E1[ê] | E2[ě],
where we are using the shorthands:

4) ê = c .sendCase (e){C1 � e �
1; · · · ;Cn � e �

n,D1 � d 1; · · · ;Dm � d m},
5) ě = c .receiveCase (x){C ′

1 � e �
1; · · · ;C ′

n′ � e �
n′ ,D ′

1 � d ′
1; · · · ;D ′

m′ � d ′
m′},

6) e �
i ≡ e i; c .sendWhile (e){C1 � e 1; · · · ;Cn � e n}{D1 � d 1; · · · ;Dm � d m},

7) e �
k = e ′

k;
c .receiveWhile (x){C ′

1 � e ′
1; · · · ;C ′

n′ � e ′
n′}{D ′

1 � d ′
1; · · · ;D ′

m′ � d ′
m′}.

From premises, 0) and Lemma A.3(2), and A.3(1) we obtain for some
Σ1, Σ2, t 1, t 2:

8) Σ = Σ1||Σ2,
9) Δ; Γ ; Σ1 �

E1[c .sendWhile (e){C1 �e 1; · · · ;Cn �e n}{D1 �d 1; · · · ;Dm �d m}] : t 1,

244 M. Dezani-Ciancaglini et al.

10) Δ; Γ ; Σ2 �
E2[c .receiveWhile (x){C ′

1�e ′
1; · · · ;C ′

n′ �e ′
n′}{D ′

1�d ′
1; · · · ;D ′

m′ �d ′
m′}] : t 2.

From 9), 10) applying Lemma 5.5, there exist Σ11,Σ12, Σ21, Σ22, t ′
1, t ′

2 so
that:

11) Σ1 = Σ11◦Σ12, Σ2 = Σ21◦Σ22,
12) Δ; Γ ; Σ11 �

c .sendWhile (e){C1 � e 1; · · · ;Cn � e n}{D1 � d 1; · · · ;Dm � d m} : t ′
1,

13) Δ; Γ, y : t ′
1; Σ12 � E1[y] : t 1,

14) Δ; Γ ; Σ21 �
c .receiveWhile (x){C ′

1�e ′
1; · · · ;C ′

n′ �e ′
n′}{D ′

1�d ′
1; · · · ;D ′

m′ �d ′
m′} : t ′

2,
15) Δ; Γ, z : t ′

2; Σ22 � E2[z] : t 2.

The aim of the next steps is to find types for ê , and E1[ê].
From 12), and Lemma A.2(8), we obtain for some π1, . . . , πn+m, t ′

1:
16) {c : !�(C1.π1, . . . ,Cn.πn)∗,D1.πn+1, . . . ,Dm.πn+m�} � Σ11,
17) Δ; Γ ; ∅ � e : C ,
18) Δ; Γ ; {u : πi} � e i : t ′

1 and Ci <: C for all i ∈ {1, . . . , n},
19) Δ; Γ ; {u : πn+j} � d j : t ′

1 and Dj <: C for all j ∈ {1, . . . , m}.
We will be using π̂ as a shorthand defined as follows:

20) π̂ =!�C1.π
�
1, . . . ,Cn.π�

n,D1.πn+1, . . . ,Dm.πn+m�, where
21) π�

i =πi.!�(C1.π1, . . . ,Cn.πn)∗,D1.πn+1, . . . ,Dm.πn+m� for i∈{1, . . . , n}.
By application of type rules Null, SendCase, Seq, SendWhile on 17)
and 18), and using the shorthands 4) and 20) we obtain:

22) Δ; Γ ; {c : π̂} � ê : t ′
1.

By application of Lemma A.5(6b) on 16) we get that:
23) {c : π̂} � Σ11[c �→ π̂],
which together with 22) implies by Lemma 5.3(1)

24) Δ; Γ ; Σ11[c �→ π̂] � ê : t ′
1.

Applying Lemma A.5(7a) to 16) and 11) we have that:
25) Σ11[c �→ π̂]◦Σ12 is defined.
Therefore applying Lemma 5.6 on 13), 24) and 25) we obtain:

26) Δ; Γ ; Σ11[c �→ π̂]◦Σ12 � E1[ê] : t 1.

The aim of the next steps is to find types for ě and E2[ě].
By arguments similar to those used to get 16) and 18), we obtain from 14)
for some π′

1, . . . , π
′
n′+m′ , t ′

2:
27) ?�((X1 <:C ′

1).π
′
1, . . . , (Xn′ <:C ′

n′).π′
n′)∗,

(Y1 <:D ′
1).π

′
n′+1, . . . , (Ym′ <:D ′

m′).π′
n′+m′� � Σ21,

28) Δ; Γ ; {u : π′
k} � e ′

k : t ′
2 for all k ∈ {1, . . . , n′},

29) Δ; Γ ; {u : πn′+l} � d l : t ′
2 for all l ∈ {1, . . . , m′}.

We use the shorthand
30) π̌ =?�(X1 <: C ′

1).π
�
1, . . . , (Xn′ <: C ′

n′).π�
n′ ,

(Y1 <: D ′
1).π

′
n′+1, . . . , (Ym′ <: D ′

m′).π′
n′+m′�, where

31) π�
k = π′

k.?�((X1 <:C ′
1).π

′
1, . . . , (Xn′ <:C ′

n′).π′
n′)∗,

(Y1 <:D ′
1).π′

n′+1, . . . , (Ym′ <:D ′
m′).π′

n′+m′� for k ∈ {1, . . . , n′}.
Then, by arguments similar to those used to get 26), we obtain that:

32) Δ; Γ ; Σ21[c �→ π̌]◦Σ22 � E2[ě] : t 2.

Bounded Session Types for Object Oriented Languages 245

The aim of the next steps is to show that the type of c used to type ê is dual to
that used to type ě , and that the parallel composition of the session environments
used to type E1[ê] and E2[ě] is the same as Σ.

Because of 16), 27), being Σ11◦Σ12||Σ21◦Σ22 defined, and by Lemma A.5(9a)
we obtain that:

33) !�(C1.π1, . . . ,Cn.πn)∗,D1.πn+1, . . . ,Dm.πn+m� �
?�((X1 <:C ′

1).π
′
1, . . . , (Xn′ <:C ′

n′).π′
n′)∗, (Y1 <:D ′

1).π
′
n′+1, . . . , (Ym′ <:D ′

m′).π′
n′+m′�,

which implies, by definition of the duality relation:
34) π̂ � π̌.
Therefore, by Lemma A.5(9b) and using 11), 16), 27), 8) we obtain that:

35) Σ11[c �→ π̂]◦Σ12 || Σ21[c �→ π̌]◦Σ22 = Σ11◦Σ12 || Σ21◦Σ22 = Σ.

The case concludes by applying rules Par and Start to 26), 32), and taking into
account 35) and 1), 2).

Reflecting on Aspect-Oriented Programming,

Metaprogramming, and Adaptive Distributed
Monitoring�

Bill Donkervoet and Gul Agha

Open Systems Laboratory
Department of Computer Science

University of Illinois at Urbana-Champaign
{donkervo,agha}@uiuc.edu

Abstract. Metaprogramming and computational reflection are two
related techniques that allow the programmer to change the semantics
of a program in a modular fashion. Although the concepts have been ex-
plored by researchers for some time, a form of metaprogramming, namely
aspect-oriented programming, is now being used by some practitioners.
This paper is an attempt to understand the limitations of different forms
of computational reflection in concurrent and distributed computing.
It specifically studies the use of aspect-oriented programming and re-
flective actor libraries, and their relation to full reflection. We choose
distributed monitoring as the primary example application because its
requirements nicely fit the abilities of the two systems as well as illustrate
their limitations.

1 Introduction

Addressing software complexity through modular decomposition is an old idea.
Objects provide one mechanism for modularity–namely, support for abstract
data types, thus separating the interface from the representation. The notion
of objects generalizes to components and supports a functional decomposition
of large software systems. However, the functional behavior of a system rep-
resents only one ‘aspect’ of this decomposition. Observe that concurrency is
common in real-world systems and sequential computation is simply a degen-
erate case of concurrent computation; therefore, we focus only on concurrent
and distributed systems. Concerns in concurrent systems include synchroniza-
tion, fault-tolerance, scheduling, real-time, coordination, etc. Code to implement
these requirements is a major cause of software complexity.

For almost two decades, programming language researchers have explored
mechanisms to support a separation of concerns. The goal of separating code
to implement functional (or transformational) requirements from code to satisfy
other concerns is motivated by the usual advantages of components: namely to
� This research has been supported in part by NSF under grant CNS 05-09321 and by

ONR under DoD MURI award N0014-02-1-0715.

F.S. de Boer et al. (Eds.): FMCO 2006, LNCS 4709, pp. 246–265, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Reflecting on AOP, Metaprogramming, and Adaptive Distributed Monitoring 247

simplify the process of building complex software systems and to facilitate reuse
of software modules in different contexts. Researchers have proposed a number
of techniques to facilitate a separation of design concerns; these include compu-
tational reflection [35,29], metaprogramming [10], generative programming [14],
aspect-oriented programming [13], filters [2], coordination constraints [22] and
circuits [3]. From a theoretical perspective, all these techniques can be under-
stood as forms of metaprogramming although many of them are far more re-
strictive than (full) computational reflection.

The idea of metaprogramming is to allow the manipulation of computational
structures containing a representation of a program and its data [35]. With
computational reflection (or simply reflection, a program may inspect and modify
itself while running.Reflection and metaprogramming, two related concepts, are
tools that not only simplify certain problems but make it possible to address
problems requiring dynamic program adaptation. The basis for computational
reflection is provided by a foundational concept in the theory of computation as
well as computer architecture: namely, that programs are data and may therefore
be stored and manipulated as other data. The semantics and architecture of
different programming languages and frameworks provide different kinds and
degrees of reflection.

On the more static end of the metaprogramming spectrum lies generative
programming. Generative programming is a form of metaprogramming where
additional code is generated based on a high-level specification and the appli-
cation source code. This generated code is then added to the original source
code before interpretation or compilation. Aspect-oriented programming may be
thought of as a kind of generative programming, enabling code insertion at cer-
tain, well-specified points in a program. AOP allows clean, modular specification
of both the primary task and other orthogonal aspects, which are then woven
together into a single program either at compile-time or runtime.

Our goal is to further the understanding of the semantics of languages and
frameworks supporting a separation of design concerns. We focus on two pro-
gramming concepts that support a separation of concerns: reflection and aspect-
oriented programming. Reflection is a powerful programming mechanism with
a formal semantics that has been studied in sequential programming languages
(e.g., [20,8]) and in concurrent (actor-based) programming languages [5,16].

One way to understand the expressive power of two programming languages
is to encode one in the other and show that equivalence relations hold in the
translated system. An example of this kind of semantic analysis can be found
in [30], which shows that an actor language with remote procedure calls and
local synchronization constraints can be translated into a pure actor language
(as is done in [27]) without modifying the actor semantics. From a translational
perspective, it is straightforward to represent aspect-oriented programming using
reflection [9]. Thus, the interesting problem is to understand the limitations of
aspect-oriented programming. The approach we take is to pick an example and
study its implementation in a reflective actor system and in a programming
system supporting aspects in Java.

248 B. Donkervoet and G. Agha

In order to best understand the strengths and weaknesses of various forms of
reflection, we choose an example of a concurrent program that illustrates mod-
ularity, orthogonality, and dynamicity. Specifically, we will explore, compare,
and contrast these attributes using distributed monitoring. Distributed moni-
toring of error conditions and constraint violations is a difficult and, as yet, only
partially solved problem. Distributed monitoring requires each node (actor) in
a distributed system to record and communicate its knowledge of the world,
checking for specified conditions. The necessary knowledge may be communi-
cated efficiently by piggybacking state information along with regular messages,
thus propagating state knowledge to acquaintances [33].

Although monitoring of statically defined constraints is relatively straightfor-
ward, the ability to add and modify such constraints during runtime requires an
added level of flexibility. Past solutions have utilized aspect oriented program-
ming to provide insertion of error checks and modification of message format at
compile time. We will describe this and other approaches and then discuss the
problem of runtime insertion or modification of monitors. It is our conjecture
that such flexibility can only be supported in a fully reflective architecture.

The outline of the paper is as follows. Section 2 introduces metaprogramming,
leading into a discussion of reflection in Section 3. Aspect-oriented programming
is discussed in Section 4. Section 5 addresses reflection’s relation to concurrent
programming with threads and with actors. Section 6 introduces the case study
problem of distributed monitoring and Section 7 describes our implementation.
Section 8 surveys related work and the final section concludes with a summary
and discussion of open research problems.

2 Metaprogramming

A metaprogram is a program that creates or manipulates another program (pos-
sibly itself), where the latter program is represented as data. As mentioned
earlier, examples of metaprogramming techniques are reflection [35] in which a
program can inspect and modify its own behavior, and generative programming,
in which the output of a program is the source code for another program [15].

2.1 Meta-architectures

A meta-architecture is a representation that not only captures knowledge about
a task being performed but also captures knowledge about the performance of
the task. Meta-architectures provide access to metadata, i.e., access to informa-
tion about the data. A meta-architecture provides knowledge about a program
beyond the information relevant to the application domain. An example of meta-
data in operating systems is information about a file–such as its creation date,
owner, and access information–that is generally stored with the application data.

Access to metadata can enable certain tasks that are not otherwise possible.
For example, metadata is useful for governing control-flow in programs as well
as for debugging [24]. Every runtime system necessarily maintains some meta-
data and thus can be thought of as a meta-architecture. The meta-architecture

Reflecting on AOP, Metaprogramming, and Adaptive Distributed Monitoring 249

interface greatly affects the flexibility of a system and thus the types of prob-
lems a program can address. The systems of interest in this paper are ones that
explicitly provide access to not only information about the program’s data but
also information about the program and its execution.

2.2 Metaobjects

Object-oriented programming languages often maintain metadata in the form of
metaobjects. Metaobjects contain metadata about their associated objects that
specifies how the system is to interpret the data, typically information about the
use or representation of associated objects. For example, in Java, the metaobject
protocol encodes additional information about methods and variables to allow
access by name, information that is typically removed by the compiler.

Because metaobjects are objects themselves, there can also be metametaob-
jects, metametametaobjects, and so on. Each additional meta-level adds more
flexibility and possibilities, but at some point languages ground the hierarchy;
for example, a metaobject’s meta may itself also be a metaobject, thus eliminat-
ing the need for an infinite number of meta-levels. Accessing these metaobjects
allows a program to inspect and even modify information about itself.

Smalltalk. Smalltalk is an object oriented language offering strong reflective
capabilities using a well-defined metaobject protocol [32]. The metaobject of a
Smalltalk object is its class. In Smalltalk, an object may gain an understanding
of its structure and behavior by viewing its class. The class of an object provides
access to the object’s instance variables and methods; thus modification of the
class results in immediate modifications to the object’s state or behavior.

Because everything is an object in Smalltalk, even a class is an object and has
an associated metaobject. The metaobject for a Class object is a Metaclass
object. In order to prevent the need for an infinite number of meta-levels,
the metaobject for Metaclass is Metaclass Class, whose metaobject is again
Metaclass. Thus the Smalltalk class meta-hierarchy is limited to three levels.

For example, the 3.14 is a Float object with an associated Float Class
metaobject. Modification of the Float results in the expected modification of
the number. However, modification of the Float Class results in redefinition
of the behavior of all Float objects. The metaobject of the Float Class is
Metaclass and the metaobject of Metaclass is Metaclass Class.

The ability for a program to view or manipulate its metadata provides pow-
erful yet complex programming techniques. This model of programming is able
to address many tasks that are otherwise difficult or impossible.

3 Reflection

With sufficient access to metadata, reflective programming becomes possible.
Different systems provide different levels of reflection because of how they limit
access to metadata. In order for a program to be fully reflective, modifications to

250 B. Donkervoet and G. Agha

the program’s metadata should be reflected in modifications to the data itself.
Similarly, modifications to metadata about the program should be reflected in
the execution of the program. This produces a causal relationship between the
data and the metadata.

Full reflection is composed of two properties: introspection and intercession
[32]. Introspection is the ability of a program entity to view its internal state or
representation. Intercession allows program entities to modify their representa-
tion, thereby changing the program’s behavior. Since introspection is easier to
implement than intercession, some languages (including Java) offer only intro-
spection. On the other hand, languages offering intercession also offer introspec-
tive capabilities. This is not surprising given that intercession requires a more
complex reflective system.

The use of reflection can be illustrated by the following: Consider a robotic
arm; a computer maintains data structures that represent the location and posi-
tion of the arm; these structures are metadata, they simply exist as the program’s
internal representation of the arm, whereas the actual data is the arm’s physical
position. Modification of the internal data results in an external movement of
the arm. Similarly, external manipulation of the arm results in modification of
the internal data. Extending this causal relationship beyond program data to
runtime data allows similar modification of the computation itself.

Fig. 1. An illustration of reflective capabilities of various systems. Java and its related
systems offer only introspection whereas Smalltalk and CLOS-based systems offer much
fuller reflective capabilities.

3.1 Reification

Reification is the process of creating a concrete representation of something
abstract. Reification is a necessary step for reflection. In the context of reflection,
reification is the act of creating a data representation of the program’s internal
data (including current state). Once a reification of the program is created,
viewing the reification by the program is reflective introspection. Similarly, if
the reification is modifiable by the program, reflective intercession is possible.

Reflecting on AOP, Metaprogramming, and Adaptive Distributed Monitoring 251

3.2 Reflection in the Real World

Since reflection allows modification of the program and how the program is
interpreted, full reflection even allows modification of the interpreter and runtime
system. Thus, most reflective systems offer only a subset of reflective capabilities.
For example, Java reflection primarily allows observation of objects and very
little modification [23]. Java objects can determine class information, list and
access methods and fields, and create new objects. Fields can be accessed and
modified but methods cannot be changed so program modification is not possible.
Thus, Java offers introspection but not intercession.

On the other hand, Smalltalk has much more powerful reflective capabilities–
allowing both introspection and intercession [19]. Objects can dynamically mod-
ify their behaviors, change their methods, fields, and even their class. Since the
Smalltalk compiler is part of the Smalltalk library, the entire runtime system
can be modified–giving the program almost total flexibility. Even so, there are
still reflective facilities not offered by Smalltalk for the sake of efficiency and
simplicity: in particular, the limited recursion of metaobjects as described in
Section 2.2.

4 Aspect Oriented Programming

Aspect-oriented programming (AOP) is a metaprogramming paradigm that al-
lows separation of concerns through code cross-cutting. Different modules of the
program are specified, ideally each addressing a singular concern, and these as-
pects are woven into the main code to produce a single program addressing all
concerns. For example, a program can use clean, simple communication method
calls and security concerns can later be woven into the program using a security
aspect. This not only greatly simplifies the original program but also eases mod-
ifications caused by changing specifications; in particular, the original program
need not be changed if only some of its aspects change. Similarly, modification
of the original program is simplified as it contains only the program logic and
not the orthogonal aspect code.

AOP weaves aspects together with the main program at joinpoints, points
in the program that meet a programmer’s specification. Such points must be
at designated “control points” such as entry to method calls, exit from method
calls, or object creation or deletion [13]. In the above example of network security,
encryption wrappers can be applied to a message at the call joinpoint of the
network send method and decryption can take place at the return joinpoint
of the network receive method. Although the idea of aspect weaving is very
standard, the method can vary substantially and be either very dynamic, using
reflection, or completely static, using code generation.

4.1 Code Weaving

One form of AOP weaves aspects into the program code statically in the compi-
lation process as a form of generative programming, which requires no runtime

252 B. Donkervoet and G. Agha

meta-architecture. This form of aspect weaving can generate woven programs in
the original language or in bytecode. This is then run with the aspects compiled
directly and permanently into the program as if the aspects had been hardcoded
in initially.

Fig. 2. An example of static code weaving using the secure network example. On the
left are two aspects, above and below the regular program code. To the right the code
is woven together ready to be compiled and run.

4.2 Reflective AOP

However, if the aspect weaving is done during runtime, certain meta-architectural
facilities are necessary. Runtime weaving requires modification of joinpoint be-
havior and may also require modification of variables.

This behavior modification is achieved through modification of the metadata
controlling program execution, although only introspection and a very basic level
of self-modification is required. AspectJ, an aspect-oriented language based on
Java, utilizes Java’s reflective facilities to enable AOP through creating hooks
at all specified joinpoints. In the case of a method call joinpoint, the method
name and arguments are analyzed to determine if a match occurs and, if so, the
aspect code is called before, after, or around the regular method code.

5 Reflection in Concurrency

Because reflection is often a feature of a programming language, some aspects
of reflection are unaffected by concurrency. Distributed systems that provide
reflection not through a language but through a library often respect the logical

Reflecting on AOP, Metaprogramming, and Adaptive Distributed Monitoring 253

bounds of concurrent structures. Reflection need not change the behavior of the
entire system but of individual actors [6] or of a group of actors [42]. In case of
actors, formal models of reflection have been developed.

5.1 Threads and Objects

A number of languages that have been designed primarily for sequential comput-
ing provide concurrency through threading. One example of such of a language
is Java. A Java object can be assigned a thread by implementing the Runnable
interface or subclassing the Thread class. However, within that thread and its
‘member’ objects, all communication is synchronous using regular method calls.
Because of this, metaobject protocols in Java typically remain unchanged in
the presence of concurrency. Because reflection respects the bounds of objects,
procedures, and functions just as threads do, concurrency and reflection are non-
conflicting. Any reflection is done entirely within the bounds of a single thread;
as a consequence, reflection has no effect on the concurrency in the program.

However, in situations where reflection is able to modify the interpreter, com-
piler, or runtime system, the effect of reflection can drastically affect how the
entire system (including threads) behave. For example, the ability to reflectively
modify the runtime system means that the scheduler may be modified, influ-
encing thread behavior. Modern operating systems often export some reflective
facilities to programs–in particular, this includes access to the scheduler. As a
consequence, processes and threads have the ability to modify their priorities
and choose the scheduling policy. In some cases, even greater access is granted:
processes may modify the scheduler algorithm [28]. Using these system-wide
reflective facilities can greatly influence concurrency in multithreaded programs.

5.2 Actors

Actors are a model of concurrent computation that encapsulate not only data
and behavior (as objects do) but also have their own locus of control [1]. Actors
can send and receive messages, process messages, create new actors, and com-
pute. Because of their simplicity and inherently concurrent nature, they are a
natural model for distributed systems.

Just as object oriented languages introduce metaobjects, actor frameworks
and languages often provide meta-actors [37]. These are simply the ‘meta’ equiv-
alents of actors. Meta-actors allow access to base-actor internals and behavior.
Typically meta-actors only intercept incoming and outgoing messages, delaying,
modifying, or discarding them to alter the behavior of the actor system. Such
modification of message delivery affects the scheduling of actors, and can be used
to modularly provide atomicity or enforce a precedence order in the processing
of messages. Another form of reflection in actors is providing the ability to copy
state. With this additional reflective capability, arbitrary protocol stacks can be
defined [5]. The techniques have been applied to provide separate specification
and dynamic composition of dependability protocols (security, fault-tolerance,
reliability) with distributed application code [38].

254 B. Donkervoet and G. Agha

For message interception, the actor send and receive methods are modified so
that both incoming and outgoing messages are routed through the meta-actor.
The normal operational semantics for sending messages in actors are:

send: [R[send(t, m)], ∅]a → [R[nil], ∅]a, < t ⇐ m >

where R is a reduction context, t is the target, m is the message, a is the local
actor, and ∅ signifies that there is no associated meta-actor.

When a meta-actor, â, is installed to intercept messages, the semantics of
sending messages are modified so that, rather than sending directly to the mes-
sage target, the message is passed to the meta-actor using a transmit message.

send (with meta): [R[send(t, m)], â]a → [R[nil], â]a, < â ⇐ (transmit(t, m)) >
transmit (on meta): [R[transmit(t, m)], b]â → [R[send(t, m)], b]â

The default transmit semantics on a meta-actor are simply to propagate the
message on to the target. b is either another meta-actor or ∅. since meta-actors
can be layered, as in the Russian dolls model [31], these semantics apply re-
gardless of whether there is another higher level of meta-actor. In the case that
b �= ∅, â’s overloaded send method simply passes the message to the next higher
meta-actor. The transmit semantics can be overridden to achieve other tasks
such as modifying the outgoing message.

Similarly, receive semantics are modified. Normal operational semantics of
receive allow an actor a in a wait state to receive and apply message m:

rcv: [R[wait()], ∅]a, < a ⇐ m >→ [R[app(m)], ∅]a

In a reflective system, the semantics of receiving messages is replaced by two
methods that allow interaction with the meta-actor:

rcv (with meta): < a ⇐ m >→< (â ⇐ dlv(m)) >
where meta(a) = â

proc (with meta): [R[wait()], â]a, < a ⇐ m >meta→ [R[app(m)], â]a

rcv redirects the incoming message to the meta-actor in dlv, a deliver message.
proc is the second half of the receive, when the message is actually delivered to
the actor by it’s meta-actor. < a ⇐ m >meta is a special message transmission
from a meta-actor to its associated base. This is required because a message sent
using the traditional means would again be redirected to the meta-actor.

The final piece of the actor/meta-actor communication is the meta-actor se-
mantics for a message receive.

dlv (on meta): [R[dlv(m)], b]â → [R[nil], b]â, < a ⇐ m >meta

where meta(a) = â

Similarly to transmit, the dlv message can be overridden to achieve desired
meta-actor functionality.

Reflecting on AOP, Metaprogramming, and Adaptive Distributed Monitoring 255

Two-level Actor Model. Although the above semantics allow for any num-
ber of meta-actors, as in object-oriented languages, actor systems often limit
the number of meta-levels for practical reasons. In the Two-Level Actor Model
(TLAM), there is a base-level actor and an optional meta-actor [39]. This two-
level, reflective architecture provides a dynamic, flexible distributed system in
which the meta-actor may alter or enhance the behavior of the base-actor [40].

For c, t actor ids, n a number
States: T (n) Messages: tick, time@c, reply(n)
Reaction Rules:

(t|T (n)) : < t ⇐ tick >→ (t|T (n + 1)) : < t ⇐ tick >
(t|T (n)) : < t ⇐ time@c >→ (t|T (n)) : < c ⇐ reply(n) >

Fig. 3. Tick base-level actors in TLAM

Figures 3 and 4 show an example TLAM system borrowed from [39]. The base-
level actors (Figure 3), respond to tick messages by incrementing their internal
counter and sending another tick message to themselves; they respond to time@c
messages by maintaining their previous state and sending the current counter
value to address c. The meta-level actors are used as a logging service and to
manipulate a base-level actor by resetting its counter to zero (Figure 4). The first
meta-actor rule dictates that on delivering a time@c message to its base-actor,
the meta-actor logs the event and participants by sending a log message to the
observer o. On receipt of a reset message, the meta-actor resets the value of its
base-level actor’s counter to zero and sends a resetAck message to o.

For t, o, c actor ids, n, m numbers
States: M(t, o, m) Messages: log(t, n, m, c), reset, resetAck
Reaction Rules:

(tm|M(t, o, m)) : dlv((t|T (n)) : < t ⇐ time@c >) →
(tm|M(t, o, m + 1)) : < o ⇐ log(t, n, m + 1, c) >

(tm|M(t, o, m)) : < tm ⇐ reset >→
(tm|M(t, o, 0)) : {/t := T (0)}, < o ⇐ resetAck >

Fig. 4. Tick Monitor using meta-actors in TLAM

The logging example shows how meta-actors can be used to address secondary
concerns in a modular manner. A more involved problem that has been addressed
by TLAM is that of garbage collection [40]. Using meta-actors to create a reach-
ability snapshot, unreachable base-level actors can be detected and garbage col-
lected. Meta-actor functionality may be composed with the TLAM migration
service to provide garbage collection that works in the presence of migration.
Another application of the model has been to provide modular specification and
implementation for Quality of Service requirements in multimedia [41].

256 B. Donkervoet and G. Agha

6 Case Study: Distributed Monitoring

To understand the strengths and weaknesses of various reflective techniques, we
choose to study a specific example. The task implemented by reflection should
be orthogonal to the functional (transformational) behavior of an application.
However, the reflective behavior needs to be related to the primary task in such
a way that it must make use of the state or other internals of the primary task.
If there were not such a relation, there would be no reason for the primary and
reflective tasks to be joined; they would simply be separate programs.

Considering all of these requirements, we’ve chosen distributed monitoring as
a case study. Distributed monitoring involves runtime observation of safety or er-
ror conditions of a distributed system. There are several monitoring approaches,
each with advantages and disadvantages. Each approach also requires a different
level of reflection, thus offering a different level of flexibility and dynamicity.

6.1 Monitoring Details

Distributed monitoring may be done either centrally or in a decentralized man-
ner. Centralized approaches maintain a single monitor to which all distributed
nodes report. This provides a global, sequential view of the entire system and
makes monitoring extremely simple. However, this also violates the goals of a
distributed system by providing a single point of failure and a system bottleneck
hindering scalability.

Distributed monitoring of a distributed system requires monitors local to each
distributed node. In order to perform the monitoring task, the monitors must
each maintain a view of the entire monitored system. Thus, state data for mon-
itoring is propagated with normal messages between nodes.

Because each node maintains recent state information gathered from messages
from remote nodes, it may not have the actual current global state. Thus, the
distributed monitor is causally correct as it maintains causally consistent data
whereas a centralized monitor is able to assure that the monitor is sequentially
correct by maintaining sequentially consistent data [25].

Throughout this section we will use the terms static and dynamic; by static
monitors we refer to the fact that the installation of monitors must be done
at compile time. Dynamic monitors means that the monitor may be installed
or removed during runtime without redeploying the system. Unfortunately, the
terms static and dynamic are somewhat overloaded–even a statically installed
monitor observes the system at runtime. Moreover, the dynamicity of a monitor
also depends on other factors: a monitor may adapt to changes in a distributed
system, such as nodes joining and leaving system. Finally, we wish to address
the ability of the monitoring system as a whole to adapt and cooperate through
inter-monitor messaging.

Sen et al. introduce past-time distributed temporal logic, PT-DTL, as a lan-
guage for defining monitors to specify restrictions on past or currently-known
values at local or remote nodes [34]. Monitor code is generated from the logic
requirements that is then woven into the code for deployment.

Reflecting on AOP, Metaprogramming, and Adaptive Distributed Monitoring 257

6.2 Past-Time Distributed Temporal Logic

PT-DTL is a logic for specifying passive monitor conditions using traditional logi-
cal and propositional operators. Past-time temporal operators for dictating pre-
vious states include previously, always in the past, happens-after, and
at some time in the past. These sets of operators form past-time linear tem-
poral logic, PT-LTL. In order to address distributed computation, the epistemic
operators @∀JFJ , @∃JFJ , and @j(somefunction) are added to complete PT-DTL.

For example, the following formula tests for the safety of leader election:

@i(leaderElected → ((state = leader) → (@{∀j|j �=i}(state �= leader))))

where the beginning of every PT-DTL statement is @i, stating that the following
constraint is being monitored at the local node. leaderElected, state, and
leader are local keywords in the monitored process. Finally, the @{∀j|j �=i}... is
the epistemic component; evaluating based on the local knowledge of the most
recently known states of other nodes in the system.

Although PT-DTL is a simple distribution of PT-LTL, its distributed nature
means that it has a looser consistency model than PT-LTL or a centralized ap-
proach. PT-DTL must maintain not only the current values of all other nodes but
also the evaluation of past-time logic expressions in order to maintain history.

In addition to the operators provided by PT-DTL, our implementation also pro-
vides a means of communication between monitors, allowing cooperation and
synchronization. Using this added ability, monitors may perform model-based
monitoring where the global monitoring scheme changes in response to the cur-
rent system state. The new scheme is communicated via this monitor channel
and each monitor adapts accordingly. Thus, we require a small logic extension
to PT-DTL, which we hope to address in the near future.

6.3 Example Application

Suppose we have a network of distributed temperature monitors to assure a
safe operating environment. We wish to ensure that the temperature at any
one monitor is not greater than 110% of the average temperature. The PT-DTL
formula for such a monitor would be:

@i(temp < (1.10 ∗ avg(@{j|j is any process}(temp))))

Assuming the datatype holding the knowledge vector is sufficiently flexible
to address joining and leaving nodes, this should maintain our operating con-
straints. However, as simple a change as modifying the alarm threshold to 125%
requires flexibility of the monitor itself. In this case, such flexibility could be
provided easily enough by using a variable to set the alarm tolerance.

However, using variables, flexible data types, and foresight can only address
problems to a point before the amount of flexibility required pushes design re-
quirements into the reflective realm. For example, if instead of monitoring the
system as a whole, we wish to monitor each individual room:

@i(temp < (1.10 ∗ avg(@{j|i,j∈room(J)}(temp))))

258 B. Donkervoet and G. Agha

or the global system and each individual room with different tolerances:

@i ((temp < (1.25 ∗ avg(@{j|j is any process}(temp))))
∧(temp < (1.10 ∗ avg(@{j|i,j∈roomJ}(temp))))

It quickly becomes evident that a more flexible system is necessary.
Using a computationally reflective system, it would be possible to modify

methods instead of just modifying variable values. In the above example, the
monitor method could be changed on the fly to accommodate for the changing
requirements. Using a non-reflective system, the method change would have to
be done in code, recompiled, and then deployed.

6.4 AOP in Distributed Monitoring

Many current distributed monitoring applications use aspect oriented program-
ming to weave the monitor code in with the program code [12,34]. In these
systems, monitors are often compiled from a monitor logic into aspects, which
are then woven into the primary task’s program code in appropriate places.

AOP keeps monitor code orthogonal to program code as stated in our case
study requirements. Additionally, aspects have access to program internals such
as state and variables allowing program monitoring and can even maintain their
own state, which is useful for model-based monitors. Although the AOP approach
can address monitoring requirements, it is not as flexible as other reflective
approaches. Namely, since aspects must be woven into program code, they cannot
be added, modified, or removed at runtime but are set at compile time.

6.5 Reflection in Distributed Monitoring

Reflection offers the flexibility necessary to address the distributed monitoring
problem. Besides being dynamic enough to allow growing knowledge vectors,
sufficient reflection can also allow in-place modification and removal of monitors.

Suppose a distributed system uses the actor framework, monitors could be im-
plemented as meta-actors. Unmonitored actors would remain untouched while
actors with installed meta-actors as monitors would have modified semantics.
Note that meta-actors, being actors themselves, would use normal actor seman-
tics unless they have installed monitors, and thus meta-actors, of their own.

Using the semantics given in Section 5.2, the meta-actor transmit semantics
can be overridden to modify the outgoing message to include the knowledge
vector, in the case of our monitors.

transmit (on monitor): [R[transmit(t, m)], b]â → [R[send(t, m′′)], b]â
m′′ = KV m(m, kv(a))

In order to deal with the knowledge vectors on a monitor, we simply remove
kv(a) and propagate the original message to the recipient actor:

dlv (on monitor): [R[dlv(KV m(m, kv(t))], b]â → [R[nil], b]â, < a ⇐ m >meta

where meta(a) = â

Reflecting on AOP, Metaprogramming, and Adaptive Distributed Monitoring 259

Monitors as meta-actors would have access to actors’ internal states, also
needed for the knowledge vectors. With all of this, the monitors would be able
to track distributed system computation and check for errors. Because the meta-
actors can reflectively modify themselves during runtime, monitors can be mod-
ified or removed on the fly without the need to redeploy monitored processes.

7 Implementation of Adaptive Monitors

A proof-of-concept implementation was done building upon Actor Architecture.
Although the implementation language does not provide strong reflective capa-
bilities, reflection using a library and indirection enabled us to achieve our goal
of a dynamic distributed monitoring system.

7.1 Actor Architecture

The Actor Architecture (AA) is a Java actor framework providing a full actor
implementation running on one or more systems [26]. AA handles message rout-
ing and actor migration and consists of two main parts: the platform, which
provides all of the ‘background’ services, and the actor itself.

Actors in AA are simply Java subclasses of the Actor class. The ActorThread
sleeps until a message is inserted into its mail queue by the local MessageManager.
The ActorThread then processes the message by parsing the requested method
and the corresponding arguments. If the method exists with the correct number
of arguments in the actor object, the method is called.

7.2 Monitor Installation

Once an actor is created, a monitor is installed by sending a message. The mes-
sage simply provides the monitor name and calls the actor class’ addMonitor()
method. This method uses Java’s reflective facilities to create a new instance of
the class named by the string argument. The newly created monitor object is
then added to the list of this actor’s monitors.

Although this installation method requires the monitor bytecode to be present
on the system, there is no reason this is necessary. It is feasible to serialize the
monitor and send it with the message to each actor. However, both schemes are
equally flexible and only differ in when the monitor code is transferred. The class
also has a method removeMonitor() to remove currently installed monitors.

7.3 Knowledge Vectors

The KnowledgeVector class is a collection of KVEntry objects. Each KVEntry
contains only a value and a timestamp and the KnowledgeVector keeps a map-
ping between the entries and the associated actor names.

Scattered throughout the Actor and ActorThread code are calls to the
updateKV(KnowledgeVector)method. This method call is necessary every time
the local knowledge vector can change. Thus, every time a message is received at

260 B. Donkervoet and G. Agha

an actor, the local knowledge vector is compared with the message’s piggybacked
knowledge vector and necessary updates are incorporated.

After message processing and the corresponding call have completed, the ac-
tor’s updateLocalKV() method is called in order to assure that the local knowl-
edge vector contains the most current entries for local variables. Ideally, the
knowledge vector update would be triggered by modification of any monitored
variables but since actors are purely reactive, any modification must occur as
a result of a message. Thus, updating the knowledge vector after completion of
message processing guarantees that all variable modifications are recorded.

In order to update the local portions of the knowledge vector, the method
iterates through each locally monitored variable and reflectively reads it. Java
reflection is necessary in order to obtain references to the variables by only the
string identifier. The updateLocalKV() method then records the current values
and the current timestamp in the knowledge vector.

7.4 Actor Monitor

The ActorMonitor is an abstract class containing methods and variables related
to the monitors. A monitor is created by extending the ActorMonitor class and
implementing the evaluateMonitor() method.

Aside from the evaluate method, there are also two methods for getting and
setting the list of monitored variables. Monitored variables are stored as a string
that is the concatenation of the actor name or local and the variable name.
The local keyword specifies that the variable will be evaluated at each actor
locally whereas the standard actor names specify that the variable will only be
evaluated at the specified actor.

public MyMonitor(){
setMonitoredVariable("uan://127.0.0.1:2/counter");
setMonitoredVariable("local/counter");

}

Fig. 5. The monitor’s constructor showing manual listing of monitored variables

The setMonitoredVariable() modifier is only used within the constructor
of the monitor to initially create the list of variables used in the monitor for-
mula. The getMonitoredVariables() accessor is used in the above mentioned
updateLocalKV() method to access the locally monitored variables.

Each time the knowledge vector is updated, the actor evaluates its installed
monitors. The list of monitors is iterated through and each one is evaluated in
turn using the newly updated values.

The evaluateMonitor() method does the actual evaluation of the monitor
formula. The method pulls out the most currently known variable values from
the local knowledge vector. Using these values, the formula is evaluated and a
boolean value stating the result of the formula is returned. In the case where the
knowledge vector is too sparse to evaluate the monitor, the method simply gives

Reflecting on AOP, Metaprogramming, and Adaptive Distributed Monitoring 261

up and returns success. In addition to the knowledge vector, the local actor name
is also passed in for determining which entries correspond to the local actor.

public boolean evaluateMonitor(KnowledgeVector kv, String locActorName){

try{
int myCnt = kv.get(localActorName + "/counter").getValue();
int remoteCnt = kv.get("uan://127.0.0.1:2/m_iSum").getValue();

if(myCnt > remoteCnt)
System.err.println("MONITOR FAILS!!!! at " + localActorName);

else if(myCnt > THRESHOLD)
aboveTH = true;

else
aboveTH = false;

}
catch(NullPointerException e){

// just ignore it if the knowledge vector is not full enough
}
return(new KVEntry(timestamp++, new Boolean(aboveTH)));

}

Fig. 6. The monitor’s evaluate method. This monitor ensures that the counter value
at every node is never greater than the counter value at actor 127.0.0.1:2.

The evaluateMonitor() method returns a KVEntry, which is then added
to the node’s knowledge vector. This provides means of communication between
monitors allowing them to cooperate and communicate state information. In this
way, monitors can cooperatively execute model-based monitoring.

7.5 Implementation Discussion

Currently, the evaluateMonitor() method and the monitored variables must
be written by hand. However, we intend to incorporate automatic generation of
these from a provided PT-DTL formula.

This implementation provides dynamic, adaptive distributed monitoring but
is still constrained by Java’s limited reflection. Objects can be created and passed
around and their methods may be called but a more reflective language would
allow even greater flexibility. For instance, implementation in Smalltalk would
allow program modification in addition to program introspection.

With the Java implementation, any monitor adaptability has to be coded into
the monitor. Monitors cannot simply be installed on any distributed application,
the application must be designed with monitoring in mind. An analogy would be
having to design an application for debugging versus being able to use a symbolic
debugger on any application. Because of Java’s weak reflective capabilities, all
actors in our implementation must contain code to process knowledge vectors
whether a monitor is installed or not.

262 B. Donkervoet and G. Agha

With a sufficient level of reflection, any application can be monitored without
any special design through reflectively overriding the appropriate methods. The
send and receive methods would not need to handle knowledge vectors in the case
where no monitor is installed but would be modified upon monitor installation.
A Smalltalk implementation is currently underway that uses reflection and meta-
actors. Using these, monitors may be installed on any actor implementing these
two methods without any special design to accommodate monitors.

8 Related Work

We have used distributed monitoring as a case study to demonstrate the need for
and different faces of reflection. As with any problem, there are many possible
solutions, each with its own advantages and disadvantages. Many previous sys-
tems have offered various solutions to distributed monitoring utilizing different
levels of reflection, allowing varying capabilities.

Chen and Rosu introduce Monitor Oriented Programming (MOP), which sep-
arates monitor specification from the program, much like AOP [12]. In addition
to the program implementation, a formal specification is provided. This specifi-
cation is translated into runtime monitors that are installed similarly to aspects.
Should any constraints be violated, user specified code will run to recover from
or report the error. However, also like AOP, only limited reflective capabilities
are utilized. Indeed, the current implementation of MOP, JavaMOP, compiles
the specifications into AspectJ code and thus is constrained by its limitations.

Another area in which reflection is frequently used is active monitoring. The
monitors described thus far in this paper are all passive in that they in no way af-
fect the regular operation of the system but monitor quietly in the background.
Active monitors visibly affect and participate in the operation of their moni-
tored nodes. Synchronization constraints are one form of active monitor used for
distributed synchronization [21]. Meta-actors simply delay delivery of messages
until a specified condition is met and then delivery continues as normal.

Similarly Aksit et al. introduce an AOP model permitting composition of mul-
tiple filters [2]. Filters are meta-level objects that intercept messages to program
objects, apply specified conditions and then allow or disallow message delivery or
perform a specified action. Program objects can be reified by a filter permitting
observation or modification of the object. Filters can be layered to achieve com-
plex functionality while still maintaining logical encapsulation and code reuse
much like layering of meta-actors.

Broadway is an extension to C++ simplifying distributed systems develop-
ment by providing an actor and meta-actor framework [36]. Since C++ is not
a reflective language, reflection is accomplished through use of a library and
changing function pointers. Using this scheme, a fully reflective actor system is
created enabling redefinition of send, receive, and become methods.

Using Broadway, Sturman created DIL, a high-level language that can be
used to define protocols as wrappers to actors [37]. These protocol wrappers
are applied and enforced through meta-actors to capture and modify incom-
ing and outgoing messages. Similarly, Astley introduced Distributed Connection

Reflecting on AOP, Metaprogramming, and Adaptive Distributed Monitoring 263

Language as a method of connecting distributed components through use of
meta-actors to transform and route data [4].

9 Discussion

Reflective programming is, although a powerful tool, difficult to use and complex
to reason and verify. Part of the reason reflective facilities are so limited in real
languages is this complexity, for both the programmer and the runtime developer.
Between this complexity and performance issues, reflection has had limited reach.

As mentioned in Section 3.2, most reflective languages limit the amount of
reflection offered. Reflective facilities provide great flexibility but at a cost to
performance, security, and ease of programming. Because of the necessity for
program and metadata to be mutable, reflective runtime systems must be either
interpreted or provide much indirection, both of which reduce performance and
efficiency [17].

The flexibility and dynamicity provided by reflection also raise security and
correctness concerns. Reflection and metaprogramming have been used to pro-
vide security and for verification purposes [7,18,2]. However, these start with the
assumption that the reflective system itself is secure and correct. Much work
remains to be done on verification and security of reflective systems themselves.
Some security work has been done on Java’s reflective system [11]. However, dif-
ferent security issues are raised by fully reflective systems, given their dynamicity
and the possibility of interference between concurrent applications. Correctness
and verification of reflective programs are especially important given the diffi-
culty of programming these dynamic systems.

In general, fully reflective programming is useful for research and experimen-
tation to determine what is useful and turn that into simpler programming tools
and paradigms (e.g., AOP, TLAM). We believe that such simpler programming
paradigms and tools will be essential to address the complexity of coordination in
large-scale concurrent and distributed systems. Such systems are of increasing
performance as web services and applications, sensor networks, and multicore
architectures continue to grow in importance.

Acknowledgements

We would to thank Carolyn Talcott, MyungJoo Ham, Rajesh Kumar, and
Sameer Sundresh for their helpful comments on an earlier draft.

References

1. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT
Press, Cambridge, MA (1986)

2. Aksit, M., Wakita, K., Bosch, J., Bergmans, L., Yonezawa, A.: Abstracting Ob-
ject Interactions Using Composition Filters. In: Nierstrasz, O. (ed.) ECOOP 1993.
LNCS, vol. 707, pp. 152–184. Springer, Heidelberg (1993)

264 B. Donkervoet and G. Agha

3. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14(03), 329–366 (2004)

4. Astley, M. Customization and Composition of Distributed Objects: Policy Man-
agement in Distributed Software Architectures. PhD thesis, University of Illinois
at Urbana-Champaign (1999)

5. Astley, M., Agha, G.: Customization and composition of distributed objects: Mid-
dleware abstractions for policy management. In: Sixth International Symposium
on the Foundations of Software Engineering, ACM SIGSOFT (1998)

6. Astley, M., Sturman, D., Agha, G.: Customizable middleware for modular dis-
tributed software. Communications of the ACM 44, 99–107 (2001)

7. Bandinelli, S., Fuggetta, A.: Computational reflection in software process model-
ing: The SLANG approach. In: Proceedings of 15th International Conference on
Software Engineering, pp. 144–154 (1993)

8. Bawden, A.: Reification without evaluation. In: LFP ’88: Proceedings of the 1988,
ACM conference on LISP and functional programming, pp. 342–349 (1988)

9. Brant, J., Foote, B., Johnson, R.E., Roberts, D.: Wrappers to the Rescue. In: Jul,
E. (ed.) ECOOP 1998. LNCS, vol. 1445, pp. 396–417. Springer, Heidelberg (1998)

10. Cameron, R., Ito, M.: Grammar-Based Definition of Metaprogramming Systems.
ACM Transactions on Programming Languages and Systems 6, 1 (1984)

11. Caromel, D., Vayssiere, J.: Reflections on MOPs, Components, and Java Security.
In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 256–274. Springer,
Heidelberg (2001)

12. Chen, F., Rosu, G.: Java-MOP: A monitoring oriented programming environment
for Java. In: Proceedings of the 11th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (2005)

13. Cointe, P., Amiot, A., Denier, S.: From (meta) objects to aspects: from Java to
AspectJ. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2004. LNCS, vol. 3657, pp. 70–94. Springer, Heidelberg (2005)

14. Czarnecki, K., Eisenecker, U.W.: Generative programming. Springer, Heidelberg
(2000)

15. Czarnecki, K., Eisenecker, U.W.: Components and generative programming. In:
Proceedings of 7th European software engineering conference and 7th ACM SIG-
SOFT symposium on Foundations of software engineering, pp. 2–19 (1999)

16. Denker, G., Meseguer, J., Talcott, C.: Rewriting semantics of meta-objects and
composable distributed services. Futatsugi [139], 407–427 (1999)

17. Deutsch, L., Schiffman, A.: Efficient implementation of the smalltalk-80 system.
In: Proceedings of the 11th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pp. 297–302 (1984)

18. Fabre, J.C., Perennou, T.: A metaobject architecture for fault-tolerant distributed
systems: the FRIENDS approach. IEEE Transactions on Computers 47(1), 78–95
(1998)

19. Foote, B., Johnson, R.E.: Reflective facilities in Smalltalk-80. ACM SIGPLAN
Notices 24(10), 327–335 (1989)

20. Friedman, D., Wand, M.: Reification: Reflection without metaphysics. In: Proceed-
ings of the 1984 ACM Symposium on LISP and functional programming (1984)

21. Frølund, S.: Inheritance of Synchronization Constraints in Concurrent Object-
Oriented Programming Languages. In: Madsen, O.L. (ed.) ECOOP 1992. LNCS,
vol. 615, pp. 185–196. Springer, Heidelberg (1992)

22. Frølund, S., Agha, G.: A language framework for multi-object coordination. In:
Nierstrasz, O. (ed.) ECOOP 1993. LNCS, vol. 707, pp. 346–360. Springer, Heidel-
berg (1993)

Reflecting on AOP, Metaprogramming, and Adaptive Distributed Monitoring 265

23. Green, D.: Trail: The Reflection API. In: The Java Tutorial Continued: The Rest
of the JDK (TM). Addison-Wesley Pub. Co., Reading (1998)

24. Hennessy, J.: Symbolic Debugging of Optimized Code. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 4(3), 323–344 (1982)

25. Hutto, P., Ahamad, M.: Slow memory: weakening consistency to enhance concur-
rency indistributed shared memories. In: Proceedings of 10th International Con-
ference on Distributed Computing Systems, pp. 302–309 (1990)

26. Jang, M.: The Actor Architecture Manual (2004)
27. Kim, W., Agha, G.: Compilation of a highly parallel actor-based language. In: The

Fifth International Workshop on Languages and Compilers for Parallel Computing,
pp. 1–12 (1992)

28. Lea, R., Yokote, Y., Itoh, J.-I.: Adaptive operating system design using reflection.
In: HOTOS ’95: Proceedings of the Fifth Workshop on Hot Topics in Operating
Systems (HotOS-V), p. 95 (1995)

29. Maes, P.: Computational Reflection. Springer, London (1987)
30. Mason, I.A., Talcott, C.: A semantically sound actor translation. In: Degano,

P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256,
Springer, Heidelberg (1997)

31. Meseguer, J., Talcott, C.L.: Semantic Models for Distributed Object Reflection. In:
Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 1–36. Springer, Heidelberg
(2002)

32. Rivard, F.: Smalltalk: a Reflective Language. In: Proceedings of Reflection, pp.
21–38 (1996)

33. Sen, K., Rosu, G., Agha, G.: Runtime safety analysis of multithreaded programs.
In: Proceedings of the 9th European software engineering and 11th ACM SIGSOFT
symposium on Foundations of software engineering, pp. 337–346 (2003)

34. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Efficient Decentralized Monitoring of
Safety in Distributed Systems. In: Proceedings of the 26th International Conference
on Software Engineering, pp. 418–427 (2004)

35. Smith, B.C.: Reflection and semantics in LISP. ACM Press, New York (1984)
36. Sturman, D.: Fault-adaptation for systems in unpredictable environments. Master’s

thesis, University of Illinois at Urbana-Champaign (1994)
37. Sturman, D.: Modular Specification of Interaction Policies in Distributed Comput-

ing. PhD thesis, University of Illinois at Urbana-Champaign (1996)
38. Sturman, D., Agha, G.: A protocol description language for customizing failure

semantics. In: Proceedings of the 13th Symposium on Reliable Distributed Systems,
pp. 148–157 (1994)

39. Talcott, C., Venkatasubramarian, N.: A Semantic Framework for Specifying and
Reasoning about Composable Distributed Middleware Services (2001)

40. Venkatasubramanian, N., Talcott, C.: Reasoning about meta level activities in
open distributed systems. In: Proceedings of the 14th annual ACM symposium on
Principles of distributed computing, pp. 144–152 (1995)

41. Venkatasubramanian, N., Talcott, C., Agha, G.: A formal model for reasoning
about adaptive QoS-enabled middleware. ACM Transactions on Software Engi-
neering and Methodology (TOSEM) 13(1), 86–147 (2004)

42. Watanabe, T., Yonezawa, A.: An Actor-Based Metalevel Architecture for Group-
Wide Reflection. In: Proceedings of the REX School/Workshop on Foundations of
Object-Oriented Languages, pp. 405–425 (1990)

Links: Web Programming Without Tiers

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop�

University of Edinburgh

Abstract. Links is a programming language for web applications that generates
code for all three tiers of a web application from a single source, compiling into
JavaScript to run on the client and into SQL to run on the database. Links sup-
ports rich clients running in what has been dubbed ‘Ajax’ style, and supports
concurrent processes with statically-typed message passing. Links is scalable in
the sense that session state is preserved in the client rather than the server, in
contrast to other approaches such as Java Servlets or PLT Scheme. Client-side
concurrency in JavaScript and transfer of computation between client and server
are both supported by translation into continuation-passing style.

1 Introduction

A typical web system is organized in three tiers, each running on a separate computer
(see Figure 1). Logic on the middle-tier server generates pages to send to a front-end
browser and queries to send to a back-end database. The programmer must master a
myriad of languages: the logic is written in a mixture of Java, Perl, PHP, and Python;
the pages described in HTML, XML, and JavaScript; and the queries are written in SQL
or XQuery. There is no easy way to ensure that data interfaces between the languages
match up — that a form in HTML or a query in SQL produces data of a type that the
logic in Java expects. This is called the impedance mismatch problem. The problem
is exacerbated because code for the browser or database is often generated at runtime,
making web applications error prone and difficult to debug.

Links eliminates impedance mismatch by providing a single language for all three
tiers. In the current version, Links translates into JavaScript to run on the browser
and SQL to run on the database. The server component is written in O’Caml; it con-
sists of a static analysis phase (including Hindley-Milner typechecking), a translator to
JavaScript and SQL, and an interpreter for the Links code that remains on the server. All
run-time code generation is performed by the compiler in a principled manner, rather
than by the programmer using techniques such as string processing; principled gener-
ation of this code makes applications less error prone and easier to debug, as well as
making it now possible to perform type checking for information passed between the
three tiers. The programmer still needs to think about which code runs in which loca-
tion, especially regarding security of data, but now in a context where the fundamental
properties of well-formed code and well-typed data are guaranteed.

Increasingly, web applications designers are migrating work into the browser. “Rich
client” systems, such as Google Mail and Google Maps, use a new style of interaction

� This research was supported by EPSRC grant number EP/D046769/1.

F.S. de Boer et al. (Eds.): FMCO 2006, LNCS 4709, pp. 266–296, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Links: Web Programming Without Tiers 267

Browser
(HTML, XML,

JavaScript)

Server
(Java, Perl, PHP,
Python, Ruby)

Database
(SQL, XQuery)

response

request query

result

Fig. 1. Three-tier model

dubbed “Ajax” [11]. Client-side Links compiles into JavaScript, a functional language
widely available on most browsers. JavaScript is notoriously variable across platforms,
so we have designed the compiler to target a common subset that is widely available. It
would be easy to extend Links to support additional target languages, such as Flash or
Java. However, we expect the popularity of Ajax will mean that standard and reliable
versions of JavaScript will become available over the next few years.

Links is a strict, typed, functional language. It incorporates ideas proven in other
functional languages, including:

– database query optimization, as found in Kleisli and elsewhere,
– continuations for web interaction, as found in PLT Scheme and elsewhere, and
– concurrency with message passing, as found in Erlang and elsewhere,

All three of these features work better with immutable values rather than mutable ob-
jects. In Links, side effects play a limited (though important) role, being used for up-
dates to the database and display, and communication between concurrent processes.
Types ensure consistency between forms in the browser, logic in the server, and queries
on the database—and between senders and receivers in a concurrent program.

Links programs are scalable in the sense that session state is preserved in the client
rather than the server. Many commercial web tools (like J2EE) and most research web
tools (including current releases of PLT Scheme [15] and Mozart QHTML [9]) are not
scalable in this sense.

In Links, all server state is serialized and passed to the client, then restored to the
server when required. This resumption passing style extends the continuation passing
style commonly used in PLT Scheme and elsewhere. Links functions are labelled as to
whether they are intended to execute on the client or the server; functions running on
the client may invoke those on the server, and vice-versa.

Database programming. Queries are written in the Links notation and compiled into
SQL, a technique pioneered by Kleisli [7,36] and now used in LINQ [18].

Web interaction. The notion that a programming language could provide support for
web interaction first appears in the programming language MAWL [1]. The notion of
continuation from functional programming has been particularly fruitful, being applied
by a number of researchers to improve interaction with a web client, including Quiennec
[25], Graham [13] (in a commercial system sold to Yahoo and widely used for building
web stores), Felleisen and others [14,15], and Thiemann [31].

268 E. Cooper et al.

Concurrency. Links supports concurrent programming in the client, using “share noth-
ing” concurrency where the only way processes can exchange data is by message pass-
ing, as pioneered in Erlang [2] and Mozart [33].

XML programming. Links provides convenient syntax for constructing XML data, sim-
ilar to that provided by XQuery [37]. The current version does not support regular ex-
pression types, as found in XDuce and other languages, but we may add them in a future
version. Regular expression types were given a low priority, because they are already
well understood from previous research [19].

Other languages. Other languages for web programming include Xtatic [16], Scala
[22], Mozart [9], SML.NET [5], F� [30], Cω (based on Polyphonic C� [4] and Xen [6]),
HOP [29] and Ocsigen [3]. These languages have many overlaps with Links, as they
are also inspired by the functional programming community.

However, none of these languages shares Links’ objective of generating code for
all three tiers of a web application from a single source — scripts for the front-end
client, logic for the middle-tier server, and queries for the back-end database. We expect
that providing a single, unified language as an alternative to the current multiplicity of
languages will be a principal attraction of Links.

This paper. We introduce Links by describing three examples in Section 2. Section 3
sketches our features for concurrency and client-server interaction. Section 4 gives an
SQL-compilable subset of Links and details how it is compiled into SQL, while Sec-
tion 5 describes “mailbox typing” for message-passing. Section 6 discusses some short-
comings of the current implementation and Section 7 concludes.

2 Links by Example

This section introduces Links by a series of examples. The reader is encouraged to try
these examples online at

http://groups.inf.ed.ac.uk/links/examples/

We begin with an example to introduce the basic functionality of Links, and then
present two further examples that demonstrate additional capabilities: a draggable list,
and a progress bar.

2.1 Dictionary Suggest

The Dictionary Suggest application presents a text box, into which the user may type a
word. As the user types, the application displays a list of words that could complete the
one being typed. A dictionary database is searched, and the first ten words beginning
with the given prefix are presented (see Figure 2). In addition, the user can add, update
and delete a definition by clicking on it. To add a new definition the user fills in and
submits the form at the bottom of the page by clicking ‘Add’.

Links: Web Programming Without Tiers 269

Fig. 2. Dictionary Suggest screenshot. An entry for “function” appearing in the word list has just
been clicked, so its entry has expanded into an editable form.

To update an existing definition the user clicks on one of the suggestions, which
then expands into a form containing the existing definition; then the user edits the form
and submits it by clicking ‘Update’. This form also includes buttons for cancelling the
update (which restores the original suggestion) and deleting the definition.

This application is of interest because it must perform a database lookup and update
the display at every keystroke. Applications such as Google Suggest [17] have a similar
structure.

The Links version is based on an ASP.NET version, available online [21], using the
same data. It extends the ASP.NET version by allowing the definitions to be added, up-
dated and deleted. The dictionary contains 99,320 entries. For comparison, the
ASP.NET version responds to a keystroke in about 0.1s (due to the difficultly of in-
strumenting third-party code, measurements were made with a stopwatch. The average
of a dozen measurements, allowing for a similarly measured reaction time, was 0.1s). In
the Links version, over 36 trials with various prefixes, total response time measured on
average 649ms with a standard deviation of 199ms; subtracting the time spent perform-
ing the database query in each trial, the average time taken was 297ms with a standard

270 E. Cooper et al.

var defsTable =
table "definitions" with
(id:String, word:String, meaning:String)
where id readonly from database "dictionary";

fun newDef(def) server { insert defsTable values [def] }
fun updateDef(def) server {
update (var d <-- defsTable) where (d.id == def.id)
set (word=def.word, meaning=def.meaning)

}
fun deleteDef(id) server {
delete (var def <-- defsTable) where (def.id == id)

}

fun completions(s) server {
if (s == "") [] else {
take(10, for (var def <-- defsTable)

where (def.word ˜ /s.*/) orderby (def.word)
[def])

}
}

fun suggest(s) client {
replaceChildren(format(completions(s)),

getNodeById("suggestions"))
}

fun editDef(def) client {
redraw(
<form l:onsubmit="{
var def = (id=def.id, word=w, meaning=m); updateDef(def);
redraw(formatDef(def), def.id)}" method="POST">
<table>
<tr><td>Word:</td><td>
<input l:name="w" value="{def.word}"/></td></tr>

<tr><td>Meaning:</td><td>
<textarea l:name="m" rows="5" cols="80">
{stringToXml(def.meaning)}</textarea></td></tr>

</table>
<button type="submit">Update</button>
<button l:onclick="{redraw(formatDef(def), def.id)}">
Cancel</button>

<button l:onclick="{deleteDef(def.id); redraw([],def.id)}"
style="position:absolute; right:0px">Delete</button>

</form>,
def.id)

}

Fig. 3. Dictionary suggest in Links (1)

Links: Web Programming Without Tiers 271

fun redraw(xml, defId) client {
replaceChildren(xml, getNodeById("def:"++defId))

}

fun formatDef(def) client {

{stringToXml(def.word)}
{stringToXml(def.meaning)}

}

fun format(defs) client {
<#>
<h3>Click a definition to edit it</h3>
for (var def <- defs)
{formatDef(def)}

</#>
}

fun addForm(handler) client {
<form l:onsubmit="{handler!NewDef((word=w, meaning=m))}">
<table>
<tr><td>Word:</td><td>
<input type="text" l:name="w"/></td></tr>

<tr><td>Meaning:</td><td>
<textarea l:name="m" rows="5" cols="80"/></td></tr>

<tr><td><button type="submit">Add</button></td></tr>
</table>

</form>
}

var handler = spawn {
fun receiver(s) {
receive {
case Suggest(s) -> suggest(s); receiver(s)
case NewDef(def) ->
newDef(def);
replaceChildren(addForm(self()), getNodeById("add"));
suggest(s); receiver(s)

}
}
receiver("")

};

Fig. 4. Dictionary suggest in Links (2)

deviation of 54ms. Given that no effort has been spent trying to optimize the Links
system, this seems to indicate acceptable performance at this stage.

272 E. Cooper et al.

<html>
<head>
<style>.def {{ color:blue }}</style>
<title>Dictionary suggest</title>

</head>
<body>
<h1>Dictionary suggest</h1>
<h3>Search for definitions</h3>
<form l:onkeyup="{handler!Suggest(s)}">
<input type="text" l:name="s" autocomplete="off"/>

</form>
<div id="suggestions"/>
<h3>New definition</h3>
<div id="add">{addForm(handler)}</div>

</body>
</html>

Fig. 5. Dictionary suggest in Links (3)

The code for the application is shown in Figures 3–5; following is a short walk-
through of the code. On each keystroke, a Suggest message containing the current
contents of the text field is sent to the handler process. The handler process passes
the text content to the function suggest. This function calls completions, which
executes on the server, to find the first ten words with the given prefix, and format
(executing on the client) to format the list returned. Doing the server interaction in a
separate handler process allows the user interaction to remain responsive, even while
looking up suggestions.

The rest of the code is concerned with modifying the database. A form for adding
definitions is created by the function addForm. Clicking ‘Add’ sends a NewDef mes-
sage to the handler process containing a new definition. The handler process calls
newDef to add the definition, then resets the form and updates the list of suggestions
(in case the new definition appears in the current list of suggestions).

Clicking on a definition invokes the function editDef, which calls the function
redraw in order to replace the definition with a form for editing it. Clicking ‘Cancel’
reverses this operation. Clicking ‘Update’ or ‘Delete’ performs the corresponding mod-
ification to the definition by calling updateDef or deleteDef on the server, and
then updates the list of suggestions by calling the function redraw on the client.

Having sketched the basic structure of the example, we now describe several of the
key features of Links, illustrating them by our example code. The features we cover
are syntax, types, XML, regular expressions, interaction, list comprehensions, database
access and update, concurrency, and partitioning the program onto client and server.

The core of Links is a fairly standard functional programming language with
Hindley-Milner type inference. One missing feature is exception handling, which we
plan to add in a future version.

Syntax. The syntax of Links resembles that of JavaScript. This decision was made not
because we are fond of this syntax, but because we believe it will be familiar to our

Links: Web Programming Without Tiers 273

target audience. Low-level syntactic details become a matter of habit that can be hard
to change: we conjecture that using the familiar f(x,y) in place of the unfamiliar
f x y will significantly lower the barrier to entry of functional programming.

One difference from JavaScript syntax is that we do not use the keyword return,
which is too heavy to support a functional style. Instead, we indicate return values subtly
(perhaps too subtly), by omitting the trailing semicolon. The type checker indicates an
error if a semicolon appears after an expression that returns any value other than the
unit value ().

Types. Links uses Hindley-Milner type inference with row variables [24]. As basic
types Links supports integers, floats, characters, booleans, lists, functions, records, and
variants.

– A list is written [e1,...,ek], and a list type is written [A].
– A lambda abstraction is written fun(x1,...,xk){e}, and a function type is

written (A1,...,Ak)->B.
– A record is written (f1=e1,...,fk=ek), and a record type is written
(f1:A1,...,fk:Ak |r), where r is an optional row variable. Field names for
records begin with a lower-case letter.

– A variant is written Fi(ei) and a variant type is written
[|F1:A1,...,Fk:Ak|r|]. Field names for variants begin with an upper-
case letter.

Strings are simply lists of characters, and tuples are records with natural number la-
bels. Apart from the table declaration in Figure 3, none of the examples in the paper
explicitly mention types. This is partly because type inference renders type annotations
unnecessary and partly to save space. Nevertheless, it should be stressed that all of the
examples are type-checked statically, and static typing is an essential part of Links.

Links currently does not support any form of overloading; we expect to support
overloading in future using a simplified form of type classes. As with regular expression
types, this was left to the future because it is well understood from other research efforts.
In particular, the WASH and iData systems make effective use of type classes to support
generic libraries [31,23].

XML. Links includes special syntax for constructing and manipulating XML data.
XML data is written in ordinary XML notation, using curly braces to indicate embed-
ded code. Embedded code may occur either in attributes or in the body of an element.
The Links notation is similar to that used in XQuery, and has similar advantages. In
particular, it is easy to paste XML boilerplate into Links code. The parser begins pars-
ing XML when a < is immediately followed by a legal tag name; a space must always
follow < when it is used as a comparison operator; legal XML does not permit a space
after the < that opens a tag. Links also supports syntactic sugar <#> ... </#> for
specifying an XML forest literal as in the function format in Figure 4.

The client maintains a data structure representing the current document to display,
called the Document Object Model, or DOM for short. Often this structure is repre-
sented in some form of HTML, such as XHTML, the dialect of XML corresponding to
HTML. Links provides library functions to access and modify the DOM, based on the

274 E. Cooper et al.

similar operations specified by the W3C DOM standard. Links supports two types for
manipulating XML: DomNode is a mutable reference (similar to a ref type in ML),
while Xml is an immutable list of trees. There is an operation that converts the former to
the latter by making a deep copy of the tree rooted at the node, returning it in a singleton
list. We expect eventually to support regular expression types for XML that refine each
of these two types, and to support a notation like XPath for manipulating trees, but as
these points are well understood (but a lot of work to implement) they are not a current
priority.

Regular expressions. Matching a string against a regular expression is written e˜/r/
where r is a regular expression. Curly braces may be used to interpolate a string into a
regular expression, so for example /{s}.*/ matches any string that begins with the
value bound to the variable s.

Interaction. The Links code specifies display of an XML document, the crucial part of
which is the following:

<form l:onkeyup="{handler!Suggest(s)}">
<input type="text" l:name="s" autocomplete="off"/>

</form>
<div id="suggestions"/>

The l:name attribute specifies that the string typed into the field should be bound to a
string variable s.

The attributes l:name and l:onkeyup are special. The attribue l:onkeyup is
followed by Links code in curly braces that is not immediately evaluated, but is eval-
uated whenever a key is released while typing in the form. (Normally, including curly
braces in XML attributes, as elsewhere in XML, causes the Links code inside the braces
to be evaluated and its value to be spliced into the XML.) The l:name attribute on an
input field must contain a Links variable name, and that variable is bound to the contents
of the input field.

The attributes that Links treats specially are l:name and all the attributes connected
with events: l:onchange, l:onsubmit, l:onkeyup, l:onmousemove, and so
on. These attributes are prefixed with l:, using the usual XML notation for names-
paces; in effect, l denotes a special Links namespace.

The scope of variables bound by l:name is the Links code that appears in the at-
tributes connected with events. Links static checking ensures that a static error is raised
if a name is used outside of its scope; this guarantees that the names mentioned on the
form connect properly to the names referred to by the application logic. In this, Links
resembles MAWL and Jwig, and differs from PLT Scheme or PHP.

Our experience has shown that this style of interaction does not necessarily scale
well, and it may be preferable to use a library of higher-order forms as developed in
WASH or iData. We return to this point in Section 6.

List comprehensions. The Links code calls the function suggest each time a key
is released. This in turn calls completions to find the first ten completions of the
prefix, and format to format the results as HTML for display. Both completions

Links: Web Programming Without Tiers 275

and format use for loops, in the former case also involving where and orderby
clauses. These constructs correspond to what is written as a list comprehension in lan-
guages such as Haskell or Python. Each comprehension is equivalent to an ordinary
expression using standard library functions, we give three examples, where the com-
prehension is on the left and its translation is on the right.

for (var x <- e1)
e2

concatMap(fun(x){e2},e1)

for (var x <- e1)
where (e2)
e3

concatMap(
fun(x){if (e2) e3 else []},
e1)

for (var x <- e1)
orderby (e2)
e3

concatMap(
fun(x){e3},
orderBy(fun(x){e2},e1))

Here concatMap(f,xs) applies function f to each element in list xs and concate-
nates the results, and orderBy(f,xs) sorts the list xs so that it is in ascending order
after f is applied to each element. The orderby notation is conceptually easier for the
user (since there is no need to repeat the bound variables) and technically easier for the
compiler (because it is closer to the SQL notation that we compile into, as discussed
in the next section; indeed, currently orderby clauses only work reliably in code that
compiles into SQL, because the absence of overloading means we have not yet imple-
mented comparison on arbitrary types in the client or server).

Database. Links provides facilities to query and update SQL databases, where database
tables are viewed as lists of records. We hope to provide similar facilities for XQuery
databases in the future.

Links provides a database expression that denotes a connection to a database, and
a table expression that denotes a table within a database. A database is specified by
name (and optional configuration data, which is usually read from a configuration file),
and a table is specified by the table name, the type signature of a row in the table, and
the database containing the table.

The type of a table is distinct from the type of its list of records, since tables (un-
like lists) may be updated. The coercion operation asList takes a table into the
corresponding list, and for(varx<--e1)e2 (with a long arrow) is equivalent to
for(varx<-asList(e1))e2 (with an ordinary arrow).

In the following example, there is a table of words, where each row contains three
string fields: the word itself, its type (noun, verb, and so on), and its meaning (defini-
tion). Typically, one expresses queries using the Links constructs such as for, where,
and orderby, and functions on lists such as take and drop. The Links compiler is
designed to convert these into appropriate SQL queries over the relevant tables when-
ever possible. For example, the expression

take(10, for (var def <-- defsTable)
where (def.word ˜ /s.*/) orderby (def.word)
[def])

compiles into the equivalent SQL statement

276 E. Cooper et al.

SELECT def.meaning AS meaning, def.word AS word
FROM definitions AS def
WHERE def.word LIKE ’{s}%’
ORDER BY def.word ASC
LIMIT 10 OFFSET 0

This form of compilation was pioneered in systems such as Kleisli [7,36], and is also
central to Microsoft’s new Language Integrated Query (LINQ) for .NET [18]. A re-
lated approach, based on abstract interpretation rather than program transformation, is
described by Wiederman and Cook [35].

Note that the match operator ˜ on regular expressions in Links is in this case com-
piled into the LIKE operator of SQL, and that the call to take in Links is compiled
into LIMIT and OFFSET clauses in SQL. At run time, the phrase {s} in the SQL is
replaced by the string contained in the variable s, including escaping of special charac-
ters where necessary. Links also contains statements to update, delete from, and insert
into a database table, closely modeled on the same statements in SQL.

The LIMIT and OFFSET clauses are not part of the SQL standard, but are available
in PostgreSQL, MySQL, and SQLite, the three targets currently supported by Links.
For non-standard features such as this, Links can generate different code for different
targets; for instance, it generates different variants of INSERT for PostgreSQL and
MySQL.

Section 4 presents a subset of Links that is guaranteed to compile into SQL queries.

Concurrency. Links allows one to spawn new processes. The expression spawn{e}
creates a new process and returns a fresh process identifier, the primitive self() re-
turns the identifier of the current process, the command e1!e2 sends message e2 to
the process identified by e1, and the expression

receive {
case p1 -> e1
...
case pn -> en

}

extracts the next message sent to the current process (or waits if there is no message),
and executes the first case where the pattern matches the message. (Unlike Erlang, it is
an error if no case matches, which fits better with our discipline of static typing.)

By convention, the messages sent to a process belong to a variant type. Event han-
dlers are expected to execute quickly, so we follow a convention that each handler ei-
ther sends a message or spawns a fresh process. For instance, in the Dictionary Suggest
application, each event handler sends a message to a separate handler process that is
responsible for finding and displaying the completions of the current prefix. This puts
any delay resulting from the database lookup into a separate process, so any keystroke
will be echoed immediately. Furthermore, the messages received by the handler process
are processed sequentially, ensuring that the updates to the DOM happen in the correct
order.

As well as any new processes spawned by the user, there is one distinguished process:
the main process. The top-level program and all event handlers are run in the main

Links: Web Programming Without Tiers 277

process. Having all event handlers run in a single process allows us to guarantee that
events are processed in the order in which they are received.

Client-server. The keyword server in the definition of completions causes in-
vocations of that function to be evaluated on the server rather than the client, which is
required because the database cannot be accessed directly from the client.

When the Dictionary Suggest application is invoked, the server does nothing except
to transmit the Links code (compiled into JavaScript) to the client. If the user presses
and releases a key then the suggest function will continue to run on the client as
its definition is annotated with the keyword client. The client runs autonomously
until completions is called, at which point the XMLHttpRequest primitive of
JavaScript is used to transmit the arguments to the server and creates a new process on
the server to evaluate the call. No server resources are required until completions is
called. This contrasts with Java Servlets, which keep a process running on the server at
all times, or with PLT Scheme, which keeps a continuation cached on the server.

Location annotations server and client are only allowed on top-level function
definitions. If a top-level function definition does not have a location annotation then it
will be compiled for both the client and the server. A location annotation should be read
as “this function must be run in the specified location”. The implementation strategy for
client-server communication is discussed further in Section 3.

2.2 Draggable List

The draggable list application demonstrates the use of the concurrency primitives in
Links to manage the state of an interactive GUI component. It displays an itemized list
on the screen. The user may click on any item in the list and drag it to another location
in the list (see Figure 6).

Fig. 6. Draggable list: before and after dragging

The code for the draggable list is shown in Figure 7. The example exploits Links’
ability to run concurrent processes in the client. Each draggable list is monitored by a
separate process.

For each significant event on an item in the list (mouse up, mouse down, mouse out)
there is a bit of code that sends a message to the right process, indicating the event. The

278 E. Cooper et al.

process itself is coded as two mutually recursive functions, corresponding to two states.
The process starts in the waiting state; when the mouse is depressed it changes to the
dragging state; and when the mouse is released it reverts to the waiting state. When the
mouse is moved over an adjacent item while in the dragging state, the dragged item and
the adjacent item are swapped.

Both functions take, as parameter, the DOM id of the draggable-list element, thus
they know what part of the DOM they control. The dragging function takes an addi-
tional parameter, designating the particular item that is being dragged. Both functions
are written in tail recursive style, each one calling either itself (to remain in that state)
or the other (to change state). This style of coding state for a process was taken from
Erlang.

In this simple application, the state of the list can be recovered just by examining the
text items in the list. In a more sophisticated application, one might wish to add another
parameter representing the abstract contents of the list, which might be distinct from
the items that appear in the display.

Observe that the code allows multiple lists to coexist independently, each monitored
by its own process.

2.3 Progress Bar

The progress bar application demonstrates symmetric client and server calls. (Note
that unlike standard Ajax frameworks, in Links client code may call server code and
vice-versa, equally easily.) Here some computation is performed on the server, and the
progress of this computation is demonstrated with a progress bar (see Figure 8). When
the computation is completed, the answer is displayed (see Figure 9).

The code for the progress bar application is shown in Figure 10. In this case, the
computation performed on the server is uninteresting, simply counting up to the number
typed by the user. In a real application the actual computation chosen might be more
interesting.

Periodically, the function computation (running on the server) invokes the func-
tion showProgress (running on the client) to update the display to indicate progress.
When this happens, the state of the computation on the server is pickled and transmitted
to the client, exploiting continuation-passing style. The client is passed just the name
of a function to call, its arguments, and an object representing the server-side contin-
uation to be invoked when the client call is finished. Note that no state whatsoever is
maintained on the server when computation is moved to the client. The implementation
is discussed in more detail in Section 3.

One advantage of this design is that if the client quits at some point during the com-
putation (either by surfing to another page, terminating the browser, or taking a hammer
to the hardware), then no further work will be required of the server.

On the other hand, the middle of an intensive computation may not be the best time
to pickle the computation and ship it elsewhere. A more sophisticated design would
asynchronously notify the client while continuing to run on the server, terminating the
computation if the client does not respond to such pings after a reasonable interval. This
is not possible currently, because the design of Links deliberately limits the ways in
which the server can communicate with the client, in order to guarantee that long-term

Links: Web Programming Without Tiers 279

fun waiting(id) {
receive {
case MouseDown(elem) ->
if (isElementNode(elem)

&& (parentNode(elem) == getNodeById(id)))
dragging(id,elem)

else waiting(id)
case MouseUp -> waiting(id)
case MouseOut(newElem) -> waiting(id)

}
}

fun dragging(id,elem) {
receive {
case MouseUp -> waiting(id)
case MouseDown(elem) ->
if (isElementNode(elem)

&& (parentNode(elem) == getNodeById(id)))
dragging(id,elem)

case MouseOut(toElem) ->
if (isElementNode(toElem)

&& (parentNode(elem) == getNodeById(id)))
{swapNodes(elem,toElem); dragging(id,elem)}

else dragging(id,elem)
}

}

fun draggableList (id,items) client {
var dragger = spawn { waiting(id) };
<ul id="{id}"
l:onmouseup="{dragger!MouseUp}"
l:onmouseuppage="{dragger!MouseUp}"
l:onmousedown="{dragger!MouseDown(getTarget(event))}"
l:onmouseout="{dragger!MouseOut(getToElement(event))}">
{ for (var item <- items) { item } }

}

<html><body>
<h1>Draggable lists</h1>
<h2>Great Bears</h2>
{
draggableList("bears",

["Pooh", "Paddington", "Rupert", "Edward"])
}

</body></html>

Fig. 7. Draggable lists in Links

280 E. Cooper et al.

Fig. 8. Progress bar

Fig. 9. Progress bar displaying the final answer

session state is maintained on the client rather than the server. This is not appropriate in
all circumstances, and future work will need to consider a more general design.

3 Client-Server Computing

A Links program can be seen as a distributed program that executes across two loca-
tions: a client (browser) and a server. The programmer can optionally annotate a func-
tion definition to indicate where it should run. As mentioned before, code on the client
can invoke server code, and vice-versa.

This symmetry is implemented on top of the asymmetric mechanisms offered by
web browsers and servers. Current standards only permit the browser to make a direct
request to the server. The server can return a value to the browser when done, but there
is no provision for the server to invoke a function on the browser directly—so imple-
menting our symmetric calls requires some craft.

Our implementation is also scalable, in the sense that session state, when it is cap-
tured automatically, is preserved in the client, thus requiring no server resources except
when the server is actively working. This is significant since server resources are at a
premium in the web environment.

We achieve this by using a variation of continuation-passing style, which we call
resumption-passing style. It is now common on the web to use continuations to “invert
back the inversion of control” [26], permitting a server process to retain control after
sending a form to the client. But Links permits a server to retain control after invoking
an arbitrary function on the client.

Figure 11 shows how the call/return style of programming offered by Links differs
from the standard request/response style, and how we use request/response style to
emulate the call/return style. The left-hand diagram shows a sequence of calls between
functions annotated with “client” and “server.” The solid line indicates the active thread
of control as it descends into these calls, while the dashed line indicates a stack frame
which is waiting for a function to return. In this example, main is a client function

Links: Web Programming Without Tiers 281

fun compute(count, total) server {
if (count < total) {
showProgress(count, total);
compute(count+1, total)

} else "done counting to " ++ intToString(total)
}

fun showProgress(count, total) client {
var percent =
100.0 *. intToFloat(count) /. intToFloat(total);

replaceNode(
<div id="bar"

style="width:floatToString(percent)%;
background-color: black">|</div>,

getNodeById("bar")
)

}

fun showAnswer(answer) client {
domReplaceNode(
<div id="bar">{stringToXml(answer)}</div>
getNodeById("bar")

);
}

<html>
<body id="body">
<form l:onsubmit=

"{showAnswer(compute(0,stringToInt(n)))}">
<input type="text" l:name="n"/>
<input type="submit"/>

</form>
<div id="bar"/>

</body>
</html>

Fig. 10. Progress bar in Links

which calls a server function f which in turn calls a client function g. The semantics of
this call and return pattern are familiar to every programmer.

The right-hand diagram shows the same series of calls as they actually occur at run-
time in our implementation. The dashed line here indicates that some local storage is
being used as part of this computation. During the time when g has been invoked but
has not yet returned a value, the server stores nothing locally, even though the language
provides an illusion that f is “still waiting” on the server. All of the server’s state is
encapsulated in the value k, which it passed to the client with its call.

To accomplish this, the program is compiled to two targets, one for each location,
and begins running at the client. In this compilation step, server-annotated code is re-
placed on the client by a remote procedure call to the server. This RPC call makes an

282 E. Cooper et al.

Call to f (server)

Call to g (client)

Return r from g

Return s from f

{Call f}

{Call g, k}

{Continue r, k}

{Return s}

main Client Server

Source language:
call/return style

Implementation:
request/response style

f g

Fig. 11. Semantic behaviour of client/server annotations

HTTP request indicating the server function and its arguments. The client-side thread
is effectively suspended while the server function executes.

Likewise, on the server side, a client function is replaced by a stub. This time, how-
ever, the stub will not make a direct call to the client, since in general web browsers are
not addressable by outside agents. However, since the server is always working on be-
half of a client request, we have a channel on which to communicate. So the stub simply
gives an HTTP response indicating the server-to-client call, along with a representation
of the server’s continuation, to be resumed when the server-to-client call is complete.
Upon returning in this way, all of the state of the Links program is present at the client,
so the server need not store anything more.

When the client has completed the server-to-client call, it initiates a new request
to the server, passing the result and the server continuation. The server resumes its
computation by applying the continuation.

3.1 Client-Side Concurrency

A Links program is concurrent: many threads can run simultaneously within the client
or within the server, communicating only through message queues.1 We implement con-
currency in the client, even though JavaScript does not offer any concurrency primitives.
To accomplish this, we use the following techniques:

– compiling to continuation-passing style,
– inserting explicit context-switch instructions,
– placing any server calls asynchronously (with XMLHttpRequest),
– eliminating the stack between context switches using either setTimeout or a

trampoline.

Producing JavaScript code in CPS allows us to reify each process’s control state, but
since JavaScript does not implement tail-call elimination, there is a risk of overflowing
the stack.

1 Note that presently there is no message-based communication between client and server.

Links: Web Programming Without Tiers 283

To manage the stack and to schedule threads, the compiler wraps every function
application and every continuation application in calls to a special “yield” function
which does the dirty work. Most calls to _yield are simply no-ops, but after every
_yieldGranularity calls, it will collapse the JavaScript stack and may schedule a
new thread to run.

A quick aside about the concurrency semantics: Normally, threads can pre-empt one
another at any time. However, inside an event handler, we disallow pre-emption—this
allows events to be handled in the order they arrive, for otherwise one event handler
might be pre-empted by a later event even before the earlier handler noted the event’s
occurrence! In order to prevent event handlers from blocking concurrency, we recom-
mend that they be short-lived (ideally they just send a message or spawn a new process).

With this in mind, we use two techniques for managing the stack, one of which also
allows a waiting thread to run; we call these the “timeout technique” and the “exception
trampoline.” The latter does not transfer control to other threads and is used during
synchronous execution, as with event handlers.

To see these techniques, refer to the implementation of _yield for function appli-
cation2 in Figure 12. In detail, the two techniques work as follows:

– In the timeout technique, the thread relinquishes control by returning completely to
the top level (that is, to the browser), but only after calling the built-insetTimeout
function, which adds a given function to a pool of thunks, each of which will
be invoked no sooner than the given interval. Since the JavaScript code is all in
continuation-passing style, returning from any function returns from the whole call
stack, thus emptying it—but the timeout thunk has captured the continuation of that
thread, so nothing is lost. The thunk we use simply manages the “process id” global
and then calls f(a, k) to continue the thread.

Besides giving other timeout thunks the chance to run, returning to the top level
allows any event handlers or any XMLHttpRequest callbacks to run.

The _sched_pause is a lower bound on how long to wait before allowing
this callback to run. Ideally this value should be zero, so there would be no delay
between the moment a thread yields and the moment it is eligible to run again.
But for some browsers a _sched_pause of zero runs the callback immediately,
rather than putting it in the pool, thus blocking other threads.

– In the “exception trampoline” method, an exception is thrown containing the cur-
rent continuation. Throwing the exception unwinds the stack; the trampoline then
catches the exception and invokes the continuation. The trampoline code is shown
in Figure 13.

Unsurprisingly, preliminary tests indicate that the output of the CPS-translating com-
piler is slower than comparable direct-style code. The performance penalty appears
to be significant but not disastrous: the total run-time of compute-intensive programs
we measured was within an order of magnitude of equivalent hand-written JavaScript
versions.

2 The “yield” function for continuation application is the same except it takes as arguments
continuation k and value a, and the function applications f(a, k) are replaced with con-
tinuation applications k(a).

284 E. Cooper et al.

function _yield(f, a, k) {
++_yieldCount;
if ((_yieldCount % _yieldGranularity) == 0) {

if (!_handlingEvent) {
var current_pid = _current_pid;
setTimeout((function() {

_current_pid = current_pid;
f(a, k)}),

_sched_pause);
}
else {
throw new _Continuation(function () { f(a,k) });

}
}
else {

return f(a,k);
}

}

Fig. 12. The yield function

Client-to-server calls are implemented using the asynchronous mode of the function
XMLHttpRequest, to which we pass a callback function that invokes the continu-
ation of the calling process. Using the asynchronous mode allows threads to run via
setTimeout or triggering user-event handlers.

3.2 Related Work: Continuations for Web Programming

The idea of using continuations as a language-level technique to structure web programs
has been discussed in the literature [25,26] and used in several web frameworks (such
as Seaside, Borges, PLT Scheme, RIFE and Jetty) and applications, such as ViaWeb’s
e-commerce application [12], which became Yahoo! Stores. Most these take advantage
of a call/cc primitive in the source language, although some implement a continuation-
like object in other ways. Each of these systems creates URLs which correspond to
continuation objects. The most common technique for establishing this correspondence
is to store the continuation in memory, indexed by a unique identifier which is included
as part of the URL.

Relying on in-memory tables makes such a system vulnerable to system failures
and difficult to distribute across multiple machines. Whether stored in memory or in a
database, the continuations can require a lot of storage. Since URLs can live long in
bookmarks, emails, and other media, it is impossible to predict how long a continuation
should be retained. Most of the above frameworks destroy a continuation after a set
period of time. Even with a modest lifetime, the storage cost can be quite high, as each
request may generate many continuations and there may be many simultaneous users.

Our approach differs from these implementations by following the approach de-
scribed by the PLT Scheme team [14]. Rather than storing a continuation object at

Links: Web Programming Without Tiers 285

function _Continuation(v) { this.v = v }

function _wrapEventHandler(handler) {
return function(event) {

var active_pid = _current_pid;
_current_pid = _mainPid;
_handlingEvent = true;
var cont = function () { handler(event) }
for (;;) {
try {

cont();
_handlingEvent = false;
_current_pid = active_pid;
return;

}
catch (e) {

if (e instanceof _Continuation) {
cont = e.v;
continue;

}
else {

_handlingEvent = false;
_current_pid = active_pid;
throw e;

}
}

}
}

}

Fig. 13. The event handler trampoline

the server and referring to it by ID, we serialize continuations (or at least, their “data”
portions), embedding them completely in URLs and hidden form variables. The result-
ing representation includes only the code-pointers and free-variable bindings that are
needed in the future of the computation.

We have not yet addressed the issue of security. Security is vital. Our current imple-
mentation completely exposes the state of the application to the client. A better system
needs to cryptographically encode any sensitive data when it is present on the client.

4 Query Compilation

A subset of Links expressions compiles precisely to a subset of SQL expressions.
Figure 14 gives the grammar of the SQL-compilable subset of Links expressions and
Figure 15 gives the grammar for the subset of SQL to which we compile.

All terms are identified up to α-conversion (that is, up to renaming of bound vari-
ables, field names and table aliases). We allow free variables in queries, though they

286 E. Cooper et al.

are not strictly allowed in SQL: values for these variables will be supplied either at
compile time, during query rewriting, or else at runtime. We use vector notation v̄ to
mean v1 ,...,vk, where 1 ≤ k and abuse vector notation in the obvious way in
order to denote tuples, record patterns and lists of tables. For uniformity, we write an
empty ‘from’ clause as from •. In standard SQL the clause would be omitted alto-
gether. We assume a single database db, and write table t with (f1,...,fk)
for asList(table t where (f1:A1,...,fk:Ak) from db).

(expressions) e ::= take(n, e) | drop(n, e) | s

(simple expressions) s ::= for (pat <- s) s
| let x = b in s
| where (b) s
| table t with f̄
| [(b̄)]

(basic expressions) b ::= b1 op b2

| not b
| x
| lit
| z.f

(patterns) pat ::= z | (f̄=x̄)

(operators) op ::= like | > | = | < | <> | and | or

(literal values) lit ::= true | false | string-literal | n

(finite integers) i, m, n

(field names) f, g

(variables) x, y

(record variables) z

(table names) t

Fig. 14. Grammar of an SQL-compilable subset of Links

Any expression e can be transformed into an equivalent SQL query by repeated ap-
plication of the rewrite rules given in Figure 16. To give the rewriting process sufficient
freedom, we extend the non-terminal s from Figure 14 to give ourselves a working
grammar.

Links: Web Programming Without Tiers 287

(queries) q ::= select Q limit ninf offset n

(query bodies) Q ::= cols from tables where c

(column lists) cols ::= c̄

(table lists) tables ::= t̄ as ā | •

(SQL expressions) c, d ::= c op d
| not c
| x
| lit
| a.f

(integers) ninf ::= n | ∞

(table aliases) a

Fig. 15. The SQL grammar that results from query compilation

s ::= ... | q
We write s[b/x] for the substitution of b for x in s. Again we abuse the vector
notation in the obvious way in order to denote simultaneous pointwise substitution.
Note that min is a meta language (i.e. compiler) operation that returns the minimum of
two integers, and is not part of the target language.

Proposition 1. The database rewrite rules are strongly normalising and confluent.

Proof. Define the size |e| of an expression e as follows.

|take(n, s)| = 1 + |s|
|drop(n, s)| = 1 + |s|

|for (x <- s1) s2| = 2 + |s1| + |s2|
|for ((f̄ = x̄) <- s1) s2| = 1 + |s1| + |s2|

|let x = b in s| = 1 + |s|
|where (b) s| = 1 + |s|

|table t| = 1
|[(b)]| = 1

Each rewrite rule strictly reduces the size of an expression, thus the rules are strongly
normalising. The rewrite rules are orthogonal and hence weakly confluent. Confluence
follows as a direct consequence of weak confluence and strong normalisation.

288 E. Cooper et al.

TABLE

table t with f̄
−→ (a is fresh)

select a.f̄ from t as a where true limit ∞ offset 0

LET

let x = b in s −→ s[b/x]

TUPLE

[(b̄)] −→ select b̄ from • where true limit ∞ offset 0

JOIN

for ((f̄=x̄) <-
select c̄1 from t̄1 as ā1 where d1 limit ∞ offset 0)
select c̄2 from t̄2 as ā2 where d2 limit ∞ offset 0

−→ (ā1 and ā2 are disjoint)
select c̄2[c̄1/x̄] from t̄1 as ā1, t̄2 as ā2

where d1 and d2[c̄1/x̄] limit ∞ offset 0

WHERE

where (b) (select c̄ from t̄ as ā where d limit m offset n)
−→

select c̄ from t̄ as ā where d and b limit m offset n

RECORD

for (z <- select c̄ from t̄ as ā where d limit m offset n) s
−→ (x̄ not free in s)

for ((f̄=x̄) <- select c̄ from t̄ as ā
where d limit m offset n) s[x̄/z.f̄]

TAKE

take(i, select Q limit m offset n)
−→

select Q limit min(m,i) offset n

DROP

drop(i, select Q limit m offset n)
−→

select Q limit m-i offset n+i

DROP∞
drop (i, select Q limit ∞ offset n)

−→
select Q limit ∞ offset n+i

Fig. 16. Database rewrite rules

Links: Web Programming Without Tiers 289

5 Statically Typed Message Passing

Concurrency in Links is based on processes that send messages to mailboxes. Each
process can read from a single mailbox which it owns. The message passing model is
inspired by Erlang [2], but unlike in Erlang, mailboxes in Links are statically typed. To
achieve this, we add a special mailbox type to the typing context, and annotate function
types with the type of their mailbox.

We here present a tiny core calculus to capture the essence of process and mes-
sage typing in Links. There is nothing particularly difficult here, but it does capture
the essence of how our type inference works. The simple description of our core has
already proven useful to researchers at MSR Cambridge working with Links.

We let A, B, C, D range over types, s, t, u range over terms, and x range over vari-
ables. A type is either the empty type 0; unit type 1; a process type P (A), for a process
that accepts messages of type A; or a function type A →C B, for a function with argu-
ment of type A, result of type B, and that may accept messages of type C when evalu-
ated. Links also supports record types and variant types (using row typing), but as those
are standard we don’t describe them here. Typically, a process will receive messages
belonging to a variant type, and we use the empty variant type (which is isomorphic to
the empty type 0) to assert that a function does not receive messages.

A typing judgement has the form Γ ; C � t : A, where Γ is a typing context pairing
variables with types, C is the type of messages that may be accepted during execution
of the term, t is the term, and A is the type of the term.

The typing rules are shown in Figure 17. The rules for variables and the constant
of unit type are standard. The type of a lambda abstraction is labelled with the type
C of messages that may be received by its body, where the context of the abstraction
may accept messages of an unrelated type D; while in an application, the function must
receive messages of the same type C as the context in which it is applied.

If t is a term of unit type that receives messages of type C, then spawn t returns a
fresh process identifier of type P (C), where the context of the spawn may receive mes-
sages of an unrelated type D. The term self returns the process identifier of the current
process, and so has type P (C) when it appears in a context that accepts messages of
type C. If s is a term yielding a process identifier of type P (D) and t is a term of type
D, then send s t is a term of unit type that sends the message t to the process identi-
fied by s; it evaluates in a context that may receive messages of an unrelated type C.
Finally, the term receive returns a value of type C when it is executed in a context that
may receive messages of type C.

Links syntax differs slightly from the core calculus. The type A →C B is written
A -{C}-> B, or just A -> B when C is unspecified. The core expression self is
written as a function call self(), the core expression send t u is written t!u, and the
Links expression

receive {
case p1 -> e1
...
case pn -> en

}

290 E. Cooper et al.

Γ, x : A; C � x : A Γ ; C � () : 1

Γ, x : A;C � u : B

Γ ; D � λx.u : A →C B

Γ ;C � s : A →C B Γ ;C � t : A

Γ ;C � st : B

Γ ; C � t : 1
Γ ; D � spawn t : P (C) Γ ; C � self : P (C)

Γ ; C � s : P (D) Γ ; C � t : D

Γ ; C � send s t : 1 Γ ; C � receive : C

Fig. 17. Statically typed message passing

thread : (A → A) → A

newChannel : unit → Chan(A)

put : Chan(A) → A → unit

get : Chan(A) → unit → A

Fig. 18. Constants for the λ(fut) translation

corresponds to a switch on the value returned by the receive operator. (Recall that by
convention the type of messages sent to a process, i.e. its mailbox type, is a variant
type.)

We give a formal semantics for the typed message-passing calculus via a translation
into λ(fut), Niehren et al’s concurrent extension of call-by-value λ-calculus [20]. For
our purposes we need not consider all of the details of λ(fut). We just describe the image
of the translation and then rely on previous results [20]. The image of the translation is
simply-typed call-by-value λ-calculus extended with the constants of Figure 18.

The expression thread (λx.u) spawns a new process binding its future to the variable
x in u and also returning this future. A future can be thought of as placeholder for a
value that is set to contain a real value once that value becomes known. Futures are
central to λ(fut), but not to our translation.

The other constants are used for manipulating asynchronous channels, which can be
used for implementing mailboxes. The constants newChannel, put and get are used for
creating a channel, writing to a channel, and reading from a channel. They are not built
in to λ(fut), but are easily implemented in terms of λ(fut)-primitives, when λ(fut) is
extended with product types. The type of channels is Chan(A)3.

We write Γ �fut u : A for the λ(fut) typing judgement “u has type A in context Γ .”
The translation on terms and types is given in Figure 19. At the top level a fresh channel
corresponding to the mailbox of the main process is introduced. Thereafter, the transla-
tion on terms is annotated with the current channel. Unit and variables are just mapped

3 In fact Chan(A) is just the type (A → unit) × (unit → A) (i.e. a pair of put and get
functions), but that is not relevant to our presentation.

Links: Web Programming Without Tiers 291

[[u]] = let ch be newChannel () in [[u]]ch

[[()]]ch = ()

[[x]]ch = x

[[λx.u]]ch = λx.λch′.[[u]]ch′

[[st]]ch = [[s]]ch [[t]]chch

[[spawn u]]ch = let ch′ be newChannel () in
let be thread (λ .[[u]]ch′

) in ch′

[[send s t]]ch = put [[s]]ch [[t]]ch

[[receive]]ch = get ch

[[self]]ch = ch

[[1]] = 1 [[P (A)]] = Chan([[A]]) [[A →C B]] = [[A]] → [[P (C)]] → [[B]]

Fig. 19. Translation into λ(fut)

to themselves. The current mailbox is threaded through functions and applications. The
spawn, send and receive constructs are mapped to thread, put and get, and self is sim-
ply mapped to the channel that corresponds to the current mailbox. The type translation
maps unit to unit, process types to channel types, and function types to function types
with an extra channel argument.

It is straightforward to prove by induction on typing derivations that the transforma-
tion respects typing judgements.

Proposition 2. The transformation [[·]] respects typing judgements.

Γ ; C � u : A iff [[Γ]] �fut let ch[[C]] be newChannel () in [[u]]ch : A

By Proposition 2 and standard results for λ(fut) [20], we can be sure that programs that
are well-typed in our message-passing calculus “do not go wrong”.

6 Issues

Links is still at an early stage of development. There are a number of shortcomings in
the current design, which we plan to address. We mention some of them here.

Form abstractions. A flaw in the design of forms is that Links does not support ab-
straction over form components. As described in section 2.1, form interaction in Links
is specified using the attributes l:name, which binds the value of a form field to a
Links variable, and l:onsubmit, which contains Links code to be executed when a
form is submitted. Variables bound by l:name are in scope within the l:onsubmit
attribute of the lexically enclosing form. This design has several shortcomings. Firstly,
it is not possible to abstract over input elements, since all input elements must be lex-
ically contained within the form to which they belong. Secondly, it is not possible to
vary the number of input elements within a form, since each input element is associated
with a Links variable, and the number of variables is fixed at compile time. Thirdly,
form components are not composable: it is not possible to compose input elements to
create new form components which have the same interface as the language-supplied
primitives, since l:name is only attachable to input XML literals.

292 E. Cooper et al.

To illustrate these problems, say we wish to construct a date component which we
will use to allow the user to enter a number of dates into a form.

var date =
<#>
month: <input l:name="month"/>
day: <input l:name="day"/>

</#>

We would then like to use instances of date in a form elsewhere in the program:
<form l:onsubmit="{e}">

Arrival: {date}
Departure: {date}

</form>

Unfortunately, Links provides no way to refer within the l:onsubmit attribute
to the values entered into the date fields, since the input elements are not lexically
enclosed within the form. The only way to write the program is to textually include the
date code within the form, then refer to the individual input elements of each month
and day within e. This violates abstraction in two ways: the component must be defined
(twice!) at the point of use, and the individual elements of the component cannot be
concealed from the client.

If we try to construct a form with a number of fields determined at runtime then we
run into further difficulties:

fun (n) {
<form l:onsubmit="{e}">{
for (var i <- range(n))
Field {i}: <input l:name="x"/>

}</form>
}

This code is also problematic: there is no way to refer to the different input fields gen-
erated in the loop, since all have the same name! Such constructs are consequently
disallowed, and Links provides no way to construct forms with dynamically-varying
numbers of fields.

The l:name mechanism provides a limited (but clean) way to refer to DOM nodes
that are <input> elements. A related problem is that there is currently no other way
of statically referring to a DOM node, which means we have to resort to calling the
function getNodeById as illustrated in the draggable lists example.

Other systems also suffer from these problems to a greater or lesser degree. In PLT
Scheme [15], composing new forms from old or making forms with a varying number
of fields is possible, but not straightforward. In WASH [31] and iData [23], building
forms that return new types requires declaring instances for those types in particular
type classes, and in WASH a special type constructor needs to be used for forms with a
varying number of fields. It was surprising for us to realize that composability of forms
has received relatively little attention.

We are currently working on a design for light-weight modular form components,
which uses a uniform framework to support form abstraction, varying numbers of form
fields, and a mechanism that allows DOM nodes to be statically bound.

Links: Web Programming Without Tiers 293

Synchronous messages. As far as we are aware, our mailbox typing scheme for Links
is novel, though the translation into λ(fut) shows that it can be simulated using typed
concurrent languages with support for typed channels.

Links message passing is asynchronous, but often one wants synchronous message
passing, where one sends a message and waits for a result. An example where syn-
chronous message passing is needed is the extension of the draggable lists example to
support reading the content of draggable lists.4

Although Links does not directly support synchronous message passing, it can be
simulated in the same way as in Erlang. In order to send a synchronous message from
process P to process Q the following sequence of events must occur:

– P sends a message (M, P) to Q,
– P blocks waiting for a reply Reply(N),
– on receiving the message (M, P) the process Q sends a message Reply(N) to P ,
– P receives the reply message Reply(N).

However, Erlang is untyped; in Links, the simulation of synchronous messages has the
unfortunate side-effect of polluting the type of process P ’s mailbox, to include a dif-
ferent constructor for each distinct type of reply message associated with synchronous
messages sent by P .

Type pollution of this kind makes it hard to structure programs cleanly. We are con-
sidering moving to a different model of concurrency that makes it easier to support
typed synchronous message passing, such as the Join calculus [10], or even removing
explicit concurrency from the language altogether and replacing it with something like
functional reactive programming [34].

Database abstraction. As we showed in Section 4, we can guarantee to compile a useful
fragment of Links into SQL. However, this fragment still lacks many important features.
We do not yet deal with aggregate functions such as count, sum, and average, and
we only support order by attached to a single loop iterator (rather than a nest of loop
iterators). One can express the equivalent of a group by construct as a nested loop,
but we do not yet translate code into group by when appropriate, nor yet support any
other form of nested queries.

We also do not yet provide adequate support for abstracting over a query. For in-
stance, suppose we try to abstract over the condition in the Dictionary Suggest example.
We can amend the completions function to take a condition encoded as a function
from unit to boolean in place of the prefix.

fun completions(cond) server {
if (s == "") [] else {
take(10, for (var def <-- defsTable)

where (cond()) orderby (def.word)
[def])

}
}

4 See http://groups.inf.ed.ac.uk/links/examples/

294 E. Cooper et al.

Only once the condition is known is it possible to compile this to efficient SQL. The
current compiler produces spectacularly inefficient SQL, which returns the entire dic-
tionary, leaving the Links interpreter to then filter according to the condition and then
take the first 10 elements of the filtered list. To produce adequately efficient code, it is
necessary to inline calls to completions with the given predicate. But our compiler
does not yet perform inlining, and in general inlining can be difficult in the presence of
separate compilation.

Some of the problems outlined above are easy. For instance, we should be able to
support aggregates in the same style that we support take and drop; and it is straight-
forward to extend our techniques to support orderby on nested loops. However, other
problems are more challenging; in particular, it is not immediately clear how to extend
the fragment described in Section 4 to support abstraction over predicates usefully.

Microsoft’s Linq addresses all these issues, but does so by (a) requiring the user to
write code that closely resembles SQL and (b) a subtle use of the type system to dis-
tinguish between a procedure that returns a value and a procedure that returns code that
generates that value. It remains an open research problem to determine to what extent
one can support efficient compilation into SQL without introducing separate syntax and
semantics for queries as is done in Linq.

7 Conclusion

We have demonstrated that it is possible to design a single language in which one can
program all three tiers of a web application. This eliminates the usual impedance mis-
match and other problems connected with writing an application distributed across mul-
tiple languages and computers. We have shown that we can support Ajax-style interac-
tion, programming applications such as Dictionary Suggest and draggable lists. The
language compiles to JavaScript to run in the client, and SQL to run on the database.

Ultimately, we would like to grow a user community for Links. This depends on a
number of factors, many of which are not well understood. One important factor seems
to be the availability of good libraries. Good interfaces to other systems may help to
rapidly develop useful functionality. A vexing question here is how to access facilities
of languages that take a mostly imperative view of the world without vitiating the mostly
functional approach taken by Links.

Already, researchers at Microsoft Cambridge and the University of Maryland have
begun projects to add security features to Links; and one paper has been published that
uses a modified version of Links to enhance security [32].

To make Links truly successful will require bringing together researchers and devel-
opers from many localities, many perspectives, and many communities. We would like
to join our efforts with those of others — let us know if you are interested!

References

1. Atkins, D.L., Ball, T., Bruns, G., Cox, K.C.: Mawl: A domain-specific language for form-
based services. Software Engineering 25(3), 334–346 (1999)

2. Armstrong, J.: Concurrency oriented programming in Erlang. Invited talk, FFG (2003)

Links: Web Programming Without Tiers 295

3. Balat, V.: Ocsigen: typing web interaction with objective Caml. In: Proceedings of the 2006
workshop on ML, Portland, Oregon (September 2006)

4. Benton, N., Cardelli, L., Fournet, C.: Modern concurrency abstractions for C�. TOPLAS
26(5) (2004)

5. Benton, N., Kennedy, A., Russo, C.: Adventures in interoperability: the SML .NET experi-
ence. PPDP (2004)

6. Bierman, G., Meijer, E., Schulte, W.: Programming with rectangles, triangles, and circles. In:
XML Conference (2003)

7. Buneman, P., Naqvi, S., Tannen, V., Wong, L.: Principles of programming with complex
objects and collection types. TCS 149(1) (1995)

8. Burstall, R., MacQueen, D., Sannella, D.: Hope: An experimental applicative language. In:
Lisp Conference (1980)

9. El-Ansary, S., Grolaux, D., Van Roy, P., Rafea, M.: Overcoming the multiplicity of languages
and technologies for web-based development. In: Van Roy, P. (ed.) MOZ 2004. LNCS,
vol. 3389, Springer, Heidelberg (2005)

10. Fournet, C., Gonthier, G.: The Join Calculus: a language for distributed mobile programming.
In: Barthe, G., Dybjer, P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395,
Springer, Heidelberg (2002)

11. Garret, J.: Ajax: a new approach to web applications (2005)
12. Graham, P.: Method for client-server communications through a minimal interface. United

States Patent no. 6,205,469 (March 20, 2001)
13. Graham, P.: Beating the averages (2001)
14. Graunke, P., Findler, R.B., Krishnamurthi, S., Felleisen, M.: Automatically restructuring pro-

grams for the web. ASE (2001)
15. Graunke, P., Krishnamurthi, S., van der Hoeven, S., Felleisen, M.: Programming the web

with high-level programming languages. In: Sands, D. (ed.) ESOP 2001 and ETAPS 2001.
LNCS, vol. 2028, Springer, Heidelberg (2001)

16. Gapeyev, V., Levin, M., Pierce, B., Schmitt, A.: The Xtatic experience. PLAN-X (2005)
17. labs.google.com/suggest
18. Microsoft Corporation. DLinq: .NET Language Integrated Query for Relational Data

(September 2005)
19. Møller, A., Schwartzbach, M.: The design space of type checkers for XML transformation

languages. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, Springer, Heidelberg
(2004)

20. Niehren, J., Schwinghammer, J., Smolka, G.: A Concurrent Lambda Calculus with Futures.
TCS, 364(3) (2006)

21. Narra, G.: ObjectGraph Dictionary,
http://www.objectgraph.com/dictionary/how.html

22. Odersky, M., et al.: An overview of the Scala programming language. Technical report, EPFL
Lausanne (2004)

23. Plasmeijer, R., Achten, P.: iData For The World Wide Web: Programming Interconnected
Web Forms. In: Hagiya, M., Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945, Springer,
Heidelberg (2006)

24. Pottier, F., Rémy, D.: The essence of ML type inference. In: Pierce, B. (ed.) Advanced Topics
in Types and Programming Languages, ch. 10, pp. 389–489. MIT Press, Cambridge (2005)

25. Queinnec, C.: Continuations to program web servers. ICFP (2000)
26. Queinnec, C.: Inverting back the inversion of control or, continuations versus page-centric

programming, SIGPLAN Not (2003)
27. Reynolds, J.: Definitional interpreters for higher-order programming languages. In: ACM

’72: Proceedings of the ACM annual conference (1972)

labs.google.com/suggest
http://www.objectgraph.com/dictionary/how.html

296 E. Cooper et al.

28. Ruby on Rails, http://www.rubyonrails.org/
29. Serrano, M., Gallesio, E., Loitsch, F.: HOP, a language for programming the Web 2.0. In:

Proceedings of the First Dynamic Languages Symposium, Portland, Oregon (October 2006)
30. Syme, D.: F�r web page,

research.microsoft.com/projects/ilx/fsharp.aspx
31. Thiemann, P.: WASH/CGI: server-side web scripting with sessions and typed, compositional

forms. In: Krishnamurthi, S., Ramakrishnan, C.R. (eds.) PADL 2002. LNCS, vol. 2257,
Springer, Heidelberg (2002)

32. Trevor, J., Swamy, N., Hicks, M.: Defeating Script Injection Attacks with Browser-Enforced
Embedded Policies. World Wide Web (May 2007)

33. Van Roy, P.: Convergence in language design: a case of lightning striking four times in the
same place. In: Hagiya, M., Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945, Springer, Hei-
delberg (2006)

34. Wan, Z., Hudak, P.: Functional reactive programming from first principles. In: PLDI ’00:
Proceedings of the ACM SIGPLAN 2000 conference on Programming language design and
implementation, Vancouver, British Columbia, Canada (2000)

35. Wiederman, B., Cook, W.: Extracting queries by static analysis of transparent persistence.
POPL (2007)

36. Wong, L.: Kleisli, a functional query system. JFP, 10(1) (2000)
37. XML Query and XSL Working Groups. XQuery 1.0: An XML Query Language, W3C Work-

ing Draft (2005)

http://www.rubyonrails.org/
research.microsoft.com/projects/ilx/fsharp.aspx

Author Index

Agha, Gul 246
Ahrendt, Wolfgang 70
Aranda, Jesús 185
Artho, Cyrille 26

Barthe, Gilles 152
Beckert, Bernhard 70
Biere, Armin 26
Burdy, Lilian 152

Charles, Julien 152
Cooper, Ezra 266

Dezani-Ciancaglini, Mariangiola 207
Di Giusto, Cinzia 185
Donkervoet, Bill 246
Drossopoulou, Sophia 207

Frantzen, Lars 1

Giachino, Elena 207
Grégoire, Benjamin 152

Hähnle, Reiner 70
Honiden, Shinichi 26
Huisman, Marieke 152

Jeannet, Bertrand 47
Jéron, Thierry 47

Krukow, Karl 175

Lanet, Jean-Louis 152
Leucker, Martin 127
Lindley, Sam 266

Nielsen, Mogens 175

Palamidessi, Catuscia 185
Pavlova, Mariela 152

Requet, Antoine 152
Rümmer, Philipp 70
Rusu, Vlad 47

Sassone, Vladimiro 175
Schmitt, Peter H. 70
Sirjani, Marjan 102

Tretmans, Jan 1

Valencia, Frank D. 185

Wadler, Philip 266

Yallop, Jeremy 266
Yoshida, Nobuko 207

	Title Page
	Preface
	Organization
	Table of Contents
	Model-Based Testing of Environmental Conformance of Components
	Introduction
	Testing for Labelled Transition Systems
	Towards Formal Component-Based Testing
	Environmental Conformance
	Test Generation
	Combining Upper and Lower Interface Testing
	Conclusions

	Exhaustive Testing of Exception Handlers with Enforcer
	Introduction
	Background
	Exceptions
	Fault Injection
	Problem Scope

	Implementation
	Manual Testing of Exceptions
	Automation
	Comparison to Stub-Based Fault Injection
	Complexity
	Nested Control Structures

	Usage of the Enforcer Tool
	Running the Tool
	Evaluation of Results
	Suppression of Stack Traces
	Experiments

	Related Work
	Static Analysis and Model Checking
	Fault Injection

	Conclusions
	Future Work

	Model-Based Test Selection for Infinite-State Reactive Systems
	Introduction and Motivation
	Modelling Reactive Systems with Data Using ioSTS
	Syntax of the ioSTS Model
	Semantics of ioSTS
	Visible Behaviour for Testing

	Conformance Testing Theory
	Test Selection for ioSTS
	Test Purposes and Test Selection Problem
	Approximate Analysis for Test Selection
	Test Case Properties
	Test Execution
	The STG Tool

	Related Work
	Conclusion and Perspectives

	Verifying Object-Oriented Programs with KeY: A Tutorial
	Introduction
	The KeY Approach
	Verification Case Study: A Calendar Using Interval Trees
	First Walk-Through: Verifying Insertion into Interval Sequences
	Formal Specification and Implementation
	Dynamic Logic and Proof Obligations
	Verification

	Second Walk-Through: Specifying and Verifying Timeframe Displays
	Formal Specification and Implementation
	Proof Obligations and Verification

	Conclusion

	Rebeca: Theory, Applications, and Tools
	Introduction
	Related Work
	Modeling
	Abstract Syntax
	Semantics
	Synchronous Communication (Rendezvous)
	Encapsulating Rebecs in Components
	Coordinating Rebecs
	From Specification to Implementation

	Formal Verification
	Model Checking
	Compositional Verification
	Abstractions and Weak Simulation Relation
	Symmetry and Partial Order Reduction

	Applications
	Network and Security Protocols
	Hardware and System-Level Designs

	Tools
	Model Checker Tools
	UML Profile for Rebeca and Rebeca to Java

	Future Work

	Learning Meets Verification
	Introduction
	Learning Algorithms for Regular Systems
	DFAs, Right-Congruences, and Learning Regular Systems
	Biermann’s Algorithm
	Angluin’s Algorithm
	Learning from Inexperienced Teachers
	Domain Specific Optimizations for Angluin’s Algorithm
	Learning of Regular Representative Systems
	Learning of Timed Systems
	Learning of $\ω$-Regular Languages�
	Further Extensions
	Implementations

	Verification Using Learning
	Minimizing Automata
	Black-Box Checking
	Compositional Verification
	Learning Fixpoints, Regular Model Checking, and Learning Network Invariants
	Further Applications

	References

	JACK — A Tool for Validation of Security and Behaviour of Java Applications
	Introduction
	A Quick Overview of JML
	General Architecture of JACK
	JACK's User Interface
	Extension of the Java Perspective in Eclipse
	A Proof Obligation Inspection Perspective

	Generating JML Annotations
	Generation of Preconditions
	Encoding of Security Policies

	Specification and Verification of Bytecode
	A Specification Language for Bytecode: BML
	Encoding BML Specifications in the Class File Format
	Compiling JML Specifications into BML Specifications
	Verification of Bytecode

	Support for Interactive Verification
	The Coq Plug-In
	JACK with Coq in Eclipse
	Native Specifications

	Conclusions

	Towards a Formal Framework for Computational Trust (Extended Abstract)
	Introduction
	Bayesian Models for Trust
	Towards Comparing Probabilistic Trust-Based Systems
	Towards a Formal Model of Dynamic Behaviour
	Conclusion

	On Recursion, Replication and Scope Mechanisms in Process Calculi
	Introduction
	The Polyadic Pi Calculus: pπ
	Finite Pi-Calculus
	Infinite Processes in the Polyadic Pi-Calculus
	Recursive Definitions vs. Replication in Pi
	Recursion vs. Replication in the Private Pi Calculus

	The Calculus of Communicating Systems (CCS)
	Finite CCS
	Infinite CCS Processes
	Expressiveness Results for CCS
	CCS_! in the Chomsky Hierarchy

	The Mobile Ambients Calculus
	Finite Processes of Ambients
	Infinite Process of Ambients

	Recursion vs. Replication in Other Calculi
	Final Remarks

	Bounded Session Types for Object Oriented Languages
	Introduction
	Example: Collaborative Card Design
	Syntax
	Operational Semantics
	The Type Assignment System and Its Properties
	Types
	Typing Rules
	Subject Reduction

	Conclusion and Further Work
	Proof of Subject Reduction
	Generation Lemmas
	Types Preservation Under Structural Equivalence, and Under Substitutions
	Types in Subderivations, and Substitutions Within Contexts

	Reflecting on Aspect-Oriented Programming, Metaprogramming, and Adaptive Distributed Monitoring
	Introduction
	Metaprogramming
	Meta-architectures
	Metaobjects

	Reflection
	Reification
	Reflection in the Real World

	Aspect Oriented Programming
	Code Weaving
	Reflective AOP

	Reflection in Concurrency
	Threads and Objects
	Actors

	Case Study: Distributed Monitoring
	Monitoring Details
	Past-Time Distributed Temporal Logic
	Example Application
	AOP in Distributed Monitoring
	Reflection in Distributed Monitoring

	Implementation of Adaptive Monitors
	Actor Architecture
	Monitor Installation
	Knowledge Vectors
	Actor Monitor
	Implementation Discussion

	Related Work
	Discussion

	Links: Web ProgrammingWithout Tiers
	Introduction
	Links by Example
	Dictionary Suggest
	Draggable List
	Progress Bar

	Client-Server Computing
	Client-Side Concurrency
	Related Work: Continuations for Web Programming

	Query Compilation
	Statically Typed Message Passing
	Issues
	Conclusion

	Author Index

