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Estimates of Rearrangements
and the John–Nirenberg Theorem

3.1 Estimates of Rearrangements of the BMO-functions

The aim of the present section is to show that the non-increasing rearrange-
ment f∗ of a BMO-function f is also a BMO-function. First we will consider
the case of the function f defined on the whole R

d. As it was mentioned above,
in addition we have to assume that f∗(t) is defined for all t > 0.

Theorem 3.1 (Bennett, De Vore, Sharpley, [1]). Let f ∈ BMO(Rd).
Then

f∗∗(t) − f∗(t) ≤ 2d+4‖f‖∗, 0 < t < ∞. (3.1)

Proof. Since ‖ |f | ‖∗ ≤ 2‖f‖∗ it is enough to prove the inequality

f∗∗(t) − f∗(t) ≤ 2d+3‖f‖∗ (3.2)

for a non-negative function f .
Fix t > 0 and denote E = {x ∈ R

d : f(x) > f∗(t)}. Then |E| ≤ t. Let
us construct an open set G ⊃ E such that |G| ≤ 2t. Applying Lemma 1.12 to
the set G we obtain a collection of cubes Qj with pairwise disjoint interiors,
which satisfy properties (1.11), (1.12) and (1.13) of the lemma. Then

t (f∗∗(t) − f∗(t)) =
∫ t

0

(f∗(u) − f∗(t)) du =

=
∫ |E|

0

(f∗(u) − f∗(t)) du +
∫ t

|E|
(f∗(u) − f∗(t)) du =

=
∫ |E|

0

(f∗(u) − f∗(t)) du =
∫

E

(f(x) − f∗(t)) dx =
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=
∑

j

∫
E∩Qj

(f(x) − f∗(t)) dx =

=
∑

j

∫
E∩Qj

(
f(x) − fQj

)
dx +

∑
j

(
fQj

− f∗(t)
)
|E ∩ Qj | ≤

≤
∑

j

∫
E∩Qj

∣∣f(x) − fQj

∣∣ dx +
∑′

j

(
fQj

− f∗(t)
)
|E ∩ Qj | , (3.3)

where
∑′

j denotes the sum over all numbers j such that fQj
> f∗(t). We have

∑′

j

(
fQj

− f∗(t)
)
|E ∩ Qj | ≤

∑′

j

(
fQj

− f∗(t)
)
|G ∩ Qj | ≤

≤
∑′

j

(
fQj

− f∗(t)
)
|Qj \ G| =

∑′

j

∫
Qj\G

(
fQj

− f∗(t)
)

dx ≤

≤
∑′

j

∫
Qj\G

(
fQj

− f(x)
)

dx ≤
∑′

j

∫
Qj

∣∣f(x) − fQj

∣∣ dx ≤

≤
∑

j

∫
Qj

∣∣f(x) − fQj

∣∣ dx.

Then (3.3) becomes

t (f∗∗(t) − f∗(t)) ≤ 2
∑

j

∫
Qj

∣∣f(x) − fQj

∣∣ dx ≤

≤ 2‖f‖∗
∑

j

|Qj | ≤ 2d+2‖f‖∗ · |G| ≤ 2d+3‖f‖∗ · t,

which is exactly (3.2). ��
In particular, from this lemma it follows that the rearrangement operator

is bounded in BMO.

Theorem 3.2 (Garsia, Rodemich (d = 1), [17]; Bennett, De Vore,
Sharpley (d ≥ 1), [1]). Let f ∈ BMO(Rd). Then f∗ ∈ BMO([0,∞)) and

‖f∗‖∗ ≤ c‖f‖∗,

where the constant c depends only on the dimension d of the space (one can
take c = 2d+5).
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Proof. Since f∗ is a non-increasing function on [0,∞)

‖f∗‖∗ = sup
t>0

Ω(f∗; [0, t]).

But by the properties of oscillations

Ω(f∗; [0, t]) ≤ 2Ω′(f∗; [0, t]) = 2 inf
c

1
t

∫ t

0

|f∗(u) − c| du ≤

≤ 2
t

∫ t

0

(f∗(u) − f∗(t)) du = 2 (f∗∗(t) − f∗(t)) ,

and the result follows from the previous theorem. ��
Now let us consider the case f ∈ BMO(Q0) for a fixed cube Q0 ⊂ R

d. In
this case the presented proof of inequality (3.1) is valid only for t such that
0 < t ≤ 1

4 |Q0| because it is based on the application of Lemma 1.13, which
requires |G| ≤ 1

2 |Q0|. Therefore the following theorem is valid.

Theorem 3.3 (Bennett, De Vore, Sharpley, [1]). Let f ∈ BMO(Q0).
Then

f∗∗(t) − f∗(t) ≤ 2d+4‖f‖∗, 0 < t ≤ 1
4
|Q0|. (3.4)

Let us show that (3.4) fails as t → |Q0| even if the coefficient in its right-
hand side is arbitrarily big. Indeed, for 0 < h < 1 set f(x) = ln 1−x

h , x ∈
Q0 ≡ [0, 1 − h]. Since f does not increase on [0, 1 − h] it follows that f∗(t) =
f(t), 0 < t ≤ 1 − h = |Q0|, and f∗(1 − h) = 0. It is easy to see that ‖f‖∗
does not exceed the BMO-norm of the function ln 1

x , 0 < x < ∞, so that
‖f‖∗ ≤ 2

e . Thus it remains to show that f∗∗(1 − h) → ∞ as h → 0. But this
is indeed true, because

f∗∗(1 − h) =
1

1 − h

∫ 1−h

0

f∗(u) du =
1

1 − h

∫ 1−h

0

ln
1 − u

h
du =

=
h

1 − h

∫ 1

h

ln
1
z

dz

z2
=

1
1 − h

ln
1
h
− 1 → ∞, h → 0.

We see that (3.4) fails for t = |Q0|, and hence also for t close to |Q0|. However,
the analog of Theorem 3.2 for BMO(Q0) is true.

Theorem 3.4 (Garsia, Rodemich (d = 1), [17]; Bennett, De Vore,
Sharpley (d ≥ 1), [1]). Let f ∈ BMO(Q0). Then f∗ ∈ BMO([0, |Q0|]) and

∥∥(f − fQ0)
∗∥∥

∗ ≤ c‖f‖∗,

where the constant c depends only on the dimension d of the space.
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Proof. We can assume that fQ0 = 0. Fix the interval [α, β] ⊂ [0, |Q0|]. If
f∗
[α,β] ≤ |f |Q0 , then

Ω(f∗; [α, β]) ≤ 1
β − α

∫ β

α

∣∣∣f∗(u) − f∗
[α,β]

∣∣∣ du ≤

≤ 2f∗
[α,β] ≤ 2|f |Q0 =

2
|Q0|

∫
Q0

|f(x)| dx ≤ 2‖f‖∗.

In remains to consider the non-trivial case f∗
[α,β] > |f |Q0 . Choose β0, β ≤

β0 ≤ |Q0|, such that f∗
[α,β] = f∗

[0,β0]
. If β0 ≥ 1

4 |Q0|, then

Ω(f∗; [α, β]) ≤ Ω(f∗; [0, β0]) =
2
β0

∫
{u: f∗(u)>f∗∗(β0)}

(f∗(u) − f∗∗(β0)) du ≤

≤ 2
β0

∫
{u: f∗(u)>f∗∗(β0)}

(f∗(u) − |f |Q0) du ≤

≤ 2
β0

∫
{u: f∗(u)>|f |Q0}

(f∗(u) − |f |Q0) du =

=
2
β0

∫
{x∈Q0: |f(x)|>|f |Q0}

(|f(x)| − |f |Q0) dx =

=
|Q0|
β0

Ω(|f |;Q0) ≤ 4 · 2 · Ω(f ;Q0) ≤ 8‖f‖∗.

Otherwise, if β0 ≤ 1
4 |Q0|, then, by Theorem 3.3,

Ω(f∗; [α, β]) ≤ Ω(f∗; [0, β0]) ≤ 2Ω′(f∗; [0, β0]) ≤

≤ 2
β0

∫ β0

0

(f∗(u) − f∗(β0)) du = 2 (f∗∗(β0) − f∗(β0)) ≤ 2d+5‖f‖∗.

Since the interval [α, β] ⊂ [0, |Q0|] was arbitrary the theorem is proved. ��
The estimates of the non-increasing rearrangement, which were obtained

in Theorems 3.2 and 3.4, are based on the applications of Theorems 3.1 and
3.3 respectively, while for the proofs of Theorems 3.1 and 3.3 we used Lemma
1.12. Now we are going to consider another method of getting estimates for the
BMO-norm of the non-increasing rearrangement, based on the application of
“rising sun lemma” 1.16. For this we will use the non-increasing equimeasur-
able rearrangement fd.

Theorem 3.5 (Klemes, [32]). Let f ∈ BMO([a0, b0]). Then

‖fd‖∗ ≤ ‖f‖∗.
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Proof. Fix the segment J ⊂ [0, b0 − a0] and denote α = 1
|J|
∫

J
fd(u) du. First

let us consider the case α ≥ 1
b0−a0

∫ b0
a0

f(x) dx. Applying “rising sun lemma”
1.16 we construct the pairwise disjoint intervals Ij ⊂ [a0, b0], j = 1, 2, . . . , such
that fIj

= α and f(x) ≤ α at almost every x ∈ [a0, b0] \E with E =
⋃

j≥1 Ij .
If we prove the inequality

1
|J |

∫
J

|fd(t) − α| dt ≤ 1
|E|

∫
E

|f(x) − α| dx, (3.5)

then it will remain to use the fact, that

fE =
1
|E|

∫
E

f(x) dx =
1∑
j |Ij |

∑
j

∫
Ij

f(x) dx = α, (3.6)

and
1
|E|

∫
E

|f(x) − α| dx =
1
|E|
∑

j

∫
Ij

|f(x) − α| dx =

=
1
|E|
∑

j

|Ij |
1
|Ij |

∫
Ij

∣∣f(x) − fIj

∣∣ dx =
1
|E|
∑

j

|Ij |Ω(f ; Ij) ≤ ‖f‖∗.

In order to prove (3.5), choose the maximal t ∈ (0, b0 − a0] such that
J ⊂ [0, t] and 1

t

∫ t

0
fd(u) du = α. The existence of such a t is guaranteed by

the condition

1
b0 − a0

∫ b0−a0

0

fd(u) du =
1

b0 − a0

∫ b0

a0

f(x) dx ≤ α =
1
|J |

∫
J

fd(u) du.

Using the monotonicity of the function fd and applying Property 2.15, we
obtain

1
|J |

∫
J

|fd(u) − α| du ≤ 1
t

∫ t

0

|fd(u) − α| du.

Now for the proof of (3.5) it is enough to show that

1
t

∫ t

0

|fd(u) − α| du ≤ 1
|E|

∫
E

|f(x) − α| dx. (3.7)

But (3.7) is a consequence of the following two relations

t ≥ |E|, (3.8)
∫ t

0

|fd(u) − α| du =
∫

E

|f(x) − α| dx. (3.9)

Concerning (3.8), notice that by the definition of the non-increasing rearrange-
ment we have ∫ |E|

0

fd(u) du ≥
∫

E

f(x) dx,
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so that, by (3.6),

1
|E|

∫ |E|

0

fd(u) du ≥ 1
|E|

∫
E

f(x) dx = α =
1
t

∫ t

0

fd(u) du.

From here and from the monotonicity of fd inequality (3.8) follows. In order to
prove (3.9) let us use the fact that f(x) ≤ α almost everywhere on [a0, b0] \E
(see (1.20)). Then, by (3.6) and the properties of mean oscillations,

∫ t

0

|fd(u) − α| du = 2
∫
{u∈[0,t]: fd(u)>α}

(fd(u) − α) du =

= 2
∫
{x∈[a0,b0]: f(x)>α}

(f(x) − α) dx = 2
∫
{x∈E: f(x)>α}

(f(x) − α) dx =

=
∫

E

|f(x) − α| dx.

This concludes the proof of inequality (3.7).
In the case α < 1

b0−a0

∫ b0
a0

f(x) dx it is enough to apply the previous
arguments to the function −f and notice that the equality (−f)d(t) =
−fd(b0 − a0 − t) holds true for all t ∈ [0, b0 − a0] except the set of mea-
sure zero of the points of discontinuity of the function (−f)d. In this case
again we have

1
|J |

∫
J

|fd(u) − α| du ≤ ‖f‖∗,

and this complete the proof of the theorem. ��
Remark 3.6. As it was already noticed, if the function f is non-negative on
[a0, b0], then f∗ = fd. So, in this case Theorem 3.5 leads to the inequality

‖f∗‖∗ ≤ ‖f‖∗, (3.10)

which is sharp in the sense of constants. In this sense the estimate (3.10) for
d = 1 is better than the one provided by Theorem 3.2.

If we drop the assumption that f is non-negative, then

f∗ = |f |d.

If in addition we take into account (Property 2.6) that

Ω(|f |; I) ≤ 2Ω(f ; I), I ⊂ [a0, b0], (3.11)

then, applying Theorem 3.5, we obtain

‖f∗‖∗ = ‖ |f |d ‖∗ ≤ ‖ |f | ‖∗ ≤ 2‖f‖∗. (3.12)
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However, the last inequality is not sharp despite of the fact that the constant 2
in (3.11) cannot be decreased (Property 2.6). Actually there holds true the
following theorem.

Theorem 3.7 ([34]). Let f ∈ BMO([a0, b0]). Then

‖ |f | ‖∗ ≤ ‖f‖∗. (3.13)

Proof. Fix the interval I ⊂ [a0, b0] and denote by g = f |I the restriction of f
to I. Obviously then

Ω(|f |; I) = Ω(|g|; I) = Ω(|gd|; [0, |I|]).

But in view of Theorem 3.5, for any interval J ⊂ [0, |I|] we have

Ω(gd;J) ≤ sup
K⊂I

Ω(g;K) = sup
K⊂I

Ω(f ;K) ≤ ‖f‖∗.

Hence in order to prove the theorem it is enough to prove the inequality

Ω(|gd|; [0, |I|]) ≤ sup
J⊂[0,|I|]

Ω(gd;J). (3.14)

Without loss of generality we can assume that |I| = 1. Denote K = [0, 1], h =
gd, β = |h|K , γ = hK . Then (3.14) becomes

∫
K

| |h(t)| − β| dt ≤ sup
J⊂K

1
|J |

∫
J

|h(t) − hJ | dt. (3.15)

The proof of the theorem splits into the following three cases:
1. limt→1−0 h(t) ≥ −β; obviously in this case limt→0+ h(t) > β;
2. limt→0+ ≤ β; obviously in this case limt→1−0 h(t) < −β;
3. limt→1−0 h(t) < −β and limt→0+ h(t) > β.
In the first case, by properties of mean oscillations,

∫
K

| |h(t)| − β| dt = 2
∫
{t∈K: |h(t)|>β}

(|h(t)| − β) dt =

= 2
∫
{t∈K: h(t)>β}

(h(t) − β) dt ≤ 2
∫
{t∈K: h(t)>γ}

(h(t) − γ) dt =

=
∫

K

|h(t) − γ| dt =
∫

K

|h(t) − hK | dt.

Similarly, in the second case we have
∫

K

| |h(t)| − β| dt = 2
∫
{t∈K: |h(t)|>β}

(|h(t)| − β) dt =
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= 2
∫
{t∈K: h(t)<−β}

(−h(t) − β) dt ≤ 2
∫
{t∈K: h(t)<γ}

(−h(t) − (−γ)) dt =

=
∫

K

|h(t) − γ| dt =
∫

K

|h(t) − hK | dt.

For the third case let us consider the function ϕ(τ) = 1
τ

∫ τ

0
|h(t)| dt. This

function is continuous on (0, 1], limτ→0+ ϕ(τ) > β, ϕ(1) = β, and for ε > 0
small enough

ϕ(1−ε) =
1

1 − ε

∫ 1−ε

0

|h(t)| dt =
1

1 − ε

∫ 1

0

|h(t)| dt− ε

1 − ε

1
ε

∫ 1

1−ε

|h(t)| dt < β.

From the properties of the function ϕ it follows that there exists τ0 ∈ (0, 1)
such that ϕ(τ0) = β. Denote K1 = [0, τ0], K2 = [τ0, 1]. Then

|h|K1 = ϕ(τ0) = β,

|h|K2 =
1

1 − τ0

∫ 1

τ0

|h(t)| dt =
1

1 − τ0

(∫ 1

0

|h(t)| dt −
∫ τ0

0

|h(t)| dt

)
=

=
1

1 − τ0
(β − τ0β) = β,

∫
K

| |h(t)|−β| dt = τ0
1

|K1|

∫
K1

| |h(t)|−β| dt+(1−τ0)
1

|K2|

∫
K2

| |h(t)|−β| dt ≤

≤ max
i=1,2

1
|Ki|

∫
Ki

| |h(t)| − β| dt.

If we show that∫
Ki

| |h(t)| − β| dt ≤
∫

Ki

|h(t) − hKi
| dt, i = 1, 2, (3.16)

then ∫
K

| |h(t)| − β| dt ≤ max
i=1,2

1
|Ki|

∫
Ki

| |h(t)| − β| dt ≤

≤ max
i=1,2

1
|Ki|

∫
Ki

|h(t) − hKi
| dt ≤ sup

J⊂K

1
|J |

∫
J

|h(t) − hJ | dt,

i.e., (3.15). So, it remains to prove (3.16).
For i = 1
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∫
K1

| |h(t)| − β| dt = 2
∫
{t∈K1: |h(t)|>β}

(|h(t)| − β) dt ≤

≤ 2
∫
{t∈K1: h(t)>hK1}

(h(t) − hK1) dt =
∫

K1

|h(t) − hK1 | dt.

Similarly, for i = 2∫
K2

| |h(t)| − β| dt = 2
∫
{t∈K2: |h(t)|>β}

(|h(t)| − β) dt =

= 2
∫
{t∈K2: h(t)<−β}

(−h(t) − β) dt ≤

≤ 2
∫
{t∈K2: h(t)<hK2}

(−h(t) + hK2) dt =
∫

K2

|h(t) − hK2 | dt.

This proves (3.16) and completes the proof of (3.15). ��
Remark 3.8. We have proved (3.13) in the one-dimensional case. If the
dimension of the space d ≥ 2, then Property 2.6 immediately implies that

‖ |f | ‖∗ ≤ 2‖f‖∗.

For d ≥ 2 we do not know the minimal constant c (which possibly depends
on d) for the inequality

‖ |f | ‖∗ ≤ c‖f‖∗.

By means of Theorem 3.7 one can improve the last inequality in (3.12)
and obtain the following

Corollary 3.9 ([34]). Let f ∈ BMO([a0, b0]). Then

‖f∗‖∗ ≤ ‖f‖∗. (3.17)

Remark 3.10. For d ≥ 2 we do not know the minimal constant c in the
inequality

‖f∗‖∗ ≤ c‖f‖∗.

Now let us consider the estimates of the BMO-norm of the non-increasing
equimeasurable rearrangement of a BMOR-function. Recall that BMOR dif-
fers from BMO if d ≥ 2 because the oscillations must be calculated over all
possible rectangles, not only the cubes. First of all we prove the multidimen-
sional analog of Theorem 3.5.

Theorem 3.11 ([45]). Let f ∈ BMOR(R0), where R0 ⊂ R
d is a multidi-

mensional segment. Then
‖fd‖∗ ≤ ‖f‖∗,R. (3.18)
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Proof. Essentially we will repeat the proof of Theorem 3.5. Fix the interval
J ⊂ [0, |R0|] and denote α = 1

|J|
∫

J
fd(u) du. Let α ≥ 1

|R0|
∫

R0
f(x) dx. Ap-

plying the multidimensional analog of the Riesz “rising sun lemma” (Lemma
1.30) 1, we construct the pairwise disjoint segments Ij ⊂ R0, j = 1, 2, . . .
such that fIj

= α, j = 1, 2, . . . , and f(x) ≤ α for almost all x ∈ R0 \ E with
E =

⋃
j≥1 Ij . If we prove the inequality

1
|J |

∫
J

|fd(t) − α| dt ≤ 1
|E|

∫
E

|f(x) − α| dx, (3.19)

then in order to complete the proof it will remain to use the relations

fE =
1
|E|

∫
E

f(x) dx =
1∑
j |Ij |

∑
j

∫
Ij

f(x) dx = α, (3.20)

1
|E|

∫
E

|f(x) − α| dx =
1
|E|
∑

j

∫
Ij

|f(x) − α| dx =

=
1
|E|
∑

j

|Ij |
1
|Ij |

∫
Ij

∣∣f(x) − fIj

∣∣ dx =
1
|E|
∑

j

|Ij |Ω(f ; Ij) ≤ ‖f‖∗,R.

For the proof of (3.19) let us choose the maximal t ∈ (0, |R0|] such that
J ⊂ [0, t] and 1

t

∫ t

0
fd(u) du = α. The existence of such a t follows from the

condition

1
|R0|

∫ |R0|

0

fd(u) du =
1

|R0|

∫
R0

f(x) dx ≤ α =
1
|J |

∫
J

fd(u) du.

Using the monotonicity of the function fd and applying Property 2.15, we
obtain

1
|J |

∫
J

|fd(u) − α| du ≤ 1
t

∫ t

0

|fd(u) − α| du.

So, in order to prove (3.19) it is enough to show that

1
t

∫ t

0

|fd(u) − α| du ≤ 1
|E|

∫
E

|f(x) − α| dx. (3.21)

In its own turn the inequality (3.21) is a consequence of the following two
statements:
1 We could also use Lemma 1.21 and Remark 1.24. But in order to use Remark 1.24

one should prove that f ∈ Lp(R0) for some p > 1. Indeed, from the John–
Nirenberg inequality, which will be proved in the next section, it follows that
f ∈ Lp(R0) for every p < ∞. This is not a vicious circle, because we do not need
Theorem 3.11 to prove the John–Nirenberg inequality (for d = 2 it is enough to
use Lemma 1.22).
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t ≥ |E|, (3.22)
∫ t

0

|fd(u) − α| du =
∫

E

|f(x) − α| dx. (3.23)

For the proof of (3.22) notice, that by the definition of the non-increasing
rearrangement ∫ |E|

0

fd(u) du ≥
∫

E

f(x) dx,

so that, by (3.20),

1
|E|

∫ |E|

0

fd(u) du ≥ 1
|E|

∫
E

f(x) dx = α =
1
t

∫ t

0

fd(u) du.

Taking into account the monotonicity of fd, from here we obtain (3.22).
For the proof of (3.23) we will use the fact that f(x) ≤ α almost everywhere

on R0 \ E. Then, applying (3.20) and the properties of mean oscillations, we
get ∫ t

0

|fd(u) − α| du = 2
∫
{u∈[0,t]: fd(u)>α}

(fd(u) − α) du =

= 2
∫
{x∈R0: f(x)>α}

(f(x) − α) dx = 2
∫
{x∈E: f(x)>α}

(f(x) − α) dx =

=
∫

E

|f(x) − α| dx.

This concludes the proof of (3.21).
In the case α < 1

|R0|
∫

R0
f(x) dx it is enough to apply the preceding ar-

guments to the function −f and to note that for all t ∈ [0, |R0|], except
the set of zero measure of the points of discontinuity of (−f)d, we have
(−f)d(t) = −fd(|R0| − t). In addition, in this case

1
|J |

∫
J

|fd(u) − α| du ≤ ‖f‖∗,R,

and this completes the proof of the theorem. ��
The next theorem is the multidimensional analog of Theorem 3.7 (it is

interesting to compare it with Remark 3.10).

Theorem 3.12 ([45]). Let f ∈ BMOR(R0), where R0 ⊂ R
d is a multidi-

mensional segment. Then

‖ |f | ‖∗,R ≤ ‖f‖∗,R.
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Proof. Fix the segment I ⊂ R0 and denote by g = f |I the restriction of the
function f to I. Obviously then

Ω(|f |; I) = Ω(|g|; I) = Ω(|gd|; [0, |I|]).

On the other hand, according to Theorem 3.11, for every interval J ⊂
[0, |I|]

Ω(gd;J) ≤ sup
K⊂I

Ω(g;K) = sup
K⊂I

Ω(f ;K) ≤ ‖f‖∗,R.

Hence, in order to prove the theorem it is enough to prove the inequality

Ω(|gd|; [0, |I|]) ≤ sup
J⊂[0,|I|]

Ω(gd;J). (3.24)

But we have already obtained (3.24) while proving Theorem 3.7 (inequality
(3.14)). Indeed, formulas (3.14) and (3.24) express the relation between the
oscillation of the function gd and its absolute value independently on the
dimension of the space. ��

Now we can easily get the multidimensional analog of inequality (3.17).

Theorem 3.13 ([45]). Let f ∈ BMOR(R0), where R0 ⊂ R
d is a multidi-

mensional segment. Then
‖f∗‖∗ ≤ ‖f‖∗,R.

Proof. Using the trivial equality f∗ = |f |d and applying Theorems 3.11 and
3.12 we obtain

‖f∗‖∗ = ‖ |f |d ‖∗ ≤ ‖ |f | ‖∗,R ≤ ‖f‖∗,R. ��

3.2 The John–Nirenberg Inequality

We have already mentioned (see p. 41), that the logarithmic function is a
typical representative of the BMO-class. This means that the distribution
function of the BMO-function decreases exponentially.

Theorem 3.14 (John, Nirenberg, [30]). There exist constants b and B
(possibly depending on the dimension d of the space) such that for any function
f ∈ BMO(Rd) and any cube Q0 ⊂ R

d

|{x ∈ Qo : |f(x) − fQ0 | > λ}| ≤ B · |Q0| · exp
(
− bλ

‖f‖∗

)
, λ > 0. (3.25)
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Proof. Since inequality (3.25) is homogeneous with respect to the multiplica-
tion of the function f by a constant we can assume that ‖f‖∗ = 1. Let us
apply the Calderón–Zygmund lemma (Lemma 1.14) with α = 3

2 to the func-

tion |f − fQ0 |. As the result we obtain a collection of cubes
{

Q
(1)
j

}
j≥1

with

pairwise disjoint interiors and verifying the following properties:

3
2

<
1∣∣∣Q(1)
j

∣∣∣
∫

Q
(1)
j

|f(x) − fQ0 | dx ≤ 2d · 3
2
, j = 1, 2, . . . , (3.26)

|f(x) − fQ0 | ≤
3
2

for a.e. x ∈ Q0 \

⎛
⎝⋃

j≥1

Q
(1)
j

⎞
⎠ .

The left inequality of (3.26) implies

∑
j≥1

∣∣∣Q(1)
j

∣∣∣ ≤ 1
3/2

∑
j≥1

∫
Q

(1)
j

|f(x) − fQ0 | dx ≤

≤ 2
3

∫
Q0

|f(x) − fQ0 | dx ≤ 2
3
|Q0| · ‖f‖∗ =

2
3
|Q0|,

while from the right inequality we have

∣∣∣fQ
(1)
j

− fQ0

∣∣∣ =
∣∣∣∣∣∣

1∣∣∣Q(1)
j

∣∣∣
∫

Q
(1)
j

(f(x) − fQ0) dx

∣∣∣∣∣∣ ≤

≤ 1∣∣∣Q(1)
j

∣∣∣
∫

Q
(1)
j

|f(x) − fQ0 | dx ≤ 2d · 3
2
, j = 1, 2, . . .

To every cube Q
(1)
j we apply again Calderón–Zygmund lemma 1.14.

In the k-th step, applying Calderón–Zygmund lemma 1.14 with α = 3
2

to the function
∣∣∣f − f

Q
(k−1)
j

∣∣∣ on every cube Q
(k−1)
j , j = 1, 2 . . . , we obtain a

family of cubes Q
(k)
i,j ⊂ Q

(k−1)
j , i = 1, 2, . . . , with pairwise disjoint interiors,

and such that

3
2

<
1∣∣∣Q(k)
i,j

∣∣∣
∫

Q
(k)
i,j

∣∣∣f(x) − f
Q

(k−1)
j

∣∣∣ dx ≤ 2d · 3
2
, (3.27)

∣∣∣f(x) − f
Q

(k−1)
j

∣∣∣ ≤ 3
2

for a.e. x ∈ Q
(k−1)
j \

⎛
⎝⋃

i≥1

Q
(k)
i,j

⎞
⎠ . (3.28)

Inequality (3.27) implies
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∑
i≥1

∣∣∣Q(k)
i,j

∣∣∣ ≤ 2
3

∑
i≥1

∫
Q

(k)
i,j

∣∣∣f(x) − f
Q

(k−1)
j

∣∣∣ dx ≤

≤ 2
3

∫
Q

(k−1)
j

∣∣∣f(x) − f
Q

(k−1)
j

∣∣∣ dx ≤ 2
3

∣∣∣Q(k−1)
j

∣∣∣ · ‖f‖∗ =
2
3

∣∣∣Q(k−1)
j

∣∣∣ , (3.29)

∣∣∣fQ
(k)
i,j

− f
Q

(k−1)
j

∣∣∣ ≤ 1∣∣∣Q(k)
i,j

∣∣∣
∫

Q
(k)
i,j

∣∣∣f(x) − f
Q

(k−1)
j

∣∣∣ dx ≤ 2d · 3
2
. (3.30)

Numbering all cubes Q
(k)
i,j , i, j = 1, 2, . . . we get the collection

{
Q

(k)
j

}
j≥1

. In

addition, by (3.29),

∑
j≥1

∣∣∣Q(k)
j

∣∣∣ ≤ 2
3

∑
j≥1

∣∣∣Q(k−1)
j

∣∣∣ ≤ · · · ≤
(

2
3

)k−1∑
j≥1

∣∣∣Q(1)
j

∣∣∣ ≤
(

2
3

)k

|Q0| , (3.31)

while from (3.28) and (3.30) it follows that

|f(x) − fQ0 | ≤
∣∣∣∣f(x) − f

Q
(k−1)
jk−1

∣∣∣∣+
∣∣∣∣fQ

(k−1)
jk−1

− f
Q

(k−2)
jk−2

∣∣∣∣+ · · · +
∣∣∣∣fQ

(1)
j1

− fQ0

∣∣∣∣ ≤

≤ 3
2
+2d(k−1)

3
2
≤ k·2d·3

2
for a.e. x ∈

(
∪j≥1Q

(k−1)
j

)
\
(
∪j≥1Q

(k)
j

)
, (3.32)

where Q
(i+1)
ji+1

⊂ Q
(i)
ji

, i = 1, . . . , k − 2. Then we pass to the next, (k + 1)-th
step.

Take an arbitrary number λ > 0. If k · 2d · 3
2 < λ ≤ (k + 1) · 2d · 3

2 for some
k ∈ N, then, by (3.31) and (3.32),

|{x ∈ Q0 : |f(x) − fQ0 | > λ}| ≤
∣∣∣∣
{

x ∈ Q0 : |f(x) − fQ0 | > k · 2d · 3
2

}∣∣∣∣ ≤

≤
∑
j≥1

∣∣∣Q(k)
j

∣∣∣ ≤
(

2
3

)k

· |Q0| = |Q0| exp
(
−k ln

3
2

)
≤

≤ |Q0| exp
((

1 − λ

2d · 3
2

)
ln

3
2

)
=

3
2
|Q0| exp(−bλ),

where b = 2
3 · ln 3

2 · 2−d. Otherwise, if λ ≤ 2d · 3
2 , then

|{x ∈ Qo : |f(x) − fQ0 | > λ}| ≤ |Q0| exp(−bλ) · exp
(

b · 2d 3
2

)
≡

≡ |Q0|B1 exp(−bλ),

where B1 = exp
(
b · 2d · 3

2

)
. Setting B = B1 + 3

2 , we obtain (3.25). ��
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Remark 3.15. In terms of equimeasurable rearrangements inequality (3.25)
can be rewritten in the following form:

(f − fQ0)
∗ (t) ≤ ‖f‖∗

b
ln

B|Q0|
t

, 0 < t ≤ |Q0|. (3.33)

So, if f ∈ BMO, then its equimeasurable rearrangement do not grow faster
than the logarithmic function as the argument tends to zero.

Remark 3.16. In a certain sense the John–Nirenberg theorem is invertible.
Namely, if f is a locally summable on R

d function such that for any cube
Q0 ⊂ R

d

|{x ∈ Q0 : |f(x) − fQ0 | > λ}| ≤ B|Q0| · exp(−bλ), λ > 0, (3.34)

where the constants B and b do not depend on Q0, then f ∈ BMO(Rd).
Indeed, let us rewrite (3.34) in the form

(f − fQ0)
∗ (t) ≤ 1

b
ln

B|Q0|
t

, 0 < t ≤ |Q0|. (3.35)

Then
1

|Q0|

∫
Q0

|f(x) − fQ0 | dx =
1

|Q0|

∫ |Q0|

0

(f − fQ0)
∗ (t) dt ≤

≤ 1
b

1
|Q0|

∫ |Q0|

0

ln
B|Q0|

t
dt =

1
b

∫ 1

0

ln
B

u
du =

1
b
(1 + lnB).

Taking the supremum over all cubes Q0 ⊂ R
d, we obtain ‖f‖∗ ≤ 1

b (1 + lnB).

Remark 3.17. Now let f ∈ BMO(Q0) for some fixed cube Q0 ⊂ R
d. Obvi-

ously then the proof of inequality (3.25) holds true, and so do (3.33). However,
(3.34), as well as its equivalent form (3.35), does not imply f ∈ BMO(Q0).
One can easily construct the corresponding example, we omit this point here.

The John–Nirenberg theorem implies

Corollary 3.18. If f ∈ BMO(Rd), then f ∈ Lp
loc for any p < ∞.

Proof. It is enough to prove that f − fQ0 ∈ Lp(Q0) for any cube Q0 ⊂ R
d.

The John–Nirenberg inequality in the form (3.33) yields

∫
Q0

|f(x) − fQ0 |
p

dx =
∫ |Q0|

0

[
(f − fQ0)

∗ (t)
]p

dt ≤

≤
(
‖f‖∗

b

)p ∫ |Q0|

0

lnp B|Q0|
t

dt =

=
(
‖f‖∗

b

)p

|Q0| · B
∫ 1/B

0

lnp 1
u

du < ∞. �� (3.36)



76 3 Estimates of Rearrangements and the John–Nirenberg Theorem

Remark 3.19. Inequality (3.36) can be rewritten as follows:

Ωp(f ;Q0) ≤ cp,d‖f‖∗, Q0 ⊂ R
d,

where the constant cp,d depends only on p and d. Hence

‖f‖∗,p ≤ cp,d‖f‖∗.
As we have already mentioned, the inequality ‖f‖∗ ≤ ‖f‖∗,p for 1 < p < ∞
is a direct consequence of the Hölder inequality. Therefore all the classes
BMOp(Rd) coincide for all p, 1 ≤ p < ∞. Analogously, for any fixed cube
Q0 ⊂ R

d all the classes BMOp(Q0) coincide.

The John–Nirenberg inequality in the form (3.33) can be easily derived
from the estimate of the rearrangement, provided by Theorem 3.4. Indeed, let
Q0 ⊂ R

d, f ∈ BMO(Q0) and fQ0 = 0. Then

f∗∗
(

t

2

)
− f∗∗(t) =

2
t

∫ t/2

0

(f∗(u) − f∗∗(t)) du ≤

≤ 2
t

∫ t

0

|f∗(u) − f∗∗(t)| du ≤ 2‖f∗‖∗, 0 < t ≤ |Q0|.

According to Theorem 3.4,

f∗∗
(

t

2

)
− f∗∗(t) ≤ 2c‖f‖∗, 0 < t ≤ |Q0|, (3.37)

where the constant c depends only on the dimension d of the space.
Fix some t ∈ (0, |Q0|] and choose n such that 2−n−1|Q0| < t ≤ 2−n|Q0|.

Applying (3.37) we obtain

f∗∗(t) ≤ f∗∗ (2−n−1|Q0|
)
≤ f∗∗ (2−n|Q0|

)
+ 2c‖f‖∗ ≤

≤ f∗∗ (2−n+1|Q0|
)

+ 2 · (2c‖f‖∗) ≤ · · · ≤ f∗∗ (|Q0|) + (n + 1)(2c‖f‖∗).
Taking into account that fQ0 = 0 implies

f∗∗ (|Q0|) =
1

|Q0|

∫ |Q0|

0

f∗(u) du =
1

|Q0|

∫
Q0

|f(x)| dx ≤ ‖f‖∗,

we get

f∗(t) ≤ f∗∗(t) ≤ 2c(n + 2)‖f‖∗ ≤ 2c

(
ln |Q0|

t

ln 2
+ 2

)
‖f‖∗ =

=
2c

ln 2
‖f‖∗ ln

4|Q0|
t

, 0 < t ≤ |Q0|,

which for fQ0 = 0 yields (3.33) with B = 4, b = ln 2
2c .

Notice, that the assumption fQ0 = 0 is not restrictive, and one could
obtain (3.33) without this additional condition. ��
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3.2.1 One-Dimensional Case

For the proof of the John–Nirenberg inequality we were using the arguments,
based on the estimates of the equimeasurable rearrangements of functions.
These arguments were used in the original work [1]. One can improve this
result and get the exact exponent in the John–Nirenberg inequality (3.25) for
the one-dimensional case. Indeed, Lemma 2.2 has the following

Corollary 3.20. Let f ∈ BMO ([a0, b0]) with [a0, b0] ⊂ R and f[a0,b0] = 0.
Then for any a > 1

f∗∗
(

t

a

)
− f∗∗(t) ≤ a

2
‖f‖∗, 0 < t ≤ b0 − a0. (3.38)

Proof. Taking ϕ = f∗ in Lemma 2.2, we have F = f∗∗. Then, by (2.2),

f∗∗
(

t

a

)
− f∗∗(t) ≤ a

2
‖f∗‖∗, 0 < t ≤ b0 − a0.

This, together with inequality (3.17) (see Corollary 3.9), implies (3.38). ��
Using (3.38) it is easy to derive the John–Nirenberg inequality with the

exact exponent in the one-dimensional case.

Theorem 3.21 ([34]). Let f ∈ BMO ([a0, b0]). Then

(
f − f[a0,b0]

)∗ (t) ≤ ‖f‖∗
2/e

ln
B (b0 − a0)

t
, 0 < t ≤ b0 − a0, (3.39)

with B = exp
(
1 + 2

e

)
. Moreover, in general the denominator 2/e in the frac-

tion, preceding to the logarithm, cannot be increased.

Proof. Without loss of generality, we can assume that f[a0,b0] = 0. Let a > 1
(we will choose this constant later). Summing up the inequalities

f∗∗
(

b0 − a0

ai

)
− f∗∗

(
b0 − a0

ai−1

)
≤ a

2
‖f‖∗, i = 1, . . . , k + 1,

which follow from (3.38), we get

f∗∗
(

b0 − a0

ak+1

)
≤ (k + 1)

a

2
‖f‖∗ + f∗∗ (b0 − a0) . (3.40)

Since f[a0,b0] = 0 we have

f∗∗ (b0 − a0) =
1

b0 − a0

∫ b0−a0

0

f∗(u) du =
1

b0 − a0

∫ b0

a0

|f(x)| dx =
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= Ω (f ; [a0, b0]) ≤ ‖f‖∗,
so that

f∗∗
(

b0 − a0

ak+1

)
≤
(
(k + 1)

a

2
+ 1
)
‖f‖∗, k = 0, 1, . . . (3.41)

Choose some t ∈ (0, b0 − a0] and k such that

b0 − a0

ak+1
< t ≤ b0 − a0

ak
.

Then k ≤ 1
ln a ln b0−a0

t and from (3.41) we obtain

f∗(t) ≤ f∗∗(t) ≤ f∗∗
(

b0 − a0

ak+1

)
≤
(
(k + 1)

a

2
+ 1
)
‖f‖∗ ≤

≤
((

1
ln a

· ln b0 − a0

t
+ 1
)

a

2
+ 1
)
‖f‖∗ =

=
(

1
2

a

ln a
· ln b0 − a0

t
+

a

2
+ 1
)
‖f‖∗. (3.42)

The function a
ln a for a > 1 takes its minimal value at a = e. Substituting

a = e in (3.42) for 0 < t ≤ b0 − a0 we have

f∗(t) ≤
(

e
2

ln
b0 − a0

t
+

e
2

+ 1
)
‖f‖∗ =

‖f‖∗
2/e

ln
exp
(
1 + 2

e

)
(b0 − a0)

t
,

and (3.39) follows.
It remains to show that the constant 2/e in the denominator in the right-

hand side of (3.39) cannot be increased. Indeed, for the function f(x) =
ln 1

x − 1, 0 ≤ x ≤ 1, we have f[0,1] = 0. Moreover, as it was already shown
(see Example 2.24), ‖f‖∗ = 2

e . Hence (3.39) becomes

f∗(t) ≤ ln
1
t

+ 1 +
2
e
, 0 < t ≤ 1.

On the other hand, it is easy to see that f∗(t) = ln 1
et , 0 < t ≤ e−2. Therefore

the coefficient of the logarithm in the right-hand side of (3.39) cannot be
decreased. ��

In terms of the distribution function, inequality (3.39) can be rewritten in
the following way.

Corollary 3.22 ([34]). Let f ∈ BMO ([a0, b0]). Then

∣∣{x ∈ [a0, b0] :
∣∣f(x) − f[a0,b0]

∣∣ > λ
}∣∣ ≤ B (b0 − a0) exp

(
− 2/e
‖f‖∗

λ

)
, λ > 0,

(3.43)
where B = exp

(
1 + 2

e

)
, and in general the constant 2/e in the exponent cannot

be increased.
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3.2.2 Anisotropic Case

To our knowledge in the multidimensional case the problem of finding the
upper bound of those b that provide John–Nirenberg inequality (3.25) is still
open. If instead of ‖f‖∗ in (3.25) we consider ‖f‖∗,R, then the maximal value
of the constant b in the John–Nirenberg inequality is equal to 2

e as in the
one-dimensional case. Namely, we have

Theorem 3.23 ([45]). Let f ∈ BMOR(Rd). Then for any segment R0 ⊂ R
d

|{x ∈ R0 : |f(x) − fR0 | > λ}| ≤ B · |R0| · exp
(
− 2/e
‖f‖∗,R

λ

)
, λ > 0, (3.44)

where B = exp
(
1 + 2

e

)
, and in general the constant 2

e in the exponent cannot
be increased.

Proof. Without loss of generality we can assume that fR0 = 0. Then rewriting
inequality (3.44) in terms of equimeasurable rearrangements we have

f∗(t) ≤ ‖f‖∗,R

2/e
ln

B|R0|
t

, 0 < t ≤ |R0|. (3.45)

Essentially in order to prove (3.45) we have to repeat the same arguments as
in the proof of Theorem 3.21. Indeed, setting ϕ = f∗ in Lemma 2.2, we have

f∗∗
(

t

a

)
− f∗∗(t) ≤ a

2
‖f∗‖∗, 0 < t ≤ |R0|,

which together with Theorem 3.13 leads to the following multidimensional
analog of inequality (3.38):

f∗∗
(

t

a

)
− f∗∗(t) ≤ a

2
‖f‖∗,R, 0 < t ≤ |R0|

for an arbitrary a > 1. Now it remains to repeat completely the proof of
Theorem 3.21, taking R0 instead of [a0, b0], and ‖f‖∗,R instead of ‖f‖∗.

The fact that the denominator 2
e in the right-hand side of (3.45) cannot

be increased can be easily checked on the following function:

f (x1, . . . , xd) = ln
1
x1

− 1, x ≡ (x1, . . . , xd) ∈ R0 ≡ [0, 1]d. ��




