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The BMO-estimates of the Hardy-type
Transforms

4.1 Estimates of Oscillations of the Hardy Transform

The operator P defined via the formula

Pf(t) =
1
t

∫ t

0

f(u) du, t �= 0

is called the Hardy transform (operator) of the function f ∈ Lloc(R). This
operator has plenty of applications. We have seen some of them in Section 1.1.
Namely, it easy to see that f∗∗(t) = Pf∗(t), t ∈ R+. The Hardy inequality
[26]: ∫ ∞

0

| Pf(x)|p dx ≤
(

p

p − 1

)p ∫ ∞

0

|f(x)|p dx

provides the boundedness of the Hardy operator in Lp(R+). Here the constant(
p

p−1

)p

is sharp. For p = ∞ the analogous inequality ‖Pf ‖∞ ≤ ‖f‖∞ is
trivial. For p = 1 the analog of the Hardy inequality is false, in order to see
this it is enough to consider the function

f0(x) =
1

x ln2 1
x

χ(0, 1
e )(x), x ∈ R+.

Indeed, f0 ∈ L(R+) and for 0 < x < 1
e we have Pf0(x) =

(
x ln 1

x

)−1, so that
Pf0 /∈ Lloc(R+). It is easy to see that in general the reverse Hardy inequality

∫ ∞

0

| Pf(x)|p dx ≥ cp

∫ ∞

0

|f(x)|p dx (4.1)

fails for an arbitrary constant cp > 0. However, if the non-negative function f
is non-increasing on R+, then (4.1) is true for cp = p

p−1 and this value cannot
be increased (see [53, 64, 58]). If p = ∞ and f is a non-positive non-increasing
function on R+, then obviously ‖Pf ‖∞ = ‖f‖∞ = limx→0+ f(x).
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In this section we will study the behavior of the Hardy operator in the
spaces BMO, BMOp and BLO. The boundedness of P in BMO in different
cases was proved by several authors in [73, 74, 71, 24, 19, 20, 80]. In particular,
in [80] it was proved the following result.

Theorem 4.1 (Jie Xiao, [80]). The operator P is bounded in BMO(R+)
and

‖Pf ‖∗ ≤ ‖f‖∗.
On the other hand, if f is a positive non-increasing function on R+, then

‖Pf ‖∗ ≥ 1
17

‖f‖∗.

Here we will prove some more general facts. Let us start with the direct
estimate of the Hardy transform.

Theorem 4.2 ([40]). Let 1 ≤ p < ∞. Then if f belongs to BMOp(R), then
Pf ∈ BMOp(R) and

‖Pf ‖∗,p ≤ ‖f‖∗,p. (4.2)

Moreover, in general the constant 1 in the right-hand side of (4.2) is sharp.

Proof. As in [80], we will use the equality

Pf(t) =
∫ 1

0

f(tu) du, t ∈ R \ {0}. (4.3)

Fix the interval [a, b] ≡ I ⊂ R. By the Fubini theorem,

(Pf)I =
1
|I|

∫
I

Pf(t) dt =
∫ 1

0

1
|I|

∫
I

f(tu) dt du.

Denote uI ≡ [ua, ub]. Applying again the Fubini theorem and the Hölder
inequality, we have

Ωp
p(Pf ; I) =

1
|I|

∫
I

∣∣∣∣
∫ 1

0

f(τu) du −
∫ 1

0

1
|I|

∫
I

f(tu) dt du

∣∣∣∣
p

dτ ≤

≤
∫ 1

0

1
|I|

∫
I

∣∣∣∣f(τu) − 1
|I|

∫
I

f(tu) dt

∣∣∣∣
p

dτ du =

=
∫ 1

0

1
|uI|

∫
uI

∣∣∣∣f(v) − 1
uI

∫
uI

f(ξ) dξ

∣∣∣∣
p

dv du =
∫ 1

0

Ωp
p(f ;uI) du ≤ ‖f‖p

∗,p,

and (4.2) follows.
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For the function f(x) = ln 1
|x| , x ∈ R, we have Pf(x) = 1 + ln 1

|x| . Hence
for this choice of f inequality (4.2) becomes an equality, so that the constant
in the right-hand side of (4.2) cannot be smaller than 1. ��

If in the proof of Theorem 4.2 we choose I ⊂ R+, then uI ⊂ R+ for u > 0.
Hence, repeating the proof of Theorem 4.2, we obtain the following statement.

Theorem 4.3 ([40]). Let 1 ≤ p < ∞. If f ∈ BMOp(R+), then Pf ∈
BMOp(R+) and

‖Pf ‖∗,p ≤ ‖f‖∗,p.

Moreover, the constant 1 in the right-hand side is sharp.

Similarly one can obtain the estimates for the “norm” of the Hardy trans-
form in BLO.

Theorem 4.4 ([41]). Let f ∈ BLO(R). Then Pf ∈ BLO(R),

‖Pf ‖BLO ≤ ‖f‖BLO, (4.4)

and the constant 1 in the right-hand side is sharp.

Theorem 4.5 ([41]). Let f ∈ BLO(R+). Then Pf ∈ BLO(R+),

‖Pf ‖BLO ≤ ‖f‖BLO,

and the constant 1 in the right-hand side is sharp.

As in the case of Theorems 4.2 and 4.3, the proofs of both Theorems 4.4
and 4.5 are similar. Here we give just one of them.
Proof of Theorem 4.4. Let I ⊂ R and x ∈ I, x �= 0. By (4.3),

1
|I|

∫
I

Pf(t) dt − Pf(x) =
∫ 1

0

1
|I|

∫
I

f(tu) du −
∫ 1

0

f(xu) du ≤

≤
∫ 1

0

[
1
|I|

∫
I

f(tu) dt − f(xu)
]

du =
∫ 1

0

[
1

|uI|

∫
uI

f(v) dv − f(xu)
]

du.

Since x ∈ I implies ux ∈ uI for u > 0 we have

1
|I|

∫
I

Pf(t) dt − Pf(x) ≤
∫ 1

0

[
1

|uI|

∫
uI

f(v) dv − ess inf
y∈uI

f(y)
]

du =

=
∫ 1

0

L(f ;uI) du ≤ ‖f‖BLO.

Hence, using the equality

L(Pf ; I)=
1
|I|

∫
I

Pf(t) dt− ess inf
x∈I

Pf(x) = ess sup
x∈I

[
1
|I|

∫
I

Pf(t) dt − Pf(x)
]
,
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and taking the essential supremum over all x ∈ I, x �= 0, we obtain

L(Pf ; I) ≤ ‖f‖BLO, I ⊂ R.

The same arguments as in the proof of Theorem 4.2 show that the con-
stant 1 in the right-hand side of (4.4) is sharp. ��

Now let us consider the lower bounds for the norm of the Hardy transform.
It is easy to see that, similarly to (4.1), the inequality

‖Pf ‖∗ ≥ c‖f‖∗ (4.5)

in general fails for arbitrary f and c > 0. But if we consider the functions
f that are non-increasing and non-negative on R+, then, according to The-
orem 4.1, inequality (4.5) holds true for c = 1

17 . In what follows we will
derive (4.5) with the value of c grater than 1

17 and find its upper bound (see
Corollary 4.16).

Theorem 4.6 ([40]). Let 1 ≤ p < ∞, and assume that the function f is non-
decreasing on (−∞, 0) and non-increasing on (0,+∞). Then f ∈ BMOp(R)
if and only if Pf ∈ BMOp(R) and

‖Pf ‖∗,p ≤ ‖f‖∗,p ≤ 2
3 −

√
7
‖Pf ‖∗,p. (4.6)

Proof. The left inequality of (4.6) is contained in Theorem 4.2. Moreover, it
is true even if f is not monotone. Now let us prove the right inequality.

Let λ > 1 (we will choose it later). Consider the function

g(t) =
1
λ
Pf(t) +

λ − 1
λ

f(t), t ∈ R \ {0}.

Then f(t) = λ
λ−1g(t) − 1

λ−1 Pf(t), so that by Minkowski inequality

‖f‖∗,p ≤ λ

λ − 1
‖g‖∗,p +

1
λ − 1

‖Pf ‖∗,p. (4.7)

Let us estimate ‖g‖∗,p. The monotonicity of f on (−∞, 0) and (0,+∞) implies

Pf(λt) =
1
λ

1
t

∫ t

0

f(u) du +
λ − 1

λ

1
λt − t

∫ λt

t

f(u) du ≤ 1
λ
Pf(t) +

λ − 1
λ

f(t)

for t �= 0. Hence, using again the monotonicity of f , we obtain

Pf(λt) ≤ g(t) ≤ Pf(t), t �= 0. (4.8)

Assume I ≡ [α, β], α < 0 < β. By (4.8),
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1
|I|

∫
I

Pf(λt) dt = (Pf)λI ≤ gI ≤ (Pf)I .

The last inequality, together with (4.8), imply

g(t) − gI ≤ Pf(t) − (Pf)λI , t �= 0, (4.9)

gI − g(t) ≤ (Pf)I − Pf(λt), t �= 0. (4.10)

Denote E+ ≡ {t ∈ I : g(t) ≥ gI} , E− ≡ {t ∈ I : g(t) < gI}. Multiplying
(4.9) and (4.10) by χE+(t) and χE−(t) respectively and summing up the ob-
tained inequalities for t �= 0 we get

|g(t) − gI | ≤ (Pf(t) − (Pf)λI) χE+(t) + ((Pf)I − Pf(λt)) χE−(t) =

= (Pf(t) − (Pf)I) χE+(t) + ((Pf)λI − Pf(λt)) χE−(t) + ((Pf)I − (Pf)λI) .

Using Lemma 2.35 and the inclusion λI ⊃ I, one can find the following esti-
mate for the last term in the right hand side:

(Pf)I − (Pf)λI =
1
|I|

∫
I

(Pf(t) − (Pf)λI) dt ≤

≤ λ
1

|λI|

∫
{t∈λI: Pf(t)>(Pf)λI}

(Pf(t) − (Pf)λI) dt =
λ

2
Ω(Pf ;λI) ≤ λ

2
‖Pf ‖∗.

Thus, by Minkowski inequality,

Ωp(g; I) ≤
{

1
|I|

∫
E+

|Pf(t) − (Pf)I |p dt

} 1
p

+

+

{
1
|I|

∫
E−

|(Pf)λI − Pf(λt)|p dt

} 1
p

+
λ

2
‖Pf ‖∗ ≤

≤ Ωp(Pf ; I) + Ωp(Pf ;λI) +
λ

2
‖Pf ‖∗ ≤

(
2 +

λ

2

)
‖Pf ‖∗,p.

Notice that both functions g and f are non-decreasing on (−∞, 0) and non-
increasing on (0,+∞). Since I is an arbitrary segment, which contains zero,
the last inequality together with Lemma 2.23 imply

‖g‖∗,p ≤
(

2 +
λ

2

)
‖Pf ‖∗,p.

Substituting this bound in (4.7), we obtain

‖f‖∗,p ≤ 1
λ − 1

[
λ

(
2 +

λ

2

)
+ 1
]
‖Pf ‖∗,p. (4.11)
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It remains to choose the constant λ > 1 which provides the minimal value to
the function ψ(λ) ≡ 1

λ−1

[
λ
(
2 + λ

2

)
+ 1
]
. An easy calculation shows that

min
λ>1

ψ(λ) = ψ(1 +
√

7) =
2

3 −
√

7
.

Therefore, (4.11) implies the right inequality of (4.6). ��
If in the proof of Theorem 4.6 instead of Lemma 2.23 we apply Lemma 2.22,

then we get the following statement.

Theorem 4.7 ([40]). Let 1 ≤ p < ∞ and let f ∈ Lp
loc(R+) be non-increasing

on R+. Then f ∈ BMOp(R+) if and only if Pf ∈ BMOp(R+), and

‖Pf ‖∗,p ≤ ‖f‖∗,p ≤ 2
3 −

√
7
‖Pf ‖∗,p. (4.12)

In the particular case p = 1 the right inequality of (4.12) becomes

‖Pf ‖∗ ≥ 3 −
√

7
2

‖f‖∗, f ∈ BMO(R+), f do not increase. (4.13)

Since 3−
√

7
2 > 1

17 the new inequality is stronger than the inequality in the
second part of Theorem 4.1.

The next theorem is an analog of Theorem 4.7 for the BLO-“norm”.

Theorem 4.8 ([41]). Let f ∈ Lloc(R+) be non-increasing on R+. Then

1
e
‖f‖BLO ≤ ‖Pf ‖BLO ≤ ‖f‖BLO, (4.14)

and in general the constants 1
e and 1 in the left and right-hand sides are sharp.

Proof. The left inequality of (4.14) was already proved in Theorem 4.5. Let us
show that the constant 1

e in the left-hand side of (4.14) cannot be increased.
For this consider the function f0(x) = χ[0,1)(x), x ∈ R+. By Lemma 2.34,

Pf0(x) = min
(

1,
1
x

)
, ‖f0‖BLO = sup

x>0
[Pf0(x) − f0(x)] = 1,

and for x > 1

L (Pf0; [0, x]) =
1
x

∫ x

0

Pf0(t) dt − Pf0(x) =
1
x

(1 + lnx) − 1
x

=
ln x

x
.

Hence
‖Pf0 ‖BLO = sup

x>1

ln x

x
=

1
e

= L (Pf0; [0, e]) . (4.15)

Therefore the constant 1
e in the left-hand side of (4.14) cannot be increased.
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It remains to prove the left inequality of (4.14) for an arbitrary f . By
virtue of Lemma 2.34, it is enough to show that for any x > 0 there exists
y > 0 such that

L(Pf ; [0, y]) ≥ 1
e
L(f ; [0, x]). (4.16)

Without loss of generality we can assume that

x = 1, f(1) = 0,
∫ 1

0

f(t) dt = 1, L(f ; [0, 1]) = 1. (4.17)

As before, set f0(x) = χ[0,1)(x), x ∈ R+. Let us show that

P(f − f0)(t) ≥ (f − f0)(t), t > 0. (4.18)

Indeed, if 0 < t ≤ 1, then (4.18) follows from the monotonicity of f − f0.
Otherwise, if t > 1, then f(t) ≤ 0. Taking into account assumptions (4.17),
from the monotonicity of f we obtain

1
t

∫ t

0

[f(u) − f0(u)] du =
1
t

∫ 1

0

[f(u)−1] du+
1
t

∫ t

1

f(u) du =
1
t

∫ t

1

f(u) du =

=
(

1 − 1
t

)
1

t − 1

∫ t

1

f(u) du ≥
(

1 − 1
t

)
f(t) ≥ f(t) = (f − f0) (t).

Now, by (4.18) and (4.15),

1
e

∫ e

0

Pf(t) dt − Pf(e) − 1
e

=

=
1
e

[∫ e

0

Pf(t) dt −
∫ e

0

Pf0(t) dt

]
− Pf(e) + Pf0(e) =

=
1
e

∫ e

0

[Pf(t) − f(t) − Pf0(t) + f0(t)] dt =

=
1
e

∫ e

0

[P(f − f0)(t) − (f − f0)(t)] dt ≥ 0.

Then
L(Pf ; [0, e]) ≥ 1

e
.

So, inequality (4.16) is proved and (4.14) follows. ��
Let us come back to the estimate given by (4.13). One can improve this

estimate using Theorem 4.8.

Corollary 4.9. Let f be a non-increasing function on R+. Then

‖Pf ‖∗ ≥ 1
4
‖f‖∗. (4.19)
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Proof. Applying successively Theorems 2.36, 4.8 and again Theorem 2.36, we
have

‖Pf ‖∗ ≥ 1
2
‖Pf ‖BLO ≥ 1

2
1
e
‖f‖BLO ≥ 1

2
1
e

e
2
‖f‖∗ =

1
4
‖f‖∗. ��

Let us show that inequality (4.19) can be also improved. For this we will
need some auxiliary statements.

Lemma 4.10. The equation

ψ(x) ≡ ln
x

1 + ln x
− ln x

1 + ln x
= 0 (4.20)

has a unique root γ1 on (1,+∞).

Proof. One can easily check that ψ(1) = 0,

lim
x→+∞

ψ(x) = +∞, ψ′(x) =
ln2 x + ln x − 1

x(1 + lnx)2
,

ψ′(1) = −1, and the equation ψ′(x) = 0 has a unique root on the interval
(1,+∞). Since the function ψ is differentiable on [1,+∞) the listed properties
imply the statement of the lemma. ��

Let γ1 > 1 be the root of equation (4.20). In what follows we will use the
following constants:

β0 =
1 + ln γ1

γ1
, γ0 =

1
β0

, α0 =
4
γ1

ln γ0. (4.21)

The approximate values of these constants are

α0 ≈ 0.52, β0 ≈ 0.546, γ0 ≈ 1.83, γ1 ≈ 4.65.

The next lemma explains the original meaning of equation (4.20) and of
constants α0, β0, γ0, defined by (4.21).

Lemma 4.11. For the function f0(x) = χ[0,1)(x), x ∈ R+,

‖f0‖∗ = Ω(f0; [0, 2]) =
1
2
, (4.22)

‖Pf0 ‖∗ = Ω (Pf0; [0, γ1]) =
1
2
α0, (4.23)

where γ1 is a root of equation (4.20), and α0 is defined by (4.21).

Proof. According to Property 2.7, Ω(f0; I) ≤ 1
2 for any interval I ⊂ R+ and

Ω(f0; [0, 2]) = 1
2 . Thus equality (4.22) follows.
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In order to prove (4.23) we use the equality Pf0(x) = min
(
1, 1

x

)
, x ∈ R+.

Then for x > 1 and I ≡ [0, x]

(Pf0)I =
1
x

∫ 1

0

Pf0(t) dt +
1
x

∫ x

1

Pf0(t) dt =
1 + ln x

x
.

Set x0 = x
1+ln x . Then Pf0(t) ≥ (Pf0)I if t ≤ x0, and Pf0(t) ≤ (Pf0)I if

t ≥ x0. Hence, by Property 2.1,

Ω (Pf0; I) =
2
x

∫ x

x0

[(Pf0)I − Pf0(t)] dt =

=
2
x

[
1 + ln x

x

(
x − x

1 + ln x

)
− ln(1 + lnx)

]
=

2
x

[lnx− ln(1 + lnx)] ≡ ϕ(x).

We have

ϕ′(x) =
2
x2

[
ln x

1 + ln x
− ln

x

1 + ln x

]
=

2
x2

ψ(x),

where the function ψ was defined in Lemma 4.10. Applying Lemmas 4.10 and
2.34 it is easy to see that

‖Pf0 ‖∗ = sup
x>1

Ω (Pf0; [0, x]) = max
x>1

ϕ(x) = ϕ(γ1) = Ω (Pf0; [0, γ1]) =
1
2
α0,

which proves (4.23). ��
Remark 4.12. The following formula explains the meaning of the constants
β0 and γ0, defined by (4.21),

(Pf0)[0,γ1]
= Pf0 (γ0) = β0.

Remark 4.13. Let us denote the maximal value of the constant c in (4.5) by

c∗ = sup
{

c :
‖Pf ‖∗
‖f‖∗

≥ c ∀ f ↓ on R+, f ∈ BMO, f �= Const

}
=

= inf
{
‖Pf ‖∗
‖f‖∗

: f ∈ BMO, f ↓ on R+, f �= Const

}
. (4.24)

Lemma 4.11 implies that c∗ ≤ α0. On the other hand, according to (4.19), we
have that c∗ ≥ 1

4 .

The next theorem allows to improve the lower bound for c∗. We hope that
this result could be of interest also outside of the present context.

Theorem 4.14 ([41]). Let f be a non-increasing function on R+. Then
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‖Pf ‖∗ ≥ α0

2
‖f‖BLO, (4.25)

where α0 is defined by (4.21), and in general the constant α0
2 in the right-hand

side of (4.25) is sharp.

In order to prove Theorem 4.14 we need the following statement.

Lemma 4.15. Let g ∈ Lloc(R+) be such that g(x) ≥ g(y), 0 ≤ x ≤ y ≤ 1,
and ∫ 1

0

g(t) dt ≥ g(x) ≥ g(y), 1 ≤ x ≤ y. (4.26)

Then the function Pg does not increase on R+.

Proof. The monotonicity of Pg on [0, 1] follows immediately from the
monotonicity of the function g on [0, 1]. If we prove that

Pg(x) ≥ Pg(y), 1 < x < y, (4.27)

then, due to the continuity of Pg, we immediately obtain the statement of the
lemma. For 1 < x < y

Pg(y) − Pg(x) =
(

1 − x

y

){
1
x

[
1

x − 1

∫ x

1

g(t) dt −
∫ 1

0

g(t) dt

]
+

+
[

1
y − x

∫ y

x

g(t) dt − 1
x − 1

∫ x

1

g(t) dt

]}
.

Now it is easy to see that (4.27) follows from (4.26). ��
Proof of Theorem 4.14. According to Lemmas 2.22 and 2.34, it is enough to
show that for any γ > 0 there exists γ′ > 0 such that

Ω (Pf ; [0, γ′]) ≥ α0

2
[Pf(γ) − f(γ)] . (4.28)

We can assume γ = 1, f(1) = 0, Pf(1) = 1. Set f0(x) = χ[0,1)(x), x ∈ R+.
Then the function g ≡ f−f0 obviously satisfies the conditions of Lemma 4.15.
By this lemma, the function Pg does not increase on R+. Let us denote h(x) =
g(x) − Pg(γ0), with γ0 defined by (4.21). Then Ph is also non-increasing on
R+ and Ph(γ0) = 0. Therefore

0 ≤
∫ γ0

0

Ph(t) dt =
∫ γ0

0

[Pf(t) − Pf0(t)] dt − Pf(γ0) + Pf0(γ0),

or, equivalently,

1
γ0

∫ γ0

0

[Pf0(t) − Pf0(γ0)] dt ≤ 1
γ0

∫ γ0

0

[Pf(t) − Pf(γ0)] dt. (4.29)

Now choose γ′ such that
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1
γ′

∫ γ′

0

Pf(t) dt = Pf(γ0).

Clearly, γ′ > γ0. Comparing γ′ with γ1, which was defined in Lemma 4.10 as
a root of equation (4.20), we see that the following two situations are possible:

1. γ′ ≤ γ1; in this case, by Property 2.1, (4.29) implies

Ω (Pf ; [0, γ′]) =
2
γ′

∫ γ0

0

[Pf(t) − Pf(γ0)] dt ≥

≥ 2
γ1

∫ γ0

0

[Pf0(t) − Pf0(γ0)] dt = Ω (Pf0; [0, γ1]) =
α0

2
,

so that (4.28) holds true.
2. If γ′ > γ1, then the listed above properties of function Ph imply

0 ≥
∫ γ1

γ0

Ph(t) dt =
∫ γ1

γ0

[Pf(t) − Pf0(t)] dt − Pf(γ0) + Pf0(γ0),

i.e.,

1
γ1 − γ0

∫ γ1

γ0

[Pf(γ0) − Pf(t)] dt ≥ 1
γ1 − γ0

∫ γ1

γ0

[Pf0(γ0) − Pf0(t)] dt.

But since the function Pf(γ0)−Pf(t), t > γ0, is non-decreasing and γ′ > γ1

1
γ′ − γ0

∫ γ′

γ0

[Pf(γ0) − Pf(t)] dt ≥ 1
γ1 − γ0

∫ γ1

γ0

[Pf0(γ0) − Pf0(t)] dt.

(4.30)
One can rewrite inequalities (4.29) and (4.30) in the following form

γ0∫ γ0

0
[Pf0(t) − Pf0(γ0] dt

≥ γ0∫ γ0

0
[Pf(t) − Pf(γ0)] dt

,

γ1 − γ0∫ γ1

γ0
[Pf0(γ0) − Pf0(t)] dt

≥ γ′ − γ0∫ γ′

γ0
[Pf(γ0) − Pf(t)] dt

.

Notice that, by Property 2.1, the denominators of the fractions in the right
and left-hand sides are the same. Summing up, we obtain

1
γ1

∫ γ0

0

[Pf0(t) − Pf0(γ0)] dt ≤ 1
γ′

∫ γ0

0

[Pf(t) − Pf(γ0)] dt.

Then, by Property 2.1,

Ω (Pf ; [0, γ′]) ≥ Ω (Pf0; [0, γ1]) =
α0

2

(see also the proof of Lemma 4.11). Therefore, in this case (4.28) holds true,
too.
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It remains to show that the constant α0
2 in the right-hand side of (4.25)

cannot be increased. But, according to Lemma 4.11, for the function f0(x) =
χ[0,1)(x), x ∈ R+, we have ‖Pf0 ‖∗ = α0

2 , and hence ‖f0‖BLO is obviously
equal to 1. ��

From Theorem 4.14 we immediately get

Corollary 4.16 ([41]).
eα0

4
≤ c∗ ≤ α0 (4.31)

where c∗ is the constant defined by (4.24).

Proof. As we have already mentioned, the right inequality of (4.31) follows
from Lemma 4.11. On the other hand, if f is an arbitrary non-increasing
function on R+, then by Theorems 4.14 and 2.36

‖Pf ‖∗ ≥ α0

2
‖f‖BLO ≥ α0

2
e
2
‖f‖∗,

which implies the left inequality of (4.31). ��
Remark 4.17. We do not know the value of c∗, defined by equality (4.24).

4.2 Estimates of the Oscillations of the Conjugate Hardy
Transform and the Calderón Transform

In this section we consider the non-negative summable functions f on R+

such that the integral
∫ +∞
1

f(x) dx
x converges. The following formulas define

the conjugate Hardy operator P∗ and the Calderón operator S respectively
(see [51, 3]):

P∗f(t) =
∫ +∞

t

f(x)
dx

x
, t > 0,

Sf(t) =
1
t

∫ t

0

f(x) dx +
∫ +∞

t

f(x)
dx

x
= Pf(t) + P∗f(t), t > 0.

The operators P∗ and S, together with the operator P, are often used in
various fields of mathematics.

Example 4.18. Let f0(x) = ln 1
xχ[0,1)(x), x ∈ R+. Then according to

Example 2.24, f0 ∈ BMO(R+). In the same time, P∗f0(x) = 1
2 ln2 xχ[0,1)(x),

and so P∗f0 /∈ BMO(R+). Indeed, the assumption P∗f0 ∈ BMO contra-
dicts to John–Nirenberg inequality (3.33). Similarly, it can be shown that
Sf0 /∈ BMO(R+). ��

So, unlikely the operator P, the operators P∗ and S do not act from
BMO into BMO. However, it is easy to see that P∗f ∈ BMO(R+) and
Sf ∈ BMO(R+) for f ∈ L∞(R+). Moreover, the following theorem holds
true.
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Theorem 4.19 ([39]). Let f be a non-negative locally summable function on
R+ such that

∫ +∞
1

f(x) dx
x < ∞. Then

‖P∗f ‖BLO = ‖Pf ‖∞, (4.32)

‖Sf ‖BLO = ‖P(Pf)‖∞. (4.33)

Proof. Since f(x) ≥ 0 for x ∈ R+ it is clear that the function P∗f does not
increase on R+. Further, for 0 < t < s

Sf(t) − Sf(s) =
(

1
t
− 1

s

)∫ t

0

f(x) dx +
∫ s

t

f(x)
(

1
x
− 1

s

)
dx ≥ 0,

so that also Sf does not increase on R+. Hence, by Lemma 2.34,

‖P∗f ‖BLO = sup
t>0

(
1
t

∫ t

0

P∗f(u) du − P∗f(t)
)

=

= sup
t>0

(
1
t

∫ t

0

∫ +∞

u

f(x)
dx

x
du −

∫ +∞

t

f(x)
dx

x

)
= sup

t>0

1
t

∫ t

0

∫ t

u

f(x)
dx

x
du =

= sup
t>0

1
t

∫ t

0

f(x) dx = sup
t>0

Pf(t) = ‖Pf ‖∞.

Similarly,

‖Sf ‖BLO = sup
t>0

(
1
t

∫ t

0

Sf(u) du − Sf(t)
)

=

= sup
t>0

(
1
t

∫ t

0

1
u

∫ u

0

f(x) dx du − 1
t

∫ t

0

f(x) dx +
1
t

∫ t

0

∫ t

u

f(x)
dx

x
du

)
=

= sup
t>0

1
t

∫ t

0

1
u

∫ u

0

f(x) dx du = sup
t>0

P(Pf)(t) = ‖P(Pf)‖∞.

��
Theorem 4.20 ([39]). Let f be a non-negative locally summable function on
R+ such that

∫ +∞
1

f(x) dx
x < ∞. Then

1
2
‖Pf ‖∞ ≤ ‖P∗f ‖∗ ≤ 2

e
‖Pf ‖∞, (4.34)

1
2
‖P(Pf)‖∞ ≤ ‖Sf ‖∗ ≤ 2

e
‖P(Pf)‖∞. (4.35)
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Proof. As it was shown in the proof of Theorem 4.19, both functions P∗f and
Sf do not increase on R+. Then, by virtue of (4.32) and (4.33), Theorem 2.36
applied to these functions immediately yields (4.34) and (4.35) respectively.

Let us show that the constant 1
2 in the left-hand side of (4.34) cannot be

increased. For 0 < ε < 1 let fε(x) = 1
εχ[1−ε,1](x) x ∈ R+. Then ‖Pfε ‖∞ =

1, P∗fε(t) = 1
ε min

(
ln 1

1−ε , ln 1
t

)
χ[0,1](t), t ∈ R+. Hence, by Property 2.7,

‖P∗fε ‖∗ ≤ 1
2

1
ε

ln
1

1 − ε
≤ 1

2
1

1 − ε
→ 1

2
, ε → 0 + .

Therefore the constant 1
2 in the left-hand side of (4.34) is sharp.

For ε = 1 we have f1(x) = χ[0,1](x), x ∈ R+, ‖Pf1 ‖∞ = 1, P∗f1(t) =
ln 1

t χ[0,1](t), t ∈ R+. As it was shown in Example 2.28, this implies

‖P∗f1 ‖∗ ≥ Ω (P∗f1; [0, 1]) =
2
e
,

so that the constant 2
e in the right-hand side of (4.34) is sharp, too.

It remains to show that the constant 2
e in the right-hand side of (4.35)

cannot be decreased. For the function f1(x) = χ[0,1](x), x ∈ R+, we have

‖P(Pf1)‖∞ = 1, Sf1(t) =
(

1 + ln
1
t

)
χ[0,1](t) +

1
t
χ(1,+∞)(t), t ∈ R+.

So, it is enough to show that for the function g ≡ Sf1

‖g‖∗ =
2
e
. (4.36)

Since g is non-increasing on R+ according to Lemma 2.22 the last relation
follows from the equality

sup
t>0

Ω(g; [0, t]) =
2
e
. (4.37)

But for 0 < t ≤ 1

Ω(g; [0, t]) =
2
t

∫ t/e

0

(
ln

1
u
− ln

e
t

)
du =

2
e
,

so that in order to prove (4.37) it remains to show that

Ω(g; [0, t]) ≤ 2
e
, 1 < t < ∞. (4.38)

Let t0, t0 > e, be the root of the equation lnx = x−2. We have to consider
the following two cases.



4.2 The Conjugate Hardy Transform and the Calderón Transform 95

1. If 1 < t ≤ t0, then g[0,t] ≥ 1. Denote h(u) = 1 + ln 1
u , u ∈ R+.

Since h(u) ≤ 1
u , u ≥ 1, there exists t1, 1 ≤ t1 < t such that g[0,t] =

1
t1

∫ t1
0

(
1 + ln 1

u

)
du = h[0,t1]. Now, by Property 2.1,

Ω(g; [0, t]) =
2
t

∫
{u: 1+ln 1

u >g[0,t]}

(
1 + ln

1
u
− g[0,t]

)
du ≤

≤ 2
t1

∫
{u: 1+ln 1

u≥g[0,t]}

(
1 + ln

1
u
− h[0,t1]

)
du = Ω(h; [0, t1]) =

2
e
,

so that (4.38) holds true in this case.
2. Let t > t0, i.e., g[0,t] = 1

t (2 + ln t) < 1. In this case, applying Prop-
erty 2.1, we obtain

Ω(g; [0, t]) =
2
t

∫ t2

0

(
g(u) − g[0,t]

)
du = 2

1 + ln t − ln(2 + ln t)
t

,

where t2 is to be defined from the condition 1
t2

= g[0,t], i.e. t2 = t
2+ln t . Denote

ψ(t) = 1+ln t−ln(2+ln t)
t , t ≥ t0. Since t0 > e we have ψ(t0) = 1

t0
< 1

e . It is easy
to see that ψ′(t) ≤ 0 for t ≥ t0. Hence ψ(t) ≤ 1

e for t ≥ t0, and in this case
(4.38) holds true as well. ��
Remark 4.21. We do not know whether the constant 1

2 in the left-hand side
of (4.35) is sharp.

Remark 4.22. Clearly, ‖Pf ‖∞ ≤ ‖f‖∞, though the condition ‖f‖∞ < ∞
is not necessary for the boundedness of Pf . On the other hand, is f is non-
negative on R+, then obviously uPf(u) ≥ tPf(t), u ≥ t > 0, so that

P(Pf)(2t) ≥ 1
2t

∫ 2t

t

Pf(u) du ≥ ln 2
2

Pf(t), t > 0.

This means that the conditions Pf ∈ L∞ and P(Pf) ∈ L∞ are equivalent.
In other words, Theorems 4.19 and 4.20 show, that for a non-negative on R+

function f the boundedness of Pf (and not the essential boundedness of f) is
the necessary and sufficient condition for P∗f and Sf to belong to BLO and
BMO.

The next theorem provides the lower bound of the BMO-norms of P∗f
and Sf , which reflect the behavior of the function f in the neighborhood of
zero.

Theorem 4.23 ([39]). Let f be a non-negative locally summable function on
R+ such that

∫ +∞
1

f(x) dx
x < ∞. Then

‖P∗f ‖∗ ≥ 2
e

lim
t→0+

ess inf
u∈(0,t)

f(u), (4.39)
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‖Sf ‖∗ ≥ 2
e

lim
t→0+

ess inf
u∈(0,t)

f(u), (4.40)

and in general the constants 2
e in the right-hand sides of (4.39) and (4.40) are

sharp.

Proof. Let us denote A = limt→0+ ess infu∈(0,t) f(u). If A = 0, then (4.39)
and (4.40) are trivial. Let A > 0. Fix a, 0 < a < A, and choose ε > 0 such
that f(u) > a for almost all u ∈ (0, ε). Then for t < ε

P∗f(t) ≥
∫ ε

t

f(u)
du

u
≥ a ln

ε

t
. (4.41)

Now let us use the John–Nirenberg inequality with exact exponent (Theorem
3.21). Assuming P∗f ∈ BMO and taking into account the monotonicity of
P∗f , one can rewrite the John-Nirenberg inequality (3.39) in the following
way

P∗f(t) ≤ (P∗f)[0,1] +
e
2
‖P∗f ‖∗

(
ln

1
t

+ ln B

)
. (4.42)

Here the constant B = exp
(
1 + 2

e

)
is taken from Theorem 3.21, and t > 0 is

small. Comparing (4.41) and (4.42), we have

a ln
ε

t
≤ (P∗f)[0,t] +

e
2
‖P∗f ‖∗

(
ln

1
t

+ ln B

)

for t > 0 small enough. This immediately implies ‖P∗f ‖∗ ≥ a. As a was an
arbitrary number smaller than A, inequality (4.39) is proved.

The same arguments lead the following inequality

a ln
ε

t
≤ (Sf)[0,t] +

e
2
‖Sf ‖∗

(
ln

1
t

+ ln B

)
,

with a < A being an arbitrary number. This inequality implies (4.40).
It remains to prove that the constant 2

e in the right-hand sides of (4.39)
and (4.40) cannot be increased. In the proof of Theorem 4.20 we showed that
for the function f1(x) = χ[0,1](x), x ∈ R+, one has ‖Sf1 ‖∗ = 2

e . Hence for the
function f1 the inequality (4.40) becomes an equality, so that the constant 2

e
in (4.40) is sharp. In order to proof that 2

e in (4.39) is also sharp, obviously
it is enough to show that

‖P∗f1 ‖∗ =
2
e
. (4.43)

Denote g(t) ≡ P∗f1(t) = ln 1
t χ[0,1](t), t ∈ R+. If 0 < t ≤ 1, then it is

easy to see that Ω(g; [0, t]) = 2
e . Otherwise, if t > 1, then for the function

h(x) = ln 1
x , x ∈ R+, there exists t1, 1 < t1 ≤ t, such that g[0,t] = h[0,t1].

Therefore, by Property 2.1,

Ω(g; [0, t]) =
2
t

∫
{u: g(u)>g[0,t]}

(
g(u) − g[0,t]

)
du ≤
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≤ 2
t1

∫
{u: h(u)>h[0,t1]}

(
h(u) − h[0,t1]

)
du = Ω(h; [0, t1]) =

2
e
.

So, we have proved (4.43), and this completes the proof of the theorem.
��
Remark 4.24. We cannot substitute the ess inf in the left-hand sides of
(4.39) and (4.40) by ess sup. Indeed, for the function

f(x) =
∞∑

k=0

2k+1χ[2−k−2−2k−2,2−k](x), x ∈ R+,

we obviously have limt→0+ ess supu∈(0,t) f(u) = +∞. Let us show that
‖Pf ‖∞ ≤ 2. Indeed, if x > 1, then

Pf(x) ≤
∫ 1

0

f(t) dt =
∞∑

k=0

2k+1 · 2−2k−2 =
∞∑

k=0

2−k−1 = 1.

If 0 < x ≤ 1, we can find an integer n such that 2−n−1 < x ≤ 2−n. Then

Pf(x) ≤ 1
2−n−1

∫ 2−n

0

f(t) dt = 2n+1
∞∑

k=n

2k+1 · 2−2k−2 = 2.

Hence
‖P(Pf)‖∞ ≤ ‖Pf ‖∞ ≤ 2,

and, according to Theorem 4.20,

‖P∗f ‖∗ ≤ 4
e
, ‖Sf ‖∗ ≤ 4

e
.

This shows that (4.39) and (4.40) fail if we substitute ess inf by ess sup.

Now let f be a non-negative non-increasing function on R+ such that∫ +∞
1

f(x) dx
x < ∞. Clearly, in this case

‖f‖∞ = ‖Pf ‖∞ = lim
t→0+

f(t).

Thus Theorems 4.20 and 4.23 immediately lead to the following results.

Corollary 4.25 ([39]). If f is a non-negative non-increasing function on R+

such that
∫ +∞
1

f(x) dx
x < ∞, then

‖P∗f ‖∗ = ‖Sf ‖∗ =
2
e
‖f‖∞. (4.44)
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Corollary 4.26 ([39]). If f is a non-negative non-increasing function on R+

such that
∫ +∞
1

f(x) dx
x < ∞, then

‖P∗f ‖∗ ≥ α0‖f‖∗, (4.45)

‖Sf ‖∗ ≥ α0‖f‖∗, (4.46)

where the constant α0 is defined by (4.21).

Proof. Applying successively (4.44), the inequality ‖Pf ‖∗ ≤ 1
2‖Pf ‖∞ (which

follows from Property 2.7), and (4.31), we obtain

‖P∗f ‖∗ =
2
e
‖Pf ‖∞ ≥ 4

e
‖Pf ‖∗ ≥ 4

e
c∗‖f‖∗ ≥ α0‖f‖∗,

where the constant c∗ is defined by (4.24).
Analogously one can prove (4.46). ��

Remark 4.27. Without the monotonicity assumption on f the inequali-
ties (4.45) and (4.46) fail even if the constants α0 in their right-hand sides
are arbitrarily small. It can be easily seen from the following example. Take
f0(x) = χ[1−ε,1](x), x ∈ R+, with 0 < ε < 1. Then ‖f0‖∗ = 1

2 and

max (‖P∗f0 ‖∗, ‖Sf0 ‖∗) ≤ ‖Sf0 ‖∞ ≤ ε + ln
1

1 − ε
→ 0, ε → 0 + .

On the other hand, the boundedness condition in Corollary 4.26 can be ne-
glected. Indeed, if f is unbounded, then, by (4.44), the left-hand sides of (4.45)
and (4.46) are infinite.

Remark 4.28. Equality (4.44) implies that it is impossible to get the up-
per bounds of ‖P∗f ‖∗ and ‖Sf ‖∗ in terms of ‖f‖∗ even for the monotone
bounded function f . Indeed, if such upper bounds exist, equality (4.44) would
imply ‖f‖∞ ≤ c‖f‖∗ with some constant c > 0, which is wrong. In order to
see this it is enough to consider the function

fN (x) =
1
N

min
(

N, ln
1
x

)
χ[0,1)(x), x ∈ R+.

We have ‖fN‖∞ = 1 and one can easily check that ‖fN‖∗ → 0 as N → ∞.




