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Foreword

“...the present book is intended to be theoretical in the sense
in which the word is used in the term theoretical physics”
[from the preface of Physical Geodesy

by W.A. Heiskanen and H. Moritz

In the year 1994 the International Geoid Service, on behalf of the International
Association of Geodesy, has organized and given in Milan the first course of the
International School for the Determination and Use of the Geoid. The purpose was
to gain momentum in spreading worldwide that part of the geodetic scientific culture
which is known as physical geodesy, namely the theory of the determination of the
potential of the gravity field of the earth.

Since 1994 other nine courses of the school have been run in Rio de Janeiro,
Milan, Johor, Thessaloniki, Budapest, Kopenhagen, Como, La Plata, St. Petersburg.
A large number of students from all over the world, in fact 307, have attended the
school and after that they have actively joined the international geodetic community,
so that we can say that the concept has proved to be fruitful. The courses have been
organized in a quite regular fashion with 1 day of introductory theory and 4 days of
explanations and labs exercises to get trained in the use of the software relevant to
different specific items.

For the purpose of effectiveness the school was endowed with lecture notes where
both theory and applications were supplied. They constitute the first core of the
present book.

The teachers configuration had a turnover in the years, yet all the authors of the
book have been teachers at some of the courses.

The full group of teachers has included: O. Andersen, R. Barzaghi, R. Forsberg,
G. Fotopoulos, W. Kearsley, N. Pavlis, R. Rapp, F. Sanso, P. Schwintzer, M. Sideris,
C.C. Tscherning, I. Tziavos, H.G. Wenzel.

The geoid, which is also mentioned in the title of the book, is plainly an
equipotential surface of the gravity field of the earth, identified by a conventional
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viii Foreword

value of the potential, such that it runs close to the surface of the ocean, within
meters, but then well inside the continental masses specially in mountainous areas.

As such the geoid is a geometrical entity, usually described by the height of its
points over the earth ellipsoid, the so called geoid undulation.

This in turn has become nowadays an important piece of knowledge for a number
of scientific and technological applications; here we mention only two, namely
the analysis of the oceanic flow which is related to the average sea surface height
with respect to the geoid and the transformation of ellipsoidal heights, determined
by ubiquitous GNSS techniques, into the more physically meaningful orthometric
heights, i.e. the heights above the geoid.

From the point of view of the determination of the gravity field, knowing
the geoid and the mass distribution above it is a sufficient information to compute the
gravity potential and all derived quantities throughout the whole space, outside the
geoid itself.

The problem of how to deal with the mass distribution above the geoid has
historically produced two different lines of thought in Geodesy.

One dates back to Helmert (1884), who further developed the ingenious ideas
of Stokes (1849), assuming that the mass distribution is know. These ideas are still
pursued by a number of modern authors among which we mention only B. Heck,
Z. Martinec and L. Sjoberg. The second line of thought, known as the theory, can be
traced back to the seminal monography of Molodensky-Eremeev-Yourkina (1962).
In this case it is the surface of the earth and not the geoid to be directly determined.

This is based on the calculation of the separation of the earth surface to a much
closer one, the telluroid, actually determined from surface data only by applying a
rigorous linearization of the so called geodetic boundary value problem. In fact it
is show that the determination of the geometric quantity “separation between earth
surface and telluroid”, the so called height anomaly, has once more to be done by
simultaneously solving for the potential of the gravity field.

The Molodensky concept is basically that the gravity field outside the masses
can be fully computed from data taken on the surface only. From the modern
mathematical point of view this is an early formulation of a so called free boundary,
boundary value problem. It is after the determination of the surface of the earth
has been achieved, that one can then put the problem of its downward continuation
inside the masses until the geoid is derived.

In this way the problem is split basically into two steps. The first is the direct
determination of the earth surface through the solution of a free boundary value
problem, which is a well posed problem even in its general non linear formulation
as shown by authors like L. Hormander, P. Holota and F. Sanso. The second step
is then the approximate solution of an improperly posed problem, requiring the
knowledge of the mass distribution too. Along this line many modern authors have
been working among which we want to mention only H-Moritz and T. Krarup, who
not only developed the modern mathematical foundations of this theory but also
provided a quite original approach to the computation of approximate solutions,
borrowing methods from the theory of random fields, known in physical geodesy
under the name of collocation.
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It is on this foundation that the book builds the modern approach to the
determination of the geoid and more generally to the solution of the main problems
of physical geodesy.

In this respect we could say that the book is not comprehensive, since the Helmert
line is not covered in the text.

On the other hand this book, in continuation with the most classical text of
physical geodesy by W. Heiskanen and H. Moritz, covers and develops the material
of the other text of “Advanced Physical Geodesy”, by H. Moritz. With the purpose
of addressing students with a basic background in mathematics and physics, the
book in Part I builds its own tools and theory from ground level. In order to avoid
interrupting the logical line of thinking, when appropriate some more technical
mathematical proofs are delayed to appendices at the end of each chapter.

In the second part various methods are illustrated with reference to specific
applications and with fully developed examples, together with the explanation of
the current solution to the relevant numerical problems.

In part three the modern mathematical foundation of Molodensky’s theory and
the most recent theoretical achievements, at least for the linearized formulation, are
presented for students at advanced level that want to go deeper into the subject. Once
more all the material is created starting from ground without presupposing a higher
level of mathematics.

During the long period of preparation of the book many events happened which
are changing the environment of geodetic theory and methods. Just to mention two
of them, on the one hand a global gravity model has been established, EGMOS,
with a resolution of about 10 km on the earth surface and with an unprecedented
accuracy; on the other hand dedicated gravity satellite missions, like GRACE and
GOCE are flying, that are still at work providing new data sets requiring a significant
development of the tools for the combination of different gravity models.

Some of these items are fully included into the book, for instance the calculation
and use of EGMO08 model; some others are only contingently touched. As a matter of
fact we are leaving now in an epoch where limits of the present theory and methods
start showing here and there.

Indeed research in physical geodesy is, hopefully, a never ending story so this is
a challenge for future work and future books.

Fernando Sanso
Honorary President of the
International Association of Geodesy






Acknowledgements

We would like to acknowledge the past presidents of the International Association
of Geodesy, who fostered the Geoid School in the last years. We would especially
like to acknowledge the support of the past President Klaus Peter Schwarz (1 2012).

We also wish to mention the following teachers who contributed to the school,
delivering several versions of the courses: R.H. Rapp, R. Forsberg, W. Kearsley,
H.G. Wenzel (1 1999), P. Schwintzer (7 2004) and R. Barzaghi. Though they have
not participated directly in the drafting of this book, they have contributed indirectly
by means of their scientific knowledge and lecturing skills.

Finally a personal sincere thank is due by the writer to Cristina Giannetto for the
competent typing of the manuscript of Part I and III and to Fausto Sacerdote and
Christian Tschering for careful proof reading.

xi






Contents

Partl Theory

Fernando Sanso

1  The Forward Modelling of the Gravity Field............................
1.1 Outline of the Chapter...............oooeiiiiiiiiiiiiiiiiii e,
1.2 Newton’s Gravitation Law ......... ...,
1.3 The Newtonian Gravitational Attraction of Bodies.................
1.4 The Gravity Field..............oo i
1.5  Gauss, Poisson, Laplace ...........coooiiiiiiiiiiiiiiiiiiiiiiin
1.6 Dirichlet, GIeen ..........coiiiiiiiiii i i,
1.7 Elements of Geometry of the Gravity Field

and Related Definitions ...
1.8  The Laplace Operator in Curvilinear Coordinates..................
1.9  Simple Mathematical Models of the Gravity Field .................
1.10 Anomalous Quantities of the Gravity Field and a More

Precise Definition of the Geoid ............coooiiiiiiiiiiiiiiii
1.11 Summary of Height Systems and Their Relation

to the Geodetic Datum ...
112 EXOTCISES - u
APPENAIX - .

AL

A

A

A

2 Observables of Physical Geodesy and Their Analytical

Representation ...
2.1 Outline of the Chapter...............cooiiiiiiiiiiiiiiii i,
2.2 Observables and Observation Equations: Linearization.............
2.3 The Linearized Observation Equations

of Physical Geodesy...........ccooviiiiiiiiiiiii i

21
30
35

43

53
57
63
63
64
66
68

73
73
75

80

Xiii



Xiv

Contents

2.4  On the Relation Between Height Anomalies and Geoid

Undulations .. ....eeee e 91
2.5 The Remove—Restore CONCePt .......oovvuuuuieeiiniiiiieeeennnnnnns 94
2.6 The Spherical Approximation Procedure ........................... 97
2.7 A Review of Observation Equations with Unknown

Reference Potential..............cooiiiiiiiiiiiiiii 101
2.8 EXCICISES .t vttt ettt et e e e 104
APPENAIX ettt 105

ALl 105

A 107
Harmonic Calculus and Global Gravity Models ........................ 111
3.1  Outline of the Chapter.............ceeiiiiiiiiiiiiiiiiiici s 111
3.2 The Newton Integral Representation of the Anomalous

Potential ... 113
3.3 Legendre FUncCtions ............ooeueiiiiiiiiiiiiiiiiiiie i, 117
3.4  Spherical Harmonics ..........oouiiiiiiiiiiiiiiiiiiiiiii s 124
3.5 Downward Continuation and Krarup’s Theorem ................... 135
3.6 Ellipsoidal Harmomnics..........ouuueiiiiiiiiiiiiiiiiei s 138
3.7  Global Models as Approximate Solution of Boundary

Value Problems .........oooiuiiiiii i 145
3.8  Commission and Omission Errors. Kaula’sRule ................... 151
3.9 EXEICISES . n v vtteeee ettt et e e e e 161
APPENAIX .« ettt 162

AL 162

A 164

A3 165

A 167
The Local Modelling of the Gravity Field: The Terrain Effects....... 169
4.1  Outline of the Chapter............ooiiiiiiiiiiiiiiii e, 169
4.2 High Accuracy and High Resolution Local Gravity Model ........ 170
4.3  The Smoothing Role of Terrain Correction (TC) ................... 174
4.4 From Terrain Correction (TC) to Residual Terrain

Correction (RTC) ... e 179
4.5  Strategies for the Implementation of Terrain Effects ............... 185
4.6 Comparisons and Interpretations ............ooeeeeeeiiiiiiieeeennnn. 191
47 AnOpenISSue ......cooveiiiiiiiii 195
4.8 EXCICISES «.unnuttttet ettt ettt 197
APPENAIX ettt 199

A 199
The Local Modelling of the Gravity Field by Collocation.............. 203
5.1  Outline of the Chapter...............ccooiiiiiiiiiiiiiiii i, 203

5.2 An Introduction to the Problem................ccooiiiiiiiiiiiiiian, 204



Contents XV

5.3  The Principle of Minimum Square Invariant Prediction

Error by a Simple Example ... 206
5.4  On Collocation Theory, or the Wiener-Kolmogorov

Principle Applied in Physical Geodesy ..............cccoooiee... 212
5.5  The General Collocation Problem ..................ooooociiiiii. 216
5.6  Covariance and Spectral Harmonic Calculus ....................... 222
5.7  The Estimate of Global Covariance Functions...................... 228
5.8  The Estimate of Local Covariance Functions....................... 231
5.9  Covariance Parametric Models ...............coooiiiiiiiiiiii, 237
5.10 The Least Squares Collocation (L.s.c.) Solution..................... 240
5.11 On the Optimal Combination of Global Coefficients

and Local ObServations ...........oouuieiiiiiiiiiieiiiiiiiieeannn. 244
5.12 0 EXEICISES .. v vteeeeetttt ettt et ettt 251
APPENAIX ettt e 255

O 255

A 256

PartII Methods and Applications

6

Global Gravitational Models ............................. 261
6.1  Outline of the Chapter...............ccooiiiiiiiiiiiiiiii i, 261
6.2 INtroducCtion...............oiiiiiiii i 262
6.2.1  Local and Regional Gravimetric Models .................. 264
6.2.2  Global Versus Local Gravimetric Models:
Similarities and Differences............................... 264
6.3  Signal Representation and Data Characteristics .................... 265
6.4  The New Satellite MiSSIONS.........coeiiiiiiiiiiiiiiiiiieeennnn. 269
6.5 Beyond the Sensitivity of Satellite Data............................. 274
6.6  State-of-the-Art Global Gravitational Modeling.................... 277
6.6.1 EGMO06... .o 279
6.6.2 EGM2008..... ..t 293
6.7  Data Requirements and Data Availability ........................... 304
6.7.1 ElevationData ... 304
6.7.2  Terrestrial Gravity Anomaly Data ......................... 305
6.7.3  Altimetry-Derived Gravity Anomalies .................... 306
6.7.4  The Merged 5’ x 5’ Area-Mean Gravity
Anomaly File ...........oo i 306
6.8  Use of Global Gravitational Models and of Their By-Products.... 307
6.9  Temporal Variations ............oooeiiiiiiiiiiiiiiiiii e, 309
6.10  OUtlOOK ..ottt 309
Geoid Determination by 3D Least-Squares Collocation ............... 311
7.1 Outline of the Chapter...............ccooiiiiiiiiiiiiii . 311

7.2 INrOdUCHON .. ..ottt e e e e et 311



XVi

Contents
7.3 TREOTY ottt 312
7.4  The Remove-Restore Method................ooooiiiiiiiiiiiiii, 316
7.5  Covariance Function Estimation and Representation............... 319
7.6  Conversion from Geoid Heights to Height Anomalies ............. 324
7.7  LSC Geoid Determination from Residual Data..................... 325
7.8 CONCIUSION ...ttt et et 329
Topographic Reductions in Gravity and Geoid Modeling ............. 337
8.1  Outline of the Chapter.............ccceviiiiiiiiiiiiiiiiiiii s 337
8.2  INtrodUCHON ... .ottt 338
8.3  Topographic Reductions and Gravity Field Modeling.............. 340
8.3.1  The Potential and the Attraction of the Earth’s
TopOgraphy «..oveei i 340
8.3.2  Terrain Reductions for Gravity Densification
and Gridding ........c.ooviiiiiii 343
8.3.3  Topographic/Isostatic Effects on Gravity
and Airborne Gravity and Gradiometry ................... 353
8.3.4  Terrain Reductions and Physical Heights ................. 356
8.3.5  The Treatment of the Topography in Geoid
and Quasi-geoid Determination...................coooe.n.. 357
8.4  Terrain Effects in Geoid and Quasi-geoid Determination .......... 363
8.4.1  Helmert’s Second Method of Condensation............... 363
8.4.2  Rudzki’s Inversion Scheme ..o 365
8.4.3  Residual Terrain Model (RTM) .............oooiiiiiinn.... 366
8.4.4  Terrain Effects and High-Resolution Global
Geopotential Models ..., 369
8.4.5 The Remove-Restore Methodology
and the Different Reduction Schemes ..................... 371
8.5  Methods for the Numerical Estimation of Direct
and Indirect Topographic Effects ................coooiiiiiiiiia. 374
8.5.1  The Mass Prism Topographic Model and the
Numerical Integration Method (NIM) ..................... 376
8.5.2  The Fast Fourier Transform (FFT) Method ............... 380
8.6  Numerical EXamples .........ooooiiiiiiiiiiiii i 385
8.6.1  Effects of Terrain Reductions on Gravity
Anomalies and Geoid Heights ............................ 386
8.6.2  Determination and Evaluation of Gravimetric
Geold Models ....uvviieiiiii 391
8.7  Summary and Concluding Remarks..................ooooooiii. 398
Marine Gravity and Geoid from Satellite Altimetry ................... 401
9.1  Outline of the Chapter............cceiiiiiiiiiiii s 402
9.2 Altimetry Data..........ooiiiiiii 403

0.3 RetracKing .....coouunniiiiit et 405



Contents

10

9.4  Sea Surface Height Observations..............cccvviiiieieiniinnn..
9.4.1 Mean Sea Surface and Mean Dynamic Topography ......
9.4.2  Remove-Restore for Satellite Altimetry ...................
9.4.3 Dynamic Sea Surface Topography.................ccoo....
9.5  Crossover Adjustment.........ouuuueeeeiiiiiieiiiii e
9.6  Data Editing, Data Quality and Error-Budget.......................
9.7  Gravity Recovery from Altimetry .............ccoviiiiiiiiiiiinn.
9.8  Least Squares Collocation for Altimetry ................cccovviunes
9.8.1 Interpolation Using Least Squares Collocation ...........
9.9  Deterministic Methods ..............oooiiiiiiiiiiiiiiiii
9.10 Fast Spectral Methods for Altimetric Gravity Prediction ..........
9.10.1 Fast Fourier Techniques for Altimetric Gravity ...........
9.10.2 Filtering .....oouuueiiiiiii e
9.11 Practical Computation of Global High Resolution
Marine Gravity ......coeeevniiiieeeeni e
9.11.1 North Sea Example ...........cccoviiiiiiiiiiiiiiiiiiean.
9.12  Accuracy of Present-Day Altimetric marine Gravity Fields .......
9.13 Integrating Marine, Airborne and Satellite Derived Gravity .......
9.13.1 East Greenland Airborne and Altimetric
Gravity Example.........ooooooiiiiiiii
9.14 Altimetric Gravity Research Frontiers ....................cooiuie
9.14.1 ICESatand Cryosat-2 .........coevviiiiiieeinniiiieeeeennn.
9.14.2 Altimeter Range Corrections...........cccovvviuvieeeennnn.
9.143 Ocean Tides........ccovviiiiiiiiiiiiiiiii i
9.14.4 Retracking in Coastal and Polar Regions..................
Appendix A Data RESOUICES ......ooviutiiiiiiiiiiiiii i
AL Altimetry Data ...
A.2 Altimetric Gravity Field Resources......................ooo...

Geoid Determination by FFT Techniques ...............................
10.1 Outline of the Chapter...........oovuiiiiiiiiiiiiii e
10.2 Review of Stokes’s Integral and Its Evaluation .....................
10.2.1 Stokes’s Boundary Value Problem.........................
10.2.2  Geoid Undulations and Terrain Reductions ...............
10.2.3  Practical Evaluation of Stokes’s Integral ..................
10.2.4 The Need for Spectral Techniques.................oeeee..
10.3  Geoid Undulations by FFT ...... ..o
10.3.1 Planar Approximation of Stokes’s Integral ................
10.3.2  Spherical Form of Stokes’s Integral .......................
10.3.3 Elimination of Edge Effects and Circular Convolution ...
10.4 FFT-Evaluation of Terrain Effects......................ooe.
10.4.1 2D Formulas for Terrain Effects ...........................
10.4.2 Terrain Corrections by 3D FFT ...t
10.5 Optimal Spectral Geoid Determination ...............coooeeeeenn..
10.5.1 Error Propagation............ooeveiiiiiiiiiiiiiniiinee...



XViii

Contents
10.6  Other Examples of FFT Evaluation of Geodetic Operators ........ 478
10.6.1 The Vening Meinesz Integral .................cooooee.. 478
10.6.2 The Analytical Continuation Integrals..................... 479
10.6.3 The Inverse Stokes and Inverse Mening
Meinesz Formulas ..o, 480
10.7 Concluding Remarks ..........ccooiiiiiiiiiiiiiiii e 481
APPENAIX ettt 483
A.l Basic Definitions .........ooeiiiiiiiii it 483
AL SINUSOIAS oo 483
A.1.2  Fourier SEries .......coovviiiiiiiiiiiiiiii i, 483
A.2  The Continuous Fourier Transform and Its Properties ............. 485
A.2.1 Definition of the Continuous Fourier Transform.......... 485
A.2.2  The Impulse Function ..o, 486
A.2.3  The Rectangle and the Sinc Functions..................... 488
A.2.4 Interpretation of the Fourier Transform and
the Fourier Series .........oovviiiiiiiiiiiiiiiiiee, 489
A.2.5 Propertiesof the CFT ..o, 489
A.2.6  Convolution and Correlation ..................oooeeeee.nn. 490
A.3  The Discrete Fourier Transform ...............ccoiiiiiiiiiiiinn. 493
A.3.1 From the Continuous to the Discrete Fourier
Transform: Aliasing and Leakage ......................... 493
A.3.2 Discrete Convolution and Correlation:
Circular Convolution and Correlation ..................... 496
A.3.3 Correlation, Covariance, and Power Spectral
Density Functions ............oooooiiiiiiiiiiiiiiiiie... 498
A.3.4 The DFT in COmMPUErS.......covvviiuiiieeeiiiiiiieeeannn. 500
A.3.5 The Fast Fourier Transform ..................ooovieeeaa. 502
A.4  The Two-Dimensional Discrete Fourier Transform ................ 503
A.5 Efficient DFT for Real Functions...............ccoooiiiiiiiiiii, 505
A.5.1 DFT of Two Real Functions Via a Single FFT ............ 505
A.5.2  Simultaneous Convolution of Two Real
Functions with the Same Function......................... 506
A.6  Use of the Fast Hartley Transform ... 507
A.6.1 The Discrete Hartley Transform ........................... 508
A.6.2  Definition of the 1D Discrete Hartley Transform ......... 508
A.6.3  Definition of the 2D Discrete Hartley Transform ......... 509
A.6.4 Properties of the Discrete Hartley Transform ............. 509
A.7 Relationship Between the DHT andthe DFT ....................... 514
A.7.1 Computation of the 1D DFT Via the ID DHT ............ 514
A.7.2  Computation of the 2D DFT Via the 2D DHT ............ 515

A.7.3  Advantages Uniquetothe FHT ........................ ... 516



Contents Xix

11 Combination of Heights.................cooiiiiiiiiiiiiiiiies 517
11.1 Outline of the Chapter............oovuiiiiiiiiiiiiiii e 517
11.2 Introduction......oouueiiii i 517
11.3  Why Combine Geoid, Orthometric and Ellipsoidal

Height Data?.........ooiiii e 520
11.3.1 Modernizing Regional Vertical Datums ................... 520
11.3.2  Global Vertical Datum................cooiiiiiiiin... 523
11.3.3  GNSS-Levelling .....c.ovvviiiiiiiiiiiiiiiiicciicne 523
11.3.4 Refining and Testing Gravimetric Geoid Models ......... 524
11.4 Least-Squares Adjustment Methodology
for Combining Heights ..o 525
11.5 Application of MINQUE to the Combined Height
Adjustment Problem ... 528
11.6 Role of the Parametric Model ...................ooit. 531
11.6.1 Modelling OptionS.......covvuuiiieeeeiiiieeeeniiiaeee.. 534
11.6.2 Semi-automated Assessment Procedure................... 535
11.6.3 Numerical Example ..............ccooiiiiiiiiiii. .. 539
117 Remarks.......o.oooiiiii i 543

Part III Advanced Analysis Methods
Fernando Sanso

12 Hilbert Spaces and Deterministic Collocation........................... 547
12.1 Outline of the Chapter..............ooooiiiiiiiiiiiiiiiiii e 547
12.2  An Introduction to Hilbert Spaces..................coooiiiiioa. 548
12.3  Orthogonality, Duality, Bases....................oocoiia. 555
12.4 Hilbert Spaces with Reproducing Kernel ........................... 568
12,5 EXETCISES .. uunniitte ettt e et e 583

13  On Potential Theory and HS of Harmonic Functions .................. 591
13.1 Outline of the Chapter...............oooiiiiiiiiiiiiiiiiii e, 591
13.2  Harmonic Functions and Harmonic Polynomials................... 592
13.3  Spherical Harmonics ..........coooiiiiiiiiiiiiiiiii e 603
13.4 Hilbert Spaces of Harmonic Functions and First

Theorems of Potential Theory ...t 612

13.5 Green’s Function and Krarup’s Theorem ........................... 627
1306 EXETICISES ..ununiittet et et e e 640

14 A Quick Look to Classical Boundary Value Problems
(BVP) SOIILIONS ..ottt eeeeeeeees 645
14.1 Outline of the Chapter...............oooiiiiiiiiiii i, 645
14.2 The Classical Molodensky Approach: A Historical Excursus ..... 645
14.3 The Approximate Solution of Molodensky’s Problem

by Downward Continuation................ceoeviiiiiieenninnnen... 647

14.4  On the Local Use of Molodensky’s Formula........................ 652
14.5 The Helmert Approach: A Short Review ........................... 657

14,6 EXOICISES .. iettt ettt ettt et e e e e 659



XX

Contents

15 The Analysis of Geodetic Boundary Value Problems in

Linear form ........ ... . 663
15.1 Outline of the Chapter...........oovvuiiiiiiiiiiiiii e 663
15.2 A Precise Definition of the Two Main BVP’s
and of Their Solution Spaces ...........cccoviiiiiiiiiiiiiiiiiean. 666
15.3 Linearized Molodensky’s Problem ....................ooooooia. 672
15.4 The Analysis of the Linearized Fixed Boundary BPV ............. 681
15.5 From Least Squares to Galerkin’s Method .......................... 683
15.6 Two Geodetic Solutions of Galerkin’s System...................... 693
15.7 New Data Sets from Spatial Gravity Surveying .................... 701
158 EXEICISES .ouuuuiii ittt ettt e 704
References........ ..o 707



List of Contributors

O.B. Andersen Geodetic Department, DTU-Space, Elektrovej, DK-2800,
Denmark, oa@space.dtu.dk

Georgia Fotopoulos The University of Texas at Dallas, Geosciences, Richardson,
Texas, USA, foto@utdallas.edu

Nikolaos K. Pavlis National Geospatial-Intelligence Agency (NGA), Springfield,
Virginia, USA, Nikolaos.K.Pavlis@nga.mil

Fernando Sanso Politecnico di Milano, DIIAR — Milano, Italy,
fernando.sanso @polimi.it

Michael G. Sideris University of Calgary, Geomatics Engineering, Calgary,
Canada, sideris@ucalgary.ca

C.C. Tscherning Niels Bohr Institute, University of Copenhagen, Juliane Maries
Vej 30, DK-2100 Copenhagen @, Denmark, cct@gfy.ku.dk

Ilias N. Tziavos Aristotle University of Thessaloniki, Department of Geodesy and
Surveying, Thessaloniki, Greece, tziavos @olimpia.topo.auth.gr

XX1



Part I
Theory
Fernando Sanso



Chapter 1
The Forward Modelling of the Gravity Field

1.1 Outline of the Chapter

The chapter has the purpose of presenting all the main characters of the book and
some tools to handle them, and to understand their mathematical properties. We
start with the gravitation law in Sect. 1.2, we clarify what is a gravitation field, in
particular for an extended body, and we prove that this is a conservative or potential
field (Sect. 1.3), i.e., the vector field of gravitational accelerations can be expressed
as the gradient of a potential. Switching from an inertial system to one attached
to the body of the earth, a proof mass rigidly attached to it will experience the
centrifugal acceleration which is also a field that can be expressed as the gradient
of a potential. By adding gravitational and centrifugal acceleration vectors, or their
potentials (Sect. 1.3), we define the gravity field, which is the object of our study.

In order to understand the mathematical properties of the gravitational part of
the gravity potential, we need theorems of vector calculus which are standard in
mathematical physics. These are the Gauss theorem, the Dirichlet and the Green
identities (Sects. 1.5 and 1.3).

They are used to build the Poisson equation, that relates in differential terms the
potential to the mass density, and we find for the first time that the gravitational
potential is harmonic outside the masses and regular (i.e., tending to 0) at infinity.

In Sect.1.7 we introduce the concepts of plumblines and equipotential (or
horizontal) surfaces and we study in a quite elementary way their relation to the
vertical variation of the gravity vector.

Strictly speaking, this last item, which has been a long lasting object of researches
in geodesy, might not be necessary in view of Molodensky’s principle that the
knowledge of the exterior gravity field can be fully achieved by observations taken
exclusively outside the masses. Yet there are points in our theory, where certain
approximation procedures can be facilitated by the knowledge of the equations
contained in this section.

We also meet in it, for the first time, the definition of geoid and orthometric
height, namely the height of any point on the geoid, computed along the vertical.

F. Sanso and M.G. Sideris (eds.), Geoid Determination, Lecture Notes in Earth System 3
Sciences 110, DOI 10.1007/978-3-540-74700-0_1,
© Springer-Verlag Berlin Heidelberg 2013
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Section 1.8 has the aim of learning how to express the Laplace operator in
orthogonal coordinates, in particular in spherical and ellipsoidal coordinates, which
are so relevant to geodesy. Any reader acquainted with differential and tensor
calculus can simply skip it.

Section 1.9 is devoted to the introduction of the so-called normal field. This is a

model of the gravity field y and of its potential U, which by means of the choice
of four constants (the equatorial semi-axis a, the eccentricity e, the angular velocity
o and the value Uj of U on the reference ellipsoid) and by fixing five geometrical
parameters (the position of the center of the ellipsoid and the direction of its polar
axis) approximates at once the true gravity field with a relative accuracy somewhere
between 10™* and 1073,
The explicit form of the normal potential is derived in the book by exploiting
standard methods of differential equations without any recourse to the theory of
analytical functions, as it is usually done in textbooks of theoretical geodesy. This
item, which is typically not well-known by students in geodesy, is only shortly
touched in Sect. 3.6, where we study global models.

Once the normal potential U is available, it is obvious to define the anomalous
potential 7" as the difference between the actual gravity potential W and U. This is
done in Sect. 1.10, where several anomalous quantities are introduced too, such as
the height anomaly and the geoid undulation, the gravity disturbance, the free air
gravity anomaly and the deflection of the vertical.

Finally, in Sect. 1.11 all the main types of height systems in use in geodesy are
recalled. Among them, dynamic and orthometric heights are by definition intrinsic,
in the sense that they are defined only on the basis of the physical position of
the point P with respect to the earth body and to its true gravity field. On the
contrary, ellipsoidal heights and normal heights require the definition of a reference
ellipsoid, of its position in space as well as of the normal potential U attached
to 1t.

Since the position of the ellipsoid & in space is only implicitly defined through
conventions and observations, it is not perfectly fixed with respect to the earth body
and even more it undergoes variations in time. Therefore it is only natural to study
how the various height coordinates that depend on & change as a consequence of
small rototranslations of & and of its normal potential.

The problem is solved for ellipsoidal heights in a linearized form, while normal
heights are basically proved to be invariant at least to the first order.

1.2 Newton’s Gravitation Law

In the year 1686 I. Newton, in his “Philosophiae naturalis principia mathematica”,
formulated one of the basic laws of physics, astronomy and geodesy, namely his
celebrated law of gravitational attraction:
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* Any two point masses, Mp, Mo, in an inertial system, attract each other with a
force proportional to the values of the masses, and inversely proportional to the
square of the distance

MpMy

F=G : (1.1)

2

Lo
the proportionality constant G is known as the universal gravitational constant
and it has a value which is approximately

G =6,672.59- 107 “m?s 2 kg™ ; (1.2)

such a value is known in these years with an accuracy of 40.30 - 107!

m3s~2 kg,

* The direction of the gravitational force exerted by Mo on Mp is along the line
joining M p and M, itis directed from M p towards M, so that, in vector form,
(1.1) reads

For = —GMPMQZ%. (1.3)
op

This law, together with the second law of dynamics, is the basis of Celestial
Mechanics, which has obtained so many experimental confirmations in the cen-
turies, that it is considered as an untouchable foundation of physics (Todhunter,
1873). Even the general relativity theory has provided a generalization of it, rather
than a disproof (Fischbach et al., 1999).

As a matter of fact, the law has been re-discussed in the history of science.
Particularly in recent years the hypothesis has been put forward that the gravitational
force could include a term depending as a negative exponential on the distance;
therefore this term would not affect the dynamics of bodies very distant from one
another, like planets and stars, although, it was guessed, it could be seen in the
gravitational interaction between earth and artificial satellites. The hypothesis has
not been confirmed by experiments and Newton’s law still has to be considered true
as it is, at least as far as not too massive bodies are considered (e.g., giant stars or
black holes) nor objects moving with a speed comparable to the velocity of light,
because in these cases relativistic effects become important.

1.3 The Newtonian Gravitational Attraction of Bodies

As we said, the first formulation of Newton’s law refers to point masses. But how
can we use it to compute the gravitational attraction of extended bodies, that are part
of our common experience? First we note that two masses Myp,, Mo, would act on
a proof mass m at a point P with a force given by the vector sum of Fp, p and F, p,
namely
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Table 1.1 Measurement units: factor is the ratio between MKS and CGS units

Quantity Symbol MKS (name) CGS (name) Factor
Mass M kg (kilogram) gr (gram) 103
Length L m (meter) cm (centimeter) 10?
Time T s (second) s (second) 10°
Velocity V=LT"! ms™! cms™! 102
Acceleration A=LT2 ms 2 cms ™2 (Gal) 10?
Force F=MA kg ms—2 (Newton) grcm s72 (dyne) 10°
Energy/work E=FL N-m dyne - cm 107
r r
Fg,0,(P) = Gm (—MQI . MQZ@Q”D) : (1.4)
o P 0>P

From (1.4) we learn two things: first that gravitational forces add like vectors,
according to Leonardo da Vinci’s parallelogram rule; second that, since the force
Fo,0,(P) is proportional to the proof mass, one can divide both members of (1.4)
by m and obtain a “field” gp,o,(P) of forces, per unit of proof mass, generated
by Mo, and Mg,. Such a field has the dimension of an acceleration and thus it is
expressed in Newton per kilogram or Gal units

1Gal = lecms™2 = 1072 Nkg ™!

1.5
IN = INewton = 1 kgms ™2 ; (1)

in this respect see the Table 1.1 above.
For instance, the order of magnitude of the actual earth gravitational acceleration,
on its surface, is about

Gearth ~ 10° Gal = 10® mGal. (1.6)

Generalizing, we arrive at expressing the gravitational field of N point masses
(Mg,, Mg, ...Mp,), placed at points Q;, i =1,2... N, by the formula

N
ro;p
8(P) = ~Gy Mo, ;7" (1.7)
i=1 0P
this represents the force exerted by (Mo, ... Mg, ) on a unit proof mass, placed

at P.
Now, by taking masses continuously distributed along a line L, on a surface S or
on a body B (cf. Fig. 1.1) one gets the integral formulation of (1.7), namely
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Fig. 1.1 Continuous mass distributions for a line L, a surface S, abody B, and the respective line,
surface and body densities A, &, p

8P =G | %A(ng (1.8)
o(P) = —G /S Qs (1.9)
8P =G [ s p(0Bo (1.10)

The functions A(Q), ¢(Q), p(Q) are respectively the line, surface and volume
densities of the mass distribution (Farr et al., 2007). More complicated distributions,
like double layers, are also used in potential theory.

By their very nature the density functions A, ¢, p can only be positive as they
come from ratios of positive masses to positive line, surface or volume elements.
However, it has to be noted that g depends linearly on such densities, e.g., on p.
Many times it is, then, convenient to use some average value p to compute a first
approximate value for g and then compute, as a perturbation, the small contribution
to g due to the variations of the density §p = p — p; indeed in this case §p can be
either positive or negative and still the Newtonian integral (1.10) retains its meaning.

One fundamental concept, in the theory of gravitation, is the gravitational
potential V(P) (see Todhunter 1873; Heiskanen and Moritz 1967, Chap. 1); this
is by definition a scalar function such that

g(P)=VV(P) (1.11)
0 ad 0
(V=e— e +e,— 3 +e,— % = gradient operator
b4

represented in Cartesian coordinates; e, e, €;

are unit vectors parallel to the axes).
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That such a function always exists for a given gravitational field, comes from the
remark that already for a point mass M one has!

r GM
g(P) = —GM 2= = V» (rQ—P) (1.13)
or

as it can be directly verified.

By using (1.13), for instance in (1.10) we find that, given suitable regularity
conditions on p (e.g., it has to be measurable and bounded) and on the domain
B (e.g., the volume of B has to be finite), we can write

- ! _ pQ)
&) =G [ (vpg) p(Q)dBg =V, (G = dBQ)

which proves that
V(P) = G/ rQ) g, (1.14)
B Lro

Since there are functions V' (P) such that
VpV(P)=0

over all the space, namely the constant functions, it is clear that V(P) is not uniquely
defined by (1.11); nevertheless if we add the condition that

V(P) =0, rp > 0
at infinity, we definitely get only one V(P) satisfying (1.11), and this has to be of
the form (1.14).
That the function (1.14) goes to zero at infinity is easy to see if we assume that

p(Q) is a bounded function and B is a bounded set, as we can safely claim to be
true for the earth. In fact it is clear that if B is contained in a ball By of radius R,

then, when r >> R,
1 _ 1 +0(1)
KPQ_VP I‘Izp ’

so that from (1.14) we see that

"Note: we shall use in an equivalent way the two notations
Lop =rop = |rp — 19l ; (1.12)

in general we shall prefer rpp when some differential operator has to be applied to this function.
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V(P) E/ p(0)dB + O (iz) (1.15)
rp JB rp

GM 1
S vo(f)
rp rP

where M is the total mass generating V.

Since it will be useful in this chapter, we refine here the relation (1.15), although
the argument will be taken up again in Chap. 2. In fact, note that if (rp, rp) are the
radial distances of (P, Q) from the origin and if ¥po is the angle between them, i.e.,

rp-ro
rprQ ’

rp = |rpl,ro = Irgl, cosyrpg =

then

lpp = \/r%, + ré —2rprg cos Yipp

and when rp >> Ry > rp we have
1 1 1
— 1+—cos + 0| —
Lpo VP{ rp I//PQ} (V%)

1 rp-r 1

—+ Q+0(—3).

rp rP I’P

By using this relation in (1.14) and recalling that by definition the barycenter of
the mass distribution is

1
— o7 [ pt@roaso.

we finally find the sought asymptotic relation

GM  GM
V(P) = =+ 2
P ry

b+0(

~
~t| =

) (1.16)
valid for all Newtonian potentials.
Similar reasonings hold for (1.8) and (1.9), namely we can define a line and a
surface potential, with analogous properties,

V(P) = G/L@deg, V(P) = /S“(Q)ds

rpo

if (L, ) and (S, @) are bounded.
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Fig. 1.2 The spherical
coordinates for the
computation of the
potential V(P)

OP=D , dB=rZsin¥dydA

Let us try here to see how we could compute the gravitational potential of
spherical bodies.

Example 1. Given a ball of radius R and constant density p, we want to compute
the corresponding Newtonian potential V' (P).

First we take the axis Z to go from the center of the ball O, towards the
computation point P (see Fig. 1.2), assumed to be at distance D from O.

By using a spherical coordinate system (see Fig. 1.2) and considering that

Irp —rg| = \/r}% +13—2rprg, Lop = Vr2+ D> —2rDcos?

we have from (1.10)

e sin
V(P)=G d dA dd
(7) ,0/ " / \/r + D2 —2rDcos?

= 27er drr
r 4 D2 2rDt

D+r|—|D—
_ 27er/ dri? [l +ri-| rq, (1.17)
0 rD

where we have used ¢ = cos 9.
Now if in (1.15) the point P lies outside the sphere (rp = D > R), we have

) — 26 4R _ (4 . \G _GM _GM -
Vex = T~ =\|37 —_— = = . .
t 3D T \3 D D -

This is nothing but the statement, well-known since the times of Newton, that the
exterior potential of a homogeneous sphere is equal to that of a point with the same
mass placed at its center.

On the contrary in the interior, D < R, we get

1 1
Vi(P) = Gp2 (R2 — 502) = Gp2n (R2 — gr%,) . (1.19)
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VA

N|w
7|2

=V

Fig. 1.4 A layer of density p as difference of two concentric spheres

11

A radial section of the potential is shown in Fig. 1.3 where we can read that

v
the gravity modulus (B_D)’ is zero at the center of the sphere, as expected for

symmetry reasons.

Example 2. By subtracting the potential of two concentric balls (see Fig. 1.4) we
can get the potential of the layer with inner radius R_, outer radius R and constant

density p.
As we can see from (1.18) we get

GM GM_- GM
r > R+s Vexl = r + - r = r

where
4 3 3
M=M;—-M_= pgn(RJr—R_)

is the total mass of the layer.
When we penetrate into the layer, on the contrary, we get from (1.19)

1 2 R?
R_<r<R+, I/IH[ZZJTGP(Ri_ng_g__)’
r

(1.20)

(1.21)
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Va

27Gp (R3-R%)

GM
Rs

Fig. 1.5 An outlook of the potential of a layer
and finally, when we are inside the hollow,
r<R_, Viollow = 2mGp(R% — R2). (1.22)

It is easy to see that such a potential is continuous and, being constant into the
hollow, it generates no attraction there (Fig. 1.5).

Finally if we take R4 =7 + dr, R_ =T in (1.20) we see that an infinitesimal
layer with density p(7), possibly varying with 7, will generate outside (r > 7) a
potential

JF
F>F dVey = 47Gp(R)PR s (1.23)
r
and inside a potential

r<7%,  dVi = 47nGp(F)FdF. (1.24)

With the help of (1.23) and (1.24) we find the general expression of a sphere with
layered density, i.e., p = p(7), as

r =2 j— R
r<R, V()=4znG (M +/ p(?)?d?) (1.25)

and again

4xG [F p(F)F2dF
r>R,  V()=-L Jo PO AT _ GM (1.26)

r r

outside the masses.
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Fig. 1.6 Spherical
coordinates and spherical
triad

Remark 1. If one wants to derive the gravitational acceleration for the bodies
described in the examples above, one has to apply the gradient operator to V. Given
the spherical symmetry of those examples, it is convenient to express the gradient
operator in spherical coordinates, i.e., with coordinates (J,1,r) (see Fig.1.6)
(cf. Freeden and Schreiner 2009)

1 0 1 a 0
V= —eﬁ@ rsmﬁexﬁﬁ-e;a . (1.27)

If we apply such an operator to (1.25) and (1.26) we get

B B —47rG—'["r p(rrz)rzdrer (r<R)
glr) = gre, = (1.28)
—GM e, (r > R).

As we see, in this spherically layered setting the gravitational vector always
points to the origin.

At this point we send the reader to the exercises at the end of the chapter, where
potential and attraction for a number of bodies with constant density are presented.

Such expressions, particularly that of prisms, can be used to build models of
gravitational attraction for bodies that can be approximated by a combination of
such elementary forms. The reader is invited to try to prove the validity of these
formulas, with the help of integration tables.

We close the section by recalling the most common measure units, already
reported in Table 1.1, related to gravitation and motion, i.e., to mechanics. Let
us remember that all units are expressed in terms of the primitive quantities mass,
length and time.

Basically there are two systems in use: one is the so-called international system
(IS) also called (MKS) from meter, kilogram and second; the other one is the
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so-called (CGS) system for centimeter, gram and second. Throughout the book we
will use the second, for reasons of geodetic tradition.

In addition, in geodesy we use a special unit for the Newtonian potential, namely
the geo-potential-unit

lg.pu=EM™' = AL = 10°Galcm = 1kGalm

We also remind that in general when subunits are needed, we use prefixes like
deci-(d = 107, centi-(c = 1072), milli-(m = 1073), micro-(u = 107°),
nano-(n = 1077), pico-(p = 107'2). Beyond the familiar examples with units of
lenght and time, we quote here mGal (milliGal), pGal (microGal), nGal (nanoGal).
Multiples of units are as usual denoted as kilo-(k= 10%), mega-(M = 10°), and so
forth.

1.4 The Gravity Field

The theory of gravitation presented in the previous sections is valid in an inertial
reference system.

However, when we want to study the forces, acting on material bodies, based on a
platform like the earth, one has immediately to realize that an earth fixed reference
system cannot be considered as inertial. In fact, the earth is moving, with respect
to an inertial system at least with two important non-linear motions: one is the
revolution of the earth around the sun, the other is the revolution of the earth around
its own rotation axis.

To simplify matters, and with an approximation level more than sufficient for
the purpose of this book, we shall consider these two rotations as uniform, namely
as having a constant angular velocity, in modulus as well as for the direction, with
respect to both an inertial system and the earth body itself. The rotation around the
sun can be neglected, in this context, because, although its value is quite large (of the
order of 0.6Gal= 6- 1073 ms™2) the acceleration of a point on the earth surface
is about the same, with a maximum variation of the order of 0.025 mGal; this is an
expression of the fact that any (small) body is attracted by the sun with the same
acceleration as the whole earth. So, if we use as reference system a Cartesian triad
centered somehow to the earth and with the Z; axis along its rotation axis, while
X1 and Y; are always pointing in the same direction with respect to fixed stars, we
realize a system which is quasi-inertial, i.e., Newton’s law holds in it with quite a
good approximation.

However, if we now switch from this system to another one earth-fixed, we can
take the same origin and the same Z axis, Z = Zj, because this is the rotation axis,
and we shall see (X, Y') uniformly rotating with respect to (X;, Y;), with an angular
velocity roughly equal to

®=0729-10"*s"L. (1.29)
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This modifies the fundamental law of dynamics of a point, of mass m and
coordinate vector X;, from
mX; =F + mgy (1.30)
gy = Newtonian gravitational force acting on m,

F = other forces acting on m
to the Coriolis law, in terms of the earth-fixed coordinate vector x, (cf. Arnold 1978)

m[X+20 A%x+ & AXx—w (I — Pz)X] (1.31)
=F +mgy
® = wez = angular rotation vector
P; = orthogonal projection on the Z axis,
where a A b denotes the vector product of a and b.

If we consider that, due to our hypothesis of uniform rotation, ® = 0, we can
write (1.31) in the form

F=-m[-X—20 AX+ o>(I — P7)x +gy]. (1.32)

So if we have to apply a force F to the point mass m, to keep it clamped to the
earth (i.e., such that x = 0, X = 0) we see that

F = —m[gy + 0*(I — P)xX] (1.33)
= —mlgy + w’(xe, + ye,)].

In other words with point masses fixed to the earth, we feel an acceleration field
(—LF) which is given by

g=gyv+g =gy +o’(xe, +ye)); (1.34)

This is by definition the field of the gravity vector, which is composed by the
Newtonian gravitation g, and the centrifugal acceleration g.. Note that in definition
(1.34) it is essential that the Z axis be parallel to the rotation axis and that this one
is considered to be fixed in the earth body.

Remark 2. We know that in reality the instantaneous north pole (i.e., the intersec-
tion of the rotation axis with the earth surface) can move by several meters along the
surface in one year. However, with the value of w of (1.29) we see that the maximum
variation of the centrifugal acceleration when a point is diplaced a distance d from
the rotation axis, e.g., d = 10m, is approximately
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§gc = *d =~ 0.5-107%s7210m = 5pGal,

which is certainly a negligible quantity for our purposes.

We note that also the centrifugal acceleration can be expressed as the gradient of
a potential

1
g = w’(xe, + ye,) = Vza)z(xz + %) =VV,. (1.35)

V. is called the centrifugal potential.
From (1.34) we see that we can write

g=gv+g=VV+V)=VW (1.36)
The potential
W=V+V (1.37)

is called the gravity potential.

The modulus of the gravity vector g = |g|, also called gravity, is a quantity that
is directly observable, for instance by measuring the acceleration of a free-falling
proof mass along a pipe where vacuum has been made. This is, at least in principle,
the idea of an absolute measurement of g, which can be done with an accuracy down
to the 1 pGal level.

More common is the relative measurement of gravity, i.e., the difference of
gravity values between two points, which can also be performed with an accuracy
of a few puGals. We shall not dwell on this problem, that can be more thoroughly
studied for instance in Torge (2001), but we just underline that gravity at the pGal
level is fairly unstable, reflecting phenomena of a nature which is not of interest in
this book. So we shall consider gravity signals to become relevant only when they
reach some level between 1072 and 10~! mGal; just to fix the ideas let us assume
this threshold to be conventionally equal to 0.03 mGal.

1.5 Gauss, Poisson, Laplace

In this section we aim to prove that there is a fundamental differential equation
which is satisfied by the Newtonian gravitational potential V', namely the Poisson
equation

V.gy=V-VV =AV = —47Gp, (1.38)
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where the Laplace operator V-V = A is represented, in terms of Cartesian coordi-
nates, by

02 02 0?
A=—+ —+ —. 1.
0x2 + 9y? + 972 (1.39)

In (1.38) p = p(P) is the density of masses which, in our case, are confined by
the topographic surface of the earth. In fact, although the atmosphere as a whole is
not a light body, yet its density is much lower than that of the solid or liquid earth
(p = 1073 gem™ for the atmosphere as opposed to p = 1 gem™ of water and
p =2.67gcm™> of the earth upper layer) and, even more important, such density
is basically spherically layered so that its effect on the earth surface is practically
none, according to our Example 2.

Indeed the difference in the gravitational potential due to the presence of the
atmosphere between the earth surface and the level of satellites is well-visible,
though it can be accounted for by simple corrective terms. For a more detailed report
on the subject see Sjoberg (2000). So we can ideally think that p is zero outside S.
Accordingly, if we call B the volume occupied by the masses, §2 the space exterior
to S, so that S is the frontier of both B and 2, we can split (1.38) as a matter of fact
into two equations,

AV =0,  inf2 (1.40)
AV = —47Gp, inB, (1.41)

the first one being usually named the Laplace equation, while to the second is more
properly reserved the name of Poisson’s equation.

At first sight it might seem futile to study the differential equations that V' has
to satisfy since we have a definite analytical expression for it, as it is the Newton
integral (1.10). However, it is precisely the contribution of Physical Geodesy to
Geophysics in general, to show how one can determine V' from the Laplace equation
(1.40), from observations performed on S or in £2 (e.g., satellite observations) and
maybe from some knowledge of p in the uppermost layer of the earth, namely the
crust. In other words we aim at determining V' without a detailed knowledge of p,
so that the outcome of physical geodesy puts constraints on the theory of the earth
constitution and its dynamics, rather than viceversa.

A direct computation of the Laplacian of the gravity potential W, shows that
(1.38) has to be changed into

AW =V .g=—47Gp + 2% (1.42)
Such an equation however is not enough to identify W. One has always to add the

definition (1.37), because the same term 2w? could be generated by other functions
different from V, = Jw?*(x? 4 y?), for instance from the function 1w?r?. So (1.42)
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has always to be accompanied by the specification that W = V + V., with V' a
regular Newtonian potential.

Before we prove (1.40) and (1.41), we need a well-known theorem of vector
analysis, namely Gauss’ theorem (Freeden and Schreiner 2009; Hotine 1969).

Gauss’ theorem: Let B be a bounded set, with a boundary S satisfying some
smoothness condition, for instance that it is possible to define an outer normal n
at every point P of S and that n(P) is continuous on S. Let v be a vector field with
first derivatives integrable in B; then, by calling n the outer normal of S, we have

/meBzfvmw. (1.43)
B S

We don’t prove the theorem here, but we rather observe that (1.43) implies as
well the identity

/ V fdB = / n/fds. (1.44)
B S

In fact, let’s take the scalar product of (1.44) with a constant vector ¢ and note
that

UAVﬁB:LoVﬁB:LV(ﬁMB:

:A“‘MSZ°A“MS

Now we can turn to (1.40). Take the simple potential of a point mass

1
r r-
a direct computation shows that when r # 0
d /x a /y 0 [z
V=== (5) -5 (B)-g(E) =0 s
Since
1 1 1 1
-—=— — = , (1.46)
r |rp|l g |rp—rg|
we immediately see that
1
Ap (—) =0 P#O0. (1.47)
rpo
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Already this shows that, when P € 2

p(Q)dB

rpo

PeR, ApV(P)= Ap/ G 0=0. (1.48)
B

A function which satisfies the Laplace equation in some open set is called
harmonic in this set. Any Newtonian potential, generated by masses contained in
B, is a harmonic function in 2.

But how to deal with ApV(P) when P is placed inside B, where the condition
P # Q is not satisfied? To answer we first compute the

Al v, (—”;;Q) (1.49)

rpo rPQ

without the restriction r # 0.
As proved in Sect. A.1, it turns out that

V. (—“;;Q) — _478(P, Q). (1.50)

rPQ

where §(P, Q) is the famous Dirac’s function with a pole in Q (cf. Taylor 1958;
Yosida 1978). This means that for every continuous f(Q) the identity holds

/ 5(P.0)f(Q)dBy = f(P). (1.51)

the integral being extended to the whole space, or, equivalently, to any neighborhood
of P.
Accordingly

AV(P) =G /B Ap (i) p(2)dBy (1.52)

rpo

— 476 [ 3(P.0)p(Q)1Bo = ~4Gp(P)

and (1.41) is proved.

So far we have considered the case of a potential generated by a volume mass
distribution; however in the sequel it will be useful to consider single layer potentials
like

V(P)=G @dSQ. (1.53)
S EPQ
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Without going into details we recall that (Mikhlin, 1964, 1957) if «(Q) is a function
integrable on S, then V(P) is a function everywhere continuous. Naturally, outside
S, V(Q) is very regular, for instance indefinitely differentiable. Yet across S the
derivatives of V' have quite a peculiar behaviour. In fact, let us call (g—Z) 4 (%—Z)_
the normal derivatives of 1/, taken respectively on the outer and on the inner face of

S'; then such derivatives satisfy the jump relation

1% 1%
(E)_i_ — (E)_ = —4JTGO{, (154)

as proved in Sect. A.2.

1.6 Dirichlet, Green

We prove in this section a number of integral identities, which derive basically from
Gauss’ theorem, that will be used in the sequel (Freeden and Schreiner 2009).
We start with a first identity which comes from

V.-WVu) =vAu+ Vv-Vu, (1.55)

for suitably smooth u and v.
If we integrate this equation over B we get the first Green identity (Miranda
1970; Heiskanen and Moritz 1967; Kellog 1953)

/ o s = / (vAu)dB + / Vv VudB. (1.56)
S B B

“on

If we interchange u and v in (1.56) and subtract the two relations, we get

/ u&—v% ds :/(uAv—vAu)dB, (1.57)
s\ Ou  Ou B

which is also known as second Green’s identity. A particular case of (1.56) is when
u is harmonic in B and v = u. In this case we obtain

ad
/ \Vul?dB = / wl s (1.58)
B s on
which is known as the Dirichlet identity.
In particular (1.58) shows that if # = 0 on S and u is harmonic in B, then

|Vu| = 0in B, i.e., u = constant, and therefore u = 0 in B because u is already zero
onS.
If both u and v are harmonic, from (1.57) we find
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u—dS = | v—dS. (1.59)

Now let u satisfy the Poisson equation Au = —4w Gp, and take v = ﬁ P € B,
in (1.57).
Recalling (1.50) we obtain

11 u(Q)
P € B, /{ (Q)anﬁPQ Too n }dSQ

= —4nu(P) + 47 G/ @dB

Re-arranging we find the third Green equation

p(Q) 1 u(Q)

P)=G
u(P) 5 U tro o

dBQ+1 { (Q) }dSQ (1.60)

Similar considerations are valid for the outer domain §2 with the only proviso
that now the normal to S pointing out of §2 is —n. In particular, form (1.60), for the
gravitational potential which is harmonic in £2, we get

1 1 w1
PeQ, ulP)= /% (Q)a—n@—a—:@}dSQ. (1.61)

ad
The identity (1.61) has the merit to show that if we know u and a_u on S, then we

n
know the harmonic function u(P) everywhere. That only one of the two functions
is needed to determine u is shown in Part III, Proposition 12, where one sees for
example that it is possible to find a Green function G(P, Q) such that

1 0
Pe, ulP)=—-———| —G(P,Qu(Q)dSy. (1.62)
4 S 8nQ
That one can get u(P) from g—;‘ ‘ ¢ can be shown by carefully taking the limit when

P approaches S in (1.61), thus obtaining an integral equation, whose solution
determines u# (Mikhlin, 1957). Since this goes beyond the purpose of these notes
we don’t pursue this reasoning.

1.7 Elements of Geometry of the Gravity Field
and Related Definitions

To represent a conservative field (i.e., one that is gradient of some potential) in
geometric terms, it is customary to use a family of lines, called force lines of the
field, and a family of surfaces, called equipotential surfaces.
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Plumb-lines or lines of the vertical. These are the force lines of the gravity field,
g(P), and by definition they are at every point tangent to the vector g. Usually we
define a unit vector n(P) which is directed upward, namely

_8P)
g(P)’

this is the vector of the direction of the vertical. Then by definition the equations
satisfied by plumb-lines are, in vector form,

n(P) = (1.63)

dr  dx dy dz
% = gex + %ey + %ez - n(P) (164)

ds = \/dx?> +dy> +d2?;

such a system of differential equations generates a family of lines, one passing
through each point P, in space where

lg(Po)| # O, (1.65)

because at points where g(P) = 0,n(F) is not defined. Such a condition is
certainly always satisfied in the outer space £2, close to the surface S, and in the
first layers of the earth body B. Furthermore, since g(P) is smooth enough, at least
everywhere continuous up to the first derivatives, the plumb-lines are regular lines
too.

Equipotential surfaces of the gravity field. These are the surfaces for which
W(P) =W = constant. (1.66)

Since n is parallel to g = VW, n is also orthogonal to the surfaces on which W
is constant, therefore plumb-lines, which are tangent to n, always cross orthogonally
the equipotential surfaces, i.e., an equipotential surface is always tangent to the
horizontal plane at each of its points (Fig. 1.7).

It is interesting in general to note that equipotential surfaces are closed when
they lie in the surrounding of the earth surface, but they become unbounded and
quite complicated if we move deeper in open space, as it will be illustrated by a
simple case in Sect. 1.9.

We mention only at this point that a deep analysis has been done of several
problems concerning the geometry of plumb-lines and equipotentials with various
tensors related to the gravity field; on this subject we have at least to quote
two famous books, namely Mathematical Geodesy by Hotine (1969) and Intrinsic
Geodesy, by Marussi (1985). On similar items one can consult (Grafarend 1975,
1986) too.

In this context we just prove a formula connecting the principal curvature of
plumb-lines to the horizontal gradient of g(P) = |g(P)| and another formula
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Fig. 1.7 Two equipotential
surfaces (W = W and

W = W,) and a crossing
plumb-line; Py is the
“projection” along the
plumb-line of P on W = W,

relating the vertical gradient of g(P) to the mean curvature of equipotential
surfaces.

Plumb-line curvature. The horizontal gradient of g, that we denote by V,, is by
definition given by

Vig(P) = Vg —nm-Vg) = (I — P,)Vg (1.67)
P, = orthogonal projection on the vertical n. '
On the other hand we have (using the shorthand notation 9; = 3%)
1 2 1 2
Vg =1--0ig"r =150 Zk (W) (1.68)
28 2g

1 1
= {gzk(ak,’ W)BkW} = Ewg = _Ena

where we have introduced the matrix W, also called the Marussi tensor, of the
second derivatives of the potential W (cf. Marussi 1985).
So, by using (1.68) in (1.67) we see that

Vig = —(I — P,)Wn. (1.69)

Now recall that by definition of curvature of any line with tangent vector T, we
have

dx (1.70)

—_— c’ .

ds
where ¢ is a vector orthogonal to 7, |¢|[™! = R the curvature radius of the line and
ds is just the line element.
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To apply (1.70) to n, for a shift ds along a plumb-line, we first write, recalling
also (1.63),

1 1
dn=d (_g) = ——dg+ —dgg (1.71)
g g g
1
= —E(dg—i-dgn).

But, when we move the point P through a distance ds along the vertical n,
dg = W(dsn) (1.72)
and, according to (1.68),
dg =dsn-Vg = —dsn-Wn. (1.73)

Summarizing (1.72) and (1.73) in (1.71) we find
1
dn = —EMn—n(n-ﬂn)]ds (1.74)
1
= —[-(I — P,)Wn]ds,
g

i.e., comparing with (1.69)

d 1
A= Zve (1.75)
ds g

Equation (1.75) tells us also that the horizontal gradient of g is just g itself
multiplied by the principal curvature vector of the plumb-line.

Vertical gradient of gravity. We want to prove its relation to the mean curvature
of the equipotential surface.

Let us first remember that if we take a point P on any smooth surface and we cut
the surface with planes containing its normal, n(P) at P, we get sections (so-called
normal sections) with varying curvatures.

Among them, two particular normal sections will have the minimum and
maximum curvatures, ¢; = Rl_l,cz = Rz_l (cf. Hotine 1969). These two sections
are orthogonal to one another, so that an area element on the surface can be written
as (see Fig. 1.8)

dS =dLidL, = RidvRd . (1.76)
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dL';=(Ry+ 60)d 4

dLYE (R 60)d9,

d L2= de’lyz

Fig. 1.8 A tube of flux of g, with base d S and vertical walls of height 6¢

If we shift upward dS by a quantity §¢ along the plumb-lines we get a volume
element with the top area given by

dS" = dL\dL’, = dLdL; + §{d 9 Rod V> + §Ld 9, R d D

+ 0(86*) = dS + 5€d—S + 8€d—S
R
+ 0(80%) = dS + §LdS2C + O(80%), (1.77)
where we have put
1 /1 1 1
C= E(R—l‘f‘R_Z) - E(cl "l‘CZ) (178)

= mean curvature of the surface at P.

Now let us write the flux of g through this volume element. Considering that the
normal to dS’ is n’, the normal to dS is —n and that the lateral walls are parallel
to n, so that g has no flux through them, we can write, by using Gauss’ theorem
and (1.42),

g -n'dS' —g-ndS =—g'dS' + gdS (1.79)
= (—47Gp + 20°)d S8t + O(803).
This can be rearranged as

g —gdS’ (dS/—dS

- —_ — 2
50 ds 57dS ) 47Gp + 2w + O(80) (1.80)
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and, with the help of (1.77), we get to the limit for 6{ — 0

0
_% _ 2C0g = —47Gp + 2w*
al
or
0
5 = —2Cg + 47Gp — 20", (1.81)

that is the sought relation (Heiskanen and Moritz 1967).

Gravity gradient. We note that by combining (1.81) with (1.75) we get the
beautiful equation of the gradient of g(P),

Vg = —(2Cg — 4nGp + 20*)n + gc (1.82)

relating directly the curvatures of equipotential surface and plumb-line in P with
the variation of the modulus of gravity (Heiskanen and Moritz 1967; Hotine 1969;
Marussi 1985).

Natural coordinates. Since, as we mentioned, equipotential surfaces in the sur-
rounding of the earth surface are closed, people started to consider the possibility of
using W(P) as a natural (i.e., physical) coordinate for the point P.

A lot on this item can be found in geodetic literature, but we send the interested
reader to the two classical books Hotine (1969) and Marussi (1985) or the works of
Grafarend (1975, 1986).

Since by changing W, the surface Sz-={P; W(P)= W} moves up and down,
it was only natural to consider W(P) as a kind of “height” coordinate of P. Since
any point P in a three-dimensional space needs at least three coordinates to be
univocally identified, we have to look for another couple of coordinates that could
fix P on the surface Sy7. For this purpose it is traditional to use the so-called Gauss
mapping, i.e., a pair of angles that do define the direction of the vertical, n(P), in
space. This requires that the correspondence between n and P (on S3) be one to
one. In practice this is the case if the equipotential surfaces are convex and we shall
accept that this hypothesis is verified for the earth without any further discussion.
A counterexample could be found in Krarup (20006).

Typically, the angles used to identify n are the so-called astro-geodetic longitude
and latitude defined as follows.

We use an earth-fixed Cartesian triad with the Z axis coinciding with the rotation
axis and the origin placed at the barycenter of the mass distribution described by the
density p(Q). Recalling the definition of barycenter b, we will have in this case

1
b= /B ro p(0)dBy = 0. (1.83)

with M the total mass of the earth.
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Fig. 1.9 The definition of @, A; P’ projection of P on C along n, /St a star

The (X, Y) plane is called the equatorial plane, and the X axis is chosen on it
by some conventional rule, for instance be requiring that the (X, Z) plane passes
through some given point or that it is parallel to the vector n at some given point on
the earth surface.

Then by definition the latitude @ is the inclination of n with respect to the
equatorial plane, i.e (cf. Fig. 1.9).

sin®p =n(P) -e;; (1.84)

The longitude A is the dihedral angle between a plane parallel to both ez and n and
the origin plane (X, Z). In practice A can be measured as an angle in the equatorial
plane (cf. Fig. 1.9).

Note that in general the line through P containing n needs not to cross the
equatorial plane at the origin O or to cross any of the axes, because the irregularities
of the gravity field cause n not to follow any particular symmetry rule.

Note also that, in principle, @, A can be determined by astronomical observa-
tions. In fact the direction n has a trace on the celestial sphere, C in Fig. 1.9, that is
rotating uniformly (in our simplistic model) around the north pole N.

So, by observing the spherical angle between some stars, like St in Fig. 1.9, of
known celestial coordinates and knowing the time of the observation (so that we
know the angle between the plane (ON X) and the reference meridian on C, fixed
with respect to stars) we can infer both @ and A. Whence the name of astro-geodetic
coordinates.
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n(M)

OL=Lgs L,

Q

Fig. 1.10 Spirit leveling measurement, Ly — Lp = drgp -n(M)

Let us observe too that, given the definition of @, A, the vector n has components
in(X,Y,Z)

cos P cos A
n=|cos®sinA|. (1.85)
sin @

For a nicer discussion of terrestrial and celestial reference frames, their reciprocal
relation and relevant coordinates, see for instance Vanicek and Krakiwsky (1986).

A first definition of geoid, and orthometric heights. As already claimed W(P)
can be used as a height coordinate. Yet W(P) at present cannot be observed directly,
though there are hopes that this will become feasible, with proper accuracy, in
future, by measuring the frequency of an atomic clock.

Nevertheless the increment of W passing from a point P to a point Q can be
easily determined by combining gravity measurements and spirit leveling. In fact
assume the two points Q and P to be close enough to one another, say a distance of
100 m apart, so that we can consider the base vector

drop =Tp —Tg

as infinitesimal, compared to the radius of the Earth. Let M be the midpoint of the
segment QP and put

8LQP =Lo—Lp =dl'QP-Il(M). (1.86)

This number is exactly what is observed by a single leveling measurement
(cf. Fig. 1.10), that we shall call the leveling increment.
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Since n(M) = —%, if we know g(M ), we can put

— g(M)SLop = drgp -g(M) = W(P) — W(Q). (1.87)

Adding many small increments of this kind, along a leveling line £, between two
points A and B, we get

W(B) — W(4) = /L —g(0)dL. (1.88)

namely the potential increment between the extremes.

This calls for the use of one particular equipotential surface as reference, and we
shall call it the geoid G. Such surface G can be defined either through a conventional
value W), and then we are left with the problem of finding some physical point lying
on G, or by requiring that G passes through some physical point and then we have
the problem of determining the value of W at that point. Consequently one can
determine the potential difference for any other point P by connecting it to some
point of G. If we assume that W is the value of the potential on G then we shall be
able to determine

C(P) = Wy — W(P); (1.89)

C(P) is called geopotential number of P.

Sometimes, in order to have a height with the more intuitive metric properties of
being dimensionally a length, one defines a dynamic height of a point P by dividing
C(P) by some conventional value of gravity g

C(P
Hyypn(P) = cd (1.90)

Completely different in nature is the definition of the so-called orthometric
height; this is in fact the length of the plumb-line arc between the point P and
its projection Py on G, counted positively upward (see Fig. 1.11).

As intuitive as it is, yet the orthometric height is a quantity that cannot be easily
related analytically to observables, in particular considering that since G is always
chosen so as to be close to the mean surface of the oceans, then it is most of the
times buried in the masses, in correspondence to continental areas. As we shall see
later on, H can be approximately determined only if we assume to know as well
the density of mass above G. We warn the reader however that several nations have
switched from using orthometric heights to other height systems that don’t require,
according to Molodensky’s theory, any knowledge of mass density.
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Fig. 1.11 The definition
of orthometric height

1.8 The Laplace Operator in Curvilinear Coordinates

We shall soon need the expression of the Laplace operator in spherical and in
ellipsoidal coordinates. In order to find them, we tackle first the problem of
expressing the operator V in all type of orthogonal coordinates; subsequently we
shall compute V-V = A.

As proved in Sect. A.3, if one calls & = (&}, &, &) three orthogonal curvilinear
coordinates and one puts

0
h; = —r(§), h; = |h;| (1.91)
95
then the following formula holds
3
h; 0
V= Zh_z? (1.92)
j=1"J "%/

13 [H o

The expression (1.93), the proof of which is given in the Sect. A.3, is particularly
manageable to be used in the two examples we have in mind.

Example 3. Take as (£, &, &) the spherical coordinates (r, ¥, 1), so that
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X rsin ¢ cos A
y| = |rsindsini
Z r cos
From
dx sin ¥ cos A 7 cost cos A
dr = |dy| = |sind¥sinA |dr+ |rcostsind |dV
dz cos v —rsin ¥
—rsin? sin A
+ | rsindcosA |dA =h.dr +hydd +hydA
0

31

(1.94)

(1.95)

we find the three vectors h,,hy,hy and we can verify directly that they are

orthogonal.
Furthermore we get

hy =|h| =1, hy = |hy| =r, hy = |hy| = rsin?d
which implies the well-known metric relation in spherical coordinates
|dr|> = dr* + r2d®?* + r*sin® 9d A%
Since then
H = r’sin?®,

we get

1
HA = 8,.(r2 sin)d, + dy (sin¥)dy + 9 (—) 0y

sin ¥
1
= sin ¢ [8,.(r2)3r + Ctgﬁaﬁ + 8§ + —23i:|
sin” ¥
so that the Laplace equation takes the usual form
1 1
Au = —2(r28,2,u +2r0,u + Bu + ctgddyu + — 5 =0
r sin” ¥

or

u 2 0u 1 82u+ctﬁ8u+ 1 d%u —0
o2 T ror 2 \oor T Tanto o) T

(1.96)

(1.97)

(1.98)

(1.99)
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Remark 3. Let us observe that in (1.99) one can separate the action of the radial
differentiation and that of the angular derivatives. If we put (Heiskanen and Moritz
1967 and Freeden and Schreiner 2009)

0 1 9 1 0
Vet ey +—— ey 1.100
“or Tr% T rsno ¥ aa (1.100)
0 1
—e v,
eB +r
one finds again
A=V v—a2+2a l(v V) (1.101)
B a2 ror r22 7 7 ’
92 29 1

LT AR
3r2+rar+r2 ’

In fact one can use the identities

D=0 Loz e e, L0
T T R T G

d 1 1 1 d
r e _va = —— r'VJ —€ _V(T =
¢ or (r ) r2e + re (8r ) 0

:e/l

to prove that

and

v ea (Ve) +eVa—2a
? "or 7 "% Tor

from which (1.101) easily follows.
The operator

02 0 1 9
Ay, = —
Frei ctgz‘} sin2 ¥ A2

1.102
PEY (1.102)

is called the Laplace-Beltrami operator.

Example 4. Since it is known that the geoid is very-well approximated by an
ellipsoid of revolution, we are interested in studying the Laplace operator in a form
adapted to such an ellipsoid.

We introduce then the reduced ellipsoidal coordinates (q, 9, A) or (q,B, 1),
where ¥ is called the reduced ellipsoidal co-latitude and p = % — 1 the reduced
ellipsoidal latitude,
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Fig. 1.12 The oblate
ellipsoid with semi-axes
a, b and the reduced
latitude 8 of the point P

V4% + E?sin 9 cos A

X
y|=|vq*+ E?sin¥sin} |, (1.103)
Z q cosV
where
E?=a* b (1.104)

is the squared linear eccentricity, and g ranges from b to +oo.

From (1.103) one immediately realizes that the surfaces ¢ = constant, have
equations
2 2 2
xX“+y b4
¢+ E2 g2 ( )
namely they are ellipsoids of revolution. In particular if we take ¢ = b in (1.105)
we get

and in this sense we see that our coordinate system is adapted to an oblate ellipsoid
of revolution with semi-minor axis b (polar) and semi-major axis a (equatorial), as
shown in Fig. 1.12.

In this case we find, with

m=+/q*>+ E* p=+vq*+ E*cos’ ¥,

4 sin ¥ cos A
m

h, = 4 sin ¥ sin A
m

cos
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m cos ¥ cos A

hy = | mcos ¥ sin A (1.106)
—q sin

—msin ¥ sin A

hy, = | msin® cos A

0

It is easy to verify directly that
h,-hy =0, h;-h, =0, hy -h; =0,

so that (1.241) applies.
In this case we have

hy =2 hy=p. hy=msin®, H = p>sind. (1.107)
m

Therefore a direct computation gives

9 I 3 9 p* 0
HA = —m’sind — + — (sin) — — —
dq g v ( )819 A m? sin D 9
— 92 ] 24 E2cos?® 92
= sin® (q +E2)—+ s +c gﬂ__i_q—i——co'sz__z
95> 09 (¢2 + E?)sin® 9 02

and finally the Laplace equation writes

o 0%u u
2 2
+E +2 —+ =+ cted =
(g ) qaq 5 ctg 5
2 2 29 92
LCO“’_MZO, (1.108)
(q% + E?)sin® 9 0A2

It will be useful in future to realize that by exploiting the identity

q*+ E?cos’® 1 E? (1.109)
(¢ + E?)sin2®  sin29  ¢>+ E* :
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(1.108) can be written as

u — E? 3%
(¢* +E2) +2qaq+Agu—mW20 (1.110)

with A,, the Laplace-Beltrami operator in ellipsoidal angular coordinates,

. 2 1 2
Ay > — + ctgl 8_ + —= 9 37
P 39 sin®® A

(1.111)

1.9 Simple Mathematical Models of the Gravity Field

After the Newton Principia, for about 150 years scientists have studied the problem
of giving a convenient mathematical model to perform in an easy and direct way
computations of quantities related to the gravity field like potential differences,
gravity values, vectors of the vertical n and so on.

This research was conducted to a fully satisfactory point at the end of the
nineteenth century by Pizzetti (cf. Pizzetti 1894) and further systematized by
Somigliana (cf. Somigliana 1929) at the beginning of the twentieth century with
the definition of the so-called normal gravity potential and normal gravity field.

At first sight one might think that a reasonable approximation of W can be
obtained by taking just the spherical term

M
Vs = oM (1.112)
r

Indeed Vs will be used later on in suitable approximation procedures, called
spherical approximations, but only carefully controlling the error introduced by
taking W ~ Vs.

In fact, even if in (1.112) we use a perfect value for the mass of the earth, we
see that W — Vg still contains the centrifugal potential, so that this function is not
harmonic in £2 and even more the difference can become very large if we move far
enough from the surface, along the equatorial plane. We shall use (1.112) only with
a careful control of the errors, which have a relative magnitude of ~10~3, and only
close to the surface of the earth. We might think then that a better approximation is
given by

GM 1
Ws=—+ a)z(x + %) ; (1.113)

this potential in fact contains at least the centrifugal effects, so that W — Wy is
a Newtonian potential harmonic in §2. Yet, if one takes an equipotential of Wy,
(i.e., Ws = Ws,), close to the earth sphere, for which we fix a conventional radius
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of R = 6,371 km, a simple computation shows that its flattening, defined as

F=4"2 (1.114)

a

with a the equatorial radius and b the polar radius, has a value approximately
equal to

(1.115)

In fact, after putting

GM 1
—+ Ea)zaz = Ws,
a

GM
5 e

one derives (1.115) considering that terms containing w? are just smaller perturba-
tions of the others.
The value of the parameter

w?R3

ar 3.4-1073, (1.116)

M:

known also as Clairant constant (cf. Heiskanen and Moritz 1967), used in (1.115),
yields a value of f which is about one half of the true one which, already from the
end of the eighteenth century, was known to be f ~  ~ 3.4- 1073 (cf. Todhunter
1873).

This is because the model (1.113) is basically that of a rigid layered sphere, with
the addition of the centrifugal potential, while the real physical body of the earth,
as it is non-rigid, reacts to self-gravitation and centrifugal force by displacing the
masses from poles to the equator, thus increasing the flattening, as a matter of fact
more or less doubling the value (1.115). So we use here the model (1.113) only to
give a representation of its equipotential surfaces, because they give a qualitative
understanding of the complex effect created by the presence of the centrifugal
potential.

The situation is schematically presented in Fig. 1.13

An appropriate model of the actual gravity field is obtained by the so-called
normal potential.

This is by definition a model, which we can write as

1
U=V, +V, =Vg+§w2(x2+y2) (1.117)

where V, has to be a potential harmonic outside the reference figure.
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Fig. 1.13 Outlook of equipotential surfaces of W, cut on an upper meridian plane. Equidistance
is with 2,000km in Z from 6,400 to 140,000 km. The figure is symmetric around Z and with
respect to the equatorial plane

The determination of V, is done by assuming that one equipotential surface
of (1.117), U(P) = Uy, is an ellipsoid of revolution, with semi-axes a and b,
and that V, is regular at infinity, namely that V, — 0 when r — oo. That the
geoid, understood as one of the equipotential surfaces of W which are close to
the sea surface, could be well-approximated by an ellipsoid of revolution has been
established at the end of the eighteenth century, after the long-standing quarrel
initiated by Newton and Cassini, as a result of the famous expeditions organized by
the French Academy of Science, to measure arcs of meridians in Ecuador (C.M. de
La Condamine) and Lapland (P.L. de Maupertuis and A.C. Clairaut).

From the above discussion we understand that the model we are going to
construct in the end will depend only on four parameters: the shape parameters
of the ellipsoid (a, b), or alternatively (a, E) or (a, f), the angular velocity @ and
the value of Uj. This last parameter, as we shall see, can be substituted by the much
more physically meaningful value of the constant GM .

Having to do with the solution of the Laplace equation in the exterior of
an ellipsoid, it is only natural to use the ellipsoidal coordinates (1.103) and the
corresponding representation of the Laplacian, (1.110).
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The boundary condition to be satisfied by U on the ellipsoid & is basically written
as (recall that E? = a® — b?)

1 _
Us = Vile + sz(qz + E?)sin® ¥g (1.118)
1 _
= Velg + szaz sin? ¢ = U,.
As a matter of fact (1.118) has to be read in the form
L s
Vele = UO_EQ) a”sin” ¥ |, (1.119)

and V, has to satisfy (1.110) for g > b.
As proved in Sect. A.4, the solution to this problem is given by the closed formula

E
arctan —
3\ 15 q 1 ,,0() (2 s 279
Ve(q,l?)— (U()—ga) a )—E+§a)a @ §—S1n D s

arctan —
b

(1.120)

where Q(q) is the function (see (1.254))
2 2 E
0(q) = (3q° + E~) arctan ; —3qE. (1.121)

Let us see how to express V, as a function of (a, E, »?) and of the constant
GM , which we assume to know, since nowadays it can be deduced from satellite
tracking observations. This target can be readed by expressing Uy as function of
a, E,w*, GM and then substituting in (1.120).

Recalling (1.16) and noting that a mass distribution generating V(P ) must have
its barycenter at the origin for symmetry reasons, i.e., b = 0, we must have

GM 1
Vel ) =——+0 (73) (1.122)

when r — oo.
On the other hand, since

[ E? — 1
q=r 1——zsin219=r+0(—),
r r
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we have also

I 1 1 1 1 1
- =-4+0|=)or-=-4+0|—=]. (1.123)
q r ) or g 7
Accordingly, (1.122) implies
GM 1
Ve(g.¥) =——4+ 0 (—3) . (1.124)
q q
But, from (1.121),
1
Q(q) =0 (q—3), (1.125)

as the reader is invited to verify.
So (1.120), with (1.123)—(1.125), tells us that

GM 1 Uy — +0?a’®\ E 1
—+0(—3)= (0—*,5 —+0(—3),
q q arctan q q

i.e., multiplying by ¢ and taking g — oo,

U ! 22+GM t E (1.126)
= -—w°a —— arctan —, .
073 E b

which is the sought relation (cf. Heiskanen and Moritz 1967). With (1.126) we can
rewrite V, as

Ve = GTM arctang + %wzaz% (% - sinzﬁ) . (1.127)

Definition of anomalous potential. Let us first define the anomalous potential
T, as

T(P) = W(P) — U(P) (1.128)
=V(P)+ Ve(P) = Ve(P) = Ve(P)
= V(P) = V.(P).

We see that T has two fundamental properties. Namely 7' (P) is harmonic in £2, i.e.,
AT =0, in £, (1.129)

because both V' and V, are harmonic functions in this domain.
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Let us note immediately here that since V, (P ) happens to be harmonic even well
inside the ellipsoid &, through most of the earth 7'( P) satisfies the Poisson equation

AT(P) = AV(P) = —4np(P). (1.130)

As a matter of fact it is possible to define another potential V which coincides with
V. outside the ellipsoid, but it is on the same time generated by a mass distribution
internal to & consistent with such external values (Siinkel and Tscherning 1981;
Tscherning and Poder 1981). In any case, outside the ellipsoid, (1.130) holds true.

Furthermore, if we choose for M in (1.127) the same value as that of the earth
mass, when r — oo we find

GM 1 GM 1 1
TP)=—+0|5|—-——+0|=])=0|-=).
r r2 r r3 r2
If we further choose the reference system (X, Y, Z) by placing its origin at the
barycenter of masses, we have, also recalling (1.16) with b = 0,

GM 1
V(P)=——4+0 (—3)
r r
which used in (1.128) gives the exact asymptotic condition

T(P)= 0 (13) (1.131)
r

when r — oo. This is the second of the two properties mentioned above.
Note that (1.131) holds under the condition that barycenter of the masses, origin
of (X, Y, Z), and center of the ellipsoid E are all placed at one and the same point.

Normal gravity vector. By using formula (1.237) and the expressions (1.106) for
the vectors hy, hy and (1.107), we can compute the vector y = VU, i.e., the normal
gravity vector, as

y(q.9) =VU =V(V. + V) (1.132)
B m2h (ave N avc) N 1 h(aVe N aVC)
p> "\dg g > "\ag v )
where
v, GM E 1 ,,0@) (2 .,
= —0?a? =" Z —sin® P
9q E g+ 2o \3 7"
E  (3¢*+ EY)E
Q'(q) = 64 arctan PR R 1 (1.133)

av.

= w’qsin’ 9
dq
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Fig. 1.14 The point P, its Z4
geodetic-ellipsoidal
coordinates (A, ¢, h) and the
triad (e), e,, v)

Ve

0(q)

— = —w?d? sin ¥ cos I
v, — )
856 = w’(q* + E?)sin ¥ cos 9.

The (1.106), (1.107), (1.132), (1.133) and (1.134) provide the exact expression
of the normal gravity at every point in space, the ellipsoidal coordinates of which
can be derived from Cartesian coordinates inverting (1.103) (see Remark 4).

By the formula

( 5)— m_z(%_FBVC)Z_’_i(%_'_aVC)Z
s p*\dqg  dq PP\

we can compute as well the modulus of the normal gravity vector.

1/2
, (1.135)

Remark 4. Since we often label points in space by means of geodetic ellipsoidal
coordinates (A, ¢, k) it is also interesting to have y and y as functions of such
coordinates, with, in addition, y represented in components with respect to the usual
geodetic triad (e, e,, v) pointing from P to east, north and up respectively.

The definition of such quantities is presented in Fig.1.14 and their analytic
relations between geodetic coordinates and (x, y, z) is

X (N + h)cosgcos A
yi=1] (N+h)cosgsind |. (1.136)
z [(1—e*)N + h]sing

In (1.135) N is the grand normal, i.e., the curvature radius of the section of the
ellipsoid orthogonal to the meridian in P, (the orthogonal projection of P on &),
and it is given by
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N=— 2% (1.137)

V1 —e2sin’g

Let us remember too that (ey, e,, v) are represented, in Cartesian components,
by the vectors

—sin A —singcos A cos ¢ cos A
e, =|cosA |, e =|—singsinA|, v=|cosgsinA |. (1.138)
0 cos @ sin A

So in principle the problem we are talking about is just one of having exact
formulas, and computer routines, to perform the direct and inverse transformations

(*A.B.9) < (xy.2) < (A.¢.h)
(reduced ellipsoidal) ~ (cartesian)  (geodetic-ellipsoidal)

In this way we can compute U(h, ), y(h, ¢) as well as
y =egle, -yl +v[v-yl (1.139)

We note that in (1.139) there is no eastward component of y, since this vector
lies in the meridian plane, i.e., that of v and e,.

The two transformations (A, 8,h) — (x,y.z) and (A,¢,h) — (x,y,z) are
already given by (1.103) (remember that = 7/2 — ) and (1.136) respectively.
As for the inverse transformations one can write first

tgh =2, (1.140)
X

which is valid for both reduced and geodetic ellipsoidal coordinates. Of course,
when one is inverting (1.140), the signs of x and y have to be considered in order
to place A in the right quadrant. Then for the reduced ellipsoidal coordinates (8, ¢)
one has the explicit solution

L N R PRI ol e
q—Tz[r B>+ \J0T = B + 4E%]

(1.141)
V@ + E? 2
g =——"-,

a p

where
rr=p?+ 2 00 =x2 )y (1.142)

As for the geodetic ellipsoidal coordinates one can use the following exact
algorithm
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2+ (¢))?bsin’ ¢
¢ = arctan ———————

p—e*acos® Y (1.143)
h=_P__
cos ¢
where ¢’ = “2})_2}’2 is the second eccentricity of the ellipsoid, and

¥ = arctan 2% | (1.144)
bp

More on this subject can be found in the book (Awange and Grafarend, 2005).
Although the problem can be exactly solved, many times it is useful to employ
approximate formulae, valid in the surrounding of the earth surface, such as the
famous Cassinis formula (cf. Heiskanen and Moritz 1967; Moritz 2000),

y(@, h) = 978.0327715(1 + 5.30244 - 103 sin? ¢

—5.8-107%sin% 2¢) — (0.30877 — 4.510 * sin @) h

+72-107%K2, (1.145)
where the (ellipsoidal) height /& has to be given in km and the gravity y is in Gal.

Similarly one can derive an approximate formula for y, = y - e,, valid in the
topographic layer, with a relative accuracy of the order of 10~%, namely

h
Yo = 5.185960 - —sin 2¢,
a

with & (and a) in kilometers and y,, in Gal.

1.10 Anomalous Quantities of the Gravity Field and a More
Precise Definition of the Geoid

Anomalous potential 7. The first and most important anomalous quantity of the
gravity field, we have already defined in (1.128); this is the anomalous potential 7'

T(P) = W(P)— U(P). (1.146)

As we have already noted, U(P), by adapting its four parameters, provides an
excellent approximation of the gravity potential, in the sense that

O(T) ~107°0(W) ; (1.147)
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therefore 7' is an ideal unknown field when we shall treat non-linear functionals of
it, since the linearization procedures that we will apply will be good with a relative
error of the order of 107'°, negligible in the context of the arguments discussed in
these notes.

Let us recall that in mathematical terms ¥ = 0(g) means that 0 <A < ‘%‘ <
B, (A, B constants); here however we extend the meaning of the symbol to represent
the physical order of magnitude of the quantity in parenthesis, or of its maximum
absolute value, when it is a function.

We stress again that (1.147) is certainly correct in a neighborhood of the earth
surface and therefore a fortiori in the outer space because 7" is harmonic in £2
and harmonic functions attain their extreme values at the boundary (cf. Part III,
Chap. 13, Theorem 4). On the contrary, if we move well inside the masses, W is not
anymore harmonic, while U apart from the centrifugal component that cancels with
that of W, is in fact still harmonic, with the exception of a small disk (the so-called
focal disk) centered at the origin O and lying on the equatorial plane. Therefore the
behaviour of W and U start diverging and already at 100 km inside the masses one
order of magnitude is lost.

This point is so important that we try to illustrate it by an elementary example.

Example 5. Take a non-rotating spherical planet with an inner sphere, with radius

Ry (=6,300km), with a mass content M, =~ 6-10%’ gr, and an outer shell (the crust),

with a thickness §R. = 100 km and a mass density p ~ 2.67 gr/cm?, implying a mass

M, = 10% gr. Note that My + M, is roughly equal to the actual mass of the earth.
We take as normal gravity just

My + M.
=G( o+ )
r

U

so that it coincides with W forr = R = Ry + 6R..
However, when we go on the inner surface Sy we have (cf. Example 2)

GM,
Wls, = —— +27Gp (R> — R})

Ry
GM, GM. GM, 4 (R —R})
U == = — G -
50 =% T Ry Re T379P TRy
U|S()_W|So

So we can directly compute the relative error , 1.e., performing

UlSo
some manipulations and writing U |5, = yo Ry in the denominator and % (R —RS) ~
4R3(R — Ry), we get

‘ U|So - W|So

217G ~Ro\’
== pRO(R RO) ~2:1074,
UlSo

Yo Ry

namely an error one order of magnitude larger than the actual anomalous potential.
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Fig. 1.15 Different heights

of P and their relation to
hp=P,P,N=P,P,, H=PP/,
(along the plumb-line),
h*=PP . {=P*P

Geoid undulation N. Next we define a geometric anomaly describing the differ-
ence between the geoid G and the ellipsoid &, namely the geoid undulation N. By
definition this is a function of P, € &, i.e., of (4, ¢), and it is the height of G on P,,
measured along the direction of v(P,). Said in another way, if P, is the intersection
with G of the normal to the ellipsoid passing through P,, then (cf. Fig. 1.15)

N(P,) = h(Py). (1.148)

We note immediately that indeed N(P,) can be either positive or negative, of
course depending on the reciprocal definition of & and G. Here we need to stress
that when W|g = Wy = Uy = Ul|g, and both G and & are close (within meters) to

the mean surface of the ocean, then N is known experimentally to satisfy the upper
bound

IN| < 120m, (1.149)

with a mean square value, approximately given by

1/2
{EIN?}/? = {%/N(@,A)Zdo} =~ 35m. (1.150)

Whence, summarizing, we could say that N is a signal of the order of magni-
tude of

O(N)=10"R (1.151)
R = mean earth radius.
Before we proceed let us establish a relation which is very much used, nowadays
that the ellipsoidal height of a point has become available by GPS measurements.

This relation is

hp = Hp + NP(, (1.152)
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and, though not exact, we claim that it is valid with an error of less than 1 mm for
all points of the earth surface.

We start by observing Fig. 1.15, warning the reader that in such a figure the
curvature of the plumb-line has been enormously pronounced.

Note also that ¢ will then be the inclination of G with respect to &, along the
section shown by Fig. 1.15.

When determining orders of magnitude, we can well assume that the plumb-line
P{ P has the same inclination ¢ with respect to P,P. A key point is that &, which
we shall study in more detail in the sequel of the section, is experimentally known
to be 1 arcmin as a maximum, over the whole surface S,

le] < larcmin 2 3 - 10™* rad. (1.153)

Accordingly we can claim that even if P is on the top of a mountain 6 km high,
P/P, =~ Hsing =~ He = 18-10"*km = 1.8 m. (1.154)

Now since v is orthogonal to &, the arc P m, less then 2 m long, can certainly be
considered as a segment orthogonal to P, P. Since if we project the line (P, Pj) U

(P; P) orthogonally onto v we get exactly A, i.e., calling P, the orthogonal projector
on v,

h=|Prpp+ Polpp (1.155)
= Hcose+ N'.
But (with H = 6km!)
H@meg}i—%ﬁﬂ; (1.156)
and also
N'— N = P/P,tge =~ Hé’ (1.157)

so that rewriting (1.155) in the form
1, 2 12
h:H—EsH—i—N—}-sH:H—i—N—FEHs (1.158)
we see that (1.152) holds true with an error equal to

1
Enggosmm. (1.159)
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Since the case used as an example is really extreme, we consider our statement
as proved.

To make exact the definition of geoid undulation, we need to establish on a more
solid ground the definition of G and its relation to &. As a matter of fact there is no
unique way to solve such a problem, also because the ellipsoid &, and the attached
normal potential U, have to be defined with an approximation purpose, so that any
change small enough of their parameters will provide us with another potential as
good as the first for our target.

So here we just choose a way to define G which seems to us linear and clear. Let
us start with &. Since the barycenter of the earth can be determined by means of
spatial geodetic techniques, we will consider its time-averaged position as known.
Similarly, we take as given the direction of the mean rotation axis, with respect to
the body of the earth. So we can define & as an ellipsoid of revolution, centered at
the barycenter of masses and with the symmetry polar axis directed as Z.

The geometric flattening of &, f = (a — b)/a, or better a kind of its mean value
for the actual earth, can be very accurately determined from satellite tracking. So
we are left with one geometric parameter only to be fixed and we choose it to be the
equatorial radius a. We note here too, that from satellite radar-altimetry we are able
today to determine the geometric shape of the ocean surface with an accuracy better
than 5 cm, as an average over a footprint of several hundreds meters. Such a surface
should be equipotential if there were no currents in the ocean; yet the presence of
such (almost) stationary currents, like the Gulf Stream or the Kuroshyo, do impress
a stationary deformation to the sea surface with respect to G.

But the magnitude of the separation between the two surfaces, is within a range
of a few meters maximally. So it makes sense to say that a is chosen so that & is
close to the ocean surface within meters (what makes a difference of the order of
magnitude of 107°R).

In the range of meters a can be chosen arbitrarily, i.e., it can be conventionally
fixed. The value accepted today is

a =6,378,136.62m (1.160)

with an accuracy of & 0.10 m.

Moreover we take as known also the value of w?, which is well-observable by
astro-geodetic means. Finally we know that GM can also be determined by satellite
tracking

GM = 398,600,441.5-10°m?s2 (1.161)

with an accuracy of the order of £0.8 - 10° m? s72 (cf. Moritz 2000).

So, once the shape of & and its placement in space have been secured, a
corresponding normal potential U can be computed and the value U, attained by U
on &, can be computed by (1.126).
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By definition the geoid G is the equipotential surface such that
W(P) =W, = Up. (1.162)

We note once more explicitly that due to our hypotheses U and W will have
the same Y term, when r — oo. Furthermore, since the respective barycenters
are placed at the origin O of (X, Y, Z), we may conclude that (1.131) has to hold,
namely

T(P)=0 (%), rp — 00. (1.163)

P

Height anomaly ¢ p. The definition of geoid undulation generalizes to a function
defined in space, called the height anomaly, ¢ (P).

First we define the so-called normal height 2*(P) as follows: take the line
containing the segment P, P of Fig. 1.15 and find on it the point P* such that

U(P*) = W(P). (1.164)
Then by definition we put
h*(P) = h(P™). (1.165)

Note that (1.164) and (1.165) defines a mapping in space between the points P
and P* according to the relation

=, 0.h) —> P*= (L, ¢.h"). (1.166)

Through the mapping (1.166) the surface of the earth S is mapped onto another
surface, called the telluroid, S* (cf. Heiskanen and Moritz 1967)

*={P* =, ¢.h}), P S} (1.167)
Now, we can define the height anomaly of P as
¢(P) = h(P)—h*(P): (1.168)
so, when P € S, {p is basically the separation of the earth surface S with respect
to the telluroid S*.
Let us immediately state that {(P) can be either positive or negative, depending
on P. We also see that, according to our Definition (1.162), if P is directly taken on

the geoid G, then

PeG= W(P)=W=U=UP)—> P* =P,
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i.e., the height anomaly ¢p becomes the geoid undulation N. Such is the case, with
a very good approximation, for every point on the surface of the sea.

Gravity disturbance §g, §g. The vector gravity disturbance ég is by definition

dg(P) = g(P)—y(P). (1.169)

On the other hand the scalar gravity disturbance, or simply gravity disturbance,
8g is

Sg(P) =g(P)—y(P). (1.170)

Note immediately that, contrary to the convention used almost everywhere in the
text, in this case it is

5g(P) # |6g(P)I.
In fact we first note that |§g| has the following order of magnitude as a maximum

O(|8g|) = 10y, (1.171)

o N .
so that we are allowed to linearize expressions in E, neglecting terms of the order
14

of 1073,
P
Then we find, from (1.170) and recalling that v(P) = —%, with a high
14
degree of approximation,
g(P) = g(P)| = [y(P) + 5g(P)
= Vy2(P) +2y(P) - 8g(P) + |8g(P)|?
P).Sg(P
A A R
y(P)
3gv (P
=y 1=y —ser) aam
y(P)
where we have called §g, the vertical component of §g, putting
8g, =6g-v. (1.173)
But (1.172) implies
8¢ = g(P) —y(P) = =88y, (1.174)

proving our claim that §g is equal to one component only of §g and not to the whole
modulus, |5g|.



50 1 The Forward Modelling of the Gravity Field

Free air gravity anomaly, Ag, Ag. In a way very similar to (1.169) and (1.170)
we set up the definition of this new anomaly as

Ag =g(P) —y(P") (1.175)
Ag = g(P)—y(P"). (1.176)

First of all note that here g and y are computed at two different points; in
particular, when P is on the earth surface S, P* is on the telluroid S*, so that
Ag and Ag can be considered as functions of either P or P*.

Again here it is not true that Ag(P) is equal to |[Ag(P)|.

In this case we can find a relation between Ag, 6g and ¢, in fact from (1.175) we
have

Ag =g(P)—y(P)+y(P)—y(P*) =8g(P) +y(P)—y(P"). (1.177)

But since P* P = ¢, which is a small quantity, we can approximate (1.177) by

Iy (P¥)
oh

dy
= —8gv + - -¢
g+ 35,8

expression that will become very useful in the sequel.

Ag = 6g(P) + L(P) (1.178)

Deflection of the vertical e, (1, £). We put by definition
e(P) =n(P)—v(P). (1.179)

The first thing to observe is that since both n and v have modulus equal to 1 and
€ is a very small vector,

O(le]) = 107*, (1.180)
we can safely put

e-nx~xe-vx=0( (1.181)
and on the same time

le| = ¢ = angle between n and v (in rad). (1.182)
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Fig. 1.16 The circumference e
of directions in the horizontal

plane through P, as seen A
from above M

The relation (1.181) tells us that e lies in the horizontal plane, so that we can put
e =ne, +&ey; (1.183)

the two components 1 and & are the eastward the northward deflections of the
vertical.

In particular if we take any vertical plane (i.e., a plane through P containing v p)
with azimut o with respect to the north (see Fig. 1.16), we find that the projection of
€ on this plane is given by

o = € €, =Ecosa + nsina . (1.184)

In order to fully understand the geometric and the physical significance of &, we
shall find its relation on one side with the “horizontal” coordinates of P, namely
with (A, @) and (4, ¢), on the other side with the gravity disturbance vector §g.
Remember that, in Cartesian geocentric components,

cos @ cos A cos @ cos A

np = |cos®@sinA |, vp = |cos@sinA |. (1.185)
sin @ sin ¢
If we putinn(A, @)
A=A4+8A, @ =9+ 5P (1.186)
and we linearize, we find
cos @ cos A —sin A —singcos A
np = |cosgsinAd | +cosg| cosA |6A + | —singsin) | 5P
sin ¢ 0 cos ¢

=vp +e,00 + cospe,sA (1.187)

Comparing (1.183) with (1.187) we see that

n=cospéA =cosp(A—1), E=6D =D —¢p. (1.188)
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Moreover, let us go back to the definition of vector of the vertical; if we use
(1.169), (1.170) and (1.173), and perform a linear approximation in 8g, §g, we get

g yptig

gr y — 88y
g
v__
~ 14 g(v—g—g)(l+8g")g
S8 v v
Y
) 8g,
:v——g+v g'
Y Y

If we recall (1.173) and we denote by P, the orthogonal projection on v, we can
rewrite (1.189) as

1
e=n—v=——(I —P))dg. (1.190)
14

The relation (1.190) tells us, among other things, that ¢ is just the horizontal
component of §g divided by y because (I — P,) is just the orthogonal projection on
the horizontal plane in P, therefore

1
O(le]) = ;O(I?)’gl)- (1.191)

Finally, going back to the definition of §g, we see that we can write

8g = —bgv — ye. (1.192)
Summarizing we could say that there is a general scheme leading to the definition
of a geodetic anomaly; namely we must have a physical or geometric (or both)
quantity (it can be a scalar, a vector, a tensor etc.) that we express in abstract form as
s=FP;W); (1.193)

then we must define some mapping, like (1.166) but not necessarily the same,
P < P*; (1.194)

then we define a normal quantity s*, corresponding to s, as

s* = F(P*,U) (1.195)
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and finally the geodetic anomaly of s as
Ds =5 —s*. (1.196)

In this sense, for instance, the Bouguer gravity anomaly, so much in use in
geophysics, is not a geodetic anomaly, since it implies a certain density and a certain
distribution of masses and even it cannot be derived from a potential, so we don’t
include it in this section.

1.11 Summary of Height Systems and Their Relation
to the Geodetic Datum

We have seen up to here a number of height systems, i.e., the coordinates used in
one way or another to fix the position of a point P in space outside some closed
reference surface. It is time first of all to summarize them:

* Geopotential number:
C(P)=Wo—W(P); (1.197)

this is indeed only related to the physical body of the earth and its potential;
it requires only that W, is fixed and that at least a point Py on the geoid be
known.

e Dynamic height:

Cc(P
den = ( ) ) (1.198)
Yo

to be specific yy is a fixed number equal to normal gravity on the ellipsoid at
¢ = 45°. This is not conceptually different from C(P), it is only the same
coordinate re-scaled in such a way that it is numerically close to a height in the
sense of geometry.

e Orthometric height:

Hp = length of plumb-line between P and the geoid G ; (1.199)

this is also an intrinsic coordinate in the sense that it is only related to physical
quantities uniquely derived from the mass distribution. Hp is dimensionally
a length and its local variation is close (though not identical) to the leveling
increment.

* Geodetic ellipsoidal height:

hp = length of the segment P P,, with P, the orthogonal
projection of P on the ellipsoid &; (1.200)
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Fig. 1.17 P’ has the same
coordinates in {&'} as P in
{&}, P has the same
coordinates in {E} as

P in (&)

the sign is inverted when P is inside &. This is a purely geometric quantity,
depending on P and on the choice of the ellipsoid &, also called the choice of the
geodetic datum; so if we move & leaving P fixed with respect to the earth, hp
will change.

e Normal height: if we call P, the orthogonal projection of P onto the ellipsoid,
the normal height /7, is defined by

U(P*) = U(rp, + h%v) = W(P) ; (1.201)

so h}, is a mixed quantity which we expect to depend on both the position of P
with respect to the earth, and the choice of the geodetic datum &.

Here we want to see how /1 p, h}, do depend on the choice of €. This is important
because both the barycenter and the rotation axis Z are not perfectly known and,
even more important, they are changing in time so that we need to understand
whether, for instance, every year we have to redo completely the computation of
height systems or we can just account for the effects of the variations of & in some
simple way.

That Cp, Hayn and Hp do not vary with &, we have already explained.

So let us see how are things for 1. We first of all note that if we move & with a
rototranslation, from the new position of &, we see a point P, fixed in space, as if it
had been submitted to a rototranslation opposite to the one imposed to &.

The situation is represented, for a translation only, in Fig. 1.17

The effect of a rototranslation with infinitesimal parameters is known to have, in
terms of Cartesian coordinates, the analytical representation

dx
dr=|dy|=t+eAr, (1.202)
dz

where t is the translation vector and & the rotation vector.
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Recalling that (cf. (1.136))

X (N 4+ h)cosgcos A
=| (N +h)cosgsini
Z [(1—e*)N + h]sing
cos @ cos A 0
= N+h)|cospsind | — e’Nsing |0
sin ¢ 1

= (N + h)v — e>N sin e,
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(1.203)

with e = (a®> — b?)/a* and N the grand normal defined in (1.137), we can

differentiate such expression and compare with (1.202).

The differentiation of (1.203) is standard, though lengthy; the relations

d d
%v =0, %v = ey, ﬁv = Ccos ge;
can help in this endeavour. The result is
dx
dr = |dy | =dhv + (M+ h)dee, + (N + h) cos pd Le,,
dz

where M, the radius of curvature of the meridian, is given by

_a(l—e?)
"~ (1 —e2sin? @)32

M
By using (1.202) and (1.205), we see that
t+eAr=dhv+ M+ h)dpe, + (N + h)cospdAre,,
so that, taking the scalar product with v, we find
dh=t-v+(eAr)-v=t-v+(rAav)-e.
If we use (1.203) we conclude however that
rAv =—e’Nsinge. A v

and, since by direct inspection we see that (cf. Fig. 1.18)

—e, AV = —Cospey,

(1.204)

(1.205)

(1.206)

(1.207)
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Fig. 1.18 e, and v in the
meridian plane of P e v

we finally obtain
dh =t-v—e’singcospNe - €. (1.208)

If t, e are just errors in the definition of &, they are at most of the order of
centimeters or mas (milliarcseconds) and the first term is small but significant,
while the second is totally irrelevant. If they represent variations over a time span
of years, they can be two orders of magnitude as large and we see that the first term
can become very large, and the second, though usually disregarded, enters into the
centimetric range.

Whatever it is, the effect of a change of position of & in space can be accounted
for, as for the effects on the ellipsoidal height system, by the simple formula (1.208).

At last let us see that, contrary to intuition, 4} does not depend, at least with an
approximation to the first order in dr, on changes of position and attitude of &. In
fact let us start from the Definition (1.201) and note that if P is fixed with respect
to the earth, W(P) does not change so that we must have

dU(rp) =y -dry =0. (1.209)
On the other hand
rp =rp, +h*v
so that
dry =drp, + dh*v + h*dv. (1.210)

But drp, is tangent to the ellipsoid and, since y has a small change of direction
along its plumbline, up to the level of the surface of the earth, we can reasonably put

yp-drp, =0. (1.211)

Similarly dv - v = 0, because v has always modulus 1, and since y p is almost
parallel to v, we can claim that

yp-dv=0. (1.212)



1.12  Exercises 57

Using (1.210)—(1.212) in (1.209) we find, with the approximation above
specified,

dU =y -drp =dh*y -v = —ydh* =0, (1.213)

ie.,dh* =0.
Concluding, let us claim that

hp =hyp + Cp. (1.214)

so that from the above reasoning we see that a variation of geodetic datum & has on
¢ an effect primarily given by the translation t, and more precisely

dtp ~dhp =~ —t-v =t ; (1.215)

<R

a rotation of & has typically an effect two orders of magnitude smaller.

1.12 Exercises

Exercise 1. Prove that
V- [F(r)r] = rF'(r) + 3F(r).
Then search for an F(r) such that
1
V- [F@rr] = -
r
and prove that with the further requirement that F(r) is regular at infinity, it is
1
F(r)y=—.
") 2r

Exercise 2. Assume that B is a body with constant density 6. By applying the
result of Exercise 1 and Gauss’ theorem, prove that the Newtonian potential of B is
given by

1
T(P) = —G80/ I'P;Q -nQdSQ,
2 s TPQ

i.e., the Newton integral is transformed into a surface integral.

Exercise 3. Consider a body of uniform density §y and such that any parallel to one
axis, e.g., Z, intersects S only twice, at heights z(§, n) > z1(§, n).
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Write the Newtonian integral T of B and prove that if O, = (§,1,22), Q1 =
(§.n.21), then

T 1 1
5ng—a—=G50/ dé‘dn[ - }
dzp By

repo, Tpro,

where By is projection of B onto the (x, y) plane.
9 1 _ o 1

int: — ' ' S D R
(Hint: pass —5= under the integral and notice that — 7= g = g o)

Exercise 4. Consider a circular cylinder of uniform density §, with base of radius
b and height Hy. Assume the lower base is on the (x, y) plane.

Consider a point P on the axis of cylinder at height H = Hy + a,(xp =
yp =0).

By using the result of Exercise 3, prove that

8g. = 2 G8[Ho + Vb? + a®> — Vb2 + H?].

Noting that, according to our definition in Exercise 3, §g, is the opposite of the z
component of the attraction of the cylinder, prove also geometrically that it is always
8g. > 0.

(Hint: note that, calling p the polar coordinate in the (x, y) plane one has

1 1 1 1

rpo, B \/,02+612’ TpPo, B \/,02+H2’

and By of Exercise 3 is the circle p < b. Perform the integral in polar coordinates).

Exercise 5. Consider a homogeneous cone of density 8y, height Hy and circular
basis on the (x, y) plane, with radius b centered at the origin.

The inclination I of this conical mountain is such that Hy = btan /.

Take any point P on the axis of the cone (z axis) at height z = Hy +a, a > 0
and compute, with the help of Exercise 3, the attraction dg of this cone at P.

Prove that

b+acosIsinl + cosI+/b>+ (Hy+ a)?
- +
acosI(l+sin/)

8g, =2 Gé |:a cos® I sin I log

—sin? [ b2+(H0+a)2+H0+asin21].

In particular taking a — 0, i.e., going to the point P on the top of the cone, one
gets

8gz = 2]TG50H0(1 — sin I)
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Exercise 6. This and Exercises 7-9 constitute a guided tour to the computation
of the potential 7 of a homogeneous parallelopiped. Consider a homogeneous
parallelopiped D of density . Place the origin of the axes at the barycenter and
assume that

D={-a<x<a, -b<y<b, —c<z<c}.

Call (x,y,z) the coordinates of the computation point P and (£,7,() the
coordinates of the running point in D.
Put

rEND =VE—x)24+ 0 -2+ —2)7?

and

Sy ={-b=<y=<b —c=<z=b}
Sy={-a<x<a, —c<z=c}
S.={—-a<x<a, —b<y<b}

Axr =atx, By =bxty, CLr=ctz

By using the Exercises 1-3 prove that

B A_ Ay
2T(x.y.9) = Gho Us (r(a, 10 r—an, z)) dnds

B_ B, c. c,
déd d&dn.
+/s,, (r@,b,z) +r@,—b,z)) ¢ ”/sz(r(s,n,c) +r<s,n,—c)) sdn

Exercise 7. Put

p = (n—y)ey—i-(é'—z)ez, p = |p|
ad a

Vv, = eya—n +eza—é

and show that

02

rand  Jtp

Apply then the divergence theorem in two dimensions, to the rectangle Sy, proving
that

1 1 . |:,/A2_+,02 }
—p .
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Fig. 1.19 The rectangle S & n=e,
in the plane (7, ) and its Ac T
normal field i
2
n:-en < E— n=en
Ls
-b b
L, L,
-C i
n=-e,
1 ¢ JAZ + B2 + (¢ —2)?
F=/ —  _dpdl=B_ v , (4“2 P 4
s, r(a.n.%) -~ B2+ ({-2)

¢ \JAZ + Bi +({—2)? b AL+ C2+ (n—y)?
+B+/ v = c [V e _+(772y) i
—~  Bi+(-27 - C2H+ =)

b \/A2_+Ci+(n—y)2
vy |

dn
—b CI+(m—y)?

(Hint: remember that in the plane (7, ¢)

/V'vdndézfv'ndﬁ
s L

where L is the contour of S, covered in counterclockwise sense, n is the exterior
normal to L, that in our case looks like the Fig. 1.19.

Note also that d/ is the line element which is always positive so that d¢ = d¢
onLj,dl =—dnon Ly, dl =—d¢on Lz, d{ = dnon Ly).

Exercise 8. Show, by direct differentiation, that the following indefinite integral
formula holds

JETB
/ —BJQFJF z2+ dt = log(t + VA2 + B2 + 1)
B A2+ B2+ 12

—— arctan —
B A t

Exercise 9. By combining Exercises 6—8 show that the full computation of the
parallelopiped potential can be done through the following formulas
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VH?+ K7 +357 |
OK*+s?
L+ VHE+ K+ 17
VH*+K?
KVH? + K2+ L?

H 7
—— arctan + = =
K HL K 2

b JH* + K2+ (s —1)?
—n K2+ (s —t)?
VH>+ K2+ (h—t)2+ (h—1)
VH2+ K2+ (h+ 12— (h+1)
KH?+ K2+ (h—1)?
H(h—1t)
KH?>+ K>+ (h+1)?
H(h+1t)
F(A—,B_,B4+,C_,Cy4) = B_[I(A—,B_,C_) — I(A_, B_,—C4)]
+B4[I(A—,B4+,C-) — I(A—, B4+. — C4)]
+C_[I(A—,C—,B_) — I(A—,C—_,—B4)]
+C4[I(A—.C+.B_) —I(A_,C4+.,—By)]
2T(x,y.2) = A_F(A_,B_,B;.C_,Cy)
+A4F(A4,B_,B4,C_,C4) + B_F(B_,A—,A+,C_,Cy)
+B4F(B4,A_,A4+,C_,C4) + C_F(C—,A_,A4+,B_,By)
+C4+F(Cy,A—, Ay ,B_,By).

I(H.K.,L) = /O

= log

ds=I1(H,K,h—t)—I(H,K,—h —1)

H
—— arctan
K

—— arctan
K

Moreover, recognize that, put in this form, the formula requires the computation
of 24 logarithms (because each of them appears always twice) and of 48 arctangents.
We shall see at the end of Chap.4 an equivalent formula reducing the computation
to 12 logarithms and 24 arctangents.

Exercise 10. This exercise is intended as a preparation for the next one. Prove that

1 z . 1 z

1
lim —-—— = lim — — —S(x— -
R M 7 (s e e e D

(Hint: it is enough to prove that

1 z
x#E y#n 03
PQ
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and

1
5 YP.Zp>0)

1 V4
— | ——d&d
47t/5€3’,Q sdn

Exercise 11. Apply the third Green’s identity (1.61) to prove that, for a boundary
S which coincides with the (x, y) plane, one has for a smooth function u(x, y, z),
harmonic in the upper half space (z > 0)

1 u 1
“(xv y,O) = E/S I:_a_z(g, n, 0):| Edsdﬁ
= (x,».0), @ =(1.0)

(Hint: write (1.61) for a point P = (x, y, z) inside the upper half space and take
the limit for z — 04 recalling the result of Exercise 10).

Exercise 12. This exercise is intended as a preparation for the next one. Prove that
the following integral on the (x, y) plane vanishes

! / ! 1-— 3 dédn =0
4 SK%Q EZ 1
VP =(x,y,2,2>0; QO =(&1,0).

(Hint: use planar polar coordinates for (&, 1)).

Exercise 13. Let u(x, n, z) be a function harmonic in {z > 0} continuous with first
and second derivatives in {z > 0}. Prove that one has, on the (x, y) plane,

du(x,y,0 1 ,6,0) —u(x,y,0
0 20)_ L [HEE0 .0,

0z 27
= (x,.0), O = (£,1,0).

d
(Hint: write first a_u using the third Green’s identity for a point P with z > 0 and,

z
using the result of Exercise 12, show that

0z C4n K%Q

au(x,y,z>_i/§[u@ n,O)—u(xyon[ zZ}
T Gy
z Odu

63 & n,O)§ dédn, P = (x,y.2). Q@ = (§,1.0).



1.12  Exercises 63

Now take the limit for z — 0, recalling Exercise 10 and observe that, according
to the theory of singular integrals (Mikhlin 1957) one can take the limit under the
integral of the first term to the right hand side: in fact due to the smoothness of u,
one has

du(x,y,0 ad
1.0 = u(r. .0 = P26 )4 5 w000 ) + Ol

Appendix
A.l

We aim to prove that, as claimed in (1.49) — see also Werner (1974),

Api = —478(P, Q) (1.216)
r'pQ

where Dirac’s § is in fact a linear functional acting on a space of continuous
functions, or on any subspace of smoother functions, according to the rule

Vi <8pf>= /R} 5(P,0) f(Q)dsx = f(P). (1.217)

Proof. To do that we use the definition of distributional derivative of a locally
integrable vector field v (note that the field —r% is indeed integrable over any finite
ball in R? centered to the origin): we say that V - v = F if and only if for any test
function ¢(x) (i.e., a function continuous with its derivatives of any order and which
is identically zero outside a closed set K,) it is

F(p) =(V-v)p = —/qu - vds3x (1.218)

where d3x is a volume element, and the integral is over the whole space or over K,
since outside this set Vo = 0.
So from (1.49) we compute, in spherical coordinates,

—/w.(—r%) dsx :/(;-w) r—12d3x (1.219)

~[ao [ 0L g [ dot-001 = ~4z00)

or r?

If we consider the Dirac’s § distribution, namely the distribution defined by
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5(¢) = / S(P)p(P)dsxp = ¢(0), (1220)

r

we see that putting F = § and v = —-5 in (1.218) and comparing (1.219) with
(1.220) we can claim that

Aoy, (—i) — 47§ (1.221)

Note that §(P) can be in a sense considered as the density of a point mass placed
at the origin O.
So if we translate the origin to any point O, we can write

1
Ap— = —478(P, Q), (1.222)
rpQ

where by §( P, Q) we mean the density implementing the identity

/ 5(P. 0)p(Q)dsxg = o(P).

A2

We wish to prove that a single layer potential as (1.53) satisfies the jump relations

(1.54),1.e.,
(%—V) — (%—V) = —-4nGua; (1.223)
nj, nj_

on this you can see (Miranda 1970; Werner 1974) too. For this purpose we consider,
beyond S, the boundary of B, another surface S’, and its interior B’, as shown in
Fig. 1.20.

Let us compute the flux of g = VV through such arbitrary S’, which delimits by
intersection an arbitrary subset Sy of S (cf. Fig. 1.20). We have, with n’ the outer
normal of S’,

wds! ror s
[ &) nPdSP—G/SdSMQ)/S,( o np)dSP

= —47rG/SdS2a(Q)/B/8(P, 0)dBl,.  (1.224)
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Fig. 1.20 Note that B is the ‘

interior of S, B’ the interior
of " and Sy = S N B’
%

‘We note that

—4w Q € B’

r ! !
/S/_pﬁ.npdsp — _4x /B/S(P, 0)dB), = {O ooy, (1229
or ’

i.e., it is, apart from the factor (—4m), the characteristic function of the set B’.
Therefore, from (1.225), we find

/ g(P) -0 (P)dSp = —47tG/ «(0)dSy. (1.226)
S/

So

because when Q is outside Sy the integral (1.225) is zero. Since the identity (1.226)
is valid for any S’ defining the same S, by intersection of B’ with S, we can choose
S’ as in Fig. 1.21. Since the right hand side (RHS) of (1.226) depends on Sy but not
on h, we can also take the limit for 4 — 0. The integral on the lateral wall of the
cylinder then disappears and we have only two integrals left, one on the upper face
of Sy, another one on the lower face of Sy. Let us note that, when 7z — 0, the normal
to So+ becomes the outer normal of Sy, so that

/ g-n’dS’z/ a—V/dS’—>/ (B—V) ds;
So+ So+ on So on +

on Sy however the normal n’ is opposite to n, so that

Vv |4
/ g-n'dS’ =/ a—/dS’—>/ _(8_) ds.
So— So— 811 So al’l _

So, going back to (1.226), we receive

[I() () Jas = an0 [ s
So an + an - So
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Fig. 1.21 Taking S’ in the
form of a cylinder orthogonal

to S before letting 7 — 0 i

and, since Sy is arbitrary, we must have

[(3_") _(a_V)} — 4G (1.227)
on ), an)_]g

The relation (1.227) says that although the potential V is relatively regular across
S, its normal derivative has a sharp jump equal to —47 Go.

A3

We aim to prove formulas (1.92) and (1.93) (Borisenko and Tarapov 1979).

Let r be the position vector of the point P to which we attach a system of
coordinates & = (£, £, £&)7. We assume that {£;} is an orthogonal system, i.e., that
vectors tangent to the coordinate lines are orthogonal to one another.

Such three vectors are easy to find as

0
J

So we know a priori that
h; -h; = k28, (b = |hy)). (1.229)
Note immediately that the following fundamental relation holds
0ih; =0;0;r(§) =0;0,r(§) = 0,h;. (1.230)

Moreover the {h;} are related to the metric, expressed in {§;} coordinates,
through the two relations

dr = Eihjd%'j (1231)
|dr? = 5 jh; -hjdEdE; = SihldEL. (1.232)
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Now take any smooth F(r); by definition of V we must have
dF =VF -dr=XYXVF -h;d§; = ¥0; Fd§;
so that

9,F =h;-VF.

67

(1.233)

(1.234)

On the other hand, since the basis {h; } is orthogonal, for any vector v we have

h:
E,h—g(h,.v)zv.
J

By applying (1.235) to (1.234) one gets

h:
VF = (zjh—gaj) F
J

since F in (1.236) is arbitrary, one can claim that

h;
2
hj

V=2x-29,

Now we can pass to compute, with the help of (1.229) and (1.230),

h;
A= Ei,jﬁf)i . |:h£3 :|

i -h; h; - ;h;
=Xij =55 hzhz 0j + Xij—575— 2h2 —570;
it
2
‘jhi'hj az(hj)a]
i 2 4
Wb
h:-0:h:
2 L J
]h231+2ij—h2h2 8j+
i
0;h;)
-23; i 9;

(1.235)

(1.236)

(1.237)

(1.238)

Let us consider together the second and third term in (1.238); for instance put

j =1, then the coefficient of 9, is
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. h; - 9, h; d1h
j=1 XYi————-2—— (1.239)
"R n
01h; 01h
=3 1_2 — 21_31
hihy hy
_81h1 31h2 a1h3
h? hzh% h3h%
1 (h2h3)
=—d(—).
hihyhs hy
where we have used the obvious relation
1 2
h,--ajh,-zzajhi :h,-ajhi.
By cycling the indexes and setting H = hhyh3, we see that
h,‘ . 8]~h,- ajl’l H
X o 2 E = =g 8 h_2 (1.240)
iy J
so that, if we go back to (1.238), we can write
1 5 1 H
A:H ]h23]+H2 [3 h2:|8 (1.241)

H
h2

ienfi)

A4

We want to prove formula (1.120), expressing the harmonic part of the normal
potential. We refer to Sect. 1.9 for the notation. For a different approach to the
determination of the normal potential, consult Heiskanen and Moritz (1967),
Chap. 2.

First of all note that both the boundary surface & as well as the boundary
condition (1.119), are cylindrically symmetric, so we expect that the sought solution
V,=V,(q.?¥) be independent of A too. To determine a potential from Laplace
equation and its values on the boundary, as in (1.119), is the Dirichlet problem. That
such a problem has a unique solution depending with continuity from boundary
data, is discussed at length in Chap. 13 of Part III.

Based on this consideration we can try to find our solution by a suitable guess
and if we are able to prove that it works, then this is the sought one.
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Given the shape of the Laplace operator and of the condition (1.119), we guess
that a solution should have the form

V, = A(q) — B(g) sin> 0. (1.242)

We can immediately state that, if (1.242) is correct, owing to (1.119), A and B
should satisfy for ¢ = b the relations

A(b) = V,, B(b) = %a)zaz. (1.243)
In addition, if we want V, to be a regular potential, we must have
A(g) — 0, B(q) > Owheng — oo (1.244)
Note that, since from (1.103) we have
r? = q2 + E? sinzﬁ,
q — oo is one and the same thing as r — oo.
Substituting the trial solution (1.242) into (1.110) and separating the two terms,

one independent of ¥, the other proportional to sin? ¥, we get the differential system

(q* + EH) A" +2gqA’ —4B =0

1.245
(% + E))B" + 2gB' — 6B = 0, (1:245)

to be integrated with the boundary conditions (1.243) and (1.244).
To integrate (1.245) is a standard exercise, that we do for the sake of complete-
ness.
We start with the second equation and first we look for a particular integral in the
form
B=pg +c (p, ¢ constants). (1.246)
We immediately find
B =3q¢>+ E%. (1.247)
Then we put into (1.245)
B=B-v (1.248)

and we see that the new unknown v has to satisfy the new differential equation

(> + EH(Bqg> + E*W' +[129(¢*> + F>) +29(3q¢*> + E)]Y = 0.
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We write this in the separated form

V! 2¢q 12¢
= 1.249
4 [c12+E2 * 3q2+E2i| (1249

and integrate, obtaining

, C B |: 1 3¢*— E?

= = — . (1.250
= areaTEr = rvE e ey) 02

The reader can verify the second identity and discover that the new constant D
isrelated to C by C = 4E*D.
Before performing the last integration step we notice that

/ dq 1 q 1 [m E
——— = —arctan — = — | — — arctan —
>+ E* E E E|2 q
and that

3g> — E? 3q
-3 dq = .
Gir + B2 T 32 1 B2

So the integral of (1.250) is

3qE b4
v=——lacctan — — —— |+ L+ — =
E q 3¢*+ E? 2F
E 3qE
=G |arctan = — 292 _ | 4 p (1.251)
q 3¢>+ E?
with an obvious meaning of the constants.
Returning to B we get
B _ G[(3 2 2 E _ 2 2
= q° + E°)arctan 3¢gE] + H(3q” + E7). (1.252)
q

Since we must have B(g) — 0 when ¢ — oo, we see that it has to be H = 0.
In fact, with the help of the Taylor formula

3 5
arctanx = x — —x~ + =x" + ...,
3 5

one verifies that the term in square parenthesis tends to zero. So, in order to satisfy
the boundary relation

B(b) = %wzaz (1.253)
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it is enough to put

0(q) = 3¢° + E?) arCtang —3qE (1.254)
and
. l 2 2Q(Q)
B(g) = 2(0 a _Q(b)' (1.255)

The form of A is more immediate to find, since, by combining the two equations
(1.245), one sees that

F=A--B

has to satisfy
(¢ + EHF" 4+ 2qF' =0. (1.256)

Considering that F(g) has to tend to 0 for ¢ — o0, because of (1.244) and
(1.256) integrates in

E
F(q) = C arctan —,
q
ie.,
E 2
A(g) = C arctan — + §B(q). (1.257)
q
By using the first of (1.243), C is determined and we get the final expression

arctan —
) — 155, g 1 ,,00@ (2 . ,=
Ve(q,ﬁ)—(Uo—gwa)—E—i-Ea)a @ g—sln ¥ s (1258)
arctan —

where Q(q) is explicitly given by (1.254).



Chapter 2
Observables of Physical Geodesy and Their
Analytical Representation

2.1 Outline of the Chapter

As we have shown in Chap. 1, the gravity potential W can be split into a known
normal potential U plus the anomalous potential 7'; thus knowing 7 means
knowing W.

Through the whole book we try to show how to relate T to quantities that can be
observed on the earth surface or even in space, by using satellite technology. The
first step in this direction is to study how to represent every geodetic observable
quantity as a function of 7.

Since T is our unknown, we have first to define what is the functional space to
which it belongs; in this book we will use Hilbert spaces only, because they are
much simpler than more general spaces and can be essentially treated as an infinite
dimensional analogue of Euclidean spaces, with a very similar geometry.

A self-contained introduction to Hilbert spaces can be found in Part III, Chap. 12,
although the reader that does not want to go deeper into mathematical technicalties,
can in any way follow the text, only accepting here and there some statements
without proof.

A numerical variable, function of T that is ranging in some Hilbert space H, is
a functional of 7. This functional can be linear or non-linear. Most of our actual
observables in geodesy are non-linear functionals of W = U + T, and since T is
much smaller than U, it is not surprising that we expect to be able to linearize the
observation equations. The concept is made more precise through the definition of
the Frechet and Gateaux differentials in Sect. 2.2.

Basically we can summarize the situation for the earth by saying that, as far as
we want to determine a geoid with 1 cm accuracy, the linearized theory presented in
the book is applicable.

Then we consider in Sect. 2.3 the most common observables related to 7', we find
their analytical form and we linearize them explicitly. In doing so it is convenient to
consider combinations of variables, often geometric and physical quantities, mixed
in a way which is very typical for geodesy.

F. Sanso and M.G. Sideris (eds.), Geoid Determination, Lecture Notes in Earth System 73
Sciences 110, DOI 10.1007/978-3-540-74700-0_2,
© Springer-Verlag Berlin Heidelberg 2013
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By performing this job we find all the relevant functional relations expressing
all the anomalous quantities described in Chap. 1, in terms of the anomalous
potential 7. In particular we find the relation between 7' and height anomalies,
including the geoid undulations.

In the development of the section we encounter the case that the orthometric

height is considered as an observable.
This is not a true geodetic observable in strict Molodensky’s sense, because the
definition of orthometric height implies the knowledge of the mass density between
the earth surface and the geoid. Nevertheless it is not difficult to show that it is
enough to know the mass density with a quite realistic approximation, or we can
even fix it at a conventional mean value of 2.67 gcm_3, to be able to derive from
true observables, namely the levelling increments, orthometric heights accurate to
the centimeter level.

This is shown in the last part of Sect.2.3 and the related estimates are fully
developed and analyzed through Sect. 2.4. The key result of this section is formula
(2.70) which can be interpreted (see Remark 3) according to the practical formula
(2.75), making use of the so-called Bouguer anomaly.

Now that all the main relations between 7" and the observables have been
established in a linearized form, in the effort of approximating 7', we can use
any further knowledge of factors that affect this potential and its functionals to
reduce the unknown part of 7', so to say we try to eat 7 morsel by morsel.
This will be done in the following chapters, in terms of different wavelength
components, but here in Sect. 2.5 the principle is established as the remove—restore
concept.

Basically it implies that known gravitational effects can be subtracted from the
free air gravity anomaly Ag and, once a solution has been found with the reduced
data, we add back to it the piece of potential 7' due to the same known effects.

As such this principle is just another expression of the fact that now all the
relations between the relevant quantities are linear. When we manipulate the
relations found in Sect.2.3 and apply them not to the full anomalous potential T,
but to the residual unknown part of it corresponding to a maximum of a few meters
of height anomaly, we are allowed to use one further approximation in our formulas,
which is often useful, particularly in analytical studies. This consists in substituting
a simple spherical potential instead of the normal potential U when this is present
directly or through its functionals (e.g. through normal gravity y).

This concept of spherical approximations is analyzed in Sect. 2.5. The procedure

introduces a relative error somewhere between 1072 and 1072 and it is therefore
justified only if 7 is reduced to a small component.
However it has to be stressed that nowadays this simplification has no particular
reason to be applied when we work out numbers, since the exact expressions are as
easy to be computed electronically; so its use has to be confined to simple qualitative
and analytical considerations.
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2.2 Observables and Observation Equations: Linearization

An observation is by definition an operation that, applied to a certain physical
system, provides us with a real number. The operation, which is performed under
conditions controlled as much as possible, is intended to provide the magnitude of
a certain quantity ¢, in the sense that the number obtained, the observation gy, is
supposed to be

do=q+v 2.1

with v the observation error.

The number v, which is obviously never known, however displays some peculiar
behaviour: it is unstable, in the sense that if we repeat the observation measurement
under the same conditions, we find another value g, i.e. by definition another value
of v, but its instability has a statistical character, in the sense that most of the times
it does not change too much its absolute value.

Under these condition v is modelled as a random variable, typically with

E{v} =0, 02 = E(v?) < +o0. (2.2)

We have already used the symbol E in a different context, as linear eccentricity.
Here E is used for expectation over a probability distribution. The context should
make clear the meaning of the symbol each time.

Here however we are interested in the quantity ¢ we wanted to measure; in the
case of physical geodesy this is generally a function of the position of the point (or
points) involved in the measurement, through its coordinates r p, of the gravity field,
e.g. through its potential W, and of a number of ancillary parameters, that we collect
in a vector x of unknowns, e.g. parameters describing the transmission of e.m. waves
through the air or parameters relative to the state of the measuring instruments etc.

So we can say that

q = Flrp,x; W], (2.3)

if the measurement is “pointwise”, i.e. it refers to a specific point only; otherwise
(2.3) contains more points {rp; }.

What is a function of rp and of x is common knowledge. We concentrate then on
the meaning of being a function of W. This is a similar concept, with the difference
that now W has to be chosen in some space having an infinite number of dimensions,
because a general set of functions cannot be described with the help of a finite
number of degrees of freedom.

Exactly in the same way as when we write ¢ = F(rp) we implicitly mean that
rp is ranging over R*, or some subset of it, when we write ¢ = F[W], we have to
specify too what is the set of elements on which W has to range.

In our case we specify this by assuming that

W=U+T 2.4)
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with T in some subset of the space of all functions harmonic in £2, H(§2). Naturally
although functions in such a space are very smooth in §2 (continuous with all their
derivatives) they can display a very bad and rough behaviour at the boundary, so we
have to select a subspace H of H(§2) in such a way that 7' is smooth enough as to
guarantee that every functional F representing a physically feasible measurement
be bounded. In other words if we put T € H into F(U + T), for every F we need,
we must be sure that we get a finite number, because otherwise we are trying to
observe a quantity which is not measurable.

To give a precise functional formulation of this statement is not easy. However
let us agree that we want at least g = VW to be not too bad on the boundary S, i.e.
that mean values of g on small patches of S be bounded. This can be most easily
translated into the other requirement

/Slg(Q)IZdSQ < +o0; (2.5)
since
g=y+ VT (2.6)

and since y is certainly a regular vector on S, we can convert (2.5) into
/|VT|2dSQ < +o0. (2.7)
s

So a reasonable space H in which T has to be chosen could be defined through
the requirement that in H a norm is defined according to

1/2
17T = %/ |VT|2dS} ) (2.8)
N

For technical reasons, to be found in Part III, Chap. 13, instead of (2.8) an
equivalent formulation is given by putting the not too restrictive constraint that S be
star-shaped, i.e. it could be described by an equation of the form

r=R(®N). (2.9)

In this case (2.8) is modified according to

1/2

T = {/ IVT(R, 9, M))*R*(9, \)do (2.10)

with ¢ the unit sphere and do its area element (cf. Part II1, Sect. 14.2).
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Remark 1. That (2.10) satisfies the definition of a norm (cf. Part III, Definition 8)
can be verified as an exercise by the reader, with the help of the theory explained in
Part III, Sect. 12.2. Only one point is more delicate, namely to prove that

IT]h =0=T=0. (2.11)

As a matter of fact if ||7'||; = O we have indeed |VT'| = 0 (almost everywhere)

on S; therefore it has to be T = C (constant) on S. On the other hand |[VT| = 0
aT

implies that PPl 0 on S too. So if we apply the Dirichlet identity (1.58) to the

n
exterior space §2, where T is harmonic, we find

T T
!/Wﬂ%ﬂz—/TidSz—C/i%Szo
0 S on S on

so that it must be 7 = C in the whole of £2.
On the other hand T has to be regular at infinity, so that it has to be identically
zero through £2.

We note also that the norm (2.8), or the equivalent norm (2.10), can be related to
the definition of a scalar product, i.e.

ITI} =(T.T),

where
(RVM:/GUUWOWwJMa (2.12)

Now that we have defined a norm and a Hilbert space structure in H we can also
define what is the meaning of “linearizing” the functional F.

Let us remember (see Part III, Definition 11) that a continuous linear functional
on H is a mapping, defined on whole H, L : H — R, such that

VA, ueR, Yu,ve H, L(Au+ uv) = AL) + nL(»).
Remember also that y = o(e) means that

lim 2 = 0.
e—>0 &

Then we say that F(u),u € H, is differentiable at a “point” u € H if there is a
continuous linear functional L( ) such that, Vi € H,

F(@u+h) — F(@) — L(h) = o(||h]): (2.13)
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in this case we say that L (%) is the Frechet differential of F at u and we write (2.13)
in the form

dF (@, h) = L(h). (2.14)

Note that since H is a Hilbert space, as a consequence of the famous Riesz
theorem (cf. Part III, Theorem 2), every linear bounded functional on H can be
represented in the form of a scalar product, namely 3¢ € H, such that

L(h) = (.h) . (2.15)

The element £ is called the Frechet derivative of F' at u and usually denoted as
F'(u) or F,(u). So (2.14) can be written as

dF (i, h) = (F'(u), h),, . (2.16)

In what follows we shall consider physical quantities that do depend on T
through functionals that are everywhere differentiable in H.

In finite dimensional spaces, the definition (2.13) of the differential is pretty
much the same, with the only difference that we have an Euclidean modulus of
the increment, ||, instead of the norm, ||z|. However when we have to “compute”
the derivative of a function F(x) we use the more comfortable concept of gradient,
V F(X), such that

dF(x,h) = VF(X) - h. (2.17)
In practice the gradient is computed by taking partial derivatives along all axes.

In a similar way we define the gradient, or Gateaux derivative, of F(u) at u by
computing the limit

tli_I)I(l) ;{F(ﬁ +1th) — F(n)}
= %F(ﬁ-ﬁ- th)|;=0 = L(h) = (VF@),h)y . (2.18)

One can easily prove that if F is Frechet differentiable, then the Gateaux
derivative V F (u) exists and

F'(@) = VF(®@) (2.19)

so that (2.18) becomes a comfortable tool to compute F’(z).

The converse of the above statement is known to be false already in R>, but we
shall not be concerned with this problem, since we shall assume that all our F(u)
are regular enough for (2.19) to be true.
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The linearization of a functional F(u) around a “point” u in H is then just the
use of the approximate expression

F@@+h) = F@) + (F'(u).h),, ; (2.20)

thanks to (2.13) the error in (2.20) is o(||2]]). As a matter of fact, if we assume
that F is two times Frechet differentiable we can even prove that the error is at
least O(||h]|?), i.e. in (2.20) we are neglecting only quadratic terms in 4. This
is particularly useful in physical geodesy, since to “linearize” our observation
equations we shall systematically put

F(W)=FU +T) =~ F(U) +dF(U.T). 2.21)

In doing so, remembering that O(T) = 10°0(U), O(|VT|) = 3-10720(|y|)
etc, we obtain a relative precision in (2.21) better than 10™4; for instance, in terms
of the geoid, which is at most ~100 m, we get relations accurate to better than 1 cm,
which is within the target of this book.

The peculiar character of the observation equations of physical geodesy is that
many times the observables are functions of 7' as well as of the observation point
(or points) rp which has totally or partially unknown geometric coordinates, as in
(2.3). Therefore the general form of linearized geodetic equations is obtained as
follows: let

rp =Tp + drp

%t (2.22)

so that Tp and X are approximate values for rp and x, then we shall write
systematically

qo=q+v=FFpXU) (2.23)
+F@p. X, U)-0rp + F(fp, X, U)- & + L(T) +v

with L(T') computed from (2.18), i.e.
1 _ ~
L(T) = hI‘I});{F(FP,X,U“{‘lT)—F(FP,X, U)}. (2.24)
t—

We close the remark by noting that if we put
q=F({r.XU),

the known term of (2.24), namely go—¢, is exactly the “geodetic anomaly” of ¢, Dgq.
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In the next section we shall see several examples of linearization for the
combination of different observable quantities ¢ and with different choices of the
mapping rp <> Tp.

This general viewpoint to the linearization of observation equations, mixing
geometric and physical quantities, was developed in geodesy in the 1970s and it
has been designated as the Integrated Geodesy approach (see Moritz 1980; Krarup
2006, Chap. 18).

2.3 The Linearized Observation Equations
of Physical Geodesy

In this section we shall consider suitable combinations of elementary observables.
Such elementary variables are:

(a) Geometric variables like (A,¢@,h)p or (x,y,z)p in a geocentric system.

Quantites like these can nowadays be obtained point by point by GPS with an
accuracy of a few centimeters worldwide, or areawise by radar interferometry. On
oceans radar-altimeters give the coordinates of P again with a few centimeters
of accuracy; on land one can obtain from satelliteborne radar missions the mean
value of /1 over squares of side between 10 and 100 m, with a variable accuracy,
say between 1 and 5m.
In addition many times we can claim we know (4, ¢) of the point P, derived
from classical geodetic techniques and photogrammetry; when photogrammetry
and, more recently, laser scanning from an aerial platform are served by GPS
and inertial systems, we are again able to derive (A, ¢, 1) with an accuracy in the
range of ~5 cm;

(b) Physical variables like (A, @, g, W) which are typically obtained by astro-
geodetic observations, (A, @), or by gravimetry, g, or by combining levelling
with gravimetry, W. The astrogeodetic coordinates (A, @) can be obtained with
an error of the order of 0,1arcsec (corresponding to a shift of ~3m on the
earth surface); g can be obtained with a very high accuracy, down to the 1 pGal
level, though, as already explained, we hardly need that the measurement error
be below the 0.1 mGal level for geodetic purposes; W can be obtained with an
accuracy of some 0.1 m?s~2 (or 10°* Galecm = 1072 g.p.u.).

As a matter of fact what is really observable is not directly W but a W difference
between two points. It is for this reason that rigorously we should say that we
observe W(P)—W, where W is some reference unknown potential value related
to the particular height system in which we operate.

Nevertheless we shall for the moment consider W(P) as if it were directly
observable and will introduce the proper changes into the next section.

0
More variables, like the gravity gradients, specially % , are observable by means

of gradiometers, however we shall not dwell on that in this section as such
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observations, on the earth surface S, constitute a pretty small data set available
for the reconstruction of the gravity field;

(c) Finally, another quantity needs to be considered, which is both of geometric
and physical character, namely the orthometric height Hp. This is really not
directly observed, and in principle by going back to the original measurements
it should always be possible to convert the observation of H into an observation
of W; nevertheless there is a lot of information on H for which the original
observations cannot be retrieved, so we deem it useful to include H as an
elementary observable. Strictly connected with H is a real native elementary
measurement, namely the leveling increment. This will be treated at the end of
the section.

Remark 2. Note that many times instead of observing directly a quantity g(P), at
P, we rather observe increments, i.e. ¢(P) — g(Q), between two point P and Q.
Yet for the matter of linearization it will be clear how to make the generalization
from the observation equation of ¢ (P) to that of the increment g(P) — q(Q).

As explained at the end of Sect. 2.2, in order to perform a correct linearization
we need simultaneously to establish a map rp <> Tp, involving three subsidiary
relations; it is for that reason that we shall work out observation equations for
quadruples of geodetic observables or more:

1. (A, ¢, h, W); this is the simplest case because we know the coordinates of P and
then we can put straightforwardly

rp =7Tp; (2.25)

so we have
W(P) =U(P)+ T(P). (2.26)

In this case L(T') = T(P) i.e. the functional L is just the evaluation of 7" at P
(see Part III, Definition 21),

2. (A, ¢, h, g): here again we know the coordinates of P and we can use the identity
mapping (2.25). Yet the observation of g(P) is not any more a linear functional
because

g(P)=|VW(P)| = |y(P)+ VT(P)|; (2.27)

since |[VT| < 107*|y| we can linearize (2.27).
Recalling (2.18) we find

[y (P) + tVT(P)]-VT(P)
ly(P)+tVT(P)| =

_r
y(P)

d
¥ (P) +1VT(P)ll = =

-VT(P). (2.28)
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So, using the definition of gravity disturbance (1.170), the observation equation
of g(P) in this case is

s¢(P) = g(P) —y(P) = VL) Ly (p): (2.29)

y(P)

if the point P is on the earth surface, or nearby, (2.29) can be safely approximated
by

aT
88(P) = —v - VT(P) = == (P). (2.30)

Note that the linear functional L( ) in (2.30) is a combination of the operator %

with the functional of evaluation at P,

. (A, @, W, g); this is probably the most important combination of observables at

least in the classical sense discussed by Molodensky, Yurkina, Eremeiev (cf.
Molodensky et al. 1962) and developed by many authors in physical geodesy
(see for instance Heiskanen and Moritz 1967; Moritz 1980; Krarup 2006).

We note that in this case the knowledge of the coordinates of P is incomplete;
however recalling the definition of normal height 47 and of height anomaly ¢
(cf. (1.165), (1.168)) we have

rp =, 0,h) &Tp =, 0, k%) (2.31)
where
W(P) =W, o, h) =U(P*) = U, ¢, h").
Since
h=h*+¢ (2.32)
we can write
0=W_,o.h" +)—UR, @, h*) = (2.33)

=W, o, h")—U,@,h )+a—h(k,¢,h )C.

But the last term can be written

oW U, oT e T
W? = Ef + %f = —y(A, 0. h™)¢ + %57 (2.34)
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aT
since O(Wé) =~ -107*p¢ (see (1.171)) we can neglect the second term in the

right hand side of (2.34) and write

aw
Wé‘:_y;’
which, used in (2.33), gives us
YA @ B*)C(P*) = T(A, 9. h*) (2.35)
or
o T(PY)
P7) = : 2.36
§F = py (2.36)

(2.34), or (2.35), is known as Bruns’s relation (Heiskanen and Moritz, 1967).
Note that (2.36) holds true with a relative error of better than 10~* and since
O(|¢]) = 100 m, this means an error smaller than 1 cm in .

Moreover when the linearization point P is directly on the ellipsoid, as it happens
when P is on the sea surface, we have indeed ¢ (P) = N(P).

We have now to couple (2.36) with the observation equation of g(P), which in
this case writes

* * a *
g0, h) = g0, 0. h +O%g@wﬁ)+5%kﬁhﬁ

dy(A, @, h*
=y ) + 850 gty + LR,
Re-arranging and recalling (2.29) and (2.36) we find
!
Y vrylr
14 14
/ of . :
where we have denoted [’ = i for the sake of brevity; finally with
approximation (2.30) one gets
~ )//
Ag(P)=-T + 7T (2.38)

which is also known as the fundamental equation of physical geodesy.
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We note, for future reference, that (2.38) can be cast into the nice form

Ag a (T 239
= (5) 23
Telluroid. The function {(A, @), as we know, is called the height anomaly. By
mapping (A, ¢) above the ellipsoid we get a surface not too far from the geoid,
but not coinciding with it, sometimes called the co-geoid. We strongly underline
that knowing ¢ on the earth surface is one and the same thing as knowing the
anomalous potential on it because of Bruns’s relation (2.36) and, subsequently,
T everywhere outside the masses, as a solution of the Dirichlet problem.
Furthermore through the mapping (2.31), i.e. by moving the point P of a
quantity —¢ along the ellipsoidal normal, we generate another surface, an image
of the earth surface, which is called the telluroid,

. (A, @, g, W): we mention this combination not to further elaborate it analytically
but only for historical reasons, because this has been the first problem considered
by Molodensky et al. 1962. On the other hand the knowledge of (A, @) is
available for such a little number points on the earth surface that we don’t need
to dwell on it. By the way, when an observation of (A, @) by a Zenith camera
is done nowadays, it is very easy also to get the position of P by GPS, a case
which is treated in the next point,

. (A, ¢, h, A, ®): here we could consider @ and A separately or together, which
is equivalent to saying that we observe n at a point P of known coordinates. But
then we can directly compute the vector of the deflection of the vertical

e =n(P)—v(P)

and recalling (1.190), with §g = VW(P) — VU(P) = VT(P), we find the
observation equation

e(P) = —%(1 — P,)VT. (2.40)

We note that (I — P,)VT is just the horizontal gradient of 7, i.e. the component
of VT orthogonal to v.

By decomposing (2.40) into the northwise and eastwise directions, recalling
(1.187) and (1.188), we find

(2.41)

Q-9 |_ & _ 1
cosp(A—21) o n o y

e, VT
e, -VT |’

which is the sought observation equation,



2.3 The Linearized Observation Equations of Physical Geodesy 85
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Fig. 2.1 &ellipsoid, G geoid, SSS Stationary Sea Surface, /g height of the satellite S, /1, height
measured by radar altimeter, 4#p dynamic height of the sea due to geographic currents, N geoid
undulation

6. (A,p,h, H): there are two different contexts in which such a combination
matters: on oceans or on land.

(a) On ocean: in this case (A, ¢, h) is known from satellite radar-altimetry; note
that, accordingly, h, averaged in time from many different tracks of the
satellite over the same area, has the meaning of mean sea level, which we
assume to be stationary in time.

Furthermore the orthometric height of P, i.e. the height of the Stationary Sea
Surface (SSS) over the geoid (G), is due to the presence of stationary oceanic
currents and water density variations, and it can be modelled and predicted.
The situation is illustrated in Fig. 2.1.

As we can see the following relations hold

hp =hs—hu,

where hyg is known from satellite tracking and /), is the radar altimeter
measurement,

hp=hp +N

where hp = Hp is the dynamic height predicted by oceanographic models.
Therefore, summarizing, we get the observation equation (cf. (2.36))

T (Po)
y(Po)

which is indeed linear and is referred to the point Py on the ellipsoid, while
the actual surface SSS is at a distance of the order of N from &, because hp
has a maximum magnitude below 3 m.

So we can say that we have (2.42) at the actual surface of the earth.

=N=hs—hy —hp=hp—Hp (2.42)
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(b) On land: in this case we assume for instance that at the same point P we

have GPS observations, providing (A, ¢, &), and a benchmark of a levelling
line, where the orthometric height Hp has been computed and we don’t have
anymore the original information that would allow the direct computation
of WP .

Indeed we can always say that from such observations we can compute

_TR)
v (Po)

=hp—Hp (2.43)

but we don’t like to use directly (2.43) as an observation equation because
now the point Py, which is on the ellipsoid, can be kilometers within the
masses and far away from P. This heavily contradicts the basic Molodensky
principle that all physical geodesy could be done with quantities referred to
the surface only. Obviously, in one way or another the masses between earth
surface and geoid will enter into the observation equation, because they are
fundamental for the definition of orthometric height and they have certainly
been used when orthometric height have been computed (see the point 8 in this
section). So we shall do it indirectly showing how, with some supplementary
information, we can derive from our data the value of W(P), controlling that
only a coarse information on the masses is needed, because our formulas are
little sensitive to it. Of course in this case we shall be happy to arrive at a result
approximated to a few centimeters in terms of the height anomaly.

To this aim we first write

W(P) = U(h*) = UH + h* — H) = (2.44)

=~ U(H) - y(H)(h" — H);

which is nothing but the definition of normal height #*, suitably linearized
around H, a known quantity. Note that in (2.44) the dependence of functions
from (A, ¢) has been skipped, because it plays no role. Note also that
both U(H), y(H) are known as they are computed using H in analytical
expressions. Furthermore, since

h=h*+¢=H+N,
we have
h*—H =N —¢. (2.45)
In the next section it will be shown that, with some approximations, one has

A 27 G
Np —tp = 280 g, - 2P 2 (2.46)
Yo Yo
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where Agp is the free air anomaly at P, yy, is a constant standard value, e.g.
yo = 981 Gal, which is the mean normal gravity value. The standard density
p of the crust is p = 2.67 gcm™> and a variation of density of +10% can be
considered as very large. Since for H = 10° m

217G
0 (HHZ) ~0.1m (2.47)
Yo

we see that a 10% variation of p on a thickness of 1,000m gives to N — ¢
a variation of 1 cm, which is within our accuracy target. Similarly in the first
addendum of (2.46) we find a term depending on the free air anomaly Agp,
which is not supposed to be known by measurements. So it has to be derived
from a free air anomaly map with an error that can easily amount to §Agp =
10 mGal. Nevertheless such an error, when we put H = 1,000 m, has an effect
on N — ¢ of the order of

A
0 (8—gH) ~107°10°m = 1 cm,
Yo

which is again within our target. Concluding we could say that by combining
(2.44) and (2.46) we can transform our data into a value of W(P), with an
error up to a few centimeters in height anomaly.

7. (A,¢,g, H): this is a very traditional but rather mixed set of observables.
Similarly to the discussion in point 6, because of the presence of H, we need
to make some further approximation in order to arrive at an observation equation
at the surface level. To this aim we start from the observation equation of the free
air anomaly (cf. (2.37))

/
Ag=-T'+ LT (2.48)
y

which however we cannot use directly because to compute Ag we need h}, i.e.
W(P), as by definition

Ag = g(P) —y(hp). (2.49)
Nevertheless, we can write (2.49) as

Ag = g(P)—y(Hp)—y'(Hp)(h} — Hp) (2.50)
=g(P)—y(Hp)—y'(Hp)(N = ).

If we define a different gravity anomaly, namely

AT = g(P)—y(Hp) 2.51)
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we rewrite (2.50) as
Ag = Ag —y'(Hp)(N =), (2.52)

where A is known from our basic information.
Now consider that O(y’) ~ 0.3mGalm™! and (N — ¢) is known to be less than
2 m, so that

O@'(N —?¢)) < 1 mGal.

It follows that if in (2.46) we use Ag instead of Ag, i.e. we write

AT 2qG
N-tx8pg, TP

H} (2.53)
Yo Yo

where all terms are known or computable, we find N — { with error smaller then
107°Hp, i.e. less then 1 mm/km. Since this is irrelevant, we can use (2.53) to
compute N — ¢ and (2.52) to compute Ag. Finally, with Ag on the surface, we
can use (2.48) as an observation equation;

. (A, 9, Ag,8L): in this case (A, ¢) need to be known with a rough approximation
for which cartographic coordinates could be enough. Similarly Ag is assumed
to be known from a gravity map, say with an error up to 10mGal. On the
contrary §L, the levelling increment, is the true precise measurement. Note that
the individual observation is a step §L observed along a levelling line, winding
from an initial point A to a final point B; the levelling increments are then added
along the levelling line from A4 to B.

Since a typical horizontal length of a single step is 100 m while a typical length
of the line joining A to B is some kilometers, we shall collect our measurements
in the form

Al = | _SL. (2.54)
AB

Let us first examine closely the individual term §L: it is (cf. (1.86))

SL = np - dl‘p (255)
= (np—vp)-drp +vp-drp

=e¢e-drp + dh,

where (cf. (2.40))

e=—V,T. (2.56)
y
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P S

oL
{W=W_}
—g-dr
élle)
hp+dP

dN=-¢gdr,

P, dr &

Po+dP

Fig. 2.2 The geometrical setting of the spirit levelling: S earth surface, W = Wp equipotential
through P, & parallel to & through P, G geoid, & ellipsoid, &, &y deflections of the vertical,
respectively in P (on the surface) and in Py (on the ellipsoid)

In (2.56) we have denoted with V), the horizontal gradient, (I — P,)V.
The situation is represented in Fig. 2.2, where the relation (2.55) could be derived
by a simple geometrical reasoning.

By integrating (2.55) along the line AAB on the surface S we can write

AABL:]’IB—]’IA—‘F/AE'dI‘p (2.57)
AB

We note that (2.57) is the observation equation of A pL although it has never
been used, in this form, in geodetic literature. The reason is that in (2.57) the linear
functional F () of T, i.e.

1
F(T) = /A75 —;VhT-drp,

is not pointwise but it does depend on the line AB. Although later on we shall
learn how to deal with that, we account here for an approximation procedure that
transforms (2.57) into an observation equation for the increment of the orthometric
height.
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The result is summarized into the formula

AypL = (Np — &) — (Nag—C4) — /A g ;OVO(SL + Hp—Hy, (2.58)
AB

with yp some mean constant gravity value, for instance yo = 981 Gal. The proof
has to be found in Sect. A.1.
In geodetic literature the term

OC = (Na—t4)— (Ng — ) + / ET Mgy (2.59)
AB Y0

is called orthometric correction (Heiskanen and Moritz 1967).
We note that the third term in (2.59) can be computed by a rough knowledge of
§—70
Ag ~

, as we can have from a free air anomaly map. As for the other terms,

Yo
going back to (2.46) we can write

Aga+ A
(M—Q)—(%—Q)z%(m—&) (2.60)
0
Agy— A Hy+ H 27 G Hs+ H
A8 gB( A B)_ 7 'O(HA—HB)Z( A B)'
Y0 2 Y0 2

In such an expression we are allowed to substitute —A L =~ (H4 — Hp) and

. Hy+ Hp .
to use a very roughly approximated value for (e.g. with an error of 10

or 20m), to get a result better than our usual range of accuracy, in fact accurate
to a few millimeters. Therefore OC in (2.59) can be considered as a “correction”,
known up to millimeters, and (2.58) can be finally written as

Hp—Hy= A L +0C (2.61)

as an observation equation for the orthometric height only.

Summarizing this long presentation we could say that, where the modern
positioning techniques allow us to know the coordinates of the observation point,
we can easily write observation equations of §g and &; when gravity and levelling
data have been correctly used (i.e. geopotential numbers and normal heights
computed) we have observation equations for the free air gravity anomaly Ag.
When orthometric heights are used as data we are forced to use suitable approximate
formulas for N — ¢, that will be justified in the next section, to reconduct our
observation equations to the previous form and in any way referring now to surface
quantities.
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Fig. 2.3 Integration path for (2.62)

2.4 On the Relation Between Height Anomalies and Geoid
Undulations

As we have seen in the previous section, there are measurements and relations which
oblige the geodesist to “enter” into the first layers of the masses. In particular it is
interesting to know Np, — {p, where P is on S and Py its orthogonal projection
on &, for all the reasons explained in Sect. 2.3, points 7 and 8. We follow here the
approach presented in Sanso and Vanicek (2006) which is a refinement of the more
classical reasoning of Heiskanen and Moritz (1967).

In addition to that we underline that when we have solved the main problem of
physical geodesy, namely we have built a mathematical model of {p, we can “test”
this model whenever we have a point P at which we know both H and & (and then
N = h — H too).

This point is important and sometimes misunderstood in geodetic literature,
therefore we shall come back to that later on.

The first step to solve our problem is devoid of further approximations, rather
than those implied by the (rigorous) linearization procedures. In fact we know that

(cf. (2.36), (2.39))
a (T d Ag

dh ( y ) dh ¢ y (2:62)
a careful inspection of the way in which (2.62) has been derived shows that it holds

at any point Q* such that 2(Q*) = h¥,, where Q runs along the ellipsoidal normal
from P’ up to P, while Q* runs along the same normal from Py to P* (see Fig. 2.3).
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Note that it is mandatory to specify what is the independent variable in (2.62)
because Ag = g(Q) — y(0*).{ = hg — hp~ are as a matter of fact functions of
two points and they can be correctly attributed to one or the other.

So if we integrate (2.62) in h* from Py to P* we get (recall that {p, = Np,)

h’; A
—(&px — Np,) = Np, — {px = / 28 . (2.63)

0 Y

This relation shows that we have to continue Ag into the masses in order to
derive N — ¢. For this purpose we have to use the relation (1.81), already derived
in Chap. 1, with the warning that in that context we have denoted by £ a curvilinear
coordinate along the plumbline, which now we know to be the orthometric height
H . So we can write

98 _ _50g + 4nGp— 207 (2.64)
H g P ; :
where C is the mean curvature of the equipotential surface.

Let us note that basically (2.64) is nothing but Poisson’s equation for W, written
in local curvilinear coordinates, adapted to the geometry of the gravity field. So

in 98 we recognize the second derivative in vertical direction of W, and it is not

difficult to see that 2Cg represents the “horizontal” Laplacian of W, i.e. the Laplace-
Beltrami, A;, operator for the equipotential surface, applied to W'.

As such we shall never be able to know exactly C (as well as p) in (2.64) without
having solved before the problem of determining W. Yet we will show that one can
play the game of sensitivity of the result and suitable approximations for C and p,
so that we are able to derive an equation for ahi*Ag, controlling the error at the
centimetric level, which is our target.

This painful work is performed in Sect. A.2, where we arrive at the equation

9
57 A8 = —2CoAg + 4 Gp, (2.65)

where Cy is the mean curvature of the ellipsoid at P and p is also fixed to a constant

value, e.g. p = 2.67gcm ™,
With that in mind we can integrate (2.65) to get

Ag(h*) = AgpeXCotii=i") 4 ;Top [1 — 2o —h >] . (2.66)

Note that the solution (2.66) satisfies the initial condition
Ag(hp) = Agp,

a quantity that we assume to be given on the surface S.
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Since for every P on the earth surface O(Co[h} — h*]) ~ 1073, we can safely
linearize the exponentials in (2.66), obtaining

Ag(h*) = Agp[l + 2Co(h% — h*)] — 4 Gp(h’s — h*). 2.67)

The formula (2.67) provides the continuation of Agp into the masses, down to
the ellipsoid. The most relevant error in (2.67) depends on the imperfect knowledge
of p, and it can amount to several milligals.

Finally, we can use (2.67) into (2.63); it is not difficult to verify that

Ag(h*)  Ag(h*)
v T

(2.68)

with Yo some constant value at the ellispoid. In fact, neglecting the dependence of
y(h*) from h* gives rise to errors absolutely irrelevant with the present criteria. So
(2.63) is easily integrated to

A 272G
8P % 4 coh?) — %ph}z. (2.69)

NP() - CP =
Yo

In such equation we evaluate, with / up to 6,000 m,
A
) (—gcohz) ~10~*-10%h < 0.6mm
14

which is below the millimeter level even for high mountains. Therefore we can
reduce (2.42) to

Agp .  2nGp
h —
Yo Yo

Np, —&p = hy? (2.70)

If we substitute 1}, = Hp + (Np —¢) into (2.70) we see that all terms containing
N — ¢ are negligible and we have then proved that

Agp 27 Gp

H3, (2.71)
Yo Yo

Np,—¢p =

which is the sought equation.

Remark 3. In geophysics it is costumary (cf. also Heiskanen and Moritz (1967) and
Torge (2001)) to define the Bouguer anomaly as

ad
Agp =gp— (2nGp)H — (B_Z) H —yo; (2.72)
0
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Fig. 2.4 The anomalous
potential and some derived
fields

0
S

DO®E

if we put approximately

dy
h*) ~ —H
y(h™) ~yo + on
we see that (2.72) can be written as
Agp = Agp — 2nGp)H. (2.73)

Comparing with (2.71) we see that one can write

A
Np, —tp =~ =58, (2.74)

Yo

since Yo = 103 Gal, if one gives Agp in Gal and H in km one gets N — ¢ in meters,
or

(N —¢)(m) = Agp(Gal) - H(km), (2.75)

which is a formula often encountered in literature (cf. Heiskanen and Moritz 1967,
Chap. 8, Sect. 13).

2.5 The Remove-Restore Concept

To summarize what we have done till now we could say that after the definitions
contained in Chap. 1, we have learned how to relate one to the other the geodetic
quantities and, basically, all of them to the gravity potential W.

Since we can always put W = U + T, with U an excellent mathematical model
that using a few parameters (a,e,w, GM), can catch the behaviour of W, with
a relative accuracy between 10™* and 107>, we are now permitted to work with
“linearized” relations where the anomalous field T is the new unknown object and
appears in all the equations only in linear form.

So, from 7" we can compute with linear operators other fields, as for example it
is schematically represented in Fig. 2.4.
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Fig. 2.5 The commutative @
diagram with T, the A
observables ¢ and the %
unknown f’ @

is
o

In many instances we have a situation, represented in Fig. 2.5, where from 7" we
can derive two fields ¢ and f, one of which is, in some sense, observable and the
other is what we would like to derive

Example 1. Classical is the following example, which is also central for these
lecture notes: assume that ¢ = Ag restricted to the telluroid is the “observable”
field, given by

aT !
g=Ag=—> + V1= ar, (2.76)
oh vy

take as target field that of height anomalies, f = ¢, describing the separation from
the telluroid to the actual earth surface, then (cf. (2.36))

§=1T=B-T. (2.77)
y

The problem is to find the solver, i.e. the operator S which we can formally write
S=BA"Y f=25q. (2.78)

When the telluroid is approximated by a sphere (see Chap. 3) the operator S takes
the name of Stokes’s operator. Naturally (2.78) is meaningful only if the inverse of
A, A7, exists and is well behaving; this problem will occupy us in the next chapter
and is more thoroughly discussed in Part III, Chap. 15.

Example 2. In classical geodetic surveying one uses a total station that, given two
points P, O, provides the observation of the distance D pp and of the angles (¥, @)
defined through the relations

costt =np -epg (2.79)
(epo unit vector in the direction P Q)

and
epp -Np Ae
tga = 22 P70 (2.80)
€pp - €
(ep = unit vector in the horizontal plane

through P defined by the instrument);

(0, ) are also called respectively zenithal and azimuthal angles (cf. Fig. 2.6)
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Fig. 2.6 Schematic view of
the total station observables

In order to use (2.79) and (2.80) in a simple geometric way one should know
np as function of the coordinates of P. So we need € p and we might be willing to
estimate it from known free air gravity anomalies in the area. In this case we have
again

q=Ag=AT

as in (2.76) and (cf. (2.41))
1 1
f=e=BT =—e, (;e(p . VT) —e) (;el . VT) . (2.81)

When we use the sphere as a coarse approximation of the telluroid, the solver
S = BA™! in this case takes the name of Vening-Meinesz operator (Heiskanen
and Moritz 1967)

Since we have been so successful in including a lot of information on W
in a model controlled by few parameters, the possibility has been considered of
continuing this job by building other mathematical models which, with a finite
number of suitable parameters, would allow us to better approximate 7". In other
words we construct a model Ty, so that we can put

T=Ty+T,, (2.82)

where the subscript r stands for “residual” anomalous potential, not to be confused
with a radial derivative.

We anticipate that there are actually two types of models that contribute to 7y}
one is global, Ty, and will be treated in detail in the next chapter, the other one,
T:m, is much more local, and is used to better account for the short range effects of
masses distributed into the topographic layer, i.e. between the actual surface S and
some reference surface. This will be better discussed in Chap. 4. For the moment we
just say that we can build a model T}, such that

o (ﬁ) ~ 1 m; (2.83)
14

this is almost two orders of magnitude smaller than O(¢) = O (%) ~ 100 m.
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Fig. 2.7 The remove-restore

chain Data Model
q data
Au
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The use of T}, instead of the whole 7', as our unknown allows some significant
simplifications of all the expressions where 7, enters. This subject, also described
as an application of the spherical approximation method, will be discussed in the
next section.

Here we want to stress only that the processing chain in this case can be
represented as in Fig. 2.7.

As we see the idea is that we subtract from data, i.e. we remove, the knowledge
of ¢ that we are able to evaluate from T),, namely g,s; then we process the residual
data g, to get f, and we add back to it, i.e. we restore, the knowledge of f, which
again we can derive from T}y, to get the final solution.

So the “remove-restore” principle is nothing but claiming that the problem of
computing f from ¢ is linear, in our approximation range; as such this principle is
indisputable. The advantage of this approach lies in that in the central step, namely
the computation of f, from ¢,, we may use a number of rough approximations
due to the fact that we know a priori that ¢, is small and so model errors in the
computation of § = BA™! have a much smaller impact on the final solution.

2.6 The Spherical Approximation Procedure

This is a procedure that rationally exploits the discussion of the previous section. In
particular, let A4, B, ... be any linear operator or functional up to here considered;
for instance, consider all the linearized observational functionals of Sect. 2.3.
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Many times these contain quantities related to the gravity field U, exactly
because they have been derived by linearizing non-linear functionals with respect
to W = U + T, taking U as the linearization point.

The spherical approximation consists in systematically using the approximation

GM
r

U

Il

(2.84)

in coefficients that do multiply 7', i.e. if a(U) is any function of U and L(T') any
linear functional of 7', independent of U, we shall put

a(U)L(T) =~ a (g) L(T). (2.85)

It is important to stress that since (2.84) implies a relative error of the order ? =
0.7-1072in U and then in a(U) as well, we expect a similar error in a(U) L(T) too.

If the approximation is used for the whole 7 for which we know that
o (%) ~ 10> m, we might end up with an approximation of the order of 70 cm, in
terms of geoid, which is absolutely too coarse for the target established in this book.
Nevertheless, if we repeat the procedure when only 7 is used, so that O (%) ~1m
for instance, we expect an error in geoid of the order of 1 cm, which is in the range
we can accept.

Remark 4. Tt has to be stressed that spherical approximation does not mean we
are approximating the earth surface or the telluroid with a sphere, but at most the
ellipsoid & with a sphere. In addition a procedure like this should never be applied
before linearization, because then we would find errors much larger than our target,
as it is illustrated in Example 4.

Example 3. We use Bruns’s equation (2.36) to illustrate the idea. This equation is
{=— (2.86)

and if we use the expression of the ellipsoidal y, (see (1.145)) simplified to

Ve = ¥a(14+5-10sin? ¢ — 0.3 - 107°h)
(y in Gal, & in km)

we find

T
Ce2 —(1—=5-103sin’ ¢ +0.3- 107%A). (2.87)

Va
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The spherical approximation in this case would be

GM GM
Us ~ - Vs = 2
T (2.88)
r=R+h=—
Vs
with R the mean radius of the ellipsoid.
We note that y, is such that
GM
Vao=y(@=0h=0)=—5 (2.89)

so that if we take # = 0in (2.87) and r = a in (2.88), we find

T T
o8 =—(1—5-10"sin* ¢) — —
Ya Ya
T
= ——5-10"sin’ ¢.
Ya

This shows that the order of magnitude of the error is
0@ —¢)=5-1070() = 0.5m,

which, as anticipated, is by far too large. If on the contrary we apply (2.88) only to
the residual 7, and we assume that O (5—’) ~ 1 m, we find

0 ((gr)e - (gr)s) ~ (0,5 cm

which is within our target.

Example 4. Take the approximation used in Example 3 for y, and note that, close
to the ellipsoid, one can write

Uy = Wy—ya(h +5-103sin’ ¢ - h —0.15- 10731?), (2.90)
with
m GM
0 — R .
Since
GM
Uy = = = Wy— yah + 2202, 2.91)
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comparing with (2.90) one finds
Ue(p,h) = Ug(@,h) — 5y, - 103 sin’ ¢ - h.

Therefore if we apply the spherical approximation directly to W, and not to
coefficients multiplying linear expressions in 7', we see that we significantly modify
the definition of 7', in fact

W —Us = —5y,103sin’ ¢ - h + T,

which means that % is modified by a term of the order of 5 m for 1 km of altitude.

The two examples above show that in any case if one wants to use the spherical
approximation, this has to be done correctly only after linearization and after the
reduction of T to a residual component 7,. Now, in order to be more precise, let us
specify that the use of a spherical approximation implies

GM
U~-2Z (2.92)
r
GM
y ~ 7 e, (2.93)
GM
~ (2.94)
r
v~e (2.95)
GM
r
r~R+h (2.97)

With the use of such formulas we find for the main observables considered in
Sect.2.3

¢ o (2.98)
7

T

sg = T (2.99)
ar
T 2

pg=-L_Zr (2.100)
or r

= e LT 10T, (2.101)
€= y Arcosqoak “rop )’ '

note has to be taken that (A, ¢) in (2.101) are the spherical longitude and latitude
and (e, e,) are spherical unit vectors too.
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Remark 5. 1t has to be said that with the present computing capacity, the need
of simplifying formulas to facilitate the numerical work has not reason to be any
more considered. Therefore the use of spherical approximation should generally be
restricted to analytical applications or to simulations for noise propagation studies.

2.7 A Review of Observation Equations with Unknown
Reference Potential

As promised in Sect. 2.3 we need now to review our observation equations in which
W(P) was introduced as an observable and adopt a more realistic model accounting
for the fact that what we can observe in reality is only a potential difference. For
instance we observe W(P) — W, where W is the potential at some reference point
'P. When P is a tide gauge we expect such a point to be lying in the vicinity of the
geoid in a range of a few meters. Yet the value W will be different from W, because
P is not exactly on the geoid G.
Let us put

W(P) = Wy + W(P) - W; (2.102)

since W, is known and W(P) — W observed, we can take VT/(P) itself as an
observable and see what happens to observation equations if W (P) instead of W(P)
is considered as known.

To proceed, we note first that (2.102) can be written as well as

W(P) = W(P) + §W, (2.103)

with

SWo =Wy — W; (2.104)

8 W, is an unknown parameter that will enter into our observation equations, into the
vector x according to our general scheme of formula (2.3).
Returning to Sect. 2.3 we find for (2.26) the new formulation

W(P) — U(P) = T(P) + §W,, (2.105)

where on the LHS we have known and on the RHS we have unknown quantities.
Equation 2.30, for gravity disturbance, is unchanged, because it refers to a point P
of known coordinates.

The case of point 3 culminating in (2.36) and (2.38), needs to be carefully
reviewed.
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In fact since now only W(P ) is available, we cannot compute the normal height
h’. At most we can put, as a new definition of the linearization height,

U(h) = W(P) = W(P) + §W, (2.106)
= U(h*) + §W,.

Note that here too, as in Sect. 2.3, we highlight only the dependence of functions
on height variables, neglecting the horizontal coordinates of points. From (2.106)
we see that

§Wo = U(h) — U(h*) = y(h)Sh (2.107)

where we have put

~

8h="h"—h. (2.108)

Accordingly we can compute from the observed g(P) a different kind of ano-
maly, i.e.

DE(h) = g(h) — y(h) (2.109)
which we elaborate in the following from
DZ = g(h) — y(h*) + y(h*) — y () (2.110)
=~ Ag + y'(h)8h.

Taking (2.107) into account, (2.110) becomes
y/
Dg = Ag + —38W,. 2.111D)
14

Finally, recalling (2.38), we find the modified observation equation

T
DT =—Z-+ T n y—SWo (2.112)

The case of point 4, in section 2.3, has not been worked out, so we will not
consider it here. The equations of 5 do not change because again here we assume P
to have known coordinates. The cases of points 6 and 7 are in fact modified because
in the present situation the orthometric height cannot be considered as observable.
In fact if we take the point P as reference (origin) for a new system of orthometric
heights we will have for any point P (see Fig.2.8)

Hp = Hp + 8Hp (2.113)
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Fig. 2.8 The geometry of the change of height datum form G to G

where only ‘H p is available from measurements. We need now to relate §H p to SHp
and this last to 6 Wy, which is our basic unknown parameter.
This is easy to do by writing the linearized relation

SWo = Wy — W = gp,8Hp, (2.114)

holding true for every P on the surfaces, including the actual P. Since yp, differs
form g p, at most by a factor 10~%y, (2.114) can be further approximated as

8W0 = )/P()SHP’ (2.115)
or, going back to (2.113)
— SW
Hp =Hp + —2. (2.116)
vp,

This was the sought relation that can be substituted into any observation equation
where use of Hp is made. Note that (2.115) implies

SHy = YP§H. 2.117)
yp,

Since at the level of the sea yp varies at most by a factor 5 - 1073y from pole
to equator, we see that with a displacement § H = 2 m of the reference surface we
have a variability of §Hp at most of 1 cm. In other words, for many applications the
change of reference surface of the heights can be accounted for by the addition of a
constant to observed orthometric heights. Finally we don’t discuss here the leveling
equation because in that context there is only a very weak dependence on Ag, a
quantity that changes with § Wj.
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The more realistic situation where equations like (2.112) with many different
unknown constants Wy, due to different origins of different height systems is
analyzed in detail in Part II, Chap. 11.

2.8 Exercises

Exercise 1. In the spirit of the proof of (2.38), consider the correspondence of rp =
(A, @, h) with any other approximate point r = (A, ¢, h); then put { = h — h and
prove that instead of (2.36) and (2.38) the two generalized relations hold

1 ~ —_

¢ y(P){() [W(P)—U(P)]}
y'(P) ~ y'(P) ~
T = g(P)—vy(P —[W(P) — U(P)].
-5 g(P)—y(P) + y(P)[ (P) —U(P)]

Observe thatif 7 = H is chosen, then ¢ derived by the above formula is directly
the geoid undulation N, in view of (1.152).
(Hint: note that, to the first order,

I

W(P)=U(h+¢)+ T(P) =~ UP) —y(P)t + T(P)

~ ~ AT ~
g(P) =y(h) +y'(h)¢ - D)

and continue as in Sect. 2.3, point 3).

Exercise 2. Consider the case of point 4 in Sect. 2.3, and derive the corresponding
linearized observation equation which, applied at the boundary, gives rise to the
so-called vector Molodensky problem. To do that consider the mapping

Ay = Ap, g5 = @p, UP) = W(P).
Put
E=rp—r; Ag=g(P)—y(P)

i (’ﬁ)} :

M(P) = [Mix(P)] = [@

M is the matrix of second derivatives of the normal potential, also called Marussi
tensor.
Prove that the sought equations are

E=M'[Ag—VT]
—y M WNT +T =—y-M'Ag
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(Hint: write

g(P) = y(P) + VT(P) = y(P) + M& + VT(P)
W(P) = U(P) + T(P) = U(P) + y(P)-& + T(P),

derive & from the first and substitute into the second, observing that W(P) =
U(P)).

Exercise 3. Find a direct, though more loosely approximated relation between H
and h*, for a point P where (1, ¢, g) are also known, considering that

U(l’l*) = U()—)/(Po)h*
dg
Uy =W

og dy -1
——% » 2 (Py) +47Gp = 0.1 Tkm™".
SH ah( 0) + 4w Gp 966 Galkm

Appendix
A.l

We want to find a manageable expression for the sum of leveling increments along
a line, proving (2.58).
To this aim we go back to (2.55) and substitute

dh=dH + dN = dH — &g -dr,
in it. We receive (see Fig. 2.2 for the notation)
0L = (e —ep)-dr+ep-(dr—dry) +dH

H
= [(m—mng) — (v —vg)] - dr, + EEO'drO + dH,

H
because, with a good approximation, dr—dry = Ed 1o+ dhv and & is orthogonal

to v. Since f/ﬁs &g - dry is the variation of N, which is at most a few meters, even

H
for points A, B far away dozens of kilometers, and z < 1073, we can drop the

H . . .
term — &g - drp; in other words we can take dr;, ~ dry in this computation. Now,

recalling (1.75), we can write
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P
n—n0:/ Vi log gdH
P

0

and similarly

P
v — vy :O:/ Vi, log yodh;
P

0

where ) is constant, along the vertical line, so that the latter identity reduces to
0 = 0, because v is indeed constant along the normal to the ellipsoid. So we have

P P _
g—gO:/ Vhl()ggdh:/ Vhlog(l—i-u)dh':\'
P P

0 Yo 0 Yo
P _ P _
:/ A (g ”O)dhzv,,/ (g Vo)dh+
Py Yo Py Yo
P) —
_(g( ) Vo)vth‘
Yo

The last step is justified by the well-known differentiation rule

g(x)

g(x) 9
Dy fx,ndt = f[x, g(x)] - g'(x) +/ a—f(x,t)dt-
0 0 X

Summarizing and going back to (2.118), we find

P J— J—
5L =V, U (g VO)dh} ey — P = L as)
Py Yo Yo

As it is shown in Sect. 2.4,

P —
/ E= V0 un = Np, — ¢p, (2.119)
Py Y

for which an explicit formula, as function of H, is given by (2.71). Moreover in
(2.118) we can substitute 5L back for dh to the effect that one can write

SL=d(N—t)— 2" + an,

g(P)—vo
Yo

which finally integrated along the line AAB yields

AasL = (Ng — ) — (Na— Ea) /n %SL +Hp—Hi (2120
AB

namely the formula we wanted to prove.
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A2

We want to prove formula (2.65) for the vertical gradient of Ag as function of the
normal height 2*. We adopt symbols and notation of Sect.2.4. To this aim we note
first of all that in (2.63) we need Ag, so that we have to convert (2.64) into an
equation for the vertical continuation of Ag.

To this aim we write the analogous of (2.64) for the normal field, i.e.

dy

a5 = ~2Coy = 20% (2.121)

note that (2.121) can be written for any point along the ellipsoidal normal for
instance at Q* instead of Q, but we are not allowed to substitute ah* for o in
(2.121) because h* is not a linear function of 4. So we must transform % in
(2.64) into %, then we subtract (2.121) computed at Q* from (2.64) and finally

we transform 1nt0 3

As for _g we can write
0H

ad
%:n-Vg:(n—v)-Vg+v-Vg’:Ve-Vy+v-Vg. (2.122)

In (2.122) we evaluate the order of magnitude

10
O(e-Vy)=0(e-V,y) =0 (Ie Eé)

5.1073
(| | y) —5. 10—7% (2.123)

where we have used (1.145) and (1.181).

Therefore this term contributes to g, and then to Ag, at height & with an error
8 Ag of the order of magnitude of 5 - 10_7%h, or, equivalently, of 5 - 10_7%H .

As a consequence of (2.63), to evaluate the error induced by neglecting € - Vg in
computing N — ¢ one has to assess the order of magnitude of § Ag integrated in H,
i.e., observing that in the topographic layer one has O (%) ~ 1073,

H? H?
OB[N -¢) =0 (e . Vy—) ~5. 10—77 ~5-107°H;  (2.124)
Y

this shows that the term in question doesn’t matter in our computation. So we can
write

%2(Q) _

9
g = 'Vg(Q)Za—hg(Q)
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in (2.64) and work on the right hand side with an obvious approximation to arrive
at the equation

92(0) _

o = ~2lC(Q) = Co(QM)]y —2C0(Q7)g(Q) + 4w Gp —20”. (2.125)

If we can prove that in (2.125) the term

[C(Q) = Co(QF)ly = [C(Q) — Co(Q)]ly + Co(Q)y¢ (2.126)

is negligible, we are left with the equation

2 6(0) = ~2Go(")z(Q) + 4rGp — 207 @127

We evaluate (2.126) in two steps. First we use the following estimate, derived
from several numerical experiments,

-3

0(1C(0) ~Co(Q)]) = 1o+ @128)

as always, O() means the order of magnitude of the maximum value, as the standard

deviation of C(Q) — C(Qy) is easily one order of magnitude smaller. Then we

evaluate the impact of this term on N — ¢ by considering the corresponding error

[C(Q) — Co(Q)]y integrated in H, once to give its impact on g, and then a second
time, divided by y, to give the impact on N — ¢ (see (2.63)). The result is

2 -3
OGIN ) = 0 ([C(Q) )y - HT) ~0 (10 A -H) _10-m,

which is negligible because it gives at maximum an error of 1 mm/km of altitude.
As for the second addendum in (2.126) we use the rough approximation

1
ICol = ek

yielding
H? H?
06N~ = 0 (Cire- 7 ) = 0 F5¢) =107,

this is totally negligible since it is below the millimeter for any height up to 6,000 m.
So we know that (2.127) is correct and we can subtract (2.121) from it, to get

ad ad
8@~ a—h)/(Q*) = —2Co(Q")[8(Q) — y(Q™)] + 4nGp.,
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namely

9
A8 = ~2Co(h*)Ag + 4n Gp. (2.129)

Now from
h=h"+¢

we see that (cf. (2.62))

9 N Ag\ 9
%_(1_5)%*_(“;/) .

So, omitting all second order terms that are easily verified to be negligible, we
write (2.129) in the form

9
27 A8 = =2Co(h") Ag + 4 Gp. (2.130)

Finally, we want to show that in (2.130) we can consider Cy and p as constants.
We reason again in terms of orders of magnitude of maximum errors. So if we
use the rough estimate

* 1 1 h*
O(|Co(0) — Co(h™)]) = PR S

we see that one has for the error §(N — ¢), after the usual double integration on H,

h* H?

OGN —¢)) = 0 (FyT) = 107%A*,

namely 1 mm/km of altitude in worst case.
In parallel one can consider that in the crust p can vary around its mean value,
P = 2.67 gcm™>, by no more than 10%, but

0,1-47Gp = 0.02mGalm™!

so that the corresponding error on §[N — ¢] is of the order of

H2
O@[N —¢]) = O (0.1 -4nGﬁ7) (2.131)

= 2-10" H*(H in meters)
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Therefore, with H = 10°> m, our maximum error becomes 2 cm, which is cer-
tainly not too small. Yet the following has to be considered: first of all sometimes
we have geological maps that could help us to use a value of p good up to 1%, giving
in (2.131) an error smaller by one order of magnitude; a variation of 0.267 gcm™>
in the surface density has to be considered very large. Finally, this is certainly the
most uncertain information we can have in physical geodesy so that, when we really
need N — ¢, we have to live with errors of this magnitude.

So now (2.130) can be written as

0

A8 = ~2CoAg + 4nGp (2.132)

with Cy and p considered as constants.



Chapter 3
Harmonic Calculus and Global Gravity Models

3.1 Outline of the Chapter

The chapter is devoted to the construction and manipulation of so-called global
models of the anomalous potential.

These are basically truncated series of spherical or ellipsoidal harmonics. These
functions are so important in physical geodesy that they need to be carefully
introduced and their mathematical properties have to be known by everyone dealing
with gravity field representations.

As always, we start from Newton’s formula relating mass density and gravi-
tational potential. If we use a similar representation for the normal potential, we
may conclude that the anomalous potential can be represented too in the form of
a Newtonian integral. Now the development of Newton’s kernel, i.e. the inverse
of the distance between two points, in a series of polynomials called Legendre
polynomials, is a very classical issue presented in Sect. 3.2.

Legendre polynomials are then studied in Sect. 3.3.

In particular their integral properties (a reproducing property by convolution on
the unit sphere as well as the L? orthogonality on the unit interval [—1,1]) and
differential properties are established. In this way we obtain a first representation
of the potential as a series of harmonic functions, each decreasing at infinity
as an inverse power of r. The series is clearly converging outside any sphere
encompassing all the masses.

In Sect. 3.4 the so-called surface spherical harmonics {Yy,,} are introduced. The
precise construction of these functions is delayed to Part I1I, where the full theory is
derived from the study of spaces of harmonic polynomials. One basic result proved
in Part III is the so-called summation theorem reported in (3.54).

This provides a fundamental relation between spherical harmonics of degree n
and order m and the corresponding Legendre polynomials of degree n.

If one then defines the solid spherical harmonics {S,,,} as the surface spherical
harmonics of degree n divided by r"*!, one immediately sees that our T can be

F. Sanso and M.G. Sideris (eds.), Geoid Determination, Lecture Notes in Earth System 111
Sciences 110, DOI 10.1007/978-3-540-74700-0_3,
© Springer-Verlag Berlin Heidelberg 2013
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expressed a series of these solid spherical harmonics, converging on any sphere
lying outside the masses.

The sequence {Y,,,} is then studied in the space of functions which are square
integrable (L) on the unit sphere; it turns out that this is an orthonormal complete
sequence implying that any L? function can be developed into a series of {Y,,,,}. This
fact, together with the statement that S,,, = r~"*1Y,,, are harmonic functions,
which coincide with Y,,,, on the unit sphere, allow the solution of classical geodetic
problems for the sphere giving rise to the use of Poisson, Hotine and Stokes kernels.

Such problems, though not realistic, mimic for the case of a spherical boundary
other problems that can be formulated as boundary value problems where the
unknown 7 has to be harmonic outside a given surface S, and it has to satisfy some
differential relation on the surface itself.

However a second theorem, namely Theorem 3, stating that given any reasonable
surface S the traces of {S,,,} on S form a complete system in L>(S), is even more
important for the practice of building approximate solutions to geodetic boundary
value problems (BVP). These in fact bring us much closer to a realistic situation
than the previous examples with a spherical boundary.

So till now we have learnt how to solve exactly a BVP for the Laplace equation in
the exterior of a spherical domain, typically we have Stokes’s formula, but we have
a realistic problem with a non-spherical surface and boundary values (e.g. gravity
anomalies) on it.

If we could find a function harmonic in a domain larger than the exterior of S,
in fact harmonic down to some internal sphere (also called Bjerhammar sphere),
we could still use Stokes’s representation for this function and impose on it that the
boundary values of the gravity anomalies be attained on S.

This is not possible in general; the values of a harmonic function and of all its
derivatives inside the domain of harmonicity are extremely smooth and so only very
particular functions on S can have a harmonic continuation down to an internal
sphere.

Nevertheless since real data are only pointwise and finite in number, we can
always interpolate them by a function harmonic down to any fixed internal sphere.
This point of view, which is also strictly related to Theorem 3, is established in
Sect. 3.5 in the form of a new Theorem 4 known in geodesy as Krarup’s theorem.

In Sect. 3.6 the spherical set up of the previous two sections, is generalized to
domains with ellipsoidal boundary. It is proved that by the use of suitable ellipsoidal
coordinates, we can build a new system of functions, called ellipsoidal harmonics,
that are orthonormal in the space of functions square integrable on the ellipsoid and
even complete in such a space.

Numerical instability problems related to ellipsoidal harmonics are discussed and
effective, computable approximate formulas are given.

In Sect. 3.7 we formally establish the problem of the determination of 7" from
Ag in the form of a BVP, namely the Molodensky problem, discussing as well other
BVP’s that might become even more important in future.
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Numerical methods, typical of functional analysis, like least squares or Galerkin
method, are discussed later in Part III, Sect. 14.5 of the book. In that chapter the
relation of these methods to more practical geodetic solutions, is also highlighted.

Finally in Sect. 3.8 we discuss two indexes that, though very coarse, are quite
essential in expressing the quality of the solution, accounting for two distinct effects.

The first is the presence of noise in the observations used to estimate the global
model. The noise in fact propagates from the measurements to the solution and
determines what is called the commission error. This is basically the average of the
L? norm of the error function constructed propagating the noise from measurements
to the harmonic coefficients of the global model.

The second effect on the other hand is the error that we commit because, instead
of estimating the full anomalous potential, we aim only at its projection on a
finite dimensional subspace, generated by linear combinations of solid spherical
harmonics up to a maximum degree. The norm of the reminder is the omission
error. This has an easy relation to the coefficients left out from the truncated series,
when this is convergent.

In fact, this is the sum of the squares of all coefficients of degree higher than N.

But of course this is just an unknown quantity which we will never know a priori.
However by looking at the so-called degree variances (i.e. the sum over all orders
of the squares of the coefficients of a certain degree) one can guess some law for its
decay that can allow the computation of the omission error.
One law of this kind, of historical nature, is Kaula’s law; other laws, much more
realistic, are shown in the text. The above mentioned models can be used as different
cases to make predictions and this has the scope to give a feeling of the range of
variability of this error, which after all depends from a pure guess based on empirical
data.

3.2 The Newton Integral Representation of the Anomalous
Potential

We have defined in Sect. 1.10 the anomalous potential of the gravity field as
T(P)=W(P)—-V(P). (3.1)
This definition eliminates the centrifugal potential and leaves us with
T(P)=V(P)—V.(P) (3.2)

where V(P) is the actual gravitational potential of the earth, i.e. the Newtonian
integral (1.14), while V, (P) is the ellipsoidal gravitational potential, given explicitly
by formula (1.127).
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Table 3.1 A simplified version of the PREM model. For the first two layers we
give average values; for the others we give values across discontinuities; for a rough
approximation one can imagine a linear dependence on depth within the layers

Depth (km) Earth layer Density (g cm™)
0 Topographic layer 2.67
33 Crust 2.8
400 Upper mantel 33

3.5

670 Transition zone 3.7
4.1

2,900 Lower mantel 4.4
5.6

5,100 Outer core 10.0
12.3

6,400 Inner core 12.9
13.2

Indeed if we knew exactly the mass density, p(Q), we would have a little need
of physical geodesy, in fact physical geodesy is precisely the science of how to deal
with the gravity field without knowing p.

However we are aware that a certain p exists and we have to some extent
a knowledge of this function by means of various geophysical observations and
models; primarily geodynamic models relating seismic observations to the density
distribution.

In fact we have already shown through Examples 1 and 2, that many (in fact
infinite) internal mass distributions generate the same outer potential and this proves
that the density cannot be derived from the knowledge of the outer gravity field only.

However guessing the internal mass distribution is an old scientific problem
which can be traced back to Clairaut and his Theorie de la figure de la terre, tirée
des principes de I’hydrostatique (1743). On this item, its geodynamical and geodetic
relevance see also Moritz (1990) and Sabadini and Vermeersen (2004). Here we
give, just for information, the model of an inner density distribution derived from
a famous preliminary earth model (PREM) by Dziewonsky and Anderson (1981)
(Table 3.1).

Naturally a model like this, where the density is only a function of depth, i.e. of
the radius, can generate only an exterior field of the type %4, as shown in Sect. 1.3.
In particular it does not even account for the ellipsoidal shape of the earth nor for
the topography. Yet one can prove that there is a density p, which is layered, i.e. it is
constant in layers between concentric ellipsoids, and generates an exterior potential
equal to V, (Marussi 1985; Siinkel and Tscherning 1981; Moritz 1990). Here we are
not interested in a precise definition of p,, but rather in knowing that it exists and
that it can be interpreted as a kind of average of the actual density p in each layer.
As aresult of this reasoning we see that we can put
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T(P) = V(P) = Vep(P)

(D) s [ 2D

=G
s Lro s, Lro

dBy. (3.3)

where B, is the volume occupied by the ellipsoid with surface &. If we define a
density anomaly as

r(Q) in B\B.
$p(Q) = —pe(Q) in Be\B (3.4
p(Q) — pe(Q) in B, N B,

we see that (3.3) can be written as a unique Newtonian integral
]
T(P) = G/ MdBQ. (3.5)
B Lro

It has to be clear that (3.4) and (3.5) do hold when P is outside B, and when P
is in the topographic layer, B\ B,. As a matter of fact, (3.5) rather ignores the case
P € B,\B, because this set is so small (in fact so thin) and mostly related to the
oceanic area that it is not so relevant for the present discussion. However when P
enters into the ellipsoid the potential

V=G pe(Q)dBQ (3.6)
8, tro
becomes different from V,, i.e.
Vep(P) # Ve(P), P € B, ; (3.7)

in fact V,(P) is still harmonic in B,, apart from a small area on the equatorial
plane, while V,, is obviously not harmonic. Therefore, when defining 7'(P) inside
the ellipsoid, one has to be careful and state explicitly whether one uses the original
definition (3.1) or rather one wants to use (3.3). As geodesists we don’t suffer of this
ambiguity because we don’t need to go inside & more than a few hundred meters,
and therefore we shall use irrespectively (3.1) and (3.5).

Now we want to pick up an argument that we have considered in Sect. 1.3 and
push it further; namely we want to study the behaviour of 7'(P) when rp is large
enough.

To this aim let us consider Fig.3.1; we call a Brillouin sphere any sphere that
encloses completely the masses and we denote by R the minimum among the radius
of the Brillouin spheres.

Then take any point P with rp > R, so that for sure P € £2. We can write,
YO € B,
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Fig. 3.1 The minimal
Brillonin sphere and the
points P, rp > R and

Q s ro < R

1 1
— = (3.8)
9%} \/r}% + ré —2rpro cosyr
1 1
rp /1 + 52 —2st
where we have put
o
§ = —,t=cosy. 3.9
rp’
Since
R
VoeB s='2<2 (3.10)
rp rp

the above function is regular and even analytic in s because
1+s2—=2st>0, Ve (t] <1)

when (3.10) is satisfied, and we can develop it into a power series in s, which is
uniformly convergent for Q € B,

n

LI —Zs Py(1) = Z 9 _p,(cos ). 3.11)

ePQ n=0 P

The functions P,(¢) turn out to be polynomials in ¢ and are called Legendre
polynomials; they will be studied in detail in the next section.
If we substitute in (3.5) we get

T(P)—Z +1/rQP (cos ¥)8p(Q)dBy. (3.12)

n=0 TP

Since, using a system of spherical coordinates (r, ¥, 1), we have
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r
cosw:epeQ:I}:—P'r—Q (3.13)
P %

= sin¥p sin¥g cos(Ap — Ag) + cos ¥p cos g

we see that (3.12) gives us a representation of the anomalous potential of the form

X GT,(p, Ap)

T(P)=T(r0.2) =)y —— == (3.14)
n=0 rP
where
T0p. ) = [ rhPa(cos 1)Bp(Q)dBo (3.15)
B

and cos V¥ is taken from (3.13).
The series (3.14) converges uniformly with respect to (¥p, Ap) outside any
sphere with radius larger than R.

3.3 Legendre Functions

In this section we want to study the functions P, (¢) and draw some conclusions from
the representation (3.14) (see also Heiskanen and Moritz (1967), Chap. 1, Krarup
(2006), Chap. 13). We start form the definition of P, (¢) as coefficients of the Taylor
series of the function

1
G(s,t) = ——————, (3.16)
V1452 —2st
also called the generating function of Legendre polynomials.
So we have
+o0
G(s.t) =Y s"Pu(1) (3.17)
n=o
the series being convergent in the interval
0<s<l. (3.18)

Note that in the end we want to substitute = cos ¥, so we can restrict ourselves
to study P,(¢) in the interval

—1<r<l1 (3.19)



118 3 Harmonic Calculus and Global Gravity Models

corresponding to
O<y <m. (3.20)

Since (3.17) is a Taylor series, we can compute P, (¢) from
1
Py(t) = —D{G(s.0)|s=0. (3.21)
In this way for instance we can get
P 13
Py=1, Pi(t) =t, P,(t) = 5(3t —1), P3(t) = E(St -3t), (322

suggesting that P,(¢) are polynomials of degree n, with the same parity as n, i.e.
even for n even and odd for n odd. We shall soon see that this is the case, however
we will need a more handy tool than formula (3.21). In fact consider that G(s, )
satisfies identically the relation

(1 + 52 —=25t)DG(s.1) = (t —5)G(s.1). (3.23)

If we insert the series (3.17) into (3.109) and equate the coefficients of the same
powers in s, we find the remarkable recursive relation

(0 + D) Py1 (1) = @n + DIPy(t) = nPoi (1) : (3.24)

since we already know that Py = 1, P; = ¢, (3.24) allows the direct computation
of P,(t) for any ¢.

Furthermore, not only (3.24) provides us with a rule for a very fast computation
of P, up to n equal to several thousands, but also gives us the possibility of better
understanding the nature of P, (¢).

First of all we now see that if P,—;, P, are polynomials of degree n — 1 and n
respectively, then P, is a polynomial of degree n + 1; furthermore, if P,—; has a
certain parity and P, the opposite parity, then P, has the same parity as P,_;.

Since this is true for n = 0 and n = 1, we see that the conclusion holds Vn.

Moreover, by taking t = £1, (i.e. ¥ = 0 or ) in (3.16) and (3.17), we find

+o00 1 +o00
’;s P,(£1) = T ’;(:Fs) : (3.25)

(3.25) has to be an identity in s, so we have proved that

Pu(1) =1, P,(=1) = (=1)". (3.26)
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even odd
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Fig. 3.2 Plot of the Legendre polynomials up to degree 7

Another important property of P,(#) we mention, namely that
|P,(2)] <1, Vt € [-1,1]. (3.27)

In fact, reversing the above reasoning we see that if for some 7 one has P, (f) =
+1 then, Vs < 1

1
Z( 1F+s

implying that 7 = =£1. Since P,(0) = 0 when n is odd and, using (3.24),
|P,(0)] <1 when n is even and since P,(t) cannot cross the barrier £1, as
explained above, the relation (3.27) has to hold

The interested reader can find more proofs in Szegd (1948). A quick look at the
plot of the first Legendre polynomials will help us in viewing their properties. In
particular, note the oscillating behaviour of P,, far from t = =1, and for larger
values of n (Fig.3.2).

We turn now to study the differential features of the functions P, (¢), first of all
establishing that they are solutions of the Legendre differential equation.

We start from (3.12) and we recall that, whatever is §p in B, T (P) is certainly
harmonic for 7 > R. By recalling (1.99) and noting that

2t+

? 20\ 1 _
ﬁ"'rar ] n(n+1)——= Fnt3



120 3 Harmonic Calculus and Global Gravity Models

by applying
2 290 1

a2 ror  r2°

to (3.12), (see (1.101), (1.102)), we find

AT(P) = E% / [n(n 4+ 1)P,(cos ) + Ay P, (cos 1//)]r&8p(Q)dB
P B

=0 (3.28)

Since (3.28) has to be true Vrp > R, we find that all the integrals in there have to be
zero. Since

/ [n(n + 1) Py(cos ¥) + As Pu(cos ¥)]rjdp(Q)dBo = 0 (3.29)
B
has to hold whatever is p, we may conclude that

Vn, AgPy(cosy¥) +n(n + 1)P,(cosy) = 0. (3.30)

On the other hand cos v is given by (3.13) and Q in (3.30) is an arbitrary
point of B. So if we choose the unit vector eg along the Z axis we have

cosy = cosvp,

and, using (1.102) and (3.30), becomes

9? 0
(W + ctgﬁ%) P,(cos¥) +n(n + 1) P,(cos ) = 0. (3.31)

If we put
t = cos v

in (3.31) and note that

0 d d 02 d d?
_— = — 9] —_— = —f— _— = = — 1— EA Vel
ctgy 35 ctg (— sin l?)dt tdl’ 592 tdt +({1—t )dt2
we receive
(1-:2)‘1—21) O — 2L Pty + 11 + 1) Pur) = 0 (3.32)
dt2 n dt n n - k) .

which is well-known in literature as the Legendre equation. So we can say that P, (¢)
is the solution of (3.32), satisfying the boundary conditions
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Py(—1) = (=1)", Py(1) = 1. (3.33)

We note also that (3.32) can be written in the more concise and mathematically
convenient form

d L d B
U =) Py(0) 4 n(n + 1) Py(0) = 0. (3.34)

It is not difficult to show (see also Part III, Sect. 13.6) that if a polynomial of degree
n is a solution of (3.32), then its coefficients are fixed up to a multiplicative constant.
This constant can always be chosen in such a way that the second of (3.33) is
satisfied. Then P, (¢) turns out to have the same parity as 7, so that the first of (3.33)
is automatically satisfied.
So polynomial solutions of (3.32), with conditions (3.33), are fixed and unique.
In Part 111, Exercise 9, it is proved that

P,(t) = %Df(tz —1)" (3.35)

"n!
is a solution of (3.32); this is quite clearly a polynomial of degree n. In fact it is
proved there that {P,(z)} do coincide with our Legendre polynomials, which are
defined in a different way. So (3.35), known in literature as Rodrigues formula,
becomes an alternative expression for P, (¢).

Another recursive relation, particularly useful to compute first derivatives of
P,(?), is derived from the identity

2
G(s,1) +25D,G(5,1) = —D,G(s,1) ; (3.36)

N

in fact substituting (3.17) end equating the coefficients of the same powers of s we
obtain

Pryi(t) = Pr_i(t) + 2n + 1) Py(0). (3.37)

A combination of (3.37), multiplied by n, with (3.24), differentiated, provides
another useful relation, i.e.

Pl =P, +(n+1)P, (3.38)

Let us stress that (3.24) together with (3.38) and (3.32) provides us with a
powerful tool to compute sequentially P, (¢), P, (t), P”,(¢) for all n up to any fixed
high degree N.

We can turn now to study the integral properties of P,(¢), which will be of
fundamental importance in the sequel.
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Such properties can be summarized in the formula

1
L+n+ I)E / Py(cosypyp) Pr(cosYpg)dog = P, (cos¥pyp)de. (3.39)

The proof can be found in Sect. A.1.
Formula (3.39) allows to draw three conclusions:

(a) Any two Legendre functions P,(cos ¥'p,0), Pr(cos ¥ po) with different degrees
(£ # n), are orthogonal in L?(S;) whatever are the directions of ep, and ep,

1
e / Py(cos Yp,p) Pu(cosypg)dog =0, L #n (3.40)
(b) Lettingep, = ep in (3.39),i.e. cosYp,p = 1,and £ = n, we find

1
i / Pnz(cos Vryo)dog = (34D

2n +1
(c) Whenep, # ep, £ = n, we find the reproducing formula

2n + 1
41

P,(cosyrp,p) = /Pn(cos Yp,0) Pu(cosYpo)dog.  (3.42)

Formula (3.42) is essential for the analysis in Part III.

Remark 1. Take ep, = ep = e, in (3.39); then, noting that
do = sindd¥dA = —dtdA, we find

1

1 Pu(t) Py (t)dit =
1

2 1
— i /_1 Py(t)P,(t)dt = %/

47T0 —

51571
2n + 1

(3.43)

This equation shows that the sequence of polynomials { P,(¢)} is orthogonal in
L?[(—1,1]) and furthermore

1
(PGP / 1 P (n)dt = (3.44)

2n+1°

Even more, although we won’t make so much use of Legendre polynomials in
one dimension, we have to note that { P, ()} is a complete sequence in L?([—1, 1]).
In fact, note thatone has 1 = Po,1 = Py, 1> = (2P, + Py).1* = 1(2P5(t) + 3P1)
and so forth; then ¢* can be expressed for every k as a linear combination of { P, (¢)}
and the same will be true for any polynomial in #. On the other hand a famous
theorem by Weiestrass (cf. Riesz and Nagy 1965; Yosida 1978) claims that any con-
tinuous function f(¢) can be uniformly approximated on any bounded interval by
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a suitable polynomial Q y(¢). Since {f_ll [f(t) — QN (D]Pdt}? < V2e if | fo(t) —
On(t)| <&, f.(t)is arbitrarily well-approximated in L>([—1, 1]) by Qn ().

On the other hand any f(t) € L?*([—1,1]) can be approximated as well as we
like by a suitable continuous function f. (), so that we have

[ /(@) = On@| = If (1) = feOIl + | fe(@) = On @)
<e+ V26 = 1+ ﬁ)e, (3.45)

i.e. the space of polynomials in ¢ is everywhere dense in L?([—1, 1]), very much
like the space of rational numbers is dense in that of real numbers. Since Q y (¢)
can be expressed as a linear combination of Py, P ... Py, we see that { P,(¢)} is a
complete orthogonal basis in L?([—1, 1]) and the following representation

+o0 1
10 =32 n0 ([ rerner) (3.46)
n=0 -

holds for any square integrable f(¢) (see Part III, Definition 19 and Proposition 10
or Riesz and Nagy (1965), Yosida (1978)).

Remark 2. Let us remark that from Py = 1, P; = cosYpp = ep - €, wWe can write
from (3.12)

(rr>R), T(P)=G %i/ §p(Q)dBg (3.47)
rp JB

1
+=r / 5p(Q)rpeodBg + O (7)} .
rp B r

P

Therefore if the normal field is made in such a way that | B, pe(Q)dBg = M,
i.e. the mass generating U is the same as that generating W, and if in addition we
are using a geocentric system, such that

| dot@rodso = [ p@iwodsi— [ p(@rodso 0. G4y
then we have indeed
T(P)=0 (i}) (3.49)
T'p

as we have anticipated in (1.131).
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3.4 Spherical Harmonics

Consider the following family of functions of (¢, 1), i.e. defined on the unit sphere
S, depending on two indexes (n,m):

n=012....m=—-—n...,0,...n

cosmA m=0,1...n
) = {sin|m|/\m:—n,...—l (35D
Pon(®) = \/ (2= 8o (21 + I)E ’”)), Pon(®) (3.52)
Pun(9) = (1 =13)"2D" P, (1) (3.53)
t =cost

By definition these are called surface spherical harmonics of degree n and
order m; Py, (%) are called associated Legendre functions of the first kind, P (1)
normalized associated Legendre functions.

This sequence and its relation to functions harmonic in space is studied in
depth in Part III, Chap. 13; in this section we limit ourselves to recall some results
highlighting the possibility of constructing, by means of linear combinations, useful
approximate models of the anomalous potential, usually called global models.

We start by stating a famous theorem, the proof of which can be found in Part I1I,
Sect. 13.2, Theorem 2.

Theorem 1 (Summation theorem). The following identity holds

Y Yuu@p, Ap)Yun (0, Ao). (3.54)

Pu(cosyro) = o ——
m=-—n

To understand the relevance of this theorem to our matters, let us substitute (3.54)
into (3.14) and (3.15) and rearrange; we obtain

Yo (Dp, A
T(P) = Z Z T (nﬁl ) (3.55)

n=0 m=-—n

~

G . .
T = G D) /B r Yun(90. 20)8p(Q)dBo: (3.56)

the series (3.55), as we know, is convergent for rp > R. From (3.56) we see that the
numerical coefficients T, are different in dimension for every degree n; to avoid
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this ugly characteristic it is customary to modify (3.55) in such a way as to express
T by means of non-dimensional coefficients.
Namely we put

+oo n n+1
GM R
T(P)=— Tom | — Yuu(@p, A .57
(P) R n§=0m=§_n (rp) (Dp,Ap) (3.57)
_ 1 1 ro\"
Tom = mﬁ/z; (7) Yim(Po, A0)3p(Q)dBg., (3.58)

where R can be any radius related to the earth; common is the choice
R = 6,371 km, (3.59)

namely the mean radius of the earth ellipsoid. Such a value is indeed very close, but
not strictly equal to the Brillouin radius.

If we go back to (1.16) we see that our typical choice of the normal potential U
and of the relative position of the earth ellipsoid to the masses, implies

T()() = O, Tl,m =0 (m = —1,0, 1) (360)

so that the series (3.57) in fact starts from the degree n = 2 and (3.49) is always
satisfied. We also note that with this definition we can count on the estimate
O(T,,,) ~ 107 or smaller. We shall see later on how to make this estimate tighter.

We notice now that since 7'(P) has to be a harmonic function whatever are the
numerical coefficients {7,,,} in (3.57), we must also have

R n+1
r > R, A |:(7) Y (0, A)] =0. 3.61)

If we use (1.100) and (1.102), i.e. the spherical representation of the Laplacian,
and we take into account the relations

? 29 1 1
(W + ;a—r) (rn+1) =nn+ l)r”+3 (3.62)
32
WY,W,(&, A) = —=m> Y (9, 1), (3.63)

we find that the associated Legendre functions have to satisfy the Legendre
equation of order m (cf. Part III, Remark 2)

2
(1—2)P" (1) — 2tP!, (1) + |:n(n +1)— %} Pon() =0  (3.64)
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We note that if we put m = 0 in (3.64) we retrieve the simple Legendre equation
(3.32); this is consistent with the fact that if we put m = 0 into (3.52) and (3.53) we
find

Poo(t) = V2n + 1P, (¢). (3.65)

We note explicitly as well that in this way { P,,(¢)} are not L? normalized on the
interval [—1, 1] (compare (3.44)), but are indeed > normalized on the unit sphere.
Another remark which is an immediate consequence of (3.62) and of the formula

? 290 1
A==+ -=— —As,
(ar2 + r 8r) + r2

is that the important relation holds
Ao Yum(D,A) = —n(n + 1) Y, (9, 1), (3.66)

ie. {Yim(¥,1)} are eigenfunction of the Laplace-Beltrami operator A,. More

precisely, considering (3.63) too, we can claim that Y, (9, 1) is an eigenfunction
. . . . 92
of As, with eigenvalue —n(n + 1), and an eigenfunction of 33,
—m?. This fact will be exploited later on.

The functions

with eigenvalue

R n+1
Snm(rv 197 A) = (_) Ynm(ﬁs A)
r

are usually called exterior solid spherical harmonics. The adjective exterior refers
to the fact that they are harmonic outside the origin up to infinity, as opposed to the
functions r"Y,,,, (¢, 1), used in most of Part ITI, Chap. 13, which are harmonic in the
whole space, but not bounded at infinity.

Very much like the Legendre polynomials, also the functions P,,(f) can be
sequentially computed by means of recursive relations.

There are two principal types of such relations, one on the degree n, the other
one on the order m; these are

Fﬂ+l,m (t) = Aﬂmt?nm(t) - Bnm?n—l,m(t) (367)
with
A = |: 2n+1)2n +3) :|(1/2)
By = Qn+3)n+mmn—m)y 1V
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and

— 2t

Pn,m+1(t) = Jl——tzmcnm?nm(t) - Canann,m—l(t)- (3.68)

with

1 (1/2)
Com = [(n —m)(n—m+ 1)]
Dy = [(n + m)(n —m + 1)](1/2) V14 8.

The relations (3.67) are triggered by

Proim(t) =0, Ppn(t) = ,/%(1 — %), (3.69)

while (3.68) are triggered by

Poo(t) =2n + 1P, (1), Py = ‘/%(1 —tHY2P(1),  (3.70)

where P, (), P, (t) are computed according to (3.24) and (3.38).

In Part III, Proposition 7 and the following, there are proofs of such relations as
well as a discussion on their numerical implementation. At present with degrees up
to some thousands and all orders, the best is to compute Pom suitably rescaled and
use them in (3.67) and (3.69), dividing at the end the result by the scale factor. Such
scale factor can be very large, however being computed separately in exponential
form, does not destroy significant digits in the process of the numerical computation.

By differentiating (3.67) one gets a recursive relation, useful for the computation
of the derivatives P/ : in fact

nm?

P (0) = A Pr(t) + Al Py (6) = Bun Py, (0), (3.71)

P (=0 P, ()= ,/%(—m)t(l —H)mD=1(372)

When the second derivatives F::m (t) are needed, one can directly use the Legendre
equation (3.64).

An alternative to the recursive evaluation of individual Legendre function is the
so-called Clenshow summation method that one can find in Tscherning and Poder
(1981).

and
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We come now to establish important functional properties of {¥,,, (1, 1)}.
The first, known as orthogonality relation, is given by

1
i Y (0, V)Y (9, A)do = 8¢n8mk. (3.73)
b4

S

In fact (3.73) says that {Y,,, (%, 1)} is an orthonormal system in L?(S). Note that
in this L?(S) scalar product the factor 47, which is a simple normalization factor,
is conventional and introduced to simplify formulas. Moreover the theory developed
in Part III, Chap. 13 leads to a fundamental property, which we state in the form of
theorem (see Part III, Definition 19 and Theorem 3).

Theorem 2 (Completeness of {Y,,,} in L?(Sy)). The sequence {Y,,,(3, 1)} is a
complete orthonormal system in L*(S}).

That {Y,,} is orthonormal has already been expressed by (3.73); that it is
complete means that for every f(J,A) square integrable on S; we have the
following Fourier representation

S = Z > famYun(@®, 1)

n=0 m=—n

1
Jom =S Y sy = 4 /S F@B. )Y (9. M)do. (3.74)

The series in (3.74) is convergent in the sense of L?(S;) and the following
Perseval’s identity holds (cf. Part ITI, Remark 4).

1 o, = / PO =3 3 £ (3.75)

n=0 m=-—n

Remark 3. 1If we define a Hilbert space of harmonic functions
HL*(Sg)={u; Au=0,r > R; / u?dS < 400} (3.76)
S

and we consider the series

n+1

+oo n
w(r 90 ="t (?) Yo (9. 2) (3.77)

n=0 m=-—n

+00 n
= Z Z unmSnm(r’ 19’ A’)’

n=0 m=-—n



3.4 Spherical Harmonics 129

which represents a typical element of HL?(Sg), fixing r = R we see that

n

+o00
W(RD.2) =" Y Yo (D 1) : (3.78)

n=0 m=—n

on the other hand u,,, are then determined by (3.74), so that we can say that each
function u(r, ¥, A) in HL*(Sg) is in one-to-one correspondence with its trace on
Sr,u(R, ¥, 1). In particular both functions have the same sequence of coefficients
{utm} and such coefficients have to satisfy the condition

n

+o00
Z Z u§m<+oo

n=0 m=—n

as otherwise u cannot belong to HL?*(Sg).
With this identification of functions between u € HL*(Sg) < uls, € L*(S})
implying also that

Sim € HL*(Sg) < Stmlsg = Yem € L2(S)).

we see that {Sy,,} can be considered as a complete orthonormal system in HL*(S).
This allows the definition of easy rules for a calculus with harmonic functions in
spherical domains.

Remark 4. Let us consider a surface S satisfying some regularity condition, such
as the continuity of the normal vector n(P) (see Part III, Sect. 13.2) and such that
the origin O is within the body B enclosed by S. If we call §2 the exterior domain,
we can consider HL?(S) i.e. the Hilbert space of functions which are harmonic in £2
and on S are square integrable, i.e.

HL*(S)={u; Au=0in £ ; / u?dS < +o0}.
s

Note that equivalent norms, like those discussed in Sect.2.2, could also be used
here. In such a space we define the scalar product as u, v € HL*(S)

<u,v>= / u(P)v(P)dSp. (3.79)
s
Now, it is clear that {S,,,(r,%, 1)} € HL*(S) and we can consider the linear
subspace

D AmSum s YN ¥ A € RY (3.80)

N
n=0

Span{Sym} = { uy
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We note that under these conditions there will always be a sphere B, centered
at O and such that By C B. Indeed it is enough to take a sphere with radius Rp
satisfying

Rp < minpegrp.

A sphere like this is called in literature a Bjerhammar sphere and Rp a
Bjerhammar radius. Here, when we use a set of solid spherical harmonics S,
we assume that the R used in their definition (cf. (3.57)) is equal to Rp.

We note too that, due to the non-spherical shape of S, in general {S,,,(r, ¥, 1)|s}
is not any more an orthonormal sequence in L2(S), i.e. it is not orthonormal in
HL*(S).

Nevertheless the property of completeness still holds true or, said in another way,
Span{S,,,} is dense in HL*(S).

Theorem 3 (Completeness of {S,,,|s} in L*(S)). Let S be a surface satisfying a
condition of continuity of the normal n( P) and smoothly mapped to the unit sphere,
for instance a star-shaped surface; then {S,,|s} is a complete sequence in L*(S).
Accordingly {S,m} is a complete sequence in HL*(S).

The proof of this theorem can be found in Part III, Sect. 13.4 under Theorem 5.
The meaning of the statement of the theorem is precisely that, given any function
u(r, 9, 1) € HL>(S) and any & > 0, there are an integer N and constants {u,,,, ; |m| <
n,n < N} such that

N

llu — Z Z Ui S (T, 0, M) | 2 s,

n=0 m=-—n

1
N 2

= g/[u(P) -> Z UnmSum(P)PdSpy < e. (3.81)
S

n=0 m=-—n

This theorem constitutes the theoretical basis for the construction of global
models of the anomalous potential 7', as we shall see later on, in this chapter.

Remark 4, and Part III, Sect. 13.4, Theorem 5 recalled here, suggest that by
providing the values of a square integrable function f(P) on S, we could recover
by means of a suitable harmonic series a representation of the function u(P) which
is harmonic in £2 and agrees with f(P) on S. In other words we are tempted to take
the limit for N — oo in (3.81) and claim that we find in this way a harmonic series
converging in the whole of £2. This is not true and we shall give in the next section
an elementary counterexample.

The reason for this relies on the fact that the coefficients {u,,} for which a
minimum is attained in formula (3.81) do change when we change N and we should
denote them, more carefully, as {ufl\’m}. On the basis of more advanced analyses, like
those performed in Sects. 14.4 and 14.5 of Part III, one can claim that, as a matter
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of fact, it is possible to take the limit

lim " = T, (3.82)

and the limit coefficients are in fact related to the series Zﬁnm Sum(r, 9, 1), which
n,m

is convergent for r > R, with R a Brillouin radius. However, the same series is not

convergent in general for r < R so, while the individual coefficients have the limit

(3.82), the other limit

N n

lim u Sum(P) = lim uy (P

N—>OOZ Z nm nm( ) Neoo N( )
n=0 m=—n

in general does not exist when P is on the surface S. Or better, such a sequence

{uy} is converging in L*(S) to u|s, namely not in a pointwise way, but this limit

function cannot be expressed as a convergent series of the form

+oo n
> tuwSum(P)

S n=0 m=—n

u(P)

S

Nevertheless there are cases in which this ugly phenomenon is not happening,
namely when S itself is a sphere, of radius R, so that we can take R to coincide
with R. The effect of this choice is that {S,,,,} now becomes orthonormal and, as
a consequence, the “best” set of coefficients minimizing the norm (3.81) does not
depend anymore on N, so that taking the limit in this formula becomes much easier.

We show three examples of solutions of problems of determining 7'(P) from
boundary values on a sphere. Two of them are as a matter of fact closely related to
boundary value problems (BVP’s) of great geodetic significance. Yet they should be
taken only as examples used to grasp, in a simple situation, the qualitative behaviour
of solutions of BVP’s: a sounder theory for this argument has to be found in Part II1,
Chap. 14, where its numerical implementation is discussed too.

Example 1 (Poisson). We assume that S is a sphere of radius R and we put

S = (%)n+l Y,un. We assume that the values of 7'(P) are given all over S and the
corresponding function f(P) is in L?(S). Then the solution 7'(P) of the Dirichlet
problem

AT =0in 2
T=f onS (3.83)
T—-0 r— oo,
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is given by the Poisson integral, as proved in Part ITI, Sect. 12, i.e.

1
(P) = o / ITre(P. Q) f(Q)do (3.84)
(dog = sindgdodrg : f(Q) = f(¥g.A0))
where
_ R(r%, —R?Y» B R(r%, - R
Txe(P.0) = T 5 oo graP? — e, (3.85)

The index Re here means that the Poisson kernel is referred to the solution of an
external problem for a sphere of radius R.

Example 2 (Hotine). Assume S = {P :rp = R} and that on S we give §g(P)
(cf. (2.30), (2.99)). In this setup we use the spherical approximation and we define
the problem

AT =0 in$2
— =8§gonS (3.86)
T —0 r — 00,

which is also known as a Neumann problem since we supply on S the derivative of
T in the radial direction, which is normal to S in this case.
The explicit solution of (3.86) is given by means of the so-called Hotine function

2R i Lpo + R —rpcosypg

H(P,Q) = tro 0g rp(1 —cos¥pg)

, (3.87)

by the integral relation

R
T(P) = E/H(P, 0)8g(Q)dog. (3.88)

This is obtained as follows. Put

+o0 n R n+1
T=) > T (7) Yon(@. ) ; (3.89)

n=0 m=—n

then the first and last of (3.86) are satisfied. We can try to satisfy the second of
(3.80), i.e.

n

+oo n+1
=y > o TonYan (9, 2) = 8g(. 2). (3.90)

r=R n=0 m=—n

B oT
ar
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By using the orthogonality relations (3.73) we derive

1 1
nt oL / 5g(9, 1) Yo (9, X)do, 3.91)
R 47

which, substituted back into (3.89), gives

+oo n R R n+1
oy (—) Yo (O p, Ap)Yum(D, 1) | 8g(9, V)do
n=0 m=—nn + 1 p

oo n41
R R [22;1 +1 (5) P, (cos 1//pQ):| §g(Q)doyg (3.92)

:47t :0n+1 rp

The series in parenthesis is then added by splitting it a according to

100 41

2”"‘ln+1 +1 s
Py(t) =2) s"T Py(t) —
D D S Sre

n=0 n=0 n=0

P,(t) = Hi(s,t) — Ha(s,1).

Then recalling the definitions of generating functions (3.16) and (3.17) we find

d
H(s,t) =25G(s,1) ; Hz(s t) = G(s,t). (3.93)
Integrating the second of (3.93) between O and s, taking into account that
H,(0,¢) = 0, and substituting back we get (3.87).

Example 3 (Stokes). In this case we assume to give on S the function Ag(P) that
we express in spherical approximation as in (2.100). So our problem is now

AT =0 in 2
%—f — %T = Ag(P)on S (3.94)
T—0 r — o0

If we use the representation (3.89) for 7', we find

Z Z Tannm(ﬂ ) = Ag(®,1).  (3.95)

r= n=0 m=—n

The use of orthogonality relations now gives us

—1 1
Ay / Ag (D, 1) Yom(D, A)do. (3.96)
R 47

Equation (3.95) tells us two things: if we put n = 1 in it we see that 77, are not
determined, but the equation can be satisfied only if

Agim = 0. (3.97)
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This means that if we give on S a function that does not satisfy (3.97), this is not
in reality a gravity anomaly because all gravity anomalies do fulfil such a relation.
In addition, if Ag has been generated from a normal potential with the same mass
content as W, then we know in advance that Ty = 0. Furthermore, if the barycenter
is placed at the origin we know in advance that 77, = 0 (cf. (3.60)).

Summarizing, substituting back into (3.89) and using the summation theorem
(3.54), we get

4 n=2n_1 r

+o00 n+1
T(P) =L R[Zzn“(ﬁ) Pn(COS¢PQ):|Ag(Q)dUQ

R
— o [ 5. 01280100 . (3.98)

Again the series in parenthesis can be split as

ZZ"H s"FLP, (1) —2Zs"+1P (t)+3Z s CPa(0)
n= 2” 1 n=2 ’

=281(s,1) + 382(s,1),
The series are then added, using the relations
S1 =s[G(s,t) — 1 — st]

1
SZDS (—2S2) = G(s,1) —1—st,
S

with G (s, t) given by (3.16) and (3.17).
The calculus is laborious and it provides ultimately the Stokes function

2R R Rlpg
S(P,Q) = —3—
KPQ rp I‘P

(3.99)

RZ
— —Zcosw|:5+310g
’p

rp— Rcosyrpp +Lpo
2}’P ’

to be used in the Stokes’s integral (3.98) (cf. Heiskanen and Moritz 1967).

Let us remark here that (3.98) provides the sought anomalous potential in the
whole outer space {r > R}. In particular we can take P on the sphere itself by
putting 7p = R in (3.99). In this way we get the simple spherical Stokes formula
yielding 7', and hence the geoid undulation N, on the sphere. Noting that with
rp = R we have

7o _ oy = 2sin L.

rp
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Fig. 3.3 The outlook of the
grain of sand example

(3.99) and (3.98) become respectively

S(y) = +1- 6sin% —cosyr [5 + 3log (sin% + sin’ %)} ., (3.100)

inZ
sin =

R
PeSy T(P)= E/S(pr)Ag(Q)dUQ. (3.101)

3.5 Downward Continuation and Krarup’s Theorem

Since, unfortunately, the geodetic literature is not exempt from errors on this item,
we deem it useful to clarify the fundamental fact that not every function harmonic
in §2 and square integrable on S can be continued down to a Bjerhammer sphere Sy
by some potential that is still harmonic in the layer between Sy and S (cf. Fig. 3.3)

It is enough to prove it by a counterexample which, in spite of its simplic-
ity, should give the reader the idea that it is much easier to find a potential
that cannot be continued rather than the opposite. The example is taken from
Moritz (1980).

Example 4 (Grain of sand). We refer to Fig. 3.3 and assume that Ry is any radius
such that Sy C B. We can find then a number a, which is still a Bjerhammer radius,
buta > Ry. Then we assume that the potential we want to discuss, is that generated
by a “grain of sand” of mass m placed at Py, (rp, = a). This potential is

G
T(P) = % (3.102)
EP()P

which is a bounded regular function on S because dist( Py, S) > 0.

For the sake of simplicity we define the Z axis so that Py belongs to it and so the
angle ¥ between ep, and any other direction is the same as the spherical co-latitude
of this direction.
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Since rp > a when P € S, we can develop (3.102) into a convergent series of
spherical harmonics, namely

o0 n+1
TPy = " (3) P, (cos ) (3.103)
a N0 rp

B Gm+°°(a

n+1
1
——Y, 00, A) ;
o e

a n=0

in (3.103) the relations (3.65) and (3.50) have been used. Now assume that 7'(P)

can be continued down to Sy and that it is square integrable on this sphere. Then we
must have, denoting with 7" the function 7' continued to Sy,

+oo n n+1
T(P)=>_ > T (&) Yo (D, 2). (3.104)

n=0 m=—n r

Comparing (3.104) with (3.103) and putting 7» = R, a large Brillouin radius,
one gets

and then
T = ( a )n+l L (3.105)
" \R) VAl '

Since Ry < a, we find

5 +o00 a 2n+2 1
ST =S (L = 400, 3.106
=2 (Ro) w1 T (3.106)

n=0

contrary to the hypothesis that 7'( P) is square integrable over Sp. So the hypothesis
proves to be absurd. Since Ry is any radius such that Ry < a, we have proved that
the grain of sand potential cannot be harmonically continued below the level of the
grain.

Since we can place the grain at any point below .S, we have that not only inside
the masses, but even in part of the empty space (3.103) might not converge.

As simple as it is this counterexample permits to state a general rule that we
establish in the form of a theorem.
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Theorem 4. Let R be the minimum Brillouin radius for the surface S, i.e {R =

suprp}; let us denote by R.(T) the radius of convergence of the harmonic series
Pes

that represents a potential T € HL*(S)

n

+o0 n+1
T(P) = G—l;"Z > Tum (5) Yo (D, 2. (3.107)

r
n=0 m=—n

Following Krarup (2006) we put, by definition,

2n+2
R.A(T) =inf{ R ; %, T2 (?) < 400 (3.108)

and obviously any time that R.(T) < R, the series (3.107) is uniformly convergent
Vr > R. Then we have

sup R.(T) =R, (3.109)
TE€HL*(S)

that is: if we want a radius R such that the series (3.107) is convergent for all T
in HL*(S) (in Jact one can prove for all potentials harmonic in §2) one has to put
necessarily R > R.

The reason why there is some confusion on this point in geodetic literature, is
due to the fact that although not all 7 harmonic in §2, and such that T'|g = f(P) €
L?(S), can be downward continued, yet it is always possible to make a small
(in L2(S) sense) variation of f to obtain an f, such that the potential F
corresponding to f inthe sense that F|g = f,isclose to T in £2, and can indeed be
continued harmonically inside B, down to some predefined surface S, all contained
into B.

This is basically one of the possible simplified formulations of a fundamental
theorem known in geodetic literature as the Runge-Krarup theorem.

Theorem 5 (Runge-Krarup). Let T (P) be any potential harmonic in §2 and such
that fs T2(P)dSp < +o0; let further S be a smooth surface, all included in B,
and let us fix an & > 0. Then we can find a potential T, harmonic down to S, which
is close to T (P) in the sense that

/[T(P) —T(P))%dS <. (3.110)
N

In this very elementary formulation we don’t need to prove the theorem, which
holds true under much more general conditions, because we can simply observe that
Span{S,,,(r, %, 1)} is as a matter of fact dense in both HL?(S) and HL*(S) and it
consists of functions which are harmonic in the whole space, outside the origin.
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When we choose S to be a Bjerhammar sphere Sp, with radius Rp, we have
a situation which is very much in use in geodesy, where one has an approximate
expression for 7" in terms of a function harmonic down to Sp. However if one tries
to restrict ¢ in (3.110) one finds that the harmonic coefficients in the convergent
series (3.107) do change too, and, most of the times, their limits for ¢ — 0 does not
provide anymore a convergent series.

Nevertheless when we provide only a finite number of observations on S, for
instance mean values of 7 or of Ag over area blocks, we are always able to
interpolate them exactly and this is the fact that has generated some confusion and
led some authors to believe that a true downward continuation of 7" existed.

Remark 5. Imagine we take a surface S that initially coincides with S and then is
progressively moved inside B towards the origin. It should be clear then that the set
of potentials harmonic down to S becomes thinner and thinner, though it is always
densely embedded into HL?(S). As a consequence achieving an s-approximation
of T as in (3.110) is always possible but it becomes more and more difficult while
we move downward S . For instance if we use a finite linear combination of functions
harmonic down to S, we might be forced to take a larger number of them in order to
achieve the same level of approximation. It is for this reasons that when we perform
a global approximation of 7 it is not so convenient to use a Bjerhammar sphere as
S, but it is preferable to use the earth ellipsoid &. This is in fact much closer to
S than any Bjerhammar sphere as the height of the highest mountain is less than
2-1073a(a = 6,378 m) while a Bjerhammar sphere, globally contained in B, has at
most a radius equal to b, the semi-minor axis of &, meaning that it is at least ~20 km
below the surface in equatorial regions.

3.6 Ellipsoidal Harmonics

In this section we shall develop a theory similar to that of Sect. 3.4, establishing a
general representation of a potential harmonic outside the ellipsoid & and square
integrable on it. This will be done by a formula which is the exact counterpart of the
spherical harmonics series (3.77).

To this aim we go back to Example 4 and recall the definition of ellipsoidal
coordinates (q,ﬁ, A). In that example we have found the form of the Laplace
equation in such coordinates (cf. (1.110), (1.111)) that we repeat here for the sake

of readability:

9%u u — E? 3%
2+ E)— 42— 4+ Agu——— =0 3.111
(¢~ + )8q2+ qaq+ U= TR o ( )
2 1 2
0 I J (3.112)

ZU=—+Ct§—_+—_—.
99> 97 T sin2p A2
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A quite interesting feature of (3.111) is that the angular part of the Laplace
operator is constructed by a combination of the Laplace Beltrami operator A, and

of %22, with coefficients that do not depend on (5, A).
If we remember (3.63) and (3.66) and the subsequent comments, we find that,

when ¢ is kept fixed, we have

E? 3

A V(D) — —— ——
O - e

Yo (P, 1)

2.,,2

= |-+ 1+ 2
= nwn q2+E2

} Yo (9, X). (3.113)
This suggests the idea of separating the dependence of u(g,9, 1) from the
angular variables by putting

+oo n
(@02 =D D wan(@)Yun(D.2), (3.114)

n=0 m=—n

In fact, by fixing ¢ in u(g, ¥, 1) we find as a matter of fact a function of (I, 1),
which can also be seen as a couple of coordinates of a point running on the unit
sphere S;. Since such a function is quite regular in {g > b}, we already know that
the representation (3.114) has to hold ¢ by ¢, and even more we know that the
coefficients u,,,(¢q) will be given by the orthogonality relation (see (3.57), (3.58))

Unm(q) = % /S u(g, O, A)Y,(9, V)do. (3.115)
1

On the other hand if we substitute (3.114) into (3.111) and take (3.113) into
account, by using the linear independence of {Y,,,} we find that u,,,(¢) do have to
satisfy the differential equation

G* + EDu” r _ E’m? _
q° + Eu,,, + 2qu,, — |n(n + 1) q— Upyn =0, (3.116)

2 + E2
Y = d iy, . d*u,,
nm dq > 'nm dq2 :

Equations like (3.116) are well-known and studied in mathematical literature and
we can even find a quite interesting relation to the Legendre equation (3.64); in fact
if we putq = —iEt, (i*> = —1), into (3.116) we find that, as a function of 7, tt,,,(t)
has to satisfy exactly the Legendre equation

2
(A=t —2tu, + [n(n +1)— 1’" ;2} Upm = 0. (3.117)
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Yet we cannot think of using the solutions of (3.117) which we already know, i.e.
P, (1), because these, extended to the complex plane, are not bounded for |t| — co.

In fact, since u(g,9,A) given by (3.114) has to be a regular potential at
infinity, we certainly want solutions u,,,(¢) of (3.116) that do tend to zero when
r — 00, i.e. when ¢ — oo. This is also obvious because (cf. (1.103))

r? =q* + E*sin* 9.

Solutions of (3.117) with such characteristics are known as Legendre associated
Sfunctions of second kind (cf. Heiskanen and Moritz 1967; Nikiforov and Uvarov
1988). They are usually denoted by Q,,,(¢). It is even possible to see that

c
Oum (1) ~ NG |t] — oo

which, expressed in terms of the variable ¢ and then r, is nicely reproducing the
asymptotic behaviour of spherical harmonics.
Summarizing, if we put

L Oumlid)

e MU EZ (3.118)
Oum(i %)

Um(q) = Uy, Vum(q) = u

we find a set functions that do satisfy (3.116), tend to zero when ¢ — 0o and, when
we put ¢ = b, yields

hm(b) = uflms Vam(b) =1 (3.119)

By setting ¢ = b in (3.115), we see that

1 _ _
Upy = — | u(b,9,1)Y,n(9, M)do, (3.120)
4 S

showing once more that if we know u on the boundary & we can compute u;,, from
(3.120) and then recover u(g, ¥, A) by using (3.118) into (3.114).
An important point is that one can see that Q,,,(¢) have a parity opposite to
n — |m| so that Q,,(i %) is a pure imaginary number when n — [m| is even and a
P4
l =N
real number when n — |m| is odd. Accordingly, the ratio Qnm—(f)

is always real,

hm (i E
as it is necessary if we want our potential given by (3.114) to be real too. So if we
define solid ellipsoidal harmonics as

Oum(i )

Youm (9, A (3.121)
Oum(i L) @4

S¢ (g0, 4) =
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we have established a general representation of a potential # harmonic outside &, in
the form

‘o0 n

w(g. 9.0 =Y > u,Sk(q.0.2). (3.122)

n=0 m=—n

with the ellipsoidal coefficients {u¢,, } given by (3.120).

Remark 6. 1f we remember the Example 4, and the expression for line elements on
the ellipsoid & corresponding to the choice ¢ = b, see (1.107),

dly = hyd® = /b2 + E2sin> §d v

dt, = asinddA (3.123)

we see that the area element of & is

dS, = aby/ 1+ e”?sin’ ¥ sin 0 d ¥ d A (3.124)

= abW(9)do,

. .. 2
with do the usual area element of S; and e’ the second eccentricity, e’ 2= %.

Due to the presence of the weight function W(?9), the sequence {¥,,,(, 1)} is
not orthonormal in L(S,), although it is complete in such a space. In fact if we map
& onto the unit sphere S through the coordinates (¢, 1), (see Fig. 3.4) we see that

1 _ +o0 n
4—/ b do =" > (ul,)”. (3.125)
T Js n=0 m=—n

At the same time, since ab do < dS, < a*do, we have

11

— [ b9 0)do < —— | u?(b.7.1)dS, (3.126)
4 Js, a* 4w Js,

1 . 11 —
— | Wb 9. Ndo = —— | (.9, 1)dS.. (3.127)
4 Js, ab 4m Js,

Relations like (3.126) and (3.127) prove that the ordinary norm in L>(S,) is
equivalent to the L2(S)) norm, after the mapping P, = (J,1) < Ps = (¥,1)
between & and S has been used (cf. Fig. 3.4).

This implies that the L2(S;) convergent series (3.122) is also a convergent series
in L2(S,). Therefore (3.125) is a necessary and sufficient condition for u(b, ¥, 1) to
be in L%(S,).
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Fig. 3.4 The mapping
& <> 8 in a meridian plane

In order to perform a calculus with ellipsoidal harmonics, implying also the
numerical determination of Q,,, (i %) for any value of g, it would be nice to
use recursive relations like those we found for spherical harmonics (see (3.67),
(3.68)).

As a matter of fact one can prove that the same relations hold for P,,, and Oums»
yet for the relevant arguments of 1 = i% (note that % > % > 12), such relations
become quite unstable and they cannot be used with n larger than ~20. There are
series developments of Q,,,(z) in literature; however also the coefficients of the
series become quite large when the degree rises over 1,000, as it is possible and
necessary today.

One of the methods presently used is to apply an explicit and computable
transformation from solid spherical harmonics to solid ellipsoidal harmonics and
viceversa.

It is not appropriate to derive here the coefficients of this transformation, for
which we send the interested reader to the literature (cf. Hobson 1955; Jekeli
1988). Yet we mention that it is indeed expected that a solid ellipsoidal harmonic
Ay (g.9.1) (see (3.121)) could be expressed in terms of a series of spherical
harmonics, S, (7, ¥, 1) because after all it is a harmonic function outside a sphere
with radius R of the order of the ellipsoid semiaxes.

Even more, since the longitude A is the same for both ellipsoidal and spherical
coordinate systems, we expect Yy, (5 A) to be a linear combination of Y, (, 1)
with the same order m, because in this way both S and S, (r,?, A1) depend on
the same sin |[m|A or cos mA. Furthermore, since both S§, (g, 9, A) and S, (r, 9, 1)
have a definite parity as functions of 9 and ¢ respectively and since such parity is
alternating (even and odd) with n, we can predict that S}, (q, 9, 1) can depend only
on S¢4ok.m(r, ¥, A). It turns out that the above linear combination has a particular
form; more precisely, if we reason directly in terms of harmonic coefficients, there
are constants

?—
A’[ﬂ’lk? k = 07 17 oo ,Ilm = [ﬂ} 5 (3.128)

[t] meaning the largest integer equal or smaller than the real number 7, such that

Iom

Uy =Y Memkly ) - (3.129)
k=0
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where ug, , u;, are respectively the harmonic coefficients of the potential u repre-
sented with ellipsoidal or spherical harmonics. Among other things (3.129) says that
even if we have a potential # which is given by a finite sum of spherical harmonics,
then the corresponding ellipsoidal representation will have coefficients different
form zero for all degrees, naturally with a maximum value for the order m.

The relation (3.129) can be inverted in the form

Aomics k= 0,1, Lo, (3.130)
Inm

Wy = Y Aumklll_op - (3.131)
k=0

The coefficients Ak, Apmr can be computed by recursive relations, as
described for instance in Jekeli (1988).

Although there are a number of methods to compute corrective terms to switch
from the ellipsoidal to the spherical set up (see for instance Cruz (1986)), we report
here only approximate formulas which exploit a perturbation in the eccentricity
parameter e? and the fact that, for terrestrial applications in the topographic layer,
we need only to compute Q,,, with ¢ close to b, say with |¢ — b| < 1073b
(Sona 1995).

Such formulas can be summarized as

o1 o (n+1)(n+2)+m? _
W = [1+e G- | (a3

the proof can be fond in Sect. A.3, where the value of « is given by (3.201)
(Sona 1995).

The relative approximation of the simple formula (3.132) is in the range of 10~°
as far as we stay in the topographic layer and it is practically sufficient for most of
our computations, when the maximum degree is at the level of hundreds, e.g. up to
degree 360.

Remark 7. Now that we possess the full concept of ellipsoidal harmonics we can
return to Sect. A.4 and observe that the determination of the normal potential was
reduced to the research of a function V, (g, 5), harmonic outside the ellipsoid & and
satisfying on & the boundary condition (cf. (1.119))

1 _
Vlg = Up— szaz sin® . (3.133)
The solution, explicitly constructed in Sect. 1.9, was given by (1.127).

Now, if we take into account that

2 — - 1 2 —
Z —sin?9 = cos? ¥ — = = = Py(cos ¥),
3 3 3
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(1.127) can be written as

1 w?a?

M
V, = Tarctan—+—

30()

0(q) P>(cos D). (3.134)

A comparison with (3.121) and (3.122), recalling that Y5(9, 1) = ~/3P>(cos 9)
(see (3.50), (3.51), (3.52), (3.53)) shows directly that the gravitational part of the
normal potential is just a combination of two ellipsoidal harmonics.

Since this will be useful in the sequel, we want to find here as well the
representation of V, in spherical harmonics. In fact we know a priori that, at least for
r > a,V, must have a convergent representation in terms of spherical harmonics.
Considering the cylindrical symmetry of V,(r,) we know that only the zonal
coefficients of Y, (9, 1), i.e. of P,(cos ©), must be different from zero.

Furthermore since V, has to be symmetric with respect to the equatorial plane,
only coefficients with even degree and zero order have to be different form zero.
Traditionally, V, (r, ¥) is represented in the form (cf. Heiskanen and Moritz 1967)

+o00 N
V,(r, ) = g - i—MZhn (‘7’)2 by (cos ) (3.135)
n=1
= G—M 1— +ZO:OJ (g)Zn P>, (cos )
- - o 2n P 2n .

In order to find a relation between J5,, and the constants used in (3.134) we take
advantage of the fact that (cf. (1.103); Heiskanen and Moritz 1967, Sect. 2.9)

19:0:>§:0’q:z=r,

therefore one must have

M 1 w?a®
" arct 3.136
et o+ 35 00) (3.136)
+o0
GM a\2n
al Eu]
at least for every r > a.
By using the Taylor series
1)" 2n+1
arctan x = Z( )'x (3.137)
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and recalling the formula (1.127) that defines Q(r), one gets after some algebra for
the first member of (3.136)

M 1 ! 4n E
V) =< Z2(n+)1 [ 35?1;) m] =0 (3.138)
where
= w?a’b
GM
Qo) = (e_3’2 + 1) arctan§ — ;
@y =2

By comparing (3.138) with (3.136) we finally get

a1 @) [0 pe dn
S = G0 S T [1 30(b) 2n +3] (3.139)

where e? is as usual the squared eccentricity of the first kind.
To make (3.139) more manageable one can write it for n = 1, namely

_e? due’
n=5% [1 _ 15Q(b)] (3.140)

derive 55)) from it and substitute back into (3.139) to get

_ oyl 3(e?)" |: _ ﬁ :|
Jow = (—1) CTER P l=n+55n|. (3.141)

Equation 3.141, knowing that J, ~ 1073 and e ~ 6,7- 1073, gives quite a good
representation of the velocity with which J,, tend to zero.

3.7 Global Models as Approximate Solution of Boundary
Value Problems

Generally speaking a global model of the gravity field anomalous potential 7'(P),
or global geopotential model, is a finite linear combination of functions H,,(P) that
are regular harmonic on S and in the whole outer space §2
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M
T (P) =Y anHu(P): (3.142)

m=1

what makes of T)/(P) a “global” model is that the coefficients {a,} in (3.142)
are chosen in such a way as to reproduce as closely as possible global sets of
observations, i.e. sets of data that cover geographically the whole of the earth
surface, or most of it. So one first fundamental requirement on the sequence
{H,,(P)} is that when these base functions are restricted to S they form a complete
system in the space to which we assume that the actual anomalous potential belongs.
In the context of this book we assume that such space is HH'2(S) (cf. Sect.2.2),
i.e. the space of functions which are regular harmonic in §2 and have a gradient
which is square integrable on the boundary S.

This condition is to some extent natural in the sense that it generates functions
like gravity disturbances 8g, gravity anomalies Ag or deflections of the vertical
(&, n) that can be defined on the boundary S and are square integrable there.

There are as a matter of fact many base functions that could be used to build
global models T),. For instance it is worth mentioning that potentials generated
by point masses suitably distributed in layers at different levels inside B, is one
such alternative which has been studied and used in literature (Bjerhammar 1987;
Marchenko 1998).

Yet by far the most important type of global models, as of today, uses as base
functions the solid spherical harmonics; so we shall put by definition

Ty (P)

14
Z TimSem(r, 9, 1) (3.143)

I Ms I Ms

t+1
Z tm (—) Yo (9, 1).

In (3.143) R is a purely conventional radius and it can be chosen of whatever
value, although the ordinary choice is equal to the mean radius of the earth. Notice
that the conventional factor <4 = M in front of (3.143) allows to consider T}, as non-
dimensional numbers.

That {S¢n (1, ¥, 1)}, restricted to S, are a complete, but non orthonormal, system
in L%(S) has been illustrated in Sect.3.4; that they form a complete system in
H'2(S), i.e. in the space of traces on S of potentials in HH'2(S), is a true fact
that will not be further investigated here. This statement however could be deduced
from the results presented in Part III, Chap. 14.

The fact that spherical harmonics {S¢,,} instead of ellipsoidal harmonics {S;, }
are used in (3.143) is due, in the author’s opinion, to three reasons:

GM
R/

e the fact that numerical calculations in spherical harmonics are much simpler
than the corresponding calculations in ellipsoidal harmonics where Legendre
functions of the second kind have to be used,
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* the belief, corroborated by numerical experiences as well as by the perturbative
theory of Part III, Chap. 14, that it is possible to “correct” the data, e.g. gravity
anomalies Ag, of the ellipsoidal effects by exploiting some prior knowledge
of the gravity field so that the observation functionals are reduced to the more
convenient spherical approximation form, (remember Sect.2.6 concerning the
definition of spherical approximation used here),

e the fact that it is possible to transform spherical harmonics into ellipsoidal har-
monics as well as spherical harmonic coefficients 7y, into ellipsoidal harmonic
coefficients 7, and viceversa (cf. (3.129), (3.131)) so that we are likely not
loosing information by the use of the model (3.143).

We have now to define what are the values of the (integer) parameters L, M, i.e.
the minimum and maximum degree that we want to be represented by our model
(3.143). We start to discuss L.

As explained many times, L should not be 0 or 1, because Tpp = 0 by a suitable
choice of the normal potential and 7},, = 0,(m = —1,0,1), by the choice of
reference system. Both choices are consequences of satellite tracking results. As a
matter of fact by those techniques and the more recent results of space gravimetry
we could say the first 10 or 20 degrees to be so well-known that they could be
considered as fixed and eliminated from (3.143) at least when the unknown 7,
have to be determined; of course they have to be added back when we want to
represent the full anomalous potential.

So we can agree that L = 2, when we consider (3.143) as a representation of T,
given the coefficients, but it could be higher when we decide to determine 7%, from
data. This is important for instance for the theory developed in Part III.

As for the choice of M, this is the result of a compromise between the distribution
of the available data and our desire to obtain a better and better approximation
of T. The correct term to describe the phenomenon we are going to investigate
is “resolution”. We shall represent it by means of the side A of a regular geographic
grid at the knots of which we are able to provide the data necessary to determine 7.
For instance, if we have Ag data on S and we are able to produce a grid of mean
values of Ag over blocks of dimension 0.5° x 0.5°, implying that over almost all
the surface S we have data enough to form block averages on 0.5° x 0.5° areas, we
say that we have a resolution of 0.5°. If we have holes in the data there are various
techniques to fill them without destroying or biasing the original information present
in other areas, at least when holes are not too large.

We translate that number into a linear scale by taking the length of a 0.5° arc at
the equator, namely ~55 km.

So if we think that we have enough data to produce a 5" x 5', we say that we
have 5’ (or ~9 km) resolution in the data. This means that we are able to provide
9,331,200 values and we do not try to see any tiny element in our data set below the
size of 9 km.

There is an important relation between the number A described above and the
maximum value of M that we can choose in (3.143) to represent T),. This is in
some sense similar to what happens on a circle. If we have 2N + 1 points on a
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circle, with a distance A = % from one another, we can determine the Fourier
coefficients of sines and cosines up to the frequency N, i.e. the maximum integer
smaller than one half of the points where we have data. On the same time cos(N ¢})
and (sin N9) have each 2N zeros on the circle, i.e. as many zeros as data (minus
one).

What happens for the circle is that if we try to use sines or cosines with a
frequency higher than N, these functions do reproduce the same values as a sine
or cosine of lower frequency on the grid of points at distance A.

The reader can check this by the useful example
2 2
cosSk?ﬂ = cos 21«%r k=0,1,2,3,4 (3.144)

correspondingto N = 2,2N + 1 =5.

This phenomenon is called aliasing and it means that when we use A grids we
don’t recognize in a function a behaviour regularly oscillating with zeros closer
than A. More on this can be found in Chap. 10 of Part II.

By the way, the situation on the sphere is not so neat, because the distance
between points of a grid regular in (i, 1) is not constant; of course two points with
the same colatitude and longitudes different by a certain angle A are closer if they
are chosen in the polar regions rather than in the equatorial belt. This makes the
spherical aliasing more difficult to study, though possible indeed (Albertella et al.
1992; Jekeli 1996; Driscoll and Healy 1994).

Yet both theory and numerical proofs have shown that by assuming as a rule of
thumb the same formula as for the circle, namely

360°

M =~ ,
2A

(3.145)
we can avoid aliasing, i.e. the coefficients Ty, of T)s are uniquely determinable.
Indeed the true gravity field is not a band limited function, so the above statement
holds only for the model Ty,.

In fact for a certain maximum degree M we have the functions Y, 0(?) which
are polynomials of degree M in cos ¥, so they have M zeros in 180° and their mean
distance is A ~ 180/ M as in (3.145). Recall here that the variables ¢ and r = cos ¢
are in a one-to-one correspondence when 0 < ¢ < 7.

Similarly, with same value of M, we have the functions Y » (9, A) and
Yy —m (9, ) which are proportional to cos M A and sin M A, i.e. they have 2M
zeros over the full turn of 360°, again agreeing with (3.145). So we shall definitely
adopt the rule (3.145), implying for instance that a resolution of 0.5° allows the
determination of a model up to degree 360, while a grid of 5’ will permit a model
up to degree 2,160, which is the limit that has been recently achieved (Pavlis et al.
2008).

Now the problem we have to face is: what are the data and what are the methods
to be used in order to determine the coefficients 7}, of a global model?
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Having more data than unknowns, one is inclined to apply the least squares
method.

However if the stochastic nature of the errors is not properly described, i.e.a
simple sum of the squares of the residuals is minimized, then (as it happens in
reality) a long wavelength error present in the data will be absorbed by the estimated
coefficients without leaving any trace into the residuals. This type of errors will be
identified only by comparison with an independent data set. This subject will be
discussed in depth in Chap. 6.

As for the data, there are three principal sources of information used to generate
Ty ; (a) satellite tracking or satellite gravimetry, (b) satellite altimetry on ocean, (c)
gravimetry on solid earth.

Let us examine them in short, separately:

(a) Space techniques have improved enormously the data available on the gravity
field and, without going into details, coefficients up to degree 200-300 can
be usefully determined in this way (see also Part III, Sect.15.7). As such
they can enter into the process of determining high resolution global models
(e.g. M =2,160) as a first useful guess or approximation. However one
point has to be clear: when we use a finite amount of data, the coefficients
determined by satellite measurements are not the same as those determined by
ground measurements, because they respond to different optimization criteria.
In particular while the satellite coefficients have a clear relation to physical
moments of the mass distribution (see Sect. 3.2), the coefficients determined
from ground data are only derived on the basis of suitable mathematical criteria.
This is clearly illustrated by the fact that if from satellite data we were able
to cover a Brillouin sphere (out of all the masses) with noiseless observations
of some suitable functional of T', then we could recover the coefficients 77,
in an exact way, up to any prefixed degree and order M while if we covered
the earth surface with known errorless functionals of 7" we could only set up
an approximation procedure where the 7y, estimates change in principle as
functions of the maximum degree M used in the model T}y,

(b) Satellite altimetry provides, by radar measurements repeated in time, a quite
accurate evaluation (in the range of a few centimeters) of the stationary
surface of oceans, cleaned from waveforms, tidal effects and various seasonal
phenomena. The resulting data then are first the sum of geoid and a height
component called sea surface topography, or dynamic height; so called because
the difference between sea surface and geoid is sustained by dynamic effects
related to steady currents. In terms of an equation, if we call Ay the oceanic
mean surface, N the geoid and 7 the dynamic height, we have

T

It follows that, if oceanographers provide us with a sufficiently accurate
dynamic model of 7, we can derive the relation on oceanic areas from (3.146)

T = y(ho — 7). (3.147)
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Alternatively 7 can be parametrized and estimated from data, Rapp (1997b),

(c) The gravimetric observations on continental areas (but nowadays also from
airborne gravimetry), combined with altimetric observations, have already been
analyzed in Sect. 2.3. Ultimately they lead to the linearized equation for free air
anomalies (cf. (2.37))

Ty
Ag=- L7 (3.148)
oh vy

p_ Oy
V=00 )

When the ellipsoidal height together with g are observed, e.g. by a GPS receiver,
(3.148) has to be substituted by the simpler gravity disturbance equation

aoT
8g = e (3.149)
Although times are clearly evolving from the use of (3.148) to that of (3.149), yet
at present the large majority of available data are in the form of free air anomalies
and this is in fact the data set still used to produce global models.
So in principle the determination of 7' can be formulated, at least as a limit case
when we have data covering the whole boundary, as the solution of the boundary
value problem (e.g. cf. Sanso 1997)

AT =0 in 2
—%—£+V7T=Ag0nSL
T =y(ho—mn) onSo
T —-0,r— o0

(3.150)

(S = Land part of S, S¢ = Ocean part of §S).

Indeed in reality, instead of continuous data we have block mean values of Ag on
land and block mean values of 7" on the ocean. The resolution nowadays achievable
is 5’ x 5, corresponding to a global solution of maximum degree 2,160.

The standard method to get this solution could be least squares, in Hilbert space
sense, as described in Part III, Sect. 14.4.

And in fact this solution has been implemented, e.g. up to degree 90 (see Rapp
1997a). This implies the solution of a normal system with 8,100 unknowns and no
special structure of the normal matrix. However at this point we already have very
good models up to degree 360, which can be used for an intermediate step that
dramatically simplifies our problem. In fact, it will be shown in Chap.9 of Part II
that, if the long wavelength content of T is subtracted from ocean observations, with
the residual part 7,.; one can perform a very good prediction of mean block values
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of the corresponding Agres and finally we add back to this a Agpyior, consistent with
Thorior, to obtain Ag = Agprior + Agres-

So we are left with a much simpler problem, namely to find the approximate
solution of the BVP.

AT =0 in 2
—33—£+V7/T=Ag on S (3.151)
T —0,r— o0

by means of a model T, of the type (3.143). This can be (and has been) done in two
ways when very high degrees (>10%) are involved. The procedures will be described
in more detail in Part I, Sects. 14.4 and 14.5, relating them to better known methods
of mathematical analysis.

On the other hand the specific implementation of theoretical ideas is going to be
fully presented in Part II. Basically it relies on the concept that, after a least squares
approximation up to some intermediate degree, the higher degrees are determined
by downward continuing Ag to the ellipsoid & and then using the orthogonality
relations (3.120).

3.8 Commission and Omission Errors. Kaula’s Rule

The problem we want to face now is how to assess the quality of our model, i.e.
to answer to the question: how well is Ty fitting T ? To reason on such a matter
we first note that if we had really performed a least squares solution, the r.m.s of
residuals with respect to observations would be the natural quality index. However,
if the stochastic nature of the errors is not perfectly described, i.e.a simple sum
of the squares of the residuals is minimized, then (as it happens in reality) a long
wavelength present in the data will be absorbed by the estimated coefficients, (see
also Chap. 6).

On the other hand we want to point out here that the residuals will contain two
types of errors: one is the error of the measurements which propagates into the
estimates of the coefficients 7y, up to the maximum degree M, the other is the
model error due to the fact that the true 7 has a part that cannot be modeled in
any event by a finite sum of harmonics. Our purpose is exactly to explain how to
distinguish between the two and to evaluate them.

In order to make quantitative our reasoning we need to use a simplified situation,
namely we shall use the Galerkin method (Mikhlin 1964; Kirsch 1996) assuming
that the true T can really be continued down to the sphere S, with radius R, so that
we are entitled to write

T(P) = —Z Z TimSem (r, 9, 1) (3.152)

(=L m=—{
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—\ {+1
R
Sem(r,0,4) = (—) Yo (9, 1), (3.153)
r
GM M 14
Ty (P) = TZ Z mSem(r, 0, X), (3.154)
,’flm = Tym + Tum, (3.155)

where 1y, are the estimation errors of the 77,,. Note should be taken that we
start both (3.152) and (3.154) from L, corresponding to the idea that the lower
harmonics, say the first 24 degrees to fix the ideas, are perfectly known and
subtracted everywhere, from data as well as from models.

With such formulas we can compute the norm of the residual anomalous potential

T—Ty = Z Z Tem Sem (1, 0, 1) (3.156)

(=L m=—{
+o00 14

+GTM Z Z TlmSlm(ra ﬁvk)

R (=M+1 m=—t
The norm of T} is taken in the sense of L2(S), i.e.

1 Tresll7 25, = ( ) Z qu (3.157)

(=L m=—{
GM 2 +oo L
+ (T) > Y,
R {=M+1 m=—(

As we can see this norm does depend from the random variables 7, which
ultimately depend on the noise measurement, so it is only natural to take as an index
of the total error the average of (3.157) with respect of the variability of the noise.

Since E{ty,} = 0, as we shall see in a minute, we have

E{t},} = 0 (tm) ; (3.158)
then taking the expectation of (3.157) we find

&2 = EllTulags,) =( ) S Y e G159)

(=L m=—{

(% £ £

{=M+1 m=—(
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The first term in the R.H.S. of (3.159) is called commission error while the
second is called omission error, because the first depends on the errors that we
commit by measuring, while the second depends from the degrees that we omit
from the model.

We denote them by
GM\* ¥ &
CE* = (?) Z Z o*(z2,) (3.160)
=L m=—{
GM 2 4o 4
08 = (7) Yoy 1. (3.161)
{=M+1 m=—L

In order to proceed to the evaluation of CE and O& we need on one side to
describe the propagation of the measurement noise to 7y, on the other side we
must have some guess on the order of magnitude of 7,, for £ > M.

(a) Error propagation. Assume that the data used to derive ?(m are free air gravity
anomalies, already reduced to the sphere S, averaged on squared geographic
blocks B,, of size A x A, i.e.

I 1
(Agops)hs = N_EPnEBrSAgObS(Pn) (3.162)
(N,s = number of P, € By)

where

Agons(Py) = Ag(P,) + v,
E{v,} =0, E{v,v;} = 5nj0g2(ﬁs), (3.163)

with P, the centers of B,;.

Indeed the hypothesis that Agops(P;) have all the same error variances when
P, € B, might be a simplification, although it reflects the real fact that usually
gravity measurements in a certain area are performed all together with the same
instruments, so that the hypothesis is at least plausible.

We shall assume further that there exists a smooth function p(P), that we could
call area data density, such that, denoting with | B,;| = sin 1%, A? the size of B,,, the
relation holds

Note that, if N is the total number of observations involved, then

Nt = ZN,, = / 1(P)do. (3.165)



154 3 Harmonic Calculus and Global Gravity Models

Now we write a simple approximate orthogonality relation on S, namely
GM N 1 -
( ) (K 1)Tlm = _ErSYZm (Prx)(Agobs)rs |Brx| B
R 4
m| <€, L <{<M.
If we use (3.162) and (3.163) in (3.166) we can write
- GM\™! (1 S —
Ty = (__2) (e - 1) ! { _ZmYZm(Pm)(Ag)rs |Brs|
R 4
1 -
+_n_2rsYlm (Prx)gAgm |Brv|} = Tlm + Tum
where we have put
1

§Ag, = —2X% V.
8rs N, Py €Byy

(3.166)

(3.167)

(3.168)

In this way we have found the direct relation between the measurement errors v,

and the estimation error 7, i.€.
GM\ ™! 1 o
Tm = (__2) (6 - 1) lrErSYfm(Prs)gAgrs |Brx| .
R T

Due to (3.163) we see that
E{Tlm} = 07

as already anticipated. Moreover, using (3.163) and (3.168), we have

E{§Ag8Ag,} = 5m8w —0,(Py).

(3.169)

(3.170)

So the noise propagation through (3.169) gives, exploiting (3.164) and (3.170),

M\ 2 1 |2
Cy2(T(m) = (Ci_z) (e - 1) -2 Erlem(Prv)z Z(Prv)| I
R 1672 N

- ((%1) (1) s BV (BP0} ()2

R [ (Ps)

_(GM\? 1 ,0:(P) )
=(?) -1 mnz/Y‘m( ey

(3.171)
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The expression (3.171), though rough, provides a quite comfortable formula for
the approximate computation of the estimation error variances and therefore of the
commission error (3.160).

Example 5. Let us see how (3.171) and (3.160) work in a quite simplified case.
For instance assume that one has 10 point free air anomalies, uniformly distributed
on the sphere, with a constant noise

04(P) = 0y, = 5mGal.
Note that in this case (P) is constant too, namely, from (3.165),

 Neo 10°
4w 4w

With these values we find in (3.171)

GM\~ o; 1
2 w) = — -1 2 /Ym
o (1) (Ez) -0 [ oo

GM\ 2 o2
= (_—2) -1~
R Niot

Using this estimate in (3.160) we receive

—2 —2
RU§M2€+1NR02 M

Cc&* = = :
Nlot (=L (K - 1)2 Ntol L

In this formula we have exploited the approximation
i ! log
T 14
which, in the useful range of L and M, is good to better than 3%.
So if we assume that L = 25 and M = 360 we get
CE=2.3-10"*Ra,.

In order to make this number readable we transform, roughly, the commission error
of the anomalous potential CE(T") into a commission error in geoid

C&E(T)
Yo

CE(N) =
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Fig. 3.5 Histograms of harmonic coefficients {7, } of EGM96 (a) for degree 200, (b) for
degree 300

when yy ~ 103 Gal, i.e.
CEN)=115-10""R =~ 7.4cm

which seems quite a sensible result.
(b) Guess omission error function (Kaula’s rule)

In order to evaluate the function O&y(T") given by (3.161) we would need
to know Ty, for all orders £ > M. This is indeed not possible, so we have to
give a guess for O&y, and this can be based for instance on a simple statistical
reasoning. We first of all observe that the estimated values of 7y, display quite
a regular statistical behaviour when the degree increases. For instance, if we take
the histograms of the coefficients of degree 200 and 300 of the global model
EGM96 (cf.Lemoine et al. 1998), we find the bell-shaped figures plotted in
Fig.3.5.

As we can see the distribution shows a remarkable regularity and we could say
that the coefficients are of the order of 0.3 -10~ for degree 200 and 10~'° for degree
300.

The idea is now that, although the individual estimated ?[m do contain a variable
part due to the estimation error, in reality the r.m.s degree per degree which is
computed from hundreds of coefficients, is quite stable and reliable.

For this and other reasons, to be discussed more in depth in Sect. A.1, the concept
of degree variances has been introduced in geodesy; this is defined as

4
1
2(T) = —— § Tom>. 3.172
o/ (T) 26+1m=_g 1A ( )
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Fig. 3.6 Degree variances of EGMOS8 (full line), EGMOS error degree variances (dashed line),
Kaula’s rule (dotted line)

To be precise (3.172) are defined as variances of the individual coefficients of
degree ¢; close to this is the concept of full power degree variances

l
o2 = (2L + 1)o} = Z Tom>. (3.173)

m=—{

We note that crf(T) represent the mean squared L?> norm of an individual
harmonic in degree ¢, while E%(T) represent the squared L? norm of the whole
degree £; whence the names.

It is interesting to plot E% against £ for instance for the most recent model EGMO0S
(Pavlis et al. 2008); this is plotted in Fig.3.6. As we can see again we find quite a
regular pattern of this function and Kaula, with much less knowledge of 5125 than
today, has proposed a simple analytical law, nowadays known as Kaula’s rule (see
Kaula 2000), to express such degree variances apart from the tiny irregularity visible
in Fig. 3.6,

10-3
ou(T) = 7
or
2041
GA(T) = wlo—lo, (Kaula’s rule). (3.174)

€4
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Those values of E%(T) are plotted in Fig. 3.6 as a dotted line; as we can see it
seems that it gives a reasonable interpolation of the empirical values for medium
degrees, although there is a clear misfit at degrees higher than 300, indicating that
the decay of (3.174) is sensibly slower than the true one. This is an important point
because even from the theoretical point of view the law (3.174) is not satisfactory.
In fact, since

Agim = (L= 1)Tim (3.175)

we find with (3.174)

14
oi(Ag) = Y Ag, = (6—1)2 (3.176)

m=—{

As we can see from (3.176) we would have 5;(Ag) = O () implying that

GM 2 +oo
1Ag17.5 = ( ) > ZAgM (3.177)

=2 m=—{
2 +oo
( )Z 51(Ag) =

This is not complying with our models requiring that Ag at the boundary has to
be at least square integrable. So if we return to Fig. 3.6 we could think that o ,(7")
could be interpolated with some function of £ that converges to zero more rapidly.

In Fig. 3.7 and in Fig. 3.8 we display an improved version of Kaula’s rule of the
form

L, 3.9-107%(0.999443)"
T U D=l +H(+17)

(3.178)

This in turn is a slight generalization of a Tscherning-Rapp model, also displayed in
Fig. 3.8, that we will discuss in detail in Chap. 5. The interpolation is here performed
between degrees 180 and 1,800. By the way, by using Kaula’s rule into the formula
for the omission error for the geoid we find

0&y (T) 2 o\
08y (N) = ——2 =R[107"" Y =~
Y0 4
(=M+1
105
M +1

R-

[

(Kaula’s rule). (3.179)
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Fig. 3.7 Degree variances of EGMO0S8 between degrees 180 and 1,800 and the best fitting curves
according to the models (3.178) and (3.181)
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Fig. 3.8 Zoom of Fig. 3.7 TR is the Tscherning-Rapp model (3.181), while mod TR is its modified

version (3.178)

To add the series in (3.179) the approximate formula Z

+002 1

— ~ —— has
3 2
RS

been used. An analogous reasoning for the improved formula (3.178) leads to
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Fig. 3.9 The omission error in terms of geoid undulation according to the two laws (3.179), O&1
(Kaula’s rule) and (3.180), O&2

oo 0.999443)¢ v
©. ) (3.180)
(=M-+1

__. . _4
08y (N) =R-1.975-10 ( ) (€= 1) —2)( +4) (L + 17)

The two curves (3.179) and (3.180) between degree 1,000 and degree 5,000 are
plotted in Fig. 3.9, where they are denoted O&1 and O&2 respectively. For instance
at degree 2,000 we have the two values

0E1(2,000) = 3.18 cm, OE2(2,000) = 0.60 cm.

To complete this discussion on global models and the interpolation of their degree
variances with a smooth function of £, we think it is useful to show the spectrum of
the most recent model EGMO08, with interpolations performed by means of the best
fitting original Tscherning-Rapp model

- _ 2.8-10719(0.998365)¢
ET W=D+ +4)

(3.181)

and by the improved model (3.178). As one can see from Fig. 3.7, they both perform
very well, although there is a certain improvement in using (3.178) with respect to
(3.181), as one can better appreciate in Fig. 3.8.
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3.9 Exercises

Exercise 1. Prove that the following identities (see (3.24), (3.36)) hold

(1 + s> =2s1)DsG(s.1) = (t —s5)G(s,1)
sG(s,1) + 25*D,G(s, 1) = (1 — s2)D,G(s, 1),

where G (s, t) is a Legendre polynomials generating function

1
N1+ 52 —2st

Exercise 2. In order to compute the Hotine function one needs the term H,(s, )
(see Example 2). After observing that H>(0,¢) = 0 (cf. (3.97)), verify that

G(s,t) =

s—t+ G l(s,1)

Ho(s, 1) = / G(o,1)do = log 1
0 —1

and that this coincides with the log term in (3.92).

Exercise 3. By using the arguments of Sect.3.2, prove that the gravitational
potential generated by a body B with mass density p(Q), outside a Brillouin sphere
can be put into form

1
T(P):TO(P)+T1(P)+T2(P)+O(r—4) =
P
GM GMriDb GM (3, 1 1
= — — ! ZrIrp — —(TrI)r3 o|—
rp + r + ry %ZrP e 2( " )rP}+ (rj,ﬁ)
where

1
M = [ p@dbo. b =5 [ rop(@yaso.

and /, the tensor of the moment of inertia, is given by

1
1= 51 [ rorop(@ino

hererp = [xp, yp,zp]" and similarly r.

Exercise 4. In order to compute the Stokes function one needs the term S»(s, ¢)
(see Example 3). Observing that, according to its definition, Slez(s, t) — 0 when
s — 0, prove that
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1
s—zSz(s,t) = / [G(o,t) — 1 —o0ot]do
1 1(s 1) 1 —st+G7l(s,1)
= —t—tlog > .
s

(Hint: use the change of variable é = t and note that
1
/ —G(o,t)do = —/rG(r,t)dr = —/(r —1)G(t,t)dt +
o

—t / G(z,t)dr,

which is then easy to integrate, using also the result of Exercises 1 and 2. Note
that the constant in the indefinite integral has to be assigned in such a way that
S%Sz(s,t) — 0 fors — 0).

Exercise 5. By using the formulas for Example 5 for the commission error, in
terms of geoid undulation, and (3.179) and (3.180) for the omission error, compute
tentatively the total estimation error for a model with M = 600; L = 2; Ny =
4 - 10° number of available gravity anomalies, uniformly distributed, o, = 5 mGal.
Note that at M = 600 the formulas give for the two models of omission error

OE1(600) ~ 10, 6cm, 0E2(600) ~ 3,9 cm.

Verify with the formulas of example 5 that OE(N) ~ 5.5 cm.
Verify that with O&1 the total error is Eipy ~ 11.9cm, while with OE2 is Eyyy ~
6.7 cm.

Appendix
A.l

We want to prove the formula for the reproducing property of P,(cos ), (3.39).

Let us first consider the third Green identity (1.61). We take as surface S the unit
sphere S}, we take any point P in £2, rp > 1, and we write it for the function (cf.
Fig.3.10)

1
V(P):ﬂ, (I'PO < 1)

Py

Since Py is an arbitrary but fixed point in the unit ball, v(P) is harmonic in £2 and
therefore the Green identity applies. So we have
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Fig. 3.10 The relative
position of Py, Q, P with

respect to S .

Q LT

1 1 1 ad 1 a 1 1
—E—/ {————(— )—} dSo  (3.182)
epop 4 S ePoQ al’lQ EPQ al’lQ ePoQ EPQ
where dSp = dog,Q € S, (i.e. r¢o = 1). Note that % = % for this case.
Now we can compute

1 rp
= Z 0Py (cos ¥py0) (3.183)
PQ n=0 Q
9 1 +oo
— = n—+1 P, (cos 3.184
70 Trio ;) (n 4+ =2 gz (cosYr,0) (3.184)
! iorn P, (cos Y po) (3.185)
— = m cosYpo .
Lro ~ P+1
a 1 +o0 r&—l

_ 2 _p, 3.186
70 Tro ’;nrgﬁ (cosYpg) (3.186)

In all the above formulas we can put rp = 1 and substitute into (3.182), getting

1 —+o00 i‘l
= Z P (cos¥rp,p) (3.187)
PyP —
‘oo ¢
r
=) h+n+ 1)_/ Pi(cos Ypy0) Pa(cos Ypg)dag.
Ln=0"P 5

Equation 3.187 has to hold Vrp, < 1 and Vrp > I; this is enough to maintain that

8en Py(cosyp,p) = (L +n + 1)% / Py(cos¥rpyp) Pr(cosypp)dog. (3.188)

as it was to be proved.
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A.2

We want to prove that spherical harmonics are L? orthogonal on S; (cf. (3.194)).
We start from (3.188) in which we substitute the summation formula (3.54); we
obtain

(Sln

G i1y 2 YO 2n)Yan (. Ap) (3.189)

m=—n

SR o iy (B 0> Ap) Yok (P, Ap)
=—"— (D pys Apy) Yo (Op, Ap) -
@n+ DEE+ 1) 2

1
'(E/Ynm(ﬁQs/\Q)Yék(ﬁQs/\Q)dUQ)
Since

1 1 m — _
— / Yu(0, M) Y (9, )do = —/ dvsin® P, (0) P g (0) -
41 4 Jo

2
Sm(A) fr(M)d A (3.190)
0

where, due to the well-known Fourier orthogonality,

2

L7 f AL = 0.m # &, (3.191)
27'[ 0

assuming n > £, the relation (3.189) can be written as

Stn Y Yum@po. Apy) Yum(@p. Ap) (3.192)

m=—n

= Z Ynm(ﬁP()s /\P())Yll,m(ﬁP» A'P)

m=—n

1
: (H / Yo (9, 1) Yo (9, )L)da) .

If we consider this relation as an identity in Ap,, Ap and we further notice
that in such variables (3.192) is just a Fourier’s truncated series, we find that it
is equivalent to

1
— | Y@, A) Yo (B3, A)do = 84 (3.193)
47 S
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By combining (3.193) with (3.190) and (3.191) we finally arrive at the ortho-
normality relations

1
— | Y (D )Y (3, A)do = 84,8 (3.194)
47 S

A3

We want to justify the approximate formula (3.132). We use here the notation of
Sect. 3.6.
The idea is first to perform the change of variable ¢ = b - s in (3.111), so that

. . 2 .. .
denoting with e”> = f—z the second eccentricity, we get the equation

2 2N, M / elzmz
(S + e )v + 2sv, — n(n + l) — = | Vium = 0. (3.195)
" " s + e

Note should be taken that in (3.195) we continue to use the notation v/ = %,

did before for j—q, however no confusion should rise for that. Next we write (3.195)
in the equivalent form

as we

2

e
(1 +e?)s?V! 425V, —n(n + Dy, + mmzmm (3.196)

17202
1202 7" € (S - 1) 2
= Dy & (T+e?s2ter) ™

it is easy to verify that (3.195) and (3.196) are one and the same equation.

However now in the left hand side of (3.196) we have a homogeneous differential
operator applied to v, (s), while the right hand side can be considered as a higher
order perturbation. In fact note that, while we stay in the topographic layer,

a-b

.2<2.1073,
> <

sc—1=

This means that for instance e”?(s?> — 1)v” is 107> smaller than s?v/ and even
2-1073 smaller than e”?s2V" | so that it is natural to neglect it in a first approximation

nm’>

solution. A similar consideration holds for the second term in the right hand side,
. 72
compared with lj—e’z M2, ;.

So we are reconducted now to solve the equation

2
(1 +e?)s?V! 425V, —n(n + Dy, + mmzmm =0, (3.197)
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where the two differential operators szj—;, s% are both homogeneous, similarly to
what happens separating the radial variable in the spherical Laplace equation.

It is only natural then to try a solution of (3.197) in the form

1
Vom = e (3.198)
We note that in this way we automatically satisfy the conditions
Vim (1) = 1, Yym(s) = 0, s = 00; (3.199)

the first of (3.199) is a condition on the value of y,,, at the ellipsoid &, since s=1
corresponds to ¢ = b, while the second of (3.199), implying the regularity at
infinity, is true only if

a<n+1. (3.200)

It is just a matter of simple algebra to substitute (3.121) into (3.120) and find that
« has to be one of the two roots

@n+ 1) +e?@2n +3) £+ /[2n + 1) + e2(2n + 3)]> — 4e2(1 + e2)aym
2(1 4 e7?)

(G = (n + D) (n +2) +m?). (3.201)

Om =

If condition (3.200) has to be satisfied, the root with the minus sign has to be
chosen. It is interesting to note that @, can be developed up to the first order in e'?
in the form

B e,z(n + D)(n +2) +m?

= o). 3.202
m 1 + 0(e™) ( )

In particular for large n and putting m = n into (3.202) we see that

~ e”n (3.203)

showing that (3.200) is certainly satisfied for all » and m.
Finally we can further develop (3.198) considering that close to the earth surface

5% =1 4 gy (s — 1) + O(s — 1)?

so that we get

1 1 |:1+e,2(n+1)(n+2)+m2

Vom = —— 1 (s — 1)] (3.204)

ghtl—a sn+1
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A4

In this appendix we like to introduce the convolution calculus on the sphere, because
this will be used in the next chapter, particularly in the form of a moving average
calculus.

We define a convolution of the function f(P) with an isotropic kernel F () on
the sphere by means of the formula

gP)=F=x* f = % / F(Ypro) f(Q)dog. (3.205)

Therefore, the moving average operator on a moving cap C, of spherical radius A
is a convolution with kernel

é—’; V<A

N (3.206)

M) = Zon(a-v) = {

U (t) being the ordinary Heavyside function, and Ca denoting the measure of the
cap of angular radius A, given by

Cp=2n(1 —cosA). (3.207)

We want to prove that if we put

F, = /n F(y)P,(cos ) sinyrdyr (3.208)
0

then

+o00 n 1
g=Fxf=3 Y (EF) SomYm (P, ). (3.209)
n=0 m=—n

We start by noting that (3.208), recalling (3.46), implies

F(y) = EanPn(cos v).

We use the summation rule (3.54) and substitute it into (3.205) to get (3.209).
Accordingly, the moving average operator

Ma(f) = 5 / M(¥ro) f(Q)dog (3210)

with M () given by (3.206) has spectral factors %M,, given by
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Fig. 3.11 Pellinen-Meissel’s coefficients with A = 1°,0.5°,0.25° respectively

%Mn(A) = % /ﬂ M (Y) P, (cos ) sin yrdyr (3.211)
4[4 .
= 23, | P,(cos ) sin ydyr
4 !
- E /cosA P” (t)dt
1

[Pu—1(cos A) — Pyq1(cos A)] ;

T (I—cosA)2n + 1)

such coefficients are known in literature as Pellinen’s or Meissel’s coefficents
(Colombo 1981a).

The key step in (3.211) is proved by using (3.37) under the integral sign.
In Fig.3.11 we represent the Pellinen-Meissel coefficients as functions of n for
A=1°,A=05%and A =2.5°



Chapter 4
The Local Modelling of the Gravity Field:
The Terrain Effects

4.1 Outline of the Chapter

Summarizing the results of Chap. 3, we could say that up to now we have learnt how
to produce an approximate anomalous potential in the form of a truncated series of
spherical or ellipsoidal harmonics, namely a global potential model.

Now we focus on the other side of the spectrum of 7', namely the very high-
frequency components. The purposes of the Chapter are: (1) to clarify that if
we want to determine the gravity field and the geoid with an appropriate spatial
resolution, for instance on a 1 km by 1 km grid on the earth surface, we need then
a detailed model of the geometry of the surface, i.e. a digital terrain model (DTM)
with say a 100 m horizontal resolution. This because we will never be able to reach
this resolution with ground gravity measurements covering the whole earth surface,
while a proper DTM can be and has been derived by satellite observations, (2)
to clarify that most of the high-frequency part of the potential 7 comes exactly
from the shape of the masses modelled by the topographic surface, because high-
frequency signals from internal density variations (e.g. those due to the topography
of core-mantle boundary) are naturally strongly smoothed by the harmonic upward
continuation, (3) to find the proper analytical computable expression of the potential
due to topographic masses (on such matters one can consult Forsberg 1988, 2008,
2010).

The item (1) is discussed in Sect.4.2 and in particular it is illustrated by means
of the elementary Example 1.

The argument (2) is taken up in Sect. 4.3, where a simplified earth-like model
is constructed, and it is proved that the spectrum of the potential is directly related
to the shape of the topography through simple spectral relations, such as (4.16)
and (4.18).

A coarse evaluation of the order of magnitude of the implied effects immediately
advocates the existence of a compensation of the excess topographic masses by
means of some isostatic mechanism. A very classical argument this, illustrated in
Remark 2.

F. Sanso and M.G. Sideris (eds.), Geoid Determination, Lecture Notes in Earth System 169
Sciences 110, DOI 10.1007/978-3-540-74700-0_4,
© Springer-Verlag Berlin Heidelberg 2013
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The same spectral relations recalled above make us understand however that the
features of topography at all wavelengths produce in fact the corresponding features
in the gravity field.

On the other hand such features at wavelengths of 20 km, or longer, are already
included into the model potential described in Chap. 3.

In order to avoid counting twice the same effect, one has not to compute the
whole effect of the masses above the geoid, but only that of the masses included
between the actual surface S and a smoothed version of it, S, where only long-
wavelength features of S are represented. This is the so-called residual terrain
correction discussed in Sect. 4.4.

The outcomes of this paragraph are some integral relations expressing the
residual terrain corrections; in practice these integrals have to be discretized in some
way to pass to a numerical implementation. The item is discussed in Sect. 4.5, where
in particular the problem of the distance at which the integration has to be performed
is highlighted, and different numerical procedures are discussed.

In Sect.4.6 the formulas of Sect.4.5 are compared with classical Bouguer
formulas of full corrections to gravity anomalies, derived on the basis of a planar
model, which however has not a sound theoretical basis in that it is not providing
a suitable theory for the computation of the potential 7. It is found though that
formulas for the gravity anomalies correctly derived from an ellipsoidal set up
through suitable simplifications and approximations, do coincide in the end with
the classical Bouguer formulas, when we compute residual differences, explaining
thus the success of the latter.

Some considerations and proposals for future research close the chapter.

4.2 High Accuracy and High Resolution Local
Gravity Model

Up to now we have represented the gravity field potential as the sum of the normal
and the anomalous potential, W = U + T, and then we have started studying 7" by
further splitting it into a global model 7}y, plus a residual part describing more local
features, 77 ; in formula one can write

W=U++Ty+T;.. “.1)

As we realize, this approach is, so to say, a kind of homemade multiresolution
analysis; the subject has been treated in due mathematical rigour for instance in
(Freeden and Schreiner 2009), though here we follow our more traditional and
intuitive approach

As we have seen, Ty, is expressed in terms of spherical harmonics { Y, (9, 1)},
up to some maximum degree which nowadays can be as high as 2,160. Spherical
harmonics are oscillating functions bearing a certain resemblance to the Fourier’s
basis (sinnt, cosnt), so that (by using the rule of thumb (3.145)), we can roughly
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state that by T); we can describe the mean behaviour of 7', down to a wavelength
of 20km. Yet, as pointed out in Sect. 3.8, this representation will be in any case
affected by a commission error which, expressed in term of height anomaly (cf.
Example 5), easily amounts to 10 cm or more; in fact it is only thanks to the most
recent gravity satellite missions that one can hope to reach the level of commission
error of 1 cm up to degree 200. Furthermore, by exploiting the very rough Kaula’s
rule estimate, one can see that over degree 200 one has, always in terms of height
anomaly, a mean square omission error of 30 cm, meaning that in critical areas one
can easily expect 1 m or even more of omission error. In fact, due to the specific
constitution of the earth, there are areas, small if compared to the whole surface of
the globe, where however we have intense gravity variations in relation to specific
geophysical features like plate boundaries, mountain belts etc.

So we would expect the component {; = % = W=U-Tu (o reach locally
the amplitude of meters, with a power spectrum mostly energetic at wavelengths
between 200 km down to 2km. A qualitative spectral behaviour of {; is displayed
in Fig. 4.1

To fix the ideas we shall say that we have a high-accuracy local gravity field
model 7}, if we can determine the corresponding height anomaly ¢; with an error
of the order of 1cm, at any point in a given local area. If we consider that the
quasi-geoid can have irregular oscillations of several centimeters over a distance
of very few kilometers, we understand that a grid representation with a resolution
high enough to comply with the above requirements, has to have a side of the order
of 1km.

In an equivalent way one could state that we want to be able to predict a gravity
anomaly Ag with an accuracy of 1 mGal, on a grid of 1 km side or finer in the given
local area.



172 4 The Local Modelling of the Gravity Field: The Terrain Effects

Fig. 4.2 Geometry of the
gravimetric effects of a cubic
mountain

p'
1ki P
m -\ D

1km

This figure is derived by assuming that the main components of 7" and of Ag are
at degree 600 (wavelength ~40km) and using the relations derived in Sect. 4.3.

Already at that point we can understand that with an ordinary gravity material,
when Ag is observed every few kilometers (or with a much worse coverage when
we are in mountaineous areas), we will never be able to build a model with the above
characteristics of accuracy and resolution.

As a matter of fact, the part of the gravity signal which depends on close masses,
shaped by the tiny elements of the earth surface, has to be modelled separately and
used in our processing according to the remove-restore concept already illustrated
in Sect. 2.5.

A simple example with a computation of orders of magnitude will be enough to
convince us to go along with this necessary program.

Example 1. Assume a simple planar approximation of the reference gravity field,
as it is acceptable if we move in an area of a few kilometers of radius and we just
perform computations of orders of magnitude.

If one has a cubic mountain of 1 x 1 x 1km size with density §y = 2.67 gcm™3
(as it is the average density in the crust), one can compute the gravimetric effects of
the mountain on the geoid §¢ = 57T and on the gravity anomaly §Ag at points P at
different distances form the center P of the mountain, as in Fig. 4.2

We will use a simplified model in which all the mass of the mountain is
concentrated in the barycenter, because this gives results comparable with the exact
formulas already provided in Exercise 2.

So we first compute the topographic mass as

My =2.67gem>-10%cm’® =2.67-10°¢
and then we compute (with G ~ 6.67 - 107> mGal cm?g ")

ST 1GMy 1.8
P = — X~ — = s
P = = 5 = D ™

where D is in kilometers and the result in cm. If we go similarly to the attraction, in

the direction opposite to z to find the variation of the reference gravity component

which is pointing downward, we get (with H = 0.5km, asinFig.4.2 and Hp = 0)
H 9

§Ag =~ —GMr—L ~

>~ mGal
DF = Di(km) ¢

with D in kilometers and the result in mGals.
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As we can see already at D = 2km both effects, 6¢ and §Ag, are at the limit
of the required prediction error; but this means also that if we have measurements
every 4km and the mountain is central with respect to measure points, we shall
not feel its effect in the observations, and accordingly we shall smooth it out even
when making predictions on the top of the mountain, P’ in Fig. 4.2. However at P’
the variations of ¢ and Ag, due to the presence of the mountain, are respectively

(roughly)
8¢ =3.6cm, 8Ag =—72mGal,

(figures computed with a more precise model would be 3.2cm and —88 mGal)
neither of which is negligible.

The above example tells us that, whenever a digital model of the terrain is avail-
able, with higher resolution than the gravimetric data set, it should be independently
used to account for the high frequency component of 7}, part of which would be
otherwise completely lost in the local gravity field modelling, preventing us from
reaching the target, e.g. the 1 cm-error level in geoid determination.

On the other hand the knowledge of the geometrical shape of the topography, in
the past obtained by lengthy and costly leveling or photogrammetric operations, has
now been determined by satellite borne SAR, with horizontal resolution of 100 m
and an accuracy of 0 (H) = 10 m (see Farr et al. 2007 or Bamler 1999).

This provides us with a lot of knowledge on the high frequency part of 77, and in
general solves our data problem (see for instance the discussion in Sanso 1995).

Although we have used several times spectral arguments and in spite of the
fact that the standard tool for spectral analysis of functions is the use of spherical
(ellipsoidal) harmonics, yet a good representation of 77 will never use the S.H.
basis. In fact these functions oscillate in very large areas on the sphere so that
if we determine on the basis of local data only a S.H. coefficient different from
zero, even at very high degree, the corresponding harmonic will spread the local
behavior everywhere on the sphere. This is very similar to what happens with
Fourier series. So, as it has been done in Fourier analysis theory, it is convenient
here too to introduce suitable harmonic kernels that go to zero fast enough outside
the area where we have data to avoid an improper propagation. This will be done
by introducing a suitable statistical reasoning into the approximation procedure that
will ultimately lead us to a solution which compares one to one to the result of
Part I11, that is derived on a purely analytical basis from the theory of Hilbert spaces
with reproducing kernels.

As a matter of fact, many other approaches have followed the same line of
thought, starting from the historical method of modifying the Stokes kernel to make
it more short-tailed, dating back to Molodensky (cf. Heiskanen and Moritz 1967)
arriving to the more recent multiresolution methods, employing a kind of spherical
wavelets as proposed in Freeden and Schreiner (2009).

Remark 1. A special mention has to be made of the problem of removing from
marine gravity data the gravimetric signal coming from the shape of the sea floor.
In fact one could consider this problem as a pure topographic correction with
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inverted, only negative, heights (depths) and a density which is now about 1 gcm™>

(the density of water) in contrast to the crust density 8y ~ 2.67 gcm ™.

The major difference here is that in this case we compute the bathymetric
correction on the smooth base of this inverted topography and not at points with
strongly varying depth. As a consequence, the deeper is the sea floor the smoother
is its signal on the sea surface. This is good because it is difficult to have a high
resolution bathymetry in deep oceans. We shall return to this problem more precisely

at the end of the chapter.

Summarizing, we could say that once our gravity potential has been reduced to
the local component we have first of all to regularize it as much as possible by
applying a suitable correction taking into account the digital model of the terrain;
we shall see in the next sections that this has always the effect of smoothing the field
and how to perform (in principle) such a computation.

4.3 The Smoothing Role of Terrain Correction (TC)

In this section we shall develop a formula expressing globally the effects of the
boundary S, with its height variations, on the exterior gravity field in terms of
potential variations, T;, and gravity anomaly variations, Ag;.

The index ¢ will be used in this section to mean quantity related to a topographic
effect.

Calculations will be performed with a model that is realistic but not close enough
to reality to consider the result as directly applicable to true data. Our purpose in fact
is just to elucidate the smoothing effect of TC, not, for the moment, to find a formula
appropriate for numerical implementation.

Then consider a body B composed by an inner part which is a ball By bounded
by a sphere Sg, with radius Ry and an outer part, a crust C, overlain on Sy with a
thickness H(Q) always positive (see Fig.4.3).

The mass density §(Q) within By will generate a gravity field 7p, implying a
geoid of some 30m (r.m.s.) as it is for the true earth. The mass density in C is
constant, § = 2.67 gcm ™, similar to the average figure for the earth crust. Please
note that in this section and in the next the symbol H(Qy) is not necessarily used for
orthometric height, but rather for a function of Py(9, A) that expresses analytically
the height of S (radial in this case) over the sphere Sy.

The total field outside S will be

T =T+ Tc, 4.2)

where T¢ is given by the Newton integral in spherical coordinates, fixing the
computation point P on an outer sphere Sg,

Rot+Hop ,2
Te(P) = Géo / do / rdr 43)
Ro Lpo
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Fig. 4.3 The body

B = By U C: the crust
surface S with height H(Q)
over Sg, and H(Q) — H
over Sg, (H = R— Ry); £
regions of positive and
negative apparent density

=)

Lpo = [R*> + r> — 2Rr cos pr](l/z).
Note that the index C (recalling crust and correction) is substituting here, for the

moment, the iﬂdex t.
If we call H the mean height of S, i.e.

H = ﬁ / H(Q)dog (4.4)
and we put
§SH=H(Q)—H, R=Ry+H (4.5)
we see that the inner integral in (4.3) can be split into two
Ro+H .24, R 24, R+6H L2,
/RD e:; :/RO €P2+/R e:;‘ 4.6)

Correspondingly the potential T¢ is split into two potentials, one of which is
(outside S%) just a monopole potential

Tc =T +T,, 4.7)
with

Gix(R - RS

T:
R

(4.8)
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and

R+S8H .2
T. = G, / do / rdr (4.9)

3 tpo
Note that in (4.9) 6H will be positive or negative in different regions, i.e. 7;(P) is
the potential of a body C, with apparent density +8; in some regions and —§y in
others (see Fig.4.3).

So the effect of the shape of S goes into an average term (4.8) and an oscillating
term (4.9). We want to study 7; as function of §H and to do that we linearize the
internal integral in (4.9) with the approximation

R+sH 24, R o
/, o= e—jH(Q), (4.10)
R PO PQ

which is nothing but a Taylor expansion stopped at the first order in §H .
We note that in this way we have substituted the exact expression (4.9)

T.(P) = G/ Su(Q)dC’
¢ tro
5,(0) = 6 +1 whendH >0 @.11)
¢ - —1 whenéH <0, .
with the other expression
H(Q)—
T,(P) gGSO/ SHO) R 4 (4.12)
o EP@

representing the potential of a single layer on S, with surface density §o68H(Q);
i.e. we have squeezed the mass column of base d S and height §H onto d S, and for
that reason the approximation (4.12) is also known in literature as coating method
(see Heiskanen and Moritz 1967).

Now, since R > R, we can use in (4.12) the development

n

152 r\""

n=0 m=—n

1
E Pa
and putting

1
SHym = e / SH (O, M) Y, (D, N)do (4.14)
T o
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we get

n

+00 —\ n+1
T,(P) = 47G§RY > (g) §Hpm(2n + 1)7'Y,(Pp. Ap).  (4.15)

n=1 m=—n

Note that in (4.15) the summation on n starts from 1 because §Hypy = 0 as a
consequence of (4.4) and (4.5).
In spectral form (4.15) writes

R

—\ n+1 SH
(Tt)nm=(4nG50F)< ) O

; 4.16
2n + 1 ( )

R
here we recognize that with the coating approximation every coefficient §H,,, of

—\n+1
the topographic height function §H, is upward continued by the factor (E)

and smoothed by the typical effect of Newton’s kernel (21 + 1)~!. But basically
to every 6H,,, corresponds a (7;),,. Even more interesting is to compute from
(4.15) the corresponding gravity anomaly Ag;(P) in spherical approximation with
the formula (cf. (2.100))

aT; 2
Ag, = — — =T, 4.17
8t R R ( )

+oo n -\ 12
R n—1
47TG8()Z Z (ﬁ) SHnmmYnm(ﬁplep)‘

n=1 m=—n

Since we are interested in the effect of the topography for medium-high degrees,
(e.g. n > 90) where by the way {§H,,,} become more important, we can make the
further approximation

n—1 1

m+1 2

to get the approximate spectral relation

—\ n+2
R
(Ag))wm = 270Gy (E) §Hym (4.18)

From (4.18) we read that, apart from a constant and the usual upward continua-

+2
tion factor (Which for gravity anomalies is (%) ), every 8 H,, is translated into a

corresponding (Ag;)um-
Therefore if we have a field Ag(P) observed on Sk and we subtract from it Ag;
we are left with Agy + Ag, i.e. the anomalies corresponding to Ty + T (cf. (4.7));
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but Ag is constant and Ag( is much smoother than Ag; because it comes from a

lower level Ry < R and therefore it will be smoothed by a factor (%)n+2 instead
—\n+2
of (%
In other words by subtracting Ag, from Ag we get a smoothed outer field of
gravity anomalies.

Remark 2. Take for a moment R = R in (4.18), i.e. let us disregard the upward
continuation effEct, to evaluate the mean square value of Ag, at the mean level of
the topography R. We find

0(Ag) = {ZpmAgen)? = 210G 840 (5H):

assuming a root mean square value for H of o(§H) = 300m and with the known
values of G, §p we get

o0(Ag;) = 33 mGal.

This figure is already equal to the root mean square value of Ag for the full
anomalous potential 7', including the large part coming from inner masses. This
shows that for the real earth there must be some mechanism which naturally tends
to damp down the variations of Ag;. Several models to explain this have been
developed in geophysics (cf. Turcotte and Schubert 2001); the simplest (dating back
to the mid-nineteenth century) is probably the so-called Airy-Heiskanen isostatic
system where it was supposed that the load of the topographic features higher than
the mean elevation H is compensated by a hydrostatic pressure from the mantel on
the crust due to a root of lower density intruding into the mantel and mirroring the
topography.

This is schematically explained in Fig. 4.4; we see that a hydrostatic equilibrium
of the column is obtained if the weight of the upper column, 8 - dS - §H - g is
compensated by an archimedean force due to the fact that the upper mantel has a
mean density §,, = 3.27 gcm ™, larger than §y; this force is expressed by (§,, —
80)dSEH, g, and equating the two, one gets

§H, = % sH ~ 44550

Sm_O

As we can see, to an excess of mass due to the mountain corresponds a defect of
mass in the root that partly compensates the increase of Ag. A simple mechanism
like that is not anymore accepted in modern geophysics where the dynamics of
different layers is also taken into account (cf. Sabadini and Vermeersen 2004).
Nevertheless it is known that in the average a certain compensation is in fact
realized by the body of the earth explaining the actual mean amplitude of the gravity
anomalies.

In addition one has to consider that most of these effects have a long-wavelength
character and therefore are accounted for by a global model (Siinkel and Tscherning
1981).
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Fig. 4.4 A schematic view of

the isostatic compensation 6H |

mechanism of il

Hieskanen-Airy Crust, density 6, Compensation
depth ~ 30 km

OH, T

Mantel,
density &,

Summarizing we could say that the smoothing effect of terrain correction has
been demonstrated, though since we want to apply this to data observed directly on
the earth surface S and not on an outer sphere, we still have to work out formulas
appropriate to the numerical implementation.

4.4 From Terrain Correction (TC) to Residual Terrain
Correction (RTC)

In order to let the example of Sect. 4.3 to become realistic and applicable, we need
first of all to substitute the sphere Sy with the earth ellipsoid &, and we have to
express the Newton integral for the layer (cf. Fig.4.5)

C={0=<hg = H(Qo)} (4.19)

surrounded by the surface S = {h = H(Qo)}.

Let us mention here that a lot of work has been done in geodesy on similar items,
also in different contexts like the discussion of Helmert method. We refer here for
instance to Heck (2003b) and to Sjoberg (2000) as well as to and Martinec (1998)
and Siinkel (1986).

To be precise, from the geophysical point of view C is not the crust, but just part
of it, since the crust is extending below &, down to the Mohorovicic discontinuity
(see Table 3.1).

Please note that in this section we are still using H(Qy) = H (9, A) as a function
defined on &, expressing the ellipsoidal height of S; so, with reference to Fig. 4.5,
we can write hgr = H(Qo).

Then, in terms of anomalous potential 7, the terrain contribution of C reads
simply

Tc(P) = G/C %d\/g. (4.20)

We are going to apply a number of approximations to (4.20), some of which
are in the range of a relative error of 1072/1073. Since, as already our elementary
Example 1 has shown, we can easily have a terrain perturbation in the gravity
anomaly larger than 100 mGal, approximations at the 1072 level would not be
acceptable according to our criteria.
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Fig. 4.5 § is the earth surface with equation 1y, = H(Qy); S is a smoothed surface with equation
h’é’ = H(Qy); the arrow on P means that we first compute potential and gravity at any point P
outside S, then we let P go to S along the normal of &

So we have to reduce the size of T¢ before we start our processing.

In Sect.4.3 we have subtracted to H its global mean value H, among other
things because in this way we do not introduce a coefficient Tyy # 0, which would
contradict our definition of anomalous potential. Here however we understand that a
global value H is usually not efficient in reducing T¢ in a local area; on the contrary,
H would giverise to a T that in most cases would appear locally as abias. This leads
us to the idea of introducing a kind of local mean height surface S, with equation
hy = H(Qo), enjoying the following properties:

1. H should be smooth in the sense that, for instance, by developing it in spherical
harmonics we should find that contributions above a threshold degree N¢ are
negligible, e.g. one should have

(1/2)

+oo n
> > H, < 10m, (4.21)

n=Nc+1 m=—n

2. It should be local, i.e. it should be given, together with H(Qy), on an area
which is larger, but not too much, than the area where we want to model the
gravity field; for instance if we choose N¢ = 360 we could go as far as one
wavelength at degree 360, namely 110 km, outside the area where we want to
make computations,

3. It should properly interpolate H , in the local area; this means as a minimum that,
if we call C the body enclosed by H , one should have (cf. Fig.4.5)

/CS(Q)dV—/éé’(Q)dV: /C+E8a(Q)dV= 0 4.22)
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+8(Q) when H > H
—8(Q) when H < H

~ ~

C + C = symmetric difference = (C\C) U (5\C )

8.(Q) = apparent density =

In practice a good choice of H could be a moving average of H, over a disk of
radius A comparable to the long wavelength from which we start disregarding the
terrain effects, i.e. considering in this case, for a rough computation, & as a sphere,

F(Q0) = Ma{H} = é /S H(Q)dSo. 4.23)

Sa=1{0; Voo, = A}

Now think of the gravimetric effect of C:in particular we claim that if S satisfies
the above conditions, the effect of C above degree N is negligible.

To see that, we can again use formulas (4.16) and (4.17), with R = R. If we
choose for instance N¢ = 360 and H satisfies (4.21) we immediately find that the
high frequency contribution (above degree N¢) of H is smaller than 1.6cm in geoid
and 1.1 mGal in gravity anomaly.

Taking into account that we shall further apply an approximation procedure to
what remains at a local level, these numbers are completely acceptable. Based on
this remark we can decide that the local high frequency component of the gravity
field due to terrain effects can be accounted for as the difference between the effect
of C and that of C. We call this the residual terrain correction and we put

Tre = Tc—Tg:G/ S(Q)dV—G/;_SE(Q)dV

c tpro PO
H

= G// S(Q)deh = G/ 8“(Q)dV; (4.24)
7 Lro c=T Lro

for the sake of brevity we have introduced in the last integral, as in (4.23) the
symmetric difference C + C=(C \5) u (a\C ). Let us notice that in (4.24) one
has dV = £dSdh according to whether d/ is positive or negative, i.e. H is larger
or smaller than H. This is the reason why, if we want to write Trc as a volume
integral (last term in (4.24)), one has to introduce the apparent density

§(0), H>H

~ (4.25)
~8(0), H < H.

8.(0) = {

The first big advantage of going from T¢ to Tgc is that now the size of Tgc is
quite significantly reduced; even in mountainous areas, typical for Tg¢ /y is a figure
of some decimeters and for the corresponding Agrc of 10 ~20 mGals. As a first
consequence we are allowed to compute Tr¢ in spherical approximation, namely,
from (4.24) we can write
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" 3(Q)(Ro + 1)~ h)2
Tre(P) = / / — g, (4.26)

Furthermore, since
h h?
Ro+ h)? = 1+2—
(Ro + 1) ( + R, R2)

we can substitute R? instead of (Ry + h)? with an error smaller than 3 - 1073
(remember that everywhere on the earth surface -<1.5- 1073 and, apart from a

very tiny portion of the surface, itis 7 < 10~ 3Ro). In addltlon in the volume between
H and H, it is much more realistic to assume that § (Q) = 8y = 2.67gcm™3, than
for the whole column going down to &, in particular in mountaineous areas.

__ This is also useful to clarify what density one should use to fill in the holes when
H > H (see regions tagged with — in Fig.4.5). So (4.26) becomes

Tre(P) = G8R> / do / 4.27)
EPQ

Now we elaborate on the Newton kernel 1/£pg.
We first note that the identity

lpg = [(rp —r0)* + 2rpro(l —cos y)]1/? (4.28)
holds. Then, since r = Ry + h, we can write
rp—ro =hp—ho
and, in addition

D 2
rpro-2(1 —cosy) = rprQw2 =rpro ( ;);;Q) ~ DSPQ (4.29)

where we have put (referring to Fig.4.5)

DOPQ =Ry = DP()Q()'

Going back to (4.28) we find

) ,710/2
Cro = [Dipg + (hr = ho)| " = torg (4.30)
and (4.27) can be written as

A dh

7 Lloro

Tre = GSoR? / do (4.31)
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Fig. 4.6 Comparison of Dy P D o}
with the distance along the d S !
tangent plane D Py Do Q,
RO
Al A

It has to be understood that in (4.31) the integral over the unit sphere, in do, has
to be extended to the local area where we perform our computation and where we
have data. As already pointed out this has to be a little larger than the one where
gravity data are given. Outside this area one can imagine that = H so that the
inner integral vanishes.

From (4.31) we can derive the corresponding residual terrain effect to the gravity
anomaly, Aggc.

To do that we observe that v Tre, when T&c y is as large as 1 m, is about 0.3 mGal,
so that this term is usually neglected, and what is computed is

aT
Agre = — a:: (4.32)

h _
G8R? / / ’
H ZOPQ

From spherical to planar approximation. Let us notice that computing horizon-
tal distances on a sphere or on a tangent plane, up to an angular distance A from the
tangence point, introduces a very small error.

In fact (cf. Fig. 4.6)

Dy = Ry-2A

~ 1 1
Do = 2RotgA = 2R, (A - §A3) = Dy (1 — gAz) : (4.33)

then even for a large distance with A = 10° we have a relative error

Dy — Dy

~2.6-107%
Dy

which we know we can neglect in the present context.
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Fig. 4.7 Mapping the p'
residual terrain correction p Z
integral on the tangent plane h
P
hp
P P

The same reasoning applies to the area element R(Z)d o on the sphere with respect
to the corresponding area element on the tangent plane. Therefore if we put

_ _ — 2
Dopo = D35, lopo = [D%PQ + (hp — hQ)]

and we introduce a couple of Cartesian coordinates (x, y) on the tangent plane,
we can rewrite (4.31) and (4.32) as

2 gh
Toe = Gb [ as [ = (434
H

6o [acan [ ah
B 0/ g n/ﬁ(sn) (€ —xp)>+ (n—yp)? + (hp — 1)?]1/2)

H(O) (hy— h
Agre = G / ds / Be =1 (4.35)
H(Q) OPQ

H(&.n) (hp — h)
— h.
- o / dsdn /H@ n [E—xp)?+ 0 —yp)* + (hp— h)2]3/2d

As we can see (4.34) and (4.35) are purely Cartesian formulas, which, to
be precise, must be used in the following way: assume you want to compute
Trc, Aggrc in an area laying within a disk of center P and angular radius A; then
using a Cartesian system tangent to the sphere in P one projects all points P onto
P on the tangent plane and takes the same height /p in the Z direction (cf. Fig. 4.7).

This explains why the planar approximation, which we could derive directly in
a geometry where the main part of the gravity field is parallel to the Z axis, is so
widely applied and works so well.

There is no need to say that there are in literature several possibilities of
implementing the computation of Tgrc and Aggc in spherical approximation and
even directly in ellipsoidal coordinates.
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Remark 3. 1t is interesting to observe that if the digital terrain model is given
in terms of orthometric heights, which we momentaneuously denote as OHp to
distinguish them from the height function H(F) used in these sections, formulas
(4.34) and (4.35) still hold with H and H computed from this digital terrain model.
In fact, from

H(Qo) = OH(Qo) + N(Qo)

we see, with obvious notation, that

H(Qo) — H(Qo) = OH(Qo) — OH(Qo) + N(Qo) — N(Qo).

Since the geoid N(Qy) is already very smooth, N(Qp) — N (Qo) can amount at
most to 1-2 m and therefore it can be neglected, since this figure is often comparable
with the error affecting our knowledge of H(Qy).

We conclude the section by observing that in (4.34) and (4.35) we have finally
to put hp = H(P) if we want to compute Tgrc and Aggrc at a point on the earth
surface. Naturally this is not always the case, for instance when we use such formula
for aerial gravimetry.

Finally it is worth to underling:jhat Trc, Aggre as expressed here are the effects
of the residual topography H — H on T and Ag; therefore when we have to apply
them for the purpose of smoothing we have to compute residual quantities as

I, =TL—Tgrc =T —Tu — Tke.
Agr = AgL — Agrc = Ag — Agm — Agrc- (4.36)

It is the computation of 7, from Ag, that will occupy us in the next chapter.

Another point in favour of using RTC instead of terrain correction is that the use
of the former does not imply any change in the total masses. Also the barycenter
can hopefully be supposed to be little affected because we have a combination of
positive and negative masses close to one another.

4.5 Strategies for the Implementation of Terrain Effects

The calculation of terrain effects is usually a significant numerical task, requiring
the largest use of computer time in the remove-restore steps of the computation of a
gravimetric geoid. This item is treated in greater detail in the book, Part II, Chaps. 8
and 10.

To make an example, just think that in an area of 1,000 x 1,000km with a
digital terrain model with 100 m of horizontal resolution, one has to implement the
numerical integration of formulas (4.34) and (4.35) for ~10% computation points,
handling 10% height data.
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Fig. 4.8 The discretization
of terrain effects by prisms
with 8, apparent density

The detailed strategies for this implementation will be described in the second
part of the book; here we like only to present the principles on which such
implementations are based and discuss the relevant approximations.

Essentially there are two approaches to the computation of terrain effects:

(a) A simple discretization of the terrain in term of prisms and the subsequent
computation of integrals as sums,

(b) The reduction through suitable approximations of (4.34) and (4.35) into two
convolution integrals, which can then be efficiently computed by means of
Fourier transform methods.

Here are the main points of the two approaches:

(a) The principle is absolutely clear; the residual topographic body C =+ C is
approximated by prisms; the effect of each prism in Tr¢c and Aggc is known at
any point P in space and therefore we can compute our effect by adding those
of each prism.

Analytical formulas for the potential of the prism have already been established in
Exercise 9 of Chap. 1 and even simpler formulas can be found in Sect. A.1 at the
end of this Chapter.

It is even possibile, to produce a better discretization algorithm, to take into
account the spherical or ellipsoidal shape of the reference surface and use accord-
ingly spherical/ellipsoidal prisms (Heck and Seitz 2007).

Apart from the sign of the correction that must follow the £ of the residual
topography (cf. Fig. 4.8), an important point on which we have to focus is that if our
area is very large, for a given point P we don’t need to compute the correction due
to all the prisms, some of which are very far from P and presumably produce an
insignificant contribution.

Numerical experience says that computing the residual correction for an area
around P of 1-2° for Aggrc and 2-3° for Ty is usually sufficient for our purposes.

In lack of a formal proof, we present an example with such a strong topography
that should result convincing to everybody.

Example 2. We fix a point P on the plane and a topography starting only at a (plane)
distance D from P. We assume that D > 100 km and H(Q,) is done by prisms for
which we shall use our approximation of Example 1, namely

H/2

(4.37)
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Fig. 4.9 The geometry of the residual correction of a far zone, D > D

where L is the transversal size of the cube, W its width in radial direction in the
plane, H the height of the prism (see Fig.4.9).

The peculiar point of this example is to represent a quite varying topography by
assuming that L and W are constant while H is a random variable with zero average
and r.m.s.

oy = [E{H*}]"/? (4.38)
So by averaging (4.37) we get

2
On

1
E{—Ag(P,Qo)} = §G50LWD3:

(4.39)

if we add the contributions of all prisms at distance D, which will be approximately

2nD
n=——

.

we have the contribution of all prisms between distance D and D + W, i.e.

127D o?
E{-Ag(P,D,W)} = ETGSOL D—Hg
w
= nG(Soaﬁ,ﬁ. (4.40)

If we consider W = d D and integrate from D to infinity we finally obtain

2
E{-Ag(P), (D > D)} = nG(SO%H. (4.41)

With oy = 500 m and D = 125km this gives {Ag} = 0.11 mGal; with oy =
1,000m and D = 220km it gives 0.25 mGal. Due to the extreme values adopted
for the parameters we think that the example is quite convincing. Note that a similar



188 4 The Local Modelling of the Gravity Field: The Terrain Effects

computation for 7' cannot be performed because the planar approximation of Tgc
diverges if the upper limit of Dy is tending to infinity; an effect well-known from
the theory of Bouguer integrals (cf. Heiskanen and Moritz 1967) meaning only that
the planar approximation is not valid for 7" when we take too large an area. So the
limit of 2-3° in computing Tg¢ is just due to numerical experience.

(b) In this approach we want to take advantage of the fact that in a typical terrain
model, when Py, Qg are separated by a large enough distance

Do > D, (4.42)

we verify that the inclination / of the line of sight between P and Q is quite small,
for instance

h,—h
gl | = |~< '< 107" (4.43)
Dy
corresponding to an inclination of less then 6°. Note that sup |zg/ | is a characteristic
D0>0
parameter of the topography of the local area.
Now consider that one can write
1 1 1 cos |
—~—— == == = — (4.44)
bopg  [D§ A+ (hp =) /2 D[l + 18211/ Dy
1 1 cos’ I
= —. (4.45)

Gpo D3+ (p—h2P2 D3
Since, with the bound (4.43), we have

|cosI —1] <5-107°
|cos® I —1] < 1.5-1072,

we can accept to substitute with 1 the cosine terms in (4.44) and (4.45), and we can
proceed to suitably transform (4.34) and (4.35).
We call

1 (DPOQO < ﬁ)

75 = J—
XP()(QO ) 0 (DPoQo > D),

(4.46)

the characteristic function of a planar disk of radius D around P,. We note that

Xpo(Qo,ﬁ) is a function of D py g, = [(§ — XP0)2 + (n— yPO)z](l/z) only.
Furthermore we call

X;O(Q075) =1- XP()(QO?ﬁ) (4’47)
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i.e. the characteristic function of the complementary region of the plane, namely
that lying outside the above disk.
By definition we have identically

XP()(Q()’E) + X?’()(Q()vﬁ) = 15 (4’48)

so that (4.34) can now be written as

" dh
Tac(P) = Géo [ dédnzn(00.D)
T oo
" gh
+Géy [ dedy 5, (00.D)
T loro
= Trcint(P) + Treext(P). (4.49)

On the other hand when x5 (Qo, D) #0 we can use (4.44) with the approxima-
tion cos I = 1, so that we have

[H(E.n) — H (. )]
[(E—xp)>+ (n—yp)]1/D”

__ As we can see (4.50) is in the form of a convolution of H(§,17) = H(§,n) —
H (&, n) with the kernel

Trce(P) = Gby / dgdnys, (00, D) (4.50)

1% (Qo. D)
K(E—xp,n—yp) = D" 4.51)
Dopo

such convolution integrals can be very conveniently treated numerically with the
Discrete Fourier Transform (DFT), as it will be explained in detail in the second
part of the book, Chap. 10.

As for the first part of (4.49), the inner integral, there are two strategies: either
we compute it numerically performing explicitly the inner integral, or we continue
the development of £, 1; o- for instance putting

11 1(hp—hp

- - 2 (4.52)
toro Dorg 2 Dipy

which neglects only fourth order terms in rg/ = 2 = and then allows to reduce
0

the threshold D, so much so that in some cases the inner integral is completely
neglected. As for the first approach, one can take advantage of integration formula
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0 I~

](1/2)

H(Q0) = he + [ D pg + (H(Q0) — hp)?

= log — — — (4.53)
H(Qu) = hp + \/ Dipg + (H(Qo) — hp)®
and then discretize the integral of this function in the inner zone 50 po < D.
Summarizing either one writes, using the symbols (4.51) and (4.53),
Tac(P) = b [ didnn (00 D)I(P. Q)
+ Gl [ dednK(e —xnn—xp3HED @5

and computes by discretization the inner integral and by DFT the outer integral, or
one writes, using (4.52) and performing the integral on dh,

Tec(P) = G / dsdn(sg(ﬂ
0PQ

+ GT&) / dsangllir = HQ0) — (e = HQO)] ;55

53
Dipo

Sometimes formulas (4.54) and (4.55) are combined, simply to reduce the
computational work in the inner zone, though avoiding the use of diverging integrals
as in (4.55).

In fact, note that (4.55) becomes a sum of convolution integrals only after
developing the powers in the second term.

This difficulty shows that preserving in any case an inner zone (maybe small) as
in (4.54) is not only more precise from the numerical point of view, but also neater
as for the theoretical meaning of integrals.

By applying the same reasoning to (4.35) one gets first a formula similar to
(4.54). Consider that

H
hp—h 1
r0 D + (he— H(Q)]
1

- — — 5 ='(P.Qy) (456)
[Dérg + (e — H (0]

and that for BOPQ > D one can put
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H g H
[v he=h ! L(hp—h)dh

H e(S)PQ D(3)PQ H
1 1 ~ 1 1 ~ H+H
=53 I:E(hP—H)z—E(hP—H)z}=~3 (H_H)(hP_ )
DOPQ DOPQ
(4.57)
Defining
XC (Q()sﬁ)
B —xp.n—yp) = ", (4.58)
Dipo

one can write
Agre(P) = G / dtdnyr,(00. D) (P. Qy)

_HEn + HE )
2

+ Gdo /d%‘dnB(%‘—XP,ﬂ—yP)fSH(E, n) [hp ] (4.59)

which is the sought equation.
Sometimes the equation (4.59) is directly applied without the inner zone integral

or the development of ~12— is pushed to higher order terms, similarly to (4.55);
0P

in this case however we inc%r again theoretical difficulties and we shall not pursue

further this line.

A final remark is that any approximation of the vanishing or smoothed effects
of masses far away from the computation point should be done in principle only on
a numerical basis. In fact, strictly speaking, introducing a moving average form of
formulas (4.34) modifies the harmonic character of the potential.

4.6 Comparisons and Interpretations

First of all we want to compare our results, in particular (4.59), with the classical
theory of Bouguer correction, so much used in geophysical interpretation.

Typically the Bouguer correction is derived in the following way: we start by
assuming a planar reference geometry and we compute the Bouguer terrain effect at
a point P (see Fig.4.10) by splitting it into the effect of a slab of density 8y up to
the height p plus the effect of the differential topography with height Hy — hp.

For the slab part, as we suggest to the reader to prove in the subsequent
Exercise 1, we have

Agslab = 271’G80hp. (460)
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Fig. 4.10 The geometry of
Bouguer correction

AVATZARN

What is peculiar of the slab geometry is that the attraction (4.60) is the same at every
point in space, outside the plane &2 = hp (cf. Exercise 1).
For the differential part we have

Ho hp —h
Agdiff(P) = G(So/déd?]/ ~3 dh. (461)
o Lopg

If we take, as we are doing, hp > Hp, the integral never becomes singular so we
can proceed.

At this point we assume that the topography has a small inclination and we
decide, therefore, that the approximation

1 1

~

7 3
6(3)PQ DOPQ

can be accepted. Naturally, this is not true when Py is close to Q(, however, since
the orginal integral is not singular, we can always exclude a small neighborhood of
Py without affecting too much the computation.

So, using the above relation and performing the integral on d/ we obtain

(hp — Hg)’

_ (4.62)
Dipo

1
Agaige(P) = —G50§ / dédn

In particular we are allowed now to put ip = Hy in the integral in (4.62) because

this is not strongly singular if the inclination of topography, (H£ O_PZQ ), is bounded,
as we assume.

Note that the effect of the differential topography is always negative, i.e.the
corresponding correction is always positive; this is a distinctive characteristic of
Bouguer correction.

Adding (4.60) and (4.62), with hp > Hp, we get the complete Bouguer effect
(see also Heiskanen and Moritz 1967, Chap. 3)
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1 [Hp — H(E n)]?
Agp = 2nGdohp — G§ —/d d . (4.63)
g = 2mGhhe = Gy | A+ (= 17
Now write the same relation (4.63) for the reference surface H &.n),
~ 1 Hp — H(E, )
ATy = 21 G8ohp — Gy~ / dédnw. (4.64)
2 0PQ
If we go to the difference of the two effects we find
— 1 Hp — Hol> —[Hp — Hol
Agp — ATy = GSOE/dédn[ L Q]~3 [Hr — Hol
Dipg
(Ho — Ho) (Hp - #2372)
= G(So/dédn = (4.65)
D3
0PQ

The reasoning of the Bouguer formula is not very clean from the theoretical point
of view, because the linear term in /p cannot correspond to any regular potential in
the half-space hp > 0. Moreover when we subtract the two convergent integrals
(4.63) and (4.64) we arrive at formula (4.65) where the integral is not convergent
anymore. Yet we did it to show that (4.65) is basically the same as (4.59), without
the inner zone part.

It has to be underlined however that in contrast to the simplistic reasoning of the
Bouguer theory, our development of Tgc, Agrc has been much more rigorous in
the sense that at each step the degree of approximation has been suitably controlled.

Now that the comparison of the RTC theory with that of Bouguer has been
accomplished, we have to tackle an important issue, namely to give a justification
for our choice of the reference S surface.

We will perform a rough reasoning providing an answer which can be accepted
as a general rule only with the understanding that it is grossly approximated, so that
its implementation requires specific numerical investigations.

Let us go back to our rough model of Sect.4.3; there we learnt that the
coefficients { H,,,} enter, with a proportionality constant, into Ag. However when
we compute a global model, the data Ag which we use to compute Ag,, are
obtained first by downward continuing the actual data and then by averaging them
on the ellipsoid.

In reality all that is done in one step by using prediction methods that will be
studied in the next chapter. However here we shall work with the singular model
(4.67) making much clearer our procedure.

Since the first order term is by far the largest in the downward continuation, we
can write

0Agm (P) I

Age(Po) = Agobs(P) — oh P

(4.66)
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where Py is on the ellipsoid, while P is the point on the surface where Ag has been
observed. Remember that in (4.66) the vertical gradient of Ag is computed not for
the true Ag (because we are not able) but rather for the model Agys through an
iterative procedure.

We have already defined in (4.23) the moving average operator Mg,
which in practice is substituted by averaging on blocks of geographic squares
{¢—§§<p§¢+§, X—§§A§X+§}.

As it happens to all spherical filters, also M4 has a distinct behaviour on the
harmonic coefficients of any function to which it is applied; basically it is a low-pass
filter tending to leave the low degrees almost unchanged, while it tends to depress
all wavelengths shorter than 2 A, i.e. degrees n > li—(f.

On this point one can find more particulars in Sect. A.4.
So if we apply Ma{ } to (4.66) we find

0Agm (P) I

AG(Po) = Ma{Ag.(Po)} = Ma{Agons(P)} — Ma % I

P } . (4.67)

Now assume that our model Agys has a maximum degree N and our moving
average has a radius A such that

180°
< .

A ; 4.68
= (4.68)

then we expect Agys (P) as well as MaiM to be almost unaffected by M so that we

can write

BAgM aAgM aAgM ~
M Hpy; =~ ——Ms{Hp} = ——H(Py). 4,
A % 0 P} o AtHp} o (Po) (4.69)
Going back to (4.67) we see that
0Agy ~
AZ(Py) = Ma{Agons(P)} — S (Py), (4.70)

oh

Le. Agy is ultimately evaluated from block averages (4.70) derived by downward
continuation from the surface S = {h = H(Py)}. Said in another way, Agy will
tend to represent the true field up to degree N including the effects of the blurred
DTM function H (Py).

Since in our remove-restore process we are going to split the actual Ag into

Ag = Agy + Agre + Ag: 4.71)
and then, after computing 7, from Ag,, we reconstruct T as

T, + Tre + Ty =T, 4.72)
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it is clear that, if Aggrc represents the terrain effects of the topography residual
with respect to the same surface S, the Ag, will be not only smoother because we
reduced the high frequency part, but also smaller, for instance in mean quadratic
sense, so making easier our last step of going from Ag, to 7,. The conclusion is
that we can state as a rule of thumb that our reference surface for the residual terrain
correction has to be H = M ,{H } with

180°

A A7
N

[

4.73)

where N is the maximum degree of the gravity anomaly model Ag,.

Remark 4. 1t is clear that in all our reasonings there are many approximations, the
strongest of which is to assume (4.69) to hold. So (4.73) can be used just as a starting
point and, computing Aggc for different values of A, we can choose for instance
the one that leaves the smallest residual Ag,.

4.7 An Open Issue

Given the discussion of Sect. 4.4, one may wonder whether there could be a more
direct and consistent way to make the surface S unique and compliant with the
decomposition

Ag = Agmu + Agrc + Ag,. (4.74)

This is as a matter of fact object of debate and might become an accepted practice
in future, so we just outline the idea as a possibility. The main point is to define S
and the corresponding residual field effects Agrc, Tre as a first step and globally,
and only afterwards to estimate a global model with respect to the new data set
given on the well-defined reference surface S In fact, let us start from the definition
of § = {h = H(PO)}, H(Py) = Mu{H?}, where A is chosen according to the
rule (4.73) in relation to the maximum degree N of the model we want to estimate
afterwards. Once S is defined, the regions with §H > 0 and §H < 0 are defined too
(see Fig.4.11); they are labelled with + and — respectively. We proceed to compute
residual terrain corrections and move from P to P in the following way: we first
compute the terrain effect of the regions labelled + at P, Aggrc+(P), and apply
this correction to all points; then we move all points to S using a prior model Aguso
or better its vertical derivative %; note that in this way all points are moving in
free air, as P and P’ in Fig.4.11; then we compute at Egints P the further residual
gravity effect of the regions labelled with a —, Agg_(P), and correct to obtain the
final dataon S.

In Fig. 4.12 we give a schematic view of this operation. "

In this way we produce a new field of gravity anomalies Ag on S.
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P(Hp)

Fig. 4.11 Geometry of the reduction of gravity data from S oS

Ag(P) — Ag(P) — Agre+(P)

!
189(P) ~ Agaca(P) + (252 ) st
1

dAgaro
dh

(80(P) = Agrc ()] + (2522 stip, ~ Agno-(P) ~ A5(P)

Fig. 4.12 The flow of corrections and change of boundary P — P to produce the new data set
Ag(P)

Now S is, by its own definition, smooth enough to allow for a meaningful
application of the moving average operator M {-} to the data Ag. In other words we
can compute M A{Ag} and we can assign this value to the corresponding center P
on S, while if we computed moving averages of the original data Ag(P) we would
not know to what points in space these averages correspond. "

At this point we could proceed to estimate a best approximation model 7" s by an
iterative solution of the least squares principle as described for instance in Part III,
Sect. 14.5.

As explained in Part III, Chap. 15, Sect. 15.5, this is not the truncated develop-
ment of the true gravity field, but only a best approximation in terms of ellipsoidal
harmonics up to degree N of a true gravity field, which has not a convergent series
representation at the level of the earth surface.

Once T ) has been computed we have available a procedure to approximate
T(P) at any P in space obtained by inverting the reasoning as represented in
Fig.4.13. »

A perfectly analogous scheme can be constructed, starting from Ag),(P) and
ending with Ag(P), which is necessary to compute the final residual gravity
anomalies.

It is essential, in applying a scheme like that, that all the quantities
8H, Agrc+, Tre+ be taken with their proper sign. The final result 7' (P) or Ag(P)
will then be a “consistent” combination of approximation of 7'(P), Ag(P) on both
the long wavelengths, thanks to T 7, Ag)s, and the short wavelengths, thanks to
Trc+, Agrc+ respectively.
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Tar(P) = Tpr(P) + Tro-(P)

!
- i~ =t (ﬁ;_-u
Trm(P) + Tre-(P) — ( oh )Nﬁ’o
i
— - JF. -y
T (P) + Tro—(P) - (7:’) §Hp, + T+ (P) = T(P)

Fig. 4.13 The scheme of the restore procedure with the shift from PtoP

Accordingly we can at the end compute the residual data
Agr(P) = Ag(P) — Ag(P) (4.75)
and apply some suitable method to transform this into an estimate of
T.(P) = T(P)=T(P), (4.76)

that will finally allow us to determine 7'(P) and the corresponding height anomaly
¢ (P) everywhere in the outer space and on S.

We just note that in this way theoretically the only “terrain” effects left in
Ag.(P) are those which derive from the masses between & and S that cannot
be described by a model Tu up to degree N; such effects in any way have to be
smooth because they refer to a geometry with a smooth boundary, i.e. S’ therefore
the application of Runge-Krarup theorem (see Sect.3.5) is favoured. As a final
Remark we underline that the Molodensky principle of having the observation
points where they are is not violated by this approach because once the approximate
fields T, Ag are determined, the residual fields are computed at the right point P
in space.

4.8 Exercises

Exercise 1. Since it is really important we propose to the reader to prove that
an infinite slab of density 8y and width & creates everywhere outside the slab an
attraction given by

Ag =2nGéy - h.

With reference to Fig. 4.14, we propose to do that in two different ways:

(a) Compute directly the integral, for any point P at altitude hp > h,
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Fig. 4.14 Geometry of a AZ
homogeneous slab p
ds h,
h
h/2
dSo
: > XY
hp—z

h
Ag(hp) = G50/d5d’7/0 dz[gz T2+ (hp— 222

(Hint: use cylindric coordinates £ 4+ n*> = p?, d&dn = pdpda),

(b) Apply Gauss’ theorem to an infinitesimal cylinder of base d.S and note that Ag
has to be zero on dSy and pointing inward on dS}, as well as to be tangent to
the lateral wall of the cylinder

Exercise 2. Consider the simple Bouguer formula (4.63) and apply it to a conic
mountain, computing Agp on the peak of the mountain. Assume that Hj is the
height of the top and b the radius of the circular base and 1g/ = % the slope of the
mountain, and prove that

1
AgB =2nGéyH, |:1 — Elg1:| .

Comment on the fact that clearly such a formula cannot be meaningful when rg/
is of the order of 1.

Furthermore compare the present result with that of Exercise 5 of Chap. 1 to show
that even if g/ ~ sin I for small /, still we have an error of the order of % sin / in
the Bouguer formula.

Exercise 3. Consider the case of a parallelopiped of constant density &, and of sides
2a,2b,2c¢ already treated in Exercise 3 of Chap. 3. According to that result, if we
place the origin of the coordinates at the center of the prism, we have

T(P) =To(P) + T(P) =

GM GM [3, 1 ) 1
2 Iy — = (T o—
" + 3 |:2rP rp 2( r )rP:| + (r}‘;)

with

80 1 1 t
I= M/DrQerB = V/DrQerB,

D={-a<x<a, -b<y<b, —c<z=<c}, V=2a-2b-2c.
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Prove that in this case, in Cartesian coordinates,

1 a>0 0
I=§ 0b%20
0 0 ¢?
and that therefore we have
_G_Ml_z 2_ 32 2 202 2_ 2 2/ 232 2
T»(P) = - [x2(2a® — b* — c?) + y3(—a® 4+ 20> — ) + 5 (—a® — b* + 2¢?)].
P

Such a formula can be usefully applied to express T'(P) at points P for which
rp > A/a? + b? + ¢

Appendix
A.l

In this Appendix we like to prove that there are various formulas more numerically
convenient than that found in Exercise 9 of Chap.1 to express the potential of a
parallelopiped

D={-a<x=<a, —-b<y=<b —c=<z=c}.
Among them, one often met in literature is (MacMillan 1958)

2T = Gé&o|||2xy log(z + R) + 2xzlog(y + R) + 2zy log(x + R)

21

|

2 yz 2 Xz 2 Xy

— x”arctan — — y“ arctan — — z° arctan ——
xR YR z

4.77)

X2
22

In (4.77), given the convention we follow to put the origin of the Cartesian axes
at the center of the prism and the axes themselves parallel to the edges, and calling
as in Exercise 6, Chap. 15,

Ar =ax+x, By=b+ty, CLr=c*z 4.78)

as well as

Riiy = ‘/Ai + Bi + CZ, 4.79)

the limits x;, y;,z;, i = 1,2, are given by the conventions
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xp=A_, y1=B_, z1 =C_
Xo=—A4, y2 =By, 5 =-Cy. (4.80)

Indeed to prove the equivalence of (4.77) with formulas of Exercise 9, Chap. 1,
it is enough to prove equality for one logaritmic term and one arctangent term, since
the others will follow by symmetry.

So let us take for instance in (4.77) the terms in x, y, neglecting the factor Gy,
namely

2Ty = 2x1y1log(Z) + R——_) = 2x1y1 log(Z, + R——4)

R __+C_

=2A_B_log ——.
R__4—Cy

(4.81)

If we look at Exercise 9, Chap. 1, we find in fact two logaritmic terms that
multiply A—B_, one coming from A_B_[I(A-, B_,C-) — I(A—, B_,—C4)], the
other coming from B_A_[I(B—, A_,C-)—1(B—, A_,—C4)]. Since the logaritmic
part of I(A—, B_, £2C=) is symmetric with respect to the exchange of A_ with B_,
the two terms above are exactly the same and we will have in 27" a term like

Ro__+C_ Ro_.—Cy
2A_B_|log———= —log—— | = (4.82)
[ Ay BL ¢ ,/_A2_+_Bz]
R __+C_
2A_B_log ————,
R _,—C,

which is equal to 277 in (4.81).
As for the terms in arctan we can take in (4.77) only those multiplied by A2,
which give rise to the expression, neglecting G &y,

2T, = —A2 |:(arctan N arctan —Z) + (4.83)
X1 R_—_ X RK——

Yaz1 Y222
— | arctan ——— — arctan ———
X1 R_+_ X1 R_++

X1R___ X1 R__
= —A% |:— arctan — + arctan . ———*

Yidi Y122
X1R_4— x1R_
+ arctan "= _ arctan $:|
2z Y222
A_R___ A_R__
= A% | arctan ————— + arctan S
B_C_ B_C,

A_R_,_ A_R_
-+ arctan Sl —+ arctan R e .
BC_ B Cy
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In the formula above, use of the identity arctan X = 7 — arctan % has been done.
Similarly from Exercise 9, Chap. 1, we derive the terms that multiply A% from
A_F(A_B_, By,C_, Cy4), namely

B_R___ B_R__4
—A? tan ———— tan ———— 4.84
< |:arc an 1 -+ arctan AC, ( )
ByR_ - BiR 14
tan ——— tan ————
+ arctan 1 C + arctan A C,
+ arctan C-R-—- + arctan R-—C-
A_B_ A_B4
CiR__ R . C
+ arctan —;_ B_+ + arctan —At;++i| .
Now, exploiting the identity
X+Y

arctan X + arctanY = arctan ,
1-XY

we can show that every two terms in (4.84) add to give a corresponding term in
(4.83), all containing the expression R with the same signature. We do that for the
terms including R___. In fact we have

[ B_R___ C_R___ :|
— | arctan —————— + arctan ————

A_C_ A_B_
B_ |, C—
— —arctan ——— &= iy
o R
A2
R___A_
= arctan ——,
B_C_

as it was to be proved.



Chapter 5
The Local Modelling of the Gravity Field
by Collocation

5.1 Outline of the Chapter

The chapter aims at solving the problem of estimating the residual anomalous
potential 7, from all available information, in particular in a certain area. Remember
that here residual means that the long wavelength part as well as the short
wavelength part of 7" have been at least reduced by means of the deterministic
modelling described in Chaps. 3 and 4.

These models are then applied to data (remove step); from reduced observations
we need to find 7, and then the models are added back to this (restore step).

Since the residual part of the potential is small (one has in terms of anomalous

height O (%) =~ 2m), the application of spherical approximation is justified.

This notwithstanding such an approximation remains the harsh limitation of the
theory presented in this chapter. This point is explained in Sect. 5.2.

The theory, known in geodesy as collocation theory, is introduced here as an
optimization problem where a suitable mean square error has to be minimized in
a class of estimators invariant under a certain transformation group, acting on the
set £2 where the unknown function is defined. Although not so much relevant in
geodesy, the case of the circle is on the same time so simple to understand and so
complete from the theoretical point of view, that it has been worthwhile to devote
Sect.5.3 toit.

In Sect.5.4 the same case is treated for the sphere, with the invariance group
being that of rotations in R*. The big theoretical advantage of this approach is
that not only the estimation coefficients result as an application of the optimality
principle, but also the definition of the covariance function springs out of it in a
natural way.

In Sect. 5.4 it is also shown that the formalism set up in the previous paragraphs
can be given a stochastic interpretation, to the effect that now 7 is considered as a
random function, obtained by randomly rotating the true 7". The formalism is then
extended in Sect. 5.5 to the general case, in which we have whatever N observations,
corresponding to admissible linear functionals, and we want to predict any other

F. Sanso and M.G. Sideris (eds.), Geoid Determination, Lecture Notes in Earth System 203
Sciences 110, DOI 10.1007/978-3-540-74700-0_5,
© Springer-Verlag Berlin Heidelberg 2013
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admissible linear functional of 7'. In particular, if we assume, invoking the Runge—
Krarup theorem, that T is a function harmonic down to a Bjerhammar sphere, any
rotated version of 7" will continue to be harmonic in the same domain, and the
principle above devised, applies.

Since a function harmonic in the exterior of a sphere has a natural representation
in terms of spherical harmonics, its coefficients will become random variables,
when the field 7 they represent is random too. The properties of such {7}, } as
well as their relation to the covariance function of 7', are examined in Sect. 5.6. In
Sect. 5.7 the item of a local modelling of the covariance function is analyzed and
several examples are presented, including those most widely applied in practical
computations.

The local computation of a (residual) quasi-geoid from (residual) gravity anoma-
lies is then presented as an example of the so-called least squares collocation theory.

Finally, in Sect.5.9 the optimal combination of a global model, for instance
derived from satellite observations, and local data to produce the best local
prediction of the geoid, is explicitly solved; a case this that is becoming increasingly
important in these years.

5.2 An Introduction to the Problem

Following the developments of Chaps.3 and 4 we could say that our anomalous
gravity potential 7" has been approximated in the long wavelengths range by a global
model T), and in the very short wavelengths range by the residual terrain correction
model Tgc, so that a residual anomalous potential

T, =T —Ty — Tre (5.1)

has now to be estimated.
This has to be done by using the residual observations, which in linearized form
are written as
yi = Li(T;) +v; (5.2)
=Li(T)+vi—Li(Ty)— Li(Trc)
=Y, —Li(Ty)— Li(Trc).
where Y; are the original observations, y; the observations reduced by the effects of
Ty and Tgc, v; is the observational error. Typical for (5.2), but not the only case

considered in the book, is the observation of free air gravity anomalies, for which
the relation holds

(5.3)
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Fig. 5.1 The spherical
approximation mapping of
the interpolation problem: P;
measurement points, /;
heights over £ and Sg

In order to avoid a heavy notation, while developing our methodological
apparatus we shall simply put

u(P) = T,(P). (5.4

So, due to all our reductions, u(P) is a harmonic field which, in an ideal case,
we expect to be harmonic down to the ellipsoid because the signal caused by the
large and smooth density anomalies should be accounted for by 7, and the high
frequency signal due to the residual terrain height should be subtracted by means of
Trc. Then we could reasonably think of our problem as the one of interpolating the
observations (5.2) with a function harmonic down to &.

Since we are approximating the last couple of meters in terms of height anomaly
¢ = y~'u = y~'T, we shall accept a spherical approximation set up, for the
approximation procedure, in the sense that we map & to a mean sphere Sk of radius
R and we reason with functions harmonic down to Sg (see Fig. 5.1).

Therefore our problem now is to find a function % harmonic down to Sg, such
that y; — L; (4) be small, in the sense of the order of magnitude of v; (i.e. of gy,),
and as close as possible to u.

It is clear in fact that, as the number of observation points, N, can be very large,
but in any event always finite, in principle we can always find many harmonic
fields w which in fact interpolate perfectly the data, L;() = y;, as shown very
schematically in Fig. 5.2, where the observation points P; are taken directly on Sg
and L; (u) = u(P;) is represented in terms of geoid, y ~'u(P;).

Generally speaking, since in nature masses will tend to find a minimum energy
configuration (compatibly with the endogenous forces generated by geological
processes) and energy is in any way a quadratic positive functional of u(P) which
is smaller the smoother is the field, we would prefer an interpolator as smooth as
possible, among those that reproduce the data. Even more, if a noise v is part of our
model, we would accept that L; () will depart form y;, with residuals of the order
of 0,,, and on the same time u to be as smooth as possible.

If a smoothness index is taken in terms of a square norm, we are led to the
Tikhonov principle which is illustrated and worked out in Part III, Chap. 12. Yet,
as one can see in this chapter, the solution does depend quite essentially on the
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Fig. 5.2 Two different exact

interpolations of @ =N,

by two different fields (P)

specific norm chosen to measure the smoothness of 7, when the norm is represented
by a suitable reproducing kernel K(P, Q).

In other words, we have a so-called norm choice problem which is absolutely
unsolvable on a pure analytical ground. So we shall follow here a different approach
which, as we will see, will lead basically to the same solution as that of Sect. 12.4 of
Part III but with a precise choice for the reproducing kernel. This solution is based
on the choice of an invariant estimator and minimum mean square prediction error,
and on its stochastic interpretation.

Notice that in principle we expect u(P) to be harmonic down to &, then approx-
imated by Sg. Yet such condition will never be precisely satisfied; nevertheless by
choosing an interpolator u which is authentically harmonic down to Sg we don’t
prevent ourselves to approximate as closely as we like the true u(P), because of
Runge—Krarup theorem (see Sect. 3.5).

In fact, as proved in Part III, Chap. 13, the restrictions of functions % harmonic in
2r = (r = R) to the set £2, of points exterior to the earth surface S,, are dense in
any reasonable Hilbert space to which we can think that u(P) belongs, for instance
in HL?(S,), namely the functions harmonic in £2, and square integrable on S,. So,
from now on, we shall ignore the problem of the masses between S, and Sy not
perfectly modelled.

5.3 The Principle of Minimum Square Invariant Prediction
Error by a Simple Example

In order to select a particular satisfactory solution to our interpolation problem,
we have first to define an index expressing analytically our degree of satisfaction, or,
if you like, of dissatisfaction, and then to maximize such an index in the former case,
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Fig. 5.3 The set up of the AY
interpolation problem on the P,
circle
Ps
4
Py

or, on the contrary, to minimize it in the latter case. This is a problem of optimization
theory, where the choice of the target function is always the first fundamental step
(see for instance Vapnik 1982, Chap. 2). We choose to minimize a quadratic function
of the prediction error, averaged in some suitable sense.

In order to set up our criterion we prefer to start with a simple example where
our choice will become very transparent.

Example 1. Assume you have a field u(P) where P € C, a unit circle, so that P
can be uniquely identified by a unit vector rp or by the angle ¥ of rp with respect
to the x axis (see Fig.5.3).

To make things easier we shall assume from the beginning that u(P) has zero
mean on C, i.e. that

2 2
/ u(P)d9 = / u(®)dd = 0. (5.5)
0 0

Now assume you have observed the values of u(P) at some points P;
Vi :u(P,-), i = 1,2,...,N (56)

without any error, and you want to predict u(P) at some other point P. As we see,
we have a pure interpolation problem on C.

We note first of all that a predictor will be in general a function of the
observations {y;} of the points {P;} where the observations are taken and of the
prediction point P, in such a way that we are able to compute it when we know {y; }
and we fix P;

u(P)=F(P,Py.....PN:y1..... IN). (5.7

Since reasoning in a general class of predictors { F'} is too complicated we shall
restrict ourselves to the much simpler class of linear predictors, namely

N N
U(P) = F(P.Pi... . Pyiyie.ccoyw) = D diyi = ) _hu(P).  (5.8)

i=1 i=1
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Fig. 5.4 A configuration P'
(P, Pl,PQ,P3,P4) and its Py
version (P’, P|, Py, P}, P}) P
rotated by

P,

P,

We observe that (5.8) is a homogeneous linear predictor, i.e. there is not a con-
stant Ao in the formula; the reason is that, when we observe y; =y, = ... yy =0
we prefer the prediction of u(P) to be zero too, i.e. its mean value on the circle,
according to the hypothesis (5.5).

We notice also that, in (5.8), A; in general will be functions of P, P; ... Py but
not of {y;}, i.e.

AiZki(P,Pl,...,PN)ZA.,'(Z?,Z%,...,I?N). (59)
Whatever {1, } we choose, the corresponding prediction error is

e(P,Py,....Py) = u(P) —(P) (5.10)

N
=u(P)— ZA,M(P,-).

i=1

If we don’t have any particular further information on u(P) (for instance that in
some regions of C, u(P) is smoother or rougher) it is reasonable to further restrict
our class of predictors by requiring that A; be invariant under rotation. Namely, take
two configuration, {P, Py,..., Py} and {P’, P/, ..., P} } obtained one from the
other by a rotation w of the circle (see Fig. 5.4);

We claim that if in the first case we have decided that {A,A,,..., AN} are
good coefficients for our prediction job, then the same coefficients should work for
{P’,P|,..., P}} because if (yi,...,yy) are observed at (Py,..., Py) and u(P)
is our prediction, then in case we observe again (yi,...,yy) at (P|,..., Py) we
want to make the same prediction at P’.

This is translated into analytical terms as follows: let R, be a rotation operator
acting according to the law

R,F(P,Pi,....,Px) =R, F(¥,0,,...,0n) (5.11)
— F(P'.Pl.....P}) = F&'.0.....8%)
=F0+owd+o,...,0+o)

where F' is any function of (P, Py, ..., Py); then our invariance constraint is

Yo, F@,0,....0v)=F0 +w 0 +o,...,0 +w) (5.12)
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A function F satisfying (5.12) must have a particular form, namely
F@,0,....0y) =G — 3, —0,..., 08 — D); (5.13)

this derives from (5.12) by choosing v = —6.
So we agree that our prediction coefficients must satisfy (5.11) and (5.13).
Accordingly if we apply R,, to e (cf. (5.10)), we get

N
Rye(P.Py..... Py) = Rou(P) — > AiR,u(P;) (5.14)

i=1
N
=u® + ) — Y _u@i + ),
i=1

where A; are left unchanged by R,, because of our invariance hypothesis.
Now observe that due to the very definition of R, the identity holds

R, {F*(P,Pi,...,Py)} ={R,F(P,P;...Py)}%. (5.15)
Next we define the mean invariant quadratic prediction error' as
1 2
EXP,Py,...,Py) = > dwR,{e*(P, Py,..., Py)}. (5.16)
T Jo

The adjective invariant is used for & because it is indeed a rotation invariant
function of (P, Py, ..., Py). In fact, (exploiting also (5.15)),

vn, R,EX(P,Pi,...,Py)=ER,P,R,P,....,R,Py) (5.17)
1 2

=5 ) doR,{e*(R,P,R,Py,...,R,Py}
1 2

=3 ), doR,R,{e*(P, Py, ..., Py}
1 2

=3 ). doR,y1y{e*(P, Py, ..., Py}

=&X(P,Py,..., Py},

since integrating in dw from 0 to 27 is one and the same thing as integrating from
nton+2m.

'In this chapter we will use & for the mean quadratic prediction error; confusion should not be
made with the same symbol & used elsewhere to denote the ellipsoid.
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With the help of (5.14) and (5.15) we can indeed perform an explicit computation
of &, giving

1 2 N 1 2
= — ? =2) Aim— i
&= i dou* (9 + o) ; ), dou(® + 0)u(d; + )
N 1 2
+ Z A,-Ak—/ dou(¥; + o)u( + w) (5.18)
idk=1 2 Jo

It is noteworthy that by introducing the two points function
1 2
Cv¥)= 2—/ dou(® + o)u(® + ) (5.19)
T Jo

we come to express & in a concise form as

N N
E=C0.9)-2) LCB.9)+ > AirC(i. %) (5.20)

i=1 ik=1
A particularly important remark is that

1 2
CWO+nd +n= 3 dou(® + n+ o)u(@® +n+ w) = C@, )
0

for the same reason used in the proof of (5.17). Therefore C (&, ¢') is also invariant
under rotation, namely, with a small abuse of notation,

C@,9) = Cw—v). (5.21)

The function C(&+ — ') is called a rotation invariant covariance function. In
particular it is called a covariance function because it has the typical properties of a
covariance; it is symmetric and positive definite.

Such properties are immediately derived from (5.19), but we shall come back to
the item at the end of the section.

Minimizing & with respect to {A;} is straightforward and gives the following
result: put

C ={CWi =)}
i.k=1....N

Cy ={C( - D)}

(5.22)
i=1,....N

A=A}
i=1,...,N

then

A =C'Cy. (5.23)
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It is interesting to observe that since both the vector Cy and the matrix C are
rotationally invariant, then so is A too, as it was required form the beginning.

We make a fundamental remark on our solution. Remember that by definition
a random field on C (see for instance Rozanov 1982) is a function {v(P,w)},
with P € C and w € §2 and with a probability distribution on £2, satisfying some
measurability hypotheses, so that V{P;, P,,..., Py} we know the probability
distribution of the N -vector v/ (w) = [v(P;, ®), ..., v(Py,®)]. Remember also that
mean and covariance of {v(P, w)} are defined as

w(P) = E{p(P,w)} = /QV(P, w)dP(w) (5.24)
C(P,P') = E{[v(P,w) — w(P)]v(P", w) — n(P")} (5.25)
= /QV(P, o)V(P', w)dP(w) — w(P)u(P’).

Here, as in the rest of the section, it occurs sometimes that the same symbol P
is used to mean a point in space and a probability distribution, in which case it is
. . . -
always P(w); moreover in this context §2 is an abstract set and not B .
Now let us go back to our field u(P) = u(?}), with u(?) a periodic function, and
define a random field {v(J, w)} as

v(¥, w) = Ryu(P) = u(¥ + w) (5.26)

with @ uniformly distributed on C, i.e.

2 =10,2n], dP(w) = 621—: (5.27)

By applying (5.24) and (5.25) with (5.27), we see that w(P) =0 and that
C(P, P’) is exactly the same covariance that we already defined in (5.19). Moreover
if we construct a linear predictor of v(P, w) by

N
WP w) =Y Aiv(P;.0) (5.28)
i=1
and we compute the prediction error
e(P,w) = v(P,w) —V(P,w),
we end up with the following expression for its variance
o*le(P,w)] = E{e*(P,w)} (5.29)
N N
= C(P.P)—2) C(P.P)Ai + > AiAcC(P;. Py)
i=1 ik=1

= &X(P, Py,..., Py).
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Indeed minimizing (5.9) with respect to {A;} is the same problem as minimizing
(5.20) and therefore it has the same solution.

This settles the first corner stone of a quite general theorem of equivalence of
different approaches, all producing the same type of linear predictors, so that each
approach contributes to the theoretical and practical understanding of the collocation
theory developed in the next sections.

5.4 On Collocation Theory, or the Wiener-Kolmogorov
Principle Applied in Physical Geodesy

We want to generalize the example of the previous section, switching from the
circle C to the sphere Sk, from the rotation R, on C to a 3D rotation R,, where
® now becomes a triple of angles (for instance Euler angles), so as to apply
the minimization of a suitably defined invariant quadratic error, or equivalently a
minimum prediction error variance principle, to our field u(P) = 7,(P), harmonic
outside Sg.

This discussion parallels a similar discussion, already dating back to 1940/1950,
among scientists working in signal analysis and stochastic processes theory. In that
framework N. Wiener was more stressing the point of view of the invariant estima-
tors, while A. Kolmogorov was more in favour of the pure stochastic interpretation.
It is for this reason that we like to label our application in physical geodesy of such
a principle after the names of both great scientists.

The method, known in Geodesy as collocation, was developed in 1960-1970 by
Moritz and Krarup (see Moritz 1980; Krarup 2006, Chap. 4), again one stressing the
stochastic, the other the deterministic interpretation. Here we like to follow more
the already mentioned point of view of proving the possibility of interpreting in
different ways equivalent results, thus giving a clearer perspective to their practical

implementation.
The first item we need to settle is to find an analogous of the uniform mean over
rotated configurations of N points { Py, ..., Py}.

Without going into more difficult mathematical arguments on group theory, for
which we refer to literature Moritz (1980) and Sanso and Venuti (2002a), we simply
aim at giving a definition, proving that this provides a result with the required
properties.

We start by defining the action of the rotation operator R,, as

R,F(Py,....,Py) = F(R,Pi....,R,Py) (5.30)

and we ask ourselves how an invariant F should be made 2

20ften in group theory the inverse rotation matrix R is used; since this is irrelevant in the present
text and this is not useful, we stick to definition (5.30).
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Fig. 5.5 The characterization
of a rotation R, through the
rigid motion of the arc

P Q over a sphere,
(P'=R,P. Q" =R,0)

Since under R,, the polyhedron {P), ..., Py} is rigidly moved to another one
{P|,..., Py}, leaving the origin of R? fixed, we see that the following conditions
are satisfied

rPl_/ = rpl.; wPi/Pj{ = WPI.Pj, (531)

where we have denoted as usual with ¥po the angle between rp and rp. It is easy
to see that (5.31) is not only necessary but also sufficient for a rigid motion of

(P1, ..., Py) in the three-dimensional space, with the origin fixed in O. Therefore
F(P,..., Py) will be invariant under rotation if
F(Pl,...,PN) = F(...rp,. ey ...I//Pl.pj ) (5.32)

Next we note that in order to characterize a 3D rotation we need only to show
how it acts on two points P, Q placed on a sphere.

Namely there is one and only one rotation sending PQ to P’Q’ on condition
that Ypror = Ypp (see Fig.5.5)and rp =rgp = rpr = rgr.

Since all what we shall really use in the sequel is the average of a two-points
function, we concentrate on that, knowing that in any way the definition can be
generalized to N points, in case of need. So let F(P, Q) be any regular function of
two points defined e.g. on the unit sphere; we put by definition

E{R,[F (P, Q)]} (5.33)

- / dP(@)RoF(P, Q)

= A/dap// F(P/,Q/)d()éQ/,
Vpror=vro

where P’ sweeps the whole unit sphere, while, for each fixed P’, Q’ runs on a
circle of spherical radius v/ pp, occupying all the points of different azimuth o. The
variable « ranges from 0 to 27 (see Fig.5.6).
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Fig. 5.6 Representation of
the integration variable of
(5.33): O is the center

of S, P”, Q" are in space,
while P/, Q' are their
projection on S

As it obvious at the end the function (5.33) will depend on P, Q only through
Ypo, i.e. it will be invariant. Even if the points P, Q were outside the unit sphere,
it is clear that (5.33) would depend in the end only on rp» = rp,rgor = rg and
Ypo (see Fig.5.6). So we can say that in general

E{R,[F(P,Q)]} = Cr(rp.rg.Vpo). (5.34)

i.e. it is a rotation invariant function. As for the normalization constant A appearing
in (5.33), this is determined by considering that d P(w) has to be a (uniform)
probability distribution, so that one must have

2w
E{l} = A/dap/ dagr = A-87% =1,
0
implying
A=—. (5.35)

Now we can repeat the same reasoning as in Sect. 5.3. Namely if the observations
y; arejustu(P;), i = 1...N, we define a linear invariant predictor

N
u(P) =) Aiu(P), (5.36)
i=l
with A; such that

RoAi = A4,
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and an invariant quadratic prediction error

& = Eo{Ro[u(P) —u(P)I’} (5.37)
N N
=C(P.P)=2) MC(P.P)+ Y MiMC(P;, Pr)
i=1 ik=1

where we have put

C(P.0) = E{R, (PO} = / dop / dagu(PYu(Q). (538)

Vpro/=vpro

also called the covariance function u( P). Just as in (5.23), the minimum of (5.37) is
achieved by

N
Aj=YC"C(P. P) (5.39)
k=1

and the corresponding value of & is

N
En = C(P,P) = Y C(P,P)CVC(P;, P). (5.40)

ij=1

In (5.39) and (5.40) we have used the short notation C l.(k_ D , to mean the element
(i, k) of the matrix C ™!, inverse of C = {C(P;, P})}.

Let us note that again the possibility of using a predictor like (5.39) depends
on the availability of the covariance function of u, (5.38); for the moment we just
assume it is known and we shall explain later how to estimate it from data.

As in Sect. 5.3 we observe that, if we define a random field v,

W(P,w) = R,u(P) (5.41)

and we postulate a uniform distribution of w on the 3D rotation group, we receive a
totally equivalent problem with the same analytical solution, on condition that

1 2
W/dUPM(P)/O dog

_ L / dopu(P) =0, (5.42)
47

Eo{v(P. 0)}

what we assume to be true, because by hypothesis u(P)=T,(P) and T,(P)
certainly has a zero mean on any sphere centered at the origin. Note as well that
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calling C(P, Q), in (5.38), a covariance function, we are consistent with a standard
terminology for random fields.

5.5 The General Collocation Problem

Based on the discussion of Sects. 5.3 and 5.4, from now on we accept the equiv-
alence principle stating that we can proceed with our prediction algorithms either
by minimizing the invariant quadratic error in a class of invariant linear estimators
or by introducing the model of a random field, as in (5.41), and minimizing the
mean square prediction error in a class of linear predictors. Invariant here means
invariant with respect to the 3D rotation group, and expectation means averaging
over a uniform distribution on the rotation group.

Let us first of all state our problem in the following form: we have observation
equations

yvi=Miwm)+v,, 1=1...N (5.43)

and we want to predict a functional of u, L (1) by means of a linear homogenous
predictor, i.e.

N
L@ =Y Ay (5.44)
i=1

to do that we want to apply the Wiener-Kolmogorov (W-K) principle.

To this aim we need to define clearly what is an admissible functional L applied
to the random process v( P, w).

In fact note that v(P, w) = R,u(P) = u(R, P), is a function of two variables
and that L will act only on the variable P, so that we expect

Yo = Lp{v(P, o)} (5.45)

to be a (measurable) function of w only, i.e. a random variable.
We note that, under suitable regularity conditions,

Eo{Yo} = Eo{Lp[(P.0)]} (5.46)

_ /dP(w)LP{RwM(P)}

— Ly / dP (@) Rou(P)}
= Lp{E,v(P.w)}} = 0,

so we expect that all useful random variables of the type (5.45) have zero mean
(with respect to ).
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Definition 1 (Admissible functionals). We state that a functional Lp () is admis-
sible, if the corresponding random variable Y, has finite variance.
Namely we require that

E, Y2} = / dP(@)L p[u(Ro PYLo[u(Ry O)]

— Lol / AP (@)u(Ry, PYu(Ry O)}}
= Lp{LoC(P,Q)} < +oo. (5.47)

Covariance propagation. The above computation can be repeated when we need
to compute the covariance

E{Lpv(P,w)[Mo[v(Q,w)]} (5.48)
= Lp{Mo{E[(P,w)v(Q,®)]}}
= LpiMoC(P, Q);.

Formula (5.48) is in fact the covariance propagation formula for random fields.
To simplify formulas, from now on we shall use the short-hand notation (see
Krarup 2006, Chap. 15)

LpC(P.Q)=C(L.Q)

(5.49)
Lp{MoC(P.Q)} = C(L. M).
Moreover we note that if we take a vector of functionals
Li()
Ls(+)
= . (5.50)
Ly()
and we put
Y = L{v(P,w)}, (5.51)
then indeed Y has zero mean,
E{Y} =0,

and a covariance matrix Cyy given by

{Criv} = {C(Li, Li)} (5.52)



218 5 The Local Modelling of the Gravity Field by Collocation

which we write in vector form as
Cyy = C(L,L"). (5.53)

Naturally C(L,L") is symmetric and positive definite. Similarly the cross-
covariance between the vector Y of (5.51) and Z = M{v(P, )} is just the matrix

Cyz = E{YZ'} = {C(L;, M)} = C(L,M'). (5.54)

Now the last thing we need in order to perform our prediction is just to observe
that in our models we have two stochastic quantities, the random field v(P, w) and
the noise vector v. So we need first of all to represent the stochastic interaction
between the two and then we need to warn the reader that when we shall use the
expectation symbol E{ }, without any particular index, we will mean averaging
with respect to all random variables, while we shall use E,{ } or E,{ } when we
want to perform an average with respect to a specific random variable.

To complete the hypotheses on the covariance structure of the problem we
summarize them as follows:

E{(P,w)} =0, E{v(P,o)(Q,w)} = C(P, Q), (5.55)

with C(P, Q) a given invariant covariance function and with the propagation rule
(5.48) for the covariances of linear functionals of v;

E{v} =0, E{w'} =C,,; (5.56)

furthermore we shall assume that the noise v and the random field v are linearly
independent, i.e.

E{v(P,w)v;} =0, VP, Vi, (5.57)
implying also that for any admissible functional L,
E{Lp[v(P,w)]v;} =0. (5.58)

With all these rules of calculus we proceed to establish the W-K principle, namely
we start to compute the variance of the prediction error.

Remember that the observation equations and the linear predictor L/E;) were
defined in (5.43) and (5.44), which we can write in vector form as

Y=My}+v (5.59)
Lp[(P,w)] = A'Y. (5.60)

If L(v) is our predictor, the prediction error is

e(w) = L(v) — L(v) (5.61)
=L(v)—A'Y
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and its variance can be computed by

& = E{e*(w)} = E{L(v)*} + (5.62)
—2E{MYL®)} + E{(A'Y)?}
=C(L,L) = 2ME{YL(v)} + A" CyyA. (5.63)
On the other hand
E{YL()} = E{M()L(v)} + E{vL(v)} (5.64)
= C(M, L);

Cyy = E{YY'} = E{[M(v) + v][M(v) + v]'}
= EM()M' ()} + E{vv'} = C(M,M’) + C,,. (5.65)
Substituting in (5.62) we can then invoke the W-K principle claiming that the
optimal predictor is the one that minimizes &, namely the solution of the normal
equation system
CyyA =C(M, L) (5.66)
or

A=CyyCM, L) (5.67)

with Cyy given by (5.65).
Going back to (5.60) we find the W-K predictor

L(v) = C(L,M")Cyy Y (5.68)
and substituting into (5.62) we get its squared prediction error as
& =C(L,L)—C(L,M")CyyC(M, L). (5.69)

Formulas (5.68) and (5.69) are so important that it is worth representing them
explicitly in components, namely

N
L) = ) Lp{Mp C(P. P)}Cyy)Y: (5.70)
ki=1

with C)(,;l,li) the element (k, i) of the inverse of the matrix Cyy, i.e.

Cy,y, = MpAMp,C(Py, P;)} + Cyp; (5.71)
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moreover
& = Lp{LoC(P,Q)} + (5.72)
N
— " Lp{Mp,C(P, POYCS Y Lp{MpC(Pi. P)}.  (5.73)
ki=1

We note that in most cases C,,,, is diagonal and, when M ( ) are functionals
representing the same type of measurement, many times we put C,, =021,
although this is not really necessary in our formulas that represent the most general
case.

Example 2. We want already here to specify how formulas (5.70), (5.72) work
for the most prominent case of this book, namely the prediction of the anomalous
potential 7 (P) (loosely speaking one could say the geoid prediction) from observed
pointwise gravity anomalies Ag(P;), i =1...N.

Let us remember that here 7(P) and Ag(P) mean the residual anomalous
potential and the residual gravity anomaly. We mention that in this case L( ), the
functional to be predicted, is just the evaluation of 7" at the point P,

L(T) = evp(T) = T(P).

As for the gravity anomaly at P, we can usefully reason as follows; first we
define a gravity anomaly operator A which actually transforms the function 7'(P)
into another function Ag(P)

aT /
Ag(P) = A(T) = —5-(P) + V;T(P), (5.74)

then we evaluate the field Ag(P) at a specific measurement point Py,

M (T) = evp {A(T)} (5.75)
= Ag(Py).

Put in this way we understand that to compute the covariance of My, M; or that
of M., L one can proceed in two steps. First we define a covariance function of
Ag(P) according to

Cagag(P, Q) = E{Ag(P)Ag(Q)} (5.76)
= E{Ap[v(P,w)]4o[V(Q. w)}
= Ap{doC(P, Q)}
where

W(P,w) = R,T(P); (5.77)
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then we apply the evaluation at specific measurement points, namely
C(Mk,Mi) = eka{EVPiCAgAg(Pk,P,')} (5.78)
= CAgAg(Pk, P,').

Accordingly we define the cross covariance between the two fields 7'(P) and
Ag(P) as

Crag(P. Q) = E{v(P,0)Ao[V(Q. 0)]} = AgC(P. Q),

with v given by (5.77) and then we evaluate T at a particular point P and Ag at a
particular point Py, thus obtaining

C(P, M) = evplevp, Crag(P, Pr)} (5.79)
= CTAg(P, Py).

With the above specified rules, the best linear predictor, or collocation predictor
of T(P) is (see (5.70))

T(P) =Y Crag(P. P){Cagag(Pi. P) + 05,81} " Agons(Pr).  (5.80)
k.i

in (5.80) we have assumed that C,,,, zojg&k and we have written Agops(P;)
for Y;.
The corresponding prediction error then becomes (see (5.72)).

& =C(P,P)+ (5.81)

— > Crag(P, PO{Cagag(Pe. Pi) + 05,81} 7" Cagr (Pi, P)
ki

Remark 1. Recalling the definition of covariance of a function 7'(P) (see (5.38))
namely

C(P,Q) = E{R,T(P)R,T(Q)} (5.82)
= / dP(w)T(R,P)T(R,Q)
we see that, when T is a regular harmonic function,
ApC(P, Q) = /dP(a))AP T(R,P)T(R,0Q) =0, (5.83)
in fact it is known that the Laplace operator is invariant under rotation, so that if

T(x, y,z) is harmonic as function of (x, y,z) and R,, sends (x, y,z) into (x', ¥, 7))
then (see Exercise 1 in Sect. 5.12)
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9 P 0
I AR [ ATV ANV
(8x2+8y2+8z2) (x, ¥y, 7)

02 02 02 , ,
- (8x/2 + dy”? + 8z/2) T(x'.y".Z)=0.

Naturally (5.83) implies Ap C(P, Q) = 0 as well, because C(P, Q) is a symmetric
function of P and Q.

Now take a general collocation formula with Lp = evp and {M;} whatever;
similarly to (5.80), if we put

& = ZAC(My, M;) + C,,, ) VY, (5.84)

we see that the collocation predictor of 7'(P) can be written as

N
T(P) =) C(P. M. (5.85)
k=1

If we let P free to vary over 2 = {rp > R}, we can interpret (5.85) more as an

approximation of the whole function 7'(P) than as a pointwise prediction. As such
we see that our approximate solution 7'(P) is automatically harmonic, namely

N
ApT(P) =) ApC(P. M)t = 0. (5.86)
k=1

This is indeed a nice property of our approximation theory.

5.6 Covariance and Spectral Harmonic Calculus

The functions /f(P) by which we do approximate the residual potential 7,(P) are
all harmonic in §2g, as stated in the previous section (Remark 1).
Therefore these functions can be represented by the convergent series

+o0 n

T(P) = Z Z TnmSnm(rPs ﬁPvAP) (5.87)

nm=2 m=-—n
R n+1
Snm(rP’ﬁPvAP) = (;) Ynm(ﬁPvAP)-

If we apply to T'(P), given by (5.87), the rotation operator we get, with P’ = R,, P,

+o00 n R n+1
RIPY=T(P) =3 3 T (_) Yom@pr Ap):  (5.88)

n=2m=—n rp
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on the same time we can state that

+o0o n R n+1
TP =% Y Tw@ (7o) Tunlirin) (5.:89)

n=2 m=—n

because indeed T'(P’) is also harmonic as a function of P. Naturally the harmonic
coefficients of T'(P’) as function of P, are not the same T},,, which appear in (5.87)
and in particular they will depend on the relation between P’ and P, namely on the
specific rotation R,, applied; this is why we have denoted them 7,,, (w).

We want to study the property of the functionals of 7',

(P eSx). T (w)=$ / Yom(@p. ) T(RoPYdop  (5.90)

and their relation to the original 7,,,,. First of all we notice that, as for all admissible
functionals, E{T,,(w)} = 0 and

1
—(4n)2/dUP/dUQYnm(ﬁP,AP)ij(l?Q,AQ)-

E{T(R,P)T(R,Q)}. (5.91)

E{Tnm(w)Tjk(w)} =

On the other hand since the covariance of T is spherically invariant (P’ = R, P,

Q/ = RwQ)a
E{T(R,P)T(R,Q)} = C(¥ro) = C({po). (5.92)

As a function of v, C(v) is also a function of cos ¥ so that we can write

+00
t=cosy: C()=CEH) =) caPult) (5.93)
n=0
+o00
= ch P,(cos )
n=0
with (see (3.46))
1
= 2”; ! / C@) P, (1)dt (5.94)
—1
2n +1

=2 /OC(w)Pn(cosw)sinwdw

Therefore, recalling the summation rule (3.54), we can substitute in (5.91) and
(5.92)
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+o00
CWro) =Y cy2p+ 1) Yoy, Ap)Ypg (90, 20) (5.95)
P-q=0

so that by virtue of the orthogonality of {¥,,, (¥, 1)} we find

C Cp
E{Tym(@)Tix(w)} = % P 13,,n5qm5pj5qk = —15,,,3mk. (5.96)

Pap + 2n +

Hence T,,,(w) are uncorrelated to one another and their variances are the same
for all orders in degree 7,

2 2 Cn
T, = =
o ( nm) o-n 2}1 1

(5.97)

We will call o7 the degree variances of individual coefficients and ¢, the full
power degree variances. Although this name has already been used in (3.173) we
shall soon see that we are justified in using it here because we will prove that ¢, is
identical with Ei given in (3.173).

In fact the following remarkable result holds (see also Moritz 1980).

Lemma 1. The distribution of T, ={T,,} in R**' (remember that we have
2n + 1 orders for each degree n) is singular, its support is the sphere with squared
radius

TP = ) Tr(@) =c, (5.98)

m=—n

and in fact T, () is uniformly distributed on this sphere.

There are two consequences of this lemma: the first is that if we know even
approximate values for 7},,,, we can directly estimate C(¥pg), given by (5.93),
with ¢, = X T2 .

Namely the harmonic coefficients of one particular function given on Sg, provide
us the degree variances of the process generated by randomly rotating this function.

We notice here as well that the formulac, = X, 7% justifies the name given to
¢y, of full power degree variances, in fact we can verify now that ¢, = Eﬁ according
to the previous definition on (3.173).

The other consequence is that the Lemma gives an answer to a guess popping up
from times to times in geodesy, that the distribution of 7', and then for instance of
{T,m} too, could be normal (cf. Jekeli 1991). Indeed this is not possible in a strict
sense, as observed long ago by Lauritzen (see Lauritzen 1973), because then {7;,,,}
for fixed n would all be independent with zero mean and variance onz, what would
imply that

EmTznm(a)) ~ O—y%X%n-f—lv (5.99)
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i.e. it cannot be a constant with respect to w. Yet (5.99) shows that this variable has
a variance tending to zero. In fact (5.99) implies

[ ZnT (@) = 0,2 (2n + 1)
which must tend to zero since
5,072n + 1) = 2,5, T}, < +oo (5.100)

by hypothesis.

Indeed (5.100) implies 62(2n + 1) — 0 and, a fortiori, 6.} (2n + 1) — 0. So from
the practical point of view the field 7', at least above a certain degree, could still be
approximately normal.

The use of (5.97) simplifies the calculation of various covariances and cross-
covariances for fields which have an easy spectral representation, as we show in the
next example.

Example 3. As we have seen in (5.80), to apply the present theory to the determi-
nation of a gravimetric quasi-geoid we need Cra,(P, Q) and Caga, (P, Q). If we
apply the spherical approximation formula (cf. (5.101))

oT 2
Ag=———-T
ar r

that, in terms of harmonic coefficients translates into

n—1

Agum = R Tum, (5.101)
we get straightforwardly
n—1 ,
E{TnmAgjk} = (Snj(gkao—n (T) (5.102)
and
(n — 1) 2
E{AgnmAgjk} = (Snj(skaO'n (7). (5.103)
implying

2
er(Ag) = " Rzl) en(T). (5.104)
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With these rules we can put

n—1
Crag(P, Q) = En,m( )O-y%(T)Snm(er Ve, Ap)Sum(ro. %o, Ag)

R
1 R2 n+1
=X, (v )U,,Z(T) ( ) (2n + 1) P, (cos Ypo)
R rpro
(5.105)
and
(n — 1)2 2
Cagag(P, Q) = Xym——5—0,(T)Sum(rp, 00, Ap)Sum(ro. %0, Ao)

R2

( 1)2 2 n+1
=3, 2( )( ) (2n 4+ 1)P,(cos Ypg). (5.106)
1240]

Let us note that in particular (5.106) coincides, in spherical approximation,
with (5.76).

It is useful to observe that not all the fields that can be derived from 7' possess
a spherical invariant covariance, although the spectral calculus, when applicable,
facilitates the calculations as the next example shows.

Example 4. We want to compute the covariance of T} = %—{ Note that this quantity
is just the eastern deflection of the vertical n multiplied by r sin ¢. To this aim let
us observe that, according to our definition of Y, (9, 1) (cf. (3.50) and (3.51)) we
have

0

ﬁYnm(zﬁ‘, A) = —mY, _, (0, 1). (5.107)

But then

Th(P) = Zym(=m)TomSn—m
= Xy mM Ty —mSnm
or
(Toom =mTy—. (5.108)
The last relation implies

E{(Ty)?,} = m*a*(T) (5.109)

so that T, has not degree variances, i.e. the variances of (7)), are not the same for
all orders m.
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It is useful here to observe that the covariance of 7 can also be derived directly

from C(P, Q) with the following formula

32
Crr, (P, Q) = E{T)\(P)TW(Q)} = mc(ﬂ 0).

If we put

C(P’ Q) = C(VP,VQ,WPQ) :g(rP,I'Q,COS'WPQ)

and we note that

cosYpo = sindp sintg cos(Ap —Ap) + costtp cos

so that
ad . . .
——cosYpp = sindp sindg sin(Ap —Ap)
Ao
and
82
m cos Ypg = sin¥p sing cos(Ap —Ap),
we can compute (5.110).
Put
— 0 —
g 5 Crp.ro.1)
P
¢ = ﬁc("PvrQaZ);
then you find

Crr = 5/(rp, ro.cosYpo)sinp sintddg cos(Ap —Ap) +

- E”(rp, rg.cos Ypo)(sintp sin g sin(Ap — AQ))z,

(5.110)

(5.111)

which is not a function of ¥ p¢p only, i.e. it is not a rotation invariant function.

Remark 2. In order to perform the covariance calculus of horizontal derivatives,
a simple approach is, after fixing the two point P and Q, to compute the full
covariance of the derivatives along the great circle connecting P and Q and
orthogonal to it. The result can then be rotated to produce covariances of derivatives

in any direction (Tscherning and Rapp 1974).

To get acquainted with the covariance spectral calculus we propose to the reader

Exercise 2 at the end of the chapter.
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5.7 The Estimate of Global Covariance Functions

The whole building of collocation theory rests on the assumption that there is a
covariance function of the unknown 7'(P), Cy7 (P, Q), and that this function be
known in some way. Since there is no theoretical a priori model for it we can only
rely on data themselves to obtain an estimate of Crr (P, Q). Naturally the best
theoretical framework to do that, would be a unified estimation theory where both
T(P) and Crr (P, Q) are optimally estimated together from data.

At this point indeed the problem becomes highly non-linear and, although some
theoretical work has been done in this direction, no numerical experiments have
been performed for the moment (Sansd and Venuti 2002a). So in practice we have
to live with a two-steps procedure in which we first estimate Crr (P, Q), with
an admissible model, and then we use it to apply the rest of collocation theory.
This parallels very much what we are doing in the ordinary least squares theory
(Koch, 1987) where we have to estimate both the vector of the parameters and the
covariance matrix of the observable variables. In least squares theory however this
practice is justified because we can prove that a variation of such covariance matrix
induces a second order variation into the estimator of the parameters. Fortunately
here we have again a similar situation as it has been proved in Sanso et al. (2000). So
there is a reasonable argument to accept the two-step procedure. Yet the question is
open on how to estimate practically Crr (P, Q) from data (see also Part II, Chap. 7).

We have two formulas relating the covariance function to observable quantities:
one is its definition (5.92) that writes more explicitly as

1
P.Q € So. Cri(h) = o~ [ doT(P) /w daoT(@) G112
Po=

the other one is

+o00
Crr(Ypro) = chPn(COS Yro) (5.113)
n=2
with
n
o=y T.. (5.114)
m=—n

Both formulas require the knowledge of 7" on Sg (directly in (5.112) and through
Tum in (5.114)); both express Crr(P, Q) when P,Q € Sy and then can be
harmonically continued in P, Q € 2g by

+oo 2

R n+1
Crr(P.0) =Y (WQ) ¢ Pa(cos Y rg). (5.115)

n=1
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Yet, since the quantity related to 7" that we know best at present, at the level of
the ellipsoid, here approximated by S, is Ag, averaged in blocks, as explained in
Chap. 3, the model (5.106) has been rather used, namely

+00 R2 n+1
Cagag(P.Q) =" (rPrQ) ca(AQ)Pu(cos Ypp). (5.116)
n=2

where

—1)2 _1\2 N
er(Ag) = Rzl) en(T) = Rzl) 312, (5.117)

m=—n

Naturally with our finite data set we can only estimate c¢,(Ag) up to some
maximum degree Npax. It is by interpolating the empirical spectrum of Ag, i.e.
(5.117), and then extrapolating it above Np.x that we can have some model
extending to all degrees up to infinity. The idea is similar to what we presented
in Sect. 3.8, but with much more refined models which, beyond giving a better
interpolation of empirical data, have also the advantage that the series (5.115) and
(5.117) can be added providing us with closed analytical forms, more manageable
from the numerical point of view. The argument and the relative models will be
taken up in more details in the next section. What is interesting at this point is to
underline two facts. The first is that all models include in both ¢, (T) and ¢, (Ag)

. . . 2(n+1
an exponential factor which can therefore interpreted as (R—B) e+

7 , meaning that
our kernel Crr (P, Q) will be harmonic down to a smaller sphere than Sg, in fact
down to the Bjerhammar radius Rp, which in the most famous of such models
(cf. Tscherning and Rapp 1974), has a value Rp = 6,370km. Note that Rp is
different from the mean earth radius R = 6,371 km, by 1km only. The second
is that, despite its usefulness, the degree variances of this global covariance function
above Ny,.x cannot well represent the local physical reality of our gravity field. In
fact at the scales of 100km down to 1 km the actual gravity field displays features
so diverse from one part of the globe to the other that putting them all together
into a unique covariance function prevents us from the construction of a very fine
approximation of 7', and then of the geoid, as required nowadays.

This argument calls for another step in our approximation road, where the local
features of T or Ag are accounted for. We could say another step zooming into a
smaller data area A and applying some kind of multi-resolution analysis concept.
This will be achieved by means of the so-called local covariance functions.

We conclude the section with still another Example that will become useful in
the sequel. This answers in the affirmative to the question: is it possible to have
isotropic covariances on the bounding sphere that have a finite support, i.e. a C(y)
and a fixed arc A < 7 such that C(y¥) = O for Viy > A? In the example, we
will construct one of such covariances, M (), so that, recalling that the product of
two covariance functions is again a covariance function, we can then construct for
every C () a finite support counterpart just by taking Ca(y) = Ma(¥) - C(¥).
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Example 5. Let us recall that if we take at the north pole a function equal to 1 just
when the colatitude ¢ is such that # < A, and is equal to zero outside,

1 9<A
¥) = -
xa() 0 9> A,

one can write
+o00
1a(®) =Y P Pu(cos®)
n=0

where the so-called Meissel’s coefficients B, are given explicitly by (see also
Sect. 3, A.4)

2 1!
"t / P,(t)dt
2 cos A

= _[Pn I(COS A) n-l—l(COS A)]

(t =cos) B, =

Note that the relation between f, and the coefficients of the moving average
operator, defined in Sect. 3, A.4 is

Bn = i(Zn + 1)(1 —cos A)M,,(A).

Recalling that Y, = +/2n + 1P, (cos ¥) we can write also

xa(@) = ()

Z\/—no

If we consider this function as a potential on the sphere and we compute its
covariance in spectral from (cf. (5.113) and (5.114)) we find

> b
M) = “~— P,(cos )
4 Zon + 1

On the other hand if we compute the same covariance by (5.112) we see that
we must fix P in the cap D(O, A) of radius A around the north pole O, we must
fix a radius ¥ and then take the product of ya(¢p) by the average of y (o) on
the circle of radius ¥ around P; finally we integrate in P over D(P, A). Note that
when P is outside D(O, A), the integrand in (5.112) is automatically zero.

Now if P isin D(O, A) and on the same time ¥ > 2A, the circle of radius ¥
and centre P, will not intercept anymore D(O, A) and, as result, we will have

MA(¥) =0, Yy > 2A.

The situation is illustrated in Fig.5.7.
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Fig. 5.7 Domains of
integration used in the
computation of the
covariance of T = y(Jp)

Let us observe explicitly that although we can construct covariances of finite
support on the spherical boundary, as soon as we go to an external sphere, r > R,
C(P, Q) cannot be anymore zero on any part of the sphere of positive measure,
otherwise as a harmonic function it should be zero everywhere (see Sacerdote and
Sanso 1991).

5.8 The Estimate of Local Covariance Functions

As defined in (5.38), with the further specification of definition (5.76) we can say
that the covariance function of the gravity anomaly field Ag(P), at the level of the
mean earth sphere, Sg,, is given by

P, Q S SRe,
Cagag(P, Q) = E{Ag(P)Ag(Q)} (5.118)

1
= W/d"f”/ dagrAg(P')Ag(Q') = Cagag(Vpo):
Vpro/=vpro

analogous formulas hold for Crr(P, Q) and Crag(P, Q) which are the main
ingredients needed to derive the estimates (5.80) and (5.81).

The relation between the three functions is given by (5.76) and (5.79) in the
ordinary geometric space and by (5.105) and (5.106) in the spectral domain.
Although we derived them for the residual potential, represented by the random field
v(P,w) = T,(R, P), they basically hold for any random field similarly defined by
means of its values on the sphere Sg,, with the help of a uniform distribution on the
rotation group, and harmonically continued in 2z, = {r > R,}. So in order to be
close to the applications considered in this book we shall reason in this section on
the covariance of Ag,, with the understanding that the same arguments apply to any
random field having an isotropic covariance function.

Moreover, such a remark will be used in next sections.

From (5.118) and a set of observed values

Y, = Ag(P)+vi, i=12...N (5.119)

with v; independent noises of equal variance o2, we can reasonably build an

estimator of the covariance in a very similar way of what is done with random
processes, with respect to a time variable.
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In fact, consider the following expression

Cagae(¥) = T YiYe, (5.120)

Ny, A)
where the summation is extended only to the pair of points {i, k} such that
Y—A<ypp <Y +A4 (5.121)

and N(V, A) is the number of such pairs.
Observe that, recalling also (5.55), (5.56) and (5.57),

EoiViYeh = Eo{Ag(P)Ag(PO} + 0261,
= CAgAg(wPiPk) + U\%Sik- (5.122)

As far as E —A>0,ie. Yp p, > 0, we always have §;x = 01n (5.122), so that
from (5.120) we find again, denoting {i, k} the set of pairs satisfying (5.121),

Euw{C agac(¥)} = SiCagag(Wp p,)- (5.123)

Ny, 4)

Now, if we assume that the observation points { P; } are well distributed, so that
¥p, p, sweeps in a fairly homogeneous way the interval [V — A, ¥ 4+ A] and if we
further agree that A is such that N(i/, A) is large enough e.g. at least larger than 10,
and on the same time small enough, to allow Caga. (1) to be almost linear in the
interval [y — A, ¥ 4+ A], we deduce from (5.123)

EodC agag(W)} ~ Cagag (), (5.124)
namely C sga¢ (V) is a quasi-unbiased estimator of Caga (V).
Furthermore we note that (5.120) can be considered as well as a discretization of
formula (5.112) or its analogous for Ag.

Accordingly, once the value of A has been fixed, what is in fact one of the very
issues for the data analyzer, we can derive estimates C aga, () for

U =A3A,5A...(dm+ 1)A. (5.125)

Furthermore, by taking i = k in (5.122), we derive

E

N

1

NZYﬁ} = Cgag(0) + 02, (5.126)
i=1

ie.

N
1
§2= Nny (5.127)
i=1
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is an unbiased estimator of Caga,(0) + 02. All together the values
S2: Cagag(A); Cagag34)...Cagag(2m +1)A) (5.128)

constitute what is called the empirical covariance function; when Ag is the residual
gravity anomaly Ag, and the points { P;} are taken from a local area A only, we
have a local empirical covariance function.

Note that, in order that such empirical covariance function could be further used
in the prediction process, some conditions have to be fulfilled at least approximately.
We already said about the choice of A, but we also have to assume that when
data come from a local area A, 2m + 1)A (see (5.118)) be significantly smaller
than the size of A, identified with its diameter when A is a cap or with its side
if A is a squared geographic block; at the same time Caga,((2m + 1)A) and
the other tail values of Cy4ag beyond (2m + 1)A, should be small enough to
make the correlation with observations beyond this distance negligible; moreover
the size of A should be big enough to let the field Ag to have a zero average on
1t, 1.e.

N
1
NZAg(P,-) ~ 0, (5.129)

i=1

as otherwise we could not write a covariance estimator in the form (5.120).

In reality, having an empirical average significantly different from zero on A
would mean just that there is an important correlation of Ag, in A with Ag,
outside A, so that we cannot hope to derive a good local estimate of 7" in A because
we are lacking essential information.

One further concern is that the height of the points P; should not have too strong
a variation in A; in fact we see (cf. (5.116)) that if all points have the same height /4,

2n+4
then the degree variances of Ag are just modified by a factor (%) , that can

be accounted for in modelling the covariance, while if r; = R, +h; is quite variable,
then the covariance of the signal coming from /; will enter into the empirical values
Cagag(¥).

Finally we remind that our estimate (5.120) is relevant only if the residual
Ag,(P) has a behaviour statistically homogeneous and isotropic in A; in other
words there should not be in Ag,(P) features that make one part of A to look
statistically very different from another one. This is typically achieved if the remove
step for the model and for the residual terrain correction components has been
correctly performed and the area A is suitably selected by the analyzer.

We get hold of an empirical covariance function that we need to transform
into a model covariance function, namely into a function possessing the correct
properties of symmetry and positive definiteness, without which the collocation
prediction formulae loose any significance. This is the case if we impose to the
model covariance to satisfy the relation (5.116), namely
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RZ

rprQ

+o00 n+2
Cagag(P.Q) =) ca(Ag) ( ) P,(cos¥pg), (5.130)

n=2

with positive full power degree variances ¢, (Ag).

Now the point is how to model c,(Ag), taking also into account that we are
talking about Ag,, so that we expect c,(Ag) to have a different meaning when
n < M (M being the maximum degree of our global model T),(P)) than when
n>M.

In fact if we write for the coefficients T,,(f:,l) of the global model the relation

T = T, + T (5.131)

with 17, the estimation error for the coefficient 7,,, we see that in the low
frequency band (cf. (5.101)),

(l’l = M), Agr,nm = —7 Tmm (5132)

so that

_ 1) 2
=), eiag =", (5.133)

m=—n

according to (5.104).

Now (5.133) expresses the full power degree variances of the estimation errors
{tum}, when the average is taken over the full rotation group. If we further average
(5.133) with respect to the random variables t,,,, which represent the propagation
of the observation (and model) errors from original data to the estimates T,,(,],‘f) , We
can define what are called error degree variances, namely

n

(n < M). en(Ag) = Ec{ca(Ag)} = Y 07 (tam). (5.134)

m=-—n

The variances 02(z,,,) are available from least squares estimates up to degrees
of a few hundreds, or are derived by noise propagation through quadrature formulas
(see Rapp 1997a; Pavlis et al. 2008), so we can claim that ¢, are known at least up to
the specific degree M, which is useful in the present context (see Remark 3 below).

As for higher degrees, n > M, the full power degree variances are usually
modelled by means of some parametric form. Typical are formulas of the type

A

— n+2
c,,(Ag) - COh B(}’l)

(5.135)

where

O0<h<l (5.136)
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and A(n), B(n) are polynomials in # such that B(n) has no zeroes for integer values
larger than 1. The big advantage of the form (5.135) is that in many cases it becomes
possible to add the series (5.130) obtaining an explicit analytic expression which is
then quite comfortable to be used in further computations (see Sect.5.9).

Remark 3. Let us put

2

R
h= R—g, (Rz < R) (5.137)

in (5.135) and substitute it back into (5.130); we find then

+ooA R2
Cagag(P. Q) = ZBEZ; ( .

n+2
) P, (cos¥po). (5.138)
n=2

rprQ

Since | P,(cos )| < 1, it is clear that (5.138) is converging in rp,r9 > Rp,
whatever be the polynomials A and B; therefore any collocation solution that uses
this covariance will be harmonic down to a sphere with radius Rp. As already
mentioned at the end of Sect. 5.6, the constant Rp is called a Bjerhammar radius
after the work of A.Bjerhammar (see for instance Bjerhammar 1987); whence the
index B.

Summarizing the previous general discussion, we arrive at a model of local
covariance function that can be expressed as

M —1)2 R2 n+2
Cg/lgojg(P’ 0) = GZEn% ( ) P,(cosypo)

n=2 "pro
+C.(P,0) (5.139)
+o00 R2 n+2
C(P.Q)= ). cn(Ag)( ) P, (cos Ypp) (5.140)
n=M+1 'rro
Al

cn(Ag) = Coh" 2 (5.141)

B(n)’

Parameters of the representation (5.139), (5.140) and (5.141) are: the calibration
constant a, the degree M used in the specific remove-restore procedure, the
constant Cy, the Bjerhammar radius Rjp, i.e. the value of 4, the coefficients of the
polynomials A(n), B(n) which however can be normalized to have the zero degree
coefficients equal to 1, namely ay = by = 1.

By using all these parameters one can interpolate the empirical covariance
function, using only the values outside the origin C agag(A), ..., C AgAg
(2m +1)A4).
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In this covariance modelling process it is important to use M as a parameter
because the experience shows that many times the use of Rp only does not allow
to reach the right shape of the covariance in the first (and most important) part of
Cagag (), typically decreasing from the value Caga,(0).

The value S} (cf. (5.127)) is then used to estimate o,

v
62 = 52— C ag5(0). (5.142)
As it is obvious one must have

62>0 (5.143)

v

for this estimate to be acceptable; therefore (5.143) acts as a constraint for the model
Cles,(0) < S7. (5.144)

All in all, this estimation procedure casts so to say into a theoretically acceptable
form the statistical behaviour of Ag, in the specific area A4, captured by the empiri-
cal estimates (5.120). Therefore, despite its global appearance, Cglg"j ¢ represents in
fact the physical correlation of Ag, in the area A and in general it should not be
used for another area. This reflects, to some extent, the multi-resolution character of

the solution we are elaborating, step after step.

Example 6. It is important to understand that the transition from Ag to Ag,
removes power from Cag g, namely it damps its value at the origin and at the same
time it reduces the correlation length, i.e. the smallest value ¥, for which the relation

1
Cagag(¥) = 5Cagag(0) (5.145)

is satisfied. More properly one could say that the transition from Ag to Ag, reduces

Cgag(0)

the index , that could be taken as an indicator of the smoothness of the

covariance. In tl;is respect, it is interesting to observe the sequence of the covariance
functions for the full signal of free air Ag over the area 6° < A < 20, 36° <
@ < 47° corresponding to a domain A covering the Italian region (Fig.5.8), and
the covariance function of the reduced Ag, over the same region (Fig. 5.9). Finally
in Fig.5.9 we show as well the covariance from the Tschering—Rapp family (see
formula (7.16) in Part II, Chap. 7) that interpolates C Ag, Ag,

Notice that in the chosen land area the gravity signal is quite variable, due to
the complex geological structure of the region. So the covariance of the global
gravity field, reflecting a mean behaviour for the whole earth, suggests a behaviour
smoother than that implied by the local covariance in Fig.5.8. On the other hand
the covariance of Ag, is both less powerful and smoother than that of the free air
anomalies.
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Fig. 5.8 The free air gravity anomaly empirical covariance over the Italian area
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Fig. 5.9 The empirical covariance of the reduced gravity anomaly over the Italian area and the
best fitting Tscherning—Rapp model

5.9 Covariance Parametric Models

As we have seen in the two previous sections, an estimation procedure for the
covariance function of T or Ag passes through the adaptation of a parametric model
to suitable empirical covariance values.
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For this purpose let us note that if we accept the model (5.135) and we put

R2
s=—2L t=cosy (5.146)
I‘pI‘Q

our target is to sum a series of the form

+o00
Cagag(s.1) =Y _pag(n)s" > Py(t) (5.147)

n=2

with p(n) a rational function of n.
Since it is convenient in the present context, we shall however start from the
covariance of 7', that in this case, with the notation (5.146), can be written

+o00
Crr(s.0) = ) _pr(m)s"*' Pu(0). (5.148)

n=2

In performing our calculus we shall need a few relations that we list for the
comfort of the reader. We start by recalling (see (3.16) and (3.17)) the definition of
generating function

+oo 1
G(s,t) = s"Py(t) = ——— (5.149)
5.1 2 ) V1 + 52— 25t
and the obvious relation
+oo
D s"Pu(t) = G(s.1) — 1 —st. (5.150)
n=2
Then we have
267 (s.1) = (s —1)G(s.1)
(5.151)
DG(s.1) = —(s —1)G3(s5.1).
Furthermore, as one can verify by direct differentiation, one has
s —t+ G (st
/ G(o.1)do = log " —LF G0, (5.152)
0 1—t¢
note that when s — 0 both members tend to zero.
Moreover we observe that, for any F (s, ),
d d
L P Ly T (5.153)
al‘p rp ds

and similarly for —%F (s,1).
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With such tools a number of intermediate results are derived in the exercises at
the end of the chapter, that the reader is invited to make.

We continue the section by concentrating on one of the covariance models
that are most widely used in modelling gravity covariances. Before doing so we
underline again that such a model can be used for both, global and local covariance
modelling. In fact any global model of which we know the sum in analytical form,
namely

+o0
C(s.1) =Y cus" 2Py (1) (5.154)

n=0

can be turned into a truncated form of the type

+o00
Cu(s.t) =Y cus"2Pu(1) (5.155)
n=M+1

M
= C(s.0) = Y _cas" 2Py (0).
n=0

which is easily computed because C(s, ¢) has a closed form and the second term in
(5.155) is just a finite sum up to a few hundred terms.

The Tscherning—Rapp model. This model (see Tscherning and Rapp 1974) has,
in its classical formulation, the general form (5.130) and (5.135), parameterizing the
gravity full power degree variances as

R% n+2 n—1

or, what amounts to the same, the form (5.138) with

A(n) Aln—1)
B - i )u B n > 3. (5.157)

For reasons that are explained in Appendix A.2, the parameter B is restricted to
integer values.

The computation of Cagag(s,t) corresponding to the choices (5.157) is fully
worked out in Appendix A.2. The result can be cast into the form

B+1 1
CAgAg(SsZ) =4 KB(SsZ) + B—HK_Z(S,I) (5158)

B+2

and the algorithms to compute Kp(s,t) and K_,(s,f) have to be found in
Appendix A.2.
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With similar arguments one can compute as well the covariance function of T
and the cross-covariance of 7' and Ag which are essential to perform the prediction
of T from Ag and compute the corresponding prediction error.

We have

1
Crr(s,t1) = AR? —K_5(s,t 5.159
r7(8, 1) B+2)s 2(s, 1)+ ( )
+—1 1K( 1) ! [s —s* —sG7(s,1) +
- s, t) — s —5t—s s,
B+1)(B+2)s * B+1

1—st+ G (st
SIS ek U A C )—s3P2(t)}}

2
and
Crag(s,t)=A R 1K (s, 1) 1K( t) (5.160)
$,1) = A——————{ - K_a(s,1) — — s, . .
ras rr(B+2) s s 0
Note that in (5.160) Ag is evaluated at P while T is evaluated at Q and we have
here s = %, I =cosVYpg.

5.10 The Least Squares Collocation (l.s.c.) Solution

By solution we mean here computing the predictor (5.68) with its prediction error
variance (5.69), when the problem at hand is fully general. When we have to predict
T from Ag, we have to utilize formulas (5.80) and (5.81). When we apply the latter

formulas to a local data set, { P;} € A, of residual gravity anomali/e\s, A g‘r’bS(Pi),

then we can predict local values of the residual anomalous potential 7', (P).

A l.s.c. solution is exactly one such solution when a local covariance function is
used in formula (5.80) and (5.81).

We notice here that there seems to be a certain degree of contradiction in applying
the W-K principle of Sect. 5.4 to the present local context. In fact, by definition the
covariance function of Sect. 5.4 is obtained by averaging on the full sphere, or better
on the full rotation group; on the contrary the local covariance function used in a
L.s.c. solution is derived only for the area A where we have data and it would be
different for the true earth in another area.

Since the formula for the isotropic covariance function, (5.38), was in fact
obtained from the minimum quadratic invariant error principle (5.37), it seems
interesting to ask whether there is an analogous minimum quadratic error principle,
valid for the data in the area A only, leading us to the use of a local covariance
function. A rigorous answer to this question would be in the negative sense.
However it is feasible to build a local theory implying a definition of a local
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covariance function that is only approximately isotropic and is close to what is
suggested by the estimation formula (5.118).

Yet this goes beyond the scope of this presentation and here we limit ourselves
to some more elementary considerations.

Basically our solution would be justified at least in a mean square sense, if the
field 7, we want to estimate had, outside the area A and over all the rest of the
sphere, the same statistical behaviour. If we impose such a hypothesis by definition,
we will have a prediction which is optimal for this virfual field and on the same time
it agrees with ours, at least in terms of observations, in the area A.

So the question is not whether the local covariance is good for the whole sphere
(which is not) but rather what is the region in space where our /ocal approximation
procedure gives valid answers.

Fortunately collocation theory helps by giving us the tool to compute the
prediction error (see (5.72) and (5.81)) and we can decide to go with the prediction
point as far as possible till the prediction error reaches a predefined threshold. In
this sense it is useful to observe that sometimes it is convenient to fix a threshold for
the relative prediction error, namely, if 7'(P) is the predicted functional,

8(P)2 (1/2) S 161
Crr (P, P) } G-10D
N (1/2)

> Cro(P,M)Cy ) Crr(P, My)
ik=1

8r(P):{

1-—

Crr(P, P)

This expresses the ratio of the prediction error to the signal we want to predict
and can be fixed to levels like 1%, and 5% or others. For instance, one can decide to
estimate a residual geoid of 1 m, r.m.s., with an error of 1 cm.

A warning has to be done at this point: when formulas like (5.81) or (5.161) are
used in an extrapolation mode, i.e. for points P outside the area A, they give us
always optimistic values because outside A the actual residual gravity field might
not be well-represented, as for its statistical behaviour, by the same local covariance
that has been estimated form values in A only. As a matter of fact this is of no
great concern because numerical experience shows that already inside A, close to
its boundary, E?(P) and E*(P) increase to unacceptable values and the prediction
has to stop.

Remark 4. The above phenomenon can be understood qualitatively on the basis of
the following reasoning. Remember that the local covariance function is estimated
from empirical values and we have agreed that those have to become small at
angular distance ¥ > A for some A much smaller than the size of A. Accordingly,
exploiting the possibility illustrated in the Example 5, we can model the theoretical



242 5 The Local Modelling of the Gravity Field by Collocation

Fig. 5.10 A the set covered

A

by data; A? the set where A

data give some information; A

A the set where a good

prediction can be performed A,
y=4y=A

local covariance to have a finite support, i.e. to go strictly to zero on the sphere,
when ¢ > A.

So, assume one has to perform a prediction at P, on the sphere, from observed
values T'(P;).

We see that outside the set A4 = {P ; ¥pg < Aforsome Q € A} (see
Fig.5.10) the l.s.c. predictor of ?(P) is ?(P) = 0. In fact if the observation
points P; are all in A and P is outside A2 Yp p, > 0, Vi and then /f(P), written in
the form

N
T(P)=) &CWrp) (5.162)

i=1

is indeed zero. On the contrary, if we are well inside A, depending on the density
of data and on the signal to noise ratio, we can have a good prediction of 7. Let’s
reason now on a belt for instance of width A in 4, i.e. in A\ A, with Ay, = {P €
A Ypo < A= Q € A}. We expect that important information for the prediction
of T(P) is lost when P € A\ A, and correspondingly the prediction error becomes
higher (see Fig.5.10).

The above reasoning, though not rigorous, gives an idea of what happens in
reality. A few exercises at the end of the section will be useful to the reader to
enter into the subject.

Now that we have roughly agreed how to settle the prediction domain in a
horizontal direction, we have to address the problem of the vertical dimension of
this domain. The following trivial example can help in grasping the problem.

Example 7. Assume that T'(P) has covariance function

2

+o00 R n+1
cr.0)=3 e (WQ) Pu(cos Vo)

assume that at O, with rop = R, we have observed T7'(Q) without noise and we
want to predict 7 (P) along the radius passing through Q. By applying (5.70) with
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evaluation functionals and one observation only we get (note that ¥pp = 0 and
Py(1) =1

T(P)=C(P,0)CT(Q.0)T(Q)

+o0 (R)n-l-l
> el
n=m rp

S —a— )Y (5.163)

and the corresponding relative error from (5.161) is

o0 (R )n+1 2
DI
2 n=m rp
&) =1- +o0 +o0 242 (5.164)
Yo Ya(r)
rp
n=m n=m
If we take the limit for rp — oo of (5.164), we receive
lim &(P)=1- " 5.165
rpl—I>noo r( )_ - “+o0 ( : )
Cn
n=m

Then we expect &,(P) to be close to 1 when rp increases, i.e. P moves to the
zenith of Q. For instance take for ¢, the simple model

ey =h"

with & close to 1, then we see from (5.165) that
EX(P) — h

i.e. the relative error becomes almost 100%. So if we fix a threshold for &, then we
will find an upper limit for the height where our solution is acceptable.

The phenomenon, highlighted in the Example 7, has general character and is
basically related to the fact that if Q; are observation points with g, = R and P is
taken on a higher sphere, rp > R, then C(P, Q;) is modified by multiplying ¢, by
R n+1
rp
and to damp the high frequencies so that the shape of the covariances is flattened. In
turn this implies that we need more measurements distant from the prediction area,

to perform a good prediction job. Accordingly we understand that data on a larger

the factor ; this corresponds to giving more weight to the low frequencies
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area are needed to make a prediction with fixed relative error. Or, equivalently, when
we rise in height the area of valid predictions has to be reduced.

Remark 5. Another way to approach the “localization” of the approximation to T
is to push even further our simplification of reference model to arrive to the so-
called planar approximation, where the reference gravity vector is always pointing
to a parallel direction. Also in this case the collocation concept can be applied with
the advantage of having available the Fourier transform machine (see Chap. 10 of
this Part II). An interesting connection can then be established between planar and
spherical covariance functions (see Forsberg 1987).

5.11 On the Optimal Combination of Global Coefficients
and Local Observations

The procedure of removing from the anomalous potential, and all the corresponding
observables, a global model 7), and then applying to the residual part 7, the
collocation prediction, based on data in a local area 4 only, as explained in Sects. 5.8
and 5.10, is not strictly rigorous. As a matter of fact one should apply the W.K.
principle to a full combination of the available information, namely the local data
and the global model coefficients. Beyond the rigor, one of the advantages of
proceeding along this line is that we can overcome the request that 7, (P) be of
zero average on A; such a request in fact is sometimes restrictive, specially if we
have to predict the potential with high accuracy in a small area.

So we assume we have performed only a smoothing for the high frequency
residual terrain correction and we call again 7' (P) the remaining unknown potential.
Then we consider as given information a set of local observations

Yi = Mi(T) + v, (5.166)
1=12...J

with 7" a random field with a global covariance

R

2
rprQ

400 n+1
Crr(P.Q)=C(P.Q) =) cu(T) ( ) Pu(cosypg)  (5.167)
n=2

which for the moment we consider as known. As usual v; are observation noises
with zero mean and a known covariance matrix C,, moreover v; are independent
of T'. In vector from we write (5.166) as

Y = M(T) + v (5.168)
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with first moments specified as usual by
E{Y} =0, Cyy = CM.M') + C,,. (5.169)

In addition we shall assume to know the harmonic coefficients of 7" to some
degree N, namely

TM = Tom + Tum (5.170)

—-n<m<n;n=2,...,N.

In (5.170) T,,, are the true harmonic coefficients of 7', that we write as linear
functionals

1
Tom = e / T(R,%,A) Yy (0, \)do = H (T) (5.171)
s
and t,,, are the errors of the known coefficients on the nature of which we shall
comment later on. We find it convenient to vectorize (5.170) as N — 1 vector
equations, namely

™ =T, + 7, = H,(T) + 7,. (5.172)

The error vectors 7, are assumed to be of zero average and to have covariance
matrices

G, = E{t,T'}; (5.173)
moreover, though not essential, we shall assume that
E{t,t}} = 6uG,. (5.174)

i.e. T, and T, referring to different degrees are uncorrelated.

Furthermore we assume that all T, are not correlated with the random field
T(P), E{T(P)t,} =0.

In addition, although it is possible that the same observations Y have been used
too in the estimate of Tfl"[ , since in this case they are mixed with a much larger
data set coming from everywhere on the earth, outside A, we shall assume that the
correlation of t,, and Y is zero, namely

E{Yzl} =0. (5.175)
In principle predicting by collocation any functional L(7") of T is nothing new,

however the specific form of the functionals H,, and their covariance and cross-
covariances with Y are such as to provide the solution in a very suggestive form.
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So deciding to limit ourselves to L p(7") = T (P) and so to search the predictors
in the form

N
T(P)=A'Y+) a,T) (5.176)
=2

we can construct directly the normal system for the unknowns A and {e,}. To
do so it is convenient first to compute some cross-covariances. For the sake of
convenience, to follow the vectorized notation (5.172) we can put

+oo n +o00
n=2m=-n n=2
implicitly defining S,,.

Then we have, recalling that o> = ;’;(Q,

E{(T)) (T}')'} = C(H,, H)) + G8,¢ (5.178)
= E{T,T}} + Gu8uc = (0,1 + G)due.

E{Y (TM)'} = C(M,H!) = E{M(T)T} (5.179)

+o00

= E{) MES)TT,; =0;M(S)).

=2
E{YT(P)} =CM, P), (5.180)
E{TYT(P)} = C(H,, P) = 07S,(P). (5.181)

Since the normal equation system has general form
N
CyyA + ZCYTZMOL[ =Cyr
=2 (5.182)
CT,,MYA‘ =+ ZCT,,MT[M“[ = CT”MT
(=2
n=2,...,N),
by using the specifications (5.178) through (5.181) we find
N
CyyA + ) ofM(Spay = C(M. P) (5.183)
=2

o2 [M(S)I'A + (021, + G)a, = 62S,(P). (5.184)
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The partitioned form of this system suggests to solve (5.184) with respect to &,
and then substitute back into (5.183). In this way, posing

I, =o(c?l, + G, ", (5.185)
@, = I,S,(P) — [,[M(S))] A, (5.186)
we find
(Cyy =) o {[M(SPITLM(S)] HA (5.187)
=2
N
= C(M, P) = ) oM(S))I'S¢(P).
=2

As we see, we have now a unique equation in A, i.e. (5.187). In order to better
understand its meaning we set in clear the components of the relevant matrices and
vectors. We have

{IM(S)ITE[M(S)]' 5 (5.188)

¢
= Z Mi{Su(Pi) e in M [Sen(P))]
k=t

¢
=M; {M;{ > TiwnSu(P)Sen(Py)

kh=—L
So, if we call
N
Cr(P,Q) =Y 0/Sy(P)[1Si(Q) (5.189)
(=2
we can state that
N
> ol M(S)IM(S)) = Cr (M. M), (5.190)

(=2

Similarly

N
Y o?M(S)[1S(P) = Cr (M., P). (5.191)
(=2
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so that (5.187) becomes
[Cyy — Cr(M,M")]A = C(M, P) — Cr(M, P). (5.192)
To further elaborate on (5.192) we find
Cyy —CrM,M') =CM,M') — Cr(M,M') + C,, (5.193)
The (5.193) suggests the introduction of the reduced covariance

+00 +00
C(P.Q)—Cr(P.Q) =Y oS|(P)S«(Q) — Y 07S{(Q)I1S:(Q)

=2 =2

+o00
=Y Si(P)of(I — I1)Si(Q) = C(P. Q). (5.194)
(=2

where (5.194) we have implicitly introduced the convention that
Ii=0{>N (5.195)

so as to extend directly the summation to infinity.
Another remark on (5.194) is that C (P, Q) is a true covariance function because
the matrices cr{z(l — I7) are positive definite.
In fact, recalling (5.185),
of(I = I) = of[(0¢ Ie + Go) ™' (0 I + Go) —0f (071 + G) ']
= 0{ (01 + GG = IGy. (5.196)

Since I — I, is symmetric and Iy, G, too, one has that [yG; = G,I; implying
that (5.195) can be written as

ot — ) = G nG6? (5.197)

thus showing the positive definiteness of I — Iy.
With the help of (5.196) and (5.194) gets the form

N +o00
C(P,Q) =) Si(P)GIiSi(Q) + Y oiSi(P)Si(Q)  (5.198)
0 {=N+1

Remark 6. Let us assume that the errors of the model coefficients, 7, have further
covariances that are proportional to the identity, i.e. these errors have the same
variance per degree and are independent, then one can put
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2

&y Cy )

2 2 4
GZZO'TZIZ 1,0[:—,1}:,0@1,/)(:

20 +1 20+ 1 o} + 07,

and one finds

2

N {+1
C(P,Q) =) peee ( ) Py(cosypo)
=2 V‘PV‘Q

2

£+1
) Py(cosypg). (5.199)

+o00
+ Y ) (

rpr
(=N+1 Pro

This is an almost perfect counterpart of (5.139) and (5.140) with the difference
that here we are using the reduced covariance of 7', there the local covariance of Ag.
The most remarkable difference between (5.199) and (5.139) is in the factors

2
pr = 62:_# multiplying the error degree variances.
¢ 124

On account of the identity

2.2 2
prer = ;0,20 +1) _ %% ¢ = yice
o} + 0% o? + 0?2
we see that (5.199) can be written as well as
+o00 2 {+1
C(P.Q) =) jyecu(r) ( ) Pu(cos ¥po) (5.200)
rprQ

(=2

if we agree that y; = 1 when £ > N. The form (5.200) shows clearly that the role
of the error 7y, is to turn down the degree variances of 7" when the ratio signal to
noise is high while it leaves ¢, unaltered for the high degrees of the model where afé
becomes larger. Note however that if we stop the model at N such that crrz,z = o7,
when £ = N, then we have yy = %

Another remark is that the degrees above N in (5.199) can be modelled on the
basis of local data as described in Sect. 5.8 of this chapter.

In terms of C our reduced normal system (5.192) becomes
(C(M,M) +C)A =C(M, P), (5.201)
implying the solution of a classical collocation normal system with covariance

C (P, Q). Once A is found form (5.201), we can go back to (5.186) and we can
write

ol =S (P)I, — A'M(S.)T,. (5.202)
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Therefore (5.176) gives

N
T(P)=A'Y+) S/(P)ITY +
n=2
N
—A'M (Zs; r,t™ ) : (5.203)
n=2
This suggests to introduce a modified model
+o00
Tr(P) =) S,(P)I,T) (5.204)
n=2
so that (5.203) writes
?(P) =AY - A'M(Tr) + Tr(P) (5.205)

= A{M(T = Tr) + v} + Tr(P).

So our optimal solution is in fact the result of a remove-restore procedure, where

the optimal model to be used however is not simply
N

TM(P) =" (TM)'S,(P). butrather Tr(P).

n=2
It is noteworthy that in accordance with this interpretation, the normal equation

f_or A, (5.201), can be viewed as an ordinary collocation equation if we observe that
C (P, Q) is in reality the covariance function of T — T = v(P). In fact

N
w(P)=T—Tr =Y 8, (P)I—I)T, + (5.206)

n=2

N +o0
=Y S(P)Lira+ Y. SL(P)T,

n=2 n=N+1

so that, by covariance propagation

N
Co(P.Q) = S, (P)oy(I — I})’S,(Q) (5.207)
n=2
N +o00
+Y SUPILGISH(Q) + Y 0,8, (P)S,(Q).
n=2 n=N+1

With the help of (5.196), it is not difficult to prove that
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o2(I - I))* + G, T, = I,G,(I - I)) + I,G, T,
=TI,G, = G,T,, (5.208)

so that (5.207) is identical with (5.198). Let us observe that the covariance C (P, Q)
in general is not isotropic unless the conditions G, = atzll , studied in Remark 6,
are satisfied.

Therefore C (P, Q), in the low degrees components, should not be empirically
estimated in the usual way if the mentioned conditions are not fulfilled. In fact, if
we do so, we loose information on the stochastic structure of .

Although the ideas presented in this section have been formulated since some
years their implementation in numerical tests is relatively recent (Pail et al. 2010).
These however have given good results in both cases, the estimation of global
enhanced models or the prediction of very local geoid models. In this respect we
have confirmed the guess that the hypothesis of zero local mean value for Ag, is
not required in the present situation.

A final point is worth mentioning, on the interpretation of 7, i.e. errors in the
model coefficients. These errors have been usually interpreted as the propagation
to Té” of the noise present in the observations used in their estimation. This certainly
accounts for the difference of Té” with respect to the true 7y. This point of view has
been taken up in Sect. 5.8.

However when we model a local covariance function and we compare the
statistical behaviour of the low degrees coefficients between their global definition
and their local appearance in the area A, we might find a considerable difference
between the two, specially on account of the dimension of A. In this respect,
consider that an area of 10° x 10° is just # times the area of the whole sphere.
Although there are in literature examples of attempts to model even globally non
homogenous covariances (Rummel and Schwarz 1977) we feel that the subject is
far from being settled. So we just state here that, the way in which this kind of
variability, that is reflected into a localization error for T, could be included and
accounted for into our data analysis, will be object of future research.

5.12 Exercises

Exercise 1. Let (r) = (xi,x2,x3) be a Cartesian coordinate system and (r') =
(x}, x5, x5) another Cartesian system rotated with respect to the first. Assume that
T(r) = T(x1,x2,x3) is a harmonic function in an open set £2, that the rotation
transforms into the open £2’. Put

v(xy, x5, x5) = Tx1(x), x2(r'), x3(x')] ;

prove that v(x], x, x}) is harmonic in £2’.
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(Hint: note that
v[r'(n)] = T(r)
and observe that
x{ = ZxRixxx,

where R = [R;«] is the rotation matrix between (r) and (r). Recall that R'R = I.

Compute X 33—52 T by using the chain rule and prove that
’T 9%y
Yy =
" ox? g ax,’f)

Exercise 2. Compute in spectral form and in spherical approximation the following
covariances and cross-covariances

C8g5g(Ps Q)? C&gAg(Pv Q)s CT&g(Pv Q)s
Cr,1,, (P, Q), Cr, 44(P, Q).
Furthermore, put Ty = %T(P) and compute Cr, 7, (P, Q), following the last

calculation of Example 4.

Exercise 3. Recalling the definition (5.148), assume that
Cr
n4+1"’

pr(n) = (5.209)

show that the corresponding degree variances of 7 and Ag are

n+1
en(T) = <7 (R%)

(n+1) \ R2
_Crm—1? (Ry\'"
cn(Ag)—R—%(nH)-(ﬁ) .

(Hint: compare (5.130), (5.135) and (5.138) with (5.147) and recall the relation
(5.104)).

Exercise 4. Consider the covariance function of 7 when (5.209) holds; prove that

—t+ G (s, t 1
Crr(s,t) = Cr [logsl—t(s) _s— —ts2i| . (5.210)
n+1 s
(Hint: note that 1 = 0" do; use this in (5.148), exchange integration and
n 0

summation and use (5.149) and (5.152)).
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Exercise 5. Prove that, with the covariance (5.210),

0
Crsg(P. Q) = _ECTT(SJ) (5.211)

— Cr (G (s, 1) — 1 — 1]
rp
9
Cogsg(P. Q) = —5 —Crag(s.1) (5.212)
ro
C
= R—gsz[a —15)G3(s,1) — 1 —2t5] ;

B

then find the corresponding crosscovariances and covariances Crag, Cagag, by
propagation through the linear relation

2
Ag(P) = 8g(P) — TP, (5.213)

Exercise 6. Put into (5.210) rp = rg = R = 6,371 and Rp = 6,361; moreover,
compute the covariance at the origin, i.e. ¥ = 0 = ¢ = 1, and impose that

o*(T) = y*0*(N)
= 9782 Gal?>- 17 m? =~ 0.956 - 10° Gal®> m?

Crr(s,1)

show that in this case
Cr = 0.224-10° Gal* m*.
By using this value in (5.212) show that
Csgsg(s, 1) = 559107 Gal?
i.e.
o(6g) = 23.6 mGal.

In other words a mean square geoid of 1m with the spectrum implied by (5.209)
corresponds to a mean square gravity disturbance of 23.5 mGal.

The reader is warned that these numbers do not refer to the true gravity field but
they are just realistic.

(Hint: note that if one puts # = 1 in (5.210) one gets the indefinite form
Therefore the limit for # — 1 has to be computed by the de 1’Hopital rule.)

0
0

Exercise 7. Assume that two values of geoid N_;, N; are observed without noise
at —1 km and 1 km from the origin respectively (see Fig.5.11).
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Fig. .5.11 Observed anfl N, ﬂo N, ﬂz
predicted values according to

the exercise T T T
2

-1 0 1

v

Assume that the covariance of N along the axis ¢ (cf. Fig.5.11) is given by

C([lth) — q‘f‘ — e_alfl

1
T=t—0f, a=Ilog—, g<l.
q

Prove that the optimal prediction N (t)att = 0andt = 2 is given by

N(0) =

=g (N-1+ N

N@) =qN
and the corresponding quadratic prediction errors are
24>
1+q°
EQ)=1-4>

&0y =1-

Note that E*(2) > &?(0) because the extrapolation error is larger than the
interpolation error. For instance, with g% = % one has E2(0) = %, & (2) = %

Exercise 8. Assume that the geoid N (¢) along a section (line) has covariance

P
C(ti,h) =e ™

T=10NH—10.

Assume that one has observed at ¢ = 0 both the geoid Ny = N(0) and its
derivative &g = ‘2—7(0), i.e. basically the deflection of the vertical changed of sign.
The observation noises have respectively standard deviations oy and o,.

Compute the prediction N(¢) and the corresponding prediction error for every ¢
and verify that

_ 1 2
N(t):e_‘”z[ No+ —2 soi|

T
1+02 " 20402

1 4o
B =1 [l ]
l+oy 2a+o0;
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. . 2
(Hint: first compute for any ¢y, ¢, the functions C(¢y, 1), %C(ll, 1), ﬁC(rl, 1)
and then putt; =1, = 0.

Note that in this way C(N(0), £(0)) = %C(tl, t) =0.).
t

1=0=0
Exercise 9. We use the same symbols and the same covariances of Exercise 5.
Assume one has measured without noise §g ata point Q, putt = cosY'pp,7p = R,
and predict N (P) forevery P. In particular prove that, choosing P = Q (i.e.t = 1)
one has

~ o _T(©Q) _Rp (1-5)
MO == = T a—wa o ¥ @

6
1, s

2 T = (=921 + 29)]

We want to prove the relation (5.98), sending the interested reader to the literature
Moritz (1980) and Sanso (1986) for the distribution of the vector T(w).
We have

Y Th(w) = # / dopT(R,P) / dooT(R,Q) (5.214)

m=—n

Y Yum @ Ap)Yam(Po. Ao)

m=—n

2n + 1

= (471')2 /dGP/dGQT(RwP)T(RwQ)Pn(COSI//PQ)

2n + 1 ) /
= (’:171)2 /dO’P//dO’Q/T(P YT (Q")Py(cosyrpror) ;

the last equality is justified because ¥ pg = ¥ p/o/ and the double integral over
the sphere can be performed with any angular coordinates giving always the same
result.

Now we organize the double integral in (5.214) as follows; first fix P’ and let
Q' circulate around P’ at a distance ¥ prg = ¥ then integrate in dops; then we
finally let v to vary from O to 7. We get, putting dogs = sin ydyda into (5.214),
recalling also the definition (5.38) and using (5.94),



256 5 The Local Modelling of the Gravity Field by Collocation

Y Th(w) = @ / " iy sin P, (cos 1) - (5.215)
0

m=—n

i [ dow L oy TOOT @)ty

2n+1

/ A sin Y P, (cos Y)C(W) = .

as it was to be proved.

A2

We want to prove formula (5.156), providing the explicit form of Kg(s,?) and
K_5(s,1). We first expand (5.157) into the sum of fractions, with the identity

n—1 _B+1 1 N 1 1
(n—2)n+B) B+2n+B B+2n-2

so that we can write

CAgAg(S,l) =A

+o00 +o00
B+ 13X gnt2 1 2
—E Pu(t) + — n(t)
B+2 —n + n+ B B+ 2

=4 % B+l S Ki(s.0) + —K_z(s z)} (5.216)

We compute at first the last term:

+oon2

K—Z(S7t) = 42
5 Foo
= / Zo”_3P,,(t)da
=3
= s /S 1 JrXO:OU”P (t) —1—0t — 02 Ps(t)
0 03 n=0 ’

= s4/ % {G(o,1) — 1 —0at —0?Py(t)} do
o O

SPa(0) (5.217)

2 1—st+G7l(s,t
:%[1+21s—(3ts+1)G_l(s,t)]—s4P2(t)10g u +2 (s,0)

+S4712—1
T
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The last integral is calculated with the help of mathematical tables adjusting the
integration constant in such a way that both members of (5.217), multiplied by 54,
tend to O when s tends to 0. As for the first term one writes, assuming B > 0,

n+B

+oos
Kp(s.1) = s2°B
B(s,1) =s ;n—i—B

P, (1)
5 Foo
52 B/ Zo"“? 'P,(1)do (5.218)

s 400
= sH‘/ B! {Za"P,,(t)—l—ot—osz(t)
0 n=0

2-B Bl d 52 s? s*
=5 G(o,t - = t
s /0 (0.)do =5 = 5= B+22()

Now the integrals
Iy = / 0BG (o, 1)do (5.219)
0

can be computed, for integer values of B, by exploiting a recursive relation, namely

k 1
B . Qk-1) k-1
Tt = —k G, 0) + Tt = L (5.220)

which is derived from the identity

0

% [s*1G7"(s.0)] = [ks* — 2k — Des* ™" + (k — 1)s* 2] G(s. 1), (5.221)
s

integrating both members from O to s and re-arranging. In order to trigger (5.220)

we need two initial values of [y, for instance I, [;. But /| has already been given

in (5.152) and I, is easy to compute since, recalling (5.151),

I, = / 0G(o,t)do = / (0 —1)G(o,t)do + t/ G(o,t)do
0 0 0
=G (s, 1) =1 +11. (5.222)

The relations (5.216), (5.217), (5.220), (5.152) and (5.222) all together give the
explicit form of the covariance function of Ag for every integer B. For a global
use of this covariance the model (3.181) coming from the best fit of EGMOS degree
variances between degrees 180 and 1,800, can be used, with the only warning that
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in (3.181) one has E% =y (%), whereas we treat here ¢, (Ag) related to the former
by the relation

£—1)? —1)2 (GM?
cn(Ag) = ( _2) en(T) = %(_—2) ;. (5.223)
R R R

We notice by the way that also the improved model (3.178) transformed
according to (5.223) can be added by applying exactly the same methods presented
in the Appendix and the decomposition

(-1 _L 1 s s
(C—2)l+4)(+17) 114 -2 " 780+4 247 £+17

(5.224)
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Chapter 6
Global Gravitational Models

Nikolaos K. Pavlis

6.1 Outline of the Chapter

This chapter discusses the development and use of Global Gravitational Models
(GGMs), specifically those GGMs that are represented in the form of spherical
(and/or ellipsoidal) harmonic coefficients. With the mathematical details having
been presented in Chap.3 of Part I of this book, the focus here is on the main
concepts and considerations involved in the design and in the choice of alternative
techniques and strategies that can be used to develop GGMs. Recent advances in
geodetic techniques, in particular the availability of dedicated geopotential mapping
missions on one hand and the availability of very high resolution GGMs on the
other, provide the natural setting for the discussion that follows. Section 6.2 provides
an introductory overview of the main concepts and distinguishes between Global
and Regional (or Local) models, the latter being discussed in subsequent chapters
within this part of the book. Section 6.3 discusses the aspects involved with the
representation of GGMs and the characteristics of the data that are used to create
the GGMs. Section 6.4 discusses the new satellite missions that are dedicated to the
mapping of the gravitational field from space, and the advances and challenges that
these missions introduce to GGM developments. Section 6.5 discusses the combi-
nation of the gravitational information obtained from satellites with the information
obtained from surface data, which permit the development of very high resolution
GGMs like EGM2008. Sections 6.2-6.5 provide the main concepts underlying
the development of GGMs, omitting intentionally the mathematical and numerical
details. In contrast, Sect. 6.6 discusses in some detail the specific mathematical and
numerical procedures that may be used for the development of GGMs. For this
purpose, two models are used as representative examples in Sect. 6.6 — EGM96,
which represents the state-of-the-art before the availability of data from CHAMP
and GRACE, and EGM2008, which represent