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Preface

The present book is devoted to the properties of functions that can be des-
cribed in terms of mean integral oscillations. The starting point of this study
was the work of F. John and L. Nirenberg [30], where the authors showed
that the distribution function corresponding to a function of bounded mean
oscillation is exponentially decreasing. This fact, which now is known as the
John–Nirenberg inequality, plays an important role in various aspects of the-
ory of functions. The fundamental work of C. Fefferman and E. Stein [11]
gave a powerful impact to the further study of properties of functions of
bounded mean oscillation (the BMO-functions). In this work it was proved
that the BMO-class is conjugate to the class Re H1 of the real parts of
summable analytical functions. C. Bennett and R. Sharpley studied in de-
tail the interpolation properties of the BMO-class. Their results, which later
were published in monograph [3], widely enlarge the field of application
of the BMO-functions. L. Gurov and Yu. Reshetnyak in [21, 22] consid-
ered the functions, satisfying one special condition, expressed in terms of
mean oscillations. Afterwards this condition was called the Gurov–Reshetnyak
inequality. The classes of functions satisfying the Gurov–Reshetnyak condi-
tion, have many applications in the theories of quasi-conformal maps, partial
differential equations and weighted spaces.

There now exists a huge number of journal publications dealing with prop-
erties of functions expressed in terms of mean oscillations. Numerous facts
can be found in monographs and overviews of various authors. The present
work cannot pretend to describe all known results in this field. We have just
attempted to give a systematic and detailed introduction to the study of the
BMO-class, the Gurov–Reshetnyak class and some related classes of func-
tions. We have paid particular attention to the finality of the results, though
in certain cases we did not succeed in this way.

One of the main tools of our study were the sharp estimates of the equimea-
surable rearrangements of functions. Equimeasurable rearrangements have
been used by many authors for the analysis of the properties of function of
the mentioned above classes. However recently, the problem was posed of the
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sharpness of the parameters, describing these properties, which shows that the
estimates of the equimeasurable rearrangements of functions need to be im-
proved. Usually these estimates are based on the application of the so-called
covering lemmas. In the present monograph we give some new versions of
these.

The choice of the subjects of my research was formed under the influence of
my scientific supervisor professor V.I. Kolyada, who later became my colleague
and a good friend. His permanent interest was the stimulus of my work, his
personality was an example for me. I am sincerely grateful to him for this.

The translation by Russian into English was financially supported by the
Accademia Pontaniana, Napoli. I would like to thank the Accademia and in
particular Professor Carlo Sbordone for his great participation in the transla-
tion and publication of this book.

Odessa, 2007 A. Korenovskii



Contents

1 Preliminaries and Auxiliary Results . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Equimeasurable Rearrangements of Functions . . . . . . . . . . . . . . . 1
1.2 Covering Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Properties of Oscillations and the Definition
of the BMO-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1 Properties of Mean Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Definition of the BMO-class and Examples . . . . . . . . . . . . . . . . . 39

3 Estimates of Rearrangements and the John–Nirenberg
Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.1 Estimates of Rearrangements of the BMO-functions . . . . . . . . . 61
3.2 The John–Nirenberg Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2.1 One-Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2.2 Anisotropic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 The BMO-estimates of the Hardy-type Transforms . . . . . . . . 81
4.1 Estimates of Oscillations of the Hardy Transform . . . . . . . . . . . . 81
4.2 Estimates of the Oscillations of the Conjugate Hardy

Transform and the Calderón Transform . . . . . . . . . . . . . . . . . . . . 92

5 The Gurov–Reshetnyak Class of Functions . . . . . . . . . . . . . . . . . 99
5.1 Embedding in the Gehring Class . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1.1 One-Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.1.2 Anisotropic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2 Embedding in the Muckenhoupt Class . . . . . . . . . . . . . . . . . . . . . . 135
5.2.1 One-Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.2.2 Anisotropic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A The Boundedness of the Hardy–Littlewood Maximal
Operator from BMO into BLO . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



VIII Contents

B The Weighted Analogs of the Riesz Lemma
and the Gurov–Reshetnyak Theorem . . . . . . . . . . . . . . . . . . . . . . 151
B.1 The Weighted Riesz Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
B.2 The Gurov–Reshetnyak Theorem in the Weighted Case . . . . . . . 152

C Classes of Functions Satisfying the Reverse
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1

Preliminaries and Auxiliary Results

1.1 Equimeasurable Rearrangements of Functions

The equimeasurable rearrangements of functions play an important role in
various fields of mathematics. Their effectiveness comes from the fact that in
certain cases they preserve the properties of the original functions and in the
same time have a simpler form. Let us give the definitions.

The value

λf (y) = |{x ∈ E : |f(x)| > y}|, 0 ≤ y < ∞
is called the distribution function of the function f , measurable on the set
E ⊂ R

d. If |E| = ∞, then in addition it is assumed that λf (y) < ∞ for all
y > 0. The non-increasing rearrangement of the function f is a non-increasing
on (0, |E|] function f∗ such that it is equimeasurable with |f |, i.e., for all y > 0

λf∗(y) ≡ |{t ∈ [0, |E|] : f∗(t) > y}| = |{x ∈ E : |f(x)| > y}| ≡ λf (y).

This property does not define the non-increasing rearrangement uniquely: it
can take different values at points of discontinuity (the set of such points
is at most countable). For definiteness let us assume in addition that the
function f∗ is continuous from the left on (0, |E|]. The relation between
the distribution function and the non-increasing rearrangement is given by
the following equality:

f∗(t) = inf{y > 0 : λf (y) < t}, 0 < t < |E|. (1.1)

This formula shows that in a certain sense the non-increasing rearrangement
is the inverse function to the distribution function.

An equivalent definition of the non-increasing rearrangement can be writ-
ten in the following way:

f∗(t) = sup
e⊂E, |e|=t

inf
x∈e

|f(x)|, 0 < t < |E|. (1.2)
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Sometimes instead of the non-increasing rearrangement it is more conve-
nient to use the non-decreasing equimeasurable rearrangement. For the func-
tion f , measurable on the set E ⊂ R

d, the non-decreasing rearrangement is
defined via the following equality:

f∗(t) = inf
e⊂E, |e|=t

sup
x∈e

|f(x)|, 0 < t < |E|. (1.3)

The function f∗ is non-negative, it is equimeasurable with |f | on E and it
is non-decreasing on [0, |E|). The connection between the non-increasing and
non-decreasing rearrangements is given by the equality

f∗(t) = f∗ (|E| − t) ,

which holds true at every point of continuity, i.e. almost everywhere on (0, |E|).
The equimeasurability of functions f∗, f∗ and |f | implies that∫ |E|

0

ϕ(f∗(u)) du =
∫ |E|

0

ϕ(f∗(u)) du =
∫

E

ϕ(|f(x)|) dx

for every monotone on [0,+∞) function ϕ.
The most important properties of the equimeasurable rearrangements f∗

and f∗ follow directly from their definition and consist in the identities:

sup
e⊂E, |e|=t

∫
e

|f(x)| dx =
∫ t

0

f∗(u) du, 0 < t ≤ |E|, (1.4)

inf
e⊂E, |e|=t

∫
e

|f(x)| dx =
∫ t

0

f∗(u) du, 0 < t ≤ |E|. (1.5)

Moreover, the supremum and the infimum in the left-hand sides of both equal-
ities are attained. Indeed, let us denote e′ = {x ∈ E : |f(x)| > f∗(t)},
0 < t ≤ |E|. Then t′ ≡ |e′| ≤ t and

∫
e′ |f(x)| dx =

∫ t′

0
f∗(u) du. If t′ < t,

then f∗(τ) = f∗(t) for all τ ∈ (t′, t], and there exists the set e′′ ⊂ E with
|e′′| = t − t′ such that |f(x)| = f∗(t) for all x ∈ e′′. Let e = e′ ∪ e′′. Then∫

e
|f(x)| dx =

∫ t

0
f∗(u) du, so that the supremum in the left-hand side of (1.4)

is attained. Analogously one can prove the attainability of the infimum in the
left-hand side of (1.5). Often it is useful to consider the following functions

f∗∗(t) =
1
t

∫ t

0

f∗(u) du, f∗∗(t) =
1
t

∫ t

0

f∗(u) du, t > 0.

In what follows we will need the notion of one more non-increasing
equimeasurable rearrangement fd. Namely, above we have considered the non-
increasing rearrangement f∗, equimeasurable with |f |. By analogy with (1.2),
for the function f , measurable on E ⊂ R

d, we define the function
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fd(t) = sup
e⊂E, |e|=t

inf
x∈e

f(x), 0 < t ≤ |E|.

Similarly to f∗, the function fd does not increase on (0, |E|], it is continuous
from the left, but unlikely f∗, fd is equimeasurable with f and not with
|f |. Clearly, if f is a non-negative function on E, then its non-increasing
rearrangements f∗ and fd coincide.

1.2 Covering Lemmas

We will say that the collection of sets Eα ⊂ R
d is contractible to the point x, if

x ∈ Eα for all α and the diameters of these sets: diamEα ≡ supx,y∈Eα
|x − y|

tend to zero. Below we will consider the following sets Eα: an open ball of
radius r centered at the point x0: B(x0, r) ≡ {x ∈ R

d : |x − x0| < r}; a
segment (or rectangle) with the sides parallel to the coordinate axes:

R ≡ {
x = (x1, . . . , xd) ∈ R

d : ai ≤ xi ≤ bi, i = 1, . . . , d
} ≡

d∏
i=1

[ai, bi] ,

where ai ≤ bi, i = 1, . . . , d; a cube Q ≡ {x = (x1, . . . , xd) ∈ R
d : ai ≤ xi ≤

bi, i = 1, . . . , d}, where 0 ≤ bi − ai = Const, i = 1, . . . , d. We will consider
only the segments and cubes with the sides parallel to the coordinate axes.
For the cube Q ⊂ R

d we will denote by l(Q) the side-length l(Q) = bi − ai.
The numbers li ≡ li(R) = bi − ai, i = 1, . . . , are called the side-lengths of
the segment R. Clearly, any segment in R

d is a Cartesian product of d one-
dimensional segments and any cube is a Cartesian product of one-dimensional
segments of equal length. The union of all inner points of a segment is called
the interval (multidimensional) or the interior of the segment R and denoted
by intR.

The function f on R
d is called locally summable if it is summable on every

cube Q ⊂ R
d. The class of all locally summable functions is denoted by Lloc.

For 1 ≤ p < ∞ by Lp
loc is denoted the class of measurable on R

d functions f
such that |f |p ∈ Lloc. From the Hölder inequality it follows immediately that
Lp

loc ⊂ Lq
loc, 1 ≤ q < p < ∞.

The value

ess sup
x∈E

f(x) ≡ sup{α ∈ R : |{x ∈ E : f(x) > α}| > 0} (1.6)

is called the essential supremum of the function f , measurable on the set E,
|E| > 0. Analogously,

ess inf
x∈E

f(x) ≡ inf{β ∈ R : |{x ∈ E : f(x) < β}| > 0} (1.7)
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is called the essential infimum of the function f . It is easy to show that 1

ess sup
x∈E

f(x) = inf{α′ ∈ R : |{x ∈ E : f(x) > α′}| = 0}, (1.8)

ess inf
x∈E

f(x) = sup{β′ ∈ R : |{x ∈ E : f(x) < β′}| = 0}. (1.9)

The function f is said to be essentially bounded on E if

‖f‖∞ ≡ ess sup
x∈E

|f(x)| < ∞.

The class of all essentially bounded functions on E is denoted by L∞ ≡
L∞(E). The function f , which is essentially bounded from below (from above)
on every cube Q ⊂ R

d, is called locally essentially bounded from below (from
above).

Recall, that the function χE(x), which is equal to 1 for all x ∈ E and to
zero for x /∈ E, is called the characteristic function of the set E ⊂ R

d.

In what follows we will need the following four theorems and a corollary
from the theory of differentiation of integrals. We give these results without
proofs.

Theorem 1.1 (Lebesgue, [70]). Let f ∈ Lloc(Rd). Then for almost all
x ∈ R

d

lim
diamQ→0

1
|Q|

∫
Q

f(y) dy = f(x),

where the limit is taken over the cubes Q ⊂ R
d, contractible to x.

This theorem can be generalized in the following way.

Theorem 1.2 (Lebesgue, [70]). Let f ∈ Lloc(Rd). Then for almost all x

lim
diamR→0

1
|R|

∫
R

f(y) dy = f(x), (1.10)

where the limit is taken over the segments R ⊂ R
d, contractible to x, and such

that the ratio of their side-lengths is bounded.

As it is well known (see [23]), without the boundedness assumption on the
ratio of the side-lengths of the segments R it could happen that the limit in
1 Let us prove (1.8). Let A ≡ ess supx∈E f(x). If A = +∞, then the domain of

definition of the infimum in the right-hand side of (1.8) is empty. In this case we
say that the infimum is equal to +∞, so that (1.8) holds true. Let now A < +∞.
Then for all α′ > A we have |{x ∈ E : f(x) > α′}| = 0, because otherwise we
get a contradiction with (1.6). On the other hand, if α′ < A, then (1.6) implies
that there exists α such that α′ < α ≤ A and |{x ∈ E : f(x) > α}| > 0. Since
{x ∈ E : f(x) > α} ⊂ {x ∈ E : f(x) > α′} we see that |{x ∈ E : f(x) >
α′}| > 0, i.e., any α′ < A is out of the domain of definition of the infimum in
the right-hand side of (1.8). Together with the previous observation this implies
(1.8). Analogously one can prove (1.9).
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the left-hand side of (1.10) does not exist on the set of points x of a positive
measure. Nevertheless one can prove the following result.

Theorem 1.3 (Jessen, Marcinkiewicz, Zygmund, [23, 29]). Let f be
measurable and such that∫

R0

|f(y)| lnd−1 (1 + |f(y)|) dy < ∞

on the segment R0 ⊂ R
d. Then for almost all x ∈ R0

lim
diamR→0

1
|R|

∫
R

f(y) dy = f(x),

where the limit is taken over the segments R ⊂ R0, contractible to x.

In particular, this implies

Corollary 1.4. Let f ∈ Lp
loc(R

d) for some p > 1. Then for almost all x ∈ R
d

lim
diamR→0

1
|R|

∫
R

f(y) dy = f(x),

where the limit is taken over the segments R ⊂ R
d, contractible to x.

Theorems 1.2 and 1.3 are the particular cases of the following theorem.

Theorem 1.5 (Zygmund [23], [81]). Let B be a family of segments R from
R0 ⊂ R

d, such that for every x ∈ R0 there exists a sequence of segments
Rj(x) ∈ B, contractible to x. Further, assume that for every segment R ∈ B
the ratios of some d1 (1 ≤ d1 ≤ d) of its d side-lengths are bounded, while the
remaining d − d1 of its side-lengths are arbitrary. Then for every function f ,
measurable on R0, and such that∫

R0

|f(y)| lnd−d1 (1 + |f(y)|) dy < ∞

at almost every point x ∈ R0,

lim
diamR→0

1
|R|

∫
R

f(y) dy = f(x),

where the limit is taken over the segments R ∈ B, contractible to x.

Now let us consider the notion of a dyadic cube. First, let Q0 be a cube
in R

d. We will call it a dyadic cube of order zero. Partitioning each side of
the cube Q0 in halves, we get 2d cubes, which will be called dyadic cubes of
the first order. In the k-th step, partitioning in halves each side of the dyadic
cube of order (k− 1), we get 2dk cubes of order k. The collection of all cubes,
obtained in this way, is called the dyadic cubes with respect to the cube Q0.
On the whole R

d one can define the dyadic cubes of order k (k ∈ Z)
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Q(k)
m1,...,md

≡ {x = (x1, . . . , xd) : 2−kmi ≤ xi ≤ 2−k(mi + 1), i = 1, . . . , d},
where each of the numbers mi range over the set of all integers Z. All such
cubes Q

(k)
m1,...,md , mi ∈ Z, i = 1, . . . , d, k ∈ Z, are called dyadic with respect

to R
d.

Properties of Dyadic Cubes in R
d.

Property 1.6. For every k ∈ Z⋃
m1∈Z

· · ·
⋃

md∈Z

Q(k)
m1,...,md

= R
d.

Property 1.7. The intersection of the interiors of any two dyadic cubes
of the same order is empty.

Property 1.8. Every dyadic cube of order k is a union of 2d non-
intersecting dyadic cubes of order (k + 1), which have a common vertex.

Property 1.9. Any two dyadic cubes are either non-intersecting or one
is contained into another.

Property 1.10. The collection of all dyadic cubes is countable.

Properties 1.7 – 1.10 hold true also for the cubes, which are dyadic with
respect to some fixed cube Q0, while instead of Property 1.6 in this case we
have

Property 1.11. For any k = 0, 1, . . . , the union of all dyadic cubes of
order k is equal to Q0.

Concerning Property 1.8 let us remark, that not every union of 2d dyadic
cubes, which have a common vertex, is a dyadic cube itself. For instance, the
cubes [−1, 0] and [0, 1] are dyadic in R, but their union [−1, 1] is not a dyadic
cube.

The dyadic cubes are used, in particular, to prove the so-called covering
lemmas. Now we will consider some of these lemmas, which will be used in
what follows.

Lemma 1.12 (Bennett, De Vore, Sharpley [1]). Let G be an open set in
R

d, |G| < ∞. Then there exists at most countable collection of cubes Qj with
pairwise disjoint interiors such that

|G ∩ Qj | ≤ 1
2
|Qj | ≤ |Qj \ G|, (1.11)

G ⊂
⋃
j

Qj , (1.12)

|G| ≤
∑

j

|Qj | ≤ 2d+1|G|. (1.13)
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Proof. Let us partition the whole R
d into dyadic cubes of the same order. We

can choose the cubes to be so big that |Q ∩ G| ≤ 2−d−1|Q| for every cube Q.
This is possible since |G| < ∞. Among all these cubes let us select only those,
which satisfy |G∩Q| > 0. Let Q be one of the selected cubes. We partition it
into 2d dyadic cubes and select the cubes Q′ ⊂ Q such that |G ∩Q′| > 0. For
each of such cubes Q′ we have two possibilities.

1. |Q′ ∩G| > 2−d−1|Q′|; in this case we assign to Q′ the next number and
take Q′ as one of the cubes of the statement of the lemma.

2. 0 < |Q′ ∩ G| ≤ 2−d−1|Q′|; such a cube Q′ will be partitioned again in
the next step when we will consider the cubes of higher order.

Having done this operation with all cubes of the current order, we pass
to the cubes of the next order, obtained in the second case. To each of these
cubes we apply again the selection procedure described above. If there is no
such cubes, the process is finished.

As the result of this procedure we obtain a family of dyadic cubes Qj ,
which satisfy the condition of the first case, described above. Clearly, the
interiors of these cubes are pairwise disjoint and their collection is at most
countable.

Let us prove (1.11), (1.12) and (1.13). Suppose Q′ is one of the cubes Qj

obtained by partition of the cube Q ⊃ Q′. Since the cube Q was not numbered
in the previous step we have

|G ∩ Q′|
|Q′| ≤ |G ∩ Q|

|Q| · |Q|
|Q′| ≤ 2−d−1 · 2d =

1
2

and this proves the left inequality of (1.11). From here we obtain

|Q′ \ G|
|Q′| =

|Q′| − |G ∩ Q′|
|Q′| = 1 − |G ∩ Q′|

|Q′| ≥ 1 − 1
2

=
1
2
,

which is equivalent to the right inequality of (1.11).
Let us prove (1.12). Since the set G is open for any x ∈ G all dyadic

cubes, which contain x and have a big enough order, are entirely contained
in G. Let Qx be the biggest one among such cubes. Assume Qx is of order
k. The dyadic cube Qx was obtained by partitioning of some dyadic cube
Q(k−1) of order k − 1. In its own turn, the cube Q(k−1) is a result of the
partitioning of some dyadic cube Q(k−2) of order k−2, and so on. Among the
cubes Q(k−m), m = 1, 2, . . . , we select the biggest cube Q(k−m0) such that
|Q(k−m0) ∩ G| > 2−d−1|Q(k−m0)|. Clearly such a cube exists and |Q(k−m0) ∩
G| ≥ |Qx ∩ G| = |Qx| > 0. Therefore Q(k−m0) was obtained as a result of
the partitioning of the dyadic cube Q(k−m0−1) and 0 < |Q(k−m0−1) ∩ G| ≤
2−d−1|Q(k−m0−1)|. This means that Q(k−m0−1) is one of the cubes, which
satisfy the condition of the second case, and Q(k−m0) is one of the cubes Qj .
Since the point x ∈ G was arbitrary (1.12) follows.

Finally, since every cube Qj satisfy the condition of the first case, by (1.12),
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|G| ≤
∑

j

|Qj | ≤ 2d+1
∑

j

|Qj ∩ G| ≤ 2d+1|G|,

which yields (1.13). �
Remark. From the geometrical point of view the last lemma says that any
open set G can be covered by a family of non-intersecting cubes (inequality
(1.12)) such that the biggest part of each of these cubes is the complement
of the set G (the right inequality of (1.11)), and the sum of their measures is
comparable with the measure of the set G itself (inequality (1.13)).

Recall, that the set E1 is said to be open with respect to the set E2, if there
exists an open set G such that E1 = G ∩ E2.

The following lemma provides the local version of Lemma 1.12.

Lemma 1.13 (Bennett, De Vore, Sharpley [1]). Let G ⊂ Q0 be an open
set with respect to the cube Q0 ⊂ R

d, |G| ≤ 1
2 |Q0|. Then there exists at most

countable collection of cubes Qj ⊂ Q0 with pairwise disjoint interiors such
that

|G ∩ Qj | ≤ 1
2
|Qj | ≤ |Qj \ G|, (1.14)

G ⊂
⋃
j

Qj , (1.15)

|G| ≤
∑

j

|Qj | ≤ 2d+1|G|. (1.16)

Proof. If 2−d−1|Q0| < |G| ≤ 1
2 |Q0|, then we take Q0 as the only cube Qj .

Otherwise, if |G| ≤ 2−d−1|Q0|, then it is enough to repeat the proof the
previous lemma, taking the cubes which are dyadic with respect to Q0. �

The next lemma has a lot of applications in the different fields of theory
of functions ([6], [70], [23], [16]).

Lemma 1.14 (Calderón, Zygmund, [6]). Let f be a summable function on
the cube Q0 ⊂ R

d, and let α ≥ 1
|Q0|

∫
Q0

|f(x)| dx. Then there exists at most
countable collection of cubes Qj ⊂ Q0, j = 1, 2, . . . with pairwise disjoint
interiors such that

α <
1

|Qj |
∫

Qj

|f(x)| dx ≤ 2dα, j = 1, 2, . . . , (1.17)

|f(x)| ≤ α for almost every x ∈ Q0 \
⎛⎝⋃

j≥1

Qj

⎞⎠ . (1.18)
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Proof. Let us partition Q0 into 2d cubes of order one, dyadic with respect to
Q0. Let Q′ be one of these cubes. If

1
|Q′|

∫
Q′

|f(x)| dx > α,

then we assign to this cube the next number j and stop to partition it. Other-
wise we partition the cube Q′ in the next step. Having done this selection
procedure for all cubes Q′ of order one, we pass to the next step.

After the k-th step we obtain a finite collection of numbered dyadic cubes
of order less of equal than k, and a finite collection of dyadic cubes of order
k, subject to the further partitioning in the (k + 1)-th step. In the (k + 1)-th
step we partition every cube, subject to partitioning, into 2d cubes of order
k + 1 and repeat the selection procedure described above.

As the result of such a process we obtain the set of cubes Qj , which are
dyadic with respect to Q0, and such that their interiors are pairwise disjoint.
Let us fix some j. If the cube Qj is of order k, then it was obtained as a result
of the partitioning of some dyadic cube Q̃ of order k − 1. Since the cube Qj

was enumerated
1

|Qj |
∫

Qj

|f(x)| dx > α.

On the other hand, as Q̃ was subject to partitioning in the k-the step,

1
|Qj |

∫
Qj

|f(x)| dx ≤ |Q̃|
|Qj |

1

|Q̃|

∫
Q̃

|f(x)| dx ≤ 2dα.

Therefore the cubes Qj satisfy (1.17).
Let us prove (1.18). If x /∈ ⋃j≥1 Qj , then there exists a sequence of dyadic

cubes Q̃k, which are contractible to x and subject to partitioning in the k-th
step, i.e. such that

1

|Q̃k|

∫
Q̃k

|f(y)| dy ≤ α, k = 1, 2, . . .

According to Lebesgue theorem 1.1, for almost all such x we have

|f(x)| = lim
k→∞

1

|Q̃k|

∫
Q̃k

|f(y)| dy,

and (1.18) follows. �
Remark 1.15. Sometimes the method of proof, that was used in the previous
lemma, is called the stopping times technique (see [16]).

In the theory of differentiation of functions a very important role is played
by the so-called “rising sun lemma” of F. Riesz ([65, 66, 70, 33, 32]). We give
one of the several known versions of this lemma.
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Lemma 1.16 (Klemes, [32]). Let f be a summable function on I0 ≡
[a0, b0] ⊂ R and let α ≥ 1

|I0|
∫

I0
f(x) dx. Then there exists at most countable

collection of pairwise disjoint intervals Ij ⊂ I0, j = 1, 2, . . . such that

1
|Ij |

∫
Ij

f(x) dx = α, j = 1, 2, . . . , (1.19)

f(x) ≤ α for almost all x ∈ I0 \
⎛⎝⋃

j≥1

Ij

⎞⎠ . (1.20)

Proof. It is enough to consider just the non-trivial case α > 1
|I0|

∫
I0

f(x) dx.
The function F (x) ≡ ∫ x

a0
f(y) dy−α(x−a0) is continuous on [a0, b0], F (a0) = 0

and F (b0) < 0. Set b = sup{x ∈ [a0, b0) : F (x) = 0}. Then the continuity of
F implies that a0 ≤ b < b0 and F (b) = 0. Let us denote by E the set of all
x ∈ (b, b0) for which there exists y, x < y < b0, such that F (y) > F (x). Let
us show that E is an open set. Indeed, if x0 ∈ E, then for some y0 ∈ (x0, b)
we have F (y0) > F (x0). Then the continuity of F implies F (y0) > F (x) also
for all x close enough to x0. This means that the point x is an inner point of
E, i.e. the set E is open.

Now let us use the well-known fact stating that any open set on the real line
can be presented as a at most countable collection of pairwise disjoint intervals
such that their endpoints are not contained in this open set (see [60]). Let us
present the open set E as a collection of such intervals Ij ≡ (aj , bj). If b > a0,
we add the interval (a1, b1) ≡ (a0, b) to the collection of intervals {Ij}.

Let us show that the obtained collection of intervals Ij satisfies (1.19) and

(1.20). First let us prove (1.20). Let x ∈ I0\
(⋃

j≥1 Ij

)
. Then, by the definition

of the set E, for any y > x we have F (y) ≤ F (x), or, equivalently,

1
y − x

∫ y

x

f(z) dz ≤ α.

Since Lebesgue theorem 1.1 implies

f(x) = lim
y→x+0

1
y − x

∫ y

x

f(z) dz

for almost all x, then (1.20) is proved.
It remains to prove (1.19). Let Ij = (aj , bj). Then the equality

1
|Ij |

∫
Ij

f(x) dx = α is obviously equivalent to the following one

F (bj) = F (aj). (1.21)

If (aj , bj) = (a0, b), then (1.21) follows from the equalities F (a0) = F (b) = 0
noticed above. Let us consider the case b ≤ aj < bj ≤ b0. If F (bj) > F (aj) and
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aj > b, then aj ∈ E, which contradicts to the assumption that the endpoints
of the interval (aj , bj) do not belong to E. If F (bj) > F (aj) and aj = b,
then 0 = F (b) < F (bj), and the continuity of F together with the inequality
F (b0) < 0 implies that there exists b′, b < b′ < b0, such that F (b′) = 0.
This contradicts to the choice of b. Therefore the inequality F (bj) > F (aj) is
impossible. Assume F (bj) < F (aj). Set

x′ = sup
{

x ∈ [aj , bj ] : F (x) =
1
2

(F (bj) + F (aj))
}

.

Then it is clear that x′ ∈ (aj , bj) ⊂ E, and hence, by virtue of the definition
of E, one can find some y > x′ such that F (x′) < F (y). It is easy to see that
by the definition of x′ y > bj . Therefore F (bj) < 1

2 (F (bj) + F (aj)) = F (x′) <
F (y), i.e., bj ∈ E. Again we reach the contradiction to the assumption that
the endpoint of the interval (aj , bj) does not belong to E. So, the inequality
F (bj) < F (aj) is also impossible. The only possibility which remains is given
by (1.21). �
Remark 1.17. It is easy to see that the collection of intervals {Ij}, con-
structed in Lemma 1.16, is not unique. Indeed, let f(x) = χ[ 13 , 2

3 ](x), x ∈ I0 ≡
(0, 1) and α = 1

2 > 1
|I0|

∫
I0

f(x) dx = 1
3 . Then as the collection {Ij} one can

take any of the intervals
(
a, a + 2

3

)
with 0 ≤ a ≤ 1

3 .

We took this proof of the “rising sun lemma” from the work of I. Klemes
[32]. It is close to the original proof by F. Riesz. Now we give one more
proof, based on the “stopping times technique”, or, to be more precise, on its
modification. This proof is particularly useful because in a certain sense it can
be generalized for the multidimensional case. We will discuss it later.

Another proof of “rising sun lemma” 1.16. Let α > 1
|I0|

∫
I0

f(x) dx. We parti-
tion I0 in halves and obtain two intervals I(1) and I(2). If 1

|I(k)|
∫

I(k) f(x) dx <

α, k = 1, 2, then we pass to the next step and partition both intervals I(k)

again. Otherwise, if the mean value of f on one of these intervals (for defi-
niteness let us take I(1) ≡ (a0, b) with b = 1

2 (a0 + b0)) is greater or equal than
α, then consider the function

F (x) =
1

x − a0

∫ x

a0

f(y) dy, b ≤ x ≤ b0.

It is easy to see that F is continuous, F (b) ≥ α and F (b0) = 1
|I0|

∫
I0

f(y) dy <

α. By the Mean Value theorem there exists b1 ∈ [b, b0) such that F (b1) = α.
We assign to the interval (a0, b1) the next number j0 and attribute it to
the collection {Ij} without further partitioning. Clearly, 1

|Ij0 |
∫

Ij0
f(y) dy =

F (b1) = α, and since 1
|I0|

∫
I0

f(y) dy < α for the interval I ′ ≡ (a0, b0) \ (a0, b1]
we have 1

|I′|
∫

I′ f(y) dy < α. We will partition the interval I ′ in the next step.
In each step we apply the analogous procedure to every interval, subject

to further partitioning.
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As the result of this process we obtain at most countable collection of
pairwise disjoint intervals Ij , which satisfy (1.19). Let us prove (1.20). Let

x ∈ I0 \
(⋃

j≥1 Ij

)
. Then there exists a sequence of intervals I ′k, obtained by

partitioning in each step and containing x. Notice, that every time we were
passing from one step to another, the length of each interval, subject to parti-
tioning, was divided at least by two. Hence the intervals I ′k are contractible to
x and 1

|I′
k
|
∫

I′
k
f(y) dy < α. But according to Lebesgue theorem 1.1 for almost

all x

f(x) = lim
k→∞

1
|I ′k|

∫
I′

k

f(y) dy.

This implies (1.20). �
Making obvious changes in the given proof of Lemma 1.16 one can obtain

the following version of the “rising sun lemma”.

Lemma 1.18 ([43]). Let f be summable on I0 ≡ [a0, b0] ⊂ R and let
α ≤ 1

|I0|
∫

I0
f(x) dx. Then there exists at most countable set of intervals

Ij ⊂ I0, j = 1, 2, . . . with pairwise disjoint interiors such that

1
|Ij |

∫
Ij

f(x) dx = α, j = 1, 2, . . . ,

f(x) ≥ α for almost all x ∈ I0 \
⎛⎝⋃

j≥1

Ij

⎞⎠ .

Remark 1.19. For a non-negative functions “rising sun lemma” 1.16 is more
precise, than Calderón–Zygmund Lemma 1.14 in the one-dimensional case.
This is why sometimes in the case d = 1 the “rising sum lemma” provides
sharper results. We will see it below when we will consider the rearrangements
of BMO-functions and also in the proof of the John–Nirenberg inequality.

In the context of the last remark the following question is natural: Does
there exist a choice of cubes Qj ⊂ Q0 in the Calderón–Zygmund lemma such
that instead of (1.17) one would have

1
|Qj |

∫
Qj

|f(x)| dx = α ?

In the one-dimensional case the positive answer is provided by “rising sun
lemma” 1.16. The next example shows that this is no more true in the case
of higher dimension.

Example 1.20 ([45]). Let f(x) = χ[ 1
2 ,1]×[ 1

2 ,1](x), where x ≡ (x1, x2) ∈ Q0 ≡
[0, 1]2. Then 1

|Q0|
∫

Q0
f(x) dx = 3

4 . Take α = 7
8 > 3

4 . In order to have all points
from the neighborhood of the origin to be covered by some cube Q1 ⊂ Q0
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such that 1
|Q1|

∫
Q1

f(x) dx = α, the cube Q1 necessarily should have the form
Q1 = [0, γ]2, where γ, 1

2 < γ < 1, is to be defined from the equality

7
8

= α =
1

|Q1|
∫

Q1

f(x) dx =
1
γ2

(
γ − 1

4

)
,

i.e., γ = 4+
√

2
7 . But then it is clear that for a small enough ε the points

x = (x1, x2) ∈ Q0 with γ < x1 < 1 and 0 < x2 < ε cannot be covered by any
cube Q2 ⊂ Q0 in such a way that 1

|Q2|
∫

Q2
f(y) dy = α and the interiors of Q2

and Q1 are non-intersecting. �
So, for d ≥ 2 the analog of “rising sun lemma” 1.16 fails if we replace the

one-dimensional intervals by the multidimensional cubes. The things change
if instead of cubes one considers segments (multidimensional rectangles). For
a function f , summable on the set E ⊂ R

d (0 < |E| < ∞), we will denote by

fE =
1
|E|

∫
E

f(x) dx

the mean value of f on E.

Lemma 1.21 ([46, 45]). Let R0 ⊂ R
d be a segment. Assume f ∈ L(R0) and

α ≥ fR0 . Then there exists a family of segments Rj ⊂ R0, j = 1, 2, . . . with
pairwise disjoint interiors such that fRj

= α, j = 1, 2, . . . . Moreover, for

almost every point x ∈ R0 \
(⋃

j≥1 Rj

)
there exists a sequence of contractible

to x segments Js(x) ⊂ R0, s = 1, 2, . . . , embedded one into another and such
that fJs(x) < α.

Proof. If fR0 = α, then the statement of the lemma is trivial. Assume fR0 < α.
In the first step we denote J (1,1) = R0. After the s-th step we obtain a
collection of segments J (s,k), k = 1, . . . , rs with rs ≤ 2s−1 such that they
satisfy the following properties

1. fJ(s,k) < α, k = 1, . . . , rs;
2. each J (s,k′) is contained in some J (s−1,k′′);
3.
(
int J (s,k′)

)⋂(
int J (s,k′′)

)
= ∅ for k′ �= k′′.

Let J (s,k) ≡ ∏d
i=1

[
a
(s,k)
i , b

(s,k)
i

]
be one of such segments and denote by

l
(s,k)
i the lengths of its sides b

(s,k)
i − a

(s,k)
i . Choose 1 ≤ i0 ≤ d such that

l
(s,k)
i0

= max1≤i≤d l
(s,k)
i and set c = 1

2

(
a
(s,k)
i0

+ b
(s,k)
i0

)
, i.e. put the point c in

the middle of the biggest side of the segment J (s,k). As the result we obtain
two segments

R′ =
[
a
(s,k)
1 , b

(s,k)
1

]
× · · · ×

[
a
(s,k)
i0−1, b

(s,k)
i0−1

]
×
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×
[
a
(s,k)
i0

, c
]
×
[
a
(s,k)
i0+1, b

(s,k)
i0+1

]
× · · · ×

[
a
(s,k)
d , b

(s,k)
d

]
and

R′′ =
[
a
(s,k)
1 , b

(s,k)
1

]
× · · · ×

[
a
(s,k)
i0−1, b

(s,k)
i0−1

]
×

×
[
c, b

(s,k)
i0

]
×
[
a
(s,k)
i0+1, b

(s,k)
i0+1

]
× · · · ×

[
a
(s,k)
d , b

(s,k)
d

]
.

It is clear that R′⋃R′′ = J (s,k) and (int R′)
⋂

(int R′′) = ∅. There are two
mutually excluding possibilities:

1. fR′ < α and fR′′ < α; in this case we say that the segments
J (s+1,k′) ≡ R′ and J (s+1,k′′) ≡ R′′ are obtained by diminution of the i0-the
side of the segment J (s,k), k′ and k′′ being some numbers. We assign J (s+1,k′)

and J (s+1,k′′) to the segments of the (s + 1)-th level. This ends the partition
of the segment J (s,k).

2. The mean value of the function f over one of the segments R′ and R′′

is greater of equal than α. Notice that in this case the mean value of f over
another segment is smaller than α. It follows from the inequality fJ(s,k) < α.
If fR′ = α, then we set Rj ≡ R′ (here j is the next number), J (s+1,k′) ≡ R′′,
k′ being some number, and at this point we stop to partition the segment
J (s,k). Otherwise, if fR′ > α, then consider the function

F (t) =

⎡⎣(t − a
(s,k)
i0

) ∏
i�=i0

(
b
(s,k)
i − a

(s,k)
i

)⎤⎦−1

×

×
∫ b

(s,k)
1

a
(s,k)
1

dx1 . . .

∫ b
(s,k)
i0−1

a
(s,k)
i0−1

dxi0−1

∫ t

a
(s,k)
i0

dxi0

∫ b
(s,k)
i0+1

a
(s,k)
i0+1

dxi0+1 . . .

∫ b
(s,k)
d

a
(s,k)
d

f(x) dxd.

This function is continuous on
[
c, b

(s,k)
i0

]
, F (c) = fR′ > α and F

(
b
(s,k)
i0

)
=

fJ(s,k) < α. Thus, due to the continuity of F , there exists some δ, 0 < δ <
1
2 l

(s,k)
i0

such that F
(
b
(s,k)
i0

− δ
)

= α. Take

δ′ = sup
{

δ : F
(
b
(s,k)
i0

− δ
)

= α
}

, c′ = b
(s,k)
i0

− δ′,

Rj =
[
a
(s,k)
1 , b

(s,k)
1

]
× · · · ×

[
a
(s,k)
i0−1, b

(s,k)
i0−1

]
×

×
[
a
(s,k)
i0

, c′
]
×
[
a
(s,k)
i0+1, b

(s,k)
i0+1

]
× · · · ×

[
a
(s,k)
d , b

(s,k)
d

]
,

with j being the next number, and

J (s+1,k′) =
[
a
(s,k)
1 , b

(s,k)
1

]
× · · · ×

[
a
(s,k)
i0−1, b

(s,k)
i0−1

]
×

×
[
c′, b(s,k)

i0

]
×
[
a
(s,k)
i0+1, b

(s,k)
i0+1

]
× · · · ×

[
a
(s,k)
d , b

(s,k)
d

]
,
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where k′ is some number. Clearly, fRj
= F (c′) = α, where

1
2

(
a
(s,k)
i0

+ b
(s,k)
i0

)
< c′ < b

(s,k)
i0

and fJ(s+1,k′) < α.

We say that the segment J (s+1,k′) ⊂ J (s,k) is obtained by diminution of the
i0-th side of the segment J (s,k).

The case fR′′ ≥ α can be settled analogously. This completes the analysis
of the second case.

Having done the described procedure for all k = 1, . . . , rs, we pass to the
next (s + 1)-th step. As the result we obtain at most countable collection of
segments Rj such that fRj

= α, j = 1, 2, . . . , and by construction the interiors
of the segments Rj are pairwise disjoint.

Let x ∈ R0 \
(⋃

j≥1 Rj

)
and assume that x does not belong to any side of

any segment J (s,k). Then for every s there exists a segment Js(x) ≡ J (s,ks),
which contains x. Since fJ(s,k) < α for all s and k we have fJs(x) < α.
Moreover, since passing from J (s,ks) to J (s+1,ks+1) ⊂ J (s,ks) we decrease the
biggest side of the segment J (s,ks) at least by half we have the following
estimate for the ratio of the diameters:

(
diam J (s+1,ks+1)

diam J (s,ks)

)2

=

∑d
i=1

[
b
(s+1,ks+1)
i − a

(s+1,ks+1)
i

]2
∑d

i=1

[
b
(s,ks)
i − a

(s,ks)
i

]2 ≤

≤
∑d

i=1

[
b
(s,ks)
i − a

(s,ks)
i

]2
− 3

4 max1≤i≤d

[
b
(s,ks)
i − a

(s,ks)
i

]2
∑d

i=1

[
b
(s,ks)
i − a

(s,ks)
i

]2 ≤ 1 − 3
4d

.

This means that diam Js(x) → 0 as s → ∞. Therefore the segments Js(x)
are contained one into another and they are contractible to x. �

In the case d = 2 Lemma 1.21 can be revised. More precisely, the following
result is valid.

Lemma 1.22 ([45]). Let R0 ⊂ R
2 be a segment. Assume f ∈ L(R0) and

let α ≥ fR0 . Then there exists a family of segments Rj ⊂ R0 with pairwise
disjoint interiors such that fRj

= α, j = 1, 2, . . . , and f(x) ≤ α for almost

every point x ∈ R0 \
(⋃

j≥1 Rj

)
.

Proof. We will use the same notations as in the proof of Lemma 1.21. Ac-
cording to Lebesgue theorem 1.2, at almost every x ∈ R0 \

(⋃
j≥1 Rj

)
it is

enough to construct a sequence of segments Qm ≡ Qm(x), m = 1, 2, . . . , con-
tractible to x, such that the ratio of the side-lengths of Qm(x) is bounded and
fQm(x) ≤ α.
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Let d = 2, x ∈ R0 \
(⋃

j≥1 Rj

)
and assume that x does not belong to

the side of any of the segments J (s,k). Here Rj and J (s,k) are the segments,
constructed in the proof of Lemma 1.21. Denote Js ≡ Js(x) and let l

(s)
1 and

l
(s)
2 be the side-lengths of the segment Js. Then l

(s)
1 > 0, l

(s)
2 > 0, s = 1, 2, . . . ,

and lims→∞ l
(s)
1 = lims→∞ l

(s)
2 = 0. For every s consider two pairs of numbers(

l
(s)
1 , l

(s)
2

)
and

(
l
(s+1)
1 , l

(s+1)
2

)
. The smallest element of the first pair is equal

to the corresponding element of the second pair, while the biggest element of
the first pair is at least twice bigger than the corresponding element of the
second pair. Hence there exists a sequence of numbers sm, m = 1, 2, . . . such
that

l
(sm+1)
2 < l

(sm+1)
1 = l

(sm)
1 ≤ l

(sm)
2 .

We have the following three cases.
1. If l

(sm+1)
2 ≥ 1

2 l
(sm+1)
1 , we set Qm = Jsm+1. Then the inequality

1
2
≤ l

(sm+1)
2

l
(sm+1)
1

≤ 1

implies that the ratio of the side-lengths of the segment Qm does not exceed
2. Moreover, fQm

= fJsm+1 < α.
2. If l

(sm)
2 ≤ 2l

(sm)
1 , we set Qm = Jsm

. Then fQm
< α, and from

1 ≤ l
(sm)
2

l
(sm)
1

≤ 2

we again obtain that the ratio of the side-lengths of the segment Qm does not
exceed 2.

3. It remains to consider the case

l
(sm+1)
2 <

1
2
l
(sm+1)
1 , l

(sm)
2 > 2l

(sm)
1 . (1.22)

In this case the segment J (sm+1,·) ≡ Jsm+1 was obtained from J (sm,·) ≡ Jsm

by diminution of the second side of the segments J (sm,·) by more, than a half,
i.e., we have the situation of the second case of the proof of Lemma 1.21.2

Notice, that in this case both equalities fR′ = α and fR′′ = α are impossible,
because, by construction of the segments J (s,k), they contradict to condition
(1.22).

For example, let fR′ > α. Then the function F , constructed in the proof
of Lemma 1.21, has the following properties on

[
c, b

(sm,·)
2

]
F (c) > α, F

(
b
(sm,·)
2

)
< α, F

(
b
(sm,·)
2 − l

(sm+1)
2

)
= α,

2 In the notation J(s,·) the point stays for a number.
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and from the definition δ′ = l
(sm+1)
2 it follows that for any l, l

(sm+1)
2 < l ≤

1
2 l

(sm)
2

F
(
b
(sm,·)
2 − l

)
> α.

According to (1.22),

l
(sm+1)
2 < l

(sm)
1 ≤ 1

2
l
(sm)
2 ,

so that
F
(
b
(sm,·)
2 − l

(sm)
1

)
> α. (1.23)

Set
Qm =

[
a
(sm,·)
1 , b

(sm,·)
1

]
×
[
b
(sm,·)
2 − l

(sm)
1 , b

(sm,·)
2

]
.

Then Qm is a square, Jsm+1 ⊂ Qm ⊂ Jsm
, and from the inequality fJsm

< α
and (1.23) it follows that fQm

< α.
Thus the constructed sequence Qm, m = 1, 2, . . . , has the required prop-

erties. �
Remark 1.23. If the dimension of the space d = 1, then, due to Lebesgue
theorem 1.1, in Lemma 1.21 we obtain that f(x) ≤ α almost everywhere on
R0 \ (∪jRj) .

Remark 1.24. If in addition to the conditions of Lemma 1.21 we assume
that f ∈ Lp(R0) for some p > 1, then from Corollary 1.4 for d ≥ 2 it follows
that f(x) ≤ α almost everywhere on R0 \ (∪jRj) .

Lemma 1.22 is a particular case of the following statement.

Lemma 1.25. Let d ≥ 2. Let f be a measurable function on the segment
R0 ⊂ R

d such that ∫
R0

|f(y)| lnd−2 (1 + |f(y)|) dy < ∞.

Assume α ≥ fR0 . Then there exists a family of segments Rj ⊂ R0, j = 1, 2, . . .
with pairwise disjoint interiors such that fRj

= α, j = 1, 2, . . . and f(x) ≤ α
at almost every point x ∈ R0 \ (∪jRj).

The proof of this lemma is based on the application of Theorem 1.5, we
will discuss it later. First let us introduce the notion of the contraction of a
segment and prove one auxiliary lemma.

We say that the segment R′ ≡ [a′, b′] ≡ ∏d
i=1 [a′

i, b
′
i] ⊂ R

d is obtained
by contraction of the i0-th side of the non-degenerate segment R ≡ [a, b] ≡∏d

i=1 [ai, bi] ⊂ R
d with some parameter λ, 0 < λ ≤ 1, if [a′

i, b
′
i] = [ai, bi] for i �=

i0, and
[
a′

i0
, b′i0

]
is either [ai0 , ai0 + λ (bi0 − ai0)] or [bi0 − λ (bi0 − ai0) , bi0 ].

Lemma 1.26. Let d ≥ 2 and let Js ⊂ R
d, s = 1, 2, . . . , be the sequence of

segments such that each Js+1 is obtained from the biggest side of the segment
Js by contraction with λs, 0 < λs ≤ 1

2 . Then there exist a natural number
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i0, 2 ≤ i0 ≤ d, and a strictly increasing sequence of natural numbers sm, m =
1, 2, . . . such that for any sm there exists a segment Qm ≡∏d

i=1

[
a
(m)
i , b

(m)

i

]
,

obtained from the biggest side of the segment Jsm
by contraction with λ′

m, so
that

Jsm+1 ⊂ Qm ⊂ Jsm
, (1.24)

λsm
≤ λ′

m ≤ 1
2
, (1.25)

1 ≤ b
(m)

i0 − a
(m)
i0

b
(m)

1 − a
(m)
1

≤ 2. (1.26)

Proof. Since Js+1 was obtained by contraction of the biggest side of the seg-
ment Js ≡ ∏d

i=1

[
a
(s)
i , b

(s)
i

]
with 0 < λ ≤ 1

2 , similarly to the proof of Lemma
1.21, we conclude that the diameters of the segments Js tend to zero as s → ∞.
Taking into account that all Js are non-degenerate, we obtain that for the in-
finite set N1 ⊂ N of numbers s the side

[
a
(s)
1 , b

(s)
1

]
is the biggest side of the

segment Js. For s ∈ N1 let us denote by is, 2 ≤ is ≤ d, the number such that

b
(s)
is

− a
(s)
is

= max
2≤i≤d

(
b
(s)
i − a

(s)
i

)
.

Since the set of all is is finite there exists i0, 2 ≤ i0 ≤ d, and an infinite set
N2 ⊂ N1 such that is = i0 for all s ∈ N2. Clearly, the set N \ N2 is also
infinite. Hence there exists an infinite set N3 ⊂ N2 of numbers s ∈ N2 such
that s + 1 /∈ N2.

Let sm, m = 1, 2, . . . be the elements of the set N3, arranged in the
ascending order. For any natural number m let us denote by Qm the segment,
obtained by contraction of the biggest (i.e. the first) side of the segment Jsm

with

λ′
m ≡ min

(
b
(sm)
i0

− a
(sm)
i0

b
(sm)
1 − a

(sm)
1

,
1
2

)
,

so that Qm ⊃ Jsm+1. Let us show that such a segment does exist and satisfies
(1.24), (1.25) and (1.26).

Since sm ∈ N2 and sm + 1 /∈ N2

b
(sm)
1 − a

(sm)
1 ≥ b

(sm)
i0

− a
(sm)
i0

≥ max
i�=1,i0

(
b
(sm)
i − a

(sm)
i

)
,

b
(sm)
i0

− a
(sm)
i0

= b
(sm+1)
i0

− a
(sm+1)
i0

≥ max
i�=i0

(
b
(sm+1)
i − a

(sm+1)
i

)
.

From here, taking into account that λsm
≤ 1

2 , we get
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λsm
=

b
(sm+1)
1 − a

(sm+1)
1

b
(sm)
1 − a

(sm)
1

= min

(
b
(sm+1)
1 − a

(sm+1)
1

b
(sm)
1 − a

(sm)
1

,
1
2

)
≤

≤ min

(
b
(sm)
i0

− a
(sm)
i0

b
(sm)
1 − a

(sm)
1

,
1
2

)
= λ′

m ≤ 1
2
,

so that (1.24) and (1.25) are satisfied. Further, since[
a
(m)
i0

, b
(m)

i0

]
=
[
a
(sm)
i0

, b
(sm)
i0

]
, b

(m)

1 − a
(m)
1 = λ′

m

(
b
(sm)
1 − a

(sm)
1

)
we have

b
(m)

i0 − a
(m)
i0

b
(m)

1 − a
(m)
1

=
b
(sm)
i0

− a
(sm)
i0

λ′
m

(
b
(sm)
1 − a

(sm)
1

) =

=
b
(sm)
i0

− a
(sm)
i0

b
(sm)
1 − a

(sm)
1

·
(

min

(
b
(sm)
i0

− a
(sm)
i0

b
(sm)
1 − a

(sm)
1

,
1
2

))−1

,

which implies (1.26). �
Proof of Lemma 1.25. In the proof of Lemma 1.21 for almost every point x ∈
E ≡ R0\

(⋃
j≥1 Rj

)
we constructed the family of segments Js(x), contractible

to x, such that each of Js+1(x) was obtained by contraction of the biggest side
of the segment Js(x) with λs, 0 < λs ≤ 1

2 . Hence, according to Lemma 1.26,
up to a set of zero measure the whole set E can be presented as a finite
collection of subsets E2, . . . , Ed ⊂ E such that for every x ∈ Ek there exists a
sequence of segments Qm(x), contractible to x, which satisfies (1.24), (1.25),
(1.26), and such that i0 = k. Moreover, taking into account the definition of
the number δ′, given in the proof of Lemma 1.21, from (1.24) and (1.25) we
obtain that fQm(x) < α.

Fix some k, 2 ≤ k ≤ d. Let us construct a collection Bk of segments
from R0, according to the following rule. If x ∈ Ek, then we assign to Bk all
segments Qm(x), obtained above by application of Lemma 1.26. Otherwise,
if x ∈ R0 \ Ek, then we assign to Bk all possible cubes contained in R0 and
containing the point x. Due to (1.26), we can apply Zygmund theorem 1.5 for
d1 = 2 to the collection of segments Bk. Then

lim
diamQ→0

1
|Q|

∫
Q

f(y) dy = f(x)

for almost all x ∈ R0. In particular, this equality holds true for almost all
x ∈ Ek. On the other hand, for x ∈ Ek we have fQ(x) < α. Thus f(x) ≤ α for
almost all x ∈ Ek.

Since k ∈ {2, . . . , d} was arbitrary the proof of lemma is complete. �
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We conclude this section with the most complete version of the Riesz
lemma for the multidimensional case. First we introduce some definitions and
prove a few auxiliary results.

Let R0 ⊂ R
d. We say that the family B ≡ {J} of the segments J ⊂ R0

has the “dyadic” property, , if for any two segments from B either the interior
of their intersection is empty, or one of the segments is entirely contained
into another one. The next lemma is an analog of the well-known Vitali-type
lemma [70] for a family of segments with the “dyadic” property.

Lemma 1.27. Let R0 ⊂ R
d be a segment, and let B be a countable family

of the segments J ⊂ R0 with the “dyadic” property. Then there exists a sub-
family B′ ⊂ B of segments with pairwise disjoint interiors such that⋃

J∈B′
J =

⋃
J∈B

J.

Proof. Assume that the segments in B are ordered in such a way that their
diameters do not increase. We throw out from B all segments Jk, k ≥ 2 such
that the interior of their intersection with J1 is non-empty and denote the
remaining family by B1. If B1 contains not more than two segments, then we
terminate the process and set B′ = B1. Otherwise we pass to the next step.
After the j-th step we obtain the family Bj of segments such that the first j
of them (or j +1, depending on whether their total number is greater than j)
have pairwise disjoint interiors. If Bj contains not more than (j +1) segments,
then we set B′ = Bj and stop the process. Otherwise we throw out of Bj

all segments Jk, k ≥ j + 1, such that the interiors of their intersection with
Jj+1 are non-empty, and denote the remaining part by Bj+1. Continuing the
process we obtain a finite or countable collection of families Bj . Clearly the
family B′ =

⋂
j Bj satisfies all required properties. �

Consider the segment R0 ⊂ R
d and let B be a family of segments J ⊂ R0

so that
⋃

J∈B J = R0. Let f be a summable function on R0. The function

MBf(x) = sup
BJx

1
|J |

∫
J

|f(y)| dy, x ∈ R0,

is called the maximal function generated by the family B. Here the supremum
is taken over all segments J ∈ B which contain x.

From Lemma 1.27 by the standard construction (see [70]) one can show
that the maximal operator MB is of the so-called weak (1− 1)-type. Namely,
the following lemma hold true.

Lemma 1.28. Let f be a summable function on the segment R0 ⊂ R
d, and

let B be a countable collection of segments J ⊂ R0 with the “dyadic” property,
so that

⋃
J∈B J = R0. Then for any λ > 0

|{x ∈ R0 : MBf(x) > λ}| ≤ 1
λ

∫
{MBf(x)>λ}

|f(x)| dx.
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Proof. Denote by B1 the family of all segments J ∈ B such that 1
|J|
∫

J
|f(x)|

dx > λ. Then, obviously,

{x ∈ R0 : MBf(x) > λ} =
⋃

J∈B1

J.

Applying Lemma 1.27 to B1 we obtain a family B′, which contains segments
with pairwise disjoint interiors and such that⋃

J∈B′
J =

⋃
J∈B1

J.

Therefore

|{x ∈ R0 : MBf(x) > λ}| =

∣∣∣∣∣ ⋃
J∈B′

J

∣∣∣∣∣ =
∑
J∈B′

|J | ≤

≤
∑
J∈B′

1
λ

∫
J

|f(x)| dx =
1
λ

∫⋃
J∈B′ J

|f(x)| dx =
1
λ

∫
{MBf(x)>λ}

|f(x)| dx.

�
The following lemma is a version of Lebesgue theorem 1.1 for the set of

segments with the “dyadic” property.

Lemma 1.29. Let f be a summable function on the segment R0 ⊂ R
d, and

let B be a countable collection of segments J ⊂ R0 with the “dyadic” property,
so that

⋃
J∈B J = R0. Let E be a set of points x ∈ R0 such that at every x

there exists a sequence of parallelepipeds Ji(x) ∈ B, i = 1, 2, . . . , containing
x, whose diameters tend to zero. Then for almost all x ∈ E there exists
D(f, x) ≡ limi→∞ fJi(x) and

D(f, x) = f(x).

Proof. For any x ∈ E let us denote

D(f, x) = lim sup
diamJ→0, Jx

fJ , D(f, x) = lim inf
diamJ→0, Jx

fJ .

It is clear, that for any function g, continuous at x ∈ E,

D(g, x) = D(g, x) = D(g, x) = g(x).

Choose some ε > 0. Let us present f as the sum f = g + b, where the function
g is continuous on R0 and ‖b‖L(R0) < ε. Then
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D(f, x) − D(f, x) = D(b, x) − D(b, x) ≤ 2MBb(x), x ∈ E.

Hence, by Lemma 1.28, for λ > 0∣∣{x ∈ E : D(f, x) − D(f, x) > λ
}∣∣ ≤ ∣∣∣∣{x ∈ E : MBb(x) >

λ

2

}∣∣∣∣ ≤
≤ 2

λ
‖b‖L(R0) ≤

2ε

λ
.

Since ε was arbitrary the last inequality implies∣∣{x ∈ E : D(f, x) − D(f, x) > λ
}∣∣ = 0.

Now, recalling that also λ > 0 was arbitrary, we see that the equality D(f, x) =
D(f, x) holds true at almost every x ∈ E. This means that there exists D(f, x)
and D(f, x) = D(f, x) = D(f, x).

It remains to prove that D(f, x) = f(x) for almost all x ∈ E. Again, we
choose some ε > 0 and present f in the form f = g+b with g being continuous
on R0 and ‖b‖L(R0) < ε. Then, since D(f, x)−f(x) = D(b, x)−b(x) at almost
every x ∈ E for any λ > 0

|{x ∈ E : |D(f, x) − f(x)| > λ}| = |{x ∈ E : |D(b, x) − b(x)| > λ}| ≤

≤ |{x ∈ E : |D(b, x)| + |b(x)| > λ}| ≤

≤
∣∣∣∣{x ∈ E : |D(b, x)| >

λ

2

}∣∣∣∣+ ∣∣∣∣{x ∈ E : |b(x)| >
λ

2

}∣∣∣∣ ≤
≤
∣∣∣∣{x ∈ E : MBb(x) >

λ

2

}∣∣∣∣+ ∣∣∣∣{x ∈ E : |b(x)| >
λ

2

}∣∣∣∣ .
The first term can be estimated by means of Lemma 1.28, while to the second
one we apply the Chebyshev inequality. Then

|{x ∈ E : |D(f, x) − f(x)| > λ}| = |{x ∈ E : |D(b, x) − b(x)| > λ}| ≤

≤ 2
λ
‖b‖L(R0) +

2
λ
‖b‖L(R0) ≤

4ε

λ
.

Hence, as ε was arbitrary, we have |{x ∈ E : |D(f, x) − f(x)| > λ}| = 0 for
any λ > 0, and since λ was also arbitrary it follows that D(f, x) = f(x) for
almost all x ∈ E. �

Now we can easily prove the analog of the Riesz lemma in the general
form.

Lemma 1.30 ([47]). Let R0 ⊂ R
d be a segment. Assume f ∈ L(R0) and

α ≥ fR0 . Then there exists a family of segments Rj ⊂ R0, j = 1, 2, . . . , with
pairwise disjoint interiors such that fRj

= α, j = 1, 2, . . . , and f(x) ≤ α for

almost every x ∈ R0 \
(⋃

j≥1 Rj

)
.
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Proof. Repeating the proof of Lemma 1.21 we obtain two families of segments:
{Rj}j≥1 and

B ≡
{
J (s,i), i = 1, 2, . . . , rs, s = 1, 2, . . .

}
.

It is easy to see, that the family B satisfies the “dyadic” property. Let E ≡ R0\(⋃
j≥1 Rj

)
. Then the family B and the set E obviously verify the conditions

of Lemma 1.29. According to this lemma, for almost all x ∈ E

f(x) = lim
s→∞ fJs(x).

Since fJs(x) < α we see that f(x) ≤ α for almost all x ∈ E. �
We have already mentioned above that the proof of Lemma 1.16, based

on the “stopping times technique”, can be easily adopted for Lemma 1.18.
Similarly, in the multidimensional case the proofs of Lemmas 1.21 and 1.30
can be modified in order to get the following statement.

Lemma 1.31. Let R0 ⊂ R
d be a segment. Assume f ∈ L(R0) and α ≤ fR0 .

Then there exists a family of segments Rj ⊂ R0, j = 1, 2, . . . with pairwise
disjoint interiors such that fRj

= α, j = 1, 2, . . . , and f(x) ≥ α for almost

every x ∈ R0 \
(⋃

j≥1 Rj

)
.



2

Properties of Oscillations and the Definition
of the BMO-class

2.1 Properties of Mean Oscillations

The quantity

Ω(f ;Q) =
1
|Q|

∫
Q

|f(x) − fQ| dx

is called the mean oscillation of the function f ∈ Lloc on the cube Q ⊂ R
d.

In this section we will study the properties of mean oscillations. First of
all we note that Ω(f ;Q) = 0 if and only if the function f is constant a. e. on
Q. Obviously, for any constant λ we have Ω(f + λ;Q) = Ω(f ;Q).

Property 2.1. Let f be a summable function on Q. Then

Ω(f ;Q) =
2
|Q|

∫
{x∈Q: f(x)>fQ}

(f(x) − fQ) dx =

=
2
|Q|

∫
{x∈Q: f(x)<fQ}

(fQ − f(x)) dx. (2.1)

Proof. Indeed, from the trivial equality∫
{x∈Q: f(x)>fQ}

(f(x) − fQ) dx +
∫
{x∈Q: f(x)<fQ}

(f(x) − fQ) dx = 0

it follows that∫
{x∈Q: f(x)>fQ}

(f(x) − fQ) dx = −
∫
{x∈Q: f(x)<fQ}

(f(x) − fQ) dx =

=
∫
{x∈Q: f(x)<fQ}

(fQ − f(x)) dx.

Hence
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Q

|f(x) − fQ| dx =

=
∫
{x∈Q: f(x)>fQ}

(f(x) − fQ) dx +
∫
{x∈Q: f(x)<fQ}

(fQ − f(x)) dx =

= 2
∫
{x∈Q: f(x)>fQ}

(f(x) − fQ) dx = 2
∫
{x∈Q: f(x)<fQ}

(fQ − f(x)) dx.

Dividing the last equality by |Q| we obtain (2.1). �
Property 2.1 will be frequently used in the further calculations. Now let us

present two lemmas, which follow from Property 2.1. This lemmas will play
an important role in finding the sharp estimates of equimeasurable rearrange-
ments of functions in terms of their mean oscillations.

Lemma 2.2 ([34]). Let the non-increasing function ϕ be locally summable
on [0,+∞), and let F (t) ≡ 1

t

∫ t

0
ϕ(u) du, t > 0. Then for any constant a > 1

F

(
t

a

)
− F (t) ≤ a

2
1
t

∫ t

0

|ϕ(u) − F (t)| du, t > 0. (2.2)

Proof. Let t > 0. If ϕ
(

t
a

) ≤ F (t), then

Et ≡ {u ∈ [0, t] : ϕ(u) > F (t)} ⊂
[
0,

t

a

]
.

According to Property 2.1,

F

(
t

a

)
− F (t) =

a

t

∫ t/a

0

(ϕ(u) − F (t)) du =

=
a

t

∫
Et

(ϕ(u) − F (t)) du +
a

t

∫
[0, t

a ]\Et

(ϕ(u) − F (t)) du ≤

≤ a

t

∫
Et

(ϕ(u) − F (t)) du =
a

2
1
t

∫ t

0

|ϕ(u) − F (t)| du.

Otherwise, if ϕ
(

t
a

)
> F (t), then Et ⊃

[
0, t

a

]
, and, again by Property 2.1,

F

(
t

a

)
− F (t) =

a

t

∫ t/a

0

(ϕ(u) − F (t)) du ≤ a

t

∫
Et

(ϕ(u) − F (t)) du =

=
a

2
1
t

∫ t

0

|ϕ(u) − F (t)| du. �
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In the same way one can prove the following analog of Lemma 2.2 for a
non-decreasing function.

Lemma 2.3 ([43]). Let the non-negative function ϕ be non-decreasing on
[0,+∞), and let F (t) ≡ 1

t

∫ t

0
ϕ(u) du, t > 0. Then for any constant a > 1

F (t) − F

(
t

a

)
≤ a

2
1
t

∫ t

0

|ϕ(u) − F (t)| du, t > 0. (2.3)

Denote
Ω′(f ;Q) = inf

c∈R

1
|Q|

∫
Q

|f(x) − c| dx.

Property 2.4.
Ω′(f ;Q) ≤ Ω(f ;Q) ≤ 2Ω′(f ;Q). (2.4)

In general the constants 1 and 2 in the left and the right-hand sides are sharp.

Proof. The left inequality in (2.4) is an obvious consequence of the definitions
of Ω′(f ;Q) and Ω(f ;Q). On the other hand, for any constant c

Ω(f ;Q) =
1
|Q|

∫
Q

|f(x) − fQ| dx =
1
|Q|

∫
Q

∣∣∣∣f(x) − 1
|Q|

∫
Q

f(y) dy

∣∣∣∣ dx ≤

≤ 1
|Q|2

∫
Q

∫
Q

|f(x) − f(y)| dy dx ≤ 2
|Q|

∫
Q

|f(x) − c| dx.

Taking the infimum over all c we obtain the right inequality of (2.4).
Further, for f(x) = χ[0,1/2](x) − χ(1/2,1](x), x ∈ Q ≡ [0, 1], we have

fQ = 0, Ω(f ;Q) = 1. If |c| ≤ 1, then∫ 1

0

|f(x) − c| dx =
∫ 1/2

0

(1 − c) dx +
∫ 1

1/2

(c − (−1)) dx = 1,

while in the case |c| > 1 obviously
∫ 1

0
|f(x) − c| dx > 1. This means that

Ω′(f ;Q) = 1. Therefore, the left inequality of (2.4) becomes an equality, i.e.,
the constant 1 of the left-hand side of (2.4) cannot be increased.

Now set f(x) = χ[0,ε](x), where x ∈ Q ≡ [0, 1] and 0 < ε < 1
2 . Then

fQ = ε, Ω(f ;Q) = 2
∫ ε

0
(1 − ε) dx = 2ε(1 − ε). Let us calculate Ω′(f ;Q).

Clearly, it is enough to consider only the constants c such that 0 ≤ c ≤ 1. For
such a constant we have∫ 1

0

|f(x) − c| dx =
∫ ε

0

(1−c) dx+
∫ 1

ε

c dx = ε(1−c)+c(1−ε) = ε+c(1−2ε),

and so Ω′(f ;Q) = ε. Finally,
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Ω(f ;Q)
Ω′(f ;Q)

= 2(1 − ε) → 2, ε → 0,

so that the constant 2 of the right-hand side of (2.4) cannot be decreased. �
Denote

Ω′′(f ;Q) =
1

|Q|2
∫

Q

∫
Q

|f(x) − f(y)| dy dx.

Property 2.5.
Ω(f ;Q) ≤ Ω′′(f ;Q) ≤ 2Ω(f ;Q). (2.5)

In general the constants 1 and 2 in the left and the right-hand sides are sharp.

Proof. The following calculation yields the left inequality of (2.5):

Ω(f ;Q) =
1
|Q|

∫
Q

|f(x) − fQ| dx =
1
|Q|

∫
Q

∣∣∣∣f(x) − 1
|Q|

∫
Q

f(y) dy

∣∣∣∣ dx ≤

≤ 1
|Q|2

∫
Q

∫
Q

|f(x) − f(y)| dy dx = Ω′′(f ;Q).

The right inequality of (2.5) is also trivial:

Ω′′(f ;Q) =
1

|Q|2
∫

Q

∫
Q

|f(x) − f(y)| dy dx ≤

≤ 1
|Q|2

∫
Q

∫
Q

|f(x) − fQ| dy dx +
1

|Q|2
∫

Q

∫
Q

|f(y) − fQ| dy dx = 2Ω(f ;Q).

Set f(x) = χ[0,1/2](x), x ∈ Q ≡ [0, 1]. Then fQ = 1
2 , Ω(f ;Q) = 1

2 , and

Ω′′(f ;Q) =
∫ 1/2

0

dx

∫ 1

1/2

dy +
∫ 1

1/2

dx

∫ 1/2

0

dy =
1
2
.

This means that the constant 1 in the left-hand side of (2.5) cannot be im-
proved.

Further, if 0 < ε ≤ 1
2 , we set f(x) = χ[0,ε)(x)−χ(1−ε,1](x), x ∈ Q ≡ [0, 1].

Then fQ = 0, Ω(f ;Q) = 2ε, and

Ω′′(f ;Q) =
∫ ε

0

dx

∫ 1−ε

ε

dy +
∫ ε

0

dx

∫ 1

1−ε

2 dy +
∫ 1−ε

ε

dx

∫ ε

0

dy+

+
∫ 1−ε

ε

dx

∫ 1

1−ε

dy +
∫ 1

1−ε

dx

∫ ε

0

2 dy +
∫ 1

1−ε

dx

∫ 1−ε

ε

dy =

= 4ε(1 − 2ε) + 2ε2 = 4ε − 6ε2.
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Hence
Ω′′(f ;Q)
Ω(f ;Q)

= 2 − 3ε → 2, ε → 0,

so that the constant 2 in the right-hand side of (2.5) cannot be decreased. �
Property 2.6.

Ω(|f |;Q) ≤ 2Ω(f ;Q), (2.6)

and in general the constant 2 is sharp.

Proof. Indeed, by (2.5),

Ω(|f |;Q) ≤ Ω′′(|f |;Q) =
1

|Q|2
∫

Q

∫
Q

| |f(x)| − |f(y)| | dy dx ≤

≤ 1
|Q|2

∫
Q

∫
Q

|f(x) − f(y)| dy dx ≤ 2Ω(f ;Q).

On the other hand, for the function f(x) = χ[0,ε)(x) − χ(1−ε,1](x), where
x ∈ Q ≡ [0, 1] and 0 < ε < 1

2 , we have fQ = 0, Ω(f ;Q) = 2ε, |f |Q = 2ε, and

Ω(|f |;Q) = 2
∫

[0,ε)∪(1−ε,1]

(1 − 2ε) dx = 4ε(1 − 2ε).

Hence
Ω(|f |;Q)
Ω(f ;Q)

= 2(1 − 2ε) → 2, ε → 0.

Thus the constant 2 in the right-hand side of (2.6) is sharp. �
Property 2.7. Let f be an essentially bounded function on the cube Q. Then

Ω(f ;Q) ≤ 1
2

(
ess sup

x∈Q
f(x) − ess inf

x∈Q
f(x)

)
, (2.7)

and in general the constant 1
2 in the right-hand side is sharp.

Proof. The inequality

Ω(f ;Q) ≤ ess sup
x∈Q

f(x) − ess inf
x∈Q

f(x),

which is more rough than (2.7), follows immediately from (2.5). Indeed, since

|f(x) − f(y)| ≤ ess sup
x∈Q

f(x) − ess inf
x∈Q

f(x), x, y ∈ Q,

we have

Ω(f ;Q) ≤ Ω′′(f ;Q) =
1

|Q|2
∫

Q

∫
Q

|f(x) − f(y)| dy dx ≤
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≤ ess sup
x∈Q

f(x) − ess inf
x∈Q

f(x).

In order to prove (2.7) it is enough to consider the case

A ≡ ess sup
x∈Q

f(x) = − ess inf
x∈Q

f(x).

Otherwise it is sufficient to consider the function f(x) − M, x ∈ Q with
M = 1

2

(
ess supx∈Q f(x) + ess infx∈Q f(x)

)
.

If fQ = 0, then |f(x) − fQ| = |f(x)| ≤ A for almost all x ∈ Q. Hence

Ω(f ;Q) =
1
|Q|

∫
Q

|f(x) − fQ| dx =
1
|Q|

∫
Q

|f(x)| dx ≤ A,

and (2.7) holds true in this case.
Now let us suppose that fQ > 0. Denote E1 = {x ∈ Q : f(x) ≥ fQ} , E2 =

Q \ E1. If |E1| ≤ |Q|/2, then

Ω(f ;Q) =
2
|Q|

∫
E1

(f(x) − fQ) dx ≤ 2
|Q| · A · |E1| ≤ A,

and hence (2.7) holds true. Otherwise, if |E1| > |Q|/2, then |E2| ≤ |E1| and
we have

Ω(f ;Q) =
1
|Q|

(∫
E1

(f(x) − fQ) dx +
∫

E2

(fQ − f(x)) dx

)
=

=
1
|Q|

(∫
E1

f(x) dx −
∫

E2

f(x) dx + fQ (|E2| − |E1|)
)

≤

≤ 1
|Q|

(∫
E1

f(x) dx −
∫

E2

f(x) dx

)
≤

≤ 1
|Q|

(∫
{x: f(x)≥0}

f(x) dx +
∫
{x: f(x)<0}

|f(x)| dx

)
=

=
1
|Q|

∫
Q

|f(x)| dx ≤ A.

Thus also in this case inequality (2.7) is satisfied.
So, we have proved (2.7) for the case fQ ≥ 0. The case fQ < 0 can be

treated analogously. This completes the proof of (2.7).
Taking f(x) = χ[0,1/2](x), x ∈ Q ≡ [0, 1] as the test function it is easy to

see that the constant 1
2 in right-hand side of (2.7) is sharp. �

Remark 2.8. In particular, (2.7) implies

Ω(f ;Q) ≤ ‖f‖∞. (2.8)
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Remark 2.9. We have presented the direct proof of inequality (2.8). However,
it can be proved in a much easier way using the Schwartz inequality. Namely,

Ω2(f ;Q) =
{

1
|Q|

∫
Q

|f(x) − fQ| dx

}2

≤ 1
|Q|

∫
Q

|f(x) − fQ|2 dx =

=
1
|Q|

∫
Q

f2(x) dx − (fQ)2 ≤ ‖f2‖∞ = ‖f‖2
∞.

For 1 ≤ p < ∞ the quantity

Ωp(f ;Q) =
{

1
|Q|

∫
Q

|f(x) − fQ|p dx

}1/p

is called the mean p-oscillation of the function f ∈ Lp
loc on the cube Q ⊂ R

d.

Remark 2.10. Actually, while proving inequality (2.8) in Remark 2.9, we
have obtained the inequality

Ω2(f ;Q) ≤ ‖f‖∞,

which is stronger than (2.8). From here and from the Hölder inequality it
follows that

Ωp(f ;Q) ≤ ‖f‖∞ (2.9)

for p ≤ 2. However, in general inequality (2.9) is not true for all p, 1 ≤ p < ∞.
Indeed, for the function f(x) = χ[0,5/8](x) − χ(5/8,1](x), x ∈ Q ≡ [0, 1], we
have fQ = 1

4 ,

Ωp
p(f ;Q) =

∫ 1

0

|f(x) − fQ|p dx =
(

3
4

)p

· 5
8

+
(

5
4

)p

· 3
8
,

so that

Ωp(f ;Q) =
{(

3
4

)p

· 5
8

+
(

5
4

)p

· 3
8

}1/p

→ 5
4

> 1 = ‖f‖∞, p → ∞.

Within this context the following question is natural: What are the expo-
nents p which satisfy (2.9)? Notice, that the inequality

Ωp(f ;Q) ≤ 2‖f‖∞
is obviously true for all p, 1 ≤ p < ∞. This is why the question, stated
above, can be reformulated in the following way: What is the minimal constant
c = c(p), which guarantees

Ωp(f ;Q) ≤ c‖f‖∞
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for any function f ∈ L∞?
For the answer to the both questions let us denote

Cp = sup
f∈L∞([0,1])

Ωp(f ; [0, 1])
‖f‖∞ .

Theorem 2.11 (Leonchik, [52]). For p ≥ 1

Cp = 2 sup
0<h<1

{h(1 − h)p + hp(1 − h)}1/p
. (2.10)

Proof. For 0 < h < 1 let fh(x) = χ[0,h](x) − χ(h,1](x), x ∈ [0, 1]. Then we
obtain ‖fh‖∞ = 1, (fh)[0,1] = 2h − 1,

Ωp
p (fh; [0, 1]) = 2p {h(1 − h)p + hp(1 − h)} . (2.11)

Therefore Cp ≥ Bp, where Bp denotes the right-hand side of (2.10).
In order to prove the opposite inequality

Cp ≤ Bp, (2.12),

we observe that it follows immediately from the inequality

Ωp
p(f ; [0, 1]) ≤ 2p sup

0<h<1
{h(1 − h)p + hp(1 − h)} , (2.13)

where the function f is non-increasing on [0, 1] and f(0) = −f(1) = 1. Assume
that f satisfies these conditions. Let h∗ be such that f(x) ≥ f[0,1] for x ≤ h∗

and f(x) ≤ f[0,1] for x ≥ h∗. Set h = 1
2

(
1 + f[0,1]

)
. Then 0 < h < 1 and

f[0,1] = 2h− 1. It is easy to see that there exist h1, 0 < h1 ≤ min(h, h∗), and
h2, max(h, h∗) ≤ h2 < 1, such that

Ωp
p (f ; [0, 1]) =

∫ h∗

0

(
f(x) − f[0,1]

)p
dx +

∫ 1

h∗

(
f[0,1] − f(x)

)p
dx =

=
∫ h1

0

(
1 − f[0,1]

)p
dx +

∫ 1

h2

(
f[0,1] + 1

)p
dx ≤

≤
∫ h

0

(
1 − f[0,1]

)p
dx +

∫ 1

h

(
f[0,1] + 1

)p
dx = Ωp

p (fh; [0, 1]) ,

where the function fh was defined at the beginning of the proof. From here
and from (2.11) we obtain (2.13). �

In order to study the behavior of the constants Cp, defined in Theo-
rem 2.11, first we prove one more inequality.

Lemma 2.12 (Korneichuk, [50, Lemma 5.2.3, p. 225]). For 0 ≤ p ≤ 3

h(1 − h)p + hp(1 − h) ≤ 2−p, 0 ≤ h ≤ 1. (2.14)



2.1 Properties of Mean Oscillations 33

Proof. Notice, that in the original work [50] inequality (2.14) was given in the
following equivalent form:

2p (up + u) ≤ (1 + u)p+1, u ≥ 0.

The proof, which we are going to present now, is different from the one of
[50]. Setting h = t+1

2 , we transform the inequality (2.14) into(
1 − t2

) [
(1 + t)p−1 + (1 − t)p−1

] ≤ 2, −1 ≤ t ≤ 1. (2.15)

Let us denote the left-hand side of (2.15) by ϕ(t). The function ϕ is even on
[−1, 1], thus it is enough to prove (2.15) for 0 ≤ t ≤ 1.

Let 1 ≤ p ≤ 2. Denote ψ(t) = (1 + t)p−1 + (1 − t)p−1. Then ψ′(t) =
(p − 1)

[
(1 + t)p−2 − (1 − t)p−2

] ≤ 0, i.e. the function ψ does not increase
on [0, 1]. Since the function 1 − t2 is non-increasing it follows that also the
function ϕ is non-increasing on [0, 1]. Therefore

ϕ(t) ≤ ϕ(0) = 2, 0 ≤ t ≤ 1.

The case p = 0 is trivial. So, it remains to consider the case p ∈ (0, 1) ∪
(2, 3]. We can write

ϕ(t)=
(
1 − t2

) [
2 +

∞∑
k=1

(p − 1) . . . (p − k)
k!

tk +
∞∑

k=1

(p − 1) . . . (p − k)
k!

(−t)k

]
=

= 2
(
1 − t2

) [
1 +

∞∑
s=1

(p − 1) . . . (p − 2s)
(2s)!

t2s

]
=

= 2

[
1 +

∞∑
s=1

(p − 1) . . . (p − 2s)
(2s)!

t2s − t2 −
∞∑

s=1

(p − 1) . . . (p − 2s)
(2s)!

t2s+2

]
=

= 2
{

1 +
[
(p − 1)(p − 2)

2!
− 1

]
t2+

+
∞∑

s=2

[
(p − 1) . . . (p − 2s)

(2s)!
− (p − 1) . . . (p − (2s − 3))(p − (2s − 2))

(2s − 2)!

]
t2s

}
=

= 2
{

1 +
[
(p − 1)(p − 2)

2
− 1

]
t2+

+
∞∑

s=2

(p − 1) . . . (p − (2s − 2))
(2s − 2)!

[
(p − (2s − 1))(p − 2s)

(2s − 1)(2s)
− 1

]
t2s

}
.
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Since p ∈ (0, 1) ∪ (2, 3] we have

(p − 1)(p − 2)
2

− 1 ≤ 0,

i.e., the coefficient in the right-hand side of the last equality, which corresponds
to t2, is non-positive. Further, if 2 < p ≤ 3, the first two terms of the product
(p−1)(p−2) . . . (p− (2s−3))(p− (2s−2)) are positive, while the other terms
(we have an even number of them) are non-positive. In the case 0 < p < 1 all
terms (even number) are non-positive. So, the whole product is non-negative.
Since p ≤ 4s − 1 (s ≥ 2) we have p2 − p(4s − 1) ≤ 0. This means that
(p−(2s−1))(p−2s)

(2s−1)2s − 1 ≤ 0. Therefore all the coefficients of the sum in the right-
hand side of the last equality, which correspond to t2s, are non-positive. Thus
the whole sum is non-positive. Finally we have

ϕ(t) ≤ 2, 0 ≤ t ≤ 1

for p ∈ (0, 1) ∪ (2, 3]. �
Now from Theorem 2.11 we easily derive

Corollary 2.13. The constants Cp are monotone increasing and satisfy the
following properties:

(i) Cp = 1, 1 ≤ p ≤ 3;

(ii) 1 < Cp < 2, 3 < p < ∞;

(iii) lim
p→∞Cp = 2.

Proof. The monotonicity of Cp follows immediately from the Hölder inequal-
ity. Clearly, Cp ≥ 1 for all p ≥ 1. On the other hand, in order to prove (i) it
is enough to use Theorem 2.11 and Lemma 2.12.

Assume p > 3. Denote ϕ(h) = h(1 − h)p + hp(1 − h). Then ϕ
(

1
2

)
= 2−p,

ϕ′ ( 1
2

)
= 0 and ϕ′′ ( 1

2

)
= 22−pp(p − 3) > 0. These properties of the function

ϕ imply that in a small enough neighborhood of the point 1
2 there exists h

such that ϕ(h) > 2−p. According to Theorem 2.11, this is equivalent to the
left inequality of (ii). The right inequality of (ii) is trivial since for p > 1 we
have ϕ(h) ≤ 2h(1 − h) ≤ 1

2 , so that Cp ≤ 21−1/p < 2.
Finally, for some fixed h, 0 < h < 1, and p → ∞

lim
p→∞Cp ≥ lim

p→∞Ω (fh; [0, 1]) = 2 lim
p→∞ (ϕ(h))1/p = 2max(h, 1 − h).

Choosing h to be small enough, we obtain (iii). �
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The next property shows the semi-linearity of mean oscillations.

Property 2.14. For p ≥ 1

Ωp(f + g;Q) ≤ Ωp(f ;Q) + Ωp(g;Q), (2.16)

Ωp(λf ;Q) = |λ|Ωp(f ;Q) (2.17)

for any constant λ.

Proof. Indeed, since (f + g)Q = fQ + gQ and (λf)Q = λfQ by Minkowski
inequality we have

Ωp(f+g;Q) =
{

1
|Q|

∫
Q

|f(x) + g(x) − fQ − gQ|p dx

}1/p

≤ Ωp(f ;Q)+Ωp(g;Q),

Ωp(λf ;Q) =
{

1
|Q| |λf(x) − λfQ|p dx

}1/p

= |λ|Ωp(f ;Q). �

Property 2.15 (Klemes, [32]). Let f be a summable monotone function on
I1 ≡ [α1, β1], and let I ≡ [α, β] ⊂ I1 be such that fI = fI1 . Then

Ω(f ; I) ≤ Ω(f ; I1). (2.18)

Proof. We can assume that f does not increase on I1. Let us consider the
non-trivial case Ω(f ; I) > 0. Since f is monotone there exists γ ∈ (α, β) such
that f(x) ≥ fI1 if x ∈ [α1, γ] and f(x) ≤ fI1 if x ∈ [γ, β1]. The monotonicity
of f(x) − fI1 implies

1
γ − α1

∫ γ

α1

(f(x) − fI1) dx ≥ 1
γ − α

∫ γ

α

(f(x) − fI) dx,

1
β1 − γ

∫ β1

γ

(fI1 − f(x)) dx ≥ 1
β − γ

∫ β

γ

(fI − f(x)) dx,

or, equivalently,

γ − α1∫ γ

α1
(f(x) − fI1) dx

≤ γ − α∫ γ

α
(f(x) − fI) dx

, (2.19)

β1 − γ∫ β1

γ
(fI1 − f(x)) dx

≤ β − γ∫ β

γ
(fI − f(x)) dx

. (2.20)

Using the equalities
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α1

(f(x) − fI1) dx =
∫ β1

γ

(fI1 − f(x)) dx, (2.21)

∫ γ

α

(f(x) − fI) dx =
∫ β

γ

(fI − f(x)) dx, (2.22)

which follow from Property 2.1, and summing (2.19) and (2.20), we obtain

β1 − α1∫ γ

α1
(f(x) − fI1) dx

≤ β − α∫ γ

α
(f(x) − fI) dx

. (2.23)

But, according to Property 2.1

Ω(f ; I1) =
2

β1 − α1

∫ γ

α1

(f(x) − fI1) dx,

Ω(f ; I) =
2

β − α

∫ γ

α

(f(x) − fI) dx.

This, together with (2.23), yields (2.18). �
If we consider the analog of inequality (2.18) for the oscillations Ωp, 1 <

p < ∞, then the last proof fails because it is based on equalities (2.21) and
(2.22) that have no analogs for p > 1. However, the following property is
satisfied.

Property 2.16 ([40]). Let f ∈ Lp, 1 ≤ p < ∞, be monotone on I1 ≡ [α1, β1],
and let I ≡ [α, β] ⊂ I1 be such that fI = fI1 . Then

Ωp(f ; I) ≤ Ωp(f ; I1). (2.24)

For the proof we will need the following two lemmas.

Lemma 2.17. Let I1 ≡ [α1, β1] ⊃ [α, β] ≡ I and let the function ϕ ∈ L(I1)
be non-increasing on I1, so that

ϕI = ϕI1 = 0. (2.25)

Then

1
β − α

∫ β

α

|ϕ(x)| dx ≤ 2
1

α−α1

∫ α

α1
|ϕ(x)| dx · 1

β1−β

∫ β1

β
|ϕ(x)| dx

1
α−α1

∫ α

α1
|ϕ(x)| dx + 1

β1−β

∫ β1

β
|ϕ(x)| dx

. (2.26)

Proof. As in the proof of Property 2.15, let us choose γ ∈ (α, β) such that∫ γ

α

ϕ(x) dx = −
∫ β

γ

ϕ(x) dx =
1
2

∫ β

α

|ϕ(x)| dx. (2.27)
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From (2.25) and from the monotonicity of ϕ it follows that ϕ(x) ≥ 0 if x ∈
[α1, γ], and ϕ(x) ≤ 0 if x ∈ [γ, β1]. Further, the monotonicity of ϕ implies

1
α − α1

∫ α

α1

|ϕ(x)| dx ≥ 1
γ − α

∫ γ

α

|ϕ(x)| dx,

1
β1 − β

∫ β1

β

|ϕ(x)| dx ≥ 1
β − γ

∫ β

γ

|ϕ(x)| dx,

i.e.,
1

1
α−α1

∫ α

α1
|ϕ(x)| dx

≤ γ − α∫ γ

α
|ϕ(x)| dx

,

1
1

β1−β

∫ β1

β
|ϕ(x)| dx

≤ β − γ
1

β−γ

∫ β

γ
|ϕ(x)| dx

.

Notice that, by (2.27), the denominators of both fractions in the right-hand
sides of the last inequalities are the same. Summing up we obtain

1
1

α−α1

∫ α

α1
|ϕ(x)| dx

+
1

1
β1−β

∫ β1

β
|ϕ(x)| dx

≤ β − α∫ γ

α
|ϕ(x)| dx

= 2
β − α∫ β

α
|ϕ(x)| dx

.

This inequality is equivalent to (2.26) and the lemma is proved. �
We use Lemma 2.17 to prove the next inequality.

Lemma 2.18. Assume that for some p ≥ 1 the function ϕ ∈ Lp (I1) satisfies
the conditions of Lemma 2.17. Then

1
β − α

∫ β

α

|ϕ(x)|p dx ≤
1

α−α1

∫ α

α1
|ϕ(x)| dx · 1

β1−β

∫ β1

β
|ϕ(x)| dx

1
α−α1

∫ α

α1
|ϕ(x)| dx + 1

β1−β

∫ β1

β
|ϕ(x)| dx

×

×
⎡⎣( 1

α − α1

∫ α

α1

|ϕ(x)| dx

)p−1

+

(
1

β1 − β

∫ β1

β

|ϕ(x)| dx

)p−1
⎤⎦ . (2.28)

Proof. From the monotonicity of ϕ it follows that∫ γ

α

|ϕ(x)|p dx ≤
(

1
α − α1

∫ α

α1

|ϕ(x)| dx

)p−1 ∫ γ

α

|ϕ(x)| dx,

∫ β

γ

|ϕ(x)|p dx ≤
(

1
β1 − β

∫ β1

β

|ϕ(x)| dx

)p−1 ∫ β

γ

|ϕ(x)| dx,

with the same γ as in the proof of Lemma 2.17. Summing up these two in-
equalities and using (2.27) we obtain
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α

|ϕ(x)|p dx ≤ 1
2

∫ β

α

|ϕ(x)| dx×

×
⎡⎣( 1

α − α1

∫ α

α1

|ϕ(x)| dx

)p−1

+

(
1

β1 − β

∫ β1

β

|ϕ(x)| dx

)p−1
⎤⎦ .

From here and from (2.26) inequality (2.28) follows. �
Proof of Property 2.16. We can assume that the function f does not increase on
I1. Set ϕ(x) = f(x)− fI , x ∈ I1. Then the function ϕ satisfies the conditions
of Lemma 2.18. It is easy to see that in order to proof Property 2.16 it is
enough to show that

1
|I1|

∫
I1

|ϕ(x)|p dx ≥ 1
|I|

∫
I

|ϕ(x)|p dx. (2.29)

Denote I ′ = [α1, α], I ′′ = [β, β1]. Then the equality ϕI = ϕI1 = 0 implies∫
I′
|ϕ(x)| dx =

∫
I′′

|ϕ(x)| dx. (2.30)

Hence
1
|I1|

∫
I1

|ϕ(x)|p dx − 1
|I|

∫
I

|ϕ(x)|p dx =

=
1
|I1|

[
|I ′|

(
1
|I ′|

∫
I′
|ϕ(x)|p dx − 1

|I|
∫

I

|ϕ(x)|p dx

)
+

+ |I ′′|
(

1
|I ′′|

∫
I′′

|ϕ(x)|p dx − 1
|I|

∫
I

|ϕ(x)|p dx

)]
=

=
1
|I1|

[∫
I′
|ϕ(x)|p dx +

∫
I′′

|ϕ(x)|p dx − (|I ′| + |I ′′|)
|I|

∫
I

|ϕ(x)|p dx

]
.

Now using the equality

|I ′′| = |I ′|
1

|I′|
∫

I′ |ϕ(x)| dx

1
|I′′|

∫
I′′ |ϕ(x)| dx

,

which follows from (2.30), we have

1
|I1|

∫
I1

|ϕ(x)|p dx − 1
|I|

∫
I

|ϕ(x)|p dx =

=
|I ′|
|I1|

[
1
|I ′|

∫
I′
|ϕ(x)|p dx +

1
|I′|

∫
I′ |ϕ(x)| dx

1
|I′′|

∫
I′′ |ϕ(x)| dx

· 1
|I ′′|

∫
I′′

|ϕ(x)|p dx−
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−
1

|I′′|
∫

I′′ |ϕ(x)| dx + 1
|I′|

∫
I′ |ϕ(x)| dx

1
|I′′|

∫
I′′ |ϕ(x)| dx

· 1
|I|

∫
I

|ϕ(x)|p dx

]
.

By (2.28),
1
|I1|

∫
I1

|ϕ(x)|p dx − 1
|I|

∫
I

|ϕ(x)|p dx ≥

≥ |I ′|
|I1|

[
1
|I ′|

∫
I′
|ϕ(x)|p dx +

1
|I′|

∫
I′ |ϕ(x)| dx

1
|I′′|

∫
I′′ |ϕ(x)| dx

1
|I ′′|

∫
I′′

|ϕ(x)|p dx−

− 1
|I ′|

∫
I′
|ϕ(x)| dx

((
1
|I ′|

∫
I′
|ϕ(x)| dx

)p−1

+
(

1
|I ′′|

∫
I′′

|ϕ(x)| dx

)p−1
)]

=

=
|I ′|
|I1|

[
1
|I ′|

∫
I′
|ϕ(x)|p dx −

(
1
|I ′|

∫
I′
|ϕ(x)| dx

)p

+

+
1

|I′|
∫

I′ |ϕ(x)| dx

1
|I′′|

∫
I′′ |ϕ(x)| dx

(
1

|I ′′|
∫

I′′
|ϕ(x)|p dx −

(
1

|I ′′|
∫

I′′
|ϕ(x)| dx

)p)]
≥ 0,

where the last inequality follows from the Hölder inequality. Thus we have
proved (2.29) and Property 2.16 follows. �
Remark 2.19. The proof of inequality (2.24) that we have just presented
fails if 0 < p < 1. We do not know whether (2.24) holds true for 0 < p < 1.

2.2 Definition of the BMO-class and Examples

We will say that the function f ∈ Lloc is of bounded mean oscillation, if

‖f‖∗ ≡ sup
Q

Ω(f ;Q) < ∞.

Here the supremum is taken over all cubes Q ⊂ R
d. The class of all such

functions f is denoted by BMO. This class was first defined in the work
by F. John and L. Nirenberg [30] in 1961. In this paper they obtained the
John–Nirenberg theorem, which plays the fundamental role for BMO. We
will consider it later. Here we will study some elementary properties, implied
by the properties of mean oscillations, considered in the previous section. In
addition we will consider several examples that will be of use in what follows.
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Denote
‖f‖′∗ = sup

Q
Ω′(f ;Q), ‖f‖′′∗ = sup

Q
Ω′′(f ;Q),

where, as before, the supremuma are taken over all cubes Q ⊂ R
d. Then from

(2.4) and (2.5) it follows immediately that

‖f‖′∗ ≤ ‖f‖∗ ≤ 2‖f‖′∗,

‖f‖∗ ≤ ‖f‖′′∗ ≤ 2‖f‖∗.
This means that in the definition of the BMO-class one can use the mean
oscillations Ω′(f ;Q) and Ω′′(f ;Q) instead of Ω(f ;Q).

Let Q ⊂ R
d be a cube. Then there exist two balls B1 and B2 such that

B1 ⊂ Q ⊂ B2 and c′′d |B2| ≤ |Q| ≤ c′d|B1|, where the positive constants c′d and
c′′d depend only on the dimension d of the space. We have

Ω(f ;Q) ≤ 1
|Q|2

∫
Q

∫
Q

|f(x) − f(y)| dy dx ≤ 2
|Q|

∫
Q

|f(x) − fB2 | dx ≤

≤ 2
c′′d

1
|B2|

∫
B2

|f(x) − fB2 | dx =
2
c′′d

Ω(f ;B2),

Ω(f ;B1) ≤ 1
|B1|2

∫
B1

∫
B1

|f(x) − f(y)| dy dx ≤ 2
|B1|

∫
B1

|f(x) − fQ| dx ≤

≤ 2c′d
1
|Q|

∫
Q

|f(x) − fQ| dx = 2c′dΩ(f ;Q).

From these two inequalities we see that the mean oscillations in the definition
of the BMO-class can be calculated over all possible balls B ⊂ R

d.

For any fixed cube Q0 ⊂ R
d we will denote by BMO ≡ BMO(Q0) the

class of functions f such that

‖f‖∗ = sup
Q⊂Q0

Ω(f ;Q) < ∞

where the supremum is taken over all cubes Q ⊂ Q0. Notice that in order to
show that the function f belongs to BMO(Q0) it is enough to assume the
boundedness of the oscillations only on the small enough cubes. Indeed, if we
fix some δ, 0 < δ < 1, then for the cube Q ⊂ Q0 with |Q| ≥ δ|Q0|

Ω(f ;Q) ≤ Ω′′(f ;Q) ≤
( |Q0|

|Q|
)2 1

|Q0|2
∫

Q0

∫
Q0

|f(x) − f(y)| dy dx ≤

≤ 2
δ2

1
|Q0|

∫
Q0

|f(x)| dx < ∞.
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Obviously, BMO(Q0) ⊃ BMO(Rd) for any cube Q0 ⊂ R
d, and if ‖f‖∗ ≤ c

in each BMO(Q0) with the constant c being independent on the cube Q0 ⊂
R

d, then ‖f‖∗ ≤ c in BMO(Rd).
It is clear that the equality ‖f‖∗ = 0 means that the function f is constant

a. e. It is also obvious that for any constant c

‖f + c‖∗ = ‖f‖∗.

Further, Property 2.14 implies, that for any functions f, g and a number λ

‖f + g‖∗ ≤ ‖f‖∗ + ‖g‖∗,

‖λf‖∗ = |λ| · ‖f‖∗,
i.e., ‖ · ‖∗ is a norm of the space of functions of bounded mean oscillation,
factorized by the set of all constant functions.

From Property 2.6 of the mean oscillations it follows immediately that if
f belongs to BMO, then |f | ∈ BMO and

‖ |f | ‖∗ ≤ 2‖f‖∗.

The opposite it not true. We will see it later (see Example 2.21).

By virtue of (2.8), every essentially bounded function f belongs to BMO
and

‖f‖∗ ≤ ‖f‖∞.

However, BMO contains also unbounded functions. A typical example of an
unbounded BMO-function is the logarithmic function.

Example 2.20. Assume f(x) = ln 1
|x| , x ∈ R

d. Let us show that f ∈
BMO(Rd). As we have already noticed above, it is enough to estimate the
oscillations over all possible balls B ⊂ R

d.
Fix some ball B ≡ B(x0, r) ⊂ R

d. If r ≤ |x0|
2 , then for any x, y ∈ B we

obviously have 1
3 ≤ |y|

|x| ≤ 3, and hence

Ω(f ;B) ≤ 1
|B|2

∫
B

∫
B

|f(x) − f(y)| dy dx =
1

|B|2
∫

B

∫
B

∣∣∣∣ln |y|
|x|
∣∣∣∣ dy dx ≤ ln 3.

Now let us assume that r > |x0|
2 . Denote R = 3r. Then B1 ≡ B1(0, R) ⊃ B

and
Ω(f ;B) ≤ 2Ω′(f ;B) = 2 inf

c

1
|B|

∫
B

|f(x) − c| dx ≤

≤ 2
|B|

∫
B

∣∣∣∣ln 1
|x| − ln

1
R

∣∣∣∣ dx = 2
|B1|
|B|

1
|B1|

∫
B1

ln
R

|x| dx =
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= 2 · 3d 1
edRd

∫
B1

ln
R

|x| dx.

Here ed is the volume of the unit ball in R
d (ed = πd/2

Γ (d/2+1) , where Γ is the
Euler gamma-function (see [12, p. 393])).

Since the integral

1
Rd

∫
B1

ln
R

|x| dx = 2
πd/2

Γ
(

d
2

) ∫ 1

0

ρd−1 ln
1
ρ

dρ

does not depend on the radius R of the ball the oscillations over all possible
balls B ⊂ R

d can be dominated by some constant, which depends only on
the dimension d of the space. This means that f ∈ BMO. We remark that,
at least to our knowledge, even in the one dimensional case the problem of
calculation of ‖f‖∗ is still open.

In the particular case d = 1 the function f(x) = ln 1
|x| for −∞ < x <

∞ belongs to the BMO-class. Since as we have already mentioned above
BMO([−1, 1]) ⊃ BMO(R) it follows that f ∈ BMO([−1, 1]). �
Example 2.21. Let us show that the function g(x) = sign(x) · ln 1

|x| does
not belong to BMO([−1, 1]). Indeed, for 0 < h < 1 and I ≡ [−h, h] we have
gI = 0 and

Ω(g; I) =
1
2h

∫ h

−h

∣∣∣∣ln 1
|x|
∣∣∣∣ dx =

1
h

∫ h

0

ln
1
x

dx = 1 + ln
1
h
→ ∞, h → 0.

This example shows that if the absolute value of a function belongs to the
BMO-class, this does not imply that the function itself is a BMO-function.
�

For 1 ≤ p < ∞ we will denote by BMOp the class of all functions f ∈ Lp
loc

such that
‖f‖∗,p ≡ sup

Q
Ωp(f ;Q) < ∞.

The Hölder inequality implies that BMOp ⊂ BMOq for 1 ≤ q < p < ∞.
Later we will show that all the classes BMOp, 1 ≤ p < ∞, coincide (see
Remark 3.19).

Properties 2.15 and 2.16 essentially simplify the calculation of ‖f‖∗,p if f
is a monotone function.

Lemma 2.22. Let 1 ≤ p < ∞, and let f ∈ Lp
loc(R+) be non-increasing on

R+ ≡ [0,+∞). Then
‖f‖∗,p = sup

β>0
Ωp(f ; [0, β]).

Proof. Let I ≡ [a, b] ⊂ R+. If fI = f(b), then obviously Ωp(f ; I) = 0. Other-
wise, if fI > f(b), then using the continuity of the integral with respect to the
upper limit we can find β ≥ b such that
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1
β

∫ β

0

f(x) dx = fI .

Since [0, β] ⊃ I and f[0,β] = fI according to Property 2.16 we have

Ωp(f ; I) ≤ Ωp(f ; [0, β]),

provided f is monotone. Obviously this implies the statement of the lemma.
�

For R the following analog of Lemma 2.22 is valid.

Lemma 2.23. Let 1 ≤ p < ∞, and assume that f ∈ Lp
loc(R) is non-decreasing

on (−∞, 0) and non-increasing on (0,+∞). Then

‖f‖∗,p = sup
α<0<β

Ωp(f ; [α, β]).

Proof. It is enough to show that for any interval I ′ ⊂ (−∞, 0) ∪ (0,+∞) and
for any ε > 0 there exists a interval I ≡ [α, β] such that α < 0 < β and

Ωp(f ; I) > Ωp(f ; I ′) − ε.

For instance, let I ′ ⊂ (0,+∞). Similarly to the proof of Lemma 2.22, for
Ωp(f ; I ′) > 0 we find β > 0 such that I ′ ⊂ [0, β] and f[0,β] = fI′ . Then, since
f is monotone on (0,+∞), by Property 2.16,

Ωp(f ; [0, β]) ≥ Ωp(f ; I ′).

Further, since the absolute continuity of the integral implies the continuity of
the function ϕ(τ) ≡ Ωp(f ; [τ, β]), τ < β, one can find some α < 0 such that

Ωp(f ; [α, β]) > Ωp(f ; I ′) − ε.

The case I ′ ⊂ (−∞, 0) can be treated analogously. �
Example 2.24. Assume f(x) = ln 1

x , x ∈ R+. Let us calculate ‖f‖∗. By
Lemma 2.22, in order to compute ‖f‖∗ it is enough to take the supremum
only over the intervals of the form [0, β], β > 0.

For β > 0

f[0,β] =
1
β

∫ β

0

ln
1
x

dx = 1 + ln
1
β

,

Ω(f ; [0, β]) =
1
β

∫ β

0

∣∣∣∣ln 1
x
−
(

1 + ln
1
β

)∣∣∣∣ dx =

=
1
β

∫ β

0

∣∣∣∣ln β

ex

∣∣∣∣ dx =
∫ 1

0

∣∣∣∣ln 1
ex

∣∣∣∣ dx.
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By Property 2.1,

Ω(f ; [0, β]) = 2
∫ 1/e

0

(
ln

1
x
− 1

)
dx =

2
e
.

Finally, for the function f(x) = ln 1
x , 0 < x < ∞,

‖f‖∗ =
2
e
.

It is easy to see that this equality still holds true if we consider the norm
‖f‖∗ in the space BMO([0, β0]) for any β0 > 0. Recall that, as we have
already mentioned above, we do not know the norm ‖g‖∗ for the function
g(x) = ln 1

|x| , −∞ < x < ∞. However, it is easy to show that

2
e

< ‖g‖∗ ≤ 4
e
,

(see Example 2.29). �
Concerning Example 2.24, it is interesting to remark that BMO(R) does

not contain monotone unbounded functions. Namely,

Proposition 2.25. If the function f ∈ BMO(R) is monotone, then it is
bounded.

Proof. Let us assume the opposite, for example, assume that the function f
is non-decreasing and unbounded from above. We can assume that f(0) = 0.
Fix some B > limx→0+ f(x) ≥ 0. Using the continuity of the integral with
respect to the upper limit, we can find some x0 > 0 such that f[0,x0] = B.
Further, let us find c ∈ [0, x0] such that f(x) ≥ B if x ≥ c and f(x) ≤ B
if x ≤ c. Obviously, for every b > x0 there exists a ≡ a(b) ≤ 0 such that
f[a,b] = B. Clearly, a(b) → −∞ as b → +∞. So, we can choose b to be big
enough to provide the inequalities

1
b − c

∫ b

c

(f(x) − B) dx >
B

2
,

|a|
c − a

>
1
2
.

Then, by Property 2.1,

Ω(f ; [a, b]) = 2
b − c

b − a

1
b − c

∫ b

c

(f(x) − B) dx > B
b − c

b − a
,

Ω(f ; [a, b]) =
2

b − a

∫ c

a

(B − f(x)) dx ≥ 2
c − a

b − a

1
c − a

∫ 0

a

B dx =

= 2
c − a

b − a

|a|
c − a

B >
c − a

b − a
B.
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Summing up these two inequalities, we get

Ω(f ; [a, b]) ≥ 1
2
B.

Since we can choose B arbitrarily big f /∈ BMO(R). �
The next statement provides the rule for the calculation of ‖f‖∗ for any

monotone function f on R.

Proposition 2.26. If f is a monotone function on R, then

‖f‖∗ =
1
2

∣∣∣∣ lim
x→+∞ f(x) − lim

x→−∞ f(x)
∣∣∣∣ . (2.31)

Proof. If the right-hand side of (2.31) (we will denote it by B) is infinite, then,
by Proposition 2.25, ‖f‖∗ = ∞. Assume that B < ∞. It is enough to consider
the case when f is non-decreasing and satisfy

lim
x→+∞ f(x) = − lim

x→−∞ f(x) = B > 0.

Let us choose some b0 such that f(x) ≥ 0 if x ≥ b0 and f(x) ≤ 0 if x ≤ b0.
Further, for a big enough b > b0 there exists a ≡ a(b) < b0 such that f[a,b] = 0.
Moreover, a(b) → −∞ as b → +∞. Fix some ε > 0 and choose b > b0 so big,
that

1
b − b0

∫ b

b0

f(x) dx > B − ε,
1

b0 − a

∫ b0

a

f(x) dx < −B + ε.

Then we have f[a,b] = 0 and

Ω(f ; [a, b]) =
1

b − a

∫ b

a

|f(x)| dx ≥ b − b0

b − a

1
b − b0

∫ b

b0

f(x) dx−

−b0 − a

b − a

1
b0 − a

∫ b0

a

f(x) dx ≥ b − b0

b − a
(B − ε) +

b0 − a

b − a
(B − ε) = B − ε.

Then ‖f‖∗ ≥ B, provided ε is arbitrary. On the other hand, the inequality
‖f‖∗ ≤ B follows immediately from Property 2.7. �
Example 2.27. Again, let f(x) = ln 1

x , 0 < x < ∞. Let us show that if p is
natural, then

‖f‖∗,p =

{
p!
e

[
1 + (−1)p−1

(
1 − e

p∑
k=0

(−1)k

k!

)]}1/p

. (2.32)

Indeed, as in Example 2.24, using Lemma 2.22 it is easy to see that
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‖f‖p
∗,p = Ωp

p(f ; [0, 1]) =
∫ 1

0

∣∣∣∣ln 1
x
− 1

∣∣∣∣p dx =

=
∫ 1/e

0

lnp 1
ex

dx +
∫ 1

1/e

lnp(ex) dx =
1
e

[∫ ∞

0

xpe−x dx +
∫ 1

0

xpex dx

]
.

The first integral in the brackets in the right-hand side is equal to Γ (p+1) = p!
with Γ being the Euler gamma-function. In order to compute the second
integral, we denote it by J(p) and perform the integration by parts. Then

J(p) = e − pJ(p − 1), p ≥ 2, (2.33)

and

J(1) =
∫ 1

0

xex dx = 1.

So, to conclude the proof of (2.32) it remains to show that

J(p) = (−1)p−1p!

(
1 − e

p∑
k=0

(−1)k

k!

)
. (2.34)

We prove this equality by induction. Formula (2.34) is true for p = 1. By
(2.33),

J(p) = e − pJ(p − 1) = e − p

[
(−1)p(p − 1)!

(
1 − e

p−1∑
k=0

(−1)k

k!

)]
=

= (−1)p−1p! + e

[
1 + (−1)pp!

p−1∑
k=0

(−1)k

k!

]
=

= (−1)p−1p! + (−1)p−1e

[
(−1)p−1 − p!

p−1∑
k=0

(−1)k

k!

]
=

= (−1)p−1p! + (−1)p−1ep!

[
−

p−1∑
k=0

(−1)k

k!
− (−1)p

p!

]
=

= (−1)p−1p!

(
1 − e

p∑
k=0

(−1)k

k!

)
.

This completes the proof of equality (2.32). �
Example 2.28. Let us show that for any α, 0 < α < 1, the function f(x) =
x−α, 0 < x ≤ 1, does not belong to BMO([0, 1]). As we will see later, this
fact can be easily derived from the John–Nirenberg theorem. Here we prove
it using just the definition and the elementary properties of oscillations.
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For 0 < h < 1 we have f[0,h] = 1
h

∫ h

0
x−α dx = h−α

1−α and

Ω(f ; [0, h]) =
1
h

∫ h

0

∣∣f(x) − f[0,h]

∣∣ dx =
2
h

∫ h(1−α)1/α

0

(
x−α − h−α

1 − α

)
dx =

=
2
h

1
1 − α

h1−α
[
(1 − α)(1−α)/α − (1 − α)1/α

]
=

= 2α(1 − α)1/α−2h−α → ∞, h → 0.

Therefore, f /∈ BMO([0, 1]). �
Example 2.29. Let us show that if the function f is even on R, then

‖f‖∗ ≤ 2 sup
I⊂[0,+∞)

Ω(f ; I). (2.35)

Assume that zero is an inner point of the interval J ⊂ R. Denote I ′ =
[0,+∞) ∩ J, I ′′ = (−∞, 0] ∩ J . Let |I ′| ≥ |I ′′| and denote J ′ = [−|I ′|, |I ′|].
Then J ′ ⊃ J, |I ′| ≤ |J | ≤ |J ′| = 2|I ′|, and since f is even we have fJ ′ = fI′ .
If fJ ′ ≤ fJ , then, by Property 2.1,

Ω(f ;J) =
2
|J |

∫
{x∈J: f(x)>fJ}

(f(x) − fJ) dx ≤

≤ 2
|J |

∫
{x∈J: f(x)>fJ′}

(f(x) − fJ ′) dx ≤

≤ 2
|I ′|

∫
{x∈J′: f(x)>fJ′}

(f(x) − fJ ′) dx =

=
4
|J ′|

∫
{x∈J′: f(x)>fJ′}

(f(x) − fJ ′) dx.

The expression in the right-hand side is equal to 2Ω(f ; I ′), provided f is even.
Hence

Ω(f ;J) ≤ 2Ω(f ; I ′).

Otherwise, if fJ ′ > fJ , then, again by virtue of Property 2.1,

Ω(f ;J) =
2
|J |

∫
{x∈J: f(x)<fJ}

(fJ − f(x)) dx ≤

≤ 2
|J |

∫
{x∈J: f(x)<fJ′}

(fJ ′ − f(x)) dx ≤

≤ 2
|I ′|

∫
{x∈J′: f(x)<fJ′}

(fJ ′ − f(x)) dx =
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=
4
|J ′|

∫
{x∈J′: f(x)<fJ′}

(fJ ′ − f(x)) dx = 2Ω(f ; I ′).

In the case |I ′′| > |I ′| in the same manner we obtain

Ω(f ;J) ≤ 2Ω(f ; I ′′) = 2Ω(f ; [0, |I ′′|]).
These inequalities obviously imply (2.35). �

Example 2.30. Let γ > 0. Then the function

f(x) = ln(1 + |x|)χ[0,+∞)(x) + ln(1 + γ|x|)χ(−∞,0)(x), x ∈ R,

is contained in BMO(R).
Denote g(x) = lnx, x ∈ [0,+∞). In Example 2.24 we showed that g ∈

BMO([0,+∞)) and ‖g‖∗ = 2
e . Now we will use this fact. Let us prove that

‖f‖∗ ≤ Cγ , where the constant Cγ depends only on γ.
If [a, b] ⊂ [0,+∞), then

Ω(f ; [a, b]) = Ω(g; [a + 1, b + 1]) ≤ 2
e
.

Analogously, if [a, b] ⊂ (−∞, 0], then

Ω(f ; [a, b]) =
1

b − a

∫ b

a

∣∣∣∣∣ln(1 − γx) − 1
b − a

∫ b

a

ln(1 − γy) dy

∣∣∣∣∣ dx =

=
1

(1 − γa) − (1 − γb)

∫ 1−γa

1−γb

∣∣∣∣ln t − 1
(1 − γa) − (1 − γb)

∫ 1−γa

1−γb

lnu du

∣∣∣∣ dt =

= Ω(g; [1 − γb, 1 − γa]) ≤ 2
e
.

It remains to consider the case a < 0 < b. If b ≤ γ|a|, we set b1 = γ|a| and
obtain I1 ≡ [a, b1] ⊃ [a, b] ≡ I,

|I1| = b1 − a = (γ + 1)|a| ≤ (γ + 1)(b + |a|) = (γ + 1)|I|.
Otherwise, if b > γ|a|, we set a1 = − b

γ and then I1 ≡ [a1, b] ⊃ [a, b] and

|I1| = b − a1 =
(

1 +
1
γ

)
b ≤

(
1 +

1
γ

)
(b + |a|) =

(
1 +

1
γ

)
|I|.

Setting cγ = 1 + γ + 1
γ , in both cases we obtain the segment I1 ⊃ I such that

|I1| ≤ cγ |I|. Therefore

Ω(f ; I) ≤ Ω′′(f ; I) =
1

|I|2
∫

I

∫
I

|f(x) − f(y)| dx dy ≤
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≤ |I1|2
|I|2

1
|I1|2

∫
I1

∫
I1

|f(x) − f(y)| dx dy ≤ c2
γΩ′′(f ; I1) ≤ 2c2

γΩ(f ; I1).

Notice, that the interval I1 has the form [−b, γb] with b > 0. So, it remains to
estimate the oscillations of the function f over the intervals I ≡ [−b, γb]. We
have

fI =
1

(γ + 1)b

∫ γb

−b

f(x) dx =

=
1

(γ + 1)b

∫ 0

−b

ln(1 − γx) dx +
1

(γ + 1)b

∫ γb

0

ln(1 + x) dx =

=
1

γ(γ + 1)b

∫ 1+γb

1

ln t dt +
1

(γ + 1)b

∫ 1+γb

1

ln t dt =

=
1

γ + 1
g[1,1+γb] +

γ

γ + 1
g[1,1+γb] = g[1,1+γb],

f[0,γb] =
1
γb

∫ γb

0

ln(1 + x) dx =
1
γb

∫ 1+γb

1

ln t dt = g[1,1+γb],

so that f[−b,0] = f[0,γb] = fI = g[1,1+γb]. From here, by Property 2.1,

Ω(f ; I) =
2
|I|

∫
{x∈I: f(x)>fI}

(f(x) − fI) dx =

=
2
|I|

∫
{x∈[−b,0]: f(x)>f[−b,0]}

(
f(x) − f[−b,0]

)
dx+

+
2
|I|

∫
{x∈[0,γb]: f(x)>f[0,γb]}

(
f(x) − f[0,γb]

)
dx =

=
b

|I|Ω(f ; [−b, 0]) +
γb

|I|Ω(f ; [0, γb]).

But, as we have already shown above,

Ω(f ; [−b, 0]) ≤ 2
e
, Ω(f ; [0, γb]) ≤ 2

e
,

so that

Ω(f ; I) ≤ 2
e

(
b

|I| +
γb

|I|
)

=
2
e
.

Finally,

‖f‖∗ ≤ 4
e
c2
γ ≡ Cγ ,

and this completes the analysis of this example. �
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Example 2.31. If f ∈ BMO([a0, b0]) with −∞ ≤ a0 < b0 ≤ +∞,
then for any numbers α �= 0 and β the function g(x) = f(αx + β) be-
longs to BMO([a1, b1]) and ‖f‖∗ = ‖g‖∗. Here we use the notations a1 =
min

(
a0−β

α , b0−β
α

)
, b1 = max

(
a0−β

α , b0−β
α

)
. In other words, the linear change

of variable does not change the BMO-norm of functions.
Indeed, it follows immediately from the following obvious equality:

Ω(f ; [a, b]) = Ω(g; [a′, b′]),

where [a, b] ⊂ [a0, b0], a′ = min
(

a−β
α , b−β

α

)
, b′ = max

(
a−β

α , b−β
α

)
, [a′, b′] ⊂

[a1, b1]. �
Until now we have considered the oscillations of functions on the cubes

Q ⊂ R
d and the BMO-class, related to them. It is easy to see that the

properties of oscillations, considered in the previous section, hold true if we
replace the cubes Q by the multidimensional segments R. We will denote by
BMOR the class of all functions f ∈ Lloc(Rd) such that

‖f‖∗,R ≡ sup
R

Ω(f ;R) < ∞.

Here the supremum in taken over all possible multidimensional segments R ⊂
R

d. Analogously one can define the class BMOR(R0) with respect to a fixed
segment R0 ⊂ R

d. The classes BMOR are called the anisotropic BMO-classes.

If d = 1, then obviously BMOR = BMO. Further, BMO ⊃ BMOR since
a cube is a particular case of a segment. The next example shows that if d ≥ 2,
the classes BMO and BMOR do not coincide.

Example 2.32 of a function f ∈ BMO, which does not belong to
BMOR.

Let us consider the case d = 2. Set

f(x) =
∞∑

k=1

χ[0,2−k+1]×[0, 1
k ](x), x ≡ (x1, x2) ∈ [0, 1]2 ≡ Q0.

As it was noticed before (see p. 40), in order to prove that f belongs to
BMO(Q0) it is enough to prove that the mean oscillations of f are bounded
with respect to all cubes Q ⊂ Q0 such that l(Q) ≤ 2−10. So, we will consider
only such cubes.

Let Q ≡ [α1, β1] × [α2, β2] ⊂ Q0.
If α1 > 1

2β1, then it is easy to see that there exists an integer k such that
2−k−1 ≤ α1 < β1 ≤ 2−k+1. If k ≥ 8, then for m = 0, 1, . . . , k

β2 − α2 = l(Q) = β1 − α1 ≤ 3 · 2−k−1 ≤ 1
(k + 1)(k + 2)

≤ 1
m + 1

− 1
m + 2

,

and if k < 8, then



2.2 Definition of the BMO-class and Examples 51

β2 −α2 = l(Q) ≤ 2−10 ≤ 1
(k + 1)(k + 2)

≤ 1
m + 1

− 1
m + 2

, m = 0, 1, . . . , k.

Therefore for any two points x, y ∈ Q we have the inequality |f(x)−f(y)| ≤ 1,
so that in this case (see Property 2.5)

Ω(f ;Q) ≤ 1.

It remains to consider the case α1 ≤ 1
2β1. Choose an integer k such that

2−k ≤ β1 ≤ 2−k+1. Then

l(Q) = β1 − α1 ≥ 1
2
β1 ≥ 2−k−1 =

1
4
2−k+1.

Let us denote by Q′ the cube such that its projections on the Ox1 and Ox2-
axes are equal to [0, 2−k+1] and [α′

2, β
′
2] ⊃ [α2, β2] respectively, and β′

2 −α′
2 =

2−k+1. Then Q′ ⊃ Q, l(Q′) ≤ 4l(Q), so that

Ω(f ;Q) ≤ 1
|Q|2

∫
Q

∫
Q

|f(x) − f(y)| dx dy ≤

≤ |Q′|2
|Q|2

1
|Q′|2

∫
Q′

∫
Q′

|f(x) − f(y)| dx dy ≤ 44 · 2Ω(f ;Q′).

So, it remains to check the boundedness of the mean oscillations of the function
f over all possible cubes Q ⊂ Q0 of the form

Q =
[
0, 2−k+1

]× [
α, α + 2−k+1

]
, 0 ≤ α ≤ 1 − 2−k+1, k ≥ 8. (2.36)

Let the cube Q be of the form (2.36). If α ≥ 1
k+1 , then from the inequality

l(Q) = 2−k+1 ≤ 1
k(k + 1)

≤ 1
m

− 1
m + 1

, m = 1, 2, . . . , k,

it follows that for any two points x, y ∈ Q we have |f(x)− f(y)| ≤ 1. That is,
again we obtain

Ω(f ;Q) ≤ 1.

If α < 1
k+1 , then the inequality

α + l(Q) ≤ 1
k + 1

+ 2−k+1 ≤ 1
k

imply that
inf
x∈Q

f(x) = k.

Therefore (see Property 2.4)

Ω(f ;Q) ≤ 2 inf
c∈R

1
|Q|

∫
Q

|f(x) − c| dx ≤ 2
|Q|

∫
Q

(
f(x) − inf

y∈Q
f(y)

)
dy =
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= 2 · 1
2−k+1

1
2−k+1

∫ 2−k+1

0

dx1

∫ α+2−k+1

α

(f(x1, x2) − k) dx2 =

= 2 · 1
2−k+1

1
2−k+1

∞∑
s=k

∫ 2−s+1

2−s

dx1

∫ α+2−k+1

α

(f(x1, x2) − k) dx2 ≤

≤ 2 · 1
2−k+1

1
2−k+1

∞∑
s=k

∫ 2−s+1

2−s

dx1

∫ α+2−k+1

α

(s − k) dx2 =

= 2 · 1
2−k+1

∞∑
s=k

(s − k)2−s =
∞∑

s=0

s2−s < ∞.

So, we have proved that f ∈ BMO(Q0).
Now let us show that f /∈ BMOR(Q0). For k ≥ 100 denote Rk =[

0, 2−k+1
]× [0, 1]. Then

fRk
=

1
2−k+1

{
k−1∑
s=1

s

(
1
s
− 1

s + 1

)
· 2−k+1+

+
∞∑

s=k

s

(
1
s
· 2−s+1 − 1

s + 1
· 2−s

)}
=

=
k∑

s=1

1
s

+
∞∑

s=1

1
s + k

· 2−s.

Notice, that

fRk
≥

k∑
s=1

1
s
≥ ln(k + 1) ≥ [ln(k + 1)] ≡ Lk,

where [·] denotes the integer part function. From here we obtain (see Property
2.1)

Ω(f ;Rk) =
2

|Rk|
∫
{x∈Rk: f(x)<fRk}

(fRk
− f(x)) dx ≥

≥ 2
|Rk|

∫
{x∈Rk: f(x)<Lk}

(Lk − f(x)) dx ≥

≥ 2k
Lk∑
s=1

∫ 1
s

1
s+1

dx2

∫ 2−k+1

0

(Lk − f(x1, x2)) dx1 =
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= 2
Lk∑
s=1

(Lk − s)
(

1
s
− 1

s + 1

)
= 2Lk

(
1 − 1

Lk + 1

)
− 2

Lk∑
s=1

1
s + 1

≥

≥ 2Lk − 2 − 2 ln(Lk + 1) → ∞, k → ∞.

This concludes the analysis of the example. �
In the paper of R. Coifman and R. Rochberg [9] there was defined the

BLO(Rd)-class of functions of bounded lower oscillation. This class consists
of all locally summable functions f which are locally essentially bounded from
below and such that

‖f‖BLO ≡ sup
Q

L(f ;Q) < ∞.

Here the supremum is taken over all cubes Q ⊂ R
d, and the quantity

L(f ;Q) ≡ 1
|Q|

∫
Q

f(x) dx − ess inf
x∈Q

f(x)

is called the lower oscillation of the function f on the cube Q. Analogously
one can define the class BLO(Q0) for a fixed cube Q0 ⊂ R

d. It is easy to see
that, unlikely BMO, the BLO-class is not a linear space.

From the trivial inequality

Ω(f ;Q) ≤ 2Ω′(f ;Q) = 2 inf
c

1
|Q|

∫
Q

|f(x) − c| dx ≤

≤ 2
1
|Q|

∫
Q

(
f(x) − ess inf

y∈Q
f(y)

)
dx = 2L(f ;Q), Q ⊂ R

d, (2.37)

it follows immediately that BLO ⊂ BMO and ‖f‖∗ ≤ 2‖f‖BLO. The inverse
inclusion BLO ⊃ BMO is not true just because the BMO-class contains
locally essentially unbounded from below functions. But even for the non-
negative functions the BMO-class is substantially larger, than BLO. Indeed,
in Example 2.20 we showed that the function f(x) = ln(1+|x|), x ∈ R belongs
to BMO, while

L(f ; [0, a]) =
1
a

∫ a

0

ln(1 + x) dx → +∞, as a → +∞,

so that f /∈ BLO(R). Let us give one more example, which shows that also
in the case of the finite interval I0 ⊂ R the class of essentially bounded from
below functions of bounded mean oscillation is larger than BLO(I0).

Example 2.33. Let I0 =
[
0, 1

2

]
. Let us show that the non-negative function

f(x) =
∞∑

k=1

ln
(
2k − (

2k − 1
)
2k+2

∣∣x − 3 · 2−k−2
∣∣)χ(2−k−1,2−k](x), x ∈ I0,
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does not belong to BLO(I0), but f ∈ BMO(I0).
Indeed, denote Ik =

[
2−k−1, 2−k

]
, k = 1, 2, . . . Then ess infx∈Ik

f(x) = 0
and

L (f ; Ik) = fIk
= 2k+1

∫ 2−k

2−k−1
f(x) dx =

= 2k+1

∫ 2−k

2−k−1
ln
(
2k − (

2k − 1
)
2k+2

∣∣x − 3 · 2−k−2
∣∣) dx =

= 2k+1

∫ 2−k−2

−2−k−2
ln
(
2k − (

2k − 1
)
2k+2|t|) dt =

= 2k+2

∫ 2−k−2

0

ln
(
2k − (

2k − 1
)
2k+2t

)
dt =

1
2k − 1

∫ 2k

1

ln v dv =

=
1

2k − 1
(
2kk ln 2 − 2k + 1

)
= k ln 2 − 1 +

k ln 2
2k − 1

≥ k ln 2 − 1. (2.38)

This means that f /∈ BLO(I0).
Now let us show that f ∈ BMO(I0). Let I ≡ [a, b] ⊂ I0, and let the integer

k be such that 2−k−1 < b ≤ 2−k. We have to distinguish between two cases.
1. If a ≤ 3

4b, then b − a ≥ 1
4b ≥ 2−k−3, i.e., I ′k ≡ [

0, 2−k
] ⊃ [a, b] and

|I ′k| ≤ 8|I|. Hence

Ω(f ; I) ≤ Ω′′(f ; I) =
1

|I|2
∫

I

∫
I

|f(x) − f(y)| dx dy ≤

≤ |I ′k|2
|I|2

1
|I ′k|2

∫
I′

k

∫
I′

k

|f(x) − f(y)| dx dy ≤ 64Ω′′ (f ; I ′k) ≤ 128Ω (f ; I ′k) .

Let us estimate Ω (f ; I ′k). By (2.38) and the properties of oscillations,

fI′
k

= 2k

∫ 2−k

0

f(x) dx = 2k
∞∑

j=k

∫ 2−j

2−j−1
f(x) dx =

= 2k
∞∑

j=k

2−j−1fIj
= 2k

∞∑
j=k

2−j−1

(
j ln 2 − 1 +

j ln 2
2j − 1

)
=

=
∞∑

s=0

2−s−1

(
(s + k) ln 2 − 1 +

(s + k) ln 2
2s+k − 1

)
=
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= k ln 2 + ln 2
∞∑

s=0

s2−s−1 − 1 +
∞∑

s=0

2−s−1 (s + k) ln 2
2s+k − 1

≥

≥ k ln 2 + ln 2
∞∑

s=0

s2−s−1 − 1 = k ln 2 + ln 2 − 1,

Ω (f ; I ′k) = 2 · 2k

∫{
x∈I′

k
: f(x)>fI′

k

} (f(x) − fI′
k

)
dx ≤

≤ 2k+1

∫
{x∈I′

k
: f(x)>k ln 2+ln 2−1}

(f(x) − (k ln 2 + ln 2 − 1)) dx =

= 2k+1
∞∑

j=k

∫
{x∈Ij : f(x)>k ln 2+ln 2−1}

(f(x) − (k ln 2 + ln 2 − 1)) dx ≤

≤ 2k+1
∞∑

j=k

2−j−1

(
max
x∈Ij

f(x) − k ln 2 − ln 2 + 1
)

=

= 2k+1
∞∑

j=k

2−j−1 (j ln 2 − k ln 2 − ln 2 + 1) =

=
∞∑

j=k

2−(j−k) ((j − k) ln 2 − ln 2 + 1) =
∞∑

s=0

2−s(s ln 2 − ln 2 + 1) =

= ln 2
∞∑

s=0

s2−s − 2 ln 2 + 2 = 2. (2.39)

2. If 3
4b < a < b, then [a, b] ⊂ [

3 · 2−k−3, 2−k
]
. If 2−k−1 /∈ (a, b) and

3 · 2−k−2 /∈ (a, b), then from Example 2.31 we see that Ω(f ; [a, b]) does not
exceed the BMO-norm of the function g(x) = ln 1

x , x > 0, i.e.,

Ω(f ; [a, b]) ≤ 2
e
. (2.40)

If 3·2−k−2 ∈ (a, b), then [a, b] ⊂ [
2−k−1, 2−k

]
and, according to Examples 2.31,

2.29 and 2.24,

Ω(f ; [a, b]) ≤ 4
e
. (2.41)

If 2−k−1 ∈ (a, b), then [a, b] ⊂ [
3 · 2−k−3, 3 · 2−k−2

]
. Making the change

of variables τ = 2k+2
(
2k − 1

) (
x − 2−k−1

)
and taking into account Exam-

ple 2.31, we obtain that Ω(f ; [a, b]) does not exceed the BMO-norm of the
function
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ϕ(τ) = ln(1 + |τ |)χ[0,+∞)(τ) + ln

(
1 +

2
(
2k+1 − 1

)
2k − 1

|τ |
)

χ(−∞,0)(τ), τ ∈ R.

We can apply the result of Example 2.30 to the function ϕ, taking γ =
2
(
2k+1 − 1

)
/
(
2k − 1

)
. Since 2 ≤ γ ≤ 6 we see that

Cγ =
4
e
c2
γ =

4
e

(
1 + γ +

1
γ

)2

< 128.

Thus
Ω(f ; [a, b]) ≤ 128. (2.42)

From (2.39) – (2.42) it follows that f ∈ BMO(I0). �
Now let us consider more in detail the case, when the function f is non-

increasing on R+. Clearly f is locally essentially bounded from below. In this
case ‖f‖BLO, together with ‖f‖∗, is equal to the supremum of the oscillations
over all possible intervals, having the left end at zero. Moreover, we have

Lemma 2.34 ([41]). Let the locally summable function f be non-increasing
on R+. Then

‖f‖BLO = sup
b>0

L(f ; [a, b]) = sup
b>0

(
1
b

∫ b

0

f(x) dx − f(b)

)
. (2.43)

Proof. Let [a, b] ⊂ R+. Since f is non-increasing

L(f ; [a, b]) =
1

b − a

∫ b

a

f(x) dx − ess inf
x∈[a,b]

f(x) ≤

≤ 1
b

∫ b

0

f(x) dx − ess inf
x∈[0,b]

f(x) = L(f ; [0, b]).

This implies the first equality of (2.43).
In order to prove the second equality let us remark, that the inequality

f(b) ≤ ess infx∈[a,b] f(x) implies

L(f ; [a, b]) ≤ 1
b

∫ b

0

f(x) dx − f(b),

so that

sup
b>0

L(f ; [a, b]) ≤ sup
b>0

(
1
b

∫ b

0

f(x) dx − f(b)

)
. (2.44)

On the other hand, by the continuity of the integral with respect to the upper
limit, for b > 0
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L(f ; [0, β]) =
1
β

∫ β

0

f(x) dx − ess inf
x∈[0,β]

f(x) ≥

≥ 1
β

∫ β

0

f(x) dx − f(b) → 1
b

∫ b

0

f(x) dx − f(b) as β → b + 0.

Then

sup
β>0

L(f ; [0, β]) ≥ 1
b

∫ b

0

f(x) dx − f(b),

so that

sup
β>0

L(f ; [0, β]) ≥ sup
b>0

(
1
b

∫ b

0

f(x) dx − f(b)

)
. (2.45)

Estimates (2.44) and (2.45) yield the second equality of (2.43). �
Lemma 2.35 ([41]). Let f be a summable non-increasing function on I ≡
[a, b], and let s ∈ (a, b) be such that f(x) ≥ fI if a ≤ x ≤ s, and f(x) ≤ fI if
s ≤ x ≤ b. Then

sup
γ∈[a,b]

∫ γ

a

(f(x) − fI) dx =
∫ s

a

(f(x) − fI) dx =
b − a

2
Ω(f ; [a, b]) =

=
∫ b

s

(fI − f(x)) dx = sup
γ∈[a,b]

∫ b

γ

(fI − f(x)) dx. (2.46)

Proof. The second and the third equalities of this chain follow from Prop-
erty 2.1. The first and the last equalities of (2.46) can be proved analogously.
We will prove only the first one. It is enough to show, that for any γ ∈ [a, b]∫ γ

0

(f(x) − fI) dx ≤
∫ s

a

(f(x) − fI) dx. (2.47)

If γ < s, then (2.47) follows from the fact that f(x) ≥ fI for γ ≤ x ≤ s.
Otherwise, if γ > s, then (2.47) follows from the inequality f(x) ≤ fI for
s ≤ x ≤ γ. �

The next theorem provides the exact relations between the BMO and
BLO norms of a non-increasing function. In particular, it shows that for the
non-increasing on R+ functions the classes BMO and BLO coincide.

Theorem 2.36 ([41]). Let f be a non-increasing function on R+. Then

1
2
‖f‖BLO ≤ ‖f‖∗ ≤ 2

e
‖f‖BLO. (2.48)

Moreover, in general the constants 1
2 and 2

e in the left and right-hand sides
are sharp.
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Proof. For b > 0 the monotonicity of f and Lemma 2.35 imply

1
b

∫ b

0

f(x) dx − f(b) ≤ 1
b

∫ b

0

f(x) dx − 1
b

∫ 2b

b

f(x) dx =

= 2

[
1
2b

∫ b

0

(
f(x) − f[0,2b]

)
dx +

1
2b

∫ 2b

b

(
f[0,2b] − f(x)

)
dx

]
≤ 2Ω(f ; [0, 2b]).

Now the left inequality of (2.48) follows from Lemma 2.34.
For the function f(x) = χ[0,1](x), x ≥ 0 we have ‖f‖∗ = 1

2 , ‖f‖BLO = 1,
so that the constant 1

2 in the left-hand side of (2.48) cannot be increased.
Now let us prove the right inequality of (2.48). By Lemma 2.34,

A ≡ ‖f‖BLO = sup
y>0

(
1
y

∫ y

0

f(x) dx − f(y)
)

.

Let us rewrite this inequality as follows:

1
y

∫ y

0

f(x) dx ≤ A + f(y), y > 0.

Dividing by y and making the integration from ε to s with 0 < ε < s, we
obtain∫ s

ε

∫ y

0

f(x) dx
dy

y2
≤ A

∫ s

ε

dy

y
+
∫ s

ε

f(y)
dy

y
= A ln

s

ε
+
∫ s

ε

f(y)
dy

y
. (2.49)

Changing the order of integration in the left-hand side of (2.49), we see that
the left-hand side of (2.49) is equal to∫ ε

0

f(x)
∫ s

ε

dy

y2
dx +

∫ s

ε

f(x)
∫ s

x

dy

y2
dx =

=
1
ε

∫ ε

0

f(x) dx − 1
s

∫ s

0

f(x) dx +
∫ s

ε

f(x)
dx

x
.

From here and from (2.49)

1
ε

∫ ε

0

f(x) dx − 1
s

∫ s

0

f(x) dx ≤ A ln
s

ε
, 0 < ε < s.

Hence
1
s

∫ s

0

f(x) dx − 1
s − ε

∫ s

ε

f(x) dx =

=
1
s

∫ s

0

f(x) dx − 1
s − ε

(∫ s

0

f(x) dx −
∫ ε

0

f(x) dx

)
=
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=
ε

s − ε

1
ε

∫ ε

0

f(x) dx − ε

s − ε

1
s

∫ s

0

f(x) dx ≤ A
ε

s − ε
ln

s

ε
,

or, equivalently,

1
s − ε

∫ s

ε

(
f[0,s] − f(x)

)
dx ≤ A

ε

s − ε
ln

s

ε
,

i.e.
1
s

∫ s

ε

(
f[0,s] − f(x)

)
dx ≤ A

ε

s
ln

s

ε
. (2.50)

Since ln t
t ≤ 1

e , t ≥ 1 for 0 < ε < s inequality (2.50) implies

1
s

∫ s

ε

(
f[0,s] − f(x)

)
dx ≤ A

e
. (2.51)

On the other hand, according to Lemma 2.35,

sup
{ε: 0<ε≤s}

1
s

∫ s

ε

(
f[0,s] − f(x)

)
dx =

1
2
Ω(f ; [0, s]),

so that (2.51) implies

Ω(f ; [0, s]) ≤ 2
e
A. (2.52)

It remains to notice, that, as it follows from Property 2.15, if f is a non-
increasing function on R+, then

‖f‖∗ = sup
s>0

Ω(f ; [0, s]).

Hence, taking the supremum over all s > 0 in (2.52), we obtain the right
inequality of (2.48).

Finally, as we saw in Example 2.24, for the function f(x) = ln 1
x , x > 0

we have ‖f‖∗ = 2
e . On the other hand, according to Lemma 2.34,

‖f‖BLO = sup
b>0

(
1
b

∫ b

0

ln
1
x

dx − ln
1
b

)
= 1.

So, the constant 2
e in the right-hand side of (2.48) cannot be decreased. �



3

Estimates of Rearrangements
and the John–Nirenberg Theorem

3.1 Estimates of Rearrangements of the BMO-functions

The aim of the present section is to show that the non-increasing rearrange-
ment f∗ of a BMO-function f is also a BMO-function. First we will consider
the case of the function f defined on the whole R

d. As it was mentioned above,
in addition we have to assume that f∗(t) is defined for all t > 0.

Theorem 3.1 (Bennett, De Vore, Sharpley, [1]). Let f ∈ BMO(Rd).
Then

f∗∗(t) − f∗(t) ≤ 2d+4‖f‖∗, 0 < t < ∞. (3.1)

Proof. Since ‖ |f | ‖∗ ≤ 2‖f‖∗ it is enough to prove the inequality

f∗∗(t) − f∗(t) ≤ 2d+3‖f‖∗ (3.2)

for a non-negative function f .
Fix t > 0 and denote E = {x ∈ R

d : f(x) > f∗(t)}. Then |E| ≤ t. Let
us construct an open set G ⊃ E such that |G| ≤ 2t. Applying Lemma 1.12 to
the set G we obtain a collection of cubes Qj with pairwise disjoint interiors,
which satisfy properties (1.11), (1.12) and (1.13) of the lemma. Then

t (f∗∗(t) − f∗(t)) =
∫ t

0

(f∗(u) − f∗(t)) du =

=
∫ |E|

0

(f∗(u) − f∗(t)) du +
∫ t

|E|
(f∗(u) − f∗(t)) du =

=
∫ |E|

0

(f∗(u) − f∗(t)) du =
∫

E

(f(x) − f∗(t)) dx =
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=
∑

j

∫
E∩Qj

(f(x) − f∗(t)) dx =

=
∑

j

∫
E∩Qj

(
f(x) − fQj

)
dx +

∑
j

(
fQj

− f∗(t)
) |E ∩ Qj | ≤

≤
∑

j

∫
E∩Qj

∣∣f(x) − fQj

∣∣ dx +
∑′

j

(
fQj

− f∗(t)
) |E ∩ Qj | , (3.3)

where
∑′

j denotes the sum over all numbers j such that fQj
> f∗(t). We have∑′

j

(
fQj

− f∗(t)
) |E ∩ Qj | ≤

∑′
j

(
fQj

− f∗(t)
) |G ∩ Qj | ≤

≤
∑′

j

(
fQj

− f∗(t)
) |Qj \ G| =

∑′
j

∫
Qj\G

(
fQj

− f∗(t)
)

dx ≤

≤
∑′

j

∫
Qj\G

(
fQj

− f(x)
)

dx ≤
∑′

j

∫
Qj

∣∣f(x) − fQj

∣∣ dx ≤

≤
∑

j

∫
Qj

∣∣f(x) − fQj

∣∣ dx.

Then (3.3) becomes

t (f∗∗(t) − f∗(t)) ≤ 2
∑

j

∫
Qj

∣∣f(x) − fQj

∣∣ dx ≤

≤ 2‖f‖∗
∑

j

|Qj | ≤ 2d+2‖f‖∗ · |G| ≤ 2d+3‖f‖∗ · t,

which is exactly (3.2). �
In particular, from this lemma it follows that the rearrangement operator

is bounded in BMO.

Theorem 3.2 (Garsia, Rodemich (d = 1), [17]; Bennett, De Vore,
Sharpley (d ≥ 1), [1]). Let f ∈ BMO(Rd). Then f∗ ∈ BMO([0,∞)) and

‖f∗‖∗ ≤ c‖f‖∗,

where the constant c depends only on the dimension d of the space (one can
take c = 2d+5).
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Proof. Since f∗ is a non-increasing function on [0,∞)

‖f∗‖∗ = sup
t>0

Ω(f∗; [0, t]).

But by the properties of oscillations

Ω(f∗; [0, t]) ≤ 2Ω′(f∗; [0, t]) = 2 inf
c

1
t

∫ t

0

|f∗(u) − c| du ≤

≤ 2
t

∫ t

0

(f∗(u) − f∗(t)) du = 2 (f∗∗(t) − f∗(t)) ,

and the result follows from the previous theorem. �
Now let us consider the case f ∈ BMO(Q0) for a fixed cube Q0 ⊂ R

d. In
this case the presented proof of inequality (3.1) is valid only for t such that
0 < t ≤ 1

4 |Q0| because it is based on the application of Lemma 1.13, which
requires |G| ≤ 1

2 |Q0|. Therefore the following theorem is valid.

Theorem 3.3 (Bennett, De Vore, Sharpley, [1]). Let f ∈ BMO(Q0).
Then

f∗∗(t) − f∗(t) ≤ 2d+4‖f‖∗, 0 < t ≤ 1
4
|Q0|. (3.4)

Let us show that (3.4) fails as t → |Q0| even if the coefficient in its right-
hand side is arbitrarily big. Indeed, for 0 < h < 1 set f(x) = ln 1−x

h , x ∈
Q0 ≡ [0, 1 − h]. Since f does not increase on [0, 1 − h] it follows that f∗(t) =
f(t), 0 < t ≤ 1 − h = |Q0|, and f∗(1 − h) = 0. It is easy to see that ‖f‖∗
does not exceed the BMO-norm of the function ln 1

x , 0 < x < ∞, so that
‖f‖∗ ≤ 2

e . Thus it remains to show that f∗∗(1 − h) → ∞ as h → 0. But this
is indeed true, because

f∗∗(1 − h) =
1

1 − h

∫ 1−h

0

f∗(u) du =
1

1 − h

∫ 1−h

0

ln
1 − u

h
du =

=
h

1 − h

∫ 1

h

ln
1
z

dz

z2
=

1
1 − h

ln
1
h
− 1 → ∞, h → 0.

We see that (3.4) fails for t = |Q0|, and hence also for t close to |Q0|. However,
the analog of Theorem 3.2 for BMO(Q0) is true.

Theorem 3.4 (Garsia, Rodemich (d = 1), [17]; Bennett, De Vore,
Sharpley (d ≥ 1), [1]). Let f ∈ BMO(Q0). Then f∗ ∈ BMO([0, |Q0|]) and∥∥(f − fQ0)

∗∥∥
∗ ≤ c‖f‖∗,

where the constant c depends only on the dimension d of the space.
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Proof. We can assume that fQ0 = 0. Fix the interval [α, β] ⊂ [0, |Q0|]. If
f∗
[α,β] ≤ |f |Q0 , then

Ω(f∗; [α, β]) ≤ 1
β − α

∫ β

α

∣∣∣f∗(u) − f∗
[α,β]

∣∣∣ du ≤

≤ 2f∗
[α,β] ≤ 2|f |Q0 =

2
|Q0|

∫
Q0

|f(x)| dx ≤ 2‖f‖∗.

In remains to consider the non-trivial case f∗
[α,β] > |f |Q0 . Choose β0, β ≤

β0 ≤ |Q0|, such that f∗
[α,β] = f∗

[0,β0]
. If β0 ≥ 1

4 |Q0|, then

Ω(f∗; [α, β]) ≤ Ω(f∗; [0, β0]) =
2
β0

∫
{u: f∗(u)>f∗∗(β0)}

(f∗(u) − f∗∗(β0)) du ≤

≤ 2
β0

∫
{u: f∗(u)>f∗∗(β0)}

(f∗(u) − |f |Q0) du ≤

≤ 2
β0

∫
{u: f∗(u)>|f |Q0}

(f∗(u) − |f |Q0) du =

=
2
β0

∫
{x∈Q0: |f(x)|>|f |Q0}

(|f(x)| − |f |Q0) dx =

=
|Q0|
β0

Ω(|f |;Q0) ≤ 4 · 2 · Ω(f ;Q0) ≤ 8‖f‖∗.

Otherwise, if β0 ≤ 1
4 |Q0|, then, by Theorem 3.3,

Ω(f∗; [α, β]) ≤ Ω(f∗; [0, β0]) ≤ 2Ω′(f∗; [0, β0]) ≤

≤ 2
β0

∫ β0

0

(f∗(u) − f∗(β0)) du = 2 (f∗∗(β0) − f∗(β0)) ≤ 2d+5‖f‖∗.

Since the interval [α, β] ⊂ [0, |Q0|] was arbitrary the theorem is proved. �
The estimates of the non-increasing rearrangement, which were obtained

in Theorems 3.2 and 3.4, are based on the applications of Theorems 3.1 and
3.3 respectively, while for the proofs of Theorems 3.1 and 3.3 we used Lemma
1.12. Now we are going to consider another method of getting estimates for the
BMO-norm of the non-increasing rearrangement, based on the application of
“rising sun lemma” 1.16. For this we will use the non-increasing equimeasur-
able rearrangement fd.

Theorem 3.5 (Klemes, [32]). Let f ∈ BMO([a0, b0]). Then

‖fd‖∗ ≤ ‖f‖∗.
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Proof. Fix the segment J ⊂ [0, b0 − a0] and denote α = 1
|J|
∫

J
fd(u) du. First

let us consider the case α ≥ 1
b0−a0

∫ b0
a0

f(x) dx. Applying “rising sun lemma”
1.16 we construct the pairwise disjoint intervals Ij ⊂ [a0, b0], j = 1, 2, . . . , such
that fIj

= α and f(x) ≤ α at almost every x ∈ [a0, b0] \E with E =
⋃

j≥1 Ij .
If we prove the inequality

1
|J |

∫
J

|fd(t) − α| dt ≤ 1
|E|

∫
E

|f(x) − α| dx, (3.5)

then it will remain to use the fact, that

fE =
1
|E|

∫
E

f(x) dx =
1∑
j |Ij |

∑
j

∫
Ij

f(x) dx = α, (3.6)

and
1
|E|

∫
E

|f(x) − α| dx =
1
|E|

∑
j

∫
Ij

|f(x) − α| dx =

=
1
|E|

∑
j

|Ij | 1
|Ij |

∫
Ij

∣∣f(x) − fIj

∣∣ dx =
1
|E|

∑
j

|Ij |Ω(f ; Ij) ≤ ‖f‖∗.

In order to prove (3.5), choose the maximal t ∈ (0, b0 − a0] such that
J ⊂ [0, t] and 1

t

∫ t

0
fd(u) du = α. The existence of such a t is guaranteed by

the condition

1
b0 − a0

∫ b0−a0

0

fd(u) du =
1

b0 − a0

∫ b0

a0

f(x) dx ≤ α =
1
|J |

∫
J

fd(u) du.

Using the monotonicity of the function fd and applying Property 2.15, we
obtain

1
|J |

∫
J

|fd(u) − α| du ≤ 1
t

∫ t

0

|fd(u) − α| du.

Now for the proof of (3.5) it is enough to show that

1
t

∫ t

0

|fd(u) − α| du ≤ 1
|E|

∫
E

|f(x) − α| dx. (3.7)

But (3.7) is a consequence of the following two relations

t ≥ |E|, (3.8)∫ t

0

|fd(u) − α| du =
∫

E

|f(x) − α| dx. (3.9)

Concerning (3.8), notice that by the definition of the non-increasing rearrange-
ment we have ∫ |E|

0

fd(u) du ≥
∫

E

f(x) dx,
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so that, by (3.6),

1
|E|

∫ |E|

0

fd(u) du ≥ 1
|E|

∫
E

f(x) dx = α =
1
t

∫ t

0

fd(u) du.

From here and from the monotonicity of fd inequality (3.8) follows. In order to
prove (3.9) let us use the fact that f(x) ≤ α almost everywhere on [a0, b0] \E
(see (1.20)). Then, by (3.6) and the properties of mean oscillations,∫ t

0

|fd(u) − α| du = 2
∫
{u∈[0,t]: fd(u)>α}

(fd(u) − α) du =

= 2
∫
{x∈[a0,b0]: f(x)>α}

(f(x) − α) dx = 2
∫
{x∈E: f(x)>α}

(f(x) − α) dx =

=
∫

E

|f(x) − α| dx.

This concludes the proof of inequality (3.7).
In the case α < 1

b0−a0

∫ b0
a0

f(x) dx it is enough to apply the previous
arguments to the function −f and notice that the equality (−f)d(t) =
−fd(b0 − a0 − t) holds true for all t ∈ [0, b0 − a0] except the set of mea-
sure zero of the points of discontinuity of the function (−f)d. In this case
again we have

1
|J |

∫
J

|fd(u) − α| du ≤ ‖f‖∗,

and this complete the proof of the theorem. �
Remark 3.6. As it was already noticed, if the function f is non-negative on
[a0, b0], then f∗ = fd. So, in this case Theorem 3.5 leads to the inequality

‖f∗‖∗ ≤ ‖f‖∗, (3.10)

which is sharp in the sense of constants. In this sense the estimate (3.10) for
d = 1 is better than the one provided by Theorem 3.2.

If we drop the assumption that f is non-negative, then

f∗ = |f |d.

If in addition we take into account (Property 2.6) that

Ω(|f |; I) ≤ 2Ω(f ; I), I ⊂ [a0, b0], (3.11)

then, applying Theorem 3.5, we obtain

‖f∗‖∗ = ‖ |f |d ‖∗ ≤ ‖ |f | ‖∗ ≤ 2‖f‖∗. (3.12)
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However, the last inequality is not sharp despite of the fact that the constant 2
in (3.11) cannot be decreased (Property 2.6). Actually there holds true the
following theorem.

Theorem 3.7 ([34]). Let f ∈ BMO([a0, b0]). Then

‖ |f | ‖∗ ≤ ‖f‖∗. (3.13)

Proof. Fix the interval I ⊂ [a0, b0] and denote by g = f |I the restriction of f
to I. Obviously then

Ω(|f |; I) = Ω(|g|; I) = Ω(|gd|; [0, |I|]).
But in view of Theorem 3.5, for any interval J ⊂ [0, |I|] we have

Ω(gd;J) ≤ sup
K⊂I

Ω(g;K) = sup
K⊂I

Ω(f ;K) ≤ ‖f‖∗.

Hence in order to prove the theorem it is enough to prove the inequality

Ω(|gd|; [0, |I|]) ≤ sup
J⊂[0,|I|]

Ω(gd;J). (3.14)

Without loss of generality we can assume that |I| = 1. Denote K = [0, 1], h =
gd, β = |h|K , γ = hK . Then (3.14) becomes∫

K

| |h(t)| − β| dt ≤ sup
J⊂K

1
|J |

∫
J

|h(t) − hJ | dt. (3.15)

The proof of the theorem splits into the following three cases:
1. limt→1−0 h(t) ≥ −β; obviously in this case limt→0+ h(t) > β;
2. limt→0+ ≤ β; obviously in this case limt→1−0 h(t) < −β;
3. limt→1−0 h(t) < −β and limt→0+ h(t) > β.
In the first case, by properties of mean oscillations,∫

K

| |h(t)| − β| dt = 2
∫
{t∈K: |h(t)|>β}

(|h(t)| − β) dt =

= 2
∫
{t∈K: h(t)>β}

(h(t) − β) dt ≤ 2
∫
{t∈K: h(t)>γ}

(h(t) − γ) dt =

=
∫

K

|h(t) − γ| dt =
∫

K

|h(t) − hK | dt.

Similarly, in the second case we have∫
K

| |h(t)| − β| dt = 2
∫
{t∈K: |h(t)|>β}

(|h(t)| − β) dt =
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= 2
∫
{t∈K: h(t)<−β}

(−h(t) − β) dt ≤ 2
∫
{t∈K: h(t)<γ}

(−h(t) − (−γ)) dt =

=
∫

K

|h(t) − γ| dt =
∫

K

|h(t) − hK | dt.

For the third case let us consider the function ϕ(τ) = 1
τ

∫ τ

0
|h(t)| dt. This

function is continuous on (0, 1], limτ→0+ ϕ(τ) > β, ϕ(1) = β, and for ε > 0
small enough

ϕ(1−ε) =
1

1 − ε

∫ 1−ε

0

|h(t)| dt =
1

1 − ε

∫ 1

0

|h(t)| dt− ε

1 − ε

1
ε

∫ 1

1−ε

|h(t)| dt < β.

From the properties of the function ϕ it follows that there exists τ0 ∈ (0, 1)
such that ϕ(τ0) = β. Denote K1 = [0, τ0], K2 = [τ0, 1]. Then

|h|K1 = ϕ(τ0) = β,

|h|K2 =
1

1 − τ0

∫ 1

τ0

|h(t)| dt =
1

1 − τ0

(∫ 1

0

|h(t)| dt −
∫ τ0

0

|h(t)| dt

)
=

=
1

1 − τ0
(β − τ0β) = β,

∫
K

| |h(t)|−β| dt = τ0
1

|K1|
∫

K1

| |h(t)|−β| dt+(1−τ0)
1

|K2|
∫

K2

| |h(t)|−β| dt ≤

≤ max
i=1,2

1
|Ki|

∫
Ki

| |h(t)| − β| dt.

If we show that∫
Ki

| |h(t)| − β| dt ≤
∫

Ki

|h(t) − hKi
| dt, i = 1, 2, (3.16)

then ∫
K

| |h(t)| − β| dt ≤ max
i=1,2

1
|Ki|

∫
Ki

| |h(t)| − β| dt ≤

≤ max
i=1,2

1
|Ki|

∫
Ki

|h(t) − hKi
| dt ≤ sup

J⊂K

1
|J |

∫
J

|h(t) − hJ | dt,

i.e., (3.15). So, it remains to prove (3.16).
For i = 1
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K1

| |h(t)| − β| dt = 2
∫
{t∈K1: |h(t)|>β}

(|h(t)| − β) dt ≤

≤ 2
∫
{t∈K1: h(t)>hK1}

(h(t) − hK1) dt =
∫

K1

|h(t) − hK1 | dt.

Similarly, for i = 2∫
K2

| |h(t)| − β| dt = 2
∫
{t∈K2: |h(t)|>β}

(|h(t)| − β) dt =

= 2
∫
{t∈K2: h(t)<−β}

(−h(t) − β) dt ≤

≤ 2
∫
{t∈K2: h(t)<hK2}

(−h(t) + hK2) dt =
∫

K2

|h(t) − hK2 | dt.

This proves (3.16) and completes the proof of (3.15). �
Remark 3.8. We have proved (3.13) in the one-dimensional case. If the
dimension of the space d ≥ 2, then Property 2.6 immediately implies that

‖ |f | ‖∗ ≤ 2‖f‖∗.
For d ≥ 2 we do not know the minimal constant c (which possibly depends
on d) for the inequality

‖ |f | ‖∗ ≤ c‖f‖∗.
By means of Theorem 3.7 one can improve the last inequality in (3.12)

and obtain the following

Corollary 3.9 ([34]). Let f ∈ BMO([a0, b0]). Then

‖f∗‖∗ ≤ ‖f‖∗. (3.17)

Remark 3.10. For d ≥ 2 we do not know the minimal constant c in the
inequality

‖f∗‖∗ ≤ c‖f‖∗.
Now let us consider the estimates of the BMO-norm of the non-increasing

equimeasurable rearrangement of a BMOR-function. Recall that BMOR dif-
fers from BMO if d ≥ 2 because the oscillations must be calculated over all
possible rectangles, not only the cubes. First of all we prove the multidimen-
sional analog of Theorem 3.5.

Theorem 3.11 ([45]). Let f ∈ BMOR(R0), where R0 ⊂ R
d is a multidi-

mensional segment. Then
‖fd‖∗ ≤ ‖f‖∗,R. (3.18)
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Proof. Essentially we will repeat the proof of Theorem 3.5. Fix the interval
J ⊂ [0, |R0|] and denote α = 1

|J|
∫

J
fd(u) du. Let α ≥ 1

|R0|
∫

R0
f(x) dx. Ap-

plying the multidimensional analog of the Riesz “rising sun lemma” (Lemma
1.30) 1, we construct the pairwise disjoint segments Ij ⊂ R0, j = 1, 2, . . .
such that fIj

= α, j = 1, 2, . . . , and f(x) ≤ α for almost all x ∈ R0 \ E with
E =

⋃
j≥1 Ij . If we prove the inequality

1
|J |

∫
J

|fd(t) − α| dt ≤ 1
|E|

∫
E

|f(x) − α| dx, (3.19)

then in order to complete the proof it will remain to use the relations

fE =
1
|E|

∫
E

f(x) dx =
1∑
j |Ij |

∑
j

∫
Ij

f(x) dx = α, (3.20)

1
|E|

∫
E

|f(x) − α| dx =
1
|E|

∑
j

∫
Ij

|f(x) − α| dx =

=
1
|E|

∑
j

|Ij | 1
|Ij |

∫
Ij

∣∣f(x) − fIj

∣∣ dx =
1
|E|

∑
j

|Ij |Ω(f ; Ij) ≤ ‖f‖∗,R.

For the proof of (3.19) let us choose the maximal t ∈ (0, |R0|] such that
J ⊂ [0, t] and 1

t

∫ t

0
fd(u) du = α. The existence of such a t follows from the

condition

1
|R0|

∫ |R0|

0

fd(u) du =
1

|R0|
∫

R0

f(x) dx ≤ α =
1
|J |

∫
J

fd(u) du.

Using the monotonicity of the function fd and applying Property 2.15, we
obtain

1
|J |

∫
J

|fd(u) − α| du ≤ 1
t

∫ t

0

|fd(u) − α| du.

So, in order to prove (3.19) it is enough to show that

1
t

∫ t

0

|fd(u) − α| du ≤ 1
|E|

∫
E

|f(x) − α| dx. (3.21)

In its own turn the inequality (3.21) is a consequence of the following two
statements:
1 We could also use Lemma 1.21 and Remark 1.24. But in order to use Remark 1.24

one should prove that f ∈ Lp(R0) for some p > 1. Indeed, from the John–
Nirenberg inequality, which will be proved in the next section, it follows that
f ∈ Lp(R0) for every p < ∞. This is not a vicious circle, because we do not need
Theorem 3.11 to prove the John–Nirenberg inequality (for d = 2 it is enough to
use Lemma 1.22).
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t ≥ |E|, (3.22)∫ t

0

|fd(u) − α| du =
∫

E

|f(x) − α| dx. (3.23)

For the proof of (3.22) notice, that by the definition of the non-increasing
rearrangement ∫ |E|

0

fd(u) du ≥
∫

E

f(x) dx,

so that, by (3.20),

1
|E|

∫ |E|

0

fd(u) du ≥ 1
|E|

∫
E

f(x) dx = α =
1
t

∫ t

0

fd(u) du.

Taking into account the monotonicity of fd, from here we obtain (3.22).
For the proof of (3.23) we will use the fact that f(x) ≤ α almost everywhere

on R0 \ E. Then, applying (3.20) and the properties of mean oscillations, we
get ∫ t

0

|fd(u) − α| du = 2
∫
{u∈[0,t]: fd(u)>α}

(fd(u) − α) du =

= 2
∫
{x∈R0: f(x)>α}

(f(x) − α) dx = 2
∫
{x∈E: f(x)>α}

(f(x) − α) dx =

=
∫

E

|f(x) − α| dx.

This concludes the proof of (3.21).
In the case α < 1

|R0|
∫

R0
f(x) dx it is enough to apply the preceding ar-

guments to the function −f and to note that for all t ∈ [0, |R0|], except
the set of zero measure of the points of discontinuity of (−f)d, we have
(−f)d(t) = −fd(|R0| − t). In addition, in this case

1
|J |

∫
J

|fd(u) − α| du ≤ ‖f‖∗,R,

and this completes the proof of the theorem. �
The next theorem is the multidimensional analog of Theorem 3.7 (it is

interesting to compare it with Remark 3.10).

Theorem 3.12 ([45]). Let f ∈ BMOR(R0), where R0 ⊂ R
d is a multidi-

mensional segment. Then

‖ |f | ‖∗,R ≤ ‖f‖∗,R.
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Proof. Fix the segment I ⊂ R0 and denote by g = f |I the restriction of the
function f to I. Obviously then

Ω(|f |; I) = Ω(|g|; I) = Ω(|gd|; [0, |I|]).

On the other hand, according to Theorem 3.11, for every interval J ⊂
[0, |I|]

Ω(gd;J) ≤ sup
K⊂I

Ω(g;K) = sup
K⊂I

Ω(f ;K) ≤ ‖f‖∗,R.

Hence, in order to prove the theorem it is enough to prove the inequality

Ω(|gd|; [0, |I|]) ≤ sup
J⊂[0,|I|]

Ω(gd;J). (3.24)

But we have already obtained (3.24) while proving Theorem 3.7 (inequality
(3.14)). Indeed, formulas (3.14) and (3.24) express the relation between the
oscillation of the function gd and its absolute value independently on the
dimension of the space. �

Now we can easily get the multidimensional analog of inequality (3.17).

Theorem 3.13 ([45]). Let f ∈ BMOR(R0), where R0 ⊂ R
d is a multidi-

mensional segment. Then
‖f∗‖∗ ≤ ‖f‖∗,R.

Proof. Using the trivial equality f∗ = |f |d and applying Theorems 3.11 and
3.12 we obtain

‖f∗‖∗ = ‖ |f |d ‖∗ ≤ ‖ |f | ‖∗,R ≤ ‖f‖∗,R. �

3.2 The John–Nirenberg Inequality

We have already mentioned (see p. 41), that the logarithmic function is a
typical representative of the BMO-class. This means that the distribution
function of the BMO-function decreases exponentially.

Theorem 3.14 (John, Nirenberg, [30]). There exist constants b and B
(possibly depending on the dimension d of the space) such that for any function
f ∈ BMO(Rd) and any cube Q0 ⊂ R

d

|{x ∈ Qo : |f(x) − fQ0 | > λ}| ≤ B · |Q0| · exp
(
− bλ

‖f‖∗

)
, λ > 0. (3.25)
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Proof. Since inequality (3.25) is homogeneous with respect to the multiplica-
tion of the function f by a constant we can assume that ‖f‖∗ = 1. Let us
apply the Calderón–Zygmund lemma (Lemma 1.14) with α = 3

2 to the func-

tion |f − fQ0 |. As the result we obtain a collection of cubes
{

Q
(1)
j

}
j≥1

with

pairwise disjoint interiors and verifying the following properties:

3
2

<
1∣∣∣Q(1)
j

∣∣∣
∫

Q
(1)
j

|f(x) − fQ0 | dx ≤ 2d · 3
2
, j = 1, 2, . . . , (3.26)

|f(x) − fQ0 | ≤
3
2

for a.e. x ∈ Q0 \
⎛⎝⋃

j≥1

Q
(1)
j

⎞⎠ .

The left inequality of (3.26) implies∑
j≥1

∣∣∣Q(1)
j

∣∣∣ ≤ 1
3/2

∑
j≥1

∫
Q

(1)
j

|f(x) − fQ0 | dx ≤

≤ 2
3

∫
Q0

|f(x) − fQ0 | dx ≤ 2
3
|Q0| · ‖f‖∗ =

2
3
|Q0|,

while from the right inequality we have

∣∣∣fQ
(1)
j

− fQ0

∣∣∣ =

∣∣∣∣∣∣ 1∣∣∣Q(1)
j

∣∣∣
∫

Q
(1)
j

(f(x) − fQ0) dx

∣∣∣∣∣∣ ≤
≤ 1∣∣∣Q(1)

j

∣∣∣
∫

Q
(1)
j

|f(x) − fQ0 | dx ≤ 2d · 3
2
, j = 1, 2, . . .

To every cube Q
(1)
j we apply again Calderón–Zygmund lemma 1.14.

In the k-th step, applying Calderón–Zygmund lemma 1.14 with α = 3
2

to the function
∣∣∣f − f

Q
(k−1)
j

∣∣∣ on every cube Q
(k−1)
j , j = 1, 2 . . . , we obtain a

family of cubes Q
(k)
i,j ⊂ Q

(k−1)
j , i = 1, 2, . . . , with pairwise disjoint interiors,

and such that

3
2

<
1∣∣∣Q(k)
i,j

∣∣∣
∫

Q
(k)
i,j

∣∣∣f(x) − f
Q

(k−1)
j

∣∣∣ dx ≤ 2d · 3
2
, (3.27)

∣∣∣f(x) − f
Q

(k−1)
j

∣∣∣ ≤ 3
2

for a.e. x ∈ Q
(k−1)
j \

⎛⎝⋃
i≥1

Q
(k)
i,j

⎞⎠ . (3.28)

Inequality (3.27) implies
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i≥1

∣∣∣Q(k)
i,j

∣∣∣ ≤ 2
3

∑
i≥1

∫
Q

(k)
i,j

∣∣∣f(x) − f
Q

(k−1)
j

∣∣∣ dx ≤

≤ 2
3

∫
Q

(k−1)
j

∣∣∣f(x) − f
Q

(k−1)
j

∣∣∣ dx ≤ 2
3

∣∣∣Q(k−1)
j

∣∣∣ · ‖f‖∗ =
2
3

∣∣∣Q(k−1)
j

∣∣∣ , (3.29)

∣∣∣fQ
(k)
i,j

− f
Q

(k−1)
j

∣∣∣ ≤ 1∣∣∣Q(k)
i,j

∣∣∣
∫

Q
(k)
i,j

∣∣∣f(x) − f
Q

(k−1)
j

∣∣∣ dx ≤ 2d · 3
2
. (3.30)

Numbering all cubes Q
(k)
i,j , i, j = 1, 2, . . . we get the collection

{
Q

(k)
j

}
j≥1

. In

addition, by (3.29),

∑
j≥1

∣∣∣Q(k)
j

∣∣∣ ≤ 2
3

∑
j≥1

∣∣∣Q(k−1)
j

∣∣∣ ≤ · · · ≤
(

2
3

)k−1∑
j≥1

∣∣∣Q(1)
j

∣∣∣ ≤ (
2
3

)k

|Q0| , (3.31)

while from (3.28) and (3.30) it follows that

|f(x) − fQ0 | ≤
∣∣∣∣f(x) − f

Q
(k−1)
jk−1

∣∣∣∣+ ∣∣∣∣fQ
(k−1)
jk−1

− f
Q

(k−2)
jk−2

∣∣∣∣+ · · · +
∣∣∣∣fQ

(1)
j1

− fQ0

∣∣∣∣ ≤
≤ 3

2
+2d(k−1)

3
2
≤ k·2d·3

2
for a.e. x ∈

(
∪j≥1Q

(k−1)
j

)
\
(
∪j≥1Q

(k)
j

)
, (3.32)

where Q
(i+1)
ji+1

⊂ Q
(i)
ji

, i = 1, . . . , k − 2. Then we pass to the next, (k + 1)-th
step.

Take an arbitrary number λ > 0. If k · 2d · 3
2 < λ ≤ (k + 1) · 2d · 3

2 for some
k ∈ N, then, by (3.31) and (3.32),

|{x ∈ Q0 : |f(x) − fQ0 | > λ}| ≤
∣∣∣∣{x ∈ Q0 : |f(x) − fQ0 | > k · 2d · 3

2

}∣∣∣∣ ≤
≤
∑
j≥1

∣∣∣Q(k)
j

∣∣∣ ≤ (
2
3

)k

· |Q0| = |Q0| exp
(
−k ln

3
2

)
≤

≤ |Q0| exp
((

1 − λ

2d · 3
2

)
ln

3
2

)
=

3
2
|Q0| exp(−bλ),

where b = 2
3 · ln 3

2 · 2−d. Otherwise, if λ ≤ 2d · 3
2 , then

|{x ∈ Qo : |f(x) − fQ0 | > λ}| ≤ |Q0| exp(−bλ) · exp
(

b · 2d 3
2

)
≡

≡ |Q0|B1 exp(−bλ),

where B1 = exp
(
b · 2d · 3

2

)
. Setting B = B1 + 3

2 , we obtain (3.25). �
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Remark 3.15. In terms of equimeasurable rearrangements inequality (3.25)
can be rewritten in the following form:

(f − fQ0)
∗ (t) ≤ ‖f‖∗

b
ln

B|Q0|
t

, 0 < t ≤ |Q0|. (3.33)

So, if f ∈ BMO, then its equimeasurable rearrangement do not grow faster
than the logarithmic function as the argument tends to zero.

Remark 3.16. In a certain sense the John–Nirenberg theorem is invertible.
Namely, if f is a locally summable on R

d function such that for any cube
Q0 ⊂ R

d

|{x ∈ Q0 : |f(x) − fQ0 | > λ}| ≤ B|Q0| · exp(−bλ), λ > 0, (3.34)

where the constants B and b do not depend on Q0, then f ∈ BMO(Rd).
Indeed, let us rewrite (3.34) in the form

(f − fQ0)
∗ (t) ≤ 1

b
ln

B|Q0|
t

, 0 < t ≤ |Q0|. (3.35)

Then
1

|Q0|
∫

Q0

|f(x) − fQ0 | dx =
1

|Q0|
∫ |Q0|

0

(f − fQ0)
∗ (t) dt ≤

≤ 1
b

1
|Q0|

∫ |Q0|

0

ln
B|Q0|

t
dt =

1
b

∫ 1

0

ln
B

u
du =

1
b
(1 + lnB).

Taking the supremum over all cubes Q0 ⊂ R
d, we obtain ‖f‖∗ ≤ 1

b (1 + lnB).

Remark 3.17. Now let f ∈ BMO(Q0) for some fixed cube Q0 ⊂ R
d. Obvi-

ously then the proof of inequality (3.25) holds true, and so do (3.33). However,
(3.34), as well as its equivalent form (3.35), does not imply f ∈ BMO(Q0).
One can easily construct the corresponding example, we omit this point here.

The John–Nirenberg theorem implies

Corollary 3.18. If f ∈ BMO(Rd), then f ∈ Lp
loc for any p < ∞.

Proof. It is enough to prove that f − fQ0 ∈ Lp(Q0) for any cube Q0 ⊂ R
d.

The John–Nirenberg inequality in the form (3.33) yields∫
Q0

|f(x) − fQ0 |p dx =
∫ |Q0|

0

[
(f − fQ0)

∗ (t)
]p

dt ≤

≤
(‖f‖∗

b

)p ∫ |Q0|

0

lnp B|Q0|
t

dt =

=
(‖f‖∗

b

)p

|Q0| · B
∫ 1/B

0

lnp 1
u

du < ∞. � (3.36)
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Remark 3.19. Inequality (3.36) can be rewritten as follows:

Ωp(f ;Q0) ≤ cp,d‖f‖∗, Q0 ⊂ R
d,

where the constant cp,d depends only on p and d. Hence

‖f‖∗,p ≤ cp,d‖f‖∗.
As we have already mentioned, the inequality ‖f‖∗ ≤ ‖f‖∗,p for 1 < p < ∞
is a direct consequence of the Hölder inequality. Therefore all the classes
BMOp(Rd) coincide for all p, 1 ≤ p < ∞. Analogously, for any fixed cube
Q0 ⊂ R

d all the classes BMOp(Q0) coincide.

The John–Nirenberg inequality in the form (3.33) can be easily derived
from the estimate of the rearrangement, provided by Theorem 3.4. Indeed, let
Q0 ⊂ R

d, f ∈ BMO(Q0) and fQ0 = 0. Then

f∗∗
(

t

2

)
− f∗∗(t) =

2
t

∫ t/2

0

(f∗(u) − f∗∗(t)) du ≤

≤ 2
t

∫ t

0

|f∗(u) − f∗∗(t)| du ≤ 2‖f∗‖∗, 0 < t ≤ |Q0|.
According to Theorem 3.4,

f∗∗
(

t

2

)
− f∗∗(t) ≤ 2c‖f‖∗, 0 < t ≤ |Q0|, (3.37)

where the constant c depends only on the dimension d of the space.
Fix some t ∈ (0, |Q0|] and choose n such that 2−n−1|Q0| < t ≤ 2−n|Q0|.

Applying (3.37) we obtain

f∗∗(t) ≤ f∗∗ (2−n−1|Q0|
) ≤ f∗∗ (2−n|Q0|

)
+ 2c‖f‖∗ ≤

≤ f∗∗ (2−n+1|Q0|
)

+ 2 · (2c‖f‖∗) ≤ · · · ≤ f∗∗ (|Q0|) + (n + 1)(2c‖f‖∗).
Taking into account that fQ0 = 0 implies

f∗∗ (|Q0|) =
1

|Q0|
∫ |Q0|

0

f∗(u) du =
1

|Q0|
∫

Q0

|f(x)| dx ≤ ‖f‖∗,

we get

f∗(t) ≤ f∗∗(t) ≤ 2c(n + 2)‖f‖∗ ≤ 2c

(
ln |Q0|

t

ln 2
+ 2

)
‖f‖∗ =

=
2c

ln 2
‖f‖∗ ln

4|Q0|
t

, 0 < t ≤ |Q0|,
which for fQ0 = 0 yields (3.33) with B = 4, b = ln 2

2c .
Notice, that the assumption fQ0 = 0 is not restrictive, and one could

obtain (3.33) without this additional condition. �
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3.2.1 One-Dimensional Case

For the proof of the John–Nirenberg inequality we were using the arguments,
based on the estimates of the equimeasurable rearrangements of functions.
These arguments were used in the original work [1]. One can improve this
result and get the exact exponent in the John–Nirenberg inequality (3.25) for
the one-dimensional case. Indeed, Lemma 2.2 has the following

Corollary 3.20. Let f ∈ BMO ([a0, b0]) with [a0, b0] ⊂ R and f[a0,b0] = 0.
Then for any a > 1

f∗∗
(

t

a

)
− f∗∗(t) ≤ a

2
‖f‖∗, 0 < t ≤ b0 − a0. (3.38)

Proof. Taking ϕ = f∗ in Lemma 2.2, we have F = f∗∗. Then, by (2.2),

f∗∗
(

t

a

)
− f∗∗(t) ≤ a

2
‖f∗‖∗, 0 < t ≤ b0 − a0.

This, together with inequality (3.17) (see Corollary 3.9), implies (3.38). �
Using (3.38) it is easy to derive the John–Nirenberg inequality with the

exact exponent in the one-dimensional case.

Theorem 3.21 ([34]). Let f ∈ BMO ([a0, b0]). Then

(
f − f[a0,b0]

)∗ (t) ≤ ‖f‖∗
2/e

ln
B (b0 − a0)

t
, 0 < t ≤ b0 − a0, (3.39)

with B = exp
(
1 + 2

e

)
. Moreover, in general the denominator 2/e in the frac-

tion, preceding to the logarithm, cannot be increased.

Proof. Without loss of generality, we can assume that f[a0,b0] = 0. Let a > 1
(we will choose this constant later). Summing up the inequalities

f∗∗
(

b0 − a0

ai

)
− f∗∗

(
b0 − a0

ai−1

)
≤ a

2
‖f‖∗, i = 1, . . . , k + 1,

which follow from (3.38), we get

f∗∗
(

b0 − a0

ak+1

)
≤ (k + 1)

a

2
‖f‖∗ + f∗∗ (b0 − a0) . (3.40)

Since f[a0,b0] = 0 we have

f∗∗ (b0 − a0) =
1

b0 − a0

∫ b0−a0

0

f∗(u) du =
1

b0 − a0

∫ b0

a0

|f(x)| dx =



78 3 Estimates of Rearrangements and the John–Nirenberg Theorem

= Ω (f ; [a0, b0]) ≤ ‖f‖∗,
so that

f∗∗
(

b0 − a0

ak+1

)
≤
(
(k + 1)

a

2
+ 1

)
‖f‖∗, k = 0, 1, . . . (3.41)

Choose some t ∈ (0, b0 − a0] and k such that

b0 − a0

ak+1
< t ≤ b0 − a0

ak
.

Then k ≤ 1
ln a ln b0−a0

t and from (3.41) we obtain

f∗(t) ≤ f∗∗(t) ≤ f∗∗
(

b0 − a0

ak+1

)
≤
(
(k + 1)

a

2
+ 1

)
‖f‖∗ ≤

≤
((

1
ln a

· ln b0 − a0

t
+ 1

)
a

2
+ 1

)
‖f‖∗ =

=
(

1
2

a

ln a
· ln b0 − a0

t
+

a

2
+ 1

)
‖f‖∗. (3.42)

The function a
ln a for a > 1 takes its minimal value at a = e. Substituting

a = e in (3.42) for 0 < t ≤ b0 − a0 we have

f∗(t) ≤
(

e
2

ln
b0 − a0

t
+

e
2

+ 1
)
‖f‖∗ =

‖f‖∗
2/e

ln
exp

(
1 + 2

e

)
(b0 − a0)

t
,

and (3.39) follows.
It remains to show that the constant 2/e in the denominator in the right-

hand side of (3.39) cannot be increased. Indeed, for the function f(x) =
ln 1

x − 1, 0 ≤ x ≤ 1, we have f[0,1] = 0. Moreover, as it was already shown
(see Example 2.24), ‖f‖∗ = 2

e . Hence (3.39) becomes

f∗(t) ≤ ln
1
t

+ 1 +
2
e
, 0 < t ≤ 1.

On the other hand, it is easy to see that f∗(t) = ln 1
et , 0 < t ≤ e−2. Therefore

the coefficient of the logarithm in the right-hand side of (3.39) cannot be
decreased. �

In terms of the distribution function, inequality (3.39) can be rewritten in
the following way.

Corollary 3.22 ([34]). Let f ∈ BMO ([a0, b0]). Then∣∣{x ∈ [a0, b0] :
∣∣f(x) − f[a0,b0]

∣∣ > λ
}∣∣ ≤ B (b0 − a0) exp

(
− 2/e
‖f‖∗ λ

)
, λ > 0,

(3.43)
where B = exp

(
1 + 2

e

)
, and in general the constant 2/e in the exponent cannot

be increased.
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3.2.2 Anisotropic Case

To our knowledge in the multidimensional case the problem of finding the
upper bound of those b that provide John–Nirenberg inequality (3.25) is still
open. If instead of ‖f‖∗ in (3.25) we consider ‖f‖∗,R, then the maximal value
of the constant b in the John–Nirenberg inequality is equal to 2

e as in the
one-dimensional case. Namely, we have

Theorem 3.23 ([45]). Let f ∈ BMOR(Rd). Then for any segment R0 ⊂ R
d

|{x ∈ R0 : |f(x) − fR0 | > λ}| ≤ B · |R0| · exp
(
− 2/e
‖f‖∗,R

λ

)
, λ > 0, (3.44)

where B = exp
(
1 + 2

e

)
, and in general the constant 2

e in the exponent cannot
be increased.

Proof. Without loss of generality we can assume that fR0 = 0. Then rewriting
inequality (3.44) in terms of equimeasurable rearrangements we have

f∗(t) ≤ ‖f‖∗,R

2/e
ln

B|R0|
t

, 0 < t ≤ |R0|. (3.45)

Essentially in order to prove (3.45) we have to repeat the same arguments as
in the proof of Theorem 3.21. Indeed, setting ϕ = f∗ in Lemma 2.2, we have

f∗∗
(

t

a

)
− f∗∗(t) ≤ a

2
‖f∗‖∗, 0 < t ≤ |R0|,

which together with Theorem 3.13 leads to the following multidimensional
analog of inequality (3.38):

f∗∗
(

t

a

)
− f∗∗(t) ≤ a

2
‖f‖∗,R, 0 < t ≤ |R0|

for an arbitrary a > 1. Now it remains to repeat completely the proof of
Theorem 3.21, taking R0 instead of [a0, b0], and ‖f‖∗,R instead of ‖f‖∗.

The fact that the denominator 2
e in the right-hand side of (3.45) cannot

be increased can be easily checked on the following function:

f (x1, . . . , xd) = ln
1
x1

− 1, x ≡ (x1, . . . , xd) ∈ R0 ≡ [0, 1]d. �
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The BMO-estimates of the Hardy-type
Transforms

4.1 Estimates of Oscillations of the Hardy Transform

The operator P defined via the formula

Pf(t) =
1
t

∫ t

0

f(u) du, t �= 0

is called the Hardy transform (operator) of the function f ∈ Lloc(R). This
operator has plenty of applications. We have seen some of them in Section 1.1.
Namely, it easy to see that f∗∗(t) = Pf∗(t), t ∈ R+. The Hardy inequality
[26]: ∫ ∞

0

| Pf(x)|p dx ≤
(

p

p − 1

)p ∫ ∞

0

|f(x)|p dx

provides the boundedness of the Hardy operator in Lp(R+). Here the constant(
p

p−1

)p

is sharp. For p = ∞ the analogous inequality ‖Pf ‖∞ ≤ ‖f‖∞ is
trivial. For p = 1 the analog of the Hardy inequality is false, in order to see
this it is enough to consider the function

f0(x) =
1

x ln2 1
x

χ(0, 1
e )(x), x ∈ R+.

Indeed, f0 ∈ L(R+) and for 0 < x < 1
e we have Pf0(x) =

(
x ln 1

x

)−1, so that
Pf0 /∈ Lloc(R+). It is easy to see that in general the reverse Hardy inequality∫ ∞

0

| Pf(x)|p dx ≥ cp

∫ ∞

0

|f(x)|p dx (4.1)

fails for an arbitrary constant cp > 0. However, if the non-negative function f
is non-increasing on R+, then (4.1) is true for cp = p

p−1 and this value cannot
be increased (see [53, 64, 58]). If p = ∞ and f is a non-positive non-increasing
function on R+, then obviously ‖Pf ‖∞ = ‖f‖∞ = limx→0+ f(x).
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In this section we will study the behavior of the Hardy operator in the
spaces BMO, BMOp and BLO. The boundedness of P in BMO in different
cases was proved by several authors in [73, 74, 71, 24, 19, 20, 80]. In particular,
in [80] it was proved the following result.

Theorem 4.1 (Jie Xiao, [80]). The operator P is bounded in BMO(R+)
and

‖Pf ‖∗ ≤ ‖f‖∗.
On the other hand, if f is a positive non-increasing function on R+, then

‖Pf ‖∗ ≥ 1
17

‖f‖∗.

Here we will prove some more general facts. Let us start with the direct
estimate of the Hardy transform.

Theorem 4.2 ([40]). Let 1 ≤ p < ∞. Then if f belongs to BMOp(R), then
Pf ∈ BMOp(R) and

‖Pf ‖∗,p ≤ ‖f‖∗,p. (4.2)

Moreover, in general the constant 1 in the right-hand side of (4.2) is sharp.

Proof. As in [80], we will use the equality

Pf(t) =
∫ 1

0

f(tu) du, t ∈ R \ {0}. (4.3)

Fix the interval [a, b] ≡ I ⊂ R. By the Fubini theorem,

(Pf)I =
1
|I|

∫
I

Pf(t) dt =
∫ 1

0

1
|I|

∫
I

f(tu) dt du.

Denote uI ≡ [ua, ub]. Applying again the Fubini theorem and the Hölder
inequality, we have

Ωp
p(Pf ; I) =

1
|I|

∫
I

∣∣∣∣∫ 1

0

f(τu) du −
∫ 1

0

1
|I|

∫
I

f(tu) dt du

∣∣∣∣p dτ ≤

≤
∫ 1

0

1
|I|

∫
I

∣∣∣∣f(τu) − 1
|I|

∫
I

f(tu) dt

∣∣∣∣p dτ du =

=
∫ 1

0

1
|uI|

∫
uI

∣∣∣∣f(v) − 1
uI

∫
uI

f(ξ) dξ

∣∣∣∣p dv du =
∫ 1

0

Ωp
p(f ;uI) du ≤ ‖f‖p

∗,p,

and (4.2) follows.
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For the function f(x) = ln 1
|x| , x ∈ R, we have Pf(x) = 1 + ln 1

|x| . Hence
for this choice of f inequality (4.2) becomes an equality, so that the constant
in the right-hand side of (4.2) cannot be smaller than 1. �

If in the proof of Theorem 4.2 we choose I ⊂ R+, then uI ⊂ R+ for u > 0.
Hence, repeating the proof of Theorem 4.2, we obtain the following statement.

Theorem 4.3 ([40]). Let 1 ≤ p < ∞. If f ∈ BMOp(R+), then Pf ∈
BMOp(R+) and

‖Pf ‖∗,p ≤ ‖f‖∗,p.

Moreover, the constant 1 in the right-hand side is sharp.

Similarly one can obtain the estimates for the “norm” of the Hardy trans-
form in BLO.

Theorem 4.4 ([41]). Let f ∈ BLO(R). Then Pf ∈ BLO(R),

‖Pf ‖BLO ≤ ‖f‖BLO, (4.4)

and the constant 1 in the right-hand side is sharp.

Theorem 4.5 ([41]). Let f ∈ BLO(R+). Then Pf ∈ BLO(R+),

‖Pf ‖BLO ≤ ‖f‖BLO,

and the constant 1 in the right-hand side is sharp.

As in the case of Theorems 4.2 and 4.3, the proofs of both Theorems 4.4
and 4.5 are similar. Here we give just one of them.
Proof of Theorem 4.4. Let I ⊂ R and x ∈ I, x �= 0. By (4.3),

1
|I|

∫
I

Pf(t) dt − Pf(x) =
∫ 1

0

1
|I|

∫
I

f(tu) du −
∫ 1

0

f(xu) du ≤

≤
∫ 1

0

[
1
|I|

∫
I

f(tu) dt − f(xu)
]

du =
∫ 1

0

[
1

|uI|
∫

uI

f(v) dv − f(xu)
]

du.

Since x ∈ I implies ux ∈ uI for u > 0 we have

1
|I|

∫
I

Pf(t) dt − Pf(x) ≤
∫ 1

0

[
1

|uI|
∫

uI

f(v) dv − ess inf
y∈uI

f(y)
]

du =

=
∫ 1

0

L(f ;uI) du ≤ ‖f‖BLO.

Hence, using the equality

L(Pf ; I)=
1
|I|

∫
I

Pf(t) dt− ess inf
x∈I

Pf(x) = ess sup
x∈I

[
1
|I|

∫
I

Pf(t) dt − Pf(x)
]
,
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and taking the essential supremum over all x ∈ I, x �= 0, we obtain

L(Pf ; I) ≤ ‖f‖BLO, I ⊂ R.

The same arguments as in the proof of Theorem 4.2 show that the con-
stant 1 in the right-hand side of (4.4) is sharp. �

Now let us consider the lower bounds for the norm of the Hardy transform.
It is easy to see that, similarly to (4.1), the inequality

‖Pf ‖∗ ≥ c‖f‖∗ (4.5)

in general fails for arbitrary f and c > 0. But if we consider the functions
f that are non-increasing and non-negative on R+, then, according to The-
orem 4.1, inequality (4.5) holds true for c = 1

17 . In what follows we will
derive (4.5) with the value of c grater than 1

17 and find its upper bound (see
Corollary 4.16).

Theorem 4.6 ([40]). Let 1 ≤ p < ∞, and assume that the function f is non-
decreasing on (−∞, 0) and non-increasing on (0,+∞). Then f ∈ BMOp(R)
if and only if Pf ∈ BMOp(R) and

‖Pf ‖∗,p ≤ ‖f‖∗,p ≤ 2
3 −√

7
‖Pf ‖∗,p. (4.6)

Proof. The left inequality of (4.6) is contained in Theorem 4.2. Moreover, it
is true even if f is not monotone. Now let us prove the right inequality.

Let λ > 1 (we will choose it later). Consider the function

g(t) =
1
λ
Pf(t) +

λ − 1
λ

f(t), t ∈ R \ {0}.

Then f(t) = λ
λ−1g(t) − 1

λ−1 Pf(t), so that by Minkowski inequality

‖f‖∗,p ≤ λ

λ − 1
‖g‖∗,p +

1
λ − 1

‖Pf ‖∗,p. (4.7)

Let us estimate ‖g‖∗,p. The monotonicity of f on (−∞, 0) and (0,+∞) implies

Pf(λt) =
1
λ

1
t

∫ t

0

f(u) du +
λ − 1

λ

1
λt − t

∫ λt

t

f(u) du ≤ 1
λ
Pf(t) +

λ − 1
λ

f(t)

for t �= 0. Hence, using again the monotonicity of f , we obtain

Pf(λt) ≤ g(t) ≤ Pf(t), t �= 0. (4.8)

Assume I ≡ [α, β], α < 0 < β. By (4.8),
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1
|I|

∫
I

Pf(λt) dt = (Pf)λI ≤ gI ≤ (Pf)I .

The last inequality, together with (4.8), imply

g(t) − gI ≤ Pf(t) − (Pf)λI , t �= 0, (4.9)

gI − g(t) ≤ (Pf)I − Pf(λt), t �= 0. (4.10)

Denote E+ ≡ {t ∈ I : g(t) ≥ gI} , E− ≡ {t ∈ I : g(t) < gI}. Multiplying
(4.9) and (4.10) by χE+(t) and χE−(t) respectively and summing up the ob-
tained inequalities for t �= 0 we get

|g(t) − gI | ≤ (Pf(t) − (Pf)λI) χE+(t) + ((Pf)I − Pf(λt)) χE−(t) =

= (Pf(t) − (Pf)I) χE+(t) + ((Pf)λI − Pf(λt)) χE−(t) + ((Pf)I − (Pf)λI) .

Using Lemma 2.35 and the inclusion λI ⊃ I, one can find the following esti-
mate for the last term in the right hand side:

(Pf)I − (Pf)λI =
1
|I|

∫
I

(Pf(t) − (Pf)λI) dt ≤

≤ λ
1

|λI|
∫
{t∈λI: Pf(t)>(Pf)λI}

(Pf(t) − (Pf)λI) dt =
λ

2
Ω(Pf ;λI) ≤ λ

2
‖Pf ‖∗.

Thus, by Minkowski inequality,

Ωp(g; I) ≤
{

1
|I|

∫
E+

|Pf(t) − (Pf)I |p dt

} 1
p

+

+

{
1
|I|

∫
E−

|(Pf)λI − Pf(λt)|p dt

} 1
p

+
λ

2
‖Pf ‖∗ ≤

≤ Ωp(Pf ; I) + Ωp(Pf ;λI) +
λ

2
‖Pf ‖∗ ≤

(
2 +

λ

2

)
‖Pf ‖∗,p.

Notice that both functions g and f are non-decreasing on (−∞, 0) and non-
increasing on (0,+∞). Since I is an arbitrary segment, which contains zero,
the last inequality together with Lemma 2.23 imply

‖g‖∗,p ≤
(

2 +
λ

2

)
‖Pf ‖∗,p.

Substituting this bound in (4.7), we obtain

‖f‖∗,p ≤ 1
λ − 1

[
λ

(
2 +

λ

2

)
+ 1

]
‖Pf ‖∗,p. (4.11)
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It remains to choose the constant λ > 1 which provides the minimal value to
the function ψ(λ) ≡ 1

λ−1

[
λ
(
2 + λ

2

)
+ 1

]
. An easy calculation shows that

min
λ>1

ψ(λ) = ψ(1 +
√

7) =
2

3 −√
7
.

Therefore, (4.11) implies the right inequality of (4.6). �
If in the proof of Theorem 4.6 instead of Lemma 2.23 we apply Lemma 2.22,

then we get the following statement.

Theorem 4.7 ([40]). Let 1 ≤ p < ∞ and let f ∈ Lp
loc(R+) be non-increasing

on R+. Then f ∈ BMOp(R+) if and only if Pf ∈ BMOp(R+), and

‖Pf ‖∗,p ≤ ‖f‖∗,p ≤ 2
3 −√

7
‖Pf ‖∗,p. (4.12)

In the particular case p = 1 the right inequality of (4.12) becomes

‖Pf ‖∗ ≥ 3 −√
7

2
‖f‖∗, f ∈ BMO(R+), f do not increase. (4.13)

Since 3−√
7

2 > 1
17 the new inequality is stronger than the inequality in the

second part of Theorem 4.1.
The next theorem is an analog of Theorem 4.7 for the BLO-“norm”.

Theorem 4.8 ([41]). Let f ∈ Lloc(R+) be non-increasing on R+. Then

1
e
‖f‖BLO ≤ ‖Pf ‖BLO ≤ ‖f‖BLO, (4.14)

and in general the constants 1
e and 1 in the left and right-hand sides are sharp.

Proof. The left inequality of (4.14) was already proved in Theorem 4.5. Let us
show that the constant 1

e in the left-hand side of (4.14) cannot be increased.
For this consider the function f0(x) = χ[0,1)(x), x ∈ R+. By Lemma 2.34,

Pf0(x) = min
(

1,
1
x

)
, ‖f0‖BLO = sup

x>0
[Pf0(x) − f0(x)] = 1,

and for x > 1

L (Pf0; [0, x]) =
1
x

∫ x

0

Pf0(t) dt − Pf0(x) =
1
x

(1 + lnx) − 1
x

=
lnx

x
.

Hence
‖Pf0 ‖BLO = sup

x>1

lnx

x
=

1
e

= L (Pf0; [0, e]) . (4.15)

Therefore the constant 1
e in the left-hand side of (4.14) cannot be increased.
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It remains to prove the left inequality of (4.14) for an arbitrary f . By
virtue of Lemma 2.34, it is enough to show that for any x > 0 there exists
y > 0 such that

L(Pf ; [0, y]) ≥ 1
e
L(f ; [0, x]). (4.16)

Without loss of generality we can assume that

x = 1, f(1) = 0,
∫ 1

0

f(t) dt = 1, L(f ; [0, 1]) = 1. (4.17)

As before, set f0(x) = χ[0,1)(x), x ∈ R+. Let us show that

P(f − f0)(t) ≥ (f − f0)(t), t > 0. (4.18)

Indeed, if 0 < t ≤ 1, then (4.18) follows from the monotonicity of f − f0.
Otherwise, if t > 1, then f(t) ≤ 0. Taking into account assumptions (4.17),
from the monotonicity of f we obtain

1
t

∫ t

0

[f(u) − f0(u)] du =
1
t

∫ 1

0

[f(u)−1] du+
1
t

∫ t

1

f(u) du =
1
t

∫ t

1

f(u) du =

=
(

1 − 1
t

)
1

t − 1

∫ t

1

f(u) du ≥
(

1 − 1
t

)
f(t) ≥ f(t) = (f − f0) (t).

Now, by (4.18) and (4.15),

1
e

∫ e

0

Pf(t) dt − Pf(e) − 1
e

=

=
1
e

[∫ e

0

Pf(t) dt −
∫ e

0

Pf0(t) dt

]
− Pf(e) + Pf0(e) =

=
1
e

∫ e

0

[Pf(t) − f(t) − Pf0(t) + f0(t)] dt =

=
1
e

∫ e

0

[P(f − f0)(t) − (f − f0)(t)] dt ≥ 0.

Then
L(Pf ; [0, e]) ≥ 1

e
.

So, inequality (4.16) is proved and (4.14) follows. �
Let us come back to the estimate given by (4.13). One can improve this

estimate using Theorem 4.8.

Corollary 4.9. Let f be a non-increasing function on R+. Then

‖Pf ‖∗ ≥ 1
4
‖f‖∗. (4.19)
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Proof. Applying successively Theorems 2.36, 4.8 and again Theorem 2.36, we
have

‖Pf ‖∗ ≥ 1
2
‖Pf ‖BLO ≥ 1

2
1
e
‖f‖BLO ≥ 1

2
1
e

e
2
‖f‖∗ =

1
4
‖f‖∗. �

Let us show that inequality (4.19) can be also improved. For this we will
need some auxiliary statements.

Lemma 4.10. The equation

ψ(x) ≡ ln
x

1 + lnx
− lnx

1 + lnx
= 0 (4.20)

has a unique root γ1 on (1,+∞).

Proof. One can easily check that ψ(1) = 0,

lim
x→+∞ψ(x) = +∞, ψ′(x) =

ln2 x + lnx − 1
x(1 + lnx)2

,

ψ′(1) = −1, and the equation ψ′(x) = 0 has a unique root on the interval
(1,+∞). Since the function ψ is differentiable on [1,+∞) the listed properties
imply the statement of the lemma. �

Let γ1 > 1 be the root of equation (4.20). In what follows we will use the
following constants:

β0 =
1 + ln γ1

γ1
, γ0 =

1
β0

, α0 =
4
γ1

ln γ0. (4.21)

The approximate values of these constants are

α0 ≈ 0.52, β0 ≈ 0.546, γ0 ≈ 1.83, γ1 ≈ 4.65.

The next lemma explains the original meaning of equation (4.20) and of
constants α0, β0, γ0, defined by (4.21).

Lemma 4.11. For the function f0(x) = χ[0,1)(x), x ∈ R+,

‖f0‖∗ = Ω(f0; [0, 2]) =
1
2
, (4.22)

‖Pf0 ‖∗ = Ω (Pf0; [0, γ1]) =
1
2
α0, (4.23)

where γ1 is a root of equation (4.20), and α0 is defined by (4.21).

Proof. According to Property 2.7, Ω(f0; I) ≤ 1
2 for any interval I ⊂ R+ and

Ω(f0; [0, 2]) = 1
2 . Thus equality (4.22) follows.
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In order to prove (4.23) we use the equality Pf0(x) = min
(
1, 1

x

)
, x ∈ R+.

Then for x > 1 and I ≡ [0, x]

(Pf0)I =
1
x

∫ 1

0

Pf0(t) dt +
1
x

∫ x

1

Pf0(t) dt =
1 + lnx

x
.

Set x0 = x
1+ln x . Then Pf0(t) ≥ (Pf0)I if t ≤ x0, and Pf0(t) ≤ (Pf0)I if

t ≥ x0. Hence, by Property 2.1,

Ω (Pf0; I) =
2
x

∫ x

x0

[(Pf0)I − Pf0(t)] dt =

=
2
x

[
1 + lnx

x

(
x − x

1 + lnx

)
− ln(1 + lnx)

]
=

2
x

[lnx− ln(1 + lnx)] ≡ ϕ(x).

We have

ϕ′(x) =
2
x2

[
lnx

1 + lnx
− ln

x

1 + lnx

]
=

2
x2

ψ(x),

where the function ψ was defined in Lemma 4.10. Applying Lemmas 4.10 and
2.34 it is easy to see that

‖Pf0 ‖∗ = sup
x>1

Ω (Pf0; [0, x]) = max
x>1

ϕ(x) = ϕ(γ1) = Ω (Pf0; [0, γ1]) =
1
2
α0,

which proves (4.23). �
Remark 4.12. The following formula explains the meaning of the constants
β0 and γ0, defined by (4.21),

(Pf0)[0,γ1]
= Pf0 (γ0) = β0.

Remark 4.13. Let us denote the maximal value of the constant c in (4.5) by

c∗ = sup
{

c :
‖Pf ‖∗
‖f‖∗ ≥ c ∀ f ↓ on R+, f ∈ BMO, f �= Const

}
=

= inf
{‖Pf ‖∗

‖f‖∗ : f ∈ BMO, f ↓ on R+, f �= Const

}
. (4.24)

Lemma 4.11 implies that c∗ ≤ α0. On the other hand, according to (4.19), we
have that c∗ ≥ 1

4 .

The next theorem allows to improve the lower bound for c∗. We hope that
this result could be of interest also outside of the present context.

Theorem 4.14 ([41]). Let f be a non-increasing function on R+. Then
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‖Pf ‖∗ ≥ α0

2
‖f‖BLO, (4.25)

where α0 is defined by (4.21), and in general the constant α0
2 in the right-hand

side of (4.25) is sharp.

In order to prove Theorem 4.14 we need the following statement.

Lemma 4.15. Let g ∈ Lloc(R+) be such that g(x) ≥ g(y), 0 ≤ x ≤ y ≤ 1,
and ∫ 1

0

g(t) dt ≥ g(x) ≥ g(y), 1 ≤ x ≤ y. (4.26)

Then the function Pg does not increase on R+.

Proof. The monotonicity of Pg on [0, 1] follows immediately from the
monotonicity of the function g on [0, 1]. If we prove that

Pg(x) ≥ Pg(y), 1 < x < y, (4.27)

then, due to the continuity of Pg, we immediately obtain the statement of the
lemma. For 1 < x < y

Pg(y) − Pg(x) =
(

1 − x

y

){
1
x

[
1

x − 1

∫ x

1

g(t) dt −
∫ 1

0

g(t) dt

]
+

+
[

1
y − x

∫ y

x

g(t) dt − 1
x − 1

∫ x

1

g(t) dt

]}
.

Now it is easy to see that (4.27) follows from (4.26). �
Proof of Theorem 4.14. According to Lemmas 2.22 and 2.34, it is enough to
show that for any γ > 0 there exists γ′ > 0 such that

Ω (Pf ; [0, γ′]) ≥ α0

2
[Pf(γ) − f(γ)] . (4.28)

We can assume γ = 1, f(1) = 0, Pf(1) = 1. Set f0(x) = χ[0,1)(x), x ∈ R+.
Then the function g ≡ f−f0 obviously satisfies the conditions of Lemma 4.15.
By this lemma, the function Pg does not increase on R+. Let us denote h(x) =
g(x) − Pg(γ0), with γ0 defined by (4.21). Then Ph is also non-increasing on
R+ and Ph(γ0) = 0. Therefore

0 ≤
∫ γ0

0

Ph(t) dt =
∫ γ0

0

[Pf(t) − Pf0(t)] dt − Pf(γ0) + Pf0(γ0),

or, equivalently,

1
γ0

∫ γ0

0

[Pf0(t) − Pf0(γ0)] dt ≤ 1
γ0

∫ γ0

0

[Pf(t) − Pf(γ0)] dt. (4.29)

Now choose γ′ such that
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1
γ′

∫ γ′

0

Pf(t) dt = Pf(γ0).

Clearly, γ′ > γ0. Comparing γ′ with γ1, which was defined in Lemma 4.10 as
a root of equation (4.20), we see that the following two situations are possible:

1. γ′ ≤ γ1; in this case, by Property 2.1, (4.29) implies

Ω (Pf ; [0, γ′]) =
2
γ′

∫ γ0

0

[Pf(t) − Pf(γ0)] dt ≥

≥ 2
γ1

∫ γ0

0

[Pf0(t) − Pf0(γ0)] dt = Ω (Pf0; [0, γ1]) =
α0

2
,

so that (4.28) holds true.
2. If γ′ > γ1, then the listed above properties of function Ph imply

0 ≥
∫ γ1

γ0

Ph(t) dt =
∫ γ1

γ0

[Pf(t) − Pf0(t)] dt − Pf(γ0) + Pf0(γ0),

i.e.,

1
γ1 − γ0

∫ γ1

γ0

[Pf(γ0) − Pf(t)] dt ≥ 1
γ1 − γ0

∫ γ1

γ0

[Pf0(γ0) − Pf0(t)] dt.

But since the function Pf(γ0)−Pf(t), t > γ0, is non-decreasing and γ′ > γ1

1
γ′ − γ0

∫ γ′

γ0

[Pf(γ0) − Pf(t)] dt ≥ 1
γ1 − γ0

∫ γ1

γ0

[Pf0(γ0) − Pf0(t)] dt.

(4.30)
One can rewrite inequalities (4.29) and (4.30) in the following form

γ0∫ γ0

0
[Pf0(t) − Pf0(γ0] dt

≥ γ0∫ γ0

0
[Pf(t) − Pf(γ0)] dt

,

γ1 − γ0∫ γ1

γ0
[Pf0(γ0) − Pf0(t)] dt

≥ γ′ − γ0∫ γ′

γ0
[Pf(γ0) − Pf(t)] dt

.

Notice that, by Property 2.1, the denominators of the fractions in the right
and left-hand sides are the same. Summing up, we obtain

1
γ1

∫ γ0

0

[Pf0(t) − Pf0(γ0)] dt ≤ 1
γ′

∫ γ0

0

[Pf(t) − Pf(γ0)] dt.

Then, by Property 2.1,

Ω (Pf ; [0, γ′]) ≥ Ω (Pf0; [0, γ1]) =
α0

2

(see also the proof of Lemma 4.11). Therefore, in this case (4.28) holds true,
too.



92 4 The BMO-estimates of the Hardy-type Transforms

It remains to show that the constant α0
2 in the right-hand side of (4.25)

cannot be increased. But, according to Lemma 4.11, for the function f0(x) =
χ[0,1)(x), x ∈ R+, we have ‖Pf0 ‖∗ = α0

2 , and hence ‖f0‖BLO is obviously
equal to 1. �

From Theorem 4.14 we immediately get

Corollary 4.16 ([41]).
eα0

4
≤ c∗ ≤ α0 (4.31)

where c∗ is the constant defined by (4.24).

Proof. As we have already mentioned, the right inequality of (4.31) follows
from Lemma 4.11. On the other hand, if f is an arbitrary non-increasing
function on R+, then by Theorems 4.14 and 2.36

‖Pf ‖∗ ≥ α0

2
‖f‖BLO ≥ α0

2
e
2
‖f‖∗,

which implies the left inequality of (4.31). �
Remark 4.17. We do not know the value of c∗, defined by equality (4.24).

4.2 Estimates of the Oscillations of the Conjugate Hardy
Transform and the Calderón Transform

In this section we consider the non-negative summable functions f on R+

such that the integral
∫ +∞
1

f(x) dx
x converges. The following formulas define

the conjugate Hardy operator P∗ and the Calderón operator S respectively
(see [51, 3]):

P∗f(t) =
∫ +∞

t

f(x)
dx

x
, t > 0,

Sf(t) =
1
t

∫ t

0

f(x) dx +
∫ +∞

t

f(x)
dx

x
= Pf(t) + P∗f(t), t > 0.

The operators P∗ and S, together with the operator P, are often used in
various fields of mathematics.

Example 4.18. Let f0(x) = ln 1
xχ[0,1)(x), x ∈ R+. Then according to

Example 2.24, f0 ∈ BMO(R+). In the same time, P∗f0(x) = 1
2 ln2 xχ[0,1)(x),

and so P∗f0 /∈ BMO(R+). Indeed, the assumption P∗f0 ∈ BMO contra-
dicts to John–Nirenberg inequality (3.33). Similarly, it can be shown that
Sf0 /∈ BMO(R+). �

So, unlikely the operator P, the operators P∗ and S do not act from
BMO into BMO. However, it is easy to see that P∗f ∈ BMO(R+) and
Sf ∈ BMO(R+) for f ∈ L∞(R+). Moreover, the following theorem holds
true.



4.2 The Conjugate Hardy Transform and the Calderón Transform 93

Theorem 4.19 ([39]). Let f be a non-negative locally summable function on
R+ such that

∫ +∞
1

f(x) dx
x < ∞. Then

‖P∗f ‖BLO = ‖Pf ‖∞, (4.32)

‖Sf ‖BLO = ‖P(Pf)‖∞. (4.33)

Proof. Since f(x) ≥ 0 for x ∈ R+ it is clear that the function P∗f does not
increase on R+. Further, for 0 < t < s

Sf(t) − Sf(s) =
(

1
t
− 1

s

)∫ t

0

f(x) dx +
∫ s

t

f(x)
(

1
x
− 1

s

)
dx ≥ 0,

so that also Sf does not increase on R+. Hence, by Lemma 2.34,

‖P∗f ‖BLO = sup
t>0

(
1
t

∫ t

0

P∗f(u) du − P∗f(t)
)

=

= sup
t>0

(
1
t

∫ t

0

∫ +∞

u

f(x)
dx

x
du −

∫ +∞

t

f(x)
dx

x

)
= sup

t>0

1
t

∫ t

0

∫ t

u

f(x)
dx

x
du =

= sup
t>0

1
t

∫ t

0

f(x) dx = sup
t>0

Pf(t) = ‖Pf ‖∞.

Similarly,

‖Sf ‖BLO = sup
t>0

(
1
t

∫ t

0

Sf(u) du − Sf(t)
)

=

= sup
t>0

(
1
t

∫ t

0

1
u

∫ u

0

f(x) dx du − 1
t

∫ t

0

f(x) dx +
1
t

∫ t

0

∫ t

u

f(x)
dx

x
du

)
=

= sup
t>0

1
t

∫ t

0

1
u

∫ u

0

f(x) dx du = sup
t>0

P(Pf)(t) = ‖P(Pf)‖∞.

�
Theorem 4.20 ([39]). Let f be a non-negative locally summable function on
R+ such that

∫ +∞
1

f(x) dx
x < ∞. Then

1
2
‖Pf ‖∞ ≤ ‖P∗f ‖∗ ≤ 2

e
‖Pf ‖∞, (4.34)

1
2
‖P(Pf)‖∞ ≤ ‖Sf ‖∗ ≤ 2

e
‖P(Pf)‖∞. (4.35)
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Proof. As it was shown in the proof of Theorem 4.19, both functions P∗f and
Sf do not increase on R+. Then, by virtue of (4.32) and (4.33), Theorem 2.36
applied to these functions immediately yields (4.34) and (4.35) respectively.

Let us show that the constant 1
2 in the left-hand side of (4.34) cannot be

increased. For 0 < ε < 1 let fε(x) = 1
εχ[1−ε,1](x) x ∈ R+. Then ‖Pfε ‖∞ =

1, P∗fε(t) = 1
ε min

(
ln 1

1−ε , ln 1
t

)
χ[0,1](t), t ∈ R+. Hence, by Property 2.7,

‖P∗fε ‖∗ ≤ 1
2

1
ε

ln
1

1 − ε
≤ 1

2
1

1 − ε
→ 1

2
, ε → 0 + .

Therefore the constant 1
2 in the left-hand side of (4.34) is sharp.

For ε = 1 we have f1(x) = χ[0,1](x), x ∈ R+, ‖Pf1 ‖∞ = 1, P∗f1(t) =
ln 1

t χ[0,1](t), t ∈ R+. As it was shown in Example 2.28, this implies

‖P∗f1 ‖∗ ≥ Ω (P∗f1; [0, 1]) =
2
e
,

so that the constant 2
e in the right-hand side of (4.34) is sharp, too.

It remains to show that the constant 2
e in the right-hand side of (4.35)

cannot be decreased. For the function f1(x) = χ[0,1](x), x ∈ R+, we have

‖P(Pf1)‖∞ = 1, Sf1(t) =
(

1 + ln
1
t

)
χ[0,1](t) +

1
t
χ(1,+∞)(t), t ∈ R+.

So, it is enough to show that for the function g ≡ Sf1

‖g‖∗ =
2
e
. (4.36)

Since g is non-increasing on R+ according to Lemma 2.22 the last relation
follows from the equality

sup
t>0

Ω(g; [0, t]) =
2
e
. (4.37)

But for 0 < t ≤ 1

Ω(g; [0, t]) =
2
t

∫ t/e

0

(
ln

1
u
− ln

e
t

)
du =

2
e
,

so that in order to prove (4.37) it remains to show that

Ω(g; [0, t]) ≤ 2
e
, 1 < t < ∞. (4.38)

Let t0, t0 > e, be the root of the equation lnx = x−2. We have to consider
the following two cases.
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1. If 1 < t ≤ t0, then g[0,t] ≥ 1. Denote h(u) = 1 + ln 1
u , u ∈ R+.

Since h(u) ≤ 1
u , u ≥ 1, there exists t1, 1 ≤ t1 < t such that g[0,t] =

1
t1

∫ t1
0

(
1 + ln 1

u

)
du = h[0,t1]. Now, by Property 2.1,

Ω(g; [0, t]) =
2
t

∫
{u: 1+ln 1

u >g[0,t]}

(
1 + ln

1
u
− g[0,t]

)
du ≤

≤ 2
t1

∫
{u: 1+ln 1

u≥g[0,t]}

(
1 + ln

1
u
− h[0,t1]

)
du = Ω(h; [0, t1]) =

2
e
,

so that (4.38) holds true in this case.
2. Let t > t0, i.e., g[0,t] = 1

t (2 + ln t) < 1. In this case, applying Prop-
erty 2.1, we obtain

Ω(g; [0, t]) =
2
t

∫ t2

0

(
g(u) − g[0,t]

)
du = 2

1 + ln t − ln(2 + ln t)
t

,

where t2 is to be defined from the condition 1
t2

= g[0,t], i.e. t2 = t
2+ln t . Denote

ψ(t) = 1+ln t−ln(2+ln t)
t , t ≥ t0. Since t0 > e we have ψ(t0) = 1

t0
< 1

e . It is easy
to see that ψ′(t) ≤ 0 for t ≥ t0. Hence ψ(t) ≤ 1

e for t ≥ t0, and in this case
(4.38) holds true as well. �
Remark 4.21. We do not know whether the constant 1

2 in the left-hand side
of (4.35) is sharp.

Remark 4.22. Clearly, ‖Pf ‖∞ ≤ ‖f‖∞, though the condition ‖f‖∞ < ∞
is not necessary for the boundedness of Pf . On the other hand, is f is non-
negative on R+, then obviously uPf(u) ≥ tPf(t), u ≥ t > 0, so that

P(Pf)(2t) ≥ 1
2t

∫ 2t

t

Pf(u) du ≥ ln 2
2

Pf(t), t > 0.

This means that the conditions Pf ∈ L∞ and P(Pf) ∈ L∞ are equivalent.
In other words, Theorems 4.19 and 4.20 show, that for a non-negative on R+

function f the boundedness of Pf (and not the essential boundedness of f) is
the necessary and sufficient condition for P∗f and Sf to belong to BLO and
BMO.

The next theorem provides the lower bound of the BMO-norms of P∗f
and Sf , which reflect the behavior of the function f in the neighborhood of
zero.

Theorem 4.23 ([39]). Let f be a non-negative locally summable function on
R+ such that

∫ +∞
1

f(x) dx
x < ∞. Then

‖P∗f ‖∗ ≥ 2
e

lim
t→0+

ess inf
u∈(0,t)

f(u), (4.39)
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‖Sf ‖∗ ≥ 2
e

lim
t→0+

ess inf
u∈(0,t)

f(u), (4.40)

and in general the constants 2
e in the right-hand sides of (4.39) and (4.40) are

sharp.

Proof. Let us denote A = limt→0+ ess infu∈(0,t) f(u). If A = 0, then (4.39)
and (4.40) are trivial. Let A > 0. Fix a, 0 < a < A, and choose ε > 0 such
that f(u) > a for almost all u ∈ (0, ε). Then for t < ε

P∗f(t) ≥
∫ ε

t

f(u)
du

u
≥ a ln

ε

t
. (4.41)

Now let us use the John–Nirenberg inequality with exact exponent (Theorem
3.21). Assuming P∗f ∈ BMO and taking into account the monotonicity of
P∗f , one can rewrite the John-Nirenberg inequality (3.39) in the following
way

P∗f(t) ≤ (P∗f)[0,1] +
e
2
‖P∗f ‖∗

(
ln

1
t

+ lnB

)
. (4.42)

Here the constant B = exp
(
1 + 2

e

)
is taken from Theorem 3.21, and t > 0 is

small. Comparing (4.41) and (4.42), we have

a ln
ε

t
≤ (P∗f)[0,t] +

e
2
‖P∗f ‖∗

(
ln

1
t

+ lnB

)
for t > 0 small enough. This immediately implies ‖P∗f ‖∗ ≥ a. As a was an
arbitrary number smaller than A, inequality (4.39) is proved.

The same arguments lead the following inequality

a ln
ε

t
≤ (Sf)[0,t] +

e
2
‖Sf ‖∗

(
ln

1
t

+ lnB

)
,

with a < A being an arbitrary number. This inequality implies (4.40).
It remains to prove that the constant 2

e in the right-hand sides of (4.39)
and (4.40) cannot be increased. In the proof of Theorem 4.20 we showed that
for the function f1(x) = χ[0,1](x), x ∈ R+, one has ‖Sf1 ‖∗ = 2

e . Hence for the
function f1 the inequality (4.40) becomes an equality, so that the constant 2

e
in (4.40) is sharp. In order to proof that 2

e in (4.39) is also sharp, obviously
it is enough to show that

‖P∗f1 ‖∗ =
2
e
. (4.43)

Denote g(t) ≡ P∗f1(t) = ln 1
t χ[0,1](t), t ∈ R+. If 0 < t ≤ 1, then it is

easy to see that Ω(g; [0, t]) = 2
e . Otherwise, if t > 1, then for the function

h(x) = ln 1
x , x ∈ R+, there exists t1, 1 < t1 ≤ t, such that g[0,t] = h[0,t1].

Therefore, by Property 2.1,

Ω(g; [0, t]) =
2
t

∫
{u: g(u)>g[0,t]}

(
g(u) − g[0,t]

)
du ≤
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≤ 2
t1

∫
{u: h(u)>h[0,t1]}

(
h(u) − h[0,t1]

)
du = Ω(h; [0, t1]) =

2
e
.

So, we have proved (4.43), and this completes the proof of the theorem.
�
Remark 4.24. We cannot substitute the ess inf in the left-hand sides of
(4.39) and (4.40) by ess sup. Indeed, for the function

f(x) =
∞∑

k=0

2k+1χ[2−k−2−2k−2,2−k](x), x ∈ R+,

we obviously have limt→0+ ess supu∈(0,t) f(u) = +∞. Let us show that
‖Pf ‖∞ ≤ 2. Indeed, if x > 1, then

Pf(x) ≤
∫ 1

0

f(t) dt =
∞∑

k=0

2k+1 · 2−2k−2 =
∞∑

k=0

2−k−1 = 1.

If 0 < x ≤ 1, we can find an integer n such that 2−n−1 < x ≤ 2−n. Then

Pf(x) ≤ 1
2−n−1

∫ 2−n

0

f(t) dt = 2n+1
∞∑

k=n

2k+1 · 2−2k−2 = 2.

Hence
‖P(Pf)‖∞ ≤ ‖Pf ‖∞ ≤ 2,

and, according to Theorem 4.20,

‖P∗f ‖∗ ≤ 4
e
, ‖Sf ‖∗ ≤ 4

e
.

This shows that (4.39) and (4.40) fail if we substitute ess inf by ess sup.

Now let f be a non-negative non-increasing function on R+ such that∫ +∞
1

f(x) dx
x < ∞. Clearly, in this case

‖f‖∞ = ‖Pf ‖∞ = lim
t→0+

f(t).

Thus Theorems 4.20 and 4.23 immediately lead to the following results.

Corollary 4.25 ([39]). If f is a non-negative non-increasing function on R+

such that
∫ +∞
1

f(x) dx
x < ∞, then

‖P∗f ‖∗ = ‖Sf ‖∗ =
2
e
‖f‖∞. (4.44)
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Corollary 4.26 ([39]). If f is a non-negative non-increasing function on R+

such that
∫ +∞
1

f(x) dx
x < ∞, then

‖P∗f ‖∗ ≥ α0‖f‖∗, (4.45)

‖Sf ‖∗ ≥ α0‖f‖∗, (4.46)

where the constant α0 is defined by (4.21).

Proof. Applying successively (4.44), the inequality ‖Pf ‖∗ ≤ 1
2‖Pf ‖∞ (which

follows from Property 2.7), and (4.31), we obtain

‖P∗f ‖∗ =
2
e
‖Pf ‖∞ ≥ 4

e
‖Pf ‖∗ ≥ 4

e
c∗‖f‖∗ ≥ α0‖f‖∗,

where the constant c∗ is defined by (4.24).
Analogously one can prove (4.46). �

Remark 4.27. Without the monotonicity assumption on f the inequali-
ties (4.45) and (4.46) fail even if the constants α0 in their right-hand sides
are arbitrarily small. It can be easily seen from the following example. Take
f0(x) = χ[1−ε,1](x), x ∈ R+, with 0 < ε < 1. Then ‖f0‖∗ = 1

2 and

max (‖P∗f0 ‖∗, ‖Sf0 ‖∗) ≤ ‖Sf0 ‖∞ ≤ ε + ln
1

1 − ε
→ 0, ε → 0 + .

On the other hand, the boundedness condition in Corollary 4.26 can be ne-
glected. Indeed, if f is unbounded, then, by (4.44), the left-hand sides of (4.45)
and (4.46) are infinite.

Remark 4.28. Equality (4.44) implies that it is impossible to get the up-
per bounds of ‖P∗f ‖∗ and ‖Sf ‖∗ in terms of ‖f‖∗ even for the monotone
bounded function f . Indeed, if such upper bounds exist, equality (4.44) would
imply ‖f‖∞ ≤ c‖f‖∗ with some constant c > 0, which is wrong. In order to
see this it is enough to consider the function

fN (x) =
1
N

min
(

N, ln
1
x

)
χ[0,1)(x), x ∈ R+.

We have ‖fN‖∞ = 1 and one can easily check that ‖fN‖∗ → 0 as N → ∞.



5

The Gurov–Reshetnyak Class of Functions

5.1 Embedding in the Gehring Class

The BMO-class is closely related to the class of functions, which was studied
first by Gurov and Reshetnyak in [21, 22]. This class could be also defined in
terms of mean oscillations of functions in the following way.

Let Q0 ⊂ R
d be a fixed cube. We will say that the non-negative function

f ∈ L(Q0) satisfies the Gurov–Reshetnyak condition, if

Ω(f ;Q) ≤ εfQ, Q ⊂ Q0, (5.1)

where the constant ε does not depend on the cube Q. The class of all such
functions f is called the Gurov–Reshetnyak class. We will denote it by GR ≡
GR(ε) ≡ GR(ε,Q0). Often inequality (5.1) is called the Gurov–Reshetnyak
inequality.

Remark 5.1. Obviously, for ε = 2 inequality (5.1) holds, but if ε < 2 in
general it is no more true. Indeed, for the function fN (x) = Nχ[0, 1

N ](x), x ∈
[0, 1] ≡ Q0, we have (fN )Q0 = 1, Ω(fN ;Q0) = 2

(
1 − 1

N

)
, so that

Ω(fN ;Q0)
(fN )Q0

→ 2, N → ∞.

Hence condition (5.1) is substantial only for 0 < ε < 2.

Remark 5.2. For any ε < 2 if the function f satisfies condition (5.1), then
it is either positive almost everywhere or equivalent to zero. This fact is a
consequence of the following statement.

Proposition 5.3. If f �∼ 0 is a non-negative locally summable function such
that |{x : f(x) = 0}| > 0, then

sup
Q

Ω(f ;Q)
fQ

= 2. (5.2)
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Proof. Denote A = {x : f(x) = 0}. Since by virtue of Lebesgue theorem 1.1
almost every point of the set A is its density point for any δ > 0 there exists
a cube Q such that fQ > 0 and

|E| <
δ

2
|Q|,

for E ≡ Q \ A. Then the equality∫
{x∈E: f(x)≤fQ}

f(x)dx ≤ fQ|{x ∈ E : f(x) ≤ fQ}| =

=
|{x ∈ E : f(x) ≤ fQ}|

|Q|
∫

E

f(x)dx

implies

|{x ∈ E : f(x) > fQ}|
|Q|

∫
E

f(x)dx +
∫
{x∈E: f(x)≤fQ}

f(x)dx ≤

≤ 1
|Q| (|{x ∈ E : f(x) > fQ}| + |{x ∈ E : f(x) ≤ fQ}|)

∫
E

f(x)dx =

=
|E|
|Q|

∫
E

f(x)dx <
δ

2

∫
E

f(x)dx.

Thus |Q|
2

(Ω(f ;Q) − (2 − δ)fQ) =

=
∫
{x∈E: f(x)>fQ}

(f(x) − fQ)dx − 2 − δ

2

∫
E

f(x)dx =

=
∫
{x∈E: f(x)>fQ}

f(x)dx − fQ|{x ∈ E : f(x) > fQ}|−

−
∫

E

f(x)dx +
δ

2

∫
E

f(x)dx ≥

≥
∫
{x∈E: f(x)≤fQ}

f(x)dx − |{x ∈ E : f(x) > fQ}|
|Q|

∫
E

f(x)dx+

+
|{x ∈ E : f(x) > fQ}|

|Q|
∫

E

f(x)dx −
∫
{x∈E: f(x)≤fQ}

f(x)dx = 0,

i.e.,
Ω(f ;Q)

fQ
≥ 2 − δ.

Since δ > 0 is arbitrary equality (5.2) follows. �
The fundamental property of the GR-class, which stipulates numerous

applications, is described by the following theorem.
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Theorem 5.4 (Gurov, Reshetnyak, [22]). There exists a number ε0 ≡
ε0(d), 0 < ε0 ≤ 2 such that for any ε, 0 < ε < ε0, one can find p0 ≡ p0(ε, d) >
1 such that if the function f satisfies condition (5.1), then f ∈ Lp(Q0) for any
p < p0.

Various proofs, generalizations and refinements of this theorem were found
by a number of different authors ([27, 4, 15, 76, 13, 14] and others). In what
follows we will derive this theorem as a corollary of a more general result (see
Corollary 5.8).

Let us introduce the following quantity

ν(f ;σ) ≡ sup
l(Q)≤σ

Ω(f ;Q)
fQ

, 0 < σ ≤ l (Q0) .

The supremum here is taken over all cubes Q ⊂ Q0 such that their side-
lengths l(Q) are less or equal than σ. In addition, if fQ = 0 for some cube
Q ⊂ Q0, then Ω(f ;Q) = 0, provided f is non-negative on Q0. In this case we
assume that Ω(f ;Q)

fQ
= 0. According to Remark 5.1, for any f ∈ L(Q0) we have

ν(f ;σ) ≤ 2 for 0 < σ ≤ l (Q0). Some properties of the function f in terms of
ν(f ;σ) were studied in [13, 14].

Theorem 5.5 ([37]). Let Q0 ⊂ R
d be a cube , and let the function f ∈ L(Q0)

be non-negative. Then

1
t

∫ t

0

|f∗(u) − f∗∗(t)| du ≤ 3 · 2dν
(
f ; 2t1/d

)
f∗∗(t), 0 < t ≤ 2−d |Q0| .

(5.3)

For the proof of this theorem we will need the following refinement of
Calderón–Zygmund lemma 1.14.

Lemma 5.6 (Calderón, Zygmund, [70]). Let f be a non-negative function,
summable on the cube Q0 ⊂ R

d, and let α ≥ 1
|Q0|

∫
Q0

f(x) dx. Then there exist
cubes Qj ⊂ Q′

j ⊂ Q0, j = 1, 2, . . . , with pairwise disjoint interiors such that∣∣Q′
j

∣∣ = 2d |Qj |,
fQ′

j
≤ α < fQj

≤ 2dα, (5.4)

and

f(x) ≤ α for almost all x ∈ Q0 \
⎛⎝⋃

j≥1

Qj

⎞⎠ . (5.5)

Proof. Essentially the proof of this lemma repeats the proof of Lemma 1.14.
We only have to notice that as the cube Q′

j it is enough to take the cube,
whose partition results the dyadic cube Qj , j = 1, 2, . . . . Clearly, in this case
the left inequality of (5.4) holds true. The other statements of the lemma
follow from Lemma 1.14. �



102 5 The Gurov–Reshetnyak Class of Functions

Proof of Theorem 5.5. Let us fix some t, 0 < t ≤ 2−d |Q0|. Applying
Lemma 5.6 with α = f∗∗(t), we obtain the cubes Qj and Q′

j , which satisfy
the properties stated by this lemma.

Denote E = ∪j≥1Qj . Using Property 2.1, together with the definition of
the rearrangement f∗ and (5.5), we obtain∫ t

0

|f∗(u) − f∗∗(t)| du = 2
∫
{u: f∗(u)>α}

(f∗(u) − α) du =

= 2
∫
{x∈Q0: f(x)>α}

(f(x) − α) dx = 2
∫
{x∈Q0: f(x)>α}∩E

(f(x) − α) dx.

Since the interiors of the cubes Qj are pairwise disjoint∫ t

0

|f∗(u) − f∗∗(t)| du = 2
∑
j≥1

∫
{x∈Q0: f(x)>α}∩Qj

(f(x) − α) dx =

= 2
∑
j≥1

∫
{x∈Qj : f(x)>α}

(f(x) − α) dx =

= 2
∑
j≥1

∫
{x∈Qj : f(x)>α}

(
f(x) − fQj

)
dx+

+2
∑
j≥1

(
fQj

− α
) |{x ∈ Qj : f(x) > α}| =

= 2
∑
j≥1

∫
{x∈Qj : f(x)>fQj}

(
f(x) − fQj

)
dx+

+2
∑
j≥1

∫
{x∈Qj : α<f(x)≤fQj}

(
f(x) − fQj

)
dx+

+2
∑
j≥1

(
fQj

− α
) |{x ∈ Qj : f(x) > α}| ≡ S1 + S2 + S3. (5.6)

In order the estimate Si, i = 1, 2, 3, let us notice that, by (5.4),

1
|E|

∫
E

f(x) dx =
1
|E|

∑
j≥1

∫
Qj

f(x) dx =

=
1
|E|

∑
j≥1

|Qj | fQj
≥ α

|E|
∑
j≥1

|Qj | = α.

Therefore, by the definition of the rearrangement f∗,
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1
t

∫ t

0

f∗(u) du = f∗∗(t) = α ≤ 1
|E|

∫
E

f(x) dx ≤ 1
|E|

∫ |E|

0

f∗(u) du.

From here it follows that
|E| ≤ t, (5.7)

provided f∗ is monotone, so that |Qj | ≤ t and
∣∣Q′

j

∣∣ ≤ 2dt, j = 1, 2, . . . .
Therefore, by Property 2.1,

S1 = 2
∑
j≥1

∫
{x∈Qj : f(x)>fQj}

(
f(x) − fQj

)
dx =

∑
j≥1

∫
Qj

∣∣f(x) − fQj

∣∣ dx =

=
∑
j≥1

Ω (f ;Qj)
fQj

∫
Qj

f(x) dx ≤ ν
(
f ; t1/d

)∑
j≥1

∫
Qj

f(x) dx ≤

≤ ν
(
f ; t1/d

)∑
j≥1

∫
Q′

j

f(x) dx, (5.8)

provided ν(f ;σ) is monotone. Further, by (5.4),

S3 = 2
∑
j≥1

(
fQj

− α
) |{x ∈ Qj : f(x) > α}| ≤ 2

∑
j≥1

(
fQj

− fQ′
j

)
|Qj | ≤

≤ 2
∑
j≥1

∫
Qj

∣∣∣f(x) − fQ′
j

∣∣∣ dx ≤ 2
∑
j≥1

∫
Q′

j

∣∣∣f(x) − fQ′
j

∣∣∣ dx =

= 2
∑
j≥1

Ω
(
f ;Q′

j

)
fQ′

j

∫
Q′

j

f(x) dx ≤ 2ν
(
f ; 2t1/d

)∑
j≥1

∫
Q′

j

f(x) dx. (5.9)

Taking into account that S2 ≤ 0, from (5.6), (5.8), (5.9) and from the
monotonicity of ν(f ;σ) we obtain∫ t

0

|f∗(u) − f∗∗(t)| du ≤ 3ν
(
f ; 2t1/d

)∑
j≥1

∫
Q′

j

f(x) dx.

Now the application of (5.4) and (5.7) leads to the inequality∫ t

0

|f∗(u) − f∗∗(t)| du ≤ 3ν
(
f ; 2t1/d

)
· α
∑
j≥1

∣∣Q′
j

∣∣ =

= 3α · 2dν
(
f ; 2t1/d

)∑
j≥1

|Qj | = 3α · 2dν
(
f ; 2t1/d

)
|E| ≤ 3α · 2dν

(
f ; 2t1/d

)
· t.

Since α = f∗∗(t) the last inequality is equivalent to (5.3). �
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Inequality (5.3) leads to the following estimate of the rearrangement of the
function f in terms of ν(f ;σ).

Theorem 5.7 ([37]). There exist constants c1 ≡ c1(d) and c2 ≡ c2(d) such
that for any cube Q0 ⊂ R

d and for any non-negative function f ∈ L(Q0)

f∗∗(t) ≤ c1fQ0 · exp

(
c2

∫ l(Q0)

t1/d

ν(f ;σ)
dσ

σ

)
, 0 < t ≤ |Q0| . (5.10)

Proof. Applying Lemma 2.2 to the function ϕ = f∗ with a = 2 and using
Theorem 5.5, for 0 < t ≤ 2−d |Q0| we get

f∗∗
(

t

2

)
− f∗∗(t) ≤ 1

t

∫ t

0

|f∗(u) − f∗∗(t)| du ≤ 3 · 2dν
(
f ; 2t1/d

)
f∗∗(t),

or, equivalently,

f∗∗
(

t

2

)
≤
(
1 + 3 · 2dν

(
f ; 2t1/d

))
f∗∗(t), 0 < t ≤ 2−d |Q0| .

The recurrent application of the last inequality yields

f∗∗ (2−d−s |Q0|
) ≤ f∗∗ (2−d |Q0|

) · s∏
i=1

(
1 + 3 · 2dν

(
f ;
(
2−s+i |Q0|

)1/d
))

=

= f∗∗ (2−d |Q0|
) · exp

(
s−1∑
i=0

ln
(
1 + 3 · 2dν

(
f ; 2−i/dl (Q0)

)))
≤

≤ f∗∗ (2−d |Q0|
) · exp

(
3 · 2d

s−1∑
i=0

ν
(
f ; 2−i/dl (Q0)

))
, s = 1, 2, . . .

On the other hand,

ν
(
f ; 2−i/dl (Q0)

)
≤ 21/d

21/d − 1

∫ 2−(i−1)/dl(Q0)

2−i/dl(Q0)

ν(f ;σ)
dσ

σ
, i = 1, . . . , s − 1,

provided ν(f ;σ) is monotone. Therefore, taking into account that ν(f ;
l (Q0)) ≤ 2, we get

f∗∗ (2−d−s |Q0|
) ≤ exp

(
3 · 2d+1

)
f∗∗ (2−d |Q0|

)×
× exp

(
3 · 2d · 21/d

21/d − 1

s−1∑
i=1

∫ 2−(i−1)/dl(Q0)

2−i/dl(Q0)

ν(f ;σ)
dσ

σ

)
≤
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≤ 2d exp
(
3 · 2d+1

)
fQ0 exp

(
3 · 2d · 21/d

21/d − 1

∫ l(Q0)

2−(s−1)/dl(Q0)

ν(f ;σ)
dσ

σ

)
.

Fix some t ∈ (0, |Q0|] and choose s ∈ N such that 2−s |Q0| < t ≤
2−s+1 |Q0|. Then, since f∗∗ is monotone the last inequality implies

f∗∗(t) ≤ f∗∗ (2−s |Q0|
) ≤ f∗∗ (2−d−s |Q0|

) ≤

≤ 2d exp
(
3 · 2d+1

)
fQ0 exp

(
3 · 2d · 21/d

21/d − 1

∫ l(Q0)

2(−s+1)/dl(Q0)

ν(f ;σ)
dσ

σ

)
≤

≤ c1 · fQ0 exp

(
c2

∫ l(Q0)

t1/d

ν(f ;σ)
dσ

σ

)
,

where c1 = 2d exp
(
3 · 2d+1

)
, c2 = 3 · 2d · 21/d

21/d−1
. �

Corollary 5.8 (Gurov-Reshetnyak theorem 5.4). For any ε such that

0 < ε < ε0(d) ≡ d

c2
=

d
(
21/d − 1

)
3 · 2d · 21/d

,

there exists p0 ≡ p0(ε, d) > 1 such that if the function f satisfies condi-
tion (5.1), then f ∈ Lp (Q0) for any p < p0.

Proof. Condition (5.1) is equivalent to the inequality ν(f ;σ) ≤ ε for 0 < σ ≤
l (Q0). Thus (5.10) implies

f∗∗(t) ≤ c1 ·fQ0 ·exp
(

c2

d
· ε · ln |Q0|

t

)
= c1 ·fQ0

( |Q0|
t

) ε
ε0(d)

, 0 < t ≤ |Q0| .
(5.11)

Since ε < ε0(d) we have

p0(ε, d) ≡ ε0(d)
ε

=
1
ε
· d
(
21/d − 1

)
3 · 2d · 21/d

> 1. (5.12)

If p < p0(ε, d), then, by (5.11),

(f∗∗(t))p ≤ cp
1 (fQ0)

p

( |Q0|
t

) ε
ε0(d) ·p

, 0 < t ≤ |Q0| .

As p < p0(ε, d) = ε0(d)
ε , we have

‖f‖p
p =

∫ |Q0|

0

(f∗(t))p
dt ≤

∫ |Q0|

0

(f∗∗(t))p
dt ≤ cp

1

ε0(d)
ε0(d) − pε

|Q0| (fQ0)
p
. �

(5.13)
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Remark 5.9. Fix the cube Q0 ⊂ R
d and choose some Q ⊂ Q0. Then (5.1)

implies that f ∈ GR(ε,Q). Hence, applying Corollary 5.8 to the cube Q, one
can rewrite inequality (5.13) in the following way:{

1
|Q|

∫
Q

fp(x) dx

}1/p

≤ c3
1
|Q|

∫
Q

f(x) dx, Q ⊂ Q0, (5.14)

where 1 < p < p0(ε, d), c3 = c3(ε, p, d), and c3 does not depend on Q ⊂
Q0. Inequality (5.14) is called the reverse Hölder inequality, or the Gehring
inequality [18].

Corollary 5.10. If the function f is non-negative on the cube Q0 ⊂ R
d and

satisfies Gurov–Reshetnyak condition (5.1) for some ε < ε0(d), then it also
satisfies Gehring inequality (5.14) for all p < p0(ε, d).

Remark 5.11. In Gurov–Reshetnyak theorem 5.4 we have found that p0

(ε, d) = ε0(d)
ε → ∞ as ε → 0+. The estimate p0(ε, d) = O

(
1
ε

)
, ε → 0+, was

first obtained in [4, 76]. As it was noticed in [4], it turns out that this limit-
ing behavior cannot be improved. In what follows we will find the maximal
possible value of p0(ε, 1) (see Corollary 5.35).

Remark 5.12. The proof of inequality (5.10) is based on the application of
Lemma 2.2 with a = 2. Generally speaking, the parameter a > 1 in Lemma 2.2
could be chosen in the “better way” in order to minimize the value of the
constant c2 in the exponent in right-hand side of (5.10). This could allow to
slightly increase the values of ε0(d) and p0(ε, d), obtained in Corollary 5.8.
However, this method does not lead to the desired result (i.e. ε0(d) = 2
and maximal possible p0(ε, d)), because in order to prove (5.9) we have used
estimate (5.3), which is overstated in the sense of constants.

From Theorem 5.7 one can derive the following

Corollary 5.13 (Franciosi, [13]). If the function f ∈ L (Q0) is non-negative
on the cube Q0 ⊂ R

d and ν(f ;σ) → 0 as σ → 0+, then f ∈ Lp (Q0) for any
p < ∞.

Proof. Take some p < ∞ and choose t0, 0 < t0 ≤ |Q0|, such that ν(f ;σ) ≤
d

2c2p for 0 < σ ≤ t
1/d
0 . Then, by (5.10), for 0 < t ≤ t0

f∗∗(t) ≤ c1 · fQ0 · exp

(
c2

∫ |Q0|

t
1/d
0

ν(f ;σ)
dσ

σ

)
·
(

t0
t

) 1
2p

.

Obviously this implies that the function (f∗∗)p is summable on [0, |Q0|], and
hence f ∈ Lp (Q0). �

It is clear that inequality (5.10) provides the sufficient conditions for f to
belong to the various Orlicz spaces in terms of the order of ν(f ;σ) as σ → 0+.
If ν(f ;σ) is such that
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0

ν(f ;σ)
dσ

σ
< ∞, (5.15)

then (5.10) immediately implies the following result.

Corollary 5.14. If the function f ∈ L (Q0) is non-negative on the cube
Q0 ⊂ R

d and satisfies (5.15), then f ∈ L∞ (Q0).

Corollary 5.14 can be sharpen. In order to show this, we will need one
result due to Spanne [69] (see also [7, 57]). Denote

ν1(f ; δ) = sup
Q⊂Q0, l(Q)≤δ

Ω(f ;Q), 0 < δ ≤ l(Q0).

Theorem 5.15 (Spanne, [69]). If f ∈ L(Q0) is such that∫ l(Q0)

0

ν1(f ; δ)
dδ

δ
< ∞, (5.16)

then to any cube Q ⊂ Q0 with l(Q) ≤ 1
2 l(Q0)

ess sup
x∈Q

|(f − fQ) (x)| ≤ cd

∫ 2l(Q)

0

ν1(f ; δ)
dδ

δ
, (5.17)

where the constant cd depends only on the dimension d of the space.

Proof. Fix the cube Q ⊂ Q0 such that l(Q) ≤ l(Q0)/2. In order to prove (5.17)
without loss of generality we can assume fQ = 0. According to Lebesgue
theorem 1.1, we have f(x) = limj→∞ fQj

for almost every x ∈ Q, where
Qj is a sequence of dyadic (with respect to Q) cubes of order j = 1, 2, . . . ,
contractible to x. Thus, for the proof of (5.17) it is enough to show that

∣∣fQj

∣∣ ≤ cd

∫ 2l(Q)

0

ν1(f ; δ)
dδ

δ
, j = 1, 2, . . . (5.18)

Let us prove (5.18). For i ≥ 1

∣∣fQi+1 − fQi

∣∣ ≤ 1
|Qi+1|

∫
Qi+1

|f(x) − fQi
| dx ≤

≤ 2d 1
|Qi|

∫
Qi

|f(x) − fQi
| dx ≤ 2dν1 (f ; l(Qi)) ,

while the condition fQ = 0 implies

|fQ1 | ≤ 2dν1(f ; l(Q)).

Therefore
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∣∣fQj

∣∣ ≤ |fQ1 | +
j−1∑
i=1

∣∣fQi+1 − fQi

∣∣ ≤ 2d

(
ν1(f ; l(Q)) +

∞∑
i=1

ν1 (f ; l(Qi))

)
≤

≤ 2d

(
1

l(Q)

∫ 2l(Q)

l(Q)

ν1(f ; δ) dδ +
1

l(Q) − l(Q1)

∫ l(Q)

l(Q1)

ν1(f ; δ) dδ+

+
∞∑

i=2

1
l(Qi−1) − l(Qi)

∫ l(Qi−1)

l(Qi)

ν1(f ; δ) dδ

)
=

= 2d

(
1

l(Q)

∫ 2l(Q)

l(Q)

ν1(f ; δ) dδ +
1

l(Q1)

∫ l(Q)

l(Q1)

ν1(f ; δ) dδ+

+
∞∑

i=2

1
l(Qi)

∫ l(Qi−1)

l(Qi)

ν1(f ; δ) dδ

)
≤

≤ 2d+1

(∫ 2l(Q)

l(Q)

ν1(f ; δ)
dδ

δ
+
∫ l(Q)

l(Q1)

ν1(f ; δ)
dδ

δ
+

∞∑
i=2

∫ l(Qi−1)

l(Qi)

ν1(f ; δ)
dδ

δ

)
=

= 2d+1

∫ 2l(Q)

0

ν1(f ; δ)
dδ

δ
. �

From Spanne’s theorem 5.15 and condition (5.16) it follows immediately,
that the function f is equivalent to some function g, which is continuous on
Q0 and such that its modulus of continuity ω(g;σ) satisfies the condition

ω(g;σ) ≡ sup
x,y∈Q0, |x−y|≤σ

|g(x)−g(y)| ≤ cd

∫ 2σ

0

ν1(f ; δ)
dδ

δ
, 0 < σ ≤ 1

2
l(Q0).

(5.19)
Indeed, by Lebesgue theorem 1.1, the function g(x) ≡ liml(Q)→0 fQ for x ∈ Q0

is equivalent to f . If x, y ∈ Q0 and |x − y| ≤ σ, then we choose the cube
Q ⊂ Q0, which contains x, y, and such that l(Q) ≤ σ. Then

|g(x) − g(y)| ≤ |g(x) − fQ| + |g(y) − fQ| ≤ 2 ess sup
x∈Q

|(f − fQ) (x)|

and Theorem 5.15 imply (5.19).

Now let us suppose that f is non-negative on the cube Q0 and satis-
fies (5.15). Then (5.10) implies

‖f‖∞ ≤ K ≡ c1fQ0 exp

(
c2

∫ l(Q0)

0

ν(f ;σ)
dσ

σ

)
.
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Hence for any cube Q ⊂ Q0

fQ ≤ ‖f‖∞ ≤ K.

Therefore

ν(f ; δ) = sup
l(Q)≤δ

Ω(f ;Q)
fQ

≥ 1
K

sup
l(Q)≤δ

Ω(f ;Q) =
1
K

ν1 (f ; δ) , 0 < δ ≤ l (Q0) .

(5.20)
So condition (5.15) implies∫ l(Q0)

0

ν1(f ; δ)
dδ

δ
≤ K

∫ |Q0|

0

ν(f ; δ)
dδ

δ
< ∞,

i.e., condition (5.16) is also satisfied. Now, applying Spanne theorem 5.15,
from (5.20) we obtain the following statement.

Theorem 5.16. Let f be a non-negative function on the cube Q0 ⊂ R
d,

satisfying condition (5.15). Then for any cube Q ⊂ Q0 with l(Q) ≤ 1
2 l (Q0)

ess sup
x∈Q

|(f − fQ) (x)| ≤ cdK

∫ 2l(Q)

0

ν(f ; δ)
dδ

δ
.

In the same way as the estimate of the modulus of continuity follows from
Spanne theorem 5.15, the last Theorem implies

Corollary 5.17 ([37]). If the function f is non-negative on the cube Q0 ⊂ R
d

and satisfies condition (5.15), then f is equivalent to the function g, which is
continuous on Q0 and

ω(g; δ) = O

(∫ δ

0

ν(f ;σ)
dσ

σ

)
, δ → 0.

Remark 5.18. Inequality (5.20) was obtained under assumption (5.15). This
assumption is necessary to guarantee that ν(f ; δ) dominates ν1 (f ; δ). Indeed,
let us consider the function f0(x) = ln 1

x , 0 < x ≤ β0, where β0 > 0 is small
enough. Then, as it was shown in Example 2.24, ν1(f0; δ) = Ω(f ; [0, δ]) = 2

e ,
and

ν(f0; δ) ≤ 1
ln 1

β0

Ω(f0; [0, δ]) =
2/e
ln 1

β0

, 0 < δ ≤ β0.

So, for the function f0 inequality (5.20) fails for any K, which does not depend
on β0.

Let us come back to Gurov–Reshetnyak theorem 5.4. As we remarked in
Corollary 5.8, Gurov–Reshetnyak condition (5.1) for 0 < ε < ε0(d) implies
that f is summable for some p > 1. On the other hand, condition (5.1) is
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non-trivial for any ε < 2. In this context the following question is natural. For
which ε < 2 one can increase the exponent of summability of the function f ,
using condition (5.1)? The next theorem provides the answer to this question.

Theorem 5.19 (Coifman, Fefferman, [8]). Let f ∈ L(Q0) be a non-
negative summable function on the cube Q0 ⊂ R

d. If

|{x ∈ Q : f(x) > σ · fQ}| > θ · |Q|, Q ⊂ Q0, (5.21)

where the constants 0 < σ, θ < 1 do not depends on Q, then there exists
r ≡ r(σ, θ, d) > 0 such that f ∈ L1+r(Q0) and{

1
|Q0|

∫
Q0

f1+r(x) dx

} 1
1+r

≤ c
1

|Q0|
∫

Q0

f(x) dx (5.22)

with c = c(σ, θ, d, r).

Proof. First we prove the inequality∫
{x∈Q0: f(x)>α}

f(x) dx ≤ c′ · α |{x ∈ Q0 : f(x) > σ · α}| , (5.23)

where α ≥ fQ0 and the constant c′ depends only on θ and d. Let us fix
some α ≥ fQ0 and apply Caldrón–Zygmund lemma 1.14. Then we obtain a
collection of cubes Qj ⊂ Q0, j = 1, 2, . . . , with pairwise disjoint interiors such
that

α <
1

|Qj |
∫

Qj

f(x) dx ≤ 2dα,

and f(x) ≤ α for almost all x ∈ Q0 \
(⋃

j≥1 Qj

)
. From here, using (5.21), we

have ∫
{x∈Q0: f(x)>α}

f(x) dx ≤
∑
j≥1

∫
Qj

f(x) dx ≤

≤ 2dα
∑
j≥1

|Qj | ≤ 2dα

θ

∑
j≥1

∣∣{x ∈ Qj : f(x) > σ · fQj

}∣∣ ≤
≤ 2d

θ
· α
∑
j≥1

|{x ∈ Qj : f(x) > σ · α}| ≤ c′ · α · |{x ∈ Q0 : f(x) > σ · α}| ,

where c′ = 2d/θ, and this proves (5.23).
Now, multiplying (5.23) by αr−1 and integrating, we find that∫ ∞

fQ0

αr−1

(∫
{x∈Q0: f(x)>α}

f(x) dx

)
dα ≤
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≤ c′
∫ ∞

0

αr |{x ∈ Q0 : f(x) > σ · α}| dα =

=
c′

σ1+r

∫ ∞

0

τ r |{x ∈ Q0 : f(x) > τ}| dτ = c′′
∫

Q0

f1+r(x) dx, (5.24)

where c′′ = c′ · σ−1−r/(1 + r). On the other hand, using the Fubini theorem
one can get the following estimate for the left hand-side of the last inequality∫ ∞

fQ0

αr−1

(∫
{x∈Q0: f(x)>α}

f(x) dx

)
dα =

=
∫
{x∈Q0: f(x)>fQ0}

f(x)

(∫ f(x)

fQ0

αr−1 dα

)
dx =

=
1
r

∫
{x∈Q0: f(x)>fQ0}

f(x) (fr(x) − (fQ0)
r) dx ≥

≥ 1
r

∫
Q0

f(x) (fr(x) − (fQ0)
r) dx =

1
r

∫
Q0

f1+r(x) dx − |Q0|
r

(fQ0)
1+r

.

From here and (5.24) it follows that(
1
r
− c′′

)
1

|Q0|
∫

Q0

f1+r(x) dx ≤ 1
r

(fQ0)
1+r

.

Choosing r > 0 so small that 1
r − c′′ > 0, we obtain (5.22). �

Remark 5.20. The presented proof of Theorem 5.19 needs a small refinement.
Indeed, in (5.24) we a priori assumed that f ∈ L1+r (Q0). This vicious circle
can be avoided in the following way.

For N > fQ0 let us consider the cut-off function [f ]N (x) = min(N, f(x)) ≤
f(x), x ∈ Q0. If fQ0 ≤ α < N , then

{x ∈ Q0 : f(x) > α} = {x ∈ Q0 : [f ]N (x) > α}

and
{x ∈ Q0 : f(x) > σ · α} = {x ∈ Q0 : [f ]N (x) > σ · α} ,

so that, by (5.23),∫
{x∈Q0: [f ]N (x)>α}

[f ]N (x) dx ≤ c′ · α |{x ∈ Q0 : [f ]N (x) > σ · α}| . (5.25)

Otherwise, if α ≥ N , then (5.25) is trivial because the domain of the definition
of the integral in the left inequality is empty. So, (5.23) implies (5.25) for all
α ≥ fQ0 and N > fQ0 . It is also clear that [f ]N ∈ L1+r (Q0) for any r > 0.
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Now we repeat the proof of Theorem 5.19. In the proof of (5.24), substituting
f by [f ]N , we have{

1
|Q0|

∫
Q0

[f ]1+r
N (x) dx

} 1
1+r

≤ c
1

|Q0|
∫

Q0

[f ]N (x) dx, N > fQ0 .

Finally, since 1
|Q0|

∫
Q0

[f ]N (x) dx ≤ 1
|Q0|

∫
Q0

f(x) dx in order to complete the
proof of (5.22) it is enough to send N → ∞ and use the Levi theorem.

Remark 5.21. Condition (5.21) is one of the equivalent forms of the so-called
A∞–Muckenhoupt condition (see [8, 72]).

We see that condition (5.21) allows to increase the exponent of sum-
mability of the function f . Therefore, in order to proof Gurov–Reshetnyak
theorem 5.4 it is enough to show that Gurov–Reshetnyak condition (5.1) im-
plies (5.21). Actually it turn out that conditions (5.1) and (5.21)are equivalent.
This fact is the content of the next theorem.

Theorem 5.22 ([42]). Let f ∈ L(Q0) be a non-negative function on the
cube Q0 ⊂ R

d. Then

(i) if for some ε, 0 < ε < 2, the function f satisfies Gurov-Reshetnyak
condition (5.1), then there exist σ and θ, 0 < σ, θ < 1, which depend only on
ε and such that (5.21) holds true;

(ii) if for some σ and θ, 0 < σ, θ < 1, the function f satisfies (5.21), then

Ω(f ;Q) ≤ 2(1 − σθ)fQ, Q ⊂ Q0.

Proof. To prove (i) let us choose a number λ such that ε < λ < 2. Fix some
cube Q ⊂ Q0 and consider the set E =

{
x ∈ Q : f(x) > λ−ε

λ · fQ

}
. Since

ε
λ · fQ ≤ fQ − f(x) for all x ∈ Q \ E we have

ε

λ
· fQ ≤ inf

x∈Q\E
(fQ − f(x)) ≤ 1

|Q \ E|
∫

Q\E

(fQ − f(x)) dx.

On the other hand, λ−ε
λ < 1, so that

Q \ E =
{

x ∈ Q : f(x) ≤ λ − ε

λ
· fQ

}
⊂ {x ∈ Q : f(x) < fQ} .

Now applying Property 2.1 and condition (5.1) to the last inequality, we get

ε

λ
· fQ ≤ 1

|Q \ E|
∫
{x∈Q: f(x)<fQ}

(fQ − f(x)) dx =



5.1 Embedding in the Gehring Class 113

=
1
2
· |Q|
|Q \ E| · Ω(f ;Q) ≤ ε

2
· |Q|
|Q \ E| · fQ.

Hence |Q \ E| ≤ λ
2 · |Q|, i.e. |E| ≥ (

1 − λ
2

) · |Q|. This inequality coincides
with (5.21) for σ = λ−ε

λ and θ = 1 − λ
2 .

Let us prove (ii). Fix some cube Q ⊂ Q0. By Property 2.1 and condi-
tion (5.21),

Ω(f ;Q) =
2
|Q|

∫
{x∈Q: f(x)≤fQ}

(fQ − f(x)) dx =

=
2
|Q|

∫
{x∈Q: σfQ<f(x)≤fQ}

(fQ − f(x)) dx+

+
2
|Q|

∫
{x∈Q: f(x)≤σfQ}

(fQ − f(x)) dx ≤

≤ 2
|Q| (1 − σ) |{x ∈ Q : f(x) > σfQ}| + 2

|Q|fQ |{x ∈ Q : f(x) ≤ σfQ}| =

=
2
|Q|fQ

[
(1−σ)

(|Q|−|{x ∈ Q : f(x) ≤ σfQ}|
)
+ |{x ∈ Q : f(x) ≤ σfQ}|

]
=

=
2
|Q|fQ

[
|Q| − σ|Q| − |{x ∈ Q : f(x) ≤ σfQ}|+ σ |{x ∈ Q : f(x) ≤ σfQ}|+

+ |{x ∈ Q : f(x) ≤ σfQ}|
]
≤

≤ 2
|Q|fQ

[
|Q|(1 − σ) + σ(1 − θ)|Q|

]
= 2(1 − σθ)fQ. �

As we have already mentioned above, the next result is the immediate
consequence of Theorems 5.19 and 5.22.

Corollary 5.23 ([42]). Let 0 < ε < 2 and let f be a non-negative function on
the cube Q0 ⊂ R

d, satisfying Gurov–Reshetnyak condition (5.1). Then there
exists r > 0, which depends only on ε and d, such that (5.22) holds true with c,
depending only on ε, d and r.

Condition (5.1) of Corollary 5.23 can be replaced by the weaker condition

Ω(f ;Q) ≤ ε · fQ, Q ⊂ Q0, l(Q) ≤ δ · l(Q0), (5.26)

where δ ∈ (0, 1] is fixed. In other words, in the Gurov–Reshetnyak theorem it
is sufficient to require that the condition Ω(f ;Q) ≤ ε · fQ is verified on small
enough cubes. Indeed, we have

Corollary 5.24. Let 0 < ε < 2 and let f be a non-negative function on the
cube Q0 ⊂ R

d, satisfying (5.26) for some δ ∈ (0, 1]. Then there exists r > 0,
which depends only on ε and d, such that f ∈ L1+r (Q0) and
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1

|Q0|
∫

Q0

f1+r(x) dx

} 1
1+r

≤ c1
1

|Q0|
∫

Q0

f(x) dx. (5.27)

Here the constant c1 depends only on ε, d, r and δ.

Proof. Let us partition the cube Q0 into N =
([

1
δ

]
+ 1

)d cubes Qj with
pairwise disjoint interiors, dividing each side of the cube Q0 into

[
1
δ

]
+1 equal

parts. Then l(Qj) ≤ δ · l(Q0), j = 1, . . . , N , and by virtue of (5.26) to each
cube Qj we can apply Corollary 5.23. Then{

1
|Qj |

∫
Qj

f1+r(x) dx

} 1
1+r

≤ c
1

|Qj |
∫

Qj

f(x) dx, j = 1, . . . , N, (5.28)

where r = r(ε, d) > 0 and c = c(ε, d, r). Since Q0 =
⋃N

j=1 Qj inequality (5.28)

implies f ∈ L1+r(Q0). Further, as |Qj | = |Q0|
N , j = 1, . . . , N , (5.28) yields

1
|Q0|

∫
Q0

f1+r(x) dx =
1
N

N∑
j=1

1
|Qj |

∫
Qj

f1+r(x) dx ≤

≤ c1+r 1
N

N∑
j=1

(
1

|Qj |
∫

Qj

f(x) dx

)1+r

≤ c1+r

(
max

1≤j≤N

1
|Qj |

∫
Qj

f(x) dx

)1+r

≤

≤ c1+rN1+r |Q0|−1−r

⎛⎝ N∑
j=1

∫
Qj

f(x) dx

⎞⎠1+r

=

= c1+rN1+r

(
1

|Q0|
∫

Q0

f(x) dx

)1+r

.

This implies (5.27) with c1 = cN ≤ c
(

1
δ + 1

)d. �
Theorem 5.22 establish the equivalence of Gurov–Reshetnyak condition

(5.1) and A∞–Muckenhoupt condition (5.21). On the other hand, in [8] it
was shown that Muckenhoupt condition (5.21) is equivalent to Gehring in-
equality (5.22) for some r > 0. Thus Gurov–Reshetnyak condition (5.1) and
Gehring condition (5.22) are also equivalent. Now we will give another proof
of the equivalence of conditions (5.1), (5.21) and (5.22). Namely, besides
Theorems 5.19 and 5.22, one has to apply the following statement.

Theorem 5.25 ([44]). Let f be a non-negative function on the cube Q0 ⊂ R
d,

satisfying the Gehring condition{
1
|Q|

∫
Q

fp(x) dx

}1/p

≤ B · 1
|Q|

∫
Q

f(x) dx, Q ⊂ Q0, (5.29)

for some p, B > 1. Then there exists ε, 0 < ε < 2, which depends only on p
and B, such that Gurov–Reshetnyak inequality (5.1) holds true.



5.1 Embedding in the Gehring Class 115

Proof. Let us fix an arbitrary cube Q ⊂ Q0 and denote E = {x ∈ Q : f(x) ≥
fQ}. We can assume that fQ > 0. By the Hölder inequality,

Ω(f ;Q)
fQ

=
1

fQ

2
|Q|

∫
E

(f(x) − fQ) dx = 2
|E|
|Q|

1
fQ

1
|E|

∫
E

f(x) dx − 2
|E|
|Q| ≤

≤ 2
|E|
|Q|

1
fQ

{
1
|E|

∫
E

fp(x) dx

}1/p

− 2
|E|
|Q| ≤

≤ 2
( |E|
|Q|

)1−1/p 1
fQ

{
1
|Q|

∫
Q

fp(x) dx

}1/p

− 2
|E|
|Q| .

On the other hand, by condition (5.29),

(fQ)−1

{
1
|Q|

∫
Q

fp(x) dx

}1/p

≤ B,

so that
Ω(f ;Q)

fQ
≤ 2

(
B

( |E|
|Q|

)1−1/p

− |E|
|Q|

)
. (5.30)

Let us consider the function ϕ(λ) = B ·λ1−1/p −λ, λ > 0. The analysis of the
derivative shows, that ϕ is increasing on (0, λ0) and decreasing on (λ0,+∞),
where λ0 = (B(p − 1)/p)p. We also notice that from the trivial inequality

Ω(f ;Q)
fQ

= 2
|Q \ E|
|Q|

1
|Q \ E|

∫
Q\E

(
1 − f(x)

fQ

)
dx ≤ 2

|Q \ E|
|Q|

it follows that |E|
|Q| = 1 − |Q \ E|

|Q| ≤ 1 − 1
2

Ω(f ;Q)
fQ

. (5.31)

First let us consider the case

B <

(
p

p − 1

)(p−1)/p

. (5.32)

Then

λ0 <

((
p

p − 1

)(p−1)/p
p − 1

p

)p

=
p − 1

p
< 1.

Assume that
Ω(f ;Q)

fQ
≥ 2 (1 − λ0) . (5.33)

Then λ0 ≥ 1 − 1
2

Ω(f ;Q)
fQ

, and (5.30) and (5.31) imply
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Ω(f ;Q)
fQ

≤ 2ϕ

( |E|
|Q|

)
≤ 2ϕ

(
1 − 1

2
Ω(f ;Q)

fQ

)
=

= 2

(
B

(
1 − 1

2
Ω(f ;Q)

fQ

)1−1/p

−
(

1 − 1
2

Ω(f ;Q)
fQ

))
=

= 2B
(

1 − 1
2

Ω(f ;Q)
fQ

)1−1/p

− 2 +
Ω(f ;Q)

fQ
,

provided ϕ is monotone on (0, λ0). Thus

B

(
1 − 1

2
Ω(f ;Q)

fQ

)1−1/p

≥ 1,

or, equivalently,
Ω(f ;Q)

fQ
≤ 2

(
1 − B−p/(p−1)

)
. (5.34)

Comparing the last inequality with (5.33), we find

1 − λ0 ≤ 1 − B−p/(p−1). (5.35)

But λ0 = (B(p − 1)/p)p, so that (5.35) is equivalent to

B ≥
(

p

p − 1

)(p−1)/p

,

which contradicts (5.32). Therefore, condition (5.32) excludes (5.33) and im-
plies

Ω(f ;Q)
fQ

< 2 (1 − λ0) , (5.36)

and so λ0 < 1− 1
2

Ω(f ;Q)
fQ

. Taking into account that λ0 is a point of maximum
of ϕ, from (5.30) we obtain

Ω(f ;Q)
fQ

≤ 2ϕ

( |E|
|Q|

)
≤ 2ϕ (λ0) = 2ϕ

((
B

p − 1
p

)p)
=

= 2

[
B

((
B

p − 1
p

)p)1−1/p

−
(

B
p − 1

p

)p
]

= 2Bp (p − 1)p−1

pp
=

=
2

p − 1
λ0 <

2
p − 1

(
1 − 1

2
Ω(f ;Q)

fQ

)
=

2
p − 1

− 1
p − 1

Ω(f ;Q)
fQ

.

This implies
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1 +

1
p − 1

)
Ω(f ;Q)

fQ
≤ 2

p − 1
,

i.e.,
Ω(f ;Q)

fQ
≤ 2

p
. (5.37)

Notice, that condition (5.32) is equivalent to the following one

2
p

< 2 (1 − λ0) .

This means that bound (5.37) is stronger than (5.36).
It remains to consider the case

B ≥
(

p

p − 1

)(p−1)/p

. (5.38)

If we suppose that condition (5.33) is satisfied, then, as before, we come to
inequality (5.34). Otherwise we obtain the opposite to (5.33) inequality (5.36).
Notice also that (5.38) implies

1 − λ0 ≤ 1
p
≤ 1 − B−p/(p−1).

So, we conclude, that among estimates (5.34), (5.36) and (5.37), the estimate
provided by (5.34) is the best one that can be achieved in the case (5.38).

Finally, setting

ε ≡ ε(B, p) =

⎧⎨⎩
2
p , if B < (p/(p − 1))(p−1)/p

,

2
(
1 − B−p/(p−1)

)
, if B ≥ (p/(p − 1))(p−1)/p

,

we get (5.1). �
For 1 < p < ∞ and B > 1 we denote by Gp(B) the class of all functions

f , which are non-negative on the cube Q0 ⊂ R
d and satisfy the Gehring

inequality {
1
|Q|

∫
Q

fp(x) dx

}1/p

≤ B
1
|Q|

∫
Q

f(x) dx, Q ⊂ Q0.

The set Gp ≡ ⋃
B>1 Gp(B) is called the Gehring class .

Remark 5.26. In the proof of Theorem 5.25 we have found that ε(B, p) →
2 − 0 as B → ∞ for any fixed p > 1. This fact is essential. Indeed, let us
consider the function fb(x) = bχ(−∞,0)(x) + χ[0,+∞)(x), x ∈ R for b > 1. An
easy computation shows that fb ∈ GR (ε0) with the minimal possible value
ε0 ≡ ε0(b) = 2

√
b−1√
b+1

→ 2 − 0 as b → ∞. In addition, fb ∈ Gp for any p > 1.
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This means that the Gurov–Reshetnyak class GR(ε) does not contain the
Gehring class Gp for all ε < 2. Moreover, this example shows that for ε < 2
the set

⋂
p>1 Gp does not belong to any GR(ε). On the other hand, if p > 1

and B → 1, then the value ε(B, p) = 2
p , obtained in the proof of Theorem 5.25,

does not tend to zero. In this sense the constant ε(B, p) from Theorem 5.25
is overestimated. Indeed, as it was remarked in [4], for p ≥ 2 and 1 < B <

√
5

the condition f ∈ Gp(B) implies f ∈ G2(B), so that by Hölder inequality

Ω2(f ;Q) ≤ 1
|Q|

∫
Q

|f(x) − fQ|2 dx =
1
|Q|

∫
Q

f2(x) dx−
(

1
|Q|

∫
Q

f(x) dx

)2

≤

≤ (
B2 − 1

)( 1
|Q|

∫
Q

f(x) dx

)2

.

So, if Gp(B) ⊂ GR(ε) for p ≥ 2, then one can assure that ε → 0 as B → 1.

Remark 5.27. Let us fix B > 1. Then ε(B, p) → 2B−1
B as p → ∞. In other

words, we have ⋂
1<p<∞

Gp(B) ⊂
⋂

ε1<ε<2

GR(ε), (5.39)

where ε1 = 2B−1
B > 0. We do not know the minimal value of ε1(B) (possibly

depending on d), which guarantees (5.39). Notice, that (5.39) fails for ε1 = 0.
Moreover, for the function fb, defined in Remark 5.26, if b = B then we
have fB ∈ Gp(B) for any p > 1. On the other hand, from Remark 5.26 we
know that fB /∈ GR(ε) for any ε < ε0(B) = 2

√
B−1√
B+1

. Hence (5.39) fails if

ε1 < 2
√

B−1√
B+1

, and moreover, it is easy to see that this fact is valid in the
space of any dimension d ≥ 1. Therefore, if ε1(B) is the minimal value such
that (5.39) holds, then

2
√

B − 1√
B + 1

≤ ε1(B) ≤ 2
B − 1

B
.

Let us consider the other limit case p → 1 + 0. For some fixed B > 1 we have
ε(B, p) → 2 − 0, i.e., ⋃

1<p<∞
Gp(B) ⊂

⋃
0<ε<2

GR(ε). (5.40)

The same example of the function fb, defined in Remark 5.26, shows that the
constant 2 in the right-hand side of (5.40) is sharp. Indeed, it is easy to see
that fb ∈ Gp (Bp,b) for the fixed value b > 1, where

Bp,b =
(p − 1)(p−1)/p

p

bp − 1
(b − 1)1/p

1

(bp − b)(p−1)/p
→ 1 + 0 as p → 1 (5.41)
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is the minimal possible value. Fix some B > 1, ε1 < 2 and choose b > 1
so big, that ε0(b) = 2

√
b−1√
b+1

> ε1. Then, due to (5.41), for this value of b

there exists p > 1 such that Bp,b < B and fb ∈ ⋃
1<p<∞ Gp(B). Obviously,

fb /∈ ⋃0<ε<ε1
GR(ε).

Another proof of Theorem 5.25. Without loss of generality we can assume

B ≥ p

p − 1
. (5.42)

Fix an arbitrary cube Q ⊂ Q0 and denote E = {x ∈ Q : f(x) ≥ fQ}. Then
the properties of the oscillations together with the Hölder inequality imply

Ω(f ;Q)
fQ

=
1

fQ

2
|Q|

∫
E

(f(x) − fQ) dx ≤

≤ 2
|E|
|Q|

1
fQ

{
1
|E|

∫
E

fp(x) dx

}1/p

− 2
|E|
|Q| ≤

≤ 2
( |E|
|Q|

)1−1/p 1
fQ

{
1
|Q|

∫
Q

fp(x) dx

}1/p

− 2
|E|
|Q| .

Applying (5.29) to the integral in the right-hand side we have

Ω(f ;Q)
fQ

≤ 2

[
B

( |E|
|Q|

)1−1/p

− |E|
|Q|

]
. (5.43)

Further, from the inequality

Ω(f ;Q)
fQ

= 2
|Q \ E|
|Q|

1
|Q \ E|

∫
Q\E

(
1 − f(x)

fQ

)
dx ≤ 2

|Q \ E|
|Q|

it follows that |E|
|Q| = 1 − |Q \ E|

|Q| ≤ 1 − 1
2

Ω(f ;Q)
fQ

. (5.44)

It is easy to see, that the function ϕ(λ) = Bλ1−1/p−λ, λ > 0 increases on

(0, λ0), λ0 =
(
B p−1

p

)p

. Notice that due to (5.42), λ0 > 1. Since the right-hand
side of (5.44) is less or equal than 1 inequalities (5.43) and (5.44) yield

Ω(f ;Q)
fQ

≤ 2ϕ

( |E|
|Q|

)
≤ 2ϕ

(
1 − 1

2
Ω(f ;Q)

fQ

)
=

= 2

(
B

(
1 − 1

2
Ω(f ;Q)

fQ

)1−1/p

−
(

1 − 1
2

Ω(f ;Q)
fQ

))
=
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= 2B
(

1 − 1
2

Ω(f ;Q)
fQ

)1−1/p

− 2 +
Ω(f ;Q)

fQ
.

This inequality implies

B

(
1 − 1

2
Ω(f ;Q)

fQ

)1−1/p

≥ 1,

or, equivalently,
Ω(f ;Q)

fQ
≤ 2

(
1 − B−p/(p−1)

)
.

Therefore, the function f satisfies inequality (5.1) for

ε = 2

(
1 −

[
max

(
B,

p

p − 1

)]−p/(p−1)
)

< 2. �

We conclude this section by one interesting property of functions that
satisfy the Gehring condition.

Theorem 5.28 (Iwaniec, [28]). Let f ∈ Lp
(
R

d
)
, p > 1 be a non-negative

function, satisfying the Gehring condition{
1
|Q|

∫
Q

fp(x) dx

} 1
p

≤ B
1
|Q|

∫
Q

f(x) dx, Q ⊂ R
d, (5.45)

where the constant B > 1 does not depend on the cube Q. Then f is equivalent
to zero on R

d.

Proof. Let us assume the contrary. Without loss of generality assume that

c ≡
∫

Q0

fp(x) dx > 0

on the cube Q0 ≡ [−1, 1]d. Then, by condition (5.45), for any cube Q ⊃ Q0

centered in the origin we have

B
1
|Q|

∫
Q

f(x) dx ≥
{

1
|Q|

∫
Q

fp(x) dx

} 1
p

≥

≥
{

1
|Q|

∫
Q0

fp(x) dx

} 1
p

= |Q|− 1
p c

1
p .

Thus ∫
Q

f(x) dx ≥ c1|Q|1− 1
p , (5.46)
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where c1 = B−1c
1
p > 0. Let us show that (5.46) contradicts the condition

f ∈ Lp
(
R

d
)
. Since the cube Q0 is fixed we can construct by induction a

sequence of cubes Qk ⊃ Qk−1, k = 1, 2, . . . such that

|Qk| ≥
(

2
c1

∫
Qk−1

f(x) dx

) p
p−1

(5.47)

and |Qk|
|Qk \ Qk−1| ≤

3
2
. (5.48)

By (5.46),

c1 |Qk|−
1
p ≤ 1

|Qk|
∫

Qk

f(x) dx =

=
1

|Qk|

(∫
Qk\Qk−1

f(x) dx +
∫

Qk−1

f(x) dx

)
=

=
|Qk \ Qk−1|

|Qk|
1

|Qk \ Qk−1|
∫

Qk\Qk−1

f(x) dx +
1

|Qk|
∫

Qk−1

f(x) dx.

Now, using (5.47) and (5.48), we obtain

1
|Qk \ Qk−1|

∫
Qk\Qk−1

f(x) dx ≥

≥ |Qk|
|Qk \ Qk−1|

(
c1 |Qk|−

1
p − 1

|Qk|
∫

Qk−1

f(x) dx

)
≥

≥ |Qk|
|Qk \ Qk−1|

(
c1 |Qk|−

1
p − c1

2
|Qk|−

1
p

)
≥ c1

2
|Qk|−

1
p ≥

≥ c1

2

(
3
2

)− 1
p

|Qk \ Qk−1|−
1
p ≡ c2 |Qk \ Qk−1|−

1
p .

Therefore, by the Hölder inequality,∫
Rd

fp(x) dx =
∫

Q0

fp(x) dx +
∞∑

k=1

∫
Qk\Qk−1

fp(x) dx =

=
∫

Q0

fp(x) dx +
∞∑

k=1

|Qk \ Qk−1| 1
|Qk \ Qk−1|

∫
Qk\Qk−1

fp(x) dx ≥
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≥
∫

Q0

fp(x) dx +
∞∑

k=1

|Qk \ Qk−1|
(

1
|Qk \ Qk−1|

∫
Qk\Qk−1

f(x) dx

)p

≥

≥
∫

Q0

fp(x) dx +
∞∑

k=1

|Qk \ Qk−1| cp
2 |Qk \ Qk−1|−1 = ∞,

and this completes the proof. �

5.1.1 One-Dimensional Case

Let us consider more in detail the case d = 1. If in the proof of Theorem 5.5
instead of Calderón–Zygmund lemma 5.6 we use “rising sun lemma” 1.16,
which is sharper in the one-dimensional case, then we obtain the following
statement.

Theorem 5.29 ([38]). Let f be a non-negative function, summable on I0 ⊂
R. Then

1
t

∫ t

0

|f∗(u) − f∗∗(t)| du ≤ ν(f ; t)f∗∗(t), 0 < t ≤ |I0|. (5.49)

Proof. Essentially we will follow the proof of Theorem 5.5. Moreover, in the
present case the calculations are even simpler.

Let us fix some t, 0 < t ≤ |I0|, and apply Lemma 1.16 with α = f∗∗(t). As
the result we obtain a family of pairwise disjoint intervals Ij ⊂ I0, j = 1, 2, . . . ,
such that

1
|Ij |

∫
Ij

f(x) dx = α, (5.50)

f(x) ≤ α for almost all x ∈ I0 \ E, (5.51)

where E = ∪j≥1Ij . Using Property 2.1, the definition of the rearrangement
f∗, formulas (5.50), (5.51) and the monotonicity of ν(f ;σ), we obtain∫ t

0

|f∗(u) − f∗∗(t)| du = 2
∫
{u: f∗(u)>α}

(f∗(u) − α) du =

= 2
∫
{x∈I0: f(x)>α}

(f(x) − α) dx = 2
∫
{x∈I0: f(x)>α}∩E

(f(x) − α) dx =

= 2
∑
j≥1

∫
{x∈Ij : f(x)>α}

(f(x) − α) dx =

= 2
∑
j≥1

∫
{x∈Ij : f(x)>α}

(
f(x) − fIj

)
dx =



5.1 Embedding in the Gehring Class 123

=
∑
j≥1

|Ij |Ω (f ; Ij) ≤
∑
j≥1

ν (f ; |Ij |) |Ij | fIj
≤

≤ ν(f ; |E|)
∑
j≥1

|Ij | fIj
= α · |E| · ν(f ; |E|). (5.52)

On the other hand, (5.50) and the properties of the rearrangement imply

1
t

∫ t

0

f∗(u) du = f∗∗(t) = α =
1
|E|

∫
E

f(x) dx ≤ 1
|E|

∫ |E|

0

f∗(u) du,

so that |E| ≤ t. Therefore the monotonicity of ν(f ;σ) and (5.52) yield∫ t

0

|f∗(u) − f∗∗(t)| du ≤ α · t · ν(f ; t),

i.e. (5.49). �
We will proceed with the further detalization of the case d = 1 in the

following two directions.
1). Refinement of Theorem 5.7 (i.e. sharpening of the constants in inequal-

ity (5.10)).
2). Refinement of Gurov–Reshetnyak Theorem 5.4.

The next theorem is the refined analog of Theorem 5.7 for the case d = 1.

Theorem 5.30 ([38]). Let f be a non-negative function, summable on
I0 ⊂ R. Then

f∗∗(t) ≤ c · fI0 · exp

(
e
2

∫ |I0|

t

ν(f ;σ)
dσ

σ

)
, 0 < t ≤ |I0| , (5.53)

where c = exp(1 + e), and in general the coefficient e/2 is sharp.

Proof. Let a > 1 (we will find the optimal value of this constant later). Apply-
ing Lemma 2.2 to the function ϕ = f∗ and using Theorem 5.29, for 0 < t ≤ |I0|
we have

f∗∗
(

t

a

)
− f∗∗(t) ≤ a

2
1
t

∫ t

0

|f∗(u) − f∗∗(t)| du ≤ a

2
ν(f ; t)f∗∗(t),

or, equivalently,

f∗∗
(

t

a

)
≤
(
1 +

a

2
ν(f ; t)

)
f∗∗(t), 0 < t ≤ |I0| . (5.54)

Let us fix some t ∈
(
0, |I0|

a

]
and denote s =

[
ln−1 a · ln |I0|

t

]
(here the

square brackets denote the integer part function). By (5.54),
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f∗∗
(

t

a

)
≤ f∗∗

( |I0|
a

) s∏
k=0

(
1 +

a

2
ν
(
f ; akt

)) ≤

≤ a · fI0

s∏
k=0

exp
(a

2
ν
(
f ; ak

))
= a · fI0 exp

(
a

2

s∑
k=0

ν
(
f ; akt

))
. (5.55)

On the other hand,

ν
(
f ; akt

) · ln a ≤
∫ ak+1t

akt

ν(f ;σ)
dσ

σ
, k = 0, 1, . . . , s − 1,

provided ν(f ;σ) is monotone. Hence, taking into account the inequality
ν(f ; |I0|) ≤ 2, from (5.55) we obtain

f∗∗
(

t

a

)
≤ a · fI0 exp

(
1
2

a

ln a

(
s−1∑
k=0

∫ ak+1t

akt

ν(f ;σ)
dσ

σ
+ ν (f ; |I0|)

))
≤

≤ a · exp
( a

ln a

)
· fI0 exp

(
1
2

a

ln a

∫ |I0|

t

ν(f ;σ)
dσ

σ

)
.

Since the function ψ(a) ≡ a/ln a for a > 1 achieves its minimal value at a = e
we have

f∗∗
(

t

e

)
≤ c · fI0 · exp

(
e
2

∫ |I0|

t

ν(f ;σ)
dσ

σ

)
, (5.56)

where c = exp(1 + e). This, together with the monotonicity of f∗∗, im-
plies (5.53) for 0 < t ≤ |I0|

e . If t ∈
(

|I0|
e , |I0|

]
, then (5.53) follows from (5.56)

because f∗∗(t) ≤ f∗∗
(

|I0|
e

)
.

It remains to show that the coefficient 2/e in the right-hand side of (5.53)
cannot be decreased. For this let us consider the function f0(x) = ln 1

x , 0 <
x ≤ β0, where the constant β0 > 0 is sufficiently small, we will define it later
in Proposition 5.31. In addition, we will show there that

ν(f0;σ) =
2/e

1 + ln 1
σ

, 0 < σ ≤ β0.

Thus if we put some constant a < e
2 in the exponent in (5.53), then the

right-hand side becomes

c · (f0)[0,β0] · exp

(
a

∫ β0

t

ν (f0;σ)
dσ

σ

)
=

= c

(
1 + ln

1
β0

)
exp

(
2a

e

∫ β0

t

dσ

σ
(
1 + ln 1

σ

)) =
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= c

(
1 + ln

1
β0

)1−2a/e

·
(

1 + ln
1
t

)2a/e

= o

(
ln

1
t

)2a/e

, t → 0.

On the other hand, f∗∗
0 (t) = 1 + ln 1

t , 0 < t ≤ β0. Comparing this equality
with the previous one, we see that for a < e

2 inequality (5.53) fails. �
Proposition 5.31. For the function f(x) = ln 1

x , 0 < x ≤ β0, where β0 is a
positive constant,

ν(f ;σ) =
2/e

1 + ln 1
σ

, 0 < σ ≤ β0.

Proof. Let us suppose that β0 = e−M , where the number M > 1 is to be
defined later. Further, let 0 < σ ≤ β0 and a ≥ 0 be such that a + σ ≤ β0.
Denote I = [a, a + σ]. Then

fI =
1
σ

∫ a+σ

a

ln
1
x

dx = 1 + ln
1

a + σ
− a

σ
ln
(
1 +

σ

a

)
.

Let x0 = e−fI . Then ln 1
x0

= fI and

Ω(f ; I) =
1
|I|

∫
I

|f(x) − fI | dx =
2
σ

∫ x0

a

(
ln

1
x
− fI

)
dx =

= 2
(
1 +

σ

a

)[
exp

(
ln (1 + σ/a)

σ/a
− 1

)
− ln (1 + σ/a)

σ/a

]
.

In order to proof the proposition, it is enough to show that

Ω(f ; I)
fI

≤ 2/e
1 + ln 1/σ

≡ Ω(f ; [0, σ])
f[0,σ]

. (5.57)

Let us denote
α =

σ

a
, β =

1
1 + ln 1/σ

.

Then the conditions 0 < σ ≤ β0 ≡ e−M and a + σ ≤ β0 = e−M become

0 < α < +∞,

β ≤ 1
1 + M + ln

(
1 + 1

α

) <
1

1 + M
, (5.58)

while inequality (5.57) can be rewritten in the following way



126 5 The Gurov–Reshetnyak Class of Functions

e
(
1 + 1

α

) [ ln(1+α)
α − exp

(
ln(1+α)

α − 1
)]

+ 1
ln(1+α)

α + ln
(
1 + 1

α

) ≥ β. (5.59)

Assume 0 < α < 1. Then, by virtue of (5.58), inequality (5.59) can be
derived from the inequality

e
(
1 + 1

α

) [ ln(1+α)
α − exp

(
ln(1+α)

α − 1
)]

+ 1
ln(1+α)

α + ln
(
1 + 1

α

) ≥ 1
1 + M + ln

(
1 + 1

α

) ,
which is equivalent to the following one

e
(

1 +
1
α

)⎡⎣ 1

exp
(
1 − ln(1+α)

α

) − ln(1 + α)
α

⎤⎦ ≤ 1 + M − ln(1+α)
α

1 + M + ln
(
1 + 1

α

) . (5.60)

Let us prove (5.60). In order to find the upper bound for the left-hand side
of (5.60), set t ≡ 1 − ln(1+α)

α . Notice that 0 < t < 1 − ln 2. Moreover,

1

exp
(
1 − ln(1+α)

α

) − ln(1 + α)
α

= e−t + t − 1 ≤ 1
2
t2.

Hence we have the following bound for the left-hand side of (5.60) (we denote
it by L)

L ≤ e
2

α + 1
α

[
1 − ln(1 + α)

α

]2

=
e
2

α + 1
α3

[
α −

∞∑
k=1

(−1)k−1 αk

k

]2

=

=
e
2

α + 1
α3

[ ∞∑
k=2

(−1)k αk

k

]2

=
e
2
(α + 1)α

[ ∞∑
k=2

(−1)k αk−2

k

]2

.

Since ∣∣∣∣∣
∞∑

k=2

(−1)k αk−2

k

∣∣∣∣∣ ≤ 1
2
, 0 < α < 1

we see that
L ≤ e

8
α(α + 1) ≤ eα

4
.

The right-hand side of (5.60) can be estimate as follows

1 + M − ln(1+α)
α

1 + M + ln
(
1 + 1

α

) ≥ M

1 + M + ln
(
1 + 1

α

) .
Therefore, (5.60) follows from the inequality
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eα
4

≤ M

1 + M + ln
(
1 + 1

α

) ,
or, which is the same, from

ln
(

1 +
1
α

)
≤ 1

α

4M

e
− M − 1. (5.61)

Inequality (5.61) is valid for α = 1 whenever M ≥ M1, where M1 ≡
(ln 2 + 1) /

(
4
e − 1

)
. Otherwise, if 0 < α < 1, then (5.61) follows from the

fact that the function

ϕ(α) =
1
α

4M

e
− M − 1 − ln

(
1 +

1
α

)
is decreasing on (0, 1). This can be easily checked by calculation of the deriv-
ative of ϕ.

In order to prove (5.59) in the case α ≥ 1 we rewrite it in the following
form

α

(
exp

(
ln(1 + α)

α

)
− 1

)
≤

≤ ln(1 + α)
[
e
(

1 +
1
α

)
− β

]
− αβ ln

(
1 +

1
α

)
− exp

(
ln(1 + α)

α

)
. (5.62)

Let us estimate the last two terms of the right-hand side. Denote t =
ln(1+α)

α . Then 0 < t ≤ ln 2. Using the inequality et − 1 ≤ t
ln 2 , 0 < t ≤ ln 2, we

have

et ≤ 1 +
t

ln 2
⇐⇒ − exp

(
ln(1 + α)

α

)
≥ −1 − 1

ln 2
ln(1 + α)

α
,

α ln
(

1 +
1
α

)
≤ 1 ⇐⇒ −βα ln

(
1 +

1
α

)
≥ −β.

Therefore the right-hand side of (5.62) admits the following lower bound

ln(1 + α)
[
e
(

1 +
1
α

)
− β

]
− αβ ln

(
1 +

1
α

)
− exp

(
ln(1 + α)

α

)
≥

≥ ln(1 + α)
[
e
(

1 +
1
α

)
− β

]
− β − 1 − 1

ln 2
ln(1 + α)

α
.

To estimate the left-hand side of (5.62) observe that

et ≤ 1 +
t

ln 2
, 0 < t ≤ ln 2.

Hence
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α

(
exp

(
ln(1 + α)

α

)
− 1

)
≤ α

1
ln 2

ln(1 + α)
α

=
ln(1 + α)

α
, α ≥ 1.

So, in order to prove (5.62) it is enough to show that

ln(1 + α)
ln 2

≤ ln(1 + α)
[
e
(

1 +
1
α

)
− β

]
− β − 1 − 1

ln 2
ln(1 + α)

α
,

or, equivalently,

ln(1 + α) ≥ 1 + β(
e − 1

ln 2

) (
1 + 1

α

)− β
. (5.63)

The proof of (5.63) splits into the following two cases.
1. 1 ≤ α ≤ 2; in this case 3

2 ≤ 1 + 1
α ≤ 2, ln(1 + α) ≥ ln 2. The inequality

ln 2 >
1

3
2

(
e − 1

ln 2

)
implies that for the sufficiently small β

(
β ≤ 1

M2+1

)
ln(1 + α) ≥ ln 2 >

1 + β
3
2

(
e − 1

ln 2

)− β
≥ 1 + β(

e − 1
ln 2

) (
1 + 1

α

)− β
,

and so (5.63) follows.
2. α ≥ 2; in this case 1 + 1

α ≥ 1, ln(1 + α) ≥ ln 3. Since

ln 3 >
1

e − 1
ln 2

we have that for any sufficiently small β
(
β ≤ 1

M3+1

)
ln(1 + α) ≥ ln 3 >

1 + β

e − 1
ln 2 − β

≥ 1 + β(
e − 1

ln 2

) (
1 + 1

α

)− β
,

and (5.63) follows in this case as well.
Setting M = max(M1,M2,M3), we obtain (5.57). �
Let us come back to Gurov–Reshetnyak theorem 5.4. Theorem 5.30 has

the following immediate corollary.

Corollary 5.32 ([38]). Let f be a non-negative function on I0 ⊂ R, satisfying
condition (5.1) for some ε < 2/e. Then f ∈ Lp(I0) for any p < p′0, where
p′0 ≡ p′0(ε) = 2

e · 1
ε .

Remark 5.33. We have already mentioned (see Remark 5.11) that in Gurov-
Reshetnyak theorem 5.4 the limiting exponent of summability of the func-
tion, satisfying Gurov–Reshetnyak condition (5.1), is equal to p0(ε, d) = ε0(1)

ε
(see (5.12)). Moreover, p0(ε, d) = O

(
1
ε

)
as ε → 0+, and this limiting behavior
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cannot be improved. In the case d = 1 Corollary 5.32 provides the bigger
limiting exponent of summability: p′0(ε) = 2

e · 1
ε > p0(ε, 1). The value p′0(ε) is

the maximal possible also in the sense of equivalence. In what follows we will
derive this fact as a corollary of Theorem 5.34. Moreover, Corollary 5.32 states
that Gurov–Reshetnyak condition (5.1) assures the possibility to increase the
exponent of summability of f only for ε < 2

e , and it leaves open the problem
in the case 2

e ≤ ε < 2, though the possibility of a certain increment of the
exponent of summability for any ε < 2 is provided by Corollary 5.23.

Theorem 5.34 ([34]). Let ε, 0 < ε < 2 be fixed, and let p′′0 ≡ p′′0(ε) > 1 be
a root of the equation

pp

(p − 1)p−1
=

2
ε
. (5.64)

Then
(i) if f is a non-negative function on I0 ⊂ R, satisfying Gurov–Reshetnyak

condition (5.1) with the given ε, then

f∗∗(t) ≤ c · f∗∗ (|I0|) ·
(

t

|I0|
)−1/p′′

0

, 0 < t ≤ |I0| , (5.65)

where the constant c depends only on ε;
(ii) there exists a function f0 ∈ L([0, 1]), satisfying (5.1) such that

t1/p′′
0 · f∗∗

0 (t) ≥ c > 0, 0 < t ≤ 1. (5.66)

Proof. Let us denote

ϕ(p) =
pp

(p − 1)p−1
, p > 1.

It is easy to see, that ϕ′(p) > 0, limp→1+0 ϕ(p) = 1, limp→+∞ ϕ(p) = +∞, i.e.
ϕ is continuous and increasing between 1 and +∞. Hence for any ε, 0 < ε < 2,
the equation (5.64) has a unique root p′′0 = p′′0(ε) > 1.

Let us prove (i). As condition (5.1) means that ν(f ; t) ≤ ε, 0 < t ≤ |I0|,
hence, by Theorem 5.29,

1
t

∫ t

0

|f∗(u) − f∗∗(t)| du ≤ ε · f∗∗(t), 0 < t ≤ |I0|.

Assume a > 1. According to Lemma 2.2,

f∗∗
(

t

a

)
− f∗∗(t) ≤ a

2
· 1

t

∫ t

0

|f∗(u) − f∗∗(t)| du ≤ a

2
· ε · f∗∗(t),

so that
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f∗∗
(

t

a

)
≤
(a

2
· ε + 1

)
f∗∗(t), 0 < t ≤ |I0|. (5.67)

Set

a =
(

p′′0
p′′0 − 1

)p′′
0

> 1.

Then, by (5.64), we have
(

a
2 · ε + 1

)p′′
0 = a and hence (5.67) takes the form

f∗∗
(

t

a

)
≤ a1/p′′

0 · f∗∗(t), 0 < t ≤ |I0|.

The successive application of this inequality leads to the following one

f∗∗ (a−j |I0|
) ≤ aj/p′′

0 · f∗∗ (|I0|) , j = 1, 2, . . . (5.68)

If t, 0 < t ≤ |I0| is given, then we can choose j such that a−j |I0| < t ≤
a−j+1|I0|. Then (5.68) yields

f∗∗(t) ≤ f∗∗ (a−j |I0|
) ≤ (

aj
)1/p′′

0 · f∗∗ (|I0|) ≤

≤
(

a
|I0|
t

)1/p′′
0

· f∗∗ (|I0|) = c · f∗∗ (|I0|) ·
(

t

|I0|
)−1/p′′

0

with c = a1/p′′
0 = p′′

0
p′′
0 −1 . Clearly, c depends only on ε.

In order to prove (ii), denote q = p′′0 and set f0(x) = x−1/q + B with
B = q

q−1 . Then for 0 < t ≤ 1

t1/q · f∗∗
0 (t) = t1/q · 1

t

∫ t

0

f0(x) dx = t1/q ·
(

t−1/q

1 − 1
q

+ B

)
≥ q

q − 1
≡ c,

so that (5.66) holds true. It remains to show that the function f0 satisfies
condition (5.1).

Denote g(x) = x−1/q, x > 0. Let I ⊂ [0, 1]. If (f0)I ≤ (f0)[0,1], then
we choose h, 0 < h ≤ 1, such that (f0)I = (f0)[0,h]. According to Prop-
erty 2.15, the monotonicity of f0 on [0, h] implies Ω(f0; I) ≤ Ω(f0; [0, h]).
Further, Ω(f0; [0, h]) = Ω(g; [0, h]). Since, as it was shown in Example 2.28,

Ω(g; [0, h]) = 2h−1/q (q − 1)q−2

qq−1

we have

Ω (f0; I)
(f0)I

≤ Ω(g; [0, h])
(f0)[0,h]

=
2h−1/q · (q−1)q−2

qq−1

h−1/q · q
q−1 + B

≤ 2 · (q − 1)q−1

qq
= ε,
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where the last equality follows from (5.64). In the case (f0)I > (f0)[0,1] one
can find h > 1 such that (f0)I = (f0)[0,h]. Then the same arguments lead to
the inequality

Ω (f0; I) = Ω(g; I) ≤ Ω(g; [0, h]) = 2h−1/q · (q − 1)q−2

qq−1
≤

≤ 2 · (q − 1)q−1

qq
· q

q − 1
= ε · B ≤ ε · (f0)I .

Therefore, (5.1) is true for all intervals I ⊂ [0, 1]. �
Using the same arguments as in the proof of Proposition 5.9, from part

(i) of Theorem 5.34 we immediately obtain the following one-dimensional
Gurov–Reshetnyak theorem 5.4 with exact limiting exponent of summability.

Corollary 5.35 ([34]). Let f be a non-negative function on I0 ⊂ R, satisfying
the condition

Ω(f ; I) ≤ ε · fI , I ⊂ I0,

for some ε < 2. Then f satisfies the Gehring inequality{
1
|I|

∫
I

fp(x) dx

}1/p

≤ c · 1
|I|

∫
I

f(x) dx, I ⊂ I0,

for any p < p′′0 , where p′′0 = p′′0(ε) > 1 is a root of equation (5.64), and the
constant c ≡ c (ε, p) depends only on ε and p (for example, one can take

c = (p′′
0 )1+1/p

(p′′
0 −1)(p′′

0 −p)1/p ).

On the other hand, part (ii) of Theorem 5.34 shows, that in general the
limiting exponent p′′0 in Corollary 5.35 cannot be increased.

Remark 5.36. It is easy to see that the root p′′0(ε) of equation (5.64) satisfies
the following relations:

p′′0(ε) >
2
e
· 1
ε

and p′′0(ε) ∼ 2
e
· 1
ε
, ε → 0 + .

Therefore Corollary 5.35 revises Corollary 5.32. On the other hand, since the
value p′′0(ε) is the maximal possible in Corollary 5.35 it follows that, as we
mentioned in Remark 5.33, the exponent of summability p′0(ε) = 2

e · 1ε , obtained
in Corollary 5.32, is equivalent to the maximal exponent p′′0(ε) as ε → 0+.

5.1.2 Anisotropic Case

Let us come back to the multidimensional case. By analogy with BMOR-
class, let us define the anisotropic Gurov–Reshetnyak class GRR ≡ GRR(ε) ≡
GRR(ε,R0) as a class of all functions f that are non-negative on the segment
R0 ⊂ R

d and satisfy the Gurov–Reshetnyak condition
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Ω(f ;R) ≤ ε · fR, R ⊂ R0, (5.69)

where the constant ε, 0 < ε < 2, does not depend on R. Clearly, GRR(ε) ⊂
GR(ε) for any ε ∈ (0, 2). The following example shows that in general the
opposite inclusion is not true.

Example 5.37. For a given ε ∈ (0, 2) let us construct a function from
the Gurov–Reshetnyak class GR(ε), which does not belong GRR(ε1) for any
ε1 < 2.

As in Example 2.32, we set

f(x) =
∞∑

k=1

χ[0,2−k+1]×[0, 1
k ](x), x ≡ (x1, x2) ∈ [0, 1]2 ≡ Q0.

In Example 2.32 it was already shown that f ∈ BMO (Q0). Therefore there
exists B such that Ω(f ;Q) ≤ B for any cube Q ⊂ Q0. Choose some ε ∈ (0, 2)
and set g(x) = f(x) + B

ε , x ∈ Q0. Then

Ω(g;Q)
gQ

=
Ω(f ;Q)
fQ + B

ε

≤ B

fQ + B
ε

≤ ε, Q ⊂ Q0,

so that the function g satisfies Gurov–Reshetnyak condition (5.1), i.e. g ∈
GR (ε,Q0).

On the other hand, let us show that g /∈ GRR(ε1) for any ε1 < 2. For this
we will use the following inequalities obtained in Example 2.32 (k ≥ 100):

Lk ≡ [ln(k + 1)] ≤ ln(k + 1) ≤ fRk
=

k∑
s=1

1
s

+
∞∑

s=1

1
s + k

· 2−s ≤ 2 + ln k,

Ω (f ;Rk) ≥ 2Lk − 2 − 2 ln (Lk + 1) .

Here Rk =
[
0, 2−k+1

]× [0, 1]. Thus

Ω (g;Rk)
gRk

=
Ω (f ;Rk)
fRk

+ B
ε

≥ 2Lk − 2 − 2 ln (Lk + 1)
2 + ln k + B

ε

∼ 2 ln k − 2 ln ln k

ln k
→ 2

as k → ∞. Hence the function g does not belong to the Gurov–Reshetnyak
class GRR(ε1) for any ε1 < 2. �

Let R0 ⊂ R
d be a segment, and let f be a non-negative function on R0.

Define

νR(f ;σ) = sup
|R|≤σ

Ω(f ;R)
fR

, 0 < σ ≤ |R0|,

where the supremum is taken over all segments R ⊂ R0 of measure smaller
than σ. As before, if fR = 0, then we assume Ω(f ;R)

fR
= 0.

Theorem 5.38 ([43]). Let f be a non-negative function, summable on the
segment R0 ⊂ R

d. Then
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1
t

∫ t

0

|f∗(u) − f∗∗(t)| du ≤ νR(f ; t) · f∗∗(t), 0 < t ≤ |R0|. (5.70)

Proof. We will follow the same way as in the proof of Theorem 5.29. Fix
t, 0 < t ≤ |R0|, and apply Lemma 1.30 with α = f∗∗(t). Then we obtain at
most countable family of segments Rj ⊂ R0, j = 1, 2, . . . such that

1
|Rj |

∫
Rj

f(x) dx = α, (5.71)

f(x) ≤ α for almost all x ∈ R0 \ E, (5.72)

where E = ∪j≥1Rj . Hence∫ t

0

|f∗(u) − f∗∗(t)| du = 2
∫
{u: f∗(u)>α}

(f∗(u) − α) du =

= 2
∫
{x∈R0: f(x)>α}

(f(x) − α) dx = 2
∫
{x∈R0: f(x)>α}∩E

(f(x) − α) dx =

= 2
∑
j≥1

∫
{x∈Rj : f(x)>α}

(f(x) − α) dx =

= 2
∑
j≥1

∫
{x∈Rj : f(x)>α}

(
f(x) − fRj

)
dx =

=
∑
j≥1

|Rj |Ω (f ;Rj) ≤
∑
j≥1

νR (f ; |Rj |) |Rj | · fRj
≤

≤ νR (f ; |E|)
∑
j≥1

|Rj | · fRj
= α · |E| · νR(f ; |E|).

But (5.71) implies

1
t

∫ t

0

f∗(u) du = f∗∗(t) = α =
1
|E|

∫
E

f(x) dx ≤ 1
|E|

∫ |E|

0

f∗(u) du, (5.73)

so that |E| ≤ t. Therefore, using the monotonicity of νR(f ;σ), from (5.73) we
get ∫ t

0

|f∗(u) − f∗∗(t)| du ≤ α · t · νR(f ; t). �

Theorem 5.39 ([43]). Let ε, 0 < ε < 2 be given, and assume that p′′0 ≡
p′′0(ε) > 1 is a root of equation (5.64). Then
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(i) if f is non-negative on the segment R0 ⊂ R
d and satisfies Gurov–

Reshetnyak condition (5.69) with the given ε, then

f∗∗(t) ≤ c · f∗∗ (|R0|) ·
(

t

|R0|
)−1/p′′

0

, 0 < t ≤ |R0| , (5.74)

where the constant c depends only on ε;
(ii) there exists a function f0 ∈ L

(
[0, 1]d

)
, satisfying (5.69) such that

t1/p′′
0 · f∗∗

0 (t) ≥ c > 0, 0 < t ≤ 1.

Proof. For the prof of (i) we will use Theorem 5.38. Condition (5.69) implies
that νR(f ; t) ≤ ε, 0 < t ≤ |R0|, and so (5.70) becomes

1
t

∫ t

0

|f∗(u) − f∗∗(t)| du ≤ ε · f∗∗(t), 0 < t ≤ |R0| .

Further, as in the proof of Theorem 5.34, for a = (p′′0/ (p′′0 − 1))p′′
0 > 1

f∗∗
(

t

a

)
≤
(a

2
· ε + 1

)
f∗∗(t), 0 < t ≤ |R0| .

Now the same arguments as in the proof of Theorem 5.34 lead to (5.74).
Part (ii) can be proved in the same way as part (ii) of Theorem 5.34.

Indeed, it is enough to consider the function

f0 (x1, . . . , xd) = x
−1/p′′

0
1 +

p′′0
p′′0 − 1

, (x1, . . . , xd) ∈ [0, 1]d. �

Let d ≥ 1. Fix some segment R0 ⊂ R
d. The application of Theorem 5.39 to

an arbitrary segment R ⊂ R0 immediately leads to the following multidimen-
sional analog of the Gurov–Reshetnyak theorem with exact limiting exponent
of summability.

Corollary 5.40. Let f be a non-negative function on the segment R0 ⊂ R
d

such that
Ω(f ;R) ≤ ε · fR, R ⊂ R0,

for some ε < 2. Then
(i) f satisfies the Gehring inequality{

1
|R|

∫
R

fp(x) dx

}1/p

≤ c · 1
|R|

∫
R

f(x) dx, R ⊂ R0,

for any p < p′′0 , where p′′0(ε) > 1 is a root of equation (5.64) and the constant
c = c(ε, p) depends only on ε and p;

(ii) the value of p′′0 in (i) cannot be increased.



5.2 Embedding in the Muckenhoupt Class 135

5.2 Embedding in the Muckenhoupt Class

By analogy with the Gehring class, let us consider the class Aq ≡ Aq(C) of
the non-negative functions f , satisfying the reverse Hölder inequality with the
negative exponent

1
|Q|

∫
Q

f(x) dx

{
1
|Q|

∫
Q

f−1/(q−1)(x) dx

}q−1

≤ C, Q ⊂ Q0. (5.75)

Here the cube Q0 ⊂ R
d is fixed, and the constants q, C > 1 do not de-

pend on the cube Q ⊂ Q0. Condition (5.75) is called the Aq–Muckenhoupt
condition ([59]). The classes of Muckenhoupt functions are closely related to
Gehring classes. Namely, every Gehring class is contained in some Mucken-
houpt class and vice versa (see [8, 72]). In Section 5.1 we saw that Gehring
condition (5.14) is equivalent to Gurov–Reshetnyak condition (5.1). Therefore
Muckenhoupt condition (5.75) is also equivalent to Gurov–Reshetnyak condi-
tion (5.1). Here we will give the direct proof of this fact. First we prove that
every Muckenhoupt class is contained in some Gurov–Reshetnyak class.

Theorem 5.41 ([43]). Let f be a non-negative function on the cube Q0 ⊂ R
d,

satisfying Muckenhoupt condition (5.75) for some q, C > 1. Then f belongs
to the Gurov–Reshetnyak class GR(ε) with ε = 2

(
1 − (qC)−1

)
, 0 < ε < 2.

Proof. Fix some cube Q ⊂ Q0. Due to condition (5.75), for 0 < u ≤ 1 we have

fQ ≤ C

{
1
|Q|

∫
Q

f−1/(q−1)(x) dx

}−(q−1)

=

= C

{
1
|Q|

∫ |Q|

0

(fχQ)−1/(q−1)
∗ (t) dt

}−(q−1)

≤

≤ C

{
1
|Q|

∫ u|Q|

0

(fχQ)−1/(q−1)
∗ (t) dt

}−(q−1)

≤ C (fχQ)∗ (u|Q|) · u−(q−1).

Thus,

(fχQ)∗ (t) ≥ 1
C

fQ

(
t

|Q|
)q−1

, 0 < t ≤ |Q|.

Therefore, according to Property 2.1,

Ω(f ;Q) =
2
|Q|

∫
{x∈Q: f(x)<fQ}

(fQ − f(x)) dx =

=
2
|Q|

∫
{t∈(0,|Q|): (fχQ)∗(t)<fQ}

(
fQ − (fχQ)∗ (t)

)
dt ≤
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≤ 2
|Q|fQ

∫ |Q|

0

(
1 − 1

C

(
t

|Q|
)q−1

)
dt = 2

(
1 − 1

qC

)
fQ.

This means that f ∈ GR(ε), where ε = 2
(
1 − (qC)−1

)
< 2. �

Now let us prove that every Gehring class is contained in some Muckenhoupt
class. This fact, joined to Theorem 5.41 and the results of Section 5.1, will com-
plete the proof of the equivalence of the Gurov–Reshetnyak and Muckenhoupt
classes.

Theorem 5.42 (Coifman, Fefferman, [8]). Let f be a non-negative func-
tion on the cube Q0 ⊂ R

d, satisfying the Gehring condition{
1
|Q|

∫
Q

fp(x) dx

}1/p

≤ B · 1
|Q|

∫
Q

f(x) dx, Q ⊂ Q0 (5.76)

for some p, B > 1. Then there exist q, C > 1, which depend only on p, B
and d such that Muckenhoupt inequality (5.75) holds true.

In [8] this theorem was obtain as a consequence of a series of propositions.
Here we reconstruct the original proof from [8]. First we need some auxiliary
lemmas (see [8]).

Lemma 5.43. Let f be a non-negative function on the cube Q0 ⊂ R
d, sat-

isfying Gehring condition (5.76). Then for every θ, 0 < θ < 1, there exists
σ, 0 < σ < 1 such that for any cube Q ⊂ Q0 and for any measurable subset
E ⊂ Q the condition |E|

|Q| ≥ 1 − σ implies∫
E

f(x) dx∫
Q

f(x) dx
≥ 1 − θ. (5.77)

Proof. Let θ, 0 < θ < 1 and set σ =
(

θ
B

)p/(p−1)
, 0 < σ < 1. Let E1 ⊂ Q be a

measurable set such that |E1|
|Q| < σ. Then, by the Hölder inequality, from (5.76)

we obtain
1
|Q|

∫
E1

f(x) dx =
1
|Q|

∫
Q

f(x)χE1(x) dx ≤

≤
{

1
|Q|

∫
Q

fp(x) dx

}1/p{ 1
|Q|

∫
Q

χ
p/(p−1)
E1

(x) dx

}(p−1)/p

≤

≤ B
1
|Q|

∫
Q

f(x) dx

( |E1|
|Q|

)(p−1)/p

≤ θ
1
|Q|

∫
Q

f(x) dx.

So,
|E1|
|Q| <

(
θ

B

)p/(p−1)

=⇒
∫

E1
f(x) dx∫

Q
f(x) dx

≤ θ. (5.78)
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Now consider the measurable set E ⊂ Q, |E| ≥
(
1 − (

θ
B

)p/(p−1)
)
|Q|. Denote

E1 = Q \ E. Then

|E1|
|Q| = 1 − |E|

|Q| ≤
(

θ

B

)p/(p−1)

,

so that, by virtue of (5.78),∫
E

f(x) dx∫
Q

f(x) dx
= 1 −

∫
E1

f(x) dx∫
Q

f(x) dx
≥ 1 − θ. �

Lemma 5.44. Let f be a non-negative function on the cube Q0 ⊂ R
d, satis-

fying Gehring condition (5.76). Then for any θ, 0 < θ < 1, and for any cube
Q ⊂ Q0 ∫

Q

f(x) dx ≤ 1
1 − θ

∫{
x∈Q: f(x)≤Bp/(p−1)

θ1/(p−1) fQ

} f(x) dx. (5.79)

Proof. For σ, defined in the previous lemma, set

β =
σ1/p

B
=

(
θ
B

)1/(p−1)

B
=

θ1/(p−1)

Bp/(p−1)

and denote

E′ =
{

x ∈ Q : f(x) >
fQ

β

}
.

Then condition (5.76) implies

1
β

( |E′|
|Q|

)1/p

=
1

fQ

{
1
|Q|

∫
E′

(
β

1
fQ

)−p

dx

}1/p

≤

≤ 1
fQ

{
1
|Q|

∫
E′

(
1

f(x)

)−p

dx

}1/p

≤ 1
fQ

{
1
|Q|

∫
Q

(
1

f(x)

)−p

dx

}1/p

=

=
1

fQ

{
1
|Q|

∫
Q

fp(x) dx

}1/p

≤ B,

i.e.,
|E′|
|Q| ≤ (βB)p = σ.

Denote E =
{

x ∈ Q : f(x) ≤ fQ

β

}
. Then |E|

|Q| = 1 − |E′|
|Q| ≥ 1 − σ and from

(5.77) we obtain
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E

f(x) dx∫
Q

f(x) dx
≥ 1 − θ,

which is equivalent to (5.79). �
Lemma 5.45. Let f be a non-negative function on the cube Q0 ⊂ R

d, satis-
fying Gehring condition (5.76). Then for any θ, 0 < θ < 1, and for any cube
Q1 ⊂ Q ⊂ Q0 such that |Q1| = t|Q|, 0 < t < 1,∫

Q1

f(x) dx ≥ (1 − θ)(ln
1
t )/(ln 1

1−σ )+1
∫

Q

f(x) dx, (5.80)

where σ is defined in Lemma 5.43.

Proof. Consider the cubes Q1 ⊂ Q ⊂ Q0, |Q1| = t|Q|, 0 < t < 1. Let us
construct the cubes Q1 ⊂ Q2 ⊂ · · · ⊂ Qk ⊂ Q such that |Qi| ≥ (1−σ) |Qi+1| ,
i = 1, . . . , k − 1, |Qk| ≥ (1 − σ)|Q|. Then

|Q| ≤ 1
1 − σ

|Qk| ≤
(

1
1 − σ

)2

|Qk−1| ≤ · · · ≤
(

1
1 − σ

)k

|Q1| ,

where k is chosen in such a way that (1 − σ)k+1 < t ≤ (1 − σ)k, i.e.

k ≤ ln t

ln(1 − σ)
< k + 1,

k =

[
ln 1

t

ln 1
1−σ

]
+ 1.

Then, by Lemma 5.43,∫
Q1

f(x) dx ≥ (1 − θ)
∫

Q2

f(x) dx ≥ · · · ≥ (1 − θ)k

∫
Q

f(x) dx,

i.e., ∫
Q1

f(x) dx ≥ (1 − θ)(ln
1
t )/(ln 1

1−σ )+1
∫

Q

f(x) dx. �

The next lemma is similar to Calderón–Zygmund lemma 1.14. But unlikely
the Calderón–Zygmund lemma, the Gehring condition in this case is essential.

Lemma 5.46. Let f be a non-negative function on the cube Q0 ⊂ R
d, satis-

fying Gehring condition (5.76). Then for any cube Q ⊂ Q0 and any λ > 1
fQ

there exists a collection of cubes Qj ⊂ Q, j = 1, 2, . . . , with pairwise disjoint
interiors such that

δ
1
λ
≤ 1

|Qj |
∫

Qj

f(x) dx ≤ 1
λ

, (5.81)

f(x) ≥ 1
λ

for almost all x ∈ Q0 \
⎛⎝⋃

j≥1

Qj

⎞⎠ , (5.82)

where δ = δ(B, θ, d) > 0.
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Proof. Fix some cube Q ⊂ Q0. Let us partition Q into 2d congruent cubes,
dividing in halves each side of the cube Q. Assume that Q′ is one of the
obtained cubes. If fQ′ > 1

λ , then we partition the cube Q′ again in the next
step. Otherwise, if fQ′ ≤ 1

λ , then we assign to Q′ the next number j. Then,
taking into account the equality |Q′|

|Q| = 2−d and (5.80), we have

1
|Q′|

∫
Q′

f(x) dx = 2d 1
|Q|

∫
Q′

f(x) dx ≥

≥ 2d (1 − θ)(ln 2d)/(ln 1
1−σ )+1 1

|Q|
∫

Q

f(x) dx > δ
1
λ

,

where δ = 2d (1 − θ)(ln 2d)/(ln 1
1−σ )+1 and σ is defined in Lemma 5.43. This

means that the left inequality of (5.81) holds true. Sorting out all cubes Q′ in
this way, we pass to the next step.

As the result of the described process we obtain a collection of cubes Qj

with pairwise disjoint interiors, which satisfy (5.81). Let x ∈ Q \
(⋃

j≥1 Qj

)
.

Then one can choose a sequence of cubes Qi, contractible to x such that
fQi

> 1
λ . Then (5.82) follows from Lebesgue theorem 1.1. �

Proof of Theorem 5.42. Fix an arbitrary θ, 0 < θ < 1. Let Q ⊂ Q0, and assume
that δ is as defined in Lemma 5.46 and λ > 1

fQ
. Now we apply successively

condition (5.82), the left inequality of (5.81), condition (5.79) and the right
inequality of (5.81). Then∣∣∣∣{x ∈ Q : f(x) <

1
λ

}∣∣∣∣ ≤∑
j≥1

|Qj | ≤ 1
δ
λ
∑
j≥1

∫
Qj

f(x) dx ≤

≤ 1
δ

1
1 − θ

λ
∑
j≥1

∫{
x∈Qj : f(x)< Bp/(p−1)

θ1/(p−1) fQj

} f(x) dx ≤

≤ 1
δ

1
1 − θ

λ
∑
j≥1

∫{
x∈Qj : f(x)< Bp/(p−1)

θ1/(p−1)
1
λ

} f(x) dx ≤

≤ 1
δ

1
1 − θ

λ

∫{
x∈Q: f(x)< Bp/(p−1)

θ1/(p−1)
1
λ

} f(x) dx, (5.83)

provided the interiors of the cubes Qj , obtained in Lemma 5.46, are pairwise
disjoint. Now let 0 < ε < 1 (we will choose it later). Then (5.83) yields∫ ∞

1/fQ

λε−1

∣∣∣∣{x ∈ Q :
1

f(x)
> λ

}∣∣∣∣ dλ ≤

≤ 1
δ

1
1 − θ

∫ ∞

1/fQ

λε

∫{
x∈Q: f(x)< Bp/(p−1)

θ1/(p−1)
1
λ

} f(x) dx dλ ≤
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≤ 1
δ

1
1 − θ

∫ ∞

0

λε

∫{
x∈Q: 1

f(x) > θ1/(p−1)

Bp/(p−1) λ
} f(x) dx dλ =

=
1
δ

1
1 − θ

(
Bp/(p−1)

θ1/(p−1)

)1+ε ∫ ∞

0

uε

∫{
x∈Q: 1

f(x) >u
} f(x) dx du. (5.84)

Applying the Fubini theorem to the integral in the right-hand side, we get∫ ∞

0

uε

∫{
x∈Q: 1

f(x) >u
} f(x) dx du =

∫
Q

f(x)
∫ 1/f(x)

0

uε du dx =

=
1

1 + ε

∫
Q

f(x)
(

1
f(x)

)1+ε

dx =
1

1 + ε

∫
Q

f−ε(x) dx.

Therefore, (5.84) implies∫ ∞

1/fQ

λε−1

∣∣∣∣{x ∈ Q :
1

f(x)
> λ

}∣∣∣∣ dλ ≤

≤ 1
δ

1
1 − θ

(
Bp/(p−1)

θ1/(p−1)

)1+ε
1

1 + ε

∫
Q

f−ε(x) dx. (5.85)

Transforming the left-hand side of (5.85) we get∫ ∞

1/fQ

λε−1

∣∣∣∣{x ∈ Q :
1

f(x)
> λ

}∣∣∣∣ dλ =

=
∫ ∞

0

λε−1

∣∣∣∣{x ∈ Q :
1

f(x)
> λ

}∣∣∣∣ dλ−

−
∫ 1/fQ

0

λε−1

∣∣∣∣{x ∈ Q :
1

f(x)
> λ

}∣∣∣∣ dλ =

=
1
ε

∫
Q

f−ε(x) dx −
∫ 1/fQ

0

λε−1

∣∣∣∣{x ∈ Q :
1

f(x)
> λ

}∣∣∣∣ dλ. (5.86)

The last integral can be estimated as follows:∫ 1/fQ

0

λε−1

∣∣∣∣{x ∈ Q :
1

f(x)
> λ

}∣∣∣∣ dλ ≤

≤ |Q|
∫ 1/fQ

0

λε−1 dλ =
|Q|
ε

(
1

fQ

)ε

=
|Q|
ε

(fQ)−ε
,
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so that (5.86) becomes∫ ∞

1/fQ

λε−1

∣∣∣∣{x ∈ Q :
1

f(x)
> λ

}∣∣∣∣ dλ ≥ 1
ε

∫
Q

f−ε(x) dx − |Q|
ε

(fQ)−ε
.

Substitution of this estimate into (5.85) gives(
1
ε
− 1

δ

1
1 − θ

(
Bp/(p−1)

θ1/(p−1)

)1+ε
1

1 + ε

)∫
Q

f−ε(x) dx ≤ |Q|
ε

(fQ)−ε
, (5.87)

where ε > 0 is so small, that

c1 ≡ 1
ε
− 1

δ

1
1 − θ

(
Bp/(p−1)

θ1/(p−1)

)1+ε
1

1 + ε
> 0.

From (5.87) it follows that

1
|Q|

∫
Q

f−ε(x) dx ≤ 1
c1ε

{
1
|Q|

∫
Q

f(x) dx

}−ε

. (5.88)

Setting ε = 1
q−1 , i.e. q = 1 + 1

ε , we rewrite (5.88) in the form

1
|Q|

∫
Q

f−1/(q−1)(x) dx ≤ 1
c1ε

{
1
|Q|

∫
Q

f(x) dx

}−1/(q−1)

,

or, equivalently,

1
|Q|

∫
Q

f(x) dx

{
1
|Q|

∫
Q

f−1/(q−1)(x) dx

}q−1

≤
(

1
c1ε

)q−1

≡ C,

and this completes the proof of Muckenhoupt inequality (5.75). �

5.2.1 One-Dimensional Case

Theorem 5.47 ([43]). Let f be a non-negative function on I0 ⊂ R, satisfying
Gurov–Reshetnyak condition (5.1) for some ε, 0 < ε < 2. Then

1
t

∫ t

0

|f∗(u) − f∗∗(t)| du ≤ ε · f∗∗(t), 0 < t ≤ |I0|. (5.89)

Proof. Fix some t ∈ (0, |I0|] and let α = f∗∗(t) ≤ fI0 . Using Lemma 1.18, let
us construct a collection of pairwise disjoint intervals Ij , j = 1, 2, . . . , such
that

1
|Ij |

∫
Ij

f(x) dx = α, (5.90)
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f(x) ≥ α for almost all x ∈ I0 \ E, (5.91)

where E = ∪j≥1Ij . By (5.90),

1
t

∫ t

0

f∗(u) du = f∗∗(t) =
1
|E|

∑
j≥1

|Ij | fIj
=

=
1
|E|

∑
j≥1

∫
Ij

f(x) dx =
1
|E|

∫
E

f(x) dx ≥ 1
|E|

∫ |E|

0

f∗(u) du.

This implies |E| ≤ t, provided f∗ is monotone. Hence, by (5.91) and (5.1),∫ t

0

|f∗(u) − f∗∗(t)| du = 2
∫
{u: f∗(u)<f∗∗(t)}

(f∗∗(t) − f∗(u)) du =

= 2
∫
{x∈I0: f(x)<f∗∗(t)}

(f∗∗(t) − f(x)) dx =
∫

E

|f(x) − f∗∗(t)| dx =

=
∑
j≥1

∫
Ij

∣∣f(x) − fIj

∣∣ dx ≤ ε
∑
j≥1

|Ij | fIj
= ε · f∗∗(t)|E| ≤ ε · t · f∗∗(t),

and inequality (5.89) follows. �
The next theorem is the analog of Theorem 5.34 for the exact embedding

of the Gurov–Reshetnyak class in the Muckenhoupt class.

Theorem 5.48 ([43]). Let ε, 0 < ε < 2, and let q′′0 = q′′0 (ε) > 1 be a root of
the equation

(q − 1)q−q/(q−1) =
ε

2
. (5.92)

Then
(i) if f is a non-negative function on I0 ⊂ R, satisfying Gurov–Reshetnyak

condition (5.1) with the given ε, then

f∗∗(t) ≥ c · f∗∗ (|I0|)
( |I0|

t

)−(q′′
0 −1)

, 0 < t ≤ |I0| , (5.93)

where the constant c > 0 depends only on ε;
(ii) there exists f0 ∈ L([0, 1]), which satisfies (5.1), and such that

(f0)∗∗ (t) ≤ c1t
q′′
0 −1, 0 < t ≤ 1, (5.94)

where the constant c1 does not depend on t.
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Proof. The function

ϕ(q) = (q − 1)q−q/(q−1), q > 1,

is continuous on (1,+∞), limq→1+0 ϕ(q) = 0 and limq→+∞ ϕ(q) = 1. More-
over, the analysis of the derivative shows that ϕ is strictly increasing on
(1,+∞). These properties of ϕ imply that for any ε, 0 < ε < 2, equation (5.92)
has a unique root q′′0 = q′′0 (ε) > 1.

Let us prove (i). Applying Theorem 5.47 and Lemma 2.3 to the function
f∗, for a > 1 we have

f∗∗(t) − f∗∗

(
t

a

)
≤ a

2
1
t

∫ t

0

|f∗(u) − f∗∗(t)| du ≤ aε

2
f∗∗(t), 0 < t ≤ |I0| ,

or, equivalently,

f∗∗

(
t

a

)
≥
(
1 − aε

2

)
f∗∗(t), 0 < t ≤ |I0| . (5.95)

Later we will choose the constant a > 1 in such a way, that

1 − aε

2
> 0. (5.96)

By (5.95),

f∗∗
(
a−j |I0|

) ≥ (
1 − aε

2

)j

f∗∗ (|I0|) , j = 1, 2, . . . (5.97)

Let q′′0 > 1 be the root of equation (5.92). Set a = (q′′0 )1/(q′′
0 −1) > 1. Then

1 − aε

2
= 1 − (q′′0 )1/(q′′

0 −1) (q′′0 − 1) (q′′0 )−q′′
0 /(q′′

0 −1) =
1
q′′0

> 0,

so that (5.96) follows. In addition,(
1 − aε

2

)1/(q′′
0 −1)

= (q′′0 )−1/(q′′
0 −1) =

1
a
,

and hence (5.97) can be rewritten in the following form

f∗∗
(
a−j |I0|

) ≥ (aj)−(q′′
0 −1)fI0 , j = 1, 2, . . . (5.98)

Now for the given t ∈ (0, |I0|] we choose j ≥ 1 such that a−j |I0| < t ≤
a−j+1 |I0|. Then from (5.98), by virtue of the monotonicity of f∗∗, we get

f∗∗(t) ≥ f∗∗
(
a−j |I0|

) ≥ (
aj
)−(q′′

0 −1)
fI0 ≥ a−(q′′

0 −1)
( |I0|

t

)−(q′′
0 −1)

fI0 ,
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which is exactly (5.93) with c = a−(q′′
0 −1), i.e., c depends only on ε.

Let us prove (ii). Assume 0 < ε < 2 and let q′′0 > 1 be defined by (5.92). Set
α = q′′0 − 1 > 0. Clearly, the function f(x) = xα, 0 ≤ x ≤ 1 satisfies (5.94).
Therefore it remains to show that f ∈ GR(ε), i.e., it remains to check the
inequality (5.1).

Consider an arbitrary I ⊂ [0, 1]. Let us choose t > 0 such that J ≡ [0, t] ⊃ I
and fJ = fI . Then, by Property 2.15,

(fI)
−1

Ω(f ; I) ≤ (fJ)−1
Ω(f ;J) =

(
f[0,1]

)−1
Ω(f ; [0, 1]) =

= 2α(α + 1)−(α+1)/α = 2 (q′′0 − 1) (q′′0 )−q′′
0 /(q′′

0 −1) = ε,

and this completes the proof of the theorem. �
Part (i) of Theorem 5.48 has the following corollary.

Corollary 5.49 ([43]). Let f be a non-negative function on I0 ⊂ R such that

Ω(f ; I) ≤ ε · fI , I ⊂ I0,

for some ε < 2. Then f satisfies the Muckenhoupt inequality

1
|I|

∫
I

f(x) dx

{
1
|I|

∫
I

f−1/(q−1)(x) dx

}q−1

≤ c, I ⊂ I0, (5.99)

for any q > q′′0 , where q′′0 = q′′0 (ε) > 1 is a root of equation (5.92), and the
constant c depends only on ε and q.

Proof. Clearly, it is enough to give the proof for the case I = I0. Let q > q′′0 .
Then for 0 < t ≤ |I0| from (5.93) we obtain

f
−1/(q−1)
∗∗ (t) ≤ a(q′′

0 −1)/(q−1)

( |I0|
t

)(q′′
0 −1)/(q−1)

(fI0)
−1/(q−1)

,

where a = a(ε) is defined in the proof of Theorem 5.47. Integrating from 0 to
|I0| we find ∫ |I0|

0

f
−1/(q−1)
∗∗ (t) dt ≤ c1 |I0| (fI0)

−1/(q−1)
,

where c1 = a(q′′
0 −1)/(q−1)(q − 1)/ (q − q′′0 ) depends only on q and ε. Therefore

1
|I0|

∫
I0

f−1/(q−1)(x) dx =
1
|I0|

∫ |I0|

0

f
−1/(q−1)
∗ (t) dt ≤

≤ 1
|I0|

∫ |I0|

0

f
−1/(q−1)
∗∗ (t) dt ≤ c1 (fI0)

−1/(q−1)
.

The last inequality implies (5.99) with c = cq−1
1 , which depends only on ε and

q. �
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Remark 5.50. Part (ii) of Theorem 5.48 implies that for q = q′′0 Corol-
lary 5.49 fails.

Remark 5.51. From equation (5.92) it is easy to see, that for q′′0 ≡ q′′0 (ε) and
ε → 0

q′′0 − 1 ∼ 2ε

e
.

Remark 5.52. Set q = p
p−1 . Then equation (5.92) becomes

pp

(p − 1)p−1
=

2
ε
.

This is exactly equation (5.64). It defines the limiting exponent of Gehring
class, containing a function which satisfies the Gurov–Reshetnyak condition.

5.2.2 Anisotropic Case

For d ≥ 2 one can prove the following analog of Theorem 5.47.

Theorem 5.53 ([46]). Let f be a non-negative function on the segment R0 ⊂
R

d, satisfying Gurov–Reshetnyak condition (5.69) for some ε, 0 < ε < 2. Then

1
t

∫ t

0

|f∗(u) − f∗∗(t)| du ≤ ε · f∗∗(t), 0 < t ≤ |R0|. (5.100)

Proof. Essentially it is enough to repeat the proof of Theorem 5.47 with the
only difference that now, instead of one-dimensional Lemma 1.18, one has
to apply Lemma 1.31, obtaining the following analogs of (5.90) and (5.91)
respectively

1
|Rj |

∫
Rj

f(x) dx = α, j = 1, 2, . . . , (5.101)

f(x) ≥ α for almost all x ∈ R0 \ E. (5.102)

Here E = ∪j≥1Rj and the interiors of the segments Rj ⊂ R0 are pairwise
disjoint. The rest of the proof just repeats the proof of Theorem 5.47. �

As in the case d = 1, Theorem 5.53 implies the following results.

Theorem 5.54 ([46]). Let ε, 0 < ε < 2 be given, and let q′′0 = q′′0 (ε) > 1 be
a root of the equation

(q − 1)q−q/(q−1) =
ε

2
. (5.103)

Then
(i) if f is a non-negative function on the segment R0 ⊂ R

d, satisfying
Gurov–Reshetnyak condition (5.69) with some given ε, then



146 5 The Gurov–Reshetnyak Class of Functions

f∗∗(t) ≥ c · f∗∗ (|I0|)
( |R0|

t

)−(q′′
0 −1)

, 0 < t ≤ |R0| ,

where the constant c > 0 depends only on ε;
(ii) there exists f0 ∈ L([0, 1]d), satisfying (5.69) such that

(f0)∗∗ (t) ≤ c1t
q′′
0 −1, 0 < t ≤ 1,

where c1 does not depend on t.

Corollary 5.55 ([46]). Let f be a non-negative function on the segment
R0 ⊂ R

d such that
Ω(f ;R) ≤ ε · fR, R ⊂ R0,

for some ε < 2. Then f verifies the Muckenhoupt inequality

1
|R|

∫
R

f(x) dx

{
1
|R|

∫
R

f−1/(q−1)(x) dx

}q−1

≤ c, R ⊂ R0,

for any q > q′′0 , where q′′0 = q′′0 (ε) > 1 is a root of equation (5.103), while the
constant c depends only on ε and q.

Remark 5.56. Part (ii) of Theorem 5.54 implies that for q = q′′0 Corol-
lary 5.55 fails.



A

The Boundedness of the Hardy–Littlewood
Maximal Operator from BMO into BLO

In this appendix we prove the boundedness of the Hardy-Littlewood maximal
operator which acts from BMO into BLO. First let us give the definition and
consider some properties of this operator.

Let f be a summable function on the cube Q0 ⊂ R
d. The operator

Mf(x) = sup
Qx

1
|Q|

∫
Q

|f(y)| dy

is called the Hardy–Littlewood maximal operator . Here the supremum is taken
over all cubes Q ⊂ Q0 containing the point x. The Hardy–Littlewood maximal
operator is very important for the analysis of properties of other operators, in
particular, for estimation of the partial sums of Fourier series. The next theo-
rem describes the fundamental property of the operator M(see, for example,
[70]).

Theorem A.1 (Hardy, Littlewood). Let f be a function on the cube Q0 ⊂
R

d. Then
(i) if f ∈ Lp(Q0) for 1 ≤ p ≤ ∞, then the function Mf is finite almost

everywhere;
(ii) if f ∈ L(Q0), then for any λ > 0

|{x ∈ Q0 : Mf(x) > λ}| ≤ C

λ

∫
Q0

|f(x)| dx, (A.1)

where the constant C depends only on the dimension d (for instance, one can
take C = 5d);

(iii) if f ∈ Lp(Q0) for 1 < p ≤ ∞, then Mf ∈ Lp(Q0) and{∫
Q0

(Mf)p(x) dx

}1/p

≤ Cp

{∫
Q0

|f(x)|p dx

}
, (A.2)

where Cp depends only on p and d.
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The function Mf is called the Hardy-Littlewood maximal function. Often
inequality (A.1) is called the inequality of the weak (1−1)–type for the Hardy–
Littlewood maximal operator, while inequality (A.2) is called the inequality of
the strong (p− p)–type. Theorem A.1 is called the Hardy–Littlewood maximal
theorem.

Remark A.2. Lebesgue theorems 1.1 and 1.2 are the consequences of Theo-
rem A.1.

The boundedness of the Hardy-Littlewood maximal operator M in BMO
was proved in [1]. Following the original proof from [1], we will show that the
operator M acts from BMO to BLO and estimate its norm.
Theorem A.3. Let f ∈ BMO(Q0), where Q0 ⊂ R

d is a cube. Then Mf ∈
BLO and

‖Mf‖BLO ≤ C‖f‖∗, (A.3)

where the constant C depends only on the dimension d.

Proof. Since M(|f |) = Mf , ‖ |f | ‖∗ ≤ 2‖f‖∗ we see that in order to prove
the theorem it is enough to consider the case f ≥ 0 on Q0. Let us denote
F (x) = Mf(x), x ∈ Q0. Fix an arbitrary cube Q ⊂ Q0. Let 3Q be another
cube, concentric with the cube Q, and such that l(3Q) = 3l(Q). We denote
by Q̃ the smallest cube such that 3Q ∩ Q0 ⊂ Q̃ ⊂ Q0. For x ∈ Q let

F1(x) = sup
{

fQ′ : Q′ � x, Q′ ⊂ Q̃
}

,

F2(x) = sup
{

fQ′ : Q′ � x, Q′ ⊂ Q0, Q′ \ Q̃ �= ∅
}

.

Clearly F (x) = max {F1(x), F2(x)} , x ∈ Q. Let

bQ = ess inf
x∈Q

F (x), E1 = {x ∈ Q : F1(x) ≥ F2(x)} , E2 = Q \ E1.

Then
1
|Q|

∫
Q

[F (x) − bQ] dx =
1
|Q|

2∑
i=1

∫
Ei

[Fi(x) − bQ] dx.

So in order to prove the theorem it is enough to show that∫
Ei

[Fi(x) − bQ] dx ≤ c|Q| ‖f‖∗ (A.4)

for i = 1, 2.
Let us consider the case i = 1. From the inequality f

Q̃
≤ F (x), x ∈ Q, we

obtain that f
Q̃
≤ bQ. Now we apply Calderón–Zygmund lemma 5.6 with the

constant bQ to the function f on Q̃. As the result we obtain two families of
cubes Qj ⊂ Q′

j ⊂ Q̃, j = 1, 2 . . . , such that the interiors of Qj are pairwise
disjoint,
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fQ′
j
≤ bQ ≤ fQj

≤ 2dbQ, j = 1, 2, . . . , (A.5)

f(x) ≤ bQ for almost all x ∈ Q̃ \
⎛⎝⋃

j≥1

Qj

⎞⎠ , (A.6)

and ∣∣Q′
j

∣∣ = 2d |Qj | . (A.7)

Set E = Q̃ \
(⋃

j≥1 Qj

)
,

b(x) =
∑
j≥1

(
f(x) − fQ′

j

)
χQj

(x), x ∈ Q̃,

g(x) =
∑
j≥1

fQ′
j
χQj

(x) + f(x)χE(x), x ∈ Q̃.

Notice that f(x) = b(x) + g(x) for almost all x ∈ Q̃. Since the interiors of the
cubes Qj are pairwise disjoint (A.5) and (A.6) imply

‖g‖∞ ≤ bQ. (A.8)

Further,

‖b‖2 ≡
{∫

Q̃

b2(x) dx

}1/2

=

⎧⎨⎩∑
j≥1

∫
Qj

∣∣∣f(x) − fQ′
j

∣∣∣2 dx

⎫⎬⎭
1/2

≤

≤
⎧⎨⎩∑

j≥1

∣∣Q′
j

∣∣Ω2
2

(
f ;Q′

j

)⎫⎬⎭
1/2

. (A.9)

But, according to Corollary 3.18 of the John–Nirenberg theorem (see also
Remark 3.19),

Ω2
2

(
f ;Q′

j

) ≤ c1‖f‖2
∗,

where the constant c1 depends only on d. Since
∣∣∣Q̃∣∣∣ ≤ 3d|Q|, using (A.8) from

(A.9) we get

‖b‖2 ≤
⎧⎨⎩c1‖f‖2

∗
∑
j≥1

∣∣Q′
j

∣∣⎫⎬⎭
1/2

=

⎧⎨⎩2dc1‖f‖2
∗
∑
j≥1

|Qj |
⎫⎬⎭

1/2

≤

≤
{

2dc1‖f‖2
∗
∣∣∣Q̃∣∣∣}1/2

≤ c2|Q|1/2‖f‖∗, (A.10)

where the constant c2 depends only on d. The definition of the function F1

implies
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F1(x) = M
(
fχ

Q̃

)
(x) = M(b + g)(x) ≤ Mb(x) + Mg(x), x ∈ Q̃,

provided the operator M is semi-additive. Now using the Schwartz inequality
and Hardy–Littlewood maximal theorem A.1, we obtain∫

E1

F1(x) dx ≤
∫

E1

Mb(x) dx + ‖g‖∞ · |E1| ≤

≤ |E1|1/2

{∫
E1

(Mb(x))2 dx

}1/2

+ ‖g‖∞ · |E1| ≤ c3 |E1|1/2 ‖b‖2 + ‖g‖∞ · |E1| ,

where c3 depends only on d. Substituting (A.8) and (A.10) in the last inequal-
ity and taking into account that E1 ⊂ Q, we get∫

E1

F1(x) dx ≤ c4|Q| ‖f‖∗ + bQ |E1| ,

which is exactly (A.4) for i = 1.
In order to prove (A.4) for i = 2 it is enough to show that

F2(x) − bQ ≤ c5‖f‖∗, x ∈ E2. (A.11)

Let x ∈ E2, and let Q′′ ⊂ Q0 be a cube, containing the point x, and such
that Q′′ \ Q̃ �= ∅. Since x ∈ Q it follows that |Q′′| ≥ |Q|. Let Q′′′ be the
smallest cube that contain both Q′′ and Q. Obviously then |Q′′′| ≤ 2d |Q′′|.
Let us show that

fQ′′′ ≤ bQ. (A.12)

Indeed, for any y ∈ Q

fQ′′′ ≤ F2(y) ≤ max {F1(y), F2(y)} = F (y).

From here, taking the infimum over all y ∈ Q, we obtain (A.12). In its own
turn, (A.12) implies

fQ′′ − bQ ≤ fQ′′ − fQ′′′ ≤ 1
|Q′′|

∫
Q′′

|f(y) − fQ′′′ | dy ≤

≤ |Q′′′|
|Q′′| ·

1
|Q′′′|

∫
Q′′′

|f(y) − fQ′′′ | dy ≤ 2d‖f‖∗.

Now, taking the supremum over all cubes Q′′, we get (A.11). �
Due to inequality (2.37), Theorem A.3 has the following immediate corol-

lary.

Corollary A.4 (Bennett, De Vore, Shapley, [1]). If f ∈ BMO(Q0),
where Q0 ⊂ R

d is a cube, then Mf ∈ BMO(Q0) and

‖Mf‖∗ ≤ C‖f‖∗,
where the constant C depends only on the dimension d.



B

The Weighted Analogs of the Riesz Lemma
and the Gurov–Reshetnyak Theorem

Undoubtedly all results, which we discussed in this book for the Lebesgue
measure, can be generalized for any measure, satisfying certain conditions. We
did not pay attention to this fact in order to avoid the excessive complication.
However, in our opinion it would be useful to consider some of the results,
described above, in the weighted case, in particular, for measures that preserve
the given proofs. First of all, we mean the multidimensional analog of the Riesz
“rising sun lemma” (Lemma 1.30), because it plays the key role in various
problems.

B.1 The Weighted Riesz Lemma

Let dμ ≡ dμ(x) = w(x) dx be a measure and assume that dμ is absolutely con-
tinuous with respect to the Lebesgue measure. We assume in addition that the
weight function w is non-negative and locally summable (with respect to the
Lebesgue measure) on R

d, and denote by Lμ(E) the class of functions f , sum-
mable on E with respect to the measure μ. It is easy to see, that Lemma 1.28
remain valid if we substitute the Lebesgue measure by dμ and take

MB,μf(x) ≡ sup
BJx

1
μ(J)

∫
J

|f(y)| dμ(y), x ∈ R0.

instead of the maximal function MB. Further, substituting the mean value
fE of the function f on the set E by its μ-mean value

fE,μ ≡ 1
μ(E)

∫
E

f(x) dμ(x),

we see that Lemma 1.29 is valid in the weighted case, too. So, also the weighted
analog of Lemma 1.30, based on the application of the weighted analog of
Lemma 1.29, holds true. Notice, that the absolute continuity of the measure
μ provides the equality fRj ,μ = α, which plays the key role in the proof of
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the weighted analog of Lemma 1.21, and hence in the proof of the weighted
analog of Lemma 1.30. Therefore the following result is valid.

Lemma B.1 ([47]). Let R0 ⊂ R
d be a segment, dμ = w(x) dx be an absolutely

continuous measure, and assume f ∈ Lμ(R0) and α ≥ fR0,μ. Then there
exists a family of segments Rj ⊂ R0, j = 1, 2, . . . , with pairwise disjoint
interiors such that fRj ,μ = α and f(x) ≤ α for μ-almost every point x ∈
R0 \

(⋃
j≥1 Rj

)
.

B.2 The Gurov–Reshetnyak Theorem in the Weighted
Case

Now let us consider the weighted analog of Gurov–Reshetnyak theorem 5.4.
As before, let dμ = w(x) dx be an absolute continuous measure. The quantity

Ωμ(f ;Q) =
1

μ(Q)

∫
Q

|f(x) − fQ,μ| dμ(x)

is called the μ-mean oscillation of the function f ∈ Lμ(Q) on the cube Q ⊂ R
d.

For the cube Q0 ⊂ R
d and 0 < ε < 2 we denote by GRμ ≡ GRμ(ε) ≡

GRμ (ε,Q0) the class of all non-negative functions f ∈ Lμ (Q0), satisfying the
weighted Gurov–Reshetnyak inequality

Ωμ(f ;Q) ≤ ε · fQ,μ, Q ⊂ Q0. (B.1)

Substituting the Lebesgue measure dx by dμ in the proof of Theorem 5.22,
we obtain to the following theorem.

Theorem B.2 ([42]). Let dμ = w(x) dx be an absolute continuous measure
on the cube Q0 ⊂ R

d, and let f ∈ Lμ (Q0). Then
(i) if for some ε, 0 < ε < 2, the function f satisfies weighted Gurov–

Reshetnyak condition (B.1), then for ε < λ < 2

μ
({

x ∈ Q : f(x) >
(
1 − ε

λ

)
· fQ,μ

})
≥
(

1 − λ

2

)
· μ(Q), Q ⊂ Q0; (B.2)

(ii) if for some σ and θ, 0 < σ, θ < 1, the function f is such that

μ ({x ∈ Q : f(x) > σ · fQ,μ}) > θ · μ(Q), Q ⊂ Q0,

then
Ωμ(f ;Q) ≤ 2(1 − σθ)fQ,μ, Q ⊂ Q0.

Further, in [61] it was shown, that condition (B.2) implies the weighted
Gehring inequality
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1

μ(Q)

∫
Q

fp(x) dμ(x)
} 1

p

≤ c
1

μ(Q)

∫
Q

f(x) dμ(x), Q ⊂ Q0 (B.3)

for some p > 1. Here the constant c depends only on ε, d and p. Thus Theo-
rem B.2 yields the following analog of Corollary 5.23.

Corollary B.3 (the weighted version of the Gurov–Reshetnyak theo-
rem, [42]). Let dμ = w(x) dx be an absolutely continuous measure, 0 < ε < 2,
and let f ∈ Lμ (Q0) be a non-negative function on the cube Q0 ⊂ R

d such
that weighted Gurov–Reshetnyak condition (B.1) is satisfied. Then there ex-
ists p0 ≡ p0(ε, d) > 1 such that for any p < p0 the weighted Gehring in-
equality (B.3) is satisfied with the constant c, depending only on ε, d and
p.

Notice that similarly to the non-weighted case this way to deduce the
weighted version of the Gurov–Reshetnyak theorem does not provide the
known exact exponent of summability p0(ε, d) ≥ c(d)

ε of f for ε → 0. We
will give now another proof of this theorem with the exact exponent of sum-
mability p0. This proof is based on the application of part (i) of Theorem B.2.
First we need the following covering lemma.

Lemma B.4 (Mateu, Mattila, Nicolau, Orobitg, [56]). Let Q0 ⊂ R
d be

a cube, dμ = w(x) dx be an absolutely continuous measure, and let E ⊂ Q0

be a μ-measurable set such that μ(E) ≤ ρμ (Q0) with 0 < ρ < 1. Then there
exists at most countable family of cubes Qj , j = 1, 2, . . . , such that

(i) μ (Qj

⋂
E) = ρμ (Qj) , j = 1, 2, . . . ;

(ii) the family {Qj}j≥1 is almost disjunctive with the constant B(d), i.e.
each point of the cube Q0 is contained in at most B(d) cubes Qj;

(iii) μ-almost every point of E is contained in
⋃

j≥1 Qj.

We define the non-decreasing equimeasurable rearrangement of the func-
tion f on the cube Q0 with respect to the measure μ by the following equality

f∗
μ(t) = sup

e⊂Q0, μ(e)=t

inf
x∈e

|f(x)|, 0 < t < μ (Q0) .

Set

f∗∗
μ (t) =

1
t

∫ t

0

f∗
μ(u) du, 0 < t < μ (Q0) .

Theorem B.5 ([42]). Let dμ = w(x) dx be an absolutely continuous measure,
and f ∈ GRμ (ε,Q0) be a non-negative function on the cube Q0 ⊂ R

d with
0 < ε < 2. Then for ε < λ < 2, ρ < 1 − λ

2 and t ≤ ρμ (Q0)

f∗∗
μ (t) ≤

(
B(d)

λ
ρ + 1

λ − ε
ε + 1

)
f∗

μ(t). (B.4)
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Proof. Fix ε, ρ and t as in the statement of the theorem, and set E ={
x ∈ Q0 : f(x) > f∗

μ(t)
}
. Then μ(E) ≤ t ≤ ρμ (Q0). Applying Lemma B.4 to

the set E with the constant ρ we obtain a family of cubes Qj , j = 1, 2, . . . ,
satisfying the conditions of this lemma. Since ρ < 1 − λ

2 we see that part (i)
of the lemma implies

(
fχQj

)∗
μ

((
1 − λ

2

)
μ (Qj)

)
≤ f∗

μ(t), j = 1, 2, . . .

Hence, according to part (i) of Theorem B.2,

fQj ,μ ≤ λ

λ − ε

(
fχQj

)∗
μ

((
1 − λ

2

)
μ (Qj)

)
≤ λ

λ − ε
f∗

μ(t), (B.5)

and so for j = 1, 2, . . . ,

Ωμ (f ;Qj) ≤ ελ

λ − ε
f∗

μ(t). (B.6)

Moreover, by Lemma B.4 (part (ii)),∑
j≥1

μ
(
Qj

⋂
E
)
≤ B(d)μ(E) ≤ B(d)t.

Using the properties of the equimeasurable rearrangements and inequali-
ties (B.5) and (B.6) we obtain

t
(
f∗∗

μ (t) − f∗
μ(t)

)
=
∫

E

(
f(x) − f∗

μ(t)
)

dμ(x) ≤

≤
∑
j≥1

∫
E
⋂

Qj

(
f(x) − f∗

μ(t)
)

dμ(x) ≤

≤
∑
j≥1

∫
E
⋂

Qj

(
f(x) − fQj ,μ

)
dμ(x) +

∑
j≥1

μ
(
E
⋂

Qj

) (
fQj ,μ − f∗

μ(t)
) ≤

≤ ελ

λ − ε
f∗

μ(t)
∑
j≥1

μ (Qj) +
ε

λ − ε
f∗

μ(t)
∑
j≥1

μ
(
E
⋂

Qj

)
≤

≤ B(d)
λ
ρ + 1

λ − ε
· εt · f∗

μ(t),

which is equivalent to (B.4). �
From Theorem B.5 it follows immediately that the condition f ∈ GRμ(ε)

implies weighted Gehring inequality (B.3) for all p < 1+ λ−ε
B(d)(λ/ρ+1)

1
ε . In order

to see this it is enough to apply the following lemma to inequality (B.4).
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Lemma B.6 (Muckenhoupt, [59]). Let h be a non-negative non-increasing
function on [0, b] such that

1
t

∫ t

0

h(u) du ≤ c · h(t), 0 ≤ t ≤ b

20
.

Then for any p, 1 ≤ p < c
c−1 ,

{
1
b

∫ b

0

hp(t) dt

} 1
p

≤ c1
1
b

∫ b

0

h(t) dt,

and the constant c1 depends only on p and c.



C

Classes of Functions Satisfying the Reverse
Hölder Inequality

The defined above Gehring and Muckenhoupt classes Gp and Aq can be con-
sidered as the particular cases of a class of functions satisfying the reverse
Hölder inequality.

Let dμ(x) = w(x) dx be an absolute continuous measure on the cube Q0 ⊂
R

d such that the weight function w is non-negative and summable on Q0.

Let α < β (αβ �= 0) be two numbers. For B > 1 denote by R̃H
α,β

dμ(x)(B) the
class of non-negative functions f on Q0 satisfying the reverse weighted Hölder
inequality{

1
μ(Q)

∫
Q

fβ(x) dμ(x)
} 1

β

≤ B

{
1

μ(Q)

∫
Q

fα(x) dμ(x)
} 1

α

uniformly over all cubes Q ⊂ Q0. In the case that the reverse Hölder inequality
holds true not only over cubes, but over all segments R contained in some fixed
segment R0 ⊂ R

d, i.e.,{
1

μ(R)

∫
R

fβ(x) dμ(x)
} 1

β

≤ B

{
1

μ(R)

∫
R

fα(x) dμ(x)
} 1

α

,

we will denote the corresponding class of functions by RHα,β
dμ(x)(B). It is easy

to see that RHα,β
dμ(x)(B) ⊂ R̃H

α,β

dμ(x)(B) and this embedding is strict. Clearly

Gp(B) = R̃H
1,p

dx (B) (p > 1) and Aq(B) = R̃H
− 1

q−1 ,1

dx (B) (q > 1).

C.1 Estimate of Rearrangements of Functions Satisfying
the Reverse Jensen Inequality

For convenience in what follows we will change some of notations previously
used. Namely, for non-negative function f we will call the functions
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f↓
μ(t) ≡ (f |E)↓μ(t) = sup

e⊂E, μ(e)=t

inf
x∈e

f(x), 0 ≤ t ≤ μ(E)

and
f↑

μ(t) ≡ (f |E)↑μ(t) = inf
e⊂E, μ(e)=t

sup
x∈e

f(x), 0 ≤ t ≤ μ(E)

the non-increasing and the non-decreasing equimeasurable rearrangements of
the function f with respect to the measure dμ in the μ-measurable set E. If
dμ(x) = dx is the Lebesgue measure then f↓

μ = f∗ and f↑
μ = f∗. The functions

(f |E)↓μ(t) and (f |E)↑μ(t) are μ-equimeasurable with f in E in the sense that
for any λ ≥ 0∣∣∣{t ∈ (0, |E|] : (f |E)↓μ (t) > λ

}∣∣∣ =
∣∣{t ∈ (0, |E|] : (f |E)↑μ(t) > λ

}∣∣ =

= μ ({x ∈ E : f(x) > λ}) ,

where | · | denotes the Lebesgue measure. Let Φ be the class of all positive
convex downwards functions ϕ on (0,+∞) such that ϕ(0) = ϕ(0+) (the val-
ues 0 and +∞ in the right-hand are admissible). Since the functions (f |E)↓μ,
(f |E)↑μ and f are μ-equimeasurable on the μ-measurable set E we have∫ μ(E)

0

ϕ
(
(f |E)↓μ(t)

)
dt =

∫ μ(E)

0

ϕ
(
(f |E)↑μ(t)

)
dt =

∫
E

ϕ(f(x)) dμ(x)

for any ϕ ∈ Φ.
Recall that for ϕ ∈ Φ and for any non-negative function f on E there holds

true the so-called weighted Jensen inequality (see [26])

ϕ

(
1

μ(E)

∫
E

f(x) dμ(x)
)

≤ 1
μ(E)

∫
E

ϕ(f(x)) dμ(x). (C.1)

For any B > 1 let us consider the class RJϕ
dμ(x)(B) of functions f such that

they are non-negative on the segment R0 ⊂ R
d and satisfy the reverse weighted

Jensen inequality

1
μ(E)

∫
E

ϕ(f(x)) dμ(x) ≤ B · ϕ
(

1
μ(E)

∫
E

f(x) dμ(x)
)

(C.2)

uniformly over all segments R ⊂ R0. It is easy to see that for ϕ(u) = up (p > 1)
the reverse Jensen inequality becomes the Gehring condition, while for ϕ(u) =
u− 1

q−1 (q > 1) it is the Muckenhoupt condition with appropriate constants.
In this section we give the exact estimate of the equimeasurable rearrange-

ments of functions satisfying the reverse Jensen inequality.

Theorem C.1 ([48]). Let ϕ ∈ Φ and let dμ be an absolute continuous mea-
sure on the segment R0 ⊂ R

d. Let f be a non-negative function on R0 satisfy-
ing the reverse Jensen inequality (C.2). Then for any interval I ⊂ [0, μ (R0)]
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1
|I|

∫
I

ϕ
(
f↓

μ(t)
)

dt ≤ B · ϕ
(

1
|I|

∫
I

f↓
μ(t) dt

)
, (C.3)

1
|I|

∫
I

ϕ
(
f↑

μ(t)
)

dt ≤ B · ϕ
(

1
|I|

∫
I

f↑
μ(t) dt

)
(C.4)

with the same constant B > 1 as in condition (C.2).

The estimate of the rearrangements of functions satisfying the reverse
Jensen inequality (C.2) over cubes was obtained by C. Sbordone in [68] with
some additional assumptions on the function ϕ. In this case the question about
the sharpness of such estimates is quite difficult. Actually we do not know any
result concerning the exact estimates of the equimeasurable rearrangements
of functions satisfying condition (C.2) over cubes even for some special class
of functions ϕ.

In the one-dimensional case the exact estimate of the equimeasurable re-
arrangements of functions satisfying the reverse Jensen inequality for dμ = dx
was obtained in [35, 36].

In order to prove Theorem C.1 we need some auxiliary results. The key
role in the proof will be played by the weighted analog of the Riesz lemma
(Lemma B.1). Here we give another equivalent formulation of this lemma in
the form it will be used later.

Lemma C.2 ([48]). Let R0 ⊂ R
d be a segment, dμ(x) = w(x) dx be an

absolutely continuous measure, f ∈ Lμ(R0), and let α ≤ fR0,μ. Then there
exists a family of pairwise disjoint segments Rj ⊂ R0, j = 1, 2, . . . , such that

fRj ,μ = α, j = 1, 2, . . . , and f(x) ≥ α for μ-almost every x ∈ R0\
(⋃

j≥1 Rj

)
.

The next lemma describes one simple property of convex functions. We
well prove it though it becomes completely trivial if one makes an appropriate
design.

Lemma C.3 ([35]). Let ϕ ∈ Φ and assume that the numbers 0 ≤ γ1, γ2 ≤ 1,
a ≥ b ≥ c ≥ d > 0 are such that

γ1a + (1 − γ1) d = γ2b + (1 − γ2) c.

Then
γ1ϕ(b) + (1 − γ1) ϕ(c) ≤ γ2ϕ(a) + (1 − γ2) ϕ(d). (C.5)

Proof. Since the function ϕ is convex

ϕ(c) ≤ ϕ(d) +
ϕ(a) − ϕ(d)

a − d
(c − d). (C.6)

Denote ξ = γ1b + (1 − γ1) c. Then inequality (C.6) becomes
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ϕ(c) ≤ a − c

a − d

[
ϕ(d) + ϕ(a)

(c − d)(a − ξ)
(a − c)(a − ξ)

]
.

It is easy to see that this inequality is equivalent to the following one

ϕ(c) +
ϕ(a) − ϕ(c)

a − c
(ξ − c) ≤ ϕ(d) +

ϕ(a) − ϕ(d)
a − d

(ξ − d). (C.7)

Further, by convexity of ϕ, we have

ϕ(b) ≤ ϕ(c) +
ϕ(a) − ϕ(c)

a − c
(b − c),

which, by (C.7), implies

ϕ(c) +
ϕ(b) − ϕ(c)

b − c
(ξ − c) ≤ ϕ(c) +

ϕ(a) − ϕ(c)
a − c

(ξ − c) ≤

≤ ϕ(d) +
ϕ(a) − ϕ(d)

a − d
(ξ − d).

Since γ1 = ξ−c
b−c and γ2 = ξ−d

a−d it is easy to see that the last inequality im-
plies (C.5). �

The next lemma is an analog of Property 2.15 of mean oscillations.

Lemma C.4 ([35]). Let g be a non-negative monotone summable function
on the interval [a, b] and let the interval [α, β] ⊂ [a, b] be such that

1
β − α

∫ β

α

g(t) dt =
1

b − a

∫ b

a

g(t) dt.

Then for any ϕ ∈ Φ

1
β − α

∫ β

α

ϕ(g(t)) dt ≤ 1
b − a

∫ b

a

ϕ(g(t)) dt. (C.8)

Proof. For definiteness we assume that g does not decrease on [a, b]. Let

a′ = inf
{
t ∈ [a, b] : g(t) ≥ g[α,β]

}
, b′ = sup

{
t ∈ [a, b] : g(t) ≤ g[α,β]

}
.

Clearly a′ ≤ b′. If a′ ≤ α or b′ ≥ β, then we set c = α+β
2 ; otherwise we set

c = a′+b′
2 . In both cases g(t) ≤ g[α,β] for t ≤ c and g(t) ≥ g[α,β] for t ≥ c. So,∫ c

α

(
g[α,β] − g(t)

)
dt =

∫ β

c

(
g(t) − g[α,β]

)
dt. (C.9)

Let us partition the non-degenerate interval [α, c] into the non-degenerated
intervals Δ

(l)
i (i = 1, . . . , n). For every Δ

(l)
i let us construct the interval Δ

(r)
i ⊂

[c, β] such that
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Δ

(l)
i

(
g[α,β] − g(t)

)
dt =

∫
Δ

(r)
i

(
g(t) − g[α,β]

)
dt,

so that the interiors of the intervals Δ
(r)
i , as well as the interiors of Δ

(l)
i , are

pairwise disjoint and

n⋃
i=1

Δ
(l)
i = [α, c],

n⋃
i=1

Δ
(r)
i = [c, β].

Such a construction is possible due to (C.9). We obtain that for i = 1, . . . , n∣∣∣Δ(l)
i

∣∣∣∣∣∣Δ(l)
i

∣∣∣+ ∣∣∣Δ(r)
i

∣∣∣ · 1∣∣∣Δ(l)
i

∣∣∣
∫

Δ
(l)
i

g(t) dt+

∣∣∣Δ(r)
i

∣∣∣∣∣∣Δ(l)
i

∣∣∣+ ∣∣∣Δ(r)
i

∣∣∣ · 1∣∣∣Δ(r)
i

∣∣∣
∫

Δ
(r)
i

g(t) dt = g[α,β].

Moreover, if we denote Δ(l) = [a, α], Δ(r) = [β, b], then from the condition
g[α,β] = g[a,b] we get∣∣Δ(l)

∣∣∣∣Δ(l)
∣∣+ ∣∣Δ(r)

∣∣ · 1∣∣Δ(l)
∣∣ ∫

Δ(l)
g(t) dt+

∣∣Δ(r)
∣∣∣∣Δ(l)

∣∣+ ∣∣Δ(r)
∣∣ · 1∣∣Δ(r)

∣∣∫
Δ(r)

g(t) dt = g[α,β].

Notice that, by monotonicity of g, for any i = 1, . . . , n

1∣∣Δ(l)
∣∣ ∫

Δ(l)
g(t) dt ≤ 1∣∣∣Δ(l)

i

∣∣∣
∫

Δ
(l)
i

g(t) dt ≤

≤ 1∣∣∣Δ(r)
i

∣∣∣
∫

Δ
(r)
i

g(t) dt ≤ 1∣∣Δ(r)
∣∣ ∫

Δ(r)
g(t) dt.

The application of Lemma C.3 yields∣∣∣Δ(l)
i

∣∣∣∣∣∣Δ(l)
i

∣∣∣+ ∣∣∣Δ(r)
i

∣∣∣ϕ
⎛⎝ 1∣∣∣Δ(l)

i

∣∣∣
∫

Δ
(l)
i

g(t) dt

⎞⎠+

+

∣∣∣Δ(r)
i

∣∣∣∣∣∣Δ(l)
i

∣∣∣+ ∣∣∣Δ(r)
i

∣∣∣ϕ
⎛⎝ 1∣∣∣Δ(r)

i

∣∣∣
∫

Δ
(r)
i

g(t) dt

⎞⎠ ≤

≤
∣∣Δ(l)

∣∣∣∣Δ(l)
∣∣+ ∣∣Δ(r)

∣∣ϕ
(

1∣∣Δ(l)
∣∣ ∫

Δ(l)
g(t) dt

)
+

+

∣∣Δ(r)
∣∣∣∣Δ(l)

∣∣+ ∣∣Δ(r)
∣∣ϕ
(

1∣∣Δ(r)
∣∣ ∫

Δ(r)
g(t) dt

)
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for i = 1, . . . , n. Summing up these inequalities over all i and applying Jensen
inequality (C.1) we get

n∑
i=1

⎡⎣∣∣∣Δ(l)
i

∣∣∣ϕ
⎛⎝ 1∣∣∣Δ(l)

i

∣∣∣
∫

Δ
(l)
i

g(t) dt

⎞⎠+
∣∣∣Δ(r)

i

∣∣∣ϕ
⎛⎝ 1∣∣∣Δ(r)

i

∣∣∣
∫

Δ
(r)
i

g(t) dt

⎞⎠⎤⎦ ≤

≤ β − α∣∣Δ(l)
∣∣+ ∣∣Δ(r)

∣∣
[∫ α

a

ϕ(g(t)) dt +
∫ b

β

ϕ(g(t)) dt

]
. (C.10)

If the function ϕ is monotone, then the sum σ in the left-hand side of (C.10) is
bounded by the lower and upper Darboux sums of the integral

∫ β

α
ϕ(g(t)) dt

that correspond to the partition of the interval [α, β] by intervals Δ
(l)
i and

Δ
(r)
i (i = 1, . . . , n). Moreover, if the side-lengths of the intervals Δ

(l)
i tend to

zero, it follows that the side-lengths of the intervals Δ
(r)
i tend to zero, too.

Therefore (C.10) implies

1
β − α

∫ β

α

ϕ(g(t)) dt ≤ 1
(α − a) + (b − β)

[∫ α

a

ϕ(g(t)) dt +
∫ b

β

ϕ(g(t)) dt

]
.

(C.11)
Otherwise, if the function ϕ is not monotone, then in order to prove (C.11) it is
enough to present the convex downwards function ϕ as a sum of two monotone
convex downwards functions and then prove (C.11) for each component of such
a representation.

It is easy to see that (C.11) implies (C.8). �
The next two lemmas are of great importance for the proof of Theorem C.1.

Lemma C.5 ([35]). Let f be a non-negative function on E
⋃

Ê such that

1
μ(E)

∫
E

f(x) dμ(x) =
1

μ
(
Ê
) ∫

Ê

f(x) dμ(x) ≡ A (C.12)

and
f(x) ≤ A, x /∈ E

⋂
Ê, (C.13)

f(x) ≤ f(y), x ∈ Ê \ E, y ∈ E. (C.14)

Then for any ϕ ∈ Φ

1
μ(E)

∫
E

ϕ (f(x)) dμ(x) ≤ 1

μ
(
Ê
) ∫

Ê

ϕ (f(x)) dμ(x). (C.15)
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Proof. Let us consider the non-trivial case when f is not μ-equivalent to a
constant A. First let us show that

μ
(
Ê
)
≤ μ(E). (C.16)

Indeed, by (C.12) and (C.13),∫
E\Ê

(A − f(x)) dμ(x) =
∫

Ê\E

(A − f(x)) dμ(x). (C.17)

Using condition (C.14) we can choose some c such that

f(x) ≤ c ≤ f(y), x ∈ Ê \ E, y ∈ E.

Then ∫
E\Ê

(A − f(x)) dμ(x) ≤ (A − c)μ
(
E \ Ê

)
,∫

Ê\E

(A − f(x)) dμ(x) ≥ (A − c)μ
(
Ê \ E

)
.

Since c < A these two inequalities together with (C.17) imply

μ
(
Ê \ E

)
≤ μ

(
E \ Ê

)
,

which is equivalent to (C.16).
Now let us construct the sets E′ and E′′ such that

E′⋃E′′ = E \ Ê, E′⋂E′′ = ∅, μ (E′) = μ
(
Ê \ E

)
and f(x) ≤ f(y) for any x ∈ E′′, y ∈ E′. Chose some integer k and partition
the sets E′, E′′ and Ê \E into pairwise disjoint subsets in the following way.
Denote

g(1)(t) = (f |E′)↓μ (t), 0 ≤ t ≤ μ (E′) ,

g(2)(t) = (f |E′′)↓μ (t), 0 ≤ t ≤ μ (E′′) ,

g(3)(t) =
(
f |
(
Ê \ E

))↓
μ

(t), 0 ≤ t ≤ μ
(
Ê \ E

)
,

and set α
(j)
0,k = g(j)(0), (j = 1, 2, 3), τ

(j)
0,k = 0, (j = 1, 2). Assume that we have

already constructed the numbers

τ
(1)
0,k < τ

(1)
1,k < · · · < τ

(1)
s,k , τ

(2)
0,k < τ

(2)
1,k < · · · < τ

(2)
s,k ,

α
(1)
0,k ≥ α

(1)
1,k ≥ . . . ≥ α

(1)
s,k ≥ α

(2)
0,k ≥ α

(2)
1,k ≥ . . . ≥ α

(2)
s,k ≥ α

(3)
0,k ≥ α

(3)
1,k ≥ . . .≥α

(3)
s,k

and the pairwise disjoint sets
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E′
l,k ⊂ E′, E′′

l,k ⊂ E′′, Êl,k ⊂ Ê \ E, l = 1, . . . , s

such that

max
(

α
(1)
l,k , α

(1)
l−1,k − 1

k

)
≤ f(x) ≤ α

(1)
l−1,k, x ∈ E′

l,k,

max
(

α
(2)
l,k , α

(2)
l−1,k − 1

k

)
≤ f(x) ≤ α

(2)
l−1,k, x ∈ E′′

l,k,

α
(3)
l,k ≤ f(x) ≤ α

(3)
l−1,k, x ∈ Êl,k,

μ
(
E′

l,k

)
= μ

(
Êl,k

)
= τ

(1)
l,k − τ

(1)
l−1,k, (C.18)

μ
(
E′′

l,k

)
= τ

(2)
l,k − τ

(2)
l−1,k,∫

E′
l,k

f(x) dμ(x) −
∫

Êl,k

f(x) dμ(x) =
∫

E′′
l,k

(A − f(x)) dμ(x). (C.19)

If

μ (E′) =
s∑

l=1

μ
(
E′

l,k

)
,

then the partition of the sets E′, E′′ and Ê\E can be stopped here. Otherwise
we can construct α

(j)
s+1,k, τ

(j)
s+1,k, E′

s+1,k, E′′
s+1,k and Ês+1,k in the following

way. Consider the strictly increasing continuous functions

η(τ) =
∫ τ

τ
(1)
s,k

(
g(1)(t) − g(3)(t)

)
dt, τ

(1)
s,k ≤ τ ≤ μ (E′) ,

and

ζ(ξ) =
∫ ξ

τ
(2)
s,k

(
A − g(2)(t)

)
dt, τ

(2)
s,k ≤ ξ ≤ μ (E′′) .

Clearly η
(
τ

(1)
s,k

)
= ζ

(
τ

(2)
s,k

)
= 0 and η (μ (E′)) = ζ (μ (E′′)). Due to the strict

monotonicity of the function ζ(ξ) for any τ ∈
[
τ

(1)
s,k , μ (E′)

]
there exists a

unique value ξ = ξ(τ) such that

ζ(ξ(τ)) = η(τ), (C.20),

and the function ξ(τ) is continuous. Denote

τ
(1)
s+1,k = sup

{
τ ∈

(
τ

(1)
s,k , μ (E′)

]
:

max
[
g(1)

(
τ

(1)
s,k

)
− g(1)(τ), g(2)

(
τ

(2)
s,k + 0

)
− g(2)(ξ(τ))

]
<

1
k

}
,
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τ
(2)
s+1,k = ξ

(
τ

(1)
s+1,k

)
.

Notice that the domain of definition of the supremum in not empty because
the non-increasing rearrangement is continuous from the right. Set α

(1)
s+1,k =

g(1)
(
τ

(1)
s+1,k

)
, α

(2)
s+1,k = g(2)

(
τ

(2)
s+1,k

)
, α

(3)
s+1,k = g(3)

(
τ

(1)
s+1,k

)
. Then we can

construct the sets

E′
s+1,k ⊂ E′ \

(
s⋃

l=1

E′
l,k

)
, E′′

s+1,k ⊂ E′′ \
(

s⋃
l=1

E′′
l,k

)
,

Ês+1,k ⊂
(
Ê \ E

)
\
(

s⋃
l=1

Êl,k

)
such that

max
(

α
(1)
s+1,k, α

(1)
s,k − 1

k

)
≤ f(x) ≤ α

(1)
s,k, x ∈ E′

s+1,k, (C.21)

max
(

α
(2)
s+1,k, α

(2)
s,k − 1

k

)
≤ f(x) ≤ α

(2)
s,k, x ∈ E′′

s+1,k, (C.22)

α
(3)
s+1,k ≤ f(x) ≤ α

(3)
s,k, x ∈ Ês+1,k.

In view of this construction equality (C.20) reads∫
E′

s+1,k

f(x) dμ(x) −
∫

Ês+1,k

f(x) dμ(x) =
∫

E′′
s+1,k

(A − f(x)) dμ(x).

If

μ (E′) =
s+1∑
l=1

μ
(
E′

l,k

)
,

then from (C.17) we get

μ (E′′) =
s+1∑
l=1

μ
(
E′′

l,k

)
, μ

(
Ê \ E

)
=

s+1∑
l=1

μ
(
Êl,k

)
,

and so the partition of the sets E′, E′′ and Ê \ E is finished. Otherwise we
have

max
j=1,2

(
α

(j)
s,k − α

(j)
s+1,k

)
≥ 1

k
,

which implies that the number s of the steps cannot grow infinitely, i.e., there
exists sk such that

E′ =
sk⋃
l=1

E′
l,k, E′′ =

sk⋃
l=1

E′′
l,k, Ê \ E =

sk⋃
l=1

Êl,k.
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For l = 1, . . . , sk denote

bl,k =
1

μ
(
E′

l,k

) ∫
E′

l,k

f(x) dμ(x), cl,k =
1

μ
(
E′′

l,k

) ∫
E′′

l,k

f(x) dμ(x),

dl,k =
1

μ
(
Êl,k

) ∫
Êl,k

f(x) dμ(x).

Then equality (C.19) can be rewritten in the following form

bl,kμ
(
E′

l,k

)
+ cl,kμ

(
E′′

l,k

)
= dl,kμ

(
Êl,k

)
+ Aμ

(
E′′

l,k

)
.

Taking into account (C.18), we have

μ
(
E′

l,k

)
μ
(
E′

l,k

)
+ μ

(
E′′

l,k

)bl,k +
μ
(
E′′

l,k

)
μ
(
E′

l,k

)
+ μ

(
E′′

l,k

)cl,k =

=
μ
(
Êl,k

)
μ
(
Êl,k

)
+ μ

(
E′′

l,k

)dl,k +
μ
(
E′′

l,k

)
μ
(
Êl,k

)
+ μ

(
E′′

l,k

)A.

Since A ≥ bl,k ≥ cl,k ≥ dl,k the application of Lemma C.3 with a = A, b = bl,k,

c = cl,k, d = dl,k and γ1 = γ2 = μ
(
Êl,k

)
/
(
μ
(
Êl,k

)
+ μ

(
E′′

l,k

))
yields

μ
(
E′

l,k

)
ϕ (bl,k) + μ

(
E′′

l,k

)
ϕ (cl,k) ≤ μ

(
Êl,k

)
ϕ (dl,k) + μ

(
E′′

l,k

)
ϕ(A).

Applying now Jensen inequality (C.1) to the second term in the right-hand
side we obtain

μ
(
E′

l,k

)
ϕ (bl,k) + μ

(
E′′

l,k

)
ϕ (cl,k) ≤

≤
∫

Êl,k

ϕ(f(x)) dμ(x) + μ
(
E′′

l,k

)
ϕ(A), l = 1, . . . , sk.

Hence∫
E
⋂

Ê

ϕ(f(x)) dμ(x) +
sk∑
l=1

(
μ
(
E′

l,k

)
ϕ (bl,k) + μ

(
E′′

l,k

)
ϕ (cl,k)

) ≤
≤
∫

E
⋂

Ê

ϕ(f(x)) dμ(x) +
∫

Ê\E

ϕ(f(x)) dμ(x) + μ (E′′) ϕ(A) =

=
∫

Ê

ϕ(f(x)) dμ(x) + μ (E′′) ϕ(A) =
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=
μ(E)

μ
(
Ê
) ∫

Ê

ϕ(f(x)) dμ(x) +

⎛⎝1 − μ(E)

μ
(
Ê
)
⎞⎠∫

Ê

ϕ(f(x)) dμ(x) + μ (E′′) ϕ(A).

(C.23)
But since

μ(E) − μ
(
Ê
)

= μ (E′) + μ (E′′) − μ
(
Ê \ E

)
= μ (E′′)

it is easy to see that Jensen inequality (C.1) together with (C.12) implies⎛⎝1 − μ(E)

μ
(
Ê
)
⎞⎠∫

Ê

ϕ(f(x)) dμ(x) + μ (E′′) ϕ(A) ≤

≤
(
μ
(
Ê
)
− μ (E)

) 1

μ
(
Ê
) ∫

Ê

ϕ(f(x)) dμ(x)+

+μ (E′′)
1

μ
(
Ê
) ∫

Ê

ϕ(f(x)) dμ(x) =

=
1

μ
(
Ê
) ∫

Ê

ϕ(f(x)) dμ(x)
(
μ
(
Ê
)
− μ(E) + μ (E′′)

)
= 0.

Therefore (C.23) is equivalent to the inequality

1
μ(E)

[∫
E
⋂

Ê

ϕ(f(x)) dμ(x) +
sk∑
l=1

(
μ
(
E′

l,k

)
ϕ (bl,k) + μ

(
E′′

l,k

)
ϕ (cl,k)

)] ≤

≤ 1

μ
(
Ê
) ∫

Ê

ϕ(f(x)) dμ(x). (C.24)

Setting

fk(x) = f(x)χ
E
⋂

Ê
(x) +

sk∑
l=1

(
bl,kχE′

l,k
(x) + cl,kχE′′

l,k
(x)

)
, x ∈ E.

we can rewrite inequality (C.24) as follows

1
μ(E)

∫
E

ϕ (fk(x)) dμ(x) ≤ 1

μ
(
Ê
) ∫

Ê

ϕ(f(x)) dμ(x). (C.25)

Since, by (C.21) and (C.22),

|f(x) − fk(x)| ≤ 1
k



168 C The Reverse Hölder Inequality

for μ-almost all x ∈ E it follows that the sequence of functions ϕ (fk) converges
to ϕ(f) μ-almost everywhere, provided the convex function ϕ is monotone.
Therefore the application of the Fatou lemma to (C.25) yields (C.15). �
Lemma C.6 ([35]). Let f be a non-negative function on E

⋃
Ê such that

1
μ(E)

∫
E

f(x) dμ(x) =
1

μ
(
Ê
) ∫

Ê

f(x) dμ(x) ≡ A,

f(x) ≥ A, x /∈ E
⋂

Ê,

f(x) ≥ f(y), x ∈ Ê \ E, y ∈ E.

Then for any ϕ ∈ Φ

1
μ(E)

∫
E

ϕ (f(x)) dμ(x) ≤ 1

μ
(
Ê
) ∫

Ê

ϕ (f(x)) dμ(x).

The proof of this lemma is analogous to the proof of Lemma C.5 and we
omit it here.

Proof of Theorem C.1. Since the equality

f↓
μ(t) = f↑

μ (μ (R0) − t)

holds true in all points of continuity of the rearrangements, i.e., almost every-
where on [0, μ (R0)], inequalities (C.3) and (C.4) are equivalent.

Fix an interval I ⊂ [0, μ (R0)]. If

1
|I|

∫
I

f↓
μ(t) dt ≥ 1

μ (R0)

∫
R0

f(x) dμ(x),

then there exists T ∈ [0, μ (R0)] such that

1
|I|

∫
I

f↓
μ(t) dt =

1
T

∫ T

0

f↓
μ(t) dt.

In this case denote J = [0, T ]. Otherwise, if

1
|I|

∫
I

f↓
μ(t) dt <

1
μ (R0)

∫
R0

f(x) dμ(x),

then we can choose T ∈ [0, μ (R0)] such that

1
|I|

∫
I

f↓
μ(t) dt =

1
T

∫ μ(R0)

μ(R0)−T

f↓
μ(t) dt

and denote J = [μ (R0) − T, μ (R0)]. In both cases we have
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1
|I|

∫
I

f↓
μ(t) dt =

1
|J |

∫
J

f↓
μ(t) dt.

Moreover, since f↓
μ is monotone J ⊃ I. Setting [a, b] = J , [α, β] = I and

g = f↓
μ in Lemma C.4 we get

1
|I|

∫
I

ϕ
(
f↓

μ(t)
)

dt ≤ 1
|J |

∫
J

ϕ
(
f↓

μ(t)
)

dt.

Therefore it is enough to proof inequality (C.3) only for the interval J . In
other words, (C.3) and (C.4) follow from the pair of inequalities

1
T

∫ T

0

ϕ
(
f↓

μ(t)
)

dt ≤ B · ϕ
(

1
T

∫ T

0

f↓
μ(t) , dt

)
, 0 ≤ T ≤ μ (R0) , (C.26)

1
T

∫ T

0

ϕ
(
f↑

μ(t)
)

dt ≤ B · ϕ
(

1
T

∫ T

0

f↑
μ(t) dt

)
, 0 ≤ T ≤ μ (R0) . (C.27)

In order to prove (C.26) and (C.27) let us fix some T ∈ [0, μ (R0)] and denote

A↓ =
1
T

∫ T

0

f↓
μ(t) dt ≥ 1

μ (R0)

∫
R0

f(x) dμ(x), (C.28)

A↑ =
1
T

∫ T

0

f↑
μ(t) dt ≤ 1

μ (R0)

∫
R0

f(x) dμ(x).

By Lemmas B.1 and C.2, we can construct two collections of pairwise disjoint
segments R↓

j ⊂ R0 and R↑
k ⊂ R0 such that

1

μ
(
R↓

j

) ∫
R↓

j

f(x) dμ(x) = A↓, j = 1, 2, . . . , (C.29)

f(x) ≤ A↓ for μ − almost all x ∈ R0 \
⎛⎝⋃

j≥1

R↓
j

⎞⎠ ,

1

μ
(
R↑

k

) ∫
R↑

k

f(x) dμ(x) = A↑, k = 1, 2, . . . , (C.30)

f(x) ≥ A↑ for μ − almost all x ∈ R0 \
⎛⎝⋃

k≥1

R↓
k

⎞⎠ .

Let Ê↓ =
⋃

j≥1 R↓
j , Ê↑ =

⋂
k≥1 R↑

k. Then

μ
({

x ∈ R0 : f(x) > A↓} \ Ê↓
)

= 0, (C.31)
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μ
({

x ∈ R0 : f(x) < A↑} \ Ê↑
)

= 0.

Now, if we prove inequalities

1
T

∫ T

0

ϕ
(
f↓

μ(t)
)

dt ≤ 1

μ
(
Ê↓
) ∫

Ê↓
ϕ(f(x)) dμ(x), (C.32)

1
T

∫ T

0

ϕ
(
f↑

μ(t)
)

dt ≤ 1

μ
(
Ê↑
) ∫

Ê↑
ϕ(f(x)) dμ(x), (C.33)

then we immediately get (C.26) and (C.27). Indeed, by (C.32), (C.1) and (C.29),

1
T

∫ T

0

ϕ
(
f↓

μ(t)
)

dt ≤
⎛⎝∑

j≥1

μ
(
R↓

j

)⎞⎠−1∑
j≥1

∫
R↓

j

ϕ(f(x)) dμ(x) ≤

≤ sup
j≥1

1

μ
(
R↓

j

) ∫
R↓

j

ϕ(f(x)) dμ(x) ≤

≤ B · sup
j≥1

ϕ

⎛⎝ 1

μ
(
R↓

j

) ∫
R↓

j

f(x) dμ(x)

⎞⎠ = B · ϕ (A↓) ,

i.e., (C.26). Similarly, inequality (C.27) follows from (C.33), (C.1) and (C.30).
So, it remains to prove (C.32) and (C.33). For this let us construct the sets
E↓ and E↑ such that

μ
(
E↓) = μ

(
E↑) = T

and
f(x) ≥ f↓

μ(T ), x ∈ E↓,

f(x) ≤ f↑
μ(T ), x ∈ E↑.

Let us show that the sets E = E↓ and Ê = Ê↓ satisfy the conditions of
Lemma C.5. Indeed, by (C.28) and (C.29),

1
μ (E↓)

∫
E↓

f(x) dμ(x) =
1
T

∫ T

0

f↓
μ(t) dt = A↓ =

=

⎛⎝∑
j≥1

μ
(
R↓

j

)⎞⎠−1∑
j≥1

∫
R↓

j

f(x) dμ(x) =
1

μ
(
Ê↓
) ∫

Ê↓
f(x) dμ(x),

which is (C.12) for A = A↓. Further, (C.31) implies that the embedding{
x ∈ R0 : f(x) > A↓} ⊂ Ê↓
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holds true up to a set of μ-mesure zero. In its own turn the embedding{
x ∈ R0 : f(x) > A↓} ⊂ E↓

follows from the definition of the equimeasurable rearrangement f↓
μ. Clear-

ly (C.13) follows from these two embeddings. Finally, inequality (C.14) is
simply a property of the rearrangement f↓

μ. Similarly one can show that
the sets E = E↑ and Ê = Ê↑ satisfy conditions of Lemma C.6. Applying
Lemmas C.5 and C.6, we obtain the following inequalities

1
μ (E↓)

∫
E↓

ϕ(f(x)) dμ(x) ≤ 1

μ
(
Ê↓
) ∫

Ê↓
ϕ(f(x)) dμ(x),

1
μ (E↑)

∫
E↑

ϕ(f(x)) dμ(x) ≤ 1

μ
(
Ê↑
) ∫

Ê↑
ϕ(f(x)) dμ(x),

which are equivalent to (C.32) and (C.33) respectively. �

C.2 About the Exact Extension of the Reverse Weighted
Hölder Inequality

The following theorem describes the fundamental properties of Gehring and
Muckenhoupt classes (see [59, 18, 8]).

Theorem C.7 (Coifman, Fefferman, [8]).
a) For any q > 1, B > 1 there exist q1 ≡ q1(q,B, d) > q and p1 ≡

p1(q,B, d) > 1 such that
Gq(B) ⊂ Gq′ (B1) , (C.34)

Gq(B) ⊂ Ap′ (B2) (C.35)

for all q < q′ < q1, p′ > p1, where B1 ≡ B1 (q,B, q′, d) , B2 ≡ B2 (q,B, p′, d).
b) For any p > 1, B > 1 there exist p2 ≡ p2(p,B, d) < p (p2 > 1) and

q2 ≡ q2(p,B, d) > 1 such that

Ap(B) ⊂ Ap′′ (B3) , (C.36)

Ap(B) ⊂ Gq′′ (B4) (C.37)

for all p′′ > p2, 1 < q′′ < q2, where B3 ≡ B3 (p,B, p′′, d) , B4 ≡
B4 (p,B, q′′, d).

Embeddings (C.34) and (C.36) describe the so-called “self-improvement of
exponents” property of the Gehring and Muckenhoupt classes, while (C.35)
and (C.37) illustrate their interconnection. There are a lot of publications
that study the properties described by Theorem C.7. For instance, Bojarski
and Wik in [4, 5, 79] found the exact asymptotic behavior of q1(q,B, d) for
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B → 1+0. D’Apuzzo and Sbordone in [67, 10] calculated the maximal value of
q1(q,B, 1) for the subclass of Gq(B), consisting of non-increasing functions of
one variable. In [35] it was shown that in the case d = 1 it is enough to consider
only monotone functions to find the extremal values of pi and qi (i = 1, 2) in
Theorem C.7. This is why the maximal value of q1(q,B, 1), which was found
in [10] for monotone functions, remains the same in the general case. In [35]
it was also found the minimal value of p2(p,B, 1). The results of [10] and [35]
were generalized by Popoli in [63]. Namely, in [63] it was shown that in the
one-dimensional case the condition f ∈ RHα,β

dx (B) implies the summability of
the function fs, where

a) β ≤ s < β0, if α · β > 0,
b) α0 < s ≤ α, if α · β < 0,

and the extremal values β0 in the a)-case and α0 in the b)-case are the roots
of the equation (

x

x − β

) 1
β

= B ·
(

x

x − α

) 1
α

.

Essentially this result is a natural generalization of exact embeddings (C.34)
and (C.36) in the case d = 1. Further, in [62] Popoli proved the weighted ana-
log of embedding (C.34) with the maximal exponent q1(q,B, 1). As the corol-
lary of this result he obtained (C.36) with the minimal exponent p2(p,B, 1).
The best values of p1(q,B, 1) and q2(p,B, 1) in (C.35) and (C.37) respectively
were found by Malaksiano in [54, 55]. Moreover, Vasiunin in [75] found not
only the extremal values of p2(p,B, 1) and q2(p,B, 1) for embeddings (C.36)
and (C.37), but also the best values of the constants B3 and B4. The limiting
exponent of summability for a RH1,β

dx (B)-function for any d ≥ 1 was obtained
by Kinnunen in [31].

So, in the one-dimensional case the extremal values pi and qi (i = 1, 2)
in Theorem C.7 are known for all embeddings (C.34) - (C.37). Using these
results in the case d = 1 it is not difficult to find the best “improvements”
for each exponent of the embedding of the class RHα,β

dx (B) into another class
RHα′,β′

dx (B′). However it worth to mention that the authors of the publi-
cations cited above proposed rather different methods to find the extremal
exponents. Indeed, in [10, 35, 63, 62] the proofs are based on the application
of various versions of the Hardy inequalities; in [54, 55] the author compare
a given function with the one, which is assumed extremal; in [75] the proof
is based on the application of the Bellman function. Here we realize the uni-
form approach for the analysis of the embeddings of the class RHα,β

dμ(x)(B),
which does not depend on the signs of its parameters α and β and works in
the multidimensional case, too. Namely, as in [35], using the exact estimate
of the equimeasurable rearrangements of functions (Theorem C.1) we reduce
the problem to the case of a monotone function of one variable. Then, as in
[10] and the successive works [35, 63, 62], applying the appropriate weighted
analogs of the Hardy inequalities we prove the following theorem about the
exact embedding of RHα,β

dμ(x)(B)-classes.
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Theorem C.8 ([49]). Let d ≥ 1 and assume that the non-negative function
f is such that{

1
μ(R)

∫
R

fβ(x) dμ(x)
} 1

β

≤ B

{
1

μ(R)

∫
R

fα(x) dμ(x)
} 1

α

(C.38)

uniformly over all segments R ⊂ R0, where R0 ⊂ R
d is a fixed segment,

dμ(x) = w(x) dx is an absolutely continuous measure on R0, the constants α <
β are different from zero and B > 1. Then for every γ ∈ (−∞,min(0, α)) ∪
(max(0, β),+∞) such that(

1 − α

γ

) 1
α

> B ·
(

1 − β

γ

) 1
β

, (C.39)

there exist positive constants B′ ≡ B′(α, β,B, γ) and B′′ ≡ B′′(α, β,B, γ)
such that on every segment R ⊂ R0

1
B′

{
1

μ(R)

∫
R

fα(x) dμ(x)
} 1

α

≤
{

1
μ(R)

∫
R

fγ(x) dμ(x)
} 1

γ

≤

≤ B′′
{

1
μ(R)

∫
R

fβ(x) dμ(x)
} 1

β

. (C.40)

Moreover, if dμ(x) = dx and γ ∈ (−∞,min(0, α)) ∪ (max(0, β),+∞) does
not satisfy (C.39), then in general one of two inequalities (C.40) fails. More
precisely, the left inequality fails if γ < α, while the right one fails if γ > β.

We will prove this theorem later (see p.181). First let us consider some
auxiliary statemets.

Remark C.9. Fix α, β such that α · β �= 0 and α < β and let

Ψα,β(γ) =
(

1 − α

γ

) 1
α

·
(

1 − β

γ

)− 1
β

.

This function is defined for all γ ∈ (−∞,min(0, α))
⋃

(max(0, β),+∞), it is
continuous and strictly increasing from 1 to +∞ on (−∞,min(0, α)) and
strictly decreasing from +∞ to 1 on (max(0, β),+∞). Hence the equation
Ψα,β(γ) = B has exactly two roots γ− < min(0, α) and γ+ > max(0, β)
for any B > 1. Observe that inequality (C.40) for γ ∈ [α, β] \ {0} is the
standard Hölder inequality with B′ = B′′ = 1. Thus Theorem C.8 states that
f ∈ RHα,β

dμ(x)(B) implies (C.40) for all γ ∈ (γ−, γ+) \ {0} and in general the
values γ− and γ+ cannot be improved.

Remark C.10. We do not consider the limit cases −∞, 0, +∞ for the
parameters α, β, γ.

Remark C.11. From Theorem C.8 in particular if follows that the limiting
positive and negative exponents of summability of f ∈ RHα,β

dμ(x)(B) do not
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depend on the dimension d. Indeed, condition (C.38) for the function f to be
of class RHα,β

dμ(x)(B) is assumed to be satisfied over all segments. We do not

know the exact limiting exponents of summability for R̃H
α,β

dμ(x)(B)-functions
for d ≥ 2 even in some particular non-trivial case.

C.2.1 Hardy’s Inequalities

Let the numbers q, p be different from zero and let v be a weighted function,
i.e., we assume that v is a non-negative function, summable on the interval
[a, b] ⊂ R. Let g be a non-negative function on [a, b]. Denote

〈g〉q,p,v(t) dt,[a,b] = {v([a, b])}− 1
p

{∫ b

a

((v[a, t]))
q
p−1

gq(t)v(t) dt

} 1
q

,

where v([a, t]) =
∫ t

a
v(τ) dτ (a ≤ t ≤ b). It is easy to see that for r �= 0

〈gr〉q,p,v(t) dt,[a,b] = 〈g〉rrq,rp,v(t) dt,[a,b] . (C.41)

Observe that the following equality

p

p − q

[
〈g〉qq,p,v(t) dt,[a,b] − 〈g〉qq,q,v(t) dt,[a,b]

]
=
〈
〈g〉q,q,v(τ) dτ,[a,·]

〉q

q,p,v(t) dt,[a,b]

(C.42)
holds true for all p and q such that p �= q, pq �= 0. It can be easily checked by
integration by parts. If we assume 〈·〉00,0,v(t) dt,[a,b] = 1, then the equality

〈g〉q,q,gp(t)v(t) dt,[a,b] = 〈g〉−
p
q

p,p,v(t) dt,[a,b] · 〈g〉
1+ p

q

q+p,q+p,v(t) dt,[a,b] (C.43)

holds true for all p and q different from zero.
The next lemma is the weighted analog of the Hardy inequality ([26]). For

p ≥ q ≥ 1, p > 1 it was proved in [62]. In the other case (p < 0, q < 0) the
proof of this lemma is analogues to the proof of the Hardy inequality in [26].

Lemma C.12. Let either p ≥ q ≥ 1, p > 1 or p < 0, q < 0. Then〈
〈g〉1,1,v(τ) dτ,[a,·]

〉q

q,p,v(t) dt,[a,b]
≤
(

p

p − 1

)q

〈g〉qq,p,v(t) dt,[a,b] . (C.44)

Proof. We can rewrite (C.44) as follows∫ b

a

(∫ t

a

v(τ) dτ

) q
p−1

((∫ t

a

v(τ) dτ

)−1 ∫ t

a

g(τ)v(τ) dτ

)q

v(t) dt ≤
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≤
(

p

p − 1

)q ∫ b

a

(∫ t

a

v(τ) dτ

) q
p−1

gq(t)v(t) dt.

We prove this inequality by integration by parts. We have

q

p

∫ b

a

(∫ t

a

v(τ) dτ

) q
p−1

((∫ t

a

v(τ) dτ

)−1 ∫ t

a

g(τ)v(τ) dτ

)q

v(τ) dτ =

=
(∫ t

a

v(τ) dτ

) q
p

((∫ t

a

v(τ) dτ

)−1 ∫ t

a

g(τ)v(τ) dτ

)q∣∣∣∣∣
t=b

t=a

+

+q

∫ b

a

(∫ t

a

v(τ) dτ

) q
p−1

((∫ t

a

v(τ) dτ

)−1 ∫ t

a

g(τ)v(τ) dτ

)q

v(t) dt−

−q

∫ b

a

(∫ t

a

v(τ) dτ

) q
p−1

g(t)

((∫ t

a

v(τ) dτ

)−1 ∫ t

a

g(τ)v(τ) dτ

)q−1

v(t) dt =

=

(∫ b

a

v(t) dt

) q
p

⎛⎝(∫ b

a

v(t) dt

)−1 ∫ b

a

g(t)v(t) dt

⎞⎠q

+

+q

∫ b

a

(∫ t

a

v(τ) dτ

) q
p−1

((∫ t

a

v(τ) dτ

)−1 ∫ t

a

g(τ)v(τ) dτ

)q

v(t) dt−

−q

∫ b

a

(∫ t

a

v(τ) dτ

) q
p−1

g(t)

((∫ t

a

v(τ) dτ

)−1 ∫ t

a

g(τ)v(τ) dτ

)q−1

v(t) dt ≥

≥ q

∫ b

a

(∫ t

a

v(τ) dτ

) q
p−1

((∫ t

a

v(τ) dτ

)−1 ∫ t

a

g(τ)v(τ) dτ

)q

v(t) dt−

−q

∫ b

a

(∫ t

a

v(τ) dτ

) q
p−1

g(t)

((∫ t

a

v(τ) dτ

)−1 ∫ t

a

g(τ)v(τ) dτ

)q−1

v(t) dt.

Applying now the Hölder inequality with the exponent q and the weighted

function
(∫ t

a
v(τ) dτ

) q
p−1

v(t) we obtain

q

(
1 − 1

p

)∫ b

a

(∫ t

a

v(τ) dτ

) q
p−1

((∫ t

a

v(τ) dτ

)−1∫ t

a

g(τ)v(τ) dτ

)q

v(t) dt ≤

≤ q

∫ b

a

(∫ t

a

v(τ) dτ

) q
p−1

g(t)

((∫ t

a

v(τ) dτ

)−1∫ t

a

g(τ)v(τ) dτ

)q−1

v(t) dt ≤
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≤ q

{∫ b

a

(∫ t

a

v(τ) dτ

) q
p−1

gq(t)v(t) dt

} 1
q

×

×
{∫ b

a

(∫ t

a

v(τ) dτ

) q
p−1

((∫ t

a

v(τ) dτ

)−1 ∫ t

a

g(τ)v(τ) dτ

)q

v(t) dt

}1− 1
q

.

Notice that the last inequality holds true for q ≥ 1 as well as for q < 0. Since
p ∈ (−∞, 0) ∪ (1,+∞) it follows that 1 − 1

p > 0 and

q

{∫ b

a

(∫ t

a

v(τ) dτ

) q
p−1

((∫ t

a

v(τ) dτ

)−1 ∫ t

a

g(τ)v(τ) dτ

)q

v(t) dt

} 1
q

≤

≤ pq

p − 1

{∫ b

a

(∫ t

a

v(τ) dτ

) q
p−1

gq(t)v(t) dt

} 1
q

.

Now if we divide this inequality by q, raise the both parts to the q-th power

and multiply the result by
{∫ b

a
v(t) dt

}− q
p

, we obtain exactly (C.44). �
The next lemma is the the weighed analog of another well-known Hardy

inequality [25]. The proof of this lemma can be find in [62].

Lemma C.13. Let g be a non-increasing function on [a, b] and let r ≥ 1.
Then

〈g〉r,r,v(t) dt,[a,b] ≤
1
r
〈g〉1,r,v(t) dt,[a,b] . (C.45)

Proof. First of all we have

gr(t)
∫ t

a

v(τ) dτ ≤
∫ t

a

gr(τ)v(τ) dτ, a ≤ t ≤ b,

provided the function gr is non-incresing. Further, since the function ψ(z) =
1
r z

1
r −1 is non-increasing on (0,+∞) this inequality implies

1
r

(∫ t

a

gr(τ)v(τ) dτ

) 1
r −1

gr(t)v(t) ≤ 1
r

(
gr(t)

∫ t

a

v(τ) dτ

) 1
r −1

gr(t)v(t).

The integration over [a, b] yields∫ b

a

d

dt

[(∫ t

a

gr(τ)v(τ) dτ

) 1
r

]
dt ≤ 1

r

∫ b

a

(∫ t

a

v(τ) dτ

) 1
r −1

g(t)v(t) dt.

Hence {∫ b

a

gr(τ)v(τ) dτ

} 1
r

≤ 1
r

∫ b

a

(∫ t

a

v(τ) dτ

) 1
r −1

g(t)v(t) dt,

which is equivalent to (C.45). �
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C.2.2 The Proof of the Main Theorem

First let us consider some particular cases of Theorem C.8 for monotone func-
tions of one variable. For the function g defined on the interval [a, b] the
condition g ∈ RHα,β

v(t) dt(B) can be written in the following form:

〈g〉β,β,v(t) dt,[a′,b′] ≤ B · 〈g〉α,α,v(t) dt,[a′,b′] , [a′, b′] ⊂ [a, b]. (C.46)

We recall that the condition (see (C.39))(
1 − α

γ

) 1
α

> B

(
1 − β

γ

) 1
β

(C.47)

describes the relation between the parameters of Theorem C.8.

Lemma C.14. Let α, β be different from zero and such that α < β. Assume
that the function h does not increase on [a, b] and

〈h〉β,β,v(τ) dτ,[a,t] ≤ B · 〈h〉α,α,v(τ) dτ,[a,t] , a ≤ t ≤ b. (C.48)

Then for any γ > max(0, β), satisfying condition (C.47), there exists B′′ such
that

〈h〉γ,γ,v(t) dt,[a,b] ≤ B′′ · 〈h〉β,β,v(t) dt,[a,b] . (C.49)

Proof. First we consider the case β > 0. Setting q = β, p = γ, g = h in (C.42)
and using (C.48) and (C.41), we have

γ

γ − β
· 〈h〉ββ,γ,v(t) dt,[a,b] −

γ

γ − β
· 〈h〉ββ,β,v(t) dt,[a,b] =

=
〈
〈h〉β,β,v(τ) dτ,[a,·]

〉β

β,γ,v(t) dt,[a,b]
≤

≤ Bβ ·
〈
〈h〉α,α,v(τ) dτ,[a,·]

〉β

β,γ,v(t) dt,[a,b]
=

= Bβ ·
〈
〈h〉βα,α,v(τ) dτ,[a,·]

〉
1, γ

β ,v(t) dt,[a,b]
=

= Bβ ·
〈
〈hα〉

β
α

1,1,v(τ) dτ,[a,·]

〉
1, γ

β ,v(t) dt,[a,b]

=

= Bβ ·
〈
〈hα〉1,1,v(τ) dτ,[a,·]

〉 β
α

β
α , γ

α ,v(t) dt,[a,b]
.

Now we apply Lemma C.12 with q = β
α , p = γ

α , g = hα, taking into account
that if α > 0, then p > q > 1, and if α < 0, then p < 0, q < 0, so that the
conditions of Lemma C.12 are satisfied. Then, by (C.41),
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γ

γ − β
〈h〉ββ,γ,v(t) dt,[a,b] −

γ

γ − β
〈h〉ββ,β,v(t) dt,[a,b] ≤

≤ Bβ

(
γ

γ − α

) β
α

〈hα〉 β
α , γ

α ,v(t) dt,[a,b] = Bβ

(
γ

γ − α

) β
α

〈h〉ββ,γ,v(t) dt,[a,b] .

Hence[
γ

γ − β
− Bβ

(
γ

γ − α

) β
α

]
〈h〉ββ,γ,v(t) dt,[a,b] ≤

γ

γ − β
〈h〉ββ,β,v(t) dt,[a,b] .

If γ satisfies (C.47), then the expression in the square brackets in the left-hand
side is positive, i.e.,

〈h〉ββ,γ,v(t) dt,[a,b] ≤ C · 〈h〉ββ,β,v(t) dt,[a,b] ,

or, by (C.41), 〈
hβ
〉
1, γ

β ,v(t) dt,[a,b]
≤ C · 〈h〉ββ,β,v(t) dt,[a,b] .

Applying (C.45) with r = γ
β > 1 and the non-increasing function g = hβ we

get 〈
hβ
〉

γ
β , γ

β ,v(t) dt,[a,b]
≤ β

γ

〈
hβ
〉
1, γ

β ,v(t) dt,[a,b]
≤ C ′ · 〈h〉ββ,β,v(t) dt,[a,b] ,

which, in view of (C.41), is equaivalent to

〈h〉βγ,γ,v(t) dt,[a,b] ≤ C ′ · 〈h〉ββ,β,v(t) dt,[a,b] .

Since β > 0 inequality (C.49) follows.
It remains to consider the case β < 0. Set v0 = hβv. Then v = h−βv0 and,

in view of (C.43), condition (C.48) becomes

〈h〉1−
β
α

−β,−β,v0(τ) dτ,[a,t] ≤ B · 〈h〉1−
β
α

α−β,α−β,v0(τ) dτ,[a,t] , a ≤ t ≤ b.

Moreover, since 1 − β
α > 0 we have

〈h〉−β,−β,v0(τ) dτ,[a,t] ≤ B
α

α−β 〈h〉α−β,α−β,v0(τ) dτ,[a,t] , a ≤ t ≤ b.

Let α0 = α − β, β0 = −β, B0 = B
α

α−β . Then α0 < 0 < β0 and so we have
reduced this case to the one we have already considered. Indeed, as we have
seen, if γ0 > β0 are such that(

1 − α0

γ0

) 1
α0

> B0

(
1 − β0

γ0

) 1
β0

, (C.50)

then
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〈h〉γ0,γ0,v0(t) dt,[a,b] ≤ B′′
0 · 〈h〉β0,β0,v0(t) dt,[a,b] .

Setting γ = γ0+β and taking into account v0 = hβv, we rewrite this inequality
in the following way

〈h〉γ−β,γ−β,hβ(t)v(t) dt,[a,b] ≤ B′′
0 · 〈h〉−β,−β,hβ(t)v(t) dt,[a,b] ,

which, by (C.43), is equivalent to

〈h〉
γ

γ−β

γ,γ,v(t) dt,[a,b] ≤ B′′
0 · 〈h〉

γ
γ−β

β,β,v(t) dt,[a,b] .

Since γ
γ−β > 0 it follows that the above inequality is equivalent to (C.49).

Now to conclude the proof in this case it is enough to recall that (C.50) is
equivalent to (C.47). �
Lemma C.15. Let α, β be different from zero and such that α < β, and
assume that the function h is non-decreasing on [a, b] and such that

〈h〉β,β,v(τ) dτ,[a,t] ≤ B · 〈h〉α,α,v(τ) dτ,[a,t] , a ≤ t ≤ b. (C.51)

Then for any γ < min(0, α), satisfying condition (C.47), there exists B′ > 0
such that

〈h〉γ,γ,v(t) dt,[a,b] ≥
1
B′ 〈h〉α,α,v(t) dt,[a,b] . (C.52)

Proof. As in the proof of Lemma C.14, first we consider the case α < 0.
Setting q = α, p = γ, g = h in (C.42) and using (C.51) and (C.41), we have

γ

γ − α
〈h〉αα,γ,v(t) dt,[a,b] −

γ

γ − α
〈h〉αα,α,v(t) dt,[a,b] =

=
〈
〈h〉α,α,v(τ) dτ,[a,·]

〉α

α,γ,v(t) dt,[a,b]
≤

≤ B−α
〈
〈h〉β,β,v(τ) dτ,[a,·]

〉α

α,γ,v(t) dt,[a,b]
=

= B−α
〈
〈h〉αβ,β,v(τ) dτ,[a,·]

〉
1, γ

α ,v(t) dt,[a,b]
=

= B−α
〈 〈

hβ
〉α

β

1,1,v(τ) dτ,[a,·]
〉

1, γ
α ,v(t) dt,[a,b]

=

= B−α
〈 〈

hβ
〉
1,1,v(τ) dτ,[a,·]

〉α
β

α
β , γ

β ,v(t) dt,[a,b]
.

Now we apply Lemma C.12 with q = α
β , p = γ

β , g = hβ , taking into account
that if β < 0, then p > q > 1, and if β > 0, then p < 0, q < 0, so that the
conditions of Lemma C.12 are fulfilled. Then, by (C.41),
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γ

γ − α
〈h〉αα,γ,v(t) dt,[a,b] −

γ

γ − α
〈h〉αα,α,v(t) dt,[a,b] ≤

≤ B−α

(
γ

γ − β

)α
β 〈

hβ
〉

α
β , γ

β ,v(t) dt,[a,b]
= B−α

(
γ

γ − β

)α
β

〈h〉αα,γ,v(t) dt,[a,b] .

Therefore[
γ

γ − α
− B−α

(
γ

γ − β

)α
β

]
〈h〉αα,γ,v(t) dt,[a,b] ≤

γ

γ − α
〈h〉αα,α,v(t) dt,[a,b] .

If γ satisfies (C.47), then the expression in the square brackets in the left-hand
side is positive. Hence

〈h〉αα,γ,v(t) dt,[a,b] ≤ C · 〈h〉αα,α,v(t) dt,[a,b] ,

which, by virtue of (C.41), is equivalent to

〈hα〉1, γ
α ,v(t) dt,[a,b] ≤ C · 〈h〉αα,α,v(t) dt,[a,b] .

Applying now (C.45) with r = γ
α > 1 and the non-increasing function g = hα

we obtain

〈hα〉 γ
α , γ

α ,v(t) dt,[a,b] ≤
α

γ
〈hα〉1, γ

α ,v(t) dt,[a,b] ≤ C ′ · 〈h〉αα,α,v(t) dt,[a,b] ,

i.e., by (C.41),

〈h〉αγ,γ,v(t) dt,[a,b] ≤ C ′ · 〈h〉αα,α,v(t) dt,[a,b] .

Since α < 0 inequality (C.52) follows.
It remains to consider the case α > 0. Let v0 = hαv. Then v = h−αv0 and

using (C.43) we can rewrite condition (C.51) in the following way

〈h〉1−
α
β

β−α,β−α,v0(τ) dτ,[a,t] ≤ B · 〈h〉1−
α
β

−α,−α,v0(τ) dτ,[a,t] , a ≤ t ≤ b.

Since 1 − α
β > 0 we have

〈h〉β−α,β−α,v0(τ) dτ,[a,t] ≤ B
β

β−α 〈h〉−α,−α,v0(τ) dτ,[a,t] , a ≤ t ≤ b.

Denote α0 = −α, β0 = β − α, B0 = B
β

β−α . Then α0 < 0 < β0 and we come
back to the case which we have already considered. In other words, if γ0 < α0

satisfies (
1 − α0

γ0

) 1
α0

> B0

(
1 − β0

γ0

) 1
β0

, (C.53)

then
〈h〉γ0,γ0,v0(t) dt,[a,b] ≥

1
B′

0

〈h〉α0,α0,v0(t) dt,[a,b] .
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Setting γ = γ0 + α and taking into account the equality v0 = hαv we can
rewrite the last inequality as follows

〈h〉γ−α,γ−α,hα(t)v(t) dt,[a,b] ≥
1

B′
0

〈h〉−α,−α,hα(t)v(t) dt,[a,b] ,

which, in view of (C.43), is equivalent to

〈h〉
γ

γ−α

γ,γ,v(t) dt,[a,b] ≥
1

B′
0

〈h〉
γ

γ−α

α,α,v(t) dt,[a,b] .

Since γ
γ−α > 0 the last inequality is equivalent to (C.52). Recalling now that

(C.53) is equivalent to (C.47) we conclude the analysis of the case α > 0. �
In the proof of Theorem C.8 in the general case we will use that fact that

for any μ-measurable set E∫
E

fp(x) dμ(x) =
∫ μ(E)

0

[
(f |E)↓μ(t)

]p
dt =

∫ μ(E)

0

[
(f |E)↑μ(t)

]p
dt (C.54)

for any real p.

Proof of Theorem C.8. Theorem C.1 implies that for any segment R ⊂ R0〈
(f |R)↓μ

〉
β,β,dτ,[0,t]

≤ B · 〈 (f |R)↓μ
〉

α,α,dτ,[0,t]
, 0 ≤ t ≤ μ(R), (C.55)〈

(f |R)↑μ
〉

β,β,dτ,[0,t]
≤ B · 〈 (f |R)↑μ

〉
α,α,dτ,[0,t]

, 0 ≤ t ≤ μ(R). (C.56)

Fix some segment R ⊂ R0. Then, by (C.55), the function h ≡ (f |R)↓μ satisfies
the condition of Lemma C.14 with [a, b] = [0, μ(R)] and v ≡ 1. Hence if
γ > max(0, β) satisfies (C.39), we have (C.49), which, by (C.54), is equivalent
to the right inequality in (C.40). Similarly (C.56) and Lemma C.15 yield the
left inequality in (C.40) for γ < min(0, α), which satisfies (C.39).

It remains to show that if dμ(x) = dx, then the left inequality in (C.40)
fails for γ ≤ γ−, while the right inequality in (C.40) fails for γ ≥ γ+. Here
γ− and γ+ are the parameters defined in Remark C.9. Let d = 1 and let, for
example, γ ≥ γ+. Define f0(x) = x

− 1
γ+ , x ∈ [0, 1]. It is easy to see that the

right inequality in (C.40) fails for f0. So, it remains to show that

f0 ∈ RHα,β
dx (B), (C.57)

where

B =
(

1 − α

γ+

) 1
α

·
(

1 − β

γ+

)− 1
β

. (C.58)

If β > 0, then take g = fα
0 and rewrite (C.57) as follows

1
|I|

∫
I

g
β
α (x) dx ≤ Bβ

(
1
|I|

∫
I

g(x) dx

) β
α

, I ⊂ [0, 1].
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Fix some interval I ⊂ [0, 1] and choose b > 0 (possibly greater than 1) such
that

1
b

∫ b

0

g(x) dx ≡
(

1 − α

γ+

)−1

b
− α

γ+ =
1
|I|

∫
I

g(x) dx.

Since β
α ∈ (−∞, 0) ∪ (1,+∞) the function ϕ(t) = t

β
α is convex downwards.

Therefore the inequality

1
|I|

∫
I

g
β
α (x) dx ≤ 1

b

∫ b

0

g
β
α (x) dx

implies (see Lemma C.4)

1
|I|

∫
I

g
β
α (x) dx ≤

(
1 − β

γ+

)−1

b
− β

γ+ =

= Bβ

((
1 − α

γ+

)−1

b
− α

γ+

) β
α

= Bβ

(
1
|I|

∫
I

g(x) dx

) β
α

,

where the parameter B is defined by (C.58). Thus (C.57) holds true for β > 0.
If β < 0, then we take g = fβ

0 and rewrite (C.57) in the following form

1
|I|

∫
I

g
α
β (x) dx ≤ B−α

(
1
|I|

∫
I

g(x) dx

)α
β

, I ⊂ [0, 1].

Fixing some interval I ⊂ [0, 1] we can choose b such that

1
b

∫ b

0

g(x) dx ≡
(

1 − β

γ+

)−1

b
− β

γ+ =
1
|I|

∫
I

g(x) dx.

Since α < β < 0 the function ϕ(t) = t
α
β (t > 0) is convex downwards. Hence,

applying again the inequality

1
|I|

∫
I

g
α
β (x) dx ≤ 1

b

∫ b

0

g
α
β (x) dx,

according to Lemma C.4 we obtain

1
|I|

∫
I

g
α
β (x) dx ≤

(
1 − α

γ+

)−1

b
− α

γ+ =

= B−α

((
1 − β

γ+

)−1

b
− β

γ+

)α
β

= B−α

(
1
|I|

∫
I

g(x) dx

)α
β

,

where the parameter B is defined by (C.58). So, (C.57) holds true for β < 0,
too.

Analogously one can show that if d = 1, then also the left inequality in
(C.40) fails for γ ≤ γ−. Finally, the case d ≥ 2 can be easily reduced to
the one-dimensional case if we consider the functions that are constant with
respect to all variables but one. �
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- satisfying the reverse weighted
Hölder inequality, RHα,β

dμ(x)(B),
157

Coifman–Fefferman theorem, 110, 171
Conjugate Hardy operator, P∗, 92
Contractibility of a collection of sets to

a point, 3
Contraction of a segment, 17
Covering lemmas, 6

Cube, 3
Cut-off function, [f ]N , 111

Diameter of a set, diam, 3
Distribution function, λf , 1
Dyadic cube, 5

- order of, 5
- with respect to Q0, 5
- with respect to R

d, 6
Dyadic property, 20

Equimeasurable functions, 1
Equimeasurable rearrangement

- f∗
μ , 153

- non-increasing, fd, 2
- non-decreasing, (f, e)↑μ, 158
- non-decreasing, f∗, 2
- non-increasing, (f, e)↓μ, 158
- non-increasing, f∗, 1

Essential infimum, ess inf, 4
Essential supremum, ess sup, 3
Exact estimate of the rearrangement of

a function satisfying the reverse
Jensen inequality, 158

Function
- [f ]N , 111
- ν(f ; σ) , 101
- νR(f ; σ) , 132
- ω(g; σ), 108
- f∗, 1
- f∗

μ , 153
- f∗∗, 2
- f∗∗

μ , 153
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- fd, 2
- f∗∗, 2
- (f, e)↑μ, 158
- (f, e)↓μ, 158
- f∗, 2
- essentially bounded, 4
- locally essentially bounded from

below (above), 4
- locally summable, 3

Gehring class, Gp(B), 117
Gehring inequality, 106
Gurov–Reshetnyak

- class
- GR, 99
- GRR, 132

- condition, 99
- inequality, 99, 131
- theorem, 101

- with exact exponent of summabil-
ity, 131, 134

Hardy inequality, 81
Hardy transform, P, 81
Hardy–Littlewood maximal

- function, Mf , 148
- operator, M , 147
- theorem, 148

Inequality of the strong (p − p)–type,
148

Inequality of the weak (1− 1)–type, 148
Interior, int, 3

Jessen–Marcinkiewicz–Zygmund
theorem, 5

John–Nirenberg inequality, 72, 74
- with exact exponent, 77, 78

- in the multidimensional case, 79

Klemes theorem, 64

Lebesgue theorem, 4
Lower oscillation of a function, L(f ; Q),

53

Maximal function
- MB,μf , 151
- MBf , 20

Mean p-oscillation, Ωp, 31
Mean oscillation

- Ω′′, 28
- Ω, 25
- Ω′, 27
- Ωμ(f ; Q), 152

Mean value
- fE,μ, 151
- fE , 13

Measure, dμ, 151
Modulus of continuity, ω(g; σ), 108
Muckenhoupt condition

- Aq, 135
- A∞, 112

Multidimensional interval, 3

Norm
- ‖ · ‖′′∗ , 40
- ‖ · ‖′∗, 40
- ‖ · ‖∗, 39, 40
- ‖ · ‖∗,R, 50
- ‖ · ‖∗,p, 42
- ‖ · ‖∞, 4

Open ball, 3

Rectangle, 3
Relatively open set, 8
Reverse Hölder inequality, 106, 135
Reverse Hardy inequality, 81
Reverse weighted Hölder inequality, 157
Reverse weighted Jensen inequality, 158
Rising sun lemma, 9

Segment, 3
Side-length

- of a cube l(Q), 3
- of a segment li(R), 3

Stopping times technique, 9

Theorem about the exact embedding of
classes RHα,β

dμ(x)(B), 173

Weight function, 151
Weighted Gehring inequality, 152
Weighted Gurov–Reshetnyak

- inequality, 152
- theorem, 153

Weighted Hardy inequality, 174, 176
Weighted Jensen inequality, 158

Zygmund theorem, 5
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