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Abstract. Message Authentication Code construction Alred and its
AES-based instance Alpha-MAC were introduced by Daemen and Ri-
jmen in 2005. We show that under certain assumptions about its im-
plementation (namely that keyed parts are perfectly protected against
side-channel attacks but bulk hashing rounds are not) one can efficiently
attack this function. We propose a side-channel collision attack on this
MAC recovering its internal state just after 29 measurements in the
known-message scenario which is to be compared to 40 measurements
required by collision attacks on AES in the chosen-plaintext scenario.
Having recovered the internal state, we mount a selective forgery attack
using new 4 to 1 round collisions working with negligible memory and
time complexity.

Keywords: Alpha-MAC, message authentication codes, MAC, AES,
collision attack, side-channel attack, selective forgery.

1 Introduction

A general Message Authentication Code construction Alred and its instance
Alpha-MAC were introduced by Daemen and Rijmen in [1]. The Alpha-MAC is
an iterative MAC function operating the state that is changed by consecutive
”injections” of message blocks. The secret key of the Alpha-MAC is used as a
key of two AES transformations, which are applied at the beginning and at the
end of computation, respectively.

The Alpha-MAC is very likely to be used in embedded systems (e.g. smart card
applications, etc.), since it suggests some significant benefits in this case. First,
the Alpha-MAC can be easily implemented, if the AES algorithm is already on
board, which has been becoming common practice in the real world. Moreover,
the advantage of the Alpha-MAC over traditional MAC constructions such as
CBC-MAC (where a message is encrypted using a block cipher in CBC mode
and the last ciphertext block is output) is its performance. For CBC-MAC based
on AES-128 the number of rounds per one processed 128-bit message block is 10,
and for the Alpha-MAC it is 4 + 20

t , where t is the number of processed blocks.
That is, for sufficiently long messages the Alpha-MAC outperforms CBC-MAC
by factor 2.5, which affects both the runtime and the power consumption.
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Daemen and Rijmen provided several theorems that substantiate resistance of
the Alpha-MAC against adaptively-chosen-message attacks. They proved that
any forgery attack on the Alpha-MAC not involving internal collisions may be
easily extended to an attack on the AES itself. Furthermore, they showed that
any colliding messages of the same size have to be at least 5 blocks long. Due to
the existence of keyed transformation both at the beginning and at the end of
the Alpha-MAC the goal to construct such collisions seems intractable without
any extra information except for the input-output pairs.

Recently Huanga et al. [2] have shown how to construct 5-block collisions given
a complete internal state or a secret key. Unfortunately, they did not consider
how to derive that information in real-world applications.

The contribution of our paper is two-fold: First we show how one can derive
the internal state using side-channel collision attacks, first introduced in [3,4] for
DES. Here we start with the assumption that the two keyed AES transformations
of Alpha-MAC have perfect protection against side-channel attacks but that the
inner rounds, which perform the bulk of the hashing and do not involve the
secret key material, are not protected. Our technique is different from that of a
collision attack on AES [5] since in Alpha-MAC the attacker controls only short
32-bit injections in each round, instead of a single 128-bit input. Nevertheless, we
are able to recover a full internal state of Alpha-MAC in just 29 measurements
in the known message scenario and without memory-intensive precomputations
(compare it to 40 measurements in the chosen message scenario and 540 Mbytes
of memory for a collision attack on AES [5]). The complexity of the offline part
is about 234 operations in GF (28). As opposed to the standard collision attack
on AES, we search for partial collisions over 4 consecutive rounds instead of a
single round. Since DPA typically requires several hundred measurements, our
side-channel collision attack is superior in terms of measurement complexity.

Secondly we show that instead of 5 block to 5 block or longer collisions
one can construct 4 to 1 block collisions. Given an internal state (recovered
by the side-channel collision attack) our algorithm constructs Alpha-MAC col-
lisions with negligible time and memory complexity. The way we construct
collisions allows to perform selective forgery attacks (arbitrary choice of mes-
sages to be authenticated except for a 128-bit suffix) on vulnerable implemen-
tations of Alpha-MAC. A remedy for the attacks shown in this paper would
be to protect also the inner rounds of the Alpha-MAC implementation against
power analysis. This agrees with the conjecture in [6] concerning the protection
of the inner rounds of AES implementations against cache-based attacks, see
also [7].

The paper is organized as follows. Section 2 gives a short description of the
Alpha-MAC. In Section 3 we show how to obtain the internal state using side-
channel collision attacks on the Alpha-MAC. Section 4 demonstrates a way to
construct collisions in the Alpha-MAC using the knowledge of the internal state.
Our experiments are described in Section 5, where we also briefly discuss possible
countermeasures against our attacks. We conclude in Section 6.
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Fig. 1. The Alpha-MAC: Internal structure and the t-th round of message-dependent
transformations

2 Description of the Alpha-MAC

Here we follow most of the notations from the original paper [1]. An Alpha-MAC
structure is illustrated in Figure 1.

Let M be 4n byte long message. A computation of a MAC for M is a three
step process. First AES with the key K (of length 16, 24, or 32 bytes) is used
to encrypt a zero block. Then n AES rounds are applied with the subkey of the
i-th round being of the form:

Injection: Ki =

⎛
⎜⎜⎝

mi
00 0 mi

02 0
0 0 0 0

mi
20 0 mi

22 0
0 0 0 0

⎞
⎟⎟⎠ ,

where (mi
00, m

i
02, m

i
20, m

i
22) = M i — the i-th block of M . After n such rounds

the result is again AES encrypted with the same key K. Here and later we will
denote an internal state It modified by AddRoundKey(Kt) by It +M t instead
of It + Kt for convenience.

In [1] it was also allowed to add a Truncation block which crops some bytes
from the final result. Truncation does not affect our attack so we omit it for
simplicity.

3 Recovering the Internal State

In this section we show how to obtain the internal state of the Alpha-MAC
using side-channel collision attacks and differential power analysis. Our attacks
are aimed at the internal state rather than at K for the following reason: We
attack implementations of the Alpha-MAC under the assumption that keyed
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AES transformations (before and after the message injections) are protected
against side-channel attacks (e.g. through masking, etc.) and the internal in-
jection rounds are not. It is a rather realistic assumption as developers in the
real-world applications are likely to protect keyed transformations and keep the
unkeyed rounds which perform the bulk of the hashing unprotected or weakly
protected due to performance concerns. For instance, processing a (relatively
short) 10-Kbyte message with the Alpha-MAC requires a total of 2580 AES-128
rounds, from which only 20 are keyed.

Another assumption is that the attacker can observe messages that are to be
processed by the Alpha-MAC and is able to measure the power consumption of
the computing device. Moreover, we require the observed messages to look ran-
dom. This assumption is substantially different from that for the basic collision
attack in [3], where the chosen-message possibility is required. Note also that
during the attack we do not need the output of the MAC computation.

3.1 Basic Collision Attack on AES

Side-channel collision attacks were proposed for the case of the DES in [3] and
enhanced in [4]. AES was attacked using collision techniques in [5]. This side-
channel collision attack on AES is based on detecting internal one-byte collisions
in the MixColumns transformation in the first AES round. The basic idea is
to identify pairs of plaintexts leading to the same byte value in an output byte
after the MixColumns transformation of the first round and to use these pairs
to deduce information about some key bytes involved into the transformation.

Let A = (aij) with i, j = 0, 3 and aij ∈ GF (28) be the internal state in the first
AES round after key addition, byte substitution and the ShiftRows operation.
Let B = (bij) with i, j = 0, 3 and bij ∈ GF (28) be the internal state after the
MixColumns transformation, B = MixColumns(A), where the MixColumns
transformation is defined for each column j as follows:

⎛
⎜⎜⎝

b0j

b1j

b2j

b3j

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞
⎟⎟⎠ ×

⎛
⎜⎜⎝

a0j

a1j

a2j

a3j

⎞
⎟⎟⎠ . (1)

Here all operations are performed over GF (28). P = (pij) with i, j = 0, 3,
pij ∈ GF (28), and K = (kij) with i, j = 0, 3, kij ∈ GF (28), denote the plaintext
block and the first subkey, respectively, then b00 can be represented as:

b00 = 02 · a00 + 03 · a10 + 01 · a20 + 01 · a30 =
= 02 · S(p00 + k00) + 03 · S(p11 + k11)+

01 · S(p22 + k22) + 01 · S(p33 + k33).
(2)

For two plaintexts P and P ′ with p00 = p11 = p22 = p33 = δ and p′00 = p′11 =
p′22 = p′33 = ε, δ �= ε, one obtains the following, provided b00 = b′00:

02 · S(k00 + δ) + 03 · S(k11 + δ) + 01 · S(k22 + δ) + 01 · S(k33 + δ)
= 02 · S(k00 + ε) + 03 · S(k11 + ε) + 01 · S(k22 + ε) + 01 · S(k33 + ε). (3)
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Let Cδ,ε be the set of all key bytes k00, k11, k22, k33 that lead to a collision (3)
with plaintexts (δ, ε). Such sets are pre-computed and stored for all 216 pairs
(δ, ε). Each set contains on the average 224 candidates for the four key bytes.
Actually, every set Cε,δ can be computed from the set Cε+δ,0 using some relations
between the sets. Due to some dependencies within the sets, this optimization
reduces the required disk space to about 540 megabytes.

The attack on the single internal state byte b00 is then the following. The
attacker generates random values (ε, δ) and inputs them to the AES module
as described above. The power consumption curve for the time period, where
b00 is processed, is stored. Then the attacker proceeds with other random values
(ε′, δ′), measures the power profile, stores it and correlates it with all stored power
curves. And so on. One needs about 4 collisions (one in each output byte of a
column) to recover the four bytes involved into the MixColumns transformation.
The probability that after N operations at least one collision b00 = b′00 occurs
in a single byte is:

pN = 1 −
N−1∏
l=0

(1 − l/28). (4)

Actually, the attack can be parallelized to search for collisions in all four columns
of B in parallel. In this case the attacker needs at least 16 collisions, 4 for each
column of B, so p16

N ≥ 1/2 and N ≈ 40. Once the required number of collisions
was detected, he uses the pre-computed tables Cε+δ,0 to recover all four key
bytes for each column by intersecting the pre-computed key sets corresponding
to the collisions (ε, δ) detected. Thus, on the average one has to perform about
40 measurements to get all 16 collisions needed and to determine all 16 key
bytes. Note that since the cardinality of the intersections for the sets Cε,δ is
not always 1, there are a number of key candidates to be tested using known
plaintext-ciphertext pairs.

3.2 Our Enhanced Collision Attack on the Alpha-MAC

The collision attack on AES described above does not apply to the Alpha-MAC,
since only 4 fixed bytes out of 16 input bytes Ki can vary. The other 12 bytes
are zero. But the collision attack can be enhanced for the Alpha-MAC in a
way that requires a reduced number of measurements (29 instead of 40) and
requires no pre-computations. Note that our side-channel collision attack itself
does not need the chosen-plaintext possibility. However, at the end there are
about 28 state candidates, which have to be tested by constructing collisions
and verifying them using access to the device computing the Alpha-MAC.

The ideas that we use are:

– Having detected several byte collisions, we treat them as a nonlinear system
of equations over GF (28). Then we solve these systems by brute-force. This
allows not to use pre-computations and memory.

– We look for collisions in three consecutive injection rounds instead of working
with only a single round. This is possible due to the fact that no entropy is
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introduced in the injection rounds. We show that this method requires less
measurements than that of Schramm et al..

Let I1 = (i1rs), r, s = 0, 3, denote the internal state of the Alpha-MAC directly
before the first injection. I1 is EK(0) after the SubBytes, ShiftRows and
MixColumns transformations of the first injection round. We also similarly
define I2, I3, and I4. The goal of our attack is to find I1. The initial internal state
EK(0) can be then easily computed from I1, since all AES round transformations
are bijective. We denote the i-th injection by Ki:

Ki =

⎛
⎜⎜⎝

ki
00 ki

01 ki
02 ki

03

ki
10 ki

11 ki
12 ki

13

ki
20 ki

21 ki
22 ki

23

ki
30 ki

31 ki
32 ki

33

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

mi
00 0 mi

02 0
0 0 0 0

mi
20 0 mi

22 0
0 0 0 0

⎞
⎟⎟⎠ (5)

for i = 1, 4.
Our side-channel collision attack on the Alpha-MAC works as follows. We

treat the states Ij + Kj for j = 2, 4 and try to detect collisions in some of the
column bytes for a number of messages. Note that this differs from the basic
collision attack, where one looks for collisions directly after the MixColumns
transform and before key addition. Collisions in I2 + K2 and I3 + K3 reveal
eight bytes of the internal state I1. Collisions in I4 + K4 recover eight linear
state-dependent relations over GF (28). These are linearly independent and can
be uniquely solved, which reveals the remaining eight bytes of I1.

After the MixColumns transform and message addition in the second injec-
tion round we have 8 bytes in I2 +K2 that can collide: i2r,0 + k2

r,0 and i2r,2 + k2
r,2,

r = 0, 3. For instance, if a collision occurs in i200 + k2
00, one has the following

relation:

02 ·S(i100 +m1
00)+S(i122 +m1

22)+m2
00 = 02 ·S(i100 +z1

00)+S(i122 +z1
22)+z2

00, (6)

where M1, Z1 and M2, Z2 are message blocks injected into the first and second
injection rounds, respectively, which result in this collision. Note that the other
bytes do not depend on the message and, thus, cancel out. in this equation.
After a further collision of type (6) has been detected in another byte of the 0th
column, one has two nonlinear equations over GF (28) with two binary variables
i100, i

1
22 ∈ GF (28). These equations are solved by brute-force. One gets similar

equations by detecting two one-byte collisions in the second column. These can
be solved in the same way and yield i102 and i120.

Next, we detect collisions after the MixColumns transform and message
addition in the third injection round. Note that four bytes of I1 are already
known. If a collision is detected in i300 + k3

00, the following relation holds:

02 · S(03 · S(i111) + S(i133) + c1 + m2
00)

+S(S(i113) + 03 · S(i131) + c2 + m2
22) + m3

00 =
02 · S(03 · S(i111) + S(i133) + c′1 + z2

00)
+S(S(i113) + 03 · S(i131) + c′2 + z2

22) + z3
00

(7)
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for some injected blocks Z2, M2, Z3, M3 and known constants1 c1, c2, c
′
1, c

′
2 ∈

GF (28). Two collisions in two bytes of the 0th column in the third injection
round give two relations of type (7) which are solved with respect to 03 ·S(i111)+
S(i133) and S(i113) + 03 · S(i131). Two further collisions in the second column of
the same round deliver two other relations which yield 03 · S(i113) + S(i131) and
S(i111) + 03 · S(i133). These four relations can be uniquely solved with respect to
i111, i133, i113 and i131.

At the time one arrives at the MixColumns transform in the fourth injection
round, 8 bytes of I1 are known. Let us again focus on the 0th column. Its state
before the MixColumns operation is as follows:

⎛
⎜⎜⎝

S(03 · S(f2) + S(g4) + c00 + m3
00)

S(S(f1) + 03 · S(g3) + c10)
S(S(g2) + 03 · S(f4) + c20 + m3

22)
S(S(g1) + 03 · S(f3) + c30)

⎞
⎟⎟⎠ , (8)

where ⎛
⎜⎜⎝

f1

f2

f3

f4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞
⎟⎟⎠ ×

⎛
⎜⎜⎝

S(i101)
S(i112)
S(i123)
S(i130)

⎞
⎟⎟⎠

and

⎛
⎜⎜⎝

g1

g2

g3

g4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞
⎟⎟⎠ ×

⎛
⎜⎜⎝

S(i103)
S(i110)
S(i121)
S(i132)

⎞
⎟⎟⎠ .

(9)

The constants c00, c10, c20 and c30 in (8) depend on the message injections K1

and K2 as well as on the previously recovered state bytes. These constants can
be seen random. Thus, if a collision is detected in i400+k4

00, the following equation
holds:

02 · S(03 · S(f2) + S(g4) + c00 + m3
00)+

03 · S(S(f1) + 03 · S(g3) + c10)+
S(S(g2) + 03 · S(f4) + c20 + m3

22)+
S(S(g1) + 03 · S(f3) + c30) + m4

00

=
02 · S(03 · S(f2) + S(g4) + c′00 + z3

00)+
03 · S(S(f1) + 03 · S(g3) + c′10)+

S(S(g2) + 03 · S(f4) + c′20 + z3
22)+

S(S(g1) + 03 · S(f3) + c′30) + z4
00

(10)

for some appropriate Z3, K3, Z4, K4. The attacker can obtain the variables
03 ·S(f2) + S(g4), S(f1) + 03 ·S(g3), S(g2) + 03 ·S(f4) and S(g1) + 03 ·S(f3), if

1 These constants depend on known message injections bytes and on already recovered
bytes of I1.



Collision Attacks on AES-Based MAC: Alpha-MAC 173

all four bytes of the column collide. Then he has four equations of type (10) that
can be solved by brute force (232 operations). Another 4-byte collision in column
1 will lead to the values 02 · S(f1) + S(g3), 02 · S(g2) + S(f4), S(g1) + 02 · S(f3)
and S(f2) + 02 · S(g4). These reveal fj , gj , j = 1, 4. Note that this occurs for
any pair of columns in this injection round. Thus, the attacker needs two 4-
byte collisions in any of the four columns, a single 4-byte collision for a column
meaning four 1-byte collisions in the same column which can occur in different
messages.

After fj , gj , j = 1, 4 have been recovered, the linear systems of equations (9)
can be solved and uniquely deliver the rest of the variables i101, i112, i123, i130, i103,
i110, i121 and i132, since one deals with the invertible MixColumns transform.
Thus, the whole state I1 is recovered.

Our thorough simulations show that two collisions in a column for rounds 2
and 3 do not allow for a unique solution of the two involved unknown bytes, even
if these collisions occur in different column bytes. In this case one has about
two solutions, averaged over all pairs of unknown bytes for different random
injections. In round 4 each of the two 4-byte collisions deliver approximately 23

candidates for the intermediate variables. Thus, the attacker has in average 28

candidates for I1 at the end. The correct one can be identified in the next step
by trying to construct a collision as described in Section 4.

Now the number of needed measurements is estimated. In injection rounds 2
and 3 at least two collisions are needed in the 0th and second columns (collisions
in some two bytes of each of the both columns). In a single column two collisions
have to be detected. Thus, the following probability needs to be computed:

P = Pr{at least two collisions in 4 column bytes} =
= 1 − Pr{A = no collisions in all 4 bytes}−

−Pr{B = exactly one collision in one of the 4 bytes} =
= 1 − PA − PB.

(11)

If p is the probability that no collisions occurred in a specific column byte after
N measurements, then:

p =
N−1∏
j=0

(
1 − j

256

)
and PA = p4. (12)

Let qi, i = 2, . . . , N , be the probability that exactly one collision is detected in the
i-th measurement and no collisions occurred in all the remaining measurements.
Then:

qi =
i − 1
256

N−2∏
j=0

(
1 − j

256

)
and PB = 4p3

N∑
i=2

qi. (13)

In injection round 4 any two columns have to yield a 4-byte collision each. This
probability can be calculated using pN from (4) as follows:
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P ′ =
(

4
2

)
p8

N (1 − p4
N )2 +

(
4
3

)
p12

N (1 − p4
N ) +

(
4
4

)
p16

N . (14)

Thus, P 4P ′ ≥ 1/2 must be fulfilled for a successful attack, which is achieved for
N = 29 with P 4P ′ ≈ 0.560. This is to be compared to 40 measurements needed
for the key-recovery in [5].

4 Constructing Collisions

In this section we show how we can exploit the knowledge of the internal state
in order to construct collisions for Alpha-MAC.

4.1 Some Properties of the AES Round Function

Let us take another look at Figure 1, more precisely, at the AES/Alpha-MAC
round function. MixColumns is the only transformation that provides diffusion
[8]. It is a linear transformation over GF (28)16 and acts on groups of 4 bytes, so
it may be considered as four linear transformations over GF (28)4. Remind that
SubBytes acts on individual bytes, and ShiftRows is just a permutation. As
a result, we can divide the state It−1 +Kt−1 into 4 groups of bytes (denote them
by Ai, i = 1, 4) and the state It into other 4 groups (Bi, respectively). Then the
following property holds.

Observation 1. Bi bytes are linear combinations over GF (28) of SubBytes-
transformed Ai bytes.

This may be illustrated on the following scheme:

It−1 + Kt−1 It

A1 : a00 a11 a22 a33
L1◦S−−−→ b00 b01 b02 b03 : B1

A2 : a10 a21 a32 a03
L2◦S−−−→ b10 b11 b12 b13 : B2

A3 : a20 a31 a02 a13
L3◦S−−−→ b20 b21 b22 b23 : B3

A4 : a30 a01 a12 a23
L4◦S−−−→ b30 b31 b32 b33 : B4

(15)

Here S denotes the S-box transformation and Li — the i-th subfunction of
MixColumns. For example, byte 7 in It is a linear over GF (28) function of
S-boxed bytes 4, 9, 14, and 3 of It−1 + Kt−1.

The following property also holds.

Observation 2. Given any 4 bytes of a row of (15) one may compute the other
4 bytes of the row fast (4 S-box transformations and ≈ 20 additions and multi-
plications in the field).

The proof may be easily derived by the substitution of S(x) into x for all x
from Ai.
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4.2 How to Construct a 4-1 Collision

The collision attack (Section 3) gives us the internal state I1. As a result,
for every 4-byte M ′ we can compute J — the internal state after one round.
The authors of the Alpha-MAC proved that any 128-bit J can be reached
from any other internal state after 4 rounds with an appropriate choice of
M = (M1, M2, M3, M4). More formally, we use the following lemma.

Lemma 1 ([1]). Given I1, the state value before iteration 1, the map

s : (M1, M2, M3, M4) → I5

from the sequence of 4 message blocks (M1, M2, M3, M4) to the state value before
iteration 5 is a bijection.

This lemma was proved in a non-constructive way so we show how to compute the
message M = (M1, M2, M3, M4). A brief scheme of computing M is presented
in Figure 2. Now we show how to compute unknown state values step by step.

Step 0. We already computed I5 = J .

Step 1. A2 and A4 bytes are not modified by K1 (the result of the injection M1)
so we can compute B2 and B4 bytes. Analogously for M4.

Remark 1. Let us notice that I5 = J implies I4 + K4 = I1 + K ′ so known bytes
of I4 are exactly bytes of I1.

Step 2. Given 12 bytes of I4 we compute 8 bytes of I3.

Step 3. Now we know 8 bytes of I2 (and thus the same bytes of I2 + K2) and
8 bytes of I3. One can easily check that we know 2 bytes from each Ai and 2
bytes from each Bi. Then we use Observation 2 and obtain all bytes of I3 and
12 bytes of I2.

Step 4. We use Observation 2 to derive values of last unknown bytes in I2 and
I4.

Step 5. First we compute M1 and M2 using pairs (I1, I2) and (I2, I3). Secondly,
we do the same to obtain M3 and M4.

As a result we have a 4–1 collision: M1||M2||M3||M4 collides with M ′.

On N–1 collisions. Collisions of type 3–1 and 2–1 may theoretically exist. Given
I1 one can reduce our construction to the search of such collisions. Due to Re-
mark 1 we do not need to know M ′ to detect whether a collision exist. As a result,
only some linear computations are required to check whether short collisions are
possible.

The collisions that we showed in this section were not considered by designers
or by [2]. It seems that in the case of AES it may be difficult to construct such
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Step 1 Step 2 Step 3 Step 4
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M ′
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I4

J = I5

Step 5

M 1

M 2

M 3

M 4

Fig. 2. Computation of the collision: I1 M′−−−−−−−−−−−−→
M1||M2||M3||M4

I5

collisions in less than 264 steps without the knowledge of the internal state.
However formally proving it seems challenging. Note also that in the case of
Alred used with Feistel ciphers (ex. Triple-DES, proposed in [1]) one has to be
more careful, since involutional structure of Feistel-ciphers makes it easier to
find partial fixed points required in such collisions.

4.3 Selective Forgery of Alpha-MAC

We have shown very efficient way to construct 4 to 1 block collisions in Alpha-
MAC, if the internal state is known. We estimate the complexity of finding
collisions as 211 operations in GF (28).

The way we construct these collisions allows to perform selective forgery attack
on Alpha-MAC. The attack would be as follows: the attacker obtains measure-
ments of authentication for 29 arbitrary known messages. From these he derives 28

candidates for the 128-bit internal state. He then picks arbitrary victim message-
tag pair (M, σ). The attacker picks a messageM ′ that he would like to authenticate
(with exception of a suffix δ of 16 bytes). For each candidate of the internal state
(and thus for each candidate of EK(0)) and M ′ the attacker can evaluate the in-
ternal states I and I ′ of Alpha-MAC after the injection of M and M ′, respectively.
He then computes the 16 injection bytes δ which transform I ′ into I. Then a pair
((M ′||δ), σ) would be a properly authenticated message-tag pair.
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4.4 Implications for Pelican-MAC

Daemen and Rijmen have also proposed another AES-based MAC called Pelican
[9], which is very similar to Alpha-MAC. The main difference is that in Pelican
there is a single 128-bit message injection every 4 rounds instead of a 32-bit
message injection every round. Pelican is also sensitive to attacks shown in this
paper. The adversary first learns the internal state at some unprotected round,
if such round exists. From that point the attacker has full control of the internal
state: i.e. he can create arbitrary meaningful colliding messages by calculating a
proper 128-bit injection at the end. Thus, one should mask the internal rounds
of Pelican-MAC to hamper such attacks.

5 Experiments

As a proof of concept, we have implemented Alpha-MAC on an 8-bit microcon-
troller, representing the typical architecture found on current low-cost smart-
cards. We opted for a PIC16F687 low power CMOS microcontroller [10], clocked
at 4MHz employing its internal oscillator and needing four internal clock cycles
(1 μs) to execute an instruction, which is in between the twelve internal cycles of
a standard i8051 controller and the single clock cycle an Atmel AVR processor
needs for carrying out one command. Communication takes place via a serial
port, while the actual power consumption is detected single-ended by means of
a 240Ω resistor inserted between the supply ground and the ground pin of the
microcontroller. Care has to be taken to avoid ground loops and assure stable
power supply and proper shielding of the measurement setup, for reduction of
noise, as measurements with a high accuracy are required to detect collisions of
bytes being processed, compared to only observing their Hamming weight.

Our implementation of the Alpha-MAC is written in PIC assembly language
using ideas from [11]. Due to the RAM in the PIC being restricted to only 128
bytes, we stored the 256 bytes of the S-box in the program memory, as proposed
in [12]. One pin of the microcontroller is used as a trigger output, thus easing

Fig. 3. Power consumption curves for equal (left) and different (right) bytes
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the alignment of the data. While the PIC is computing the MAC, power traces
are acquired by the 8-Bit ADC (Analog to Digital Converter) of an Agilent
Infinium 54832D oscilloscope at a sampling rate of 4 GSa/s. The data is stored
and evaluated on a PC with Matlab.

In order to detect the collisions at the end of the i-th injection round, we
identified four distinct sequences of instructions which looked valuable for a
power analysis in the relevant parts of the (i+1)-th injection round. The following
code uses the target byte directly:
...

;SubBytes, target byte in accu

movf A1,w ;

call SBOX ;

movwf A1 ;

...

;ShiftRows (for rows 1,2 and 3 only)

movf A1,w ;

movwf A2 ;

...

;MixColumns

movf A2,w ;

xorwf R1,w ;

...

movf A2,w ;

xorwf R2,f ;

...

Note that the code between the listed fragments delivers random states of the
accumulator register before each sequence. Moreover, values R1 and R2 in the
MixColumns transform can be seen as uncorrelated with the target byte.

The similarity of two power traces Pa(t) and Pb(t) was detected for all discrete
points in time ti belonging to the above mentioned code fragments by finding a
minimum of

∑
(Pa(ti) − Pb(ti))

2.
The result is presented in Figure 3, where two power traces out of the sec-

tion involving the S-box lookup are compared. On the left side, the indices for
the table lookups are equal to each other and a difference between the power
consumption is almost not noticeable, while on the right side two distinct table
lookups exhibit an obvious difference.

The left part of Figure 4 shows the difference curve, i.e., Pa(t) − Pb(t), when
a correlation is detected. The right half of Figure 4 depicts the difference curve
in case the measured power consumption curves do not correlate.

Note that our collision attack, as any other power analysis attack, can be sig-
nificantly hampered or even made impossible by minimizing the signal-to-noise
ratio, using sound masking techniques [13], [14] or advanced clock randomizing
methods [15]. However, the collision attack is likely to break through basic time
randomization countermeasures such as simple random wait states, which can
be detected using SPA or alignment techniques.
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Fig. 4. Difference curves in case a collision is detected (left) and no collision is detected
(right)

6 Conclusions

In this paper we showed that the Alred construction and its AES-based in-
stance Alpha-MAC can be very efficiently attacked using side-channel collision
attacks, even if the keyed rounds are masked. We are able to determine the whole
Alpha-MAC internal state with just 29 measurements in the known message sce-
nario instead of 40 measurements in the chosen plaintext scenario by mounting
an enhanced side-channel collision attack. Moreover, since the internal hash of
Alpha-MAC is not collision resistant, from the knowledge of internal state one
can construct collisions in Alpha-MAC with negligible time and memory com-
plexity. The way we construct these collisions allows to perform selective forgery
of arbitrary messages with an exception of a 128-bit suffix which is calculated to
create a collision. We describe a new 4 to 1 block collision finding algorithm. Our
attacks demonstrate that the internal unkeyed rounds of Alpha-MAC should be
also protected against power analysis.
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