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The role of metabolomics in systems biology 

Jens Nielsen and Michael C. Jewett 

Abstract 

The metabolome comprises the complete set of metabolites, the non-genetically 
encoded substrates, intermediates, and products of metabolic pathways, associated 
to a cell. By representing integrative information across multiple functional levels 
and by linking DNA encoded processes with the environment, the metabolome of-
fers a window to map core attributes responsible for different phenotypes. Given 
increasing demand to quantitatively identify the metabolome and understand how 
trafficking of metabolites through the metabolic network impact cellular behavior, 
metabolomics has emerged as an important complementary technology to the cell-
wide measurements of mRNA, proteins, fluxes, and interactions (e.g. protein-
DNA). Metabolomics is already a powerful tool in drug discovery and develop-
ment and in metabolic engineering. While maintaining these strengths, the field 
promises to play a heightened role in systems biology research, which is trans-
forming the practice of medicine and our ability to engineer living organisms. 

1 Metabolomics 

Metabolome analysis, originally proposed by Oliver et al. in 1998, seeks to iden-
tify and quantify the entire collection of intracellular and extracellular metabolites. 
Conceptually, there are two basic analytical methodologies used in metabolomics 
(Fig. 1) (Villas-Bôas et al. 2005a). Mainly exploited for classification, metabolite 
profiling strategies investigate qualitative scanning of a large number of metabo-
lites (i.e. more than 100). Here, the pattern of metabolites (or even spectra from 
chromatography or mass spectrometry) is used to find discriminatory elements via 
high-throughput detection followed by data deconvolution methods (Kell 2004; 
Goodacre et al. 2004). Metabolite profiling comprises of metabolic fingerprinting, 
which covers the endometabolome (intracellular metabolites), and metabolic foot-
printing, which covers the exometabolome (metabolites in the growth media or ex-
tracellular fluid) (Fig.1). The other general method used in metabolomics is target 
analysis. Here, absolute, or at least semi-quantification and unambiguous detec-
tion of metabolites are achieved. While historically target analysis has been re-
served for interrogating relatively small numbers of metabolites (e.g. less than 20), 
new developments enable quantitative analysis of more expanded metabolome 
coverage (e.g. Villas-Bôas et al. 2005b; Soga et al. 2003; Roessner et al. 2000).  

© Springer-Verlag Berlin Heidelberg 2007 
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Fig. 1. Strategies for metabolome analysis. The metabolome is comprised of two parts, the 
endometabolome (intracellular metabolites) and the exometabolome (extracellular metabo-
lites). Metabolome analysis seeks to identify cellular metabolites through targeted analysis 
(identification and quantification of pre-defined metabolites) or metabolite profiling (scan-
ning of all metabolites identified by a specific analytical technique). Extracellular metabo-
lites: A*, B*, and C*. Intracellular metabolites: A, B, C, !, ?. Note: ! and ? are unidentified 
metabolites. 

A variety of analytical platforms have been utilized for metabolite detection 
(Villas-Bôas et al. 2005a). While most quantitative strategies couple a separation 
technique (e.g. capillary electrophoresis (CE), liquid chromatography (LC), and 
gas chromatography (GC)) with mass spectrometry (MS) or NMR based detec-
tion, it is not uncommon to only make use of direct infusion MS for metabolite 
profiling. From a practical standpoint, our inability to quantitatively extract and 
detect highly diverse families of metabolites in their original state over a large dy-
namic range with a single or even limited-set of analytical techniques makes ana-
lyzing the complete set of all metabolites associated to a cell impossible. Thus, 
metabolomics is more appropriately used to describe an “area of science rather 
than an analytical approach” (Villas-Bôas et al. 2005c).  
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2 Applications of metabolomics 

The application of metabolomics has been widely pursued. Historically, metabo-
lite profiling has been used for medical and diagnostic purposes (Horning and 
Horning 1971; Gates and Sweeley 1978) as well as strain classification and char-
acterization (Frisvad and Filtenborg 1983). The latter has been particularly true for 
fungi and plants, which have extremely diverse metabolic landscapes. As an ex-
ample, detection and quantification of mycotoxins from fungi has been a focal 
point for characterization studies (for overview of mycotoxins see Bennett and 
Klich 2003). The increase in public awareness over the safety of food and feed 
during the last several years has led to the establishment of many new laws and 
guidelines with respect to mycotoxins (FAO 2004). For the latest developments in 
analysis and detection methods, we refer the reader to a review detailing this topic 
(Krska et al. 2005). A key development is that unconventional biosensor methods, 
which typically rely on metabolite profiling; such as, electronic nose or tongue 
technology, have a strong potential to mature into key techniques for the detection 
of mycotoxins and toxigenic fungi (Logrieco et al. 2005).  

Metabolome analysis is also an important tool in functional genomics, reveal-
ing the roles of genes from comprehensive analysis of the metabolome (Fiehn 
2001; Trethewey 2001). For example, metabolite profiling and target analysis 
have been effectively used to classify molecular signatures responsible for the 
phenotype of silent and unknown mutations (Raamsdonk et al. 2001; Allen et al. 
2003; Weckwerth et al. 2004). In one illustration, Weckwerth et al. (2004) demon-
strated the application of target analysis, using GC-TOF-MS for quantification of 
more than 1,000 metabolites, to characterize the features responsible for a silent 
plant phenotype. Exploiting statistical tools, metabolic correlations were deter-
mined between identified metabolites (e.g. trehalose-erythritol) and used to reveal 
network maps which suggested hypotheses for the impact of an exact phenotype 
on carbohydrate and amino acid metabolism.  

Hierarchical metabolomics, first reported in plants, is also well suited to guide 
targeted analysis of metabolism (Catchpole et al. 2005). Catchpole et al. (2005) 
used metabolome coverage of conventional and genetically modified (GM) potato 
crops to reveal that, apart from anticipated engineered differences, metabolic 
compositions were comparable among several types of cultivars. First, they ap-
plied metabolic fingerprinting of potato tuber extracts to classify several potato 
genotypes. Second, target analysis of defined and specific classes of metabolites 
using LC-MS and GC-TOF-MS was exploited to identify specific fructans respon-
sible for the global classifications. Finally, data analysis tools were applied to re-
move the influence of anticipated differences in the GM crops and show that the 
GM and conventional crops were within the variation observed from investigating 
several unmodified metabolic phenotypes. Hierarchical analysis provides a rapid 
and relatively inexpensive screen for many functional genomics and screening ap-
plications. 
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3 The role of metabolomics in systems biology 

In addition to finding utility in drug discovery, strain classification and functional 
genomics, metabolomics is emerging as a powerful tool in systems biology (Jew-
ett et al. 2006; Wang et al. 2006). Systems biology is the quantitative study of an 
organism, viewed as a complex web of interacting and interchanging molecular 
participants (DNA, mRNA, proteins, and metabolites) and their environment. The 
overarching vision is that studying defined biological systems as a whole, through 
the combination of mathematical modeling and experimental biology, will provide 
insights into cellular behavior that are not apparent from investigating the compo-
nents alone (Nielsen and Jewett, submitted). As a result of pioneering advances in 
genome sequencing, today’s systems biology has dramatically enhanced our abil-
ity to study the relationships among active molecular players of the cell for de-
scribing and predicting cellular behavior. It promises to transform the practice of 
medicine and our ability to engineer living organisms by facilitating drug discov-
ery, treating disease, and improving bioprocesses (Hood and Perlmutter 2004; 
Stephanopoulos et al. 2004; Weston and Hood 2004). 

Realizing the promise of systems biology is hampered by the integrated and 
complex nature of cellular networks. First, there is not a one-to-one correlation be-
tween genes and metabolites (Nielsen and Oliver 2005). Not only can metabolites 
participate in many different biochemical reactions, but also multiple mRNAs can 
be formed from one gene, multiple proteins from one mRNA, and multiple me-
tabolites from one enzyme. Second, interactions between proteins and small mole-
cules, translational regulation, and other post-transcriptional mechanisms weaken 
the linkage between transcriptional state and metabolic phenotype. Third, the 
highly connected nature of cellular networks means that small perturbations rap-
idly traverse the cellular landscape; hence, impacting the overall functional opera-
tion of the network. Based on the yeast Saccharomyces cerevisiae genome-scale 
metabolic model containing about 800 metabolites and 1200 enzymatic reactions, 
for example, the average path length to get from any metabolite or enzyme to any 
other metabolite or enzyme is only about 5 (Patil and Nielsen 2005).  

Given their central role as signals capturing information from all functional 
levels of the cell (Nielsen 2003) and also as nodes in dense metabolic networks 
(Jewett et al. 2006), determining concentrations of specifically identified metabo-
lites is core to the systems biology agenda. We envision that the most powerful 
approach for using metabolomics data for systems biology is within the context of 
complex interactions, cellular pathways, molecular participants, and environ-
mental stimuli that they connect. We believe that metabolic networks, which are 
well established, provide an effective and efficient scaffold for organizing systems 
biology data. Emerging computational strategies that exploit topological informa-
tion from genome-scale metabolic models have already proven to be a compelling 
approach for inferring co-regulated cellular network structures (Patil and Nielsen 
2005; Çakir et al. 2006). 

Examples using metabolomics in systems biology mainly focus on quantifying 
metabolite levels and flows in primary metabolism. By relying on predefined con-
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nections between genetic sequences and metabolites, the information observed by 
acquiring a snapshot of the cellular metabolic composition is upgraded. Elucidat-
ing a metabolic image of the central carbon metabolism has provided insights for 
linking normal anabolic and catabolic trafficking with other branches of metabo-
lism. The use of LC-MS, for example, has been exploited to map metabolic activ-
ity and flexibility through dynamic analysis of intracellular metabolites during the 
yeast cell-cycle (Wittmann et al. 2005) and the effect of culture age on metabolite 
pools (Mashego et al. 2005). Even though quantification of biomolecules involved 
in central metabolism offers many insights into key nodes of metabolism, other 
applications have also laid the foundation for target analysis of metabolic hubs 
that lay one step beyond the central metabolism. To quantify metabolites contain-
ing an amino or carboxylic acid group, Villas-Bôas et al. (2005b) applied a sensi-
tive GC-MS method coupled to a statistical data-mining strategy for the integrated 
analysis of clearly identified and quantified intra- and extracellular metabolites in 
S. cerevisiae (approximately 60). By isolating statistically significant differences 
among metabolite levels from four biological conditions, they observed discrimi-
natory metabolic features which hinted at the potential for future integration with 
comparative omic analyses. Highlighting the generality of this method, 
Panagiotou et al. (2005) have utilized this analytical approach to determine the in-
fluence of aerobic and anaerobic cultivation conditions on the metabolic state of 
Fusarium oxysporum. 

Equally important in guiding a systems-level understanding of the overlapping 
layers of global regulation and network flexibility are efforts to experimentally 
measure the flow of material through central metabolism. Characterization of 
metabolic operation is achieved by using 13C-labeled substrates followed by de-
termination of characteristic metabolite patterns which can indicate directional 
flow (Sauer 2006). The most general approach uses proteinogenic amino acid 
analysis to infer labeling patterns and flux distributions. However, the application 
of rapid sampling and quenching has recently been applied to directly analyze in-
tracellular metabolites from S. cerevisiae without being impeded by the high 
metabolic turnover rates (van Winden et al. 2005). This approach generates direct 
data without inference; however, caution must be exercised due to the rapid dy-
namics of exchange between metabolites and amino acids incorporated into cellu-
lar proteins (Grotkjær et al. 2004).  

High-throughput efforts for comparative flux analysis offer an unprecedented 
view of the rigidity, flexibility, and performance of metabolic networks. In one il-
lustration, Blank et al. considered flux data from over 30 mutants in S. cerevisiae 
to investigate potentially flexible fitness reactions during growth on glucose 
(Blank et al. 2005). Combination of measurements with mathematical modeling 
revealed that metabolic network robustness to single gene knockouts was princi-
pally a result of genetic redundancy, duplicate genes, with alternative pathways, 
redirection of carbon flow, having less importance. This approach was taken fur-
ther in a larger scale, systematic flux analysis of 137 null mutants of Bacillus sub-
tilis (selected from all major functional categories) on its preferred substrate 
(Fischer and Sauer 2005). As in the previous illustration, this strategy enabled 
identification of fundamental design principles of in vivo network operation. A 
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key feature, which is likely to be universal, is the manifestation of rigid distribu-
tion patterns which are “largely independent of the rate and yield of biomass for-
mation.” The above cases represent powerful strategies to uncover the structure 
and function of the interplay between genetic regulatory networks and phenotype. 

4 Outline of this book 

Despite holding significant promise to elucidate key features of cellular behavior, 
there are several challenges to be addressed in the field of metabolomics. These 
include: interpreting metabolomic data, measuring concentrations of more and 
more metabolites using standardized and efficient methods, shifting towards more 
quantitative measurements, standardizing reporting practices, organizing data into 
user-friendly libraries and databases, identifying statistically relevant and dis-
criminatory features in the data, and developing appropriate frameworks to inte-
grate and map metabolite data with other X-omic data. For example, ensuring un-
biased and robust quantification of a large number of metabolites is still a major 
concern. This issue is exacerbated relative to measurements of other participants 
in the cell (e.g. genes, mRNAs, and proteins) because metabolites exist on a con-
siderably shorter time-scale (by more than an order of magnitude). In addition to 
short time-scales, the chemical diversity of metabolite classes and the physical 
barriers of the cell (e.g. cell structure and compartments) make metabolome cov-
erage, particularly for the endometabolome, an issue. On top of sample prepara-
tion and chemical analysis are challenges of analyzing the growing volumes of 
data being generated. Although standard multivariate statistical methods can be 
applied, there are still a lot of difficult problems to be dealt with. Besides improv-
ing existing pre-processing methods, intelligent methods for finding patterns in 
(extremely) high-dimensional data related to prior functionality are currently, and 
will continue to be, on top of the agenda. These methods will have to detect com-
plex patterns in ill-posed problems (many metabolites in relatively few samples). 
Beyond chemical analysis and data analysis, new data integration techniques are 
also required. We believe that the limiting step for utilization of metabolome data 
will be in improving our ability to develop appropriate frameworks to integrate 
and map data from multiple cellular levels. 

This book brings together the latest in the field of metabolomics. We compre-
hensively present the current state of the metabolomics field by underscoring ex-
perimental methods, analysis techniques, standardization practices, and advances 
in specific model systems (e.g. Escherichia coli). In Chapter 2, issues of stan-
dardization are discussed. Standardization is very important for generating high 
quality data that are reproducible and can be consistently compared between dif-
ferent laboratories. Pre-analytical, intra-analytical, and post-analytical sources of 
variability are highlighted. Not only is standardization of analytical methods im-
portant, but we must also consider how the metabolomic data we generate are re-
ported. In Chapter 3, Hardy and Jenkins focus on the importance of and recent de-
velopments in reporting standardization. In Chapter 4, another important issue for 
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obtaining high-quality metabolome data is discussed; namely, the use of annotated 
databases of metabolites and mass spectrometry profiles. There are several initia-
tives to generate databases. Here, the group of Kopka describes the Golm Me-
tabolome Database, which is specifically developed for handling data from gas-
chromatography mass-spectrometry (GC-MS). 

As discussed in Section 3, metabolome data play a very important role in im-
proving our understanding of how metabolism operates. Chapters 5 and 6 discuss 
this objective from two levels. In Chapter 5, Reuss and co-workers describe how 
detailed kinetic models for individual enzymes can be put together to give a quan-
titative description of whole biochemical pathways. In particular they show how 
these models can describe the dynamic operation of such pathways, and how dif-
ferent reactions interplay through the common use of different co-factors. As the 
authors emphasize, the availability of high-quality metabolome data is central for 
determination of kinetic parameters of these models. In Chapter 6, Zamboni un-
derscores a more global approach. Here, the objective is to map all fluxes in a 
metabolic network by quantifying the incorporation of 13C-labelled substrates into 
different intracellular metabolites. This strategy enables quantitative information 
describing carbon flow throughout all of metabolism and is well suited for map-
ping a large number of mutants.  

Data analysis is an integral part of metabolome analysis. There are many differ-
ent ways to handle the often very large and high dimensional data-sets that are ob-
tained. One way is to analyze the data in the context of either detailed kinetic 
models that can simulate dynamic operation of metabolic pathways (Chapter 5), or 
as a metabolic network model with the objective to get information about the 
fluxes (Chapter 6). However, often the objective is simply to identify specific 
biomarkers, i.e. significantly changed metabolites in one biological sample as 
compared to another, or groups of metabolites that have changed levels in one or 
more growth conditions. Chapter 7 describes a variety of statistical methods avail-
able for identifying key features in metabolome data. 

Model organisms play a very important role in biology. In terms of metabolom-
ics, S. cerevisiae and E. coli are two of the most important model microorganisms. 
Together with data analysis, metabolome analysis of the yeast S. cerevisiae is cov-
ered in Chapter 7. Chapter 8 is devoted to metabolome analysis of the bacterium 
E. coli. Here the group of Tomita discusses both efforts to measure a very large 
fraction of the metabolome, and also how metabolome data can be used to infer 
insights about the metabolic function of this bacterium. 

The last two chapters of the book are devoted to metabolome analysis of fila-
mentous fungi (Chapter 9) and plant cells (Chapter 10). Filamentous fungi play an 
important role as both pathogens and industrial cell factories. Understanding their 
secondary metabolism is very important for identification of new natural products, 
as well as for differentiating mycotoxin producing fungi from other fungi. Simi-
larly, plant metabolomics plays an important role for rapid phenotypic characteri-
zation of food and feedstocks. Due to the extreme metabolic diversity of plant 
cells, mapping the complete plant metabolome is a significant challenge. How-
ever, many studies continue to expand our ability towards this ultimate goal. 
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Chapter 10 gives an overview of this field. In particular, the authors discuss the 
importance of the anatomy and physiology of plant cells in metabolomics studies. 
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Analytical methods from the perspective of 
method standardization 

Silas G. Villas-Bôas, Albert Koulman, and Geoffrey A. Lane 

Abstract 

Variability between laboratories, between instruments and between analysts 
within the same laboratory is an important issue of practical concern for me-
tabolomics. Method standardization is essential for comparability of metabolomics 
data between experiments and laboratories in multi-disciplinary studies. However 
agreed standard requirements to extract metabolites, to concentrate cell extracts 
and to detect low molecular weight molecules in biological samples are lacking, 
and this significantly limits data comparison. This chapter reviews the sources of 
variation in analytical methods in current use and outlines possible quality specifi-
cations for global metabolite analysis. We categorize the sources of variability as 
pre-analytical (sampling and sample preparation), intra-analytical (instrumenta-
tion) and post-analytical (data mining and handling). The broad range of applica-
bility of metabolomics precludes a generalised uniform approach. However by 
analyzing the factors influencing metabolite measurements, we aim to highlight 
areas for developing recommendations for method standardization that minimize 
analytical variation and specifications of performance standards including quality 
control procedures and measures of data quality in order to improve laboratory 
performance and to enable scientist to compare data across studies.  

1 Introduction 

Metabolomics or metabolome analysis is a rapidly evolving field that has gained 
increased popularity in recent years. Metabolomics is well-recognized for its po-
tential as a functional genomics tool (Oliver et al. 1998; Fiehn et al. 2000; Raams-
donk et al. 2001; Trethewey 2001; Fiehn 2002; Sumner et al. 2003; Bino et al. 
2004; and others) and by its broad range of applicability, mainly due to the devel-
opment of powerful analytical methods capable of screening a large number of 
chemical compounds in biological samples.  

Initially, the metabolomics field focused its attention on the development of 
analytical methods that enabled scientists to detect hundreds of compounds in a 
single analysis (Gavaghan et al. 2000; Roessner et al. 2000, 2001; Soga et al. 
2000, 2002a, 2002b; Allen et al. 2003; Castrillo et al. 2003; Dunn et al. 2005a; 
Villas-Bôas et al. 2005a; and others). These methods generate large data sets, and 
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the interpretation and integration of these data with other ‘omics’ related data con-
tinues to represent a great challenge for the area. As a consequence, the major fo-
cus of metabolomics studies during the last few years has been on data mining and 
data analysis, resulting in considerable advances in bioinformatics tools applicable 
to metabolome analysis (Goodacre et al. 2004; Kell 2004; Smedsgaard and Niel-
sen 2004; Borodina and Nielsen 2005; Fell 2004; Wang et al. 2006; and others). 
However, the quality of the information extracted by these bioinformatics tools 
and techniques depends on the quality of the experimental data. Interpreting ex-
perimental data requires information about the samples used in the experiment, the 
conditions under which measurements were taken, the equipment used to take the 
measurements, etc. Important models for reporting ‘omics’ data that capture ex-
perimental descriptions alongside experimental results, facilitating the develop-
ment of systems for storage and dissemination of experimental data have been 
proposed for transcriptomics i.e., MIAME (Spellman et al. 2002), for proteomics 
i.e., PEDRO (Taylor et al. 2003), and for plant metabolomics i.e., ArMet (Jenkins 
et al. 2004).  

These tools offer a framework for comparison of metabolomics experimental 
data sets to independently verify experimental findings, and for comparative me-
tabolomics, emulating the success of genomics in exploiting the commonalities of 
biological systems to extrapolate and interpolate findings. However comparisons 
of metabolomics data are complicated by experimental differences. Currently, a 
plethora of different methods are being used for sampling and extraction of me-
tabolites from biological matrices, as well as an enormous diversity of analytical 
techniques and instrumentations employed for separation and detection of differ-
ent classes of metabolites. Standards make an enormous contribution to most as-
pects of science, and the lack of a common or ubiquitous standard procedure 
across different research groups and laboratories limits the efficient interchange-
ability and comparability of metabolomics data.  

The adoption of standard experimental protocols would undoubtedly facilitate 
the direct comparability of data, but this is only relevant for experiments of similar 
type with the same or similar organism. In practice, the broad range of applicabil-
ity of metabolomics precludes a generalised uniform approach. The goal of com-
prehensive metabolomic analysis with the diversity of metabolite chemistry means 
that any experimental protocol represents a compromise, and different organisms, 
sample types and experimental goals demand different compromises. Thus pro-
gress towards method standardisation across the broad scope of metabolomics will 
not be achieved through the pursuit of universal standard protocols. 

Therefore, method standardisation for metabolomics has to be considered in a 
different way. While universal protocols may not be possible, specification of per-
formance standards of experimental procedures for metabolite analysis is a 
worthwhile goal. Towards this goal we examine the sources of experimental vari-
ability with the aim of achieving a greater understanding of the validity of the me-
tabolomics data and providing for better biological interpretation.  

To assess the validity of metabolomics data, it is important to have a clear un-
derstanding of the particular information each different type of measurement can 
provide, and the quality of that information. In particular, it is necessary to know 
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which types of metabolites are measurable by the technique(s) used, what samples 
were collected, how they were harvested, processed, and stored, which molecular 
mass cut-off was adopted, and how the data was extracted and processed before 
analysis, and the implications at each stage of the process for data quality. From 
the laboratory perspective, sources of variation can be categorized into pre-
analytical (sampling and sample preparation), intra-analytical (instrumentation), 
and post-analytical (data mining and handling).  

Therefore, in this chapter we analyze the various factors that influence metabo-
lite measurements (pre-, intra-, and post-analytical), drawing attention to ap-
proaches that minimize analytical variation in order to improve laboratory per-
formance and to procedures for acquiring measures of data quality together with 
the data to enable scientists to compare data across studies and laboratories, and to 
make metabolomics data storage more meaningful.  

2 Pre-analytical variability 

Variability in biological sciences can be inherent to the biological material or can 
be introduced by human (scientist) manipulation. Thus, pre-analytical variability 
is of two main sources: biological variability or variability introduced by sample 
handling. The latter can be sub-divided further into variability introduced during 
sampling and variability introduced during sample processing. In the following, 
we review the main aspects of each class. 

2.1 Biological variability 

The major pre-analytical variability is the inherent biological variability of cells 
and organisms. For multi-cellular organisms the metabolome data typically shows 
high variability between individuals. Biological variability between individuals of 
the same genotype is typically the major source of variations in metabolite levels 
analyzed by GC-MS and recent research suggests patterns of correlations of indi-
vidual variation may be more informative about the metabolic phenotype than is 
the mean metabolic profile (Morgenthal et al. 2006). Although measurements of 
populations of unicellular and asexual organisms tend to present less biological 
variability, their metabolism responds very promptly to minimal alterations in 
their environment, such as oxygen and substrate availability, temperature, pH, etc. 
Small variations in these environmental conditions very often result in consider-
able variability in metabolite levels. Therefore for metabolome analysis, the num-
bers of samples and replicates per treatment have to be as large as possible.  

Large numbers of samples and replicates are particularly important in studies 
involving higher organisms such as plants and animals, and this can be limited by 
costs and feasibility. Biological variability of around 40% is usually reported for 
large-scale profile of plant metabolites (von Roepenack-Lahaye et al. 2004), and 
this is expected to be similar or even greater for animal samples. For example, to 
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obtain a significant (p < 0.05) two-fold difference in metabolite level of samples 
presenting 40% biological variability, it is necessary to have at least five individu-
als per trial/treatment (based on student test principles). Even more replicates are 
desirable for comparative correlation analysis. While multiple samples from each 
individual are in principle desirable to minimize the technical variability that will 
be discussed further in this chapter, in practice greater biological replication is 
probably preferable. 

On the other hand, the biological variability between replicates of microbial or 
plant/animal cell cultures is expected to be minimal, as all measurements are of 
population means. Villas-Bôas et al. (2005a, 2006a) showed that in contrast to 
plant and animal metabolomics, sample-to-sample variability exceeds replicate 
flask-to-flask variability in microbial metabolomics. The variability of me-
tabolomics data from microbial or cell cultures is mostly due to technical variabil-
ity (e.g. cultivation conditions, growth phase, sampling and sample processing, 
etc.). Therefore, for microbial and cell cultures the numbers of cultures/flasks can 
be reduced, but large longitudinal sample sizes (many samples from one culture) 
is required.  

2.2 Variability introduced during sampling 

Sampling is a critical step in metabolome analysis and must be carefully consid-
ered. There are several studies demonstrating how fast the turnover of metabolites 
inside the cells is (de Koning and van Dam 1992; Villas-Bôas et al. 2005b, 2007a; 
and many others). Cellular metabolism, particularly primary or central metabo-
lism, rapidly adjusts to minimal changes in the environment, and since metabolite 
levels are coupled through metabolic networks (Nielsen 2003); changes propagate 
rapidly, generating marked changes in metabolite profiles in matter of seconds.  

Table 1 lists the main sources of variability during sampling. Light-dependent 
bio-reactions are widely spread throughout living organisms. The metabolism of 
plants and photosynthesizing microbes are the most influenced by light, but the 
metabolism of animals also changes significantly between night and day periods. 
In addition, plant metabolism is not only dependent on light intensity but also on 
the wavelength of the light. For instance, upper leaves cast shadows over lower 
leaves resulting in significant differences in metabolite profiles for each leaf of the 
same plant. Thus, sampling must be performed in a short time-window and, ide-
ally, under same light intensity (e.g. same period of the day/night), selecting 
leaves or other plant organs with a similar light-exposure. 

Oxygen and CO2 ratio is another important source of variability in metabolom-
ics data, mainly because the sampling processing is likely to change the ratio of 
these gases in the cell environment. Microbial or cell cultures are exposed to a dis-
tinct atmosphere during sampling either by decreasing aeration of aerobic cultures 
or by introducing oxygen to anaerobic cultures. The change in O2/CO2 ratio may 
result in considerable changes in cell metabolism. Therefore, a quick sampling 
procedure, followed by a fast quenching of biochemical and chemical reactions is 
imperative to obtain a truly representative sample.  
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Table 1. Main sources of variability during sampling biological materials 

 Plants Animals Microbial and cell culture 
Light Important source 

of variability dur-
ing sampling 

Metabolism 
changes according 
to day/night re-
gimes  

Important for photosynthesiz-
ing microorganisms/cells 

O2/CO2 ratio Minor importance 
during sampling 

Important source 
of variability dur-
ing sampling 

Important source of variability 
during sampling 

Nutrients/ 
substrates 

Minor importance 
during sampling 

Fasting period be-
fore sampling is 
recommended 

Important source of variability 
during sampling 

 
Another source of variability is the diet and/or nutrient/substrate availability 

prior to sampling. These source of variability can be minimized during sampling 
by feeding animals with identical diets, by monitoring the feed intake prior to 
sampling, and by sampling after a fasting period. Similarly, the metabolism of 
plants and microorganisms are also a result of nutrient and substrate availability, 
and the growth phase of the organism. Microbial batch cultures must be harvested 
at similar growth phases to minimize differences in the extent of substrate utiliza-
tion. Plant samples must be properly defined by organ and growth stage as well as 
by growth conditions for comparability.  

2.2.1 Sampling: the act of transferring a biological material to a 
laboratorial vessel  

Based on the diverse sources of variability during sampling biological material for 
metabolome analysis, it is clear that this step has to be accomplished within a very 
short time window, in a reproducible manner, and assuring that all biochemical 
and chemical reactions will be quenched simultaneously or immediately after 
sampling. There are several limitations on achieving this goal that are specific to 
different biological material. Animals need to be sacrificed or submitted to surgery 
before their organs are removed, and both procedures induce instantaneous bio-
chemical alteration of cellular metabolism, resulting in a distinct metabolite pro-
file compared to the in vivo and non-stressed metabolic state. In addition, the or-
gans of interest must be removed from the body, which may take seconds or even 
minutes to be achieved. A better alternative is to work with body fluids such as 
blood, cerebrospinal fluid, urine, milk, etc.  

The choice of body fluids over tissues is done with the assumption that the me-
tabolites found in most body fluids are largely reflective of the physiological state 
of the organ that produces or is bathed in that fluid (Wishart 2007). Hence, urine 
reflects processes going on in the kidney, bile in the liver, cerebrospinal fluid in 
the brain, and so on. The blood is a special body fluid as it potentially reflects all 
processes going on in all organs. According to Wishart (2007), this can be both a 
blessing and a curse, as metabolite perturbations in the blood, while easily detect-
able, cannot be easily traced to a specific organ or a specific cause. In terms of 



16   Silas G. Villas-Bôas, Albert Koulman, and Geoffrey A. Lane 

data variability, the choice of body fluid over tissues is also advantageous in that 
fluids are far easier to process and usually do not require extraction of metabolites 
from within cells, thus reducing sample handling. 

Similarly, sampling plant material is also limited by the time required to re-
move the plants from the soil/substrate batch or to sample specific plant organs; as 
well as by the light dependency of plant metabolism (Roessner 2007). Although, 
contrary to animals, we can potentially quickly freeze a whole plant body in liquid 
nitrogen without any ethical issues, special care has to be taken about the time 
point when plant samples are harvested. In general, as a rule, all samples should 
be harvested at the same time point or in a very small timeframe. This may be-
come difficult when a large set of plants is to be investigated. Otherwise, it is rec-
ommended that plant material is sampled in a randomized way in order to capture 
daytime differences in metabolite profiles within the variability throughout the 
data set (Roessner 2007).  

Microbial or cell cultures have to be sampled at the same or very similar 
growth phase. Therefore, sample replicates have to be harvested consecutively in a 
very short time. The metabolism of cells in culture is much more vulnerable to the 
environment than cells within a tissue. Consequently, the metabolism of microor-
ganisms and cells in cultures respond very rapidly to environmental changes. 
Therefore, the time required for transferring microbial and cell cultures from their 
culture environment (flasks, bioreactors, etc) to a sampling vessel is a critical fac-
tor that deserves special attention.  

Villas-Bôas (2007a) review several techniques for fast transfer of culture sam-
ples from the cultivation flasks or reactor to the quenching solution and the differ-
ent techniques vary with respect to speed and practicability. Research on sampling 
systems to measure microbial metabolite dynamics on a subsecond time scale has 
been reported during recent years (Theobald et al. 1993, 1997; Weuster-Botz 
1997; Schaefer et al. 1999; Lange et al. 2001; Buziol et al. 2002; Visser et al. 
2002; and others). Ingenious devices have been developed, which present pros and 
cons and vary from manual sampling to fully automated (computer-aided) devices. 
A global overview of the main sampling techniques developed to date can be 
found in Villas-Bôas (2007b).  

2.2.2 Quenching: stopping the cell metabolism 

Besides quick harvesting, the sampling process can only be accomplished if the 
cellular metabolism is stopped and no further biochemical and/or chemical reac-
tions take place in the sample. Therefore, the samples have to be quenched at the 
time of harvesting. As discussed in Villas-Bôas et al. (2005b) and Villas-Bôas 
(2007a), a rapid inactivation of metabolism is usually achieved through rapid 
changes in temperature or pH. This is usually done by placing the biological sam-
ple in contact with a cold (< -40oC) or hot (> 80oC) solution or with an acidic (pH 
< 2.0) or alkaline (pH > 10) solution. This process must be sufficiently fast to 
avoid changes in metabolite levels caused by alteration in the environment of the 
cells, ideally in a time window of a second.  
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Different biological samples require different techniques to achieve a proper 
quenching. When quenching plant or animal tissues, an important factor to be con-
sidered is that the size of the sample should be compatible with the quenching 
technique used, as well as the quenching agent. Cell tissues are often distributed in 
several layers, where the peripheral cells tend to be quenched before the central 
ones, increasing the sample variability. Therefore, tissue thickness as well as a re-
producible sample size should be seriously considered when planning experi-
ments. The most reasonable way to achieve efficient quenching of plant or animal 
tissue is by rapid freezing in liquid nitrogen. As liquid nitrogen is an inert and 
highly volatile substance (boiling point -196oC) it can be rapidly eliminated from 
the sample by evaporation. Alternatively, cold methanol solution or acidic treat-
ments using perchloric or nitric acid can be used as quenching agents; however, 
their efficiency is controversial and no validation of these methods to quench plant 
or animal tissues has been reported so far.  

On the other hand, microbial or cell cultures are generally characterized by a 
high dilution ratio between biomass and extracellular medium, and this has large 
affects on the quenching process. The most common quenching methods for this 
type of sample are based on aqueous solutions containing an organic solvent, usu-
ally methanol or ethanol, buffered or non-buffered, set to an extreme temperature 
(very cold or very hot), or acidic solutions, typically perchloric acid. Sometimes 
liquid nitrogen is also used as a quenching agent (Villas-Bôas 2007a). 

However, the greatest challenge in quenching microbial or cell cultures is the 
separation between intra- and extracellular metabolites. Culture media are usually 
very rich in nutrients and intracellular metabolites are usually in an osmotic equi-
librium with the extracellular medium (Villas-Bôas 2007a). Due to the low bio-
mass: medium ratio in typical microbial and cell cultures, the concentration of ex-
tracellular metabolites greatly exceeds the concentration of intracellular ones in a 
given sample; therefore, the fractionation of cell biomass from spent culture me-
dium is highly desirable.  

However, microbial cells are sensitive to most quenching agents developed to 
date, and this factor is very rarely taken into consideration during microbial me-
tabolomics studies. Bacterial cells, for instance, are known to loose intracellular 
metabolites by leakage due to cell wall damage when in contact with any quench-
ing solutions currently in use (Villas-Bôas 2007a). Wittmann et al. (2004) pro-
posed a protocol for fast separation of bacterial cells from extracellular media us-
ing fast filtration under vacuum and washing the biomass with four volumes of 
cold saline solution (0.9% NaCl) at -0.5oC (the whole filtration step including the 
washing can be finished in less than 45 s). This method seems to permit authentic 
quantification of intracellular amino acid pools. However, this procedure may be 
less suitable for precise analysis of metabolites with a faster turnover, for example, 
phosphorylated intermediates.  

The most widely spread method for quenching yeast cell cultures makes use of 
cold methanol solution as the quenching agent and was originally proposed by de 
Koning and van Dam (1992). This method gained great popularity due to its abil-
ity to separate cells from extracellular metabolites, without apparent damage of the 



18   Silas G. Villas-Bôas, Albert Koulman, and Geoffrey A. Lane 

C

B

A

 
Fig. 1. Yeast cells assayed with propidium iodide to test the membrane integrity during 
quenching with cold methanol solution at -40oC. (A) Control cells centrifuged and resus-
pended in saline solution. (B) Cells quenched with 60% (v/v) methanol solution at -40oC. 
(C) Cells quenched with 60% (v/v) buffered methanol solution at -40oC. “Reproduced from 
Yeast, vol. 22, Global metabolite analysis of yeast: evaluation of sample preparation meth-
ods, page 1162, Copyright (2005), with permission from John Wiley & Sons, Inc. 

yeast cell envelope. However, it was recently demonstrated that yeast cells, simi-
larly to bacterial cells, are sensitive to cold methanol solution either buffered or 
non-buffered (Fig. 1), and leakage of several intracellular metabolites has been 
observed after quenching S. cerevisiae cultures with cold methanol solution, fol-
lowing the original protocol (Villas-Bôas et al. 2005c). Several organic and amino 
acids are practically washed out of the yeast cells after being in contact with the 
cold methanol solution. However, by decreasing the time the yeast cells stay in 
contact with the methanol solution (e.g. applying quicker centrifugation) the leak-
age of intracellular metabolites can be minimized significantly, but a few metabo-
lites may undergo a higher leakage under faster centrifugation, for example, lac-
tate, citramalate, myristate (Villas-Bôas et al. 2005c).  

Other quenching agents such as strong inorganic acids (Cook et al. 1976; Lars-
son and Törnkvist 1996) or alkalis (Cook et al. 1976) or even boiling ethanol 
(Gonzales et al. 1997), naturally damage the microbial cell envelopes provoking 
the leakage of intracellular metabolites to the extracellular medium. In addition, 
extreme pHs and high temperatures can potentially degrade several metabolites as 
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demonstrated by Hajjaj et al. (1998), Maharjan and Ferenci (2003) and Villas-
Bôas et al. (2005c).  

Alternatively, the analysis of intracellular and extracellular metabolites can be 
combined. Usually the extracellular metabolites are determined separately in the 
samples of spent culture media and their levels are subtracted from the pool (intra 
+ extra) in order to get an estimation of the intracellular levels, but this approach 
limits considerably the detection of intracellular compounds and gives rise to high 
variability of estimates of intracellular metabolites that typically make up a small 
fraction of the total metabolite pool. Therefore, microbial and cell culture me-
tabolomics desperately call for the development of an efficient quenching proce-
dure that allows a reliable intracellular metabolite analysis.  

2.3 Variability introduced during sample processing   

There are very few systematic studies on variability introduced during sample 
processing for metabolome analysis. However, sample processing represents sig-
nificant source of variability in metabolomics data. We can assume that the more 
steps in sample processing, the more between-sample and between-batch variabil-
ity will be observed. Therefore, from the metabolomics point of view, the sample 
processing stage should ideally contain as few steps as possible and should pre-
vent any loss by chemical or physical chemical degradation, remaining enzymatic 
activity in the samples, or mechanical losses. However, this is a virtually impossi-
ble task. Except for the few occasions where the samples do not need to be proc-
essed before analysis (e.g. during direct injection mass spectrometry of extracellu-
lar samples or NMR analysis), as soon as the sample starts to be processed the 
original metabolite profile starts to get “adulterated”. Several metabolites are 
thermo-labile or light-sensitive, reduced metabolites can also be easily oxidized in 
the presence of air or any other oxidative compounds, and even exchange of key 
functional groups can be observed (e.g. phosphate groups of phosphorylated com-
pounds) (Villas-Bôas 2007a). Therefore, any sample processing procedure in me-
tabolome analysis should employ mild conditions (e.g. low temperatures, inert 
solvents, etc) and quick procedures to minimize variability.  

Since we cannot avoid alteration in metabolite levels during sample processing, 
losses could be estimated by introducing internal standardization during the early 
stages of sample processing. However, based on the internal standardization con-
cept, an efficient internal standard should mimic the analyzed compounds as much 
as possible (Freisleben et al. 2003). This is another challenge in metabolomics be-
cause we usually aim to analyze as many metabolites as possible in a single sam-
ple, which poses severe limitations for choosing an efficient internal standard.  

Mashego et al. (2004) published a new and innovative method for accurate 
quantification of changes in concentrations of intracellular metabolites, named 
MIRACLE, where each metabolite concentration is quantified relative to the con-
centration of its own internal standard (an U-13C-labeled equivalent), thereby 
eliminating most pre- and intra-analytical variability (with no spiking or standard 
addition needed). Despite the elegancy and efficacy of the method, the cost re-
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quired for each experiment is high due to the need for de novo synthesizes all U-
13C-labeled metabolites using U-13C-labeled substrates. These can be very expen-
sive if a large number of treatments/mutants have to be investigated, and the 
method is essentially restricted to microbial and cell culture studies. Nonetheless, 
the MIRACLE method is undeniable the most powerful and robust innovation to 
date for reliable estimation of changes in intracellular metabolite levels and the 
development of micro-scale cultivations may minimize the costs of the method.  

Besides internal standardization, additional precautions can be taken at differ-
ent steps of sample processing in order to minimize sample variability. In the fol-
lowing, we review the main sources of variability introduced during sample proc-
essing, mainly focussing on the analysis of intracellular metabolites, where sample 
processing is greater. 

2.3.1 Sample storage, homogenization, and concentration 

Sample storage is usually an unavoidable step in sample processing. Commonly, 
samples are stored to be processed later after sampling and quenching, and once 
extraction of intracellular metabolites has been completed, the samples can be 
stored before analysis and even after analysis. According to Villas-Bôas (2007a), 
there are two main alternatives for storage of quenched plant/animal tissue sam-
ples before extraction of intracellular metabolites: (i) shock freezing at -80oC or 
(ii) freeze-dry and storage under vacuum at low temperature. Their advantages and 
disadvantages are presented in Table 2. Microbial and cell cultures as well as body 
fluids can also be stored after quenching by just freezing at -80oC. Storage at - 
20oC, however, is not recommended because there are indications of some bio-
chemical reactions and enzymatic activities being able to take place at very low 
temperature, even down to -20oC (Junge et al. 2006; Roessner et al. 2006), spe-
cially if the sample is not completely frozen due to high salt contents, or presence 
of organic solvents. Although these reactions are supposed to be rare, slow and 
mostly reported on psychrophilic organisms, the biochemistry of below zero Cel-
sius is poorly understood, and is therefore worth preventing.  

Metabolite extracts, being in solution (aqueous/organic) or freeze-dried, are of-
ten stored before or even after analysis-in case the samples need to be re-analyzed. 
Therefore, the integrity of the compounds in the samples must be assured. Chemi-
cal degradation is an important source of variability in stored metabolite samples. 
Particularly thermo- and photo-labile metabolites can be degraded quickly if kept 
for long time at room temperature or exposed to light. Phosphorylated compounds, 
some sulphur derivatives, and reduced metabolites can be degraded or oxidised 
rapidly at room temperature. Similarly photo-degradation is a process that may re-
sult in high variability in the level of photosensitive metabolites. For example, S-
adenosyl-L-methionine, which is a methyl donor metabolite; a cofactor for en-
zyme-catalyzed methylations, including catechol O-methyltransferase (COMT) 
and DNA methyltransferases (DNMT), is a very unstable compound that can be 
degraded very rapidly at temperatures above 0oC or when exposed to light. There-
fore,  the   storage  of   metabolite   extracts   at  low   temperature   (< -20oC)   and 
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preferably in the dark is highly recommended. This will also avoid further chemi-
cal interactions between active compounds in extracellular samples (Villas-Bôas 
2007a). 

Homogenization before metabolite extraction is another important step in sam-
ple processing of plant and animal tissues in regards to variability in metabolite 
levels. Plant and animal tissues are heterogeneous and usually contain rigid cell 
walls (plants) or adipose and connective tissues and cartilage (animals), which call 
for sample homogenization to minimize difference between samples. It is ex-
tremely important that the homogenization process takes place at very low tem-
perature, far below the freezing point of the tissues (e.g. under liquid nitrogen), to 
prevent cell defrosting and consequent re-activation of cellular enzymes (Table 2). 
According to Roessner et al. (2006), many enzymes are resistant to freezing and 
can be quickly activated after defrosting. For instance, the enzyme invertase, 
which efficiently cleaves sucrose to glucose and fructose, is resistant not only to 
freezing but also to the presence of chloroform, and can be active even at -20oC, 
provoking significant alterations on sugar profiles if samples are not properly fro-
zen.  

On the other hand, many metabolites are present at fairly low levels in the sam-
ples and additional sample dilution is often observed during sample preparation 
procedures, which imposes a requirement for sample concentration prior to analy-
sis in order to improve detection. However, losses by degradation, evaporation and 
metabolite-class discrimination are also observed at this stage and again choices 
need to be made guided by the objectives of the study that is being carried out.  

Freeze-drying, or lyophilization, and solvent evaporation under vacuum are 
commonly used methods to remove water or organic solvents from samples (Table 
2). However, loss of analytes during lyophilization is often observed and the 
losses are certainly related to discrimination during resuspension as well as evapo-
ration of low boiling point compounds. Different metabolites have different solu-
bilities in the solvent used for resuspension, and therefore, discrimination during 
re-dissolving freeze-dried compounds in a very small volume of solvent is likely 
to happen. In addition, semi-volatile compounds such as 2-oxovaleric acid (bp = 
88oC), acetic acid (bp = 117oC), lactic acid (bp = 122oC), pyruvic acid (bp = 
156oC), etc can be partially lost by evaporation. Organic solvent evaporation un-
der a vacuum seems to be a more reliable method for concentration of samples 
containing primary metabolites (Villas-Bôas et al. 2005b), but this technique is 
dependent on the type of extraction procedure used, since this procedure is not 
well suited for aqueous samples and loss of volatile metabolites is also observed.  

Table 3 compares the recovery of metabolite standards after lyophilization and 
solvent evaporation, based on the results reported in Villas-Bôas et al. (2005c). 
Accordingly, recoveries of organic acids, nucleotides, sugars, and a peptide were 
higher than 80% after lyophilization. The fatty acid tested was poorly recovered, 
and the basic amino acid lysine was practically not recovered at all. The recovery 
of sugar-alcohols and sugar-phosphates was lower than 75%. On the other hand, 
concentration of samples by solvent evaporation under vacuum presented an ex-
cellent recovery for all amino acids, organic acids, nucleotides, sugars and sugar 
alcohols (Table 3).  Only sugar-phosphates  and glutathione  (peptide)  presented a 
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Table 3. General classification of different extraction methods based on the recovery of 
spiked metabolite standards (n=3) from yeast according to Villas-Bôas et al. (2005c) 

Classes of metabolites  
 
Method 

Amino 
acids 

Organic 
acids 

Fatty 
acids 

Nucleo
tides 

Pep-
tides 

 
Sugars 

Sugar al-
cohols 

Sugar phos-
phates 

CMB ***** **** Nr *** *** *** **** ** 
BE **** **** *** * ** * *** nr 
PCA ** * * * *** *** **** nr 
KOH **** ** **** ** *** ** **** nr 
MW **** **** *** **** ** ** **** nr 
PM ***** ***** **** ***** *** ** **** nr 
Extraction method: CMB, chloroform:methanol:buffer; BE, boiling buffered ethanol; PCA; 
perchloric acid; KOH, potassium hydroxide; MW, cold methanol solution 50% (v/v); PM, 
pure cold methanol.  
***** > 80%; **** > 60%; *** > 40%; ** > 20%; * > 0%; nr, not recovered. 
“Reproduced from Yeast, vol. 22, Global metabolite analysis of yeast: evaluation of sample 
preparation methods, page 1163, Copyright (2005), with permission from John Wiley & 
Sons, Inc. 
 
comparatively lower recovery. The losses during lyophilization are quite substan-
tial, yet this sample concentration technique is considered by most as a gentle 
methodology to concentrate samples. The excellent recovery obtained by solvent 
evaporation with reliable reproducibility (Table 3) indicates that this methodology 
is the best alternative for sample concentration in metabolome analysis. However, 
this technique is dependent on the type of extraction procedure used, which gives 
preference for extraction using only organic solvents.  

2.3.2 Metabolite extractions 

The extraction of intracellular metabolites is inevitably a time consuming step. 
The extraction solvent and conditions should be designed to limit any further 
physical and chemical alterations of the molecules and the entire extraction proc-
ess should ensure minimal loss of the metabolites to be extracted. The extraction 
procedure aims to disrupt the cell structures liberating all or the maximum number 
of metabolites in their original state and in a quantitative manner to a defined ex-
traction medium. The choice and development of efficient methods for extraction 
of intracellular metabolites requires an understanding of: (i) the cell wall struc-
tures, which are the first and main barrier to be broken; (ii) the chemical nature of 
the metabolites (i.e. physical and chemical forms, solubility, stability); and (iii) the 
sources of losses (especially their impact on subsequent recovery of metabolites). 
A complete study of these three factors influencing metabolite extraction, as well 
as the various forms for extraction of intracellular metabolites is found in Villas-
Bôas (2007a).  

It is virtually impossible to avoid losses during metabolite extractions mainly 
because of the high chemical diversity and the wide dynamic range of metabolite 
concentrations (Jiye et al. 2005; Villas-Bôas et al. 2005b, 2007a). Choices have to 
be made concerning  which metabolites should  be measured, and often analysis of 
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Table 4. Global recovery of different metabolites after two different sample concentration 
methods (n=3) according to Villas-Bôas et al. (2005c) 

Metabolites Lyophilization  
(= freeze-dry)* 

Solvent evaporation under 
vacuum* 

Valine 95 100 
Lysine 0 100 
Glutamate 100 100 
Phenylalanine 50 100 
Tryptophane 50 100 
Pyruvate 100 100 
Lactate 100 100 
Fumarate 100 100 
Succinate 100 100 
Citrate 100 100 
Isocitrate 100 100 
2-Oxoglutarate 90 100 
2-Oxoadipate 92 100 
Pimelate 85 100 
Myristate 42 83 
NADP+ 48 100 
NAD+ 50 100 
Glutathione 100 56 
Xylose 66 85 
Trehalose 75 100 
Glycerol 70 92 
Xylitol 75 85 
Arabitol 68 85 
Mannitol 80 62 
Ribose 5-phosphate 68 42 
Glucose 6-phosphate 100 100 
Fructose 6-phosphate 96 84 
Mannose 6-phosphate 73 41 
*The overall variability was bellow 12% for most analytes. 
 
some classes of compounds has to be sacrificed in favour of a good reproducibility 
of other metabolites. Alternatively, multiple extraction procedures could be ap-
plied to enable analysis of as many metabolites as possible, but still keeping the 
variability sufficiently low to allow reliable comparisons between samples and 
batches of samples. 

In metabolome analysis, the intracellular metabolites are usually extracted us-
ing chemical agents to lyse the cells and extract the intracellular compounds. 
There are a variety of chemical agents and extraction conditions that can be ap-
plied to different class of cells. Some chemical extraction methods will dissolve 
selectively a targeted group of metabolites (e.g. lipids or polar compounds), while 
others will be able to dissolve a broader range of metabolite classes. However, 
discrimination of certain groups of metabolites will always be observed, which 
will call for the use of multiple extraction agents in combination or not with some 
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physical or mechanical process to enhance cell permeability and extraction effi-
ciency. 

Villas-Bôas et al. (2005c) evaluated the sample preparation methods for global 
metabolite analysis of yeasts. This work showed a huge difference in metabolite 
recovery comparing different extraction methods using the same biological mate-
rial spiked with different metabolite standards. The authors classified five popular 
extraction methods in addition to a new proposed protocol according to their abil-
ity in recover different classes of compounds as showed in Table 4. None of the 
methods evaluated was able to extract all class of compounds with similar effi-
ciency. By examining the different extraction procedures the authors concluded 
that there is a strong influence of the extraction method on the metabolite profile 
of yeast cells. Similar conclusions were also achieved for filamentous fungi 
(Hajjaj et al. 1998), bacterial cells (Maharjan and Ferenci 2003), plant tissues 
(Gullberg et al. 2004) and body fluids (Jiye et al. 2005). For instance, it is evident 
that acidic and alkaline extractions do not suit the requirements for a global me-
tabolome analysis. According to Maharjan and Ferenci (2003), destruction of 
compounds such as pyruvate, nucleotides, and phosphorylated sugars under ex-
treme acidic and alkaline pH is well documented. Loss of several metabolites was 
also observed using boiling solvents, such as boiling ethanol, most likely because 
many metabolites are heat-labile. Sugars and nucleotides in particular, presented 
the poorest recovery during boiling ethanol extraction, but even some amino and 
organic acids were badly recovered (Villas-Bôas et al. 2005c). Maharjan and Fer-
enci (2003), obtained similar results using boiling ethanol to extract intracellular 
metabolites of bacteria, but Gullberg et al. (2004) found the use of an homogene-
ous (1:8:1) chloroform - methanol-water extraction solvent with brief heating to 
60ºC gave the best compromise for extraction of a range of metabolites of Arabi-
dopsis thaliana (Col) leaf tissue. 

Therefore, it is obvious the current state-of-art of intracellular metabolite ex-
traction methods is more suitable for targeted analysis than for a global metabolite 
analysis, as desired for metabolomics studies. Thus, much larger effort is required 
to optimize and to adapt these classical extraction protocols to a wider and non-
discriminative metabolomics approach. On the other hand, the work of Maharjan 
and Ferenci (2003) and Villas-Bôas et al. (2005c) suggested two new protocols for 
an efficient extraction of intracellular metabolites of bacteria and yeasts using cold 
methanol (pure or in aqueous solution), which are serious candidates for a high-
throughput extraction procedure for global metabolite analysis. However, these 
methods have yet to be tested for different biological matrices. 

2.3.3 Derivatization 

Chemical derivatization of metabolites is a sample-processing step especially im-
portant for analysis of semi-volatile and non-volatile compounds by gas chroma-
tography (GC), coupled or not with mass spectrometry (MS). Semi-volatile and 
non-volatile chemical compounds are often unstable at the high temperature re-
quired for evaporation in the GC injector (Villas-Bôas et al. 2005b).  
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A very large number of derivatization methods for analysis of metabolites have 
been reported, but only a few are currently used in metabolomics. Silylation of or-
ganic compounds is the classical and most widely used derivatization procedure 
for metabolome analysis by GC-MS. Silyl derivatives are generally more volatile, 
less polar, and thermally more stable than their parent compounds. Sugars and 
their derivatives (sugar-alcohols, phosphorylated sugars, amino sugars, and others) 
are the most important class of metabolites derivatized by silylation (Villas-Bôas 
et al. 2005b, 2006). Silylation is characterized as being efficient with a broad 
range of applications, and results in stable derivatives with good reproducibility. 
However, silylation reactions require anhydrous reaction conditions, and there-
fore, the samples have to be completely free of water to minimize between-
samples variability. In addition, some classes of metabolites (e.g. amino acids) 
produced relatively unstable silylated-derivatives (Koek et al. 2006). Following 
methoxymation and per-trimethylsilyation, Koek et al. (2006) estimated derivati-
zation efficiencies for 32 metabolites, which varied widely, ranging from 25-
110%. Very low efficiencies (< 40%) were found for some amino acids (aspar-
agine, glutamine, and tryptophan) and for phosphate esters (fructose 6-phosphate, 
glucose 6-phosphate, glyceraldehydes 3-phosphate, glycerol 3-phosphate) (Koek 
et al. 2006).   

Alkylation or esterification is another derivatization technique that is often used 
in metabolite analysis by GC and GC-MS (Villas-Bôas et al. 2005a, 2005b). This 
method is primarily used for derivatization of polyfunctional amines and organic 
acids. The use of esterification reactions based on chloroformate derivatives (CFs) 
became popular recently (Villas-Bôas et al. 2003, 2005a, 2005b; Hušek and Šimek 
2006). CF derivatives have several advantages compared to silylation such as fast 
reactions at room temperature and in aqueous medium, and the derivatives are sta-
ble for several days, which decreases between-sample variability. However, the 
scope of CF derivatization is smaller than silylation, limited to amino and non-
amino organic acids.  

Independently of the derivatization method in use, variability at derivatization 
step is usually related to derivative stability and sample heterogeneity or so-called 
‘matrix-effects’. Samples are usually derivatized and then placed in a queue to be 
injected into the analytical instrument. Thus, some samples wait hours before 
analysis. Therefore, the metabolite derivatives have to be stable enough to resist 
the time required for analysis. Alternatively, the samples can be derivatized one-
by-one and immediately analyzed. This can be achieved by employing robotic sys-
tems coupled to analytical instruments that are able to perform automatic in-vial 
derivatizations (e.g. CTC devices).  

On the other hand, derivatization is a chemical organic reaction and, therefore, 
it is under the chemical reaction principles, which are: substrate + reagent = prod-
uct(s). Therefore, different substrates have different reaction rates, resulting in dif-
ferent product yields. If metabolite “A” has a higher reaction rate than metabolite 
“B”, and “A” is present at much higher concentration in the sample than metabo-
lite “B”, then chances are metabolite “B” will be poorly derivatized, and might be 
undetected. Most of the time, the competition for the derivatizing reagent is not 
between  two metabolites,  but between  the metabolites  and a  high-concentrated 
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Fig. 2. Influence of glucose on the analysis of two phenolic acids by methyl chloroformate 
derivatization. Graphic (A) presents the analyte levels at different sampling time (n=3) 
based on direct GC-peak height. (Graphic (B) presents the analyte levels at different sam-
pling time (n=3) based on the GC-peak height normalized by the peak-height of the internal 
standard (trans-cinnamic acid). The compounds were analyzed by GC-MS according to 
Villas-Bôas et al. 2005a). Time zero corresponds to the initial concentration as prepared. 
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matrix component (e.g. sugars, urea, peptides, water, etc.). Figure 2 illustrates the 
effect of glucose in the derivatization of phenolic acids by methyl chloroformate. 
The graphic shows the level of phenolic acids in a microbial culture medium ana-
lyzed by GC-MS. After four hours of cultivation, the microbial cells have con-
sumed all the glucose in the medium and in the third sample collected the meas-
ured level of phenolic acids was greater than in the previous ones (Fig. 2A). 
However, by introducing an appropriate internal standard (another similar pheno-
lic acid) during derivatization (Fig. 2B), it becomes clear that the lower levels of 
phenolic acids detected in the previous samples (after two hours) was due to the 
interference of glucose, because after that point glucose is absent. This kind of in-
terference or matrix-effect is likely to be very common in metabolome analysis 
and difficult to detect on a “comprehensive” scale.  

3 Intra-analytical variability 

The structures of metabolites embed the functions of biosynthetic genes, and the 
quantities of metabolites present in a biological sample integrate the outcome of 
synthetic and catabolic processes over time (Nielsen and Oliver 2005). Thus an 
understanding and control of both qualitative and quantitative variation during 
analysis are important for metabolomics. Of these, qualitative accuracy, i.e., the 
correct characterisation of the chemical identity of metabolites is of prime impor-
tance as it is the key to linking metabolism to gene function. In a recent evaluation 
of several metabolomics studies Kopka (2006) found that ca. 33% of detected 
components are identified compounds. While the variations in anonymous un-
knowns may be helpful in classifying samples, and on occasion provide a useful 
indicator of a biological effect, the prevalence of unknown compounds is a major 
challenge for metabolomics. The unknown count provides a direct experimental 
measure of the limitations of our current knowledge of metabolism. 

The unbiased measurement of the complete metabolome remains a goal for me-
tabolomics, but in practice functional metabolomics investigations can be broadly 
categorised into two classes (Nielsen and Oliver 2005): 

i) “Comprehensive” analyses to identify metabolites that have a key role in dis-
tinguishing between treatment groups (and which may be characterised after dis-
covery), and  

ii) Analyses restricted to those metabolites that can be measured quantitatively. 
“Comprehensive” metabolomics investigations have similarities to micro-array 
analysis of gene expression in the quality and utility of the data generated, provid-
ing semi-quantitative relative measures of quantity, and conditional identification 
of the components. As with micro-arrays, such studies are the prelude to more ex-
act and targeted studies to fully characterise the components and test particular 
hypotheses. With a restricted list of candidates, higher standards of quantitation 
and identification can be achieved in the initial analysis, but at the cost of ignoring 
potentially important treatment effects on the metabolome. The standards of 
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measurement and control of variability are inevitably very different for these two 
approaches. 

Quality standards for chemical analysis have become tightly defined as part of 
the legal and regulatory framework of modern societies, and validation procedures 
to ensure the reliability of chemical data have been defined by international scien-
tific bodies (e.g. Thompson et al. 2002; Milman 2005). Specific analytical meth-
ods developed according to these procedures are typically defined for a single me-
tabolite or narrow class of related compounds. The criteria include issues of 
applicability and fitness for purpose, selectivity, calibration and linearity, “true-
ness” (defined relative to reference materials), spiking/recovery, precision, range, 
limits of detection and quantification, sensitivity, ruggedness, matrix effects, and 
resulting measurement uncertainties. The scale of the ambitions of metabolomics, 
comprehensive unbiased analysis of the metabolome, is fundamentally incompati-
ble with the demands of rigorous analytical method validation. Thus metabolom-
ics analysis is inevitably a compromise as it requires extension of the scope of 
analytical method to cover a wide range of analytes, and cannot be optimised for 
the measurement of any individual component (Halket et al. 2005).  

Further, questions of analytical variability in metabolomics cannot be resolved 
by the adoption of universal standard methodologies. Metabolomics is being ap-
plied to a diverse array of biological samples differing widely in metabolite com-
position, and the appropriate analytical compromise will depend on the sample 
and the analytical technology. Thus, the priority for standardisation in metabolom-
ics is in the realm of agreed practical standards of quality control and measures of 
data quality, rather than of analytical methodology per se. Given the importance of 
correct chemical identification for metabolomics, establishing clear criteria and 
measures of the quality of identifications (Milman 2005) is particularly important.  

We discuss these issues here for the widely used techniques of GC-MS and 
ESI-MS (in both direct infusion and liquid chromatography forms) on the basis of 
recent literature and experience in our laboratory. As we do not have direct ex-
perience with applying the experimental techniques of NMR and CE-MS to me-
tabolomics, we have not attempted to address the associated issues of qualitative 
and quantitative variation and refer readers to recent reviews (Dunn et al. 2005a; 
Krishnan et al. 2005; Ramautar et al. 2006). 

3.1 GC-MS 

GC-MS methodology has been one of the primary tools in the development of me-
tabolomics. Capillary GC provides the highest resolution of any standard chroma-
tographic separation method, and with modern instrumentation, retention times are 
very consistent between runs. Electron impact ionisation and fragmentation in the 
source at standard voltage settings is generally reproducible between instruments 
and extensive libraries of spectra are available (NIST05, 
http://www.nist.gov/srd/nist1a.htm). The major limitation is the restriction to vola-
tile analytes, and hence the requirement to convert many metabolites to volatile 
derivatives, with associated limitations and sources of chemical error (above). GC-
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MS is being widely used in plant, microbial, and animal studies to measure natu-
rally volatile compounds or volatile derivatives of non-volatiles such as TMS 
ethers or methylchloroformate esters, with hundreds of peaks detected in some 
studies (for recent reviews see Villas-Bôas et al. 2005a, 2005b; Halket et al. 2005; 
Kopka 2006). 

3.1.1 Uncertainties in identification 

The classic standard of qualitative identification by GC-MS is the combination of 
co-elution with an authentic standard in the same chromatographic run on a capil-
lary GC column, or better two columns of differing type of stationary phase to-
gether with a satisfactory match to the fragmentation pattern (EI MS) and / or ac-
curate mass (TOF MS) (Milman 2005). This can be extended with decreasing 
reliability using standards and samples within the same sequence of runs; run on 
the same instrument under similar conditions at a later date; or with appreciably 
less certainty, by reference to databases of retention time and mass spectrum data. 

The classic analytical approach has been applied in a number of studies where a 
considerable list of well-defined metabolites with available authentic standards 
has been measured to provide insight into biological effects (e.g. Villas-Bôas et al. 
2006). In cases where a more comprehensive coverage is sought, often at least a 
sub-set of the metabolites are characterised relative to authentic standards (e.g. Ti-
kunov et al. 2005). Modern GC-MS instrument manufacturer software typically 
provides facilities for peak detection and comparison against the retention time 
and mass spectrum of an authentic standard previously run on the instrument, with 
limit criteria for particular fragment masses. Official regulatory methods specify 
matching criteria for both retention times and mass spectra as summarised by 
Milman (2005). Changes in retention time can be corrected for by reference to 
standards. The risk of false positive identifications with these procedures is low 
but non-zero. While separation of a peak from a co-injected authentic standard is 
unambiguous, the criteria of co-elution and spectrum-matching retain a residual 
ambiguity, particularly within some classes of naturally occurring isomeric com-
pounds, for example, monoterpenes, per-silylated sugars (Wagner et al. 2003). 
The risk of false negatives is considerably higher due to misleading spectrum 
mismatches arising from co-eluting interferences. Currently this can only be over-
come by manual checking (e.g. example in Table 2 of Schauer et al. 2005). These 
limitations can potentially be overcome by improved peak resolution, and recent 
development in two-dimensional GC-TOF MS (Shellie 2005; Mohler et al. 2006) 
offer the prospect of significant improvements in separating power.  

Derivatization processes can both degrade and improve the quality of identifi-
cations. A standard approach to derivatize complex mixtures in metabolomics 
prior to GC-MS analysis is to convert cyclic monosaccharides to open chain 
methoximes prior to per-trimethylsilylation (Roessner et al. 2000; Fiehn et al. 
2000). The methoximes occur as stereoisomeric pairs, but a greater number of 
TMS derivatives are formed from the free sugar. The process of chemical conver-
sion can degrade identification quality as for example through the conversion of 
arginine to the TMS derivative of ornithine (Halket et al. 2005). The implications 
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for unknowns are of course unknown! Conversely, where several derivatives are 
uniquely formed from one compound, for example, sugar methoxime isomers, the 
occurrence of the expected isomer peaks in the correct ratio provides an additional 
level of identity validation.  

When more extensive profiling beyond a target list based on authentic stan-
dards is attempted, recent developments in databases for metabolomics provide 
the basis for a wider extension of authentication, albeit at a lower standard of 
proof (relative retention times or indices; and GC-MS library matches). Auto-
mated peak deconvolution programmes such as AMDIS (Stein 1999) are essential 
and widely used to generate target lists of components characterised by retention 
times and patterns of mass fragmentation (mass spectral tags or MSTs in the no-
menclature of Kopka 2006). Recent developments in GC-MS data processing us-
ing hierarchical multivariate curve resolution (Jonsson 2005, 2006) may offer a 
more robust automated approach to spectrum extraction, with successful deconvo-
lution of mass spectra of almost exactly co-eluting components reported. 

A number of spectrum matching algorithms are available for comparing ex-
tracted mass spectra to library data, often incorporated in instrument manufacturer 
software. The dot product approach as implemented in AMDIS (Stein 1999) is 
widely used. The quality of a spectrum library search result is characterised not 
only by the magnitude of the match factor, but also by its distinctiveness, i.e. sepa-
ration from the values for matches with other compounds (Milman 2005). How-
ever high similarities between mass spectral fragmentation patterns within classes 
of naturally occurring metabolites (or their derivatives) are common and Wagner 
et al. (2003) demonstrated unequivocally the necessity of incorporating chroma-
tographic retention data for effective selective searching. Retention indices 
(Kovats 1958), which relate the retention time of a component to those of a series 
of alkanes run on the same column under identical conditions, provide a measure 
of portability between laboratories. An extensive MS/RI collection of TMS and 
TBDMS derivatives has been made available to the science community by the 
Max Planck Institute of Molecular Plant Physiology (Schauer 2005; Kopka 2005), 
and the wider use of combined mass-spectrum and RI matching has been ad-
vanced with the release of the NIST05 database 
(http://www.nist.gov/srd/nist1a.htm ) incorporating RI data. For library screening, 
match factors of >650 for MS dot product score (AMDIS) and RI differences less 
that 3.0 have been suggested to identify candidates for manual evaluation (Schauer 
2005). While retention indices may not be precisely portable, indices determined 
on columns of the same type show close co-linearity, particularly within com-
pound classes (Kopka 2006), and library retention indices can thus be adjusted 
relative to authentic standards run within the laboratory. The co-occurrence of 
multiple derivatives of a compound can provide an added level of security of iden-
tity. However for conclusive identification by matching of retention times and 
mass spectra, there is no substitute for laboratory validation by standard addition 
experiments, especially for closely eluting isomers (Kopka 2006). 

Assessing the quality of reported chemical identifications in a metabolomics 
investigation remains an issue. Match parameters for RI and MS might provide a 
guide, but these are not a direct measure of quality. Milman (2005) points out that 



32   Silas G. Villas-Bôas, Albert Koulman, and Geoffrey A. Lane 

any chemical identification involves the generation and testing of a hypothesis and 
the generally agreed standard of reliability is that tests based on two different 
techniques should reach a consistent conclusion. Thus, in principle metabolomics 
identifications remain provisional and subject to revision. However, prior knowl-
edge is an important consideration in chemical identification. Analysts of me-
tabolomes are well aware that most of the ca. 25 million known low molecular 
weight compounds are outside their domain of identification, and they are justifia-
bly influenced in their assignments of chemical identity by prior knowledge of 
known compounds found in the species under investigation, expectations of the 
occurrence of ubiquitous metabolites, and knowledge of the classes of secondary 
metabolites likely to be present in a family. Milman (2005) suggests a Bayesian 
probabilistic formalisation of identification based on the joint probability of an 
experimental measurement result given the presence of a compound, and the prior 
probability a compound is present in the sample. This conceptual framework may 
provide a basis for a systematic approach to assigning a numerical value to the 
quality of compound identifications in metabolomics. 

To maintain quality in chemical structure identifications the relationships be-
tween chemical structures at different stages of the analytical process must be 
properly recognised. The analytes determined in a GC-MS analysis are some steps 
removed from the metabolites in the biological system, and the form in which they 
are represented in public databases (Kopka 2006). Apart from inconsistencies in 
nomenclature, which may be resolved by reference to unambiguous computer-
generated InChI codes (http://www.iupac.org/inchi), problems arise with isomeric 
structures such as hexoses and pentoses present as cyclic anomers in the cell and 
analysed as acyclic per-TMS methoxime stereoisomers. Metabolomics results 
need to be reported in the framework of a properly constructed chemical ontology, 
which clearly defines the relationship between reported estimates, actual analytes, 
and the underlying metabolites. The chemical ontology under construction as part 
of ChEBI (Brooksbank et al. 2005; http://www.ebi.ac.uk/chebi) may provide a 
foundation for this. 

A well-structured chemical ontology would also provide for a more systematic 
approach towards handling the identification of the ca. 67% of unknown com-
pounds appearing in comprehensive metabolomics analyses (Kopka 2006). The 
similarities of EI mass spectra within classes of metabolites or their derivatives is 
a constraint on unique identification, but also provides a means of partial identifi-
cation (Wagner et al. 2003). Partial classification of unknown compounds to 
chemical classes is of value in interpreting metabolomics studies (e.g. Broeckling 
et al. 2005 discuss a jasmonic acid metabolite), and a properly structured chemical 
ontology would allow data with different levels of structural definition to be re-
ported and analysed in a consistent way. 

However the major challenge to “comprehensive” metabolomics is undoubt-
edly the large number of unknown or partially characterised metabolites. When 
the genome sequence is known the existence of many metabolites can be inferred, 
and for many of these, authentic compounds may be commercially available. 
Koek et al. (2006) derivatized and analysed ca 300 standards for postulated me-
tabolites of B. subtilis and detected ca 200 metabolites as derivatives by GC-MS, 
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although not all could be quantitatively measured by this technique. Extension be-
yond the range of commercially available standards has been suggested (Kopka 
2006) as a “bottom up” approach to structure identification where sets of candi-
date molecules are synthesised. In the face of the biosynthetic diversity of nature, 
this is unlikely to make much impact in the short term except in specific cases, for 
example, completing series of isomers. The practical question is how to prioritise 
which metabolites should be further characterised, given the major demands on 
time and resources this implies. For individual laboratories, the obvious approach 
is to focus on those compounds showing distinctive characteristic changes be-
tween system states as discovered by data mining, but partial structural informa-
tion and biological clues may also aid priority setting. Priorities may also emerge 
from comparative metabolomics between different experimental systems and labo-
ratories. The development of public databases of mass spectral tags (Schauer 
2005) and consistent labelling schemes for unknown compounds (Bino et al. 
2004) will facilitate this process. Further efforts will be required to reconcile par-
tial identifications from different experimental methods and laboratories to avoid 
reliving the confusions of the classic era of natural products research which re-
sulted from the persistent use of different trivial names for the same compound 
discovered in different contexts. 

3.1.2 Quantitative variability 

Quantitative metabolomics analysis by GC-MS is subject to variation at each level 
of the process, from biological variation between replicate samples, to variation in 
sample preparation (quenching and extraction), derivatization as discussed previ-
ously, as well as during chromatography and detection (Villas-Bôas et al. 2005b). 
As an analytical tool, GC-MS ranks highly for linearity over a wide dynamic 
range, and for selectivity. GC with electron-impact MS provides multi-channel de-
tection, and is a powerful tool for selective analysis within complex mixtures. Ma-
trix effects under electron impact in the standard EI source are much less of a 
problem than in ESI-MS (below), and extracted ion chromatograms based on se-
lected distinctive fragment ions can often provide baseline resolution of overlap-
ping peaks. However different analytes in a complex mixture are likely to differ 
widely in recoveries, derivatization efficiencies, the stability of derivatives, and in 
mass fragmentation. The mass selectivity of GC-MS makes possible the compara-
tive measurement of an analyte and a stable isotope variant, and stable isotope di-
lution analysis (SIDA) is well established as a good strategy for control of these 
sources of variation in GC-MS (e.g. Chace 2001), although analysts should be 
aware the chemical and physical properties of the different isotope species are not 
identical. For proper validation, variation should be assessed across the range of 
matrices the analysis is to be applied for each analyte (Thomson et al. 2002). As 
with unambiguous identification of all metabolites, this remains an elusive goal 
for metabolomics, but recent research has made substantial progress towards de-
fining the quality of quantitative metabolome analysis and clarifying the sources 
of variation. 
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Initial implementations of GC-MS metabolomic analysis were carried out on 
quadruple GC-MS instruments, but rapid-scanning time-of-flight (TOF) detection 
is now more commonly used despite limitations in dynamic range, as TOF detec-
tion is more sensitive and can provide more and better-aligned data points across a 
GC peak (Kopka 2006; Veriotti and Sacks 2003). 

The pioneers of plant metabolomics took some effort to validate the reproduci-
bility of their GC-MS analyses of MeOx TMS derivatives, and reported relative 
standard deviations (RSDs) of analytical replicates of the order of 5% or less for 
most of the metabolites they were monitoring, usually well below the biological 
variations within the experiment (Roessner et al. 2000; Fiehn 2000). Some limita-
tions were identified, including a decline in measured levels of some compounds 
during runs, and a major discrepancy with previous literature in one case (citric 
acid) (Roessner et al. 2000), and Fiehn (2000) reported up to two-fold differences 
between external and internal calibration. Quality estimates from Roessner’s study 
and more recent implementations and investigations of the quality of GC-MS 
analysis of TMS derivatives are summarised in Table 5. 

The prime requirement for chemical analysis methods in biology is that analyti-
cal variability is significantly less than biological variability. Given the biological 
variation typically observed in metabolic profiles (Morgenthal et al. 2006), for 
GC-MS analyses of a wide range of TMS derivatives of metabolites this is the 
case as relative standard deviations (RSD) in most cases are less than a 10% (Ta-
ble 5). However for some metabolites particularly some amino acids and organic 
phosphates, results can be quite unsatisfactory. Apart from the inability to measure 
some amino acids such as arginine (see above), others such as glutamine, aspar-
tate, methionine, and tryptophan show poor reproducibility and instability during 
chromatographic runs.  

The most detailed recent examination of sources of variation in GC-MS analy-
sis and of measures to control this variation is that of Koek et al. (2006). For sug-
ars and organic acids Koek at al. (2006) report generally satisfactory derivatization 
(60-115%), good repeatability (<5%) and reproducibility (8-14%), a large linear 
range (2.0 x 102), and low detection limits (<500 pg on column). However this is 
not achieved for some classes of metabolites and this is inherent in the derivatiza-
tion chemistry. The formation of derivatives from MSTFA involves the displace-
ment of an N-methyltrifluoroacetamide leaving group by the analyte, and some 
metabolites provide equally good leaving groups. In this case, the derivatization 
reaction is only driven to product by the large excess of reagent, and the products 
are readily degradable. This is particularly the case for amides such as asparagine, 
and glutamine, and for thiols, and sulfonic derivatives, with the overall trend for 
ease of TMS derivatization and stability of products alcohol > phenol > carboxylic 
acid > amine > amide. The analysis of TMS derivatives of amines, and phosphoric 
functional groups shows intermediate variability of derivatization efficiencies (30-
110%), repeatability (1-7%) and reproducibility (10%), and higher detection limits 
than for sugars and organic acids (Koek et al. 2006).  

Koek et al. (2006) applied a range of quality control measures, including a set 
of added deuterated standards to monitor extraction (phenylalaline-d3), lyophiliza-
tion (glutamic acid-d3), derivatization (glucose-d7 and phenylalaline-d5) and GC-
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MS analysis (alanine- d4, dicyclohexylphthalate), and checking GC-MS perform-
ance by monitoring responses for standards. They reported that in general liners 
required changing after 20 samples had been injected, with occasional removal of 
a small section of the front end of analytical column to restore performance. With 
these quality control measures they claim their GC-MS method to be a compre-
hensive method with a very large application range, with an analytical perform-
ance with respect to stability, precision, recoveries and linear ranges that meets re-
quirements for target analysis in biological matrices. When the procedures were 
applied to the analysis of the B. subtilis metabolome, with standard additions of ca 
200 authentic standards, recoveries better than 50% were achieved for 160 me-
tabolites. However 40 compounds could not be determined due to multiple peaks, 
degradation (e.g. adenosine 5’-phosphosulfate), poor recoveries (e.g. uridine 5’-
monophosphate), or high volatility (acetic acid, glyoxilic acid).  

Data quality can be much improved where stable isotope standards are avail-
able (stable isotope dilution analysis: SIDA) (Gullberg et al. 2004). For microbial 
samples, isotope standardisation can potentially be extended to the complete me-
tabolome by the use of control samples prepared from incubation of universally 
13C-labelled substrates as reported by Mashego et al. (2004) for LC-MS, but this 
technology is very expensive and has yet to be applied to GC-MS analysis. How-
ever reproducibility statistics can be misleadingly reassuring. The gold standard 
for analytical validation is confirmation by an independent method Thompson et 
al. (2002) and Jiye et al. (2005) reported differences between GC-MS estimates 
for 8 compounds by SIDA and estimates of an accredited laboratory ranging from 
0.7%-24.5% (median 10%).  

The above studies do not address peak resolution, and the effects of multiple 
derivative peaks on quantitative analysis. The standard procedure for metabolom-
ics studies by GC-MS has been to use a non-polar DB5 column with a linear gra-
dient, which leaves some derivative peaks of isomeric metabolites unresolved and 
lacking distinctive measurement ions. Villas-Bôas et al. (2006) achieved an im-
proved separation within classes of isomeric sugars with a more polar phase 
(ZB1701, Phenomenex) and a complex custom gradient. Where the pattern of 
multiple derivative peaks is known from authentic standards, this can be used to 
improve quantitation and in some cases to estimate quantities of components from 
measurements of overlapping derivative peaks. 

As the diverse applications of metabolomics preclude uniform methodology 
and the quality of quantitative measurements will vary within and well as between 
investigations, evidence of quality standards should be presented together with 
any reported data. This includes repeat measurements of sets of standards to moni-
tor the performance of the GC system (including variations in derivatization and in 
the instrument) and of blanks to detect carry-over and contamination. Any dis-
crepancies should be remedied by appropriate housekeeping such as replacement 
of inlet liners and source cleaning. While stable isotope standards are the ideal, 
multiple internal standards as used in recent detailed method investigations (e.g. 
Koek et al. 2006) above provide a more reliable base for quantitation than a single 
standard. Reproducibility within and between batches can best be monitored by 
repeat analyses of control samples representative of the range of materials to be 
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measured, for example, pooled treatment group samples. Run order effects can be 
corrected for by randomising run order, or by correcting peak areas relative to rep-
licate controls across the run. Proper evaluation of matrix effects requires standard 
additions at the extremes of matrix composition (Thompson et al. 2002), which is 
impractical with large numbers of standards and impossible for unknowns. How-
ever matrix effects could in principle be monitored by measurements of pooled 
treatment group samples and mixtures of these samples. Finally it must be kept in 
mind that in metabolome analysis by GC-MS of TMS derivatives (and indeed in 
all metabolome analysis) the quality of data will not be uniform across all metabo-
lites. Measures of the quality of data for individual metabolites (e.g. %RSDs 
within control samples) are potentially as important as the data themselves. 

3.2 ESI-MS  

The application of mass spectrometry in the analysis of liquid samples is wide 
spread in metabolomics, either through the analysis of raw extracts by direct infu-
sion (DIMS) or through the combination with a separation system such as liquid 
chromatography (LC-MS) (e.g. Allen et al. 2003; Castrillo et al. 2003; Bajad et al. 
2006; Chen et al. 2006). In both cases the analyte is delivered in front of the mass 
spectrometer dissolved in a liquid and has to enter the mass spectrometers vacuum 
as a charged molecule. It does not need much understanding of physical chemistry 
to imagine the sheer incompatibility of these systems. Many of the issues with 
analytical variability in DIMS and LC-MS are caused by this interface. The most 
commonly applied interface is electrospray ionization (ESI), which was developed 
at the end of the sixties by Dole and co-workers (Dole et al. 1973). Although ESI 
probes have been further optimized over the years, the basic principle is still the 
same. The liquid is delivered through a capillary in front of the mass spectrometer 
orifice and sprayed with an accompanying flow of nitrogen in a strong electric 
field. The spray droplets in the strong electric field undergo a coulomb explosion, 
resulting in the formation of microdroplets carrying a high charge. Solvent mole-
cules can be further evaporated in the nitrogen stream, depending on the ESI probe 
design, resulting in the delivery of charged analytes (molecules or molecule clus-
ters) at the orifice of the mass spectrometer. Inside the mass spectrometer the 
charged analytes can be focused by ion lenses and delivered to the actual mass 
analyzer. The technical setup for the focusing of ions is also different between 
mass spectrometers and manufacturers. The lenses can be tuned to specific stan-
dards at specific concentration in a particular solvent composition. Contamination 
of the lenses through intensive use will demand retuning to maintain optimal sig-
nal. This tuning process will optimize the detection of a specific compound and is 
therefore in conflict with the objectives of an unbiased analysis.  

The spray formed at the tip of ESI probe is the first factor that has a significant 
effect on the analytical performance and reproducibility of a mass spectrometer. It 
determines the amount of molecules delivered at the orifice of the mass spec-
trometer as well as the proportion of these molecules that are charged. The probe 
tip and capillary are subject to wear and tear requiring manual adjustment to main-
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tain an optimal spray. Probe designs differ between manufacturers. Thus we are 
left with the effort of each analyst to optimize the spray for and during each ex-
periment as an inherent limit on reproducibility. 

Once the analytes are charged and in the gas phase there are several options for 
mass analyzers to separate ions by m/z ratio. The different types of mass analyzers 
have specific advantages and problems, and it is also possible to combine types of 
analyzers (for a general overview of different types see Aebersold and Mann 
2003). The main analyzers in use at the moment are Time of Flight (TOF) and 
quadruple filters (single or triple) or ion traps. The TOF system has the advantage 
of higher mass accuracy, which provides more specificity (limits the number of 
possible analytes). The ion trap and to a lesser extend triple quad can deliver 
fragmentation data. Both systems can be combined as in QTOF instruments. 
Higher mass resolution is provided by Orbitrap (Makarov et al. 2006) or FTICR 
(Fourier transform ion cyclotron resonance) instruments. High accuracy mass 
spectrometry demands optimal calibration and in the case of TOF continuous cali-
bration.  

3.2.1 DIMS 

Direct infusion mass spectrometry (DIMS) is of value for metabolomics because 
of its speed and because it is relative lack of bias. There is, however, a toll to pay; 
DIMS is not suitable for accurate quantitation and cannot be used for such pur-
poses. DIMS can only provide a rough estimate of the relative concentration of an 
analyte. In addition there are two main problems that grossly impair the repro-
ducibility in DIMS, ion suppression and contamination, which will be discussed in 
more detail. 

It is a well-known fact that co-eluting compounds in LC-MS can cause a matrix 
effect that suppresses the ionization of the analyte. This is for instance reviewed 
by Niessen et al. (2006) for pesticides. The actual physical/chemical mechanisms 
that underpin the suppression of ionization are not yet well understood. Based on 
the findings of King et al. (2000) it is mainly attributed to processes in the droplet 
formation of liquid phase. Under some circumstances the suppression can be 
caused by physical processes. Beaudry and Vachon (2006) showed that saline so-
lution can disturb the shape of the spray, resulting in a decrease of signal. 

When a raw extract containing an unknown number of different analytes is ana-
lysed using ESI there will be a complex interaction between all those analytes that 
is impossible to predict. Dunn et al. (2005b) studied the effect of ionization sup-
pression in direct infusion of tomato extracts. By spiking extracts with a mixture 
of compounds they found that an increase of concentration gave an increase of 
signal, but this was not always a linear relation. Our current lack of understanding 
of the mechanisms and limited experimental data in DIMS should be a clear warn-
ing to expect matrix effects to compromise concentration to signal ratios in every 
DIMS experiment.  

In most cases biological samples, like culture medium or tissue extracts, will 
contain large concentrations of salts as well as non-ionizable components. The in-
fusion of such  samples directly into  mass spectrometer will  result in a built-up of 



Analytical methods from the perspective of method standardization   39 

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 10 20 30 40 50 60 70 80 90 100110 120130140 150160 170171172
run number

in
te

ns
ity

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

TI
C

 in
te

ns
ity

phospholipid 520m/z
trisaccharide 543 m/z
TIC

 
Fig. 3. Repeated analysis out of the same vial of control sample during a direct infusion ex-
periment, on the left y-axe is the intensity of two ions 520 m/z (phospholipids, black bars), 
543 m/z (trisaccharide, white bars), on the right the total ion current (TIC). The control 
sample is a mixture of IPA:H2O extracts of ryegrass seeds infected with different strains of 
Neothyphodium lolli analysed by direct infusion using a linear ion trap mass spectrometer. 

precipitate at the orifice and inside the mass spectrometer, which will decrease the 
sensitivity and eventually block the inlet completely. For every type of extract the 
infusion rate and set-up must be optimized in such a way that there is sufficient 
signal versus a limited decrease in sensitivity. 

In Figure 3, we show how the performance of the DIMS analysis was moni-
tored during an experiment of 170 samples. In this experiment we used a control 
sample (mixture of all samples in the experiments), which was analysed after 
every nine samples out of the same vial. This shows the lack of reproducibility in 
this type of experiments. There is a steady decrease in total ion current (TIC) (grey 
bars), this decrease in signal is also observed for most of the ions, for example, the 
ions with m/z (520) (a phospholipid) also steadily decreased but not in proportion 
to the TIC and a similar pattern is seen for a trisaccharide (m/z 543) as can been 
seen in Figure 4. The relationship between the TIC and these two ions and be-
tween the two ions is not constant but changes approximately linearly over the se-
ries of chromatograms.  

These changes can be explained by complex interactions between the ions in 
the gas phase and contaminated regions of the interior of the mass spectrometer. 
Although these factors are major concerns for DIMS experiments, there are sev-
eral strategies to minimize the effect on the data and data interpretation. DIMS ex-
periments can be performed with sample randomization. However, it is important 
that run number is incorporated in the analysis of the data, so the effect of machine 
variation across the experiment can be assessed (e.g. PCA looking for run effect). 
As an example the results of the direct infusion experiment are analyzed by prin-
ciple component analysis, and plotted as their batch number (Fig. 5). Although the 
data  is  normalized  there  is  still a clear  batch  effect  visible  for  the  first  three 
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Fig. 4. Repeated analysis out of the same vial of control sample during a direct infusion ex-
periment, showing the relation between the total ion current (TIC) and two ions 520 m/z 
(phospholipids, black bars), 543 m/z (trisaccharide, white bars) as well as the relation be-
tween the two ions. The control sample is a mixture of IPA:H2O extracts of ryegrass seeds 
infected with different strains of Neothyphodium lolli analysed by direct infusion using a 
linear ion trap mass spectrometer. 

batches in principle component 2. After that the samples of each batch are rea-
sonably homogenously scattered with no obvious batch effect. This type of analy-
sis allows ions mostly contributing to the batch effect to be identified, and this can 
be used in further normalization or taken into account during the data analysis. 

The second strategy that will help in data interpretation is normalization. The 
most obvious strategy is either to use one or several internal standards or the total 
ion current for normalization. This will have only a limited effect due to previous 
described problems but will reduce the major batch effects.  

DIMS data comprises a m/z ratio and an intensity and the results are therefore 
ambiguous for identification. In complex mixtures there are likely to be several 
different metabolites contributing signals to each unit m/z bin. High mass accuracy 
as achieved with FT-MS clearly reduces the number of possible candidate metabo-
lites considerably compared to 1 mass unit ranges, but is far from sufficient for 
unambiguous identification (Kind and Fiehn 2006). With ion trap and triple quad 
instruments, fragmentation data can also be collected in a DIMS experiment. Such 
an approach is rarely applied but can be highly useful in analyte identification or 
classification although there are costs over time and throughput, and limited librar-
ies of spectra available, because of the variability of fragmentation between in-
struments and instrument settings.  

It would be interesting and desirable to be able to compare direct infusion mass 
spectra between experiments and laboratories, to aid in the rapid classification of 
the metabolic state of an organism. However, the methodology is not yet enough 
developed to strive for inter laboratory standardization.  Currently it is more useful 



Analytical methods from the perspective of method standardization   41 

First Component

Se
co

nd
 C

om
po

ne
nt

403020100-10-20-30

20

10

0

-10

-20

-30

17

17

17

17

17

17

17

17
17

16

16

16

16

16

16 16

16

16

15

15
15

15

15

15

15

15

1514 14

14

14

14

14

14

14

14

13
1313

13

13

13

13
13

13

12

12

12

12

12

1212 12
12

11

11

11

11

11

11

11

11
11

10

10

10

10

10

10

10

10 10

9

9

9

9

9

9

9

9

9

8

8

8

8

8

8

8

8
8

7

7

7

7
7

7

7
7

7
6

6

6

6

6

6

6

6

6
5

5

5

5

5

5

5

5

5

4
4

4

4

4
4 4

4

4

4

3

3

33
3

3

3

33

2

2 2
2

2

2

2
2

2

1

1

1

1

1

1

1

1
1

 
Fig. 5. Principle component analysis of normalised data from a DIMS experiment to deter-
mine batch effects. The numbers represent batch numbers, each batch consisted out of 9 
samples. The samples were analysed in randomised order. Each sample is a IPA:H2O ex-
tract of ryegrass seeds infected with different strains of Neothyphodium lolli analysed by di-
rect infusion using a linear ion trap mass spectrometer. 

to extend our knowledge of the main factors in matrix effects, for example, by 
identifying common metabolites that are only slightly influenced by matrix effects 
that can be used as standards or calibration points and evaluating different internal 
standards for quantifying analytes in direct infusion experiments 

3.2.2 LC-MS 

Most of the current methodologies applied in LC-MS are the result of the research 
efforts in pharmaceutical analysis and more recently proteomics. These applica-
tions are still the main driver in the development of this technology. There are 
many good reviews and books that provide a good insight into these developments 
(e.g. Niessen 2006). 

In the section of ESIMS we discussed general problems in reproducibility using 
this type of ionization. The main strategy to overcome this problem in most ana-
lytical laboratories is based on the use of stable-isotope-labelled versions of the 
analyte as internal standard to minimize the effect of changes in spray current and 
matrix effects (De Leenheer and Thienpont 1992). In metabolomics studies this 
would call for completely labelled metabolome as an internal standard. This ap-
proach is feasible and has been successfully applied for yeast (Mashego et al. 
2004). Yeast was cultured on 13C labelled glucose and ethanol, and the resulting 
cells were used as an internal standard for the accurate quantitation of metabolites. 
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There results are very encouraging, but this is not the Holy Grail for metabolom-
ics. In addition to the problem of creating fully labelled metabolomes it is possible 
that a stable-isotope internal standard may cause ion suppression of an analyte 
(Liang et al. 2003). This effect will be different for each analyte and is therefore of 
major concern in complete metabolome analysis. 

Reproducibility of LC-MS experiments in metabolomics is confounded by the 
same problems of DIMS experiments. The separation of the biological sample in 
time by chromatography decreases the number of different analytes simultane-
ously entering the mass spectrometer, but there is no chromatography available 
that is able to resolve the complete metabolome into non-overlapping peaks. Peak 
overlap will cause matrix effects, although the problem will be less pronounced 
than in DIMS. The advantage of the decrease in the number of analytes gives rise 
to a new set of problems, namely the reproducibility of the chromatography. This 
is a serious problem due to complexity of the sample. Method development and 
validation of conventional LC analysis focuses on baseline separation, to optimize 
the quantitation of specific analytes. In contrast, LC in metabolomics aims to be 
unbiased therefore compromising the quality of the LC separation of any or every 
analyte in the sample. Baseline resolved peaks can be easily integrated for quanti-
tation. Small shifts in retention time, which are unavoidable, will therefore not 
impair the analysis. In complex biological samples, where peaks overlap, this is 
major problem in quantitation, and as with GC-MS analysis, deconvolution of 
overlapping peaks is required. Recent developments in deconvolution software, 
and particularly the release of the publicly available software package XCMS 
(Smith et al. 2005) show considerable promise. Nordstrom et al. (2006) have 
demonstrated the ability to detect eight out of ten differences in spiked compounds 
in serum, some as small as 20%, utilizing the combination of high chroma-
tographic resolution with UPLC, deconvolution with XCMS, and the use of multi-
ple internal standards. 

For the analysis of specific analytes problems with peak resolution can be cir-
cumvented by the use of MS/MS or MSn and multiple reaction monitoring (MRM) 
using a triple quad or ion trap mass spectrometer. In MRM specific fragmentation 
(pathways) are followed for specific analytes, which can dramatically decrease 
signal to noise. However there is a limit in the number of MRM’s that can be done 
in a certain time frame to acquire sufficient measurements across a peak. MRM 
based analysis in LC-MS/MS is, therefore, by definition a targeted analysis, appli-
cable only on a relatively limited number of analytes per analysis. While this is of 
limited use for a full metabolome analysis, this approach can still be valuable for 
metabolomics. Bajad et al. (2006) have demonstrated the analysis of a target list of 
141 microbial metabolites by LC-MS/MS and biologically important compounds 
such as plant hormones, which are present at trace levels far below the detection 
limit of any current comprehensive method, can be measured by this method 
(Chiwocha et al. 2003; Durgbanshi et al. 2005). 
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3.3 Conclusions 

Given the diverse applications of metabolomics and the diverse analytical tech-
nologies applied, the main requirement for standardisation in instrumental me-
tabolome analysis is the adoption of standards of quality control. In all, reliable 
“fit-for-purpose” methods with built-in quality control procedures are more impor-
tant for metabolomics than standardised protocols. It should be assumed the qual-
ity of measurements will not be uniform within and between metabolomics stud-
ies, and it is important that measures of quality control form part of any 
metabolomics data set.  

4 Post-analytical issues  

The procedures for processing and quantitating analytical data embedded in mod-
ern instrument manufacturer software are largely of an adequate standard for me-
tabolomics but are not attuned to high through-put comprehensive analysis. They 
handle the operations of detecting the analytical signal against baseline variations 
and instrumental noise; checking peak retention times are within a defined range, 
and checking spectra against standards. However, they are designed to meet the 
requirements of targeted analysis rather than those of metabolomics. In particular 
they typically require extensive manual checking which becomes very onerous on 
the metabolomics scale.  

More automated procedures are required for metabolomics, and there has been 
considerable effort towards developing multivariate statistical methods for han-
dling the analytical signals generated by each of the technologies of metabolomics 
analysis (e.g. Jonssson et al. 2005, 2006; Tikunov et al. 2005; Smith et al. 2005). 
This stage of the analysis appears to offer more scope for standardisation than do 
laboratory procedures. However, although comparisons have been reported be-
tween instrument manufacturer software and multivariate methods, and found sat-
isfactory agreement (Nordstrom et al. 2006), there has been no report of a direct 
comparison of the results of applying different multivariate methods to the same 
set of experimental metabolomics data. The recent release of the package XCMS 
(Smith et al. 2005) for mass spectrometric based metabolomics data analysis (par-
ticularly LC-MS) as open-source software may encourage further development 
and bench-marking of software performance. The peak finding algorithm in 
XCMS is based on an assumed Gaussian peak shape and overlapping peaks on the 
same mass channel may not be resolved and detected. A major feature of the pro-
gramme is the peak alignment algorithm to match peaks across sets of chroma-
tograms by retention time and m/z. This is a critical factor for multivariate analysis 
of metabolomics data. The correct assignment of corresponding analytical signals 
in different samples to the same variable (or “bin”) is essential as mis-assignment 
can severely distort multivariate analysis and may only be revealed by manual in-
spection of anomalies.  
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The proper handling of “missing data” in metabolomics also warrants more at-
tention. As pointed out by Willse et al. (2005), zero values can bias statistical 
analysis, and failure to detect a component with high confidence does not imply 
high confidence of its absence. Omission of data points not present in every sam-
ple simplifies the mathematics. However, evidence of the absence of certain com-
ponents in some samples may be of real biological significance, as with the tomato 
volatiles investigated by Tikunov et al. (2005) and these authors have described a 
procedure (multivariate mass spectra reconstruction, MMSR) by which compo-
nents abundant in a single sample but absent in others can be identified.  

For the analysis of treatment effects metabolomics data are often log-
transformed as the focus is on relative changes in concentration. However this has 
the unfortunate consequence of amplifying and propagating the uncertainties in 
the measurements of components present at low concentrations near the detection 
limit. Error in chemical analysis is typically approximately proportional to the 
measurement, except at low levels approaching the limit of detection when it ap-
proaches a constant value due to background noise (Thompson et al. 2002). Rocke 
and Lorenzato (1995) demonstrated that a two-component model for analytical er-
ror gave a better approximation to observed analytical variation than standard ap-
proaches. This variance can be stabilised by a generalised log transformation and 
Purohit et al. (2004) have demonstrated an implementation using a maximum like-
lihood method for metabolomics NMR data, which resulted in improved resolu-
tion of treatment groups. Extension to GC-MS and LC-MS data sets is awaited. 
Nonlinearity of responses at high concentrations may also impinge on data analy-
sis, adding a non-linear analytical component to the (often non-linear) biological 
variation.  

The analysis and interpretation of metabolomics data is in early stages of de-
velopment. Although researchers have shown that in general experimental meas-
urement uncertainties in GC-MS and LC-MS data sets are less than the biological 
variation of interest, this will not be the case for all metabolites. There has been 
particular interest in patterns of correlation between metabolite concentrations 
(e.g. Steuer et al. 2003; Morgenthal et al. 2006). Correlations between variations 
arising within the analytical methodology are highly likely, and measures of ana-
lytical variance for individual components should be taken account of in data 
analysis (e.g. as weightings) to reduce the distorting effects of analytical error. 

5 Final remarks 

The scale of metabolomics analysis is clearly at odds with the requirements of 
analytical rigour, in regards to both qualitative and quantitative certainty of re-
sults. However, while “comprehensive” characterisation of metabolomes remains 
a goal, this is in the service of scientific understanding. The “metabolome” is 
metabolic phenotype and hence highly plastic: completely characterising the me-
tabolome of a species in one experiment will not have the same power as charac-
terising the genome of one member of a species. The limitations of current under-
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standing of metabolism arise not only from analytical limitations, but also because 
due to the high degree of connectivity in metabolic networks, perturbations propa-
gate through the network in a manner that defies intuitive interpretation (Bailey 
1999). The converse of this is that detection of evidence of such perturbations (e.g. 
by cluster analysis) may require measurement of only a small proportion of the 
metabolome. Indeed classification of treatment groups by profiles of a limited 
number of metabolites is often successful. In terms of quantitative uncertainties, in 
attempting to model and interpret the behaviour of complex metabolic networks it 
is important that the measurement uncertainties of individual components are es-
timated and included in the analysis to avoid modelling analytical artefacts. In 
terms of qualitative uncertainties, the pragmatic answer is to extract the maximum 
new understanding from measurements of known compounds, and characterise 
those unknowns, which show the most interesting pattern of change. 
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Reporting standards 

Nigel Hardy and Helen Jenkins 

Abstract 

Metabolomic studies generate large quantities of data. Metabolomics data sets 
have complex structure and will typically be subjected to a variety of processing 
and analysis techniques. The data sets are expensive to collect and can be expected 
to hold more useful information than is extracted and used by the studies, which 
collected them. These aspects of metabolomics have caused workers to consider, 
from the very early days of the field, what constitutes comprehensive and well 
structured metabolomics data, how it should be collected, how it should be trans-
mitted and how, and where it should be stored. It has been generally assumed that 
the availability of well-curated data sets in standardised formats will pay large 
dividends for the science. This chapter considers the nature of reporting standards, 
the benefits that they can yield, existing data standardisation initiatives in me-
tabolomics and related fields and discusses some issue surrounding their develop-
ment. 

1 Introduction 

Metabolomic studies generate large quantities of data. Metabolomics data sets 
have complex structure and will typically be subjected to a variety of processing 
and analysis techniques. The data sets are expensive to collect, and, by their nature 
can be expected to hold more useful information than is extracted and used by the 
studies which collected them. These aspects of metabolomics have caused workers 
to consider, from the early days of the field, what constitutes comprehensive and 
well structured metabolomics data, how it should be collected, how it should be 
transmitted and how, and where it should be stored. It has been generally assumed 
that a significant effort in making available well curated data sets in standardised 
formats will pay dividends for the science. 

In its report “Sharing Publication-Related Data and Materials: Responsibilities 
of Authorship in the Life Sciences” (National Research Council (US) 2003), the 
Committee on Responsibilities of Authorship in the Biological Sciences of the Na-
tional Research Council of the US enunciates “UPSIDE” - the uniform principle 
for sharing integral data and materials expeditiously. Part of this principle reads 
as follows: 

“An author’s obligation is not only to release data and materials to enable 
others to verify or replicate published findings (as journals already implic-
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itly or explicitly require) but also to provide them in a form on which other 
scientists can build with further research.” 

Number 3 of the “five corollary principles associated with sharing publication-
related data, software, and materials” is as follows: 

“If publicly accessible repositories for data have been agreed on by a com-
munity of researchers and are in general use, the relevant data should be 
deposited in one of these repositories by the time of publication.” 

The report goes on to note that “these repositories help define consistent policies 
of data format and content”. The role of the specialist community in developing 
technical standards that allow data and other scientific information in their field to 
be easily shared is emphasised. It is, therefore, expected of the metabolomics 
community that it should address the issues of data standards. 

These issues are characterised as standards for reporting metabolomics studies 
and as computer implementations of those standards which integrate both with the 
working practices of laboratories and with other scientific fields, particularly other 
aspects of functional genomics. Those implementations will be i) databases for 
longer term storage and retrieval, ii) transmission formats for collection and dis-
semination, and iii) supportive data collection and manipulation tools for workers 
at all stages of metabolomics studies. 

The community currently has no accepted reporting standards. This chapter 
seeks to outline the background to their ongoing development, describe the nature 
of that task, and highlight some of the more challenging aspects.  

1.1 Data handling in metabolomics 

The term metabolomics emerged in the literature in the late 1990s (Oliver et al. 
1998; Tweeddale et al. 1998; Fig. 1) and shows a timeline of significant develop-
ments in the development of data handling related to it. It quickly became received 
wisdom than data handling would be an important aspect of the new field and that 
publication of the extensive data sets should become the norm (Fiehn et al. 2001). 
There are a number reasons for this. Across science in general, and in “post-
genomic” fields in particular, publication of large and complete sets of detailed 
data, on web sites or generally accessible databases, for reasons of transparency 
and of reuse was gaining acceptance. More specifically, metabolomics began to 
generate large volumes of complex data (with the prospect of even larger volumes 
in the near future). The metabolome is very dynamic. A metabolome estimate is 
greatly influenced by the source and culture conditions of the biological material 
and by laboratory preparation and analysis procedures. The need for specific and 
detailed metadata to accompany metabolome estimates was perceived to be far 
greater than was then recognised for transcriptomics or proteomics data. This in-
creases the complexity of the metabolomics data and encourages more sophisti-
cated computer-based data handling. 
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Fig. 1. A timeline of the significant developments in metabolomics data handling. 

The analytical techniques used in metabolomics are fast, particularly in com-
parison with early transcriptomics and proteomics techniques. High throughput for 
screening large numbers of samples was seen as a great benefit (Spraul et al. 1997; 
Nicholson et al. 1999; Weckwerth 2003). The per-sample cost of metabolome es-
timates is low (Griffin 2006) and therefore large-scale trials involving many hun-
dreds of metabolome estimates were quickly envisaged. Each estimate resulted in 
at least many tens of data points (Roessner et al. 2000), but particularly when uni-
dentified peaks are included, this rapidly rose into hundreds. Fingerprinting ap-
proaches (see Section 3) took this into the thousands. The sheer volume of data 
encouraged computer-based data handling. 

Metabolome estimates require significant data analysis to yield biologically 
relevant results. Data sets are intrinsically highly multivariate and often multi-
factorial, clearly making computer analysis necessary. Experimental designs may 
call for classification or discrimination and data collected for a specific reason 
may subsequently be used to answer new questions not originally addressed.  

Mendes (2002) distinguishes conceptually five types of database associated 
with metabolomics, recognising that some implementations will belong to more 



56  Nigel Hardy and Helen Jenkins 

that one class. Two of these types, viz. databases cataloguing all known metabo-
lites in each biological species and databases containing reference biochemical in-
formation are to be distinguished from the data under consideration in this chapter. 
They are reference resources, which may be used in the interpretation of “raw” 
data obtained from metabolite estimation equipment, specifically for the identifi-
cation of metabolites. Their development and maintenance is crucial to me-
tabolomics, and such library databases are considered elsewhere in this volume.. 
Mendes’ other three types of database hold “metabolite profiles”. Taking this term 
loosely (see Section 3 for a discussion of terms), it is these data and their associ-
ated metadata which we consider here. These are the results of experiments or tri-
als. The idea of a few large comprehensive collections of data across many species 
and conditions (in the style of those established for transcriptomics, see Section 
4.1) is mooted. Databases storing metabolite profiles for a single species, perhaps 
associated with species-specific portals such TAIR (Rhee et al. 2003) 
(http://www.arabidopsis.org/) for Arabidopsis or MGI 
(http://www.informatics.jax.org/) for mouse are suggested. The third type, the ex-
perimental database, would typically be laboratory based and store metabolite pro-
files together with raw data and highly detailed metadata including perhaps do-
mestic management information. This characterisation of databases highlights two 
complementary issues of importance in metabolomics data: i) metadata are essen-
tial for principled comparative data analysis, but ii) “complete” metadata, even if a 
definition of it can be arrived at may not be appropriate in all circumstances, when 
data are collated or reported. 

The SMRS initiative (Lindon 2005), examined in more detail in Section 3.3, 
considered the need to cater for a variety of reporting circumstances, specifically 
“the need for standards to facilitate communication between different fields of ac-
tivity and to fulfil the needs of journal editors and regulatory agencies…” and 
noted that there are “fundamental differences between both the design and objec-
tives of efforts focused on regulatory submission and those efforts focused on ba-
sic research”. Figure 2 shows some of the stages in metabolomics data collection, 
manipulation and storage. It shows examples of important data transmissions and 
storage, which may occur. If data are managed throughout in line with agreed 
standards, the process will be simplified, tools can be developed, and shared. The 
final products (shareable data and scientific knowledge) will be of demonstrably 
greater value and quality.  

2 Standards, models, and formats 

First, an important contrast should be made between what may be termed strictly 
“reporting standards” which concentrate on the list of information items and their 
semantics which constitute a complete and adequate report of the scientific under-
taking and “data models” which concentrate on the logical structure of a data set. 
A third concept is “data format” which is concerned with the syntax of data re-
cording and transmission. 
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Fig. 2. Data handling in metabolomics. Curved corners: Data collection activities. Ovals: 
Data manipulation activities. Oblong: Data deposition activities. 

A reporting standard is a document. It is written in natural language and is de-
signed to be unambiguously understood by all parties involved: biologists, bio-
chemists, and statisticians. It should be formal, precise, and complete. It describes 
what information is required but does not necessarily prescribe the representation 
of data items or the structuring of the data set. A data model adds these things 
(Hoffer et al. 2002; Hardy and Fuell 2003). Data representing some aspect of the 
real world is structured so as to provide as good a model as possible of that part of 
the real world. This provides a basis for building computer implementations, 
which should therefore be capable of representing all plausible states of the real 
world. They should also be amenable to modification to accept new developments 



58  Nigel Hardy and Helen Jenkins 

in that world. Data models are typically not themselves computer implementa-
tions. UML – the Unified Modeling Language (Booch et al. 2005), which is 
largely graphical, is currently the most common formalism for building such mod-
els. Many software tools exist to support UML. 

The two most common computer implementations of such data models are rela-
tional databases and XML. The relational database paradigm is long established 
and well supported by a wide range of tools. It delivers effective storage and pow-
erful retrieval facilities. The data model is represented as a set of tables with con-
straints on their content. 

XML – Extensive Markup Language - (http://www.w3.org/XML/) is a mark-up 
language and is used as a data format for transmission. It is typically represented 
in text containing tags identified by surrounding “<” and “>” brackets. HTML – 
Hypertext Markup Language – is today widely used to produce pages in the World 
Wide Web and is based on XML. XML has the advantages of being an open stan-
dard and of having a huge and growing variety of tools to support it. It can be ma-
nipulated by libraries available for all significant programming languages. Increas-
ing numbers of applications including spreadsheets and statistical packages are 
accepting and generating data in XML. Associated standards, including XSL - Ex-
tensible Style sheet Language – (http://www.w3.org/Style/XSL/) and XQuery 
(http://www.w3.org/XML/Query/) allow manipulation and retrieval of data held in 
XML format.  

An XML file is called a document and document content can be constrained. 
Data values can be constrained to be of particular types (integer, text, etc.); to be 
in specified ranges or to come from specified lists. Optional and required values 
can be specified and permissible numbers of repetitions of data items can be set. 
Constraints on co-occurrence of data, such as requiring unique values within 
specified groups and requiring that particular values be taken from sets defined 
elsewhere can be set. Constraint can be provided through a number of mecha-
nisms. XML itself has the relatively weak mechanism of DTD – Document Type 
Definition – but a range of additional technologies including XMLSchema 
(http://www.w3.org/XML/Schema), Relax NG (http://relaxng.org/), and Schema-
tron (http://www.schematron.com/) permit external definition of constraints using 
a variety of approaches. A set of constraints is known as a schema. An XML 
document can exist without validation against a schema. This is in contrast to rela-
tional databases, which impose one set of constraints on all of the data held. An 
XML document can be validated, on demand, against a chosen schema. It can be 
validated against a range of schemas for different purposes. A laboratory informa-
tion system may have different constraints than a public repository or a publisher, 
but a document could be checked for conformance to any of these. Schemas can 
be built to permit data in addition to required elements. Thus, a document contain-
ing necessary data can also include additional items, which can be used by appli-
cations, which are aware of them, but can be automatically ignored by applications 
which are not. XML, therefore, provides for flexible data formats which can, how-
ever, be checked for conformance to fixed standards. 
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UML tools will often provide facilities for automatic or semi-automatic genera-
tion of relational database and/or XML implementations of models. It is also im-
portant to recognise that once a data model is agreed, other implementations are 
possible and data conversion between implementations based on a common model 
is relatively simple to implement. Code for such conversions can be automatically 
generated.  

3 Initiatives in metabolomics data standards 

A number of initial proposals for data standards have been made, from different 
parts of the community, with different biases and approaches. In reviewing this 
work, in addition to reporting standards, models, and formats discussed above, it is 
important to consider more closely the metabolome estimate. The nature of the fi-
nal metabolome estimate can vary greatly. Terminology varies, but the early work 
by Fiehn (2001) distinguished between concepts important for the structure and 
nature of the estimate. “Metabolite profiling” provides estimates of abundance of 
previously determined chemical species. These species may or may not be identi-
fied but can be reliably detected. Thus the list of species is known a priori and 
abundances for those and only those components are sought. True “metabolomics” 
should be unbiased and detect any chemical species present. Thus the membership 
of the list of species is part of result, as well as their abundances. “Metabolic fin-
gerprinting” involves collection of measurements, which are not directly related to 
distinguishable chemical species. There is no list of the chemistry and therefore no 
associated abundances. 

We now consider four initiatives in the field. These are summarised in Table 1. 

3.1 MIAMET 

This proposal (Bino et al. 2004) is a checklist of “minimum information”, explic-
itly inspired by the example of MIAME (see Section 4.1). It is therefore an initial 
reporting standard. It is presented as a “suggestion to the community”. The authors 
and the background to the paper suggest that this community is plant biology, with 
significant emphasis on agronomic applications. There is significant emphasis on 
chromatography and mass spectrometry (MS) techniques. The list is broadly struc-
tured into 4 sections: i) Experimental design, ii) Sampling, preparation, metabolite 
extraction, and derivatization, iii) Metabolite profiling design, and iv) Metabolite 
measurement and specifications. It does not cover multivariate data analysis and 
data mining reporting. It is an “experiment” centred list, implying that all data will 
be collected under a traditional experimental design with identified experimental 
factors. The proposal contains some limited hints at data formats, suggesting the 
use of NetCDF (Network Cmmon Data Format) for raw MS data and JCAMP 
(Joint Committee on Atomic and Molecular Physical Data) for NMR (Nuclear 
Magnetic Resonance) data. Storage of fingerprint data is thus implied, but the 
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eventual output is expected to be a list of metabolite identifiers (for both known 
and unknown metabolites) with relative or absolute quantification. Metabolite pro-
filing or metabolomics are thus the main objectives. Data types and legal values 
are not generally specified, though some pieces of information are illustrated by 
lists of possible example values. Associated text documents are specifically pro-
posed for the description of protocols, materials, and methods. This implies that 
the information would not be suitable for automatic manipulation. 

3.2 ArMet 

ArMet (Jenkins et al. 2004) is presented as a data model and has been implemen-
ted both as a relational database and as an XML schema. It is based on a systems 
analysis of plant metabolomics work. It does not cover data analysis or data min-
ing. The data model presented is described as a framework since it specifies a very 
limited set of core data but provides a principled method of extension for labora-
tory, technology, or process based specialisations as a vehicle for a community-
driven process of development and enhancement. There are nine components in 
the framework. One, the unspecialised “MetabolomeEstimate”, concerns what 
might be termed data while eight would be considered metadata. Core ArMet re-
lies on references to external (textual) documentation of detailed experimental 
protocols. This can provide a clear and complete record of all metadata, but it does 
not provide for automatic verification of completeness of the dataset or for auto-
matic data retrieval on these aspects. As required, subcomponents to support core 
data plus greater detail in forms that can be verified and searched can be designed. 
Examples are published. The unspecialised “MetabolomeEstimate” must be ex-
tended to accommodate each type of analytical procedure and examples for Gas 
Chromatography/Mass Spectrometry (GC-MS) in both metabolite profiling and 
true metabolomics applications have been published (Jenkins et al. 2004, 2007). 
ArMet accommodates data covering all the information specified in MIAMET. 

3.3 SMRS 

The Standard Metabolic Reporting Structures (SMRS) working group (Lindon et 
al. 2005) comprised members from academia, industry, and the government. It 
produced a draft policy document (Lindon 2005). It is clearly a draft reporting 
standard. It does observe that the Standard for Exchange of Nonclinical Data 
(SEND) is an available and supported data format, which would handle parts of 
the reporting.  

In contrast to MIAMET and ArMet, reporting of data analysis and data model-
ling (in the statistical and data mining sense) is firmly included. This stems per-
haps from an emphasis on metabolomics applications in preclinical drug safety as-
sessment where regulatory submission of complete studies is a goal. More 
generally, SMRS may be viewed as biased to animal work in contrast to the plant 
bias of MIAMET and ArMet. 
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The standard concerns three areas: the origin of a biological sample, the ana-
lytical technologies, and methods applied to the sample and the application of 
chemometrics to retrieve information from analytical data. Each is broken down in 
some detail into the aspects, which must be reported on.  

3.4 MSI 

Under the auspices of the US National Institutes of Health/National Institute of 
Diabetes and Digestive and Kidney Diseases a workshop on metabolomics stan-
dards was held in Bethesda, USA in August 2005 (Castle et al. 2006; Fiehn et al. 
2006). Representatives of interested parties and of previous initiatives were in-
vited. It was recognised that common agreement over as wide a community as 
possible was required if standards were to be accepted and applied. 

The MSI consists of five working groups concentrating on experiment metadata 
(the biological sample context working group), datasets and their production (the 
chemical analysis working group), statistical analysis and data mining (the data 
analysis working group), nomenclature (the ontologies working group), and the 
development of data formats to support the transmission of datasets that comply 
with the MSI standards (the data exchange working group). Learning from earlier 
work and examples in other fields, the biological sample context group found it 
beneficial to establish standard reporting requirements for four contexts: plant bi-
ology, environmental, mammalian/in vivo experiments, and microbial/in vitro bi-
ology experiments. MSI work has firmly begun with the development of reporting 
standards. The ontologies and data exchange groups are committed to maximum 
collaboration with initiatives from other fields and to re-use or extension of exist-
ing models, formats, and ontologies. 

4 Reporting standards in other fields 

Metabolomics follows transcriptomics and proteomics onto the scene. Data stan-
dardisation initiatives are correspondingly further advanced in those fields. It is 
clearly important that metabolomics learns both from this work and seeks to inte-
grate as closely as possible with it. 

4.1 Transcriptomics 

The longest standing standards initiative in the functional genomics field is 
MIAME – “Minimum information about a microarray experiment” (Brazma et al. 
2001) concerned with reporting gene expression data. It is developed under The 
Microarray Gene Expression Data (MGED) Society whose aim is to facilitate the 
sharing of such data. MIAME was designed to ensure interpretability of experi-
mental results and their potential independent verification. The “minimum” con-
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straint is reflected in the stated requirement that the information required “should 
be sufficient to interpret the experiment and should be detailed enough to permit 
replication of experiments” (Brazma et al. 2001). 

Six sections are included in the minimum description. Experimental design 
includes a description of the type of experiment, the experimental variables, the 
use of replicates and quality control procedures. It also associates specific samples 
with specific arrays. Array design provides a definition of all arrays used, with 
the genes and their physical layout. Samples describes the sources of biological 
material and any treatments applied, the extraction of the nucleic acids and the la-
belling. Hybridizations reports the laboratory conditions under which the samples 
and arrays meet. Measurements reports data from raw images through to the 
processed gene expression matrix. Normalisation controls reports parameters as-
sociated with data normalisation and array elements serving as controls. It may be 
noted that these six sections vary in the degree to which they are specific to tran-
scriptomics experiments: Array designs is highly specific, Samples contains sig-
nificant amounts of information, which would be relevant for other types of analy-
sis.  

A number of domain specific extensions have been developed, which adopt the 
MIAME requirements but extend and make more specific aspects of reporting 
which are crucial to particular applications. These include extensions to transcrip-
tomics aspects to accommodate specific technologies and extensions to non-
transcriptomics aspects where the application areas require additional contextual 
information (including toxicogenomics, Mattes et al. 2004; environmental genom-
ics, Morrison et al. 2006b; and plant genomics Zimmermann et al. 2006). A data 
format to include MIAME requirements was designed under the auspices of the 
Life Sciences Research Task Force of the Object Management Group (OMG, 
http://www.omg.org/). This is MAGE-ML (Microarray Gene Expression – 
Markup Language), an XML document class. MAGE-OM ((Microarray Gene Ex-
pression – Object Model) is a data model, defined in UML and from which 
MAGE-ML can be derived. A stated aim of MIAME is to facilitate the establish-
ment of databases and public repositories (Brazma et al. 2001). Three compliant 
repositories now exist: ArrayExpress (Brazma et al. 2003) 
(http://www.ebi.ac.uk/arrayexpress/), Gene Expression Omnibus (GEO) (Barrett 
et al. 2005) (http://www.ncbi.nlm.nih.gov/geo/), and the newer CIBEX 
(http://cibex.nig.ac.jp/).  

Publication of MIAME and its adoption by both journals and public reposito-
ries has spawned the generation of a range of MAGE compliant tools and exten-
sions to existing systems for the collection and management of microarray ex-
periment data and for its subsequent analysis. The MGED organisation maintains 
a list of MIAME compliant tools:  
(http://www.mged.org/Workgroups/MIAME/miame_software.html). 
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4.2 Proteomics 

The Proteomics Standards Initiative (PSI)(Orchard et al. 2003; Taylor et al. 2006) 
operates under the auspices of the Human Proteome Organisation (HUPO) 
(Hanash and Celis 2002). One of the objectives of HUPO is to coordinate the de-
velopment of standard operating procedures related to data collection, analysis, 
storage, and sharing. PSI output is in three areas: reporting requirement docu-
ments; controlled vocabularies and standard file formats.  

The reporting requirements are known as MIAPE (Minimum Information about 
a Proteomics Experiment) guidelines. These are being developed in a modular 
form. With overall guidelines and context, technology specific documents can be 
developed in relative isolation to cover the aspects necessary. Requirements for 
both the experimental and informatics aspects of gel electrophoresis and mass 
spectrometry have been developed. Column chromatography, capillary electro-
phoresis and general sample handling, and preparation have been considered. 

The “PSI MI XML” (PSI Molecular Interaction XML) format (Hermjakob et 
al. 2004) is a data exchange format for molecular interactions – protein-protein in-
teractions in the first instance. It was an early output from PSI and was developed 
without a MIAPE requirements document. The mzDATA (Taylor et al. 2006) 
format for capturing mass spectrometry peak list information is supported by a 
number of instrument manufacturers. This handles the experimental aspects of 
mass spectrometry. Work is currently in progress to develop a new format, mzML 
(http://www.psidev.info/), to supersede both mzDATA and the mzXML format 
(Pedrioli et al. 2004), which was intended for essentially the same purpose. Analy-
sisXML is a format, which captures parameters and results of search engines for 
the informatics aspects of protein and peptide identification. Formats to meet other 
MIAPE modules are being developed. 

5 Cross-domain standards  

Development of standards for particular fields requires significant effort. Workers 
in each field have been aware throughout their development that common stan-
dards would ultimately be desirable. Pioneers of techniques naturally tend to re-
port only in that narrow field; say in proteomics or in metabolomics. As tech-
niques become established as widely available research tools, workers will 
undertake research spanning the techniques appropriate to tackle the scientific 
questions. Papers reporting on “multi-omics” work are now common. The consis-
tent request from potential users is “I only want to enter the data once”. 

The Reporting Structure for Biological Investigation (RSBI) (Sansone et al. 
2006) is a working group of MGED. It attempts to tackle “challenges associated 
with integrating data and representing complex biological investigations”. Consti-
tuted to bring together environmental genomics, nutrigenomics, and toxicogenom-
ics, it seeks to integrate more widely across biological domains. Starting at the 
highest level concepts it has defined a self-contained unit of scientific enquiry as 
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an “Investigation”. “Studies” within an investigation are composed of “Actions” 
applied to “Subjects”. Subjects are the biological material under investigation. An 
“Assay” is the experiment (measurement procedure) carried out to produce data 
for computational purposes. These, and other concepts described under RSBI are 
fundamental to any biological investigation, necessary for its complete description 
and the source of significant confusion between application fields, technologies, 
and disciplines. (No worker in data standards has escaped the confusion of the ap-
parently simple word “experiment” which has a range of meanings such that its 
use is often meaningless except within the narrowest community). Whilst still at a 
high level of abstraction, RSBI therefore offers an initial structure for basic con-
cepts and potential integration. 

The largest area of potential overlap in requirements (and therefore potentially 
of common or compatible standards) is in the description of the biological material 
under examination, of its classification, origins, cultivations, and preparation. 
Morrison et al. (2006a) argue strongly that a common concept of “Sample” across 
all “-omics” technologies is desirable and that sample description is technology 
independent until a late stage in collection and preparation. They propose an on-
tology based approach considering samples as entities (or “continuants” in onto-
logical terms) to which processes happen. Samples have a temporal component 
(absolute or relative) such that the description at a later time point may differ from 
that at an earlier time due to the processes that have happened. They emphasise, 
however, the challenges of defining “the minimum necessary information to ade-
quately describe a sample”. It is important to note that MIAME variants differ 
largely in sample description. MIAMET and ArMet have some bias towards plant 
work while SMRS is heavily influenced by pre-clinical trials. Diverse application 
area requirements were therefore to some extent obscured in that work. The 
breadth of requirements is more apparent across different application areas than 
across different technologies. 

Reporting standards are being developed at a growing rate. Typically, they are 
being developed within a technology or application community. Synergy and re-
use, rather than contradiction and repetition are hard to achieve. It became appar-
ent that groups were working in ignorance of each other and without a framework 
for consistency. Minimum Information for Biological and Biomedical Investiga-
tions (MIBBI - http://mibbi.sourceforge.net/) has been established to provide a 
single point of information for reporting standards checklists, to foster collabora-
tive development and to promote gradual integration. In under a year, 15 reporting 
checklists have registered with the site.  

The Functional Genomics Experiment Object Model (FuGE) (Jones et al. 2006) 
is described as “a framework for creating data standards for high-throughput bio-
logical experiments”. Its aim is to provide a common data model for developing 
data standards across the '-omics. It is hoped that this approach will lead to data 
sets that represent equivalent information in a consistent way whatever 'omic ap-
proach is used to generate them. If successful, this will greatly ease the data han-
dling issues raised by functional genomics experiments that aim to determine the 
function of genes using multiple ‘omic approaches. 
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FuGE is provided as an object model in UML and an XML Schema. The model 
includes support for the aspects of experiments that are common across the 'omics, 
for example, biological material, experiment protocols, and equipment. FuGE 
provides two options for supporting specific functional genomic techniques: i) the 
core model can be extended to support specific techniques, thereby adding specific 
information within the same data structures; or ii) by providing references to data 
held in pre-existing external data formats whilst ensuring that all the metadata that 
is necessary to place that data within the context of the overall experiment is in-
cluded. 

Both MAGE and the PSI have undertaken to use FuGE as the basis for their 
data standards development. FuGE is also being evaluated by the data formats 
working group of the MSI for use in developing metabolomics data formats.  

The development of frameworks such as FuGE and the commitments made by 
the various standards initiatives to not only use FuGE, but to co-operate together 
to draw up common data standards where possible, are evidence of the desire 
across the 'omics for unified standards. The move towards true functional genom-
ics and systems biology investigations emphasises the real and emerging need for 
such standards. The extent to which this is achievable and pragmatic remains to be 
shown. Certainly the development of common approaches to extending and spe-
cialising FuGE to generate data formats will promote the development of common 
standards. However, it is also clear that the range of experiments that are carried 
out and the evolving nature of many of the technologies will mean that some 
flexibility will be required to deal with specialist or experimental situations. A 
reasonable target for the near future is perhaps that a core set of common stan-
dards will be developed which may be extended following commonly understood 
principles to handle such situations. Publication of such extensions in repositories 
such as MIBBI (described above) will then encourage others to use or extend 
these where appropriate. 

6 Issues in metabolomics standards 

6.1 The detailed nature of standards 

Development of data standards may be expected to comprise two aspects. First 
they must specify what is to be reported (“reporting standards” above) and sec-
ondly how it is to be reported (“data models” and the derived “data formats” 
above). A simple example might be that the standard requires the storage tempera-
ture for samples be recorded. We might name the item of data StorageTempera-
ture. More specifically, it might require that the intended temperature (as set on 
the thermostat) be recorded or that the average storage temperature (as monitored 
by the equipment) be recorded. Further, the full context of that reading is required. 
Which samples, of what material, collected and prepared under what circum-
stances are concerned and how do they relate to the complete experiment and spe-
cifically to the analytical runs which generate metabolomics data. Generally, 
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therefore, a very precise definition of the meaning of the reported value is re-
quired. Failure to carefully specify what should be reported can lead to diligent 
and faithful recording of values, which are not comparable. The semantic defini-
tion of standards is perhaps the most demanding aspect of establishing standards. 
Once a precise definition of StorageTemperature is established, we may turn to 
the question of how it is to be reported. The semantic definition may offer direc-
tion; common practice may suggest or dictate choices. For our temperature exam-
ple, we will presumably need a number - “cool”, “medium”, or “warm” are 
unlikely to represent the concept appropriately. What accuracy is implied? Is an 
integer appropriate (i.e. “to the nearest whole degree”) or should it be reported to 
one decimal place? Should the value be in Celsius or Kelvin or should either be 
permissible, thereby, implying that the scale must be stated in the data? This level 
of detail may seem excessive, but a crucial aspect of reporting standards is auto-
matic comparability. Automated comparison, particularly within large data sets, 
will lack the flexibility normally provided by humans when, for example, compar-
ing two papers containing largely verbal reports of “Materials and Methods” 
where -80C and 193K can be readily recognised as essentially the same Stora-
geTemperature. 

Taking forward this example on the assumption that the value will be a real 
number to one decimal place representing Celsius (i.e. there is no need to state the 
scale used) we have a remaining level of standardisation to consider: that of repre-
sentation in a computer. At this level, there is in fact less need for standardisation 
and indeed multiple representations in a range of contexts will be an advantage. 
Our temperature could be written (word processed or even by hand) and still meet 
the standard. To obtain the benefits of automated processing we will typically 
want it in other forms. A textual representation (say in XML) can be automatically 
transformed into a “binary” representation (say in NetCDF, Rew et al. 1997), Mi-
crosoft Excel® or a relational database management system) and visa versa. The 
rules of the standard (one decimal place etc.) can be enforced in either format. The 
lack of rigid constraint at this level is a huge benefit of a standard, which is tightly 
defined at the other levels. Specialised or general purpose software can be devel-
oped and used for data collection, transmission, storage, manipulation, and analy-
sis and each conforms to the standard but each can hold and manipulate the data in 
formats supportive of the task in hand. 

Returning to the question of values rather than their representation, the Stora-
geTemperature example requires a number and, together with stating that it must 
be given to one decimal place this defines legal values. That is, given a piece of 
data, we can verify that it is acceptable. “-80.0” is acceptable; “-80.01” is not; 
“cold” is not. It is crucial that a data value be constrained. Fundamentally, if any 
piece of data cannot be provided, automated comparability is lost. In practical 
terms automatic data validation is of huge practical value in quality control – i.e. it 
helps avoid typos (Jenkins et al. 2005). Many data values, particularly in metadata, 
will not be numbers. How will they be reported? Ontology terms are required. 
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6.2 Controlled vocabularies and ontologies 

Well defined, unambiguous, and recognised terms for describing many aspects of 
metabolomics are crucial to common understanding and interpretation of data. 
Numerical and yes/no data items require careful description of their semantics. 
Where data of other types is required, the possible values that can be reported 
must additionally be defined. 

Terms for some concepts have long or well established mechanisms for their 
management. Biological species naming has a long history, well described mecha-
nisms for the creation and changing of names and computer support through on-
line databases such as the NCBI Taxonomy Browser (Wheeler et al. 
2000)(http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/). Terms for 
varieties, strains, or ecotypes are harder to establish. These may be maintained for 
model organisms, for test subjects (e.g. rats) or for economically significant spe-
cies but this tends to be on an ad hoc basis in each case. Terms for chemical spe-
cies are discussed below and demonstrate the difficulties in a large field but one, 
which might have been expected to be well established. Metabolomics requires 
terms for many more obscure concepts that these.  

A controlled vocabulary is a set of terms for a particular concept, which are 
well defined and probably believed to be complete. They are the “authoritative” 
words or phrases, which should be used. Problems associated with synonyms, 
homonyms, and spelling variants are handled, in addition to providing precision of 
description through the definition. ArMet specifies the use of controlled vocabu-
laries for a number of data items. Specific vocabularies are not mandated; rather, 
each term must be associated with an “authority” which is a reference to the vo-
cabulary from which it is taken. It expects that subcomponents would follow this 
model. This loose approach was seen as a pragmatic option in the absence of good 
and generally accepted vocabularies. It does reduce automatic comparability of 
data.  

An ontology is a significant development on controlled vocabularies. Terms in 
an ontology are structured, typically at least hierarchically. Related terms are 
grouped and more general terms are represented as “parents” of more specific 
terms. The Plant Ontology (PO) (Bruskiewich et al. 2002) is a good example 
which covers plant growth and development stages and plant structure. An “inflo-
rescence” is defined (as part of the “shoot”) and additionally the potential parts of 
an inflorescence are described. These include a “flower” which is further declared 
to have parts. The PO further accommodates “ear” and “tassel” as specialist terms 
for inflorescences in Zea mays. Organs and tissues (perhaps as sources of biologi-
cal material for metabolome estimates) can therefore be unambiguously described 
according to this ontology. Comparability of data is thereby enhanced. The struc-
ture also permits more flexible searching of data. Principled comparisons of data 
pertaining to say, “flower” and “tassel” may be possible. 

Data formats require term lists. An instructive and early example of their use is 
in the PSI’s molecular interaction format (Hermjakob et al. 2004) (see Section 
4.2). External, general purpose, ontologies (including the NCBI taxonomy) are 
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used where possible and in addition five specialist controlled vocabularies were 
developed to handle the specialist terms for molecular interaction. 

The MSI initiative has an ontology working group. This is operating in close 
cooperation with the OBI (Ontology for Biomedical Investigations) community. 
OBI was formerly known as the Functional Genomics Investigation Ontology 
(FuGO) (Whetzel et al. 2006). OBI expects to develop terms, which are of general 
applicability and terms that are relevant only to particular applications. It thus of-
fers the opportunity to maximise integration across technologies while supporting 
specialisms. 

6.3 Chemical identity 

Profiling and true metabolomics techniques are said to produce “peak lists”. Each 
peak is a signal from the analytical machine and is generally assumed to reflect the 
presence of a particular metabolite. It can typically be quantified in relative or ab-
solute terms. Identification of peaks is the ultimate objective in metabolomics. 
Goodacre et al. (2004) comment that in comparison with transcriptomics and pro-
teomics, once quantification of specific metabolites in parallel and in various sam-
ple matrices has been leant, “a more or less universal approach that spans the spe-
cies barriers can be adopted.” The two or more dimensional data produced by the 
analytical machine is therefore transformed by numerical processing and library 
lookup into a simple list of name/quantity pairs. What are these names? We would 
like them to be chemical identities. A number of registries and catalogues exist 
(for example CAS (Chemical Abstracts Service), KEGG (Kyoto Enzyclopedia of 
Genes and Genomes), PubChem, ChEBI (Chemical Entities of Biological Inter-
est)). The operating procedures of laboratories and (semi-)automated library 
lookup mechanisms will produce one or more of these for each putative metabo-
lite. Thus, the choice of naming convention is of great importance to practitioners. 
Confusion between synonyms and differing levels of precision in naming com-
pounds add to the difficulty. InChI (International Chemical Identifier; Freemantle 
2002), the IUPAC (International Unit of Pure and Applied Chemistry) algorithm 
for generating a unique label for a given chemical structure is gaining acceptance 
as an objective mechanism for reporting chemical identities. It does not rely on a 
registry (the same label can be independently generated by different workers) and 
handles a range of degrees of specificity (for example, indicating isomers or not). 
A drawback is its lack of human interpretability, but lookup facilities are appear-
ing and graphical structure can be extracted from it.  

In practice, profiling data will necessarily include peaks whose true meaning, in 
the sense of a chemical identity, is not known. These are the so-called “unknown 
peaks”. A particular experimental protocol will reliably yield estimates of these 
peaks and they can be recognised across runs but no chemical identity can be as-
sociated with them. Indeed, it may not be certain that such a peak represents one 
and only one chemical species. We require labels for these peaks. Further, two 
other features are necessary. Firstly, subsequent identification of at least some 
such peaks is to be expected. Data sets deposited for publication or regulatory 
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purposes will be frozen (with their unknown peak labels) but augmentation of 
those sets, for re-use, by association of the labels with chemical identities must be 
facilitated. A subsidiary issue is that any naming scheme must permit multiple 
laboratories to label (potentially the same peaks) without confusion. Secondly, 
these peaks are characterised only as signals from particular analytical equipment 
types under specific circumstances and conditions that must be included in report-
ing.  

Bino et al. (2004) propose a scheme for naming the unknowns. This combines 
the functions of creating unique identifiers and of reporting the characteristic sig-
nal. The scheme has significant technology dependence and is not rigorously de-
fined. It requires community co-ordination to allocate laboratory identifiers. Jen-
kins et al. (2007) propose a specific scheme for GC-MS based on retention time 
and a maximum of 20 mass-to-charge ratio/ion abundance pairs. The need for a 
unique label (more than adequately supported by the web concept of a URI (Uni-
form Resource Identifier)) and the need for associated data suggest the potential of 
Life Science Identifiers (LSIDs) (Object management Group 2004) or other URL 
(Uniform Resource Location) based mechanisms for creating permanent labels in 
this context. 

7 Conclusions 

Development of reporting standards in metabolomics is necessary and beneficial. 
Data sets which can be consistently understood must be deposited for publication 
and regulatory purposes. They may also be made available for re-analysis and for 
re-use in new scientific contexts. The metabolomics community is undertaking 
this development. It will have specialised requirements. It will also have require-
ments in common with other disciplines and biological and biomedical research in 
general stands to benefit greatly from common standards for data interchange. Es-
tablishment of acceptable standards is a significant challenge. 
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The Golm Metabolome Database: a database for 
GC-MS based metabolite profiling 

Jan Hummel, Joachim Selbig, Dirk Walther, and Joachim Kopka 

Abstract 

In the post-genomic era, biological science continues a transition from a predomi-
nantly qualitative towards an increasingly quantitative science. Genomic, tran-
scriptomic, proteomic, and now metabolomic technologies significantly contribute 
to the generation of huge amounts of data. These data, which typically describe 
changes in gene expression or changes in protein and metabolite pools, cannot ef-
fectively be analysed and interpreted by computer based programming if access is 
only provided through traditional publication schemes. Therefore ‘-omics’ data 
sets require formalised representation and access through databases. Otherwise 
important information will be lost which may serve as reference data for current 
and future science. Transcript and protein profiling is dominated by few almost 
comprehensive technologies. In contrast, the metabolomic field will require multi-
ple analytical profiling approaches to cover the chemical multitude of primary and 
secondary metabolism. As a consequence, technology-oriented metabolomics da-
tabases start to emerge. We will use GC-TOF-MS-based metabolite profiling as an 
example for the prototypical design of central database objects and structures. The 
focus will be on the required detailed information for the archiving of metabolite 
fingerprinting and profiling data sets. Special consideration is given to aspects of 
maintaining information sufficient and necessary for the experimental reproduc-
tion of metabolite identification and quantification results. Both aspects are essen-
tial for the sustainable use of GC-TOF-MS-based metabolite profiling and for the 
comparison to other metabolomics technologies. 

1 Introduction 

In the past decades high-throughput technologies emerged in biological science. 
These technologies generate huge qualitative and quantitative data sets comprising 
genome sequencing, protein interaction, protein structure elucidation and tran-
script, proteome, or more recently metabolite profiling experiments. These data 
sets are generally of long-term interest for the science community and require 
computational access which is not available through traditional journal-based sci-
ence publications. Today access is facilitated by database technologies which are 
now  comparatively easy  to establish  and maintain. Consequently, scientific data- 
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Fig. 1. Overview of leading databases supporting diverse aspects of metabolome analysis. 
The major types of information content relevant in metabolomics studies are indicated as 
nodes of the schematic pentagon. Databases are positioned according to their respective fo-
cus and are referenced in the manuscript (see Section 1); Beilstein identifies the CrossFire 
Beilstein database (http://www.mdl.com/products/knowledge/crossfire_beilstein/). 

bases have emerged as alternate publication platforms for communicating scien-
tific results. Laboratories involved in the generation and/or analysis of high-
through-put data may, in the future, be able to effortlessly establish and develop 
an in-house database. Today, biological databases are ubiquitous and are growing 
in numbers. The molecular database collection of the year 2005 listed 719 biology 
related databases which are freely available to the public and reported an annual 
increase of 171 during 2005 (Galperin 2005). Meta-databases start to facilitate 
guidance and access to computer-readable data (Cary et al. 2005; Bader et al. 
2006). For example, 190 web accessible resources of biological pathways and 
networks were available in 2006 (Bader et al. 2006). Currently, the metabolomics 
community does not yet support a dedicated central data repository. As the field as 
a whole may still be considered in its early stages, and the applied technologies 
are certainly relatively diverse and specialised, attempting to establish a global 
data management system may even seem premature. However, efforts for the stan-
dardisation of metabolomics experiments have been initiated at the first Me-
tabolomics Standards Workshop (August 2005, Bethesda, MD, USA). Currently, 
the metabolome scientist has to aggregate and integrate relevant data from a large 
number of specialised commercial and non-commercial databases (e.g. Fig. 1). 
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The main information resources covering pathway, chemical substance, journal 
publication, NMR or mass spectrometry, and profile knowledge are highly frag-
mented for use in metabolomics, partially redundant and difficult to reconcile. Re-
quired resources have recently been reviewed by Arita (2004) or Mehrotra and 
Mendes (2006).  

In the following, we will attempt an introduction to useful information re-
sources typically needed for the present stage of metabolomics studies (Table 1) . 
Due to the fast-developing nature of the metabolomic and biological database 
field, a comprehensive analysis is not intended. The interested reader is referred to 
the meta-database resources mentioned above and the resources provided by the 
metabolomics society (http://www.metabolomicssociety.org/).  

1.1 Pathway databases 

In most metabolomic analyses metabolic pathway databases are the starting point 
of investigations. An aggregated metabolic inventory for the biological object un-
der investigation allows estimation of the number and chemical variety of metabo-
lites to be covered by profiling methods (e.g. Moco et al. 2006). These inventories 
do not only serve as a framework for the identification of yet unidentified meta-
bolic components (see Section 4.2) from profiling experiments, inventories may 
ultimately be used to create metabolic models and may serve as a reference to add 
newly discovered metabolites, metabolic reactions, or regulatory interactions. 
Pathway information can be used to investigate the metabolic neighbourhood for 
the purpose of interpreting quantitative profiling results (e.g. PaVESy; Lüdemann 
et al. 2004; Schreiber and Schwobbermeyer 2005; Junker et al. 2006). Thus, the 
most important application may be visualisation of results within a metabolic con-
text. This process has been used for decades without database support in journal 
publications to illustrate hypotheses on metabolic pathways and interactions. To-
day, the identification and prediction of metabolic targets of genetic modifications 
from a pathway context may move into the focus of computation and database 
utilisation.  

Approximately 43 public databases exist covering metabolic pathways (Bader 
et al. 2006). The perhaps most frequently used metabolic resources (Bader et al. 
2006) are the Kyoto Encyclopedia of Genes and Genomes (KEGG), currently 
holding information for approximately 40,000 pathways corresponding to 300 ref-
erence pathways (Kanehisa 1997, 2006; Kanehisa and Goto 2000); the BioCyc 
family of databases (Karp et al. 2005; Krummenacker et al. 2005; EcoCyc ~190 
pathways, Keseler et al. 2005; AraCyc ~230 pathways, Zhang et al. 2005); and 
BRENDA (Schomburg et al. 2002a, 2002b, 2004). The BRENDA database pro-
vides comprehensive crosslinks of metabolic and enzyme kinetic information 
based on the generally accepted enzyme classification and nomenclature of the in-
ternational union of pure and applied chemistry and of biochemistry and the inter-
national union of molecular biology (IUPAC-IUBMB: 
http://www.chem.qmul.ac.uk/iupac/jcbn/). 



78   Jan Hummel, Joachim Selbig, Dirk Walther, and Joachim Kopka 

Table 1. Biased overview of existing databases and inter-
net resources. 

Database Address 
Meta-databases  
The Metabolomics Soci-
ety 

http://www.metabolomicssociety.org/ 

The Molecular Biology 
Database Collection 

http://nar.oupjournals.org/ 

Pathguide http://pathguide.org 
Pathway databases  
AraCyc http://www.arabidopsis.org/biocyc/index.jsp 
BioCyc http://www.biocyc.org/ 
BRENDA http://www.brenda.uni-koeln.de/ 
ChEBI http://www.ebi.ac.uk/chebi/ 
EcoCyc http://ecocyc.org/ 
KEGG http://www.genome.jp/kegg/ 
Cheminformatics data-
bases 

 

CrossFire Beilstein http://www.mdl.com/products/knowledge/crossfire_beilstein/ 
IUPAC-IUBMB http://www.chem.qmul.ac.uk/iupac/jcbn/; 

http://www.iupac.org/  
NIST http://www.nist.gov/srd/nist1a.htm;  

http://chemdata.nist.gov/mass-spc/Srch_v1.7/index.html  
PubChem http://pubchem.ncbi.nlm.nih.gov/ 
SciFinder (CAS) http://www.cas.org/SCIFINDER/ 
Wiley http://eu.wiley.com/WileyCDA/WileyTitle/productCd-

0471755958.html 
Databases dedicated to 
metabolite profiling 

 

The Fiehn laboratory http://fiehnlab.ucdavis.edu/compounds/ 
GMD http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html 
KNApSAcK http://kanaya.naist.jp/KNApSAcK/ 
METLIN http://metlin.scripps.edu/ 
Other resources  
BioMart http://www.biomart.org/ 
BioMoby http://www.biomoby.org/ 
BioPax http://www.biopax.org/ 
CML http://www.xml-cml.org/ 
InChI http://www.iupac.org/inchi/ 
MapMan http://gabi.rzpd.de/projects/MapMan/ 
Resource Description 
Framework (RDF) 

http://www.w3.org/RDF/) 

1.2 Cheminformatics databases 

Metabolites are chemical substances of biological origin. Metabolomic analyses 
require information of physicochemical properties, such as solubility, boiling 
points, liquid partitioning coefficients, sum formula, exact mono-isotopic molecu-
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lar mass and structures of metabolites. The best sources for these general purpose 
data are resources that are not restricted to metabolism. These resources are ide-
ally linked to the original publications from which the data have been aggregated. 
One example is the BRENDA database of enzyme properties mentioned above. 
Additional and more complex properties of bio-molecules are synonymous me-
tabolite names, information on chemical synthesis or preparation, information on 
bioactive substances from application studies, and occurrence in patents. The two 
most frequented resources are the commercial SciFinder database of the chemical 
abstract service (CAS) issuing the widely used CAS identifiers for chemical com-
pounds and the publicly available PubChem access to chemical aspects contained 
in journal publications. 

The CAS organisation provides information on approximately 29 million syn-
thetic and natural chemical substances and has recently been extended to cover 
nucleic acids and proteins comprising a total of about 57 million biological se-
quences. Over 25 million documents from journal publications and patent litera-
ture have been curated (Schwall and Zielenbach 2000; Whitley 2002; Ben Wagner 
2006). In contrast to the costly SciFinder access, PubChem 
(http://pubchem.ncbi.nlm.nih.gov/) represents the competing public domain pro-
ject (Kremsky 2005). PubChem is hosted by the National Center for Biotechnol-
ogy Information (NCBI) and is cross-referenced to the previously established ser-
vices of PubMed and GenBank. PubChem allows structure and text searches on 
approximately 8 million substances, efficient crosslinks to other chemical data-
bases and chemical vendors. Furthermore, valuable access is provided to bioactiv-
ity and toxicology studies (Shang and Tan 2005). 

1.3 Databases dedicated to metabolite profiling 

Databases focusing on the non-targeted metabolite profiling analysis of the broad 
spectrum of low molecular weight compounds present in biological systems have 
been initiated for the perhaps most widely applied GC-MS technology; for exam-
ple, the metabolite profiling list of the Fiehn laboratory, 
http://fiehnlab.ucdavis.edu/compounds/, using the BinBase software tool (Fiehn et 
al. 2005) and the Golm Metabolome Database GMD, http://csbdb.mpimp-
golm.mpg.de/csbdb/gmd/gmd.html (Kopka et al. 2005; Schauer et al. 2005). Other 
technology platforms of metabolite profiling have triggered parallel developments 
such as METLIN (Smith et al. 2005) and KNApSAcK (Shinbo et al. 2006) for 
high-resolution Fourier transform mass spectrometry (FTMS), tandem mass spec-
trometry (MS/MS), and LC/MS data, and the consortium for metabonomic toxi-
cology (COMET) for NMR studies (Lindon et al. 2005).  

Besides methodology-oriented databases which mediate between spectrometric 
means of metabolite identification and the requirement to perform multi-parallel 
metabolite profiles, databases started to emerge which focus on specific model or-
ganisms, e.g., yeast (Smedsgaard and Nielsen 2005), Escherichia coli (Sundararaj 
et al. 2004), or the MoToDB covering the LC-MS based metabolite profiling of 
tomato plants (Moco et al. 2006).  
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1.4 The Golm Metabolome Database (GMD) 

GMD started as a collection of annotated and non-annotated, but repeatedly ob-
served mass spectra from biological samples and was extended to contain, in addi-
tion, retention time behavior (Wagner et al. 2003). Subsequently, the concept of 
mass spectral tags (MSTs; see Section 5.1) was developed (Kopka 2006a, 2006). 
This concept became necessary because commercially available mass spectral li-
braries, such as the National Institute of Standards and Technology (NIST) stan-
dard reference database, NIST05 (http://www.nist.gov/srd/nist1a.htm) with the 
NIST MS search software version 2.0 (http://chemdata.nist.gov/mass-
spc/Srch_v1.7/index.html) and Wiley mass spectral library 2005 
(http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471755958.html), only 
contained a small fraction of those compounds that were frequently observed in 
profiling experiments of biological samples. The MST concept allows handling 
and referencing of yet unidentified metabolic components from GC-MS profiling 
experiments. Also, MST collections allow later identification using pure authentic 
reference substances. Today, multiple laboratories have added to and comple-
mented the initial library content (Schauer et al. 2005). The current focus is the 
analysis of approximately 1000 commercially available reference substances rep-
resenting metabolites for the purpose of enhanced MST and metabolite identifica-
tion. In addition, integration of metabolite profiling data with external databases 
such as KEGG or visualization tools, e.g., MapMan (Thimm et al. 2004), is in 
preparation. 

2 Database objects 

A database for the purpose of archiving metabolite profile data such as GMD 
(Kopka et al. 2005; Schauer et al. 2005) has one main objective: to allow queries 
for specific metabolites and their quantitative behaviour in biological samples un-
der different experimental conditions. Six primary objects of such a database are 
conceivable: 

The metabolite: The metabolite is a chemical substance or compound imported 
by organisms and typically transformed by enzyme catalysed biochemical reac-
tions. Proteins, transcripts and genes are generally not considered metabolites. 

The biological sample: A sample is a biological object, which is subject to an 
analysis. The sample can be described by nomenclature of biological phylogeny, 
such as family, species, subspecies, cultivar or ecotype, by morphology, such as 
an organ, tissue or cell type, and by developmental stage. 

The experiment: The experiment is a manipulation to which biological objects 
are exposed. These experimental manipulations can be divided into genotype 
modification and the change of environmental conditions, such as nutritive, biotic, 
and abiotic stresses. The latter type of experiment comprises physical data, such as 
duration of the experiment or temperature.  
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The method: Method information describes the procedures of sampling, extrac-
tion, fractionation, and details of the quantitative analytical technology. This in-
formation needs to be available on demand for trouble-shooting. 

The ownership of database content: databases compile information from mul-
tiple sources. A link to traditional publications and proper acknowledgement of 
otherwise unpublished database information is advisable. 

The profile: As in classical physiology, profile data may be equivalent to the 
exact concentration of one or multiple metabolites. In a current metabolite profil-
ing experiment, the quantitative behaviour is typically expressed as x-fold changes 
relative to a set of samples kept under control conditions.  

Regarding the above mentioned aspects, transcriptome and proteome profiles 
are highly similar to metabolome profiling experiments. Therefore, the transfer of 
earlier concepts such as the MIAME (minimum information about microarray ex-
periements) standard used in gene expression experiments (Brazma et al. 2001) or 
the MIAPE (minimum information about a proteomics experiment) protein stan-
dard (Orchard et al. 2004) to metabolite profiling experiments is obvious and fea-
sible. Consequently, the MIAMET (minimum information about a metabolomics 
experiment) standard has been suggested (Bino et al. 2004) and efforts to stan-
dardise metabolomic experiments are underway (Jenkins et al. 2004). The MeMo 
(Spasić et al. 2006) or BinBase (Fiehn et al. 2005) studies were among the first to 
adopt these standards. The aim of the mentioned standardisation efforts was the 
establishment of minimally required descriptions with the long term objective to 
make experiments repeatable, comparable, and the results combinable. Consider-
ing a database such as GMD, all details of measurement, chromatogram genera-
tion, and reasoning of metabolite identification has to be implemented in addition 
to the MIAMET requirements (Kopka et al. 2006a, 2006b). While the present 
concepts of metabolomic databases are highly diverse in information details, gen-
eral lessons can be learned. For future systems-oriented analyses, comparisons, 
and between-laboratory verification, it will be essential to keep metabolite sample 
and experiment information tightly associated within the database and exchange-
able between analytical platforms and diverse databases. One of the hardest as-
pects to capture is the sample information because of the broad variety of parame-
ters required for the full description of the experimental setup. Most importantly, 
different experimental objectives allow either to neglect some implicit general ex-
perimental descriptions or will require additional detail. 

3 Information exchange between databases 

The above mentioned exchangeability of information between analytical platforms 
and diverse databases is related to the bioinformatics workflow concepts proposed 
recently in form of the Taverna system (Oinn et al. 2004). The number of publicly 
available computational tools and information repositories accessible as web ser-
vices is growing steadily. The user has to orchestrate these web services in work-
flows which are part of the respective science-driven analyses. Web services ar-
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chitecture is a novel computing framework which uses existing internet communi-
cations and data exchange standards (Booth et al. 2003). This technology and the 
so-called Resource Description Framework (RDF) standard 
(http://www.w3.org/RDF/) facilitate the co-ordinated use of diverse computational 
tools and information repositories (Stein 2002). Other technologies exist that cre-
ate abstraction layers. These layers hide the different physical structures and data 
formats. Examples of these approaches are the BioMOBY and the BioMart sys-
tems (Wilkinson and Links 2002; Durinck et al. 2005). So far, these concepts 
which integrate data resources with data analysis software have been applied 
mainly for annotating genes with ontological information. In the metabolomic 
field, extended statistical computations based on crosslinked data from different 
database repositories will be required, for example, for the structural elucidation 
of the immense number of unknown compounds (e.g. Kind and Fiehn 2006). Sys-
tem frameworks such as BioMart may prove to be highly valuable for the techni-
cal realisation of such approaches. However, in addition to effective information 
exchange technologies, aspects of divergent and multiple database ontologies have 
to be considered. As will become apparent in the following paragraphs, in two 
central metabolomic work flows the synonymous metabolite naming is currently 
the most significant barrier precluding easy data exchange in the metabolomic 
field. Therefore, establishment and consistent use of global, unique identifiers is 
urgently required for the referencing of metabolites (see Section 6). 

4 The main work flows of metabolite profiling 

While much can be learned from transcript profiling databases (Ball et al. 2005; 
Craigon et al. 2004) and the analysis of transcript profiles (e.g. Zimmermann et al. 
2004, 2005), metabolite profiling projects require more than the above generalised 
objects. In transcript analyses, virtually the full set of genes can be determined. 
Based on full genome annotations, networks of biochemical pathways and con-
stituent metabolites can be predicted. But the full finite set of metabolites present 
in a biological sample is not known (Sumner et al. 2003). Indeed, one of the most 
striking observations from metabolite profiling studies is the presence and cur-
rently even the predominance of yet unidentified metabolites (e.g. Kopka et al. 
2005; Schauer et al. 2005). As a consequence, three types of data analyses prevail 
in current metabolomic studies (e.g. Fiehn 2002; Steinhauser and Kopka 2007); 
(1) the fingerprinting analysis, defined as the comprehensive “non-biased” analy-
sis of all signals obtained by one analytical technology, (2) the profiling analysis, 
which utilises only the subset of identified analytical signals, namely those signals 
which can be delineated to represent a specific metabolite, and (3) the optional ex-
act quantification which is possible for a subset of analytical signals for which a 
quantitative calibration has been performed.  

All technological platforms for metabolite profiling are under constant devel-
opment. The main aim is the elucidation of the metabolite identity of all finger-
printing signals and thus the enhancement of the metabolic coverage of profiling 
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experiments. Therefore, metabolite profiling databases need to incorporate essen-
tially two work flow schemes. One work flow, which will in the following be 
called the metabolite profiling work flow, comprises the routine generation of me-
tabolite profiles from samples and biological experiments into quantitative nu-
merical data matrices. One dimension of such a matrix describes the samples of an 
experiment and the other dimension contains the discrete analytical signals. These 
signals initially represent fingerprint information which can then be transformed 
into metabolite information through an identification process.  

The second work flow creates the information necessary for this identification 
process and will in the following be referred to as the metabolite mapping work-
flow. Metabolite mapping establishes the link between pure authenticated meta-
bolic reference substances and analytical signatures. 

Each of the multiple analytical platforms which are used for the profile analysis 
of metabolites utilises different chemical properties and signatures for metabolite 
identification; for example, nuclear magnetic resonance, UV-VIS spectral absorp-
tion, chromatographic retention, and mass spectral fragmentation (e.g. Sumner et 
al. 2003; Kopka et al. 2004). Because of the high technological and information 
diversity, we will focus on GC-MS fingerprints and profiles. 

4.1 The metabolite profiling work flow: from sample to metabolite 
fingerprint and profile  

The metabolite profiling work flow (Fig. 2) starts with the generation of a set of 
biological samples belonging to an experiment. Sample and experiment are ob-
jects which are shared with other profiling technologies (see above). In the case of 
GC-MS profiling, the set of biological samples is subjected to a sequence of 
methods for metabolite extraction, metabolite partitioning, chemical derivatisa-
tion, GC-injection, chromatographic separation, ionization, and mass detection. 
Technical details have been reviewed elsewhere (e.g. Kopka 2006b; Erban et al. 
2007). The result of one profiling experiment is a set of at least three-dimensional 
GC-MS chromatograms, comprising information of mass to charge ratio, chroma-
tographic retention time index, and ion abundance, or, in other words, quantitative 
response. These chromatogram files are further processed by so-called mass spec-
tral deconvolution algorithms (Ausloos et al. 1999; Halket et al. 1999; Chro-
maTOFTM software; LECO, St. Joseph, MI, USA, http://www.leco.org/), which 
perform baseline correction and remove electronic or chemical noise and extract 
mass spectral tags, i.e., mass fragments with common chromatographic retention 
(Kopka 2006a). Depending on the algorithm, the observed absolute abundance of 
each mass fragment, a pre-selection of expected mass fragments, or the sum of all 
mass fragments can be reported. Quantitative analysis can be performed by inte-
grating over the chromatographic peak area or peak height. These algorithms are 
typically applied sequentially to every single chromatogram. Therefore, process-
ing results of all chromatograms comprising one experiment must be aligned with 
respect to mass and retention in order to generate a two-dimensional numerical 
data matrix. This data matrix represents the fingerprinting result of an experiment. 
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Fig. 2. (overleaf) The Metabolite Profiling Work Flow: from sample to metabolite finger-
print and profile. Briefly, biological samples are assayed by metabolite extraction which re-
sults in complex metabolite mixtures. These mixtures are processed by the routine profiling 
procedure resulting in a standardised GC-MS chromatogram. Automated mass spectral de-
convolution extracts all MSTs. These are subsequently identified by comparison to MST-
library reference information (see Fig. 3). Finally, quantitative profile information is ac-
quired which may be submitted to a profile database (see Section 4.1 for metabolite finger-
printing aspects). 

In a second step, metabolites need to be identified within the data set. For this 
purpose, all initial mass spectral deconvolution results can be used or alternatively 
all co-eluting mass fragments are matched after alignment (e.g. Halket et al. 1999, 
2005; Stein 1999). As a rule, only a subset of all observed mass fragments can be 
used to best represent the quantitative behaviour of the respective metabolites 
within the biological sample. Mass spectral and retention time index libraries are 
required for this matching and identification process (Wagner et al. 2003; Schauer 
et al. 2005). The work flow which generates the reference data is described in the 
following. 

4.2 The metabolite mapping work flow: from metabolite to specific 
and selective GC-MS mass fragment  

The metabolite mapping work flow (Fig. 3) starts with the search for a chemical 
substance which is known to be a metabolite. Information sources of metabolites 
are biochemical pathway databases and traditional phytochemical or physiological 
publications. The second step of this work flow is the acquisition of at least one 
pure authenticated reference substance which represents the metabolite(s) of inter-
est. Reference substances may be obtained through commercial sources or through 
chemical synthesis and purification from biological sources. Subsequently, chemi-
cal samples are prepared of each reference substance, which are then processed by 
the method of GC-MS metabolite profiling analysis. GC-MS analyses typically 
require chemical derivatisation. This process chemically modifies reference sub-
stances into at least one so-called analyte. The analyte is the product of a reaction 
with chemical reagents which increase the volatility of analytes and thus make 
GC-MS analysis of initially non-volatile substances possible (e.g. Kopka 2006b). 
The reaction product is submitted to GC-MS analysis and at least one chroma-
togram file is generated. This file is processed manually or by automated mass 
spectral deconvolution algorithms generating a list of mass spectra with retention 
attached time indices, so-called mass spectral tags (MSTs). MSTs represent the 
full signature of compounds, namely mass spectral fragmentation pattern and 
chromatographic retention which can be employed for compound identification 
within the GC-MS metabolite profiling platform (Kopka 2006a). Before an MST 
can be submitted to a library database, a manual validation procedure is per-
formed.  Only  those  MSTs  which  are  specific  for  the  reference  substance are 
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Fig. 3. (overleaf) The Metabolite Mapping Work Flow: from metabolite to specific and se-
lective GC-MS mass fragments. Briefly, a pure authenticated reference substance is ac-
quired which represents the metabolite(s) of interest. Routine chemical derivatisation and 
profiling analysis is applied to generate respective analyte(s), and GC-MS chromatograms. 
Manual validation and automated mass spectral deconvolution extracts correct mass spec-
tral tags (MSTs), which represent analytes and respective metabolites. Finally, specific and 
selective mass fragments are selected from each MST and the full information submitted to 
a database, which comprises the complete reference information. 

selected, errors of automated deconvolution are removed and laboratory contami-
nations excluded. The resulting subset of specific MSTs may still contain traces of 
chemical contaminations contained within the references substance, especially if 
the preparation was purified from a biological source. For this reason, the chemi-
cal structure of all possible analytes is manually predicted and the observed mo-
lecular mass and fragmentation pattern of MSTs reconciled with the structure pre-
dictions. The result is a partition of MSTs into (1) major and minor products 
which were verified to represent the metabolite and (2) into those MSTs which are 
specific to the reference substance but represent chemical contaminations. 

Subsequently, the suitability of mass fragments from each MST for selective 
quantification is investigated. At this point in the work flow, the limitation of the 
employed analytical technology is determined. Each analytical technology is to 
some extent limited in its potential to differentiate between chemical isomers. For 
example, in routine GC-MS metabolite profiling D- and L- stereoisomers exhibit 
identical MSTs. In rare cases, chemical derivatisation may generate identical ana-
lytes from different metabolites. Also different co-eluting MSTs may share a set 
of common, non-selective mass fragments. The technological restrictions of the 
GC-MS profiling technology must, therefore, be represented in the database at the 
correct level of chemical detail. 

A database model suited to harbour the information which is generated through 
the metabolite mapping work flow requires two basic objects, namely the chemi-
cal substance and the MST. Three additional supporting database objects are the 
chromatogram, from which MSTs originate, the chemical sample and the GC-MS 
method which is used to generate the chromatogram. 

5 The main database objects 

5.1 Modelling the “MST” database object  

The MST database object is a list of mass fragments with the following attributes: 
the fragment mass, the absolute abundance of fragments within the mass spectral 
fragmentation pattern, the retention time index, which is common to all mass 
fragments of a MST, and the potential suitability of a mass fragment for selective 
quantification. 

An additional characteristic aspect of the MST object is the occurrence of mul-
tiple alternate MSTs of a single analyte. These alternate MSTs can be strictly re-
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dundant. Redundant MSTs can be used to analyse the analytical reproducibility of 
MST properties, specifically fragment abundance and chromatographic retention. 
In addition, MST variants are possible, for example, due to the use of different 
mass spectral technologies. Mass spectral technologies affect mass spectral frag-
mentation pattern and fragment abundance. Also application of alternate GC sepa-
ration methods may change gas chromatographic retention behaviour while the 
fragmentation pattern is maintained. 

MST information represents a main know-how component of the GC-MS me-
tabolite profiling technology. Libraries of MSTs comprise the analytical signatures 
which are used for metabolite identification and, therefore, need to be exchange-
able between laboratories. In addition, information on fragment selectivity, reten-
tion time behaviour, and occurrence in standardised biological samples is essential 
for the laboratory routine of metabolite quantification in complex samples. 

5.2 Modelling the “chemical substance” database object  

The database object, chemical substance, requires thorough design, because of two 
aspects, which will be discussed below: (1) GC-MS has the intrinsic problem of 
chemical derivatisation and the requirement of reference substances for metabolite 
identification; (2) multiple synonyms for naming chemical compounds exist and 
so far no unique compound identifier has been available for the highly important 
purpose of exchanging metabolite definitions between databases and laboratories. 

(1) Metabolites and available reference substances may not be exactly identical. 
For example, organic acids may be obtained either as salts or as free acids. In ad-
dition, most GC-MS methods require a chemical derivatisation step which alters 
the chemical identity of compounds (see above). Therefore, the abstract data ob-
ject, chemical substance or compound, requires three specialised subtypes within 
GMD, namely the metabolite, which is represented by a reference substance und 
subsequently by a chemically modified analyte (Fig. 4). Multiple analytes may 
represent one metabolite and, in rare cases, one analyte may represent two or more 
metabolites. These so-called n:m relations must, therefore, be mapped into a rela-
tion-specific mapping table. The same applies to the relation of metabolites and 
reference substances. One metabolite may be represented by different reference 
substances depending on the laboratory. In addition, a reference substance, espe-
cially preparations from biological sources, might be impure and may contain a 
mixture of two or more different metabolites. 

The three subtypes share general properties and have additional specific proper-
ties those constituting a “IS-A” relation. The supplier and purity information of 
reference substances or the pathway association of metabolites may serve as ex-
amples for specific properties for reference substance and metabolite, respectively. 
By comparison, the name, formula, and molecular weight are general properties 
assigned to the entity “chemical substance”. The query for all properties of the 
specialised database items analyte, metabolite, or reference substance is possible 
using views, which may be joined from the general database table “chemical sub-
stance” and,  for  example,  the specialised  table  “reference substance”  using  the 
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Fig. 4. The chemical substance is a key feature in metabolomic analyses. Profiling laborato-
ries handle three types of substances: metabolites, analytes, i.e., chemical derivatives of me-
tabolites which are required for quantitative analysis, and reference substances, which are 
typically commercially obtained for the validation of metabolite identity. The basic entity 
relationship among these substances is demonstrated. 

primary key of the chemical substance used as a foreign key in the reference sub-
stance table as the joining attribute. 

(2) Multiple traditional synonyms of chemical compounds exist. As a first solu-
tion to circumvent ambiguous naming, unique conventions have been provided for 
decades by the IUPAC nomenclature commission (http://www.iupac.org/). The is-
sued names, however, are too complicated and, consequently, a common use has 
not been fully imposed in all fields of science. As a result, the access to metabolite 
information is hampared by synonymous use of compound names, presence of 
multiple database intrinsic identifier codes and the lack of complete translation ta-
bles, which map codes and names between the different information sources. 

Because of the above aspects, we decided to implement a chemical substance 
object as integral part of our database instead of relating our database entry to a 
foreign repository for metabolite information. The problem of communication 
with external information sources is solved by utilising an En-
tity - Attribute - Value (EAV) table which combines foreign identifier codes and 
names into a source tagged synonym list for each metabolite. This list can be used 
for metabolite queries and for links to pathway databases, for example, by using 
KEGG (Kanehisa 1997, 2006; Kanehisa and Goto 2000) and MapMan (Thimm et 
al. 2004), CAS or other identifiers. The set of available attributes in EAV tables is 
not limited and, thus, information can be extended dynamically without the need 
of altering the database schema as demonstrated by the ArMet proposal (Jenkins et 
al. 2004). For example, the compound, 2-(phosphonomethylamino) acetic acid, is 
represented within GMD by structural information as encrypted within an InChI 
code, e.g., 1/C3H8NO5P/c5-3(6)1-4-2-10(7,8)9/h4H,1-2H2,(H,5,6)(H2,7,8,9)/ 
f/h5,7-8H (cf. outlook section). This code is linked to the synonyms, “1071-83-6”, 
“C01705”, and “glyphosate”, which are tagged to represent a CAS identifier, a 
KEGG identifier and a trivial name, respectively. Using this tagged information 
any of the synonyms can be transferred to query pages of the public web, such as 
KEGG or PubChem. The KEGG ligand database can be searched for the current 
pathway information or the PubChem web resource may be used for the retrieval 
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of recently published references on this compound, without the need to maintain 
internal updates of these databases within GMD.  

Because GC-MS analyses must meet the requirement of describing the chemi-
cal identity of metabolites and analytes at the level of structural precision which is 
adequate to this technology, we started to extend our database to accommodate 
structural information with the aim to avoid potential ambiguities resulting from 
the currently used MPIMP-ID identifier (Kopka et al. 2005; Schauer et al. 2005). 
In the present state, however, it was impossible to use an externally defined and 
generally accepted primary key for compounds, because annotation of old metabo-
lite entries by available external keys such as the CAS identifier was incomplete. 
Therefore, we amplified the MPIMP-ID for referencing chemical substances un-
ambiguous within GMD (http://csbdb.mpimp-golm.mpg.de/csbdb/ 
gmd/gmd.html), while maintaining the option to query GMD using CAS and 
KEGG identifiers. To increase utility, full text catalogues were utilised to aid text 
searches.  

6 Outlook 

Until recently, no simple solution was available for the unambiguous description 
of chemical entities. Even different structure drawing algorithms may generate al-
ternate pictures of the same compound. The problem of developing a unique and 
generic identifier code for chemical compounds appears now to be solved in a 
joined effort of the IUPAC and NIST organizations (Murray-Rust et al. 2004b). 
The resulting code is called InChI (IUPAC international chemical identifier) and 
tools for the inter-conversion of InChI codes and structure files are made available 
(http://www.iupac.org/inchi/). 

We used basic parts of the multilayered InChI concept and will extend the 
GMD compound description towards fully InChI compatible codes until our arbi-
trarily established identifiers can be substituted by InChI codes. The main layers 
of the code are ideally suited to represent the technological restrictions. The pri-
mary layer contains the chemical formula, which allows calculation of the 
monoisotopic molecular mass, the central chemical property exploited by mass 
spectrometric methods. In addition atomic connectivity and numbering is given as 
a text string, which is much easier to manage compared to traditional mol-files. 
Additionally formalised information of the InChI code comprises a charge, a 
stereochemical, an isotopic layer and a so-called fixed-hydrogen layer which can 
be used if a specific tautomeric structure needs to be characterised. So far, the 
InChI code has been widely adopted, for example, by the ChEBI 
(http://www.ebi.ac.uk/chebi/) and PubChem (http://pubchem.ncbi.nlm.nih.gov/) 
databases or BioPax (http://www.biopax.org/) and CML (http://www.xml-
cml.org/) projects for the exchange of biological pathways and chemical informa-
tion, respectively. First InChI annotations of the KEGG database have been an-
nounced (http://www.iupac.org/inchi/adopters.html). Thus, this code has the po-
tential to solve the problem caused by traditional use of different metabolite 
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synonyms and thus provide the basis for non-ambiguous communication of me-
tabolite and chemical compound information between data sources via customis-
able web services architecture (Stein 2002; Booth et al. 2003) or via Semantic 
Web technologies (Murray-Rust et al. 2004a). Such systems and repositories like 
GMD are inherently of value inherently by providing heterogeneous biological 
data sets in a structured and systematic description. But they may also provide a 
data basis for applied bioinformatics areas like biomarker identification with su-
pervised machine learning methods (Kenny et al. 2005) and metabolic regulation 
modelling (Kümmel et al. 2006). 
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Reconstruction of dynamic network models from 
metabolite measurements 

Matthias Reuss, Luciano Aguilera-Vázquez, Klaus Mauch 

Abstract 

One of the most ambitious and challenging goals of systems biology is the identi-
fication of targets for reshaping biological systems based on quantitative predic-
tions with the aid of mathematical models. Whereas the potential and promise of 
biological systems modelling is substantial, several obstacles are still encountered 
when addressing the issue of predictive design based on dynamic models. This is 
particularly because of the well known difficulties in assessing enzyme kinetics 
under in vivo conditions as a prerequisite for a sound quantitative analysis of the 
network via dynamic modelling. The article will describe developments and appli-
cations of tools aimed at achieving sustained improvements within this important 
field. Our experience in using metabolite data for reconstruction of dynamic mod-
els led to a dual approach. At the core of the modular concept is the decomposition 
of the networks into manageable subunits. Furthermore, a new top down approach 
is presented for estimating kinetic parameters for the individual reactions in whole 
cell metabolic networks from time series data. 

1 Introduction 

The use of high throughput and efficient - omic platforms has monopolized sys-
tems biology research in recent years. Given this high priority of the top down ap-
proach, it is not amazing that network reconstruction and clustering of network 
components as well as multivariate analysis for assessing similarities between 
omic profiles from different samples are gaining more and more attention. This 
data driven attempts to extract biological knowledge through integration informa-
tion from genome-level data sources is in particularly high gear in the emerging 
field of metabolomics. It is certainly true that these static views capture some im-
portant aspects of the structural properties of a system. The heart of systems be-
haviour, however, which lies in the complex dynamics, cannot be covered by 
these approaches. The omic platforms are essential for this challenging goal as 
well, but focussing at elucidation of the dynamic behaviour of the system is more 
than just collecting and correlating observables by which we see it. 

Quantitative analysis of the dynamic behaviour of metabolic networks depends 
on the mathematical description of the multiple interactions between the individ-
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ual components (kinetic modelling). Establishing kinetic models of cellular me-
tabolism is always embedded within the dispute if, according to the traditional 
biochemistry point of view, models can be designed by aggregation of in vitro en-
zyme kinetics (Teusink et al. 2000; Snoep and Westerhoff 2005) or, alternatively, 
in vivo measurements of metabolites should be applied for identification of kinetic 
properties. For in vitro kinetics we have to take the systems out of their closed 
metabolic cages and the observed kinetics usually describes the behaviour of test-
tube isolates. There are two pivotal questions regarding the application of in vitro 
kinetics for studying the dynamics of metabolic network as real–life phenomena. 
(1) To what extend does the multitude of interacting processes inside the cell lead 
to a kinetic behaviour that differs from in vitro conditions? (2) What is the influ-
ence of the functioning of the entire ensemble in the living system? (Or, can we 
simply sum up every enzyme reaction to understand the system quantitatively?). 
By comparison of in vitro, in situ (permeabilized cells), and in vivo results for en-
zyme kinetics of the phosphofructokinase I system in Saccharomyces cerevisiae, it 
has been demonstrated that remarkable differences in the structure of the kinetic 
expressions, as well as in parameter values, can be observed in the case of such a 
complex metabolically regulated enzyme system (Mauch et al. 2000). Further evi-
dence for pronounced differences between in vitro and in vivo kinetics have been 
presented by Aon and Cortassa (1997). These authors discussed several examples 
of glycolytic enzymes, in which modulation of activities and kinetic parameters 
were caused by interactions of the enzymes with structural polymers, such as cy-
toskeleton components (tubulin and actin). For detailed analysis of the important 
issue of impact of physiological enzyme concentrations on kinetic analysis the 
reader is referred to the contribution of Aragon and Sanchez (1985). 

Focussing the attention to metabolomics, the key to generate dynamic meta-
bolic network models is, therefore, to extract the kinetics of the biochemical reac-
tions from these data and, as such, considering the reactions in their “systemic” 
context. This survey is intended to summarize tools and methods for identification 
of in vivo kinetics from these metabolite measurements. The tight link between the 
experimental observations on the one hand and modelling and simulation on the 
other hand is the critical issue in this model driven strategy. From there, computa-
tional experimentation - particularly in regard to appropriate perturbations – is of 
major importance. Furthermore, the authors of this contribution argue that any 
success in the identification of systems dynamics critically depends on the back 
and forth between simulations and wet lab experiments.  

Provided that progress in the dynamic modelling and simulation of metabolic 
pathways and networks critically depends on such a tight link between the dry and 
wet lab, the organisation of this survey is a follows: first a summary of the most 
important tools for quantitative measurement of intracellular metabolites along 
with typical results is given followed by an introduction of approaches for identi-
fication of the kinetics based upon different methods for decomposition of the 
network. The survey also includes a critical assessment of a first attempt to iden-
tify systems dynamics for a whole cell network model. 
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2 Quantitative measurements of intracellular metabolites 

A large number of sampling devices for measurements of intra – and extracellular 
metabolites have been described in the literature (Weibel et al. 1974; Reuss 1991; 
De Koning and van Dam 1992; Theobald et al. 1993, 1994, 1997; Weuster-Botz 
and de Graaf 1996; Gonzales et al. 1997; Schäfer et al. 1999; Mauch et al. 2000; 
Chassagnole et al. 2002; Buziol et al. 2002; Visser et al. 2002; Schmalzried et al. 
2003; Castrillo et al. 2003; Mashego et al. 2006; Schaub et al. 2006). However, it 
is not within the scope of this paragraph to provide the reader with a comprehen-
sive treatment on the various concepts and tools. Instead the main principles will 
be discussed briefly to help the reader gain a deeper insight into the related tech-
niques, which will be introduced with a few examples. 

For a quantitative analysis of the dynamic behaviour of metabolic networks it is 
an essential prerequisite to define the physiological state of the cells used for the 
experimental observations. Of course, this imperative requires experimental condi-
tions and related process operations, which are defined and reproducible. This is 
not a trivial task. As indicated by Wu et al. (2005) and unpublished results from 
our laboratory, pools of metabolites can significantly change during long time op-
eration of continuous cultures at a given dilution rate because of various adapta-
tion phenomena. Thus, the corresponding constant specific growth rate does not 
provide a guarantee of a defined physiological state. We also need to devise meth-
ods for sampling, quenching and extraction that ensure that the results of the sub-
sequent analysis accurately reflect the status of the living cell. The concrete design 
of the appropriate tools and operations in the sequence: 

• process operation (steady state, fed batch, batch, transient conditions) 
• sampling (steady or quasi - steady state, time span and sampling fre-

quency during transient stimulus –response experiments) 
• quenching 
• extraction 
• analysis 

depends on the (a) the biotic variables to be measured and (b) the information to 
be derived from these observations. Attributes related to (a) include chemical, 
thermal and biological stability of the compound, turnover times, analytical meth-
ods applied, etc. The focus of the second point is the purpose of these measure-
ments. The interest in such measurements may be related to dynamic responses of 
metabolite pools to extracellular disturbances (stimulus-response methodology) 
for identification of in vivo kinetics including modulation at the metabolite level. 
Another focal point of these measurements could be regulation phenomena in-
volved in transcription, translation, or posttranslational processing. In the follow-
ing, examples for this sequence of operations are provided from work conducted 
in the authors’ laboratory. The main focuses of these measurements are investiga-
tions at transient conditions and application of the data for the in vivo diagnosis of 
intracellular reactions (Reuss 1991; Theobald et al. 1993; Rizzi et al. 1996; Theo-
bald et al. 1997; Mailinger et al. 1998; Vaseghi et al. 1999, 2001; Mauch et al. 
2000;  Chassagnole  et al.  2002).  The approach,  for  which  the name  “stimulus- 
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Fig. 1. Two different sampling techniques for measurement of intracellular metabolites at 
transient conditions: (a) manual sampling after a pulse of glucose into the bioreactor, and 
(b) stopped flow technique with glucose shift within the sampling valve. 

response methodology” has been coined, is based on a disturbance of a steady 
state during continuous operation by a pulse of glucose. The response of the bio-
logical system is quantitatively characterized by measuring extra – and intracellu-
lar concentrations with high frequencies within milliseconds, seconds, or minutes 
after the disturbance.  
There are two reasons for choosing this time scale: 

• Regulation at the metabolic level occurs within seconds or even faster. 
• Within this time scale, changes are caused only by metabolic regulation 

including posttranslational modification such as phosphorylation. Bio-
synthetic reactions, e.g. protein biosynthesis, can be regarded as staying 
in a “frozen” state. 

Precise measuring of intracellular concentrations in the time window of seconds 
requires appropriate techniques for rapid sampling, inactivation of metabolic en-
zymes (quenching) and extraction of metabolites, taking into account the high 
metabolic turnover rates of the compound of interest. The manifold sampling sys-
tems developed for the aforementioned rapid sampling and quenching problems 
may be classified into two groups (Fig. 1). In the stimulus response approach de-
picted in Figure 1a a pulse of glucose is injected into the bioreactor with a syringe 
to give an initial glucose concentration of for example 1 gL-1 (steady state concen-
trations of glucose before the pulse usually are less then 20 mg L-1, depending on 
strain, medium and specific growth rate). Samples are then rapidly taken asepti-
cally in a sequential mode. In the original approach (Theobald et al. 1993, 1997) 
vacuum-sealed, precooled and membrane covered glass tubes containing an ap-
propriate quenching fluid were used. The choice of the quenching fluid (e.g. per-
chloric acid solution: -200C; methanol: -700C; liquid nitrogen: -1960C: hot water: 
+1000C) depends upon the microorganism and the metabolite to be measured. Sys-
tematic investigations have indicated that the most important quenching effect is 
due to the temperature (Vaseghi 2000). This sampling technique can be automated 
to increase the frequency, precision and robustness of sampling. A semi-
automated  sampling  device  has  been  introduced  by  Schmalzried et al.  (2003). 
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Fig. 2. Integrated sampling system with heat exchanger and a robotic system for sample 
collection (Schaub et al. 2006). 

Also fully automated sampling with aid of robotic systems has been suggested 
(Schäfer et al. 1999). 

A disadvantage of most of the sampling/extraction techniques is the dilution of 
the sample during the treatment and the contamination of the sample by solvents 
or other acids/bases with subsequent pH adjustment and formation of salts. This 
kind of treatment with chemical reagents may generate specific problems in the 
analytical determination of the concentration. Schaub et al. 2006 suggested a new 
integrated sampling technique, which overcomes most of these problems (Fig. 2). 
Simultaneous quenching and quantitative extraction of intracellular metabolites is 
realized by short-time exposure of cells to temperatures of 950C, where intracellu-
lar metabolites are released quantitatively. Based on these findings a sampling 
procedure has been developed which is based on a coiled single tube heat ex-
changer. The samples are collected with an x-y robotic driven rack of sampling 
tubes and filtered before analysis of metabolites. 

The second approach illustrated in Figure 1b is based on the stopped-flow 
method used for fast measurements during enzymatic reactions. In its application 
to sampling from bioreactors (“BioScope”: Visser et al. 2002; Mashego et al. 2006 
and the “Stopped-Flow Sampling Technique”: Buziol et al. 2002) a continuous 
stream of biosuspension leaving the bioreactor is mixed with a concentrated glu-
cose solution in a mixing chamber. The position of the valves in the cascade illus-
trated in Figure 1b then determines the residence time of the biosuspension before 
being quenched in the corresponding sampling tube. The main features of this 
sampling device may be characterized as follows: 
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Fig. 3. Changes in the concentration of extracellular products and substrates (left hand 
side), intracellular metabolites (middle), and intracellular co-metabolites (right hand side) 
after a pulse of glucose into a biosuspension of Saccharomyces cerevisiae. 

1. Very sharp stimuli, easy to be extended to e.g. temperature, pH and other 
stress. 

2. The culture remains at steady state because the microorganisms are 
stimulated by the glucose in the mixing valve. 

3. The sampling time and reaction time are decoupled. The volume of the 
individual samples can be chosen independently. 

4. The time span between glucose stimulus and first sample can be less than 
100ms (Buziol et al. 2002). 

The only limitation of the technique is the problem of oxygen limitation at aerobic 
growth. 

However this problem has been overcome by the development of the BioScope 
sampling system (Visser et al. 2002), which used oxygen permeable silicon tub-
ing. The design of this system has been further improved in the so-called “second-
generation” BioScope (Mashego et al. 2006). A typical example for measured in-
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tra – and extracellular metabolites from a stimulus-response experiment with the 
yeast Saccharomyces cerevisiae is summarized in Figure 3 (Theobald et al. 1997). 
For more details about the various techniques for sampling, quenching, extraction 
and analysis the authors refer to further reading. 

3 Use of metabolite measurements for identification of 
dynamic models 

To describe the dynamic systems behaviour, deterministic kinetic rate equations of 
the form 

( )max, ,i ir r f= c p  (1) 
are formulated, where the capacity of the reaction is characterized by its maximal 
rate and the kinetic function f represents the kinetic properties of the reaction. 
Substrates, products and other metabolic effectors influencing the rate of the reac-
tion are represented by the state vector of metabolite concentrations c . The pa-
rameters of the reaction i are summarized in the vector p . 

In what follows three different strategies for identification of the kinetic expres-
sion and the values for the parameter by making use of metabolite measurements 
are outlined. 

3.1 Modular decomposition of the network  

The approach is similar to classical pathway modelling, in that individual rate ex-
pressions are aggregated for describing the dynamic behaviour of subsystems. A 
major difficulty for applying this strategy, however, is the definition of criteria for 
the demarcation of these modules to guarantee a certain level of autonomy (Krem-
ling et al. 2005). Albeit a multitude of methods for decomposition of networks 
have been suggested, the specification and proof of existence of these modules is 
still a great challenge for the future. For the time being these modules are most of-
ten defined from an empirical, textbook driven decomposition of the network into 
subsystems performing particular physiological functions. For the difficult task of 
dynamic modelling the only justification of the modular concept is the fact that the 
approach allows for the decomposition of complex networks into manageable 
units. An important characteristic of the strategy of in vivo diagnosis, discussed in 
the following, is the partial integration of the subsystem into the behaviour of the 
network as a whole. This is an essential prerequisite for extensions of the submod-
ules and the reassembling of modules for the design of whole cell models. 

The first step to embed the behaviour of the subsystem into the metabolic net-
work as a whole is provided by the estimation of the maximal rates of the individ-
ual reactions. Applying the rate Equation 1 to the steady state leads to 

( )max ,j j j j jr r f= c p%% %  
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Fig. 4. The pentose-phosphate pathway. 

Let us assume that reaction rate jr%  at steady state has been estimated from 
Metabolic flux Analysis. Let us further assume that a first estimate of the structure 
of the kinetics jf and the parameter vector jp  is available from in vitro measure-

ments. If the components of the concentration vector jc influencing the rate of the 
reaction have been measured at steady state, the unknown maximal rates are given 
as 

( )
max

,
j

j

j j j

r
r

f
=

c p

%
%

%
       (2) 

Further details of the strategy to identify the in vivo kinetics from the measured 
stimulus-response data are discussed in context with a concrete example presented 
in the following. 

3.1.1 Kinetics of the irreversible reactions of the pentose phosphate 
shunt 

Figure 4 summarizes the metabolites and enzymes of the Pentose-Phosphate (PP) 
shunt in Saccharomyces cerevisiae along with the upper part of the glycolysis. 
The first step towards quantitative analysis of the shunt involves the assumption 
that   the  first  two   reactions  catalyzed  by   glucose-6-phosphate-dehydrogenase 
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Fig. 5. Time course of NADP, NADPH, ATP, and 6PG after the pulse of glucose into a 
glucose limited continuous culture of Saccharomyces cerevisiae. The solid line in the 6PG-
time course is the results from the model simulations. 

(G6PDH) and 6-phospho-gluconate-dehydrogenase (6PGDH) are irreversible 
whereas the other reactions are assumed to be reversible and in near-equilibrium. 
The balance equation for 6-phospho-gluconate is given by: 

6
6 6 6

PG
G PDH PGDH PG

dc
r r c

dt
μ= − −       (3) 

The last term in Equation 3 represents the dilution caused by the growth of the 
yeast.  

The measurements required for the identification of the kinetics of the two en-
zymes are summarized in Figure 5. In addition to the substrates G6P and 6PG we 
need to know the dynamic response of the concentrations of the co-substrate 
NADP+. Because NADPH is known as a product inhibitor for both reactions this 
co-metabolite must be also measured. A careful inspection of the measured data il-
lustrates that the level of G6P at steady state already results in a substrate satura-
tion of G6P-dehydrogenase, thus the increase in the concentration of NADPH af-
ter the pulse of glucose cannot be explained by an increase of the flux caused by 
the substrate G6P. This observation serves as a strong support for the strategy to 
treat the pentose phosphate shunt as a semi-autonomous unit as far as the link to 
its substrate G6P is concerned. The increase of NADPH in response to the pulse of 
glucose, however, still remains to be explained. A thorough consideration of the 
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literature and additional in vitro measurements with the isolated G6P-
dehydrogenase provided an interesting solution to the problem. ATP turned out to 
be a strong inhibitor of not only G6P-DH but also 6-PGDH. The increased flux 
through the PP-shunt can, therefore, be easily explained by the drop of ATP after 
the pulse of glucose (Theobald et al. 1993, 1997; Buziol et al. 2002). Summarizing 
the aforementioned characteristics of the two reactions, the following rate expres-
sions are suggested in the balance equation for 6PG (Equation (3)): 
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 (4) 

Notice that the concentrations at the right hand side of this equation are time-
dependent. A comprehensive solution to the problem would require additional 
balance equations for NADP, NADPH and ATP. To reduce the complexity of the 
problem, measured data for the co-metabolites are approximated with the aid of 
approximate analytical functions. The following functions have been used to fit 
the observed time series of data after the glucose pulse: 
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These functions are only used to fit the data and do not have any mechanistic 
background. However, they serve to couple the dynamics of the autonomous bal-
ance equation with the dynamic response of the co-metabolites mirroring the be-
haviour of the cell as a whole. 

The next step towards estimation of the parameters is the calculation of the 
maximal rates max

jr . Estimates from measured enzyme activities under in vitro 
conditions are questionable, because of the possible removal of effectors during 
cell disruption, shear sensitivity, effects of ion strength, protein-membrane and 
protein-protein interactions, etc. An alternative estimate is based on the rate equa-
tion and measured intracellular concentrations under steady-state conditions as de-
scribed above (Equation (2)). This approach, again, guarantees that the isolated 
system is tightly linked to the behaviour of the whole cell, because the steady state 
metabolic flux distribution is a holistic attribute of the cell and does not depend on 
individual modules. 



Reconstruction of dynamic network models from metabolite measurements 107 

Eventually, the dynamic balance equation for 6-phospho-gluconate (Equation 
(4)) can be numerically integrated and by minimizing the error square 

( ) ( )
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∑      (8) 

the unknown kinetic parameters can be estimated with the aid of appropriate pa-
rameter estimation algorithms.  

This example not only illustrates the strategy for the in vivo identification of in-
tracellular kinetics – for a more detailed description of this approach the reader is 
referred to the original publications of Rizzi et al. (1997) and Vaseghi et al. (1999) 
– it also indicates an interesting result regarding the discussion of the issue of 
modular structures, which is important for more complex network analysis. Ac-
cording to the results of the identification procedure, the flux through the PP-shunt 
is independent from the concentration of the substrate G6P and only depends on 
the ATP pool as well as the NADP/NADPH ratio. It therefore seems that the flux 
is adjusted to the energy state and balanced to the demand for biosynthesis. The 
PP-shunt thus only apparently acts as a semi-autonomous functional unit, which is 
carefully modulated by the energy state of the cell and the demand for biosynthe-
sis. As such, the module is wired with the hubs of the cellular network, which par-
ticipate in a very large number of links (Müller et al. 2005). These hubs eventually 
integrate all substrates into a single integrated web in which the existence of fully 
autonomous modules is prohibited. This issue will be further discussed in context 
with the large scale dynamic modelling of metabolic networks in Section 3.2. 

3.1.2 Kinetics of the phophosfructokinase I (PFK1) 

The kinetic behaviour of this enzyme has attracted a lot of attention because of its 
important role in the regulation of the glycolysis. The allosteric enzyme catalyses 
the phosphorylation of fructose-6-phosphate (F6P) to fructose-1,6-bisphosphate 
(F1,6BP) and is modulated by several effectors as schematically illustrated in Fig-
ure 6. The identification of the kinetic rate expression and the parameters is based 
on the balance equation of F6P, which reads: 
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The reactions involved in this balance of F6P are shown in Figure 6. The contribu-
tion from the reactions transaldolase (TAL) and transketolase (TKL2) are com-
puted from the model of the pentose shunt (Vaseghi et al. 1999 and paragraph 
3.1.1). The rate expression for the glucoseisomerase (PGI) is described in the 
original paper of Rizzi et al. (1997). Again the time courses of the concentrations 
of the various effectors in response of a pulse of glucose have been measured (Fig. 
7) and fitted with approximate functions as described above. The details of the 
identification  of the kinetic expression for the  PFK1 of the  yeast Saccharomyces 
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Fig. 6. The reactions around PFK1. 

 
Fig. 7. Time series of data for identification of the kinetics of PFK1. 

cerevisiae have been comprehensively described by Mauch et al. (2000). An im-
portant aspect of this analysis concerns the comparison between the kinetic rate 
expression identified from in vitro, in situ, and in vivo measurements. The in situ 
measurements were performed via permeabilisation of the yeast cells with a 
toluol-ethanol mixture according to a protocol suggested by Serrano et al. (1973). 
For discussion of the pronounced differences between in vivo, in situ, and in vitro 
results it is necessary to introduce some characteristics of the kinetic properties of 
the enzyme.  
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Fig. 8. The mechanism of the V- model for PFK1. 

The most important attempts to model the allosteric properties of PFK1 goes 
back to the work of Monod et al. (1965), who considered two conformations of the 
enzyme: conformation T with a low and conformation R with a high affinity to the 
substrate F6P. Each enzyme molecule consists of eight subunits. The basic Model 
of Monod et al. (1965) only considers the allosteric behaviour with respect to the 
substrate F6P and a non-allosteric effect of ATP. The so-called Reuter-model 
(Reuter et al. 1979) additionally considers the modulation through AMP, ADP, 
and ATP and its influence upon the allosteric effects of F6P. In a similar way to 
the more sophisticated model by Vaseghi (Mauch et al. 2000; Vaseghi 1999) illus-
trated in Figure 8 this module assumes that: 

• each promoter of the octameric protein appears in two basic conforma-
tions R1 and R2 as well 

• as two sub-conformations R2 and T2,  
- substrate F6P is bonded to R1 and T1 with different affinities 

• ATP binds to all different conformations with the same affinity 
• ATP binds as inhibitor to R1 and T1 
• AMP and ADP bind as activators to R1/T1 or R2/T2, respectively. 

As illustrated in Figure 8 the model of Vaseghi (V-model) also considers the 
strong activation through F2,6BP as well as a competitive inhibition between 
F2,BP and F6P. 

For comparison the kinetic parameters were estimated from the in vitro data of 
Hofman and Kopperschläger (1982) and compared with our own in situ and in 
vivo measurements. The differences in the values of the parameters are pro-
nounced (Mauch et al. 2000). There are two striking phenomena, which attract at-
tention: 
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Fig. 9. Activities of PFK1 measured at in vivo and in situ conditions. 

 
Fig. 10. The reduced V-model for PFK1 under in vivo conditions. 

• Compared to the in vitro situation, the modulation strength of all the ef-
fectors are less pronounced under in situ and in vivo conditions. This is 
exemplarily shown in Figure 9, in which the modulation of the enzyme 
activity through ATP is depicted for the in vitro and in situ conditions. 

• The parameter value L0 (ratio of the tensed to the relaxed state) tends to 
zero at the in situ and in vivo conditions. This results leads to the interest-
ing conclusion that the enzyme only acts in the R conformation (high af-
finity). On the basis of these observations, the model can be reduced to a 
much more simple structure illustrated in Figure 10. 

To extrapolate the results obtained from the kinetic analysis of PFK1 to other en-
zymes, it is worthwhile to speculate about possible clues for these pronounced dif-
ferences  between in vivo and in vitro conditions.  A reasonable  explanation needs 
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Fig. 11. The cAMP-protein kinase A signal transduction pathway and targets for phos-
phorylation. 

to consider the well known effects of homogeneous and heterologous protein in-
teractions inside the cell. The first effect is related to the concentration of the en-
zyme. Srere (1967) indicated that concentrations of glycolytic enzymes inside the 
cells are usually 100 times higher than those normally applied to in vitro assays. 
According to Aragón and Sanchez (1985) the concentration of PFK1 in Sac-
charomyces cerevisiae is of the order of 190-550 μg/ml whereas the concentration 
of in vitro assay is 1-10 μg/ml. The influence of high intracellular concentrations 
of the enzyme on the regulation of PFK1 has been shown by Aragón and Sanchez 
(1985). The second effect – heterologous interactions – stands for associations be-
tween enzymes and structure proteins of the cytoskeleton (Ovadi 1995). Particu-
larly for PFK1 in S. cerevisiae, Kopperschäger (1999) has shown for the first time 
an organized association between the enzyme molecule and the microtubules un-
der in vivo conditions. The impact of such associations on the kinetic behaviour of 
the enzymes is not known yet. However, because of the strong relationship be-
tween structure and function, these are strong candidates for the explanation of the 
aforementioned differences between in vitro and in vivo conditions. Because of the 
closer agreement between in situ and in vivo observations, the in situ experiments 
could be viewed as interesting and alternative tools for the kinetic analysis of in-
tracellular reactions. 
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3.1.3 Modulation of enzyme activities through phosphorylation 

The preceding discussion has accentuated the role of fructose-2,6-bisphosphate 
(F2,6BP) in the regulation of the PFK2. This compound is produced from fruc-
tose-6-phosphate by the enzyme PFK2. As can be seen from Figure 11, this en-
zyme is one of the downstream targets of the catalytic subunit of the proteinkinase 
(PKA). There are other targets of PKA in the carbon and lipid metabolism, such 
as, trehalase, glycogen synthase, glycogen phosphorylase, fructose-1,6-bis-
phosphatase, isocitrate lyase, etc. (Thevelein et al. 1999). These phosphorylation 
cascades are directly linked to the stimulus of the dynamic response via the 
cAMP-PKA cascade. Glucose, added to a carbon-limited culture of S. cerevisiae 
induces an intracellular cAMP signal, which in turn triggers the phosphorylation 
cascade (Fig. 11): increased cAMP levels activate the protein-kinase A, where re-
versible binding of two cAMP molecules to the regulatory subunits of inactive 
PKA (designated as R-PKA) results in a release of catalytic active subunits (des-
ignated as C-PKA; Hixson and Krebs 1980; Matsumoto et al. 1982; Wingender-
Drissen 1983; Cannon and Tatchell 1987; Toda et al. 1987a, 1987b). The catalytic 
subunit subsequently phophorylates the various downstream targets. The dynam-
ics of the activation of PFK2 as well as the mobilisation of the storage material 
will serve as an example for the quantitative analysis of such an activation module 
for enzymes. For in vivo diagnosis of intracellular reactions this is special chal-
lenge because the maximal rates maxr  in the rate expression change during the 
transient, reflecting that enzymes do not stay any more in a “frozen” state. The 
situation is very similar to the more sophisticated dynamic modelling of metabolic 
networks linked to gene regulation. 

Figure 12 summarizes additional time series of experimental data required for 
the analysis. The measurements of the cAMP concentrations were performed with 
a commercially available competitive protein-binding assay (Amersham Interna-
tional TRK 432). The time course of the signal indicates a rapid response to the 
glucose concentration, which is in qualitative agreement with the observations of 
Beullens et al. (1988). A further important measurement illustrates the dynamic 
changes of the activity of one of the target enzyme – the PFK2. The quenching 
and extraction methods applied to measure enzyme activities are those suggested 
by Francois et al. 1984. Samples are taken after the pulse of glucose and quenched 
in methanol at -700 C. After centrifugation at -90 C and resuspension in a buffer the 
cells are mechanically disrupted by intensive shaking with glass beads. To prevent 
temperature increase, the disruption procedure is interrupted four times to cool the 
sample down to 00 C. After centrifugation, the extract is incubated with the sub-
strate F6P. Product concentration is determined by an assay developed by van 
Schaftingen et al. (1982). This assay uses the activation of pyrophosphate depend-
ent PFK1 from potato tubes through F2,6BP (see also Vaseghi et al. 2001). From 
the comparison of the time courses of ATP, F6P and F2,6B P it can be concluded 
that the rate of formation of F2,6BP is not influenced by the two substrates of the 
PFK2, ATP and F6P. We may therefore assert that the formation of F2,6BP is de-
termined by the activity of PFK2, which in turn is regulated by the cAMP cascade. 
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Fig. 12. Time course of cAMP, PFK2-activity and fructose-2,6-bisphosphate (F2,6BP) after 
a pulse of glucose into a glucose limited continuous culture at D=0.1h-1. 

The first step towards dynamic modelling of these phenomena is the definition 
of an appropriate module. In what follows we restrict the analysis to the down-
stream part, thus using the measured cAMP trace as an input signal and the meas-
ured enzyme activity as the output. A more detailed analysis of the kinetic analysis 
of the upstream part of the cAMP signal cascade, which deals with the dynamics 
of signal formation and degradation due to various feedback mechanisms, has 
been performed by Mueller (Mueller 2006; Mueller et al. 2005; Mueller et al. 
submitted). For correlation of the time course of the cAMP signal the following 
analytical function has been identified: 
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The kinetic model for the activation of the PKA rests upon the reaction scheme 
illustrated in Figure 13. The following rate expressions are assumed for the indi-
vidual reactions: 

 
Dissociation of the holoenzyme through binding of cAMP: 

2 2 2

4 2

1 1 1R C cAMP R Cr k c c k c c
−

= −                   (11) 
Autocatalytic phosphorylation (irreversible) 
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Fig. 13. Reaction scheme for the activation of PKA. 
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Dissociation of the phosphorylated holoenzyme through binding of cAMP (re-
versible) 
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−

= −                            (13) 
Dephosphorylation of the phosphorylated dimer (irreversible) 
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It is assumed that the dimer is dephosphorylated by a phosphatase, e.g. protein-
phosphatase 2A (PP2A). The maximal rate may therefore be expressed as a func-
tion of the active phosphatase 

2 2 2 2

max

max, PR P v R P C ABPr k c=                   (15) 
Figure 14 depicts the assumptions for the phosphorylation mechanism of the 

phosphatise PP2A (trimer PC AB ). The PP2AA is composed from three subunits. 
The core of the enzyme is a dimer.  The third subunit (B)  is a  monomer (Janssens 
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Fig. 14. Reaction scheme for activation of the PP2A. 

and Goris 2001). The regulatory subunit B in S. cerevisiae is phosphorylated by 
the catalytic subunit C from the PKA (Zhao et al. 1997). This phosphorylation 
leads to a feed back regulation, which is important for the adaptive behaviour of 
the signal cascade. If the trimer is present in excess we can assume a Michaelis-
Menten kinetic for the first reaction in Figure 13: 
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For the dephosphorylation reaction of the enzyme ( )PC ABP the following rate 
expression is assumed: 

max
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P
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Eventually, we need rate expressions for the phosphorylation and dephosphory-
lation of the target enzyme, PFK2 in the chosen example. 

For the activation of the PFK2 we assume a rate expression according to 
Michaelis Menten kinetics 

max 2
2 2 2 2

2, 2
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PFK PFK P PFK PFK P
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c
r r
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=

+
                (18) 

With the maximal rate depending on the concentrations of the catalytic subunit 
of the PKA and the phosphatase ( )PC ABP . In accordance to what has been re-
ported in the literature (Yamashoji and Hess 1984) a competitive inhibition be-
tween the two proteins is assumed: 
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Fig. 15. Comparison between experimental observations and model simulation for the ac-
tivity of the phophofructokinase 2 (PFK2). 

Furthermore, a simple Michaelis Menten kinetic is assumed for the dephos-
phorylation of the PFK2 through the active form of the phosphorylase ( )PC ABP  
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with 
max

2 2 2 PPFK P PFK PFK P C ABPr k c
→

=                   (20) 
Figure 15 shows the comparison between the measured activities of the PFK2 

and the model predictions simulated from the balance equation for the enzyme: 

2
2 2 2 2

PFK P
PFK PFK P PFK P PFK

dc
r r

dt → →
= −                  (21) 

In a similar way as illustrated for the PFK2, it is possible to model the trehalase 
and, thus, to link the dynamics of the mobilisation of the storage material trehalose 
with the carbon flux through the glycolysis (Aguilera-Vázques 2006). 
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3.1.4 A critical assessment of the modular approach for dynamic 
modelling of metabolic networks 

The modular approach discussed so far is based on a partition of metabolic net-
works into relatively autonomous subunits. It is widely believed that this modular 
structure of the networks plays a critical role in their functionality. Usually, the 
decomposition of metabolic networks is performed on an intuitive basis. In spite 
of the fact that several algorithms purely based on network topology have been 
proposed development of methods for exploiting the modularity, the accurate 
definition of these modules and questions of their autonomy is still a crucial issue 
and there is a clear need to develop alternative algorithms for identifying modules 
accurately (Murray 1999; Girvan et al. 2002; Ravasz et al. 2002; Alon 2003; 
Holme et al. 2003; Newman and Girvan 2004; Raddicci et al. 2004; Guimera and 
Amaral 2005). Because of a missing rigorous definition of these subunits the ques-
tions remains if the fundamental organisation principle of metabolic networks is 
modular at all or distributed or probably best described as having a little bit of 
both (Huss and Holme 2006). 

In context with the discussion of modular approaches for dynamic modelling 
the issue of ubiquitous substrates or sometimes, by analogy to economy, termed 
currency metabolites, such as AMP, ADP, ATP, NAD, NADH, NADP, NADPH 
etc. needs a special consideration because they are involved in a very large num-
ber of reactions. Even if we restrict the discussion to only structural properties of 
modularity in most cases, the data are pre-processed by removing the high degree 
nodes (hubs) compounds before decomposition algorithm are applied (Schuster et 
al. 2002). As nicely elaborated by Huss and Hole (2006), effective modularity will 
increase when a currency metabolite is deleted from the network. The question, to 
what extent the results of, for example, “cartographic representation” of complex 
networks for identification of modules, can be applied to the problem of dynamic 
modelling remains a completely open question. 

What is actually required for a systematic and rigorous decomposition of meta-
bolic networks for the purpose of dynamic modelling are considerations of bio-
chemical modules as dynamical entities taking into account the impact of common 
co-metabolites occurring in and between almost all modules. Even if we take care 
of a partial integration of modules in the network as a whole, as demonstrated in 
the aforementioned examples, there are several applications in which the predic-
tive power of the dynamic models would be necessary (optimal re-design of meta-
bolic systems (Schmid et al. 2006), estimation of optimal drug dosages) and rigor-
ous balancing of the co-metabolites and metabolites in overlapping modules is 
required. The set up of large-scale dynamic models based on a canonical represen-
tation of reaction kinetics is therefore an important issue. 
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Fig. 16. Metabolic reaction network of Escherichia coli. 

3.2 In silico identification of whole cell metabolite dynamics through 
evolutionary algorithms and parallel computing 

In what follows a new top down approach for estimating kinetic parameters of in-
dividual transformation steps (reaction, transport, and polymerisation) in whole 
cell metabolic networks is presented. The identification again rests upon time se-
ries data of a limited number of metabolites. The computationally demanding 
method couples evolutionary strategies with dynamic simulation of the metabolite 
balance equations for the network and is implemented by high performance cluster 
computing. The approach is illustrated by identifying whole cell network dynam-
ics for E. coli from time series data from stimulus-response experiments. 

Figure 16 shows a graphical representation (Software: Insilico Discov-
ery/Insilico Biotechnology AG) of the reaction network of Escherichia coli intro-
duced by Chassagnole et al. 2002. The network comprises both catabolic and ana-
bolic routes with protein, DNA, RNA, polysaccharides, murein, and lipids 
building up biomass. Sequential reaction steps and parallel routes are lumped. 
With 126 reactions, 130 balanced metabolites, and seven conserved moieties, the 
degree of freedom of the network is fixed to 126-130+7=3. The relatively small 
number of free fluxes in  combination with about  50% of all  reactions signs fixed 
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Fig. 17. Modulation network of Escherichia coli. Inhibition and activation in accordance to 
the MetaCyc database. 

(“irreversible reactions”) leads to a total of 23 elementary flux modes. The com-
plete list of reactions can be found in the paper of Chassagnole et al. 2002. Addi-
tional information used for the dynamic modelling regards the network of the 
metabolic modulation is illustrated in Figure 17. The depicted inhibitions and acti-
vations for the individual reactions have been gathered from the MetaCyc data-
base (www.metacyc.org, Karp et al. 2004). The kinetic behaviour of the individual 
reactions is assigned according to the universal linlog approach (Vissser and Hei-
jnen 2003; Visser et al. 2004): 
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                            substrates           products          activators       inhibitors 
  

The variables are defined relative to the relative reference steady state, with 
concentration levels 0c , fluxes 0J , and enzyme level 0

Ec . The parameters are the 
elasticity coefficients 
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Fig. 18. Computational architecture (left) and three representative optimization runs (right). 
The initial populations of parameters are randomly distributed. The objective function is de-
termined by the deviation between experimental observations and calculated trajectories. 
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In total, the network holds 921 kinetic parameters (elasticities). The dynamic 
simulation of the non-linear and stiff system of differential equations was per-
formed with the aid of the extrapolation solver LIMEX from the Konrad-Zuse-
Centre for Information Technology in Berlin (Ehrig et al. 1999). For estimation of 
the parameters the evolutionary algorithm, JavaEva developed by the Computer 
Science Department of the University of Tuebingen (Streichert et al. 2005; www-
ra.informatik.uni-tuebingen.de/software/JavaEva) has been applied. The initial 
populations of parameters are randomly distributed. The computational architec-
ture and the results of three representative optimization runs are depicted in Figure 
18. The objective function is determined by the deviation between experimental 
observations (Chassagnole et al. 2002) and calculated trajectories after the pulse of 
glucose. Since simulating the network dynamics is significantly more time con-
suming compared to a single optimization step, the simulations are run in parallel 
on a high performance computing cluster (Intel Xeon) whereas the optimization is 
carried out on a single master computer.  

Typical results of comparisons between model simulations and experimentally 
observed time series of metabolites are shown in Figure 19. The trajectories repre-
sent simulations with kinetic parameters (elasticities) resulting from 10 independ-
ent optimization runs. With exception of PEP, NAD, and NADP, the trend of the 
experimental  data is described  well by the  various simulation  runs.  For the first 
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Fig. 19. Whole cell metabolic network dynamics. The trajectories represent simulations 
with kinetic parameters (elasticities) resulting from ten different optimization runs. Time 
series data represented by black circles were obtained by stimulating Escherichia coli at a 
growth rate of D= 0.1 h-1 with glucose (Chassagnole et al. 2002). 

time, the time course of highly connected metabolites like ATP could be identified 
through an autonomous whole cell metabolic network model. Although only 16 
metabolites are used for identifying the network dynamics, the standard parameter 
error of more than 500 model parameters is less than 30%. The reason for this 
finding is due to the fact that many reactions are directly connected to measured 
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compounds. Most of the reactions not directly linked to measurements are sepa-
rated from experimentally observed metabolites by only one or a few compounds. 

Highly connected metabolites like, for example, ATP and feedback mecha-
nisms from monomer building blocks show how the interaction of anabolism and 
catabolism constitutes important structural determinants for metabolic network 
dynamics. Consequently, the predictive strength of whole cell metabolic networks 
is assumed to be more pronounced compared to metabolic sub-models where in 
most of the cases highly linked metabolites are kept constant in applications of 
model based metabolic re-design. Although a rather simple linear logarithmic ki-
netic behaviour has been assigned to the individual reaction steps, the whole cell 
network describes well the experimentally observed complex metabolic behav-
iour. This observation is in line with similar comparisons between linlog kinetics, 
more sophisticated kinetic modelling and experimental observations for a sub-
model of E. coli (Visser et al. 2004). Due to self-generating network kinetics and 
the application of evolutionary strategies on c, and computer clusters, the time 
from data collection to validated network models can be reduced to a few days. 

3.3 Identification of kinetic rate expression from series of steady 
state observations 

Visser and Heijnen (2003) suggested an experimental protocol for parameter iden-
tification based on metabolic flux analysis, measurement of metabolite concentra-
tions and enzyme activities in a series of steady states to estimate the parameters 
(elasticities) in Equation 22. The experimental protocol has been exemplified by 
Wu et al. 2004. The resulting models thus integrate data from Metabolic Flux 
Analysis, intracellular metabolites and enzyme activities. Furthermore, prior 
knowledge on topology, reversibility, effectors, and kinetic parameters known 
from other sources may be integrated into this approach. Due to the reference state 
used in Equation 22, the approach does not depend on the absolute values only 
relative changes are taken into account. This is an advantage from the experimen-
tal point of view, because absolute quantifications are sometimes corrupted by 
large measurement errors. It also facilitates to integrate additional data from the 
emerging field of quantitative proteomics to quantify the ratio of enzyme levels in 
Equation 22 (e.g. Aebersold and Mann 2003; Moritz and Meyer 2003). Ongoing 
research (collaboration between the Medical Proteome Centre University Bochum, 
H. Meyer and the authors laboratory) is addressing this issue, by applying meta-
bolic labelling (14N/15N) and MALDI-TOF Mass Spectrometry for relative quanti-
fication of protein levels (Franke et al. 2004) as well as 13C-labelling for Meta-
bolic Flux Analysis and measurement of intracellular metabolites (LC-MS and 
GC-MS) for analysis of time series of samples during fed batch fermentation with 
constant feeding rate (decreasing specific growth rate).  
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4. Summary and outlook 

To obtain a true picture of the dynamics of metabolic networks and to predict tar-
gets for relevant genetic manipulations or drug discovery we need quantitative de-
scriptions of the behaviour of the relevant reactions embedded in the network of 
interest. The identification of reliable and accurate structure and parameters of the 
kinetic expressions imposes severe challenges and there is a great need for more 
rigorous approaches. It should be noted that in the past a great deal of research has 
been based on bottom-up methods in which kinetics from in vitro measurements 
have been aggregated to obtain models of pathways or modules. There are two 
major problems related to this approach. First of all, there are numerous indica-
tions that in vitro kinetics may considerably differ in structure and parameters 
from in vivo situations. Moreover, despite impressive progresses made in more 
rigorous definitions of modularity in context with biochemical networks, open 
questions remain as whether and to what extent large-scale dynamic models gen-
erated from aggregation of these modules reflect reality. It needs to be stressed 
that while the definition of functional modules greatly facilitates model develop-
ment for cellular processes, one must not forget that the definition of these mod-
ules usually is not unique and mainly serves to delineate systems boundaries when 
developing models for small subsystems. Assigning highly connected compounds, 
such as adenine ore pyridine nucleotides, to a specific module represents a further 
challenge, considering that these metabolites are produced and consumed in a vast 
number of intracellular reactions, in processes as diverse as respiration, biosyn-
thetic reactions, solute transport, cytoskeletal dynamics, or cell cycle progression. 
When formulating a model for one of these processes as an isolated functional 
module it will, thus, frequently be difficult to obtain a satisfactory description of, 
for example, ATP dynamics solely on the basis of its role within the module when 
compared to in vivo data.  

The set-up of large-scale dynamic models based on a canonical representation 
of reaction kinetics, as illustrated in this contribution, is a promising concept to 
overcome the aforementioned limitations. The approach has been illustrated by 
identifying whole cell network dynamics for E. coli from time series data from 
stimulus-response experiments. Such a large-scale model necessarily extends be-
yond the module boundaries. However, much remains to be done with respect to 
the problems of observability and optimal experimental design. In the long-range, 
it may prove useful to combine the detailed representation of a functional module 
with a less detailed large-scale model to describe the dynamics of highly con-
nected module compounds. Key challenges to achieving these and other rigorous 
large scale dynamic network models will be further developments of appropriate 
computational methods and the critical linkage between modelling and experi-
ment. 
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Toward metabolome-based 13C flux analysis: a 
universal tool for measuring in vivo metabolic 
activity 

Nicola Zamboni 

Abstract 

Intracellular metabolic rates cannot be directly assessed from metabolome concen-
trations and vice versa. For most biological questions, stable isotope tracers must 
be administered and tracked to effectively determine metabolic fluxes by means of 
numerous computational steps. Although flux analysis targets the same analytes as 
metabolomics, priority is given to measuring their exact isotopic distribution 
rather than their concentration. In the first part of this chapter, I describe principles 
and issues of current 13C flux analysis methods, following the entire process from 
experimental design, to detection of isotopic distributions, and data interpretation. 
Notably, current practice largely relies on the labeling patterns of protein-bound 
amino acids, because of their abundance and stability. In the second part, I focus 
on achievements, challenges, and opportunities of metabolome-based 13C flux 
analyses, which are emerging in response to the need to tackle larger networks, 
higher cells, and to improve both spatial and temporal resolution. 

1 Introduction 

Physiological phenotypes of cells are macroscopic manifestations of their meta-
bolic activity, that is determined by all molecular fluxes through metabolism, i.e. 
the fluxome (Hellerstein 2003; Sauer 2004). In nature, the fate of a cell between 
growth and senescence, or even life and death, is linked to its metabolic capacity 
to utilize heterogeneous substrates that are encountered. Whenever cellular func-
tions have to be adjusted, for example upon shifts in external conditions, after mu-
tations, or upon aberrant growth such as in tumors, the fluxome has to be adapted 
to support growth. To a large extent, adjustment of the fluxome is realized in cen-
tral metabolism. These primary pathways are at the crossroad of catabolism and 
anabolism, and catalyze the largest metabolic fluxes in the cell. They form an in-
tertwined reaction network capable of rearranging carbon and nitrogen from a 
wide range of substrates to fuel growth. Oxidation of the cofactors NADH and 
NADPH in respiration and biosynthesis, respectively, is flexibly balanced by 
modulation of fluxes through alternative routes in central metabolism.  
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How are fluxes regulated? Metabolic fluxes are the integrated result of (i) all 
catalytic activities of enzymes as set by kinetic properties, and concentrations of 
educts, products, cofactors, ions, or protons; and (ii) all non-linear regulatory in-
teractions at the transcriptional, translational, post-translational, and allosteric 
level, which all influence amount and state of enzyme (Hellerstein 2003; Sauer 
2004). An essential consequence is that metabolic fluxes cannot be directly quanti-
fied solely from metabolites concentrations or vice versa. To realize this with 
good confidence, detailed enzyme modeling together with exact data on protein 
amounts and modifications, and metabolite concentrations would be a precondi-
tion. For this purpose, a palette of techniques is available to reveal concentrations, 
interactions, and kinetic parameters. (1) The concentration of cell components is 
determined by transcriptomics, proteomics, and metabolomics, although several 
specific methods are usually necessary to obtain complete information, for exam-
ple on protein levels and modification state, or on chemically diverse metabolites. 
(2) Some approaches exist to discover the binding between proteins (Cusick et al. 
2005) or of proteins to DNA (Hoglund and Kohlbacher 2004; Bulyk 2006). Unfor-
tunately, they can hardly be used to quantify their strength, and the comprehensive 
identification of interactions between DNA, transcripts, proteins, and small mole-
cules is still far out of reach. (3) Estimation of in vivo kinetic parameters can be 
done with stimulus-response experiments (Vaseghi et al. 1999). The drawback of 
such procedures is that these experiments are demanding, performed locally for a 
reduced number of parameters, and require a priori knowledge of all possible in-
teractions: for mid-sized and large networks, the task rapidly becomes prohibitive.  

The general lack of detailed regulation and kinetic information has two main 
consequences. First, today’s omics data can, at most, provide constraints on meta-
bolic fluxes. For example, the absence of a protein or lack of transcription can be 
used to exclude that it is catalytically active. Analogously, the combination of me-
tabolome data and thermodynamics knowledge can delineate directionality of re-
actions in a given state, but is insufficient to precisely assess metabolic fluxes 
(Kümmel et al. 2006). Second, the experimental workflow is preferably reversed: 
metabolic fluxes are measured together with concentrations to infer changes in en-
zyme activity or concentration (Wu et al. 2005), or overlap with proteome or tran-
script data to discover regulation circuits (Krömer et al. 2004; Shimizu 2004).  

Metabolic fluxes are monitored by feeding organisms with substrates enriched 
in stable (i.e. non-radioactive) isotopic tracers such as 13C, 2H, 18O, 34S, or 15N. 
Physiologists extensively employed similar labeled substrates for decades to track 
local metabolism of nutrients or monitor polymerization and degradation of bio-
polymers such as lipids, DNA, or proteins in animals and cells (Hellerstein 2003; 
McCabe and Previs 2004; Bequette et al. 2006), and are nowadays also employed 
to lead drug development (Turner and Hellerstein 2005). Only in the last decade, 
developments independent from physiology led to 13C-based metabolic flux analy-
sis for microbes. These methods were initially developed for purposes of strain 
optimization in industrial biotechnology (Stephanopoulos 1999), but have found 
large application and consensus in systems biology (Blank et al. 2005; Fischer and 
Sauer 2005; Koffas and Stephanopoulos 2005) (Table 1). In contrast to the meth-
ods utilized with animals that focus on local activities, novel 13C metabolic flux 
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analysis methods were devised to comprehensively assess carbon fluxes in large 
metabolic networks. Owing to the fact that microorganisms are rarely differenti-
ated and able to grow on single carbon sources under carefully controlled condi-
tions, an arsenal of 13C flux methods was established to quantify the intracellular 
fluxome with different networks, substrates, and culture conditions. Modern 13C 
flux analyses consequently enabled to investigate - from a global perspective - the 
link between cellular redox equilibrium, generation of energy equivalents, and 
metabolic phenotypes. 

In this chapter, I first present the principles of metabolic flux analysis and the 
corollary methods that were designed to map reaction velocities in microbes with 
13C-labeling patterns of protein-bound amino acids. In the second part, I focus on 
the extension to metabolome-based 13C metabolic flux analysis, that holds promise 
to become a universal tool to monitor the fluxome from microorganisms to ani-
mals for purposes of systems biology, understanding metabolic control in health 
and disease, or drug development.  

2 Fundamentals of metabolic flux analysis 

Metabolic flux analysis aims at measuring in vivo activity of metabolic reactions. 
In contrast to concentrations, rates are per se not directly measurable. In vitro, the 
rate of a reaction is determined via interpretation of measured concentration pro-
files of the substrates and products. Similarly, one can extend this approach and 
quantify the reaction rates in sequential and even branching reaction networks by 
monitoring the concentration profiles of substrates, intermediates, and products. 
The rate of every single reaction is then obtained by a set of material balances, one 
for each compound in the reaction chain. In vivo, however, it is experimentally 
impossible to measure concentration profiles for all metabolites in a cell that en-
compasses thousands of compounds. This problem is obviated when metabolic 
fluxes are measured in a metabolic steady state, meaning that fluxes and intracel-
lular metabolite concentrations are constant over time. When this precondition is 
fulfilled, all intermediates pools are by definition invariant over time and in the 
case of linear, non-converging, non-cyclic pathways metabolic fluxes are calcula-
ble from the time profiles of all substrates and end products, while the concentra-
tions of all balanced intermediates are neglectable.  

Stoichiometric balancing has an additional inherent flaw that normally impairs 
complete flux estimations and that is associated to the topology of the biochemical 
reaction network. In most cells, especially in central carbon metabolism, alterna-
tive biosynthetic routes and reaction cycles exist and generate redundancies. Such 
redundancies cannot be unequivocally resolved by stoichiometric balancing, be-
cause each one introduces an additional degree of freedom where an infinite num-
ber of flux maps lead to identical overall balances. To obtain a unique solution, 
one approach is to select the flux distribution that satisfies all stoichiometric con-
straints and also maximizes an arbitrarily chosen objective function of network 
operation, e.g. maximize ATP overproduction or growth yield (Varma and Palsson 
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1994; Kauffman et al. 2003). The outcome of optimization corresponds to the 
most-likely flux estimate according to the arbitrary assumptions. Systematic stud-
ies have demonstrated that the chosen paradigm of network operation can differ 
between organisms, mutants, and environmental conditions (Küpfer et al.2007; 
Segre et al. 2002). Thus, objective functions have to be carefully selected to avoid 
biased and erroneous results.  

The inherent uncertainty of in silico predictions and their discordance with em-
pirical observations evidenced the importance of experimental metabolic flux de-
termination. This was brought about by the introduction of isotopically labeled 
substrates. Depending upon which pathways are active in catabolism and anabo-
lism, atoms from the substrate are scrambled and rearranged following the 
schemes of enzymatic reaction mechanisms. The labeling patterns of metabolites 
are then detected by either mass spectrometry (MS) or nuclear magnetic resonance 
(NMR), and quantitatively reflect partitioning of substrate through metabolic 
routes. They provide information independent from stoichiometric balances, and 
with a properly designed tracer substrate they serve to distinguish the fluxes 
through alternative pathways or reaction cycles. In general, 13C-tracers enable to 
effectively resolve the redundancies occurring in central carbon metabolism, 
where all catabolic and anabolic pathways diverge from. In contrast to the highly 
interconnected central carbon metabolism, the peripheral metabolism is composed 
by mostly linear biosynthetic routes (e.g. amino acids or nucleotide synthesis). 
Since these pathways are utilized to synthesize the building blocks for growth, 
their in vivo flux is estimated with good precision by stoichiometry with detailed 
models of biomass composition.  

Although 13C metabolic flux analysis enables monitoring of pathway activity in 
vivo in most cases, it is important to stress that (i) quantitative analysis is only 
possible in minimal media, (ii) technical difficulty increases exponentially when 
multiple carbon substrates are utilized, (iii) it is not possible to discriminate be-
tween pathways or reactions that do not differ in the scrambling of labeled atoms, 
i.e. between isoenzymes. 

3 Principles of labeling experiments  

For a labeling experiment, cells are first grown on naturally labeled substrates un-
til metabolic steady state. Once this prerequisite is fulfilled, isotopically enriched 
nutrients can be administered to the cells. In batch cultures, this is done either by 
spiking the tracer substrate to the medium, or by diluting exponentially growing 
cells in fresh, labeled medium. Harvesting and resuspending is preferably avoided 
because handling perturbs metabolic steady state. In continuous or fed-batch cul-
tures, the feed is switched from naturally labeled medium to an equivalently con-
centrated tracer-enriched solution. Ideally, these operations should provoke an 
immediate step change of the tracer fraction in the culture medium. Although such 
rapid shifts can easily be attained in well-stirred systems, enrichment of label 
within the cellular  metabolome will take considerably longer (Fig. 1).  The reason 
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Fig. 1. Progressive propagation of labeling through intermediate pools in experiments with 
stable isotopic substrates. Each plot exemplarily shows time profiles of label enrichment for 
species of central metabolism, peripheral biosynthetic pathways leading to biomass precur-
sors, and biomass components. Exemplary names are indicates in brackets. tSS is the time 
necessary to attain isotopic stationarity, it is specific for each pool, and it sets the minimum 
labeling time that has to be respected for stationary computational methods to be applied. 
Delayed onset of isotopic steady state is typically observed far from tracer substrate uptake, 
in large pools, or when biomass turnover occur. Refer to the text for more detailed explana-
tions. 

is that starting from the entry point of the tracer, the label has to propagate through 
the metabolic network and progressively replace unlabeled intermediates. This is 
an important phenomenon, because routine application of 13C flux analysis is so 
far solely possible from the labeling patterns of metabolites in isotopic steady 
state, i.e. with time-invariant labeling patterns at the time point of sampling. In 
theory such an isotopic steady state is never attained, but due to analytical impre-
cision isotopic equilibrium is experimentally observed within minutes to hours.  

The time after which such an isotopic steady state is achieved depends upon the 
turnover rate of each pool, which is directly proportional to the flux through the 
pool and inversely to the concentration: larger pools slow down the process, 
higher fluxes accelerate it. A general and intuitive consequence is that the closer 
an intermediate is to the original tracer substrate, the faster it will reach isotopic 
steady state. Thus, for 13C glucose tracers, flux analysis based on the labeling pat-
tern of glycolytic intermediates requires shorter labeling times than with tricar-
boxylic acid (TCA) cycle intermediates. Biomass compartments (e.g. proteins) 
exhibit the longest isotopic transients, whose duration is roughly proportional to 
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the inverse of the growth rate. Similarly slow label uptake can also be observed 
for the free pool of corresponding precursors (in the same example the amino ac-
ids) when biomass turnover interferes with quick onset of isotopic steady state 
(Fig. 1) (Grotkjaer et al. 2004).  

Substantial advantages are brought about by the analysis of labeling patterns in 
intermediates of central metabolism. First, it decreases duration of experiments 
and the costs coupled to the amount of employed isotopic tracer. Second, shorter 
observation windows provide much more flexibility in experimental design since 
metabolic steady state does not have to be ensured over several hours (van Win-
den et al. 2005). In turn, this opens for the investigation of slow metabolic tran-
sients for which a quasi steady state can be assumed for the time span of labeling 
(e.g. fed batches). The analysis yields a flux map that averages pathway activities 
over the labeling interval. An extension is to sample the same labeling experiment 
at several time points during the slow flux transients to obtain time-resolved flux 
maps (Zamboni et al. 2005). Limitations are set by the characteristic time of moni-
tored analytes necessary to attain isotopic steady state, which is prone to variation 
during metabolic transients due to changing fluxes and pool concentrations.  

These underlying principles hold for every experiment involving labeling with 
isotopic tracers, and should carefully be considered in the design stage. In the next 
sections, the workflow of 13C-based flux analysis from inception to evaluation and 
current practice is briefly reiterated. 

4 Current practice of stationary 13C flux analysis 

4.1 Experimental design  

The capability of resolving and quantifying fluxes in vivo is a function of (i) the 
tracer substrate used, (ii) the biochemical reaction network, and (iii) the analytes 
that are detectable. Several protocols were presented to assess a priori calculability 
from a dataset in the case of stoichiometric balancing (Klamt and Schuster 2002) 
or 13C metabolic flux analysis (Möllney et al. 1999; van Winden et al. 2001; 
Isermann and Wiechert 2003). Notably, analytical accuracy in the detection of la-
beling patterns strongly influences the confidence of flux estimates. This informa-
tion is frequently neglected in the aforementioned calculability tests and, thus, it is 
often necessary to perform more complex and detailed experiments than the sim-
plest setup prescribed based on such tests (van Winden et al. 2001). 

The selection of the tracer distribution in the substrate is paramount for effec-
tive resolution of metabolic fluxes. Basically two different strategies exist and can 
be combined. Positionally enriched substrates possess an uneven distribution of 
13C in the carbon backbone. These tracers are typically administered in the pure 
form, i.e. 100%, and are ideal to distinguish alternative pathways where only one 
branch losses or transfers the specifically labeled carbon (e.g. by decarboxylation). 
For example, [1-13C]glucose is well suited to track fluxes in the oxidative branch 
of the pentose phosphate pathway (PPP) where the [1-13C] atom is split to form 
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13CO2 and the resulting pentoses are label-free. In contrast, pentoses originating 
via the non-oxidative PPP are enriched in 13C (Christensen et al. 2001). A short-
coming of positionally enriched tracers is that they are tailored for specific path-
ways and poorly suited for global fluxome estimates. Hence, they find wide appli-
cation in networks that are highly constrained by stoichiometry and thus exhibit 
low degrees of freedom, or to determine the network structure in poorly character-
ized organisms (Cannizzaro et al. 2004; Fuhrer et al. 2005). On the other end, uni-
formly (fully) labeled substrates offer a larger scope in exchange for specificity. 
Uniformly labeled substrates are normally administered in combination with unla-
beled isomers, e.g. as a 1:1 mix. When the tracer is metabolized, the carbon back-
bone of both labeled and unlabeled isoforms is broken and rearranged. Reactions 
that combine multiple carbon-containing intermediates will generate chimeric 
molecules with both 12C and 13C atoms, with characteristic labeling imprints. Ex-
amples are the transaldolase and transketolase in the non-oxidative PPP, anaple-
rotic reactions, or cyclic pathway such as the TCA cycle or the modular lipid bio-
synthesis. With uniformly labeled tracers, the essential information for pathway 
flux discrimination is not enclosed in the label that was lost during metabolic ac-
tivity such as with positional enrichment, but in the presence of 13C fine structures 
that reflect enzymatic scrambling specific for a pathway.  

Compartments in higher cells complicate the problem in several ways: (i) addi-
tional reactions are necessary to model pathways independently for each com-
partment. Splitting of intermediate pools across distinct compartments considera-
bly increases the degrees of freedom. (ii) The intracompartmental transport 
mechanisms are very relevant, in particular when coupled to sym- or antiport. (iii) 
Metabolites are measured as the sum of all compartments. When a metabolite is 
localized in two (or more) compartments with possibly different biosynthetic ori-
gin, the corresponding labeling patterns may differ and, thus, are typically dis-
carded for flux calculation. Provided that the model of biochemical reactions is 
correct and complete, mathematical methods for the optimal selection of tracer 
and analytes exist (Möllney et al. 1999; Rantanen et al. 2006). 

Experimental design is also influenced by the analytes that can be detected. The 
majority of 13C-based flux studies published in the last decade was based on the 
labeling patterns of protein-bound amino acids because of their abundance 
(roughly half of total cell dry weight) that facilitates measurement of labeling pat-
tern. High abundance is unfortunately coupled to lower turnover and, hence, short 
transients cannot be investigated. In the case of biomass macromolecules and the 
constituting monomers when turnover occurs, the inverse of the growth rate pro-
vides a rough estimate of the shortest interval that can be investigated with a sta-
tionary 13C metabolic flux experiment (Wiechert and Nöh 2005).  

4.2 From analytes to 13C labeling patterns 

Determination of carbon fluxes in isotopic steady state relies on macroscopic bal-
ances and 13C labeling patterns: intermediates concentrations are superfluous 
unless isotopically non-stationary conditions are tackled (discussed in a later sec-
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tion). During sample harvest, it is important to quench metabolism rapidly enough 
to avoid post-sampling artifacts. The constraints are set by the turnover of the ana-
lytes. When the protein-bound fraction of amino acids is the target, handling op-
erations in the range of minutes are safe. In contrast, when dealing with intracellu-
lar intermediates sub-second quenching and cooling is recommended because their 
pools are exchanged by orders of magnitude more rapidly. In sharp contrast to me-
tabolome experiments, quantitative and reproducible extraction of intermediates 
from cells is not of relevance as long as detection is not compromised by poor re-
coveries. 

Two techniques exist to distinguish and quantify isotopic distributions, namely 
nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). 
Both platforms were equally successful in providing essential information from 
protein-bound amino acids for the estimation of fluxes in central carbon metabo-
lism. In NMR, 2-dimensional heteronuclear [13C,1H] correlation spectroscopy re-
solves all relevant resonances in proteinogenic amino acids without prefractiona-
tion (Szyperski 1995). Labeling patterns are inferred from characteristic spin-spin 
couplings that arise when neighbor 13C atoms are present, and uniformly labeled 
tracers are therefore typically utilized. With MS, amino acids mixtures have first 
to be resolved by chromatographic means. Gas chromatography – mass spec-
trometry (GC-MS) has become the principal workhorse for mainly two reasons. 
First, it combines robustness, fast measurements, fully baseline-resolved amino 
acids, and relative low instrument and running costs. Second, it delivers extensive 
fragment information to unravel central carbon fluxes (Christensen and Nielsen 
1999; Dauner and Sauer 2000). The latter point is crucial for 13C-experiments and 
an important digression must be made. Each carbon atom in a molecule can be ei-
ther labeled (13C) or unlabeled (12C). A molecule with n carbon atoms possesses 2n 
possible states, called isotopomers (from isotope isomers). MS discriminates only 
the mass and is not able to distinguish between all isotopomers: those with identi-
cal weight are detected as a lumped pool. This limits calculability of fluxes when 
alternative pathways lead to isotopomers with equal label content. The hurdle is 
often overcome by inducing analyte fragmentation in the MS: from intact mole-
cules, smaller daughter ions are generated and their isotopic distribution is meas-
ured to yield the isotopic distribution of partial carbon backbone segments or even 
the enrichment of single atom positions. Fragmentation in GC-MS occurs sponta-
neously at the interface between GC and MS when a high energy electrons beam 
is used to ionize the analytes. The resulting fragments enable 13C flux analysis in 
many organisms using various tracers, such as for example [1-13C], [1,2-13C2], and 
[U-13C]glucose, and have contributed to the diffusion of GC-MS as preferred plat-
form. 
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Table 2. Summary of metabolic flux analysis methods for experiments with stable isotopic 
tracers. 

Approach Pros Cons 
NET FLUXES   
Isotopomer balanc-
ing  

- integrates all available infor-
mation 
- calculates net and exchange 
fluxes 
- universal framework is avail-
able that do not need adaptation 
for new networks or tracers 

- requires correct network and 
physiological data 
- cumbersome troubleshooting 

13C-constrained 
metabolic flux analy-
sis 

- simple and fast computation 
 

- exchange fluxes not calcu-
lated 

RELATIVE 
FLUXES 

  

Flux ratios analysis - direct evidence for pathway 
activity 
- independent from measured 
rates 
- fast, unsupervised 

- tedious design of new equa-
tions 
- implicit assumptions on re-
versibility that might do not 
hold after severe genetic per-
turbations. 

PROFILING   
Fluxome profiling - independent from any model 

- suitable for complex media 
- applicable with any tracer 
(13C, 15N, 2H and combinations) 

- qualitative 
- large number of repli-
cas/samples needed 
 

SiDMAP - optimized for mammalian 
cells and glucose 

- qualitative  
- requires multiple experi-
ments to obtain a complete 
analysis 

 
For emerging applications based on free metabolites, MS is currently supersed-

ing NMR owing to its superior sensitivity, simpler hyphenation to chromatogra-
phy, and optional fragmentation capabilities. MS methods are increasingly profit-
ing from the continuous progresses made in liquid chromatography (LC) and 
capillary electrophoresis (CE) that bring about baseline separations of the majority 
of central carbon and other polar metabolites pivotal to unravel fluxes. Flux analy-
ses can build directly upon MS-metabolomics with minor adjustments made to 
prioritize precise estimation of mass distributions before concentrations (cf. 5.2 
and 5.3.1). 

4.3 From 13C labeling patterns to fluxes 

A variety of computational approaches to interpret 13C labeling blueprints have 
bloomed  driven by the  need to  address well-defined  questions  or  hypotheses in 
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Fig. 2. Flow chart of data integration alternatives in 13C metabolic flux analysis. Inputs and 
outputs are shown in black ellipsoids and grey boxes, respectively. 

highly heterogeneous biological systems. Extensions and perhaps simplifications 
had to be introduced to face the sometimes scarce availability of measurements, 
ill-defined networks, and analytical imprecision. Three very different sets of in-
formation are utilized to estimate fluxes:  

• Physiology: extracellular rates of substrate uptake and product formation, 
growth rate. 

• Model of biochemical network: including - for each reaction in the sys-
tem - stoichiometry, assumptions on the irreversibility, and the mapping 
of single atom positions between educts and products. 

• 13C labeling patterns: from NMR, MS, or both. 
I define three major clusters of methods on the basis of which of the above infor-
mation domains are utilized and combined to investigate metabolic fluxes (Fig. 2 
and Table 2). 

4.3.1 Isotopomer balancing 

Isotopomer balancing is the natural extension of the stoichiometric balancing ap-
proach (cf. 2) to include 13C data. It requires and concomitantly integrates ex-
tracellular fluxes, network model, and 13C patterns. A network model is the basis 
for the balance equations. In contrast to simple stoichiometric balancing where a 
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single balance is constructed for each metabolite, here one equation is drawn for 
each isotopomer (Schmidt et al. 1997; Zupke et al. 1997; Klapa et al. 1999; Dau-
ner et al. 2001). As the number of additional equations necessary for each metabo-
lite increases exponentially with the number of carbon atoms, the resulting system 
of linear equations becomes much larger, but the same is true for the variables 
(from metabolites to isotopomers) and the system remains underdetermined. 
Fluxes are resolved iteratively: first, a semi-random flux distribution is generated, 
and is then used to simulate the labeling pattern in intermediates that would result 
from it. The simulated isotopomer fractions are in turn used to generate synthetic 
MS or NMR signals, which are compared to the experimental findings. Until a sat-
isfactory match is attained, the cycle is repeated with a new flux distribution that 
is derived from the previous ones with some rational plan to accelerate conver-
gence and increase the probability of reaching the global optimum. The finally ob-
tained solution constitutes the flux map that best explains the labeling patterns 
within the constraints set by the network topology and the measured rates.  

Isotopomer balancing is the most comprehensive strategy for data interpretation 
as it simultaneously integrates all available data. This kind of global analysis has 
the merit that it exploits the maximum possible information from the dataset. The 
drawback is that the flux estimate is severely biased by incomplete or erroneous 
network models and physiological data. In case of bad fits, the whole flux solution 
has to be rejected. Expertise and time are needed to pinpoint the inconsistencies in 
model or measurements. Calculation is complex and computationally expensive, 
and special derivatives of isotopomer fractions such as cumomers (Wiechert et al. 
1999) or bondomers (van Winden et al. 2002), were demonstrated to effectively 
improve the process. Antoniewicz et al. recently introduced a novel approach to 
reduce the number of systems variables by at least one order-of-magnitude while 
preserving a full description of the isotopomers. This decomposition in so-called 
elementary metabolite units dramatically simplifies the equation system and thus 
accelerates solving, and will most likely constitute a cornerstone for the rapid 
analysis of non-stationary experiments or of concomitant 2H, 13C, 18O, and 15N la-
beling in large networks (Antoniewicz et al. 2006). Notably, a detailed statistical 
analysis is crucial to correctly weight the outcomes (Antoniewicz et al. 2006).  

To our knowledge, 13C-FLUX is currently the most complete and freely avail-
able software tool that offers rigorous 13C-based balancing for generalized net-
works from both NMR or MS experiments (Wiechert et al. 2001). Alternatively, 
NMR2Flux computes fluxes in plants from 2D-NMR spectra of protein-bound 
amino acids (Sriram et al. 2004). Isotopomer balancing has been used to quantify 
fluxes for example from amino acids in microorganisms with NMR (Marx et al. 
1996; Petersen et al. 2000; Emmerling et al. 2002; van Winden et al. 2003) and 
MS data (Fischer and Sauer 2003; Klapa et al. 2003), from free metabolites with 
MS (van Winden et al. 2005; Kleijn et al. 2006), or in plants with NMR of amino 
acids (Sriram et al. 2004). 



Towards metabolome-based flux analysis   141 

4.3.2 Flux ratios 

The isotopomer balancing approach outlined in the previous section sets strict re-
quirements in terms of input data (Fig. 2). Initially driven by the need to analyze 
fluxes also in absence of physiological data, metabolic flux ratio analysis was de-
veloped to directly decipher 13C labeling patterns (Szyperski 1995). Briefly, meta-
bolic flux ratios quantify the relative fluxes of alternative pathways at the node 
(metabolite) of convergence. For this purpose, analytical equations are developed 
first for each branch point of interest. Each analytical equation is designed to take 
advantage of the labeling features that best discriminates between the theoretical 
13C blueprints of converging pathways. In central metabolism, about 10 independ-
ent flux ratios can be determined from amino acids for 13C-glucose experiments 
with bacteria or yeast using either NMR (Szyperski 1995; Maaheimo et al. 2001) 
or MS data (Christensen et al. 2001; Fischer and Sauer 2003; Blank and Sauer 
2004). For the broadly used flux ratios from 13C experiments and GC-MS data, a 
detailed protocol is given in (Nanchen et al. 2006). Single flux ratios are calcu-
lated from the mass distributions of typically only 1-3 intermediates (or inferred 
from amino acids) and absolutely no kind of measured rate is required. The power 
of ratios lies in their local nature that renders them less susceptible to possibly er-
roneous models or measurements, and in the fact that they provide direct evidence 
for the operation of a particular pathway in vivo. In addition, the rapid and almost 
completely unsupervised computation of flux ratios enables high-throughput - and 
yet quantitative - flux studies. The major drawback is the initial time invested for 
development or adaptation of the analytical equations for new tracers or modified 
metabolic networks. Flux ratios were, for example, used to identify new pathways 
or unexpected cross-activity (Fischer and Sauer 2003; Zamboni et al. 2004), char-
acterize unknown networks (Fuhrer et al. 2005), demonstrate metabolic robustness 
and suboptimal operation of Bacillus (Fischer and Sauer 2005), and to investigate 
adaptive evolution of metabolism (Hua et al. 2006). 

In the so-called 13C-constrained metabolic flux analysis, flux ratios can be used 
to solve the problem of undetermined stoichiometric balances, because they pro-
vide additional, independent constraints to reduce the solution space (Fischer et al. 
2004). If at least one flux ratio is available to fix each degree of freedom in the 
metabolic network, a unique flux map can be calculated by means of a linear sys-
tem or least-square fit for fully and overdetermined systems, respectively. Results 
from 13C-constrained metabolic flux analysis and isotopomer balancing are consis-
tent (Fischer et al. 2004). Yet, the latter provides more detailed information with 
respect to the exchange fluxes in bidirectional reactions. These are neglected or 
implicitly assigned when developing the analytical equations to calculate flux ra-
tios. In knockout mutants with severe growth defects, these tacit assumptions may 
not hold and lead to wrong ratio estimates and, in turn, erroneous net fluxes from 
13C-constrained metabolic flux analysis. Nevertheless, ratios-constrained net flux 
analyses are a robust tool for both large-scale (Blank et al. 2005) and detailed 
studies of cellular carbon, redox, and energy metabolism (Zamboni et al. 2003; 
Blank et al. 2005; Hua et al. 2006). For experiments on glucose minimal medium, 
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software packages for metabolic flux ratio and 13C-constrained metabolic balance 
analysis are freely available (Zamboni et al. 2005).  

A related approach is the so-called stable isotope based dynamic metabolic pro-
filing (SIDMAP), that - akin to metabolic flux ratios analysis - interprets 13C-
patterns according to a metabolic model without measured extracellular rates. It 
features a collection of analytical equations that were tailored to monitor specific 
changes in carbon metabolism of mammalian cells grown on [1,2-13C2]glucose 
and analyzed by GC-MS of biomass or secreted products. The complex composi-
tion of culture medium impairs large-scope fluxome quantitation. Nevertheless, 
this approach affords a specialized profiling tool to, for example, capture meta-
bolic responses in tumoral cells or to lead targeted drug design (Boren et al. 2001; 
Boros et al. 2003; Marin et al. 2004). 

4.3.3 Fluxome profiling 

In analogy to data mining methods applied to other omics data, multivariate analy-
sis can be used to explore large datasets of 13C labeling patterns (Zamboni and 
Sauer 2005). This approach of fluxome profiling features the unique chance to in-
fer structural and quantitative information from raw labeling data without any a 
priori knowledge of the biochemical reaction network.  

What can be discovered in 13C labeling patterns? A first proof-of-concept study 
with bacterial cultures and a variegated set of tracers and conditions was presented 
by our lab (Zamboni and Sauer 2004). The working hypothesis was that the ab-
sence or presence of pathway activity is reflected in the label fingerprints of me-
tabolites. By purely unsupervised statistical techniques, this work (i) demonstrated 
that it is indeed possible to separate the overlapping signatures of independent 
pathways, (ii) proved that signatures are consistent with biosynthetic routes, (iii) 
showed that structural knowledge on biosynthesis of metabolites can be deduced 
from covariating patterns, (iv) showed that mutants can be clustered according to 
metabolic changes, and (v) mapped the effect of transcriptional regulators on 
metabolic activity. Current efforts aim at developing robust tools of machine 
learning and expertise to systematically scavenge all relevant features in large 
datasets. Albeit in progress, first results reveal that for each dataset the number of 
stable (not sensitive to algorithm parameters or to in silico superimposed noise) 
pathway signatures is well defined and sometimes exceeds the number of those 
calculable with the established metabolic flux ratio equations. This suggests that 
novel, still latent blueprints of metabolic activity are contained in the data in addi-
tion to those disclosed by today’s metabolic flux ratio analysis.  

Beyond the qualifiers obtained, for example, from hierarchical clustering or 
classification trees, it is obviously desirable to obtain quantitative insights on 
metabolic fluxes. In fact, quantitative estimators for flux partitioning ratios were 
successfully derived from unsupervised methods such as independent component 
analysis (Zamboni and Sauer 2004), but for some flux ratio no matching estimator 
could be identified.  Supervised  methods  such as  regressions or  adaptive  neural 
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Fig. 3. Quantitative determination of glycolysis-to-PPP split ratio in Bacillus subtilis 
knockout using supervised machine learning and no a priori knowledge of metabolism. (A) 
Schematic representation of approach. Mutants were grown individually on a mix of 50% 
[U-13C] and natural glucose. The mass distributions of 4 mutants were used to train an 
adaptive neural network to estimate the flux ratio. (B) The graph shows the validation of 
the trained neural network: for each mutant the estimated flux split estimated by the neural 
network is compared to the real value calculated from a model-based analytical equation. 
Circles and dots indicate the mutants used for training and validation, respectively. The 
dashed diagonal indicates perfect predictions. 

networks can possibly fill this gap as shown exemplarily in Figure 3, but the gen-
eral applicability and utility of supervised machine learning with 13C labeling pat-
terns is still questionable and has to be assessed in systematic studies. 

Fluxome profiling, based on either supervised or unsupervised procedures, is 
still in its infancy and hence, in contrast to the well-established approaches of iso-
topomer balancing and flux ratio analysis, it is only possible to speculate on its 
practical applications. With this in mind, principally two advantages unique to 
fluxome profiling call for further development. First, fluxome profiling can handle 
labeling data from experiments with higher cells because it is compatible with vir-
tually any network (unicellular – multicellular), isotopic tracer (13C, 2H, 18O, 15N, 
and combinations), and medium composition (Zamboni and Sauer 2004). Second, 
multivariate statistics afford a very simple basis for comparing different omics 
data. For example, if it is true that metabolic fluxes reflect the integration of all in-
teractions between and within metabolites, proteins, RNA, etc., it can be expected 
that statistical correlations and anticorrelations between metabolic fluxes and con-
centration of species in the different layers will contribute to identify the loci were 
control is exerted and the mechanism how regulation occurs (Weckwerth et al. 
2004; Morgenthal et al. 2006).  
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5 Toward metabolome-based 13C flux analysis 

Flux measurements published in the last decade were originated almost exclu-
sively from 13C data of protein-bound amino acids or secreted metabolites, be-
cause of their large abundance that facilitates both sampling due to the low turn-
over and ease of detection. As witnessed by the considerably number of studies, 
this approach has undoubtedly maturated to a robust tool suited for addressing 
various questions. Nevertheless, there are several reasons that call for true me-
tabolome-based 13C flux analyses: 

• Cells without de novo amino acid (or protein) biosynthesis may be ana-
lyzed, e.g. higher cells, microbes grown in rich media or resting. 

• Identifiability of fluxes is increased by monitoring of 13C patterns in me-
tabolites that are not precursors of proteinogenic amino acids. In addition, 
the risk of erroneous or ambiguous mapping of atoms between precursors 
and metabolic end products is circumvented. 

• Labeling experiments are shortened because isotopic steady state is at-
tained earlier. This leads to lower costs and enables the analysis of sys-
tems that cannot be kept long in metabolic steady state.  

• Slow metabolic shifts (in the range of minutes to hours) become observ-
able, as long as a metabolic steady state can be approximated throughout 
onset of the isotopic steady state in intracellular metabolites. 

The full potential of metabolome-based 13C flux analysis to tackle such conditions 
and questions can be unleashed only with direct measurements of intermediates in 
proximity of the pathway of interest. 

5.1 Experimental proof-of-concept 

Two landmark studies of cellular fluxes based on 13C-patterns of primary metabo-
lites have been published so far, both by van Winden and coworkers (van Winden 
et al. 2005; Kleijn et al. 2006). In the first one, baker’s yeast was grown in glu-
cose-limited continuous cultures, and at metabolic steady state the culture was fed 
with 100% [1-13C]glucose. After 40 and 60 min of labeling, two cell aliquots were 
harvested rapidly, quenched, and central carbon metabolites were extracted and 
measured by liquid chromatography (LC)-MS. Isotopomer balancing (cf. 4.3.2) 
was successfully used to fit fluxes in glycolysis and PPP to the 13C labeling pattern 
of ten intermediates. This study demonstrates the feasibility of metabolome-based 
flux analyses, and contributes further relevant observations. First, comparison of 
labeling pattern at the two time points of sampling confirm that already after 40 
min the majority of metabolites is in isotopic steady state. Exceptions are dis-
cussed below. Second, the direct comparison of labeling patterns in reactants at 
both sides of every bidirectional reactions indicates which metabolite pools are 
equilibrated, and thus, which reversible enzymes operate in forward and backward 
direction at rates that are much higher than the apparent net metabolic flux, that is 
the difference of the two. Third, turnover of the storage carbohydrate glycogen 



Towards metabolome-based flux analysis   145 

was found to interfere with rapid onset of isotopic steady state in glucose-1-
phosphate and glucose-6-phosphate, so that after 60 min isotopic steady state is 
not yet achieved. When a turnover reaction between glycogen and glucose-1-
phosphate is introduced into the model, the result is a worse confidence interval 
for the flux split between glycolysis and the PPP. This is caused by the fact that 
both [1-13C] label loss in the oxidative PPP and variable inflow of unlabeled hex-
ose-phosphates from glycogen produce hardly distinguishable increases in unla-
beled fractions of intermediate. Two solutions can obviate to the problem of large 
pools disturb onset of isotopic steady state. As anticipated by the authors in the 
above study, one option is to label for a longer period of time. The drawback is 
that extensive time is probably necessary to obtain isotopic equilibration of the 
large glycogen pool. Alternatively, differently labeled substrates can be adopted to 
experimentally assess the exchange of large reservoirs. For the aforementioned 
example, [1,2-13C2] or [U-13C]glucose would have served to estimate more pre-
cisely the glycolysis-to-PPP split in the same span of time, because they enable 
concomitant quantitation of the collateral turnover of glycogen.  

Indeed, the second and more recent metabolome-based 13C flux study by the 
same lab affords determination of the flux split between oxidative PPP and glyco-
lysis in filamentous fungi by an analytical equation that calculates the flux ratio 
from the isotopic mass distribution of tree intermediates close to the node (Kleijn 
et al. 2006). This study shows that the results obtained analytically are consistent 
with isotopomer balancing but more accurate, and demonstrates for the first time 
the potential of metabolome-based 13C flux ratio analysis (cf. 4.3.2). 

5.2 Analytics: lessons from metabolomics 

The trivial analogy between metabolomics and metabolome-based 13C flux analy-
sis in terms of analytes is reflected by the similar experimental workflow in the 
steps from cells harvest to analysis. Hence, current best practices for accurate flux 
studies include the use of rapid sampling devices, immediate quenching of me-
tabolism, tailored chromatographic separation to possibly reduce matrix effects, 
and highly-sensitive detection. MS is actually preferred to NMR in the detection 
of 13C labeling in free metabolites due to the higher sensitivity. In addition, chro-
matographic separation becomes compulsory to capture the 13C distributions of 
structurally similar metabolites as it often occur in the same pathway, for which 
MS is prioritized because on-line interfacing to GC, LC, or capillary electrophore-
sis (CE) is well established.  

The topic of analytical separation introduces a relevant question: which of the 
MS-compatible platforms frequently used in metabolomics (i.e. GC, LC, and CE) 
is the most suited for metabolome-based 13C metabolic flux analysis? For the spe-
cifics of the intermediates of interest, i.e. phosphorylated sugars and carboxylic 
acids in glycolysis, PPP, and TCA cycle, all three modes can be used for separa-
tion and subsequent MS detection. Here I survey these separation techniques, 
while the specifics of MS detection are addressed in the following sections. 
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For GC-MS acquisition, volatile derivatives of polar compounds are obtained 
after methoxymation and silylation and separated with simple protocols amenable 
to high-throughputs (Strelkov et al. 2004; Koek et al. 2006). The strength of this 
method is that it is generally suited to detect other classes of compounds such as 
alcohols, amines, amino acids, or purines. Although it suffers from derivatization 
efficiencies varying for the different classes (Koek et al. 2006), this does not affect 
the measurement of isotopic distributions because they do not depend on absolute 
concentrations. To increase the amount of sample introduced onto the column, 
temperature programmable injectors can be used to inject up to 1000x larger vol-
umes. Notably, the benefits are marginal when low and highly concentrated ana-
lytes elute closely or overlapping, because overloading of the more abundant 
compound causes peak broadening and often detector saturation. Due to the exten-
sive fragmentation that is normally caused by electron impact ionization, GC-MS 
spectra are very complex and identification of analytes relies on spectral databases 
of compound libraries (Schauer et al. 2005). 

Analysis by LC-MS is slightly complicated by the ionic and polar character of 
central carbon metabolites because of the poor compatibility between MS ioniza-
tion and the LC buffers commonly used for separating such anionic and hydro-
philic compounds. Electrospray ionization is enhanced by solvents with high or-
ganic phase and low salt content, whereas chromatographic elution is controlled 
by concentrated sodium hydroxide gradients in water (van Dam et al. 2002). Inter-
facing to MS is then only possible with electrochemical exchangers of sodium 
cations-protons that are inserted in the liquid path between column and sprayer but 
comes at the cost of sensitivity and chromatographic resolution. Retention of ionic 
analytes in reverse phase LC can be mediated by hydrophobic ion pairing reagents 
(Huck et al. 2003). Although volatile counter-ions that are compatible with elec-
trospray process can be used, particular care must be dedicated in instrument 
maintenance to loss of sensitivity and signal deterioration. A even more MS-
friendly alternative is hydrophilic liquid interaction chromatography (HILIC), 
which exhibits improved separations of ions in high organic phases and is avail-
able in nanoscale systems, where maximum sensitivity is attained (Alpert et al. 
1994; Tolstikov and Fiehn 2002; Bajad et al. 2006). In general, sensitivity in nano-
LC can be further increased with preconcentration by loading large sample vol-
umes to a short enrichment column that fully retains the analytes in a thin section. 
When the solvent gradient is started, a focused and highly concentrated analyte 
plug elutes from the enrichment column, and is separated on the analytical col-
umn. Unfortunately, the injection volumes of central carbon metabolites is still 
limited when their retention on commercially available phases is not sufficient to 
load large sample volumes without having a fraction already eluting from the en-
richment column, e.g. with most HILIC material. In comparison to GC, the longer 
equilibration time and chromatographic separations of organic gradients reduce 
sample throughputs. In contrast, the milder ionization in LC-MS enables the de-
tection of intact molecules, which produce less populated spectra and facilitates 
identification. 

Among the three platforms, CE-MS features unsurpassed peak capacity, con-
comitant separation of anions and cations, and resolution of most isomers present 
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in central metabolism within short runs (Soga et al. 2003; Harada et al. 2006). CE 
as well offers the possibility to focus the analytes in large volumes by sandwiched 
injection techniques (Britz-McKibbin and Terabe 2003). The drawback of CE-MS 
measurement lies in the expertise and time necessary to obtain reproducible meas-
urements at high-throughputs. In addition, the narrow eluting peaks limit the num-
ber of different fragmentation cycles that can be performed over a peak. 

Overall, all three systems provide access to key intermediates in central me-
tabolism and can cope with large injection volumes which are used to enhance 
sensitivity. To date, GC-MS and LC-MS are the preferred platform to detect label-
ing patterns in amino acids and central carbon metabolism, respectively. CE-MS is 
superior in sensitivity and enables detection of both compound classes. Neverthe-
less, these advantages are apparently not yet sufficient to replace GC and LC. 

5.3 Current developments 

To fulfill the goals of metabolome-based 13C flux analysis (cf. 5), further im-
provements are necessary. In the following sections I address three topics that are 
targets of current research. The first two are of experimental nature and aim at ob-
taining possibly detailed and accurate labeling information from free metabolites. 
Both aspects are pivotal in the quest of comprehensive flux analysis for cells 
grown in complex media. The third topic is the extension of metabolic flux analy-
sis to cope with the frequently occurring isotopically non-stationary systems, 
which will promote metabolome-based flux analyses to a universally applicable 
tool. 

5.3.1 How to measure precise isotopic mass distributions? 

The analogies between fluxome and metabolome measurements stop upon sub-
jecting metabolites to mass spectrometry, because measuring precise mass distri-
butions differs from measuring concentrations, and MS instruments have to be set 
up accordingly. In quantitative concentrations measurements, MS/MS acquisitions 
are the mode of choice for best signal-to-noise and high scanning rate are em-
ployed to obtain more data points on a peak and reduce interpolation errors. In 
contrast, detection of isotopic mass distributions such as needed for 13C flux 
analysis is generally done with full range MS acquisitions, because for each me-
tabolite/fragment a range of 10-15 m/z has to be scanned (or fragmented) due to 
the overlapping presence of naturally occurring isotopes. In complex samples, 
where chromatographic coelution is frequent, or with in-source fragmentation (e.g. 
electron impact ionization in GC-MS), selected ion monitoring looses attractive-
ness because at least 50-100 m/z bins have to be scanned simultaneously and 
complicate acquisition programs must be prepared to ensure that the correct mass 
range is monitored at the elution time of each analyte.  

As a rule of thumb, isotopic fractions of 1 mol% (better if lower) compared to 
the monoisotopic mass should be precisely quantifiable to obtain fluxes with good 
confidence. Hence, the limits of quantitation (LOQ) for mass distributions are at 
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least 2 orders-of-magnitude higher than the LOQ for metabolite concentrations. 
Because of poor ion statistics, low abundant fractions are more prone to inaccu-
racy. Another consequence is that MS detectors must exhibit a wide linear dy-
namic range of >4 decades to effectively measure distributions in real samples 
where analytes are heterogeneously concentrated. If that is not the case (e.g. as in 
most ion traps) multiple injections of different amounts are necessary to character-
ize low and highly abundant species.  

Low mass resolution is also detrimental for exact isotopic distributions, in par-
ticular when quadrupoles or ion traps are used for detection. High-resolving time-
of-flight or Fourier Transform instruments are not affected. Resolution has to be 
increased to ensure that no overlap or crosstalk between neighbor m/z bins occur, 
also after slight calibration drifts. Unfortunately resolution comes always at the 
cost of sensitivity, but this drawback can be partly alleviated with slower scan 
speeds. As mentioned above, this is in conflict with the ideal settings for quantita-
tive concentration measurements because less data points open for peak interpola-
tion errors. In synthesis, detection of exact mass distributions depends on possibly 
high ion counts in full-range MS mode, good mass resolution, and an outstanding 
linear dynamic range. Due to the interdependency of these properties and the gen-
erally low abundance of free metabolites, sensitivity rapidly emerges as the major 
bottleneck in fluxome measurements.  

5.3.2 Fragmentation: the key to obtain the labeling of single atoms 

In metabolomics, fragmentation is extensively utilized for identification and selec-
tive detection. In fluxomics, fragmentation provides labeling imprints at sub-
molecular level and eventually positional enrichment, i.e. the abundance of label 
at single atom positions (Fig. 4). Flux identifiability is subordinated to the 13C pat-
terns that are measurable and hence, in turn, to the fragments that can be gener-
ated. Novel fragments can enable more detailed analyses and more flexibility in 
the choice of the tracer. Also when equivalent fragments of the same metabolite 
are measured (e.g. those with the same carbon backbone), they lead to higher con-
fidence in the flux estimation. As a general rule, it is thus desirable to obtain and 
detect the largest number of fragments possible.  

Routine utilization of fragment data is, however, hindered by the overlap of 
three technical issues: (1) Fragmentation is inducible and happens when molecules 
collide at high energy with gas molecules or electrons, or when they are subject to 
strong electric fields. However, for each ion the break points can only be mini-
mally controlled by the instrument settings. Increasing or decreasing of (collision) 
energy favor formation of low and high molecular weight daughter ions, respec-
tively. It is, however, not possible to break every C-C bond at will, and some at-
oms  are  virtually not  distinguishable  (e.g. C1 and  C2,  or  C5 and  C6  in  Fig. 4). 
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Fig. 4. MS spectra of fragmented glucose-6-phosphate. On each pane, the intact parent 
molecule is drawn with numbered carbon atoms. Directly measurable fragments are indi-
cated by thick arrows. (A) Spectrum resulting by in-source fragmentation in GC-MS. The 
analyte was first methoximated and sylilated to obtain a volatile derivative. Many frag-
ments are observable, but their intensity is too low to quantify isotopic distributions (e.g. 
C3-C6). (B) Spectrum provoked by collisional fragmentation in a LC-MS/MS experiment. 
100% intensity corresponds to that of the parent ion (m/z -259) in absence of collisions. 
Sugar-phosphates are prone to break at the phosphoester bond, so that the carbon-
containing fragments are underrepresented versus the non-informative phosphate ions (m/z 
-97 and -79). Since the charge is located on the phosphate group, only one daughter ion is 
observed when the carbon backbone is broken. Nevertheless, the mass distribution of the 
neutral complement can be calculated from that of the intact molecule. Hence, GC-MS and 
LC-MS/MS provide qualitatively equivalent information, and the true limitation is set by 
ion counts. Considering that for each fragment several m/z have to be measured, LC-
MS/MS might be preferred here because no overlaps between fragments or unknown peaks 
occur. A decision must account for the expected mass shifts caused by 13C enrichment. 
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(2) MS is only able to detected charged species. Hence, when a singly charged 
species is fragmented, two daughter fragments are formed: one is charged and one 
is neutral. The ionic moiety can be detected, while the neutral part is lost and in-
visible in the spectrum (Fig. 4). The isotopic mass distribution of the latter cannot 
be directly measured, but can be inferred with worse precision from those of the 
parent ion and the complementary ionic fragment. (3) The intensities of the frag-
ment peaks are typically 1-2 orders of magnitude smaller than those of the parent 
ion because of ion loss during collisional fragmentation and redistribution of 
daughter ions among different masses (Fig. 4B). Hence, sensitivity becomes once 
more the limiting factor in the determination of accurate mass distributions.  

To summarize, fragmentation is without doubts beneficial to obtain either inde-
pendent information or improved confidence. Accordingly, theories were devel-
oped to deconvolute overlapped fragment spectra (Jeffrey et al. 2002; Rantanen et 
al. 2002). In practice, however, fragment data tends to be qualitative because of 
low ion counts. Since overloading of MS negatively influences resolution and ac-
curacy, the only plausible alternative to obtain sufficient ion counts is seemingly 
to decouple separation and MS detection, i.e. to collect eluate fractions from 
chromatography and then infuse single fractions at very low rates and long times 
to the MS for acquisition. In addition, ad-hoc derivatization protocol can be used 
to provoke breakdown at different sites or increase the abundance (Price 2004). 

5.3.3 Faster, cheaper, and better: non-stationary flux analysis  

Another area of development is isotopically instationary 13C flux analysis 
(Wiechert and Nöh 2005), which undertakes to perform fully-descriptive flux ex-
periments within minutes after introduction of the labeled substrate as isotopic 
steady state is no longer a precondition, also when macromolecules turnover occur 
or large intermediate pools exist (Grotkjaer et al. 2004; van Winden et al. 2005). 
The so far unique strategy outlined to integrate isotopically instationary 13C data is 
the extension of isotopomer balances to the dynamic case by replacement with or-
dinary differential equations. For this purpose, metabolite pool sizes are also 
newly introduced in the equations and fitted in an iterative procedure.  

Time profiles of 13C-patterns must be measured upon start of labeling to moni-
tor the label propagation through the network. Conjoint measurement of metabo-
lite concentrations is not strictly required. Omission, however, causes an increase 
in degrees of freedom, complicates the fitting procedure, and results in worse con-
fidence intervals. Ideally, as many pool sizes as possible should be measured, and 
missing data can only be compensated by multiple labeling experiments (Nöh and 
Wiechert 2006). Notably, due to the metabolic steady state of the culture, the pool 
sizes are constant while the labeling pattern is still instationary. Thus, a single 
measurement fully describes concentrations throughout labeling. Solving the re-
sulting highly non-linear system with thousands of ordinary differential equations 
is the most challenging and time-consuming step, although it can be speculated 
that implementation of elementary metabolite units decomposition would boost 
the calculation by a few orders of magnitude (Antoniewicz et al. 2006). Simula-
tions done by Wiechert and coworkers demonstrate that the flux calculability is 
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tightly connected to sampling time points, total labeling duration, and tracer 
choice. Optimal and detailed a priori design of experiments is therefore mandatory 
(Nöh and Wiechert 2006). 

6 Conclusions 

Metabolome-based 13C metabolic flux analysis is on the track to become a univer-
sal tool to quantify metabolic activity in large networks, higher cells, and complex 
environments. Measuring metabolic fluxes under such conditions is a challenging 
task that demands conjoint experimental, analytical, and mathematical skills. 
Know-how on aspects such as experimental design, execution, and data integra-
tion can be transferred from existing 13C metabolic flux methods developed for 
microbes, where expertise and computation tools were established over the last 
decade. Nevertheless, further technical improvements are still necessary in the 
domains of (i) analytics to increase sensitivity of MS detection, and (ii) mathe-
matical algorithms to efficiently cope with isotopically non-stationary 13C flux ex-
periments.  

These accomplishments will eventually enable to comprehensively estimate 
fluxes, help unravel the underlying control mechanisms that govern metabolic 
fluxes, discriminate genetic mutations, assess the effect of drugs and diet on me-
tabolism, or monitor the metabolic response in health and disease in virtually any 
biochemical reaction network where intermediates are accessible. 
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Data acquisition, analysis, and mining: 
Integrative tools for discerning metabolic 
function in Saccharomyces cerevisiae 

Michael C. Jewett, Michael A.E. Hansen, and Jens Nielsen 

Abstract 

The well defined genetic architecture and metabolic network of Saccharomyces 
cerevisiae make this organism a cornerstone for metabolomics research. Recent 
efforts have focused on robust sample preparation techniques, analytical tools to 
quantitatively identify hundreds of metabolites at the same time, and elegant ap-
proaches for analyzing and interpreting the data. While equally important, we fo-
cus here on approaches for extracting useful information from the data itself. We 
outline several statistical and mathematical methods that can be used to digest and 
validate the most important features in the data. These multivariate approaches are 
from either the well established standard portfolio of statistical methods, or can be 
adapted from other areas where similar problems can be identified and where sta-
tistical and mathematical methods exist. Looking forward, we also describe ap-
proaches for fusing metabolome data with other cellular measurements and net-
work structure to elucidate biosynthetic control mechanisms. 

1 Yeast as a model system for metabolomics 

Understanding and controlling complex biomolecular systems is critical for inves-
tigating natural biological phenomena, treating disease, and engineering cells with 
novel function (Goeddel et al. 1979; Cameron et al. 1998; Hood et al. 2004; Alper 
et al. 2005; Endy 2005; Fung et al. 2005; Isaacs et al. 2006; Ro et al. 2006). This 
task, however, is hampered by difficulties in accurately monitoring, understand-
ing, and manipulating highly integrative metabolic pathways and multi-tiered 
regulatory circuits (Ideker et al. 2001; Alper et al. 2005; Jewett et al. 2006). As a 
major branch of systems biology efforts, metabolomics helps to address this limi-
tation by quantitatively identifying cellular metabolites and understanding how 
their levels influence network topology and ultimately, control phenotype. Due to 
the highly connected nature of metabolic networks, we envision that the most 
powerful approach for using metabolomics data for systems biology is within the 
integrated web of complex interactions, cellular pathways, molecular participants, 
and environmental stimuli that they connect. This requires a model system with a 
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rich density of available biological information and one for which high-throughput 
data can be rapidly and robustly obtained. 

The yeast, S. cerevisiae, is extremely well suited for this objective (Castrillo 
and Oliver 2004). First, as one of the most intensely studied eukaryotic cells, there 
is a large wealth of knowledge detailing its genetics, biochemistry, and physiology 
(Rose and Harrison 1987-1995). Second, curated genome-scale metabolic models 
that provide a roadmap of metabolites, their biochemical reactions, and gene 
products, which catalyze these reactions, are well established (Forster et al. 2003). 
Third, S. cerevisiae was the first eukaryotic organism for which the whole genome 
sequence was available (Goffeau et al. 1996) and this information gives us an in-
ventory of parts. Fourth, yeast has well characterized genetics and facile tech-
niques for genetic manipulation. Fifth, there is a comprehensive collection of 
knockout mutants in S. cerevisiae that provides an immense resource for exploring 
the impact of transcriptional regulation on metabolic phenotype (Ross-MacDonald 
et al. 1999; Winzeler et al. 1999; Giaever et al. 2002). Sixth, yeast has simple, in-
expensive, and scalable methods for cultivation under well controlled conditions. 
Seventh, many of the high-throughput techniques cataloging gene expression 
(Spellman et al. 1998), protein levels (Zhu et al. 2001), metabolite levels (Castrillo 
at al. 2003), protein-protein interactions (Uetz et al. 2000), and protein-DNA in-
teractions (Lee et al. 2002) have been developed and refined for S. cerevisiae. 

In addition to the abundance of notable reasons, which promise to help in the 
analysis and integration of metabolomic data, there are also compelling applica-
tion based motives for the use of yeast. For example, S. cerevisiae serves as an ex-
cellent model system for studying higher eukaryotic cells, including humans 
(Mager and Winderickx 2005), and has been used for rDNA protein expression in 
the pharmaceutical industry (Porro et al. 2005). 

With so many incentives for using yeast as a model organism, a significant 
amount of attention has already been given to S. cerevisiae metabolomics. In gen-
eral, recent work has been targeted towards three main categories: (a) sample 
preparation, (b) metabolite identification and quantification, and (c) data analysis. 
For example, in an effort to ensure robust, unbiased quantification of metabolites 
(which is still a major challenge in metabolome analysis) Villas-Bôas et al. 
(2005a) have examined the impact of different sample preparation protocols on 
targeted intracellular metabolite recovery. As a paradigm for functional genomics 
and mutant classification, metabolic fingerprints and footprints have been shown 
to reveal phenotypic insights from qualitative metabolite patterns (Raamsdonk et 
al. 2001; Allen et al. 2003). Because metabolic footprinting and fingerprinting 
techniques typically search for distinguishing patterns in data without quantitative 
metabolite levels, they often fail to provide insight into specific metabolic path-
ways. To address this limitation, targeted analyses obtain differential metabolite 
levels by absolute or at least semi-quantification and unambiguous metabolite de-
tection of pre-defined metabolites. New developments in targeted analysis are ena-
bling more and more metabolites to be detected and quantified in a single-shot 
(Mashego et al. 2006; Villas-Bôas et al. 2005b). This promises to aid in the devel-
opment  of  models,  which  systematically  bridge  transcriptional  regulation  and 
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Fig. 1. Metabolite analysis workflow. 

metabolic phenotypes (Kümmel et al. 2006; Çakir et al. 2006; Moxley et al. sub-
mitted). Since efforts in metabolomics motivate the need to track all potential 
biomarkers, identifying discriminatory features and removing noise from the data 
is crucial. A good example is the identification and study of plant defense metabo-
lites (Kell et al. 2001). 

2 Metabolite analysis workflow 

What steps are taken to acquire a snapshot of metabolic composition? Typical me-
tabolite analysis proceeds from chemical analysis to data analysis to data integra-
tion (Fig. 1). Upstream steps, particularly those involved in chemical analysis, 
have a significant impact on the final quality of the data. From experimental de-
sign to sample quenching, attention to every small detail is very important. Many 
experiments center on comparative profiling between genetic (e.g. wild type ver-
sus mutant) or environmental (e.g. growth on different carbon sources) perturba-
tions. To obtain accurate differential data that minimize the influence of non-
related factors, it is important that all conditions, except the variable of interest, 
are kept constant. Metabolite pools vary, for example, depending on growth rate, 
temperature, and media composition (which dynamically changes during batch 
cultures). Chemostat fermentations can be successfully used to eliminate variabil-
ity arising from these factors (Hayes et al. 2002). We will now highlight major de-
velopments in the metabolite analysis workflow as they apply to yeast. 
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3 Chemical analysis  

Although transcriptome and proteome analysis have been developed most exten-
sively over the past decade, the tools necessary for quantitative high-throughput 
metabolome analysis are also now emerging. Sample preparation, which is organ-
ism specific, has been a key area of development. There are three main obstacles 
to overcome in order to acquire a reliable snapshot of the metabolic composition. 
First, the average lifetime of a typical intracellular metabolite is less than 1 second 
(Villas-Bôas et al. 2005c). Second, the chemical diversity of metabolite classes 
necessitates different extraction methods and different analytical methods. Third, 
current protocols are unable to resolve metabolites in different compartments, 
such as the cytosol, vacuole, or mitochondria. 

3.1 Quenching 

Since the average half-life of metabolites is so short, rapid inactivation of biologi-
cal activity is required to prevent compositional changes. For S. cerevisiae, the 
method of choice was originally proposed by de Koning and van Dam (1992). 
Here, metabolism is stopped by rapidly spraying yeast cells into 60% (v/v) metha-
nol kept at -40°C. Following quenching, the extracellular media is separated from 
the biomass by centrifugation. Washing the cell pellet with cold methanol (60% 
(v/v)) can be performed to ensure that there is no contamination from extracellular 
metabolites; however, leaking as a result of membrane weakening has been ob-
served (Villas-Bôas et al. 2005a). Decreasing the time that the cells are exposed to 
the organic solution prior to extraction through faster centrifugations has been 
shown to significantly reduce leakage (Villas-Bôas et al. 2005a). Particularly cru-
cial for kinetic experiments, techniques for rapid sampling have also been de-
scribed (Lange et al. 2001; Mashego et al. 2006). While the time-scale is longer 
for most extracellular metabolites, the objective of instantaneously capturing an 
image of metabolism still requires rapid separation of the extracellular medium 
from the biomass and extracellular enzymes. In general, this is carried out by fil-
tration. 

3.2 Extraction 

Due to their chemical diversity and location within the cell, extracting all cellular 
metabolites in their original state over a large dynamic range with a single or lim-
ited set of analytical techniques is impossible in practice. However, strategies at-
tempting to cover a wide range of metabolites in a single step continue to evolve. 
For intracellular metabolites, the extraction method is critical and influences the 
kind of metabolites that are recovered and can be analyzed. The three most popu-
lar methods for S. cerevisiae are chloroform-methanol (de Koning and van Dam 
1992), boiling ethanol (Gonzalez et al. 1997; Castrillo et al. 2003), and pure 
methanol (Villas-Bôas et al. 2005a). The chloroform – methanol method has a rich 
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history of reproducibility and avoids instability of heat-labile metabolites; but, it is 
considered laborious and uses chloroform, a toxic and carcinogenic solvent. The 
recent workhorse in the field is the boiling ethanol method. This approach is re-
ported as being simple, fast, and accurate. However, some metabolites show poor 
recoveries relative to the chloroform-methanol approach due to temperature insta-
bility (Villas-Bôas et al. 2005c). The pure methanol method has only recently been 
proposed. It appears to combine the advantages of both the chloroform-methanol 
and boiling ethanol strategies. Although the pure methanol method (Villas-Bôas et 
al. 2005a) shows similar recoveries of several metabolite classes relative to the 
chloroform-methanol method (amino and non-amino organic acids, nucleotides, 
among others), there are still questions surrounding whether or not the method 
completely inactivates all enzyme activities.  

Villas-Bôas et al. have offered some insight into how extraction methods in 
yeast compare by investigating the recovery of a wide range of spiked metabolites 
covering several different classes (e.g. amino acids, sugar phosphates, etc.) from 
biological samples (Villas-Bôas et al. 2005a). Their results suggest that the pure 
methanol method offers perhaps the most reproducible, simple, and attractive ap-
proach for high-throughput metabolome coverage. One of the difficulties associ-
ated with comparing different extraction methods is that most laboratories have 
developed analytical techniques for only one specific class of metabolites most 
relevant to their work. For example, sugar phosphates, which were not observed in 
the comparison study by Villas-Bôas et al. (2005a), are routinely recovered by 
others when using the boiling ethanol method (Mashego et al. 2004, 2006; Wu et 
al. 2006). Hence, it is difficult to compare metabolome coverage between different 
laboratories. More rigorous comparative work, particularly among various labora-
tories with different expertise, is needed to characterize the best, or best set of, ex-
traction protocols necessary to analyze a large number of metabolites spanning the 
metabolome. 

3.3 Analytical methods 

The choice of analytical technique for acquiring raw metabolome data is also im-
portant for metabolic state analysis. While NMR is sometimes used, mass spec-
trometry (MS) is the most widely used approach for recent methodologies devel-
oped for metabolomics. MS methods are highly sensitive, allow for identification 
of unknown compounds, and are high-throughput. Typical quantitative approaches 
couple an analytical separation technique (e.g. capillary electrophoresis (CE), liq-
uid chromatography (LC), and gas chromatography (GC)) with MS based detec-
tion. Advantages and disadvantages to each approach are given in Table 1 and 
have been thoroughly described elsewhere (Villas-Bôas et al. 2005c). 

To elucidate a quantitative image of yeast metabolism, LC-MS (van Dam et al. 
2002) and GC-MS (Villas-Bôas et al. 2005b) methods have been mainly em-
ployed. Together, these methods cover a large fraction of the primary metabolites, 
a research area exploited in functional genomics efforts for elucidating general 
rules  and  descriptions  of  cellular  behavior.  The well-refined  LC-MS  platform 
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Table 1. Comparison of analytical techniques used in metabolomics (updated from Villas-
Bôas et al. 2005c). 

 Advantages Disadvantages 
1. GC-MS 
 
 
 
 
 
 
 
2. LC-MS 
 
 
 
 
 
 
 
3. CE-MS 
 
 
 
 
 
 
 
4. MS 

- High separation efficiency 
- Easy interface between GC 

and MS 
- Simultaneously resolves 

different classes of metabo-
lites 

- Reproducible 
 
- High sensitivity 
- Enables analysis of thermo-

labile metabolites 
- Average chromatographic 

resolution 
 
 
 
- Uses small volumes 
- Average resolution 
- Fast separation of charged 

and uncharged species 
 
 
 
 
- Allows for rapid screening 

of metabolites (2-3 min per 
sample) 

- High sensitivity 
- Negligible sample clean-up 

for profiling 

- Unable to analyze thermo-
labile metabolites 

- Requires derivatization of 
non-volatile metabolites 

- Difficult to identify un-
known compounds after de-
rivatization 

 
- Matrix effects 
- Restrictions on LC eluents 

due to interface issues from 
LC to MS 

- De-salting may be necessary 
- More suitable for target 

analysis 
 
- Difficult to interface CE 

with MS 
- Complex methodology and 

quantification 
- Least developed 
- Low sensitivity 

 
 

- Identification of metabolites 
generally requires tandem 
MS 

- Matrix effects 
- Requires elegant data de-

convolution methods 
 

 
offers an exceptionally sensitive and specific approach for studying the intermedi-
ates of the glycolytic pathway and some tricarboxylic acid cycle intermediates 
(van Dam et al. 2002). The GC-MS platform is designed to measure amino and 
non-amino organic acids (which comprise almost 40% of the yeast metabolome) 
that play crucial roles in central carbon metabolism, amino acid metabolism, and 
energy generation (Villas-Bôas et al. 2005b). A recent application of this GC-MS 
platform identified and quantified approximately 60 intracellular and extracellular 
metabolites per experimental condition (Villas-Bôas et al. 2005b). 
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3.4 Standardization 

In addition to dynamic developments in refined analytical techniques and MS sen-
sitivity, advances in internal standardization, one of the main challenges in quanti-
tative metabolome analysis, are also paving the way for more robust measure-
ments. Heijnen and coworkers have developed an approach which uses extracts 
from 13C-saturated microbial cultivations to provide an internal standard for all in-
tracellular metabolites to be quantified (Mashego et al. 2004; Wu et al. 2005). This 
work has created a platform that is independent of ion suppression effects, of me-
tabolite modifications during extraction, and of variations in instrument response. 
Although less universal because limited to nitrogen-containing metabolites, 15N-
saturated cultivations have also shown a strong potential to impact metabolome 
study standardization (Lafaye et al. 2005). 

4 Data analysis 

After chemical analysis, it is important to draw conclusions based on latent struc-
tures hidden in the generated data (Fig. 1). Some of the first applications analyzing 
the metabolome were primarily focused on drawing taxonomical conclusions in-
ferred from chemical information extracted manually from the analytical data files 
(Frisvad and Filtenborg 1983). Nowadays gene functions are studied through de-
termination of intermediate and end product metabolites present in an organism at 
a given time (Sumner et al. 2003; Fiehn 2002; Kell 2004). In most of these cases, 
no a priori knowledge is available about where to look for changes. Whereas early 
applications analyzed a very limited part of the metabolome (quantitatively), 
studying gene functions and understanding the integrated nature of the cell re-
quires analysis of whole metabolite profiles (qualitatively and quantitatively).  

A number of reviews have in detail discussed the variety of modern analytical 
techniques and data collection and storage methods available (Fiehn 2002; Men-
des 2002; Fiehn and Weckwerth 2003; Goodacre et al. 2004; Kell 2004). Brown et 
al. (2005) gives a comprehensive overview of the different methods and addresses 
the need for a streamlined pipeline, describing the wide-ranging methods and ap-
proaches that are used in metabolomics at different levels. Brown et al. also dis-
cuss issues that have to be considered when analyzing the metabolome, from data 
generation to the analysis into useful knowledge.  

In general the analysis of metabolome data is done in at least three stages 
(Hansen and Smedsgaard 2006; Brown et al. 2005): pre-processing, data reduc-
tion, and statistical (inference) analysis. In the following, we briefly describe some 
of the popular techniques used for analyzing the metabolome.  
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4.1 Pre-processing 

Pre-processing is an important part of data analysis since it primarily deals with 
tasks concerning the improvement and the enhancement of the parts in the data re-
garded as “signal” in relation to the parts of the data regarded as “noise”.. In some 
cases, noise is defined as the true random variations which can be seen as high 
frequent changes in a MS spectrum. In other cases “noise” can be defined in a 
much broader sense; as an “artifact” which is caused by internal drift in instrument 
parameters, etc. An example of this would be the drift in baseline that can be seen 
for many types of chromatographic data where the “true” peak signal seems to be 
superimposed on a slowly varying surface. 

4.1.1 Noise reduction 

For any given profile (spectrum, chromatographic trace, etc.), one of the common 
ways of removing noise is based on a so-called “moving window” filter (Antoniou 
1993; Mitra 1998). The filter can be imagined as a window of a certain size mov-
ing along the profile, one profile element at a time. The middle element of the 
window is replaced with the weighted average of all elements in the window. The 
weights chosen in the window are important for the properties of the filter (Han-
sen and Smedsgaard 2006). Figure 2 illustrates the principle of the filter. The illus-
tration shows a window with Gaussian weights, N(μ=0, σ=1).  

If all weights would have been chosen to be one over the length of the filter 
(i.e. 1/7 in this example) the window would have calculated the mean of the over-
laid cells in the profile, and hence the filter would have been called a “mean fil-
ter”. Other types of filters are based on this moving principle have different prop-
erties (Savitzky and Golay 1964; Eilers 2003). Some calculate the dot-product 
between the window weights and the profile values, as illustrated here, whereas 
others estimate the median, a quantile or other (weighted) measure derived from 
the profile values within the window.  

It is important to remember the value of new elements and not make the re-
placement until the window has passed. This must be done since all calculations 
shall be based on the original data in the array. When the ends of the profile are 
filtered and parts of the window are outside the spectrum, the calculation must be 
done on fewer elements than when the entire window is inside the array. This im-
plementation leaves the ends of the array unfiltered. For a 7-point filter, this 
means that when n elements are filtered, elements 1, 2, 3, and n-2, n-1, n remain 
unchanged when filtering is complete. For many applications – long profiles and 
short filters – this is no problem. Alternatively, the profiles can be padded with the 
values found at the end or padded with zeros.  

Unfortunately, smoothing with these fixed filters does not preserve the height 
and width (i.e. the area) of a peak and the (centroid) position if the peak is skewed. 
Some of the existing filter algorithms can be made adaptive based on measured 
peak properties, such as intensity or width. To accommodate for this problem, the 
spectrum can be approximated locally by a higher order polynomial (of some or-
der)  within a moving  window.  This filtering  method is  closely  related to the so 
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Fig. 2. Illustration of the moving window filter. The values marked with * are values that 
have been calculated although not shown in the figure. The weights used in the filter are 
chosen to be based on the normal distribution with mean zero and standard deviation equal 
to one. 

called Savitsky-Golay filter (Savitzky and Golay 1964) available in most of the in-
strumental software packages (e.g. MassLynx and HP Chemstation). 

4.1.2 Baseline correction 

In Section 4.1.1 the noise was regarded as stochastic, but in some cases it has to be 
considered deterministic. As described above most of the chromatographic data 
can be regarded as “real information” added on to a “noisy” background or base-
line (Goehner 1978). In the case of chromatographic data the baseline is defined as 
the part recorded when only carrier gas or solvent elute from the column (from the 
IUPAC compendium of technical terminology).  

The baseline can be either flat, linear with a positive or negative slope, curved 
or a combination of all three. In most correction algorithms it is the goal to esti-
mate the baseline ( )g t , which then is subtracted from the original chromatogram. 
The methods available for estimating the background vary a lot in complexity 
(Mazet 2005). Some of the methods work on the whole chromatogram at once and 
some are local methods that break the chromatogram into relevant smaller sections 
where the background function is estimated better. In addition, some methods are 
parametric methods that try to estimate a function (piecewise or global) to the 
background. The simplest are the (locally) linear correction methods (Nielsen et 
al. 1998) followed by the more complex nonlinear methods. In most software 
packages like Origin (by OriginLab) or PeakFit (by Systat Software), as well as 
for many published papers (Vickers et al. 2001; Torres-Lapasió et al. 1997), the 
background is estimated by a least-squares polynomial fitting performed on a user 
defined subset of points, which should belong to the background. In 1997, 
Depczynski et al. introduced the wavelet transform as a new tool for removing the 
background from chromatographic data (Shao et al. 1999; Cai 2001; Tan and 
Brown 2002; Liu et al. 2003). 
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4.1.3 Chromatographic warping 

Retention time variations are a serious impediment to the successful application of 
automated comparison of chromatographic data (Wang and Isenhour 1987; 
Malmquist and Danielsson 1994; Round et al. 1994; Grung and Kvalheim 1995; 
Bylund et al. 2002). These variations are due to subtle, random, and often un-
avoidable changes and variations over time in instrument parameters. Pressure, 
temperature, solvent composition, column aging and flow fluctuations may be the 
cause for an analyte to elute at different retention times in replicate runs. Even 
with implementing advanced instrumentation having electronic pressure control, 
subtle run-to-run retention time shifting can be small but is always present, and 
must be taken into account to successfully apply multivariate statistical methods 
(known as chemometric methods, when being applied on chemical data). Matrix 
effects and stationary phase decomposition may also cause variation in retention 
time. The main reason is that most pattern recognition techniques and chemomet-
ric methods are based on point to point comparison for successful analysis. 

Many of the available alignment algorithms do not require knowledge or identi-
fication of peaks. The main goal for all warping algorithms is the same: to align 
chromatograms so that they correct for the random differences from run to run. 
These algorithms typically search to find the optimal “warp” according to some 
criterion. Warping is the process of stretching or shrinking one profile of peaks in 
order to make it match to another profile of peaks. The “simple” warp here would 
be stretching or shrinking the profiles in a linear manner just by moving the ends 
(like an elastic band).  

Unfortunately, this simple approach can’t be used since the difference between 
the profiles might vary along the retention time, for example. Therefore, all of the 
warping algorithms try to warp the profiles to each other in such a way that they 
are fitted warped locally. And the criteria used for what can be regarded as a local 
good fit is how well the pieces correlate to each other. 

Since the first publications (Wang and Isenhour 1987), many attempts have 
been made to increase speed and performance of warping algorithms for finding 
the best match between two chemical profiles. Pravdova et al. (2002) and Tomasi 
et al. (2004) both review and evaluate two competing state of the art warping 
methods: Dynamic Time Warping (DTW) (Kassidas et al. 1998) and Correlation 
Optimized Warping (COW) (Nielsen et al. 1998). In 2003, Forshed et al. sug-
gested a method called Peak Alignment with Genetic Algorithm (PAGA) and 
Johnson et al. (2003) came up with a method called Local Warping (LW). Some 
of the latest attempts have been made by Eilers (2004) Parametric Time Warping 
(PTW), Tibshirani et al. 2004 applying a hierarchical clustering method to con-
struct a dendrogram of all peaks from multiple samples, and recently, a Hidden 
Morkov Model-based approach was proposed by Listgarten et al. (2004) to align 
multiple time series data. Finally, the year after Walczaka and Wub (2005) de-
scribed a method called Fuzzy warping (FW).  

One of the conclusions that can be made based on all existing literature is that 
no matter what method one chooses, it will be based on a tradeoff between per-
formance and speed. Some methods, like DTW, are relatively fast, but have been 
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found to perform not as well as the COW algorithm (Pravdova et al. 2002; Tomasi 
et al. 2004).  

4.1.4 Deconvolution 

Chromatographic techniques often give rise to situations where reaching complete 
resolution is not possible. Deconvolution is the process of separating the signals 
from overlapping peaks (Dromey et al. 1976; Stein 1999). Together with the de-
velopment of high-performance instruments, the number of algorithms and tools 
for deconvolution of chromatographic data has been increasing steadily. As a re-
sult, compounds hidden within a peak cluster can now be quantified with rela-
tively small errors.  

Deconvolution methods can be divided into two fundamental categories: those 
that are use single (one-dimensional) profiles (Vivó-Truyols et al. 2002, 2005b) 
and those that are based on higher dimensional chromatographic data (Kong et al. 
2005; Maleknia and Downard 2005). Most one-dimensional approaches (e.g. only 
retention time profile) rely on fitting a sum of peak-models to the profile (Li 2002; 
Vivó-Truyols et al. 2005a) whereas some utilize the unique information available 
along the other dimensions (e.g. spectral dimension is added to the retention time 
dimension). Adding more dimensions to the deconvolution algorithm makes the 
task easier. For example, two peaks eluting at almost the same time might differ in 
MS spectrum or UV absorbance spectrum. 

Deconvolution can be either achieved in an automated fashion by the software 
packages provided with most GC-MS instruments (Pegasus, Leco, St. Josephs, 
USA) or separate software can be applied, such as AMDIS 
(http://chemdata.nist.gov/mass-spc/amdis; National Institute of Standards and 
Technology, Gaithersburg, USA). The AMDIS software is originally based on the 
algorithm developed by Stein (1999). 

4.1.5 Data normalization/standardization 

In some cases, it is interesting to look at the relative amounts of different com-
pounds between samples. In these cases it is necessary to remove the effect of the 
total amount from the analysis. This type of correction is commonly known as 
normalization, standardization, and sometimes, multiplicative correction of the 
data. Data standardization is the process of making all data comparable to an es-
tablished convention or procedure to ensure consistency and comparability across 
different types of variables.  

4.2 Statistical analysis 

In the following sections, some of the tools used for statistical analysis will be de-
scribed. Before we go into detail with some of the more common multivariate 
methods, we would like to say a few words about univariate statistics. As empha-
sized by Brown et al. (2005) it is always useful to look at data with the “simple to 
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understand” methods before continuing to the more complex ones. Simple statis-
tics, like the mean and standard deviation, might detect outliers that have to be 
removed from the dataset. As an example, by looking at the mean value of the To-
tal Ion Count (TIC) from direct ESI-MS data, one can easily detect samples that 
for some reason or another might be an outlier due to an injection problem. 

4.2.1 Data reduction  

One of the main challenges of analyzing the metabolome is the huge dimensional-
ity of the data. For most analytical instruments, the amount of variables returned 
for each sample can be extremely high, and caution has to be taken. The perform-
ance of most multivariate statistical algorithms depends highly on the interrela-
tionship between both the sample size and the number of dimensions.  

In cases with many more dimensions than observations, it can be necessary to 
reduce the effective dimension to employ some of the more efficient methods that 
work best at lower dimensions. Based on redundant information in the data, ob-
servations can well be approximated by “projections” into a lower-dimensionality 
space – more or less removing the redundancy from the data (explained below). 
Many of the techniques used for data reduction and visualization of multivariate 
data are based on a so-called decomposition of X followed by a projection of the 
data onto the axes defined by the extracted factors.  

Figure 3 illustrates the principle behind transforming data in a simple way. 
Here data are distributed as an ellipse in the (x1,x2) coordinate system. The pur-
pose of any (linear) transformation is to place a new coordinate system in the 
original one based on some criterion. It is the criterion that makes the difference 
between the different methods such as, for example, Principal Component Analy-
sis (PCA) (Mardia et al. 1979) and Fisher Discriminant Analysis (FDA) (Fisher 
1936). Since PCA and FDA can be considered as the two most popular transfor-
mations, we will provide a brief description of the principles behind these meth-
ods. Other dimensionality reduction methods can also be applied to data, including 
non-linear transformations. Factor Analysis (Bartlett 1937), Projection Pursuit 
(Friedman and Stuetzle 1981), Wavelet Transforms (Percival and Walden 2000), 
and Independent Component Analysis (Karhunen and Joutsensalo 1995) are some 
of the additional methods that can be found in the literature. Common for all 
methods is their property allowing characterization of a low-dimensional subspace 
from the original data. 

Principal component analysis - first described by Pearson (1901), PCA is 
probably the most popular technique for simplifying a dataset by reducing dimen-
sionality. More formally PCA is a linear transformation (rotation of data) that 
chooses a new coordinate system (p1,p2) for the data set in such a way, that the 
greatest variance by any projection of the data is found along the first axis (p1) – 
called the first principal component (PC) – the second largest variance on the sec-
ond axis (p2), and so on. PCA can be used to reduce the dimension of data while 
retaining those  characteristics of the dataset that  contribute mostly to the variance 
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Fig. 3. Illustration of the principle of transforming data (see text for further details). 

by eliminating the higher principal components, by a more or less heuristic deci-
sion. Characteristics retained may be the “most important”, but this is not neces-
sarily the case and depends on the application. In the following, we describe in de-
tail the mathematics behind PCA. 

Figure 3 illustrates the basic principles. The data are distributed in an ellipsoid 
along x1 and x2. From the plot we conclude that the metabolites x1 and x2 are cor-
related.  

PCA places a new coordinate system (p1,p2) in (x1,x2) with the origin in the 
center of the data, and having the same number of axes. The axes are placed in 
such a way that the first axis is pointing along the direction with most variance, 
and the second is placed orthogonal in the direction of second most variance (Fig. 
3). As one can see on the figure, p1 now contains most of the variation in the data. 
In the case where the main variation in the data was caused by differences in the 
metabolite concentrations produced between two or more species, p1 would en-
hance (capture) these differences.  

It is possible to calculate the amount of variance captured by each PC. Often 
the amount of PCs chosen is defined as a percentage of the total variance present 
in the dataset. In the above case x1 and x2 each describe 50% of the total variance 
whereas p1 describes approximately 90%. Often a number of PCs is chosen so that 
>90% of the total variance is captured. Hopefully, this will reduce the number of 
dimensions to a fraction of the original.  

Fisher discriminant analysis - understanding the principle of PCA makes it 
easy to get a brief understanding of most of the other available data transformation 
techniques, such as Fisher Discriminant Analysis (FDA) (Fisher 1936). Whereas 
PCA finds directions in the data that contain the most variance, FDA finds the di-
rections in which data segregate. More formally it is a linear transformation (rota-
tion of data) that chooses a new coordinate system (f1,f2) for the data set in such a 
way, that the largest segregation  between groups is  found along the first axis (f1), 
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Table 2. List of distance functions 
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the second largest segregation between groups is found along the second axis (f2), 
and so on. 

Whereas PCA is said to be unsupervised, FDA requires group information in 
order to calculate the projection. As for PCA, the number of dimensions that are 
included in FDA can be chosen so that the FDA coordinates describe >90% of 
variation within and between groups.  

Further details about the technical aspects of PCA and FDA can be found in a 
huge amount of literature available on the topic, both in the literature as well as on 
the Internet.  

An example to illustrate the power of FDA was recently reported by Mas et al. 
(2006). They compared two distinct analytical approaches based on mass spec-
trometry for their potential in revealing specific metabolic footprints of yeast sin-
gle-deletion mutants. In the study, filtered fermentation broth samples were ana-
lyzed both by GC-MS and direct infusion ESI-MS. The mutants evaluated were 
cat8, gln3, ino2, opi1, and nil1, all with deletion of genes involved in nutrient 
sensing and regulation. Using FDA, they found that it is possible to discriminate 
the mutants in both the exponential and stationary growth phase, but the data from 
the exponential growth phase provide more physiological relevant information.  

Another recent example exploiting FDA is given by Villas-Bôas et al. (2005b), 
presenting a novel derivatization method for metabolome analysis of yeast. Their 
sample workup method enables simultaneous metabolite measurements through-
out central carbon metabolism and amino acid biosynthesis, using a standard GC-
MS platform that was optimized for this purpose. As an implementation proof-of-
concept, Villas-Bôas et al. (2005b) assayed metabolite levels in two yeast strains 
and two different environmental conditions in the context of a metabolic network. 
They demonstrated that these differential metabolite level data distinguish among 
sample types, such as typical metabolic fingerprinting or footprinting. More im-
portantly, they showed that this differential metabolite level data provides insight 
into specific metabolic pathways and lays the groundwork for integrated transcrip-
tion–metabolism studies of yeasts. 
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Fig. 4. Illustration of the linkage principle. The figure shows two profiles, A and B, (e.g. by 
direct ESI-MS) and the peaks found in both profiles, a1,…,a|A|, and b1,…,b|B|. In the figure 
|A| and |B| means the length (number of peaks) of both profiles. 

4.2.2 Similarity (distance) based comparison 

Both PCA and FDA see data as points in a hyper dimensional space – before and 
after the transformations. When data are represented as points in an appropriate 
space, it is possible to compare these observations by how far away they are lo-
cated from each other. A distance function comparing the distances between two 
vectors, xi and xj, of data (i.e. observations) is defined as a so-called distance func-
tion, ( ),ij i jd d= x x .  

Distance functions are generally divided into two categories: continuous and 
binary functions. Table 2 shows a list of some of the most commonly used con-
tinuous distance functions. In the table x and y are two profiles and d(x,y) is the 
distance between them. xi and yi are the i’th element in each of the profiles. Based 
on the choice of p, the most widely used are the 1-norm, 2-norm, and ∞-norm 
( ( ) max ,k kx y k

∞
− = − ∀x y ) referred to as the city-block or Manhattan dis-

tance, the Euclidian, and the Chebychev distances. 
In some cases, as when comparing spectra, special distance functions can be 

developed utilizing special properties in the data (Stein 1995). Examples like this 
include library search methods, where reference spectra are stored in a database, 
and subsequent searches are done based on comparing a query spectrum with each 
of the references in the database based on a distance function. Some of the sugges-
tions proposed include the Probability Based Matching (McLafferty 1974) algo-
rithm and the Hertz similarity index (Hertz 1971).  

Hansen and Smedsgaard (2004) have presented a new matching algorithm de-
signed to compare high-resolution spectra. Whereas all of the existing distance 
functions methods are bound to compare fixed intervals of ion masses, the Accu-
rate Mass Spectrum (AMS) distance method is independent of any alignment. The 
method takes into account that there may be differences in resolution of the spec-
tra, and it is independent of any variable alignment procedures or binning. Figure 
4 illustrates the principle of the algorithm. Given two profiles, the algorithm first 
detects the peaks followed by a matching of the peaks between them. Based on the 
number of peaks that could be matched, and how well they are matched, an overall 
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measure of agreement (distance/similarity) between the two profiles can be calcu-
lated. 

Hansen and Smedsgaard (2004, 2006) illustrate the use of the AMS distance 
function to compare accurate mass spectra from an analysis of extracts of 80 iso-
lates representing the nine closely related species in the Penicillium series Viridi-
cata. The algorithm is used as a database search algorithm. Although the profiles 
are highly similar the algorithm shows high performance and is capable of dis-
criminating between the nine species investigated.  

4.2.3 Clustering 

Clustering algorithms can be hierarchical or partitional. Hierarchical algorithms 
find successive clusters using previously established clusters, whereas partitional 
algorithms determine all clusters at once.  

Hierarchical Clustering - hierarchical algorithms can be agglomerative (bot-
tom-up) or divisive (top-down) (Anderberg 1973; Hartigan 1975; Kaufman and 
Rousseeuw 1990). Agglomerative algorithms begin with each element as a sepa-
rate cluster and merge them in successively larger clusters. Divisive algorithms 
begin with the whole set and proceed to divide it into successively smaller clus-
ters. A key step in a hierarchical clustering is to select a distance measure. A sim-
ple measure is the Manhattan distance, equal to the sum of absolute distances for 
each variable. The name comes from the fact that in a two-variable case, the vari-
ables can be plotted on a grid that can be compared to city streets, and the distance 
between two points is the number of blocks a person would walk. 

A more common measure is Euclidean distance, computed by finding the 
square of the distance between each variable, summing the squares, and finding 
the square root of that sum. In the two-variable case, the distance is analogous to 
finding the length of the hypotenuse in a triangle; that is, it is the distance “as the 
crow flies.”  

Given a distance measure, elements can be combined. Hierarchical clustering 
builds (agglomerative), or breaks up (divisive), a hierarchy of clusters. The tradi-
tional representation of this hierarchy is a tree data structure (called a dendro-
gram), with individual elements at one end and a single cluster with every element 
at the other. Agglomerative algorithms begin at the top of the tree, whereas divi-
sive algorithms begin at the bottom. Cutting the tree at a given height will give a 
clustering at a selected precision. Mas et al. (2006) used hierarchical clustering af-
ter applying FDA. The cluster analysis was used to gain further insight into meta-
bolic similarities in different mutants with deletions in transcription factors.  

k-means Clustering - the k-means algorithm assigns each point to the cluster 
whose center (also called centroid) it is nearest. The center of the cluster is calcu-
lated as the arithmetic mean (of each dimension) of all the points regarded to be in 
the cluster. The algorithm is roughly (MacQueen 1967): 

 
1. Randomly generate k clusters and determine the cluster centers, or di-

rectly generate k seed points as cluster centers.  
2. Assign each point to the nearest cluster center.  
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3. Recompute the new cluster centers.  
4. Repeat 1-3 until some convergence criterion is met (usually that the 

assignment hasn't changed).  
The main advantages of this algorithm are its simplicity and speed which allows it 
to run on large datasets. Its disadvantage is that it does not yield the same result 
with each run, since the resulting clusters depend on the initial random assign-
ments. The algorithm maximizes inter-cluster (or minimizes intra-cluster) vari-
ance, but does not ensure that the result has a global minimum of variance. 

4.3 Classification 

Classification is a procedure in which individual items are placed into groups 
based on quantitative information on one or more characteristics based on a train-
ing set of previously labeled items. 

One of the most known methods for classification is the k-nearest neighbor. 
Nearest neighbor methods in general are based on a measure of distance between 
observations, e.g. the Euclidean distance or one minus the correlation between two 
metabolite profiles. The k–nearest neighbor rule, k–NN (Fix and Hodges 1951), 
classifies an observation x as follows:  

1. Find the k observations in the learning set that are closest to x. 
2. Predict the class of x by majority vote, i.e., chooses the class that is 

most common among those k observations. 
Other methods for classification can be found in Duda et al. (2001) and Her-

brich (2001). 

4.4 Genetic programming 

As an alternative to the traditional (classical) statistical methods described above, 
a technique for the analysis of multivariate data by genetic programming (GP) has 
been described by Gilbert et al. (1997) (also see Kell 2002). Genetic programming 
(GP) is an evolutionary technique, which uses the concepts of Darwinian selection 
to generate and optimize a desired computational function or mathematical ex-
pression (Koza 1992). An initial random population of individuals, each encoding 
a function or expression, is generated and their fitness to reproduce the desired 
output is assessed. New individuals are generated either by mutation (the introduc-
tion of one or more random changes to a single parent individual) or by crossover 
(randomly rearranging functional components between two or more parent indi-
viduals). The fitness of the new individuals is assessed, and the best individuals 
from the total population become the parents of the next generation. This process 
is repeated until either the desired result is achieved or the rate of improvement in 
the population becomes zero. It has been shown that if the parent individuals are 
chosen according to their fitness values, the genetic method can approach the 
theoretical optimum efficiency for a search algorithm (Koza 1994). 
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An excellent example of the use of genetic programming is Kell et al. (2001). 
This was a “transgene discovery” problem in which they measured a series of me-
tabolites via HPLC and used these as the inputs to a Genetic Program designed to 
find a rule which would tell from the metabolome data whether the transgene of 
interest was present or absent. The experiment was also aimed at investigating the 
biosynthesis and function of salicylic acid in plant defense by the expression of a 
salicylate hydroxylase enzyme (SH-L) to block accumulation. 

A total of 48 peaks (V1 – V48) from the HPLC traces were digitized and inte-
grated using standard software provided with the instrument, and a total of 36 
samples studied. The metabolite peak values were used as inputs to the Genomic 
Computing software Gmax-bio (Aber Genomic Computing, Unit 8, Science Park, 
Aberystwyth SY23 3AH, UK), with the presence or absence of SH-L in the geno-
type being encoded 1 or 0. One of many rules which evolved could be written as 
follows:  
SCORE = Sqrt((V37/V24)) + Sqrt(V30/(V24+V42)) 
Probability that plant contains the transgene: 
1 / (1 + Exp(-(-8.046777 + SCORE * 1.872833))) 
This rule had an accuracy of more than 95%. A power of genomic computing is 

that it ranks variables in order of their utility in successful rules. The top 3 vari-
ables were peaks 24, 30, and 42, and peak 24 was indeed salicylate, known to play 
a key role in defense mechanisms in many plants. Thus, the GP discovered not 
only what differences there were but also which were important to the biological 
pathway of interest, and turned metabolomic data into biochemical knowledge. 

4.5 SpectConnect 

Styczynski et al. (2007) have presented a new method, SpectConnect, to automati-
cally catalogue and track otherwise unidentifiable conserved metabolite peaks 
across sample replicates and different sample condition groups without use of ref-
erence spectra. SpectConnect compares every spectrum in each sample to the 
spectra in every other sample within a user specified time window. By doing so, it 
is capable of determining which components are conserved across replicate sam-
ples. SpectConnect also determines which of these components differentiate one 
sample condition (e.g. time or treatment) from another, whether by changes in 
concentrations or merely by their presence/absence. The only requirement of the 
experimental measurements is that each sample condition must have replicates. In 
a sense, SpectConnect relies on an increase in signal relative to noise that is cre-
ated by this requirement of replicates. While injection (“technical”) replicates are 
the easiest way to provide the required replicates, it is also desirable to include 
biological replicates in a group of samples. This is due to systematic error in peak 
detection and deconvolution software that may consistently find a noise peak in 
technical replicates. Though this approach adds more biological variability to a 
group in terms of metabolite concentrations, it should have significantly less im-
pact on the presence/absence of a metabolite. Ultimately, the authors hypothesize 
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that these “true”, important, spectra will be conserved across most or all replicates 
of a sample, while spectra that are artifacts of noise will not. 

With SpectConnect, it is possible to find three distinct types of information. 
First, it identifies all of the components that are conserved across a single group of 
samples or replicates. Second, for each metabolite peak conserved in at least one 
group, it can determine all other groups in which it occurs. Finally, for any given 
pair of groups, it can find the likelihood, to some degree of statistical significance, 
that each metabolite peak is present in unequal amounts in the groups. 

Styczynski et al. (2007) illustrates the use of SpectConnect on biological sam-
ples. The samples are time-course data from fermentation runs conducted with 
three different strains of E. coli analyzed with GC-MS. They found that across 
five time points over 30 hours, there were a total of 544 metabolite peaks (chro-
matogram peaks) that occurred in at least one of the strains in at least one time 
point, while 184 of those occurred in all of the strains in at least one time point. 
Qualitatively, this indicates that the genetic differences of these strains have 
caused significant differences in their respective metabolisms. This result is to be 
expected for mutants with deletions of metabolic enzymes: some subsets of me-
tabolites are rendered inaccessible, so a significant metabolic adjustment is neces-
sary to compensate for such changes.  

Using this cumulative library of 544 metabolite peaks, they analyzed the me-
tabolomic profile of one mutant strain relative to that of the reference strain in the 
course of the fed-batch cultivation. While a few compounds are identified using 
the known library, significantly more spectral signatures are detected with 
SpectConnect. 

5 Data integration  

Data analysis strategies are turning raw data into metabolite knowledge, but the 
true power of metabolome analysis is in using observed metabolite profiles to un-
derstand the interaction of components in biomolecular systems more completely. 
As mentioned, metabolome data, which comprise qualitative metabolite patterns, 
are useful for characterizing mutants and exploring metabolic chemodiversity (see 
Data analysis section). However, these data are difficult to integrate with other 
measurements of cellular molecules (e.g. mRNA and/or protein levels) because 
metabolite identities and levels are unknown. Metabolite identities and levels are 
required for systems biology efforts that seek to map different layers of regulation 
and understand the connectivity between genes, mRNAs, proteins, fluxes, and me-
tabolites. For these efforts, chemical analysis and data analysis are just the starting 
point for inferring novel insight (Fig. 1). 

Although the ultimate goal of unraveling regulatory schemes and communica-
tion mechanisms that dictate cellular function is clear, exactly how best to use me-
tabolome data for achieving this goal is still a work in progress. One of the main 
reasons is that discerning metabolic heritage is a formidable task. Because me-
tabolite levels are determined by changes in fluxes and the activities of enzymes 
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(in general, 2 or more), metabolites represent the integration of signals broadcast 
from several functional levels (genes, mRNAs, and proteins) (Nielsen 2003). 
There is not a one-to-one link between genes and metabolites (Nielsen and Oliver 
2005). Therefore, knowing that the level of metabolite X increases fourfold be-
tween condition 1 and condition 2 does not, in general, directly tell us what is 
happening to gene Y. Another challenge to bridging the gap between genetic 
structure and metabolic phenotype is that current analyses miss many metabolites 
that may be critical to the particular system of study (e.g. amino acids may be 
measured but not nucleotides). Hence, we may have quantitative metabolite levels 
for amino acid metabolism, but lack information detailing glycolysis. To address 
these issues, recent efforts have focused on imposing thermodynamic and/or net-
work constraints (Kümmel et al. 2006; Çakir et al. 2006) or linear modeling (Pir et 
al. 2006) for upgrading the information content obtained from metabolome meas-
urements (Fig. 5). 

Network-embedded thermodynamic (NET) analysis is a new method for 
model-based interpretation of quantitative metabolite data (Kümmel et al. 2006). 
By using metabolome data, estimated or known flux directions that reflect the 
metabolic network operation, standard Gibbs free energies of formation, and the 
second law of thermodynamics, NET analysis offers a tool to calculate network 
constrained and thermodynamically possible ranges of metabolite concentrations. 
The power of this systems-level approach lies in determining metabolite concen-
trations that are feasible within the network rather than for just a single reaction 
(van Dien and Schilling 2006). As a result, fundamental principles of the meta-
bolic ‘system’ can be discriminated. For example, NET analysis has already 
shown utility for determining the thermodynamic consistency of metabolome data 
(i.e. does reported data make sense in the context of the whole cell?). Strikingly, 
the authors show that of seven published Escherichia coli data sets, three were not 
consistent with the assumed flux distribution. This result emphasizes the need for 
improving our ability to accurately measure intracellular metabolite concentrations 
and promises to be a simple strategy for checking experimental errors. Another 
application of NET analysis is to resolve compartmentalized and/or pooled me-
tabolites. As previously noted, a major bottleneck for endometabolome analysis is 
that compartmental metabolite concentration differences, between the cytosol and 
mitochondria for example, cannot be resolved. Kümmel et al. (2006) demonstrate 
that their computational framework was able to resolve compartmental differences 
for malate and oxaloacetate using S. cerevisiae data. One of the most compelling 
applications of NET analysis is to identify reactions that lie near or far from equi-
librium conditions. This can, as the authors highlight, be used to gain insight into 
putative regulatory sites, with reactions far from equilibrium being more likely to 
impose regulatory control. NET analysis is currently limited by our inability to ac-
curately measure a wide range of intracellular metabolite concentrations, by the 
requirement for knowing the direction of metabolite flux through the metabolic 
network, and by the need for standard Gibbs energies of formation. It should also 
be noted that while grounded in known network topology, NET analysis may suf-
fer from thermodynamic assumptions. 
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Fig. 5. New strategies to upgrade the information content in metabolome data for gaining 
biological insight are employing metabolic networks, graph theory, and thermodynamics. 

By using graph theory to integrate metabolome data with metabolic network 
topology, Çakir et al. (2006) have proposed a general framework for identifying 
biochemical reactions around which the most significant coordinated metabolite 
changes are observed, termed ‘Reporter Reactions’. Their approach is based, in 
part, on an earlier report used for discovering co-regulated sub-networks and re-
porter metabolites from transcriptome data (Patil and Nielsen 2005). The Reporter 
Reaction algorithm uses the significance of change in metabolite levels between 
conditions of interest to calculate a normalized Z-score for each reaction in the 
network. The calculated Z-score is ranked and used to determine Reporter Reac-
tions. The major hurdle that the authors had to overcome was how to deal with 
only having measurements for a small fraction of metabolites present in the ge-
nome-scale metabolic model (84 metabolites were measured and the full genome-
scale model consists of 844 metabolites). To address the lack of quantitative data, 
the authors used several pre-processing steps, including flux balance analysis, to 
judiciously obtain a reduced metabolic model containing 178 metabolites. Using 
several case stories that looked at redox metabolism, oxygen availability, and high 
gravity fermentation effects, the authors demonstrate that their algorithm enables 
identification of key reactions in the yeast metabolism affected by genetic and en-
vironmental perturbations. Equally important, they show that their ‘reporter’ plat-
form can be integrated with transcriptomic data to map different cellular regula-
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tory strategies, distinguishing between hierarchical and metabolic regulation. This 
approach may open up new avenues for integrating proteomic data, and other 
omic data, as well. This algorithm is currently limited by our inability to quantita-
tively measure hundreds of intracellular metabolites. As we get better at quantita-
tively measuring more and more metabolites having broader coverage over the 
metabolic network, the utility of Reporter Reactions will expand. For now, it is 
most effective when using metabolome data covering metabolites that participate 
in hubs of the metabolic network and in related pathways, such as the kind of data 
obtained from GC-MS analysis methods developed, for example, by Roessner et 
al. (2000) and Villas-Bôas et al. (2005b). 

Because metabolism is highly annotated, it offers an extraordinary stepping-
stone for using metabolome data to understand cellular behavior. NET analysis 
and Reporter Reactions are excellent examples of this. However, other analysis 
methods, that do not impose network structure constraints, are also being devel-
oped to integrate metabolic data with additional cellular response measurements. 
Pir et al. (2006) have used the Partial Least Squares (PLS) method to linear model 
and integrate the transcriptomic and metabolomic response of S. cerevisiae to dif-
ferent media composition, growth rate, and specific gene deletion. While their ap-
proach falls short of using many measured metabolites (they only used biomass, 
glucose uptake rates, and ethanol production), it provides a useful framework for 
identifying genes that mediate the effects of particular experimental conditions. 

6 Future outlook 

Looking forward, we anticipate that new standards in chemical analysis, novel 
analytical strategies for quantitatively identifying increasing numbers of metabo-
lites, and integration strategies for connecting metabolome data with molecular 
measurements from other functional levels of the cell will play an ever important 
role in systems biology efforts. 
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E. coli metabolomics: capturing the complexity of 
a “simple” model 

Martin Robert, Tomoyoshi Soga and Masaru Tomita 

Abstract 

As the workhorse of early studies on metabolism, the metabolic pathways of E. 
coli are arguably the best characterized. The richness of information available 
about its pathways is broader than for any other model. However, in spite of dec-
ades of descriptive work, only recently can a significant number of E. coli meta-
bolic network constituents be analyzed simultaneously. The advent of me-
tabolomic methods that allow to capture qualitative as well as quantitative 
information about the intracellular and extracellular metabolite profiles is starting 
to shed light on the remaining complexity of this simpler model. Here we describe 
important findings about the physiology of E. coli resulting from emerging me-
tabolomic studies. While a vast number of intracellular metabolites in E. coli still 
remain to be characterized, the information obtained from those studies can pro-
vide an unprecedented amount of information about metabolic pathways including 
their functional elucidation, enzyme activity, metabolic fluxes, network robust-
ness, or even the discovery of completely novel reactions or pathways. These re-
sults are also being used to populate rich databases and to develop computational 
models of E. coli metabolism that have already proven effective to predict cellular 
states and will shed light on complex and until now still elusive regulatory princi-
ples. 

1 Introduction 

Most scientists (biochemists) will remember their introductory biochemistry class 
as an introduction to the intricacies and inherent network structure of biochemical 
pathways. The related biochemical pathway maps are both surprisingly complex 
and puzzling and therefore command respect. We also know that most of these 
pathways were elucidated by brave, and often isolated, scientists working with this 
popular model organism, Escherichia coli (E. coli). In fact, much of the original 
biochemical knowledge regarding enzyme activities originates from work derived 
from this organism. Now that we have firmly stepped into the metabolomic era, 
the sheer complexity of the metabolome, as far as we can see it (only the tip of the 
iceberg?), definitely commands respect even from the most active and prolific re-
search groups. E. coli remains a friendly ally in this continuing quest for the ex-
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haustive (both qualitative and quantitative) elucidation of the biochemical inter-
mediates (metabolites) of a single unicellular organism. 

The metabolome can be defined as the complement of low molecular weight 
metabolites in the cell under particular physiological conditions (Kell et al. 2005). 
It is thus a very dynamic molecular ensemble whose profile changes rapidly under 
environmental conditions. It is currently still not possible to obtain a complete pic-
ture of the metabolome with any single experimental method, and at present, only 
a subset of the metabolome is actually being sampled, surveyed, and consequently 
used to infer new biological insight. However, biochemical reactions are often 
conserved across species and by definition the chemical species that make them up 
are exactly the same, in contrast to proteins and genes that are usually only par-
tially conserved during evolution. In spite of the remaining difficulties in develop-
ing analytical methods that can sample a more substantial proportion of the me-
tabolome, metabolomics, the qualitative and quantitative analysis and 
characterization of the metabolome, benefits from the fact that effective methods 
can be applicable directly to other organisms since compounds are conserved. 

For all the secrets that E. coli has shed, sometimes reluctantly, about its func-
tions, it has yet to reveal a considerable number. These are the subject of intense 
research efforts and the speed and ease at which E. coli can be grown and manipu-
lated together with the availability of genome-wide resources such as the Keio col-
lection (Baba et al. 2006) and ASKA libraries (Kitagawa et al. 2005) make it a 
leading player for the limelight among other model organisms such as yeast. As a 
unicellular organism, E. coli presents obvious advantages; the necessary biomass 
for extraction of metabolites can be easily and rapidly obtained and it is easier to 
analyze with its well-known and simpler genetics. At the same time, the chal-
lenges of preserving and then breaking through a double membrane, and the pres-
ence of culture medium can complicate some analytical tasks. 

Reliable experimental data is the cornerstone for building useful models of E. 
coli and metabolomic data is one of the most desirable data type toward this goal 
(Arita et al. 2005; Ishii et al. 2005). In this chapter, we introduce the basic meth-
ods that are making possible the analysis of the E. coli metabolome and the main 
studies that have recently emerged. Applications of E. coli metabolomics as a tool 
for functional genomics and metabolic engineering are later introduced. Finally, 
the initial efforts reporting the construction of large-scale models of its metabo-
lism and various bioinformatics resources for E. coli metabolomics are described. 
As a general review of multiple facets of E. coli metabolomics this chapter is not 
meant to be exhaustive. Hopefully the reader will be inspired to seek additional in-
formation among the described references and resources. 

2 Experimental methods 

Prior to extraction of metabolites, E. coli cells obviously need to be grown. Bacte-
rial cells such as E. coli usually reproduce rapidly so that cultures times are mini-
mal and a large number of cells can be obtained rapidly. Culture conditions can 



E. coli metabolomics: capturing the complexity of a “simple” model   191 

vary between standard batch culture and steady-state continuous cultures where 
substrate (usually glucose) is limiting and is gradually provided while spent media 
is removed and collected. This allows E. coli to be grown at a constant growth rate 
and avoids the growth-reducing effects of accumulation of metabolites. Since bio-
logical variation is usually larger than variation due to analytical methods, a re-
producible system such as continuous culture can thus be highly desirable. 

2.1 Quenching of metabolism and metabolite extraction 

Current methods of metabolomic analysis generally make use of so-called inva-
sive procedures where tissues or cells are sampled, sometimes pretreated, and then 
disrupted to produce a soup of metabolites that can be analyzed using standard or 
emerging analytical methods. The extraction of metabolites from E. coli and other 
microorganisms requires special care since numerous compounds are also usually 
present in the culture medium and must thus usually be removed to facilitate the 
analysis of intracellular metabolites. Since metabolic reactions occur very quickly, 
rapid quenching of biochemical reactions is important to obtain a metabolite mix-
ture that is representative of the in vivo situation at sampling time. Unfortunately, 
in practice, this is often difficult to do due to the necessity to remove the extracel-
lular culture medium. When seeking accurate quantification of intracellular me-
tabolites one must thus decide on a trade-off between cleaner samples whose pro-
file might have changed since sampling versus more rapidly quenched cellular 
samples that likely contain extracellular metabolites and from which intracellular 
metabolites likely have leaked. The extracellular medium can first be removed, to 
avoid contamination with medium components, by filtration or centrifugation but 
these processes happen over time scales much longer than the turnover time of 
most metabolites in the cell. Some of the basic difficulties regarding metabolism 
quenching and metabolite extraction have recently been discussed (Villas-Boas et 
al. 2005a). While this issue remains mostly unsolved, comparative analysis of 
samples originating from different strains, for example, are still possible and use-
ful although acknowledging uncertainties about the accurate quantification of cer-
tain metabolites is necessary.  

The rapid and efficient quenching of cellular metabolism and extraction of me-
tabolites is thus crucial and, as for earlier work done in yeast (de Koning and van 
Dam 1992), rapidly spraying E. coli cells directly into cold methanol has been a 
commonly used quenching method (Buchholz et al. 2001, 2002). Alternately, 
Bhattacharya used boiling water to both quench and extract metabolites (Bhatta-
charya et al. 1995). While this can effectively inactivate most enzymes, heat labile 
metabolites will obviously be lost in such a way. A recent study however reports 
that heat treatment (< 95ºC) may not be so problematic for most metabolites and 
can be used for both very rapid quenching and extraction of metabolites (Schaub 
et al. 2006). Perchloric acid extraction of intracellular metabolites has also been 
used successfully (Larsson and Tornkvist 1996; Emmerling et al. 1999; Buchholz 
et al. 2001, 2002)  though it is  also  limited  by the  stability of  metabolites  under 



192   Martin Robert, Tomoyoshi Soga and Masaru Tomita 

 
Fig. 1. Basic protocol for extraction of polar metabolites from E. coli for analysis by CE-
MS. An aliquot from a culture of E. coli is collected, rapidly filtered, and washed with wa-
ter to remove extracellular components. Quenching of metabolism is performed by immers-
ing the filter directly in 100% methanol. Liquid phase extraction is performed by adding 
water and chloroform. The water layer, containing mostly polar metabolites, is isolated, ul-
trafiltered to remove proteins and other large molecules, lyophilized, and stored until analy-
sis. Prior to analysis by CE-MS, the metabolites are redissolved in 20 μl of water. Repro-
duced and modified with permission from (Tomita and Nishioka 2005). 

such conditions. One study compared six different methods for extracting metabo-
lites from E. coli (Maharjan and Ferenci 2003) including hot ethanol, hot or cold 
methanol, perchloric acid, alkaline (potassium hydroxide), and metha-
nol/chloroform extraction. It is obvious that any specific extraction solution is 
bound to result in the loss of specific metabolites that are unstable in its presence. 
Cold methanol was found to be the most promising with respect to the total num-
ber of metabolites extracted, providing acceptable recovery and being also simple 
and rapid. The results possibly reflect both the extracting power of methanol, for a 
broad range of metabolites, as well as the relative stability of many metabolites in 
this solvent. Probably because of its ease and versatility, the cold methanol extrac-
tion procedure has thus continued to be widely used for E. coli (Bajad et al. 2006; 
Koek et al. 2006). At the Institute for Advanced Biosciences (IAB), Keio Univer-
sity, as originally developed for B. subtilis sample preparation (Soga et al. 2003), 
E. coli culture samples are sampled, rapidly filtered, and the filter rinsed with wa-
ter (Fig. 1). Metabolites are then extracted in methanol at room temperature. This 
procedure seems to produce the best results in terms of recovery, reproducibility, 
and overall diversity of observable metabolites (T. Soga, unpublished). In addi-
tion, it allows the elimination of medium-derived metabolites and the maintenance 
of membrane integrity, something that cannot be achieved by plunging cells di-
rectly into cold methanol (Wittmann et al. 2004).   
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An important thing to keep in mind is that as with any other organism, it is 
clear that no single method allows to quantitatively extract all compounds effi-
ciently due to their wide variety of physico-chemical properties. However, a com-
bination of methods can potentially be used for particular subgroups of metabo-
lites. In addition, as mentioned above, removal of culture medium requires 
precious time that may result in post-sampling changes in metabolite content, 
whereas plunging culture samples directly into cold methanol can result in me-
tabolite leakage and sampling-induced profile changes (Wittmann et al. 2004). A 
promising recent advance that addresses this two-fold issue makes use of E. coli 
cells grown on filters instead of liquid culture, to minimize extracellular medium 
contamination and for rapid and easy quenching/extraction by plunging the filters 
directly in cold methanol (Brauer et al. 2006). 

Note: The following two sections, together, provide a look at existing and 
emerging studies of the E. coli metabolome. Section 2.2 is mostly method-oriented 
while Section 3 describes mostly applications-oriented metabolomic studies. 
However, the two sections partially overlap in studies and content and the some-
what artificial separation should be considered non-rigid since many of the studies 
reviewed are both development- and applications-oriented. It is only for the pur-
pose of illustrating methods and results separately that studies have been grouped 
this way. Here, emphasis is placed on methods that have already been used or 
shown to be applicable to the analysis of E. coli metabolites. 

2.2 Main analytical methods tested with E. coli 

Traditionally, the elucidation of metabolic intermediates and pathways progressed 
by the analysis of a single or relatively few chemical species at a time. This ap-
proach has been widely successful and most existing qualitative descriptions 
originate from such efforts. However, emerging tools for more comprehensive 
analysis of metabolites based on hyphenated mass spectrometry methods and nu-
clear magnetic resonance (NMR) are powerful for measuring in parallel the con-
centration of multiple metabolites, making possible the determination of pathway 
functions in a systems fashion. While there are still only relatively few applica-
tions in E. coli, some of the main methods used to interrogate the E. coli me-
tabolome in both focused and large-scale studies will be described and are dis-
played in Figure 2. As mentioned above, the analytical platforms described are 
universal and can in theory be used similarly for any species with similar results 
since the structure of metabolites is shared for all organisms. It is nonetheless in-
teresting to examine some of the major analytical methods that have been used 
specifically to analyze E. coli metabolites. As mentioned in Section 2.1, the main 
challenges for this bacterium, as for most other microorganisms, are to quantita-
tively extract most metabolites and avoid contamination and interference from cul-
ture medium-derived components. 
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2.2.1 Enzyme assays 

For any analytical method, sensitivity is an important issue since under typical 
culture conditions, for microorganisms, the volume of cells may represent about 
only 0.1% of the culture volume (Kaderbhai et al. 2003) and metabolites represent 
only a minor fraction of E. coli dry cell weight (approximately 3%) (Neidhardt et 
al. 1990). Traditional assays making use of enzymatic reactions to quantify me-
tabolites have been and continue to be widely used in targeted approaches. En-
zyme assays have proven useful to quantify several E. coli metabolites due to their 
high specificity (Lowry et al. 1971; Emmerling et al. 1999; Schaefer et al. 1999; 
Chassagnole et al. 2002) and usually do not require pre-fractionation of samples. 
Most such assays are based on ultra-violet (UV), visible, bioluminescence or fluo-
rescence spectroscopy for the detection of reaction intermediates. In most cases, 
direct or indirect quantification of the production or conversion of a metabolite is 
used to evaluate the concentration of the target metabolite in the sample. Some of 
the disadvantages of using enzymatic assays are that they usually require large 
amounts of sample, can be time-consuming and costly, and are sometimes difficult 
to conduct in parallel from the same sample. They are also prone to unpredictable 
effects due to modulators of enzyme activity that may be present in the sample 
matrix. Moreover, enzymatic assays are usually limited to the measurement of a 
relatively limited number of metabolites due to difficulties in multiplexing.  

2.2.2 Chromatography 

A common way to characterize components of a complex sample is usually to use 
one or more separation method(s) usually based on chromatography, making use 
of the differential interaction of analytes with a stationary phase. As such, thin-
layer chromatography (TLC) has been used successfully to monitor a limited 
number of metabolites in E. coli (Tweeddale et al. 1998, 1999; Liu et al. 2000). 
The method is based on the differential migration of metabolites along a solid 
support using specific solvents. More recently up to 95 different metabolites could 
be observed in E. coli extracts using two-dimensional TLC (Maharjan and Ferenci 
2003). In addition, high-performance liquid chromatography with conductivity 
and UV detection has also been used to monitor and identify multiple metabolites 
in E. coli (Bhattacharya et al. 1995; Buchholz et al. 2002). 

2.2.3 Mass spectrometry-based methods 

The advent of methods based on mass spectrometry (MS) and their inherent high 
sensitivity and selectivity has been an important step for the emergence of me-
tabolomics. Mass spectrometry draws its power from the ability to precisely 
measure the mass (or rather the mass to charge ratio) of a molecule thereby pro-
viding high selectivity of detection even in complex matrices and also potentially 
allowing to unambiguously identify a metabolite when its mass is unique. Mass 
spectrometric methods, including direct infusion, have been used in yeast for in-
tracellular (Castrillo et al. 2003) and extracellular (Allen et al. 2003) measure-



E. coli metabolomics: capturing the complexity of a “simple” model   195 

ments of a large number of metabolites and the approach has been used to func-
tionally characterize E. coli mutants based on metabolite footprints (Kaderbhai et 
al. 2003) (see Section 6.1). While infusion methods are useful for surveying the 
complexity of the metabolome and for functional genomics using metabolic foot-
printing - defined as the profiling of secreted metabolites - they are not really 
quantitative. Hyphenated MS methods, where pre-separation of complex samples 
is performed on-line prior to MS analysis, are preferable for quantitative work. 

Recently, hyphenated MS methods have made possible the detection, and 
sometimes identification, of an increasing variety of metabolites in E. coli. These 
methods combine the power of metabolite physical separation with the additional 
level of selectivity provided by mass spectrometry to considerably increase the 
number of co-eluting metabolites that can be determined. 

Recently developed capillary electrophoresis-mass spectrometry (CE-MS) 
methods allow the reliable and quantitative analysis of complex mixtures of ani-
ons, cations, and nucleotides (Soga and Heiger 2000; Soga et al. 2002a, 2002b, 
2004). Using these methods, more than 1600 compounds could be detected in B. 
subtilis (Soga et al. 2003) including most amino acids, a large number of nucleo-
tides and most intermediates of central carbon metabolism. Though not using E. 
coli as a model, a more recently developed but very similar CE-time-of-flight-MS 
method, with improved sensitivity for both cations and anions, was recently re-
ported (Soga et al. 2006) and is currently being used to characterize various E. coli 
strains (T. Soga, unpublished). In addition, a modified method to facilitate the 
analysis of anions by using a reversed electroosmotic flow and pressure-assisted 
CE-MS has recently been reported (Harada et al. 2006). Resolution seems excel-
lent and the use of a standard fused-silica capillary for the separation of anions is a 
significant advantage. However, the overall reproducibility of the method and its 
quantitative potential have not yet been clearly demonstrated. 

Gas-chromatography mass spectrometry (GC-MS) and liquid-chromatography 
mass spectrometry (LC-MS) have been used successfully to characterize E. coli 
metabolites and some of this work will also be introduced in the next section. GC-
MS is a powerful method with very high resolution, good quantification ability, 
and often simplifies compound identification due to the use of electron impact 
ionization (together with the availability of standard databases) (Kopka et al. 
2005). However, it requires sample derivatization, which can introduce errors and 
is time-consuming, and is more problematic for thermally unstable compounds 
such as phosphorylated intermediates of central carbon metabolism. Nevertheless, 
the power of GC-MS-based bacterial metabolomics was demonstrated through the 
quantification of 121 metabolites in Corynebacterium glutamicum (Strelkov et al. 
2004). Recently, using an improved derivatization method,the detection of over 
200 metabolites in E. coli, 60 of which could be reliably identified was reported 
(Koek et al. 2006). With this method most classes of organic molecules could be 
analyzed satisfactorily including carboxylic acids, phosphates, and amines. On the 
other hand, the linearity and detection limits for metabolites containing amides, 
thiols, or sulfonic acid were not as good. Emerging two-dimensional GC X GC-
MS methods promise even better results due to the increased separation efficiency 
though there are yet no reports of using such methods for E. coli.  
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Since in general polar metabolites are poorly retained on standard reverse-
phase chromatography columns, GC-MS together with CE-MS have been the 
tools of choice to analyze the large number of polar and charged metabolic inter-
mediates. However, alternative LC-MS methods are appearing that are likely to 
have a significant impact in the field. To improve retention, peak shape, and re-
covery of polar metabolites, an optimized system using hexylamine as the ion-
pairing agent and a pH gradient was recently developed (Coulier et al. 2006). The 
method allows separating and quantifying multiple E. coli metabolites using stan-
dard reverse phase columns (IP-LC-ESI-MS). Only limited (<10%) ion-
suppression effects were observed, at least for the few metabolites tested. Overall, 
while a total of more than 150 commercially available standards could be ana-
lyzed, 68 different nucleotides and 24 coenzyme A esters were determined in E. 
coli. However, in contrast to the CE-MS methods, IP-LC-ESI-MS still does not 
perform as well for highly polar metabolites (sugars, amino acids, etc.). Alter-
nately, an LC-MS system based on separation by hydrophilic-interaction chroma-
tography with an amino column, followed by detection using tandem MS on a tri-
ple-quadruple system looks promising (Bajad et al. 2006). This system allowed 
the identification and relative quantification of 69 mostly polar E. coli metabolites. 
To achieve good sensitivity and specificity, mass spectrometry is performed in 
single reaction monitoring (SRM) mode and thus the approach is targeted to se-
lected metabolites of interest. The relative standard deviation (RSD) median was a 
respectable 13 and 31% for intra- and inter-sample measurements, respectively. 

The reader interested in more complete details about CE-MS, GC-MS, and LC-
MS methods for metabolomics is referred to other publications (Fiehn 2002; Vil-
las-Boas et al. 2005b). In addition, emerging MS-based methods such as desorp-
tion electrospray ionization (DESI) MS and direct analysis in real time (DART) 
(Chen et al. 2006; Cooks et al. 2006) promise to increase the throughput by mini-
mizing the sample preparation steps. They are highly sensitive, selective and may 
find useful applications in microbial metabolomics. Ion-mobility based methods 
that can separate isomers and conformers should also find applications in me-
tabolome analysis (Ochoa and Harrington 2005; Koeniger et al. 2006). 

The use of isotopically labeled internal standards for each monitored metabolite 
in hyphenated-MS methods would be ideal for quantitative work since analyses of 
samples with complex matrices are prone to suffer from ion-suppression effects. 
However, this is impractical and at first appears prohibitively expensive for me-
tabolome-wide studies. To circumvent these difficulties, some recent studies have 
reported the use of saturating in vivo labeling of biomass with stable isotopes. This 
generates labeled internal standards that can be used for more reliable absolute 
quantification by isotope ratio, and such methods could find broad applications 
(Birkemeyer et al. 2005; Wu et al. 2005; Bajad et al. 2006). 

2.2.4 Nuclear magnetic resonance 

To resolve a large number of compounds, NMR is another powerful method for 
metabolomics that can even be performed in a non-invasive manner, a very desir-
able property. However, the sensitivity of NRM-based methods is typically orders 
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of magnitude lower than MS-based methods. The potential for high-throughput 
analysis has yet to be exploited fully although the methods are quantitative and re-
producible, factors that can make up for the reduced sensitivity (Pan and Raftery 
2006). The complexity of metabolomic samples and the resulting overlap and re-
dundancy in chemical shifts for numerous metabolites can also limit to some ex-
tent the power of the method. However, samples can also be fractionated and 
NMR has also been linked to off-line LC systems to address these issues (Note-
born et al. 2000). The existing need for non-invasive methods can thus possibly be 
filled by a combination of NMR-based methods, metabolic footprinting (Section 
6.1), and emerging methods that have yet to be used to probe the E. coli me-
tabolome. 

As is the case for most organisms or sample source, MS-based methods cur-
rently dominate the landscape of analytical methods for microbial metabolome 
analysis. However, as it has been in yeast (Raamsdonk et al. 2001), NMR is bound 
to be useful for E. coli metabolomics too. The inherent generic nature of these two 
methods make them particularly well suited for the analysis of metabolite pools of 
considerable physico-chemical diversity and the combination of MS and NMR 
methods can prove to be even more powerful (Crockford et al. 2006). Overall, as 
is the case for extraction methods, it should be apparent that only a combination of 
methods can possibly allow to exhaustively survey the metabolome since each 
method is somewhat biased for a specific subset of metabolites. 

While the above description is meant as a brief overview, more details about 
analytical methods previously used for microbial metabolomics have been re-
viewed elsewhere (van der Werf et al. 2005; Villas-Boas et al. 2005b; Wang et al. 
2006) and the interested reader is invited to consult these publications. The main 
steps and methods involved in metabolome analysis in E. coli can be found in 
Figure 2. While the issue is not addressed here, all analytical methods are prone to 
variation and errors due to multiple factors, including sample preparation, instru-
ments errors and data post processing and these are discussed in more details in 
Chapter 2. In addition, the analysis of the typically very large and complex, high 
dimensionality metabolomic datasets derived from hyphenated mass spectrometry 
and NMR methods is non-trivial. Multiple multivariate statistical data analysis 
tools can be used (e.g. principal component analysis, partial least squares-
discriminant analysis, etc.) and some of the common and emerging methods are 
introduced in Chapters 9 and 12. 

3 Existing E. coli metabolomic studies 

While E. coli has been biochemically scrutinized and dismantled for decades, still 
only a relatively small number of studies have examined a significant number of 
metabolites simultaneously in this organism. So far, very few large-scale metabo-
lite measurements in E. coli are available. Thus, while some studies may not ex-
actly qualify as metabolomic studies per se due to the still limited number of me-
tabolites measured, some of the work investigating the levels of multiple 
metabolites using standard biochemical assays will be introduced in this section. 
The reader should keep in mind that large metabolomic datasets in E. coli have yet 
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Fig. 2. Overall view of a typical E. coli metabolome analysis pipeline and possible applica-
tions. Sample preparation, analytical methods, data analysis and applications form the basic 
steps in most E. coli metabolomic experiments. There are numerous possibilities at each 
stage, each having specific advantages and disadvantages (see text). 

to emerge due in part to some of the technical difficulties mentioned above, but 
emerging technologies promise to significantly expand the measurable me-
tabolome in the near future. A summary of the main available E. coli studies de-
scribed below that are both methods- or application-oriented can be found in Table 
1. 

3.1 Groundwork 

In what might arguably be considered as one of the earliest E. coli metabolomic 
study, the effect of different carbon and nitrogen sources on the intracellular levels 
of several metabolites in glycolysis, the tricarboxylic acid (TCA) cycle, and amino 
acids was assessed (Lowry et al. 1971). Using only enzymatic assays for quantifi-
cation, the levels of glycolytic intermediates were found to be in agreement with 
the known enzyme regulation occurring during gluconeogenesis. Decreased 
adenosine triphosphate (ATP) levels in slowly growing cells were observed while 
cells grown in acetate showed increased levels of glycolytic intermediates suggest-
ing new regulatory factors for isocitrate lyase activity. More recently, Bhatta-
charya  et al.  (Bhattacharya et al.  1995)  measured  about  16  metabolites  of  the 



E. coli metabolomics: capturing the complexity of a “simple” model   199 

Table 1. Main E. coli metabolomic studies 

Subject(s) Method(s) Reference(s) 
Effect of carbon and nitrogen 
source on metabolite levels 

Enzyme assays (fluoro-
metry) 

(Lowry et al. 1971) 

Method development HPLC-UV (Bhattacharya et al. 1995) 
Effect of slow growth and 
ROS on metabolome 

TLC (Tweeddale et al. 1998, 1999) 

Metabolite dynamics Enzyme assays and 
HPLC 

(Schaefer et al. 1999) 

Glucose metabolism upon 
overexpression of glycolytic 
enzymes 

Enzyme assays (Emmerling et al. 1999) 

Adaptation to high density 
growth 

TLC (Liu et al. 2000) 

Dynamics of intracellular 
metabolites 

HPLC and LC-MS (Buchholz et al. 2001, 2002) 

Dynamic model of central 
metabolism 

Enzyme assays (Chassagnole et al. 2002) 

Metabolic footprinting for 
functional genomics 

FT-IR and infusion-MS (Kaderbhai et al. 2003) 

Effect of extraction method 
on metabolome 

2D-TLC (Maharjan and Ferenci 2003) 

Effect of central metabolism 
enzyme deletion on meta-
bolic network 

Enzyme assays, flux 
analysis 

(Peng et al. 2004; Siddiquee et 
al. 2004; Li et al. 2006; Rah-
man et al. 2006) 

Metabolite dynamics follow-
ing substrate pulse 

Enzyme assays (Hoque et al. 2005) 

Method development and 
metabolite changes during 
growth 

GC-MS (Koek et al. 2006) 

Method development LC-MS/in vivo isotopic 
labeling 

(Coulier et al. 2006) 
(Bajad et al. 2006) 

Effect of carbon or nitrogen 
starvation on metabolomic 
response 

LC-MS (Brauer et al. 2006) 

 
Glycolytic, pentose phosphate, and TCA cycle pathways by HPLC using standard 
UV detection. In addition, Liu et al. (2000) measured several metabolites in E. coli 
to explore adaptation to high density culture and found that large changes in the 
level of trehalose reflected the known role of the sigma factor RpoS (σS) in the 
control of trehalose biosynthesis genes (Liu et al. 2000). 

In order to perform a dynamic study in E. coli taking into account the rapid 
turnover of metabolites in vivo, an automated and rapid sampling system was de-
veloped to collect samples in about 0.2 seconds. Such a system allowed to observe 
oscillations in glycolytic intermediates using standard enzyme assays to measure 
metabolite concentrations (Schaefer et al. 1999). A shift in the capacity to analyze 
a larger number of E. coli K-12 metabolites was later reported using LC-MS for 
the measurements of intracellular metabolites (Buchholz et al. 2001). The authors 



200   Martin Robert, Tomoyoshi Soga and Masaru Tomita 

could achieve the quantification of 15 different intermediates and showed that the 
method gave results comparable to those obtained with enzymatic assays and the 
metabolite limit of detection varied between 0.02 and 0.5 mM. Continuing the dy-
namic analysis of metabolites using of a limited substrate pulse, the same group 
looked at over 30 different E. coli metabolites using a combination of enzymatic 
assays, UV-HPLC, and LC-MS that provided the type of high-resolution time-
course data required for dynamic modeling of metabolic networks (Buchholz et al. 
2002). Another early study compared the effect of slow growth as well as muta-
tion of rpoS on more than 70 14C-labeled metabolites using 2D-TLC and standard 
amino acid analysis (Tweeddale et al. 1998). By revealing numerous changes in 
intracellular sugar and amino acid levels, the results highlighted the power of me-
tabolomic studies to clarify global regulation of metabolism under various ex-
perimental conditions. The same group then examined the effect of superoxide 
stress on E. coli using similar methods and observed changes in the level of sev-
eral antioxydants (Tweeddale et al. 1999).  

In one of the first combined experimental and computational analysis of meta-
bolic regulation, researchers using enzymatic assays and HPLC measured the con-
centrations of multiple intermediates of glycolysis and pentose phosphate shunt 
(Chassagnole et al. 2002). Stopped-flow sampling of continuous cultures of E. coli 
was used to measure the dynamics of intracellular intermediates following a glu-
cose pulse. Using mass balance equations to derive kinetic rate equations, the ex-
perimental results allowed to obtain the enzyme kinetic parameters necessary to 
develop a dynamic model of E. coli metabolism, that could reproduce many ex-
perimentally observed phenomena (see Section 10). Among these, the link be-
tween glycolysis intermediate levels and the phosphotransferase system (PTS) was 
established and previously observed metabolite oscillations (Schaefer et al. 1999) 
could be described. 

A similar study looked at the metabolite dynamics of the response of E. coli to 
pulse addition of substrate, under both glucose- and ammonia-limited steady-state 
continuous cultures (Hoque et al. 2005). In addition, the differences between the 
wildtype and pykA mutant were evaluated and quantified immediately after sub-
strate addition using a specially designed rapid sampling device to collect several 
samples in the first few seconds after substrate pulse followed by sampling at in-
creasingly longer intervals. Specifically, many intermediates of glycolysis were 
found to rapidly accumulate after glucose pulse addition. Several pentose phos-
phate pathway intermediates accumulated in the pykA mutant while the intracellu-
lar NADPH concentration decreased in ammonia-limited conditions, presumably 
because of its depletion through glutamate biosynthetic pathway. The results of 
such experiments demonstrate how the measurements of multiple intracellular me-
tabolites can facilitate the elucidation of functional differences between strains 
under different growth conditions. 

Several other recent and rather targeted E. coli metabolite studies originate 
from applications in metabolic engineering. For this purpose, the monitoring of 
several key metabolites by enzyme assays can provide, in a simplified way, an in-
tegrated view of intracellular metabolism and is often important to phenotypically 
evaluate the overall effects of engineering the cell. In one example, the effect of 
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overexpressing endogenous and exogenous glycolytic enzymes (PfkA and PykF) 
in non-growing E. coli strains engineered for ethanol fermentation -as a way of 
synthetically “simplifying” the metabolic network- was examined (Emmerling et 
al. 1999). Using metabolite concentrations obtained for about 15 different key ex-
tracellular and intracellular metabolites by enzymatic assays, a considerable in-
crease in flux through glycolysis in a PfkA overexpressor strain and a shift from 
ethanol to lactate production that seems independent of any concomitant increase 
in glucose transport were observed. The results demonstrate that a single enzyme 
overexpression can thus potentially increase flux to a specific metabolite, a desir-
able fate for metabolic engineers. 

3.2 Combining concentration data with enzyme activity and flux 
measurements 

Several studies combined the power of metabolic flux analysis (see Section 8) to-
gether with assays of enzyme activities and the measurement of concentrations of 
key intracellular metabolites to evaluate the phenotypic effects of deletion of 
genes encoding central carbon metabolism enzymes. Enzymatic assays were used 
to measure intracellular metabolite concentrations. In a pykF mutant (deficient in 
phosphoenol pyruvate (PEP) to pyruvate conversion), decreased transcript levels 
for most glycolytic enzymes concurrently with increased levels of pentose phos-
phate pathway enzymes were observed (Siddiquee et al. 2004). On the other hand, 
whereas enzyme transcript levels usually correlated well with enzyme activity, 
fluxes through specific parts of the pathways did not correlate as well with en-
zyme activity but rather appeared related to changes in metabolite concentrations. 
Some of the regulatory intricacies of central carbon metabolism were thus more 
clearly revealed by using metabolite concentration data in combination with fluxes 
and enzyme activity data than they would have been using single layer datasets. 
Similarly, in a ppc mutant (deficient in PEP to oxaloacetate conversion), the ac-
tivities of multiple glycolytic and pentose phosphate shunt pathways were found 
to decrease, in agreement with the observed slower growth and glucose utilization 
(Peng et al. 2004). Increased utilization of the glyoxylate shunt was suggested by 
increased enzyme activity levels of AceA and several TCA cycle enzymes, in ac-
cordance with the accumulation of glycolytic metabolites and a decrease of acetyl-
coA and oxaloacetate. The reduced PckA flux in the ppc mutant was associated 
with the observed increase in PEP concentration, an allosteric inhibitor of PckA. 
By integrating these observations, the authors suggest that the need for TCA cycle 
function for growth maintenance was achieved by increased glyoxylate shunt ac-
tivity thus replenishing oxaloacetate. Similarly, the main role of lpdA in pyruvate 
metabolism was clarified by measuring intracellular metabolite concentrations in 
combination with flux and enzyme activity measurements (Li et al. 2006). Finally, 
the same group also analyzed the effects of sigma factor rpoS gene deletion on 
gene expression, enzyme activity, and the level of a few key metabolites during 
exponential and early stationary growth phases (Rahman et al. 2006). Broad 
changes were observed in both gene expression and enzyme activity and acetyl-
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coA levels were found to be considerably lower in the mutant. The reduced ability 
of rpoS mutant to utilize acetate seems to explain the premature entry into the sta-
tionary phase.  

3.3 Emerging metabolomic studies in E. coli 

The only E. coli studies that might be considered as genuine metabolomic analy-
ses in terms of numbers of measured metabolites, are just starting to appear (Bajad 
et al. 2006; Coulier et al. 2006; Koek et al. 2006). These datasets have been col-
lected using GC-MS and novel LC-MS methods that are described in more detail 
in Section 2.2.3. While these studies were aimed at method developments, ex-
perimental validation of the platforms with E. coli samples allowed partial survey 
of the E. coli metabolome during different growth phases (Bajad et al. 2006). As 
expected, the levels of most monitored metabolites decreased in the stationary 
phase with the largest decreases occurring in fructose-1,6-biphosphate and inosine 
monophosphate (IMP) levels, while cyclic adenosine monophosphate (cAMP), 
phenylalanine, and histidine dramatically increased during the stationary phase. 
The authors pointed out that some of the results might be specific to the sampling 
method used. Others observed several metabolite-specific patterns of change in 
concentration during different growth phases of E. coli (Koek et al. 2006). Over-
all, these new methods currently allow the simultaneous quantification of several 
dozen metabolites in E. coli and were also shown to be useful to monitor the cellu-
lar energy charge (Coulier et al. 2006). Finally, using the above LC-MS method 
(Bajad et al. 2006) the same group then evaluated the consequences of carbon or 
nitrogen starvation on 68 metabolites of E. coli (Brauer et al. 2006). A general re-
sponse common to both treatments (depletion of biosynthetic intermediates) and a 
more specific response could be observed and interestingly the main features of 
this response appear conserved in S. cerevisiae.  

Together, the above studies demonstrate how metabolomic data can provide 
functional information about E. coli physiology in response to environmental or 
genetic perturbation and how this information can complement that obtained with 
other -omic methods. Importantly, because of the numerous remaining technical 
obstacles mentioned earlier, the validity of quantitative metabolite measurements 
obtained by emerging analytical platforms will require further evaluation. This is-
sue may not be easy to address directly but the recently described “NET analysis” 
approach may turn out to be very useful for this (Kummel et al. 2006) (see Section 
10). In addition, while all these studies provide useful information, the breadth of 
the sampled metabolome still remains deceivingly small (see next section) and 
other methods are likely to be necessary to improve the coverage. Some MS-based 
methods also face reliability issues due to ion-suppression effects in complex ma-
trices, detector saturation, and a still somewhat limited dynamic range. Moreover, 
the challenge of identifying most detected metabolites remains. While these repre-
sent current trade-offs to be able to analyze a large number of metabolites in paral-
lel, expected gains in resolution and throughput justify the efforts to improve 
quantitative methods based on MS. 
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4 Evaluating the size of the E. coli metabolome 

One can wonder what the total number of possible E. coli metabolites is. While no 
definitive answer exists yet and there is still a lack of large-scale metabolomic 
data sets that could shed light on this issue, estimates can nonetheless be derived 
from experimental data in the literature (usually small-scale) and from genome-
based reconstruction of the E. coli metabolic network based on literature data 
(Reed et al. 2003) or database annotations (Arakawa et al. 2006). 

4.1 Hints from genome-based models 

The latest publicly available version of the E. coli genome-based model (iJR904) 
contains 904 genes and 931 unique biochemical reactions involving 625 metabo-
lites. The total number of metabolites is likely larger than this, as not all pathways 
or reactions are currently included in the model, let alone discovered. The list of 
all biochemical components included in the iJR904 model is available on-line (see 
Section 11) and eventual newer versions can be expected to contain even more re-
actions and a significantly increased number of metabolites. In contrast, the ge-
nome-based modeling (GEM) system is an automated-model construction tool 
(Arakawa et al. 2006) that was used to generate a list of 1195 potential distinct 
metabolites in E. coli, using data compiled from multiple databases. The model 
constituents were found to cover more than 90% of E. coli metabolism data in 
KEGG and EcoCyc databases (see Section 11) and the iJR904 model. While a few 
false-positives and false-negatives were reported during model building (Arakawa 
et al. 2006), these seem to be mostly associated with discrepancies such as lack of, 
or ambiguous EC numbers. The most significant difference in terms of total me-
tabolite number appears to be related to the use of whole genome information 
(every possible enzyme) in the GEM-based model construction, in contrast to a 
growing but yet incomplete selection of pathways in iJR904. 

4.2 Experimental clues 

From an experimental point of view, global analysis of B. subtilis extracts by CE-
MS, revealed the presence more than 1600 compounds (Soga et al. 2003). Among 
these, only about 150 could be unambiguously identified using standards and an-
other 83 more based on prediction of migration times in CE-MS (Sugimoto et al. 
2005). While an hypothetical figure of 576 metabolites has been derived from B. 
subtilis genome-based predictions, estimates based on indirect experimental evi-
dence suggest about 1200-1400 metabolites (van der Werf et al. 2005). Together 
these studies thus suggest the existence of more than 1200 metabolites in B. sub-
tilis. Since the genome size of B. subtilis and E. coli is comparable, assuming an 
overall similar distribution of functional protein classes between the two organ-
isms, the E. coli metabolome can be expected to be roughly the same size (>1200). 
Our preliminary CE-MS analysis of the polar metabolite (methanol) fraction of E. 
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coli suggests that more than 680 different compounds can be observed in such E. 
coli extracts. As chromatographic peaks, all these may not necessarily represent 
distinct metabolites since some may represent redundant forms of the same me-
tabolite such as metal or other adducts, or alternately charged form of the same 
compound. However, it is fair to say that there are probably more than 500 detect-
able compounds in this polar extract alone, among which we can currently identify 
and quantify about 130. This CE-MS derived estimate might at first suggest an E. 
coli metabolome significantly smaller than that of B. subtilis. However, this may 
be due to significant differences in extraction efficiency between these different 
types of bacteria and also to the physico-chemical nature of the metabolites so that 
only a fraction of the metabolome is actually surveyed with the current methods. 
In addition, there might be a more extensive array of secondary metabolites pro-
duced by B. subtilis. To reconcile the smaller E. coli metabolome estimates ob-
tained from experimental data with those of genome-based predictions, one must 
also consider that some metabolites are easily degraded or lost during isolation, 
not measurable by CE-MS because of neutral or non-polar character, or display 
poor ionization efficiency. Finally, many metabolites are simply not expressed un-
der specific experimental conditions (rich medium, batch culture, aerobic condi-
tions, etc.) or their concentrations are below the current detection levels. Sampling 
all possible metabolites at once is thus not possible due to both the inherent dy-
namic nature of the metabolome as well as the physical limits of extraction and 
analytical methods. Only once all possible reactions are confirmed experimentally 
will an accurate estimate be possible. A graphical representation of the me-
tabolome estimates and possible gross distribution in various data sets is shown in 
Figure 3. 

4.3 Improving metabolite identification 

To experimentally measure and identify most E. coli metabolites, there is a press-
ing need for greater availability of a large collection of chemical standards and 
more detailed structural analysis. The availability of mass spectral databases will 
also be important. Because of conservation of the chemical structure of metabo-
lites across species, mass spectral databases collected from any other organisms 
can be used in theory (Wagner et al. 2003; Kopka et al. 2005). However, some of 
them, particularly tandem mass spectrometry databases are sometimes instrument- 
or technology-specific and there is also a need to address this issue. Chapter 4 of 
this book describes in more detail a large GC-MS database developed to facilitate 
the identification of metabolites. In addition, the identity of many metabolites can 
already be predicted reasonably well for some analytical methods. Using an artifi-
cial neural network used to extract descriptors from about 500 standards whose 
CE-MS migration time was experimentally measured, a good prediction of the 
migration time of cations was possible (Sugimoto et al. 2005). The system gener-
ates a list of candidate metabolites whose masses closely match that of an un-
known compound.  Evaluation of the  results showed that  the correct metabolite is 
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Fig. 3. Diagram of size estimates and distribution of the E. coli metabolome. The included 
information comes from experimental datasets, databases and metabolic models (see text). 
The size of the different compartments is not meant to be to scale and the overlapping pro-
portion of each compartment is only symbolic. While the outer area is used to illustrate the 
larger number of known metabolites (KEGG metabolite space), not all E. coli metabolites 
are necessarily yet in the KEGG COMPOUND database. Figures in parenthesis indicate the 
number of metabolites as of February 2007. 

within the top three candidates, 78% of the time. Therefore, for global identifica-
tion of metabolites in complex samples, in addition to the obvious utility of tan-
dem mass spectrometry, a robust prediction algorithm can prove to be both time-
saving and very powerful. 

Overall, the above estimates most likely represent rather conservative and un-
derestimated values for the size of the E. coli metabolome. The reported broad 
substrate specificity, or promiscuity, of many metabolic enzymes can potentially 
lead to a much larger actual number of metabolites than estimates derived from 
gene number may lead to conclude (Schwab 2003; Kuznetsova et al. 2006). In ad-
dition, the combinatorial composition of sugar and lipid metabolites can also in 
theory greatly inflate metabolome space. 
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5 Architecture/anatomy of the E. coli metabolome 

5.1 Metabolite architecture 

The actual criteria that determine which molecules are metabolites and which are 
not, often based on properties such as molecular weight (MW) (e.g. <1000 Da), 
obviously remain somewhat arbitrary. The chemical diversity of common metabo-
lites that make up large families such as amino acids, nucleotides, lipids, and car-
bohydrates is vast. In an effort to better characterize its properties, the E. coli me-
tabolome has been structurally classified (Nobeli et al. 2003). This structure-based 
classification system is based on data about 745 metabolites known to be present 
in E. coli and that were obtained from EcoCyc and KEGG databases. The results 
provide an overall physico-chemical view (MW, number of atoms, hydrophobic-
ity, polarity, hydrogen-bond donors and acceptors) of the E. coli metabolome and 
propose a functional classification system for metabolites, based on a set of 57 
metabolite fragment fingerprints that occur frequently in the metabolome. As re-
ported, the vast majorities of known E. coli metabolites have a molecular weight 
of less than 500 Da and are made up of mostly amino acids, carbohydrates, and 
nucleotides. However, this classification mostly ignores lipids, quinones, and pep-
tides, which, if considered as metabolites, could considerably affect this land-
scape. Improved understanding of the chemical diversity of metabolites and the 
classification system thus developed can have repercussions on the characteriza-
tion of enzyme-substrate interaction specificity (or promiscuity). This original 
characterization of the metabolome constitutes an interesting example of interfac-
ing bioinformatic tools and metabolite databases to make possible the interpreta-
tion of metabolomic datasets. This, in turn, can facilitate the understanding of 
metabolic pathways and predicting, through simulation, the effect of environ-
mental changes on the cell (Nobeli and Thornton 2006). 

In a related study, the clustering of metabolites based on deconvolution of 
structural elements using graph comparison methods revealed that the largest 
group of metabolite represents carbohydrates (Hattori et al. 2003). In addition, the 
known structural link, albeit of limited scale, between metabolic pathway and ge-
nome architecture could be observed.  

5.2 Pathway architecture 

At a different architectural level, the determination of routes or pathways linking 
two metabolites can now also be derived from computational tools (Arita 2003). 
The method uses atomic-scale tracing of atoms within molecules to decipher the 
relevant paths. The approach is unique in that it captures information regarding 
links between parts of molecules that are otherwise not obtainable from classic 
maps. The analysis provides a list of the most commonly used metabolic interme-
diates in the reconstituted pathways of E. coli, namely pyruvate, acetyl coA, ATP, 
glucose, glutamate as well as other co-factors and nucleotides (Arita 2003). A 
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software tool that allows to compute such relationships in pathway intermediates 
is also available. 

Network architecture terminology defines small world network as those charac-
terized by a small distance (pathway length) separating any pair of network nodes 
on average. However, metabolite moieties are not necessarily structurally con-
served along traditional pathway maps that simply graphically connect metabolites 
(nodes) through enzymes (edges). At least according to the criteria of structure 
conservation in biosynthetic and degradation pathways, the E. coli metabolic net-
work is therefore not “small” (Arita 2004) but displays pathway lengths much 
longer than previously expected. Earlier views that concluded otherwise may have 
failed to account for the lack of structural conservation in adjacent enzymatic reac-
tions, leading to a structurally incorrect overview of some metabolic pathways. 

Regarding the network structure of metabolic pathways, pathway hubs are usu-
ally suspected to be essential for an organism. A genome-scale model of E. coli 
metabolism together with experimental data about the effect of enzyme deletion 
on survival (essentiality) revealed essential roles for several metabolites and con-
versely suggested the non-essentiality of specific compounds previously suspected 
of being essential (Imielinski et al. 2005). Not necessarily contradictory to the 
work of Arita (2004), studies of enzyme essentiality in E. coli demonstrate the 
presence of a minority (9%) of enzymes (hubs) whose essentiality was previously 
experimentally demonstrated (Lemke et al. 2004; Baba et al. 2006). The rationale 
is that well connected compounds are produced by multiple reactions (enzymes) 
and the enzymes producing them are thus not essential, while essential enzymes 
produce poorly connected metabolites in important metabolic routes. However, it 
should be kept in mind that metabolite essentiality, while obviously linked to syn-
thesizability through pathway connectivity, is also eventually linked to gene and 
protein expression, as well as enzyme activity. Specific genetic changes or envi-
ronmental conditions that modify this balance may result in “indirect” essentiality 
not linked to physical synthesizability as inferred from network structure alone 
(Baba et al. 2006). Finally, a general overview of gene essentiality in the meta-
bolic pathways of E. coli, drawing attention to the distinction between essentiality 
for survival and essentiality for fitness, was recently published (Gerdes et al. 
2006). 

6 E. coli metabolomics as a powerful tool for functional 
genomics 

Despite the availability of a complete genome sequence, as of 2004, nearly half 
the E. coli proteins did not have any experimentally confirmed function (Serres et 
al. 2004). For the characterized portion of the genome, most of the functions were 
assigned in the classic way using small targeted experiments based on hypothesis 
testing. To improve the capacity to assign function to uncharacterized proteins, 
unbiased analyses harnessing the power of metabolomics as a tool to provide de-
tailed functional information about metabolic phenotypes are emerging. The me-
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tabolome, being the end product of the concerted action of the genome, transcrip-
tome, proteome, and interactome, integrates the final measurable fingerprints of 
cellular activity and is particularly well-suited for functional genomics and sys-
tems biology discovery (Kell 2006). Another important aspect is that metabolom-
ics, also integrates both the cellular and environmental factors, a fate which may 
be difficult to achieve at other levels (Clayton et al. 2006). 

6.1 Metabolic footprinting 

The effect of gene deletions, which may not reveal any apparent growth defect or 
other easily tractable phenotype, may become clearer following profiling of intra-
cellular or extracellular metabolites. In this regard, a method referred to as meta-
bolic footprinting has been shown to be a useful functional tool (Allen et al. 2003; 
Kell et al. 2005). The approach is based on comparisons of extracellular metabo-
lite profiles obtained from wildtype and single gene deletion mutant cells instead 
of analyzing the more complex intracellular profiles. While the profile of extracel-
lular metabolites may not reveal as easily or directly the functional inner workings 
of the cell it has the main advantage of looking at a smaller subset of secreted me-
tabolites and also bypasses the difficulties of efficiently extracting the intracellular 
metabolites (Hollywood et al. 2006). Moreover, the method does not require the 
identification of metabolites. The analysis and comparison of mutants of genes of 
both known and unknown function using advanced clustering and chemometrics 
analysis based on machine learning (metabolic footprint), can allow to associate 
uncharacterized genes to a particular pathway or function (Kell et al. 2005). The 
whole process is reminiscent of the functional analysis by co-responses in yeast 
(FANCY) and the profiling of intracellular metabolites by NMR (Raamsdonk et 
al. 2001). 

Metabolic footprinting has been used for analyzing secreted metabolites in E 
coli using Fourier transform infrared spectroscopy and infusion MS. Its discrimi-
nating potential was studied by analyzing disruptants of genes in the tryptophan 
biosynthetic pathway (Kaderbhai et al. 2003). The relative ease, low cost, speed, 
and reproducibility with which such experiments can be performed thus make 
them attractive tools for E. coli functional genomics using single gene disruptant 
libraries such as the Keio collection (Baba et al. 2006). 

6.2 Enzyme discovery using non-targeted metabolomics 

Among all gene products in E. coli, more than a third are enzymes, making it the 
single largest functional protein group in the genome. Based on recent annotation 
data, about 500 gene products are listed as putative enzymes, meaning that their 
activity has been inferred from sequence similarity but has not been confirmed ex-
perimentally (Serres et al. 2004). In addition, another group of close to 600 mem-
bers bears no annotated function at all. Many of them can also be expected to be 
novel enzymes having completely novel activities and mechanisms. The fact that 
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there is still a lot to discover in terms of possible new metabolic pathways, even in 
the well-characterized E. coli, was recently demonstrated. To the surprise of some 
(Osterman 2006), components of a known operon were found to be enzymes con-
stituting a whole new pathway for pyrimidine utilization (Loh et al. 2006). Thus, 
the potential of metabolomics for functional discovery in E. coli remains impor-
tant. 

Traditionally, enzymes have been characterized by purifying the proteins hav-
ing activity from a cell or tissue extract. With the availability of complete genome 
sequences and large experimental resources it can be more efficient to use the re-
verse approach of taking easily purified recombinant proteins and trying to associ-
ate them to specific activities. At the same time, to discover completely novel ac-
tivities in an unbiased manner, it is desirable to use a system that allows assaying 
for reactions for which a priori no information is available about either the sub-
strate or the product. Toward this objective, a generic assay system, combining the 
power of libraries of recombinant proteins (candidate enzymes) and mass spec-
trometry-based metabolite profiling as an unbiased and generic assay read-out, 
was developed and tested for the discovery of novel enzyme activities (Saito et al. 
2006). Mass spectrometry has previously been successfully used for monitoring 
enzyme activity and kinetics (Jankowski et al. 2001; Zea and Pohl 2004). How-
ever, previous attempts were made using specific and selected enzymes and by 
monitoring only a few molecules by MS. More recently, approaches to monitor 
any type of reaction where a mass change occurs have also been reported (Yu et 
al. 2004; Zea and Pohl 2004; Pohl 2005) for different classes of enzymes, demon-
strating the feasibility of generic MS assays.  

Using a recently developed system (Saito et al. 2006), in vitro screening for en-
zyme activity can be performed by incubating purified recombinant proteins (se-
lected as likely enzymes using tools such as those mentioned in Section 6.3) with 
a metabolite soup as substrate source, followed by analysis of the resulting reac-
tion mixture by capillary electrophoresis mass spectrometry (CE-MS) to detect 
possible activities (Fig. 4). The deconvolution of CE-MS data obtained from reac-
tion mixtures in the presence or absence of an enzyme can yield direct evidence of 
the presence of an enzymatic activity and moreover directly pinpoint the sub-
strate(s) and product(s) of the reaction. To facilitate the comparison of large data-
sets containing subtle differences, software tools to facilitate the identification of 
specific metabolite whose level vary between two or more samples were also de-
veloped (Baran et al. 2006). The originality of the screening method lies in the fact 
that it is completely generic, i.e., the same method can potentially be used for any 
target. It also means that activities can be discovered without any prior informa-
tion about the activity or the reaction type, a task difficult to accomplish with 
more standard approaches. The method was used first to demonstrate the direct 
detection of activities of several known enzymes belonging to different classes 
(Saito et al. 2006). As a proof-of-concept the same system was then used to screen 
uncharacterized enzyme candidates and assign novel sugar  phosphatase activity to 
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Fig. 4. Overview of a metabolomic approach for enzyme discovery. A few candidate pro-
teins from a library of E. coli purified proteins (obtained from ASKA collection (Kitagawa 
et al. 2005)) are pooled and used for an in vitro assay using a metabolite soup, in the pres-
ence or absence of proteins. Profiling of the assay mixtures is performed by CE-MS and the 
identification of specific differences in profiles is assisted by software tools. Then, the iden-
tity of the compound(s) can be verified using chemical standards and/or by tandem mass 
spectrometry. Finally, the newly discovered enzyme can be given an appropriate name, and 
its activity further characterized. Reprinted with permission from (Saito et al. 2006), Copy-
right 2006 American Chemical Society. 

YbhA and YbiV (Fig. 5). An important issue is to confirm that the detected activ-
ity is really linked with the original protein target. This can be accomplished by 
analyzing extracts of cells where the candidate enzyme gene has been either de-
leted or overexpressed. 
Complementary assays that make use of class-specific but generic synthetic sub-
strates to screen unknown proteins for enzymatic activities have recently been re-
ported and were originally meant to experimentally classify activities within a 
subclass (phosphatase, protease, esterase, etc.) (Proudfoot et al. 2004; Kuznetsova 
et al. 2005). In this manner a large family of novel sugar phosphatases was dis-
covered. Recent results show that many members of the E. coli haloacid dehydro-
genase-like phosphatase family are relatively promiscuous, catalyzing the conver-
sion of several structurally similar metabolites, suggesting that some of this 
flexibility may represent a reservoir for the evolution of novel phosphatases 
(Kuznetsova et al. 2006). More definite assignment of these activities to a specific 
pathway in vivo might eventually come from the differential analysis of metabolite 
extracts obtained from mutant strains by metabolite profiling, where changes in 
the levels of specific metabolites may reveal the actual in vivo substrate(s). Such 
an approach of using whole-cell extract metabolite profiling for non-targeted en-
zyme activity discovery has already been reported (Saghatelian et al. 2004; 
Saghatelian and Cravatt 2005).  In this case, the metabolite profiles of  brain tissue 
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Fig. 5. Example of CE-MS-based monitoring of metabolites for the discovery of enzymatic 
activities. Changes in a complex metabolite mixture incubated with uncharacterized E. coli 
proteins are monitored. Selected ion electropherograms (m/z 171) for control (without pro-
tein; upper panel), YbiV (middle), and YbhA (lower) samples. Peaks indicated by arrows 
correspond to the compounds specifically produced in the presence of YbiV and YbhA and 
are products of the reaction. Reprinted with permission from (Saito et al. 2006), Copyright 
2006 American Chemical Society. 

obtained from wildtype and enzyme mutant mice were analyzed to reveal the ori-
gin of the reaction. The method has been termed discovery metabolite profiling 
and has been successfully used to assign substrates to a mammalian fatty acid am-
ide hydrolase (Saghatelian et al. 2004). It will thus be interesting to see the results 
of similar assays in E. coli using deletion mutants of known or putative enzymes. 
However, since the goal here, in contrast to metabolic footprinting, is to pinpoint 
the intracellular metabolites involved in the specific reaction, making sense of the 
multiple and often complex changes in intracellular metabolite profiles following 
even a single gene deletion may not be always as straightforward. 

A recent study of E. coli protein complexes revealed a large number of hetero-
meric complexes of proteins which, interestingly, contained proteins whose activ-
ity is known to be associated with metabolism. These include enzymes catalyzing 
related reactions (metabolon) such as Pgm and Zwf (both using glucose-6-
phosphate) (Lasserre et al. 2006). Interestingly, even by accounting for the fact 
that metabolic enzymes represent one of the largest functional category in the E. 
coli proteome, the results highlight and confirm the apparent physical promiscuity 
of many metabolic enzymes, possibly reflecting a need to maximize pathway ac-
tivities through substrate channeling, etc. 

Together, the different methods that can be used for the discovery of novel 
metabolic activities and intermediates, on top of providing functional elucidation, 
may facilitate the production of established or novel, commercially valuable 
molecules or pharmaceuticals and reveal new antibiotic targets. 
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6.3 Deorphanizing enzymatic activities and filling-in metabolic 
pathway holes 

In addition to the above strategies for de novo enzymatic search using me-
tabolomic tools (Section 6.2) additional insights may come from other sources of 
information that can lead to more specific experimental confirmation. Many en-
zymatic activities that have previously been detected in E. coli still have not been 
assigned to a specific gene/protein and are thus referred to as orphan enzymatic 
activities. Possible reasons are that historically, many enzymatic activities were 
detected in extracts but the protein was never purified or alternately that while the 
protein was isolated, no sequence information was obtained. Several methods have 
been used to identify orphan activities and most are based on genome organization 
and phylogenetic information (Osterman and Overbeek 2003; Green and Karp 
2004; Chen and Vitkup 2006) or gene expression (Kharchenko et al. 2004). A list 
of orphan activities has been manually compiled and can be found at both EcoCyc 
and EchoBASE web sites (See Section 11). The information listed comes from 
different sources including activities with no assigned enzyme from the literature 
and the iJR904 genome-scale E. coli model (Reed et al. 2003). 

The metabolic pathways of E. coli are also known to contain holes, defined as 
metabolic enzymes that should be present based on the sequence of reactions in a 
metabolic pathway but for which there is no protein annotated with that specific 
function or reaction. The metabolic pathways of multiple organisms, including E. 
coli have been analyzed in this way and a method to identify missing enzymes or 
pathway holes was developed (Green and Karp 2004). 

Together, the missing links in pathways are obvious targets to screen for spe-
cific activities using recombinant proteins or other experimental means. Since 
many of these reactions may not be easily amenable to detection using standard 
methods, generic metabolomic approaches, as described in Section 6.2, can con-
tribute to fill in the blanks and finally link these orphan activities to a specific pro-
tein. 

6.4 Phenotype microarrays as reporters of metabolic phenotype 

The metabolic phenotypes of cells, including E. coli can be interrogated in various 
analytical ways as discussed earlier. Cells can also be cultured under different 
conditions and the effects measured at a higher level such as growth phenotype. 
Such studies have been performed in yeast (Ross-Macdonald et al. 1999; Giaever 
et al. 2002) and E. coli (Serina et al. 2004) and can help to gain insight into 
gene/protein function. However, these studies looked at only a limited number of 
conditions. On the other hand, while not a metabolomic platform per se, the phe-
notype microarray technology distributed by Biolog, Inc. can assist efforts in func-
tional genomics and also possibly provide links to intracellular metabolism (Bo-
chner et al. 2001; Bochner 2003). Briefly, the system is used to monitor in real-
time and in parallel the growth of cells such as E. coli under hundreds of different 
environmental conditions, grouped into larger categories such as carbon, nitrogen, 
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sulfur or phosphorus sources (especially relevant to metabolism), pH and ionic 
conditions, and diverse chemicals or drugs (Bochner et al. 2001). Instead of moni-
toring cellular growth per se, the assays measure cellular respiration through a 
proprietary colorimetric method making use of tetrazolium redox chemistry. 
While potentially very interesting, the system provides a high-level phenotypic 
read-out that may not always be easy to interpret. In addition, disruption of almost 
any gene function, whether it encodes a metabolic enzyme or not, is bound to re-
sult in changes in array profiles and, therefore, details about the exact function 
may not be readily apparent. However, from a functional genomics point of view 
the resulting phenotypes can be a powerful tool to categorize genes of unknown 
function by comparing their profiles to those of genes of known activity. More-
over, in cases where mutants display highly specific phenotypes for only a few 
growth conditions, this can lead to specific conclusions about involvement in a 
specific metabolic pathway. Thus, in concert with metabolite profiling data, the 
system can provide powerful functional information. 

In a limited scale study, the system was used to analyze knockouts of more than 
100 genes including all two-component systems in E. coli under nearly 2000 
growth conditions (Zhou et al. 2003a). In contrast, more recently, the technology 
has been successfully used to analyze a large number (1440) of different E. coli 
gene disruptants on a more limited number of conditions, namely 95 different car-
bon sources (Ito et al. 2005). While details about the actual function of many y-
genes included in the dataset remain to be resolved, it was shown that functional 
classification of many genes of unknown function with those of well-characterized 
activity is possible. In addition, as can probably be expected, there appears to be 
some significant link between the deletion of metabolic enzymes and the extent of 
changes observed on carbon source arrays. Interestingly, a large number of single 
gene deletion mutants displayed growth defects on acetate, mannose, and alpha-
ketoglutarate highlighting the dense connectivity of the pathways utilizing these 
carbon sources. Finally, the potential of such screenings as a gateway to the dis-
covery of whole new metabolic pathways and intermediates was recently reported 
(Loh et al. 2006).  

The phenotype microarray technology can thus allow functional inference from 
higher-level analysis similarly to metabolic footprinting (Section 6.1). Linking in-
formation obtained from such phenotype screenings with the lower-level intracel-
lular metabolite concentration data and profiles (Section 6.2) can thus significantly 
increase the chances of making functional discoveries that would not be possible 
otherwise. 

7 Metabolomics to facilitate metabolic engineering of E. 
coli 

Because of its rapid growth, its ability to grow on simple and well-characterized 
culture medium, and the relative ease with which it can be genetically manipu-
lated, E. coli remains an essential resource for the production of commercially or 
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pharmaceutically valuable metabolites. Metabolic engineering aims at controlling 
and improving intracellular fluxes to optimize the yield of desirable biomolecules. 
Since central carbon metabolism pathways (glycolysis, pentose phosphate shunt, 
and TCA cycle) are the source of multiple intermediates which act as precursors to 
a large variety of other biological molecules, they have been the focus of much 
work in metabolic engineering (Buchholz et al. 2002). Metabolomics can play an 
important role in the evaluation of metabolic fluxes and metabolite concentrations 
can be used to derive in vivo kinetic parameters for modeling and engineering 
purposes (Buchholz et al. 2002). 

Numerous studies have aimed at improving the yield of specific E. coli metabo-
lites (acetate, lactate, formate, succinate, amino acids) (Berry 1996; Chang et al. 
1999; Kramer et al. 2003; Zhu and Shimizu 2004) or at their de novo synthesis us-
ing exogenous sources of enzymes, such as for optically pure L-lactate, a form not 
normally produced by E. coli (Zhou et al. 2003b). In addition, there are examples 
of reconstituted plant biosynthetic pathways in E. coli (Watts et al. 2006). Most 
such studies focused on the measurements of only a few target metabolites, usu-
ally the desired end-product or one of its close metabolic neighbors. However, in 
order to better understand the effect of deleting metabolic genes and the resulting 
global rerouting of metabolic activities and fluxes in E. coli, metabolomics is a 
promising tool for metabolic engineering applications. Some of the methods and 
results of quantitative measurements of metabolites for metabolic engineering 
purposes were introduced in Section 3. In addition, metabolic engineering is in-
trinsically linked with metabolic flux analysis (next section). As was proposed for 
genomic data (Gill 2003), it may be possible to use metabolomic data to evaluate 
the metabolic phenotype of specific natural or engineered mutations in industrial 
E. coli strains and facilitate the strain improvement process. Metabolomics can 
also be used detect cross-contamination during industrial fermentation, and facili-
tate strain identification (Wang et al. 2006).  

The effect of single or combined gene mutations on the global profile of me-
tabolites (both intracellular and extracellular) can be evaluated and used to pin-
point potential sources of difficulties or bottle necks and thus further drive im-
provements. Careful interpretation of metabolomic data, ideally in combination 
with transcript and protein expression level data, may allow to predict which spe-
cific genes should be additionally targeted to further increase the yield and pro-
ductivity of fermentation strains. Therefore, together with flux analysis and pro-
teomic measurements (Shimizu 2004) global metabolomic analyses promise even 
better yields and open the way to the successful production of until now difficult 
to synthesize compounds. As an important component of the systems biology ap-
proach in engineering, metabolomic data will thus likely play a significant role for 
bacterial strain improvement (Stephanopoulos et al. 2004; Lee et al. 2005). 

For a more exhaustive description of engineering applications the reader is re-
ferred to other publications (Vaidyanathan 2005; van der Werf et al. 2005; Wang 
et al. 2006). 
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8 Metabolomics in flux analysis 

Complementary to metabolite concentration measurements, the actual survey of 
the flow of metabolites across pathways, metabolic flux analysis, can provide 
higher level information that cannot be easily derived from concentration meas-
urements. Flux analysis can reveal the extent of use of reactions in a pathway, bot-
tlenecks, and the traffic through multiple alternative routes. It is one of the major 
tools used by metabolic engineers to globally evaluate cellular response to gene 
manipulation. Metabolic flux analysis combines the use of stoichiometric reaction 
models with measurements of extracellular metabolite consumption and secretion 
rates. In addition, it is most often combined with metabolic labeling methods to 
derive intracellular pathway utilization. This is typically performed by analyzing 
the extent and position of carbon labeling in proteogenic amino acids following 
metabolic labeling with a stable-isotope labeled precursor, usually 13C-labeled 
glucose, using a combination of GC-MS and NMR analysis (Szyperski 1998; 
Wittmann 2002). Such methods have been used to quantitatively analyze flux 
changes in E. coli in response to the mutation of several enzyme genes in central 
carbon metabolism as well as environmental changes (Fischer and Sauer 2003) 
and in other studies described in Section 3. Chapter 7 describes in more details the 
basics of metabolic flux analysis. In addition to the standard analysis of amino ac-
ids, the use of quantitative metabolomic data for evaluating fluxes by direct con-
centration measurements of the pathway intermediates is attractive, though simple 
and reliable analytical methods have yet to emerge. While flux analysis is tradi-
tionally somewhat difficult and time-consuming to perform, computational meth-
ods and software that can be applied on a large-scale are appearing (Lee et al. 
2003; Sauer 2004; Zamboni and Sauer 2004). 

By globally analyzing metabolic fluxes, E. coli was shown to respond to envi-
ronmental perturbations by manipulating only a few key metabolic reactions that 
display high fluxes, without apparent changes in other parts of the metabolic net-
work where a multitude of reactions seem to support relatively little metabolic 
flux (Almaas et al. 2004). These findings highlight an uneven use of metabolic 
network topology that can have important repercussions for the optimization of 
metabolite production for metabolic engineering. 

9 Adaptive evolution in E. coli, metabolomics, and 
metabolic phenotype 

Like other organisms, upon environmental or genetic perturbation, E. coli will 
usually respond by manipulating its metabolic network in an attempt to optimize 
growth. This phenomenon, termed adaptive evolution (AE) has been well studied 
and B. Palsson and colleagues have made a considerable contribution to the field 
using E. coli as a model for AE (Fong et al. 2003; Fong and Palsson 2004). One of 
the main findings is that the E. coli metabolic network has evolved to principally 
optimize growth (Ibarra et al. 2002). Using this as an objective function, the power 
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of the constraint-based in silico model of metabolic network (see Section 10) was 
demonstrated through successful predictions of the end-point of adaptive evolu-
tion (Fong et al. 2003, 2005; Fong and Palsson 2004). While gene expression was 
used to make sense of some of the genetic and regulatory changes taking place 
during AE, the large-scale measurement of metabolite concentrations using me-
tabolomics has the potential to provide further insights into the mechanisms of 
AE. It will be interesting to see how the measurement of metabolic intermediate 
concentrations in E. coli strains that have undergone adaptive evolution can pro-
vide a clearer picture of the rewiring of the metabolic network necessary for E. 
coli to optimize growth rate and biomass production. Since different patterns of 
gene expression can lead to convergent growth phenotypes in adapted strains 
(Fong et al. 2005), observing the impact on the overall metabolite levels should 
provide new insights into the phenomenon.  

Recently, combining gene expression and flux analysis data, both pathway re-
dundancy resulting from the expression of cryptic activities and increased meta-
bolic pathway capacity were shown to be the main strategies used by E. coli to 
readily adapt to the loss of key metabolic enzymes (Fong et al. 2006). Interest-
ingly, such redundancy was also recently suggested to form an important obstacle 
to the development of new antibiotics targeting metabolic enzymes in Salmonella 
(Becker et al. 2006). This apparent robustness in the E. coli metabolic network is a 
function of its gene network structure and regulation which is ultimately expressed 
as changes in metabolite concentrations. In addition to gene and protein expres-
sion data presented in these studies, it will therefore be interesting to see how me-
tabolomic datasets can reveal additional downstream mechanistic principles and 
provide a more detailed signature of adaptation to environmental or genetic 
change. 

10 Metabolic models of E. coli: the role of metabolomics 

Many types of mathematical models and simulation platforms have been devel-
oped and can play a role in the functional understanding of an organism (Ishii et 
al. 2004). Because of its intrinsic value as an integrator of cellular phenotype, me-
tabolome analysis can play an important part in dynamic models (Arita et al. 2005; 
Ishii et al. 2005). 

The development of a large-scale dynamic model of E. coli, making use of ki-
netic parameters, is one of the long-term objectives at the Institute for Advanced 
Biosciences, Keio University (Ishii et al. 2004, 2005). Obviously, parameter re-
quirements and complexity grow rapidly with model size. However, the current 
lack of available parameters collected in a consistent way make this objective, at 
least on a large scale, appear still somewhat distant (Edwards and Palsson 2000a). 
Moreover, deriving system parameters from metabolite concentrations (system 
variables) is an inverse and difficult problem (Kell 2004, 2006).  

On a limited scale, a classic kinetic model of E. coli central carbon metabolism 
was originally developed by Chassagnole and co-workers (Chassagnole et al. 
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2002). This pioneering study used metabolite concentrations to obtain the required 
kinetic parameters for dynamic simulation. Their model could capture and explain 
the previously observed oscillations in glucose intermediates (Schaefer et al. 
1999), thus demonstrating the usefulness of such an approach. A similar study also 
showed the power of metabolomic data to build dynamic models based on me-
tabolite concentration measurements (Buchholz et al. 2002). 

To bypass the difficulties in obtaining kinetic parameters on a large-scale, oth-
ers have successfully, over several years, used various types of constraints to gen-
erate genome-wide metabolic network reconstructions (Edwards and Palsson 
2000a; Covert and Palsson 2003; Reed et al. 2003). The models are based on the 
construction of a stoichiometric matrix of E. coli components that represents its 
known metabolic activities.  An early version of such a model was used to predict 
the minimal set of reactions required to sustain E. coli growth in glucose or acetate 
medium (Burgard et al. 2001). The latest version, iJR904, can be used to analyze 
and integrate transcriptomic, proteomic, metabolomic and flux data (Reed et al. 
2003). Versions of the model that encompass both gene regulatory and metabolic 
networks (Covert and Palsson 2002, 2003; Covert et al. 2004) were used to suc-
cessfully predict the effects of gene knockouts or environmental changes on 
growth phenotypes (Ibarra et al. 2002; Covert et al. 2004; Fong and Palsson 2004). 
The method is based on the use of physico-chemical constraints to evaluate and 
limit the possible phenotypic states that an enzyme system can reach (Edwards 
and Palsson 2000b; Palsson 2000). Commonly used constraints include the steady-
state mass balance, the irreversibility of some reactions due to thermodynamic 
limitations and the flux capacity that can be handled by enzymes or transporters. 
In addition to gene expression information, metabolic flux data has been used to 
put additional constraints on the solution space of such models (Wiback et al. 
2004). Overall, the models have been used to successfully predict growth pheno-
types and can also be used to develop novel minimal media formulations neces-
sary to support the growth of E. coli (Imielinski et al. 2006). 

A recent method that aims to estimate flux values, makes use of only a limited 
number of parameters that do not include the classical kinetic constants and as 
such seems to bridge the detailed kinetic modeling approach with constraint-based 
models (Fievet et al. 2006). 

In contrast to the carefully curated iJR904 model described above (Reed et al. 
2003), the GEM system can automatically generate metabolic models based on 
genome information and has been applied to E. coli and multiple other organisms. 
The resulting model was found to encompass, almost in its entirety, the available 
E. coli data from KEGG and EcoCyc as well the reactions in the iJR904 model 
(Arakawa et al. 2006). This model accounts for the presence of at least 1195 me-
tabolites. The system can considerably simplify the generation of complex whole 
genome models and can also be used to estimate the size and composition of an 
organism’s metabolome (see Section 4).  

Based on the reconstructed E. coli metabolic network model iJR904, an inter-
esting thermodynamics-based approach was recently reported (Kummel et al. 
2006). It was used to make sense of metabolite concentrations measurements as 
well as to predict the concentration of difficult to measure intermediates and to 
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identify potential regulatory sites. This network-embedded thermodynamic analy-
sis (NET analysis) uses the Gibbs energies of formation of components of a reac-
tion to derive the Gibbs energies of the reaction. Constraints are applied according 
to the interdependencies of reactions in a pathway. In this way, the authors pre-
sented evidence that suggests that enzyme activity regulatory sites can be pre-
dicted even when metabolite concentrations are missing and information about 
compartmentalization of reactions can also be inferred from data originating from 
disrupted cell extracts (average measurements). The authors achieved this using 
relatively small datasets obtained from targeted analysis of metabolites. We can 
thus expect that much larger datasets originating from global profiling of intracel-
lular metabolites will yield an even larger number of interesting findings concern-
ing the regulation of E. coli metabolism. 

Overall, mathematical models are important for biochemical engineering and 
can also provide greater understanding of cellular functions without having to per-
form an unreasonably large number of experiments. Functional discovery, evalua-
tion of data inconsistency, prediction of difficult to test results, and the generation 
of new hypotheses are all tasks that can benefit from the use of biochemical net-
work models (Edwards and Palsson 2000b; Edwards et al. 2001; Covert et al. 
2004). The results of modeling can be verified and the resulting data used to fur-
ther modify the model in an iterative process. For a more extensive discussion of 
metabolic pathway models, refer to Chapter 5. 

11 Databases and resources 

A large amount of information about E. coli metabolites is available from highly 
popular sites such as KEGG, EcoCyc, and BRENDA. These major resources are 
very useful to get details about known metabolites and to facilitate their identifica-
tion in metabolomic analysis through physico-chemical properties. They can also 
assist in the reconstitution of whole metabolic pathways maps and models. Several 
of the major databases and on-line resources that are useful to the E. coli me-
tabolomic community are listed in Table 2. 

The ARM database is a unique resource for tracing the route linking two me-
tabolites in metabolic pathways through actual atomic position information (Arita 
2003). It is a tool that readily allows to follow, in silico, the fate or particular at-
oms in individual reactions of a pathway just as one could do experimentally using 
radiolabels, to identify the links between any two metabolites. The pathways in-
cluded in the linked database are not specific to E. coli but much of the informa-
tion originates from this organism. 

While not specific to E. coli, the BRENDA database contains a wealth of in-
formation about metabolites and enzymes including kinetic parameters and phys-
ico-chemical properties, co-factors, inhibitors etc. that can be very useful for re-
searchers in the field of metabolomics (Pharkya et al. 2003). Its breadth and 
exhaustiveness, however, sometimes come at the cost of usability. 
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Table 2. Some on-line resources relevant to E. coli metabolomic research. 

Resource URL Notes and reference(s) 
ARM http://www.metabolome.jp/ Metabolic map viewer. 

(Arita 2003) 
BRENDA http://www.brenda.uni-koeln.de/index.php4 Comprehensive enzyme in-

formation system. (Pharkya 
et al. 2003) 

Project Cyber-
Cell 

http://redpoll.pharmacy.ualberta.ca/CCDB/in
dex.html 

Basic info about E. coli me-
tabolites. (Sundararaj et al. 
2004) 

EchoBASE http://www.ecoli-york.org/ Integrated post-genomic da-
tabase for E. coli. (Misra et 
al. 2005) 

EcoCyc http://www.ecocyc.org/ Encyclopedia of E. coli 
genes and metabolism. (Ke-
seler et al. 2005) 

EcoliHub http://www.ecolihub.org/ Community page. Currently 
under development.  

Escherichia 
coli and Sal-
monella 

http://www.ecosal.org/ecosal/toc/index.jsp 
(subscription) 

The classic textbook about 
E. coli physiology. 

Genobase http://ecoli.naist.jp/GB6/search.jsp E. coli genome and func-
tional genomic database. 

GenProtEC http://genprotec.mbl.edu/ E. coli genome and proteome 
database. (Serres et al. 2004) 

KEGG http://www.genome.ad.jp/dbget-
bin/www_bfind?e.coli 

Subset of KEGG database 
for E. coli. (Kanehisa et al. 
2004) 

OUBCF http://chase.ou.edu/oubcf/ Oklahoma University E. coli 
gene expression database. 

PubChem http://pubchem.ncbi.nlm.nih.gov/ NCBI’s database of biologi-
cal information about small 
molecules. (Wheeler et al. 
2006) 

RegulonDB http://regulondb.ccg.unam.mx/index.html A database about gene regu-
lation in E. coli and operon 
structure. (Salgado et al. 
2006) 

UCSD Systems 
Biology Re-
search Group 

http://systemsbiology.ucsd.edu/organisms/eco
li.html 

Constraints-based E. coli 
models. (Reed et al. 2003) 

The University 
of Minnesota 
Biocataly-
sis/Biodegradat
ion Database 
(UM-BBD) 

http://umbbd.msi.umn.edu/ Microbial biocatalytic reac-
tions and biodegradation 
pathways. (Ellis et al. 2003, 
2006) 

University of 
Wisconsin 

http://www.genome.wisc.edu/functional.htm E. coli DNA and phenotype 
microarray data. 
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The CyberCell database and web site form an integrated resource of qualitative 
and quantitative data about E. coli (Sundararaj et al. 2004). Among the subcom-
ponents, the CyberCell metabolite (CCMD) browser contains useful information 
about the metabolome and basic information about metabolites can be browsed or 
searched using various user-selected criteria. Detailed information can be obtained 
by looking at the corresponding Metabocard, where physico-chemical parameters 
are indicated and structural data can be downloaded. Details of associated meta-
bolic enzymes are also provided. 

EchoBASE provides curated functional information (both computational and 
experimental) about E. coli genes and their products (Misra et al. 2005). It is an-
other large and integrated post-genomic database system that is E. coli-centric but 
that is not yet populated with metabolomic data since such datasets are still only 
scarcely available. An updated list of orphan enzymes is also available and inte-
grates information from three different sources.  

EcoCyc is one of the most exhaustive resources concerning biological and post-
genomic information about E. coli (Keseler et al. 2005). It forms an integrated in-
formatic resource for E. coli-specific post-genomic research. Most of the informa-
tion originates and is curated from the primary literature. Of particular relevance 
for metabolomics is the information about metabolic pathways. Data about reac-
tions, compounds, and complete metabolic maps are easily searchable and quanti-
tative information about metabolite levels can be plotted on the maps using the 
Omics Viewer. It is definitely, one of the most useful resources. 

The EcoliHub site, a NIH-funded initiative led by B. Wanner at Purdue Univer-
sity is still in development and currently mostly consists of links to other data-
bases. However, it aims to become a central gateway for the community and will 
also eventually likely include information about metabolomic research. 

The ecosal.org site, the on-line and continually updated version of the classic 
textbook “Escherichia coli and Salmonella” by Frederick Neidhardt remains the 
authority for single-source, encyclopedic, and integrated knowledge about the 
physiology and metabolism of E. coli, and several chapters are dedicated to me-
tabolism. However, access is limited to subscribers. 

GenoBase is an E. coli-centric functional genomic database that can be of inter-
est to the metabolomics community since it contains information about expression 
(both gene and protein), protein-protein interactions, protein localization, growth 
phenotype, etc. that can all assist in the interpretation of metabolomic datasets. 
Numerous links to external databases are available. It is also the gateway to the 
complete library of single gene deletion mutants of all non-essential E. coli genes, 
the KEIO collection (Baba et al. 2006), and ASKA, the complete his-tagged open 
reading frame (ORF) expression library of E. coli W3110 (Kitagawa et al. 2005) 
with or without fusion to green fluorescent protein, two extremely valuable re-
sources for experimentation. 

Similarly, GenProtEC, containing information about protein modules and their 
classification by biochemical mechanisms is also useful for E. coli metabolomics 
(Serres et al. 2004). 

The Kyoto Encyclopedia of Genes and Genomes (KEGG), probably the best 
known, all-around database of metabolic information, remains a central reference 
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(Ogata et al. 1999; Kanehisa et al. 2002, 2004). A subset for E. coli is searchable 
and the PATHWAY, COMPOUND, and LIGAND components of the system are 
especially relevant to metabolomics. Recent updates to the database include 
KEGG BRITE, an ontology for pathway reconstruction based on hierarchical clas-
sification and KEGG DRUG, a collection of drug structure maps that aim to in-
clude information about exogenous molecules (Kanehisa et al. 2006). 

Among the numerous NCBI resources, PubChem is of particular interest for re-
searchers in metabolomics. Information about small molecules can be searched in 
multiple ways including the possibility to perform structure based-searches. As for 
KEGG, the system is composed of multiple databases including PubChem Sub-
stance, Compound, and Bioassay and links to multiple external resources. 

The RegulonDB (Salgado et al. 2006) can also assist the E. coli metabolomic 
community by providing information on E. coli gene regulatory network and op-
eron structure, both of which are relevant to research on enzymes and metabolic 
pathways. 

The bioinformatics core facility site at the University of Oklahoma (OUBCF) is 
rich in gene expression data relevant to glucose-lactose diauxie and other growth 
condition changes that can facilitate the analysis of metabolomic data. Similarly, 
the University of Wisconsin’s E. coli MG1655 genome project includes gene ex-
pression data as well as searchable results of Biolog’s phenotype microarray (PM) 
analysis for a subset of gene disruptants. 

The University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD) 
aims to provide information about existing metabolic reactions in microorganisms to 
facilitate the production of specialty chemicals and for bioremediation. 

For complete metabolic models based on genome reconstructions (see Section 
10) the web site of the Systems Biology Research Group at UCSD contains useful 
information and is the actual repository where E. coli metabolic network data files 
can be downloaded. 

Finally, significant repositories of large-scale E. coli metabolomic data have yet 
to emerge and currently appear to exist mostly in the form of publications and/or 
the associated supplementary information. Similarly to efforts in transcriptomics 
and proteomics, it will be important to promote and follow standards for the dis-
tribution of data such as those promoted in the Minimum Information About a 
METabolomics experiment (MIAMET) (Bino et al. 2004; Jenkins et al. 2004) and 
the Metabolomics Standards Initiative (http://msi-workgroups.sourceforge.net/) 
and to create central and public repositories. The newly proposed MeMo system 
provides a data structure to facilitate annotation and data management that can 
also be useful for E. coli data dissemination (Spasic et al. 2006). 

12 Data integration and visualization 

The study of the metabolome represents in itself a way of observing the integrated 
response of the cell beyond the transcriptome and proteome levels. However, the 
complexity of changes that can occur in the metabolome in response to even sin-
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gle gene inactivation, as well as the inherent biological and technical variability in 
its analysis mean that the ability to integrate metabolomic datasets with those ob-
tained at other levels of biological information (transcriptomics, proteomics, etc), 
if not a prerequisite, is highly desirable to make sense of the data. Numerous stud-
ies have already highlighted the advantages of integrating different levels of mo-
lecular information (ter Kuile and Westerhoff 2001; Hirai et al. 2004; Gibon et al. 
2006; Kresnowati et al. 2006). In addition, Chapter 12 also discusses in more de-
tails the integration of metabolomic and proteomic data. 

One of the most effective ways to make sense of metabolomic information is to 
visualize the results onto maps of metabolic pathways. This is now possible using 
various tools that were either designed specifically for this purpose or designed for 
more general transcriptomic and proteomic information. Some of the better known 
include MapMan (Thimm et al. 2004; Usadel et al. 2005) and the Omics viewer 
(Paley and Karp 2006). Another easy-to-use tool utilizes KEGG maps to generate 
Flash vector images of metabolic pathways (Arakawa et al. 2005). By specifically 
selecting or importing E. coli pathways, users can visualize absolute or relative 
concentration of metabolites or metabolic enzymes on the relevant pathway maps. 
In addition, the general purpose and powerful interaction network visualization 
software Cytoscape (Shannon et al. 2003) can also be used for representing and in-
tegrating large-scale metabolomic data. Together, these tools provide more intui-
tive interfaces and a level of insight into the data that would not be possible oth-
erwise. 

13 Future prospects and developments 

The success of E. coli metabolomics will require further significant improvements 
in analytical technologies. This means both easier and more effective ways of pre-
paring bacterial samples with faster and more efficient quenching of metabolism 
and improvements in extraction efficiency. Promising developments in this direc-
tion are already emerging (Brauer et al. 2006; Schaub et al. 2006). As described in 
Section 2.1, the use of cultures growing on filters and dry media will likely have 
some impact. In addition, coupling of a bioreactor to a sampling device main-
tained at high temperature (<95ºC) can allow to rapidly quench intracellular me-
tabolism and quantitatively extract metabolites while also permitting very high 
frequency sampling (5 s-1) and short sample processing time (< 30 s). Further im-
provements in the sensitivity and selectivity of analytical devices will also be im-
portant. This may include an increasing use of multi-dimensional separation meth-
ods making use of CE, LC, and GC or combinations of these (Liu et al. 2006) and 
further incremental improvements in MS and NMR instruments. For the foresee-
able future, MS- and NMR-based methods are bound to grab the bulk of the atten-
tion. However, there is a pressing need to also develop less invasive methods to 
observe and quantify metabolites dynamically in single cells (Dovichi and Hu 
2003; Fehr et al. 2004; Valet 2005). In this regard, the rapid developments in mi-
crofluidics are bound to have an impact (Di Carlo et al. 2006; Liu et al. 2006). In 
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addition, a larger number of experimental conditions will need to be used, and this 
may become possible with the use of miniaturized devices providing increased 
throughput for culture sampling and analysis of cells (Balaban et al. 2004). Only 
then, can the metabolome of E. coli, being a dynamic entity, be revealed and ana-
lyzed in its full-scale. Finally, data analysis, which currently remains an important 
bottleneck, is bound to benefit from new algorithms and statistical approaches that 
are customized to the specific needs and nature of metabolomic data. 

Overall, most of these expected improvements are not specific to E. coli and are 
bound to affect all applications in metabolomics, whether it is bacterially-, tissue-, 
or organism-oriented. 

14 Concluding remarks 

As one of its traditional roles, the legacy of knowledge obtained from experiments 
in E. coli holds tremendous value far beyond the borders of the microbial world, 
and this is especially true for metabolomic data due to the conserved nature of me-
tabolites and pathways. This unicellular organism will thus continue to provide 
fundamental discoveries from increasingly large amounts of metabolomic data 
that are likely to pave the road for related findings in other organisms. The full 
complexity of E. coli metabolic components and their interaction networks still 
remains to be grasped. Because of its intrinsic character that integrates the re-
sponses of the transcriptome, proteome and environment, metabolomics will stay 
at the forefront of the integrative concept behind systems biology. Of course, 
many challenges remain, mostly technical, analytical, and computational that new 
solutions will help overcome. Questions such as “What are the grand rules govern-
ing the regulation of metabolism?” or “What controls heterogeneous cell popula-
tion dynamics?” and many others remain and will shape our future efforts. The 
more light is shed on the E. coli metabolome complexity, the more other fields 
will also benefit. Clearly, the central role of E. coli is here to stay, simply because 
of its numerous advantages and broad applicability. This simple model, both ideal 
biological factory and important human symbiont deserves all the respect it can 
get in the metabolomic era. Models of its metabolism will find numerous applica-
tions for the improvement of biochemical engineering processes and also provide 
a helping hand toward the design of new pathways in this unique organism and 
beyond. 
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The exo-metabolome in filamentous fungi 

Ulf Thrane, Birgitte Andersen, Jens C. Frisvad, Jørn Smedsgaard 

Abstract 

Filamentous fungi are a diverse group of eukaryotic microorganisms that have a 
significant impact on human life as spoilers of food and feed by degradation and 
toxin production. They are also most useful as a source of bulk and fine chemicals 
and pharmaceuticals. This chapter focuses on the exo-metabolome in filamentous 
fungi, which comprises more than 30,000 known secondary metabolites. Profiles 
of this diverse range of secondary metabolites have, for more than 25 years, been 
central in development of fungal systematics, taxonomy, and ecology, today inte-
grated in a multidisciplinary and polyphasic approach to applied mycology. Lead 
discovery is an example of the successful integration of metabolite profiling and 
natural product chemistry in mycology.  

1 Introduction 

Fungi are eukaryotic organisms belonging to a kingdom of their own, Fungi, 
which is estimated to contain 1.5 million species (Hawksworth 1991) divided into 
four phyla (divisions): Ascomycota, Zygomycota, Basidiomycota, and Chytridio-
mycota. The filamentous fungi are mainly found in Ascomycota and Zygomycota. 
Whereas most mushrooms belong to Basidiomycota, some well-known and highly 
sought-after mushrooms, such as morels and truffles, are ascomycetes. Many 
fungi have a significant impact on human life. As spoilers, they degrade food and 
feed stuff and also produce toxins. They can also be most useful for producing 
bulk and fine chemicals and pharmaceuticals (Adrio and Demain 2003). From a 
biotechnological perspective, microorganisms from the kingdom of Fungi are by 
far the most important production organisms. As an example, the single-celled 
fungi, baker’s yeast Saccharomyces cerevisiae is used in ethanol production etc. 
Amongst the filamentous fungi, genera such as Aspergillus, Penicillium, Tricho-
derma, and Fusarium, are used in the production of enzymes, antibiotics, and 
other pharmaceuticals, and they all belong to the Ascomycetes. Within the Zygo-
mycota species of Rhizopus, Mucor, and Blakeslea are other examples of impor-
tant filamentous fungi in the bio-industry producing enzymes and colorants for use 
in the food industry (Archer 2000; Dufosse et al. 2005; Mapari et al. 2005).  

From the beginning, metabolomics and metabolome analysis has aimed at link-
ing the various omics’s (genomics – proteomics – metabolomics) to describe the 
dynamics of the cell or organism (Kell 2004; Chapter 1). In this context, much fo-
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cus has been given to central metabolism (earlier known as the primary metabo-
lism), carbon flux, and energy turnover. From a holistic point of view, metabolom-
ics is much more, and could be extended to cover all the metabolites originating 
from the entire metabolic machinery in an organism. A special segment of the 
metabolic activity of a fungus is called the exo-metabolome (earlier known as the 
secondary metabolism), which consists of all the metabolites produced by the or-
ganism intended for interaction with the environment. These metabolites function 
as chemical signals during interaction between individual organisms, such as fun-
gus-fungus attractants, insect repellents, biological active metabolites directed 
against bacteria (antibiotics), against plants (phytoalexins) or against vertebrates 
(mycotoxins) (Larsen et al. 2005). The compounds responsible for these interac-
tions are often called secondary metabolites to distinguish them from the central or 
primary metabolites. Fungi have most of their central metabolism in common with 
other eukaryotes and the yeast, S. cerevisiae, has been used as a model system (as 
discussed in previous chapters), and metabolic models have been published 
(Hohmann 2005).  

Whereas central metabolism is common to all filamentous fungi, the production 
of secondary metabolites, or exo-metabolites, is more or less genus or species spe-
cific (Frisvad et al. 1998). Secondary metabolites reflect a slow adaptation to the 
environment and are often a result of co-evolution between fungi and other organ-
isms. In contrast, central metabolism reflects a much more rapid adaptation to the 
current situation. The production of secondary metabolites requires a significant 
amount of carbon (sometimes also nitrogen) and consumes a lot of energy. More 
than 12,000-15,000 genes (ORFs) in filamentous fungi give these organisms the 
capability to produce a vast diversity of secondary metabolites (Keller et al. 2005; 
Yu and Keller 2005). Furthermore, the complexity of many of these metabolites is 
encoded in several genes often assembled in large gene clusters. Today more than 
30,000 secondary metabolites with a molecular weight below ca. 2000 Da are 
known and they can be classified by their biosynthetic origin as polyketides and 
terpenes, derived from amino acids or the tricarboxylic acid cycle, as well as 
mixed biosynthetic routes (Frisvad et al. 2004). As mentioned, the general feature 
of a secondary metabolite is that it is limited in its distribution throughout the fun-
gal kingdom and cannot be found in every species within a given fungal family. 
Therefore, secondary metabolites are very powerful descriptors to us for making 
systems and keys to identify and describe the numerous genera and species in the 
fungal kingdom.  

2 Exo-metabolome and taxonomy 

For centuries secondary metabolites have been used - indirectly - to differentiate 
between fungal species. Characteristics, such as pigments or odours that were spe-
cific to one fungal species, have been used in the formal species descriptions and 
in the identification keys. These characteristics were seen as part of the morpho-
logical features, and not as chemical compounds or metabolites in their own right. 
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In many descriptions and keys, fungal species are differentiated by different 
shades of same colour, i.e., bluish green, dark green, greyish green etc. Such terms 
are highly subjective and very difficult to communicate to users. To compensate 
for this, references have attempted to use standardized colour schemes, such as the 
popular “Methuen Handbook of Colour” (Kornerup and Wanscher 1978). Despite 
this, colour is still a perceptual phenomenon and does convey many practical 
problems for the users. Subjectivity of colour, and the sensitivity of pigment for-
mation to growth conditions, has often been used as arguments against the use of 
any secondary metabolites in fungal systematics. A decade ago, as the use of mo-
lecular sequence data in fungal systematics increased, the criticism of the use of 
chemical characters increased as well. Although they are still being used as the 
fundamental characteristics in fungal descriptions, all phenotypic (descriptive) 
characteristics, including micro-morphology, were not objective enough compared 
to a DNA sequence (Hibbett and Donoghue 1998; Prillinger et al. 2002; Taylor et 
al. 2000). However, no fungal species has yet been described based on sequence 
data alone or strict phylogenetic based fungal taxonomies. Species discovered by 
sequence analyses have always been linked up with distinctive phenotypic features 
in order to be formally described (Aoki et al. 2005; Nirenberg and O'Donnell 
1998). Taking an ecological view-point, fungal taxonomy and systematics should 
be based on traits of importance in an ecological system – functional characteris-
tics – such as micro-morphology, which covers the physical and mechanical prop-
erties and also the exo-metabolome, which covers chemical interactions (Frisvad 
and Samson 2004). Having said this, it is important to stress that the key features 
in an ecological context is not the individual chemical compound, but the profile 
of metabolites as synergism among metabolites is commonly observed. Hence, the 
exo-metabolome, the full spectrum of secondary metabolites, is the key feature for 
a living fungal culture, the most important functional character of a fungal species 
and thereby also the important feature in fungal systematics (Frisvad et al. 1998). 

In a wide ecological context the exo-metabolome may also cover extra-cellular 
enzymes used for degradation of complex polymers into digestible smaller units 
such as sugars, amino acids, as well as necessary metal ions and other trace com-
pounds. However, this chapter will only focus on determination of secondary me-
tabolites profiles in important filamentous fungi. The development of extraction 
methods, separation, and detection techniques during the last three decades of my-
cological and chemotaxonomical research will be highlighted. 

3 Exo-metabolome and fungal growth 

As with all phenotypic characteristics, the production of secondary metabolites is 
susceptible to changes in environmental conditions. From an ecological point of 
view, all fungi are able to respond with different secondary metabolites as part of 
their survival and adaptation strategy. The challenge is to trigger this production 
under laboratory conditions as a given fungal species or a fungal isolate may need 
specific stimuli to produce and accumulate secondary metabolites (Dombrink-
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Kurtzman and Blackburn 2005; Filtenborg et al. 1990). There are no set rules 
when it comes to growth conditions to ensure a maximum production of all me-
tabolites that a fungal genome encodes for. In general most filamentous fungi ex-
press most of their secondary metabolites in detectable amounts when growing on 
solid surface substrates like an agar medium (Hölker et al. 2004). In some cases 
shake cultures or still liquid cultures may be beneficial for production of one or 
few specific metabolites, but there will be significant differences in overall me-
tabolite production between different fungal species. The fundamental growth 
condition can be varied in multiple ways and should be taken into consideration 
when determining the exo-metabolic potential of a fungus. For example, mineral-
clay pellets (LECA nuts) coated with a semisolid agar substrate constitutes a lar-
ger surface area for fungal growth than a simple agar surface in a Petri dish 
(Nielsen et al. 2004a). The result in yield in terms of chemical diversity is much 
higher on these pellets than in both shake flasks and classical agar substrates in 
Petri dishes. 

An important part of the growth conditions or cultivation of fungi is the choice 
of substrate ingredients. Much information can be found in the literature dealing 
with the mycotoxin potential of various fungal species, because toxicity of fungi 
towards humans and livestock has been evaluated in a high number of studies. On 
the other hand, many reports are quite conservative in their choice of growth sub-
strate, as often they use in-house substrates based on natural products, like maize, 
rice, and wheat grains. These ingredients may be used directly as the substrate or 
they may become an integrated part of the agar substrates. When it comes to my-
cotoxin production, a substrate mimicking the real raw material is relevant as a 
model for laboratory experiments; however, if the task is to illustrate the entire 
exo-metabolome of a fungus, a broader view is needed. In general, a substrate 
containing many simple nutrients that can be taken up readily usual gives the most 
diverse metabolite production. Good results have been obtained by using semi-
synthetic substrates where a crude yeast extract serves as the primary nitrogen 
source, such as Yeast Extract Sucrose agar (YES) and Czapek-Dox Yeast 
Autolysate agar (CYA), though the latter does also contain nitrate. Additional me-
dia, semi-natural substrates like Potato Dextrose Agar (PDA), or Oat meal Agar 
(OA) may be used and combined with YES and CYA depending on the fungal ge-
nus under examination (Nielsen et al. 2004b). Many substrates are available as 
pre-mixed powders, which can ensure a good reproducibility from batch to batch 
of substrate; however, it should be noted that different brands of the same sub-
strate may be quite different. To compensate for this variation, it is recommended 
always to add magnesium sulphate (in case of YES) and trace metals to all sub-
strates (Filtenborg et al. 1990). In any case, it is advantageous to apply a broad 
view and ensure to use a palette of different substrates for exploration of the exo-
metabolome of fungi. 
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4 Visualisation of the exo-metabolome  

Thin layer chromatography (TLC) is a well-known, classic method for separation 
of compounds in a mixture. In addition, it is by far the cheapest when compared to 
other chromatographic methods. The value of TLC patterns of fungal metabolites 
in mycological systematics was introduced through a study of common food-borne 
Penicillium species and their production of mycotoxins (Filtenborg and Frisvad 
1980). This method does not depend on an extraction step, as the agar plugs are 
directly applied to the TLC plate. Plugs (6 mm in diameter) are taken from seven 
day old fungal cultures on the Petri dish and placed, agar-side down, on the appli-
cation line of the TLC plate for a couple of seconds. This will allow the exo-
metabolites in the agar to be adsorbed by the silica gel. Exo-metabolites that are 
bound to the mycelium can be released by an in situ extraction, adding a drop of 
extraction solvent on the mycelium side of the plug (Filtenborg et al. 1983). After 
a few seconds the plug is turned up-side-down (mycelium side down) and briefly 
allowed to touch the TLC plate, either in the same lane/track as the agar plug or in 
a new separate track. When the TLC plate is dry, regular TLC procedures are fol-
lowed, such as different elution systems to promote different migration patterns 
for the exo-metabolome and various chemical spray reagents to enhance colour 
development of individual metabolites (Frisvad and Thrane 2000).  

To perform chemotaxonomic studies, it is important to be able to compare a 
high number of TLC tracks. This may involve a high number of TLC plates, 
which might be analysed on different days and in different batches of eluents. 
Since TLC is sensitive to the quantitative composition of the eluent resulting in 
variations in migration distance of a compound between different TLC plates, 
calibration standards on each TLC plate have to be used. Griseofulvin, which is 
commercially available, cheap and easy to recognize, migrates approximately 65% 
compared to the liquid front and is therefore suitable as an external TLC standard. 
The migration of all metabolites in the exo-metabolome is then calculated relative 
to the griseofulvin standard, indicated as the Rfg value of each metabolite (Thrane 
1986). By this agar-plug TLC technique it is very easy to analyse a high number 
of experiments, such as comparison of different growth conditions or different 
fungal isolates, in a short time, because there are no time-consuming extraction 
and purification steps. Identification of individual metabolites in the exo-
metabolome requires standards and preferably specific detection methods, such as 
development of coloured spots after spraying and heating the TLC plate 
(Andersen 1991; Andersen et al. 1995, 2004; Frisvad and Thrane 2000). For many 
years TLC patterns have been documented by photographic slides, which were 
useful in those days, but somewhat outdated now as most images are digitalised 
and much easier to access and compare. In addition to the recording of coloured 
spots on the TLC plates it was possible to evaluate a developed TLC plate by a 
UV-VIS scanner that were able to record a reflectance spectrum in the UV-VIS 
spectrum. The idea of qualifying the individual spots by a unique reflectance spec-
trum has been used in publications on metabolites from Penicillium brevicompac-
tum (Andersen 1991) and Stemphylium species (Andersen et al. 1995).  
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The agar-plug TLC technique has been the cornerstone in the mycological re-
search area at Technical University of Denmark (DTU). This approach has been 
used in many research and student projects in the 1980’s and 1990’s. These pro-
jects covered many aspects of chemosystematics within Penicillium and other 
common filamentous fungi, such as Aspergillus, Fusarium, and Alternaria. The 
agar-plug technique has revolutionised mycological research by introducing 
chemical profiling in systematics and in identification procedures. To the best of 
our knowledge, the method has only been applied at CABI BioScience (Paterson 
and Bridge 1994) and in Norway (Stenwig and Liven 1988) for profiling of fungi. 
Research projects at DTU have successfully used an integrated approach originat-
ing from TLC patterns to clarify taxonomic problems within the genera Penicil-
lium (Frisvad and Filtenborg 1983), Talaromyces (Frisvad et al. 1990), Stem-
phylium (Andersen et al. 1995), and Fusarium (Thrane and Hansen 1995). In 
addition, TLC patterns have been used for identification purposes and as of today 
are available in a widely distributed manual for food and airborne fungi (Samson 
et al. 2004). Current research projects at DTU still use the TLC methods for 
screening and classification purposes as support to other chromatographic and 
chemical methods, exemplified by a revision of Penicillium species associated to 
flower bulbs and onions (Overy and Frisvad 2003).  

Figure 1 shows a TLC plate (agar plug method) of the exo-metabolome of 
Penicillium verrucosum (tracks 1-3), P. persicinum (4), Fusarium culmorum (5-6), 
F. venenatum (7-8), Cladosporium cladosporioides (9), Aspergillus flavus (10), 
Asp. oryzae (11), external standard (12), Asp. niger (13-14), Asp. japonicus (15), 
Asp. lanosus (16-17), Alternaria tenuissima (18), Alt. infectoria (19) and Alt. ar-
borescens (20). The TLC plate shows that different species in some genera have 
many metabolites in common (e.g. Penicillium and Fusarium), while different 
species in other genera have very few metabolites in common (e.g. Aspergillus 
and Alternaria). Research has shown that the production of metabolites in a fun-
gus’ exo-metabolome is consistent, as can be seen for Asp. niger and Asp. lanosus, 
and independent of origin (Andersen 1991, 2004; Thrane et al. 2004). The TLC 
method is not recommended when the exo-metabolome contains a large number of 
metabolites or when comparisons are made between closely related species (e.g. 
F. culmorum and F. venenatum). In such cases HPLC-UV or HPLC-MS should be 
used, due to HPLC’s superior resolution and sensitivity compared to that of TLC.  

5 Extraction of the exo-metabolome 

To achieve a more precise identification of individual metabolites in the exo-
metabolome and to be able to compare different exo-metabolomes from different 
species, it is necessary to extract the metabolites from the fungal cultures. The 
challenge of extracting the complete exo-metabolome equals the challenge en-
countered in making the fungus produce it in the first place. Much information on 
extraction procedures can again be found in the mycotoxin literature; however, in 
most cases the recommended  procedures are focussed on the optimal extraction of 
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Fig. 1. Thin layer chromatography (TLC) of 19 fungal cultures. Silica gel 60 TLC plate in 
UV light (366 nm) after spraying with H2SO4. The identity of the cultures is as follows: 
Penicillium verrucosum (tracks 1-3), P. persicinum (4), Fusarium culmorum (5-6), F. vene-
natum (7-8), Cladosporium cladosporioides (9), Aspergillus flavus (10), Asp. oryzae (11), 
external standard (12), Asp. niger (13-14), Asp. japonicus (15), Asp. lanosus (16-17), Alter-
naria tenuissima (18), Alt. infectoria (19), and Alt. arborescens (20). 

one or a few metabolites, often of chemically related structure. For profiling pur-
poses, all metabolites need be extracted, and as with growth conditions no univer-
sal procedure exists, that extracts all the chemically diverse compounds of fila-
mentous fungi. Using a single extraction solvent will in most cases favour some 
metabolites, whereas others may not be extracted at all, or with very low effi-
ciency. As an alternative, a mixture of solvents may be used in a one-step extrac-
tion and this has been done successfully. A further improvement on metabolite di-
versity of the extracts is to use sequential extractions of the same fungal culture. 
Two or three different extraction solvents with different chemical affinities are 
used and the resulting extracts are subsequently pooled into one extract for final 
analysis. Alternatively, the different extracts may be kept and analysed separately 
to avoid unwanted chemical reactions, such as precipitation, complex formation, 
degradation etc. upon mixing the individual fractions. 

In the 1980’s, fungal profiling by high performance liquid chromatography 
(HPLC) in the authors’ laboratory was a laborious task. The entire content of eight 
Petri dishes, approximately 150 gram of biomass and agar, was extracted twice by 
a total of 300 ml organic solvents in a homogeniser. The organic phase was evapo-
rated to dryness, dissolved, transferred, de-fatted, transferred again, and filtered 
before HPLC analysis (Frisvad and Thrane 1987). Bearing in mind that the aim for 
exo-metabolome profiling and chemotaxonomic studies was to analyse a high 
number of cultures from each fungal species, this procedure was expensive and 
extremely time consuming yielding no more than eight extracts per day. As 21st 
century analytical equipment has become much more sensitive, it is now only nec-
essary to extract 0.5 grams of biomass for qualitative profiling of a fungal culture. 
In line with the availability of better equipment, the extraction procedure has been 
modified and scaled-down (Smedsgaard 1997). Instead of extracting the entire 
culture, this new procedure extracts 3-10 agar plugs (0.5-2.5 cm2 area of culture) 
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in a 2-ml vial using no more than 0.5-1 ml of solvent. The extraction itself takes 
place in an ultrasonic bath. Depending on the analytical equipment and methods, 
the solvent may be analysed directly after filtration or after drying and dissolving 
steps. This procedure allows for up to 100 extracts to be prepared during one 
working day in a labour saving way and at significantly reduced cost. Another ad-
vantage is that from a single fungal culture, several samples can be collected, for 
example, to use different extraction procedures, or as multiple samples of same 
origin.  

6 Analysis of the exo-metabolome by high performance 
liquid chromatography 

HPLC is one of the most common separation techniques used for analysis of sec-
ondary metabolites and mycotoxins. During the last 25 years, there have been a 
number of significant technical developments in HPLC technology. Today, HPLC 
equipment is easy to operate and maintain, analyses can be automated and costs 
for purchase and operation have dropped. In addition, column material has also 
been through a continuous development so a variety of columns with different 
properties are available. For fungal secondary metabolites, it is very common to 
use reversed phase system where the column material typically is 3 μm beads 
coated with a C8 or C18 phase and a polar liquid phase, such as water-acetonitrile 
or water-methanol with a gradient elution system. In most cases, an HPLC system 
is an integrated unit consisting of a separation system and a detection system. 
Modern columns are very robust and very similar from batch to batch but still the 
separation efficiency of technique is sensitive to variation in chromatographic pa-
rameters, especially the retention time may differ between batches of column or 
solvents. To minimise this variation the use of external standards or a retention 
time index has been introduced (Frisvad and Thrane 1987). During sequential 
analysis of fungal extracts a sample of seven alkylphenones is analysed and the re-
tention times for these compounds can be used a set of seven fixed points within 
this series of analyses allowing the retention times for all other chromatographic 
peaks to be calculated relative to these fix points. These index values (RI) are rela-
tively constant among different analytical runs as long as the type of column, sol-
vent composition and the solvent gradient are kept constant. For profiling the RI 
values are of high importance for facilitated comparison of data from different 
analyses as both known and unknown compounds can be assigned by their RI 
value under the given chromatographic conditions.  

For analysis and profiling of fungal metabolites, it has been successful to use 
HPLC with gradient elution on reversed phase columns followed by detection of a 
UV detector. In the early days of HPLC profiling, simple UV detectors with one 
fixed wavelength were used; however, despite the simplicity species specific peak 
patterns were recorded by inspection of the printouts from the detector. An infor-
mative qualification of the separated compounds was obtained with the use of 
photodiode array detectors  that allow a UV-VIS  spectrum to be recorded on-line, 
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Fig. 2. Narrow ion traces from LC-MS analysis confirm the presence of all the metabolites 
listed in Table 1 in the cultural extracts of Penicillium discolor. Note that the metabolite 
daldinin D with the protonated mass 437.1369 Da/e is primarily seen on Yeast Extract Su-
crose agar and only in very small amounts on Czapek-Dox Yeast Autolysate agar. Several 
known isomers of the chaetoglobosins are seen as multiple chromatographic peaks in the 
diagnostic traces from these metabolites. 

which was a major step forward for chemical profiling of fungi. By this technique 
it is possible to identify or partial characterise the fungal metabolites by their UV 
spectrum linked with their retention time index. Many fungal metabolites have a 
characteristic UV spectrum within the wavelength range 200-600 nm that allow a 
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qualified identification; however, the identification needs to be verified by analy-
sis of a purified standard. This will also make it possible to calculate the retention 
time index for the chromatographic method, which will enhance the precision of 
identifications made in crude fungal extracts analysed for profiling. Since the early 
start of fungal chemotaxonomy at DTU, a large library of metabolite standards 
have been collected by purchasing commercially available standards and from do-
nations from natural product chemists world-wide. This metabolite collection is a 
very valuable source for the profiling. As reference information on chroma-
tographic properties (including retention time indices), UV-VIS and mass spectra 
has been generated for nearly all known fungal metabolites (Nielsen and Smeds-
gaard 2003). 

The photodiode array detectors record and collect the full UV-VIS spectrum 
continuously with 0.5 sec interval during a chromatographic analysis, which gen-
erates a complete two-dimensional data matrix, where retention time is x-axis, 
wavelength is y-axis and the response (the UV-VIS spectrum) is z-axis. Such data 
matrices are treated as three-dimensional images and image analysis algorithms 
have been applied to classify the chromatographic data matrices by similarity, 
which is interpreted as a classification of the fungal cultures being the origin of the 
extracts analysed (Nielsen et al. 1998). This has been successfully used for classi-
fication of Alternaria (Andersen et al. 2005), Penicillium (Nielsen et al. 1999), 
Fusarium (Schmidt et al. 2004), Stachybotrys (Andersen et al. 2003), and Tricho-
derma (Thrane et al. 2001) cultures where the image analysis itself does not use 
any identification of the metabolites detected by the HPLC system, but uses the 
entire exo-metabolome as a chemical fingerprint for classification and identifica-
tion.  

Modern HPLC systems may use more than one detector, for example, a fluo-
rescence detector and/or mass selective detectors, in combination with the photo-
diode array detector, which will enhance the specificity of the HPLC analysis and 
improve the identification of fungal metabolites in the culture extracts. Especially 
the combined use of photodiode array and mass selective detectors has proven to 
be very powerful in profiling of fungal metabolites both in filamentous fungi like 
Penicillium (Frisvad and Samson 2004) and Aspergillus (Samson et al. 2006), as 
well as among other ascomycetous fungi belonging to family Xylariaceae (Stadler 
et al. 2007). Figure 2 shows two total ion chromatograms of HPLC-MS analyses 
of fungal extracts of Penicillium discolor grown on two agar substrates, CYA and 
YES, and it is obvious that the two different substrates yield two different metabo-
lite profiles as the overall peak patterns are different. However, by extraction of 
narrow ion traces, here +/- 0.025 Da around the protonated mass of known me-
tabolites, it is possible to confirm the presence of metabolites known from this 
species (Table 1, Fig. 3). It should be noted that the metabolite daldinin D with the 
protonated mass 437.1369 Da/e is primarily on YES, and that several isomers of 
the chaetoglobosins can be seen as multiple chromatographic peaks in the diag-
nostic traces from these metabolites. Additional extraction of all possible ion 
traces from the total ion chromatogram gives an exhaustive picture of the chemis-
try, demonstrating more than 150 metabolites in these samples. Exploitation of the 
entire information of the data may be laborious and does require advanced skills in 
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Fig. 3. Chemical structures of metabolites listed in Table 1: viridicatin (1), viridicatol (2), 
dehydro-viridicatol (3), cyclopeptin (4), cyclopenin (5), cyclopenol (6), daldinin D (7), 
chaetoglobosin A-D (8), chaetoglobosin E-G (9). 
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mass spectroscopy and analytical chemistry; however, HPLC-MS is very efficient 
for identification of fungal metabolites in crude extracts. By using powerful com-
puter technology, it is possible to scan for a high number of known fungal metabo-
lites (as long as a list of expected ions can be made).  

7 Direct infusion electrospray mass spectrometry for 
profiling 

The use of an electrospray interface (ESI) to the mass spectrometer makes it pos-
sible to limit the fragmentation of sample compounds by optimizing the analytical 
parameters. In addition, it is also possible to obtain only protonated molecules 
from each compound, which will yield a profile of masses upon injecting a sample 
directly into the mass spectrometer without any prior separation on an HPLC. 
Such analyses will only take a few minutes per sample and mass profiles can eas-
ily be stored in a database and used as a library for identification of mass profiles 
from unknown fungal cultures. This ultimate profiling tool was initially applied 
onto a group of cereal borne Penicillium species (Smedsgaard and Frisvad 1996) 
and subsequently expanded to the majority of the species within Penicillium sub-
genus Penicillium (Smedsgaard and Frisvad 1997). As an example, Figure 4 
shows a mass profile from direct infusion nano-electrospray analysis of a crude 
extract of Penicillium discolor cultivated for seven days on YES medium. Ions 
corresponding to most metabolites listed in Table 1 can be found with accuracy 
better than 15 ppm (most < 6 ppm) except those marked with an asterisk in Table 
1 (mass error up to 110 ppm). The studies on Penicillium at DTU have shown that 
the mass profiles are species specific but also depending on standardised culture 
conditions as not all metabolites may be produced in a single culture. An extensive 
study on Penicillium species using this technique showed both extracts from YES 
and CYA could be used, but with a higher chemical diversity from the CYA cul-
tures (Smedsgaard et al. 2004). However, from analyses of independent extracts 
from independent cultures using different batches of substrates it was possible to 
identify an unknown extract of a fungal culture to species level including a sug-
gestion of which substrate had been used. For other less explored fungal genera it 
might be other agar substrates that would be superior in terms of chemical diver-
sity, thus a screening for optimal substrate and cultivation conditions is highly 
recommended before a more complete set of extracts are prepared and analysed.  

An advantage of direct infusion electrospray mass spectrometry is that the me-
tabolite profile can be determined within a few minutes even without any a priori 
knowledge of the metabolites in the extract, and this technique has been used in 
studies on bacteria (Vaidyanathan et al. 2002) and actinomycetes (Higgs et al. 
2001) and should serve as an efficient base for an automated identification system. 



248  Ulf Thrane, Birgitte Andersen, Jens C. Frisvad, Jørn Smedsgaard 

 
Fig. 4. Mass profile from direct infusion nano-electrospray analysis of a crude extract of 
Penicillium discolor cultivated on Yeast Extract Sucrose agar. Ions corresponding to most 
metabolites listed in Table 1 can be found with accuracy better than 15 ppm (most < 6 
ppm). 

8 Outlook – a polyphasic approach 

Natural classifications in mycology are based on ecological functional traits that 
include all disciplines of importance for interactions with the environment, such as 
physiological, morphological, and chemical characteristics. For a deeper under-
standing of the actual interactions as well as regulation and expression of the 
genes coding for the metabolites involved, the recent developments in molecular 
biology, genetics, and molecular bioinformatics are of high importance and are in-
tegrated into true multidisciplinary systematics of fungi. In this polyphasic ap-
proach, the exo-metabolome are very important as they reflect the major signals of 
importance for interactions with the environment. Furthermore, the exo-
metabolome is a powerful feature for fungal characterisation and can be used for 
identification of fungal cultures. The ongoing development in analytical chemistry 
and in mass spectrometry will make metabolite profiling even more powerful in 
the future. This is because the techniques are constantly being improved, which 
improves the quality of the generated data, and also because there is an improve-
ment in data management, data handling, and data exploitation by advanced 
mathematical algorithms. Continued improvement in computer power is naturally 
an important factor as well. However, it is important to remember the importance 
of using a polyphasic approach by incorporation of information on the origin of 
the fungal cultures, their cultural and physiological characteristics as well as the 
genotypic information. This underscores the most important functional traits of 
fungi and is of major interest for the biotechnological industry in their search for 
new products or as an efficient way to avoid contamination of their production 
strains and products. All together, a polyphasic approach in fungal systematics 
with focus on the exo-metabolome gives a complete picture of the organisms with 
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the very best opportunities to explore and exploit the fungi as safe cell factories of 
the future.  
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The importance of anatomy and physiology in 
plant metabolomics 

Ute Roessner and Filomena Pettolino 

Abstract 

Plant metabolomics offers some unique opportunities in the assignment of bio-
chemical pathways. The genetics of model plants is well-characterized which en-
ables functional genomic approaches, qualitative trait loci identification and ge-
netic engineering. Metabolomics has successfully supported the identification of 
gene function. As a specialized system, a number of key features of plants create 
challenges in sample preparation and interpretation of metabolomic data. Signifi-
cantly, most plant tissues are composed of multiple cell types which are difficult 
to isolate, often resulting in limited numbers per cell type. This hinders spatial 
resolution of the analysis of metabolites. Secondly, cells are surrounded by a dy-
namic cell wall which is in constant turnover, interfering with the metabolome. 
Thirdly, green plant cells are capable of fixing carbon through photosynthesis pro-
ducing metabolite-captured energy. This also implies a strong light-dependency in 
plant metabolism. Finally, plants are characterized by a diversity of secondary me-
tabolites produced in response to environmental stimuli. 

1 Introduction  

1.1 Importance of plants 

What is it about plants that make them so important to us? Apart from their visu-
ally pleasing qualities and contribution to some of the most famous landscapes in 
the world, plants provide the earth and its inhabitants with a large and varied set of 
irreplaceable resources of biological and economic importance. Plants account for 
90 % of the biomass on Earth and contribute to the world’s rich diversity with an 
estimated 350,000 species (Prance 2001). Plant importance begins with its 
position in the food chain as a primary producer, where energy is harvested from 
light. The processes of photosynthesis and respiration in plants are crucial in 
maintaining the life-essential balance of oxygen, carbon dioxide and water in the 
Earth’s atmosphere. Plants provide food (either directly or indirectly), shelter and 
protection for animals, insects, fungi and even other plants.  

A large number of industries revolve around plants and plant products. The 
most obvious are the agricultural, timber and paper industries which supply crops 
for food and textiles, building materials, and paper and packaging products. The 
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food and beverage industries use plant products to manufacture food and drink, 
and to modify their texture, flavor and/or color. The mining and manufacturing in-
dustries use plant products such as gums and resins (including latex for rubber) as 
binders, adhesives, emulsifiers and processing aids. Many of the medicines used 
today, including traditional herbal remedies, are either plant derived, based on 
natural plant products or contain plant extracts. Fossilized plants (coal) have been 
used as a source of energy for centuries but of increasing interest, and importance, 
is the use of plant biomass as a renewable energy source.  

Plant metabolism is essential for the production of all of these plant products. 
The current focus of plant research worldwide is primarily the improvement of 
plants for food use. In addition, researchers are examining novel ways of generat-
ing plant products for the timber, pharmaceutical, green energy and textile indus-
tries. An understanding of plant metabolism at all levels is vital to the continued 
success of these research programs.  

1.2 Plant metabolomics 

Plant metabolism has been the target of research for a long time. Around 100 
years ago the first concept of separation for plant specific compounds based on 
column chromatography was developed by Michael Tswett (1872-1920). The 
beauty of this technology was that he was able to separate chlorophyll, xantho-
phyll and carotene, based on their different colors, into clearly separated bands. A 
major step in plant research was achieved when about 50 years later Melvin Cal-
vin and Andrew Benson discovered the carbon fixing dark reaction of photosyn-
thesis, today commonly called the ‘Calvin cycle’. Although of immense impor-
tance, the photosynthetic process has not been the only plant feature of interest as 
other plant specific pathways have been studied in great detail. These include the 
starch synthetic pathway, cell wall synthesis, vitamin production, protein and lipid 
metabolism. In the last century, an endless number of analytical methodologies 
have been developed for the extraction, detection and quantification of plant me-
tabolites, always with the emphasis on increasing our understanding of plant me-
tabolism, improving plant products or increasing crop yield. The exciting devel-
opment of possibilities to specifically alter plant genomes by either mutations or 
by introduction of additional genes has opened a new opportunity in plant sci-
ences. The release of the complete sequence of the flowering plant Arabidopsis 
thaliana at the end of the nineties has provided a great improvement in under-
standing not only plant biology, but also evolution and development. In parallel, 
novel multi-parallel and/or highly sensitive analytical tools have been developed 
for a comprehensive analysis of the different cell products. Most prominent 
amongst these new technologies has been the establishment of protocols for the 
determination of the expression levels of many thousands of genes in parallel 
(transcriptomics), the detection, identification and quantification of the protein 
complement (proteomics) and the determination and the simultaneous identifica-
tion of a large number of metabolic compounds in a high-throughput manner (me-
tabolomics). Metabolomics today can be considered as the accumulation and 
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combination of knowledge of analytical biochemistry from the last 50 years and 
its application towards developments of new technologies with greater sensitivity, 
comprehensiveness, robustness and higher throughput. Currently in the field of 
metabolomics, both gas and liquid chromatography coupled to various mass spec-
trometric detection technologies (GC- and LC-MS) are applied to analyze com-
plex metabolite mixtures. In addition, nuclear magnetic resonance spectroscopy 
(NMR) has been successfully used to fingerprint plant systems. Very recently, the 
power of capillary electrophoresis coupled either to laser induced fluorescence de-
tection or mass spectrometry has been discovered. The advantage of this technol-
ogy is its great sensitivity allowing the analysis of a large range of metabolites in 
very small sample sizes. The principles, advantages and disadvantages of each of 
the available technologies have been described in great detail in a large number of 
published reviews and books (e.g. Sumner at al. 2003; Hall 2006; Saito et al. 
2006; Villas-Boas et al. 2007) and will therefore not be discussed in this chapter. 
In addition, endless numbers of publications are available with exciting and im-
pressive applications of metabolomic technologies in many different scientific 
fields. The future of research will be driven by the exponential growth of me-
tabolomics as its own entity in the ‘omics’ sciences. It is important to note, that 
metabolomics has attracted increasing interest, not only from biologists but also 
from the public and politicians. Concurrent with the evolution of metabolomics is 
the assured confidence in the validity of the data obtained and in the way it is ap-
plied.  

In the following we want to present another perspective of plant metabolomics. 
As plants are unique and essential members amongst all living organisms we 
would like to place special emphasis on the distinctiveness of plant systems and 
relate these back to important factors to consider when conducting metabolomics 
experiments in plant research.  

2 Plant anatomy 

2.1 Whole plant anatomy  

Most plants are immobile and therefore have to quickly and efficiently adapt to 
changing environments. In general, plants are built of three basic organs: leaves, 
stems and roots, which are made of four types of tissue including the vascular, the 
dermal, the ground and the meristematic tissues. The roots anchor the plant in the 
soil and are required to absorb and transport water and nutrients from the soil to 
the other parts of the plant. There are 13 minerals essential to all plants, including 
macronutrients, such as N and P, and micronutrients, such as Na, K, B, Mn, Fe, 
Ca. If a plant grows in mineral deficient conditions it affects the plant growth 
dramatically and in the worst case can kill the plant. On the other hand, excess 
amounts of most of these minerals may be harmful and thus result in the presenta-
tion of toxicity symptoms which again affect growth and reproduction. In both 
cases, the plant has to develop mechanisms to withstand these conditions for sur-
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vival. Since plant metabolism is dramatically affected by both mineral deficiency 
and toxicity, metabolomics approaches are currently used to monitor metabolic 
changes following inadequate mineral supply to gain an increased understanding 
of plant mechanisms for adaptation or even the development of tolerance.  

The stems have two major functions, firstly, to hold up the leaves for optimal 
exposure to sunlight and secondly, to transport water and nutrients via the xylem 
and soluble carbon sources and hormones via the phloem within all parts of the 
plant. In contrast, the main function of leaves is to ‘host’ the process of photosyn-
thesis. Photosynthesis occurs in chloroplasts, specialized green cellular compart-
ments where light energy is captured for the production of glucose from CO2 and 
water.  

When analyzing plant metabolism, the anatomic complexity of plants has to be 
considered. Each plant organ, tissue or cell type is characterized by a specific set 
of metabolites in a certain distribution/concentration and is often differentially af-
fected by external stimuli. Currently, due to the low sensitivity of analytical tech-
nologies used in metabolomics, metabolites from a sufficient amount of tissue 
have to be extracted for comprehensive coverage of many metabolites simultane-
ously. Therefore, often many different cell types and tissues may be combined and 
only the ‘average’ of the metabolite content determined. Successful attempts at 
single cell metabolite analysis have already been reported. Schad et al. (2005) col-
lected enough material composed of specific cell types from cryo-preserved and 
laser micro-dissected tissue to analyze about 68 major metabolites by GC-MS. 
Unfortunately, often it is very difficult or even impossible to separate and isolate 
specific cell types from plant tissues. Another exciting approach for cellular as 
well as subcellular specific determination of metabolite abundance has been pre-
sented by Fehr et al. (2004). The authors describe the development of protein-
based fluorescent-tagged nanosensors for imaging specific metabolites. One im-
portant feature of this technique is that it is almost non-invasive and can be ap-
plied to monitor dynamic changes of metabolites and also ion levels in the cells, 
tissues or organs of interest (Fehr et al. 2004). 

2.2 Cell anatomy  

All eukaryotic cells share anatomical features. They are surrounded by a plasma 
membrane, have a nucleus containing the cell’s genetic information along with a 
nucleolus for processing and assembly of ribonucleoprotein subunits, an endo-
plasmic reticulum and Golgi apparatus, mitochondria, ribosomes, peroxisomes 
and vacuoles. In addition, plant cells contain plastids and are surrounded by a cell 
wall (Fig. 1).  

The plant cell wall is a rigid semi-permeable structure surrounding all plant 
cells. The principal component of the plant cell wall is the cellulose microfibril 
framework which is embedded in a matrix of non-cellulosic polysaccharides. The 
nature of the polysaccharide matrix is very much dependent on the plant species 
and the developmental stage of the cell. For higher plants, Gibeaut and Carpita 
(1998) have defined two types of primary walls. Type I is typical of most monocot 
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Fig. 1. A typical plant cell. Plant cells are distinguishable from animal cells by the presence 
of the cell wall, plastids (chloroplast), and large vacuole. Plant cells also possess plas-
modesmata that allow for cell-to-cell molecular interactions. 

and dicot species where xyloglucan, and/or glucomannan, associates with the cel-
lulose microfibrils to form a framework embedded in a gel-like matrix of pectins. 
The Type II walls are specific to the commelinoid monocots (e.g. grasses) and 
contain glucuronoarabinoxylans in place of xyloglucan, and depending on the cell 
type and stage, also mixed-linkage β-glucans (Gibeaut and Carpita 1998). Proteins 
serve structural and catalytic roles in the cell wall and are involved in the strength-
ening and manipulation of the various components of the wall during growth and 
development. Secondary walls develop internal to the primary walls where further 
modification of the polymers is evident, including the deposition of lignin and 
suberin. 

Living plant cells are enclosed within a plasma membrane that is restricted 
against the cell wall due to turgor pressure. The plasma membrane is involved in 
signal transduction and assists in the regulation of molecular transport into and out 
of the cell. In plants, particular areas of the plasma membrane combine with ele-
ments of the endoplasmic reticulum to form membranous tubes called plas-
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modesmata. Plasmodesmata provide a direct physical link between adjacent cells 
for channeling and communication (McLean et al. 1997).  

The endoplasmic reticulum (ER) forms a dynamic network of membranes in-
volved in the synthesis, processing and sorting of targeted proteins. The ER also 
provides anchor sites for actin filaments and is the site of lipid synthesis and the 
initiation of N-linked glycosylation. Parts of the ER also form oil and protein stor-
age bodies where vegetable oils and seed storage proteins that are of human nutri-
tional value are stored (Galili et al. 1998). 

Newly synthesized proteins travel through the ER via budding transport vesi-
cles to the Golgi apparatus where they are directed to vacuoles or the cell surface. 
The Golgi is mobilized throughout the cell along actin filaments which undoubt-
edly contributes to the spatial organization and processing of cellular metabolic 
processes that occur through this organelle (Nebenführ and Staehelin 2001). O-
linked glycosylation of proteins through serine, threonine and hydroxyproline (in-
stead of hydroxylysine in animal O-glycosylation) occurs in the cis-Golgi. The 
carbohydrate moieties of glycoproteins that are initially N-glycosylated in the ER 
can be further processed in the Golgi. Plant proteins can have two types of N-
linked glycans; the high mannose type consisting of the unit (Man)6-9(GlcNAc)2 
and the complex type, which is the Golgi modified version of the high mannose 
glycans. The complex glycans of plants consist of the core structure 
Xyl(Man)3Fuc(GlcNAc)2. This differs from the core structure of mammalian 
complex glycans in that the Fuc attached to the proximal GlcNAc in mammals is 
α-1,3-linked, and in plants is α-1,6-linked. Furthermore, the Xyl that is present in 
plant glycoproteins is absent in mammalian glycoproteins (Sturm 1995). Addi-
tional processing of N-linked glycans can occur in the vacuole or extracellular 
compartments in transit to their final destination (Rayon et al. 1998.). In addition 
to containing the enzymes involved in protein and lipid glycosylation, the plant 
Golgi is also the site of synthesis of pectic and non-cellulosic cell wall polysac-
charides.  

A defining feature of plant vacuoles is their size, capable of occupying over 30 
% of the cell volume. The turgor pressure of the cell is maintained by the osmotic 
uptake of water as solutes accumulate in the vacuole. Turgor pressure, along with 
cell wall extensibility, drives plant cell enlargement and expansion. Vacuoles store 
inorganic ions, important for pH and ionic homeostasis; organic acids, including 
amino acids; sugars; enzymes such as proteases, nucleases, glycosidases and li-
pases important for digestion; proteins; and secondary metabolites such as pig-
ments and defensive molecules (phenolics, alkaloids, cyanogenic glycosides, 
saponins) (Marty 1999). Due to their chemical nature not all of these molecules 
are likely to be found in any one vacuole. In plant cells at least two types of vacu-
ole have been identified; the neutral, protein-storing vacuoles and the acidic, lytic 
vacuoles (Staehelin and Newcomb 2000).  

The role of peroxisomes in plant cells is organ or tissue specific. Peroxisomes 
are involved in the conversion of fixed N2 into nitrogen-rich organic compounds 
in legume root nodules. Glyoxsomes are specific peroxisomes involved in lipid 
metabolism in germinating seeds that store fats. In leaves, peroxisomes, in con-
junction with mitochondria and chloroplasts, participate in photorespiration. Per-



The importance of anatomy and physiology in plant metabolomics   259 

oxisomes serve a protective function in that the hydrogen peroxide that is liberated 
in each of these metabolic processes is destroyed by their resident catalases.  

The mitochondria of plant cells are typical of the eukaryotic organelle respon-
sible for the generation of ATP via the citric acid cycle and associated electron 
transfer chain. Plant mitochondria have a much larger genome than in other organ-
isms, ranging in size from 200,000 to 2,600,000 nucleotides (compared with 
15,000 – 18,000 in mammals). The plant mitochondrial genome, which codes for 
only 16 of the 20 tRNA genes required for protein synthesis, also contains some 
chloroplast DNA, most of which is non-functional in mitochondria (Staehelin and 
Newcomb 2000).  

Amongst the eukaryotes, plastids are found only in plant and algal cells. There 
are a number of different plastids that can exist in a plant cell, each of which 
serves different functions. All plastids begin as proplastids that develop into, or 
convert from one type of plastid to another. Amyloplasts and leucoplasts are non-
pigmented plastids that store starch and are involved in monoterpene synthesis, re-
spectively. Etioplasts, which arise when chloroplast development is arrested due to 
the lack of light, store tubular membranes as semicrystalline structures called 
prolamellar bodies. The lipid membranes transform into thylakoids when the etio-
plast is illuminated and progresses in development to a chloroplast. Chromoplasts 
synthesize and store carotenes and xanthophylls giving them the yellow, orange or 
red coloring seen in many fruits, flowers and vegetables. Chloroplasts are the 
green chlorophyll containing plastids responsible for energy capture from sunlight. 
The photosynthetic machinery of chloroplasts resides within the thylakoid mem-
brane system composed of stacked grana that are interconnected via the unstacked 
stroma. 

Each of the above described compartments is characterized by their own suite 
of metabolites as well as concentration patterns. This is especially important to be 
considered as most metabolomics approaches cover metabolites extracted from 
whole cells, tissues, organs or even plants. Therefore no information is obtained 
about metabolite levels and changes within and between compartments, e.g. fol-
lowing environmental stimuli or genetic alteration. Recently, there have been ef-
forts to develop metabolite analysis tools at the subcellular level. Farré et al. 
(2001) applied a non-aqueous fractionation technique to separate plastids, vacu-
oles and cytoplasm/mitochondria based on their individual density from potato tu-
bers. The resulting fractions were characterized using compartment-specific en-
zyme marker assays to determine the distribution of compartments in each 
fraction. The percentage distribution was further correlated with levels of about 60 
metabolites, analyzed using GC-MS, to give an estimation of metabolite concen-
trations in the different compartments (Farré et al. 2001). As mentioned above, 
more recent and extremely promising developments for subcellular metabolite im-
aging are based on fluorescent-tagged nanosensors (Fehr et al. 2004). 
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3 Plant physiology – Challenges for plant metabolomics 

3.1 Photosynthesis 

There is essentially a lot of similarity between plant primary metabolism and those 
of all other organisms. But, the ability of green plants to capture energy from light 
for the production of high-energy containing molecules, has equipped plants with 
a number of unique reactions. Most well known and studied is photosynthesis 
which is characterized by two major processes. The first is the capture of light en-
ergy for the production of ATP and the reducing equivalent NADPH. Figure 2 
represents a schematic overview of the importance of photosynthesis for the sup-
ply of energy and carbon molecules for a range of metabolic processes in plant 
cells. The prerequisite of this so called light-reaction is the presence of chloro-
phyll. The second step is light-independent and produces glucose from carbon di-
oxide and water using ATP and NADPH, and releases oxygen. This is a very ad-
vanced process where the enzyme ribulose-1,5-bisphosphate carboxylase 
(Rubisco), actually the most abundant protein in green tissues, binds 6 molecules 
of carbon dioxide to 6 molecules of ribulose-1,5-bisphosphate producing twelve 
molecules of 3-phosphoglycerate. The 3-phosphoglycerates are further metabo-
lized to release one molecule of glucose and resynthesize 6 molecules of ribulose-
1,5-bisphosphate for the next cycle. The glucose is then the key metabolite for all 
down-stream metabolic processes, both for biosynthetic pathways or respiration 
via glycolysis. In most plants, sucrose is the transport form of carbon throughout 
the whole plant.  

Photosynthesis is therefore the key process dictating the great dependency on 
light availability and intensity for many metabolic processes in plant cells. A large 
range of metabolic enzymes are regulated either directly by light or by the result-
ing glucose or sucrose. As a consequence, substantially different metabolite quan-
tities are present during the day compared to the night. This has been shown in an 
in-depth analysis of leaf metabolites during diurnal rhythm in potato and rice (Sato 
et al. 2004; Urbanczyk-Wochniak et al. 2005). Therefore, special care has to be 
taken with the time of the day when leaf samples for metabolomics studies are 
harvested. Leaves however, are not the only tissue to show a light-dependent me-
tabolite profile. As demonstrated by Roessner-Tunali et al. (2003a), even hetero-
trophic tissues such as potato tubers which grow in the dark in the soil, show a dif-
ferential metabolite profile in the course of a day because they are dependent on 
the ‘delivery’ of sucrose from the aerial parts for starch production.   

3.2 Photorespiration 

Plants have to develop a specialized mechanism to survive in situations where the 
CO2 levels inside a leaf become very low. This occurs in very hot and/or dry envi-
ronments which cause a closure of the stomata to avoid undesired water loss, re-
sulting in insufficient CO2 uptake.  Rubisco is a dual functional enzyme,  which in 
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Fig. 2. Simplified scheme of metabolism in green plant tissues. PS – photosynthesis, PR – 
photorespiration, TCA – tricarbolic acid cycle. 

low CO2 conditions prefers to accept O2. This leads to the production of 2-
phosphoglycolate, which is toxic for the plant cell, and to reduction of ATP pro-
duction. In this case, the plant uses a series of enzymatic steps to transform 2-
phosphoglycolate into non-toxic and even metabolically useful compounds. The 
first step cleaves the phospho-group to produce glycolate. After transport of this 
molecule from the plastids to the peroxisomes, it is transformed into glycine, by 
the release of CO2, and is then transported to the mitochondria. There, glycine is 
further converted to serine which can be either channeled into amino acid and pro-
tein metabolism or metabolized to form 3-phosphoglycerate, an important inter-
mediate in glycolysis and a useful precursor for other primary metabolites. Unfor-
tunately for the plant, all these conversions result in a net loss of CO2 and the use 
of ATP and reducing equivalents. This pathway demonstrates an interesting ex-
ample of how cells can control carbon flow by separating metabolic reactions into 
different compartments. The process of photorespiration involves the action of 
three compartments, the plastid, the peroxisome and the mitochondria. This means 
that transport proteins specific for each of the compartments and for the respective 
molecule requiring transport, have to be expressed and activated. 
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3.3 Transpiration 

The evaporation of water from leaves and the stems of plants into the atmosphere 
are called transpiration. Water is absorbed from the soil by the roots and pumped 
through the vessels to the upper parts of the plant. The actual process of evapora-
tion occurs through small pores called stomata which are located on the lower side 
of the leaves. The closure state of these stomata controls the amount of water re-
leased and therefore is extremely important for the balance between water gain 
and water loss of the plant and hence, for the actual water availability in the tis-
sues. For instance, under water limiting conditions, the stomata are closed very 
rapidly in order to reduce water loss. Therefore, the opening status of the stomata 
can control the water content of the plant tissue which can have two effects with 
respect to metabolomic analysis. Firstly, water availability in plant cells has re-
markable effects on all metabolic pathways and therefore metabolite levels. In ad-
dition it can result in stress-induced responses. Secondly, when samples are pre-
pared for metabolite extraction and fresh weight is used as a way of normalization, 
the amount of water in the harvested tissue will influence the fresh weight and 
consequently the evaluation of metabolite levels. Therefore, it is most important to 
keep the water availability, the temperature and light intensity consistent when 
growing plants for comparative metabolomics as well as other ‘omics’ studies. 

3.4 Starch and other storage products 

Plants are important food components as they store high-energy products, such as 
carbohydrates, fats and proteins. Carbohydrates can be stored as free sugars, such 
as hexoses in fruits or sucrose in sugar cane, or polymerized in the form of cell 
walls and starch. Starch is a plant specific storage product and consists of an end-
less number of polymerized glucose polymers. In plants, two types of starch are 
produced, transitory and storage starch. Transitory starch, which is a store for ex-
cess glucose made in green leaves during photosynthesis in the light, is degraded 
during the dark period and distributed throughout the plant for energy production 
via respiration or for delivery to sink organs for long-term storage. This type of 
starch mainly occurs in non-photosynthetically active (heterotrophic, non-green) 
tissues, such as tubers or grains. As mentioned earlier, starch is made of long 
chains of glucose molecules. The chemistry of these long chains determines the 
type of starch. On one hand, glucose monomers are linked by α-(1,4)-glucosidic 
bonds resulting in amylose, a linear, helical polymer that aggregates to form in-
soluble starch granules. In the other form of starch, amylopectin, these α-(1,4)-
glucose chains are further substituted by α-(1,6)-glucosidic linkages forming more 
complex and branched structures. The biosynthetic pathway of starch starts with 
the formation of nucleotide-activated glucose by the enzyme ADP-glucose pyro-
phosphorylase. The ADP-glucose is then used as a substrate by starch synthase 
enzymes, which add glucose units to the end of a growing polymer chain to build 
up a starch molecule (releasing the ADP in the process). Branches in the chain are 
introduced by starch branching enzymes (SBEs), which hydrolyze α-(1,4)-
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glycosidic bonds, and in their place, create α-(1,6) bonds with other glucose units. 
The investigation of the starch synthetic and degradation pathways, and their dif-
ferences in different species and tissues, has been a target of research for many 
years particularly with the emphasis on increasing yield of starch-storing crops. 
The analysis of the intermediates of the starch biosynthetic pathway and also the 
many other metabolites either directly associated, e.g. from glycolysis or the TCA 
cycle or metabolites indirectly involved in this pathway will indicate what factors 
influence the flux of carbon into starch. This will result in improved and more ef-
ficient approaches to modify starch with respect to increased yields and altered 
structure for specific industrial applications. 

3.5 Cell wall synthesis 

A large proportion of the glucose generated by plant cells is directed towards cell 
wall synthesis. New cell walls form after nuclear division when a phragmoplast 
containing actin, myosin and microtubules assembles a cell plate between the nu-
clei. New wall components carried via Golgi vesicles are deposited at the cell 
plate which continues to grow from the centre towards the edges of the cell until it 
fuses with the existing wall. Biosynthesis of the plant cell wall is a highly regu-
lated process due in part to the complex nature of its structure, the location of the 
biosynthetic machinery and the coordinated changes that take place during growth 
and development. Cell wall biosynthesis itself involves a number of metabolites 
and it is the synthesis, conversion and transport of these that are important in cell 
wall development. The synthesis and shuffle of carbohydrates, nucleotides, pro-
teins, amino acids, lipids (e.g. sterols), phenolics, growth regulators and cofactors 
(e.g. acetyl-CoA) are critical to the growth and development of the plant cell wall, 
and in turn, the plant. 

Polysaccharides, the major components of plant cell walls are a secondary gene 
product; the primary gene product being the synthases and transferases responsible 
for their synthesis. As a secondary gene product no template is available (unlike 
protein synthesis) and yet the general polysaccharide structures present in a given 
wall at a specific developmental stage are consistent. The identification of the cel-
lulose synthase genes (Ces A) opened a flood gate for the discovery of a large 
number of genes encoding putative polysaccharide synthases. These genes have 
been classified according to their similarity to the CesA genes to give the CSL 
(cellulose synthase-like) gene families (http://cellwall.stanford.edu/). Interestingly, 
the genomic approaches to study cell wall biosynthesis have shown that each tis-
sue can have multiple Ces and CSL genes, presumably to account for the different 
types of polysaccharides synthesized as well as providing the ability to switch on 
different genes to coincide with a particular developmental stage. Despite the large 
number of genes identified, only a handful have been unambiguously identified as 
polysaccharide synthase genes (Scheible and Pauly 2004) and the actual mecha-
nisms involved in cell wall biosynthesis are not clearly defined. Metabolite profil-
ing has the potential to shed light on some of these mechanisms. 
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Fig. 3. Primary cell wall synthesis. Cellulose is synthesised at the plasma membrane by 
CSC, (Cellulose Synthase Complex) and is associated with other enzymes including SuSy 
(Sucrose Synthase) and KOR (KOR endoglucanase). Nucleotide sugars (NDP) are synthe-
sised and converted in the cytosol (and most likely the Golgi) by Nucleotide Sugar Inter-
converting enzymes (NSI). Matrix polysaccharides are synthesised by GTs (Glycosyl 
Transferases) in the Golgi and transported to the wall. NDPs are transported to sites of 
polysaccharide synthesis including inside the Golgi by Nucleotide Sugar Transporters 
(NSTs). 

In the synthesis of the wall polysaccharides (Fig. 3), nucleotide sugars are the 
donor substrates that provide the specific monosaccharides to be attached to the 
growing polysaccharide chain. This is also the case for glycosyltransferases which 
add specific sugars to a preformed polysaccharide backbone. Cellulose and callose 
(a developmentally regulated polysaccharide that occurs only in specialized cells 
and in response to wounding) are synthesized at the plasma membrane. The other 
cell wall polysaccharides, including xyloglucan, pectins, arabinoxylan and het-
eromannans are synthesized in the Golgi (Moore and Staehlin 1988) and trans-
ported to the cell surface for release into the wall space via vesicular transport 
mechanisms. The cellulose synthetic machinery that occurs on the plasma mem-
brane forms rosette structures composed of cellulose synthase hexamers. A num-
ber of other enzymes appear to be closely associated with the complex, including 
sucrose synthase (SuSy), which presumably supplies UDP-glucose as the donor 
substrate to the cellulose synthase (Delmer and Amor 1995), and KOR endo-
glucanase. There has been some evidence to suggest that the acceptor for initiation 
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of cellulose synthesis is a sitosterol-linked β-glucan and it has been proposed that 
the KOR endo-glucanase cleaves the lipid-linked glucan chain after initiation of 
polymerization (Peng et al. 2002).  

Nucleotide sugars are synthesized in the cytoplasm and must be transported to 
the sites of polysaccharide synthesis in both the Golgi and at the plasma mem-
brane. Nucleotide sugar interconverting enzymes have also been associated with 
the Golgi (Baldwin et al. 2001). The evidence for the presence of nucleotide sugar 
transporters in Golgi membranes suggests that nucleotide sugars that are synthe-
sized in the cytoplasm can be transported into the Golgi and perhaps converted to 
raise the population of various sugar nucleotides required for polysaccharide syn-
thesis (Orellana 2005; Reiter and Vanzin 2001). With respect to metabolite profil-
ing, the extraction, fractionation and detection of nucleotide sugars is complicated 
by their structural similarities and low abundances. Methods currently used are 
limited to the simultaneous detection of only a few metabolites, but new develop-
ments in methodology (e.g. Ramm et al. 2004) are helping to overcome these is-
sues. 

The cell wall is a dynamic structure and once deposited will undergo many 
changes according to developmental stage, tissue type and environmental influ-
ences. These include modification of the polysaccharides by hydrolytic, de-
acetylation and de-methylesterification processes. Acetylation of polysaccharides 
occurs in the Golgi with acetyl-CoA as the acetyl donor and is thought to protect 
the polysaccharide from degradation and influence its solubility (Pauly and Schel-
ler 2000). Homogalacturonan is believed to be synthesized in a highly-
methylesterified form which is later modified by pectin methylesterases to gener-
ate esterified and unesterified regions (Willats et al. 2001), both of which are im-
portant in determining the physical properties of pectins and their associations 
within the wall. In addition, cross-linking of different wall components can occur 
through polysaccharide-polysaccharide, protein-phenolic, phenolic-polysaccharide 
and phenolic-phenolic interactions. Cell elongation and expansion therefore re-
quires mechanisms that can disrupt these associations to allow for flexibility. En-
zymes such as xyloglucan endotransglycosylase, peroxidases, endoglycanases and 
esterases and non-enzymic proteins such as expansins are involved in this process 
and can be influenced by regulators such as auxins and low pH (Cosgrove 2001). 

Once the cell has ceased growing, further layers are added to the wall to form 
the secondary wall thickenings. Secondary walls form three layers inside the pri-
mary wall layer (S1, S2 and S3 from outer to inner layers) and are composed of 
polysaccharides (mostly cellulose) and lignin, although lignin is rarely found in 
the S3 layer. Lignin is synthesized by the free radical-driven polymerization of 
phenylpropanoid monomers including ferulic, coumaric, sinapic, cinnamic and 
hydoxybenzoic acids.  

Biosynthesis of the plant cell wall involves a number of key metabolic proc-
esses. Whether or not polysaccharides are strictly defined as metabolites remains 
to be resolved. However, polysaccharides and oligosaccharides should not be ig-
nored when it comes to plant metabolite profiling since much of plant metabolism 
revolves around carbohydrate shuffling and incorporation into cell wall and stor-
age polysaccharides. A major challenge facing analysts is the high throughput 



266   Ute Roessner and Filomena Pettolino 

measurement of complex carbohydrates due to the structural similarity of a vast 
and diverse range of possible structures. For example, the same hexose units can 
join together to form 20 different disaccharide structures and 448 trisaccharide 
structures, while three different hexoses joined together can potentially give rise to 
2688 isomers, but in the case of peptides, three different amino acids will give rise 
to only six different peptides (Oxley et al. 2004).  

Recent developments using molecular genetic approaches have contributed sig-
nificantly to the current understanding of cell wall biosynthesis, but many aspects 
of its regulation remain a mystery. The use of metabolomics techniques will help 
to unravel some of these mysteries particularly when developments in spatial reso-
lution of metabolites come to fruition. 

3.6 Secondary metabolites  

Plant secondary metabolites, organic compounds that are produced by plants but 
are not directly involved in their growth and development, include an extremely 
varied and complex array of molecules. In our everyday lives we use these me-
tabolites, either native or chemically modified, in items such as dyes and food col-
orings, polymers, fiber, adhesives, oils and waxes, flavoring agents, fragrances 
and drugs. The function of many secondary metabolites in planta is not known, 
but for others, they serve roles in defense against herbivorous and microbial at-
tack, pollination and seed dispersal and act as allelopathic agents. Plant secondary 
metabolites are classed into three major groups; the terpenoids, the alkaloids and 
the phenylpropanoids and related phenolic compounds, all of which are produced 
by extremely complex biosynthetic pathways.  

The terpenoid group of compounds are not restricted to plants but are also pro-
duced by animals and microorganisms. Plants however possess a much wider va-
riety of terpenoids than other organisms and by developing highly specialized 
cells (such as glandular epidermal cells) are able to produce and store them in 
large quantities. Over 22,000 different compounds belong to the plant group of 
terpenoids, all of which are derived from the 5-carbon (C5) precursor isopentenyl 
diphosphate (IPP) (McGarvey and Croteau 1995). IPP is generated from the fusion 
of 3 acetyl-CoA molecules and gives rise to mevalonic acid which is in turn phos-
phorylated and decarboxylated to IPP. Repetitive addition of IPP units gives rise 
to a series of prenyl diphosphate molecules. These are processed by specific ter-
penoid synthases to yield terpenoid skeletons that are further modified enzymati-
cally to deliver the vast array of terpenoids that exist in nature. The simplest ter-
penoid is isoprene which is composed of a single C5 unit (the terpenoid monomer). 
Examples of the monoterpenes (2 C5 units) include the components found in the 
essential oils of flowers, herbs and spices. Sesquiterpenes (3 C5 units) can also be 
found in essential oils and are involved in defense against herbivores and microor-
ganisms. The diterpenes (4 C5 units) include phytol (component of chlorophyll), 
the giberellin growth regulators, phytoallexins and taxol (an anticancer agent). 
Brassinosteroids, some wax components and membrane phytosterols (such as β-
sitosterol, campesterol and stigmasterol) belong to the triterpene group, which are 
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composed of two C15 chains linked together. The tetraterpenes (8 C5 units) include 
the carotenoids which are essential for photosynthesis, and examples of polyter-
penes (more than 8 C5 units) include rubber, dolichol (essential for sugar transfer 
reactions), plastiquinone and ubiquinone (electron carriers). 

The alkaloids were historically defined as ‘pharmacologically active, nitrogen-
containing basic compounds of plant origin’ based on the therapeutic use of these 
compounds in traditional medicines. Alkaloids have since been isolated from ani-
mal and insect sources (usually toxins) but we continue to use the plant alkaloids 
in modern medicine. Over 12,000 alkaloid structures from plants have been de-
scribed, with approximately 20% of plant species known to accumulate alkaloids 
(DeLuca and Pierre 2000). These include caffeine, camptothecin, cocaine, co-
deine, morphine, nicotine, quinine and strychnine. The role of alkaloids in plants 
is generally a defensive one, with evidence for their involvement in wound re-
sponses. Not all the biosynthetic pathways for alkaloid biosynthesis have been 
elucidated, however, it is known that they are mostly derived from amino acids 
such as tryptophan, tyrosine, phenylalanine, lysine and ornithine, sometimes in 
combination with steroid or terpenoid-like groups. 

The phenylpropanoids and related phenolic compounds (>2500 compounds) are 
generated through the shikimic acid or malonite/acetate biochemical pathway. 
Whilst many of the phenolic compounds serve structural roles in the plant cell 
wall, others have also been ascribed roles in plant defense, flower color and plant 
flavors and aromas. Lignins are deposited in secondary cell walls to strengthen 
and reinforce the wall, while suberin acts to protect tissue from dehydration and 
pathogen attack. The flavanoid group of compounds includes the anthocyanins 
that impart color in the way of pigments; condensed tannins; and isoflavanoids 
that serve as defense and signaling molecules. 

Metabolomics of secondary metabolites is complicated by their vast numbers 
and diverse chemistries. Techniques are continuously developing to incorporate as 
many secondary metabolites in profiling analysis as possible. Recently, von 
Roepenack-Lahaye et al. (2004) successfully used capillary liquid chromatogra-
phy coupled to ESI-QqTOF-MS profile to obtain approximately 2000 mass signals 
from Arabidopsis tissue that covered a large number of secondary metabolites but 
not mono- and sesquiterpenoids, triterpenoid alcohols, phytosterols, waxes or ca-
rotenoids. This is typical of all methods currently being used where only a subset 
of secondary metabolites is detectable mostly due to extraction procedures and 
low resolution. Furthermore, this group of compounds is so complex that it is pos-
sible that previously unidentified structures exist but are being overlooked. 

4 Unique aspects of plant research 

4.1 Functional genomics  

The ever developing area of functional genomics aims to assign function to the 
multitude of genes that have been identified by genomic analyses of biological 
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systems. In the “post-genomic” era, the profiling of biological systems at the lev-
els of RNA (transcriptomics), protein (proteomics) and metabolite (metabolomics) 
is essential to functional genomics. Functional genomics is the ultimate tool for 
the rational improvement of plants for food, fiber and other commodities that are 
essential to life as we know it today.  

In plants, much of the genetic information gained has been from model systems 
such as Arabidopsis thaliana and commercially important crop plants such as rice, 
potato and maize. Arabidopsis and rice (Arabidopsis genome initiative 2000; Yu 
et al. 2002) have now been fully sequenced. These sequences provide an essential 
tool for plant functional genomics because of the similarity in gene sequences 
within the plant kingdom. Based on comparative sequences alone, 54 % of genes 
in higher plants can be assigned a function (Somerville and Somerville 1999). 
Useful genetic information has also been gained from other sources where the en-
tire genome is not necessarily available. Expressed sequence tag (EST) libraries 
have been used to correlate gene expression with developmental processes in 
plants. For example in potato, ESTs were used to identify genes involved in tuber 
initiation, dormancy and sprouting (Ronning et al. 2003). Insertion mutant librar-
ies, which are available for Arabidopsis, maize, petunia and snapdragon (Somer-
ville and Somerville 1999), and gene silencing by double stranded RNA produc-
tion, allow for the phenotypic analysis of plants where particular genes have been 
interrupted or silenced. Developments in gene chip and microarray technologies 
have also provided essential information by quantitative analysis of gene expres-
sion associated with particular treatments or developmental stages (Schena et al. 
1997). 

Molecular genetic techniques have assisted in identifying entire genomes and 
transcriptomes because, to a large extent, it is possible to assign gene function 
based on orthology. However, this does not necessarily help in describing gene 
function at a cellular level. For example, knowing that a gene codes for a particu-
lar enzyme does not provide information on how the enzyme is regulated or what 
chain of events are triggered by it, nor does it take into account gene duplication. 
Proteomic technologies are advancing with the development of separation and 
mass spectrometric platforms for functional genomics. Metabolomic approaches 
will go one step further in filling the gaps and addressing some of the questions 
raised by the identification of the vast number of genes discovered from genomic 
analyses. 

4.2 Breeding and QTL analysis 

In order to create a novel variety of genotypes and phenotypes, plant genomes can 
be manipulated in a targeted fashion using breeding. Classical plant breeding de-
liberately crosses closely or even distantly related species to produce new crops 
with desired features by introducing genes, and therefore traits, from one species 
into another genetic background. Basically, plant breeding has been performed 
since the start of agricultural practices thousands of years ago, but today is ap-
proached in a much more sophisticated and organized manner to ensure food secu-
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rity and sustain agriculture. Classical breeding relies on the homologous recombi-
nation process between two genomes creating novel genetic diversity. Currently, 
large breeding programs worldwide for many different plant species are aiming 
for the development of better crops, e.g. with increased yield and quality of the 
crop, increased tolerance levels to environmental challenges, resistance to viruses, 
bacteria, fungi or insects, as well as increased tolerance to certain herbicides. In 
future, metabolomics technologies may become an important tool as a high-
throughput method to screen for desired features of a crossed progeny, e.g. for vi-
tamin, acid and/or sugar contents in fruits.  

Another great potential tool for identifying novel genetic variety and new genes 
involved in plant performance is quantitative trait locus mapping. A quantitative 
trait locus (QTL) is an interval across a chromosome that is associated with a par-
ticular feature of the plant, a trait. QTLs are not necessarily genes themselves but 
are stretches of DNA that are closely linked to the genes controlling the desired 
trait. The statistical investigation of the alleles which occur in a locus and the pro-
duced trait is called QTL mapping. QTL mapping aims to identify the loci, deci-
pher the genes within these loci and ultimately, to identify the functions of the un-
derlying genes. In the past, most QTL analysis was done on single traits, such as 
yield, plant height or stress tolerance. More recently, with the development of 
novel technologies for high-throughput simultaneous analysis of transcripts or me-
tabolites, a great potential for multi-trait analysis has become available. Combin-
ing for instance the techniques of QTL analysis with those of metabolomics will 
offer identification of novel QTLs affecting either the level of a single metabolite 
or even the levels of many metabolites simultaneously. Two primary and exciting 
examples of this approach have been presented very recently by Schauer et al. 
(2006) and Keurentjes et al. (2006). Schauer et al. (2006) utilized a GC-MS based 
metabolite profiling method to analyze the metabolite profiles of fruits from a cul-
tivated tomato species (Solanum lycopersicon) in which marker-defined genome 
regions were introgressed with homologous regions of a wild and non-ripening 
tomato species (Solanum penellii). The authors describe the identification of a 
large number of single metabolite QTLs as well as many QTLs affecting whole 
pathways and/or the metabolic network. The work of Keurentjes et al. (2006) 
demonstrated the investigation of the variation of metabolite composition in plants 
by analyzing 14 Arabidopsis thaliana accessions using a non-targeted LC-QTOF-
MS method for the simultaneous detection of more than 2000 individual mass 
peaks. In addition, the analysis of the metabolomes of a recombinant inbred line 
(RIL) population of the two most divergent accessions allowed the detection of re-
spective QTLs for about 75 % of all mass peaks. Both examples can be seen as the 
pioneer work for future QTL identification and mapping as they demonstrate the 
potential that metabolomics approaches are offering. Once metabolomics tech-
nologies become more robust, faster and easier to automate, it will be one of the 
most promising and informative methods to study genetic segregation and identify 
novel genes. 

Another, sometimes quicker way of introducing new genetic variety into a spe-
cies is the use of genetic techniques for the production of genetically altered or-
ganisms based on transgenesis. These techniques enable the specific introduction 
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or deletion of targeted genes rather than the random approach used in plant breed-
ing. Several methods are established for doing this but the most common methods 
include the “gene gun” and the Agrobacterium based method. Today, the Agro-
bacterium-mediated genetic transformation is the most commonly used technol-
ogy for the production of transgenic plants and protocols for a large range of dif-
ferent species have been established. Extensive research in this technology is 
aiming at improvement of the efficiency of the actual gene transfer. Since the first 
transgenic plant was created more than 20 years ago, scientists have wanted to 
analyze the intended as well as unintended effects that the introduced gene has on 
the plants performance, including the visible phenotype or the abundance of cer-
tain cell products. Huge efforts have been made in the development of strategies 
for risk assessment of genetically modified organisms and metabolomics has been 
identified as the tool of choice for comprehensive analysis of transgenesis, includ-
ing effects on plant metabolism as well as on potential interactions with human 
health and the environment (Rischer and Oksman-Caldentey, 2006). 

4.3 Genetic engineering  

Plants provide an ideal system for the expression of both foreign and non-foreign 
genes, either for improved qualities or for the production of selected compounds 
such as plant secondary metabolites. Worldwide, 90 million hectares of crops are 
biotech approved across 21 different countries. These include (in order of acreage) 
USA (49.8 million hectares), Argentina, Brazil, Canada, China, Paraguay, India, 
South Africa, Uruguay, Australia, Mexico, Romania, the Philippines, Spain, Co-
lombia, Iran, Honduras, Portugal, Germany, France and the Czech Republic (<0.1 
million hectares) (James 2005). The industry is worth $5.25 billion, which equates 
to 18 % of the global commercial seed market. The majority of crops have been 
modified for pathogen resistance by the introduction of Bacillus thuringiensis 
toxin (BT) (e.g. maize, cotton, canola, rice, potato, tomato) and/or herbicide resis-
tance (e.g. soybean, maize, cotton, canola, rice, sugar beet, tomato). Viral resis-
tance is also available for some plant species (e.g. in squash and papaya). The 
modified traits that are most common in crops currently focus on farming prac-
tices to reduce pesticide use and increase crop yields. The future will see the in-
crease in the introduction of genes into crops to modify nutritional qualities. For 
example, biotech soybean with high oleic acid content, tomato with increased ly-
copene levels, and potatoes, maize and wheat with modified starch. 

In addition to the modification of crop plants for selected traits, it is possible to 
use plants as protein or secondary metabolite factories both in the field and in tis-
sue culture. Although potentially expensive, plant tissue culture can offer some 
advantages over traditional field growing practices. These advantages include the 
growth of metabolically active cells from rare plants, or plants that are either diffi-
cult to cultivate or have long maturation periods. Furthermore, a culture system 
can be manipulated to occlude the influence of environmental factors such as cli-
mate, nutrient availability and disease. Plant-based systems offer a feasible alter-
native to microbial or mammalian cell culture systems for the production of re-
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combinant proteins and can offer some advantages for the production of medically 
important proteins. Plants don’t carry human pathogens or produce endotoxins and 
they have the necessary machinery for post-translational modification of proteins. 
Although glycosylation in plants differs only slightly from mammalian glycosyla-
tion, it is different enough to cause potential immunogenic and efficacy concerns. 
These factors are being overcome by the introduction of mammalian glycosyl-
transferases into plants to produce proteins with mammalian glycosylation pat-
terns (Palacpac et al. 1999).  

A number of medically relevant proteins have been produced in plant cells. 
These include various immunoglobulins and immunoglobulin fragments, human 
erythropoietin, interleukins and granulocyte macrophage stimulating factor (see 
Hellwig et al. 2004 and references therein). Furthermore, the effectiveness of re-
combinant proteins as oral vaccines has been demonstrated. Hepatitis B surface 
antigen (HBsAg) expressed in potato and fed to mice elicited an immune response 
to the antigen (Kong et al. 2001). Similarly, in humans, Norwalk virus capsid pro-
tein (NVCP) expressed in potato was shown to stimulate an antibody response 
against the antigen upon its oral administration (Tacket et al. 2000.) 

In addition to protein production, plant cell culture provides a controlled 
method for the production of secondary metabolites for medicinal purposes. Ex-
amples of plant cell culture production of secondary metabolites include codeine 
and morphine by poppy (Papaver somniferum), ginsenosides by Panax ginseng 
and capsaicin by Capsicum frutescens. Perhaps the most successful example is the 
production of taxol by plant tissue culture. Taxol is an alkaloid anticancer agent 
found in the bark of Pacific yew trees (Taxus brevifolia). The species does not 
grow abundantly and taxol is collected only from trees that are over 50 years old. 
The natural yields of taxol are low (0.001% by dry weight of bark) and it is diffi-
cult and expensive to chemically synthesize. Plant tissue culture techniques have 
enabled reasonable levels (14 mg/L) of taxol to be produced and accumulated in 
the medium of Taxus cultures (Ketchum and Gibson 1996). 

The moss, Physcomitrella patens, provides a unique system for the establish-
ment of recombinant technologies relevant to higher plants. The lifecycle of Phy-
scomitrella is dominated by the haploid gametophytic stage, which means that 
there are no dominant/recessive traits that can complicate interpretation of genetic 
screens through the influence of a second allele. Furthermore, Physcomitrella has 
an extremely efficient homologous recombination system making it a far superior 
system to any other seed plant and twice as efficient as mouse embryonic stem 
cells for gene targeting (Reski and Frank 2005). Cultures of Physcomitrella, which 
have the advantage of genetic stability compared to tissue cultured cells of higher 
plants, have been used to produce a humanized antibody for deep-vein thrombosis 
prevention (Decker and Reski 2004) and human vascular endothelial growth factor 
(Baur et al. 2005) 

The use of plants as “factories” offers an extremely promising approach to the 
production of recombinant proteins and secondary metabolites. However, a num-
ber of obstacles, particularly low yield, must be overcome before this technology 
can truly advance. Functional genomic approaches, including metabolomics, will 
certainly allow this to proceed by describing biosynthetic and regulatory pathways 
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(see Oksman-Caldentey and Inze 2004, and references therein). These approaches 
will enable rational engineering of biosynthetic pathways to produce metabolites 
of interest on demand. 

5 Recent, current and future of plant metabolomics 

5.1 Successful applications 

Metabolomics as a technology allows a large number of metabolites of different 
compound classes to be analyzed and has already been successfully applied to a 
range of fields in plant sciences. As a tool, metabolomics is applied to answer bio-
logical questions that range from the simple to the complex, and to increase our 
understanding of plant biology and physiology. Metabolomics is also used for the 
comprehensive phenotyping of genetic varieties or genetically altered plants, for 
gene identification in functional genomics approaches and to monitor plant behav-
ior and responses to challenging environmental conditions.  

The model plant Arabidopsis thaliana has been the target of extensive me-
tabolomics studies with different emphases. For example, the metabolome of a 
large range of mutants has already been analyzed and is the future focus of a large 
functional genomics program funded by NSF aiming for the identification of the 
function of all genes in this plant by 2010. In addition, an interesting investigation 
of the metabolic differences of a range of different accessions of Arabidopsis re-
vealed that there exists a large, unexpected diversity between these accessions not 
only in the amounts of individual metabolites but also in the appearance of certain 
metabolites (Keutentjes et al. 2006). This study also demonstrated the applicability 
of metabolomics for high-resolution QTL analysis by untargeted LC-QTOF-MS 
of the metabolomes of a recombinant inbred line population (RIL) from a cross 
between two divergent accessions for the identification of QTLs for more than 
three quarters of the detected mass signals (Keutentjes et al. 2006). As the model 
plant, the knowledge about Arabidopsis genetics and physiology is immense, and 
large studies have been conducted to investigate cellular responses to a number of 
different environmentally challenging conditions. For example, the effects on the 
metabolite profiles have been determined for plants grown in sulphur deficient 
conditions. Most importantly, these measurements were done in conjunction with 
transcriptomics analysis to demonstrate the first attempts of integration of both 
types of datasets (Hirai et al. 2005, Nikiforova et al. 2005). These examples have 
shown the power of combining metabolomics and transcriptomics analyses for a 
systems biology approach towards understanding cellular responses and adapta-
tion. Another important stress factor for plants is varying temperature as shown in 
the detailed characterization of metabolic adaptations to low and high tempera-
tures (Kaplan et al. 2004; Cook et al. 2004). Interestingly, it could be shown that 
low temperatures have more profound effects than heat, and novel findings of 
metabolic adaptation to temperature stress were identified (Kaplan et al. 2004). 
One approach to identify adaptation mechanisms to abiotic stress in plants is to 



The importance of anatomy and physiology in plant metabolomics   273 

compare the cellular responses of native, stress-tolerant species and ecotypes. 
Gong et al. (2005) compared transcript and metabolite abundances between a 
Arabidopsis and a highly salt-tolerant related species, Thellungiella halophila, in 
response to salt stress. Some responses were similar in both species but there were 
also a range of differences identified in how they responded to the increased salt. 
These differences will lead to the identification of novel mechanisms that are ei-
ther constitutively or inductively operating in stress tolerance. 

Of great importance, from an agricultural point of view, will be the in-depth 
analysis of economically important crop plants. A number of interesting me-
tabolomics applications have been demonstrated which have resulted in increased 
understanding of crop development and physiology and deciphered the impacts of 
certain external factors on crop quality and quantity. Tomato is one of the major 
crops under investigation and metabolomics methodologies based on GC-MS have 
been used to analyze fruit metabolites during development, and following trans-
genic overexpression of an Arabidopsis-derived hexokinase (Roessner-Tunali et 
al. 2003b). Tikunov et al. (2005) have focused their analysis on volatile com-
pounds produced by the fruit resulting in new insights into fruit metabolism. An-
other pioneer example by Schauer et al. (2006), as previously mentioned, com-
bined metabolomics with conventional QTL analysis to identify metabolic trait 
loci.  

Cereal grains play an important role in nutrition. They are very carbohydrate-
rich but also contain high-value proteins. Increasingly, efforts are being under-
taken to understand grain development and quality in order to improve yield and 
nutritional value. Rice is the major primary food for most nations and because of 
its importance, has been the target for research for many years. To date, rice is 
chosen as the model plant for cereal and monocot genetics and physiology which 
has driven the initiative to sequence its whole genome. The application of me-
tabolomics technologies in rice has started only recently with just a few published 
examples. Tarpley et al. (2005) have monitored metabolite levels in different tis-
sue sections of developing rice seedlings, allowing the identification of biomarker 
metabolites being influenced by development, environment or genotype. A com-
bination of different metabolomics techniques based on capillary electrophoresis 
were used to examine diurnal differences in metabolite concentrations in rice 
leaves (Sato et al. 2004), demonstrating the dependency of a large range of me-
tabolites on light availability that result in changing patterns throughout the day. 
In addition, wheat, barley and maize are some of the most important cereal crops 
and a huge amount of genetic information is available and accumulating on these 
species from previous and ongoing breeding programs aimed at the development 
of stronger and higher yielding cultivars. Metabolomics as a tool to investigate 
metabolite levels of e.g. wheat and barley has only just begun and is mainly used 
to monitor responses to abiotic stress conditions (Roessner et al. 2006, Roessner, 
unpublished results). Abiotic stress is the major cause of substantial yield losses 
because tolerance mechanisms are not very well developed in commercial culti-
vars. The comparison of metabolite responses of these commercial cultivars with 
those of landraces exhibiting greater tolerance to certain stresses should lead to the 
determination of the role of both metabolites and genes in stress tolerance, and 
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thus provide new strategies for breeding and genetic engineering of novel stress-
resistant crops. 

Legumes play a critical role in natural agriculture because of their ability to fix 
nitrogen in symbiotic interactions which makes them economically and environ-
mentally important crop species. Nodule formation occurs in most legume species 
once a compatible Rhizobium bacteria strain is present in the soil. This process has 
been investigated in detail using a metabolomics approach by Colabatch et al. 
(2004) and Desbrosses et al. (2005). These reports provided novel insights into 
nodule formation processes but are also important examples of studying plant-
microbe interactions using metabolomics. 

6 Future 

In recent years it has become apparent that metabolomics will be one of the most 
important tools in biological sciences. In the near future, many institutions and 
laboratories worldwide will have established the physical and intellectual capaci-
ties to apply metabolomics in their research programs. In plant research, potential 
applications for metabolomics are enormous and the outcomes overwhelming. Al-
though the technologies employed in metabolomic analyses are uncovering a huge 
amount of new knowledge in biology, a range of challenges are still to be faced. 
One bottleneck in metabolomic analysis is the identification of novel compounds. 
Additionally, in order to allow greatest spatial resolution, the sensitivity and selec-
tivity of currently available technologies has to be increased. Multi-parallel and 
high-throughput analyses result in large data sets which need be evaluated, ex-
tracted and interpreted. To do this we need to work closely together with computer 
scientists and bioinformaticians to improve and develop bioinformatics method-
ologies to extract useful and novel information out of the data flow. One step to-
ward this would be the establishment of an open source database for metabolomics 
data which will attract bioinformaticians and computer scientists to use the huge 
data sets for large scale statistical analysis, comparative metabolomics and the de-
velopment of new methodologies for data analysis, mining, visualization and in-
terpretation. This kind of database will also allow us to compare data between labs 
which will ultimately lead to a better understanding of our own data. An additional 
major challenge in the metabolomics field is the integration of metabolic data with 
genomic and proteomic datasets. The ultimate goal is to comprehensively describe 
complex biological systems and as such, metabolomics will become an important 
player in systems biology.  
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