
Chapter 8
GIS-MCDA for Group Decision Making

8.1 Introduction

The GIS-MCDA methods discussed in previous chapters were concerned with
decision situations involving an individual decision maker. Group decision making
is not so much concerned with the number of decision makers, as it is with the
homogeneity of their preferences. If a group of decision makers is characterized by
a mutually consistent set of preferences, then GIS-MCDA methods can be used for
solving decision problems irrespective of the number of decision makers involved
(see Sect. 2.2.1). However, conflicting preferences are the norm rather than the
exception. Spatial decisions are typically made by groups (multiple decision
makers) consisting of individuals who are characterized by conflicting preference
structures.

There are several conceptual frameworks available for multicriteria group
decision making including Social Multicriteria Evaluation (SMCE), Participative
Multicriteria Evaluation (PMCE), and Stakeholder Multicriteria Decision Aid
(SMCDA) (Munda 2008). Although there are some differences between these
approaches, the basic structure of group decision making under multiple criteria can
be conceptualized in terms of the three main components: decision alternatives,
evaluation criteria, and decision makers (decision making agents) (see Sect. 2.2).
GIS-MCDA methods for group decision making involve a set of geographically
defined alternatives (e.g., land parcels), a set of evaluation criteria on the basis of
which the alternatives are evaluated, and a group of agents (decision makers,
planners, experts, stakeholders). An alternative, Ai, is to be evaluated with respect to
a set of criteria, Ck, k = 1, 2, …, n (see Sect. 2.2.4). Accordingly, each alternative is
described by a set of values, aik, Ai = {ai1, ai2, …, ain}, where and aik is the level of
the k-th criterion of the i-th alternative. The group of decision-makers is denoted by
DMg, where g represents an individual involved in the group decision making
process: g = 1, 2, …, z. To choose a consensus or compromise alternative, the
individuals have to specify their own preferences and then the individual preferences
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are combined by means of a group choice function. Thus, there are g preference
ordering sets (P1, P2, …, Pz) in which, for a pair of Ai and Aj from a set decision
alternative, the individual DMg prefers either Ai and Aj, or Aj and Ai, or he/she is
indifferent between the two alternatives. The set of individual orderings is referred to
as the preference profiles. Given the set of preference profiles, the group choice
problem involves collective choice rules that produce group preferences from
individual orderings.

The basic structure of group decisionmaking under multiple criteria can be used as
a component of a variety of GIS-based modeling procedures. Two distinctive types of
those procedures are: (i) conventional GIS-MCDA methods for group decision
making, and (ii) spatial simulation (or geosimulation) methods. One of the main
distinctions between the two types of approaches is that the former methods are based
on the traditional notion of decision maker (see Sect. 2.2.1.1) and tend to focuses on
prescriptive-constructivemodeling (see Sect. 1.2.2), while the latter group ofmethods
involves the concept of a decision making agent (see Sect. 2.2.1.2) and descriptive-
normative modeling (see Sect. 1.2.1). Furthermore, conventional GIS-MCDA
methods for group decision making are spatially implicit (see Sect. 2.3.3.4), while
geosimulation methods consider spatial elements of decision problems explicitly (see
Sect. 1.4.2).

This Chapter provides a discussion of the most often used GIS-MCDA approa-
ches for group decision making. Section 8.2 presents a selection of conventional
GIS-MCDA methods that have been employed for tackling group decision making
problems. The main objective of these methods is to support the process of identi-
fying a consensus or compromise decision alternative by aggregating individual
preferences. Section 8.3 focuses on two related geosimulation approaches: cellular
automata and multi-agent based modeling from the perspective of GIS-MCDA
for group decision making. It also discusses geosimulation-based multiobjective
optimization approaches.

8.2 Methods for Aggregating Preferences

The main objective of a group decision making process is to reach a consensus or
compromise (Massam 1988; Kangas et al. 2008). This can be achieved by aggre-
gating individual preferences by means of a group (social or collective) scheme. The
aggregation procedure can be applied in different stages of the decision making
process. One can distinguish two types of GIS-MCDA procedures for group deci-
sion problems depending on the stage at which the aggregation of individual pref-
erences is performed (Kangas et al. 2008; Boroushaki and Malczewski 2010c). First,
the preferences of the individual decision makers are aggregated into a collective
group preference and then the group judgment is used within the conventional
GIS-MCDA (see Fig. 8.1a). In this approach, a group of individuals is considered as
a decision unit and any of the GIS-MCDA methods presented in Chap. 4 can be
employed for identifying an overall value for each decision alternative. Second, the
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decision problem is tackled by each decision maker separately, and then the indi-
vidual solutions are aggregated using a group choice rule (see Fig. 8.1b). In this case,
the alternatives can be evaluated by each individual using a method discussed in
Chap. 4, followed by a voting scheme; alternatively, an MCDA method for group
decision making (such as the group value function and group AHP/ANP methods)
can be used.

8.2.1 Group AHP/ANP

The AHP/ANP methods (see Sect. 4.3) are the most often used GIS-MCDA
approaches for tackling spatial decision problems in the group/participatory deci-
sion making setting (Estoque 2012). There are essentially two approaches for group
decision making with AHP/ANP: (i) the consensus approach involves debating the
individual judgments and voting until a consensus is reached, and (ii) the aggre-
gation approach involves synthesizing each of the individual’s judgments and
combining the resulting priorities. The consensus approach is based on the premise
that a group of individuals can generate a single hierarchical structure for a decision
problem. In the aggregation approach, each individual generates its own hierarchy
(or sub-hierarchy) of the decision problem’s elements.

Fig. 8.1 GIS-MCDA for group decision making: a individual preferences aggregated external to
the GIS-MCDA procedure, and b aggregation of individual preferences within the GIS-MCDA
procedure (Note C1, C2, …, Cn = evaluation criteria (criterion maps), and DM1, DM2, …,
DMz = decision makers)
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8.2.1.1 Consensus Approach: Single Hierarchy/Network

The AHP/ANP methods can be used as consensus building tools when a group of
individuals agrees on the hierarchical (network) structure of the decision problem
(Saaty 1980; Dyer and Forman 1992). The consensus AHP/ANP methods follow
the GIS-MCDA for group decision making framework shown in Fig. 8.1a (e.g.,
Levy et al. 2007; Ying et al. 2007; Hossain et al. 2009; Sharifi et al. 2009; Chow
and Sadler 2010). The underlying assumption is that the group of decision makers
agrees on the hierarchy structure of the problem and there is a consensus on the
values contained in the pairwise comparison matrix (see Sects. 2.3.2.2 and 4.3). If it
is impossible to achieve agreement on the judgments contained in the pairwise
comparison matrices, then the procedure for achieving a consensus among indi-
vidual decision makers can focus on the priorities of each participant. Such methods
as brainstorming, nominal group, or Delphi techniques can be employed for
defining the decision problem structure and deriving associated pairwise compari-
son matrices (e.g., Schmoldt et al. 1994; Strager and Rosenberger 2006; Ying et al.
2007). Once there is consensus regarding the problem structure and pairwise
comparison matrices, the group can act as a single decision maker using conven-
tional GIS-AHP/ANP for evaluating decision alternatives. This approach is often
employed in GIS-MCDA procedures for deriving criterion weights, which are
subsequently combined with criterion maps using a decision rule (see Sect. 2.3.3).

8.2.1.2 Aggregation Approach: Multiple Hierarchies/Networks

When individuals involved in a group decision making process cannot reach a
consensus regarding the problem structure, then the problem must be represented
by a set of hierarchies (or networks). Each member of a group acts individually and
develops his/her own hierarchical (network) structure of the decision problem.
Figure 8.2 gives an example of the hierarchical structure of a decision problem
involving two decision makers (or two groups of individuals), DM1 and DM2.
Although the two decision makers share a common goal, they structure the decision
problem differently. The sub-hierarchical structure of DM1 consists of two objec-
tives (1 and 2) and three associated attributes (1, 2, and 3) to be used for evaluating
four decision alternatives. The same problem is represented by DM2 with two
objectives (2 and 3) and two attributes (2 and 3).

AHP/ANP methods for aggregating multiple hierarchies/networks follow the
GIS-MCDA procedure involving a set of solution maps (see Fig. 8.1b). The
combination of the individual maps representing priorities obtained with AHP can
be performed using either an arithmetic or geometric mean. Although either mean
can be used, the geometric mean is recommended because it is more consistent with
both judgments and priorities in AHP (Forman and Peniwatib 1998). Specifically,
judgments are based on the pairwise comparisons that represent ratios of how many
times more important one element (e.g., criterion) is than another. Synthesized
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priorities assigned to decision alternatives are ratio scale measures representing how
many times more preferable one alternative is than the other. However, if the
individual judgments are to be aggregated, the geometric mean method must be
used to preserve the reciprocal property (Forman and Peniwatib 1998). Consider,
for example, two individuals with the following judgments in the pairwise com-
parison matrix: 5 and 1/5. Given the input data, the geometric mean method results
in 1.0 = (5 × 0.2)0.5, while the arithmetic mean is equal to: 2.6 = (5 + 0.2)/2. The
results indicate that the geometric mean value provide a sensible synthesis of the
two pairwise comparisons.

To illustrate the GIS-AHP method for group decision making, consider an
example involving two decision makers (DM1 and DM2) facing a problem of
evaluating three parcels of land (A1, A2, and A3). The hierarchical structures of the
problem for DM1 and DM2 are shown in Fig. 8.3a, b. The computational procedure
for obtaining the overall values of three alternatives for DM1 and DM2 is demon-
strated in Sect. 4.3.1 (see Fig. 4.4 and Table 4.2). Figure 8.3a, b show the overall
value of V(A3) = 0.670 > V(A1) = 0.581 > V(A2) = 0.266 for DM1, and V(A1) =
0.664 > V(A3) = 0.630 > V(A2) = 0.265 for DM2. Thus, the individual preferences
need to be aggregated to identify the best alternative. This is achieved using the
geometric mean method. For example, the weights assigned to Objectives 1 and 2
are aggregated as follows: (0.667 × 0.500)0.5 = 0.577 and (0.333 × 0.500)0.5 = 0.408;
and then the weights are normalized 0.577/(0.577 + 0.408) = 0.586 and 0.408/
(0.577 + 0.408) = 0.414 (see Fig. 8.3c and Table 8.1). The aggregation of individual
attribute weights is obtained in a similar way using the geometric mean method.

Fig. 8.2 Hierarchical
structure of group decision
making problem; DM1

decision maker 1, DM2

decision maker 2; aik is the
value of the k-th attribute
associated with the i-th
alternative (k = 1, 2, 3, and
i = 1, 2, 3, 4)
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Fig. 8.3 Hierarchical structures of GIS-based AHP model for two decision makers: a individual
decision making, DM1, b individual decision making, DM2, and c group decision making, DMg—
aggregation of individual preferences, DM1 and DM2, using geometric mean

Table 8.1 Group decision making, DMg (see Fig. 8.3c)

Objectives
wlg

Attributes
wk(l)g

Standardized
attribute values

Overall values

v(a1k) v(a2k) v(a3k) wlgwk(l)gv(a1k) wlg wk(l)gv(a2k) wlgwk(l)gv(a3k)

1 0.586 1 0.710 0.5 0.0 1.0 0.208 0.000 0.416

0.586 2 0.290 0.4 1.0 0.0 0.068 0.170 0.000

2 0.414 3 0.525 1.0 0.0 0.7 0.217 0.000 0.152

0.414 4 0.245 0.3 1.0 0.0 0.030 0.101 0.000

0.414 5 0.230 1.0 0.0 0.8 0.095 0.000 0.076

Sum 0.619 0.271 0.644
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The aggregate individual preferences provide a base for calculating the overall
value of decision alternatives as follows:

VðAigÞ ¼
Xn

k¼1

wlgwkðlÞgvðaikÞ; ð8:1Þ

where v(aik) is the value of the i-th alternative for the k-th attribute; wlg and wk(l)g is
the weights associated with the l-th objective (l = 1, 2, …, p); and the weights
assigned to the k-th attribute associated with the l-th objective. The aggregated
preferences of DM1 and DM2 result in the following ordering of the three alter-
natives: V(A3g) = 0.644 > V(A1g) = 0.619 > V(A2g) = 0.271 (see Fig. 8.3c and
Table 8.1). The geometric mean method for aggregating individual preferences has
been used in several GIS-based AHP applications (Schmoldt et al. 1994; Strager
and Rosenberger 2006; Nekhay et al. 2009; Moeinaddini et al. 2010).

8.2.2 Outranking Methods

Two outranking methods, ELECTRE and PROMETHEE (see Sect. 4.5), have been
integrated into GIS to support group decision making. These methods, like the
AHP/ANP techniques, can be used according two schemes: (i) a consensus on the
preference structure of decision makers is achieved first and then the group pref-
erences are used within the conventional outranking methods (see Fig. 8.1a), or
(ii) the individual decision makers solve the problem separately, and then the
individual solutions are aggregated (see Fig. 8.1b). The former approach has often
been applied by integrating GIS and ELECTRE (e.g., Joerin and Musy 2000; Joerin
et al. 2001; Norese and Toso 2004), while the latter has been more popular in
applications based on integrating GIS and PROMETHEE (e.g., Martin et al. 2003;
Ishizaka and Nemery 2013).

8.2.2.1 ELECTRE Group Method

The ELECTRE group method is often used in situations involving an analyst
(expert) and a group of agents (decision makers) (Kangas et al. 2001). Also, the
expert typically identifies the threshold values (see Sect. 4.5.1) while the decision
makers specify their preferences with respect to the evaluation criteria. Once the
individual preferences (weights) have been identified, they can be aggregated by
computing the median or mean of the individual preferences (Roy 1991). Alter-
natively, a group of individuals can use the conventional ELECTRE as a tool for
supporting consensus among individuals with conflicting preferences. This
approach is typically used in GIS-based ELECTRE applications (e.g., Joerin and
Musy 2000; Joerin et al. 2001; Norese and Toso 2004; Macary et al. 2010).
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Joerin and Musy (2000) and Joerin et al. (2001) provide an example of applying
GIS-ELECTRE for land-use suitability assessment. They developed a system called
MAGISTER (Multicriteria Analysis and GIS for Territory) for supporting a par-
ticipatory (group) decision making process. The main aim of the system is to
generate homogenous suitability zones for land use planning. Joerin et al. (2001)
suggest that the land suitability maps obtained with MAGISTER can provide a base
for integrating conflicting preferences and generating a group (consensus) solution
for land use planning problems. This type of approach can be referred to as map-
centered decision support (see Jankowski et al. 2001 and Chap. 11). The role of the
map as a tool for supporting decision making was also highlighted by Macary et al.
(2010) in the context of their GIS-ELECTRE approach for delimiting ‘zones’ of air
pollution. Norese and Toso (2004) integrated ELECTRE and GIS to support a
participatory decision process for locating an incinerator and waste disposal plant.
They demonstrated that the multicriteria (ELECTRE) approach can be used as a
tool for stimulating ‘communication’ between experts and interest groups. They
also signified a central role of GIS in improving and accelerating the group decision
making process.

8.2.2.2 PROMETHEE Group Method

The conventional PROMETHEE approach (see Sect. 4.5.2) has been extended to
group decision making problems (Macharis et al. 1998). It is known as the Group
Decision Support System (GDSS) PROMETHEE procedure. GDSS-PROMETHEE
involves three phases: (i) identifying decision alternatives and evaluation criteria,
(ii) evaluating alternatives by each decision maker applying the conventional
PROMETHEE, and (iii) aggregating the individual evaluations by combining the
individual net flows (see Eq. 4.26). The best alternative is the one characterized by
the highest combined net flow.

The PROMETHEE procedure for group decision making has successfully been
integrated with several GIS applications (e.g., Martin et al. 2003; Ishizaka and
Nemery 2013). Martin et al. (2003) developed an integrated decision aid system for
supporting land-use planning and management. Multicriteria analysis was then used
to evaluate and compare the scenarios according to eleven criteria, using a com-
bination of GIS analysis with MapInfo and multicriteria processing carried out in
PROMCALC & GAIA. This process leads to a partial ranking (PROMETHEE I)
and a complete ranking of the scenarios (PROMETHEE II) for each individual
decision maker, as well as for the whole group. Ishizaka and Nemery (2013) used
the GDSS-PROMETHEE approach for a site selection problem with GIS as a tool
for visualizing the results of group decisions and negotiations.
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8.2.3 Voting Methods

GIS-MCDA methods enhanced by voting procedures proved to be effective
approaches for tackling spatial decision problems in group, participatory, and
collaborative settings (Malczewski 1996; Jankowski et al. 1997, 2008; Chen et al.
2001; Feick and Hall 2002; Andrienko et al. 2003). The integration of GIS-MCDA
and voting techniques follows the two-stage procedure shown in Fig. 8.1b. Spe-
cifically, the decision problem is tackled by each decision maker separately, and
then the individual solutions are aggregated using a voting scheme. Each decision
maker can generate a solution map using a GIS-MCDA method. The solution maps
can then be translated into maps of ranked alternatives that can be aggregated using
a voting method or vote aggregation function to generate the group solution
map. One of two classes of voting schemes is typically used in the GIS-MCDA
approaches for aggregating individual preferences: (i) non-ranked methods such as
plurality and majority vote aggregation functions (see Sect. 8.2.3.1), and (ii) rank-
based voting methods such as Borda and Condorcet aggregation functions (see
Sect. 8.2.3.2).

8.2.3.1 Non-ranked Voting Rules

A non-ranked voting scheme selects an alternative that is considered the best by
most individuals. It is the binary decision rule. Each individual selects one decision
alternative from a set of alternatives. The alternative with the most votes is declared
the best alternative. Plurality and majority rules are the simplest and most often
used non-ranked methods. In the plurality voting procedure, each individual casts a
single vote. The alternative with most votes is the best one. The majority rule is a
specific case of plurality voting. It identifies an alternative that has been selected by
a majority (more than 50 % of the votes). When there are only two alternatives,
plurality is the same as majority voting.

An important consideration in aggregating individual preferences using a non-
ranked voting scheme is the property of transitivity. A group that is composed of
individuals with rational (transitive) preferences does not necessarily have rational
collective preferences. A paradox of intransitive preferences arises from the
aggregation of individual transitive preferences. For example, given a set of three
decision alternatives, A1, A2, and A3, a transitivity relation can be defined as fol-
lows: if A1 ≻ A2, and A2 ≻ A3, then A1 ≻ A3 (the symbol ≻ means ‘is preferred to’)
(see Sect. 2.3.2.2). Consider a decision situation involving three decision makers
(DM1, DM2, and DM3) and the following voting results: DM1: A1 ≻ A2 ≻ A3; DM2:
A2 ≻ A3 ≻ A1; and DM3: A3 ≻ A1 ≻ A2. One can observe that in a majority vote, A1

is preferred to A2 by a majority of two to one (the first and third individuals
preferring the alternatives in that order), and similarly A2 is preferred to A3 by a
majority, and A3 is preferred to A1 by a majority. Thus, there is no simple majority
winner. This result implies a circular preference among the alternatives, or the
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preference of the group is intransitive (Hwang and Lin 1987). It can be shown that
the probability of getting intransitive result increases with an increasing number of
alternatives (Arrow and Raynaud 1986). Consequently, one can suggest the chance
of intransitivity of the group preference in many GIS applications is very high. This
holds true especially in raster-based spatial decision making, when each location or
cell represents a decision alternative.

Another limitation of the non-ranked voting rules is that these methods use a
crisp value (threshold value) for defining a majority. These rules can be either
absolute (majority rule, more than 50 % of the votes) or relative (plurality rule, less
than 50 % of the votes). These voting methods have been extended using the fuzzy
set approach to address this limitation. Specifically, a majority degree is defined
using fuzzy linguistic quantifiers (see Sect. 7.3.3), which are linguistic terms such
as ‘most’, ‘at least half’, ‘much more than 50 %’, or ‘as many as possible’. A
linguistic statement can then be used to indicate a combination strategy to guide the
aggregation process of individual preferences. In a spatial decision setting, if Q is a
linguistic quantifier, then the quantifier aggregation can take the general form of the
following: Q of the decision makers are satisfied by location Ai; where Q is a term
such as ‘most’, ‘at least half’, ‘much more than 50 %’, ‘as many as possible’, etc.
(Yager 1996).

Faber et al. (1996) and Jankowski et al. (1997) provide the earliest applications
of non-ranked voting rules to GIS-based multicriteria decision support for group
decision making (see also Jankowski and Nyerges 2001; Jankowski et al. 2008).
Boroushaki and Malczewski (2010c) implemented the concept of fuzzy majority in
ArcGIS as a MultiCriteria Group Analyst (MCGA) extension. The MCGA proce-
dure involves two major steps: (i) creating solution maps according to the indi-
vidual decision-makers’ preferences, and (ii) deriving the group solution using the
fuzzy majority approach (see Fig. 8.1b). Specifically, the procedure applies a
quantifier-guided OWA operator (see Sect. 7.3.3) for generating the solution maps
according to the individual preferences, and then the fuzzy majority approach is
employed for aggregating the individual preferences. Boroushaki and Malczewski
(2010a) provide a computational example of the procedure using a hypothetical
land suitability problem. The system has been applied to a real-world site selection
problem (Boroushaki and Malczewski 2010a, b, c; Meng and Malczewski 2010a,
b). An application of a group decision making approach for fuzzy modeling is given
in Rajabi et al. (2012). They successfully applied the MCGA procedure for map-
ping and identifying locations (areas) at risk of a vector-borne disease.

8.2.3.2 Rank-Based Voting Rules

The main problem with the plurality method is that it takes into account only the
first choices (the most preferred alternative by each individual). The rank-based
voting schemas address this problem by allowing each individual to rank the
decision alternatives in order of preference (Hwang and Lin 1987). The methods are
also known as preferential voting. The Borda count method (or Borda social
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preference function) is the simplest rank-based voting system (Hwang and Lin
1987; Massam 1988). It is also the most often used in GIS-MCDA procedures for
aggregating individual preferences (e.g., Malczewski 1996; Jankowski et al. 1997,
2008; Jankowski and Nyerges 2001; Feick and Hall 2002; Gorsevski et al. 2013).
For a set of decision alternative (A1, A2, …, Am), the Borda function assigns a point
value of m − 1, m − 2, m − 3, …, 1, 0 to the most preferred alternative, the second
most preferred alternative, …, the least preferred alternative for each individual,
g = 1, 2, …, z. The Borda score is then determined by the sum of individual point
values for the i-th alternative. The alternative with the maximum Borda score is the
most preferred choice according to group preferences.

The Borda count method is often used as a procedure for aggregating individual
preferences according to the two-stage approach, shown in Fig. 8.2b. Specifically, a
conventional GIS-MCDA method is employed for obtaining the individual rankings
of alternatives (individual solution maps), which are subsequently aggregated by
calculating the Borda score for each alternative (group solution map). Malczewski
(1996) integrated the ideal point method (see Sect. 4.4) and the Borda social choice
function in the context of land suitability problem. A set of group/collaborative/
participatory spatial decision support tools has been proposed by Jankowski
and associates in their GIS-MCDA systems (e.g., Jankowski et al. 1997, 2008;
Jankowski and Nyerges 2001). These tools provide a combination of conventional
MCDA methods (such as WLC and ideal point) and voting methods (such as the
Borda choice function). Jankowski et al. (1997) demonstrate the use of a spatial
decision support system for groups for prioritizing habitat site development (see
also Jankowski and Nyerges 2001; Andrienko et al. 2003). Jankowski et al. (2008)
proposed a Web-based spatial multiple criteria evaluation tool for individual and
group decision making. The system integrates the capabilities of TOPSIS for
individual MCDA and a modified version of the Borda method for aggregating
individual preferences. Chen et al. (2001) developed a multicriteria evaluation
system for risk-based decision making in the context of natural hazards. The system
integrates WLC (see Sect. 4.2), TOPSIS, and compromise programming (see Sect.
5.3.2) as methods that can be used for generating the individual rankings, which are
then combined using the Borda count method to produce a consensus ranking.

Feick and Hall (2002) developed a GIS-MCDA system to evaluate sites for a
new tourism development. The system integrates two MCDA methods, WLC and
concordance analysis (see Sect. 4.5), and two voting rules: the Borda and Copland
counting functions for generating group-wide rankings of alternatives (see also
Feick and Hall 2004). The Copland rule is an alternative to the more popular Borda
function. It is a pairwise aggregation method that selects the alternative with the
largest Copeland score. The Copeland score for a given alternative is defined as
the difference between the number of times the alternative is ranked higher than
other alternatives and the number of times that alternative is ranked lower than other
alternatives when the alternatives are considered in pairwise comparisons (Hwang
and Lin 1987). The results of an empirical study of a small group of individuals
representing different interests show a high degree of correspondence between the
Borda and Copeland rankings (Feick and Hall 2002). They also show the Borda
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method is more likely to promote compromise alternatives than the Copeland
method. These findings support earlier comparative studies of the two voting
methods (see Hwang and Lin 1987, p. 40). One drawback of the Borda scheme is
that the outcome it selects is susceptible to strategic manipulation; for example, the
results can be manipulated by including additional alternatives. Another drawback
is that an individual can deliberately assign low ranks to alternatives, which may
threaten his/her own most preferred options (Hwang and Lin 1987; Feick and Hall
2002).

The main advantages of voting approaches for GIS-based collaborative/
participatory decisionmaking are their simplicity and comprehensibility (Malczewski
2006). Janssen et al. (2005) suggest that collaborative spatial decision making does
not have to involve complex multicriteria modeling. It can capture sufficient details
from negotiations and deliberations in such a way that there would be no need for
more sophisticated multicriteria decision modeling and aggregation (Jankowski and
Nyerges 2001; Janssen et al. 2005; Nyerges and Jankowski 2010). On the other
hand, simplification of the multicriteria decision modeling may result in the trivi-
alization of the decision making process. It can also increase the risk of missing
essential information about the decision making process (Carver 1999).

Both rank-based and non-ranked voting systems are subject to a number of
conceptual and theoretical difficulties. The principal difficulties are the intransitivity
or paradox of voting and Arrow’s impossibility theorem (Arrow 1951; Hwang and
Lin 1987). The decision analysis procedures, including individual preference
aggregation functions, typically require the simple and logical condition of tran-
sitivity. However, individual rationality is insufficient to ensure group rationality;
that is, the existence of individual preferences does not imply the existence of a
group preference with properties similar to those of the individual preferences. This
is illustrated by the well-known intransitivity or Condorcet paradox (see
Sect. 8.2.4.1). Arrow (1951) demonstrated through his impossibility theorem that
there is no acceptable mechanism for aggregating ordinal preferences that would
conform to social choice. The procedures for aggregating cardinal preferences (the
value/utility-based methods) have similar limitations, mainly related to the difficulty
of interpersonal comparisons (Keeney and Raiffa 1976). The intransitivity problem
can be avoided if alternatives are not compared simultaneously but rather one-
by-one and sequentially, although it can be demonstrated that the order of com-
parison has a direct effect on the ranking of the alternatives (Hwang and Lin 1987).

Given the limitations of voting systems, some researchers suggest that these
methods should be used as techniques for facilitating discussion and negotiation,
rather than as prescriptive measures (e.g., Jankowski and Nyerges 2001; Meeks and
Dasgupta 2004; Malczewski 2006; Nyerges and Jankowski 2010). This process can
be supported by visualizing the collective solutions with special-purpose maps for
geographically representing consensus solutions (Jankowski et al. 2001; Armstrong
and Densham 2008) and argumentation mapping (Rinner 2001; Rinner et al. 2008).
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8.3 Geosimulation Methods

Spatial simulation (or geosimulation) methods have recently emerged as a platform
for integrating MCDA into group (social or collective) decision making. The prin-
cipal purpose of using MCDA in spatial simulation approaches is to define the rules
of behaviour for decision making agents (see Sect. 2.2.1.2). The MCDA methods (or
multicriteria decision rules) are used for describing and understanding decision
making and its consequences through a simulation model. They are employed as
descriptive-normative modeling tools (see Sect. 1.2.1). Unlike the conventional GIS-
MCDA methods for group decision making (see Sect. 8.2), the simulation based
GIS-MCDA approaches are spatially explicit, in that the outcome of the decision
process depends on spatial arrangement of decision alternatives (e.g., alternative
patterns of land use). These approaches meet the requirements of spatially explicit
models as specified in Sect. 1.4.2. There are two geosimulation methods: cellular
automata and agent-based modeling.

8.3.1 Cellular Automata

Cellular Automata (CA) is a dynamic discrete system that typically operates on a
uniform grid-based space by implementing local decision rules. At the most rudi-
mentary level, a CA model consists of the following elements: (i) a two-dimensional
cellular space divided into independent units (an array of cells or a raster grid),
(ii) each cell has a state (the number of state possibilities is typically finite), (iii) each
cell has a neighbourhood (e.g., the neighbourhood consists of the eight cells sur-
rounding the centre cell), (iv) transition rules are applied to each cell and its
neighbourhood to define the state of the cell in the next iteration, and (v) time
progresses uniformly, and at each discrete time step, all cells change state simul-
taneously (Engelen et al. 1997; Liu 2009). From the perspective of MCDA for group
decision making, the concepts of cell (and its state) and transition rule are of central
significance.

The cells can be considered decision making agents (Li and Liu 2007). CA uses
simple agent models, specified in terms of a decision rule attached to the cells. The
system can involve two or more agents. In the simplest example of two possibilities
of 1 and 0 (e.g., developed versus undeveloped lands), there are two groups of
agents associated with the two categories of cells (Batty and Xie 1994). Similarly,
in an application involving four land uses (e.g., residential, commercial, industrial,
recreational), the cells can be thought of as four groups of agents representing
stockholders searching for a suitable location (Li and Liu 2007; Long and Shen
2012). The states of the cells (agents) are updated according to a set of deterministic
or probabilistic local decision rules. Specifically, the state of a cell at a given time
depends only on its own state at the previous time step and the states of its nearby
neighbours at the previous time step. All cells of an automaton are updated
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synchronously in parallel. Thus, the state of the entire automaton advances in dis-
crete time steps. The global behaviour of the system is determined by the evolution
of the states of all cells as a result of multiple interactions (Batty and Xie 1994;
Li and Yeh 2000).

The state of the i-th cell at time T + 1 is defined as a function of the state of the
cell and its neighbourhood at T according to the following set of transition rules
(Wu 1998; Yu et al. 2011):

STþ1
i ¼ f ðSTi ;QT

i ; TRÞ ð8:2Þ

where STþ1
i and STi are the states of the i-th cell (land use) at the time T + 1 and T,

respectively (i = 1, 2, …, m), the cell designated by i = 1 is the top left-hand corner
of a grid-cell map and the cells are numbered left-to-right for each row; the cell m is
located in the bottom right-hand corner of the grid); QT

i is the state (development
situation) in the neighbourhood of the i-th location, and TR is the transition rules.
The state of the i-th cell at the time T + 1 can be defined in terms of land conversion
probability by summarising the three independent variables (STi , Q

T
i , and TR) as

follows:

STþ1
i ¼ f ðPT

i Þ ¼ f ðVðAT
i ÞÞ; ð8:3Þ

where PT
i is the land conversion probability at the i-th location and the time T, and

VðAT
i Þ the overall value (or land suitability) of alternative, AT

i ; at the time T. The
value of VðAT

i Þ can be obtained using MCDA models such as WLC (see Sect. 4.5).
The CA-WLC model is defined as:

VðAT
i Þ ¼

Xn

k¼1

wkvðaTikÞ; ð8:4Þ

where vðaTikÞ is the score of development factor k at the i-th location at time t; aTik is a
feasible value of criterion k associated with the i-th location at time t (the feasible
cells can be identified using one of the methods presented in Sect. 2.2.3.1); wk is the
criterion weight (see Sect. 2.3.2).

The central issue in integrating MCDA such as WLC (Eq. 8.4) into CA is the
procedure for estimating the criterion weights wk. The pairwise comparison pro-
cedure (see Sect. 2.3.2.2) has been the most often used approach for obtaining the
weights (e.g., Wu 1998; Wu and Webster 1998; Li and Liu 2007; Kamusoko et al.
2009; Vaz et al. 2011; Yu et al. 2011; Ozah et al. 2012; Lai et al. 2013; Shafizadeh-
Moghadam and Helbich 2013). Wu (1998) developed a system by integrating the
pairwise comparison procedure into GIS-based CA for simulating land conversion
in a fast growing urban region (see also Wu and Webster 1998). A similar approach
has been applied for simulating an evaluation of irrigated cropland suitability (Yu
et al. 2011). Myint and Wang (2006), Kamusoko et al. (2009), and Ozah et al.
(2012) integrated a GIS-based CA model, the Markov chain analysis and pairwise
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comparison procedure, for analyzing the land-use change in a rural region (see also
Munday et al. 2010; Shafizadeh-Moghadam and Helbich 2013).

There are several advantages of integrating MCDA into GIS-based CA (Wu
1998; Jiao and Boerboom 2006; Yu et al. 2011; Lai et al. 2013; Cao et al. 2014).
The multicriteria approaches improve the procedures for calibrating CA parameters
(Cao et al. 2014) and providing behaviour-driven transition rules, as opposed to the
traditional data-driven methods such as multiple regression analysis and principal
components analysis (see Liu 2009). This allows for a more realistic definition of
transition rules in CA by taking into consideration the characteristics of the decision
making process (Jiao and Boerboom 2006). The GIS-MCDA approach, integrated
with CA, provides an effective and efficient tool for generating different planning
scenarios and performing a what-if type of analysis. A disadvantage of CA
modeling is that the group decision making process is present only implicitly
(Ligtenberg et al. 2000). This limitation can be addressed by multi-agent modeling,
which offers a conceptual and methodological approach to include the multiple
actors (agents) into dynamic spatial models of decision making (Ferrand 1996;
Parker et al. 2003; Torrens 2002; Ligtenberga et al. 2004).

8.3.2 Multi-agent System

Agent-based modeling (ABM) can be considered an extension of CA. Although an
agent is characterized by all of the features of a basic automaton, there are some
important differences between CA and ABM (Torrens 2002). In the CA model, a
cell (automaton) has a fixed location in its simulated space and the capability of
interacting with and diffusing state information to neighbouring cells. Unlike the
case of CA, in agent-based modeling, the agents are designed as movable individual
entities capable of spatial behaviour, and can manifest more complex forms than
simple relocation. Consequently, the states S (see Eq. 8.2) can be designed to
represent characteristics of human decision makers. Also, the transition rules (TR)
can be operationalized to represent complex human-like behaviours. Real-world
ABM applications typically involve a group of agents. A multi-agent system
(MAS) consists of multiple heterogeneous, autonomous, goal-oriented entities that
operate and interact in a common environment (Parker et al. 2003). An agent is a
computational entity or small software program (see Sect. 2.2.1.2). It acts upon its
environment and behaviours depending on its own experience. As an intelligent
entity, an agent operates flexibly and responds to a changing environment. The
agents represent individuals (e.g., households) or other actors (e.g., plants) in a
simulated real world environment. For example, the environment might represent
an urban area and agents might represent the interest groups involved in land use
planning. Specifically, the spatial agent-based models acknowledge the fact that
land use emerges from decentralized human decisions. Accordingly, ABMs attempt
to capture essential features of human–environment interaction by providing means
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for including human decision making without losing the strength of the concept of
self-organization underling the CA approaches.

The agents can act according to two basic forms of group decision making:
cooperation (e.g., Bone and Dragićević 2010; Chen et al. 2010), and competition
(e.g., Ligmann-Zielinska 2009). In the former case, a group of agents works
together and draw on their knowledge and capabilities to attain a common goal,
which can be achieved by a set of objectives (e.g., designing the best pattern of land
uses or minimizing travel distance). In a competitive situation, the agents are
characterized by conflicting objectives. Consequently, they act against each other
attempting to maximize their own benefit. In either of the two situations, ABM
involves an iterative procedure, which typically proceeds through discrete time
steps. Also, like in CA, any number of transition rules can be devised to govern the
activities of agents (Torrens 2002). Similarly to CA, the MAS agents exist in a
geographic space and their behaviour is driven by transition rules.

Ferrand (1996) was the first to propose a framework for integrating GIS-MCDA
and MAS for group decision making (multi-actor spatial planning). Subsequently, a
number of studies have demonstrated the usefulness of combining these two
approaches for tackling spatial decision problems (e.g., Ligtenberg et al. 2001;
Ligmann-Zielinska 2009; Demircan et al. 2011; Sabri et al. 2012). Ligmann-
Zielinska (2009) provides an example of using the ideal point method (see Sect. 4.5)
within a multi-agent modeling approach for simulating land use patterns. The ANP
and AHP methods (see Sect. 4.3) have been integrated into MAS for evaluating
gentrification plans and simulating urban growth patterns, (see Sabri et al. 2012 and
Arsanjani et al. 2013, respectively). While all those applications involve land use
context, Demircan et al. (2011) employed GIS-MCDA and MAS for a network
problem finding an optimum route for electrical energy transmission.

The synergistic effects of integrating GIS-MCDA into spatial simulation methods
can be enhanced by combining CA and multi-agent modeling (e.g., Ligtenberg et al.
2001; Li and Liu 2007; Ligmann-Zielinska 2009; Sabri et al. 2012). The motivation
behind integrating CA and ABM is that they are complementary modeling strategies.
They can be integrated into a geographic automaton system where some agents are
fixed while others are mobile (Torrens 2002). Ligtenberg et al. (2001) provide an
example of an integrated CA and MAS approach and the use of GIS-based MCDA
techniques for group (collective) decision making. The study aims at developing
alternative scenarios for land uses in the region based on preferences of interest
groups/stakeholders. The agent-based decision making procedure consists of two
main steps: individual and group decision making tasks (similar to the framework in
Fig. 8.1b). The individual decision making tasks involve constructing the agent-
specific land use pattern. The conflicts among agents over alternative land use
allocations are resolved by a progressive voting procedure (see Sect. 8.2.3).

The main advantage of an integrated geosimulation and GIS-MCDA is that it
provides a tool for developing dynamic models that combine spatially explicit
processes using the automaton techniques and actor (stakeholders) interactions by
applying the multi-agent technology. Studies about integrating GIS-MCDA into
agent-based modeling provide a significant contribution to the spatial decision
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analysis literature. From the perspective of spatial simulation,MCDA can be seen as a
set of tools for defining the behaviour of decision making agents. On the other hand,
the simulationmethods provide a platform allowing for spatial aspects of multicriteria
decisions to be considered explicitly. It also lends a dynamic component to the
otherwise static nature of GIS-MCDA. An integrated GIS-MCDA and MAS
approach can be used for exploring complex large-scale (global) spatial structures that
emerge from local decision making processes. However, global patterns are unlikely
to result from local decision making processes alone (Ligtenberg et al. 2004). This
bottom-up approach to spatial modeling limits the capability of multi-agent simula-
tion methods as a tool for analyzing complex spatial decision problems. This draw-
back can be addressed by integrating the large-scale (bottom-up) geosimulation
methods and the top-down multiobjective optimization procedures.

8.3.3 Geosimulation and Multiobjective Optimization

There has recently been a growing interest in advancing GIS-MCDA by integrating
geosimulation (CA and MAS) with multiobjective decision analysis (MODA)
methods (e.g., Ward et al. 2003; Trunfio 2006; Castella et al. 2007; Bone and
Dragićević 2009; Ligmann-Zielinska and Jankowski 2010; Chen et al. 2010; Bone
et al. 2011; Fotakis and Sidiropoulos 2012; Feng and Liu 2013). Geosimulation and
MODA (see Chaps. 5 and 6) have traditionally been considered two idiosyncratic
approaches for analyzing and solving decision problems. The concepts of bottom-
up simulation and top-down optimization are the main distinctive features of the
two modeling frameworks (Castella et al. 2007; see Table 8.2). Geosimulation
methods aim at describing and explaining spatial patterns in terms of principles of
self-organized systems. A fundamental characteristic of geosimulation models is

Table 8.2 Selected characteristics of geosimulation and multi-objective optimization methods

Models Characteristics

Geosimulation modeling: cellular automate
(CA) and multi-agent system (MAS)

Descriptive/exploratory modeling
Bottom-up approach
Collective spatial decision making process
Local-scale spatial process
Symbolic representation of society

Multiobjective decision analysis (MODA) Normative/prescriptive modeling
Top-down approach
Semi-automated designing of spatial patterns
Large-scale spatial structure
Non-dominance of solutions

CA/MAS and MODA Complementarity and synergy
Static form and dynamic process
Multiple compromise spatial solutions
Comprehensive policy modeling

Source Based on Ligmann-Zielinska and Jankowski (2010, p. 410)
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that they incorporate dynamic aspects of spatial structures where a large- (regional-)
scale spatial pattern is generated as an outcome of local- (neighbourhood-) scale
decision making processes (Ward et al. 2003; Bone et al. 2011). Spatial multiob-
jective optimization provides the top-down modeling framework for generating
spatial structures based on a set of relevant objectives (criteria). Unlike the geo-
simulation approaches, the MODA models typically represent static structures
rather than the decision making processes. They focus on generating non-
dominated solutions and examining the trade-off between objectives (Ligmann-
Zielinska and Jankowski 2010; Bone et al. 2011).

The characteristics of geosimulation and MODA suggest the two approaches are
complementary methods (Ligmann-Zielinska and Jankowski 2010; Bone et al.
2011). Indeed, one can achieve a synergistic effect by integrating the two modeling
frameworks. This has been demonstrated by several studies about combining CA
and MODA (e.g., Ward et al. 2003; Fotakis and Sidiropoulos 2012) and MAS and
MODA (e.g., Castella et al. 2007; Bone and Dragićević 2009). For example, the
classic multiobjective optimization (mathematical programming) methods have
been integrated with CA (Ward et al. 2003) and agent-based modeling (Castella
et al. 2007; Chen et al. 2010; Ligmann-Zielinska and Jankowski 2010). Ward et al.
(2003) and Castella et al. (2007) applied simulation-based multiobjective optimi-
zation models for analyzing land use changes in the context of urban growth and
management of natural resources, respectively. Ligmann-Zielinska and Jankowski
(2010) developed a multiobjective land use allocation model, which was employed
as a tool for generating a set of solutions (or land use plans) to account for varying
viewpoints of potential stakeholders. The land attributes (land value, attractiveness,
and accessibility) that correspond to the objectives of the land use optimization
model are then used as evaluation criteria by the developer agents. The agents
operate on a cellular (raster) space to identify the best land use pattern according to
their preferences and perceptions of risk associated with the property investment.
An ideal point method (see Sect. 4.4) modified to account for these different atti-
tudes to risk (see Sect. 2.3.1.1) is used by the agents as a decision rule.

Given the computational limitations of the classic optimization methods (see
Chap. 5), spatial decision problems are often tackled by heuristic procedures (see
Chap. 6). Bone and Dragićević (2009) developed a model in which agents repre-
senting individual stakeholders have their actions evaluated by algorithms based on
reinforcement learning (RL) (see also Bone et al. 2011). The RL procedure is a
multiobjective heuristic method used to reward decisions made by individual agents
that lead to achieving specific objectives. The utility of this approach has been
demonstrated in the context of a multiobjective decision problem for natural resource
allocation. Li et al. (2011a, b), Fotakis and Sidiropoulos (2012), and Feng and Liu
(2013) provide examples of coupling agent-based models with meta-heuristic pro-
cedures. Li et al. (2011a) have integrated cellular automata and ant colony optimi-
zation procedures to solve complex path optimization problems (see Sect. 6.3.4).
The cellular automata approach has been coupled with a simulated annealing pro-
cedure (see Sect. 6.3.2) for modeling urban land-use changes (Feng and Liu 2013).
Fotakis and Sidiropoulos (2012) proposed the CA-based spatial optimization model
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using non-dominated sorting genetic algorithm or NSGA-II (see Sect. 6.3.1.8) for a
groundwater management problem (see also Trunfio 2006).

Chen et al. (2010) demonstrated the usefulness of MAS for tackling a land
allocation optimization problem. The results of their computational experiments
show that the simulation-based optimization procedure generates solutions (land
allocation patterns) similar to that obtained with the exact mathematical program-
ming methods (see Chap. 5). The approximate solution generated by MAS can be
interpreted from the perspective of game theory. Compared to the game procedures,
the most distinctive feature of MAS proposed by Chen et al. (2010) is related to the
interactions among the individual agents. While the game procedures are typically
based on the assumption of competitive agent interactions, MAS generates solu-
tions by a joint action (cooperation) of the agents. Notice that some of the meta-
heuristic methods, such as swarm intelligence procedures (see Sect. 6.3.4), are also
based on strategies involving cooperation among agents.

The integrated geosimulation-multiobjective optimization methods provide a
significant contribution to applied GIS-MCDA. While the multiobjective optimi-
zation procedure generates a set of non-dominated solutions and allows for ana-
lyzing trade-off between conflicting objectives, geosimulation provides an effective
tool for exploring a variety of decision making scenarios and facilitating the process
of identifying a compromise solution. The two modeling paradigms complement
each other (Table 8.2). Complementarity is the primary source of synergy between
the two methods. The synergistic effects manifest themselves in mutually reinforced
conclusions that one can be derived from geosimulation and multiobjective opti-
mization analysis. The normative results (recommendations) of multiobjective
optimization can be strengthened by a complementary multi-agent, process-oriented
modeling of the decision making process.

As with any heuristic method, the geosimulation-based multiobjective optimi-
zation approach is not without its problems. First, although there is some evidence
to show that the methods generate good approximation of the exact solution to
complex spatial problems (e.g., Chen et al. 2010), the approach does not guarantee
more accurate decision making; even though one can expect that it should provide
for more informed decisions. Second, the geosimulation technology can be criti-
cized for its ‘black box’ style of spatial analysis (O’Sullivan and Unwin 2010).
Third, the approaches are largely inaccessible to non-experts. If it is difficult to
clearly present and explain the internal workings of the modeling framework, it is
unlikely that a solution, or a set of solutions, obtained by geosimulation-based
multiobjective optimization will be acceptable to those who make decisions.

8.4 Conclusion

This chapter provided an overview of methods for groups of decision makers. It
focused on two distinctive classes of GIS-MCDA procedures for groups: conven-
tional methods for aggregating preferences and geosimulation-based modeling.
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The former includes conventional GIS-MCDA methods (see Chap. 4) that have
been adapted for tackling conflicting preferences in a group decision making set-
ting. This class of methods is based on the traditional notion of decision makers
(interest groups) and tends to focus on prescriptive-constructive modeling. AHP/
ANP and outranking methods, along with voting schemes, are the conventional
approaches that have often been integrated with GIS capabilities. Unlike the con-
ventional approaches, geosimulation involves the concept of decision making
agents and descriptive-normative modeling. It provides a platform for spatially
explicit analysis of multicriteria decision problems. When integrated with multi-
objective optimization, geosimulation modeling opens up new opportunities for
analyzing complex spatial problems involving a combination of bottom-up and top-
down decision making processes.

GIS-MCDA methods have the potential to improve group/collaborative/
participatory decision making procedures by providing a flexible problem-solving
environment where participants can explore, understand, and redefine a decision
problem (Malczewski 2006). By their nature, MCDA approaches integrate multiple
views of decision problems to provide platforms for identifying and organizing data
on alternative decisions (plans, policies) and the set of criteria for evaluating,
assessing, and comparing alternatives. GIS-MCDA can support group decision
processes by serving as a tool for structuring group decision problems and
organizing communication in a group. The value-focused approach provides a
framework for handling the debate on the identification of options, goals, criteria,
objectives, and attributes; and organizing them into a hierarchy of values. The
integration of GIS and MCDA allows conflict to be reduced by providing mecha-
nisms for revealing participants’ preferences, identifying and exploring compromise
alternatives, and for building consensus. While GIS can influence facts in particular
conflict resolution process, MCDA can make explicit the values of each individual,
show where and by how much they differ, and in the process, reduce the extent of
disagreements.
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