
Chapter 5
Multiobjective Optimization Methods

5.1 Introduction

Multiobjective optimization methods, or multiobjective decision analysis (MODA),
define decision alternatives in terms of a model consisting of a set of objective
functions and a set of constraints imposed on the decision variables. Formally,
MODA problems are formulated as follows:

maximizeF xð Þ ¼ f1 xð Þ; f2 xð Þ; . . . ; fn xð Þf g; ð5:1Þ

subject to: x 2 X; ð5:2Þ

where F(x) is the n- dimensional objective function; fk (x) is an objective (criterion)
function (k = 1, 2, …, n); X is the set of feasible alternatives, and x = (x1, x2, …, xm)
is a vector of decision variables, xi ≥ 0, for i = 1, 2, …, m. One can assume without
lost of generality that all objective functions in Eq. 5.1 are to be maximized. In
spatial optimization problems, there is at least one set of spatially explicit decision
variables. The variables can be used in many different ways to define spatial
decision alternatives. For example, the concept of location-allocation is often
employed for defining a set of spatial alternatives. Specifically, any locational
alternative can be defined as a binary vector, x = (x1, x2, …, xm), where a decision
variable, xj, is defined as follows: xj = 1, if an activity (e.g., health service facility) is
located at the ith site; and xj = 0, otherwise. Also, a vector of allocation variables
associated with the jth location can be defined in terms of a binary variable as
follows: xij = 1, if an activity (e.g., demand for health services) at the ith location is
allocated to the jth location; and xij = 0, otherwise.

Given that the multiobjective optimization models (5.1)–(5.2) include conflicting
and often non-commensurate criteria, the problem involves finding a set of Pareto
optimal solutions (which is also known as a set of efficient, non-dominated, and
non-inferior solutions). In Sect. 2.2.3.2 we have outlined the concept of Pareto
optimal (or non-dominated) alternatives. Here, we define the concept formally.
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A vector of decision variables x* is said to be Pareto optimal if there exist no other
feasible vector x such that fk xð Þ� fk x�ð Þ for all k = 1, 2,…, n and fk xð Þ[ fk x�ð Þ for
at least one k. This implies that x* is Pareto optimal if there is no feasible vector that
would improve some objective without causing a simultaneous deterioration of at
least one other objective. The non-dominated set in the objective space is referred to
as the Pareto front. In the absence of any preference regarding the objectives, all
non-dominated solutions are assumed equivalent or indifferent. However, the
multiobjective decision problems often require that a single non-dominated alter-
native is selected from the set of Pareto optimal solutions. This type of problems
has traditionally been handled by combining the objectives into a scalar function
and then solving the equivalent single-optimization problem to identify a best-
compromise alternative (or a set of non-dominated alternatives). Once the multiob-
jective problem is specified in terms of single-objective model, it can be solved using
conventional mathematical programming algorithms (Cohon 1978; Goicoechea et al.
1982; Huang et al. 2008).

This chapter focuses on the most often used conventional optimization
approaches in GIS-MCDA, which can be classified into three groups: (i) methods
for generating non-dominated solutions (the weighting and constraint methods),
(ii) the distance-based methods (such as compromise programming, goal pro-
gramming, and reference point methods), and (iii) interactive methods (Hwang and
Masud 1979). This classification is based on the ways in which the decision
maker’s preference information is incorporated into the modeling procedure.
Efficient solution generation methods do not require the preference information to
be provided before performing the optimization procedure.

These techniques are also referred to as a posteriori methods, because the
solution procedure is performed first and the decision maker preferences can then
be elicited from the generated set of solutions. In distance-based methods, the
preferences are specified a priori; that is, all decision maker preferences are spec-
ified before the solution process. The interactive methods assume that the prefer-
ences can be provided progressively in the modeling procedure.

5.2 Weighting and Constraint Methods

Several techniques for generating non-dominated solutions are available (Cohon
1978; Goicoechea et al. 1982; Zarghami and Szidarovszky 2011). A common
feature of these techniques is that the multiobjective problem is first transformed
into a scalar problem and then solved as a single-objective optimization problem.
The basic difference among the methods lies in how they make the transformation
from a multi- to single-objective model (Cohon 1978). The most often used
methods for tackling spatial multiobjective problems are the weighting and con-
straint methods (Diamond and Wright 1988; Malczewski and Ogryczak 1995;
Church et al. 1992; Maliszewski et al. 2012).
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The weighting method involves assigning a weight, wk (k = 1, 2, …, n), to each
objective function, fk(x). The multiobjective function (5.1) can then be converted
into a single-objective form through the linear combination of the objectives
together with the corresponding weights. Thus, the problem (5.1)–(5.2) can be
transformed as follows:

maximizeF xð Þ ¼ fw1f1 xð Þ þ w2f2 xð Þþ ; . . . ; þwnfn xð Þg; ð5:3Þ

subject to: x 2 X . ð5:4Þ

where the weights wk ≥ 0 and w1 + w2 + , …, + wn = 1. The set of non-dominated
solutions to the problem (5.3)–(5.4) is generated by parametric variation of the
weights. An approximation of the non-dominated solution set can be generated by
systematically varying the weighting coefficients and solving the associated single-
objective model. Figure 5.1a illustrates the concept of weighting method for the two
objective functions. It shows the feasible solution region and the non-dominated
alternatives (or the Pareto-optimal front). For a bi-objective problem, there are two
weights, and one of them is independent. Since F is a linear combination of f1 and
f2, the contour of F in the objective space is a line, ls. The value of F is the same at
any point of the contour line; therefore, the line is referred to as the linear indif-
ference curve. The slope of the line is defined by the value of the weights; spe-
cifically, the slope is equal to −w1/w2. The value of F depends on the location of the
line. By changing the values of the weights one can obtain different values
of F represented by the parallel indifference curves, l1, l2, and l3. Since model
(5.3)–(5.4) involves maximization of the objective functions, the indifference curve

Fig. 5.1 The concept of a weighting method, and b constraint method (Note the objective
functions f1(x) and f2(x) are maximized; O = optimal solution; w1, w2 = weights; l1, l2, l3 = linear
indifference curves; c11, c12, c13 = constraints imposed on f1(x))
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with the maximum value of F determines the optimal solution. Specifically, the
solution to the problem (5.3)–(5.4) is to move the contour line northeastwards in
parallel as far as possible until it becomes tangent to the feasible objective space.
The point of tangency, O, located on the indifference curve l3 indicates the optimal
solution.

Note that if some value (or utility) functions (see Sect. 2.3.1.1) and associated
objective weights are estimated according to the principles described in Sect. 2.3.2,
then the weighting method becomes multiobjective value function method. Given
the value functions, v(fk (x)), for k = 1, 2, …, n, the problem (5.1)–(5.2) can be
stated with the following value function program:

maximizeF xð Þ ¼ fRwk v fk xð Þð Þg; ð5:5Þ

subject to: x 2 X;wk � 0 for k ¼ 1; 2; . . .; n: ð5:6Þ

where wk is the weight of importance assigned to the kth objective. Note that there
is a difference between the value function models (5.5)–(5.6) and the weighting
method for generating non-dominated solutions (5.3)–(5.4). The value function
method incorporates the decision maker’s preferences by assigning weights of
importance to the objective functions, while in the weighting method the weights
are parameters that may be varied systematically to yield points that are non-
dominated solutions. Also, the weighting model (5.3)–(5.4) is used for generating a
set of non-dominated alternatives by changing the weighting coefficients, while the
problem (5.5)–(5.6) results in a unique non-dominated solution. Thus, strictly
speaking, the value function model is not a method for generating a set of non-
dominated alternatives. If the objective weights w1 and w2 represent the decision
makers’ preferences with respect the objective functions f1(x) and f2 (x), and the
assumption of a linear value function is accepted, then point O would indicate
the best (compromise) solution (see Fig. 5.1a).

One limitation of the weighting method is that certain non-dominated solutions
cannot be detected when the Pareto-optimal front is non-convex (Cohon 1978). The
constraint method can alleviate this problem. The method involves maximizing
only one of the objective functions while all others are converted into inequality
constraints. Thus, the multiple objective problem (5.1)–(5.2) can be transformed to
the following single-objective problem:

maximize fs xð Þ; ð5:7Þ

subject to: x 2 X; and fk xð Þ� ck; for all k 6¼ s; ð5:8Þ

where ck is a lower bound on objective k.
The set of non-dominated solutions can be generated by solving the single-

criterion problem (5.7)–(5.8) with the parametric variation of the ck value. Like the
weighting method, the constraint problem can be solved with standard mathemat-
ical programming techniques (Cohon 1978).
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Figure 5.1b demonstrates the concept of the constraint method. It shows situa-
tions involving two objective functions, where f2(x) is to be maximized and f1(x) is
converted to a constraint f1(x) ≥ c1b, for b = 1, 2, and 3. The constrain divides the
original feasible objective space into two portions: feasible and infeasible; for
example, the portion of the original feasible space right from the c11 line constrains
all feasible solutions, while the left portion becomes infeasible solution space for
the problem (5.7)–(5.8). By changing the values of the constraint, c1b, one can
obtain different values of the objective function, f2(x). Since the model (5.7)–(5.8)
represents a maximization problem, the maximum value of f2(x) determines the
optimal solution. A set of non-dominated solutions to the problem can be generated
by moving the constraint line eastwards in parallel.

Computational examples of the weighting and constraint methods are given in
Goicoechea et al. (1982) and Malczewski (1999). Goicoechea et al. (1982) illus-
trates the methods by solving resource allocation and watershed management
problems. Malczewski (1999) provides a computational example of the methods
using a spreadsheet-based solver for tackling a location-allocation problem. Here
we give another example of the weighting (value function) method to demonstrate
the procedure of generating non-dominated solutions. We consider a hypothetical
example of the p-median problem on a network. The problem is to locate p facilities
on a network of m nodes and allocate each node to exactly one of them so that the
total distance (and other relevant attribute) is minimized (or maximize). We con-
sider a problem of locating two service facilities (p = 2) for supplying components
to five manufacturers (towns) (m = 5) (Fig. 5.2). The demand for the services, zi, is
measured by the number of units required by the ith manufacturer. The problem
involves optimizing three objective functions: (i) total distance, (ii) total environ-
mental impact associated with transportation of the components (measured by an
index assigned to links of the network), and (iii) total risk of accident. The raw
datasets for the attributes (objectives) were normalized using Eq. 2.1. Table 5.1
shows normalized values of the three attributes.

Town i Demand, zi 

(in millions) 

1 18 

2 12 

3 25 

4 30 

5 15 

Fig. 5.2 Network of five demand nodes representing towns and six links representing roads
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Formally, the problem can be written as follows:

maximize f1 xð Þ ¼
Xm
i¼1

Xn
j¼1

zidijxij ð5:9Þ

maximize f2 xð Þ ¼
Xm
i¼1

Xn
j¼1

zieijxij ð5:10Þ

maximize f3 xð Þ ¼
Xm
i¼1

Xn
j¼1

zirijxij ð5:11Þ

Table 5.1 Standardized values of (a) distance, dij, (b) environmental impact, eij, and (c) risk of
accident, rij, associated with the i,jth link (arc) of the network consisting of five nodes; i = demand
node (i = 1, 2, .., 5), and j = node for potential location of facility (j = 1, 2, .., 5)

i
j 1 2 3 4 5 

1 1.0 0.4 0.2 0.6 0.0

2 0.4 1.0 0.6 0.8 0.2

3 0.2 0.6 1.0 0.8 0.2

4 0.6 0.8 0.8 1.0 0.6

5 0.0 0.2 0.2 0.6 1.0

i
j 1 2 3 4 5 

1 0.5 0.4 0.1 0.9 0.0

2 0.4 1.0 0.3 0.7 0.7

3 0.1 0.3 0.1 0.6 0.3

4 0.9 0.7 0.6 0.0 0.4

5 0.1 0.7 0.3 0.4 1.0

(c)

(a) (b)

i
j 1 2 3 4 5 

1 0.0 0.25 0.25 1.0 0.0

2 0.25 1.0 0.5 1.0 0.75

3 0.25 0.5 1.0 0.5 1.0

4 1.0 1.0 0.5 0.25 0.25

5 0.0 0.75 1.0 0.25 0.0
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subject to:

Xn
j¼1

xij ¼ 1; for i ¼ 1; 2; 3; . . . ;m; ð5:12Þ

xij � xjj � 0; for i ¼ 1; 2; 3; . . . ;m; j ¼ 1; 2; 3; . . . ; n; ð5:13Þ
Xn
j¼1

xjj ¼ p; ð5:14Þ

xij ¼ 1 or 0; for i ¼ 1; 2; 3; . . . ;m; j ¼ 1; 2; 3; . . . ; n; ð5:15Þ

where zi = the number of units demanded by the ith manufacturer; dij = standardized
value of distance between node i and j; eij = standardized environmental impact
index assigned to the link (road) between i and j; rij = standardized risk of accident
associated with the link (road) between i and j.

The objective functions f1(x), f2(x), and f3(x) maximize the total weighted
standardized values of distance, environmental impact, and risk of accident,
respectively. Equation (5.12) ensures that each demand node (manufacturer) is
allocated to a service facility. Inequality (5.13) guarantees that the demand nodes
are allocated only to those candidate nodes where facility will be established.
Equation (5.14) indicates the number of facilities to be located (that is, p = 2).
According to Eq. (5.15), each of the allocation (decision) variables must be equal to
1 or 0; specifically, xij = 1 if the components required by the ith manufacturer are
supplied at the jth facility, and xij = 0 otherwise;

In order to generate a set of non-dominated solutions, the multiobjective problem
(5.9)–(5.15) is converted to the following singe-objective form:

maximizeF xð Þ w1

Xm
i¼1

Xn
j¼1

zidijxij

 !
þ w2

Xm
i¼1

Xn
j¼1

zieijxij

 !

þ w3

Xm
i¼1

Xn
j¼1

zirijxij

 !
; ð5:16Þ

subject to: 5:12ð Þ� 5:15ð Þ: ð5:17Þ

This problem can be tackled using a standard mathematical programming solver.
We use a spreadsheet based LINDO system (www.lindo.com).

As suggested, a set of non-dominated solutions can be generated by varying
the objective weights, wk. One way of varying the weights is to assign a weight of
1 to one of the objective functions and 0 to all other functions. The problem
(5.16)–(5.17) is solved with three different sets of the objective weights; that is, if
w1 = 1, w2 = 0, and w3 = 0, then f1(x) is optimized; if w1 = 0, w2 = 1, and w3 = 0,
then f2(x) is optimized; and, if w1 = 0, w2 = 0, and w3 = 1, then f3(x) is optimized.
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The results are organized in the form of a pay-off matrix (see Table 5.2). The matrix
allows us to identify the maximum and minimum values of each objective function;
that is, the ideal (utopia) and anti-ideal (nadir) solutions can be defined. The ideal
solution is usually not attainable but it can be presented to the decision maker as a
limit to the best numerical values of the objectives; that is, it provides the decision
maker with lower limits for minimized criterion functions and upper limits for the
functions to be maximized. The anti-ideal point is the worst criterion value. It is
the lower limits and upper limits for criterion functions to be maximized and
minimized, respectively.

Figure 5.3 shows the optimal location-allocation patterns associated with the
results of the three solutions displayed in the pay-off matrix (Table 5.2). The results
indicate that there are substantial differences between the three non-dominated
solutions. Furthermore, the differences are present in the objective and decision
space. Notice that the optimal value of f1(x) and f3(x) are similar. However, the
associated location-allocation patterns are considerably different. This remark

Table 5.2 The pay-off matrix
for the problem (5.16)–(5.17) Optimized objective functions Objective function value

f1(x) f2(x) f3(x)

f1(x) (w1 = 1, w2 = 0, w3 = 0) 86.6 38.4 35.8

f2(x) (w1 = 0, w2 = 1, w3 = 0) 58.4 66.9 64.0

f3(x) (w1 = 0, w2 = 0, w3 = 1) 71.2 47.2 86.5

Ideal vector 86.6 66.9 86.5

Nadir vector 58.4 38.4 35.8

(a) 

F(x) = 86.6 

(b) 

F(x) = 66.9 

(c) 

 F(x) = 86.5 

 location decision: xjj = 1     allocation decision: xij = 1 

Fig. 5.3 Location-allocation patterns for solution of the multiobjective optimization problem
(5.9)–(5.15) for: a w1 = 1, and w2 = w3 = 0; b w2 = 1, and w1 = w3 = 0, and c w3 = 1 and
w1 = w2 = 0
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underscores the importance of examining the results of spatial multiobjective
modeling both in the objective and geographic (decision) space.

In addition to the non-dominated solutions obtained by generating the pay-off
matrix, one can solve the problem (5.16)–(5.17) for different sets of the objective
weights to analyze the non-dominated set of alternatives. Table 5.3 shows the
objective function values for a sample of four sets of weights. The associated
location-allocation patterns are given in Fig. 5.4. Notice we obtained the same
solutions for w1 = 0.5, w2 = 0.25, w3 = 0.25, and wk = 0.33 (see Fig. 5.4a and d).
There are, however, substantial differences between these location-allocation pat-
terns and those displayed in Fig. 5.3b and c. Note also that the values of the
objective functions are similar for w1 = 0.5, w2 = 0.25, w3 = 0.25 and w1 = 0.25,
w2 = 0.25, w3 = 0.50. This suggests that similar solutions to multiobjective decision
problem in the objective space may be substantially different in the geographic
space, and vice versa.

The results of the weighting method provide important information about the set
of non-dominated alternatives, the range of possible decision outcomes, and the
trade-offs involved. In spite of the fact that this information is very useful in
searching for the best decision outcomes and corresponding location-allocation
pattern, a decision maker would likely find it difficult to choose the best alternative
even for a very small spatial (location-allocation) problem. Therefore, an a priori or
interactive method has to be applied to identify the best (compromise) alternative
(Sect. 5.3).

Several GIS-MODA applications have used the weighting method (e.g., Church
et al. 1992; Kao and Lin 1996; Wu and Murray 2005; Farhan and Murray 2008;
Herzig 2008; Ligmann-Zielinska and Jankowski 2010; Maliszewski and Horner
2010; Maliszewski et al. 2012). Church et al. (1992) integrated the weighting
method into a raster based GIS for generating and exploring spatial alternatives for
a corridor location problem. Kao and Lin (1996) also used a raster-based GIS in
their spatial analysis of landfill sitting problem with the weighting method. Wu and
Murray (2005) integrated the weighting method with GIS to analyze the trade-off
between public transit service quality and access coverage in a bus-based transit
system. Farhan and Murray (2008) integrated spatial multiobjective model into
ArcView GIS and used the weighting method to analyze the trade-offs involved in
locating park-and-ride facilities. Maliszewski and Horner (2010) used standard
mathematical programming software CPLEX (see www.aimms.com/features/
solvers/cplex) and ArcGIS to solve multiobjective problem of sitting critical

Table 5.3 The weighting
method: the location-
allocation problem results for
selected sets of objective
weights

Weights Objective functions

w1 w2 w3 f1(x) f2(x) f3(x) F(x)

0.50 0.25 0.25 71.2 53.2 82.8 69.59

0.25 0.50 0.25 66.0 66.0 65.8 65.94

0.25 0.25 0.50 71.2 47.2 86.5 72.85

0.33 0.33 0.33 71.2 53.2 82.8 69.05
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supply facilities (see also Maliszewski et al. (2012)). Herzig (2008) developed
LUMASS (Land Use Management Support System), which integrates ArcMap GIS
and the open source mixed-integer linear programming system called lp_solve (see
http://lpsolve.sourceforge.net) for tackling land use allocation problems. The sys-
tem offers the techniques for generating the set of efficient solutions: the weighting
and constrain methods.

One important advantage of the weighting and constraint procedures is that the
methods reduce the multiobjective optimization problem to a scalar valued func-
tion. This means that the vast body of algorithms, software, and experience that

(a) 

F(x) = 69.59 

(b) 

F(x) = 65.94 

(c) 

F(x) = 72.85 

(d) 

F(x) = 69.05 

 location decision: xjj = 1     allocation decision: xij = 1 

Fig. 5.4 Location-allocation patterns for solution of the multiobjective optimization problem
(5.9)–(5.15): a w1 = 0.5, w2 = 0.25, w3 = 0.25; b w1 = 0.25, w2 = 0.5, w3 = 0.25; c w1 = 0.25,
w2 = 0.25, w3 = 0.5; and d w1 = 0.33, w2 = 0.33, w3 = 0.33
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exist for single-objective optimization models can be directly applied to multiob-
jective problems. This is of major importance considering the extent to which
single-objective optimization has influenced the development of spatial analysis
methods, such as spatial interaction and location analysis (Thomas and Huggett
1980; Killen 1983).

The weighting and constraint methods are easily used and intuitively appealing.
There are, however, some major concerns associated with the use of the methods.
They are very intensive computationally. The computational requirements for the
weighting and constraint methods depend on the number of objective functions and
the number of weights or constraints. There is an exponential relationship between
the number of objective functions and computational burden (Cohon 1978). Since
the resulting subset of efficient solutions depends on the particular weights or con-
straints applied, the methods may not generate a good representation of the entire
non-dominated set. One possible way of handling this problem is to reduce the scale
of weights or the intervals of the constraints. However, this will increase the com-
putational burden. There is no generic rule for varying the weights or constraint
intervals for generating a representative subset of non-dominated solutions.

5.3 Distance Metric Based Methods

The distance metric based MODA methods aim at minimizing a function of the
distance between the desired (usually unachievable) and achieved solutions (Jones
and Tamiz 2010; Zarghami and Szidarovszky 2011). The desired solution (target
values) can be defined as an ideal point, some reference point, or a set of goals.
The most often used distance metric approaches include: goal programming
(Charnes and Cooper 1961), compromise programming (Zeleny 1982), and the
reference point method (Wierzbicki 1982). These methods are also the most popular
distance metric procedures implemented in the GIS environment (e.g., Church et al.
1992; Antoine et al. 1997; Agrell et al. 2004; Zeng et al. 2007; Huang et al. 2008;
Meyer et al. 2009; Li and Leung 2011; Coutinho-Rodrigues et al. 2012).

The distance based methods are also referred to as the Lp-norm approaches.
Indeed, the definition of distance metric is the main procedural difference between
the different types of those methods. A generic form of the distance metric model
can be written as follows (Jones and Tamiz 2010):

Lp ¼
Xn
k¼1

fkðxÞ � akj j
hk

� �p
" #1

p

; ð5:18Þ

where fk(x) is the achieved value of the kth objective (k = 1, 2, …, n); ak the target
value; hk is the normalisation constant associated with the kth objective; and p is a
power parameter ranging from 1 to ∞ (see Sect. 4.4.1).
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5.3.1 Goal Programming

The goal programming methods require the decision maker to specify the most
desirable value (goal) for each objective (criterion) as the aspiration level or target
value. The objective functions (5.1) are then transformed into goals as follows:

fk xð Þ þ d�
k � dþ

k ¼ ak; for k ¼ 1; 2; . . . ; n; ð5:19Þ

d�
k ; dþ

k � 0; ðd�
k ; dþ

k Þ ¼ 0; ð5:20Þ

where ak is the aspiration level for the kth objective, d�
k , dþ

k are negative and positive
goal deviations, respectively; that is, non-negative state variables that measure
deviations of the achieved value of the kth objective function from the corresponding
aspiration level. Thus, two types of variables are part of any goal programming
formulation: the decision variables, xi, and the deviational variables, dk.

A number of measures of multidimensional deviations (achievement functions)
and corresponding goal programming forms have been proposed by Jones and
Tamiz (2010). The achievement function, g(d+, d−), can be formulated in terms of
the weighted Lp norm as follows:

gðdþ; d�Þ ¼
Xn
k¼1

w�
k d

�
k þ wþ

k d
þ
k

� �p" #1
p

; ð5:21Þ

where wk
− and wk

+ are weights corresponding to the kth goal deviations. The weights
represent additional information reflecting the decision maker’s preferences with
respect to the deviation variables. One can generate a number of models by
changing the value of p. The weighted goal and Chebyshev goal programming have
been the most often used goal programming methods in the GIS environment (see
Malczewski 2006a). For p = 1, the achievement function (5.21) takes the form of
the weighted goal programming:

gðdþ; d�Þ ¼
Xn
k¼1

w�
k d

�
k þ wþ

k d
þ
k

� �
; ð5:22Þ

Theweighted goal programming assumes that the positive deviations and negative
deviations of the criterion outcomes from the aspired goals are equally undesirable.

One can also use the Lp norm to develop weighted Chebyshev goal program-
ming. Specifically, for p = ∞ the achievement function of the Chebyshev goal
programming takes the following form:

gðdþ; d�Þ ¼ max
k¼1;2;::;n

w�
k d

�
k þ wþ

k d
þ
k

� �
; ð5:23Þ
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This type of goal programming minimizes the deviation from those aspiration
levels so that the worst deviation from any single-goal aspiration level is minimized.

It is important to note that the models (5.22) and (5.23) are related to other Lp
based multiobjective methods. Section 5.3.2 provides an example of a spatial
multiobjective optimization problem to demonstrate the relationship between the
distance metric based models. A computational example of goal programming is
given in Malczewski (1999). He considers a location-allocation problem in the
context of transporting and disposing hazardous waste. There have been a number
of studies on integrating goal programming methods into GIS. The weighted
Chebyshev goal programming was used by Church et al. (1992) for tackling
multiobjective corridor location problem. November et al. (1996) integrated
TransCAD GIS and goal programming for analyzing alternative patterns of school
districting. Ghosh (2008) used a loose coupling approach for integrating a goal
programming method into SPANS GIS to analyze alternative patterns of land use.
The location-routing problem using standard mixed integer linear programming
modeling have been tackled in several studies, including Coutinho-Rodrigues et al.
(1997), Alçada-Almeida et al. (2009), and Coutinho-Rodrigues et al. (2012). For
example, Coutinho-Rodrigues et al. (2012) used the weighted goal programming
method within GIS environment to solve a location-routing problem in the context
of designing urban evacuation plans. Meyer et al. (2009) and Cisneros et al. (2011)
applied GIS-based goal programming approaches for analyzing spatial patterns of
agricultural land use. Meyer et al. (2009) developed a weighted goal programming
model for analyzing alternative spatial patterns of farming systems. The distance
metric based methods, including the weighted goal programming model, have been
employed by Cisneros et al. (2011) to analyze the conflicts and trade-off among
environmental, economic, and social interests in the context of agricultural land use.

The major advantage of goal programming is its computational efficiency. While
dealing with the multi-objective decision problems, goal programming approaches
allow us to stay within an efficient linear programming computational environment.
There are, however, several conceptual and technical problems with using goal
programming methods for tackling spatial multicriteria optimization problems. The
standard goal programming methods require the decision maker to specify fairly
detailed a priori information about his/her aspiration levels, and the importance of
goals in the form of weights. One can expect that in a complex spatial decision
situation, the decision maker will find it difficult (or even impossible) to provide the
precise information required by these methods. Another weakness of weighted goal
programming is its poor control over the interactive process in the case of discrete
problems. For example, in the case of multiobjective location problems, this may
mean some efficient locational decisions are likely to be selected for various
aspiration levels and weights, whereas other decisions, despite being efficient, are
selected only for aspiration levels defined very close to their outcomes (Malczewski
and Ogryczak 1996). This problem associated with a priori information required by
standard goal programming methods can be overcome, at least partially, by an
interactive approach (see Sect. 5.4).
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5.3.2 Compromise Programming

The compromise programming method is based on the assumption that the
performance of decision alternatives can be evaluated with respect to a point of
reference (Zeleny 1982). The obvious choice for a point of reference is the ideal
solution (or ideal point), which defines the optimal value for each objective con-
sidered separately. The method identifies the non-dominated solution closest to the
ideal point using various weighted Lp norms as follows:

minimize LpðxÞ ¼
Xn
k¼1

wp
k

fþk � fkðxÞ
fþk � f�k

� �p
" #1

p

8<
:

9=
;; ð5:24Þ

subject to: x 2 X;wk � 0 for k ¼ 1; 2; . . . ; n: ð5:25Þ

where Lp(x) is the distance metric; wk is the weight associated with the kth objective
function (k = 1, 2,…, n); fk(x) is the value of the kth objective function; fþk is the ideal
value of the kth objective function; f�k is the nadir or anti-ideal value of the k-the
objective function; and p is a power parameter ranging from 1 to∞. The compromise
set consists of all compromise solutions determined by solving (5.24)–(5.25) for a
given set of weights (w1, w2, …, wn) and for p ≥ 1. The parameter p reflects the
importance of the maximum deviation from the ideal point (see Sect. 4.3). In general,
larger values of p reflect greater concern for minimizing the maximum deviation. For
p = 1, all deviations are weighted equally; for p = 2, each deviation is weighted in
proportion to its magnitude. For the value of p =∞, the problem involves minimizing
the maximum deviation, which is known as the min-max problem or the weighted
Chebyshev problem. Note that the compromise programming approach involves a
double-weighting scheme (Karni and Werczberger 1995). The parameters wk and
p reflect the importance of the maximal deviation and the relative importance of the
kth objective, respectively. The weights,wk, weigh deviations according to objectives
but irrespective of their magnitudes. The parameter p weights the individual devia-
tions according to their magnitudes and across the objectives.

It is general practice to use compromise programming models for p = 1, 2, and
∞ (Goicoechea et al. 1982). In order to identify the compromise set, we need
to determine the pay-off matrix. Let us illustrate the concept of compromise pro-
gramming for p = 1, 2, and ∞, and w1 = w2 = w3 = 0.33 using the location-
allocation problem (see Sect. 5.2). Given the pay-off matrix (see Table 5.2), the
location-allocation problem (5.9)–(5.15) for p = 1 can be written as follows:

minimize L1ðxÞ ¼ 0:33
86:6� f1ðxÞ
86:6� 58:4

� �
þ 0:33

66:9� f2ðxÞ
66:9� 38:4

� �
þ 0:33

86:5� f3ðxÞ
86:5� 35:8

� �� �
;

ð5:26Þ

subject to: (5.12)–(5.15).
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Likewise, compromise programming models for p = 2 and ∞ can be formulated.
Given the operational definition of the compromise programming models for p = 1,
2 and ∞, the solution of the problem always results in a non-dominated point for
1 ≤ p < ∞. However, for p = ∞, one can obtain a dominated solution (Goicoechea
et al. 1982). This general remark is confirmed by the results shown in Table 5.4
Also, the value of Lp(x) suggest that the compromise programming model for p = 2
generates a non-dominated solution closest to the ideal point.

Tables 5.3 and 5.4 show the same values of the objective functions for the
compromise programming model for p = 1 and the weighting methods for
wk = 0.333. Also, the corresponding location-allocation patterns are identical (see
Figs. 5.4d and 5.5a). This finding can be generalized. Indeed, it can be shown that
the compromise programming model for p = 1 and the weighting (value function)
methods (see Sect. 5.2) result in an equivalent solutions for the same set of
objective weights (see Li and Leung 2011). Furthermore, the compromise pro-
gramming resembles goal programming (Goicoechea et al. 1982; Jones and Tamiz
2010). The solution for the weighted goal programming (see Sect. 5.3.1) corre-
sponds to the solution of compromise programming for p = 1 if the same weights

Table 5.4 Compromise programming: the location-allocation problem for p = 1, 2, and ∞, and
w1 = w2 = w3 = 0.333

p Lp(x) f1(x) f2(x) f3(x)

1 0.367 71.2 53.2 82.75

2 0.234 72.0 60.0 65.75

∞ 0.432 50.0 46.5 44.50

(a) 

 L1(x) = 0.367 

(b) 

 L2(x) = 0.234 

(c) 

L∞(x) = 0.432 

 location decision: xjj = 1     allocation decision: xij = 1 

Fig. 5.5 The location-allocation patterns generated by the compromise programming method for
w1 = w2 = w3 = 0.333 and selected p values: a p = 1, b p = 2, and c p = ∞
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and the same ideal (aspiration) levels are chosen. Also, the Chebyshev goal
programming model is equivalent to compromise programming for p = ∞ (Jones
and Tamiz 2010).

There have been several applications of GIS-based compromise programming
methods for solving spatial multiobjective optimization problems (e.g., Church
et al. 1992; Chang et al. 1997; Shih and Lin 2003; Huang et al. 2008; Li and Leung
2011). All the studies focus on tackling problems in the transportation sector, such
as locating transportation corridors and routing problems. Church et al. (1992) have
used the weighted Chebyshev distance model as a method for dealing with some of
the concerns associated with the use of the weighting method (see Sect. 5.2). They
used the method for analyzing a corridor location problem. This study is of par-
ticular significance because of its approach for exploring spatial alternatives in both
decision space and objective space. Chang et al. (1997) developed an ArcGIS-based
compromise programming model for tackling vehicle routing and scheduling
problems. The limitations of the weighting method, in the context of spatial mul-
tiobjective optimization, have also been highlighted by Huang et al. (2008), and Li
and Leung (2011). They demonstrated the relationship between the utility/value
function approach and compromise programming, and used the weighted Cheby-
shev model for tackling routing problems using GIS. Shih and Lin (2003) used GIS
and a combination of multiobjective methods, including compromise programming,
for tackling routing and scheduling problem.

One advantage of the compromise programming approach is its simple con-
ceptual structure. In addition, the set of preferred compromise solutions can be
ordered between the extreme criterion outcomes, and consequently, an implicit
trade-off between criteria can be performed. A disadvantage of this approach is that,
except for the two extremes (that is, when p = 0 and ∞), there is no clear inter-
pretation of the various values of the parameter p. Therefore, the selection of the
“best” alternative within the reduced set of compromise alternatives must be made
based on a further insight into the compromise set of non-dominated alternatives.
One way to achieved this is using the approach as a component of an interactive
procedure (see Sect. 5.4).

5.3.3 Reference Point Method

From the perspective of behavioural decision theory, the reference point method
can be recognized as an approach that combines the classical optimizing and sat-
isficing decision rules (Wierzbicki 1982, 1983). It is argued that an individual has
some tendency toward maximization of his/her utility even if he/she behaves
according to satisficing rationality principles; that is, he/she forms aspiration levels
as a guide for decision making (Malczewski and Ogryczak 1996). Such type
of behaviour is referred to as quasi-satisficing rationality. The concept of quasi-
satisficing rationality can be considered as an attempt to generalize the underlying
behavioural principles of the distance based multiobjective methods. Indeed, the
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compromise programming approach is based on the optimizing rationality princi-
ple, while the satisficing behaviour is underlying philosophy of goal programming
(Romero et al. 1998).

The key element of the quasi-satisficing decision framework is the relationship
between the non-dominated set of solutions and aspired goals. According to the
quasi-satisficing principle, the decision maker should identify the best (most pre-
ferred) alternative as the one which belongs to the set of non-dominated solutions,
irrespective of the attainability of his/her aspiration levels. Although the aspired
levels may not be achievable, they can be projected onto the Pareto optimal front by
using the achievement scalarizing function (Wierzbicki 1982; Romero et al. 1998).
Using the achievement scalarizing function, the reference point model can be
written as follows:

minimize max
k

wk

hk
ak � fkðxÞð Þ

� 	
� e
Xn
k¼1

wk

hk
fkðxÞ

( )
ð5:27Þ

subject to: x 2 X;wk � 0 for k ¼ 1; 2; . . .; n: ð5:28Þ

where e is an arbitrary sufficiently small positive number; it guarantees a non-
dominated solution of the problem (5.1)–(5.2). The objective function (5.27) has
two components: (i) the difference between the weighted Cherbyshev norm of the
discrepancies between reference levels, ak, and the achieved value of the k-th
objective fk(x), and (ii) a small regularization term of the weighted sum of the
n objectives.

Malczewski and Ogryczak (1996) provide a computational example of the ref-
erence point method using a hypothetical plant location problem. They also dem-
onstrate the use of the method within the framework of goal programming.
Specifically, the reference point approach can be operationalized within a goal
programming framework as an initial Chebyshev goal programme followed by the
L1(x) Pareto restoration phase (Romero et al. 1998). Zeng et al. (2007) integrated
reference point based systems into ArcGIS for tackling forest planning and man-
agement. Antoine et al. (1997) developed a decision support system called Aspi-
ration-Reservation Based Decision Support (ARBDS) (see also Malczewski and
Ogryczak 1996). The system integrates the FAO Agro-Ecological Zones/GIS
package and the reference (aspiration-reservation) point method (see also Agrell
et al. 2004). Antoine et al. (1997) and Agrell et al. (2004) used the system for land
use planning. Maniezzo et al. (1998) and Rozakis et al. (2001) employed the
reference point method as a component of spatial decision support systems for
locating waste management facilities and bio-energy projects, respectively.

One advantage of the reference point method is that it has the capability to
capture every Pareto optimal solution by using appropriate aspiration levels. For
this reason, the method is especially suitable as a component of interactive multi-
objective modeling. However, the reference point model shares some of the
drawbacks associated with the other distance metric based approaches. The method

5.3 Distance Metric Based Methods 139



requires the decision maker to specify fairly detailed a priori information regarding
the reference point(s) and the objective weights. This information may be difficult
to elicit for the decision maker. This problem can be alleviated, at least partially, by
using the method within the framework of an interactive modeling (see Sect. 5.4).

5.4 Interactive Programming Methods

The main idea behind interactive multiobjective programming methods is to
determine the best (compromise or satisficing) decision outcome among the set of
efficient solutions by means of a progressive communication process between the
decision maker and the computer based system (Nijkamp 1979; Steuer 1986).
Interactive multiobjective programming methods do not require a priori information
about the decision maker’s preference structure. The existence of a utility/value
function is implicitly assumed and the function is maximized by means of a formal
mechanism that involves an interactive exchange of information between a sub-
stantive model of the decision situation (computer-based decision support system)
and the user. An interactive procedure consists of two phases: (i) in the dialogue
phase, the decision maker analyzes and evaluates information provided by a
computer-based system and articulates his/her preferences, and (ii) in the compu-
tational phase, a solution (or a group of solutions) that meets the decision maker’s
requirements specified in the dialogue phase, is generated. This interactive
exchange of information is continued until an outcome is deemed acceptable to the
decision maker.

Although there is a number of interactive multiobjective programming methods
available (Steuer 1986; Korhonen and Wallenius 2010), the interactive approaches
to spatial decision problems have been mostly limited to distance metric base
methods (see Sect. 5.3). Examples of integrating GIS and interactive goal pro-
gramming approaches are given in Coutinho-Rodrigues et al. (1997), Roettera et al.
(2005), Santé and Crecentea (2007), and Alçada-Almeida et al. (2009). The ref-
erence point method is the core of spatial interactive decision support system
developed by Antoine et al. (1997) and Agrell et al. (2004). Malczewski and
Ogryczak (1996) provide a computational example of an interactive multiobjective
approach to plant location problem (see also Malczewski and Ogryczak 1990).

Since the decision maker is an essential part of the multicriteria decision making
process, an interactive method is a natural approach for tackling multiobjective
decision problems (Korhonen and Wallenius 2010). Also, the methods are ame-
nable to the use of graphical representation of alternative solutions to support the
interactive process of decision making. This feature of interactive procedures is of
particular significance as a component of spatial decision support (Church et al.
1992; Malczewski and Ogryczak 1996). There is evidence to show that GIS-based
interactive methods provide valuable support for understanding and analyzing
complex spatial decision problem (Alçada-Almeida et al. 2009).
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5.5 Conclusion

This chapter discussed classic multiobjective optimization methods. It focused on
those approaches that have been most often integrated into GIS: methods for gen-
erating non-inferior solutions, distance metric-based methods, and interactive
methods. We overviewed GIS-based applications of multiobjective optimization
methods, and signified relationships between different methods. First, we indicated
that the weighting method for generating non-dominated solution can be considered
the value/utility function method providing that suitable value/utility functions and
associated objective weights have been elicited from the decision maker. Second, we
demonstrated the links between the distance metric based methods. Specifically,
compromise programming models with the L1(x) and L∞(x) distance metrics are
equivalents to the weighted and Chebyshev goal programme methods with the target
values set at ideal levels. Also, the reference point method can be considered within
the framework of goal programming as a Chebyshev goal programme, along with
the L1(x) Pareto restoration procedure. Third, we indicated that distance metric based
methods are often used as components of interactive approaches for tackling spatial
decision problems. We emphasised the importance of displaying alternative solu-
tions using GIS within the framework of interactive decision support procedures.

References

Agrell, P. J., Stam, A., & Fischer, G. W. (2004). Interactive multiobjective agro-ecological land
use planning: The Bungoma region in Kenya. European Journal of Operational Research, 158
(1), 194–217.

Alçada-Almeida, L., Tralhão, L., Santos, L., & Coutinho-Rodrigues, J. (2009). A multiobjective
approach to locate emergency shelters and identify evacuation routes in urban areas.
Geographical Analysis, 41(1), 9–29.

Antoine, J., Fischer, G., & Makowski, M. (1997). Multiple criteria land use analysis. Applied
Mathematics and Computation, 83(2–3), 195–215.

Chang, N. B., Lu, H. Y., & Wie, Y. L. (1997). GIS technology for vehicle routing and scheduling
in solid waste collection systems. Journal of Environmental Engineering, 123(9), 901–910.

Charnes, A., & Cooper, W. W. (1961). Management models and industrial applications of linear
programming. New York: Wiley.

Church, R. L., Loban, S. R., & Lombard, K. (1992). An interface for exploring spatial alternatives
for a corridor location problem. Computers and Geosciences, 18(8), 1095–1105.

Cisneros, J. M., Grau, J. B., Antón, J. M., de Prada, J. D., Cantero, A., & Degioanni, A. J. (2011).
Assessing multi-criteria approaches with environmental, economic and social attributes,
weights and procedures: A case study in the Pampas, Argentina. Agricultural Water
Management, 98(10), 1545–1556.

Cohon, J. L. (1978). Multiobjective programming and planning. London: Academic Press.
Coutinho-Rodrigues, J., Clímaco, J., Current, J., & Ratick, S. (1997). An interactive spatial

decision support system for multiobjective HAZMAT location-routing problems. Transpor-
tation Research Record, 1602(1), 101–109.

Coutinho-Rodrigues, J., Tralhão, L., & Alçada-Almeida, L. (2012). Solving a location-routing
problem with a multiobjective approach: The design of urban evacuation plans. Journal of
Transport Geography, 22(1), 206–218.

5.5 Conclusion 141



Diamond, J. T., & Wright, J. R. (1988). Design of an integrated spatial information system for
multiobjective land-use planning. Environment and Planning B, 15(2), 205–214.

Farhan, B., & Murray, A. T. (2008). Siting park-and-ride facilities using a multi-objective spatial
optimization model. Computers and Operations Research, 35(2), 445–456.

Ghosh, D. (2008). A loose coupling technique for integrating GIS and multi-criteria decision
making. Transactions in GIS, 12(3), 365–375.

Goicoechea, A., Hansen, D. R., & Duckstein, L. (1982). Multiobjective decision analysis with
engineering and business applications. New York: Wiley.

Herzig, A. (2008). A GIS-based module for the multiobjective optimization of areal resource
allocation. In L. Bernard, A. Friis-Christensen, H. Pundt & I. Compte (Eds.), Proceedings of
the 11th AGILE International Conference On Geographic Information Science (pp. 1–17),
Spain: University of Girona.

Huang, B., Fery, P., Xue, L., & Wang, Y. (2008). Seeking the Pareto front for multiobjective
spatial optimization problems. International Journal of Geographical Information Science, 22
(5), 507–526.

Hwang, C. L., & Masud, A. S. M. (1979). Multiple Objective decision making methods and
applications: A state-of-the-art survey. Berlin: Springer.

Jones, D., & Tamiz, M. (2010). Practical goal programming. Berlin: Springer.
Kao, J. J., & Lin, H. Y. (1996). Multifactor spatial analysis for landfill siting. Journal of

Environmental Engineering, 122(10), 902–908.
Karni, E., & Werczberger, E. (1995). The compromise criterion in MCDM: Interpretation and

sensitivity to the p parameter. Environment and Planning B, 22(3), 407–418.
Killen, J. (1983). Mathematical programming methods for geographers and planners. London:

Croom Helm.
Korhonen, P., & Wallenius, J. (2010). Interactive multiple objective programming methods. In

C. Zopounidis & P. M. Pardalos (Eds.), Handbook of multicriteria analysis (pp. 263–286).
Berlin: Springer.

Li, R., & Leung, Y. (2011). Multi-objective route planning for dangerous goods using compromise
programming. Journal of Geographical Systems, 13(3), 249–271.

Ligmann-Zielinska, A., & Jankowski, P. (2010). Exploring normative scenarios of land use
development decisions with an agent-based simulation laboratory. Computers, Environment
and Urban Systems, 34(5), 409–423.

Malczewski, J. (1999). GIS and multicriteria decision analysis. New York: Wiley.
Malczewski, J. (2006). GIS-based multicriteria decision analysis: A survey of the literature.

International Journal of Geographical Information Science, 20(7), 703–726.
Malczewski, J., & Ogryczak, W. (1990). An interactive approach to the central facility location

problem. Geographical Analysis, 22(3), 244–258.
Malczewski, J., & Ogryczak, W. (1995). The multiple criteria location problem—Part 1: A

generalized network model and the set of efficient solutions. Environment and Planning A,
27(12), 1931–1960.

Malczewski, J., & Ogryczak, W. (1996). The multiple criteria location problem—Part 2:
Preference-based methods and interactive decision support. Environment and Planning A,
28(1), 69–98.

Maliszewski, P. J., Kuby, M. J., & Horner, M. W. (2012). A comparison of multi-objective spatial
dispersion models for managing critical assets in urban areas. Computers, Environment and
Urban Systems, 36(4), 331–341.

Maliszewski, P. J., & Horner, M. W. (2010). A spatial modeling framework for siting critical
supply infrastructures. Professional Geographer, 62(3), 426–441.

Maniezzo, V., Mendes, I., & Paruccini, M. (1998). Decision support for siting problems. Decision
Support Systems, 23(3), 273–284.

Meyer, B. C., Lescot, J. M., & Laplana, R. (2009). Comparison of two spatial optimization
techniques: A framework to solve multiobjective land use distribution problems. Environ-
mental Management, 43(2), 264–281.

Nijkamp, P. (1979). Multidimensional spatial data and decision analysis. Chichester: Wiley.

142 5 Multiobjective Optimization Methods



November, S. M., Cromley, R. G., & Cromley, E. K. (1996). Multi-objective analysis of school
district regionalization alternatives in Connecticut. Professional Geographer, 48(1), 1–14.

Roettera, R. P., Hoanh, C. T., Laborteb, A. G., van Keulen, H., Van Ittersum, M. K., Dreiser, C.,
et al. (2005). Integration of systems network (SysNet) tools for regional land use scenario
analysis in Asia. Environmental Modelling and Software, 20(3), 291–307.

Romero, C., Tamiz, M., & Jones, D. F. (1998). Goal programming, compromise programming and
reference point method formulations: Linkages and utility interpretations. Journal of the
Operational Research Society, 49(9), 986–991.

Rozakis, S., Soldatos, P. G., Kallivroussis, L., & Nicolaou, I. (2001). Multiple criteria analysis of
bio-energy projects: Evaluation of bio-electricity production in Farsala Plain, Greece. Journal
of Geographic Information and Decision Analysis, 5(1), 49–64.

Santé, I., & Crecente, R. (2007). LUSE, a decision support system for exploration of rural land use
allocation: Application to the goal programming Terra Chá district of Galicia (N.W. Spain).
Agricultural Systems, 94(2), 341–356.

Shih, L. H., & Lin, Y. T. (2003). Multicriteria optimization for infectious medical waste collection
system planning. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Manage-
ment, 7(2), 78–85.

Steuer, R. E. (1986). Multiple Criteria Optimization: Theory, Computation and Application. New
York: Wiley.

Thomas, R. H., & Huggett, R. J. (1980). Modelling in geography: A mathematical approach.
London: Harper and Row.

Wierzbicki, A. P. (1982). A mathematical basis for satisficing decision making. Mathematical
Modelling, 3(3), 391–405.

Wierzbicki, A. P. (1983). A critical essay on the methodology of multiobjective analysis. Regional
Science and Urban Economics, 13(1), 5–29.

Wu, C., & Murray, A. T. (2005). Optimizing public transit quality and system access: The
multiple-route, maximal covering/shortest-path problem. Environment and Planning B:
Planning and Design, 32(2), 163–178.

Zarghami, M., & Szidarovszky, F. (2011). Multicriteria analysis applications to water and
environment management. Berlin: Springer.

Zeleny, M. (1982). Multiple criteria decision making. New York: McGraw Hill.
Zeng, H., Pukkala, T., Peltola, H., & Kellomäki, S. (2007). Application of ant colony

optimizationfor the risk management of wind damage in forest planning. Silva Fennica, 41(2),
315–332.

References 143


	5 Multiobjective Optimization Methods
	5.1 Introduction
	5.2 Weighting and Constraint Methods
	5.3 Distance Metric Based Methods
	5.3.1 Goal Programming
	5.3.2 Compromise Programming
	5.3.3 Reference Point Method

	5.4 Interactive Programming Methods
	5.5 Conclusion
	References


