
Chapter 5
The Local Modelling of the Gravity Field
by Collocation

5.1 Outline of the Chapter

The chapter aims at solving the problem of estimating the residual anomalous
potential Tr from all available information, in particular in a certain area. Remember
that here residual means that the long wavelength part as well as the short
wavelength part of T have been at least reduced by means of the deterministic
modelling described in Chaps. 3 and 4.

These models are then applied to data (remove step); from reduced observations
we need to find Tr and then the models are added back to this (restore step).

Since the residual part of the potential is small (one has in terms of anomalous

heightO
�
Tr
�

�
Š 2 m), the application of spherical approximation is justified.

This notwithstanding such an approximation remains the harsh limitation of the
theory presented in this chapter. This point is explained in Sect. 5.2.

The theory, known in geodesy as collocation theory, is introduced here as an
optimization problem where a suitable mean square error has to be minimized in
a class of estimators invariant under a certain transformation group, acting on the
set ˝ where the unknown function is defined. Although not so much relevant in
geodesy, the case of the circle is on the same time so simple to understand and so
complete from the theoretical point of view, that it has been worthwhile to devote
Sect. 5.3 to it.

In Sect. 5.4 the same case is treated for the sphere, with the invariance group
being that of rotations in R3. The big theoretical advantage of this approach is
that not only the estimation coefficients result as an application of the optimality
principle, but also the definition of the covariance function springs out of it in a
natural way.

In Sect. 5.4 it is also shown that the formalism set up in the previous paragraphs
can be given a stochastic interpretation, to the effect that now T is considered as a
random function, obtained by randomly rotating the true T . The formalism is then
extended in Sect. 5.5 to the general case, in which we have whateverN observations,
corresponding to admissible linear functionals, and we want to predict any other

F. Sansò and M.G. Sideris (eds.), Geoid Determination, Lecture Notes in Earth System
Sciences 110, DOI 10.1007/978-3-540-74700-0 5,
© Springer-Verlag Berlin Heidelberg 2013

203



204 5 The Local Modelling of the Gravity Field by Collocation

admissible linear functional of T . In particular, if we assume, invoking the Runge–
Krarup theorem, that T is a function harmonic down to a Bjerhammar sphere, any
rotated version of T will continue to be harmonic in the same domain, and the
principle above devised, applies.

Since a function harmonic in the exterior of a sphere has a natural representation
in terms of spherical harmonics, its coefficients will become random variables,
when the field T they represent is random too. The properties of such fTnmg as
well as their relation to the covariance function of T , are examined in Sect. 5.6. In
Sect. 5.7 the item of a local modelling of the covariance function is analyzed and
several examples are presented, including those most widely applied in practical
computations.

The local computation of a (residual) quasi-geoid from (residual) gravity anoma-
lies is then presented as an example of the so-called least squares collocation theory.

Finally, in Sect. 5.9 the optimal combination of a global model, for instance
derived from satellite observations, and local data to produce the best local
prediction of the geoid, is explicitly solved; a case this that is becoming increasingly
important in these years.

5.2 An Introduction to the Problem

Following the developments of Chaps. 3 and 4 we could say that our anomalous
gravity potential T has been approximated in the long wavelengths range by a global
model TM and in the very short wavelengths range by the residual terrain correction
model TRC , so that a residual anomalous potential

Tr D T � TM � TRC (5.1)

has now to be estimated.
This has to be done by using the residual observations, which in linearized form

are written as

yi D Li .Tr/C �i (5.2)

D Li .T /C �i � Li.TM /� Li.TRC /

D Yi � Li.TM /� Li.TRC /;

where Yi are the original observations, yi the observations reduced by the effects of
TM and TRC ; �i is the observational error. Typical for (5.2), but not the only case
considered in the book, is the observation of free air gravity anomalies, for which
the relation holds

Li.T / D
�

�@T
@h

C � 0

�
T

�ˇ̌
ˇ̌
Pi

: (5.3)
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Fig. 5.1 The spherical
approximation mapping of
the interpolation problem: Pi
measurement points, hi
heights over E and SR

In order to avoid a heavy notation, while developing our methodological
apparatus we shall simply put

u.P / D Tr.P /: (5.4)

So, due to all our reductions, u.P / is a harmonic field which, in an ideal case,
we expect to be harmonic down to the ellipsoid because the signal caused by the
large and smooth density anomalies should be accounted for by TM and the high
frequency signal due to the residual terrain height should be subtracted by means of
TRC . Then we could reasonably think of our problem as the one of interpolating the
observations (5.2) with a function harmonic down to E.

Since we are approximating the last couple of meters in terms of height anomaly
� D ��1u D ��1T , we shall accept a spherical approximation set up, for the
approximation procedure, in the sense that we map E to a mean sphere SR of radius
R and we reason with functions harmonic down to SR (see Fig. 5.1).

Therefore our problem now is to find a functionbu harmonic down to SR, such
that yi � Li.bu/ be small, in the sense of the order of magnitude of �i (i.e. of ��i ),
and as close as possible to u.

It is clear in fact that, as the number of observation points, N , can be very large,
but in any event always finite, in principle we can always find many harmonic
fields bu which in fact interpolate perfectly the data, Li.bu/ D yi , as shown very
schematically in Fig. 5.2, where the observation points Pi are taken directly on SR
and Li .u/ D u.Pi/ is represented in terms of geoid, ��1u.Pi/.

Generally speaking, since in nature masses will tend to find a minimum energy
configuration (compatibly with the endogenous forces generated by geological
processes) and energy is in any way a quadratic positive functional of u.P / which
is smaller the smoother is the field, we would prefer an interpolator as smooth as
possible, among those that reproduce the data. Even more, if a noise � is part of our
model, we would accept that Li .bu/ will depart form yi , with residuals of the order
of �� , and on the same timebu to be as smooth as possible.

If a smoothness index is taken in terms of a square norm, we are led to the
Tikhonov principle which is illustrated and worked out in Part III, Chap. 12. Yet,
as one can see in this chapter, the solution does depend quite essentially on the
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Fig. 5.2 Two different exact
interpolations of u.Pi /

�
D Ni ,

by two different fieldsbu.P /

specific norm chosen to measure the smoothness ofbu, when the norm is represented
by a suitable reproducing kernelK.P;Q/.

In other words, we have a so-called norm choice problem which is absolutely
unsolvable on a pure analytical ground. So we shall follow here a different approach
which, as we will see, will lead basically to the same solution as that of Sect. 12.4 of
Part III but with a precise choice for the reproducing kernel. This solution is based
on the choice of an invariant estimator and minimum mean square prediction error,
and on its stochastic interpretation.

Notice that in principle we expect u.P / to be harmonic down to E, then approx-
imated by SR. Yet such condition will never be precisely satisfied; nevertheless by
choosing an interpolatorbu which is authentically harmonic down to SR we don’t
prevent ourselves to approximate as closely as we like the true u.P /, because of
Runge–Krarup theorem (see Sect. 3.5).

In fact, as proved in Part III, Chap. 13, the restrictions of functionsbu harmonic in
˝R � .r � R/ to the set ˝e of points exterior to the earth surface Se, are dense in
any reasonable Hilbert space to which we can think that u.P / belongs, for instance
in HL2.Se/, namely the functions harmonic in ˝e and square integrable on Se . So,
from now on, we shall ignore the problem of the masses between Se and SR not
perfectly modelled.

5.3 The Principle of Minimum Square Invariant Prediction
Error by a Simple Example

In order to select a particular satisfactory solution to our interpolation problem,
we have first to define an index expressing analytically our degree of satisfaction, or,
if you like, of dissatisfaction, and then to maximize such an index in the former case,



5.3 The Principle of Minimum Square Invariant Prediction Error 207

Fig. 5.3 The set up of the
interpolation problem on the
circle

or, on the contrary, to minimize it in the latter case. This is a problem of optimization
theory, where the choice of the target function is always the first fundamental step
(see for instance Vapnik 1982, Chap. 2). We choose to minimize a quadratic function
of the prediction error, averaged in some suitable sense.

In order to set up our criterion we prefer to start with a simple example where
our choice will become very transparent.

Example 1. Assume you have a field u.P / where P 2 C, a unit circle, so that P
can be uniquely identified by a unit vector rP or by the angle # of rP with respect
to the x axis (see Fig. 5.3).

To make things easier we shall assume from the beginning that u.P / has zero
mean on C, i.e. that

Z 2�

0

u.P /d# D
Z 2�

0

u.#/d# D 0: (5.5)

Now assume you have observed the values of u.P / at some points Pi

yi D u.Pi/; i D 1; 2; : : : ; N (5.6)

without any error, and you want to predict u.P / at some other point P . As we see,
we have a pure interpolation problem on C.

We note first of all that a predictor will be in general a function of the
observations fyi g of the points fPi g where the observations are taken and of the
prediction pointP , in such a way that we are able to compute it when we know fyi g
and we fix P ;

bu.P / D F.P;P1; : : : ; PN Iy1; : : : ; yN /: (5.7)

Since reasoning in a general class of predictors fF g is too complicated we shall
restrict ourselves to the much simpler class of linear predictors, namely

bu.P / D F.P;P1; : : : ; PN Iy1; : : : ; yN / D
NX
iD1
�iyi D

NX
iD1
�iu.Pi /: (5.8)
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Fig. 5.4 A configuration
.P; P1; P2; P3; P4/ and its
version .P 0; P 0

1 ; P
0

2 ; P
0

3 ; P
0

4/

rotated by !

We observe that (5.8) is a homogeneous linear predictor, i.e. there is not a con-
stant �0 in the formula; the reason is that, when we observe y1 Dy2 D : : : yN D 0

we prefer the prediction of u.P / to be zero too, i.e. its mean value on the circle,
according to the hypothesis (5.5).

We notice also that, in (5.8), �i in general will be functions of P;P1 : : : PN but
not of fyig, i.e.

�i D �i .P; P1; : : : ; PN / D �i .#; #1; : : : ; #N /: (5.9)

Whatever f�ig we choose, the corresponding prediction error is

e.P; P1; : : : ; PN / D u.P / �bu.P / (5.10)

D u.P / �
NX
iD1
�iu.Pi /:

If we don’t have any particular further information on u.P / (for instance that in
some regions of C; u.P / is smoother or rougher) it is reasonable to further restrict
our class of predictors by requiring that �i be invariant under rotation. Namely, take
two configuration, fP;P1; : : : ; PN g and fP 0; P 0

1; : : : ; P
0
N g obtained one from the

other by a rotation ! of the circle (see Fig. 5.4);
We claim that if in the first case we have decided that f�1; �2; : : : ; �N g are

good coefficients for our prediction job, then the same coefficients should work for
fP 0; P 0

1; : : : ; P
0
N g because if .y1; : : : ; yN / are observed at .P1; : : : ; PN / andbu.P /

is our prediction, then in case we observe again .y1; : : : ; yN / at .P 0
1; : : : ; P

0
N / we

want to make the same prediction at P 0.
This is translated into analytical terms as follows: let R! be a rotation operator

acting according to the law

R!F.P;P1; : : : ; PN / D R!F.#; #1; : : : ; #N / (5.11)

D F.P 0; P 0
1; : : : ; P

0
N / D F.# 0; # 0

1; : : : ; #
0
N /

D F.# C !; #1 C !; : : : ; #N C !/

where F is any function of .P; P1; : : : ; PN /; then our invariance constraint is

8!; F.#; #1; : : : ; #N / � F.# C !; #1 C !; : : : ; #N C !/ (5.12)
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A function F satisfying (5.12) must have a particular form, namely

F.#; #1; : : : ; #N / D G.#1 � #; #2 � #; : : : ; #N � #/I (5.13)

this derives from (5.12) by choosing ! D �� .
So we agree that our prediction coefficients must satisfy (5.11) and (5.13).

Accordingly if we apply R! to e (cf. (5.10)), we get

R!e.P; P1; : : : ; PN / D R!u.P / �
NX
iD1
�iR!u.Pi / (5.14)

D u.# C !/ �
NX
iD1
�iu.#i C !/;

where �i are left unchanged by R! because of our invariance hypothesis.
Now observe that due to the very definition of R! the identity holds

R!fF 2.P; P1; : : : ; PN /g � fR!F.P;P1 : : : PN /g2: (5.15)

Next we define the mean invariant quadratic prediction error1 as

E2.P; P1; : : : ; PN / � 1

2�

Z 2�

0

d!R!fe2.P; P1; : : : ; PN /g: (5.16)

The adjective invariant is used for E2 because it is indeed a rotation invariant
function of .P; P1; : : : ; PN /. In fact, (exploiting also (5.15)),

8	; R	E2.P; P1; : : : ; PN / D E2.R	P;R	P1; : : : ; R	PN / (5.17)

D 1

2�

Z 2�

0

d!R!fe2.R	P;R	P1; : : : ; R	PN g

D 1

2�

Z 2�

0

d!R!R	fe2.P; P1; : : : ; PN g

D 1

2�

Z 2�

0

d!R!C	fe2.P; P1; : : : ; PN g

D E2.P; P1; : : : ; PN g;

since integrating in d! from 0 to 2� is one and the same thing as integrating from
	 to 	C 2� .

1In this chapter we will use E2 for the mean quadratic prediction error; confusion should not be
made with the same symbol E used elsewhere to denote the ellipsoid.
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With the help of (5.14) and (5.15) we can indeed perform an explicit computation
of E2, giving

E2 D 1

2�

Z 2�

0

d!u2.# C !/ � 2
NX
iD1
�i
1

2�

Z 2�

0

d!u.# C !/u.#i C !/

C
NX

i;kD1
�i�k

1

2�

Z 2�

0

d!u.#i C !/u.#k C !/ (5.18)

It is noteworthy that by introducing the two points function

C.#; # 0/ D 1

2�

Z 2�

0

d!u.# C !/u.# 0 C !/ (5.19)

we come to express E2 in a concise form as

E2 D C.#; #/ � 2

NX
iD1
�iC.#; #i /C

NX
i;kD1

�i�kC.#i ; #k/: (5.20)

A particularly important remark is that

C.# C 	; # 0 C 	/ D 1

2�

Z 2�

0

d!u.# C 	C !/u.# 0 C 	C !/ D C.#; # 0/

for the same reason used in the proof of (5.17). Therefore C.#; # 0/ is also invariant
under rotation, namely, with a small abuse of notation,

C.#; # 0/ D C.# � # 0/: (5.21)

The function C.# � # 0/ is called a rotation invariant covariance function. In
particular it is called a covariance function because it has the typical properties of a
covariance; it is symmetric and positive definite.

Such properties are immediately derived from (5.19), but we shall come back to
the item at the end of the section.

Minimizing E2 with respect to f�ig is straightforward and gives the following
result: put

(
� D f�ig
i D 1; : : : ; N

(
C D fC.#i � #k/g
i; k D 1; : : : ; N

(
C# D fC.# � #i /g
i D 1; : : : ; N

(5.22)

then

� D C�1C# : (5.23)
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It is interesting to observe that since both the vector C# and the matrix C are
rotationally invariant, then so is � too, as it was required form the beginning.

We make a fundamental remark on our solution. Remember that by definition
a random field on C (see for instance Rozanov 1982) is a function fv.P; !/g,
with P 2C and ! 2˝ and with a probability distribution on ˝ , satisfying some
measurability hypotheses, so that 8fP1; P2; : : : ; PN g we know the probability
distribution of theN -vector vt .!/ D Œv.P1; !/; : : : ; v.PN ; !/
. Remember also that
mean and covariance of fv.P; !/g are defined as

�.P / D Efv.P; !/g D
Z

˝

v.P; !/dP.!/ (5.24)

C.P;P 0/ D EfŒv.P; !/ � �.P /
Œv.P 0; !/ � �.P 0/g (5.25)

D
Z

˝

v.P; !/v.P 0; !/dP.!/ � �.P /�.P 0/:

Here, as in the rest of the section, it occurs sometimes that the same symbol P
is used to mean a point in space and a probability distribution, in which case it is
always P.!/; moreover in this context˝ is an abstract set and not B

c
.

Now let us go back to our field u.P / D u.#/, with u.#/ a periodic function, and
define a random field fv.#; !/g as

v.#; !/ D R!u.P / D u.# C !/ (5.26)

with ! uniformly distributed on C, i.e.

˝ D Œ0; 2�
; dP.!/ D d!

2�
: (5.27)

By applying (5.24) and (5.25) with (5.27), we see that �.P /� 0 and that
C.P;P 0/ is exactly the same covariance that we already defined in (5.19). Moreover
if we construct a linear predictor of v.P; !/ by

bv.P; !/ D
NX
iD1
�iv.Pi ; !/ (5.28)

and we compute the prediction error

e.P; !/ D v.P; !/ �bv.P; !/;
we end up with the following expression for its variance

�2Œe.P; !/
 � Efe2.P; !/g (5.29)

� C.P;P / � 2

NX
iD1
C.P; Pi /�i C

NX
i;kD1

�i�kC.Pi ; Pk/

� E2.P; P1; : : : ; PN /:
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Indeed minimizing (5.9) with respect to f�ig is the same problem as minimizing
(5.20) and therefore it has the same solution.

This settles the first corner stone of a quite general theorem of equivalence of
different approaches, all producing the same type of linear predictors, so that each
approach contributes to the theoretical and practical understanding of the collocation
theory developed in the next sections.

5.4 On Collocation Theory, or the Wiener-Kolmogorov
Principle Applied in Physical Geodesy

We want to generalize the example of the previous section, switching from the
circle C to the sphere SR, from the rotation R! on C to a 3D rotation R!, where
! now becomes a triple of angles (for instance Euler angles), so as to apply
the minimization of a suitably defined invariant quadratic error, or equivalently a
minimum prediction error variance principle, to our field u.P / D Tr.P /, harmonic
outside SR.

This discussion parallels a similar discussion, already dating back to 1940/1950,
among scientists working in signal analysis and stochastic processes theory. In that
framework N. Wiener was more stressing the point of view of the invariant estima-
tors, while A. Kolmogorov was more in favour of the pure stochastic interpretation.
It is for this reason that we like to label our application in physical geodesy of such
a principle after the names of both great scientists.

The method, known in Geodesy as collocation, was developed in 1960–1970 by
Moritz and Krarup (see Moritz 1980; Krarup 2006, Chap. 4), again one stressing the
stochastic, the other the deterministic interpretation. Here we like to follow more
the already mentioned point of view of proving the possibility of interpreting in
different ways equivalent results, thus giving a clearer perspective to their practical
implementation.

The first item we need to settle is to find an analogous of the uniform mean over
rotated configurations of N points fP1; : : : ; PN g.

Without going into more difficult mathematical arguments on group theory, for
which we refer to literature Moritz (1980) and Sansò and Venuti (2002a), we simply
aim at giving a definition, proving that this provides a result with the required
properties.

We start by defining the action of the rotation operator R! as

R!F.P1; : : : ; PN / D F.R!P1; : : : ; R!PN / (5.30)

and we ask ourselves how an invariant F should be made 2

2Often in group theory the inverse rotation matrix Rt! is used; since this is irrelevant in the present
text and this is not useful, we stick to definition (5.30).
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Fig. 5.5 The characterization
of a rotation R! through the
rigid motion of the arc
_

PQ over a sphere,
.P 0 D R!P; Q

0 D R!Q/

Since under R! the polyhedron fP1; : : : ; PN g is rigidly moved to another one
fP 0

1; : : : ; P
0
N g, leaving the origin of R3 fixed, we see that the following conditions

are satisfied

rP 0

i
D rPi I  P 0

i P
0

j
D  PiPj ; (5.31)

where we have denoted as usual with  PQ the angle between rP and rQ. It is easy
to see that (5.31) is not only necessary but also sufficient for a rigid motion of
.P1; : : : ; PN / in the three-dimensional space, with the origin fixed in O . Therefore
F.P1; : : : ; PN / will be invariant under rotation if

F.P1; : : : ; PN / D F.: : : rPi : : : I : : :  PiPj : : :/: (5.32)

Next we note that in order to characterize a 3D rotation we need only to show
how it acts on two points P;Q placed on a sphere.

Namely there is one and only one rotation sending PQ to P 0Q0 on condition
that  P 0Q0 D  PQ (see Fig. 5.5) and rP D rQ D rP 0 D rQ0 .

Since all what we shall really use in the sequel is the average of a two-points
function, we concentrate on that, knowing that in any way the definition can be
generalized to N points, in case of need. So let F.P;Q/ be any regular function of
two points defined e.g. on the unit sphere; we put by definition

EfR!ŒF.P;Q/
g (5.33)

D
Z
dP.!/R!F.P;Q/

D A

Z
d�P 0

Z

 P 0Q0 D PQ
F.P 0;Q0/d˛Q0 ;

where P 0 sweeps the whole unit sphere, while, for each fixed P 0; Q0 runs on a
circle of spherical radius  PQ, occupying all the points of different azimuth ˛. The
variable ˛ ranges from 0 to 2� (see Fig. 5.6).
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Fig. 5.6 Representation of
the integration variable of
(5.33): O is the center
of S; P 00; Q00 are in space,
while P 0; Q0 are their
projection on S

As it obvious at the end the function (5.33) will depend on P;Q only through
 PQ, i.e. it will be invariant. Even if the points P;Q were outside the unit sphere,
it is clear that (5.33) would depend in the end only on rP 00 D rP ; rQ00 D rQ and
 PQ (see Fig. 5.6). So we can say that in general

EfR!ŒF.P;Q/
g D CF .rP ; rQ;  PQ/; (5.34)

i.e. it is a rotation invariant function. As for the normalization constant A appearing
in (5.33), this is determined by considering that dP.!/ has to be a (uniform)
probability distribution, so that one must have

Ef1g D A

Z
d�P 0

Z 2�

0

d˛Q0 D A � 8�2 � 1;

implying

A D 1

8�2
: (5.35)

Now we can repeat the same reasoning as in Sect. 5.3. Namely if the observations
yi are just u.Pi/; i D 1 : : : N , we define a linear invariant predictor

bu.P / D
NX
iD1
�iu.Pi/; (5.36)

with �i such that

R!�i � �i ;
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and an invariant quadratic prediction error

E2 D E!fR!Œu.P / �bu.P /
2g (5.37)

D C.P;P / � 2

NX
iD1
�iC.P; Pi /C

NX
i;kD1

�i�kC.Pi ; Pk/

where we have put

C.P;Q/ D EfR!Œu.P /u.Q/
g D 1

8�2

Z
d�P 0

Z

 P 0Q0 D PQ
d˛Q0 u.P 0/u.Q0/; (5.38)

also called the covariance function u.P /. Just as in (5.23), the minimum of (5.37) is
achieved by

�j D
NX
kD1
C
.�1/
jk C.Pk; P / (5.39)

and the corresponding value of E2 is

E2min D C.P;P / �
NX

i;jD1
C.P; Pi /C

.�1/
ij C.Pj ; P /: (5.40)

In (5.39) and (5.40) we have used the short notation C .�1/
ik , to mean the element

.i; k/ of the matrix C�1, inverse of C � fC.Pi ; Pk/g.
Let us note that again the possibility of using a predictor like (5.39) depends

on the availability of the covariance function of u, (5.38); for the moment we just
assume it is known and we shall explain later how to estimate it from data.

As in Sect. 5.3 we observe that, if we define a random field v,

v.P; !/ D R!u.P / (5.41)

and we postulate a uniform distribution of ! on the 3D rotation group, we receive a
totally equivalent problem with the same analytical solution, on condition that

E!fv.P; !/g D 1

8�2

Z
d�P u.P /

Z 2�

0

d˛Q

D 1

4�

Z
d�P u.P / D 0; (5.42)

what we assume to be true, because by hypothesis u.P /�Tr.P / and Tr.P /

certainly has a zero mean on any sphere centered at the origin. Note as well that
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calling C.P;Q/, in (5.38), a covariance function, we are consistent with a standard
terminology for random fields.

5.5 The General Collocation Problem

Based on the discussion of Sects. 5.3 and 5.4, from now on we accept the equiv-
alence principle stating that we can proceed with our prediction algorithms either
by minimizing the invariant quadratic error in a class of invariant linear estimators
or by introducing the model of a random field, as in (5.41), and minimizing the
mean square prediction error in a class of linear predictors. Invariant here means
invariant with respect to the 3D rotation group, and expectation means averaging
over a uniform distribution on the rotation group.

Let us first of all state our problem in the following form: we have observation
equations

yi D Mi.u/C �i ; ı D 1 : : : N (5.43)

and we want to predict a functional of u; L.u/ by means of a linear homogenous
predictor, i.e.

L.bu/ D
NX
iD1

�iyi I (5.44)

to do that we want to apply the Wiener-Kolmogorov (W-K) principle.
To this aim we need to define clearly what is an admissible functional L applied

to the random process v.P; !/.
In fact note that v.P; !/ D R!u.P / D u.R!P /, is a function of two variables

and that L will act only on the variable P , so that we expect

Y0 D LP fv.P; !/g (5.45)

to be a (measurable) function of ! only, i.e. a random variable.
We note that, under suitable regularity conditions,

E!fY0g D E!fLP Œv.P; !/
g (5.46)

D
Z
dP.!/LP fR!u.P /g

D LP f
Z
dP.!/R!u.P /g

D LP fE!fv.P; !/gg D 0;

so we expect that all useful random variables of the type (5.45) have zero mean
(with respect to !).
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Definition 1 (Admissible functionals). We state that a functional LP . / is admis-
sible, if the corresponding random variable Y0 has finite variance.

Namely we require that

E!fY 20 g D
Z
dP.!/LP Œu.R!P /
LQŒu.R!Q/


D LP fLQf
Z
dP.!/u.R!P /u.R!Q/gg

D LP fLQC.P;Q/g < C1: (5.47)

Covariance propagation. The above computation can be repeated when we need
to compute the covariance

EfLP Œv.P; !/
MQŒv.Q;!/
g (5.48)

D LP fMQfEŒv.P; !/v.Q;!/
gg
D LP fMQC.P;Q/g:

Formula (5.48) is in fact the covariance propagation formula for random fields.
To simplify formulas, from now on we shall use the short-hand notation (see

Krarup 2006, Chap. 15)

(
LPC.P;Q/ D C.L;Q/

LP fMQC.P;Q/g D C.L;M/:
(5.49)

Moreover we note that if we take a vector of functionals

L D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

L1.�/
L2.�/
:::

LN .�/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

(5.50)

and we put

Y D Lfv.P; !/g; (5.51)

then indeed Y has zero mean,

EfYg D 0;

and a covariance matrix CYY given by

fCYiYk g D fC.Li ; Lk/g (5.52)
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which we write in vector form as

CYY D C.L;Lt /: (5.53)

Naturally C.L;Lt / is symmetric and positive definite. Similarly the cross-
covariance between the vector Y of (5.51) and Z D Mfv.P; !/g is just the matrix

CYZ D EfYZtg D fC.Li ;Mk/g D C.L;Mt /: (5.54)

Now the last thing we need in order to perform our prediction is just to observe
that in our models we have two stochastic quantities, the random field v.P; !/ and
the noise vector �. So we need first of all to represent the stochastic interaction
between the two and then we need to warn the reader that when we shall use the
expectation symbol Ef g, without any particular index, we will mean averaging
with respect to all random variables, while we shall use E!f g or E�f g when we
want to perform an average with respect to a specific random variable.

To complete the hypotheses on the covariance structure of the problem we
summarize them as follows:

Efv.P; !/g � 0; Efv.P; !/v.Q;!/g D C.P;Q/; (5.55)

with C.P;Q/ a given invariant covariance function and with the propagation rule
(5.48) for the covariances of linear functionals of v;

Ef�g D 0; Ef��t g D C�� I (5.56)

furthermore we shall assume that the noise � and the random field v are linearly
independent, i.e.

Efv.P; !/�i g D 0; 8P; 8i; (5.57)

implying also that for any admissible functional L,

EfLP Œv.P; !/
�i g D 0: (5.58)

With all these rules of calculus we proceed to establish the W-K principle, namely
we start to compute the variance of the prediction error.

Remember that the observation equations and the linear predictor bL.v/ were
defined in (5.43) and (5.44), which we can write in vector form as

Y D Mfvg C � (5.59)

LP Œbv.P ; !/
 D �tY: (5.60)

If bL.v/ is our predictor, the prediction error is

e.!/ D L.v/� bL.v/ (5.61)

D L.v/� �tY
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and its variance can be computed by

E2 D Efe2.!/g D EfL.v/2g C (5.62)

� 2Ef�tYL.v/g C Ef.�tY/2g
D C.L;L/ � 2�tEfYL.v/g C �tCYY�: (5.63)

On the other hand

EfYL.v/g D EfM.v/L.v/g C Ef�L.v/g (5.64)

D C.M; L/I
CYY D EfYYtg D EfŒM.v/C �
ŒM.v/C �
t g

D EfM.v/Mt .v/g C Ef��t g D C.M;Mt /C C��: (5.65)

Substituting in (5.62) we can then invoke the W-K principle claiming that the
optimal predictor is the one that minimizes E2, namely the solution of the normal
equation system

CYY� D C.M; L/ (5.66)

or

� D C�1
YYC.M; L/ (5.67)

with CYY given by (5.65).
Going back to (5.60) we find the W-K predictor

bL.v/ D C.L;Mt /C�1
YYY (5.68)

and substituting into (5.62) we get its squared prediction error as

E2 D C.L;L/ � C.L;Mt /C�1
YYC.M; L/: (5.69)

Formulas (5.68) and (5.69) are so important that it is worth representing them
explicitly in components, namely

bL.v/ D
NX

k;iD1
LP fMPkC.P;Pk/gC .�1/

YkYi
Yi (5.70)

with C .�1/
YkYi

the element .k; i/ of the inverse of the matrix CYY, i.e.

CYkYi D MPk fMPiC.Pk; Pi /g C C�k�i I (5.71)
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moreover

E2 D LP fLQC.P;Q/g C (5.72)

�
NX

k;iD1
LP fMPkC.P;Pk/gC .�1/

YkYi
LP fMPiC.Pi ; P /g: (5.73)

We note that in most cases C�k�i is diagonal and, when Mk. / are functionals
representing the same type of measurement, many times we put C�� D �2� I ,
although this is not really necessary in our formulas that represent the most general
case.

Example 2. We want already here to specify how formulas (5.70), (5.72) work
for the most prominent case of this book, namely the prediction of the anomalous
potential T .P / (loosely speaking one could say the geoid prediction) from observed
pointwise gravity anomalies�g.Pi /; i D 1 : : : N .

Let us remember that here T .P / and �g.P / mean the residual anomalous
potential and the residual gravity anomaly. We mention that in this case L. /, the
functional to be predicted, is just the evaluation of T at the point P ,

L.T / D evP .T / D T .P /:

As for the gravity anomaly at P , we can usefully reason as follows; first we
define a gravity anomaly operator A which actually transforms the function T .P /
into another function�g.P /

�g.P / D A.T / � �@T
@h
.P /C � 0

�
T .P /; (5.74)

then we evaluate the field �g.P / at a specific measurement point Pk ,

Mk.T / D evPk fA.T /g (5.75)

D �g.Pk/:

Put in this way we understand that to compute the covariance of Mk;Mi or that
of Mk;L one can proceed in two steps. First we define a covariance function of
�g.P / according to

C�g�g.P;Q/ D Ef�g.P /�g.Q/g (5.76)

D EfAP Œv.P; !/
AQŒv.Q;!/g
D AP fAQC.P;Q/g

where

v.P; !/ D R!T .P / I (5.77)
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then we apply the evaluation at specific measurement points, namely

C.Mk;Mi/ D evPk fevPiC�g�g.Pk; Pi /g (5.78)

D C�g�g.Pk; Pi /:

Accordingly we define the cross covariance between the two fields T .P / and
�g.P / as

CT�g.P;Q/ D Efv.P; !/AQŒv.Q;!/
g D AQC.P;Q/;

with v given by (5.77) and then we evaluate T at a particular point P and �g at a
particular point Pk , thus obtaining

C.P;Mk/ D evP fevPkCT�g.P; Pk/g (5.79)

D CT�g.P; Pk/:

With the above specified rules, the best linear predictor, or collocation predictor
of T .P / is (see (5.70))

bT .P / D
X
k;i

CT�g.P; Pk/fC�g�g.Pk; Pi /C �2�gıikg.�1/�gobs.Pi /; (5.80)

in (5.80) we have assumed that C�i�k D �2�gıik and we have written �gobs.Pi /

for Yi .
The corresponding prediction error then becomes (see (5.72)).

E2 D C.P;P /C (5.81)

�
X
k;i

CT�g.P; Pk/fC�g�g.Pk; Pi /C �2�gıikg.�1/C�gT .Pi ; P /

Remark 1. Recalling the definition of covariance of a function T .P / (see (5.38))
namely

C.P;Q/ D EfR!T .P /R!T .Q/g (5.82)

D
Z
dP.!/T .R!P /T .R!Q/

we see that, when T is a regular harmonic function,

�PC.P;Q/ D
Z
dP.!/�PT .R!P /T .R!Q/ � 0; (5.83)

in fact it is known that the Laplace operator is invariant under rotation, so that if
T .x; y; z/ is harmonic as function of .x; y; z/ and R! sends .x; y; z/ into .x0; y0; z0/
then (see Exercise 1 in Sect. 5.12)
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�
@2

@x2
C @2

@y2
C @2

@z2

�
T .x0; y0; z0/

�
�
@2

@x02 C @2

@y02 C @2

@z02

�
T .x0; y0; z0/ D 0:

Naturally (5.83) implies�QC.P;Q/ D 0 as well, because C.P;Q/ is a symmetric
function of P andQ.

Now take a general collocation formula with LP D evP and fMkg whatever;
similarly to (5.80), if we put

k D ˙i fC.Mk;Mi/C C�k�i g.�1/Yi (5.84)

we see that the collocation predictor of T .P / can be written as

1T .P / D
NX
kD1

C.P;Mk/k: (5.85)

If we let P free to vary over˝R � frP � Rg, we can interpret (5.85) more as an
approximation of the whole function T .P / than as a pointwise prediction. As such
we see that our approximate solution 1T .P / is automatically harmonic, namely

�P
bT .P / D

NX
kD1
�PC.P;Mk/k � 0: (5.86)

This is indeed a nice property of our approximation theory.

5.6 Covariance and Spectral Harmonic Calculus

The functions bT .P / by which we do approximate the residual potential Tr.P / are
all harmonic in ˝R, as stated in the previous section (Remark 1).

Therefore these functions can be represented by the convergent series

T .P / D
C1X
n;mD2

nX
mD�n

TnmSnm.rP ; #P ; �P / (5.87)

Snm.rP ; #P ; �P / D
�
R

rP

�nC1
Ynm.#P ; �P /:

If we apply to T .P /, given by (5.87), the rotation operator we get, with P 0 D R!P ,

R!T .P / D T .P 0/ D
C1X
nD2

nX
mD�n

Tnm

�
R

rP

�nC1
Ynm.#P 0 ; �P 0/I (5.88)
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on the same time we can state that

T .P 0/ D
C1X
nD2

nX
mD�n

Tnm.!/

�
R

rP

�nC1
Ynm.#P ; �P /; (5.89)

because indeed T .P 0/ is also harmonic as a function of P . Naturally the harmonic
coefficients of T .P 0/ as function of P , are not the same Tnm which appear in (5.87)
and in particular they will depend on the relation between P 0 and P , namely on the
specific rotation R! applied; this is why we have denoted them Tnm.!/.

We want to study the property of the functionals of T ,

.P 2 SR/; Tnm .!/ D 1

4�

Z
Ynm.#P ; �P /T .R!P /d�P (5.90)

and their relation to the original Tnm. First of all we notice that, as for all admissible
functionals,EfTnm.!/g D 0 and

EfTnm.!/Tjk.!/g D 1

.4�/2

Z
d�P

Z
d�QYnm.#P ; �P /Yjk.#Q; �Q/ �

�EfT .R!P /T .R!Q/g: (5.91)

On the other hand since the covariance of T is spherically invariant (P 0 DR!P ,
Q0 D R!Q),

EfT .R!P /T .R!Q/g D C. P 0Q0/ D C. PQ/: (5.92)

As a function of  ;C. / is also a function of cos so that we can write

t D cos I C.t/ � C. / D
C1X
nD0
cnPn.t/ (5.93)

D
C1X
nD0
cnPn.cos /

with (see (3.46))

cn D 2nC 1

2

Z 1

�1
C .t/Pn.t/dt (5.94)

D 2nC 1

2

Z �

0

C. /Pn.cos / sin d 

Therefore, recalling the summation rule (3.54), we can substitute in (5.91) and
(5.92)
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C. PQ/ D
C1X
p;qD0

cp.2p C 1/�1Ypq.#P ; �P /Ypq.#Q; �Q/ (5.95)

so that by virtue of the orthogonality of fYnm.#; �/g we find

EfTnm.!/Tjk.!/g D ˙p;q

cp

2p C 1
ıpnıqmıpj ıqk D cn

2nC 1
ınj ımk: (5.96)

Hence Tnm.!/ are uncorrelated to one another and their variances are the same
for all orders in degree n,

�2.Tnm/ D �2n D cn

2nC 1
(5.97)

We will call �2n the degree variances of individual coefficients and cn the full
power degree variances. Although this name has already been used in (3.173) we
shall soon see that we are justified in using it here because we will prove that cn is
identical with �2n given in (3.173).

In fact the following remarkable result holds (see also Moritz 1980).

Lemma 1. The distribution of Tn � fTnmg in R2nC1 (remember that we have
2nC 1 orders for each degree n) is singular, its support is the sphere with squared
radius

jTn.!/j2 D
nX

mD�n
T 2nm.!/ D cn (5.98)

and in fact Tn.!/ is uniformly distributed on this sphere.

There are two consequences of this lemma: the first is that if we know even
approximate values for Tnm, we can directly estimate C. PQ/, given by (5.93),
with cn D ˙mT

2
nm.

Namely the harmonic coefficients of one particular function given on SR, provide
us the degree variances of the process generated by randomly rotating this function.

We notice here as well that the formula cn D ˙mT
2
nm justifies the name given to

cn of full power degree variances, in fact we can verify now that cn D �2n according
to the previous definition on (3.173).

The other consequence is that the Lemma gives an answer to a guess popping up
from times to times in geodesy, that the distribution of T , and then for instance of
fTnmg too, could be normal (cf. Jekeli 1991). Indeed this is not possible in a strict
sense, as observed long ago by Lauritzen (see Lauritzen 1973), because then fTnmg
for fixed n would all be independent with zero mean and variance �2n , what would
imply that

˙mT
2
nm.!/ � �2n�

2
2nC1; (5.99)
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i.e. it cannot be a constant with respect to !. Yet (5.99) shows that this variable has
a variance tending to zero. In fact (5.99) implies

�2Œ˙mT
2
nm.!/
 D �4n2 � .2nC 1/

which must tend to zero since

˙n�
2
n.2nC 1/ D ˙n˙mT

2
nm < C1 (5.100)

by hypothesis.
Indeed (5.100) implies �2n.2nC 1/! 0 and, a fortiori, �4n.2nC 1/! 0. So from

the practical point of view the field T , at least above a certain degree, could still be
approximately normal.

The use of (5.97) simplifies the calculation of various covariances and cross-
covariances for fields which have an easy spectral representation, as we show in the
next example.

Example 3. As we have seen in (5.80), to apply the present theory to the determi-
nation of a gravimetric quasi-geoid we need CT�g.P;Q/ and C�g�g.P;Q/. If we
apply the spherical approximation formula (cf. (5.101))

�g D �@T
@r

� 2

r
T

that, in terms of harmonic coefficients translates into

�gnm D n � 1

R
Tnm; (5.101)

we get straightforwardly

EfTnm�gjkg D ınj ımk
n � 1

R
�2n.T / (5.102)

and

Ef�gnm�gjkg D ınj ımk
.n � 1/2

R2
�2n.T /: (5.103)

implying

cn.�g/ D .n � 1/2

R2
cn.T /: (5.104)
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With these rules we can put

CT�g.P;Q/ D ˙n;m

.n � 1/

R
�2n.T /Snm.rP ; #P ; �P /Snm.rQ; #Q; �Q/

D ˙n

.n � 1/

R
�2n.T /

�
R2

rP rQ

�nC1
.2nC 1/Pn.cos PQ/

(5.105)

and

C�g�g.P;Q/ D ˙n;m

.n � 1/2
R2

�2n.T /Snm.rP ; #Q; �P /Snm.rQ; #Q; �Q/

D ˙n

.n � 1/2
R2

�2n.T /

�
R2

rP rQ

�nC1
.2nC 1/Pn.cos PQ/: (5.106)

Let us note that in particular (5.106) coincides, in spherical approximation,
with (5.76).

It is useful to observe that not all the fields that can be derived from T possess
a spherical invariant covariance, although the spectral calculus, when applicable,
facilitates the calculations as the next example shows.

Example 4. We want to compute the covariance of T� D @T
@�

. Note that this quantity
is just the eastern deflection of the vertical 	 multiplied by r sin# . To this aim let
us observe that, according to our definition of Ynm.#; �/ (cf. (3.50) and (3.51)) we
have

@

@�
Ynm.#; �/ D �mYn;�m.#; �/: (5.107)

But then

T�.P / D ˙n;m.�m/TnmSn;�m
D ˙n;mmTn;�mSn;m

or

.T�/nm D mTn;�m: (5.108)

The last relation implies

Ef.T�/2nmg D m2�2n.T / (5.109)

so that T� has not degree variances, i.e. the variances of .T�/nm are not the same for
all ordersm.
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It is useful here to observe that the covariance of T� can also be derived directly
from C.P;Q/ with the following formula

CT�T�.P;Q/ D EfT�.P /T�.Q/g D @2

@�P @�Q
C.P;Q/: (5.110)

If we put

C.P;Q/ D C.rP ; rQ;  PQ/ D C.rP ; rQ; cos PQ/ (5.111)

and we note that

cos PQ D sin#P sin#Q cos.�P � �Q/C cos#P cos#Q

so that

@

@�Q
cos PQ D sin#P sin#Q sin.�P � �Q/

and

@2

@�P @�Q
cos PQ D sin#P sin#Q cos.�P � �Q/;

we can compute (5.110).
Put

C
0 D @

@t
C .rP ; rQ; t/

C
00 D @2

@t2
C .rP ; rQ; t/I

then you find

CT�T� D C
0
.rP ; rQ; cos PQ/ sin#P sin#Q cos.�P � �Q/C

� C
00
.rP ; rQ; cos PQ/.sin#P sin#Q sin.�P � �Q//2;

which is not a function of  PQ only, i.e. it is not a rotation invariant function.

Remark 2. In order to perform the covariance calculus of horizontal derivatives,
a simple approach is, after fixing the two point P and Q, to compute the full
covariance of the derivatives along the great circle connecting P and Q and
orthogonal to it. The result can then be rotated to produce covariances of derivatives
in any direction (Tscherning and Rapp 1974).

To get acquainted with the covariance spectral calculus we propose to the reader
Exercise 2 at the end of the chapter.
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5.7 The Estimate of Global Covariance Functions

The whole building of collocation theory rests on the assumption that there is a
covariance function of the unknown T .P /; CT T .P;Q/, and that this function be
known in some way. Since there is no theoretical a priori model for it we can only
rely on data themselves to obtain an estimate of CT T .P;Q/. Naturally the best
theoretical framework to do that, would be a unified estimation theory where both
T .P / and CT T .P;Q/ are optimally estimated together from data.

At this point indeed the problem becomes highly non-linear and, although some
theoretical work has been done in this direction, no numerical experiments have
been performed for the moment (Sansò and Venuti 2002a). So in practice we have
to live with a two-steps procedure in which we first estimate CT T .P;Q/, with
an admissible model, and then we use it to apply the rest of collocation theory.
This parallels very much what we are doing in the ordinary least squares theory
(Koch, 1987) where we have to estimate both the vector of the parameters and the
covariance matrix of the observable variables. In least squares theory however this
practice is justified because we can prove that a variation of such covariance matrix
induces a second order variation into the estimator of the parameters. Fortunately
here we have again a similar situation as it has been proved in Sansò et al. (2000). So
there is a reasonable argument to accept the two-step procedure. Yet the question is
open on how to estimate practicallyCT T .P;Q/ from data (see also Part II, Chap. 7).

We have two formulas relating the covariance function to observable quantities:
one is its definition (5.92) that writes more explicitly as

P;Q 2 SQ; CT T . / D 1

4�

Z
d�P T .P /

Z

 PQD 
d˛QT .Q/I (5.112)

the other one is

CT T . PQ/ D
C1X
nD2

cnPn.cos PQ/ (5.113)

with

cn D
nX

mD�n
T 2nm: (5.114)

Both formulas require the knowledge of T on SR (directly in (5.112) and through
Tnm in (5.114)); both express CT T .P;Q/ when P;Q 2 SR and then can be
harmonically continued in P;Q 2 ˝R by

CT T .P;Q/ D
C1X
nD1

�
R2

rP rQ

�nC1
cnPn.cos PQ/: (5.115)
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Yet, since the quantity related to T that we know best at present, at the level of
the ellipsoid, here approximated by SR, is �g, averaged in blocks, as explained in
Chap. 3, the model (5.106) has been rather used, namely

C�g�g.P;Q/ D
C1X
nD2

�
R2

rP rQ

�nC1
cn.�g/Pn.cos PQ/: (5.116)

where

cn.�g/ D .n � 1/2

R2
cn.T / D .n � 1/2

R2

nX
mD�n

T 2nm: (5.117)

Naturally with our finite data set we can only estimate cn.�g/ up to some
maximum degree Nmax. It is by interpolating the empirical spectrum of �g, i.e.
(5.117), and then extrapolating it above Nmax that we can have some model
extending to all degrees up to infinity. The idea is similar to what we presented
in Sect. 3.8, but with much more refined models which, beyond giving a better
interpolation of empirical data, have also the advantage that the series (5.115) and
(5.117) can be added providing us with closed analytical forms, more manageable
from the numerical point of view. The argument and the relative models will be
taken up in more details in the next section. What is interesting at this point is to
underline two facts. The first is that all models include in both cn.T / and cn.�g/

an exponential factor which can therefore interpreted as
�
RB
R

�2.nC1/
, meaning that

our kernel CT T .P;Q/ will be harmonic down to a smaller sphere than SR, in fact
down to the Bjerhammar radius RB , which in the most famous of such models
(cf. Tscherning and Rapp 1974), has a value RB Š 6;370 km. Note that RB is
different from the mean earth radius R Š 6;371 km, by 1 km only. The second
is that, despite its usefulness, the degree variances of this global covariance function
above Nmax cannot well represent the local physical reality of our gravity field. In
fact at the scales of 100 km down to 1 km the actual gravity field displays features
so diverse from one part of the globe to the other that putting them all together
into a unique covariance function prevents us from the construction of a very fine
approximation of T , and then of the geoid, as required nowadays.

This argument calls for another step in our approximation road, where the local
features of T or �g are accounted for. We could say another step zooming into a
smaller data area A and applying some kind of multi-resolution analysis concept.
This will be achieved by means of the so-called local covariance functions.

We conclude the section with still another Example that will become useful in
the sequel. This answers in the affirmative to the question: is it possible to have
isotropic covariances on the bounding sphere that have a finite support, i.e. a C. /
and a fixed arc � < � such that C. / D 0 for 8 � �? In the example, we
will construct one of such covariances,M�. /, so that, recalling that the product of
two covariance functions is again a covariance function, we can then construct for
every C. / a finite support counterpart just by taking C�. / D M�. / � C. /.
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Example 5. Let us recall that if we take at the north pole a function equal to 1 just
when the colatitude # is such that # � �, and is equal to zero outside,

��.#/ D
(
1 # � �

0 # > �;

one can write

��.#/ D
C1X
nD0
ˇnPn.cos#/

where the so-called Meissel’s coefficients ˇn are given explicitly by (see also
Sect. 3, A.4)

.t D cos#/ ˇn D 2nC 1

2

Z 1

cos�
Pn.t/dt

D 1

2
ŒPn�1.cos�/� PnC1.cos�/
:

Note that the relation between ˇn and the coefficients of the moving average
operator, defined in Sect. 3, A.4 is

ˇn D 1

4
.2nC 1/.1� cos�/Mn.�/:

Recalling that Yn0 D p
2nC 1Pn.cos#/ we can write also

��.#/ D
C1X
nD0

ˇnp
2nC 1

Yn;0.#/

If we consider this function as a potential on the sphere and we compute its
covariance in spectral from (cf. (5.113) and (5.114)) we find

M�. / D
C1X
nD0

ˇ2n
2nC 1

Pn.cos /

On the other hand if we compute the same covariance by (5.112) we see that
we must fix P in the cap D.O;�/ of radius � around the north pole O , we must
fix a radius  and then take the product of ��.#P / by the average of ��.#Q/ on
the circle of radius  around P ; finally we integrate in P over D.P;�/. Note that
when P is outside D.O;�/, the integrand in (5.112) is automatically zero.

Now if P is in D.O;�/ and on the same time  > 2�, the circle of radius  
and centre P , will not intercept anymoreD.O;�/ and, as result, we will have

M�. / D 0; 8 > 2�:

The situation is illustrated in Fig. 5.7.
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Fig. 5.7 Domains of
integration used in the
computation of the
covariance of T D ��.#P /

Let us observe explicitly that although we can construct covariances of finite
support on the spherical boundary, as soon as we go to an external sphere, r > R,
C.P;Q/ cannot be anymore zero on any part of the sphere of positive measure,
otherwise as a harmonic function it should be zero everywhere (see Sacerdote and
Sansò 1991).

5.8 The Estimate of Local Covariance Functions

As defined in (5.38), with the further specification of definition (5.76) we can say
that the covariance function of the gravity anomaly field �g.P /, at the level of the
mean earth sphere, SRe , is given by

P;Q 2 SRe ;
C�g�g.P;Q/ D Ef�g.P /�g.Q/g (5.118)

D 1

8�2

Z
d�P 0

Z

 P 0Q0 D PQ
d˛Q0�g.P 0/�g.Q0/ D C�g�g. PQ/I

analogous formulas hold for CT T .P;Q/ and CT�g.P;Q/ which are the main
ingredients needed to derive the estimates (5.80) and (5.81).

The relation between the three functions is given by (5.76) and (5.79) in the
ordinary geometric space and by (5.105) and (5.106) in the spectral domain.
Although we derived them for the residual potential, represented by the random field
v.P; !/ D Tr.R!P /, they basically hold for any random field similarly defined by
means of its values on the sphere SRe , with the help of a uniform distribution on the
rotation group, and harmonically continued in ˝Re � fr � Reg. So in order to be
close to the applications considered in this book we shall reason in this section on
the covariance of�gr , with the understanding that the same arguments apply to any
random field having an isotropic covariance function.

Moreover, such a remark will be used in next sections.
From (5.118) and a set of observed values

Yi D �g.Pi /C �i ; i D 1; 2 : : : N (5.119)

with �i independent noises of equal variance �2� , we can reasonably build an
estimator of the covariance in a very similar way of what is done with random
processes, with respect to a time variable.
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In fact, consider the following expression

bC�g�g. / D 1

N. ;�/
˙fi;kgYiYk; (5.120)

where the summation is extended only to the pair of points fi; kg such that

 �� <  PiPk �  C� (5.121)

and N. ;�/ is the number of such pairs.
Observe that, recalling also (5.55), (5.56) and (5.57),

E!;�fYiYkg D E!f�g.Pi /�g.Pk/g C �2� ıik

D C�g�g. PiPk /C �2� ıik: (5.122)

As far as  �� � 0, i.e.  PiPk > 0, we always have ıik D 0 in (5.122), so that
from (5.120) we find again, denoting fi; kg the set of pairs satisfying (5.121),

E!;�fbC�g�g. /g D 1

N. ;�/
˙fi;kgC�g�g. PiPk /: (5.123)

Now, if we assume that the observation points fPi g are well distributed, so that
 PiPk sweeps in a fairly homogeneous way the interval Œ � �; C�
 and if we
further agree that� is such thatN. ;�/ is large enough e.g. at least larger than 10,
and on the same time small enough, to allow C�g�g. / to be almost linear in the
interval Œ ��; C�
, we deduce from (5.123)

E!;�fbC�g�g. /g � C�g�g. /; (5.124)

namely bC�g�g. / is a quasi-unbiased estimator of C�g�g. /.
Furthermore we note that (5.120) can be considered as well as a discretization of

formula (5.112) or its analogous for�g.
Accordingly, once the value of � has been fixed, what is in fact one of the very

issues for the data analyzer, we can derive estimates bC�g�g. / for

 D �; 3�; 5� : : : .`mC 1/�: (5.125)

Furthermore, by taking i D k in (5.122), we derive

E

(
1

N

NX
iD1
Y 2i

)
D C�g�g.0/C �2� ; (5.126)

i.e.

S2y D 1

N

NX
iD1
Y 2i (5.127)
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is an unbiased estimator of C�g�g.0/C �2� . All together the values

S2y I bC�g�g.�/I bC�g�g.3�/ : : :bC�g�g..2mC 1/�/ (5.128)

constitute what is called the empirical covariance function; when�g is the residual
gravity anomaly �gr and the points fPi g are taken from a local area A only, we
have a local empirical covariance function.

Note that, in order that such empirical covariance function could be further used
in the prediction process, some conditions have to be fulfilled at least approximately.
We already said about the choice of �, but we also have to assume that when
data come from a local area A, .2m C 1/� (see (5.118)) be significantly smaller
than the size of A, identified with its diameter when A is a cap or with its side
if A is a squared geographic block; at the same time C�g�g..2m C 1/�/ and
the other tail values of C�g�g beyond .2m C 1/�, should be small enough to
make the correlation with observations beyond this distance negligible; moreover
the size of A should be big enough to let the field �g to have a zero average on
it, i.e.

1

N

NX
iD1
�g.Pi / � 0; (5.129)

as otherwise we could not write a covariance estimator in the form (5.120).
In reality, having an empirical average significantly different from zero on A

would mean just that there is an important correlation of �gr in A with �gr
outside A, so that we cannot hope to derive a good local estimate of T in A because
we are lacking essential information.

One further concern is that the height of the points Pi should not have too strong
a variation in A; in fact we see (cf. (5.116)) that if all points have the same height h,

then the degree variances of �g are just modified by a factor
�

Re
ReCh

�2nC4
, that can

be accounted for in modelling the covariance, while if ri D ReChi is quite variable,
then the covariance of the signal coming from hi will enter into the empirical values
bC�g�g. /.

Finally we remind that our estimate (5.120) is relevant only if the residual
�gr.P / has a behaviour statistically homogeneous and isotropic in A; in other
words there should not be in �gr.P / features that make one part of A to look
statistically very different from another one. This is typically achieved if the remove
step for the model and for the residual terrain correction components has been
correctly performed and the area A is suitably selected by the analyzer.

We get hold of an empirical covariance function that we need to transform
into a model covariance function, namely into a function possessing the correct
properties of symmetry and positive definiteness, without which the collocation
prediction formulae loose any significance. This is the case if we impose to the
model covariance to satisfy the relation (5.116), namely
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C�g�g.P;Q/ D
C1X
nD2
cn.�g/

�
R2

rP rQ

�nC2
Pn.cos PQ/; (5.130)

with positive full power degree variances cn.�g/.
Now the point is how to model cn.�g/, taking also into account that we are

talking about �gr , so that we expect cn.�g/ to have a different meaning when
n � M (M being the maximum degree of our global model TM.P /) than when
n > M .

In fact if we write for the coefficients T .M/
nm of the global model the relation

T .M/
nm D Tnm C �nm (5.131)

with �nm the estimation error for the coefficient Tnm, we see that in the low
frequency band (cf. (5.101)),

.n � M/; �gr;nm D n � 1
R

�nm (5.132)

so that

.n � M/; cn.�g/ D .n � 1/2
R2

nX
mD�n

�2nm; (5.133)

according to (5.104).
Now (5.133) expresses the full power degree variances of the estimation errors

f�nmg, when the average is taken over the full rotation group. If we further average
(5.133) with respect to the random variables �nm, which represent the propagation
of the observation (and model) errors from original data to the estimates T .M/

nm , we
can define what are called error degree variances, namely

.n � M/; "n.�gr/ D E�fcn.�gr/g D
nX

mD�n
�2.�nm/: (5.134)

The variances �2.�nm/ are available from least squares estimates up to degrees
of a few hundreds, or are derived by noise propagation through quadrature formulas
(see Rapp 1997a; Pavlis et al. 2008), so we can claim that "n are known at least up to
the specific degreeM , which is useful in the present context (see Remark 3 below).

As for higher degrees, n > M , the full power degree variances are usually
modelled by means of some parametric form. Typical are formulas of the type

cn.�g/ D C0h
nC2 A.n/

B.n/
(5.135)

where

0 < h < 1 (5.136)
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andA.n/; B.n/ are polynomials in n such that B.n/ has no zeroes for integer values
larger than 1. The big advantage of the form (5.135) is that in many cases it becomes
possible to add the series (5.130) obtaining an explicit analytic expression which is
then quite comfortable to be used in further computations (see Sect. 5.9).

Remark 3. Let us put

h D R2B
R2
; .RB < R/ (5.137)

in (5.135) and substitute it back into (5.130); we find then

C�g�g.P;Q/ D
C1X
nD2

A.n/

B.n/

�
R2B
rP rQ

�nC2
Pn.cos PQ/: (5.138)

Since jPn.cos /j � 1, it is clear that (5.138) is converging in rP ; rQ > RB ,
whatever be the polynomials A and B; therefore any collocation solution that uses
this covariance will be harmonic down to a sphere with radius RB . As already
mentioned at the end of Sect. 5.6, the constant RB is called a Bjerhammar radius
after the work of A. Bjerhammar (see for instance Bjerhammar 1987); whence the
index B .

Summarizing the previous general discussion, we arrive at a model of local
covariance function that can be expressed as

CMod
�g�g.P;Q/ D a

MX
nD2

"n
.n � 1/2

R2

�
R2

rP rQ

�nC2
Pn.cos PQ/

C Cr.P;Q/ (5.139)

Cr.P;Q/ D
C1X

nDMC1
cn.�g/

�
R2

rP rQ

�nC2
Pn.cos PQ/ (5.140)

cn.�g/ D C0h
nC2 A.n/

B.n/
: (5.141)

Parameters of the representation (5.139), (5.140) and (5.141) are: the calibration
constant a, the degree M used in the specific remove-restore procedure, the
constant C0, the Bjerhammar radius RB , i.e. the value of h, the coefficients of the
polynomials A.n/; B.n/ which however can be normalized to have the zero degree
coefficients equal to 1, namely a0 D b0 D 1.

By using all these parameters one can interpolate the empirical covariance
function, using only the values outside the origin bC�g�g.�/; : : : ;bC�g�g

..2mC 1/�/.
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In this covariance modelling process it is important to use M as a parameter
because the experience shows that many times the use of RB only does not allow
to reach the right shape of the covariance in the first (and most important) part of
C�g�g. /, typically decreasing from the value C�g�g.0/.

The value S2y (cf. (5.127)) is then used to estimate �2� ,

b�2� D S2y � bC�g�g.0/: (5.142)

As it is obvious one must have

b�2� � 0 (5.143)

for this estimate to be acceptable; therefore (5.143) acts as a constraint for the model

CMod
�g�g.0/ � S2y: (5.144)

All in all, this estimation procedure casts so to say into a theoretically acceptable
form the statistical behaviour of �gr in the specific area A, captured by the empiri-
cal estimates (5.120). Therefore, despite its global appearance, CMod

�g�g represents in
fact the physical correlation of �gr in the area A and in general it should not be
used for another area. This reflects, to some extent, the multi-resolution character of
the solution we are elaborating, step after step.

Example 6. It is important to understand that the transition from �g to �gr
removes power from C�g�g, namely it damps its value at the origin and at the same
time it reduces the correlation length, i.e. the smallest value c for which the relation

C�g�g. / D 1

2
C�g�g.0/ (5.145)

is satisfied. More properly one could say that the transition from�g to�gr reduces

the index
C�g�g.0/

 c
, that could be taken as an indicator of the smoothness of the

covariance. In this respect, it is interesting to observe the sequence of the covariance
functions for the full signal of free air �g over the area 6ı � � � 20; 36ı �
' � 47ı corresponding to a domain A covering the Italian region (Fig. 5.8), and
the covariance function of the reduced�gr over the same region (Fig. 5.9). Finally
in Fig. 5.9 we show as well the covariance from the Tschering–Rapp family (see
formula (7.16) in Part II, Chap. 7) that interpolates bC�gr�gr

.
Notice that in the chosen land area the gravity signal is quite variable, due to

the complex geological structure of the region. So the covariance of the global
gravity field, reflecting a mean behaviour for the whole earth, suggests a behaviour
smoother than that implied by the local covariance in Fig. 5.8. On the other hand
the covariance of �gr is both less powerful and smoother than that of the free air
anomalies.
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Fig. 5.8 The free air gravity anomaly empirical covariance over the Italian area

Fig. 5.9 The empirical covariance of the reduced gravity anomaly over the Italian area and the
best fitting Tscherning–Rapp model

5.9 Covariance Parametric Models

As we have seen in the two previous sections, an estimation procedure for the
covariance function of T or�g passes through the adaptation of a parametric model
to suitable empirical covariance values.
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For this purpose let us note that if we accept the model (5.135) and we put

s D R2B
rP rQ

; t D cos (5.146)

our target is to sum a series of the form

C�g�g.s; t/ D
C1X
nD2
��g.n/s

nC2Pn.t/ (5.147)

with �.n/ a rational function of n.
Since it is convenient in the present context, we shall however start from the

covariance of T , that in this case, with the notation (5.146), can be written

CT T .s; t/ D
C1X
nD2
�T .n/s

nC1Pn.t/: (5.148)

In performing our calculus we shall need a few relations that we list for the
comfort of the reader. We start by recalling (see (3.16) and (3.17)) the definition of
generating function

G.s; t/ D
C1X
nD0
snPn.t/ D 1p

1C s2 � 2st
(5.149)

and the obvious relation

C1X
nD2
snPn.t/ D G.s; t/ � 1 � st: (5.150)

Then we have
8
<
:

@
@s
G�1.s; t/ D .s � t/G.s; t/

@
@s
G.s; t/ D �.s � t/G3.s; t/:

(5.151)

Furthermore, as one can verify by direct differentiation, one has

Z s

0

G.�; t/d� D log
s � t CG�1.s; t/

1 � t I (5.152)

note that when s ! 0 both members tend to zero.
Moreover we observe that, for any F.s; t/,

� @

@rP
F.s; t/ D s

rP

@

@s
F.s; t/ (5.153)

and similarly for � @
@rQ
F.s; t/.
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With such tools a number of intermediate results are derived in the exercises at
the end of the chapter, that the reader is invited to make.

We continue the section by concentrating on one of the covariance models
that are most widely used in modelling gravity covariances. Before doing so we
underline again that such a model can be used for both, global and local covariance
modelling. In fact any global model of which we know the sum in analytical form,
namely

C.s; t/ D
C1X
nD0
cns

nC2Pn.t/ (5.154)

can be turned into a truncated form of the type

CM.s; t/ D
C1X

nDMC1
cns

nC2Pn.t/ (5.155)

D C.s; t/ �
MX
nD0
cns

nC2Pn.t/;

which is easily computed because C.s; t/ has a closed form and the second term in
(5.155) is just a finite sum up to a few hundred terms.

The Tscherning–Rapp model. This model (see Tscherning and Rapp 1974) has,
in its classical formulation, the general form (5.130) and (5.135), parameterizing the
gravity full power degree variances as

cn.�g/ D A

�
R2B
R2

�nC2
� n � 1

.n � 2/.nCB/
; n � 3; (5.156)

or, what amounts to the same, the form (5.138) with

A.n/

B.n/
D A.n � 1/

.n � 2/.nC B/
; n � 3: (5.157)

For reasons that are explained in Appendix A.2, the parameter B is restricted to
integer values.

The computation of C�g�g.s; t/ corresponding to the choices (5.157) is fully
worked out in Appendix A.2. The result can be cast into the form

C�g�g.s; t/ D A

�
B C 1

B C 2
KB.s; t/C 1

B C 2
K�2.s; t/

	
(5.158)

and the algorithms to compute KB.s; t/ and K�2.s; t/ have to be found in
Appendix A.2.
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With similar arguments one can compute as well the covariance function of T
and the cross-covariance of T and�g which are essential to perform the prediction
of T from�g and compute the corresponding prediction error.

We have

CT T .s; t/ D AR2
�

1

.B C 2/

1

s
K�2.s; t/C (5.159)

C 1

.B C 1/.B C 2/

1

s
KB.s; t/ � 1

B C 1
Œs � s2t � sG�1.s; t/C

� s2 C log
1 � st CG�1.s; t/

2
� s3P2.t/


	

and

CT�g.s; t/ D A
R2

rP .B C 2/

�
1

s
K�2.s; t/ � 1

s
KB.s; t/

	
: (5.160)

Note that in (5.160)�g is evaluated at P while T is evaluated at Q and we have
here s D RB

rP rQ
; t D cos PQ.

5.10 The Least Squares Collocation (l.s.c.) Solution

By solution we mean here computing the predictor (5.68) with its prediction error
variance (5.69), when the problem at hand is fully general. When we have to predict
T from�g, we have to utilize formulas (5.80) and (5.81). When we apply the latter
formulas to a local data set, fPi g 2 A, of residual gravity anomalies, �gobs

r .Pi /,
then we can predict local values of the residual anomalous potential bT r.P /.

A l.s.c. solution is exactly one such solution when a local covariance function is
used in formula (5.80) and (5.81).

We notice here that there seems to be a certain degree of contradiction in applying
the W-K principle of Sect. 5.4 to the present local context. In fact, by definition the
covariance function of Sect. 5.4 is obtained by averaging on the full sphere, or better
on the full rotation group; on the contrary the local covariance function used in a
l.s.c. solution is derived only for the area A where we have data and it would be
different for the true earth in another area.

Since the formula for the isotropic covariance function, (5.38), was in fact
obtained from the minimum quadratic invariant error principle (5.37), it seems
interesting to ask whether there is an analogous minimum quadratic error principle,
valid for the data in the area A only, leading us to the use of a local covariance
function. A rigorous answer to this question would be in the negative sense.
However it is feasible to build a local theory implying a definition of a local
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covariance function that is only approximately isotropic and is close to what is
suggested by the estimation formula (5.118).

Yet this goes beyond the scope of this presentation and here we limit ourselves
to some more elementary considerations.

Basically our solution would be justified at least in a mean square sense, if the
field Tr we want to estimate had, outside the area A and over all the rest of the
sphere, the same statistical behaviour. If we impose such a hypothesis by definition,
we will have a prediction which is optimal for this virtual field and on the same time
it agrees with ours, at least in terms of observations, in the area A.

So the question is not whether the local covariance is good for the whole sphere
(which is not) but rather what is the region in space where our local approximation
procedure gives valid answers.

Fortunately collocation theory helps by giving us the tool to compute the
prediction error (see (5.72) and (5.81)) and we can decide to go with the prediction
point as far as possible till the prediction error reaches a predefined threshold. In
this sense it is useful to observe that sometimes it is convenient to fix a threshold for
the relative prediction error, namely, if T .P / is the predicted functional,

Er .P / D
� E.P /2
CT T .P; P /

	 .1=2/
(5.161)

D

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:
1 �

NX
i;kD1

CT;T .P;Mi/C
.�1/
Yi Yk

CT T .P;Mk/

CT T .P; P /

9
>>>>>=
>>>>>;

.1=2/

:

This expresses the ratio of the prediction error to the signal we want to predict
and can be fixed to levels like 1%, and 5% or others. For instance, one can decide to
estimate a residual geoid of 1 m, r.m.s., with an error of 1 cm.

A warning has to be done at this point: when formulas like (5.81) or (5.161) are
used in an extrapolation mode, i.e. for points P outside the area A, they give us
always optimistic values because outside A the actual residual gravity field might
not be well-represented, as for its statistical behaviour, by the same local covariance
that has been estimated form values in A only. As a matter of fact this is of no
great concern because numerical experience shows that already inside A, close to
its boundary, E2.P / and E2r .P / increase to unacceptable values and the prediction
has to stop.

Remark 4. The above phenomenon can be understood qualitatively on the basis of
the following reasoning. Remember that the local covariance function is estimated
from empirical values and we have agreed that those have to become small at
angular distance  > � for some � much smaller than the size of A. Accordingly,
exploiting the possibility illustrated in the Example 5, we can model the theoretical
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Fig. 5.10 A the set covered
by data; A� the set where
data give some information;
A� the set where a good
prediction can be performed

local covariance to have a finite support, i.e. to go strictly to zero on the sphere,
when  > �.

So, assume one has to perform a prediction at P , on the sphere, from observed
values T .Pi/.

We see that outside the set A� � fP I  PQ � � for some Q 2 Ag (see
Fig. 5.10) the l.s.c. predictor of bT .P / is bT .P / D 0. In fact if the observation
points Pi are all in A and P is outside A�; PPi > 0;8i and then bT .P /, written in
the form

bT .P / D
NX
iD1

iC. PPi / (5.162)

is indeed zero. On the contrary, if we are well inside A, depending on the density
of data and on the signal to noise ratio, we can have a good prediction of T . Let’s
reason now on a belt for instance of width � in A, i.e. in AnA�, with A� � fP 2
A I  PQ < � ) Q 2 Ag. We expect that important information for the prediction
of T .P / is lost when P 2 AnA� and correspondingly the prediction error becomes
higher (see Fig. 5.10).

The above reasoning, though not rigorous, gives an idea of what happens in
reality. A few exercises at the end of the section will be useful to the reader to
enter into the subject.

Now that we have roughly agreed how to settle the prediction domain in a
horizontal direction, we have to address the problem of the vertical dimension of
this domain. The following trivial example can help in grasping the problem.

Example 7. Assume that T .P / has covariance function

C.P;Q/ D
C1X
nDm

cn

�
R2

rP rQ

�nC1
Pn.cos PQ/ I

assume that at Q, with rQ D R, we have observed T .Q/ without noise and we
want to predict T .P / along the radius passing throughQ. By applying (5.70) with
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evaluation functionals and one observation only we get (note that  PQ D 0 and
Pn.1/ D 1)

bT .P / D C.P;Q/C�1.Q;Q/T .Q/

D

C1X
nDm

cn

�
R

rP

�nC1

C1X
nDm

cn

T .Q/: (5.163)

and the corresponding relative error from (5.161) is

E2r .P / D 1 �

"C1X
nDm

cn

�
R

rP

�nC1#2

C1X
nDm

cn �
C1X
nDm

cn

�
R

rP

�2nC2 (5.164)

If we take the limit for rP ! 1 of (5.164), we receive

lim
rP!1E

2
r .P / D 1 � cm

C1X
nDm

cn

: (5.165)

Then we expect Er .P / to be close to 1 when rP increases, i.e. P moves to the
zenith of Q. For instance take for cn the simple model

cn D hn

with h close to 1, then we see from (5.165) that

E2r .P / ! h

i.e. the relative error becomes almost 100%. So if we fix a threshold for Er then we
will find an upper limit for the height where our solution is acceptable.

The phenomenon, highlighted in the Example 7, has general character and is
basically related to the fact that if Qi are observation points with rQi D R and P is
taken on a higher sphere, rP > R, then C.P;Qi/ is modified by multiplying cn by

the factor
�
R
rP

�nC1
; this corresponds to giving more weight to the low frequencies

and to damp the high frequencies so that the shape of the covariances is flattened. In
turn this implies that we need more measurements distant from the prediction area,
to perform a good prediction job. Accordingly we understand that data on a larger
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area are needed to make a prediction with fixed relative error. Or, equivalently, when
we rise in height the area of valid predictions has to be reduced.

Remark 5. Another way to approach the “localization” of the approximation to T
is to push even further our simplification of reference model to arrive to the so-
called planar approximation, where the reference gravity vector is always pointing
to a parallel direction. Also in this case the collocation concept can be applied with
the advantage of having available the Fourier transform machine (see Chap. 10 of
this Part II). An interesting connection can then be established between planar and
spherical covariance functions (see Forsberg 1987).

5.11 On the Optimal Combination of Global Coefficients
and Local Observations

The procedure of removing from the anomalous potential, and all the corresponding
observables, a global model TM and then applying to the residual part Tr the
collocation prediction, based on data in a local areaA only, as explained in Sects. 5.8
and 5.10, is not strictly rigorous. As a matter of fact one should apply the W.K.
principle to a full combination of the available information, namely the local data
and the global model coefficients. Beyond the rigor, one of the advantages of
proceeding along this line is that we can overcome the request that Tr.P / be of
zero average on A; such a request in fact is sometimes restrictive, specially if we
have to predict the potential with high accuracy in a small area.

So we assume we have performed only a smoothing for the high frequency
residual terrain correction and we call again T .P / the remaining unknown potential.
Then we consider as given information a set of local observations

Yi D Mi.T /C �i ; (5.166)

1 D 1; 2 : : : J

with T a random field with a global covariance

CT T .P;Q/ D C.P;Q/ D
C1X
nD2
cn.T /

�
R2

rP rQ

�nC1
Pn.cos PQ/ (5.167)

which for the moment we consider as known. As usual �i are observation noises
with zero mean and a known covariance matrix C� , moreover �i are independent
of T . In vector from we write (5.166) as

Y D M.T /C � (5.168)
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with first moments specified as usual by

EfYg D 0; CY Y D C.M;Mt /C C��: (5.169)

In addition we shall assume to know the harmonic coefficients of T to some
degree N , namely

TMnm D Tnm C �nm (5.170)

�n � m � n I n D 2; : : : ; N:

In (5.170) Tnm are the true harmonic coefficients of T , that we write as linear
functionals

Tnm D 1

4�

Z
T .R; #; �/Ynm.#; �/d� D H

nm
.T / (5.171)

and �nm are the errors of the known coefficients on the nature of which we shall
comment later on. We find it convenient to vectorize (5.170) as N � 1 vector
equations, namely

TMn D Tn C �n D Hn.T /C �n: (5.172)

The error vectors �n are assumed to be of zero average and to have covariance
matrices

Gn D Ef�n�tng I (5.173)

moreover, though not essential, we shall assume that

Ef�n�t`g D ın`Gn; (5.174)

i.e. �n and �` referring to different degrees are uncorrelated.
Furthermore we assume that all �n are not correlated with the random field

T .P /; EfT .P /�ng D 0.
In addition, although it is possible that the same observations Y have been used

too in the estimate of TMn , since in this case they are mixed with a much larger
data set coming from everywhere on the earth, outside A, we shall assume that the
correlation of �n and Y is zero, namely

EfY�tng D 0: (5.175)

In principle predicting by collocation any functional L.T / of T is nothing new,
however the specific form of the functionals Hn and their covariance and cross-
covariances with Y are such as to provide the solution in a very suggestive form.
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So deciding to limit ourselves to LP .T / D T .P / and so to search the predictors
in the form

bT .P / D �tY C
NX
nD2

˛tnTMn (5.176)

we can construct directly the normal system for the unknowns � and f˛ng. To
do so it is convenient first to compute some cross-covariances. For the sake of
convenience, to follow the vectorized notation (5.172) we can put

T .P / D
C1X
nD2

nX
mD�n

TnmSnm.r#; �/ D
C1X
nD2

TtnSn.P /; (5.177)

implicitly defining Sn.
Then we have, recalling that �2n D cn.T /

2nC1 ,

Ef�TMn
� �

TM`
�t g D C.Hn;Ht

`/CGnın` (5.178)

D EfTnTt`g CGnın` D .�2nI CGn/ın`;

EfY
�
TMn

�t g D C.M;Ht
n/ D EfM.T /Ttng (5.179)

D E

(C1X
`D2

M.St`/T`T
t
n

)
D �2nM.Stn/;

EfYT .P /g D C.M; P /; (5.180)

EfTMn T .P /g D C.Hn; P / D �2nSn.P /: (5.181)

Since the normal equation system has general form

8̂
ˆ̂̂
<
ˆ̂̂̂
:

CYY� C
NX
`D2
CYTM`

˛` D CYT

CTMn Y� C
NX
`D2
CTMn TM`

˛` D CTMn T

(5.182)

.n D 2; : : : ; N /;

by using the specifications (5.178) through (5.181) we find

CYY� C
NX
`D2
�2`M.St`/˛` D C.M; P / (5.183)

�2n ŒM.S
t
n/


t� C .�2nIn CGn/˛n D �2nSn.P /: (5.184)
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The partitioned form of this system suggests to solve (5.184) with respect to ˛n
and then substitute back into (5.183). In this way, posing

�n D �2n.�
2
nIn CGn/

�1; (5.185)

˛n D �nSn.P / � �nŒM.Stn/
t�; (5.186)

we find

.CYY �
nX
`D2
�2` fŒM.St`/
�`ŒM.St`/
t g/� (5.187)

D C.M; P / �
NX
`D2
�2`M.St`/�`S`.P /:

As we see, we have now a unique equation in �, i.e. (5.187). In order to better
understand its meaning we set in clear the components of the relevant matrices and
vectors. We have

fŒM.St`/
�`ŒM.St`/
t gij (5.188)

D
X̀

k;hD�`
MifS`k.Pi /g�`;khMj ŒS`h.Pj /


D Mi

8<
:Mj

8<
:
X̀

k;hD�`
�`;khS`k.Pi /S`h.Pj /

9=
;

9=
; :

So, if we call

C� .P;Q/ D
NX
`D2
�2` St`.P /�`S`.Q/ (5.189)

we can state that

NX
`D2
�2` ŒM.S

t
`/�`ŒM.S

t
`/


t D C� .M;Mt /: (5.190)

Similarly

NX
`D2
�2`M.St`/�`S`.P / D C� .M; P /; (5.191)
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so that (5.187) becomes

ŒCyy � C� .M;Mt /
� D C.M; P / � C� .M; P /: (5.192)

To further elaborate on (5.192) we find

CYY � C� .M;Mt / D C.M;Mt /� C� .M;Mt /C C�; (5.193)

The (5.193) suggests the introduction of the reduced covariance

C.P;Q/� C� .P;Q/ D
C1X
`D2
�2` St`.P /S`.Q/�

C1X
`D2
�2` St`.Q/�`S`.Q/

D
C1X
`D2

St`.P /�
2
` .I � �`/S`.Q/ D C.P;Q/; (5.194)

where (5.194) we have implicitly introduced the convention that

�` � 0; ` > N (5.195)

so as to extend directly the summation to infinity.
Another remark on (5.194) is that C.P;Q/ is a true covariance function because

the matrices �2` .I � �`/ are positive definite.
In fact, recalling (5.185),

�2` .I � �`/ D �2` Œ.�
2
` I` CG`/

�1.�2` I CG`/ � �2` .�2` I CG`/
�1


D �2` .�
2
` I CG`/

�1G` D �`G`: (5.196)

Since I � �` is symmetric and �`;G` too, one has that �`G` D G`�` implying
that (5.195) can be written as

�2` .I � �`/ D G
.1=2/

` �`G
.1=2/

` I (5.197)

thus showing the positive definiteness of I � �`.
With the help of (5.196) and (5.194) gets the form

C.P;Q/ D
NX
`2

St`.P /G`�`S`.Q/C
C1X

`DNC1
�2` St`.P /S`.Q/ (5.198)

Remark 6. Let us assume that the errors of the model coefficients, �`, have further
covariances that are proportional to the identity, i.e. these errors have the same
variance per degree and are independent, then one can put
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G` D �2�`I D "`

2`C 1
I ; �2` D c`

2`C 1
; �` D �`I; �` D �2`

�2` C �2�`

and one finds

C.P;Q/ D
NX
`D2
�`"`

�
R2

rP rQ

�`C1
P`.cos PQ/

C
C1X

`DNC1
c`.T /

�
R2

rP rQ

�`C1
P`.cos PQ/: (5.199)

This is an almost perfect counterpart of (5.139) and (5.140) with the difference
that here we are using the reduced covariance of T , there the local covariance of�g.

The most remarkable difference between (5.199) and (5.139) is in the factors

�` D �2`
�2`C�2�`

multiplying the error degree variances.

On account of the identity

�`"` D �2` �
2
�`.2`C 1/

�2` C �2�`
D �2�`
�2` C �2�`

c` D �`c`

we see that (5.199) can be written as well as

C.P;Q/ D
C1X
`D2
�`c`.�/

�
R2

rP rQ

�`C1
P`.cos PQ/ (5.200)

if we agree that �` � 1 when ` > N . The form (5.200) shows clearly that the role
of the error �`m is to turn down the degree variances of T when the ratio signal to
noise is high while it leaves c` unaltered for the high degrees of the model where �2�`
becomes larger. Note however that if we stop the model at N such that �2�` D �2` ,
when ` D N , then we have �N D 1

2
.

Another remark is that the degrees above N in (5.199) can be modelled on the
basis of local data as described in Sect. 5.8 of this chapter.

In terms of C our reduced normal system (5.192) becomes

.C .M;M/C C�/� D C.M; P /; (5.201)

implying the solution of a classical collocation normal system with covariance
C.P;Q/. Once � is found form (5.201), we can go back to (5.186) and we can
write

˛tn D Stn.P /�n � �tM.Stn/�n: (5.202)
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Therefore (5.176) gives

bT .P / D �tY C
NX
nD2

Stn.P /�nTMn C

��tM

 
NX
nD2

Stn�nT
M
n

!
: (5.203)

This suggests to introduce a modified model

T� .P / D
C1X
nD2

Stn.P /�nTMn (5.204)

so that (5.203) writes

bT .P / D �tY � �tM.T� /C T� .P / (5.205)

D �t fM.T � T� /C �g C T� .P /:

So our optimal solution is in fact the result of a remove-restore procedure, where
the optimal model to be used however is not simply

TM.P / D
NX
nD2

�
TMn

�t
Sn.P /, but rather T� .P /.

It is noteworthy that in accordance with this interpretation, the normal equation
for �, (5.201), can be viewed as an ordinary collocation equation if we observe that
C.P;Q/ is in reality the covariance function of T � T� D v.P /. In fact

v.P / D T � T� D
NX
nD2

Stn.P /.I � �n/Tn C (5.206)

�
NX
nD2

Stn.P /�n�n C
C1X

nDNC1
Stn.P /Tn

so that, by covariance propagation

Cvv.P;Q/ D
NX
nD2

Stn.P /�
2
n .I � �n/

2Sn.Q/ (5.207)

C
NX
nD2

Stn.P /�nGn�nSn.Q/C
C1X

nDNC1
�2nStn.P /Sn.Q/:

With the help of (5.196), it is not difficult to prove that
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�2n.I � �n/2 C �nGn�n D �nGn.I � �n/C �nGn�n

D �nGn D Gn�n; (5.208)

so that (5.207) is identical with (5.198). Let us observe that the covarianceC.P;Q/
in general is not isotropic unless the conditions G` D �2�`I , studied in Remark 6,
are satisfied.

Therefore C.P;Q/, in the low degrees components, should not be empirically
estimated in the usual way if the mentioned conditions are not fulfilled. In fact, if
we do so, we loose information on the stochastic structure of �`.

Although the ideas presented in this section have been formulated since some
years their implementation in numerical tests is relatively recent (Pail et al. 2010).
These however have given good results in both cases, the estimation of global
enhanced models or the prediction of very local geoid models. In this respect we
have confirmed the guess that the hypothesis of zero local mean value for �gr is
not required in the present situation.

A final point is worth mentioning, on the interpretation of �`, i.e. errors in the
model coefficients. These errors have been usually interpreted as the propagation
to TM` of the noise present in the observations used in their estimation. This certainly
accounts for the difference of TM` with respect to the true T`. This point of view has
been taken up in Sect. 5.8.

However when we model a local covariance function and we compare the
statistical behaviour of the low degrees coefficients between their global definition
and their local appearance in the area A, we might find a considerable difference
between the two, specially on account of the dimension of A. In this respect,
consider that an area of 10ı 	 10ı is just 1

648
times the area of the whole sphere.

Although there are in literature examples of attempts to model even globally non
homogenous covariances (Rummel and Schwarz 1977) we feel that the subject is
far from being settled. So we just state here that, the way in which this kind of
variability, that is reflected into a localization error for T`, could be included and
accounted for into our data analysis, will be object of future research.

5.12 Exercises

Exercise 1. Let .r/ D .x1; x2; x3/ be a Cartesian coordinate system and .r0/ D
.x0
1; x

0
2; x

0
3/ another Cartesian system rotated with respect to the first. Assume that

T .r/ D T .x1; x2; x3/ is a harmonic function in an open set ˝ , that the rotation
transforms into the open˝ 0. Put

v.x0
1; x

0
2; x

0
3/ D T Œx1.r0/; x2.r0/; x3.r0/
 I

prove that v.x0
1; x

0
2; x

0
3/ is harmonic in ˝ 0.
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(Hint: note that

vŒr0.r/
 � T .r/

and observe that

x0
i D ˙kRikxk;

where R � ŒRik
 is the rotation matrix between .r/ and .r0/. Recall that RtR D I .
Compute˙i

@2

@x2i
T by using the chain rule and prove that

˙i

@2T

@x2i
D ˙k

@2v

@x02
k

/

Exercise 2. Compute in spectral form and in spherical approximation the following
covariances and cross-covariances

Cıgıg.P;Q/; Cıg�g.P;Q/; CT ıg.P;Q/;

CTrrTrr .P;Q/; CTrr�g.P;Q/:

Furthermore, put T# D @
@#
T .P / and compute CT#T# .P;Q/, following the last

calculation of Example 4.

Exercise 3. Recalling the definition (5.148), assume that

�T .n/ D CT

nC 1
I (5.209)

show that the corresponding degree variances of T and�g are

cn.T / D CT

.nC 1/

�
R2B
R2

�nC1

cn.�g/ D CT

R2B

.n � 1/2

.nC 1/
�
�
R2B
R2

�nC2
:

(Hint: compare (5.130), (5.135) and (5.138) with (5.147) and recall the relation
(5.104)).

Exercise 4. Consider the covariance function of T when (5.209) holds; prove that

CT T .s; t/ D CT

�
log

s � t CG�1.s; t/
1 � t � s � 1

2
ts2


: (5.210)

(Hint: note that
snC1

nC 1
D
Z s

0

�nd� ; use this in (5.148), exchange integration and

summation and use (5.149) and (5.152)).
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Exercise 5. Prove that, with the covariance (5.210),

CT ıg.P;Q/ D � @

@rP
CT T .s; t/ (5.211)

D CT
s

rP
ŒG.s; t/ � 1 � ts


Cıgıg.P;Q/ D � @

@rQ
CT ıg.s; t/ (5.212)

D CT

R2B
s2Œ.1 � ts/G3.s; t/ � 1 � 2ts
 I

then find the corresponding crosscovariances and covariances CT�g; C�g�g, by
propagation through the linear relation

�g.P / D ıg.P / � 2

rP
T .P /: (5.213)

Exercise 6. Put into (5.210) rP D rQ D R D 6; 371 and RB D 6; 361; moreover,
compute the covariance at the origin, i.e.  D 0 ) t D 1, and impose that

CT T .s; 1/ D �2.T / D �2�2.N /

D 9782 Gal2 � 12 m2 Š 0:956 � 106 Gal2 m2

show that in this case

CT D 0:224 � 106 Gal2 m2:

By using this value in (5.212) show that

Cıgıg.s; 1/ Š 559 � 10�6 Gal2

i.e.

�.ıg/ Š 23:6mGal:

In other words a mean square geoid of 1m with the spectrum implied by (5.209)
corresponds to a mean square gravity disturbance of 23.5 mGal.

The reader is warned that these numbers do not refer to the true gravity field but
they are just realistic.

(Hint: note that if one puts t D 1 in (5.210) one gets the indefinite form 0
0
.

Therefore the limit for t ! 1 has to be computed by the de l’Hopital rule.)

Exercise 7. Assume that two values of geoid N�1; N1 are observed without noise
at �1 km and 1 km from the origin respectively (see Fig. 5.11).
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Fig. 5.11 Observed and
predicted values according to
the exercise

Assume that the covariance of N along the axis t (cf. Fig. 5.11) is given by

C.t1; t2/ D qj� j D e�˛j� j

� D t1 � t2; ˛ D log
1

q
; q < 1:

Prove that the optimal prediction bN.t/ at t D 0 and t D 2 is given by

bN.0/ D 9

1 � q4
.N�1 CN1/

bN.2/ D qN1

and the corresponding quadratic prediction errors are

E2.0/ D 1 � 2q2

1C q2

E2.2/ D 1 � q2:
Note that E2.2/ > E2.0/ because the extrapolation error is larger than the

interpolation error. For instance, with q2 D 1
2

one has E2.0/ D 1
3
; E2.2/ D 1

2
.

Exercise 8. Assume that the geoid N.t/ along a section (line) has covariance

C.t1; t2/ D e�˛�2

� D t1 � t2:

Assume that one has observed at t D 0 both the geoid N0 D N.0/ and its
derivative "0 D dN

dt
.0/, i.e. basically the deflection of the vertical changed of sign.

The observation noises have respectively standard deviations �N and �".
Compute the prediction N.t/ and the corresponding prediction error for every t

and verify that

bN.t/ D e�˛�2
�

1

1C �2N
N0 C 2˛

2˛ C �2"
�"0




E2.t/ D 1 � e�2˛�2
�

1

1C �2N
C 4˛2

2˛ C �2"



:
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(Hint: first compute for any t1; t2 the functions C.t1; t2/; @
@t2
C.t1; t2/;

@2

@t1@t2
C.t1; t2/

and then put t1 D t2 D 0.

Note that in this way C.N.0/; ".0// D @
@t2
C.t1; t2/

ˇ̌
ˇ
t1Dt2D0

D 0.).

Exercise 9. We use the same symbols and the same covariances of Exercise 5.
Assume one has measured without noise ıg at a pointQ, put t D cos PQ; rP D R,
and predict bN.P / for everyP . In particular prove that, choosingP D Q (i.e. t D 1)
one has

bN.Q/ D
bT .Q/
�

D RB

�

.1� s/

Œ1 � .1 � s/2.1C 2s/

ıg.Q/

E2.Q/ D CT

�
log

1

1 � s
� s � 1

2
s2 � s6

Œ1 � .1 � s/2.1C 2s/


	

Appendix

A.1

We want to prove the relation (5.98), sending the interested reader to the literature
Moritz (1980) and Sansò (1986) for the distribution of the vector T.!/.

We have

nX
mD�n

T 2nm.!/ D 1

.4�/2

Z
d�P T .R!P /

Z
d�QT .R!Q/ (5.214)

�
nX

mD�n
Ynm.#P ; �P /Ynm.#Q; �Q/

D 2nC 1

.4�/2

Z
d�P

Z
d�QT .R!P /T .R!Q/Pn.cos PQ/

D 2nC 1

.4�/2

Z
d�P 0

Z
d�Q0T .P 0/T .Q0/Pn.cos P 0Q0/ I

the last equality is justified because  PQ D  P 0Q0 and the double integral over
the sphere can be performed with any angular coordinates giving always the same
result.

Now we organize the double integral in (5.214) as follows; first fix P 0 and let
Q0 circulate around P 0 at a distance  P 0Q0 D  ; then integrate in d�P 0 ; then we
finally let  to vary from 0 to � . We get, putting d�Q0 D sin d d˛ into (5.214),
recalling also the definition (5.38) and using (5.94),
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nX
mD�n

T 2nm.!/ D .2nC 1/

2

Z �

0

d sin Pn.cos / � (5.215)

� 1
8�2

Z
d�P 0

Z

 P 0Q0 D 
T .P 0/T .Q0/d˛Q0

D 2nC 1

2

Z �

0

d sin Pn.cos /C. / D cn;

as it was to be proved.

A.2

We want to prove formula (5.156), providing the explicit form of KB.s; t/ and
K�2.s; t/. We first expand (5.157) into the sum of fractions, with the identity

n � 1
.n � 2/.nC B/

� B C 1

B C 2

1

nC B
C 1

B C 2

1

n � 2
so that we can write

C�g�g.s; t/ D A

(
B C 1

B C 2

C1X
nD3

snC2

nC B
Pn.t/C 1

B C 2

C1X
nD3

snC2

n � 2
Pn.t/

)

D A

�
B C 1

B C 2
KB.s; t/C 1

B C 2
K�2.s; t/

	
(5.216)

We compute at first the last term:

K�2.s; t/ D s4
C1X
nD3

sn�2

n � 2
Pn.t/ (5.217)

D s4
Z s

0

C1X
nD3
�n�3Pn.t/d�

D s4
Z s

0

1

�3

(C1X
nD0
�nPn.t/ � 1 � �t � �2P2.t/

)
d�

D s4
Z s

0

1

�3

˚
G.�; t/ � 1 � �t � �2P2.t/

�
d�

D s2

2
Œ1C 2ts � .3ts C 1/G�1.s; t/
 � s4P2.t/ log

1 � st CG�1.s; t/
2

Cs4 7t
2 � 1
4

:
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The last integral is calculated with the help of mathematical tables adjusting the
integration constant in such a way that both members of (5.217), multiplied by s�4,
tend to 0 when s tends to 0. As for the first term one writes, assuming B > 0,

KB.s; t/ D s2�B
C1X
nD3

snCB

nC B
Pn.t/

D s2�B
Z s

0

C1X
nD3
�nCB�1Pn.t/d� (5.218)

D s2�B
Z s

0

�B�1
(C1X
nD0
�nPn.t/ � 1 � �t � �2P2.t/

)
d�

D s2�B
Z s

0

�B�1G.�; t/d� � s2

B
� s3

B C 1
t � s4

B C 2
P2.t/:

Now the integrals

IB D
Z s

0

�B�1G.�; t/d� (5.219)

can be computed, for integer values of B , by exploiting a recursive relation, namely

IkC1 D sk�1

k
G�1.s; t/C .2k � 1/

k
tIk � k � 1

k
Ik�1 (5.220)

which is derived from the identity

@

@s


sk�1G�1.s; t/

� D 
ksk � .2k � 1/tsk�1 C .k � 1/sk�2�G.s; t/; (5.221)

integrating both members from 0 to s and re-arranging. In order to trigger (5.220)
we need two initial values of Ik , for instance I1; I2. But I1 has already been given
in (5.152) and I2 is easy to compute since, recalling (5.151),

I2 D
Z s

0

�G.�; t/d� D
Z s

0

.� � t/G.�; t/d� C t

Z s

0

G.�; t/d�

D G�1.s; t/ � 1C tI1: (5.222)

The relations (5.216), (5.217), (5.220), (5.152) and (5.222) all together give the
explicit form of the covariance function of �g for every integer B . For a global
use of this covariance the model (3.181) coming from the best fit of EGM08 degree
variances between degrees 180 and 1,800, can be used, with the only warning that
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in (3.181) one has �2` D c`

�
T
�

�
, whereas we treat here cn.�g/ related to the former

by the relation

cn.�g/ D .` � 1/2

R
2

cn.T / D .` � 1/2
R
2

�
GM

R
2

�2
�2`: (5.223)

We notice by the way that also the improved model (3.178) transformed
according to (5.223) can be added by applying exactly the same methods presented
in the Appendix and the decomposition

` � 1
.` � 2/.`C 4/.`C 17/

D 1

114

1

` � 2
C 5

78

1

`C 4
� 18

247

1

`C 17
: (5.224)
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