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Preface

AI*IA 2007 was the tenth in a series of international conferences on advances
in artificial intelligence held bi-annually in Italy by the Italian Association for
Artificial Intelligence (AI*IA). With a history of 20 years, the first congress after
the celebration of the 50th birthday of AI was a turning point and a good op-
portunity for reviewing the activities, research and achievements of these years.

AT research shows a growing impact on a variety of current problems ac-
cording to the assessment of well-known methods and approaches as well as
to novel paradigms (e.g, evolutionary computing). Most of today’s IT challenges
are strongly related to ideas, models and technological settings traditionally pur-
sued by AT in the last 50 years. Human-centered practices are nowadays the main
triggers of a variety of problems that the information society needs to tackle:
from security-related issues to distributed information access, from life-critical
applications to entertainment. It seems that most computer science interests are
oriented towards the automation of relevant and traditionally human-centered
tasks. In this perspective, Al takes a relevant, authoritative role, for its long-
standing tradition in cognitive models and algorithms as well as for its large her-
itage of interests, experiences and best practices. Tools and systems that spread
from non-traditional Al research are more and more rooted in paradigms well-
known in AL The case of the Semantic Web is an example, where the emphasis
on representational aspects of data semantics, almost obvious for Al people, also
became a target for many researchers and practitioners outside Al

These new challenges are all characterized by the central role played by hu-
mans as users but also producers of information or services and owners of critical
expertise on domains and processes. What Al brings into this game is the set of
paradigms and knowledge able to determine solutions and computational models
with a clear attitude: hiding the complexity of the underlying processes making
the use, adoption and penetration of new technologies harmonic with existing
human-centered practices. The attitude of making “natural” these transitions to
new technological settings is what we call human-oriented computing, as a unify-
ing paradigm for most of the traditional approaches in Al research. The cognitive
assumptions characterizing the Al approaches make the difference here.

The AT*TA 2007 Congress summarized the results in the diversified AT fields
and favored the interdisciplinary cross-fertilizations required. Advances in dif-
ferent broad areas were represented, ranging from knowledge representation to
planning, from natural language processing to machine learning. Special tracks
were designed to emphasize some specialized fields. The three Special Tracks
were: “Al and Robotics,” “Al and FExpressive Media” and “Intelligent Access to
Multimedia Information” dedicated to progresses in significant application fields
that represent increasingly relevant topics.



VI Preface

The above contents are embodied in the proceedings of 52 papers together
with 18 papers for the three Special Tracks. In total, 80 papers were submitted
to the main conference of which 43 were selected as technical papers and 9 as
posters. Papers are representative of a wide international research community
with 15 countries involved and a percentage of 28% papers originating from
research institutions located outside of Italy.

We would like to express our gratitude to the AI*IA Board that selected the
Tor Vergata Al group for the organization of the 2007 congress. In particular,
we thank Marco Schaerf and Salvatore Ruggieri for their continuous help and
encouragement. A special thanks goes to Daniele Nardi and Vincenzo Lombardo,
Chairs of the Special Tracks on Al and Robotics and AI and Ezpressive Media,
respectively. They made these in-depth explorations of new fields possible, giving
an excellent contribution to the technical quality of this volume. A crucial role
was also played by the members of the Conference and Special Track Program
Committees, and all the referees, for their major support in the hard review
process. Our gratitude goes to all of them for the precious work in the selection
of the high-quality papers appearing in these proceedings.

A particular thank-you goes to our supporting institutions: the University
of Rome, Tor Vergata for hosting the event in the wonderful location of Villa
Mondragone; the “Unione Industriale e delle Imprese di Roma e del Lazio” for its
effort in the dissemination of the event at the industrial level; Rome Municipality
for its general advice as the closest public institution. The congress industrial
sponsors, IBM Ttaly, Google Inc., CELI, Exprivia S.p.A, also gave a vital support
to the congress. In particular, we thank CELI for funding the Best Paper award,
as well as IBM Italy, ENEA and Fondazione Bruno-Kessler! that supported the
organization of three relevant workshops, hosted by the congress.

Last, but certainly not least, our thanks goes to the ART (AI Research @
Tor Vergata) group that acted as the local organization team: Diego De Cao,
Francesca Fallucchi, Cristina Giannone, Alessandro Moschitti, Paolo Marocco,
Daniele Pighin, Marco Pennacchiotti, Marzia Barbara Saraceno, Armando Stel-
lato and Fabio Massimo Zanzotto. Without their invaluable effort in the organi-
zation and timely problem solving, AT*TA 2007 would not have been possible.

June 2007 Roberto Basili
Maria Teresa Pazienza

! previously ITC-Irst, Trento
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Learning to Select Team Strategies in
Finite-Timed Zero-Sum Games

Manuela Veloso

Carnegie Mellon University,
School of Computer Science
Pittsburgh PA, USA

veloso@cmu. edu

Abstract. Games, by definition, offer the challenge of the presence of
an opponent, to which a playing strategy should respond. In finite-timed
zero-sum games, the strategy should enable to win the game within a
limited playing time. Motivated by robot soccer, in this talk, we will
present several approaches towards learning to select team strategies in
such finite-timed zero-sum games. We will introduce an adaptive play-
book approach with implicit opponent modeling, in which multiple team
strategies are represented as variable weighted plays. We will discuss dif-
ferent plays as a function of different game situations and opponents. In
conclusion, we will present an MDP-based learning algorithm to reason
in particular about current score and game time left. Through extensive
simulated empirical studies, we will demonstrate the effectiveness of the
learning approach. In addition, the talk will include illustrative examples
from robot soccer. The major part of this work is in conjunction with
my PhD student Colin McMillen.

R. Basili and M.T. Pazienza (Eds.): AT*IA 2007, LNAI 4733, p. 1, 2007.
© Springer-Verlag Berlin Heidelberg 2007



Expressive Intelligence: Artificial Intelligence,
Games and New Media

Michael Mateas

University of California, Santa Cruz
Computer Science Department
Santa Cruz, CA (USA)

michaelm@cs.ucsc.edu

Abstract. Artificial intelligence methods open up new possibilities in
art and entertainment, enabling the creation of believable characters with
rich personalities and emotions, interactive story systems that incorpo-
rate player interaction into the construction of dynamic plots, and inter-
active installations and sculptural works that are able to perceive and
respond to the human environment. At the same time as Al opens up
new fields of artistic expression, Al-based art itself becomes a funda-
mental research agenda, posing and answering novel research questions
which would not be raised unless doing Al research in the context of art
and entertainment. I call this agenda, in which AI research and art mu-
tually inform each other, Expressive Al. These ideas will be illustrated
by looking at several current and past projects, including the interactive
drama Facade. As a new game genre, interactive drama involves socially
and emotionally charged interaction with characters in the context of a
dynamically evolving plot.

R. Basili and M.T. Pazienza (Eds.): AT*IA 2007, LNAI 4733, p. 2, 2007.
© Springer-Verlag Berlin Heidelberg 2007



Artificial Ontologies and Real Thoughts:
Populating the Semantic Web?

Khurshid Ahmad

Trinity College, Dublin Ireland

Abstract. Corpus linguistic methods are discussed in the context of the
automatic extraction of a candidate terminology of a specialist domain of
knowledge. Collocation analysis of the candidate terms leads to some insight
into the ontological commitment of the domain community or collective. The
candidate terminology and ontology can be easily verified and validated and
subsequently may be used in the construction of information extraction systems
and of knowledge-based systems. The use of the methods is illustrated by an
investigation of the ontological commitment of four major collectives: nuclear
physics, cell biology, linguistics and anthropology. An analysis of a diachronic
corpus allows an insight into changes in basic concepts within a specialism; an
analysis of a corpus comprising texts published during a short and fixed time
period —a synchronic corpus- shows how different sub-specialisms within a
collective commit themselves to an ontology.

1 Introduction

The discovery of semantics by artificial intelligence researchers in the mid 20"
century will serve as an exemplar of what converts feel when discovering something
for themselves. Latter-day Al researchers had the enthusiastic confidence of early
converts. Broad and nebulous terms were coined to describe the scope of artificial
intelligence: frames (Marvin Minsky),epistemological engineering (Donald Michie)
conceptual graphs (John Sowa), inheritance reasoning (Terry Winograd) and
circumscription (John McCarthy) gave way to explicit conceptualizations,
terminological logics, and a whole host of web acronyms— such as OIL, DAML.

The term Al was coined in 1956 with a mission to develop an overarching view of
knowledge, thought and cognition. This view was expected to inform the
development of intelligent systems but led to systems that could only solve ‘toy
problems’. About 20 years later, the mission was revised and the focus of Al was on a
narrow, application-driven view of knowledge, thought and cognition and this view
led to the development of systems that can solve well-defined problems and have a
limited learning capability. One of the major challenges facing the Al community is
the development of systems for automatically extracting information and knowledge
directly from documents. Documents originating from a specialist domain of
knowledge are indexed according to keywords. The choice and usage of keywords is
motivated by a desire for communicating information and knowledge as accurately

R. Basili and M.T. Pazienza (Eds.): AI*IA 2007, LNAI 4733, pp. 3 2007.
© Springer-Verlag Berlin Heidelberg 2007
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and as precisely as possible. The choice and usage of keywords in a specialism is
equally motivated by the ontological commitment of a specialist domain community
or collective. The organisation of the keywords in hierarchies and networks enables
an indexer to organise the documents. The organisation is also used to enable
members of a collective to retrieve documents manually and latterly through search
engines. The keywords and the organisational framework are surrogates of knowledge
within a specialist domain — a trace of knowledge, which may be referred to as
domain ontology. And indeed experts in a specialist domain have been enlisted to
produce an ontology of their specialism (see [23], for example).

Language plays a key role in the communication of concepts. There are several
ways of investigating language ([29]):

(1) Introspection or observation that typically involve methods from philosophy
and logic;
(i1) Elicitation experiments that are rooted in methods and techniques of
psychology or anthropology; and,
(>iii) Systematic study of archives of texts and artefacts involving methods of data
archiving and curation used extensively in empirical linguistics for example.

One can argue that like other rationalists, a number of ontologists have relied on
their introspection that formal logic will help to decipher the conceptual structure of a
domain or the ontological commitment of the domain collective ([35,37,16]). The use
of philosophical and deviant logics has also been suggested — this argument is put
forward by the proponents of Bayesian systems and proponents of fuzzy logic
([10,26]). And elicitation experiments have been used by some ontologists to decipher
the conceptual structure of a domain ([12]). There is discussion in the literature that
these alternatives are complementary in nature ([17]).

The empirical route for deciphering the conceptual structure of a domain involves a
systematic examination of domain texts using methods of text analysis ([4,3,15]).
Hybrid methods using text analysis, for finding key ‘patterns’ in the discourse of
medical collectives of differing interests, and formal logic have also been proposed
([31]). The use of established general language a-priori hand-crafted thesauri to check
how ‘clean’ an existing, formalised taxonomy within an arbitrary collective has also
been described ([33]).

The empirical data driven approach in this paper, however, relies solely on a text
archive of a given collective for the identification and extraction of candidate single
key words. The candidates are then used to populate a glossary of terms for the
collective. This glossary is used to identify collocation patterns for the candidates,
leading to a further population of the glossary, and establishing relationships between
the keywords. The assumption is that a headword labels a key concept, describes an
event, or denotes a person, place or thing. This keyword-based approach helps in the
creation of a network that can be asserted directly into a representational system like
PROTEGE. If the text archive is updated with the addition of new texts, then the
candidate keyword glossary can be re-populated, new terms will be taken into account
and the influence of older, un-fashionable, and lesser-used terms will diminish in the
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frequency count. Our glossary is generated and not hand crafted. The results for
creating a domain terminology and ontology using this empirical approach are
encouraging.

In the next section on writing ontology, 1 will illustrate the use of the method for
automatic term extraction and ontology construction by an analysis of the ontology
collective itself: a synchronically organised corpus of texts in ontology is analysed to
show the ontological commitment of a small, representative group of ontologists.
Following writing ontology, 1 will introduce a text-informed method for building
thesauri in specialist domains: I will try and demonstrate how the preferential use of
certain words in the writings of specialists can be used for automatically extracting
terminology and subsequently the ontology of their specialism.

The study of how a given language or a given science is used in the
conceptualisation of a specialism is regarded by Barry Smith as internal metaphysics:
‘the study of the ontological commitments of specific theories or systems of beliefs’
([36]). Smith notes that linguists, psychologists and anthropologists have sought to
‘elicit the ontological commitments of [..] different cultures and groups’ (ibid). In the
section entitled nuclei: nucleus, cell, language, ethnology and ideology, 1 will seek to
explore the ontological commitment of researchers in nuclear physics, cell biology,
theoretical linguistics and cultural anthropology by exploring their use of vocabulary.
This study was carried out by examining a randomly sampled collection of specialist
texts. I will try and demonstrate that a diachronic analysis of texts in a specialism
shows what is popularly regarded as ‘paradigm shift’; I will look at the developments
in nuclear physics over a 100 year period related to the nuclear atom and
developments in linguistics, especially the variation in the terminology of Noam
Chomsky over a 30 year period to identify possible paradigm shifts in the two
subjects. An analysis of texts produced in the same time period within the sub-
branches of a discipline suggests to me that the nuances of terms used across
disciplines is changed so that sub-domains can be differentiated. To this end I have
used my method to investigate two sub-branches in cell biology (mammalian and
bacterial cell biology) and four in anthropology (cultural, social, medical, and
psychological anthropology). The results appear encouraging.

My intention is to explore whether one can understand ontological commitment in
a given domain without referring to a discourse external reality or to the mental state
of the members of the domain collective (Teubert made this point very elegantly in
the context of corpus linguistics, [38]).

2 Writing Ontology? Terminology and Ontological Commitments
of Ontologists

Those involved in any collective exercise tend to develop a semiotic system of their
own. This system has icons defining the collective usually through language and in
most cases through imagery and sounds. Doing science, theoretical or experimental,
involves joining a defined collective of scientists, either as an interested lay-person or



6 K. Ahmad

as a potential member of the collective. In so doing, one has to learn the vocabulary of
the given science to join a specific science collective. For example, a cell, a word
borrowed from Old French into English, in biology is the ‘ultimate element in organic
structures; a minute portion of protoplasm usually in a membrane’, but in the physics
collective one has to define a cell as ‘a vessel containing one pair of plates immersed
in fluid’ (OED Online - Oxford English Dictionary Online). OED Online tells us that
the definition (of cell) in biology is related to the use of the word in general language
where cell was used to refer to a compartment. In physics, or more accurately in
physical chemistry, the term is related to its general language cousin ‘cell’ used to
denote an enclosed space, cavity or sac. The first recorded use of the word as a
biological cell was in 1672 and the use as chemical cell is found in documents dating
back to 1828. In the 20" century the computing collective is defining a cell in three
related ways: First as ‘an address or location in memory’, second as ‘the basic unit of
a spreadsheet or some other table of text’, and third as ‘the name given to a packet in
a packet switching system’ ([24]). It is no wonder Zellig Harris has remarked that
special language is ‘a splinter of ordinary language’ ([20]).

It appears that once a word is drawn into a collective and used to express a concept,
label an object, describe an event or scene, or articulate a feeling, that word is used
repeatedly. If the word happens to relate to a name (of a person, place or thing), it is
often used in its plural form and sometimes adapted to describe an act also. One of the
best examples is the use of the neologism/acronym laser beam —a beam created
through ‘light-amplification by stimulated emission of radiation’ ([25]). We now have
different types of lasers, and the acronym is used as a modifier as in laser printer and
laser eye surgery for example. And, in the context of laser pointers we are warned
that it is possible to “accidentally laser someone’s eye” ([39]). The collective, it
appears, is economical: one word has many uses and all uses are well targeted so
there is no confusion. A nuclear physicist is not looking for protoplasm in the nucleus
and a biologist is not looking for neutrons, or protons or quarks, in animal or plant
cells. This process of adapting words from general language, or occasionally creating
a brand-new term (or neologism) is formalised through the agency of standardising
organisations. The conformity shown by scientists and engineers to a given set of
terms in established disciplines does not stop them from being as creative with the use
of language as a painters’ use of a paint or a musicians’ plucking the string of a
musical instrument.

Frequently used single-word terms are often used in compound formation. For
instance, an examination of a corpus of texts on the topic of ontology' indicates that
the most frequently used words in this domain, excluding the so-called closed class
words or determiners, conjunctions, prepositions, and pronouns, include ontology,
ontologies and ontological, these three terms appear once for every 100 words used in
the ontology corpus (see Table 1).

' A corpus of 38 papers and research reports on the topic of ontology was compiled that
contains texts written by 18 researchers including Brian Smith and Nicola Guarino,
comprising over 336,311 words in all.
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Table 1. Most frequent open class words in our ontology corpus (N=336,311)

RANK TOKEN FREQUENCY (f) RELATIVE FREQUENCY (f/N)
16 ontology 1940 0.6%
30 particular 864 0.3%
39 web 714 0.2%
40 world 688 0.2%
41 knowledge 666 0.2%
42 ontologies 665 0.2%
48 ontological 647 0.2%
50 relation 645 0.2%
51 objects 639 0.2%
52 self 629 0.2%

The terms ontology (or ontologies) are frequently used either as heads of
compounds, as in application ontology, biomedical ontologies, or, terms like
X+ontology (or ontologies). In addition, terms ontology (and ontological) are used as
modifiers, for instance, in ontology look-up service, and ontological commitment (see
Table 2 & 3 below.

Table 2. The uses of the term ontology as head in nominal compounds

TOKEN +ONTOLOGY +ONTOLOGIES TOTAL
formal 81 81
application 34 9 43
gene 40 40
domain 13 8 21
method 19 19
fungalweb 18 18
core 18 18
generic 17 17
philosophical 15 15
foundational 10 5 15
biomedical 13 13
medical 6 5 11
top-level 10 10
applied 10 10
linguistic 9 9
representation 7 7
minimal 6 6
building 5 5
Total 287 71 358

Table 2 shows that in our small corpus, the term onfology appears to have 18
preferred neighbours out of a vocabulary of over 16,000 unique words. My ontology
corpus is dominated by articles by Brian Smith and Nicola Guarino (22 out of 38
articles in the corpus are by them and their colleagues, see Table 6 for details). This
domination is reflected by the very frequent use of highly theoretical terms like
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formal ontology, philosophical ontology, foundational ontology and representational
ontology (See Table 2). The presence of terms like gene ontology, fungalweb ontology
and medical and bio-medical ontology, indicates the increasing importance of
ontology in genomics, agricultural sciences, and bio-medical sciences.

The adjective ontological shows similar preferences for key terms amongst all the
tokens in the ontology corpus: In ontology literature, both the singular and plural
forms of ontological commitment is used with about the same frequency, there no
ontological theories but ontological theory is half as frequent as ontological
commitment. (See Table 3).

Table 3. Compound terms that comprise ontological as modifier of nominals

ONTOLOGICAL + SINGULAR PLURAL ToTAL
commitment 19 15 34
level 10 9 19
analysis 16 16
nature 15 15
engineering 12 12
theory 9 9
category 9 9
status 8 8
distinction 8 8
choice 7 7
sentence 7 7
criterion 6 6
TOTAL 89 72 161

Linguists have noted that a collocation pattern shows a ‘habitual co-occurrence of
individual lexical items [...][that] are linguistically predictable to a greater or lesser
extent’ ([11]). The frequently occurring compounds containing ontology, especially
Jformal ontology, gene ontology and ontology library, appear to collocate with other
terms to make longer compound terms that show further restrictions being placed on a
notion expressed by a collocate (see Table 4).

Using a text-based approach, usually one can also identify and then find
elaborations of a term which is not used frequently: The collocating patterns of terms
continuant and its synonym endurant, suggest that there may be contiuant entities that
may be dependent or independent, and that there are physical and non-physical
endurants (see Table 5).

The empirical data driven approach described in the next section facilitates the
generation of thesauri of specialist domain. Candidate keywords are identified and
used to populate a glossary of terms for a specialist collective. Collocation patterns
further expand this glossary and suggest relationships between terms. This keyword-
based approach helps in the creation of a network that can be asserted directly into a
representational system like PROTEGE. If the text archive is renewed by the addition
of new texts, then the candidate keyword glossary can be re-populated — new terms
will be taken into account and the influence of older, non-fashionable, and lesser-used
terms will lose prominence.
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Table 4. Multiword candidate terms that involve the use of onfology and ontological. Super-
ordinate terms are prefixed by the symbol (V) and instances by O

ontology

V formal ontology
o basic formal ontology

V gene ontology
o gene ontology consortium
o gene ontology proceedings
o gene ontology project
o gene ontology tool

V¥ ontology library

o generic ontology library
o integrated ontology library

ontological

V¥ ontological analysis

o direct ontological analysis

o ontological analysis theory
V ontological categories

o basic ontological categories

o distinct ontological categories

o relevant ontological categories

o top-level ontological categories
V¥ ontological commitment

© minimal ontological commitment

o well-founded ontological commitment

Table 5. Neologisms in the literature on ontology in our corpus (N= 336,311)

continuant
V continuant entities
o dependent continuant entities
o independent continuant entities
o continuant entity cells

endurant
V¥ non-physical endurant
o non-physical endurant time
V physical endurant
o eventive physical endurant

3 A Text-Informed Method for Building Thesauri

Quine’s observations related to ‘words’ provide an inspiration for a text-informed
method for building a thesaurus: “Words, or their inscriptions, unlike points, miles,
classes, and the rest, are tangible objects of the size so popular in the marketplace,
where men [or women] of unlike conceptual schemes communicate with each other”
([28]).

As early as the 1940’s, Stanley Gerr ([14]) noted that the size of scientific
vocabulary is in itself an indication of progress in that science and that language
facilitates the verbalization of conceptualisations through the construction of
compound terms for representing complex and/or derivative concepts. This
verbalization is facilitated through a reduction in syntactic complexity. The syntactic
reduction and the precision in use of terms appear to be an attempt by scientists to
organise their thoughts using the apparatus of formal logic ([14]). The evidence of the
verbalization of conceptualisation can be found in written texts and speech excerpts of
members of a thought collective. There are four observations of leading pioneering
corpus linguists that have guided me in the development of the automatic term and
inter-term relationship extraction method from such written or spoken texts:

FIRST OBSERVATION: Frequency of a lexical token usually correlates with its
acceptability within a linguistic community, [30].

% These hierarchies were produced automatically by marking up the collocational patterns in
RDF and then processing the RDF file through the PROTEGE system.
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SECOND OBSERVATION: Semi-preconstructed phrases constitute single choices, even
though they might appear to be analysable into segments’, [32].

THIRD OBSERVATION: There are subsets of a natural language, for example, subject-
matter sublanguages that are characterised by: ‘a limited vocabulary [...] in which the
occurrence of other words is rare’, [20];

FOURTH OBSERVATION: What members of a collective, for instance, scientists, do is to
‘take resources that already existed in English and bring them out of hiding for their
own rhetorical purposes: to create a discourse that moves forward by logical and
coherent steps, each building on what has gone before’, [18].

Computationally, we can identify terms through a contrast by comparing the
distribution of a token in a corpus of specialist texts with that of the distribution of the
(same) token within a general language corpus. Consider the distribution of the 20
most frequent tokens in our small corpus of ontology articles together with the
relative frequency of these terms in both our corpus (fsp/Ngp) and in the 100-million
word British National Corpus (BNC3) (fsne/ Nanc). The composition of our ontology
corpus is shown below in Table 6.

The distribution of the word the is approximately the same in the two corpora once
we take into account the size of the corpus. In our corpus the is used 17352 times in a
corpus of 336,311 tokens, while the occurs over 6 million times in the BNC that
comprises 100 million words. The ratio of the two relative frequencies is 0.83 — that is
the word is distributed in a similar manner in both the corpora; the same is true for a
number of other tokens like is, or, in, of, a, and and so on. However, note the token
ontology, ranked the 15" most frequent token in our ontology corpus, occurs 1940
times out of 336,311 tokens, but ontology only occurs 52 times in the BNC — the ratio
of two relative frequencies is 10895. This means that for every one occurrence of the
token ontology in English of everyday usage, we will find 10895 occurrences of
‘ontology’ in ‘ontology-speak’ (see Table 7), thereby suggesting some kind of special
use.

This ratio of relative frequencies is called a weirdness ratio ([6]) following the
remarks of the British anthropologist, Bronsilaw Malinowksi that the South Sea
shamans use the names of deities so frequently as to make their speech weird.

It appears that the token ontology is a high frequency token with high weirdness. In
order to quantify the fuzzy notion of ‘high’, we compute the standardised z-score for
the frequency and for weirdness score for each token. If both the standardised scores
are above a given threshold, our system will signal that the token is a candidate term.
The threshold set at zero, therefore only those tokens whose frequency and weirdness
is greater than or equal to the average frequency and average weirdness are selected.
Low frequency and high weirdness tokens are excluded, for example spelling
mistakes, and high frequency and low weirdness tokens are excluded, as they are

3 The BNC is a carefully sampled corpus comprising over 100 million words spread over
4,000+ texts published mainly between 1960-1990 and cover genre as diverse as magazine
articles, newspaper excerpts, romance and crime fiction, and a few scientific papers.
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usually closed class words. Table 7 shows that 5 most frequently occurring tokens in
our corpus have a high z-score for frequency, but a negative z-score for weirdness.
This is not the case for the token ontology, which has both high frequency and
weirdness values with (large) positive z-scores for both.

Table 6. Composition of my Ontology corpus: texts were taken mainly from Applied Ontology,
Synthese, BMC Bioinformatics journals

Time Collectives or Specialistation
Author - . Genomics | Infectious| Philosophy | Physics & | TOTAL
Period |Computing . . . Auth
(Human+Plants) | Disease | & Logic | Chemistry | Authors
Smith et 1978-
al Barry 2006 2 3 7 12
Guarino . 1991-
etal Nicola 2004 10 10
Baker et Christopher| 2006 1 1
Borson Stig 2006 1 1
Coté Richard G. | 2006 1 1
Donnely | Maureen | 2005 1 1
Goggans P. 2000 1 1
Hacking Ian 2001 1 1
Hale Susan C 1991 1 1
Hartati Sri 1995 1 1
faswalet pankaj | 2006 1 1
McIntyre Lee 2006 1 1
M”Sae]" e Mark | 2007 1 1
Rectoret!  atan | 2000 1 1
Romana | i | 2005 1 1
etal
St. Anna | Adonai S. | 2000 1 1
Stanford | P. Kyle 2006 1 1
Steve Geri 1995 1 1
TOTAL 15 7 2 9 5 38
Domains

Table 7. Distribution of tokens in our ontology corpus (Ny,=331,669 words) and the BNC
(Npye =100, 467,090). The numbers in parentheses for the token ontology and its
morphological variants are the frequencies of the tokens in the BNC.

Rank Token Jo | fo/Neg | Jone/Nene | Weirdness Z-scores Term?
@ (b) (@)/(b) Zfp Zuweird
1 the 17352 | 5.16% 6.18% 0.83 40.67 -0.10 No
2 of 14321 | 4.26% 2.94% 1.45 33.54 -0.10 No
3 a 9532 2.83% 2.15% 1.32 22.28 -0.10 No
4 and 8253 2.45% 2.68% 0.92 19.27 -0.10 No
5 in 7279 2.16% 1.88% 1.15 16.98 -0.10 No
15 ontology (52) 1940 | 0.58% 0.00005% 10895 4.42 3.32 Yes
41 ontologies (1) 665 0.20% | 0.000001% 197940 1.43 62.09 Yes
46 ontological (279)| 647 0.19% 0.00028% 690 1.39 0.11 Yes
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As already indicated, the writings and speech patterns of scientists extensively use
collocation patterns through the use of compound terms and frozen phrases. Usually
one thinks of a collocation pattern in terms of a contiguous unit such as nuclear atom.
These collocation patterns constitute qualifications and statements of possession,
causality and so on related to the two or more constituent terms. Consider, the
collocation uses of two terms in nuclear and atomic physics —atom and nucleus
including non-contiguous collocates (see Table 8).

Table 8. A c_oncordance of the term atom from texts published between 1911 to 2002. (") Niels
Bohr 1911; (") Phys Lett. A, 296, 2002; (") Phys. Rev. 49, 324 (1936).

-5 -4 -3 -2 -1 1 2 3 4 5 | Ref
nuclear |at * N. Bohr
uclear |atom 1011
N. Bohr
nuclear |hydrogen| atom 1911
atom
nuclear |interactions| in kaonic |atom
nuclear|transition| energy for | muonic |atom
Phys
Lett. A,
H atom | nuclear | cusp 296,
2002
Phys.
- atom |possessing|nuclear| spin”” Rev.
electron P g P 49,324
(1936)
atom | having |infinite [nuclear| mass
atom, in its new |nuclear

The collocation patterns show the effect of the ontological commitment in the
domain of physics to the notion of a nuclear, sub-divisible atom. The relation this
collocation expresses between the two notions, one, a self-contained identifiable unit
(the atom) and the other, the existence of its centre, kernel or nucleus, is not only a
container-contained phenomenon. The collocation reveals that the atom has nuclear
properties. Extending this there are new forms of atom, kaonic and muonic atoms,
comprising a nucleus around which kaons and muons revolve rather than the old
electron.

The frequent use of collocation patterns has led to the claim that the language of
science is becoming increasingly opaque ([21]). Despite the fact that many
collocation patterns are deliberately introduced, it is still important to verify the fact
of collocation through tests of statistical significance. And, here we face the difficulty
in choosing an appropriate measure of association ([9], [13]). No matter, we will
follow the two indicators of association developed by F. Smadja ([34]) because it
takes into account longer-range collocations quite transparently. The terms to be
collocated are those with positive z-scores for weirdness and frequency. The
algorithm is set out below.
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Let w; denote a keyword that collocates with another word w; in any of the k
neighbourhoods indexed between —k/2 to +k/2, e.g. for k=10, we will have w;
occurring in 5 positions to left of w; and 5 to the right;

Let /" be the frequency of the word w; occurring in the k-th neighbourhood
of w;

Let U, be the spread of the collocation between wi and wj defined in terms of

a variance metric:
ki2

DS fy)

— I=—k/2
U, =
: k

— . [
where, [y the average of fij over all k.
Let ; ij be the strength of the collocation between w; and w;, measured by

the computing the normalised score Zjj for each of the frequencies
ki/2

f i= Z fUl and then computing the average frequency
I=—k/2

20

=
fi=——

of all the J collocates w; of w; standard deviation Gii around fi :

g o UimfD

Ojj

If the strength ( g ij ) and spread (U;) are both above a certain threshold then

w; and w; are statistically acceptable collocates, otherwise such patterns are
rejected.
Smadja suggests :0 =1, and y, =10 [34, pp155], which I have used.

4 NUCLEI: Nucleus, Cell, Language, Ethnology and Ideology —
Ontological Commitments in Four Domains

In this section we demonstrate the extent to which the proposed method for text
analysis facilitates the investigation of the ontological commitment for a given
domain. The analysis automatically leads to a set of candidate terms and the
compound terms are organised in a network that may be regarded as candidate
ontology of the domain. The composition of the text corpora used in this study is
shown below (Table 9).

4.1 Nuclear Physics

The atomist philosophy in physics was investigated towards the end of the 19"
century as scientists tried to explain the origins of electricity. This attempted
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Table 9. The composition of the 5 corpora of mainly British & American English special
language used in my study

Corpus Nuclear Mammalian Bacterial Lineuistics Anthronolo
P Physics Cell Biology | Cell Biology £ pOlogy
No. of texts 398 43 53 68 374 Volumes
No. of 1,934,658 309,007 273,424 1,659,266 39,471,742
tokens
Time 1900-2007 1996-2006 1996-2006 1980-2002
Journals, Books, Journals and Journals and Journals, Book
Genre Letters, Popular Journals .
Science Books Books Reviews

explanation and a host of experimental discoveries — unique spectra for each chemical
atom, black body radiation, and indeed radioactivity — led to the foundation of
quantum mechanics at the turn of 20" century. Within the next 10 years or so Niels
Bohr, Ernst Rutherford, Heidi Yukawa and Jean Perrin all proposed a model of the
nuclear atom; Rutherford went on to experiment on the artificial transmutation of
elements — where protons and helium atoms were fired upon heavier stable elements
to create unstable and radio-active elements. The Second World War caused a mass
migration of scientists and a team led by Enrico Fermi in Rome created an atomic
battery — the first chain reaction involving neutrons producing fission in Uranium
([5]) which ultimately led to the construction and detonation of the first nuclear bomb.

Diachronic Measure of Weirdness and Atomic Theory

The creation of new compounds — and very seldom new single-word terms- indicates
changes in a specialist domain that comprise innovations, revisions and rejections
([1]). This compound formations happens when members of the domain collective try
to assert an idea. The developments in physics at the turn of 20th century illustrate
this point. Some physicists were convinced that the atoms of all elements have a
nucleus and they wanted to convince their peers that the atom indeed is divisible: the
repeated use of the collocation pattern atomic nuclei helped in the denial and rejection
of the atomist philosophy. This rejection led to an innovation —nuclear physics;
another compound term but this time includes a derivation of the term nucleus, the
adjective nuclear as a modifier in the compound term. The new sub-discipline nuclear
physics has been defined as ‘the physics of atomic nuclei and their interactions with
particular reference to the generation of nuclear energy or nuclear physics for short’
([25D.

The development of both experimental and theoretical nuclear physics from a
standing start in the 1930s —the term was not even used until the late 1940s- clearly
shows a change in the ontological commitment of the physics collective with
awesome and awful effects. The decline of atomist philosophy in physics can be seen
when we look at the relative distribution of key terms used in physics at the beginning
of 20™ century (texts in our Early Nuclear Physics corpus are used for that purpose
and comprise articles written by Niels Bohr, Ernst Rutherford and Enrico Fermi
amongst others) through to the period soon after the Second World War (1945-1970)
and thence on to modern times (c. 1980-2007).
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Table 10 shows relative decline of the terms used in the early period when
compared to the later two periods. If we use the BNC to identify terms, we will still
get high weirdness for terms ranging from the composite atom and the constituents
nucleus and electrons, and the constituents of the nucleus —neutron, protons and the
super-ordinate nucleon. But if we use our early corpus as a base, then the weirdness
declines dramatically indicating the increasing non-use of certain terms (especially
atom and electron) and even the term nuclei! (Table 10 has the details).

Table 10. Change in the usage of key terms used in physics of atoms and nuclei in three
periods when compared with a sample of English used generally (1960-1999)

Relative Frequency of Usage Weirdness
1900-1945 1945-1970 1980-2007 1900-1945 1945-1970
(N=201737) (N=79773) (N=1384317)) BNC (45 texts) (70 texts)
a b c (b)/(a) ('c)/(b)
Atom 0.48% 0.07% 0.009% 972 0.15 0.1
nucleus 0.48 % 0.31% 0.14% 964 0.65 04
Electron 0.30% 0.22% 0.03% 605 0.74 0.1
neutron 0.14% 0.19% 0.28% 1127 14 1.5
Nuclei 0.24% 0.30% 0.25% 816 1.2 0.8
nucleon 0.0003% 0.10% 0.16% 27262 344 1.7
scattering 0.105% 0.26% 0.17% 208 3 1
Proton 0.063 % 0.17% 0.17% 307 3 1

When we look at the collocates of the term nuclear, we see some dramatic changes
in the collocation patterns — nuclear atom is less of a statistically significant collocate
than was the case in the early period; nuclear physics and nuclear theory have become
statistically significant collocates as measured by Smadja’s U and { —scores (if U is
greater than 10 then invariably ( is greater than 1, but reverse is not the case; we omit
the value of C unless it is less than the threshold 1 — see Table 11):

Table 11. Changes in the collocation ‘strength’ of compounds, comprising nuclear as a
modifier, over a century in English special language of physics

Collocate U-score
nuclear

Time Period | atom | charge | theory | reactions | structure | matter | physics

1890-1945 2 109 4 66 54 3 4

1980-2007 0.4 189 64 1333 9137 8303 18755

U-score ratio 0.2 1.7 16 20.2 169.2 2767.7 4688.8
Halo Nuclei

Having established their subject, the nuclear physicists have become more and more
abstract. They talk about unstable nuclei and go on to create Carbon-17 from the
stable Carbon-12 (6 neutrons and 6 protons) by artificially adding 5 extra neutrons
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making a halo around the stable core C-12. The unstable systems remain alive and
the extra neutrons go around the stable core in an orbit that comprises three
interlocking rings, Borromean rings to be ‘precise’; but if one ring is removed the
structure collapses. Currently these rings are also of interest in mathematical topology
and the adjective Borromeo comes from the fact that three interlocking rings were an
emblem of a minor Italian nobility — the Borromeo family. The stem ‘halo’ also refers
to the observation that the planetary halo usually comprises dust particles: the 21"
century artificially created nuclei have a neutron (proton) halo. The literal and
metaphorical use of the term halo is quite firmly established and we find halo nuclei
as the basis of other compounds; some of these are yet to ‘establish’ in that the U-
score and { values are below our empirical threshold of 10 and 1 respectively (see
Table 12).

Table 12. Collocations of the term nuclei and halo nuclei, where the compound is also found in
other compounds. The symbol (V) denotes a super-ordinate term and the instances are denoted
by (0).

Nuclei Collocate U-score |z-score| Acceptable
© | w=10,c1)?

V¥ halo nuclei 6333 23 Yes
V¥V neutron halo nuclei 101 101 Yes

V two- neutron halo nuclei 79 11 Yes

o borromean halo nuclei 46 9 Yes

o non-borromean halo nuclei 3 2 No

V¥ halo nuclei breakup 11 7 Yes

V¥ neutron halo nuclei breakup 0.4 3.5 No

o proton halo nuclei 2 1.9 No

4.2 Linguistics

Chomsky’s contribution to linguistics is immense but he has been a controversial
figure within the linguistic community (see [19] for a rather dramatic account). For
this reason, we begin a diachronic study of changes in linguistics with the texts of
Noam Chomsky and investigate whether Chomsky’s terminology, and by implication
his ontological commitment, is still intact in the current linguistic literature. The
iconic terms introduced by Chomsky expressed his rationalist commitment through
universal grammar, innateness, language acquisition device and other terms by
inflecting the token grammar and using its derivations (grammatical) [2]. We
examine the use of terminology in Chomsky’s own work and its continuing effect in
the linguistics domain in the publications of a randomly selected group of linguistics
researchers.

Chomskyian Linguistics

I do not have Chomsky’s books in digitised form and have to rely on the excellent
facility provided by Amazon Inc., for ‘searching inside’ the books the organisation
sells. Amazon provides a ‘concordance’ of each of the books they have in digitised
form, comprising 100 most frequent words excluding closed class words. I have
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looked at eight of Chomsky’s books published between 1957, his earliest, and 1995.
These are very well cited books and are integral to many linguistics curricula. The
ontological commitment to a universal (grammar) peaked in Chomsky’s writings, as
represented by the random sample of his eight books, in 1965 (f=0.25%) and has
waned to the same level (f=0.02%) in 1995 as it was in 1957. Language and Mind
comprises the key mission of Chomsky: establishing linguistics as a discipline,
convincing his peers of the innateness of language and concomitantly of the existence
of a universal grammar (see Table 13 below)

Table 13. Variation of the use of three key terms in Chomsly’s texts between 1957-1995

Syntactic | Generative |Aspects of [Language and| Rules and Government | Barriers Mir;[i}r;ealist
Structures | Grammar Syntax Mind Representations | & Binding Prog.
Year of Pub (1957 (2000)] 1964 1965|2006 (1968) 1980 (igg;) 1986 1995
Words 32,089 30,248 32,089 89,372 73,833 148,310 27,708 136,360
Linguistic 0.44% 0.53% 0.53% 0.27% 0.10% 0.02% 0.04% 0.04%
Universal 0.01% 0.02% 0.25% 0.24% 0.12% 0.00% 0.01% 0.02%
Innate 0.00% 0.01% 0.07% 0.12% 0.08% 0.00% 0.00% 0.00%

Chomsky is keen for us to think of language as a system; he seeks to create a
theoretical foundation of the study of language and has taken a staunchly anti-
empirical stance against corpus linguistics. As a rationalist, Chomsky works with
structures and rules (of grammar). Again, we see a peak in the use of these terms in
Aspects of the Theory of Syntax (1965), after which the use of five key meta-
theoretical terms reverts to his earlier usage of the terms (until Government and
Binding) and then declines to almost zero in the publications in the 1980s and 1990s

(see Figure 1).

Chomsky (57-95): Variations in general terms

2.50%

Z 2.00% -

§ —&— language
g 1.50% —e—system
I:-: ——theory
2 1.00% 7 ——structure
3 —+—rules

[

0.50% r\‘—_—‘_./.\ ; g —=g %

0.00%

SynStr.  Gen. Gen. Asp.Syn Lang& Rules& Gov& Barriers Min Prog
Gram Gram Mind Rep Bin.

Book Titles (Abb.)

Fig. 1. Diachronic changes in 5 key terms in Chomsky over 28 years

The term grammar, terms used frequently to describe language either at different
level of linguistic description, syntactic and semantic, and terms used to describe
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linguistic units, phrase and sentence, all show a decline in use in Chomsky’s writings;
except for phrase that has a massive peak in Barriers (1986) and comprises 2.54% of
all the text in the book (See Figure 2).

Chomsky (57-95): Variations in linguistic terms

3.00%

2.50%
Z Ja\
S 2.00% —*—phrase
g / \ —=—grammar
E 1.50% / \ semantic
2 —®—syntactic
& 1.00% B EaN Y
5 t -/I\\.‘ / \ —&%— sentence
[+ -

0.50% — X % m——

— T o
0.00% T T T T u — |
SynStr.  Gen. Gen. Asp.Syn Lang& Rules& Gov& Barriers Min Prog
Gram Gram Mind Rep Bin.

Book Titles (Abb.)

Fig. 2. Diachronic variation in 5 language-specific terms in Chomsky between 1957-1995

Modern Linguistics and Its Ontological Commitments

Noam Chomsky’s influence can still be felt in our randomly sampled corpus that
comprises papers from 1960-2006 comprising 1.65 million words. The key collocate
used is universal grammar followed by generative grammar. But we also have
frequent references to phrase-structure grammar and grammars that do not employ
phrase structure rules like head-driven and generalised phrase structure grammars,
Lexical functional grammar is also a strong collocate as are tense and categorical
grammar (see Table 14).

Table 14. Collocation patterns of the the term grammar in our linguistics corpus

grammar (f=1979) U-Score

© universal grammar 803
O generative grammar 514
V phrase structure grammar 334

o head-driven phrase structure grammar 86

o generalized phrase structure grammar 26
o lexical-functional grammar 292
o categorical grammar 80
O tense grammar 154
o transformational grammar 64
o relational grammar 26
o word grammar 24

Chomsky’s contribution can still be felt through his original formulation of phrase
structure grammar despite the fact that many of the recently developed grammars
were formulated to improve upon his original idea.
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4.3 Cell Biology: Commitments in Mammalian and Bacterial Cell Biology

The key ontological commitment in biology is the concept of cell. There are a variety
of cell types and for the purposes of illustration we will consider mammalian cells and
bacterial cells. Texts were selected from journals and public-information documents
in two major areas that related to types of cells mentioned above: study of mammalian
cells in immunology and that of bacterial cells in bacteriology for diagnosis and
therapy. The differences in commitment appear both at cellular level and at the next
level down when the constituents of the cell are discussed — for instance the
cytoskeleton of a cell - the internal scaffolding of cells which determines ‘cell shape,
organizes structures within cells, and helps cells and growth cones of developing
axons move.’(from Wikipedia). The different ways in which the knowledge of how a
cell behaves — its movement or migration in the body of mammal or the adhesion of
bacterial cells at a site — is denoted by the preferential use in the two related but
divergent domains (Table 15).

Table 15 shows that whilst the super-ordinate terms appear with equal strength in
the two sub-disciplines, the instances of these terms can be only found in one domain
and not the other. So, for example, the compound term cell migration is strongly
present in the bacterial cell biology corpus (U=14165), and is still strongly present in
the bacterial cell biology (U=382). But, all the instances of cell migration are found in
the bacterial cell corpus. The opposite is true of cell adhesion, showing different
ontological commitments.

Table 15. Synchronic and contrastive analysis of two key ontological commitments (cell and
cytoskeleton) in cell biology through the presence (or absence) of collocates of these terms. The
symbol (V) denotes a super-ordinate term and the instances are denoted by (o).

UP-score UM-score
Bacterial Cell Mammalian Cell
Biolo Biolo
Concept Collocates (Bacterio%(})/gy) (Immuno%())/gy)
(N=273,424) (N=309,007)
V cell flcel)=1,077  fl(cell)=3,540
¥ cell migration 382 14,165
ogerm cell migration NF 490
oendothelial cell migration NF 13
oborder cell migration NF 17
V¥ cell adhesion 746 333
V tumor cell adhesion 51 NF
V¥ metastatic cell adhesion 19 NF
© metastatic tumor
cell adhesion 13 NF
V cytoskeleton 65 248
V¥ microtubule cytoskeleton 20 31
V actin cytoskeleton 14 1,842

¥ cytoskeleton motility NF 1,220
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4.4 Anthropology

Anthropology is a well-established subject that has overlapping boundaries with
sociology, psychology, economics, zoology, medicine, law and religious studies. It is
defined as the “science of man, or of mankind, in the widest sense.” (OED). In this
section, I will present a synchronic analysis of the principal term in the subject
kinship. Consider, first those collocates in which kinship appears as a modifier. The
strength of the collocation kinship system is such that it appears as term in all the four
domains —ethnology, cultural anthropology, medical anthropology and psychological
anthropology. The two journals that cover all the domains, Journal of the Royal
Institute of Anthropology (RIA) and the American Anthropologist (abbreviated as Am.
Ant.) have all the five major collocates of kinship: system, terminology, ties, theory
and categories. But except for articles in the journal on ethnology, American
Ethnologist (Am. Ethn.), the other three branches of anthropology do not share the
preference for these collocates. Here again, like the different branches of cell biology,
a key concept (kinship) is shared across the domain, but not all of the compounds are
so shared (Table 16 and 17). I have used the Journal of Cultural Anthropolgy (J. Cult.
Ant.), Journal of Medical Anthropology (Med. Ant.) and Ethos — a journal of
Psychological Anthropology.

The collocations where kinship is modified by other terms, have even wider
distributions of these collocates. By looking at the two multi-disciplinary journals in
anthropology (Journal of the Royal Institute of Anthropology and American
Anthropologist), we see that all collocations are present in these journals, except
perhaps for lesbian and gay kinship. These terms are relatively more popular in
cultural anthropology. There is no discernible collocate of X+kinship in either
psychological or medical anthropology (Table 17).

Table 16. The right-collocates of kinship in 6 journals of anthropology covering 4 subjects

kinship+ Subjects in Anthropology
General | Ethnology General Culture Psychology Medicine
Journal RIA Am. Ethn. Am. Ant. J. Cult. Ant. Ethos J. Med. Ant.
Sxinship 5071 3878 2657 671 276 246
system 2122 1159 478 17 19 3
terminology 1326 196 195 2 NF NF
ties 239 659 128 7 4 6
theory 170 295 29 7 0.4 0.4
categories 78 11 3 0.3 0.1 1

If we agree that the frequent use of a term, say kinship, indicates an ontological
commitment to the concept underlying the term, then we one can argue that the less
frequent use of the term (kinship), and its collocates (social kinship to gay kinship in
Table 17 above) in psychological anthropology and in medical anthropology suggests
there is less of a commitment in these branches of anthropology then is the case in
others.
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Table 17. Strong collocates with kinship as head word, in 6 journals of anthropology covering

4 subjects
+kinship Subjects in Anthropology
General | Ethnology | General Culture Psychology | Medicine
Journal RIA Am. Ethn. Am. Ant. J. Cult. Ant. Ethos J'gfd'
Sxinship 5,071 3,878 2,657 671 671 246
social 222 392 164 2 2 1
gender 385 562 133 60 4 6
ritual 37 117 56 1
american 183 212 39 377 1 4
matrilineal 27 23 24 0.09 NF 0.09
fictive 85 47 17 0.16 0.36 6
bilateral 28 11 14 11
lesbian (1.45) 0.09 0.36 117 0.36 0.36
dravidian 484 42 2 NF NF NF
aboriginal 36 1 0.09 0.09 0.16 0.06
cognatic 46 3 1 1 0.09 0.36
gay 0.64 0.09 0.36 42 0.09 0.36

5 Afterword

I hope that the above tour de force of a range of disciplines and a rather straight-
forward analysis of (randomly-selected) texts in the domain have given you some
food for thought as to how we look at what there is synchronically and what there
was which has now become what there is by a diachronic analysis of specialist
domain texts

I have focused on compound terms throughout this paper. But two collocating
words are not just in the head+modifier (or modifier+head) position. Causal relations
(X causes Y), meronymic relations (X is_a part of Y) and many other lexical-
semantic relations can be viewed as collocation patterns. Following Stanley Gerr and
Zellig Harris, it is also possible to identify a local grammar that is exclusive to a
domain of knowledge. Such a grammar, in principle, is a grammar of lexical semantic
relations between terms of a domain.

Given the emergence of e-books and the fact that most journal publishers are
publishing a parallel e-journal, the idea that we can literally feed books into a
computer system is not such a fictional one. The availability of texts in almost all of
science and technology opens up the possibility of thoroughly investigating the
ontological commitments of the members of a domain community. This, I think, is the
first step towards populating a semantic system that is designed for processing
knowledge. Once we have the basic and comprehensive data related to a domain —its
terminology and the inter-relationship of the terms- only then we can seriously
discuss which formal method to use for representing knowledge. The semantic web
needs to be populated systematically — hence the need for formal schema; the
semantic web must have an exhaustive coverage- hence the need for large volumes of
domain as typically written by members of a domain community.



22

K. Ahmad

Acknowledgement

The author wishes to thank Dr Ann Devitt (Trinity College, Dublin) and Prof
Margaret Rogers (University of Surrey, England) for helping me to revise the paper
so very thoroughly. I am grateful to Prof. Mike Fisher and Dr David Zettlyn,
Department of Anthropology, University of Kent (UK) for allowing me to use their
large collection of anthropology texts (c. 39 million words). Errors and omissions
expected and they are all mine. My thanks to Roberto Basili and Maria Teresa
Pazienza for inviting me to talk and for their infinite patience with this manuscript.

References

. Ahmad, K.: Neologisms, Nonces and Word Formation. In: Heid, U., Evert, S., Lehmann,

E., Rohrer, C. (eds.) Proceedings of the 9" EURALEX Int. Congress, Munich, 8-12
August 2000, vol. II, pp. 711-730. Universitat Stuttgart, Munich (2000)

Ahmad, K.: Writing Linguistics: When I use a word it means what I choose it to mean
(Invited Talk). In: Klenner, M., Visser, H. (eds.) Computational Linguistics for the New
Millennium: Divergence or Synergy? Proceedings of the International Symposium held at
the Ruprecht-Karls-Universitit, Heidelberg, 21-22 July 2000, pp. 15-38. Peter Lang
Publishing Group, Bern (2002)

Ahmad, K., Gillam, L.: Automatic Ontology Extraction from Unstructured Texts. In:
Meersman, R., Tari, Z. (eds.) On the Move to Meaningful Internet Systems 2005: CooplS,
DOA, and ODBASE. LNCS, vol. 3761, pp. 1330-1346. Springer, Heidelberg (2005)
Ahmad, K., Miles, L.: Specialist Knowledge and its Management. Journal of
Hydroinformatics 24(4), 215-230 (2001)

Ahmad, K., Musacchio, M.T.: Enrico Fermi and the making of the language of nuclear
physics. Fachsprache 25(3-4), 120-140 (2003)

Ahmad, K., Rogers, M.: Corpus Linguistics and Terminology Extraction. In: Wright, S.-
E., Budin, G. (eds.) Handbook of Terminology Managemen, vol. 2, pp. 725-760. John
Benjamins Publishing Company, Amsterdam & Philadelphia (2001)

Armstrong, S.: Using Large Corpora. The MIT Press, Cambridge & London (1993)

Aston, G., Burnard, L.: The BNC Handbook: Exploring the British National Corpus with
Sara. Edinburgh Univ. Press, Edinburgh (1998)

Church, K.W., Mercer, R.L.: ‘Introduction [...]". In: Armstrong, S. (ed.), pp. 1-24 (1994)

. Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K., Slattery,

S.: Learning to construct knowledge bases from the World Wide Web. Artificial
Intelligence 118, 69-113 (2000)

. Crystal, D.: A Dictionary of Linguistics and Phonetics. Blackwell Publishers, Oxford

(2002)

. Dameron, O., Musen, M.A., Gibaud, B.: Using semantic dependencies for consistency

management of an ontology of brain—cortex anatomy. Artificial Intelligence in
Medicine 39, 217-225 (2007) (accessed June 20, 2007), available at:
http://www.intl.elsevierhealth.com/journals/aiim

. Dunning, T.: Accurate methods for the statistics of surprise and coincidence. In:

Armstrong, S. (ed.), pp. 61-74 (1994)
Gerr, S.: Language and Science the Rational, Functional Language of Science and
Technology. Philosophy of Science 9(2), 146-161 (1942)



19.
20.

21.

22.
23.

24.
25.
26.
27.
28.
29.
30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

Artificial Ontologies and Real Thoughts: Populating the Semantic Web? 23

. Gillam, L., Tariq, M., Ahmad, K.: Terminology and the Construction of Ontology.

Terminology 11(1), 55-81 (2005)

. Guarino, N., Welty, C.: Evaluating ontological decisions with Ontoclean. Comms. of the

ACM 45(2), 61-65 (2002)

. Hacking, L.: Aristotelian Categories and Cognitive Domains. Synthese 126, 473-515

(2001)

. Halliday, M.A.K., Martin, J.R.: Writing Science: Literacy and Discursive Power. The

Falmer Press, London & Washington (1993)

Harris, R.A.: The Linguistic Wars. Oxford University Press, NewYork (1993)

Harris, Z.: A Theory of Language and Information: A Mathematical Approach. Clarendon
Press, Oxford (1991)

Hayes, D.: The growing inaccessibility of science. Nature. 356, 739-740 (1992)
http://en.wikipedia.org/wiki/Cytoskeleton (accessed July 5, 2007)

Ilic, K., Kellogg, E.A., Jaiswal, P., Zapata, F., Stevens, P.F., Vincent Leszek, P., Avraham,
S., Reiser, L., Pujar, A., Sachs, M.M., Whitman, N.T., McCouch Susan, R., Schaeffer,
M.L., Ware, D.H., Stein, L.D., Rhee Seung, Y.: The Plant Structure Ontology, a Unified
Vocabulary of Anatomy and Morphology of a Flowering Plant. Plant Physiology 143,
587-599 (2007)

Illingworth, V. (ed.): Oxford Dictionary of Computing. Oxford Univ. Press, Oxford (1996)
Issacs, A.: A Dictionary of Physics. Oxford University Press, Oxford (2003)

Lee, C.-S., Kao, Y.-F., Kuo, Y.-H., Wang, M.-H.: Automated ontology construction for
unstructured text documents. Data & Knowledge Engineering 60(3), 547-566 (2007)
Oxford English Dictionary — The Online Version, available at http://www.oed.co.uk

van Orman Quine, W.: Word and Object. The MIT Press, Cambridge (1960)

Quirk, R.: Grammatical and Lexical Variance in English. Addison Wesley Longman,
Harlow (1995)

Quirk, R., Greenbaum, S., Leech, G., Svartvik, J.: A Comprehensive Grammar of the
English Language. Longman, London,New York (1985)

Serban, R., ten Teije, A., van Harmelen, F., Marcos, M., Polo-Conde, C.: Extraction and
use of linguistic patterns for modelling medical guidelines. Artificial Intelligence in
Medicine 39, 137-149 (2007)

Sinclair, J.M.: Collocation: a progress report. In: Steele, R., Threadgold, T. (eds.)
Language Topics: essays in Honour of Michael Halliday, vol. 3, pp. 319-331. John
Benjamins Pub. Co., Amsterdam (1987)

Sleeman, D., Reul, Q.: CleanONTO: Evaluating Taxonomic Relationships inOntologies.
In: Proceedings WWW2006, Edinburgh, UK, May 22-26 (2006)

Smadja, F.: Retrieving collocations from text: Xtract. In: Armstrong, S. (ed.), pp. 143-177
(1994)

Smith, B.: An Essay in Formal Ontology. Grazer Philosophische Studien 6, 39-62 (1978)
Smith, B.: Ontology. In: Floridi, L. (ed.) Blackwell Guide to the Philosophy of
Computingand Information, Basil Blackwell, Oxford (2003)

Smith, B.: Beyond Concepts: Ontology as Reality Representation. In: Varz, A., Vieu, L.
(eds.) Proceedings of FOIS 2004. International Conference on Formal Ontology and
Information Systems, Turin, 4-6 November, 2004 (2004)

Teubert, W.: Writing, hermeneutics and corpus linguistics. Logos and Language IV(2), 1-
17 (2003)

Visual Being — A weblog for presentational technologies — (accessed July 8, 2007),
www.visualbeing.com/2005/03

Wikipedia. (accessed July 5, 2007), http://en.wikipedia.org/wiki/Cytoskeleton



Model-Based Diagnosability Analysis for Web
Services*

Stefano Bocconi', Claudia Picardi', Xavier Pucel?, Daniele Theseider Dupré?,
and Louise Travé-Massuyes?

! Universita di Torino, Dipartimento di Informatica, Torino, Italy
{Stefano.Bocconi,Claudia.Picardi}@di.unito.it
2 LAAS-CNRS, Université de Toulouse, Toulouse, France
{xpucel,louise}@laas.fr
3 Universita del Piemonte Orientale, Dipartimento di Informatica, Alessandria, Italy
dtd@mfn.unipmn.it

Abstract. In this paper we deal with the problem of model-based diag-
nosability analysis for Web Services. The goal of diagnosability analysis
is to determine whether the information one can observe during ser-
vice execution is sufficient to precisely locate (by means of diagnostic
reasoning) the source of the problem. The major difficulty in the con-
text of Web Services is that models are distributed and no single entity
has a global view of the complete model. In the paper we propose an
approach that computes diagnosability for the decentralized diagnostic
framework, described in [I], based on a Supervisor coordinating several
Local Diagnosers. We also show that diagnosability analysis can be per-
formed without requiring the Local Diagnosers different operations than
those needed for diagnosis. The proposed approach is incremental: each
fault is first analyzed independently of the occurrence of other faults,
then the results are used to analyze combinations of behavioral modes,
avoiding in most cases an exhaustive check of all combinations.

1 Introduction

Although many electronically controlled systems nowadays boast diagnostic
capabilities, the actual performance of run-time diagnosis depends on several
factors, and in particular on the design choices. This makes design-time diag-
nosability analysis a very important task in the design cycle of such systems.

In recent times automated diagnosis techniques have started being applied to
the software domain; in particular model-based diagnosis approaches have been
extended to deal with composed Web Services (WSs for short), as for example in
[2314]. However, for the diagnostic tools to be successful, diagnosability analysis
becomes a design-time requirement also in these contexts.

Diagnosability tries to determine, given the current design and observability
degree of the system, which faults can actually be diagnosed at run-time. This
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type of analysis depends on the specific formalization of the notion of diagnosis
that is being used for on-line software. In this paper we analyze the problem of
diagnosability, with respect to the formalization of diagnosis introduced in [2]
and the algorithm described in [IJ.

Before giving a short description of this framework, it is worth pointing out
some peculiarities of the WS scenario, that pose some interesting problems with
respect to existing literature on diagnosability analysis.

Web Services are often obtained by composing the functionalities of several
simpler services. In this situation, it becomes important albeit difficult to find
which of the simpler services did actually cause a malfunctioning. First of all,
the parties that are involved in the composition, and then the model of the
overall composition, cannot be assumed to be statically knowrl]. For example,
in an e-commerce scenario, it is easy to imagine that the shipment service is
instantiated at run-time, depending on the customer requirements and type of
delivery. Second, the internal models of the individual services are visible only
to their owners, which can of course be different ones.

This scenario is addressed by the diagnosis approach in [2T] as follows:

— Each WS is described, as in the component-oriented style of model-based
diagnosis, by a relation among finite-valued variables that expresses
both the process flow (workflow) and the dependencies between input and
outputs of each workflow activity. Each activity is regarded as a possible
source of errors.

— Diagnosis is defined as the task of finding which activity (or set of) may have
caused the observed malfunctioning; formally the notion of consistency-
based diagnosis [5] is adopted.

— Diagnosis is carried out through a decentralized framework. Diagnostic
reasoning with respect to each WS model is performed by Local Diagnosers
(one for each WS), while a Supervisor propagates solutions from one Lo-
cal Diagnoser to the other, thanks to run-time information about the WSs
interfaces and their connections.

— Diagnostic reasoning exploits a least commitment approach: solutions are
represented as partial assignments to model variables, and variables that
appear irrelevant to the diagnostic process are left unassigned. This has the
twofold advantage of reducing the space needed to represent solutions and
of avoiding the involvement of Local Diagnosers which have nothing to do
with the observed problem. This approach has been generalized to any type
of discrete constraint-based model in [I], while its specific tailoring to the
WS case is discussed in [2].

In this paper we propose an algorithm for diagnosability analysis that builds
upon those ideas, and that exploits, at the Supervisor level, operations analogous
to those that Local Diagnosers implement for on-line diagnosis. We will show

! In the WS literature different ways exist to compose WSs; not all of them are based
on a static model of the composition, therefore it is more general to assume that
such model does not exist.
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that, besides the above mentioned advantages, the usage of partial assignments
allows to perform an incremental analysis that at each step takes into consid-
eration more complex combinations of faults. Each step can reuse the results
of previous ones, thereby gaining in efficiency. Moreover, the output at each
step refines the analysis, so that a designer can interactively control the tradeoff
between detail in the result and computational costs.

As a difference with respect to the diagnostic approach, we will assume that
WSs are willing to disclose something more wrt their internal behavior: namely,
the values of observable variables associated with each fault hypothesis. This,
however, does not correspond to a centralized approach: the direct relation be-
tween fault hypotheses and observable is finally visible to the supervisor, but this
relation must be computed in a decentralized way exploiting private models.

This paper is organized as follows: first, we present a brief description of
the diagnosis approach in [I]. Then, we introduce some general notions related
to diagnosability, and we use them to define our approach. We then present a
complete example and discuss related work.

2 The Diagnosis Approach

As discussed in the previous section, the diagnosis framework we use as a refer-
ence has the following key features: it solves the problem of consistency-based
diagnosis for finite-valued relational models, by adopting a decentralized
approach and by exploiting a least-commitment strategy. Since the last point
is central to the diagnosability algorithm we discuss in this paper, it is worth
giving some more detail about it (see [I] for a more thorough description).

In the diagnosis algorithm, each Local Diagnoser has a threefold task: (i) ex-
plaining local observations and/or hypotheses on observations coming from other
Local Diagnosers (and forwarded by the Supervisor); (i) using local observations
to discard hypotheses made by others; (iii) propagating the consequences of in-
ternal or external hypotheses so that others may discard them.

All these tasks are performed by finding those variable assignments that
are consistent with the hypotheses to explain/propagate/discard. However, only
variables that are relevant to the current task are considered, while the others
are left unassigned. The operation that does this computation is called EXTEND,
and it is also central to diagnosability analysis.

EXTEND works on partial assignments, that is functions that assign values to
variables but whose domain is a subset of the variables of the local model.

EXTEND is either invoked by the Supervisor, or autonomously executed by
the Local Diagnoser when it receives an alarm (the way diagnosis is activated).
In both cases, the results are sent to the Supervisor.

The input to EXTEND is a partial assignment representing a projection over
the local model variables of the current hypotheses in the system. The output
is a (possibly empty) set of partial assignments that extend the input, propa-
gating its values in the local model, and is meant to represent all the possible
explanation/consequences locally consistent with it. In case the Local Diagnosers
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has also some local observations, these are incorporated in the input assignment
before extending it.

Before returning the output set to the Supervisor, the Local Diagnoser re-
stricts all the partial assignments in it to public variables, that is variables whose
existence and value can be published to the Supervisor. These variables must
include, but are not necessarily limited to, interface and behavior mode vari-
ables. Only the former are however shared by the Supervisor with the other
Local Diagnosers, thus maintaining some privacy.

According to the framework in [I], the output set of extensions is built so that
it meets two requirements.

1. The set of extensions is sound and complete with respect to the input. This
means that the portion of model represented by the assignments in the set is
equivalent to the portion of the model represented by the input assignment
plus possibly the local observations.

2. Each extension in the set is admissible with respect to the local model. The
notion of admissibility is meant to formalize the least-commitment strategy:
intuitively, a partial assignment is admissible if it does not allow to infer
anything about the unassigned variables that could not be inferred using
the model alone.

3 Discriminability Analysis

Diagnosability analysis investigates the consequences of a fault on observable
values in order to understand whether it is possible to uniquely isolate the fault
starting from a given pattern of observables. More precisely, we need to distin-
guish the notion of fault, that is the individual state of one of the activities in a
WS, and the notion of fault mode, that is the complete state of all the activities
in the composite WS for which we want to do observability.

In the models we consider, each activity can either be ok (working as expected)
or ab (faulty), so if there are n activities there are n faults that can occur in the
system. A fault mode is instead a complete specification of ok/ab values for all
the activities, therefore a system has 2™ possible fault modesd.

Full diagnosability would mean that every possible fault mode in a system
provides unique patterns of observable value; it is rather easy to see that this is
close to impossible to achieve, and, in most cases, it is not even a requirement,
given the improbability of some fault modes.

There are several ways for weakening this requirement so that it becomes prac-
tically interesting to study. For example, one could do the analysis only on fault
modes that have a reasonable probability to occur, as for example those with
single or double faults (i.e., 1 or 2 ab activities). Another possibility is to limit
the study to detectability, i.e. the problem of finding whether the observables
allow to distinguish a given fault mode from the “all ok” mode.

2 We will consider in this context that the “all ok” state is one of the possible fault
modes.
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Since, depending on the particular situation, many of these properties can be
of interest for the designer of a composite WSs, we prefer to focus on the notion
of discriminability, which is given with respect to a pair of fault modes:

Definition 1 (Discriminability). Two fault modes are discriminable if their
patterns of observable values are disjoint. Since we consider relational models,
this means that two fault modes f1 and fo are discriminable if the portion M(f1)
of the global model consistent with f1, and the one (M(f2)) consistent with fa,
are disjoint when projected on observable variables.

Different types of “diagnosability analyses” can be obtained by choosing specific
pairs for a discriminability test. The approach that we present here ultimately
leads to a full discriminability analysis, but can be tuned to suit different needs.

As we discussed before, the diagnostic approach in [I] is centered around
the notion of partial assignment, the idea being that by keeping track only of
information that is relevant to the current analysis, one can store less information
and avoid performing unnecessary reasoning.

Moreover, the kind of computation that is locally needed in order to per-
form a global consistency check through several local ones (namely, the EXTEND
operation) naturally applies to partial assignments.

This leads us to the following definition:

Definition 2 (Partial fault mode). A partial fault mode is an assignment of
values (ok or ab) to some of the activity mode variables. A partial fault mode
in which all mode variables are assigned is simply a fault mode. The rank of a
partial fault mode is the number of mode variables it assigns, while its domain
s the set of mode variables it assigns. Two partial fault modes are said to be
alternative when they have the same domain, but assign a different value to at
least one mode variable. A partial fault mode pfm, is a refinement for pfm, if
every assigned variable in pfmy is assigned with the same value in pfm; and
pfmy has a rank strictly greater than pfmg. In this case we also say that pfmgy is
a generalization of pfm,.

The notion of discriminability in the case of relational models can be naturally
extended to partial fault modes. It suffices to consider, in its definition, that f;
and fo are partial fault modes.

Partial fault modes are actually more in number than “simple” fault modes:
for n activities in a WS, there are 3" partial fault modes. However, there are some
advantages in doing discriminability analysis over partial fault modes, especially
in the decentralized context. In fact, as we will shortly detail, we have that:

— the prediction of fault mode consequences (which is the part requiring the
cooperation of several local diagnosers) is only performed for partial fault
modes of rank 1. The actual discriminability analysis, that is, the comparison
of the observable patterns of two partial fault modes, can then be performed
by the Supervisor alone.

— The observable patterns are expressed in terms of partial assignments; that
is, irrelevant variables are left unassigned. This provides some more infor-
mation to the designer about the causes for non-discriminability.
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— It is necessary to compare only alternative partial fault modes, that is, partial
fault modes with the same rank and domain.

— The comparison of two alternative partial fault modes gives information also
on their refinements, sometimes allowing to avoid performing the discrim-
inability analysis for the refined pairs.

In particular, the algorithm exploits some properties that can be proved for
pfms and their extensions. A first property allows the Supervisor to reuse the
results of rank 1 analysis to compute extensions of pfms of higher ranks.

Property 1. Let pfm; and pfms be two consistent partial fault modes, and
let us assume to have a complete set Ext(pfm;) of admissible extensions
for each of them. Then the set {an N aa | a1 € Ext(pfmy),az €
Ext(pfm,), a1 consistent with as} is a complete set of admissible extensions for

pfmy A pfm.
A second one shows how extensions can be used to assess discriminability:

Property 2. Let pfm; and pfmy be two alternative partial fault modes, and let
us assume to have a complete set Ext(pfm;) of admissible extensions for each
of them. Then pfm, and pfmy are discriminable if and only if for all oy €
Ext(pfm, ), oz € Ext(pfm,), their restrictions oy and o to observable variables
are not consistent (i.e. there is at least one variable for which they assign two
different values).

For some pairs of pfms (in)discriminability can be inferred from lower rank
results, without explicit analysis. This is straightforward for discriminability:

Property 3. Let pfm} and pfm, be two discriminable partial fault modes. Then
each pfmy, refinement of pfm’y, and pfmiy , refinement of pfmsy, are discriminable.

Indiscriminability can be inferred under appropriate conditions:

Property 4. Let pfm; and pfm, be two alternative not discriminable partial
fault modes. Let D denote their (coincident) domain and Ext(pfm,), Ext(pfm,)
their complete sets of admissible extensions. Let m be a mode variable with
Dom(m)ND=0.

If for every an € Ext(pfmy),as € Ext(pfm,), consistent with each other
when restricted to observable variables, it holds that Dom(ay) N Dom(m) = ()
and Dom(az)NDom(m) =10, then the combinations {(pfm; Am=wv1, pfmy Am=
v9) | v1,2 € {0k, ab}} are non-discriminable as well.

This property tells us that whenever at rank k a pair of partial fault modes
pfmy, pfmsy is non discriminable, and the extensions of pfm,, pfm, do not mention
a given additional mode variable m, then we can avoid to further refine this pair
with m.

The algorithm can then be detailed as follows:

Step 1: The Supervisor computes a complete set of admissible extensions of all
partial fault modes of rank 1. It does so by exploiting the EXTEND operation
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offered by Local Diagnosers and detailed in [I], with the only difference that
Local Diagnoser treat all observable variables as public. In this way, for each
partial fault mode pfm of rank 1, the Supervisor acquires a complete set of
admissible extensions of pfm to observable, interface and mode variables.

Step 2: The Supervisor discards from the hypothesis table all the unobservable
interface variables, thereby keeping only mode and observable variables. For
each pfm the Supervisor has now a complete set of admissible extensions to
observables and mode variables aloned.

Step 3: The Supervisor performs discriminability analysis going rank by rank.
A discriminability analysis of rank k consists in comparing two alternative par-
tial mode assignments of rank k by exploiting their complete sets of admissible
extensions. The procedure is as follows:

OutpPuT=(;Disci =0;
ToDo1={(m = ok,m = ab) | m mode variable};
for (k=1;k < mazrank A ToDoy # 0; k=k+1)
for each pair (pfm,, pfmy) € TODOy
ExT; =Extend(pfm, );EXT2 = Extend(pfm,);
AddDisc(Discy, EXT1, EXTa, pfm,, pfm,);
AddToDo(ToDogy1, EXT1, EXTa, pfm,, pfm,);
OuTPUT=OUTPUT U DISCg;
DisCr+1 =Update(DisCy, k + 1);
ToDOg+1 =T0DOg+1 \ DISC41;
return Expand(OUTPUT, k);

The analysis proceeds rank by rank, that is it moves from more general partial
fault modes, to more refined ones. It stops when either the maximum rank has
been reached, or all the pairs of partial fault modes at higher ranks need not
be analyzed because their discriminability status can already be assessed from
the analysis of their generalizations at lower ranks. At the end of the algorithm
OvuTPUT will contain the set of all pairs of discriminable alternative partial fault
modes of all ranks (including those that the algorithm did not explicitly analyze).

At iteration k&, TODO; contains the set of pairs of alternative partial fault
modes of rank k that should be analyzed for discriminability. The goal of iteration
k is to find discriminable pairs of rank k, adding them to the output set, and to
prepare the pairs that should be analyzed during iteration k+1. For these reasons
it computes two sets: DISCy, (discriminable pairs of rank k) and ToDOy 41 (pairs
to be analyzed in the next iteration).

For each element of a pair (pfmy, pfms) € TODOg a complete set of admissible
extensions is computed by Extend based on property [l

AddDisc uses the results EXT1, EXTs to assess, based on property 2l whether
pfm; and pfm, are discriminable. If the pair is found discriminable, Discy is
updated adding (pfm,, pfm,).

3 Due to space limits, it is not possible to discuss here the technical properties of
admissible extensions; some more detail can be found in [I].
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WS1 Al o1 A4 WS2 MsY Z O3z O4 Os

X ’ ok ok ab ok ok o

A2 A3 >03 AS < O5 ok ab ok ok ab ab

ok ab ab ok ok ab

My O Mz X ab ok ok ok ok ab

ok ok ok ok ab ok ab ok ab ok

ab ab ab ab ab ab ok ok ab ab

Activity Ay Activity As ab ab ab ok ab ab

My 01 0:Y Z ok ok ok ab ok ok

ok ok ok ok ok ok ok ab ab ok ok

Mz X Oz Os ok ab ok ok ab ok ab ok ab ab ab

ok ok ok ok ab ok ok ab ok ok ab ab ab ok ab

ok ab ab ab ab ab ok ab ab ab ok ok ab ok ab

ab ok ab ab ok ok ab ok ok ab ok ab ab ab ok

ab ab ok ab ok ab ab ok ab ab ab ok ab ab ab

Activity As ab ok ab ab ok ab ab ab ab ab ab
ab ab ab ab ab Activity As

Activity A4

Fig. 1. Illustrative example : two Web Services composed of five activities

Then, AddToDo updates the set TODO1 by adding only those pairs of par-
tial fault modes whose undiscriminability is not already certain, due to property
@ while property [3] allows Update to directly add in DiSCk1 the refinements
of rank k discriminable pairs; this set can be subtracted from TODOg 1.

Since the analysis, thanks to search space pruning, could end before reaching
the maximum rank, the final output set is obtained by expanding all the dis-
criminable pairs found during the loop to higher ranks. In practice, the results
could be left implicit, without such an expansion.

4 Example

In this example we apply the algorithm defined in the previous section to the
Web Services whose model is described in figure[ll We assume that only interface
variables are observed. A Web Service variable is considered observable if the
observer is able to assess whether it is normal or not, thereby assigning a value
ok or ab to the corresponding model variable. The behavior of an activity is
described by a table; each tuple in the table corresponds to a valid combination
of ok and ab values for its variables.

At step one the Supervisor computes a complete set of admissible extensions
of all partial mode assignments of rank 1 (see figure[Z). The information gathered
at this stage suffices for the rest of the analysis, and the Supervisor does not
need to invoke the Local Diagnosers anymore. As we said earlier, only observable
and mode variables are kept, while interface variables are discarded (none in this
case, since all interface variables are observable, see figure [I).
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fm mode vars observable vars
PI™ N1 Mo Ms My Ms O1 Oz O3 O4 Os
m3 *x ok ab x x *x ab ab *x «x

f mode vars observable vars
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mi1 ok * x ok ok ok x x ok ok

—ok ok * % ok ab ok + % ok ab 0 * ab ab o oxookab x ok
ok % x ab % ok x % abab "4 F F 7 ok ok = x x ok ok
my ab x x ok ok ab x x ok ok ok ok *x x ok ab ok x x ok ab
1

=abab x *x ok ab ab x x ab ok ab x x ok ab ab x x ab ok
ab % % ab ok ab % % ok ab T T * ¥ ab ab * * * ab ab
ab % * ab ab ab x * ab ab _ ab ok x x ab x ok x x ab ab
ms * ok ok x x % ok ok x =x ab * * ab ok ab x * ok ok
*sk « ok ab % % x abab x x B * * F ok ok x x x ok ok
* b ok * % % ab ab x % =ok ok x x ab ok ok x x ab ab
Zn;b * Zb Zb x % % Zk Zb v % ab *x x ab ok ab x x ok ab
ms * x % ab ab *x x x ab ab

ms *x ok ok x x x ok ok % x
—ok % ab ok % % % abab x x — b0k x x ok ab ok x x ok ab
- v we ab * x ok ab ab * x ab ok

Fig. 2. The admissible extensions of all partial mode assignments of rank 1

At this point the Supervisor starts diagnosability analysis from rank 1. We
see that m, and my are discriminable (i.e. my = ok is discriminable from m; =
ab, and similarly for my4) thanks to property 2l Thus, these assignments are
inserted in the DIsC; set; each refinement of m; = ok is discriminable from each
refinement of m; = ab, and analogously for my = ok and m4 = ab. All these
refinements will be inserted in the D1SCs set so that the algorithm will not check
them anymore. Continuing with rank 1 analysis, the algorithm determines that:

— mg is not discriminable (considering only restrictions to observable variables,
the second tuple of mqy = ok is consistent with the first tuple of mqo = ab)

— it needs to check ms in combination with mg, since mg is present in the
extensions of my (property ).

Therefore, the algorithm inserts in the TODO, set the combinations:

(m2 = ok A'ms = ok, ma = ok A ms = ab), (ma2 = ok A ms = ok,ma = ab A m3 = ok)
(m2 = ok A'ms = ok, ma = ab A m3 = ab), (m2 = ok A ms = ab,ma = ab A m3 = ok)

(m2 = ok A'ms = ab,ma = ab A m3 = ab), (m2 = ab A ms = ok, ma = ab A m3 = ab)

Analyzing the last fault mode variable, ms, the algorithm determines that it is
also non discriminable (considering only restrictions to observable variables, the
second tuple of ms = ok is consistent with the first tuple of ms = ab), and that
it needs to check at rank 2 combinations of ms with mi and my4.

Since we saw that m; and m4 are discriminable, not all combinations of ms
with those mode variables need to be checked (more precisely, we do not need to
check those that are in DiscCq, that is those where m4 or my4 have different values).
The algorithm inserts therefore the following four combinations in ToDOy:

(ms = ok A'm1 = ok, ms = ab A m1 = ok), (ms = ok A m1 = ab,ms = ab A m1 = ab)

(ms = ok A'ma = ok, ms = ab A my = ok), (ms = ok A ms = ab,ms = ab A m4 = ab)
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mode variables  observable variables

pfm My My Ms My Ms O1 Oy O3 O O

(m2 = okAms=o0k) * ok ok % x x ok ok x *
(me2 =okAmsg=ab) * ok ab % x * ab ab x *
(m2=abAms=o0k) * ab ok * x x ab ab x *
(m2=abAmg=ab) * ab ab * x x ok ab x *
ok x x ab ok ok x x ab ab

(ms = ok Ama = ok) ok * x ok ok ok x x ok ok
ok x x ok ab ok x x ok ab

(ms = ab A m1 = ok) ok * x ab ab ok * * ab ab
ab * x ok ok ab x x ok ok

(ms = ok A ma = ab) ab * x ab ok ab * * ok ab
ab * x ok ab ab x x ab ok

(ms = ab A ma = ab) ab * x ab ab ab * * ab ab
(ms =o0kAma=ok) = * =*x ok ok x x x*x ok ok
ok x x ab ok ok x x ab ab

(ms = ok A\ ma = ab) ab * x ab ok ab * * ok ab
ok x x ok ab ok x x ok ab

(ms = ab A ma = ok) ab * x ok ab ab * * ab ok
(ms=abAma=ab) x= x % ab ab x x % ab ab

Fig. 3. The contents of the ToDO2 set

At this stage, rank 2 analysis can start: combining the results of extend
at rank 1, all extensions of the partial fault modes contained in ToDO; are
calculated. Examining the six pairs of partial fault modes containing mso and
mg, the algorithm can determine that they are all discriminable except for
(mg = ok Ams = ab,my = ab A m3z = ok). The relative extensions do not
mention any other mode variables, therefore the algorithm can conclude that
each refinement of (me = ok A ms = ab) is non-discriminable from each re-
finement of (mo = ab A ms = ok). Examining the 4 pairs of partial fault modes
containing ms and my or my, the algorithm can determine that (ms = okAm; =
ab,ms = ab A my = ab) and (ms = ok A my = ok,m5 = ab A my = ok) are dis-
criminable. On the other hand, (ms = ok A m; = ok, ms = ab A my = ok) and
(ms = ok Amy = ab,ms = ab A\ my = ab) are non-discriminable. The extensions
of (ms = ok A'my1 = ok,ms = ab A ' m; = ok) mention my, while the extensions
of (ms = ok Amyg = ab,ms = ab A'my = ab) mention my.

The algorithm puts in the ToDO3 set the following 2 combinations:

(ms = ok Am1 = ok N\ ma = ok,ms = ab A m1 = ok A ma = 0k)
(ms = ok Am1 = ok N\ ma = ab,ms = ab A m1 = ok A ma = ab)

(ms = ok Ami1 = ab N ma = ab,ms = abAm1 = ab A\ ma = ab)

In fact, combinations with different values for mj/my4 are discarded due to
property 2 (m; and my are discriminable, thus these combinations are in DISC3).
By checking the observable variables for each pair (see figure[]), the algorithm
finds that the first and the third one are discriminable, while the second one is
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mode variables  observable variables

pfm My Mz Ms My Ms O1 Oz O3 O4 Os
(ms = okAm1=okAma=o0k) ok * x ok ok ok x *x ok ok
(ms =abAmi =o0kAms=o0k) ok * x ok ab ok x x ok ab
(ms = okAmi1=o0kAma=ab) ok * * ab ok ok x x ab ab
(ms =abAmi=o0kAmsa=ab) ok * * ab ab ok x x ab ab
(ms =0kAmi=abAmsg=ab) ab * % ab ok ab x x ok ab
(ms=abAmi=abAma=ab) ab * * ab ab ab x *x ab ab

Fig. 4. The contents of the ToDO3 set

not. Since the extensions do not constrain other fault modes, the pair refinements
are non-discriminable as well. Therefore the algorithm stops at rank 3.

As a final result, two partial fault modes are not discriminable if and only
if they refine the pairs (mq = 0ok A ms = ab,ma = ab A msg = ok) or (my =
ok A my = ab A ms = ok,m1 = ok A my = ab A ms = ab). All other pairs are
discriminable. In this example a full discriminability analysis is obtained already
at rank 3 (while the maximum rank is 5).

5 Conclusions and Related Work

The decentralized diagnosability approach proposed in this paper is based on the
diagnosis algorithm developed in [2[T], and it is suited for the same application
context for the same reason: it allows models of individual Web Services to be
kept private. The main additional contribution of the diagnosability analysis in
this paper is an incremental approach, where the implications of each individ-
ual fault on observable variables are analyzed, identifying those consequences
that hold independently of the presence of other faults, and other observable
consequences that only hold assuming the presence or absence of some other
fault. Thanks to the newfound properties described in section [3 the results of
this analysis can be used to compute or infer discriminability results for specific
combinations of faults.

Distributed diagnosability analysis is also studied in [67], but the approach
focuses on discrete event systems modeled by communicating automata. Di-
agnosability is analyzed in the context of event-based diagnosis, which means
that the fault signatures are composed of sequences of events. In the discrete
event systems framework, other well-known methods for diagnosability analy-
sis, in particular []], but also [9], [10], are devoted to centralized systems. In
[11], diagnosability is analyzed upon a logic based formalism and within a state-
based diagnosis framework that is closer to ours, however it focuses on cen-
tralized systems. The diagnosability analysis proposed in [12] also refers to a
state-based diagnosis approach for centralized systems. [I3JT4/T1] provide defi-
nitions of faults, fault modes, signatures and discriminability bridging different
diagnosis approaches.
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Abstract. Finite model reasoning in UML class diagrams is an impor-
tant task for assessing the quality of the analysis phase in the develop-
ment of software applications in which it is assumed that the number of
objects of the domain is finite. In this paper, we show how to encode fi-
nite model reasoning in UML class diagrams as a constraint satisfaction
problem (CSP), exploiting techniques developed in description logics. In
doing so we set up and solve an intermediate CSP problem to deal with
the explosion of “class combinations” arising in the encoding. To solve
the resulting CSP problems we rely on the use of off-the-shelf tools for
constraint modeling and programming. As a result, we obtain, to the
best of our knowledge, the first implemented system that performs finite
model reasoning on UML class diagrams.

1 Introduction

The Unified Modelling Language (UML, [§], cf. www.uml.org) is probably the
most used modelling language in the context of software development, and has
been proven to be very effective for the analysis and design phases of the software
life cycle.

UML offers a number of diagrams for representing various aspects of the
requirements for a software application. Probably the most important diagram is
the class diagram, which represents all main structural aspects of an application.
A typical class diagram shows: classes, i.e., homogeneous collections of objects,
i.e., instances; associations, i.e., relations among classes; ISA hierarchies among
classes, i.e., relations establishing that each object of a class is also an object
of another class; and multiplicity constraints on associations, i.e., restrictions on
the number of links between objects related by an association.
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20..% 1..1 20..% 1..1
Student Curriculum Student enrolled Curriculum
enrolled
[ 1.1 likes 1.1 ]
(a) (b)

Fig. 1. UML class diagrams with (a) finitely satisfiable and (b) finitely unsatisfiable
classes

Actually, a UML class diagram represents also other aspects, e.g., the at-
tributes and the operations of a class, the attributes of an association, and the
specialization of an association. Such aspects, for the sake of simplicity, will not
be considered in this paper.

An example of a class diagram is shown in Figure [[l(a), which refers to an
application concerning management of administrative data of a university, and
exhibits two classes (Student and Curriculum) and an association (enrolled)
between them. The multiplicity constraints state that:

— Each student must be enrolled in at least one and at most one curriculum;
— Each curriculum must have at least twenty enrolled students, and there is
no maximum on the number of enrolled students per curriculum.

It is interesting to note that a class diagram induces restrictions on the number
of objects. As an example, referring to the situation of Figure[Il(a), it is possible
to have zero, twenty, or more students, but it is impossible to have any number
of students between one and nineteen. The reason is that if we had, e.g., five
students, then we would need at least one curriculum, which in turn requires at
least twenty students.

In some cases the number of objects of a class is forced to be zero. As an
example, if we add to the class diagram of Figure [[(a) a further association,
likes, with the constraints that each student likes exactly one curriculum, and
that each curriculum is liked by exactly one student (cf., Figure [[[(b)), then it
is impossible to have any finite non-zero number of students and curricula. In
fact, the new association and its multiplicity constraints force the students to
be exactly as many as the curricula, which is impossible. Observe that, with a
logical formalization of the UML class diagram, one can actually perform such
a form of reasoning making use of automated reasoning tooldl.

Referring to Figure[I(b), note that the multiplicity constraints do not rule out
the possibility of having infinitely many students and curricula. When a class is
forced to have either zero or infinitely many instances, it is said to be finitely
unsatisfiable. For the sake of completeness, we mention that in some situations
involving ISA hierarchies (not shown for brevity), classes may be forced to have
zero objects, and are thus said to be unsatisfiable in the unrestricted sense. The
above example shows that UML class diagrams do not have the finite model
property, since unrestricted and finite satisfiability are different.

1 Actually, current CASE tools do not perform any kind of automated reasoning on
UML class diagrams yet.
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Syntax Semantics Syntax Semantics
-B AT\ BT (>mR)|{a:|{b: (a,b) € R} >m}
Dy Dy DInDY (<nR)[{a:|{b: (a,b) € R} <n}
D1 U Ds DY U D? P~ {(a,b) : (b,a) € PT}
VR.D [{a:Vb.(a,b) € RT —bc DT}

Fig. 2. Syntax and semantics of ALUNT

Unsatisfiability, either finite or unrestricted, of a class is a symptom of a bug
in the analysis phase, since either such a class is superfluous, or a conflict has
arisen while modeling different, antithetic, requirements. In particular, finite un-
satisfiability is especially relevant in the context of applications, e.g., databases,
in which the number of instances is intrinsically finite. Global reasoning on the
whole class diagram is needed to show finite unsatisfiability. For large, industrial
class diagrams, finite unsatisfiability could easily arise, because different parts
of the same diagram may be synthesized by different analysts, and is likely to
be nearly impossible to be discovered by hand.

In this paper, we address finite model reasoning on UML class diagrams, a
task that, to the best of our knowledge, has not been attempted so far. This
is done by exploiting an encoding of UML class diagrams in terms of Descrip-
tion Logics (DLs) [2], in order to take advantage of the finite model reasoning
techniques developed for DLs [45]. These techniques, which are optimal from the
computational complexity point of view, are based on a reduction of reasoning
on a DL knowledge base to satisfaction of linear constraints.

The contribution of this paper is on the practical realization of such finite
modeling reasoning techniques by making use of off-the-shelf tools for constraint
modelling and programming. In particular, by exploiting the finite model reason-
ing technique for DLs presented in [4J5], we propose an encoding of UML class
diagram satisfiability as a Constraint Satisfaction Problem (CSP). We show that,
in spite of the high computational complexity of the reasoning task in general,
the aforementioned techniques are feasible in practice, if some optimizations are
performed in order to reduce the exponential number of variables in the con-
straint problem. We do so by relying again on the constraint solver itself, by
setting up and solving an auxiliary constraint problem that exploits the struc-
ture of real-world UML class diagrams.

We built a system that accepts as input an UML class diagram (written in the
standard MOF syntaxlg)7 and reasons on it according to the ideas above making
use of the ILOG’s OPLSTUDIO constraint system. The system allowed us to test
the technique on the industrial knowledge base CIM.

2 Description Logics

DLs [I] are logics for representing a domain of interest in terms of classes and
relationships among classes and reasoning on it. They are extensively used to

2 http://www.dmtf.org/
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formalize conceptual models and object-oriented models in databases and soft-
ware engineering [3I2], and lay the foundations for ontology languages used in
the Semantic Web.

In DLs, the domain of interest is modeled through concepts, denoting classes
of objects, and roles, denoting binary relations between objects. The semantics
of DLs is given in terms of an interpretation T = (AZ,.T) consisting of an
interpretation domain AT and an interpretation function - that maps every
concept D to a subset DT of AT and every role R to a subset RT of AT x AZ.
In this paper we deal with the DL ALUNT [4)5], whose syntax and semantics
are shown in Figure [l (B and P denote respectively atomic concepts and roles,
D and R respectively arbitrary concepts and roles, m a positive integer, and n
a non-negative integer). The constructs (> m R) and (< n R) are called number
restrictions. We refer to [I] for more details on DLs.

An ALUNT knowledge base (KB) is constituted by a finite set of (primitive)
inclusion assertions of the form B C D. An interpretation Z is called a model of
a KB if B C DT for each assertion B = D in the KB. The basic reasoning tasks
in DLs are (finite) KB and concept satisfiability: a KB is (finitely) satisfiable if
it admits a (finite) model; a concept C'is (finitely) satisfiable in a KB, if the KB
admits a (finite) model Z such that CZ # .

Due to the expressiveness of the constructs present in ALUNZT KBs, unre-
stricted and finite satisfiability are different problems, i.e., ALUNT does not
have the finite model property (cf. [5]). Unrestricted model reasoning is a quite
well investigated problem in DLs, and several DL reasoning systems that perform
such kind of reasoning are available (e..g, Fact++3 or RACERH).

Instead, finite model reasoning is less well studied, both from the theoretical
and from the practical point of view. To the best of our knowledge, no implemen-
tation of finite model reasoners has been attempted till now. Some works provide
theoretical results showing that finite model reasoning over a KB can be done
in EXPTIME for variants of expressive DLs, including ALUNZ [A5I10]. Notice
that this bound is tight, since (finite) model reasoning is already EXPTIME-
hard even for much less expressive DLs (enjoying the finite model property) [IJ.
These results are based on an encoding of the finite model reasoning problem
into the problem of finding particular integer solutions to a system of linear in-
equalities. Such solutions can be put in a direct correspondence with models of
the KB in which the values provided by the solution correspond to the cardinali-
ties of the extensions of concepts and roles. Also, the specific form of the system
of inequalities guarantees that the existence of an arbitrary solution implies the
existence of an integer solution. Moreover, from the encoding it is possible to
deduce the existence of a bound on the size of an integer solution, as specified
by the following theorem.

Theorem 1 ([5]). Let K be an ACUNT KB of size K, C an atomic concept,
Ui, c the system of linear inequalities derived from KC and C, and N the mazimum
number appearing in number restrictions in K. Then, C' is satisfiable in K if and

3http://owl.man.ac.uk/factplusplus/
4http://www.racer-systems.com/
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A

(a) (b)

Fig. 3. (a) UML binary association with multiplicity constraints. (b) ISA hierarchy.

only if WK, B admits a solution. Moreover, if a solution exists, then there is one
whose values are bounded by (K - N)OU),

In the following, we will exploit the above result to derive a technique for rea-
soning on UML class diagrams that properly takes into account finiteness of
the domain of interest. The technique is a based on an encoding of UML class
diagrams in terms of DL KBs, which we present in the next section.

3 Formalizing UML Class Diagrams in DLs

UML class diagrams allow for modelling, in a declarative way, the static struc-
ture of an application domain, in terms of concepts and relations between them.
Here, we briefly describe the core part of UML class diagrams, and specify the
semantics of its constructs in terms of ALUNT. An in-depth treatment on the
correspondence between UML class diagrams and DLs can be found in [2].

A class in a UML class diagram denotes a set of objects with common fea-
tures. Formally, a class C' corresponds to a concept C. Classes may have at-
tributes and operations, but for simplicity we do not consider them here, since
they don’t play any role in the finite class unsatisfiability problem.

A (binary) association in UML is a relation between the instances of two
classes. An association A between two classes C7 and Cs is graphically rendered
as in Figure B(a). The multiplicity m4..n1 on the binary association specifies
that each instance of the class C'; can participate at least m; times and at most
ny times to A, similarly for Cs. * is used to specify no upper bound. B

An association A between the instances of classes Cy and C5, can be formalized
as an atomic role A characterized by C7 C VA.Cy and Cy C VA~ .CY.

For an association as depicted in Figure [3(a), multiplicities are formalized by
Ci C (Z mi A) M (S ni A) and Cy C (2 mo A_) 1 (S N9 A_)

In UML, one can use a generalization between a parent class and a child
class to specify that each instance of the child class is also an instance of the
parent class. Hence, the instances of the child class inherit the properties of the
parent class, but typically they satisfy additional properties that in general do

5 In UML, an association can have arbitrary arity and relate several classes, but for
simplicity we do not consider this case here (but see Conclusions). Aggregations,
which are a particular kind of binary associations are modeled similarly to associa-
tions.
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not hold for the parent class. Several generalizations can be grouped together to
form a class hierarchy (also called ISA hierarchy), as shown in Figure Bi(b). Dis-
jointness and completeness constraints can also be enforced on a class hierarchy
(graphically, by adding suitable labels). A class hierarchy is said to be disjoint
if no instance can belong to more than one derived class, and complete if any
instance of the base class belongs also to some of the derived classes.

A class C generalizing a class C; can be formalized as: C; T C. A class
hierarchy as shown in Figure Bi(b) is captured by C; C C, fori=1,...,n.

Disjointness among C1,...,C, is expressed by C; = A" -Cj, for i =

j=it1
1,...,n— 1. The completeness constraint expressing that each instance of C' is
an instance of at least one of C1,...,C, is expressed by C C |_|?:1 C;.

Here, we follow a typical assumption in UML class diagrams, namely that all
classes not in the same hierarchy are a priori disjoint. Another typical assump-
tion, called unique most specific class assumption, is that objects in a hierarchy
must belong to a single most specific class. Hence, under such an assumption,
two classes in a hierarchy may have common instances only if they have a com-
mon subclass. We discuss in the next section the effect of making the unique
most specific class assumption when reasoning on an UML class diagram.

The basic form of reasoning on UML class diagrams is (finite) satisfiability of
a class C', which amounts to checking whether the class diagram admits a (finite)
instantiation in which C' has a nonempty extension. Formally, this corresponds
to checking whether the concept corresponding to C'is (finitely) satisfiable in the
KB formalizing the diagram. As mentioned, unrestricted and finite satisfiability
in UML class diagrams (and also in ALUNT) are different problems.

The formalization of UML class diagrams in terms of DLs [2], and the fact that
instantiations of the UML class diagram must be finite, allows one to use on such
diagrams the techniques for finite model reasoning in DLs discussed in Section[2l
Specifically, the EXPTIME upper bounds apply also to finite model reasoning on
UML class diagrams [2]. Instead, the exact lower bound of reasoning on UML
class diagrams as presented above is still open. However, if one adds subsetting
relations between associations or the ability of specializing the typing of an
association for classes in a generalization, then both unrestricted and finite model
reasoning are EXPTIME-hard (see [2]). This justifies the approach taken in the
next section, where we address the problem of finite model reasoning on UML
class diagrams also from a practical point of view.

4 Finite Model Reasoning on UML Class Diagr. Via CSP

We address now finite class satisfiability in UML class diagrams, and show how
it is possible to encode the problem as a constraint satisfaction problem (CSP).

As mentioned, a technique for finite model reasoning in UML class diagrams
can be derived from techniques developed in the context of DLs. Such techniques
are based on translating a DL knowledge base into a set of linear inequalities
[4I5]. The formalization of UML class diagrams in terms of DLs implies that the
finite model reasoning techniques for the latter can be used also for the former.
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In the rest of this paper, we will deal directly with the UML class diagram
constructs, considered, from a formal point of view, as abbreviations for the
corresponding DL concepts and roles.

Intuitively, consider a simple UML class diagram D with no generalizations
and hierarchies. Figure Bla) shows a fragment of such a diagram, in which we
have two classes C; and Cs and an association A between them. It is easy to
see that such a class diagram D is always satisfiable (assuming m; < n;) if
we admit infinite models. Hence, only finite model reasoning is of interest. We
observe that, if D is finitely satisfiable, then it admits a finite model in which
all classes are pairwise disjoint. Exploiting this property, we can encode finite
satisfiability of class C7 in D in a constraint satisfaction problem. The variables
and the constraints of the CSP are modularly described considering in turn each
association of the class diagram. Let A be an association between classes Cy and
C5 such that the following multiplicity constraints are stated (cf. Figure Bla)):

— There are at least m; and at most ny links of type A (instances of the
association A) for each object of the class Cy;
— There are at least mo and at most ns links of type A for each object of Cs.

In the special case in which neither C; nor Cy participates in an ISA hierarchy,
the CSP is defined as follows:

— There are three non-negative variables c1, c2, and a, which stand for the
number of objects of the classes and the number of linksig7 respectively (upper
bounds for these variables follow from Theorem [} in practice, they can be
set to a huge constant, e.g., maxint);

— There are the following constraints (we use, here and in what follows, a
syntax similar to that of oPL[LI]):

1. ml *x cl <= a; 3. m2 *x c2 <= a; 5. a <= cl * c2;
2. nl * cl >= a; 4. n2 * c2 >= a; 6. cl1 >=1;

Constraints 1-4 account for the multiplicity of the association; they can be omit-
ted if either mq or mq is 0, or ny or na is co (symbol ‘*’ in the class diagram).
Constraint 5 sets an upper bound for the number of links of type A with respect
to the number of objects. Constraint 6 encodes satisfiability of class C1: we want
at least one object in its extension. As an example, consider the Restaurant class
diagram, shown in Figure @ if A stands for served in, C; stands for menu, and
C5 stands for banquet, then my is 1, ny is 0o, mg is 1, and ny is 1.

Finally, to avoid the system returning an ineffectively large solution, an ob-
jective function that, e.g., minimizes the overall number of objects and links,
may be added.

It is possible to show that, from a solution of such a constraint system we
can construct a finite model of the class diagram in which the cardinality of

5 The use of variables standing for the number of links stems from the technique
proposed in [5], which ensures soundness and completeness of reasoning. It remains
to be investigated whether a simpler encoding avoiding the use of such variables is
possible.
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Fig. 4. The restaurant UML class diagram

the extension of each class and association is equal to the value assigned to the
corresponding variabld] [3].

When either C; or Cs are involved in ISA hierarchies, the constraints are
actually more complicated, because the meaning of the multiplicity constraints
changes. As an example, the multiplicity 1..* of the order association in Fig-
ure @ states that a client orders at least one banquet, but the client can be a per-
son, a firm, both, or neither (assuming the generalization is neither disjoint nor
complete). In general, for an ISA hierarchy involving n classes, 2" non-negative
variables corresponding to all possible combinations must be considered. For the
same reason, in our example, we must consider four distinct specializations of
the order association, i.e., one for each possible combination. Summing up, we
have the following non-negative variables:

— person, order p, for clients who are persons and not firms;

— firm, order £, for clients who are firms and not persons;

— person firm, order pf, for clients who are both firms and persons;
— client, order c, for clients who are neither firms nor persons;

plus the non-negative banquet variable.
The constraints which account for the order association are as follows:

/* 1 %/ client <= order_c;

/* 2 x/ firm <= order_f;

/* 3 x/ person <= order_p;

/* 4 x/ person_firm <= order_pf;

/* b x/ banquet = order_c + order_f + order_p + order_pf;

" In fact, if one is interested just in the existence of a finite model, the nonlinear
constraints a < c1*c2 can be dropped. Indeed, any solution of the resulting constraint
system can be transformed into one that satisfies also the nonlinear constraint by
multiplying it with a sufficiently large constant, cf. [5].
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/* 6 %/ order_c <= client * banquet;

/* 7 %/ order_f <= firm * banquet;

/* 8 %/ order_p <= person * banquet;

/* 9 %/ order_pf <= person_firm * banquet;

/* 10 */ «client + firm + person + person_firm >= 1;

Constraints 1-4 account for the ‘1’ in the 1. .* multiplicity; Constraint 5 trans-
lates the 1. .1 multiplicity; Constraints 6-9 set an upper bound for the number of
links of type order with respect to the number of objects; Constraint 10 encodes
satisfiability of the client class.

We refer the reader to [5] for formal details of the translation and the proof
of its correctness. As for the implementation, the Restaurant example has been
encoded in OPL as a CSP with 24 variables and 40 constraints. The solution
has been found by the underlying constraint programming solver, i.e., ILOG’s
SOLVER, [1], in less than 0.01 seconds.

The exponential blow-up in the number of variables and constraints due to
the presence of ISA hierarchies is a major obstacle when dealing with large class
diagrams, such as those describing real-world applications. To this end, special
care to reduce the size of the resulting CSP as much as possible is mandatory.

In particular, if a given ISA hierarchy (with C as parent class and {C},...,Cy}
as children) is complete, the variable for C' can be removed. Moreover, if the ISA
is disjoint, we can omit all the variables that model instances that belong to any
combination of two or more derived classes, hence reducing the overall number
of variables to the number of classes in the hierarchy. As an example, if the
ISA among Client, Person, and Firm in the Restaurant example is complete,
variables client and order c are superfluous. Similarly, if the ISA is disjoint,
variables person firm and order pf can be omitted.

In order to derive the set of combinations of classes (called, in what follows,
“types”) that may have common instances, we show now that we can use CP
technology again. Indeed, for a given UML class diagram, we can set up and
solve an auxiliary constraint problem. The constraint problem is defined in such
a way that the set of its solutions corresponds to the set of all those types that
are consistent with the ISA hierarchies of the diagram, i.e., those types that
can be populated without violating any of the constraints expressed by the ISA
hierarchies. More precisely, assuming the classes of the diagram are represented
by integers between 1 and nclasses, the constraint problem is defined as follows
(we use again a pseudocode resembling the OPL syntax):

Given the set of ISA hierarchies of an UML class diagram
Find boolean legalTypel[l..nclasses] such that:

For each ISA (C1...Cn is-a C) {
for each i = 1..n: legalTypel[Cil -> legalTypel[C];
If ISA is disjoint: at_most_one(i = 1..n)(legalTypelCil);
If ISA is complete: legalTypel[C] -> exists i=[1..n] s.t. legalTypel[Cil;
}
legalType is a combination of at least one class;
Classes that belong to legalType must be connected by ISA hierarchies;
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By computing all solutions of this auxiliary constraint problem, we obtain the
set of all types that are consistent with the ISA hierarchies. Given a solution
legalType [] (an array of booleans), the corresponding type is made of all classes
C such that legalType[C] = true). Only variables for types found in this way
need to be generated in order to solve the finite satisfiability problem. It is worth
noting that in practical circumstances, the number of all possible types is not
expected to be huge. In fact, well designed class diagrams, even if the unique
most specific class assumption is not made (cf. end of Section []), usually have a
small amount of non-disjoint ISAs, since this helps to increase the overall quality
of the diagram, by making the partitions of concepts that are important for the
application explicit. Some experimental results that show the applicability of the
approach when reasoning on real-world class diagrams are described in Section[5l

Once a UML class diagram is shown to be finitely satisfiable, a second problem
is to return a model with non-empty classes and associations. To solve this
problem, we can use again constraint technology, by writing a constraint program
that encodes the semantics of the UML class diagram (cf. Section B]), and uses
the output of the finite satisfiability problem to fix the size of the model. In
fact, since in the finite satisfiability problem we have enforced the multiplicity
constraints, we know that a finite model of the class diagram exists, and we
also know an admissible number of instances for each class and association.
We do not describe the relevant constraint program for space reasons, but just
observe that, for the Restaurant example (encoded in OPL with about 40 lines
of code, which resulted in a CSP with 498 variables and 461 constraints), the
solution has been found by ILOG’s SOLVER in less than 0.01 seconds, and no
backtracking.

5 Implementation

In this section, we describe a system realized in order to automatically produce,
given a UML class diagram as input, a constraint-based specification that de-
cides finite class satisfiability. Two important choices were made in the design
phase: the input language for class diagrams, and the output constraint lan-
guage. As for the former, we decided to use a standard textual representation of
UML class diagrams called “Managed Object Format” (MOF) (cf. footnote [2).
Concerning the output language, instead, in order to use state-of-the-art solvers,
we opted for the constraint programming language OPL. However, in order to
have a strong decoupling between the two front-ends of the system, we realized
it in two modules: the first one acts as a server, receiving a MOF file as input
and returning a high-level, object-oriented complete internal representation of
the described class diagram (actually, the system supports the concepts in the
core UML, i.e., classes, associations, hierarchies among classes, and subset re-
lationships between associations). A client module, then, traverses the internal
model in order to produce the OPL specification encoding the finite satisfiabil-
ity problem for the diagram (actually, subset relationships between associations
are not taken into account). With this decoupling, we are able to change the
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language for the input (resp., output) by modifying only the MOF parser (resp.,
the OPL encoder) module of the system. Moreover, by decoupling the parsing
module from the encoder into OPL, we are able to realize new tools to make
additional forms of reasoning at low cost.

As for the handling of ISA hierarchies, it has already been mentioned that
an exponential blow-up of the number of variables (one for each combination of
classes involved in the hierarchy) cannot be avoided in the worst case. However,
in case of disjoint or complete hierarchies, it is possible to strongly reduce the
number of generated variables (cf. Section @l).

Hence, the system works in two stages. In the first one, after having built
the internal representation of the input class diagram, it solves the OPL aux-
iliary constraint problem described in Section M in order to detect all possible
combinations of classes (the so-called “types”) belonging to the same hierarchy
that may have objects in common. In the second stage, it uses this knowledge to
build the OPL program that models the finite satisfiability problem for the class
diagram.

In order to test whether using off-the-shelf tools for constraint programming
is effective to decide finite satisfiability of real-world diagrams, we used our sys-
tem to produce OPL specifications for several class diagrams of the “Common
Information Model” (CIM)H7 a standard model used for describing overall man-
agement information in a network/enterprise environment. We don’t describe the
model in detail, but just observe that the class diagrams we used were composed
of about 1000 classes and associations, and so can be considered good bench-
marks to test whether current constraint programming solvers can be effectively
used to perform the kind of reasoning shown so far.

Constraint specifications obtained from large class diagrams in the CIM col-
lection were solved very efficiently by OPL. As an example, when the largest
diagram, consisting of 980 classes and associations, was given as input to our
system, we obtained an OPL specification consisting of a comparable number of
variables and 862 constraints. Nonetheless, OPL solved it in less than 0.03 sec-
onds of CPU time, by invoking ILOG SOLVER. This high efficiency is achieved
also because of the “structural” aspects usually present in UML class diagrams
that model real-world applications. In particular, multiplicity constraints on
many associations had “0” or “1” as lower bounds, or “x” as upper bounds,
and hence the corresponding OPL constraints were easily satisfiable. The conse-
quence is that only a small portion of the constraints of the overall constraint
model needed a deep search for finding a solution. Moreover, the exponential
explosion of the number of variables for classes belonging to ISA hierarchies
was not a problem, since the unique most specific class assumption is implic-
itly made in these diagrams (hence, non-disjointness among classes was always
explicitly stated). This is encouraging evidence that current CP technology can
be effectively used in order to make finite model reasoning on real-world class
diagrams.

8 http://www.dmtf.org/standards/cim
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6 Conclusions

Finite model reasoning in UML class diagrams, e.g., checking whether a class is
forced to have either zero or infinitely many objects, is important for assessing
quality of the analysis phase in software development. Despite the importance
of finite model reasoning, no implementation of this task has been attempted
so far. In this paper we have shown how one can develop such a system by
relying on off-the-shelf tools for constraint modeling and programming, using
techniques for finite model reasoning in description logics, and putting special
care in taming the class-combination explosion.

For simplicity, in this paper we have dealt with binary associations only, but
in fact the technique can be straightforwardly extended to m-ary association
as well, and in fact, our current implementation deals also with them.

This paper can also be seen as the first attempt to obtain a practical, compu-
tationally optimal finite model reasoner for expressive description logics. Indeed,
the techniques developed here apply to ALUNT knowledge bases with primitive
inclusion assertions [6]. More generally, the ideas of applying CSP tools and tak-
ing special care in limiting the “class combinations” explosion, could be applied
to more expressive description logics as well [10].

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, Cambridge (2003)

2. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams.
Artificial Intelligence 168(1-2), 70-118 (2005)

3. Borgida, A., Lenzerini, M., Rosati, R.: Description logics for data bases. In: Baader
et al., ch. 16, pp. 462-484 [I]

4. Calvanese, D.: Finite model reasoning in description logics. In: Proc. of KR’96, pp.
292-303 (1996)

5. Calvanese, D.: Unrestricted and Finite Model Reasoning in Class-Based Represen-
tation Formalisms. PhD thesis, Dip. di Inf. e Sist., Univ. di Roma “La Sapienza”
(1996)

6. Calvanese, D., Lenzerini, M., Nardi, D.: Unifying class-based representation for-
malisms. J. of Artificial Intelligence Research 11, 199-240 (1999)

7. ILOG OPL Studio system version 3.6.1 user’s manual (2002)

8. Jacobson, 1., Booch, G., Rumbaugh, J.: The Unified Modeling Language User
Guide. Addison Wesley Publ. Co., Reading (1998)

9. Lenzerini, M., Nobili, P.: On the satisfiability of dependency constraints in entity-
relationship schemata. Information Systems 15(4), 453-461 (1990)

10. Lutz, C., Sattler, U., Tendera, L.: The complexity of finite model reasoning in
description logics. In: Baader, F. (ed.) Automated Deduction — CADE-19. LNCS
(LNATI), vol. 2741, pp. 60-74. Springer, Heidelberg (2003)

11. Van Hentenryck, P.: The OPL Optimization Programming Language. The MIT
Press, Cambridge (1999)

9 We do not consider multiplicities for n-ary associations. For a discussion, see 2].



Model Checking and Preprocessing

Andrea Ferrara, Paolo Liberatore, and Marco Schaerf

Dipartimento di Informatica e Sistemistica, Universita di Roma “La Sapienza”,
Via Salaria 113, Roma, Italia
lastname@dis.uniromal.it

Abstract. Temporal Logic Model Checking is a verification method
having many industrial applications. This method describes a system
as a formal structure called model; some properties, expressed in a tem-
poral logic formula, can be then checked over this model. In order to
improve performance, some tools allow to preprocessing the model so
that a set of properties can be verified reusing the same preprocessed
model. In this article, we prove that this preprocessing cannot possibly
reduce complexity, if its result is bound to be of size polynomial in the
size of the input. This result also holds if the formula is the part of the
data that is preprocessed, which has similar practical implications.

Keywords: Model Checking, Complexity, Compilability.

1 Introduction

Temporal Logic Model Checking [I0] is a verification method for discrete sys-
tems. It allows to verify whether a system has some properties. The system is
described in a formal structure called model, which specifies the transitions of the
system components. The properties to verify are encoded in a temporal modal
logic. Model checking is used, for example, for the verification of protocols and
hardware circuits [I]. Many tools, called model checkers, have been developed
to this aim. The most famous ones are SPIN [I5] and SMV [20] (with its many
incarnations: NuSMV [9], RuleBase [2]), VIS [3], and FormalCheck [14]. There
are many languages to express the model; the most widespread ones are Promela
and SMV. Two temporal logics are mainly used to define the specification: CTL
[10] and LTL [21]. In this paper we focus on the latter.

The two inputs of the model checking problem (the model and the formula)
can in many cases be treated differently. If we want to verify several properties
of the same system, it makes sense to spend more time on the model alone,
if that simplifies the verification of the properties. Many tools allow to specify
the model separately from checking the formula [S25/T6]; in this way, one can
reuse the same model, compiled into a data structure, in order to check several
formulae.

In the same way, we may wish to verify the same property on different systems:
the property is this time the part we can spend more time on. Many tools allow
populating a property database [SI25]16], i.e., a collection of temporal formulae
which will be checked on the models. As an example, one may early establish
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the requirements of a system, even before the system is actually designed. These
requirements can be therefore compiled into a database of temporal formulae,
even if the system is not given yet. These formulae can be then preprocessing
while the design/modeling of the system goes on. As soon as the system is given,
in form of a model, we can use the result of this preprocessing step to check this
model against the formulae.

In this paper, we study whether such preprocessing may improve performance.
Using, as the technical tool, the compilability theory [TII8], we prove that model
checking remains PSPACE-hard even if preprocessing is allowed, provided that
its result is bounded to be polynomial in the size of its input. These theorems
hold for all model checkers.

2 Preliminaries

2.1 Model Checking

In this section, we briefly recall the basic definitions about model checking that
are needed in the rest of the paper. We follow the notation of [2322]. LTL (Linear
Temporal Logic) is a modal logic aimed at encoding how states evolve over time.
It has three unary modal operators (X, G, and F') and a binary modal operator
(U). A formula X ¢ is true in particular state if and only if the formula ¢ is true
in the next state; G¢ is true if and only ¢ is true from now on; F¢ is true if ¢
is or will be true at some time in the future; U is true if ¢ will eventually
become true and ¢ stays true until then. We indicate with L(O4,...,0O,,) the
LTL fragment in which the only temporal operators allowed are O1,...,O,; for
instance, L(F, X) is the fragment of LTL in which only F' and X are allowed.

The semantics of LTL is based on Kripke models [13]. In the following, for an
"atomic proposition’ we mean a Boolean variable. Given a set of atomic propo-
sition, a Kripke structure for LTL is a tuple (Q, R, ¢, I), where @ is a set of
states, R is a binary relation over states (the transition relation), ¢ is a function
from states to atomic propositions (it labels every state with the atomic propo-
sitions that are true in that state), I is a set of initial states. A run of a Kripke
structure is a Kripke model. A Kripke model for LTL is an infinite sequence of
states, where the transition relation links each state with the one immediately
following it in the sequence. The semantics of the modal operators is defined in
the intuitive way: for example, F'¢ is true in a state of a Kripke model if ¢ is
true in the state or in some following one.

The main problem of interest in practice is to verify whether all runs of a Kripke
structure (all of its Kripke models) satisfy the formula; this is the Universal Model
Checking problem. The Existential Model Checking problem is to verify whether
there is a run of the Kripke structure that satisfies the formula. In formal verifica-
tion, we encode the behavior of a system as a Kripke structure, and the property
we want to check as an LTL formula. Checking the structure against the formula
tells whether the system satisfies the property. Since the Kripke structure is usu-
ally called a “model” (which is in fact very different from a Kripke model, which
is only a possible run), this problem is called Model Checking.
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2.2 Composition of Transition Systems

In practice, all model checkers describe systems as a composition of their compo-
nents, each expressed as a transition system [I9/10]. By working on this formal
settings, we obtain results which hold for all model checkers.

A transition system describse the possible transitions a system can go through
by specifying the state variables, the possible initial states, and which transitions
are possible, i.e., whether the transition from state s to state s’ is possible for
any pair of states s and s’. The formal definition is as follows [LT9/T0].

Definition 1. A finite-state transition system is a triple (V,I, ), where V =
{z1,...,2n} is a set of Boolean variables, I is a formula over V, and o(V,V’)
is a formula over V.UV', where V! = {z,...,z,} is a set of new variables in
one to one relation with elements of V.

V is the set of state variables, I is a formula which is true on a truth assignment
if and only if it represents a possible initial state, and p is true on a pair of
truth assignments if they represent a possible transition of the system. The set
of variables V' is needed because g refers the value of variables in the current
and in the next state. For example, x; is the value of x; in the current state,
while z is the value of the same variable in the next state; therefore, the fact
that x; remains true is encoded by ¢ = x; — z}: if z; is true now, then z} is
true, i.e., x; is true in the next state.

Formally, a state s is an assignment to the variables; a state s’ is successor
of a state s iff (s,s") = o(V,V'). A computation is an infinite sequence of states
S0, 81, S2, - - - , satisfying the following requirements:

Initiality: s is an initial state, i.e. so =1
Consecution: For each j > 0, the state s;;1 is a successor of the state s;

For the sake of simplicity but without loss of any generality, in these definitions
and in the following analisys we only consider Boolean variables and Boolean as-
sertions. In fact, any assertion on enumerative variables is polynomially reducible
to a Boolean assertion on Boolean variables.

In order to model a complex system, we assume that each of its parts can be
modeled by a transition system. The interaction among these parts is modeled by
variables shared among the corresponding transition systems. In the following,
we consider k transition systems M, ..., M. Every M; is described by ((V;ZU
Vis), L(Vi), 0i(V;3, V) for i 1 <i < k where ViL is the set variables local to M;,
V.7 is the set of shared variables of M;, and V; = VL UV,®. A group of transition
systems can be composed in two basic ways: synchronous and interleaved.

In the synchronous parallel composition of k transition systems, the global
transition is due to all processes M; making a transition simultaneously. In other
words, all processes make a transition at any time step.

Definition 2. The synchronous parallel composition of processes My, ..., My,
is the transition system M = (V, I, 0) described by:
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V=UL Vi IV)=ALL0V)  eViV) = AL a(Vi V)
The synchronous parallel composition of My, ..., My, is denoted by M| .. .|| M.

On the contrary, in the interleaved asynchronous composition, only one process
at time is active (we omit the formal definition because of space limitations).

A model can be described as a composition of transition systems. The model
checking problem for concurrent transition systems is the problem of verifying
whether a model described by the composition of the transition systems satisfies
a given formula.

2.3 Complexity and Compilability

We assume the reader knows the basic concepts of complexity theory [24J12].
What we mainly use in this paper are the concepts of polynomial reduction and
the class PSPACE.

The Model Checking problem is PSPACE-complete [I7], and is thus
intractable. As said in the Introduction, it makes sense to preprocess one part
of the problem (either the model or the formula), if this reduces the remaining
running time. The analysis of how much can be gained by such preprocessing,
however, cannot be done using the standard tools of the polynomial classes and
reductions. The compilability classes [7] have to be used instead.

In order to denote problems in which one part can be preprocessed, we assume
that their instances are composed of two parts, and that the part that can be
preprocessed is the first one. As a result, the model checking problem written as
(M, ¢) indicates that M can be preprocessed; written as (¢, M) indicates that
¢ can be preprocessed.

The “complexity when preprocessing is allowed” is established by characteriz-
ing how hard a problem is after the preprocessing step. This is done by building
over the usual complexity classes: if C is a “regular” complexity class such as NP,
then a problem is in the (non-uniform) compilability class |/>C if the problem
is in C after a preprocessing step whose result takes polynomial space. In other
words, |pC is “almost” C, but preprocessing is allowed and will not be counted
in the cost of solving the problem. More details can be found in [7].

In order to identify how hard a problem is, we also need a concept of hardness.
Since the regular polynomial reductions are not appropriate when preprocess-
ing is allowed, ad-hoc reductions (called nu-comp reductions in [7]) have been
defined.

In this paper, we do not show the hardness of problems directly, but rather
use a sufficient condition called representative equivalence. For example, in order
to prove that model checking is |r»PSPACE-hard, we first show a (regular)
polynomial reduction from a PSPACE-hard problem to model checking and then
show that this reduction satisfies the condition of representative equivalence.

Let us assume that we know that a given problem A is |r»C-hard and we
have a polynomial reduction from the problem A to the problem B. Liberatore
[18] shows a sufficient condition that ensures that a reduction also proves the
|r~C-hardness of B. This condition involves the following definitions.
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Definition 3 (Classification Function). A classification function for a prob-
lem A is a polynomial function Class from instances of A to nonnegative inte-
gers, such that Class(y) < ||y||.

Definition 4 (Representative Function). A representative function for a
problem A is a polynomial function Repr from nonnegative integers to instances
of A, such that Class(Repr(n)) = n, and that ||Repr(n)|| is bounded by some
polynomial in n.

Definition 5 (Extension Function). An extension function for a problem
A is a polynomial function from instances of A and nonnegative integers to in-
stances of A such that, for any y and n > Class(y), the instance y' = Exte(y,n)
satisfies the following conditions:

1. ye Aif and only if y' € A;
2. Class(y') = n.

We now define the aforementioned condition over the polytime reduction from A
to B. Since B is a problem of pairs, we can express a reduction from A to B as a
pair of polynomial functions (r, h) such that = € A if and only if (r(z), h(x)) € B.

Definition 6 (Representative Equivalence). Given a problem A (having the
above three functions), a problem of pairs B, and a polynomial reduction (r,h)

from A to B, the condition of representative equivalence holds if, for any instance
y of A, it holds:

(r(y),h(y)) € B iff  (r(Repr(Class(y)),h(y)) € B

The condition of representative equivalence implies that the problem B is |p+C-
hard, if A is C-hard [I8]. Given the limitation of space we cannot give the full
definitions for compilability, which are reported elsewhere [7J6I5/TS].

2.4 Planning

PLANSATY is the following problem of planning: giving a STRIPS [11] instance
y = (P, 0, I,q) in which the operators have an arbitrary number of preconditions
and only one postcondition, is there a plan for y? PLANSAT} is PSPACE-
Complete [4]. Without loss of generality we consider y = (P,OU oy, I, G), where
0p is a operator which is always usable (it has no preconditions) and does nothing
(it has no postconditions). We use the following notation: P = {z1,...,z,}, I is
the set of conditions true in the initial state, G = (M, N). A state in STRIPS
is a set of conditions. In the following we indicate with ¢£‘ the hth positive
precondition of the operator o;, with ¢; all its the positive preconditions, with
nt its hth negative precondition, and with 7; all its negative preconditions; «;
is the positive postcondition of the operator o;, 3; is the negative postcondition
of the operator o;. Since any operator has only one postcondition, for every
operator ¢ it holds that ||a; U 5;]] = 1.

Since we shall use them in the following, we define a classification function, a
representative function and a extension function for PLANSATY:
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Classification Function: Class(y) = ||P||. Clearly it satisfies the condition
Class(y) < [|ly|-

Representative Function: Repr(n) = (P,,0,0,0), where P, = {z1,...,2Zn}.
Clearly it is polynomial and satisfies the following conditions: (i) Class(Repr
(n))=n, (ii) ||Repr(n)| < p(n) where p(n) is a polynomial.

Extension Function: Let y = (P,0,I,G) and y' = Exte(y,n) = (P,,0,1,G).
Clearly for any y and n s.t. n > Class(y) y’ satisfies the following conditions:
(y e Aiff y € A, (i) Class(y') = n.

Given the limitation of space we cannot give the full definitions for compil-
ability, for which the reader should refer to [7] for an introduction, to [6l5] for
an application to the succinctness of some formalisms, to [I8] for further appli-
cations and technical advances.

3 Results

The Model Checking problem for concurrent transition systems is PSPACE-
complete [I7]. In this section, we prove that the Model Checking problem remains
PSPACE-hard even if we can preprocess either the model or the formula, if
this preprocessing step is constrained to have a polynomial size. In our proofs
we consider Existential Model Checking problems, but the results also hold for
the Universal case, since PSPACE is closed under complementation also for
compilability.

Preprocessing of the formula is very relevant to those approaches to model
checking that use automata theory, for instance in the on-the-fly model check-
ing [10], implemented in [I5], that represent and preprocess the formula in its
related automata. More generally, in formal verification it is often the case that
many properties (formulae) have to be verified over the same system (the model,
in this case modeled by the transition systems), in all of these cases it is worth
investigatine whether the complexity of model checking can be reduced by pre-
processing the model.

On the other hand, there are many examples where the same property has to
be verified on different models, in this case we investigate whether the formula
can be processed.

We now consider the Model Checking problem for concurrent processes com-
posed in a interleaved way when the model can be preprocessed.

Theorem 1. The model checking problem for k interleaved concurrent process
MCasyn = ((Mi]...|My), ) where ¢ € LTL is |rPSPACE-complete, and re-
mains |PSPACE-hard for ¢ € L(F,G, X).

Proof. We show a reduction, that translates an instance y € PLANSATY
into an instance (r(y), h(y)) € Masyn, satisfying the condition of representative
equivalence. Given y = (P,0,1,G) € PLANSATY

- r(y) defines a concurrent transition systems My, ..., M,,, where each M; is
obtained from a variable z; € P and it is described by:
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Vi ={xi}

Li(Vi) = (zi) V (i)

0i(Vi,V)=(x; =0AzZ, =0)V (z; =0Ax, =1)V
(z;=1Az,=0)V(z;=1Az,=1)

The process M = M || ... || M, represents all possible computations, starting
from all possible initial assignments, over the variables z1, ..., x,.
- h(y) = (I, G,0) = ~(¢1 N dc A o)
where:
or= Nz N N\
i€l il
e =F( N\ zin N\ —xi)
ieM ieN
m ol N ll: ] N n
po=GV I[N &N N ANXyin N (x5 — Xaj)]
i=0 h=1 h=1 i
j=1
where
o o; ifa; 0
BT BB A0

w1 adds constraints about the initial states of y represented by 1.

pc adds constraints about the goal states of y represented by G: it tells that a
goal state will be reached.

o describes the operators in O: globally (i.e. in every state) one of the opera-
tors must be used to go in the next state; po also describes the nop operator
0g.

Now, we prove that y € PLANSATY iff (r(y),h(y)) € Masyn. Given y =
(P,0,1,G), a solution for y is a plan which generates the following sequence
of states: (s1,...,5p) where s; is an initial state and s, is a goal state. This
sequence of states is obtained applying a sequence of operators (op,,. .., ohp)
chosen in O = {01, ...,0n} in the following way: for all i s.t. 1 <4 < p, precon-
ditions for op, are included in the state s;, and the state s;y1 is obtained from
the state s; modifying the postcondition associated with op,. We remark that a
state in STRIPS is the set of conditions.

The model M = r(y) = r(P) represents all possible traces starting from all
possible initial configurations, over the variables x1, ..., x,. Thus, in this case the
Existential Model Checking problem (M, ¢) reduces to the satisfiability problem
for ¢: we check whether there exists a trace among all traces over the variables
z1,...,T, that satisfies the LTL formula ¢. Therefore, we have to prove that
y € Aiff o = h(y) is satisfiable:

=. Given a solution for y € A, we identify a model for ¢ = h(y); by construc-
tion such a model has:

- initial state sM s.t. £(s1) = T U {—z;|z; ¢ I}
- a state s) s.t. £(sp) C MU {—a;|z; ¢ N}

. M M . M -
- given a state s;", s;/, is successor of s;" iff
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- U(sM) C Precond(op,), where Precond(op,) = {zj|x; € ¢n, }U{~x;|z; €
77h7z}
- U(sty) = L) Vo — B
where «; is the positive postcondition of op, and 3; is the negative post-
condition of op,.
- an infinite number of states: when the state sy, is reached this state is repeated
for at least once or for ever (applying the nop operator og), or it is possible,

it depends from y, to apply any operators whose preconditions are satisfied
by £(sp!).

<. Let (s},..., sf,”, ...) amodel for ¢, and let s, the goal state, that the first
state satisfying . We obtain the sequence of states visited by a plan which
is a solution for y, by cutting the states after the goal state s, and assigning
s; = £(sM); thus this sequence of states (si,...,s,), associated with the plan,

has by construction:

- initial state s1 s.t. s1 =T U {~a;|z; ¢ I}
- a state s, s.t. s, C MU {—z;|z; ¢ N}
- given a state s;, s;y1 is successor of s; iff
- 8; C Precond(op,)
- sip1 =8 U —
where «; is the positive postcondition of op, and f; is the negative post-
condition of op,.

This result shows that the complexity of model checking cannot be (significantly)
decreased even if we have the model available and can preprocess it, no matter
how much time we spend. This result does not rule out any improvement, but it
proves that there is no preprocessing algorithm that guarantees a simplification
(from a computational complexity point of view) of the model checking problem.

We now identify the complexity of the Model Checking problem when the
preprocessing of the model (represented as the composition of transition systems)
is allowed, in the synchronous case.

Theorem 2. The model checking problem for k synchronous concurrent process
MCsyn = ((Mi]]...||Mk), ) where ¢ € LTL is |p»PSPACE-hard, and remains
|rPSPACE-hard for ¢ € L(F,G, X).

Proof. 1t is similar to the proof of the Theorem [l We carry out a reduction
from the PLANSATY] problem, that satisfies the conditions of representative
equivalence; the main difference is about the LTL formula.

We now show the complexity results, in the synchronous case, when the formula
can be preprocessed.

Theorem 3. The model checking problem for k synchronous concurrent process
MCy,,, = (o, (Mi]|...|[My)) where ¢ € LTL is |~PSPACE-complete, and
remains |p>PSPACE-hard for ¢ € L(F,G, X).
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Proof. PLANSATY is the following problem of planning: giving a STRIPS [11]
instance y = (P,0,1,G) in which the operators have an arbitrary number of
preconditions and only one postcondition, is there a plan for y? PLANSATY
is PSPACE-complete [4]. Without loss of generality we consider y = (P,0O U
00, I, G), where o is a operator which is always usable (it has no preconditions)
and does nothing (it has no postconditions). We use the following notation:
P ={z1,...,x,}, I is the set of conditions true in the initial state, G = (M, N).
A state in STRIPS is a set of conditions.

In the following we indicate with ¢£‘ the hth positive precondition of the
operator o;, and with nlh the hth negative precondition of the operator o;; «; is
the positive postcondition of the operator o;, G; is the negative postcondition
of the operator o;. Since any operator has only one postcondition, for every
operator ¢ it hold that |la; U 5] = 1.

We show a polynomial reduction from the problem A to the problem B that
satisfies the condition of representative equivalence. This proves that B is |pC-
hard, if A is C-hard; to apply this condition we must define a Classification Func-
tion, a Representative Function and a Extension Function for A. Thus we use
such a proof schema: we define a Classification Function, a Representative Func-
tion and a Eztension Function for PLANSATY, then we show a polynomial re-
duction from an instance y € PLAN SATY to an instance (r(y), h(y)) € MChy
that satisfies the condition of representative equivalence.

Let y = (P,0,1,G) € PLANSATY. We define r and h as follows:

- r(y) = 1(P) = ~{F(ay) A G N (@i = Xwi) = N (2 = Xay)| |

- h(y) defines the transition systems M| ... || My. The generic M; is obtained
from the operators o;,,...,0;, whose postcondition involves the variable
x; € P; d; is the number of such operators. We add the variable Zg; thus we
have at most as many processes as variables: if k is the number of variables
used as postcondition of operators plus one, we have k < n + 1. Let My the
process associated with the variable x4; this variable is 0 at the beginning
and it becomes 1 only when the goal of the PLANSAT problem is reached.
M;, forist. 1 <17 <k, is defined by:

d;
Vi =U,Z1 ¢4, Uni, U, U B,
LVi)= AN z;A AN -z

z;eInV; z; €IUV;
0 [Pl \ (173, 11 N
0i(Vi, Vi) = \/k;1 A d)ik. A A A (A AN N ) A (T = b))
h=1 h=1 ieM ieN

o 1if (077% 75 @

where b;, = {0 i 3, £ 10

The process My, is defined by:

Vie = {4}

Iy(V) = (z4 =0)
0k (Vie, Vi) = Niem @i A Njenr ~@i A x; =1
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Now we prove that this reduction is correct, i.e.y € PLANSATY iff (r(y), h(y))
€ MCly -

=. Given a solution for y € PLANSATY}, we show a path of M which satisfies
¢ (r(y) defined above).

A solution for y is a plan which generates the following sequence of states:
(81,...,8p) where s1 is a initial state and s, is a goal state. This sequence of
states is obtained by applying a sequence of operators (op,,...,0p,).

By construction M admits a path (s1,... s} s, ..) st

- E(sﬁ”):siu—\ngorilgigp
- 6(8%1) =sp, Uy

This path satisfies ¢:

- o does not constrain about the initial state, therefore every initial state of
the model is legal;
- g CU(s)h,), therefore F(x,) is true;
- the path shown is s.t. only one variable change at a time, therefore the
subformula under the Globally is true.
<. Given a path of M which satisfies ¢, we show asolutionfory € PLANSATY.
The pathisasequence (s{7, ..., s), sM .. .). Wecan obtain the sequence of states
visited by a plan for y in this way:

-8 =LU(sM) — {—ay} foril <i<p;
- we ignore the rest of the path of M.

The above theorem shows that even the availability beforehand of the formula to
be tested does not guarantee an increase in the performances of model checking
algorithms. A similar proof also holds for the interleaved case, which we state
with only a proof sketch.

Theorem 4. The model checking problem for k interleaved concurrent process
MCL,,., = (o, (Mi|...|My)) where ¢ € LTL is |~PSPACE-complete, and re-

asyn

mains |f»PSPACE-hard for ¢ € L(F).
Proof (sketch). We carry out a reduction from the PLANSAT} problem, that

satisfies the conditions of representative equivalence. The proof is similar to the
proof of the Theorem [3]

Summing up, we have shown that the model checking problem is inherently
PSPACE-hard and that any algorithm that attempts to reduce the complexity
by preprocessing either the model or the formula can only succeed in a limited
number of cases.

4 Conclusions

We have proved that model checking remains PSPACE-hard even if a polynomial-
size preprocessing step on either the model or the formula is allowed, if the for-
mula is an LTL one and the model is represented as a synchronous or interleaved
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asynchronous composition of transition systems. In other words, preprocessing
the model or the formula does not lead to a polynomial time algorithm for model
checking.

Both cases, when the model is preprocessed or the formula is, are relevant to
practical applications. The result about preprocessing of the formula applies to
those approaches to model checking that use automata theory, for instance in the
on-the-fly model checking [I0JI5], which represent and preprocess the formula in
its related automata. More generally, in formal verification it is often the case
that many properties (formulae) have to be verified over the same system (the
model, in this case modeled by the transition systems), in all of these cases it is
worth investigating whether the complexity of model checking can be reduced
by preprocessing the model.

The result about preprocessing the model applies to the tools that allow to
specify the model separately from checking the formula [SI25/16], as these tools
allow the reuse of the same model on different properties.
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Abstract. The aim of this paper is to introduce some methodological issues
about cognitive explanatory power of Al systems. We use the new concept of
mesoscopic functionalism which is based on links between computational
complexity theory and functionalism. This functionalism tries to introduce an
unique intermediate, mesoscopic, descriptive level based on the key role of
heuristics. The enforcement of constraints at this level can assure a cognitive
explanatory power which is not guaranteed from mere selection of modelling
technique. So we reconsider the discussions about empirical underdetermination
of Al systems, proposed especially for classical systems, and about the research
of the “right and unique” technique for cognitive modelling. This allows us to
consider the several mainstreams of cognitive artificial intelligence as different
attempts to resolve underdetermination and thus, in a way, we can unify them as
a manifestation of scientific pluralism.

Keywords: Cognitive Modelling, Mesoscopic Functionalism, Heuristics,
Empirical Underdetermination, Scientific Pluralism.

1 Introduction

Regarding computational modelling of human thought, philosopher Thagard states
([33] pg. 9,10): “The central hypothesis of cognitive science is that thought can be
understood in terms of computational procedures on mental representations. [...]
Although there is considerable dispute within cognitive science concerning what
kinds of procedures and representations are most important for understanding
mental phenomena, the computational/representational approach is common to
current work on how mind can be understood in terms of rules, concepts,
analogies, images, and neural networks”.

In fact, the complete spectrum of computational techniques developed within
artificial intelligence [30] field, is very wide including symbolic modelling, cognitive
architectures, connectionism, a-life and evolutionary robotics. Due to all this
diversification and to the absence of a grand theory [18][19] in social sciences for
cognitive modelling, we consider useful to recall briefly the comprehensive
conceptual framework of Cognitive Naturalism proposed by Thagard [33]. Then we
try to draw some common aspects between different modelling techniques, with
relation to the enforcement of cognitive plausibility to Al systems.
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2 Cognitive Naturalism and Heuristics

The Cognitive Naturalism is a computational conceptual framework for human mind
understanding. It is well-rooted on concepts related to computational complexity,
because it is based on the computational foundational formalization of the coherence
as a combinatorial problem. This problem is proved to be computationally intractable
and it is often efficiently faced with heuristics (see [34] for a comparison among
connectionist and other techniques).

According to the cognitive naturalism much of the human thinking is naturally
understood as heuristic-based solution to combinatorial problems, in domains as
diverse as social impression formation, scientific-theory, choice, discourse
comprehension, visual perception, and decision making (see [33] for a panorama and
related bibliography).

Moreover in psychology the heuristics were proposed to explain how people make
decisions, come to judgments and solve problems, typically when facing complex or
incomplete information problems (e.g. [9]).

In fact in real-world problems there are too many uncertainties and conflicts for
having any hope to obtain a best solution for an optimisation function which perhaps
could be indeterminate. The alternative approach to maximizing is satisficing, an
alternative to optimisation for cases in which one gives up the idea of obtaining the
best solution.

Satisficing is a concept due to Herbert Simon ([31], chap. 14, 15; see also [32])
who identifies the decision making process whereby one chooses an option that is,
while perhaps not the best, good enough. In this context of bounded rationality,
humans search for good enough solutions by using heuristics.

Heuristics work well under many circumstances, but in certain cases leads to
systematic cognitive poor performances. Tversky and Kahneman [35] are two key
figures in the discovery of human heuristics which lead to cognitive bias or irrational
behaviour (e.g. availability heuristic, clustering illusion, and others).

In particular, they originated the prospect theory [14] to explain irrational
economic behaviour, these researches climaxed with the Nobel’s prize at 2002.

Summarizing heuristic processes are able to explain both bounded rational and
poor rational behaviours, according to experimental evidence of human behaviour.

Moreover, heuristics are relevant to understand also unconscious processes, such as
perceptual categorization, in which many pieces of information are combined into a
coherent whole.

For example, various perceptual processes such as stereoscopic vision and
interpreting ambiguous figures are naturally interpreted in terms of combinatorial
optimisation and constraint satisfaction [17] [7]. Hence, the natural neural net of
visual cortex, with its complex topology, can be considered as a well-adapted
connectionist heuristic for the very hard combinatorial problems of visual
categorization.

In all these cases we can consider the heuristic internal realization of the cognitive
functionality as responsible for the macroscopic external behaviour.

Put crudely and according to cognitive naturalism, the world is full of extremely
large instances of intractable combinatorial problems, which are faced by heuristics
based computational systems as, let us assume, human beings.
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Therefore, the theory of computational complexity and the study of both natural
and computational heuristics become theoretical interleaved core concepts to thought
understanding.

3 Functional and Structural Models in Artificial Intelligence

The terms ‘functional’ and ‘structural’ refer to one of the fundamental debates in
artificial intelligence, and cognitive science, about the legitimate description level of
models. This conflict entangles the relationship between humans reasoning and Al
procedures. Various researchers have different positions on what one means by: they
are of the same type.

Functionalists propose a much looser definition of same type, based on identity of
the functional macroscopic properties of the intelligent behaviour, that is, their input-
output specifications. Functionalism was introduced in the philosophy of mind as a
position critical of reductionist materialism in the mind-body problem, by Putnam in
her seminal article Minds and machines [23]. Putnam argued that mental states could
be studied not by referring them directly to brain states, but on the basis of their
functional organization.

Other researchers looking for structural models, claim the not negligibility of how
these functions are carried out. This perspective takes care of the human-likeness, or
bio-psychological plausibility, of internal realization of a model as much as its
intelligent behaviour.

But a literally structural model produces an «asymptotic» [28] regress to
microscopic physical world until it reaches the paradox summarized in the well know
Wiener sentence [28] «The best material model of a cat is another, or preferably the
same, cat» and then, as matter of fact, the impossibility or the «futility» of building up
a model of something.

In similar way Pylyshyn asserted about cognitive modelling ([24] p. 49) that if we
do not formulate any restriction about model, we obtain the functionalism of Turing
machine and, if we apply all possible restrictions, we reproduce a whole human being.

Then the key point is the research of a relevant descriptive level and the
enforcement of constraints to this level to carry out a human like computation.

The explanatory level of functionalist models is the macroscopic one of stimulus-
response relationship, at the opposite there is the microscopic level of physical re-
production models according to a strong reductionist materialism. In the middle there
are a lot of possible structural models.

4 The Mesoscopic Functionalism

In the paper [8] we introduce a novel way of characterizing the problem of multiple
realizability in functionalism.

Thanks to computational complexity theory we relate the feasibility of the multiple
realizability of internal implementation (viz. its fungibility) of a function with its
computational tractability, and for intractable functions we propose the design of
heuristic as a key aspect to model behaviour of real systems.
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These considerations allow us to introduce the mesoscopic functionalism as a
functionalism for which internal implementation is generally not negligible but that
permits multiple realization only for the implementation of the heuristic. This kind of
functionalism overcomes underdetermination of traditional functionalistic models
and, at the same time, avoids a shift toward hyperdetermination. In fact it detects as a
relevant descriptive level the one of functional specifications of heuristics.

The word mesoscopic, borrowed from the statistical physics, is meant as the
intermediate level between the macroscopic one of the system behaviour and
microscopic one of its implementation.

4.1 Intractability and Functionalism

All computable functions, in principle, are defined by an effective input-output
relation, but intractable ones are de facto incomputable for almost all not trivial
inputs.

Roughly speaking, a problem is called intractable [22] if the time required to solve
problem instances grows at least exponentially, in the worst case, with the size of the
instances.

This class contains many combinatorial problems that we all would like to be able
to solve effectively, including the boolean satisfiability problem, the travelling
salesman problem, max-cut graph problem and Thagard’s foundational formalization
of coherence-based cognitive problems [34].

The modeller of systems facing to intractable problems should strive to find smart
way to bypass it. A computational inexpensive strategy must be pursued by means of
heuristic computations.

In combinatorial optimisation [4], a heuristic is a technique designed to solve a
problem that ignores whether the output can be proven to be correct, but which
usually produces a good result. It is intended to gain computational performance or
conceptual simplicity at the cost of accuracy or precision. The aim is to achieve a
good enough output rather than exact output but this is rewarded with a great
computational performance able to turn intractable problems into tractable ones.

The most known heuristic techniques are neural networks, Boltzman machines,
genetic algorithms, hill climbing, tabu search, simulated annealing, swarm computing,
ant colony optimisation, and others [27]. Many of these techniques are bio-inspired
and they are widely used or created within bio-inspired Al researches.

The output of heuristic based systems becomes dependent from specific selected
heuristic and also from its internal parameters. The concrete realized function is
different from the exact intractable function because the choice of heuristic influences
the carried output in addition to execution time (see figure 1).

So the heuristic between macroscopic functionality and microscopic
implementation is the real responsible of the arising input-output behaviour of
systems.

Due to this we can argue there is a coupling between functional (i.e. behavioural
specification) and procedural aspects (i.e. internal realization) of a system, this
implies a function-structure coupling for intractable functions.
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Fig. 1. Function-Structure Relationship

So intractable functions are not structure-independent entities: the internal
realization is the core of the function because it is absolutely not a fungible
interchangeable part of the computational system.

We observe that the multiple realizability for computationally intractable functions
is not realizable at all because if we choose an exact fungible algorithm, the function
becomes de facto incomputable and if we adopt a heuristic, the input-output
behaviour is not more unambiguously defined. The multiple realizability produces a
kind of “multiple behaviour” (more formally, we have a collection of heuristic
functions, everyone with univocal output) (see figure 1).

For a heuristically computed intractable function, the mesoscopic level of the
design of heuristic (that is a functional specification), is the essential aspect of the
system, because it is just the heuristic that defines unambiguously the input-output
relation.

Contrarily, for tractable functions input-output function specification is well posed
and the used specific algorithm is entirely negligible because its choice do not
influence input-output system behaviour.

So there is not a function-structure coupling for tractable functions. A system
designed to perform these tasks can be rightly modelled at functional macroscopic
level as black-box with well-known stimulus-response behaviour (see figure 1, on
top). Thus the intermediate, mesoscopic, level of solution techniques between
macroscopic functional specification and microscopic implementative details can be
neglected. In other words, the internal realization is a fungible interchangeable part of
the computational system hence we have the correctness of multiple-realizability and
we can consider tractable functions as structure-independent entities without
underdetermination.

4.2 The Mesoscopic Level of Functionalism

As we have shown above classical functionalism is well posed only for simple
tractable functions because they can be considered structure independent entities.
However, this type of tractable functions are not much interesting for the cognitive
modelling.
Thus for the intractable functions, which are of great cognitive interest, the
descriptive level for explaining and predicting the macroscopic behaviour is the
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mesoscopic level of the computational heuristic. In fact, in accordance with the
theoretical considerations of the computational complexity and the experimental
cognitive evidences with the human beings, it is not possible to predict the system
behaviour without considering the used specific heuristic.

So canonical functionalism neglecting the mesoscopic level of internal realization
is unsuitable for human mind modelling.

But wholly agreeing with Harnad ([10] p. 299) one of the main risks, for
overcoming underdetermination of simply functional models, is to push models up to
synthetic bio-chemical or physical recreation. This kind of models tend to realism as
much as possible, and so they can be hyperdeterminated because they consider
physical or functional features which could be irrelevant to the understanding of bio-
psychological phenomena, and this leads to a reduction of the explication power of
models.

So we can set descriptive level of models at the mesoscopic one, taking into
account subject-explicit heuristics as well as implicit unconscious heuristics.

In these mesoscopic models we are able to describe the heuristic in a functional
way, because the internal realization of the heuristic at the lower microscopic-
implementative level is absolutely irrelevant for the system behaviour.

Mesoscopic models can be considered functional and structural models at the same
time. They are functional models of computational heuristics because they neglect
theirs internal microscopic implementation and from a another viewpoint they are
structural models of macroscopic functionality because they resolve
underdetermination of macroscopic level (see figure 2).

We call this modelling approach mesoscopic functionalism because it shift down
underdetermination at the mesoscopic level allowing multiple realizability only at
microscopic level and because it resolves under-determination of macroscopic level
(i.e. stimulus-response one) fixing a heuristic.

Furthermore, the necessity of a mesoscopic descriptive level due to intractability
can be used [8] to support design-stance rather than intentional-stance proposed by
Dennett [6] as explanatory strategies to human behaviour. This also justifies, in our
view, Al practices as a kind of reverse engineering of bio-cognitive functionalities.

Functionalism Mesoscopic Functionalism
Descriptive Levels

Macroscopic Function
2 Artificial Primitives

« psychological heuristic
(e.g. mean-end analysis)
+ biological heuristic
(e.g. connectionism)
« bio-evolutive heuristic
(e.g. evolutionary algorithms + NN)
« physical heuristic
(e.g. Boltzmann Machines)

19PON

Mesoscopic Heuristic

Model

Multiple Realizability

Muyftiple Realixability

Microscopic

[ Impl. 1 ‘ ’ Impl. N l Impl. 1 ‘| Impl. N ‘

Fig. 2. Functionalism, Mesoscopic Functionalism and Artificial Primitives
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5 Artificial Intelligence and Mesoscopic Functionalism

We can roughly divide artificial intelligence (Al) researches in two main schools of
thought: Classical Al and Nouvelle Al.

Classical Al mostly involves the logical-symbolic techniques for the development
of intelligent systems. This is also known as symbolic Al, neat Al or Good Old-
Fashioned Artificial Intelligence (GOFAI) as it is called by Haugeland [11].

Two good examples of its successful fields are chess playing and theorem proving,
the task environments preferred by early Al. Some early well known results obtained
by this Al mainstream are production systems and notably expert systems. Nowadays,
within this mainstream there are cognitive architectures such as ACT [1], SOAR [13]
and theirs evolutions, which are systems based on symbolic-inferential techniques.

Nouvelle Al, also known as non-symbolic Al or ‘scruffy’ Al, is based on soft-
computing and bio-inspired techniques as, for instance, neural networks, evolutionary
computation and evolutionary robotics. Nouvelle Al applies biologically inspired
design methods, including connectionism and evolutionism, to achieve an arising
intelligent behaviour.

This bio-inspired computing, takes a bottom-up, decentralised approach, because
these techniques often involve the method of specifying a set of simple rules (e.g.
genetic operators or activation rule respectively for genetic algorithms or artificial
neural nets), a set of simple organisms or node which adhere to those rules, and a
method of iteratively applying those rules.

So nouvelle Al obtains an adaptive approach to intelligent behaviour and learning,
as opposed to the what could be described as fop-down 'creationist' method, used in
classical Al

5.1 Unifying Cognitive Artificial Intelligence

We think that both classical and nouvelle Al create models of cognitive functions at
mesoscopic level.

In fact, classical Al does not build pure functional models because the intractability
of combinatorial explosion in these systems is faced by heuristics.

As well within nouvelle AI the employed bio-plausible or only bio-inspired
techniques can be seen as heuristic algorithms for approximated solution of hard
intractable problems.

In classical Al (e.g. Information Processing Psychology (IPP) by Newell and
Simon [21]), cognitive interested researchers designed artificial systems to re-create
intermediate processes of human thinking beyond the pure stimulus-response
intelligent behaviour.

For instance, in classical Al one of the early systems, General Problem Solver
(GPS) [20], was designed from the beginning to recreate human problem-solving
protocols. The main method of this system embodies the psychological plausible
heuristic of means-ends analysis which is used, at the same time, to face
combinatorial explosion of candidate solutions and to assure a human-likeness
reasoning.
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In cognitive architectures (e.g. ACT or SOAR), which are models of human
reasoning based on production systems, the working memory of the system models
human short-term memory, and the productions are part of long-term memory.

The order in which these programs generate subgoals and possible actions is
similar to the bounded resources way (i.e. heuristic way) of humans approaching the
same problems. So this family of models can be easily considered as mesoscopic
models.

The nouvelle Al (e.g. Parallel Distributed Processing (PDP) [29]), following bio-
plausibility modelling techniques, has tacitly detected a mesoscopic descriptive level
(its models are often called structural models) which allow to reproduce the
functionalities of biological structures (the heuristics) and to neglect the physical and
chemical details.

Nouvelle Al reutilises the good heuristic solutions ‘adopted’ by nature to face
intractable combinatorial problems as, for instance, the connectionism of biological
neural nets or the evolutionary algorithms of natural selection.

Thus the mesoscopic functionalism, tacitly or consciously, has shared both from
top-down approach of classical Al and bottom-up approach of nouvelle Al: classical
Al facing the combinatorial explosion and nouvelle Al duplicating the nature.

According to this view, the prevalent attempt to lined up functional vs. structural
model with classical Al vs. nouvelle Al is without real foundations (see also [5], chap. 7).

The differences among various approaches or modelling techniques within Al
should be searched by means of some other subjects, including for example symbol
grounding and the embodiment problems.

6 Cognitive Plausibility of Models

Thus mainstreams of Al build mesoscopic functionalist models, and for cognitive
interested researchers, the core matter is not functional versus structural model
problem, but it is the setting of the right bio-psychological constraints, for the
mesoscopic level, to carry out a biological or psychological plausible computation.

Rethinking the concept of the “fine-grain correspondence” proposed by Pylyshyn
([25] p. 121), we propose that the explanatory abilities of mesoscopic models are
guaranteed by the functional equivalence between the heuristic internally used and the
heuristic realized by the natural systems (both psychological ones and biological
ones).

Then, according to Cordeschi ([5], chap. 7), the difference between mesoscopic
models of different Al mainstreams is due to the choice of distinctive artificial
primitives [16]: psychological, neurological or bio-evolutive (see figure 2, right). By
means of these different primitives the modeller builds the mesoscopic level of a
intelligent artificial systems, and at this level the researcher enforces the constraints so
that the models have some cognitive explanatory capability.

In fact, the choice of a given artificial primitive rather than another, does not
suffice for assuring a cognitive explication power at built model. One can build a
connectionist model that is irrelevant for cognitive science and a symbolic model that
is interesting for cognitive explanation, or vice versa.
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Hence, a computational cognitive model has to realize the particular considered
cognitive function through the same heuristic used by the human being.

In this perspective cognitive oriented Al, both classical and nouvelle, attempt to
recreates the “internal structure” of human mind functionalities: the classical Al
mainly from a psychological perspective and the nouvelle Al mainly from a
biological or bio-psychological one.

7 Underdetermination and Scientific Pluralism

Despite this methodological uniformity of building mesoscopic models, the classical
Al models are often reproved from nouvelle Al researchers as “in principle
underdetermined” ([36] p. 247) because they would allow multiple realizability of
cognitive function, and then they would be ill-posed for cognitive explanations.

Conversely, many structural models within nouvelle Al are often considered ipso
facto psychologically or biologically plausible, and not simply bio-inspired. (See [26]
about some PDP connectionist models which are biologically implausible).

This intellectual attitude is not justified by evidences nor by theoretical reasons
explained previously.

Moreover, the underdetermination of models is “epidemic to science” [12]. The
existence of several alternative methodologies or theories that support experimental
evidence, is common in all fields of science. Einstein had described this situation in
physics as an “embarrassment of riches”(Cited in [12]).

In epistemology underdetermination (also indeterminacy) is used to refer to the
dilemma of having several alternative theories, descriptive formalisms or models and
consequently explanations, that are not falsified by experimental tests.

The underdetermination of the resulting empirically adequate multiplicity of
scientific explanations and point of view is recognized by the pragmatist thesis as
scientific pluralism [15].

In the social sciences underdetermination is a common outcome and scientific
pluralism has been defended from both methodological and theoretical viewpoints [2]
[3].

Hence the multiple internal realization of a computational model or theory which
satisfies empirical data is a problem deeply rooted in whole scientific activity.

Cognitive researchers, exactly while attempting to resolve underdetermination of
computational models, develop a wide spectrum of viewpoints and modelling
techniques which we pose at a unifying mesoscopic level. (see figure 2, right).

In artificial intelligence, the concept of scientific pluralism leads to the observation
that several artificial primitives are equally legitimate and scientists can choose
among alternative mesoscopic models, including cognitive architectures, production
systems or other logical-symbolic models, as well as connectionist models, a-life
models or other bio-plausible.

Despite of this, most of debates within Al come from the attempt to legitimate a
specific technique or methodology as the unique right one to recreate and explain
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human behaviour and intelligence. While following Merton [18] [19] and his concept
of middle range theory, we should not try to explain the whole mind or to attempt to
justify a modelling technique as a total theoretical system able to cover all, or almost
all, aspects of mind (the grand theory); but we should concentrate to develop a
computational partial models of some skills of human mind (middle range theories)
using one of several techniques according to partial experimental data and available
increasing knowledge.

8 Concluding Remarks

We have argued that several methodologies and techniques for cognitive modelling
within artificial intelligence, lie in the same descriptive level and share the
methodological approach of mesoscopic functionalism. The mesoscopic level of
functional specification of heuristics is fixed by the necessity to deal with
intractability for both natural and artificial systems.

Thus, the contraposition between functional and structural models is not so useful
to cognitive modelling problem (and it should even be ill-posed from a hardly
theoretical viewpoint), because cognitive relevance of a Al systems may be assured
from constraint enforced to mesoscopic level. While different modelling techniques
are all potentially well-posed, because according to scientific pluralism, complex
mental phenomena require multiple, sometimes even incompatible, accounts
achievable with the wide spectrum of models developed in the short and fruitful life
of AL

We think this pluralistic attitude is a key factor to progress artificial intelligence
and cognitive science.

Acknowledgments. I wish to thank Prof. V. Cordeschi and Prof. G. Trautteur for the
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Abstract. This paper presents a new cognitive architecture for extract-
ing meaningful, high-level information from the environment, starting
from the raw data collected by a Wireless Sensor Network. The pro-
posed framework is capable of building rich internal representation of the
sensed environment by means of intelligent data processing and correla-
tion. Furthermore, our approach aims at integrating the connectionist,
data-driven model with the symbolic one, that uses a high-level knowl-
edge about the domain to drive the environment interpretation. To this
aim, the framework exploits the notion of conceptual spaces, adopting
a conceptual layer between the subsymbolic one, that processes sensory
data, and the symbolic one, that describes the environment by means of
a high level language; this intermediate layer plays the key role of anchor-
ing the upper layer symbols. In order to highlight the characteristics of
the proposed framework, we also describe a sample application, aiming
at monitoring a forest through a Wireless Sensor Network, in order to
timely detect the presence of fire.

1 Introduction

Wireless Sensor Networks (WSNs) are an emerging technology that allows per-
vasive environmental monitoring through measurement of characteristic quanti-
ties [1]. They can be thought of as “Google® for the physical world” [Z] in that,
while the primary purpose of a sensor node is data gathering, each of them also
has limited processing capabilities that may be exploited in order to carry on
preliminary operations on raw data. Despite the difficulty of collecting and man-
aging huge amounts of measurements, meaningful information can be extracted
by means of intelligent in-network processing and correlation of sensed data.
Although several interesting works present innovative applications where WSN
pervasiveness has a dramatic impact in accomplishing monitoring and control tasks
on well-defined scenarios, all these proposals are definitely application-specific [3],
[4]. Our approach, on the other hand, aims at providing a comprehensive frame-
work capable of general-purpose management of data streaming from the sensed
environment to the highest level of knowledge representation. In particular, this
paper proposes the adoption of a three-layer computational architecture, similar
to the one presented in [5] and [6], where the authors exploit the idea of concep-
tual spaces [7] and describe a cognitive system for the interpretation of static and
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dynamic scenes, starting from data obtained from video cameras. In order to gen-
eralize to more challenging scenarios, we devise an analogous architecture that em-
ploys WSNs as the sensing layer of an intelligent system. We describe the design
of a flexible framework capable of collecting raw data through networked sensors,
and of operating reductions and aggregations on them; processed data are then
represented as vectors in ad-hoc geometric spaces (i.e., conceptual spaces), where
the notion of similarity can be modeled in a natural way using opportune met-
rics. Meaningful concepts will finally be extracted and used for further higher-level
inferences.

The remainder of the paper is organized as follows. Section [ gives useful
insights about the theory behind conceptual spaces, and about a few relevant
data analysis and knowledge representation techniques. In Section[3we introduce
the cognitive architecture, we discuss the functionalities of each layer and detail
our implementation choices. Section M illustrates how the architecture may be
exploited in a sample scenario for wildfire monitoring. Finally, we draw our
conclusions and outline some future developments in Section [l

2 Technical Background

Cognitive science aims at understanding how information is represented and pro-
cessed in different kinds of agents, biological as well as artificial. Finding the most
appropriate way of modeling the information is a challenging issue and currently
two approaches are dominating: the symbolic approach starts from the assump-
tion that cognitive systems can be modeled as Turing machines, whereas the
connectionist approach models such systems through artificial neuron networks.
According to Gérdenfors [7], neither approach can model complex aspects of
cognitive phenomena in all situations; therefore, the author introduces a third
form of representing information (conceptual representation), based on the ex-
ploitation of geometric structures. A conceptual space consists of a number of
quality dimensions that can be generated by perceptual mechanisms, or can
present a more abstract, non-sensory character. Examples of quality dimensions
are colour, pitch, temperature, weight, and the three ordinary spatial dimen-
sions. It is assumed that each of the quality dimensions is endowed with a certain
topological or metric structure, so it is conceivable to define the similarity of two
objects through the distance between their representing points in the space.
Conceptual spaces can serve as tools for categorization and concept forma-
tion, providing a natural way of representing similarities, which is typically very
difficult to handle at the symbolic layer. In this model a categorization generates
a partitioning of the conceptual space and Géardenfors defines natural concepts
as convex regions. However the fundamental issue concerns how to identify those
regions in the space and, as those regions are supposed to group similar objects
in the conceptual space together, a possible solution requires using a clustering
technique. The arising of meaningful clusters is obviously closely related to the
choice of an opportune metric for the space; moreover, once this crucial step is
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performed, the clusters that have been identified need to be analyzed in order
to assess their validity with respect to their subsequent use in the knowledge
representation system; to this aim it may be useful to identify representative
objects for each cluster.

The interface of the proposed architecture with the real world is represented by
the Wireless Sensor Network infrastructure, which accounts for the lowest layer
of the whole complex cognitive system. Data manipulation may have significant
impact on the efficiency of the overall architecture and, as will be detailed later,
WSNs play an important role at this stage; a typical approach to lessening
the burden of superfluous communication and processing in such context is to
resort to data aggregation. A possible approach consists in reducing the overall
amount of transmitted data by exploiting some spacial correlation; data may
be merged as they traverse the network so that only the information that is
actually needed is in fact transmitted. A somewhat similar approach relies on
the observation that environmental phenomena are quite predictable, so they
will likely present some temporal correlation that may be exploited if nodes
try to establish collaborative relationships with each other. This leads to the
formation of cluster of sensor nodes that delegate to a representative node the
task of building a predictive model out of previous measurements [§].

In [9], several methods for feature extraction and dimensional reduction are
surveyed. The author differentiates them into projective methods, and manifold
modeling methods. The former class comprises those techniques that attempt to
find low dimensional projections that extract useful information from the data
and includes the projection pursuit method [I0], and the well-known Principal
Component Analysis (PCA) and its variants [I1I] among others, whereas the
latter class contains those methods that model the manifold on which the data
lies, such as multi-dimensional scaling (MDS) [12], graphical methods (Lapla-
cian eigenmaps, spectral clustering) [I3I14], and so on. Amongst projective tech-
niques, great attention has been gathered by the so-called kernel methods, such
as kernel PCA and, more importantly, by Support Vector Machines (SVMs) [15],
which have been successfully applied to several research fields, such as text recog-
nition, isolated handwritten digit recognition, and face detection.

Knowledge representation is a crucial aspect of Al and its main goal regards
the expression of knowledge in computer-tractable form, such that it can be used
to help intelligent agents in their activities. Knowledge engineering is the process
of building a knowledge base in order to understand the considered domain and
to represent the significant objects and relationships. The ability of a knowledge
engineer resides in her capacity to represent very general concepts by means
of a vocabulary, known as an ontology. Each of the approaches presented in
literature offers a specific vision of some part of the world; moreover, ontologies
can be formulated in a wide variety of languages and notations (e.g., logic, LISP,
etc.); the essential information is not the form of the language, but the content,
namely the set of ontological structures provided as a way of thinking about the
world.
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3 The Proposed Architecture

This paper describes a multi-layer architecture for in-depth reasoning on large
amount of data gathered by a Wireless Sensor Network. Our architecture is com-
posed of three layers, as schematically represented in Figure [I} the subsymbolic
layer, where information is still deeply embedded into raw data; the conceptual
layer, where basic quantities are represented in geometric form as points in a vec-
tor space, and finally the symbolic layer, where information is eventually coded
as high-level symbols on which logical inferences may be carried on.

3.1 Subsymbolic Layer

The subsymbolic layer exploits the computational capabilities of sensor nodes
in order to implement data correlation techniques. Sensors capture raw, unpro-
cessed data, so it is crucial to extract hidden correlations in order to capture the
occurrence of unusual phenomena. Moreover, for the sake of our architectural
scheme, the subsymbolic layer also needs to deal with adapting the dimension-
ality of the original data space to the requirements of the upper layer.

In [7], the notion of dimension is closely related to the measure of a dis-
tance, assuming that geometric proximity corresponds to the abstract notion of
similarity. Identifying meaningful dimensions (named quality dimensions) in the
subsymbolic space is both the primary goal and the challenging issue when relat-
ing raw data to concepts. They represent various “qualities” of real objects and
affect the way in which an opportune distance metric may be interpreted as a
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natural way of expressing similarity. Our architecture assumes that sensor nodes
collaborate with each other in order to exploit temporal correlation in sensed
data and to build synthetical models. Following the original ideas of [8], neigh-
boring sensor nodes help reduce data redundancy by entering into collaborative
relationships and taking turns in transmitting. At any point in time, the node
that is actively transmitting also acts as a representative for its collaborators,
answering queries and participating in monitoring operation on their behalf. It
shares a model with each of the nodes in its group, based on their past behavior,
and exchanges information with them in order to make sure that its response on
their behalf meets some accuracy constraints; in the ideal case very little data
needs to be exchanged without any information loss.

3.2 Conceptual Layer

Environmental data gathered by the WSN are collected at a sink node, where
they may be further processed and then mapped at the conceptual layer, in order
to build a description of the sensed environment, in terms of a combination of
geometric dimensions. The primary function of the geometric dimensions is to
represent the significant “qualities” of perceived objects; they correspond to the
different ways in which stimuli are judged to be similar or different and, there-
fore, they must be endowed with certain geometrical structures and topological
metrics.

Following the definition of [5], we call knozel a generic point in a concep-
tual space, representing main epistemological primitives. Formally, a knoxel is
a vector whose components correspond to parameters associated with quality
dimensions of the domain of interest. Unfortunately, the precise characterization
of conceptual spaces poses severe difficulties, since finding dimensions and asso-
ciated metrics is a complex and highly domain-specific task. It is clear that there
is no identification technique that works well in every possible case, and that it
is necessary to adopt methods carefully designed for the specific cognitive task.
In particular, the structures of the dimensions should be as simple as possible,
and tightly connected to the measurement methods that have been employed to
determine the values of the dimensions in experimental situations.

Amongst the different available clustering techniques suitable for separating
convex regions in the given space, we have chosen to use Support Vector Ma-
chines that, thanks to their general-purpose approach and their customizability
with respect to the concepts of geometric space and metric, are promising for
our specific purposes. They rely on the structural risk minimization principle
in order to separate m classes through the best hyperplane. Although one of
their drawbacks is their slowness during the training phase, this is not a serious
limitation in our case, since we may as well rely on a single training phase to
be performed at the beginning. However, if we wanted to add further knowl-
edge at a later stage (as could happen, for instance, if we wanted to provide
some feedback from the symbolic layer), we could resort to using a modified
incremental version of SVMs [16] that allows for dynamic modifications of the
model.
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3.3 Symbolic Layer

At the symbolic layer our system must provide a concise description of the per-
ceived environment in terms of a high-level logical language, capable of symbolic
knowledge-based reasoning.

This layer aims to describing the relationships needed to infer complex events
starting from “phenomena” extracted from the conceptual layer and, to this end,
a description of the application domain ontology is needed. As in [5], the symbolic
knowledge base description can be carried out by means of a hybrid representa-
tion formalism, in the sense of Nebel [I7]. Such a hybrid formalism is constituted
by two different components: a terminological module and an assertional module;
the former contains the descriptions of the concepts relevant for the represented
domain (e.g., types of objects and of relationships to be perceived), whereas the
latter stores the assertions describing the particular perceived environment.

This distinction into two components is mirrored here by the use of two differ-
ent formalisms. In particular, we adopt a KL-ONE-like notation [I§] for repre-
senting the structured knowledge in the form of concept definitions, subsumption
relationships, and roles. Furthermore, in order to enable the system to reason
about instances of the defined terms, we represent them as one- and two-place
predicate symbols, relying on a standard first-order logic.

4 Wildfire Detection: A Case Study

This Section describes a sample application of the proposed framework, aiming
at monitoring a forest through a Wireless Sensor Network, in order to timely
detect the presence of fire.

Fire is generated by a chemical reaction involving rapid oxidation or burning
of a combustible material, and requires sufficient amounts of fuel and oxygen to
be present in the proper conditions and proportions. One of the most important
aspects in wildfire detection and prevention is fire behavior analysis; according

o [19], this may be defined as “the manner in which fuel ignites, flame devel-
ops, and fire spreads and exhibits other related phenomena as determined by
the interaction of fuel, weather, and topography.” Fire behavior is heavily in-
fluenced by such factors as the fuel type, weather conditions (air temperature
and humidity, wind speed and direction), and topography of the fire location;
the products of burning include the gases carbon monoxide, carbon dioxide, and
water vapour.

In the scenario considered here, the area to be monitored is covered with low-
cost, resource-constrained wireless sensor nodes, deployed at known locations and
at varying heights, and sufficiently close to each other so as to form a connected
network. Similarly to other projects aiming at using Wireless Sensor Networks
for fire prevention, such as FIRE [20] and Firebug [21], our system employs
commonly available nodes equipped with sensors for monitoring environmental
conditions such as wind speed and direction, air temperature, relative humidity,
and barometric pressure, as well as more specific sensors such as detectors for
carbon monoxide, carbon dioxide, water vapor, smoke, and flames.
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For the purpose of the required monitoring actions, large amounts of data
will need to be collected and processed, in order to extract meaningful informa-
tion about the state of the environment; the information deduced by means of
this higher-level analysis will then be used to promptly alert in case of likely
dangerous conditions. Energy resources will be limited and non-renewable in
the nodes, nevertheless they will still be able to perform selected computations
on data. We adopt a model-based technique, in order to exploit correlation in
the data through a distributed node grouping protocol [8]. This is motivated
by the fact that in a typical sensor network monitoring task, the readings of
sensor nodes show high temporal and spatial correlation; for instance, in the
scenario considered here, environmental conditions will likely not be subject to
significant changes over time, unless some disruptive event occurs. We are not
interested in constant monitoring of weather conditions, but rather in capturing
unusual phenomena that might be interpreted as fire alarms or, in other words,
outliers with respect to the given prediction model. Nodes may thus organize
themselves into clusters ruled by a collaboration relationship. A cluster head
acts as a representative for the whole group, by building a model for predicting
its collaborators’ behavior; it will then transmit only those readings that differ
from the predicted ones by more than a certain pre-specified error threshold;
moreover, when no transmissions are received from the collaborating nodes, the
monitoring entity uses the sensors’ prediction models to infer their readings.
Periodically, the cluster head will receive updated prediction models from its
collaborators. Moreover, in order to provide resilience to natural variations in
data, for instance as a consequence of different weather conditions depending on
seasonal changes, we have modified the original collaboration protocol so that
models are periodically updated to incorporate useful statistics, for instance
about seasonal and daily trends of temperature, barometric pressure, and so on.

Sensor readings are used to characterize the conceptual spaces used in our
system. When applying our architecture to the present scenario, we identify two
conceptual spaces related to topology and environmental measurements respec-
tively.

The dimensions of the former space correspond to the three spatial compo-
nents of the known location of the sensor nodes, whereas for defining the latter
space we interpret the different types of sensor readings as quality measures,
thus individuating the following quality dimensions:

— variation of temperature with respect to the expected value;

— variation of toxic gases (e.g. carbon monoxide, carbon dioxide, nitrogen ox-
ide) concentrations with respect to the expected values;

— water vapor concentration;

— barometric pressure;

— UV and IR spectra.

Similarity among knoxels is expressed in terms of two metric functions defined
in the topological and environmental space, respectively. A perception cluster
pc = {ki, ks, ..., Kk} may thus be defined as a finite set of knoxels in one of the
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conceptual spaces and such clusters may be identified through automated tech-
niques, applying the similarity measure mentioned above. In particular, we have
chosen to use Support Vector Machines (SVMs), thanks to their general-purpose
approach and their customizability with respect to the concepts of geometric
space and metric. By applying them to the above mentioned conceptual spaces,
we are able to isolate specific regions, i.e basic concepts in our formulation.
Such concepts may individuate, for instance, a “smoke cloud”, an “incomplete
combustion area”, an “overheated area”, a “flaming area”, and so on. Figure
shows a simplified case, where an initial clustering of the conceptual spaces by
means of the SVMs has identified several convex regions, including for instance:

incomplete combustion area: a region identified by low water vapor concen-
tration, low carbon monoxide and dioxide, and presence of nitrogen oxide;

top flaming area: aregion identified by having ultraviolet and infrared spectra
occupying specific ranges, and located at a certain height from the ground.

A projection technique, combined with the use of a SVM in the resulting pro-
jection space, is then used to extract relationships among those concepts. For
instance, assuming that a smoldering fire was in fact present in the monitored
area, we can compute the projection of the knoxels in the “overheated area”,
“smoke cloud”, and “incomplete combustion area” regions onto the spatial di-
mensions, and cluster the resulting space. Provided that the original knoxels
regarded phenomena occurring in the same topological area, the process would
identify a region representing a set of relationships involving the above men-
tioned concepts. The same process would identify other analogous relationships
that would then be mapped onto symbolic structures as will be detailed in the
following.

A knowledge representation system is adopted at the upper layer, with the
final goal to infer higher-level events and to correctly classify them. As already
discussed in the previous Section, we adopt a logically oriented formalism that
is constituted by two different components: a terminological component, build-
ing domain descriptions, and an assertional component, storing facts concerning
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a specific context. In particular, the descriptional task aims at forming an ex-
tensible repertoire of terms: a domain-specific vocabulary defining concepts on
the basis of their taxonomical structure and their potential relationships (i.e.,
properties, parts, etc.). In our case study, we consider a simplified taxonomy of
wildfires, and specify their necessary conditions in terms of the basic concepts
that can be identified as regions on the conceptual spaces described above. The
different kinds of wildfire can be informally defined as follows:

smoldering: a single-spot fire burning without flame, generating moderate
heat, and emitting toxic gases (e.g., carbon monoxide) at a higher yield
than flaming fires;

creeping: a flaming fire with low flame;

running: a flaming fire with high flame and with a well-defined front;

spotting: a flaming fire producing firebrands that fall beyond the main fire
perimeter and result in spot fires;

torching: a flaming fire with high flame involving the foliage of a single tree
(or a small clump of trees);

crowning: a flaming fire ascending into the crowns of trees and spreading from
crown to crown.

Figure[3 depicts the subsumption relationships between these concepts, while
Figure[d presents another taxonomy fragment, dealing with some topological con-
cepts (we adopt a network notation similar to that of Brachman and Schmolze
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[18]). The complete formalization captures the relationships that character-
ize the wildfire taxonomy concepts in terms of the basic concepts singled out
from measured data mapped into conceptual spaces. For example, Figure
represents a fragment of our terminological knowledge base, showing that a
WILDFIRE is a THING that emits any number of SMOKE CLOUDs, contains at least
one COMBUSTION AREA, is delimited by at least one OVERHEATED AREA, and covers
any number of FLAMING AREAs. It also shows that SMOLDERING COMBUSTION rep-
resents a a single-spot WILDFIRE, without any FLAMING AREA, and containing one
INCOMPLETE COMBUSTION AREA. In a similar fashion, Figure[flshows that a TREE-TOP
FIRE is a WILDFIRE with flames (a FLAMING COMBUSTION), that emits at least one
SMOKE CLOUD, and covers at least one flame area that satisfies the constraint of
being a TOP FLAMING AREA.

The assertional component, on the other hand, maintains the linguistic in-
formation concerning specific perceived contexts. In our sample case study, we
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represent the concepts of the terminological components as one-argument pred-
icates, and the roles (e.g., Emits, Contains, and so on) as two-arguments rela-
tionships. For example, in order to assert the existence of an instance SC#1 of
the SMOLDERING COMBUSTION concept, the formula: SmolderingCombustion(SC#1)
is added to the assertional knowledge base. To express that the filler of the role
Contains for SC#1 is an instance ICA#1 (i.e., a specific knoxel) of the INCOMPLETE
COMBUSTION AREA concept, the formula Contains(SC#1, ICA#1) is asserted.

5 Conclusion and Ongoing Work

In order to address the difficulty of gathering, managing, and understanding the
huge amounts of data collected by WSNs, we proposed a novel architecture ca-
pable of understanding the sensed environment. Our proposal exploits the idea
of representing knowledge through geometric structures which integrate the con-
nectionist data-driven approach with the symbolic one. A cognitive architecture
has been designed, detailing the computational aspects and the implementation
choices. The architecture has been illustrated with reference to an experimental
setup for wildfire detection.

The current implementation supports environment monitoring, basic event
detection, and higher-level classifications. As part of the ongoing work, we are
currently designing the logical reasoner capable of performing management tasks
on the sensed environment. Furthermore, we plan to develop a distributed, grid-
based implementation of the inference engine in order to improve the speedup
of the overall system.
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Abstract. We present FREEP 1.0, a theorem prover for the KLLM pref-
erential logic P of nonmonotonic reasoning. FREEP 1.0 is a SICStus Pro-
log implementation of a free-variables, labelled tableau calculus for P,
obtained by introducing suitable modalities to interpret conditional as-
sertions. The performances of FREEP 1.0 are promising. FREEP 1.0 can
be downloaded at http:// www.di.unito.it/ ~pozzato/FREEP 1.0.

1 Introduction

The work of Kraus, Lehmann and Magidor (KLM) in the early 90s [I] is a mile-
stone in the area of nonmonotonic reasoning. The postulates outlined by KLM
have been widely accepted as the “conservative core” of nonmonotonic reason-
ing: they correspond to properties that any concrete reasoning mechanism should
satisfy. Many different approaches to nonmonotonic reasoning are characterized
by the properties of two of the KLM logics, namely preferential logic P and
rational logic R [2].

According to the KLM framework, a defeasible knowledge base is represented
by a (finite) set of nonmonotonic conditionals of the form A ~ B, whose reading
is normally (or typically) the A’s are B’s. The operator “i” is nonmonotonic, in
that A |~ B does not imply A A C |~ B. For instance, a knowledge base K may
contain sumo wrestler ~ fat, sumo wrestler |~ sumo lover, sumo lover ~ —fat,
whose meaning is that sumo wrestlers are typically fat, sumo wrestlers typically
love sumo, but people loving sumo typically are not fat. If |~ were interpreted
as classical implication, one would get sumo wrestler ~ 1, i.e. typically there
are not sumo wrestlers, thereby obtaining a trivial knowledge base. One can
derive new conditional assertions from the knowledge base by means of a set of
inference rules, without incurring the trivializing conclusions of classical logic.
In KLM framework, the set of inference rules defines some fundamental types
of inference systems, namely, from the strongest to the weakest: Rational (R),
Preferential (P), Loop-Cumulative (CL), and Cumulative (C) logic.

R. Basili and M.T. Pazienza (Eds.): AT¥IA 2007, LNAI 4733, pp. 84[96] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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In this paper we focus on Preferential logic P. Concerning the above exam-
ple, in preferential logic P one can infer sumo lover A sumo wrestler |~ fat, giving
preference to more specific information, and that sumo lover ~ —sumo wrestler.
From a semantic point of view, the models of preferential logic P are possible-
world structures equipped with a preference relation < among worlds. The mean-
ing of a conditional assertion A |~ B is that B holds in the most preferred worlds
where A holds.

In [3] an analytic tableau calculus for propositional P is introduced. The basic
idea there is to interpret the preference relation < as an accessibility relation: a
conditional A |~ B holds in a model if B is true in all worlds satisfying A that
are minimal wrt <. The calculus provides a sort of run-time translation of P into
Godel-Lob modal logic of provability G. The relation with G is motivated by the
fact that we assume, following KLLM, the so-called smoothness condition, which is
related to the well-known limit assumption. This condition ensures that minimal
A-worlds exist whenever there are A-worlds, by preventing infinitely descending
chains of worlds. This condition is therefore ensured by the finite-chain condi-
tion on the accessibility relation (as in modal logic G). The resulting calculus,
called TP7T, is a non-labelled, sound, complete and terminating proof method
for the logic P. In [4] a SICStus Prolog implementation of 7P7T is presented.
The program, called KLMLean 2.0, is inspired to the “lean” methodology, and,
as far as we know, it is the first theorem prover for the preferential logic P.

We extend our work on efficient theorem proving for KLM logics by intro-
ducing FREEP 1.0, a theorem prover for preferential logic P that implements
a free-variable tableau calculus for this logic. Free-variable tableaux are a well-
known and well-established technique for first order theorem proving [5], whose
basic idea is to adopt free-variables as a meta-linguistic device for representing
all labels/worlds that can be used in a proof search. To reduce the search space,
the instantiation of these free-variables is postponed until more information is
available (for instance to close a branch). Recently, Beckert and Goré have pre-
sented the theoretical foundations to extend the free-variable tableaux technique
to all 15 basic propositional modal logics [6].

In our paper, we first introduce a labelled tableau calculus for the preferential
logic P, based on the same translation into G adopted by 7PT. This calculus,
called LABP, can be straightforwardly derived from the labelled calculus 7R™
for the rational logic R introduced in [7]. We then show that LABP can be
easily turned into a terminating calculus. Last, we present FREEP 1.0, an im-
plementation of a free-variables version of LABP in SICStus Prolog. This last
point is the main contribution of the paper.

2 KLM Preferential Logic P

In this section we briefly recall the axiomatization and semantics of the prefer-
ential logic P. For a complete description of KLM systems, see [1] and [8]. The
language £ we consider is defined from a set of propositional variables ATM,
the boolean connectives and the conditional operator ~. We use A, B, C, ... to
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denote propositional formulas, whereas F, G, ... are used to denote all formulas
(even conditionals). The formulas of £ are defined as follows: if A is a propo-
sitional formula, A € L; if A and B are propositional formulas, A ~ B € L;
if F'is a boolean combination of formulas of £, F' € L. £ corresponds to the
fragment of the language of conditional logics without nested occurrences of the
conditional operator |~.

The axiomatization of P consists of all axioms and rules of propositional
calculus together with the following axioms and rules (Fpc denotes provability
in the propositional calculus, whereas - denotes provability in P):

REF. A ~ A (reflexivity)

LLE. If Fpc A < B, then F (A ~ C) — (B |~ C) (left logical equivalence)
RW. If Fpc A — B, then - (C ~ A) — (C |~ B) (right weakening)

AND. (A~B)A(ARC))—= (A~BACQC)

CM. ((ArB)A (AR C)) — (AN B |~ C) (cautious monotonicity)

OR. (ARC)AN(BRC)) — (AVBKC)

The semantics of P is defined by considering possible world structures with a
preference relation (a strict partial order) w < w’ whose meaning is that w is
preferred to w’. We have that A |~ B holds in a model M if B holds in all
minimal A-worlds (w.r.t. <). This definition makes sense provided minimal A-
worlds exist (whenever there are A-worlds). This is ensured by the smoothness
condition in the next definition.

Definition 1 (Semantics of P, Definition 16 in [1]). A preferential model
is a triple M = (W, <, V) where: W is a non-empty set of items called worlds;
< is an irreflezive and transitive relation on W; V is a function V. : W ——
pow(ATM), which assigns to every world w the set of atoms holding in that
world. We define the truth conditions for a formula F as follows: (i) if F is a
boolean combination of formulas, M,w |= F is defined as for propositional logic;
(i1) let A be a propositional formula; we define Min.(A) ={weW | M,w = A
and Yw', w' < w implies M,w' = A}; (i) M,w = A B if for allw' € W, if
w' € Min<(A) then M,w" |E B.

The relation < satisfies the following smoothness condition: if M, w E A
then w € Min<(A) or 3w’ € Min<(A) such that w' < w.

We say that a formula F' is valid in a model M (M = F), if M,w = F for
every w € W. A formula is valid if it is valid in every model M.

3 A Labelled Tableau Calculus for Preferential Logic P

In this section we present a labelled tableau calculus for preferential logic P.
This calculus, called LABP from LABelled P, follows the same intuition as
the calculus 7PT introduced in [3], i.e. to interpret the preference relation as an
accessibility relation, thus implementing a sort of run-time translation into modal
logic G. LABP is straightforwardly derived from the labelled calculus 7R™T for
rational logic R [7], by removing rule (<), corresponding to modularity that
differentiates P from R.



A Free-Variable Tableaux for KLM Preferential Logic P 87

. I'z:——F B I'yu:—(ARr B) 2 new
(AX) 'z : Pyx: ~P with P e ATM (ﬁ)ﬁ (~7) F.w:A,x:DﬁAtz:ﬁBlabel
I'u:A~B .
(~") z oceurs in I"
I'u:Ap Byz:-A I'u:Apr B,z:-0-A I'u:An~B,x:B
I'ioz:-0-A : i
@) : gy Ia:FAG ") Iz —(FAG)
F,y<;v,y:A,y:DﬁA,F_3L,y abe I'z:Fz:G I'z:-F I'z:-G

Fig. 1. The calculus LABP. To save space, rules for — and V are omitted.

The calculus LABP makes use of labels to represent possible worlds. We con-
sider a language Lp and a denumerable alphabet of labels A, whose elements
are denoted by z, ¥, z, .... Lp extends £ by formulas of the form [JA, where A
is propositional, whose intuitive meaning is as follows: [JA holds in a world w if
A holds in all the worlds w’ such that w’ < w, that is to say M, w = OA if, for
every w' € W, if w < w then M, w’ = A. It can be observed that [J has (among
others) the properties of the modal system G, whose characterizing axiom is
O(0A — A) — OA. This axiom guarantees that the accessibility relation (de-
fined as xRy if y < x) is transitive and does not have infinite ascending chains.
From definition of Min.(A) in Definition [ it follows that, for any formula A,
w € Minc(A) if M,w = AADO-A. As we will see, LABP only makes use of
boxed formulas with a negated argument, i.e. formulas of the form z : - A.

Our tableau calculus comprises two kinds of labelled formulas: (i) world for-
mulas x : F', whose meaning is that F' holds in the possible world represented
by x; (it) relation formulas of the form = < y, where x,y € A, used to represent
the relation <.

We define I, = {y: =A,y : O-A | 2 : O-A € I'}. The calculus LABP is
presented in Figure[ll We call dynamic the rules (") and (07) that introduce
new labels in their conclusion; all the other rules are called static. Notice that
there is not a rule for positive boxed formulas, as the propagation of these

formulas is performed by the set Fgﬁ\ﬂy, when a new world is created by (7).

Definition 2 (Truth conditions of formulas of LABP). Given a model
M = (W, <, V) and a label alphabet A, we consider a mapping I : A — W.
Given a formula o of the calculus LABP, we define M =1 « as follows: M =y
z: Fiff MyI(z) E F; M =z <y iff I(x) < I(y). We say that o set I’
of formulas of LABP is satisfiable if there exist M and I s.t., for all formulas
a € I', we have that M =1 a.

A tableau is a tree whose nodes are sets of labelled formulas I'. Therefore, a
branch is a sequence of sets of labelled formulas I, I5,...,I,,... Each node
I’; is obtained by its immediate predecessor I;_; by applying a rule of LABP,
having I;_1 as the premise and I; as one of its conclusions. A branch is closed
if one of its nodes is an instance of (AX), otherwise it is open. We say that a
tableau is closed if all its branches are closed. In order to verify that a set of
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formulas I" is unsatisfiable, we label all the formulas in I" with a new label z,
and verify that the resulting set of labelled formulas has a closed tableau.

The calculus LABP is sound and complete wrt the semantics. To save space,
we omit the proofs, which are very similar to the ones for 7RT in [7].

Theorem 1 (Soundness and Completeness of LABP). Given a set of for-
mulas I', it is unsatisfiable if and only if there is a closed tableau in LABP
starting with I

Let us now refine the calculus LABP in order to ensure termination. In gen-
eral, non-termination in labelled tableau calculi can be caused by two different
reasons: 1. dynamic rules can generate infinitely-many worlds, thus creating in-
finite branches; 2. some rules copy their principal formula in their conclusion(s),
therefore they can be reapplied over the same formula without any control.

As far as LABP is concerned, we can show that the first source of non termi-
nation (point 1) cannot occur. Indeed, similarly to 7RT, we have that the only
rules that can introduce new labels in the tableau are (~~) and (O7). It can be
proven that there can be only finitely many applications of these rules in a proof
search. Intuitively, the rule (~~) can be applied only once for each negated con-
ditional occurring in the initial set I" (hence it introduces only a finite number
of labels). Furthermore, the generation of infinite branches due to the interplay
between rules (~7) and (O7) cannot occur. Indeed, each application of ((17)
to a formula z : =(0-A (introduced by (7)) adds the formula y : (J-A to the
conclusion, so that (1) can no longer consistently introduce y : =[(J-A. This is
due to the properties of [J, that are similar to the properties of the corresponding
modality of modal system G.

Concerning point 2, the calculus LABP does not ensure a terminating proof
search due to the (~T) rule, which can be applied without any control. It is
easy to observe that it is useless to apply the rule on the same conditional
formula more than once by using the same label x. Indeed, all formulas in the
premise of (~T) are kept in the conclusions, then we can assume, without loss of
generality, that two applications of (~) on z are consecutive. We observe that
the second application is useless, since each of the conclusions has already been
obtained after the first application, and can be removed. We prevent redundant
applications of (~T) by keeping track of labels in which a conditional u : A ~ B
has already been applied in the current branch. To this purpose, we add to each
positive conditional a list L of used labels; we restrict the application of (~7)
only to labels not occurring in the corresponding list. The resulting terminating
calculus LABP is obtained by replacing rule (~7) in Figure [1l with the one
presented in Figure 2l The proof of termination is similar to the one in [7]
(Theorem 6).

4 Design of FreeP 1.0

Here we describe FREEP 1.0, an implementation of a free-variable extension of
LABP calculus in SICStus Prolog. For expository reasons, we proceed in two
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Fig. 2. The rule (") in the terminating tableau calculus LABP

steps. First, in section ] we present a simple implementation of LABP that
does not use free-variables, yet. Second, in section 2] we refine it by introducing
free-variables in order to increase its performances. Intuitively, this refinement
consists in the fact that the (~T) rule introduces a free-variable in all its con-
clusions, rather than immediately choosing the label to use. The free-variables
will then be instantiated to close a branch with an axiom, thus the choice of the
label is postponed as much as possible.

4.1 A Simple Implementation of LABP (Without Free-Variables)

The Prolog program consists of a set of clauses, each representing a tableau rule
or axiom; the proof search is provided for free by the mere depth-first search
mechanism of Prolog, without any additional ad hoc mechanism. We represent
each node of a proof tree (i.e. set of formulas) by a Prolog list. A world formula
x : A is represented by a pair [x,al, whereas a relation formula z < y is
represented by a triple [x,<,y]. The tableau calculus is implemented by the
predicate prove(Gamma,Cond,Labels,Tree), which succeeds if and only if the
set of formulas I', represented by the list Gamma, is unsatisfiable. Cond is a list
representing the set of used conditionals, and it is needed in order to control
the application of the rule (j~T), as described in the previous section. More in
detail, the elements of Cond are pairs of the form [A=>B,Used], where Used is a
Prolog list containing all the labels that have already been used to apply (~7)
on z : A |~ B in the current branch. As we will discuss later in this section,
this allows to apply this rule in a controlled way, ensuring termination of the
proof search. Labels is the list of labels introduced in the current branch. When
prove succeeds, Tree contains a representation of a closed tableau. For instance,
to prove that A  BAC,—(A |~ C) is unsatisfiable in P, one queries FREEP 1.0
with the goal prove ([[x,a => (b and c)], [x,neg (a => c)11,[ 1, [x],
Tree) . The string “=>" is used to represent the conditional operator |, “and” is
used to denote A, and so on. Each clause of prove implements one axiom or rule
of the tableau calculus; for example, the clause implementing (~7) is as follows:

prove (Gamma,Cond,Labels,tree(...)) : -
select([X,neg (A => B)],Gamma,NewG),!,newLabel(Labels,Y),
prove([[Y,neg B]|[[Y,box neg A]|[[Y,A]|NewG]]],Cond, [Y|Labels],...).

The clause for (~7) is applied when a formula z : (A |~ B) belongs to I". The
predicate select removes x : =(A | B) from Gamma, then the predicate prove is
recursively invoked on the only conclusion of the rule. The predicate newLabel
is used to generate a new label Y not occurring in the current branch.
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To search a derivation of a set of formulas I', FREEP 1.0 proceeds as follows:
first of all, if I" is an instance of (AX), the goal will succeed immediately by
using the clause for the axioms. If it is not, then the first applicable rule will
be chosen, e.g. if Gamma contains a formula [X,neg(neg F)], then the clause
for (=) rule will be used, invoking prove on its unique conclusion. FREEP 1.0
proceeds in a similar way for the other rules. The ordering of the clauses is such
that the boolean rules are applied before the other ones. Let us now analyze the
crucial rule (~7), which is implemented by the two following clauses:

prove (Gamma,Cond,Labels,tree(...)):-
member ([ ,A=>B],Gamma) , \+member ([A=>B, ],Cond),!,
member (X,Labels), !,
prove ([[X,A->B]|Gamma] , [[A=>B, [X]]|Cond] ,Labels,...),
prove([[X,neg box neg Al|Gamma], [[A=>B, [X]]|Cond],...).

prove (Gamma,Cond,Labels,tree(...)):-
member ([ ,A=>B],Gamma) ,select ([A=>B,Used] ,Cond,NewCond) ,
member (X,Labels) , \+member (X,Used), !,
prove([[X,A->B]|Gamma] , [[A=>B, [X|Used]]|NewCond] ,Labels,...),
prove([[X,neg box neg Al|Gamma], [[A=>B, [X|Used]]|NewCond],...).

The above clauses are applied when a conditional formula u : A |~ B belongs to
Gamma. If it is the first time the rule is applied on A |~ B in the current branch,
i.e. there is no [A=>B,Used] in the list Cond, then the first clause is applied.
It chooses a label X to use (predicate member (X,Labels)), then the predicate
prove is recursively invoked on the conclusions of the rule. Otherwise, i.e. if (~)
has already been applied on A |~ B in the current branch, the second clause is
invoked: the theorem prover chooses a label X in the Labels list, then it checks
if X belongs to the list Used of labels already used to apply (~7) on A ~ B
in the current branch. If not, the predicate prove is recursively invoked on the
conclusions of the rule. Notice that the above clauses implement an alternative
version of the (j~T) rule, equivalent to the one presented in Figure2l In order to
build a binary tableau, the rule has two conclusions rather than three, namely
the conclusions I',u : A~ B,z : ~A and Iu: A ~ B,z : B are replaced by the
single conclusion I';u : A ~ B,z : A — B.

Even if (~T) is invertible, and it does not introduce any backtracking point
in a proof search, choosing the right label in the application of () is highly
critical for the performances of the theorem prover. Indeed, if the current set of
formulas contains n different labels, say x1,x2, ..., Zy, it could be the case that
a single application of (~7) on u : A v B by using x, leads to an immediate
closure of both its conclusions, thus ending the proof. However, if the deductive
mechanism chooses the labels to use in the above order, then the right label
x, will be chosen only after n — 1 applications of (j~7) on each branch, thus
creating a bigger tableau and, as a consequence, decreasing the performances of
the theorem prover. In order to postpone this choice as much as possible, we
have defined a free-variables version of the prover, whose basic idea is to use
Prolog variables as jolly (or wildcards) in each application of the (~T) rule. The
refined version of the prover is described in the following section.
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4.2 Free-Variables Implementation

A free-variable can be seen as a jolly representing all the labels that can be used
in an application of (~T), that is to say the rule (™) allows to step from the
premise I u : A |~ B to the following conclusions: Iu: A~ B, X : A— B and
Iu:Ap B, X :-0-A, where X is a free-variable. X will be then instantiated
when further information is available on the tableau, that is to say when such
an instantiation will lead to close the branch with an axiom.

In the following we will use another kind of free-variables, called conditional
free-variables, in order to deal with boxed formulas. Intuitively, a boxed formula
x : O0-A will be represented by [V, z] : = A, where V is a conditional free-variable,
representing all the successors of z (V is called “conditional” since z might
have no successors). The two kinds of free-variables should not be confused;
we will denote “jolly” free-variables with X, X7, Xo,..., and “conditional” free-
variables with V, Vi, Vs, . ... Similarly to Beckert and Goré’s MODLEANTAP [6],
FREEP 1.0 also adopts the following refinements:

— it makes use of integers starting from 1 to represent a single world; in this
way, if Max is the maximal integer occurring in a branch, then we have that:
a) Max is also the number of different labels occurring in that branch; b) the
next new label to be generated is simply Max+1;

— the labels are Prolog lists representing paths of worlds; as a consequence,
relation formulas, used in LABP to represent the preference relation, are
replaced by implicit relations in the labels. Intuitively, when (O7) is ap-
plied to [1] : =0O-A, a formula [2,1] : A is introduced rather than [2] :
A plus an explicit relation formula [2,<,1]. In general, a label is a list
[Pk, Nk—1,...,n2,n1], representing that ny < ng_1,...,n2 < ny. From now
on, we denote with o,7, ..., such “path labels”;

— it replaces a boxed formula ¢ : [0-A, where o is a “path label”, with a
formula [V, o] : —=A, where V is a conditional free-variable, representing all
the paths descending from o, if any. The free-variable V' is conditional in the
sense that it could be the case that ¢ has no sons in the tableau;

— in order to distinguish “jolly” free-variables from “conditional” free-variables,
we partition each node of a tableau in two different components (I" | X). ¥
contains formulas whose labels contain conditional free-variables, of the form
[V,0] : =A, corresponding to boxed formulas o : J-A. I' contains the other
formulas. This distinction is needed in order to avoid unwanted unification
between elements of Y. For instance, we do not want that a branch closes
because it contains two formulas such as [V, o] : A and [V, 0] : —A; indeed,
such a branch would be satisfiable by a model in which ¢ has no successors.

We use a Prolog-like notation to denote a path label. In this respect, [ni, ..., ng]
denotes a label whose elements are ny,...,nk, [ ] denotes the empty list, and
[1,...,nk, 0] denotes a list whose first k elements are nq,...,n; followed by
the list 0. We also denote with [o7, o2] the list obtained by appending o3 to 7.
The basic ideas of the free-variables tableau implemented by FREEP 1.0 can be
summarized as follows:
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— when (~7) is applied, a jolly free-variable is introduced in the two con-
clusions; the free-variable represents all the labels occurring in the current
branch, and will be instantiated later, when such an instantiation leads to
close a branch with an axiom:;

— when the (O7) rule is applied to (I',o : -0-A4 | X), then the formula
[n,0] : A is added to I', where n is Max+1 and Max is the maximal integer
occurring in the branch, whereas [V, n, o] : = A is added to X'. The conditional
free-variable V' will then be instantiated to close a branch with an axiom.
As an example, if another formula [m,n, o] : A (or [ma,mi,n,0] : A) will
be introduced in the branch, then the branch will close since V' can be
instantiated with [m] (resp. [m2, m1]);

— given a tableau node (I' | X, [V, o] : =A), the branch is closed when there is
a formula of the form [y, o] : A belonging to I', where 7 is a list of numbers.
This machinery is used to perform the propagation of boxed formulas, rather
than explicitly computing, step by step (when a new world is generated), the
set Fé‘ﬂy. In fact, at the world [v, o] reachable from o, the formula —A holds
as the labelled formula [V, o] : = A says that A must hold in all the worlds
reachable from ¢ (and V stands for any path from o).

Observe that the improved implementation of the tableau for R given in [4]
already makes use of jolly free-variables. However, it does not introduce neither
path labels nor conditional free-variables, thus requiring to explicitly compute
Fgﬁ\ﬂy step by step.

Coming back to FREEP 1.0, by looking carefully at how free-variables are in-
troduced, it can be shown that labels containing jolly free-variables have the form
[n1,m2,...,nk, X], where ny,...,n; are integers and X is a jolly free-variable.
On the contrary, labels containing conditional free-variables have the form [V, o],
where V' is a conditional free-variable and o is a path label that might contain a
jolly free-variable. In FigureBltwo derivations of {4 ~ BAC,~(A ~ B), (D1
E1),—~(D2 ~ Es)} are presented. The upper tableau is obtained by applying
the simple implementation of LABP introduced in section .1l has height 9 and
contains 59 nodes. The lower one, obtained by applying FREEP 1.0, is a tableau
of height 6 and contains only 9 nodes.

Here again, the free-variables tableau calculus is implemented by the predi-
cate prove( Gamma,Sigma,Max,Cond,Tree), where Gamma and Sigma are Pro-
log lists representing a node (I" | X) as described above and Max is the maximal
integer in the current branch. Cond is used to apply (1) in a controlled ways;
it is a list whose elements are triples of the form [A=>B,N,Used], representing
that (j~*) has been applied N times on A |~ B in the current branch, by in-
troducing the free-variables of the list Used. In general, Used is a list of paths
partially instantiated. This machinery is used to control the application of (j~™)
as described in the previous section, in order to ensure termination by prevent-
ing that the rule is applied more than once by using the same label. Indeed,
as we will see later, the rule is only applied to a conditional A |~ B if it has
already been applied less than Max times in the current branch, i.e. N<Max. Fur-
thermore, it must be ensured that all labels in Used are different. When the
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Fig. 3. A derivation in LABP and in FREEP 1.0

predicate prove succeeds, the argument Tree is instantiated by a Prolog func-
tor representing the closed tableau found by the theorem prover. For instance,
to prove that A ~ B A C,—(A |~ B) is unsatisfiable in P, one queries FREEP
1.0 with the following goal: prove ([[[1],a=>b and c], [[1],neg(a=>b)1]1, [
1,1,[ 1, Tree).

Before introducing some examples of the clauses of FREEP 1.0, we introduce
the following two definitions of the unification of path labels. A branch of a tableau
is closed if it contains two formulas ¢ : F and v : —F such that the two labels
(paths) o and vy unify, i.e. there exists a substitution of the free-variables occurring
in them such that the two labels represent the same world. We distinguish the case
where the two formulas involved in a branch closure are both in I, i.e. their labels
only contain jolly free-variables, from the case where one of them belongs to X,
i.e. its label also contains a conditional free-variable. The first case is addressed in
Definition ] whereas the second case is addressed in Definition [l

Definition 3 (Unification of labels in I'). Given two formulas o : F' € I’
and v : G € I', the labels o and v unify with substitution p if the following
conditions hold:
(A) e ifo=~=][], then u=¢e;
e if 0 =[n1,0'] and v = [n1,7'], where ny is an integer (Prolog constant),
and o' and v unify with a substitution p', then p = p';
o if o =[n1,0'] and v = X, where X is a jolly free-variable, and X does
not occur in o', then u = X/[ny,0’|;
e ifo = X1 and v = Xo, where X7 and Xs are jolly free-variables, then
o= X1/X2.
(B) the substitution u is such that, given two jolly free-variables X1 and Xo
introduced on a branch by applying (") on the same conditional A |~ B,
X1 and X5 are not instantiated with the same path by .

Definition 4 (Unification of labels in I" and X). Given two formulas o :
FeXandvy:GeT, where 0 = [V,nq,...,nyg|, the labels o and ~ unify with
substitution p = ' o {V/y1} if the following conditions hold:
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— one can split 7y in two parts, i.e. v = [y1,72], such that 1 # € and 3 # 4
— 2 and [ny, ..., ng] unify w.r.t. Definition[d with a substitution u'.

Here below are the clauses implementing axioms:
prove(Gamma, , ,Cond,...):-

member ([X,A] ,Gamma) ,member ([Y,neg A],Gamma),

matchList (X,Y),constr(Cond),!.
prove(Gamma,Sigma, ,Cond,...):—

member ([[V|X],A],Sigma) ,member ([Y,neg Al,Gamma),

copyFormula([[V|X],A],Fml),split(Y,PrefY,SuffY),V=PrefY,

matchList (SuffY,X),constr(Cond),!.

The first clause is applied when two formulas [X,A] and [Y,neg A] belong to
Gamma. The predicate matchList (X,Y) implements the point (A) of Definition[3]
i.e. it checks if there exists a substitution of the jolly free-variables belonging to X
and Y such that these two labels unify. The predicate constr (Cond) implements
point (B) in Definition [l This ensures the condition of termination of the proof
search; indeed, as an effect of the matching between labels, the instantiation
of some free-variables could lead to duplicate an item in Used, resulting in a
redundant application of () on A |~ B in the same world/label. The predicate
constr avoids this situation.

The second clause checks if a branch can be closed by applying a free-variable
substitution involving a formula in Sigma, i.e. a formula whose label has the
form [V|X], where V is a conditional free-variable. Given a formula [Y,neg A]
in Gamma and a formula [[V|X],A] in Sigma, if the two path labels unify, then
the branch can be closed. The clause implements Definition @ by means of the
auxiliary predicates split,V=PrefY, and matchList. In order to allow further
instantiations of the conditional free-variable V in other branches, the predicate
copyFormula makes a new copy the labelled formula [[V|X],A], generating a
formula Fml of the form [[V’]|X’]1,Al, where V’ is a conditional free-variable
whose instantiation is independent from the instantiation of V.

To search a derivation for a set of formulas, FREEP 1.0 proceeds as follows:
first, it checks if there exists an instantiation of the free-variables such that the
branch can be closed, by applying the clauses implementing axioms. Otherwise,
the first applicable rule will be chosen. The ordering of the clauses is such that
boolean rules are applied in advance. As another example of clause, here below
is one of the clauses implementing (~). It is worth noticing that the following
clause implements a further refinement of the calculus LABP, namely the (0J7)
rule is “directly” applied to the conclusion of (), which is the only rule that
introduces a negated boxed formula X : —[0-A in the branch. In this way,
an application of (1) to (Io : A | B | X) leads to the following conclusions:
(o :ArB,X:A—-B|X)and (Io: A B,[n, X]|: A| [X',n, X]: -A,X).
The rule (O7) can then be removed from the calculus.
prove (Gamma,Sigma,Max,Cond,...):~

member ( [Label,A=>B] ,Gamma) ,

! Given the form of labels in I", these conditions ensure that v, does not contain
free-variables.
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select ([A=>B,Num0OfWildCards,PrevWildCards],Cond,NewCond),
NumOfWildCards<Max, ! ,NewWildCards#=NumOfWildCards+1,
prove([[[X],A->B] |Gamma] ,Sigma,Max, [ [A=>B,NewWildCards,
[[X]|PrevWildCards]]|NewCond],...), ! ,N#=Max+1,
prove ([[[N|[X]],A] |Gamma], [[[ |[N|[X]]1],neg Al|DefSigmal,N,
[[A=>B,NewWildCards, [ [X]|PrevWildCards]] |NewCond],...).
If a formula [Label,A=>B] belongs to Gamma, then the above clause is invoked. If
(k1) has already been applied to A |~ B in the current branch, then an element
[A=>B,NumOfWildCards,PrevWildCards] belongs to Cond: the predicate prove
is recursively invoked on the two conclusions of the rule only if the predicate
Num0fWildCards<Max succeeds, by preventing that the rule is applied a redun-
dant number of times. As mentioned above, this machinery, together with the
predicate constr described above, ensure a terminating proof search.

4.3 Performances of FreeP 1.0

The performances of FREEP 1.0 are promising. We have tested FREEP 1.0 over
300 sets of formulas randomly generated, each one containing 100 conditional
formulas, and we have compared its performances with KLMLean 2.0, a theorem
prover implementing the non-labelled calculus 7PT. The statistics obtained are
shown in Table 1 and present the number of successes within a fixed time limit:

Table 1. Some statistics comparing FREEP 1.0’s performances with KLMLean 2.0’s

Implementation 1 ms 10 ms 100 ms 1s 2.5s 5s
KLMLean 2.0 113 113 177 240 255 267
FreEeP 1.0 157 158 207 255 269 276

In future research we intend to improve the performances of FREEP 1.0 by
experimenting standard refinements and heuristics. For instance, we intend to
investigate how to increase the efficiency of the machinery adopted in order to
ensure a terminating proof search by means of the constraint logic programming.
Moreover, we aim to extend the free-variables technique to the case of the other
KLM logics.
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Abstract. Systems competitions play a fundamental role in the ad-
vancement of the state of the art in several automated reasoning fields.
The goal of such events is to answer the question: “Which system should
I buy?”. In this paper, we consider voting systems as an alternative to
other procedures which are well established in automated reasoning con-
tests. Our research is aimed to compare methods that are customary in
the context of social choice, with methods that are targeted to artificial
settings, including a new hybrid method that we introduce.

1 Introduction

Systems competitions play a fundamental role in the advancement of the state of
the art in several automated reasoning fields. A non-exhaustive list of such events
includes the CADE ATP System Competition (CASC) [I] for theorem provers in
first order logic, the SAT Competition [2] for propositional satisfiability solvers,
the International Planning Competition (see, e.g., [3]) for symbolic planners, the
CP Competition (see, e.g., [4]) for constraint programming systems, the Satisfi-
ability Modulo Theories (SMT) Competition (see, e.g., [5]) for SMT solvers, and
the evaluation of quantified Boolean formulas solvers (QBFEVAL, see [6/7I8] for
previous reports). The main purpose of the above events is to designate a winner,
i.e., to answer the question: “Which system should I buy?”. Even if such perspec-
tive can be limiting, and the results of automated reasoning systems competitions
may provide less insight than controlled experiments in the spirit of [9], there is
a general agreement that competitions raise interest in the community and they
help to set research challenges for developers and assess the current technologi-
cal frontier for users. The usual way to designate a winner in competitions is to
compute a ranking obtained by considering a pool of problem instances and then
aggregating the performances of the systems on each member of the pool. While
the definition of performances can encompass many aspects of a system, usually
it is the capability of giving a sound solution to a high number of problems in a
relatively short time that matters most. Therefore, one of the issues that occurred
to us as organizers of QBFEVAL, relates to the procedures used to compute the
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final ranking of the solvers, i.e., we had to answer the question “Which aggrega-
tion procedure is best?”. Indeed, even if the final rankings cannot be interpreted
as absolute measures of merit, they should at least represent the relative strength
of a system with respect to the other competitors based on the difficulty of the
problem instances used in the contest.

Our analysis of aggregation procedures considers three voting systems, namely
Borda’s method [I0], range voting [I1] and Schulze’s method [12], as an alter-
native to methods which are well estabished in automated reasoning contests,
namely CASC [I], the SAT competitions [2], and QBFEVAL [13] (before 2006).
We adapted voting systems to the artificial setting of systems competition by
considering the systems as candidates and the problem instances as voters. Each
instance casts its vote on the systems in such a way that systems with the best per-
formances on the instance will be preferred over other candidates. The individual
preferences are aggregated to obtain a collective choice that determines the win-
ner of the contest. Our motivation to investigate methods which are customary in
the context of social choice by applying them to the artificial setting of systems
competitions is twofold. First, although voting systems do not enjoy a great pop-
ularity in automated reasoning systems contests (one exception is Robocup [14]
using Borda’s method), there is a substantial amount of literature in social choice
(see, e.g., [15]) that deals with the problem of identifying and formalizing appro-
priate methods of aggregation in specific domains. Second, voting can be seen as a
way to “infer the candidates’ absolute goodness based on the voters’ noisy signals,
i.e., their votes.” [I6]. Therefore, the use of voting systems as aggregation proce-
dures could pave the way to extracting hints about the absolute value of a system
from the results of a contest. In the paper, we also propose a new procedure called
YASM (“Yet Another Scoring Method” }f that we selected as an aggregation pro-
cedure for QBFEVAL’06. YASM is an hybrid between a voting system and tradi-
tional aggregation procedures used in automated reasoning contests. Our results
show that YASM provides a good compromise when considering some measures
that should quantify desirable properties of the aggregation procedures.

The paper is structured as follows. In Section 2] we introduce the case study of
QBFEVAL’05 [§], and we introduce the state of the art aggregation procedures.
In Section Bl we introduce our new aggregation procedure, and then we compare
it with other methods in Section Ml using several effectiveness measures. We
conclude the paper in Section Bl with a discussion about the presented results.

2 Preliminaries

2.1 QBFEVAL’05

QBFEVAL’05 [§] is the third in a series of non-competitive events that pre-
ceded QBFEVAL’06. QBFEVAL’05 accounted for 13 competitors, 553 quantified

! The terminology “scoring method” is somewhat inappropriate in the context of social
choice, as it recalls a positional scoring procedure such as Borda’s method and range
voting; we decided to keep the original terminology for consistency across the previous
works [T7UI8I21].



Ranking and Reputation Systems in the QBF Competition 99

Boolean formulas (QBFs) and three QBF generators submitted. The test set was
assembled using a selection of 3191 QBF's obtained considering the submissions
and the instances archived in QBFLIB [I9]. The results of QBFEVAL’05 can
be listed in a table RUNS comprised of four attributes (column names): SOLVER,
INSTANCE, RESULT, and CPUTIME. The attributes SOLVER and INSTANCE report
which solver is run on which instance. RESULT is a four-valued attribute: SAT, i.e.,
the instance was found satisfiable by the solver, UNSAT, i.e., the instance was
found unsatisfiable by the solver, TIME, i.e., the solver exceeded a given time
limit without solving the instance (900 seconds in QBFEVAL’05), and FAIL, i.e.,
the solver aborted for some reason (e.g., a run-time error, an inherent limitation
of the solver, or any other reason beyond our control). Finally, CPUTIME reports
the CPU time spent by the solver on the given instance, in seconds. In the analy-
sis herewith presented we used a subset of QBFEVAL’05 RUNS table, including
only the solvers that admitted to the second stage of the evaluation, namely
QUANTOR, QMRES, SEMPROP, YQUAFFLE, SSOLVE, WALKQSAT, oOPENQBF
and QBFBDD, and the QBFs coming from classes of instances having fixed struc-
ture (see [§] for more details). Under these assumptions, RUNS table reduces
to 4408 entries, one order of magnitude less than the original one. This choice
allows us to disregard correctness issues, to reduce considerably the overhead
of the computations required for our analysis, and, at the same time, maintain
a significant number of runs. The aggregation procedures that we evaluate, the
measures that we compute and the results that we obtain, are based on the
assumption that a table identical to RUNS as described above is the only input
required by a procedure. As a consequence, the aggregation procedures (and thus
our analysis) do not take into account (¢) memory consumption, (ii) correctness
of the solution, and (7i7) “quality” of the solution.

2.2 State of the Art Aggregation Procedures

In the following we describe in some details the state of the art aggregation
procedures used in our analysis. For each method we describe only those features
that are relevant for our purposes. Further details can be found in the references
provided.

CASC [1)]. Using CASC methodology, the solvers are ranked according to the
number of problems solved, i.e., the number of times RESULT is either SAT or
UNSAT. Under this procedure, solver A is better than solver B, if and only if A is
able to solve at least one problem more than B within the time limit. In case of
a tie, the solver faring the lowest average on CPUTIME fields over the problems
solved is the one which ranks first.

Q@BF evaluation [13]. QBFEVAL methodology is the same as CASC, except
for the tie-breaking rule, which is based on the sum of CPUTIME fields over the
problems solved.

SAT competition [2]. The last SAT competition uses a purse-based method, i.e.,
the measure of effectiveness of a solver on a given instance is obtained by adding
up three purses:
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— the solution purse, which is divided equally among all solvers that solve the
problem;

— the speed purse, which is divided unequally among all the competitors that
solve the problem, first by computing the speed factor F;; of a solver s on
a problem instance i: i

1
1+Ts,i ( )

where k is an arbitrary scaling factor (we set k = 10* according to [20]), and
T,,; is the time spent by s to solve ¢; then by computing the speed award
As i, i.e., the portion of speed purse awarded to the solver s on the instance i:

P - F,;
> 2
S By (2)

where r ranges over the solvers, and P; is the total amount of the speed
purse for the instance i.

— the series purse, which is divided equally among all solvers that solve at
least one problem in a given series (a series is a family of instances that are
somehow related, e.g., different QBF encodings for some problem in a given
domain).

Es,i =

As,i =

The overall ranking of the solvers under this method is obtained by considering
the sum of the purses obtained on each instance, and the winner of the contest
is the solver with the highest sum.

Borda’s method [10]. Suppose that n solvers (candidates) and m instances (vot-
ers) are involved in the contest. Consider the sorted list of solvers obtained for
each instance by considering the value of the CPUTIME field in ascending order.
Let ps,; be the position of a solver s (1 < s < n) in the list associated with in-
stance 7 (1 < i < m). According to Borda’s method, each voter’s ballot consists
of a vector of individual scores given to candidates, where the score S; ; of solver s
on instance ¢ is simply S5 ; = 7 — ps ;. In cases of time limit attainment or failure,
we default S ; to 0. The score of a candidate, given the individual preferences, is
just Ss = >, Ss.;, and the winner is the solver with the highest score.

Range voting [11]. Again, suppose that n solvers and m instance are involved
in the contest and ps; is obtained as described above for Borda’s method. We
let the score S ; of solver s on instance ¢ be the quantity ar™ P+, i.e., we use
a positional scoring rule following a geometric progression with a common ratio
r = 2 and a scale factor a = 1. We consider failures and time limit attainments
in the same way (we call this the failure-as-time-limit model in [21]), and thus we
assume that all the voters express an opinion about all the solvers. The overall
score of a candidate is again S; = ), S, ; and the candidate with the highest
score wins the election.

Schulze’s method. We denote as such an extension of the method described in
Appendix 3 of [I2]. Since Schulze’s method is meant to compute a single overall
winner, we extended the method according to Schulze’s suggestions [22] in order
to make it capable of generating an overall ranking.
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3 YASM: Yet Another Scoring Method (Revisited)

While the aggregation procedures used in CASC and QBF evaluations are straight-
forward, they do not take into account some aspects that are indeed considered by
the purse-based method used in the last SAT competition. On the other hand, the
purse-based method used in SAT requires some oracle to assign purses to the prob-
lem instances, so the results can be influenced heavily by the oracle. In [I7] a first
version of YASM was introduced as an attempt to combine the two approaches: a
rich method like the purse-based one, but using the data obtained from the runs
only. Asreported in [T7], YASM featured a somewhat complex calculation, yielding
unsatisfactory results, particularly in the comparison with the final ranking pro-
duced by voting systems. Here we revise the original version of YASM to make its
computation simpler, and to improve its performance using ideas borrowed from
voting systems. From here on, we call YASMv2 the revised version, and YASM
the original one presented in [I7]. YASMv2 requires a preliminary classification

whereby a hardness degree H; is assigned to each problem instance 7 using the same
equation as in CASC [1] (and YASM):

H;, =1 s, (3)
where S; is the number of solvers that solved i, and S; is the total number of
participants to the contest. Considering equation (B]), we notice that 0 < H; <1,
where H; = 0 means that i is relatively easy, while H; = 1 means that ¢ is
relatively hard. We can then compute the measure of effectiveness S, ; of a
solver s on a given instance 4 (this definition changes with respect to YASM):

L — Ts,i

Sei=ksi (1+ H;)- I M 4)

where L is the time limit, T} ; is the CPU time used up by s to solve i (T ; < L),
and M; = ming{Ts;}, i.e., M; is the time spent on the instance 7 by the SOTA
solver defined in [§] to be the ideal solver that always fares the best time among
all the participants. The hybridization with voting systems comes into play with
the coefficient k;; which is computed as follows. Suppose that n solvers are
participating to the contest. Each instance ranks the solvers in ascending order
considering the value of the CPUTIME field. Let p, ; be the position of a solver s
in the ranking associated with instance ¢ (1 < ps; < n), then ks ; =n — ps ;. In
case of time limit attainment and failure, we default k; ; to 0, and thus also S, ;
is 0. The overall ranking of the solvers is computed by considering the values
Ss=3,5s for all 1 <s < n, and the solver with the highest sum wins.

We can see from equation (@) that in YASMv2 the effectiveness of a solver on
a given instance is influenced by three factors, namely (i) a Borda-like positional
weight (ks,;), (ii) the relative hardness of the instance (1 4+ H;), and (iii) the
relative speed of the solver with respect to the fastest solver on the instance
(LL:I;\? ). Intuitively, coefficient (i¢) rewards the solvers that are able to solve hard
instances, while (ii7) rewards the solvers that are faster than other competitors.
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Table 1. Homogeneity of aggregation procedures

CASC QBF SAT YASM YASMv2 Borda r.v. Schulze

CASC - 1 0.71 0.86 0.79 0.86 0.71 0.86
QBF - 0.711 0.86 0.79 0.86 0.71 0.86
SAT - 0.86 0.86 0.71 0.71 0.71
YASM — 0.86 0.71 0.71 0.71
YASMv2 — 0.86 0.86 0.86
Borda - 0.86 1
r.v. - 0.86
Schulze -

The coeflicient k,; has been added to stabilize the final ranking and make it
less sensitive to an initial bias in the test set. As we show in the next Section,
this combination allows YASMv2 to reach the best compromise among different
effectiveness measures.

4 Experimental Evaluation

4.1 Homogeneity

The rationale behind this measure (introduced in [I7]) is to verify that, on a
given test set, the aggregation procedures considered (7) do not produce exactly
the same solver rankings, but, at the same time, (i7) do not yield antithetic solver
rankings. Thus, homogeneity is not an effectiveness measure per se, but it is a
preliminary assessment that we are performing an apple-to-apple comparison
and that the apples are not exactly the same.

Homogeneity is computed as in [I7] considering the Kendall rank correlation
coeflicient 7 which is a nonparametric coeflicient best suited to compare rankings.
7 is computed between any two rankings and it is such that —1 < 7 < 1,
where 7 = —1 means perfect disagreement, 7 = 0 means independence, and
7 = 1 means perfect agreement. Table [Il shows the values of 7 computed for
the aggregation procedures considered, arranged in a symmetric matrix where
we omit the elements below the diagonal (r.v. is a shorthand for range voting).
Values of 7 close to, but not exactly equal to 1 are desirable. Table [I] shows
that this is indeed the case for the aggregation procedures considered using
QBFEVAL’05 data. Only two couples of methods (QBF-CASC and Schulze-
Borda) show perfect agreement, while all the other couples agree to some extent,
but still produce different rankings.

4.2 Fidelity

We introduce this measure to check whether the aggregation procedures under
test introduce any distortion with respect to the true merits of the solvers.
Our motivation is that we would like to extract some scientific insight from the
final ranking of QBFEVAL’06 and not just winners and losers. Of course, we
have no way to know the true merits of the QBF solvers: this would be like
knowing the true statistic of some population. Therefore, we measure fidelity by
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Table 2. Fidelity of aggregation procedures. As far as SAT is concerned, the series
purse is not assigned.

Method Mean Std Median Min Max IQ Range F

QBF 182.25 7.53 183 170 192 13 88.54
CASC 182.25 7.53 183 170 192 13 88.54
SAT 87250 12520.2 83262.33 78532.74 119780.48 4263.94 65.56
YASM 46.64 2.22 46.33 43.56 51.02 2.82 85.38
YASMv2 1257.29  45.39 1268.73 1198.43 1312.72 95.11 91.29
Borda 984.5 127.39 982.5 752 1176 194.5 63.95
r. v. 12010.25 5183.86 12104 5186 21504 8096 24.12
SCHULZE - — — - — - -

feeding each aggregation procedure with “white noise”, i.e., several samples of
table RUNS having the same structure outlined in Subsection [Z1] and filled with
random results. In particular, we assign to RESULT one of SAT/UNSAT, TIME and
FAIL values with equal probability, and a value of CPUTIME chosen uniformly
at random in the interval [0;1]. Given this artificial setting, we know in advance
that the true merit of the competitors is approximately the same. A high-fidelity
aggregation procedure is thus one that computes approximately the same scores
for each solver, and thus produces a final ranking where scores have a small
variance-to-mean ratio.

The results of the fidelity test are presented in Table2lwhere each line contains
the statistics of a aggregation procedure. The columns show, from left to right,
the mean, the standard deviation, the median, the minimum, the maximum and
the interquartile range of the scores produced by each aggregation procedure
when fed by white noise. The last column is our fidelity coefficient F, i.e., the
percent ratio between the lowest score (solver ranked last) and the highest one
(solver ranked first): the higher the value of F, the more the fidelity of the aggre-
gation procedure. As we can see from Table[2 the fidelity of YASMv?2 is better
than that of all the other methods under test, including QBF and CASC which
are second best, and have higher fidelity than YASM. Notice that range voting,
and to a lesser extent also SAT and Borda’s methods, introduce a substantial
distortion. In the case of range voting, this can be explained by the exponen-
tial spread that separates the scores, and thus amplifies even small differences.
Measuring fidelity does not make sense in the case of Schulze’s method. Indeed,
given the characteristics of the ”white noise” data set, Schulze’s method yields
a tie among all the solvers. Thus, checking for fidelity would essentially mean
checking the tie-breaking heuristic, and not the main method.

4.3 RDT-Stability and DTL-Stability

Stability on a randomized decreasing test set (RDT-stability), and stability on
a decreasing time limit (DTL-stability) have been introduced in [I7] to measure
how much an aggregation procedure is sensitive to perturbations that diminish
the size of the original test set, and how much an aggregation procedure is
sensitive to perturbations that diminish the maximum amount of CPU time
granted to the solvers, respectively. The results of RDT- and DTL-stability tests
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are presented in the plots of Figures[Iland 2l We obtained such plots considering
the CPU time noise model in [I§], and considering YASMv2 instead of YASM
and the Schulze’s method instead of the sum of victories method.

On Figure[l the first row shows, from left to right, the plots regarding QBF/
CASC, SAT and YASMv2 procedures, while the second row shows, again from
left to right, the plots regarding Borda’s method, range voting and Schulze’s
method. Each histogram reports, on the x-axis the number of problems m dis-
carded uniformly at random from the original test set (0, 100, 200 and 400 out
of 551) and on the y-axis the score. Schulze’s scores are the straightforward
translation of the ordinal ranking derived by applying the method which is not
based on cardinal ranking. For each value of the x-axis, eight bars are displayed,
corresponding to the scores of the solvers. The legend is sorted according to
the ranking computed by the specific procedure, and the bars are also displayed
accordingly. This makes easier to identify perturbations of the original ranking,
i.e., the leftmost group of bars in each plot corresponding to m = 0. On Figure[2]
the histograms are arranged in the same way as Figure [Tl except that the x-axis
now reports the amount of CPU time seconds used as a time limit when evalu-
ating the scores of the solvers. The leftmost value is L = 900, i.e., the original
time limit that produces the ranking according to which the legend and the bars
are sorted, and then we consider the values L’ = {700, 500, 300, 100, 50, 10, 1}.
The conclusion that we reach are the same of [I7], and precisely:

— All the aggregation procedures considered are RDT-stable up to 400, i.e., a
random sample of 151 instances is sufficient for all the procedures to reach
the same conclusions that each one reaches on the heftier set of 551 instances
used in QBFEVAL’05.

— Decreasing the time limit substantially, even up to one order of magnitude, is
not influencing the stability of the aggregation procedures considered, except
for some minor perturbations for QBF/CASC, SAT and Schulze’s methods.
Moreover, independently from the procedure used and the amount of CPU
time granted, the best solver is always the same.
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Indeed, while the above measures can help us extract general guidelines about
running a competition, in our setting they do not provide useful insights to
discriminate the relative merits of the procedures.

4.4 SBT-Stability

Stability on a solver biased test set (SBT-stability) is introduced in [I7] to mea-
sure how much an aggregation procedure is sensitive to a test set that is biased
in favor of a given solver. Let I" be the original test set, and I's be the subset of
I" such that the solver s is able to solve exactly the instances in I';. Let R, s be
the ranking obtained by applying the aggregation procedure q on I. If R, is
the same as the original ranking R,, then the aggregation procedure ¢ is SBT-
stable with respect to the solver s. Notice that, contrarily to what stated in [I7],
SBT-stability alone is not a sufficient indicator of the capacity of an aggregation
procedure to detect the absolute merit of the participants. Indeed, it turns out
that a very low-fidelity method such as range voting is remarkably SBT-stable.
This because we can raise the SBT-stability of a ranking by decreasing its fi-
delity: in the limit, a aggregation procedure that assigns fixed scores to each
solver, has the best SBT-stability and the worst fidelity. Therefore, an aggrega-
tion procedure showing a high SBT-stability is relatively immune to bias in the
test set, but it must also feature a high fidelity if we are to conclude that the
method provides a good hint at detecting the absolute merit of the solvers.
Figure[3shows the plots with the results of the SBT-stability measure for each
aggregation procedure considering the noise model and YASMv2 (the layout is
the same as Figures[lland [2]). The x-axis reports the name of the solver s used to
compute the solver-biased test set I's and the y-axis reports the score value. For
each of the I'y’s, we report eight bars showing the scores obtained by the solvers
using only the instances in I';. The order of the bars (and of the legend) corre-
sponds to the ranking obtained with the given aggregation procedure on the orig-
inal test set I'. As we can see from Figure[3 (top-left), CASC/QBF aggregation
procedures are not SBT-stable: for each of the Iy, the original ranking is perturbed
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and the winner becomes s. Notice that on I'quanTor, CASC/QBF yield the same
ranking that they output on the complete test set I". The SAT competition pro-
cedure (Figure[3 top-center) is not SBT-stable, not even on the test set biased on
its alleged winner QUANTOR. YASMv?2 is better than both CASC/QBF and SAT,
since its alleged winner QUANTOR is the winner on biased test sets as well. Borda’s
method (Figure Bl bottom-left) is not SBT-stable with respect to any solver, but
the alleged winner (QUANTOR) is always the winner on the biased test sets. More-
over, the rankings obtained on the test sets biased on QUANTOR and SEMPROP
are not far from the ranking obtained on the original test set. Also range voting
(Figure Bl bottom-center), is not SBT-stable with respect to any solver, but the
solvers ranking first and last do not change over the biased test sets and it is true
for the Schulze’s method (Figure Bl bottom-right) too.

Looking at the results presented above, we can see that YASMv2 perfor-
mance in terms of SBT stability lies in between classical automated reasoning
contests methods and methods based on voting systems. This fact is highlighted
in Table Bl where for each procedure we compute the Kendall coefficient be-
tween the ranking obtained on the original test set I" and each of the rankings
obtained on the I's test sets, including the mean coefficient observed. Overall,
YASMv2 turns out to be, on average, better than CASC/QBF, SAT, and YASM,
while it is worse, on average, than the methods based on voting systems. How-
ever, if we consider also the results of Table [2] about fidelity, we can see that
YASMv?2 offers the best compromise between SBT-stability and fidelity. Indeed,
while CASC/QBF methods have a relatively high fidelity, they perform poorly
in terms of SBT-stability, and SAT method is worse than YASMv2 both in terms
of fidelity and in terms of SBT-stability. Methods based on voting systems are
all more SBT-stable that YASMv2, but they have poor fidelity coefficients. We
consider this good performance of YASMv2 a result of our choice to hybridize
classical methods used in automated reasoning contests and methods based on
voting systems. This helped us to obtain an aggregation procedure which is less
sensitive to bias, and, at the same time, a good indicator of the absolute merit
of the competitors.
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Table 3. Kendall coefficient between the ranking obtained on the original test set and
each of the rankings obtained on the solver-biased test sets

CASC/QBF SAT YASM YASMv2 Borda r. v. Schulze

OPENQBF 0.43 0.57 0.36 0.64 0.79 0.79 0.79
QBFBDD 0.43 0.43 0.36 0.64 0.79 0.86 0.79
QMRES 0.64 0.86 0.76 0.79 0.71 0.86 0.79
QUANTOR 1 0.86 0.86 0.86 0.93 0.86 0.93
SEMPROP 0.93 0.71 0.71 0.79 0.93 0.86 0.93
SSOLVE 0.71 0.57 0.57 0.79 0.86 0.79 0.86
WALKQSAT 0.57 0.57 0.43 0.71 0.64 0.79 0.79
YQUAFFLE 0.71 0.64 0.57 0.71 0.86 0.86 0.93
Mean 0.68 0.65 0.58 0.74 0.81 0.83 0.85

5 Conclusions

Summing up, the analysis presented in this paper allowed us to make some
progress in the research agenda associated to QBFEVAL. YASMv2 features a
simpler calculation, yet it is more powerful than YASM in terms of SBT-stability
and fidelity. We confirmed some of the conclusions reached in [I7], namely that
independently of the specific procedure used, a larger test set is not necessarily a
better test set, and that a higher time limit does not necessarily result in a more
informative contest. On the other hand, while aggregation procedures based on
voting systems emerged from [I7] as “moral” winners over other procedures, the
analysis presented in this paper shows that better results could be achieved using
hybrid techniques such as YASMv2.
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Abstract. Logic Programs with Annotated Disjunctions and CP-logic
are two different but related languages for expressing probabilistic in-
formation in logic programming. The paper presents a top down inter-
preter for computing the probability of a query from a program in one
of these two languages. The algorithm is based on the one available for
ProbLog. The performances of the algorithm are compared with those
of a Bayesian reasoner and with those of the ProbLog interpreter. On
programs that have a small grounding, the Bayesian reasoner is more
scalable, but programs with a large grounding require the top down in-
terpreter. The comparison with ProbLog shows that the added expres-
siveness effectively requires more computation resources.

1 Introduction

Logic Programs with Annotated Disjunctions (LPADs) [9] and CP-logic [§] are
two recent formalisms combining logic and probability. They are interesting for
the simplicity and clarity of their semantics that makes the reading of their
programs very intuitive.

Even if the semantics of these two formalisms were defined in a different way,
there exists a syntactic transformation that makes CP-logic programs equivalent
to a large subset of LPADs, in particular to the most interesting subset of LPADs.

The LPADs and CP-logic semantics assigns a probability value to logic queries.
In this paper, we consider the problem of computing this probability given a pro-
gram and a query. In particular, we propose a top down interpreter that computes
derivations for a query and then computes the probability of the query by using
Boolean decision diagrams. The algorithm is based on the top down interpreter
for ProbLog presented in [4]. This interpreter is highly optimized and answers
queries from programs containing thousands of clauses. Due to the difference be-
tween ProbLog and LPADs, it was not possible to use all the optimizations.

Besides the interpreter, we consider an approach that exploits the possibility
of translating an LPAD into a Bayesian network shown in [J]. The approach
allows the use of Bayesian network reasoners on the problem.

In order to compare the algorithm with the Bayesian approach and with the
ProbLog interpreter, we performed a number of experiments on a simple game
of dice and on graphs of biological concepts. For the first problem the grounding
of the program is small and the Bayesian reasoner is more scalable. For the
second problem, the grounding is so large that the Bayesian approach could not
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be applied. As expected, the size of problems that were successfully solved is
smaller than the one of ProbLog.

The paper is organized as follows. In Section [2] we present the syntax and
semantics of ProbLog, LPADs and CP-logic, together with the approach for
translating them into Bayesian networks. Section[3] describes the top down inter-
preter for ProbLog presented in [4]. Section [] presents the top down interpreter
for LPADs and CP-logic. In Section [}l we discuss the experiments performed and
in Section [l we conclude and present directions for future work.

2 Preliminaries

A ProbLog program [4] T is a set of clauses of the form
a:h<«by,...,b, (1)

where « is a real number between 0 and 1 and A and by, ...,b, are atoms.

The semantics of such programs is defined in terms of instances: an instance
is a definite logic program obtained by selecting a subset of the clauses and
removing the «. Its probability is given by the product of the « factor for all
the clauses that are included in the instance and of 1 — « for all the clauses
not included. The probability PZ5(Q) of a query Q according to program 7T is
given by the sum of the probabilities of the instances that have the query as a
consequence according to the least Herbrand model semantics.

A Logic Program with Annotated Disjunctions T' [9] consists of a set of for-
mulas of the form

hi:a1V...Vhy:o, <—by,...0p (2)

In such a clause the h; are logical atoms, the b; are logical literals and the «;
are real numbers in the interval [0, 1] such that >, a; = 1.

The semantics of LPADs is given as well in terms of instances: an instance is
a ground normal program obtained by selecting for each clause of the grounding
of T one of the heads and by removing the «;. The probability of the instance
is given by the product of the a factors associated with the heads selected. The
probability P{5(Q) of a formula @ according to program T is given by the sum
of the probabilities of the instances that have the formula as a consequence
according to the well founded [7] semantics.

A CP-logic program T [8] consists of a set of formulas of the form (2) where
it is imposed that > ; a; < 1. The semantics of CP-logic was given in terms of
probabilistic processes. However, it was shown in [8] that this semantics, when it
is defined, is equivalent to the instance based semantics of the LPAD T obtained
from the CP-logic program T by replacing each clause of the form () with the
clause

h1:a1\/...\/hn:an\/nonezl—Zaith...bm (3)
i=1

where none is a special atom that does not appear in the body of any clause.
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It was shown in [9] that an LPAD can be translated into a Bayesian Logic
Program (BLP) preserving the semantics. Since BLP encode Bayesian networks,
this provides a way of translating an LPAD into a Bayesian network. This means
that we can answer a query by using a Bayesian inference algorithm.

In order to convert an LPAD into a Bayesian network, its grounding must
be generated. If the program contains function symbols, the number of different
terms is infinite so the user has to provide a finite set of terms for instantiating
the clauses, thus restricting the translation to the portion of the ground program
of interest to the user. Moreover, the user has also to ensure that the grounded
program is acyclic.

Even if the program does not contain function symbols, grounding each clause
with every possible constants may generate a very large and cyclic network.
Therefore, also in this case the intervention of the user is required.

3 The Top Down Interpreter for ProbLog

In [] a proof procedure was given for computing the probability of a query @
from a ProbLog program 7. The procedure involves the computation of all the
possible SLD derivations for Q.

Consider a single derivation d for @ that uses the set of clauses Cy = {ay :
C1,.-.,0 : ¢+ Let us assign a Boolean random variable X; to every clause ¢;
of T'. X; assumes value 1 if the clause ¢; is selected and value 0 if the clause is
not selected. The probability

PX;i=1A...AXp=1)

is the sum of the probabilities of the instances containing these clauses, thus it is
the probability of @ if it has only derivation d. Since each clause is independent
from the other clauses, the probability above is given by Hle ;.

If @ has multiple derivations pr(Q) = {di,...,d;}, then its probability is

given by
rc\/ A Xi=1
depr(Q) ai:ci €Cq

Thus the problem of computing the probability of a query is reduced to the prob-
lem of computing the probability of a DNF formula. This problem is known to
be NP-hard. In order to solve it, the authors of [4] use Binary Decision Diagrams
(BDD) [2]. BDD represent a Boolean formula as a binary decision graph: one
can compute the value of the function given an assignment of the variables by
navigating the graph from the root to a leaf. The nodes of the graph are divided
into levels and each level is associated with a Boolean variable. The next node
is chosen on the basis of the value of the variable associated to that level: if the
variable is 1 the high child is chosen, if the value is 0 the low child is chosen. The
leaves are associated either with the value 1 or with the value 0: when we reach
a leaf we return the value stored there. For example, a BDD for the Boolean
function

X1’1 :OVXQJ 20/\X2’2= 1/\X3)1 :OVXQJ = 1/\X2)2 20/\X3’1 =0 (4)
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X X X X
1,1 2,1 2,2 3,1
Fig. 1. BDD

is represented in Figure[l where all the X; ; are Boolean variables, high children
are reached by solid edges, low children by dashed edges and the leaves are
represented by rectangular nodes.

A BDD is built by first building a full binary decision tree having 2" nodes
for level n and then simplifying it by merging isomorphic subgraphs until no
further reduction is possible. Since the number of reductions depends on the
order chosen for the variables, practical BDD tools use sophisticated heuristics
for choosing a good order.

Given a BDD of a Boolean formula F', we can easily compute its probability
because F' can be represented as F = (X = 1) A Fy V (X = 0) A Fy where X
is the variable associated to the root of the BDD, F} is the formula associated
to the high child and Fj is the formula associated to the low child. Since the
two disjuncts are now mutually disjoint, the probability of F' can be computed
as P(F)=P(X =1)- P(Fy) + P(X =0) - P(Fp). The probabilities P(F}) and
P(Fp) can then be computed recursively.

4 A Top Down Interpreter for LPAD and CP-Logic

The notion of derivation presented above must be extended in three ways in
order to compute the probability of an LPAD query. First, we must take into
account the fact that clauses have more than one atom in the head, therefore each
clause is not represented by a Boolean variable but by a multivalued variable
with as many values as there are atoms in the head. Second, a variable is not
associated with a clause but with a grounding of a clause, thus we have different
variables for different groundings. Third, the body of LPAD clauses can contain
negative literals: roughly speaking, a negative goal is treated by computing all
the possible derivations for the goal, by selecting, for each derivation, a grounded
clause and by including in the current derivation the clause with a head different
from the one used for deriving the negative goal.

The interpreter we present is based on SLDNF and therefore is valid only for
programs for which the Clark’s completion semantics [3] and the well founded
semantics coincide, as for acyclic programs [I].

In the following, we give an algorithmic definition of derivation. We adopt
a mixed pseudo code: we use procedural features, such as assignments and
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functions, and declarative features, such as non-determinism, unification and
coroutining (the predicate dif in particular).
A derivation from (G1,C4) to (G, Cy) in T of depth n is a sequence

(Glacl)v ceey (Gn7Cn)

such that each G; is a goal of the form « Iy,...,l;, C; is a set of couples that
stores the instantiated clauses and the heads used and (Giy1,C;41) is obtained
according to one of the following rules

— if I3 is built over a built-in predicate, then [; is executed, G;+; =« lo,.. .,
lk and Ci+1 = Cz

— if [y is a positive literal, then let c=hy : a1 V...V hy, : oy, — B be a fresh
copy of a clause of T' that resolves with G; on [, let h; be a head atom of ¢
that resolves with [; and let 6 be the mgu substitution of /; and h;. For every
couple (¢, m) € C; such that m # j and ¢ unifies with ¢, we impose the
constraint dif (¢d, cf) so that further instantiations of ¢§ or ¢f do not make
the two clauses equal. Then G;11 = r where r is the resolvent of h; «— B
with G; on the literal Iy and C;1 = C; U {(c6,j)}.

— if [ is a negative literal a1, then let C be the set of all the sets C' such that
there exists a derivation from (« ay,0) to («,C). Then G;11 =« la,...,
and C;y1 =Select(C, C;), where Select is the function shown in Figure 21

A derivation is successful if G, =«.
From the set C of the all the C' such that there exists a derivation from
(«— Q,0) to («,C) we can build the formula

F= \/ /\ (Xcﬁzj)

CeC (ch,5)eC

where Xy is the multivalued variable associated to the clause cf. In order to
deal with multivalued variables using BDD, an approach [6] consists in using a
binary encoding: if multivalued variable X; can assume p different values, we use
q = [log, p] binary variables X; 1, ..., X; ; where X ;1 is the most significant bit.
The equation X; = j can be represented with binary variables in the following
way

Xi,l :jl/\.../\Xi)q :jq

where j; ...j, is the binary representation of j. Once we have transformed all
multivalued equations into Boolean equations we can build the BDD.

In order to compute the probability of a multivalued formula represented by a
BDD, we exploit the possibility offered by many BDD packages of specifying that
the variables belonging to a certain set must be kept together and in the order
given when building the diagram. Therefore, for every multivalued variable, we
enclose in one such set all the binary variables associated to it.
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function Select(
inputs : C : C sets for successful derivations of
the negative goal,
C; : current set of used clauses
returns : Ci41 : new set of used clauses)
Cit1:=0C;
for each C € C
select a (cf,j) € C// If the program is range restricted,
// cb is ground, see the discussion below
for all § such that (c6,j) € Ci+1 and ¢6 unifies with cf
impose the constraint dif (cé, cd)
perform one of the following operations
1. select (¢, m) € Ci41 such that m # j and ¢é unifies with c6,
then Cit1 := Ciy1 \ {(cd,m)} U {(ch,m)}
2. select (c¢d, m) € Cit1 such that m # j and ¢6 unifies with cf,
then impose the constraint dif (¢d, cf) and Cit1 := Ciy1 U {(ch,m)}
3. select m # j such that Acd (¢, m) € Ci+1 with ¢6 that unifies with c0,
then 07;4_1 = 07;4_1 @] {(c@,m)}
return Ci41

Fig. 2. Function Select

Consider for example the program

cp=a:01 ¢c=b:03Vc:06. c3=a:0.2+« —b.
This program has three successful derivations from (— a, ) to («, C). Their C
sets are

Ct ={(c10,0)}

C* = {(CQQ)’ 1)7 (030)’ 0)}

C? = {(c20,2), (c30,0)}
These C' sets produce the following formula with multivalued variables

X1=0VXo=1AX3=0VXe=2AX3=0
where X; corresponds to c;f). The formula is then converted into formula (@)
that produces the BDD of Figure [11

The algorithm shown in Figure [3] computes the probability of a multivalued
formula encoded by a BDD. It consists of two mutually recursive functions, Prob
and ProbBool. The idea is that we call Prob in order to take into account a new
multivalued variable and we call ProbBool to consider the individual binary
variables. In particular, Prob(n) returns the probability of node n while the
calls of ProbBool build a binary tree with a level for each bit of the multivalued
variable, so that the last calls of ProbBool (the leaves) identify a single value and
are called with a node whose binary variable belongs to the next multivalued
variable. Then ProbBool calls Prob on the node to compute the probability of
the subgraph and returns the product of the result and the probability associated
to the value. The intermediate ProbBool calls sum up these partial results and
return them to the parent Prob call. Note that ProbBool builds a full binary tree
for a variable even if there is not a node for every binary variable (for example,
because the result is not influenced by the value of one bit). As in [4], Prob is
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function Prob(
inputs : n : BDD node,
returns : P : probability of the formula)
if n is the 1-terminal then return 1
if n is the O-terminal then return 0
let mVar be the multivalued variable
corresponding to the Boolean variable associated to n
P :=ProbBool(n, 0,1, mVar)
return P

function ProbBool(
inputs : n : BDD node,
value : index of the value of the multivalued variable
posBVar : position of the Boolean variable, 1 most significant
mVar : multivalued variable
returns : P : probability of the formula)
if posBVar = mVarnBit+ 1 then // the last bit has been reached
let pyaiue be the probability associated with value of index
value of variable mVar
return pyaive X Prob(n)
else
let b, be the Boolean variable associated to n
let b, be the Boolean variable in position posBVar of mVar
if b, = by
// variable b, is present in the BDD
let h and [ be the high and low children of n
shift left 1 position the bits of value
P :=ProbBool(h, value + 1,posBVar + 1,mVar)+
ProbBool(l, value, posBVar + 1,mVar)
return P
else
// variable b, is absent from the BDD
shift left 1 position the bits of value
P :=ProbBool(n, value + 1,posBVar + 1,mVar)+
ProbBool(n, value, posBVar + 1,mVar)
return P

Fig. 3. Function Prob

optimized by storing, for each computed node, the value of its probability, so
that if the node is visited again the probability can be retrieved.

Note that for the algorithm to behave correctly the program must be range
restricted, i.e., all the variables in the head of clauses must appear in the body.
Consider for example the following program 7'

1 =a(l):0.3 — p(X).

c1 =a(2):04 — p(X).

cs =p(X):0.5.
where the third clause (c3) is not range restricted.
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The only derivation from (< a(1),0) to («+—, C) has the following C' set

C= {((6107 O)’ (6307 O)}
and thus gives a probability of 0.15. The grounding T” of T is

c1=a(l):03 —p(l). c2=ua(l):0.3—p(2).

cs =a(2):04 —p(l). ca=a(2):0.4—p(2).

cs =p(1):0.5. ce =p(2):0.5.
thus there are two successful derivations of a(1) whose C sets are

Cl = {(10,0), (c50,0)}  C?% = {(c20,0), (cs0,0)}
for a probability of 0.2775.

If the program is range restricted, every derivation from («— G, 0) to («—,C)
will contain in C' couples (j,cf) such that cf is ground and thus the above
problem does not appear.

However, the query can contain variables: from the program 7", the algorithm
for the query a(X) would return probability 0.2775 for X = 1 and probability
0.36 for X = 2.

In [4] an algorithm was given for computing the probability of the query in
an approximate way, returning an upper and a lower bound of the probability.
This involves the use of iterative deepening: the SLD-tree is built only up to a
given depth d and at each iteration we increment the value of d. At the end of
each iteration we have a set of C sets of successful derivations Successful and a
set of C sets for still open derivations Open. The true probability PZ5(Q) of a
query is such that

P(Fy) < Php(Q) < P(F1 V Fy)

where Fy (F) is the formula corresponding to Successful (Open) Thus we have
an upper and a lower bound on PZ5(Q).

The cycle terminates when P(Fy V Fy) — P(Fy) < €, where € is a used defined
precision.

However, this approach cannot be used for LPADs. In fact, consider the fol-
lowing program

c1=a:01<pX). c2=p(1):0.9. «¢3=p(2):0.09.
If we have the query a and a depth bound d = 1, then at the end of the first
iteration Successful is empty and Open contains the only set {(c10,0)}. Thus
P(F1) = 0 and P(Fy V F») = 0.1. However P,(Q) is 0.1719 so P(Fy V Fy)
is not an upper bound on P(Q). In fact, there are two successful derivations
of a, one has the C set {(c1{X/1},0), (c20,0)} and the other has the C set
{(c1{X/2},0), (c30,0)}. Thus the formula F' is

Xeyqx/1y =0ANXe, =0V X 1x/2y =0AN X, =0
Since the two disjunct are not mutually exclusive, we can use the law for the
probability of an or and obtain

0.1-094+0.1-09-0.1-0.9-0.1-0.9=0.18—0.0081 = 0.1719
This problem depends on the fact that, while in ProbLog we consider non ground
clauses, in LPAD we consider instantiated ones and a clause in a partial deriva-
tion may not be fully instantiated. When the derivation is continued, it may
generated more than one derivation with different instantiation of the clause.
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5 Experiments

We report here on two experiments performed in order to evaluate the perfor-
mances of the top down interpreter: the first involves a game of dice and the
second graphs of biological concepts. All the experiments were performed on a
Linux machine with a 3.40 GHz Pentium D processor and 1 GB of RAM.

In the first experiment we consider two versions of a dice game proposed in
[9): the player throws a die a number of times and stops only when a certain
number comes out. We want to predict the probability of a given outcome at a
given time point.

The two versions differ only for the number of faces of the (idealized) die: the
first version considers a two face die and the second version a three face die. The
LPAD describing the first version is shown below:

on(0,1) : 1/2V on(0,2) : 1/2.

on(T,1):1/2von(T,2):1/2 —T1is T —1,T1 >=0,0n(T1,1).

Atom on(T, N) means that at time 7" we rolled a die and face N came out. The
first rule states that at time 0 (the beginning of the game) we rolled a die and we
got a 1 or a 2 with equal probability. The second rule states that at time 7" we roll
a die if a die was rolled at the previous time point and we got a 1. If we roll a die,
we get a 1 or a 2 with equal probability. Thus, we stop when we get a 2.

The LPAD describing the second version is similar to the one above and states
that we stop throwing dice only when we get a 3.

For the top down interpreter we used an implementation of it in Yap Prolo@
that uses CUDDH as the BDD manipulation package.

For the Bayesian reasoner, we used the implementation of the junction tree
inference algorithm [5] available in BNJH version 2 release 7 2004.

The query on(T, 1) was tried against both programs with 7" ranging from 0 to
15. The execution times of the top down interpreter (cplint) and of the Bayesian
reasoner (bnj) are shown in Figures and for the two sided die and for
the three sided die respectively.

When generating the ground program to be translated into a Bayesian net-
work, only the constants relevant to the query were considered. So, for example,
if the query was on(3,1), only constants 0, 1, 2 and 3 were considered for T and
T1. For N, the constants 1 and 2 were considered for the first program and 1, 2
and 3 for the second program.

For the point not shown for cplint in Figure the system started thrashing
and the computation was interrupted after four hours.

We consider now two programs with the same meaning as those above but
that use negation. The one for the three sided die is

on(0,1) : 1/3Vv on(0,2) : 1/3V on(0,3) : 1/3.

on(T,1):1/3Vvon(T,2):1/3Von(T,3):1/3 —

T1is T —1,T1 >=0,0on(T1,N),-on(T1,3).

! http://www.ncc.up.pt/~vsc/Yap/
2 http://vlsi.colorado.edu/~fabio/
3 http://sourceforge.net/projects/bndev
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Fig. 5. Execution times for the die programs with negation

The computation times are shown in Figures and respectively under
the same experimental settings discussed before.

The points not shown for cplint in Figureare those for which Yap stopped
returning an “out of database space” error.

The second experiment involves computing the probability of a path between
two nodes in a graph. This experiment was chosen in order to compare the re-
sults with those [4] where the authors use the ProbLog interpreter for evaluating
the probability of paths between nodes in a network of biological concepts. The
dataset was kindly provided by the authors of [4] and is the same as the one
used in the paper. The dataset consists of a number of subgraphs G1,Gs,...G,
extracted from a complete graph built around four Alzheimer genes. The com-
plete graph contains 11530 edges and 5220 nodes. The subgraphs are obtained
by subsampling, they have the sizes 200, 400, ..., 5000 edges and are such that
G1 C G2 C ... C Gy. Subsampling was repeated 10 times.

The query can reach(620,983) was issued on every subgraph, where 620 and
683 are the identifiers of a couple of genes and can reach is defined recursively
with definite clauses in the usual way.

The computation time for the probability of the query is shown in Figure
in seconds as a function of the number of edges. The time shown is the average
computation time on the subgraphs on which the interpreter was successful.
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Fig. 6. Biological graph experiments

Figure shows the number of graphs for which the computation succeeded:
for the other graphs, the computer did not return an answer after 10 hours.

A comparison with bnj was not possible because the conversion program ex-
hausted the available memory: the grounding of the definition for can reach was
too large.

These experiments show that, for small problems, Bayesian inference is more
scalable. However, when problems with many constants are considered, using
Bayesian inference is not possible. Comparing cplint with the ProbLog inter-
preter of [4], we see that the added expressiveness of LPAD and CP-Logic has
an impact on performances, since the ProbLog interpreter was able to answer
the query for up to 4600 edges.

6 Conclusions

We have presented a top down interpreter for computing the probability of
LPADs and CP-logic queries that is inspired to the one presented in [4].

We have experimentally compared the algorithm with a Bayesian inference
algorithm and with the ProbLog interpreter.

In the future, we plan to extend the interpreter by considering also aggregates
and the possibility of having the probabilities in the head depend on literals in
the body.
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Abstract. We propose a layered representation of general agent models
with a base layer, composed of basic agent features including control,
and a higher layer, consisting of a meta-control with the task of tuning,
supervising and modifying the base layer. This provides higher flexibility
in how an agent is built and may evolve.

1 Introduction

Nowadays, there is a clear tendency toward employing software agents instead
of traditional programs, so as to reach in perspective a higher flexibility of use
and interaction. Agents should be intelligent so as to face changing situations by
modifying their behavior, or their goals, or the way to achieve their goals. This
requires agents to be able to perform, interleave and combine various forms of
commonsense reasoning, possibly based upon different kinds of representation.
Several generic agent-oriented languages and architecture exist and in particular
several computational logic-based agent architectures and models. A common
feature is the aim at building agents that are able to adapt or change their
behavior when they encounter a new or different situation.

Since long it has been observed that, in order to reach real flexibility and
improve their behavior, intelligent entities would need an understanding of how
they do things. Beyond understanding, awareness should be a process whereby
appropriate sentences about the world and its own mental situation come into
the entity’s consciousness, usually without intentional actions.

More recently, Singh, Minski and Eslick [6] consider awareness as the result
of introspective (reflective, self-reflective and in the end self-conscious) layers of
thought that are on top of deliberative thinking and of all the other forms of
reasoning and reacting that constitute intelligent behavior. In this approach, an
agent is seen as a collection of several agents, each one either encoding distinct
kinds of ability or distinct ways of thinking, or representing different ways of
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doing the same thing. An architecture resulting form these considerations is
being implemented at the MIT Media Lab [6].

In this paper, we propose a general agent model that goes in the direction of
flexibility and adaptability. This is obtained by providing higher flexibility in how
an agent is built and may evolve, and by equipping an agent with forms of un-
derstanding and awareness that we “situate” at different control layers. Beyond
the basic control layer we in fact introduce a meta-control, where non-trivial su-
pervising and tuning tasks (including agent reconfiguration) can be performed,
based on suitable control and meta-control information. After a general discus-
sion about the potentials of this new model, we shortly demonstrate by means of
specific case-studies how the meta-control might be exploited, abstracting away
from the details of the specific instance of the general model.

2 A General Agent Model

Below we define a general agent model by listing a set of aspects that we believe
to be fundamental of the agent-oriented paradigm. We restrict ourselves to a
high-level description of these aspects, leaving their specific description to the
actual definition of specific instances of the general model. An agent model M
which is an instance of this general model will encompass all or some of the
aspects that we list, and will provide a specification of how they should be
formalized. In fact, when realising an agent according to the agent model M,
every aspect present in M will correspond to a software component that will
be described according to the languages/formalisms the components of M rely
upon.

M is associated with an underlying control mechanism U™ (or simply U when
M is clear from the context). This control mechanism implements the run-time
behavior of the agents. In some agent models this behavior may be implemented
according to a given semantics, in other models there may be some other kind
of specification. In practice, U can be an interpreter, or an inference engine, or
a virtual machine, or any other kind of implementation.

Definition 1. An agent model M results from the choice of (some of) the as-
pects listed below.

— A set of beliefs, possibly divided into various modules/theories, encompassing

(some of ) the following activities: reasoning, planning, proactivity, reaction,

constraint solving, goal identification, preferences, history, communication

management.

A set of desires (goals that have been adopted or goals that are under con-

siderations) and intentions (plans in execution and plans under analysis).

— A set of constraints, including temporal constraints that either induce or
verify a partial order among actions in intentions and goals.

— A set of mechanisms for interacting with the environment including: a sens-
ing mechanism/device, an actuating mechanism/device, a mechanism/device
supporting communication to and from other agents.
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— A set of mechanisms for managing beliefs including: a learning mechanism,
a belief revision mechanism.

— A control component for combining, exploiting and supervising the above
components, based on control information aimed at improving the control
mechanism effectiveness.

Agents defined according to a model M will be referred to as M-agents.

2.1 About Beliefs

The set of beliefs expresses what the agent knows, can do and is able to remem-
ber. Thus, beliefs are not only facts but can also be: sets of facts annotated in
various ways (e.g. histories, preferences); modules including sets of rules and/or
procedural knowledge, capable in principle to exploit factual knowledge, possi-
bly with the help of annotations expressing preferences or biases about which
module to use when. Beliefs can be expressed by means of logical theories and /or
by means of other formalisms/languages. The agent life starts with an initial set
of beliefs that evolves over time according to the agent’s interactions with the
environment. These interactions are supported by the mechanisms of sensing,
actuating and communication, that will vary depending on the kind of world
where the agent operates.

The desires and intentions encode what the agent is doing or is intending to do
during its operation. They are the outcome of putting beliefs at work in a given
setting. The execution of intentions determines an evolution of the beliefs. This
in accordance to the given mechanisms for managing beliefs (learning and belief
revision), that affect what new knowledge an agent will acquire (which includes
what the agent is able/wishing to remember, and in which form) and how it will
process (by belief revision) its own knowledge, possibly by incorporating new
learned knowledge or by eliminating (forgetting) what is considered to be no
longer useful.

In fact (as discussed in depth in [3] and in the references therein), it is use-
ful for an agent to have a “memory”, that makes the agent potentially able to
learn from experiences and ground what is believed through these experiences.
Most methods to design agent memorization mechanisms distinguish among a
“working memory”, i.e., a workspace for reflective and reactive processes where
explicit design-based reasoning occurs, and the “stored” knowledge and experi-
ences. Stored items can be manipulated, interpreted and recombined to develop
new knowledge, assist learning, form goals, and support interaction with the
external environment.

The simplest way of defining the “static” agent memory [3]) is to see it as com-
posed of the original beliefs augmented with past events that record the external
stimuli perceived, the internal conclusions reached and the actions performed.
Past events can play a role in reaching internal conclusions. These conclusions,
that can be proactively pursued, can take the role of “dynamic” memory that
supports decision-making and actions.

With time, a past event can be overridden on the one hand by more recent
ones of the same kind (where the last one is the “current” one) and on the other
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hand by more recent ones of different kind, which are however somehow related
to it. The old version will be kept in case the agent has to maintain a record
of the state of the world and of its changes or otherwise they will be removed,
according to given conditions.

Concerning rules or sets of rules (or other forms of “procedural” knowledge),
if either they have not fulfilled the agent’s expectations or a better version has
been learned, then they can be de-activated and, later, even removed, again
according to specific conditions or properties that define their usefulness. This
topic will be further pursued in Section F] and has been discussed in [2].

2.2 About Control

The control component is responsible for deploying the other components of
the agent model, with the help of the control information, in order to render
the agent operative. The control mechanism usually guarantees liveliness (the
agent tries to stay alive at least until its objectives have been reached) and
decides which features have to be employed at each stage (according to pref-
erences). The control information may be partly provided in advance, e.g., by
indicating: which order, which priorities and which preconditions are to be as-
signed to the application of different control functionalities; and which is the time
limit or minimum frequency in performing some activities, for instance reaction.
Other control information can be generated by the control itself, e.g. concerning;:
whether an intention has either been achieved or is failed or is timed-out or is
still under work; whether constraint verification on some aspects of the agent
work has been successful or not. The control information could be seen as part
of the beliefs, and the beliefs themselves concur to form it, but we believe it is
useful to separate it.

2.3 Concrete Agent and Agent Evolution

A concrete agent program will result from the choice of a component for each of
the features of the model. An agent will then result from activating the control in
the context of an environment where the sensing, actuating and communication
capabilities can be put at work.

The working agent (following the concrete agent program according to the
underlying control) can be given a meaning (e.g. a semantics, or at least a de-
scription) in terms of either a declarative or an operational semantics, or by
means of some other characterization. The agent will in general pass through a
sequence of stages, in that it will be affected by the interaction with the envi-
ronment, that will lead it to respond, to set and pursue goals, to either record or
prune items of information, etc. This process, that we can call the agent life, can
be understood in at least two ways: the same agent proceeding into a sequence
of states, each state encoding the present version of beliefs, desires, intentions
and each state transition encoding what kind of control step has been done,
including steps of learning and belief revision; successive transformations of the
initial agent into new agents, that are its descendants in that the program has
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changed by modifying the beliefs, desires, intentions, and by learning and belief
revision steps; each transformation is determined by the step that has been done.
Formally, an agent starts from a program that defines it, according to the given
agent model.

Definition 2. Let M be an agent model. An agent program Paq is a tuple
(B,DI,5C,BM,CS,C,CI) of software components where BB is the set of beliefs,
DI the set of desires and intentions, CS the set of constraints, SC the sens-
ing, actuating and communication component, BM the belief management, C
the control component and CZ the control information. Fach component of the
tuple is defined (or omitted) according to M.

We can take the agent program Paq as the initial state of the agent where
nothing has happened yet. below, we represent an agent program simply as P
when M is clear from the context.

Definition 3. The initial agent Ay is an agent program P = (By, DIy, SCo,
BMy,CSo,Co,CLo).

The operational behavior of the agent will result from the control component
and the control information, which rely on the underlying control mechanism
that implements the operational counterpart of the agent model.

Definition 4. Given an agent model M, the underlying control mechanism 4™
(orU in short), able to put in operation the various components of M, is a trans-
formation function operating in terms of a set of distinguishable steps, starting
from Ay and transforming it step by step into Ay, As, ..., given C and CI as
defined in Ag, A1, As,. . . respectively.

Definition 5. Let M be an agent model, U the control mechanism associated to
it, and P an agent program. Then, ¥i > 0, Aiau(cichi)Ai_H.

Notice that the Ajs do not deterministically follow from Ay, as there is the
unforeseen interaction with the external environment, and the agent internal
choices that are not in general deterministic.

Each transition step can in principle modify all the agent components. The
most likely to be modified are the beliefs, desires and intentions but also the
constraints (by adding/dropping constraints) and the control information. How-
ever, the control component replacing itself appears to be awkward, circular
and not so easily feasible. Also, the agent evolution as defined above is deter-
mined on the one hand by interactions with the environment and on the other
hand by the agent inner non-determinism. One might wonder how the evolution
might be constrained to follow desirable directions or, symmetrically, to avoid
unwanted behavior. We will discuss in the rest of the paper possible enhance-
ments of the general agent model aimed at providing flexible and more powerful
control.
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2.4 Instances

Several agent models are in fact instances if the proposed abstract model. To
demonstrate this claim, we consider the following well-known and fully imple-
mented models.

The KGP agent model [5] is an instance of this abstract model. In fact, KGP
agents are equipped with the following components.

(1) A set of beliefs, equipped with a set of reasoning capabilities, for reasoning
with the information available in the agent state. These capabilities include Plan-
ning, Temporal Reasoning, Reactivity, Goal Decision, and Temporal Constraint
Satisfiability. The beliefs include a component (K By), recording any information
sensed from the environment, as well as a history of executed actions.

(2) A set of goals and plans; goals and plan components have associated times
and temporal constraints, inducing a partial order. The agent is committed to
all its goals and plans, at any given time.

(3) A sensing capability, allowing agents to observe their environment and
actions (including utterances) by other agents.

(3) An actuating capability, allowing agents to affect their environment (in-
cluding by performing utterances).

(4) Control information, including: a set of transition rules, changing the
agent’s state; the transition rules are defined in terms of the capabilities, and
their effect is dependent on the concrete time of their application; a set of selec-
tion functions to select inputs to transitions.

(5) A control component, for deciding which enabled transition should be next,
based on the selection functions, the current time, and the previous transition.
This component is defined in declarative terms [4].

The DALI agent model is also an instance of this abstract model in that in-
cludes: (i) A set of beliefs, including reactive rules, support for proactivity and
reasoning, planning, constraint satisfiability. Beliefs also include the past events
that record (with a time-stamp) what has happened in the past: events perceived
and reacted to, proactive initiatives, goals reached, etc. The past events can be or-
ganized into histories on which properties can be verified by means of constraints.

(ii) A sensing capability, allowing agents to observe their environment and
actions by other agents.

(iii) A set of constraints for verifying that the agent’s course of actions respects
some properties and does not present anomalies.

(iv) A learning component for recording past events and building histories;
a belief revision component for removing old information based on conditions.
More advanced components are also provided, for acquiring, testing and finally
either incorporating or dropping knowledge acquired from other agents.

(v) Control information defining: the frequency and the time intervals for
attempting specific goals, that trigger proactive behavior; which past events
should be recorded, and for how long they should be kept. These directives may
involve significant (temporal) conditions.

(vi) The control component is missing, as the control information is directly
exploited by the underlying control mechanism.
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3 Enhancing the Agent Model

We may notice that while beliefs, desires, intentions and interaction components
deal with the relationship between the agent and its environment, control deals
with the need that an agent has of self-activating and self-tuning its own behav-
ior, according to conditions that may vary over time. That is why in our general
model we have made aspects of control explicit. For the specific agent models
we have considered: KGP introduces a control theory that describes the control
behavior in terms of which transitions to activate when; DALI provides explicit
directives based on constraints so as to influence the standard behavior of an
underlying operational mechanism with respect to which activities are allowed
and at which frequency they should be attempted.

Then control, or at least the aspects of control which are made explicit, can be
seen as the meta-level part of the agent. However, the control component can affect
in general many aspects of the agent, besides its own behavior. It can supervise and
monitor the agent evolution and possibly verify some properties. However, in the
setting introduced up to now it can do so in only a pre-defined, hard-wired manner.

Going a step further, it can be useful to introduce a higher layer of meta-
control, where supervising, tuning and monitoring capabilities are made explicit.
In fact, as beliefs, desires and intentions change over time, more general forms of
change might occur. Every agent component might in principle be either changed
or replaced when needed, i.e., when either the agent evolution or environmental
changes call for these modifications. Below we list some potential higher-level
modifications that can be made by the meta-control.

(a) The control component itself can be chosen among different possible al-
ternatives: the control component presently at work can be replaced by another
one based on specific needs at certain stages of the agent life. For instance, an
agent may find itself in a critical situation where it needs to be quick and eager
on reacting, while later it may need to reason on what happened so as to set or
revise its goals, even at the expense of being slower in reaction.

(b) The components defining mechanisms for managing beliefs can be tuned
or replaced by others. For instance, with respect to learning, an agent at the
beginning of its life can be either poor of devoid of knowledge, and thus can be
wishful to acquire and incorporate new knowledge coming from its environment.
Later, when the agent becomes more knowledgeable and competent, it can choose
to be more cautious in incorporating external knowledge.

(c) Intentions can be filtered according to a posteriori preferences based on
how the plans are going on.

(d) High-level aspects of the agent behavior can be monitored, e.g. how many
goals are pursued, or how often a certain goal succeeds, or whether some general
properties are verified.

(e)In the beliefs, non-trivial modifications can also be made, for instance for
replacing/adding/dropping knowledge modules that were already available to the
agent, but had not been chosen in its first instantiations, or for adding/dropping
new knowledge modules that have been acquired by means of learning.
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4 Meta-control

In this Section, we explicitly augment the basic abstract agent model by formally
introducing the meta-control. We then discuss how the meta-control might be
exploited, and propose specific case-studies.

The meta-control acts by means of single steps, similarly to the control. We
may assume that also the meta-control, that we call MC, relies upon some
suitable form of control information that we indicate by MCZ. We assume to
perform some steps of meta-control after a number of steps of control. We do not
specify here how many these steps are: they may be specified either in advance
(built-in in &™) or in the control information. Accordingly, in the definition
below we assume that agent A; evolves through n; steps of control from stage
A; to stage A;yn,. Then, we assume that a number m; of meta-control steps
take place, until stage A; = Aijtn,+m,-

Definition 6. Let M be an agent model and UM be a control mechanism asso-
ciated to it. Let MC and MCZT be the meta-control and the meta-control infor-
mation, respectively, associated with M. Then, given an agent program P,

— the extended agent program is P, = (Pa, MC, MCI);

— the meta-control HM (H in short) associated with M is such that
H(MC, MCTI) denotes a transformation/transition function responsible for
the agent extended program;

— the operational behavior of the agent equipped with P, is obtained as
follows: Yi > 0 A; —U(CiCT) Aitn, —H(MCi, MCTs) Aj where A; =
Aitn;4m; andVk >0 A = <Bk,'DIk,SCk,BMk,CSk,Ck,CIk>.

Based on suitable meta-control information, the meta-control can be exploited
either in a domain-dependent or in a domain-independent fashion for supervising,
checking, tuning many aspects. To illustrate this point we will consider at some
length the following two possible applications of the meta-control.

— Detect anomalies in the agent behavior, concerning the management of
events and goals, and check temporal properties about the overall agent
life.

— In case of execution of parallel plans for goals that are not compatible (i.e.,
the agent may profit from keeping several ways open, before being forced
to choose eventually) evaluate the state of plans and consider whether one
should be chosen and the others dropped.

4.1 Detecting Anomalies, Checking and Enforcing Properties

Another example of the useful role that the meta-control can assume concerns
supervising how the agent itself proceeds and reflecting on the techniques that
are being used. The latter may lead to a reconfiguration of the agent by replacing
some of its components.
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Supervising activities may rely upon a meta-history generated during the
agent operation, that integrates in time the existing meta-control information
MCZ. For instance, the meta-history may contain a list of: which goals have
been set, at which time; which goals result to be successful/failed /timed-out, at
which time. Which incoming external events were known to the agent (and thus
has been reacted to) and which ones instead were unknown.

Various properties that should be respected by the agent behavior can be
expressed on the meta-history, also in terms of (adapted versions of) temporal
statements. We propose below some examples.

(1) There cannot be too many unknown events:
propl - ALW AY S § known evs > funknown evs
(2) A certain goal g should never fail or be timed-out:
prop2:- NEVER failed(g) ORtimed out(g)
(3) A certain goal g should eventually succeed (by time ¢):
prop3:- EVENTUALLY successful(g) : t
(4) A certain goal g should not fail too often (i.e., more than n times) in a time
interval t1 — ta:
prop4:- NEVERffailed(g) > n : t1 — to

If a property is not respected, the meta-control may take suitable countermea-
sures. One could be to inform either a supervisor agent or the user. Otherwise,
better, it might operate on the agent so as to try to enforce the properties for the
future. In the above cases, the following measures might be respectively taken:
(1), the learning module should be explicitly activated so as to learn reactive
rules for the unknown events; (2) the planning module should be replaced; (3)-(4)
preferences among goals should be modified, so as to give goal g higher priority.

The meta-control can also detect various anomalies in the agent behavior by
extracting information from the agent “memory” discussed in Section 2] (for an
extensive and formal discussion refer to [3]). In particular, let P be the set of
the last versions of past events and let PNV be the set of the previous versions
that have been kept.

Actions performed (or goals pursued) in an incorrect order. Suppose for instance
that an agent bought a goldfish and an aquarium. To keep the fish safe, it is
necessary to first fills the aquarium and then put the animal inside. So, the
expected action sequence will be (where actions are indicated by the postfix A
for the sake of readability): fill the aquariumy, put inside fisha.

In order to control the action execution correctness, one has to verify that
agent does not perform the second action before the first one. To this aim, we
can adopt the following existential constraint. It is based on the assumption
that every action, after being performed, is recorded in P as a past event (with
postfix P instead of A), associated to a time-stamp indicating when it has been
accomplished.

fill the aquariump : Ty < put inside fishp : Ta, {To < T1}.
It states that, if the agent has accomplished the action put inside fishA at the
time T» and the action fill the aquariumA at time T7; where 15 < Ti, then
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the action sequence is not correct and we are in the presence of Incorrect time
ezecution anomaly. The connective 3< indicates a constraint which is violated
whenever the left-hand side is implied by the current history and at least an
occurrence of the right-hand side is implied as well.

An action (goal) is executed (pursued) a number of times greater than an ex-
pected threshold. This anomaly is strictly related to PNV events. Consider for
instance an agent that has bought something, i.e., a car. It has to pay a number
of instalments during the current year. If it pays a further instalment, the ex-
pected behavior is violated, and the violation can be detected by the following
ezistential constraint. It controls whether the cardinality of the set of past events
pay instalment in PNV is greater than the threshold, in which case trying to
pay a further instalment constitutes a wrong behavior.
pay instalment(Value, Date))p : T 3 <
{N = AENV (pay instalment(Value, Date)), N > 20, T > 0}.

These Behavioral constraints are to be checked from time to time by the
meta-control in order to point out the anomalies and take appropriate counter-
measures.

4.2 Parallel Plans

Normally, a plan (intention) can be either under consideration, or successful, or
failed or timed-out. Let us us introduce the notion of feasible plan, namely a plan
where all preliminary non-committal actions have been successfully performed
(i.e., if the goal is to go to the theatre, a corresponding plan is feasible if by
calling the booking office we ensure that tickets are still available) but all proper
unrecoverable actions (i.e., buying the tickets) have not been performed yet. A
goal is feasible if it admits a feasible plan.

If we have a meta-control, instead of choosing the most preferred among a set
of goals and try to achieve it, a more general strategy can be adopted. The agent
might in fact try to achieve all goals in parallel, where however the achievement
process should be divided into two stages: (i) feasibility verification and (ii)
actual achievement of a feasible goal. The meta-control can (in the perspective
of resource-bounded reasoning) wait until some predefined time amount has
elapsed. Then, it can verify which of the attempted goals result to be feasible
at that time (the others will be considered to be timed-out). Finally, the meta-
control can choose the most preferred goal among feasible ones. This is the goal
which will actually proceed to be completed.

Assuming that the agent is able to exploit real parallelism in executing plans
(e.g., by means of delegation to “children” agents) we have the following:

Property 1. In presence of meta-control the number of achieved goals increases
or stays the same over time. It stays the same if the most preferred goal is always
feasible, strictly increases otherwise.

Notice that previously defined controls can take a role in enforcing the above-
defined property. In fact, ensuring that goal achievement proceeds without
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apparent anomalies brings advantages to subsequent goals that depend (explic-
itly or implicitly) on previous ones. E.g., referring to the above examples, the
goal of, for instance, saving a certain amount of money by the end of the year
becomes more feasible if one avoids useless expenses (like e.g., paying extra in-
stalments or making other expenses that can be catched by similar constraints).

5 Learning

In [I] we have introduced the possibility for an agent to learn reactive rules
and plans. Once acquired, the new knowledge is stored in two forms: as plain
knowledge added to the set of beliefs, so that the agent is able to use it and as
meta-information, that permits the agent to “trace” the new knowledge, in the
sense of recording what has been acquired, when and with what expectations.
The meta-control, if present, can exploit this meta-information to reason about
these aspects. If the agent should conclude that the new rules must be removed
because the expectations have not been met, the meta-information will be used
to locate the rules in the set of beliefs and remove them.

In [2] we envisage a setting where agents interact with users with the objective
of training them in some particular task, and/or with the aim of monitoring them
for ensuring some degree of consistence and coherence in user behavior. We
assume that agents are able to elicit (e.g. by inductive learning) the behavioral
patterns that the user is adopting, and are also able to learn rules and plans
from other agents by imitation (or by being told). An internal meta-control
component can perform an appropriate evaluation of the learned knowledge.

The meta-control may also manage social aspects. In fact, in many applica-
tions the role of the society is crucial. As a future development, we mean to
specify a meta-meta-control which is present in every agent which participates
in a society. This higher level should be responsible for social information ex-
change, by exploiting and developing techniques based on social evaluation and
consensus, involving credibility measures and overall preferences. According to
this vision, the society will have the role of proposing behavioral rules (that
are socially accepted) to its agents, which have the freedom to accept them in
accordance to their experience and to the type of user they are monitoring.

6 Conclusions

We have presented a very general, abstract agent model, and we have shown,
informally, how this general model instantiates to some existing agent models.
We have extended the model with “meta-control” features. We have argued
that this meta-control feature can be very useful for guaranteeing properties
of the agent behavior. In the future, we will study whether for particular in-
stances of the abstract agent model, it would be possible to prove concretely
these properties.
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Abstract. A rational agent adopts (or changes) its desires/goals when
new information becomes available or its “desires” (e.g., tasks it is sup-
posed to carry out) change. In conventional approaches on goal gen-
eration a desire is adopted if and only if all conditions leading to its
generation are satisfied. The fact that certain beliefs might be differently
relevant in the process of desire/goal generation is not considered. As a
matter of fact, a belief could be crucial for adopting a given goal but
less crucial for adopting another goal. Besides, a belief could be more
influent than another in the generation of a particular goal.

We propose an approach which takes into account the relevance of be-
liefs (more or less useful and more or less prejudicial) in the desire/goal
generation process. More precisely, we propose a logical framework to
represent changes in the mental state of an agent depending on the ac-
quisition of new information and/or on the arising of new desires, by
taking into account the fact that some beliefs may help the generation
of a goal while others may prevent it.

We compare this logical framework with one where relevance of beliefs
is not accounted for, and we show that the novel framework favors the
adoption of a broader set of goals, exhibiting a behavior which imitates
more faithfully how goals are generated/adopted in real life.

1 Introduction

Although there has been much discussion on belief change, goal change has not
received much attention. Most of the works on goal change found in the litera-
ture do not build on results on belief change. That is the case of [3], in which
the authors propose a formal representation for goals as rational desires and in-
troduce and formalize dynamic goal hierarchies, but do not formalize explicitly
beliefs and plans; or of [I0], in which the authors propose an explicit representa-
tion of goals suited to conflict resolution based on a preference ordering of sets
of goals. Another approach is [9], which models a multi-agent system in which
an agent adopts a goal if requested to do so and the new goal is not conflicting
with existing goals. This approach is based on goal persistence, i.e., an agent
maintains its goals unless explicitly requested to drop them by the originating
agent. The main lack of the above approaches is that they suppose that an agent
does not use its own beliefs for updating goals in a general way. The work pre-
sented in [5], which is an extension and an adaptation of framework [I1]], consists

R. Basili and M.T. Pazienza (Eds.): AT*IA 2007, LNAI 4733, pp. 133 1144] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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in constructing dynamically the goal set to be pursued by a rational agent, by
considering changes in its mental state. However, the fact that a belief might be
more or less relevant for a given goal generation process is not considered.

In this work, we consider the direct relevance relation among beliefs with
respect to a given goal, and how this relation influences the goal generation
process. We divide the beliefs influencing the generation of a goal into two parts
— the positive and the negative, which correspond, respectively, to beliefs which
favor the generation of a goal and beliefs which may prevent it. In previous works
on goal generation, positive (or negative) beliefs were implicitly represented by
beliefs which must be true (or false) for generating a goal. If one of the beliefs
does not abide by these requirements, the relevant goal is not generated. This is
a strong restriction to the goal generation process. Indeed, in real life, depending
on the importance an agent gives to each belief related to a goal, it may decide
to generate the goal even if not all those conditions are verified. When making
decisions or when choosing goals to realize, we often accept trade-offs. It is almost
always impossible to have everything we really want. When considering beliefs,
generating or not generating a goal depends essentially on the importance each
belief has for the agent with respect to the the goal to be generated.

Let us consider the following example which we will use throughout the paper.
Suppose you know one of your colleagues whom you trust is selling her house
while you are looking for a house. Of course, you have some preferences con-
cerning the house you would like to buy. Let us suppose that those preferences
are expressed by the following rule: “if the house has a garden, is in the center
of the town, and if it is not close to an airport, I would like to buy it”. If your
colleague tells you that the house has a garden and is in the center of the town
but close to an airport, what will you do? If the fact that the house is not close
to an airport is the most important requirement for you, you will never buy your
colleague’s house. Instead, if you deem more important to have a house with a
garden, it would not be unthinkable that you buy a house with a garden even if
it is close to an airport.

In this paper, we attempt to take into account this kind of relevance relation
among beliefs in the goal generation process.

2 Preliminaries

In this section, we present the formalism which will be used throughout the
paper. Such formalism is inspired by the formalisms used in [IIJ5]. However,
unlike [IT], but like [5], the objective of our formalism is to analyze, not to
develop, agent systems. Precisely, our agent must single out a largest set of goals
to be given as an input to a traditional planner component. That is because
the intentions of the agent are not considered. We merely consider beliefs (the
agent has about the world states), desires (or motivations) and relations (desire-
adoption rules) wich define how the desire base will change with the acquisition
of new beliefs and/or new desires. Unlike conventional approches [TII7IGI45]
in which all beliefs influencing the generation of a desire must be considered,
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here, we merely consider those which really influence the generation of the desire
according to a relevance relation among the beliefs.

2.1 Beliefs, Desires and Goals

The basic components of our language are beliefs and desires. Beliefs are rep-
resented by means of a belief base. A belief base consists of a consistent set of
propositional formulas which describe the information an agent has about the
world, as well as internal information. Desires are represented by means of a
desire base. A desire base consists of a set of propositional formulas which rep-
resent the situations an agent would like to achieve. However, unlike the belief
base, a desire base may be inconsistent, i.e., {®, =¢} may be a desire base. Goals,
on the other hand, are represented by consistent desire bases.

Definition 1 (Belief Base and Desire Base). Let £ be a propositional lan-
guage with T a tautology, and the logical connectives A and — with the usual
meaning. The agent belief base, denoted by o, is a subset of L, i.e., 0 C L.
Similarly, the agent’s desire base is denoted by -y, where v C L.

We use the modal operator B to talk about the belief base and D to talk about
the desire bases of an agent. Since the belief and desire bases of an agent are
completely separated, there is no need to nest the operators B and D.

Definition 2 (Belief and Desire Formulas). Let ¢ be a formula of L. An
element, B, of the set of belief formulas Lp and an element k of the set of desire
formulas Lp are defined as follows:

B = T|Bo|-Bo|f1 A Bz,
k= T|D¢|-Dg|k1 A Ka.

2.2 Relevance Relation Among Beliefs w.r.t. a Desire

We extend the notion of useful and prejudicial beliefs, implicit in conventional
approaches, by defining them as beliefs which may favor or prevent the gener-
ation of a desire. This is a more realistic setting, because it allows us to make
trade-offs among beliefs in general, and between useful and prejudicial beliefs in
particular, as it happens in real life. Indeed, even if a secondary useful belief is
false or a secondary prejudicial belief is true we often generate a desire anyway.
It all depends on the relevance/importance useful and prejudicial beliefs have in
the process of goal generation. We will assume that these two kinds of beliefs
are mutually exclusive for a given desire and, depending on the desire, a belief
may be more or less relevant than another. Useful beliefs will be said in the rest
of the paper positive beliefs (Pg), while prejudicial beliefs will be said negative
beliefs (Ng).

Definition 3 (Positive and Negative Beliefs). Given a belief 5 € L, let

— Pg denote the set of atoms B¢ such that the literal B¢ occurs in (3, and
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— Ng denote the set of atoms B¢ such that the literal ~B¢ occurs in (.

Note that a belief may be negative for a desire but positive for another.

Let us reconsider the example introduced in Section[Il Suppose you know one
of your colleagues whom you trust is selling her house while you are looking for
a house. Of course, you have some preferences concerning the house you would
like to buy. Let us suppose that those preferences are expressed by the following
rule for generating your desire “to buy a house”, bh: “if the house has a garden,
is in the center of the town, and if it is not close to an airport, I would like
to buy it”. If your colleague tells you the house has a garden and it is in the
center of the town but close to an airport, your beliefs will be that the house
has a garden (Bhg), it is in the center of the town (Bhc) but close to an airport
(Bha). Bhg and Bhc are positive beliefs, i.e., P3 = {Bhg, Bhc}, and Bha is a
negative belief, i.e., Ng = {Bha}. What will you do? Following a conventional
approach, you would not desire to buy your collegue’s house because it is close
to an airport! However, in real life this kind of rule is less restrictive in the sense
that you could decide to buy the house despite the fact it is close to an airport.
Indeed, if your dream is to own a house with a garden and if possible in the
center of the town, the rule would be expressed as “if the house has a garden,
maybe it is also situated in the center of the town, and, if possible, it is not close
to an airport, I would like to buy it”. This rule corresponds to the previous rule,
plus a relevance order among the beliefs. In this more realistic case, the answer
to the above question depends on how relevant the beliefs you dispose of are for
adopting your desire to buy that house. We define the relevance relation among
beliefs as follows:

Definition 4 (Relevance Relation Among Beliefs). Let ¢ € L be a desire,
B8, B’ € Lp be two belief formulas. B is at least as relevant as 3 for generating
desire ¢, noted 8 =4 (3, iff the information brought by 3 is at least as influential
for generating ¢ as the information brought by (.

Remark 1. For all belief 3(# T) € Lp we have § >4 T. This means that having
information is strictly more relevant than not.

In the example, if knowing that the house has a garden were more relevant for
you than knowing that the house is in the center of the town, this could be
represented by stating Bhg >, Bhe. Besides, if you could not stand loud noise,
this would be represented as Bha =, Bhg.

In the rest of the paper we will assume that an agent disposes of a total order
>4 on beliefs for every desire ¢. We can extend this relation from beliefs to sets
of beliefs.

Definition 5 (Most Relevant Formulas). Given a set B of belief formulas,
the subset of the most relevant formulas of B, noted MRF(B), is defined as
follows:

MRF(B) ={Be€ B: -3 € B, ~ 3}
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In the case of the example, MRF({Bhg, Bhc, Bha}) = {Bha}, if you cannot
stand loud noise, or MRF({Bhg, Bhc, Bha}) = {Bhg}, if your dream is to own
a house with a garden.

Definition 6 (Comparing Sets of Beliefs w.r.t. a Desire). Let B; and
By be two sets of beliefs. Let =4 be the relevance relation over the beliefs w.r.t.
desire ¢. By =4 B iff 30 € B : Vﬁ/ € By, 8 =4 ,6/.

Following [I1] and [5], the antecedent of a desire-adoption rule consists of a belief
condition and a desire condition; the consequent is a propositional formula. In-
tuitively, this means that if the belief and the desire conditions in the antecedent
hold, the formula in the consequent is adopted as a desire. Unlike in the above-
mentioned approaches, in which a belief holds if and only if all of its antecedent
conditions are satisfied, here we consider that a belief § holds if and only if the
most relevant positive beliefs in Pg hold and the most relevant negative belief
in Ng that holds is not more relevant than the most relevant positive beliefs.

Coming back to the example, if your dream is to own a house with a garden,
despite the information provided by your collegue that the house is close to an
airport, your belief 8 = Bhg A Bhc A =Bha holds.

Definition 7 (Desire-Adoption Rules). The language of desire-adoption
rules L is defined as follows: Lr = {3,k =7}, ¢ | B € Lp,k € Lp,¢p € L}.
The set of desire-adoption rules Rp of an agent is a finite subset of Lg.

The desire adoption rule for the house example may be represented as
Bhg ABhe A =Bha, T =1, bh with P3 = {Bhg, Bhc} and N3 = {Bha}.

Remark 2. Pz = () counts as T and Ng = () counts as L.

If the only information relevant for you is that you would not like that the house
were close to an airport, the rule may be written as -Bha, T :>E bh, with Pg = 0)
and Ng = {Bha}. Instead, if the only information relevant for you is that you
would like a house with a garden, the desire-adoption rule may be written as
Bhg, T =} bh with P3 = {Bhg} and Ns = 0.

Given a desire adoption rule R, we shall denote lhs(R) the antecedent of R,
and rhs(R) the consequent of R. Furthermore, if S is a set of rules, we define

rhs(S) = {rhs(R) : R € S}.

3 Mental State Representation

We assume that an agent is equipped with three bases:

— Belief base o C L;
— Desire base v C L;
— Desire-adoption rule base Rp.

The state of an agent is completely described by a triple S = (0,7, Rp).
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The belief base, o, represents the agent’s beliefs about the world, R p contains
the rules which generate desires from beliefs and other (more basic) desires, and
the desire base, «y, contains all desires which may be deduced from the agent’s
beliefs and the agents’s desire-adoption rule base. In addition, we assume that
an agent can be described using a relation of relevance among beliefs for every
desire ¢ € £ and a belief revision operator *, as discussed below.

The semantics we adopt for the belief and desire formulas are inspired by the
semantics of belief and “goal” formulas proposed in [TTI5].

Semantics of Belief Formulas. Let ¢ € £ and S = (0,7, Rp) be the mental
state of an agent. Let (1,02 € Lp and B be a set of belief formulas. The
semantics of belief formulas and sets of beliefs formulas is given as

SkEcy T,

SFrs B oo,

S Erp B & S W, B,

Skrs BiNP2 e SkEry frand S =ry B,
SkEr, B&VseB, Sk, b

Semantics of Desire Formulas. Let ¢ € £ and S = (5,7, Rp) be the mental
state of an agent. Let k1, k2 € Lp. The semantics of desire formulas is given as

SkEcp T,

Sk, Do I Cy: (v I Landy [ ¢),
S FErp, Do & S L, Do,

SEcrp kiNke & S Erp k1 and S 2, Ko

In [6l4] a rule R is said to be active in state S, noted by S =, lhs(R), if and
only if both, belief and desire conditions hold, i.e.,

S o lhs(R) < (S Frp B) AN (S Frp k).

With this definition, all belief literals in (3 of the form B¢ or -B¢ are regarded
as having the same importance in the desire adoption process. The fact that an
agent might adopt a desire/goal even if one of the beliefs in 3 were not satisfyed
could not be taken into account.

In the example, your rule for adopting the desire to buy the house 