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Dimensional Analysis and Scaling Rules

One might ask, here at the outset, “Why bother with ‘scaling rules’ when
one can simulate practically any size and type cyclone of interest with a good
model?” While the latter is generally true, scaling—when based on the per-
formance of a sufficiently large, geometrically similar laboratory model—can
predict the performance of an industrial cyclone installation considerably more
accurately than the models. It is also the writers’ experience that scaling rules
are important for two additional reasons:

• Certain simplified scaling rules and dimensionless quantities allow the de-
signer or practitioner to make quick, ‘back-of-the-envelope’ type calcula-
tions and decisions pertaining to cyclone design and performance.

• The scaling formulae allow one to better ‘see’ the effects of changes in one
variable upon another—both qualitatively and quantitatively.

In this chapter we shall derive and present relationships or formulae that
will allow us to predict a cyclone’s cut-point diameter, grade-efficiency curve,
overall or ‘gross’ efficiency, and pressure drop on the basis of measurements
taken on a geometrically similar cyclone. These formulae should also allow us
to evaluate the performance of an operating cyclone and, if necessary, assist
us in troubleshooting its design, mechanical condition, or mode of operation.

When scaling cyclones we have to consider not only the fluid but also
the particle dynamics. This might lead us to expect complicated scaling laws,
but in the end we shall find that simple rules can provide a wealth of useful
information.

In scaling we wish to predict the performance of one unit, which we will
call the ‘prototype’, from that of another, the ‘model’. We do this by identi-
fying all parameters determining the unit’s performance. We may not know
the effect of each parameter, but we do know that the equations expressing
the performance in terms of the parameters must be dimensionally consis-
tent. This allows us to reduce the number of parameters by bundling them in
dimensionless groups. Making these groups the same between model and pro-
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totype, we know that their dimensionless performance will also be the same
(Perry, 1997).

To derive the dimensionless groups for cyclones, we can proceed along two
lines of inquiry:

a) classical dimensional analysis, or
b) inspection of the equations of motion for gas and particles.

In a) we list the variables influencing the cyclone performance, and arrange
them in dimensionless groups. In b) we arrive at the groups by making the
equations of motion for the gas and the particles dimensionless. Both lines of
enquiry are enlightening in their own way, so we shall follow both, the latter
in Appendix 8.A.

8.1 Classical Dimensional Analysis

8.1.1 Separation Efficiency

The separation efficiency in a cyclone depends on a series of physical and
operational parameters, which we can subdivide as follows:

• Parameters related to the individual particle
– the particle size x,
– the particle density ρp. We see in the equation of motion for the particle,

Eq. (2.2.1), that both ρp itself and the density difference with the gas
(ρp − ρ) can be included, the former for the unsteady terms, the latter
for the steady terms.

– the particle shape, which we express as Wadell’s sphericity ψ, defined
as the surface area of a volume equivalent sphere divided by the surface
area of the actual particle.

• Parameters related to the feed solids as a whole
– the solids loading at the inlet, co.
– the particle size distribution (PSD) of the feed solids, which can in-

fluence the grade-efficiency of the cyclone. In reality, these authors
cannot confirm that the PSD influences the cyclone cut-point or grade-
efficiency, but it has been claimed in the literature that large particles
in the feed will ‘sweep’ smaller ones to the wall in the inlet region,
so we include this parameter initially. If a mathematical distribution
function is fitted to the feed, the size distribution can be characterized
by a mean size 〈x〉, and a spread σ.

• Parameters related to the gas
– the gas density ρ,
– the gas viscosity µ,
– a characteristic velocity vch. In practice, the inlet velocity vin or the

mean velocity in the vortex finder vx are often preferred; some prefer
the mean axial velocity in the cyclone body 〈vz〉.
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– the gas relative humidity, RH. Components such as water vapour or
ammonia can influence particle agglomeration or dispersion and, hence,
grade and overall collection efficiency.

• Parameters related to the configuration of the cyclone
– the cyclone size, which we can represent by the body diameter D,
– geometry of the cyclone (H , a, b, Dx etc.),
– roughness of the cyclone wall, ks.

• Parameters related to conservative force fields
– the gravitational acceleration g,
– the Coulomb potential of an electrical field φ,
– parameter giving the strength of other fields present; we assume there

are none.

This is a large number of parameters, the full list is:

η (x) = f(x, ρp, ∆ρ, ψ, co, 〈x〉, σ, ρ, µ, vch, g, RH, φ,D,H, a, b,

Dx,more geometrical parameters).
(8.1.1)

In order to render the process more tractable, we must make some simplifica-
tions and assumptions:

The simplifications:

• We ignore the effects arising from particle agglomeration, and, therefore,
also the effects of the composition (humidity) of the gas.

• As is standard in scaling, we assume that the model and the prototype
are geometrically similar. This means that all dimensionless numbers de-
scribing the cyclone geometry, for example the ratio of the vortex finder
diameter to the body diameter: Dx/D, are the same between model and
prototype.

• The particle sphericity ψ mainly enters the analysis because it influences
the particle terminal velocity. We can account for its effect if we use the
Stokesian diameter as a measure of particle size x rather than, for in-
stance, a volume or mass equivalent diameter. We recall from Chap. 2
that the Stokesian (or “dynamically equivalent”) diameter is the diameter
of a sphere having the same terminal settling velocity and density as the
particle under consideration.

The assumptions:

• The gravitational field represented by g is so small compared to the cen-
trifugal field that its effect can be ignored. We need to qualify this: at
higher solids loadings, the motion of the strands formed on the cyclone
wall can be influenced by gravitational forces. This influence may or may
not be beneficial depending upon cyclone orientation in the gravitational
field.
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• The particles are always at their terminal velocity (Chap. 2). In this case,
ρp need not be included explicitly, but only the density difference: ρp−ρ ≡
∆ρ.

These simplifications and assumptions do not significantly limit the range
of application of our analysis. We now make some additional assumptions,
however, that do limit the range of systems to which our analysis can be
applied. The reader confronted with a specific scaling problem should check
which, if any, of the assumptions below are warranted for his or her system.

• We assume that no electrostatic field is present. So our analysis is not valid
for electrostatically-enhanced cyclone separators.

• We assume that the solid loading is no more than 2–3 g dust per kg feed gas
(i.e., mass loading ratio of less than about 0.003 kg solids/kg gas). Then
we can ignore the effect of the particles on the gas flow pattern, which
is determined mainly by co, and, to a much lesser extent, by 〈x〉 and σ.
This limits the range of validity of this analysis in practice to lightly-
loaded cyclones and/or to second and third-stage units. Many first-stage
or ‘rough-cut’ cyclones work at elevated solids loadings.

• Finally, we ignore the effect of the wall roughness, ks. Wall roughness is due
not only to the material of construction (e.g. metal, refractory lining) but
also to the solids loading. Solids rolling and sliding along the wall give rise
to an ‘equivalent’ wall roughness of their own (see Chaps. 4 and 6). Thus,
in this chapter, we shall limit our discussion to cyclones with smooth walls
and low solids loadings. Note that cyclone wall roughness is important in
many practical situations. We look at the effect of wall friction in Chaps. 4,
5, 6 and 9. As a final comment on roughness, it is actually the difference
in relative roughness between the model and the prototype that we are
ignoring here. This relative roughness is defined as the absolute surface
roughness ks divided by the radius of the cyclone body (upper cylindrical
section), D/2. A large commercial-scale cyclone with some wall deposits or
surface erosion, for example, may have a relative roughness no larger than a
small, ‘smooth walled’, laboratory cyclone. If this is the case, then the wall
friction and, hence, wall shear stress, imposed on the gas flow is the same
in both model and prototype at comparable cyclone Reynolds numbers or
in the fully developed turbulent flow regime of the friction factor versus
Reynolds number chart (described in Chap. 6). This is exactly analogous
to ordinary flow in pipes. Recalling that the Reynolds number is the ratio
of inertial to viscous forces, at high Reynolds numbers the flow within a
cyclone becomes turbulent because the viscosity of the fluid is unable to
dampen out the effects of any local disturbance.

Making all these simplifications, we state that the cyclone’s separation
efficiency, η(x) is:

η (x) = f(x,∆ρ, ρ, µ, vch, D), (8.1.2)
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and by the classical techniques for dimensional analysis, for instance the Buck-
ingham Pi method (Perry, 1997), we obtain:

η (x) = f
(

µ

Dρ vch
,
x

D
,
∆ρ

ρ

)

I II III
. (8.1.3)

Group I is 1/Re. It is a classical result in fluid mechanics that the Reynolds
number Re determines the gas flow pattern.

One thing missing from Eq. (8.1.3) is a dimensionless group that relates
directly to the movement or separation of the particles. This can be achieved
by introducing the well-known ‘Stokes number’, Stk. We can create this new
dimensionless number by multiplying together powers of the existing numbers
as follows:

1
18

× III × II2 × I−1 =
∆ρx2vch

18µD
≡ Stk. (8.1.4)

This new number can replace any one of the numbers from which it was
made without loss of information. If we replace group II with Stk, we obtain:

η (x) = f
(
Re, Stk,

∆ρ

ρ

)
. (8.1.5)

This is as far as classical dimensional analysis can take us. However, in
Appendix 8.A we obtain more physical insight by inspecting the equations of
motion for the gas and the particles. One important result of this is that the
density ratio in (8.1.5) need not appear separately, as the effect of the particle
density is accounted for in Stk. This fact allows us to simplify (8.1.5) even
further so that it becomes:

η (x) = f (Re, Stk) . (8.1.6)

Often the designer or investigator is interested only in the cut size x50,
when applying scaling rules to cyclones. Then η(x) in (8.1.6) can be set
equal to 0.5 and, denoting the Stokes number corresponding to x50 by Stk50,
Eq. (8.1.6) gives:

Stk50 = f (Re) . (8.1.7)

8.1.2 Pressure Drop

A similar analysis can be made for the cyclone pressure drop ∆p. If we include
all the variables influencing ∆p we obtain:

∆p = f(〈x〉, σ, co, ρ, µ, vch, D, ks, g, geometrical parameters). (8.1.8)

Here also we assume geometrical similarity and a low solids loading, so that
the effect of the geometrical variables, 〈x〉, σ and co can be neglected. We also
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neglect ks. After these simplifications, performing the dimensional analysis
gives:

∆p

ρv2
ch

= f
(
ρvchD

µ
,
gD

v2
ch

)
. (8.1.9)

The group on the left-hand side we recognize as one half of the Euler
number, Eu. The groups on the RHS are the Reynolds number Re, and the
Froude number Fr, respectively. Thus:

Eu = f (Re, Fr) . (8.1.10)

Fr describes the influence of gravity on the flow field. This can be dismissed
directly, referring to the classical result that there is no effect of gravity in the
absence of free fluid surfaces or stratification in the system. Thus:

Eu = f (Re) . (8.1.11)

We may note that this result is identical to that which we would have obtained
had we applied the above analysis to the flow of a fluid through a smooth-
walled pipe.

We should reiterate that the dimensional analyses in these sections only
apply to cyclones operating at low solid loading, where the effect of the par-
ticles on the gas flow can be ignored.

This completes our treatment of dimensional analysis in cyclones. In the
following section we look at applying it in practice.

8.2 Scaling Cyclones in Practice

The formal rules for scaling of cyclones have thus provided us with some fairly
simple scaling rules. In practice, even further simplification is possible, and
we shall discuss this below.

8.2.1 Approximately Constant Stk50 over a Wide Range of Re

Equations (8.1.7) and (8.1.11) suggest that if we arrange experiments in a
geometrically similar model to have the same Re as the prototype, then Stk50

and Eu will be the same as well. From Stk50 and Eu we can then calculate the
cut size and the pressure drop in the prototype. Thus, although the pressure
drop or the cut size for the prototype and the model are different in general,
one can use the pressure drop and cut size obtained from model tests to predict
these same quantities for the prototype.

Still, there is a practical problem. Due mainly to their difference in the
characteristic size (D), it is not always easy to obtain Reynolds number simi-
larity in a laboratory model with an industrial-scale cyclone without operating
the model at very high velocities or constructing a very large ‘model’. The first
example presented in Appendix 8.B is included to help illustrate this point.
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To avoid the problem of having to deal with extremely high velocities in
the model experiments, it is possible to perform such studies with water as
the carrier fluid, rather than a gas.

An additional problem in achieving Reynolds-number similarity is that,
when comparing the performance of one industrial cyclone with that of an-
other, obtaining data at the same Re for the two is often not possible.

But is it really necessary to scale-up cyclones on the basis of Re similarity?
A redeeming feature is that, in many cases, Reynolds number similarity is not
very critical. This has long been known, but the issue has only been studied
quantitatively recently, by Overcamp and Scarlett (1993), among others. They
defined Re and Stk in terms of the inlet velocity. We shall use the symbols
Rein and Stkin, respectively. Figure 8.2.1 shows a plot of the square root of
Stkin50 against Rein for a wide range of cyclones, taken from their paper.
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Fig. 8.2.1. Stkin50 vs. Rein for a range of cyclones, taken from Overcamp and
Scarlett (1993)

Most commercial-sized cyclones operate at Rein values between 105 and
106. Thus, for the commercially important range of Rein greater than 2×104,
Stkin50 is seen to be reasonably independent of Rein. This lack of, or weak,
dependency of Stk50 (or Stk corresponding to some other efficiency) upon
Re is the basis for the widely used ‘Stokesian scaling’ of cyclones. We there-
fore arrive at the important conclusion that, in Stokesian scaling, the same
separation efficiency is assumed for the same value of Stk in geometrically
similar cyclones. We can see this more clearly if we examine the equation for
the 50% collection efficiency point as computed by means of our equilibrium-
orbit model from Chap. 5. Therein, we recall, we performed a simple force
balance (centrifugal force in equilibrium with Stokes’ drag force) on a particle
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orbiting on an imaginary cylinder of diameter Dx. This led to the following
expression for the cut size (here we include the gas density via the ∆ρ term)

x50 =

√
9µvrCSDx

∆ρv2
θCS

, (8.2.1)

which can be written as,

x2
50vθCS∆ρ

9µDx
≡ Stk50 =

vrCS

vθCS
(8.2.2)

where we here have chosen 2×vθCS as the characteristic velocity vch in Stk50.
Thus, from the equilibrium orbit model point of view, when we apply Stokesian
scaling for the computation of x50, this is equialvent to stating that the ratio
of radial to tangential velocity,

vrCS

vθCS

at the equilibrium orbit position is the same for both of our geometrically sim-
ilar cyclones. From our general knowledge of fluid flow in various equipment
types, a constant velocity ratio is what we would expect for fully developed,
gas phase turbulent flow conditions.

It is interesting to note that the Stokes number that we present above,
and which we can readily derive from an elementary force balance on an
equilibrium orbiting particle, multiplied by the velocity ratio vθCS

vrCS
is simply

equal to the ratio of drag to inertial forces acting upon the particle.
In a stricter sense, however, Stk is also the ratio of the response or relax-

ation time of the particle, ∆ρ/18µ (see Chap. 2), to a characteristic time scale
of the fluid, D/vch. In addition the Stokes number shown in Eq. (8.2.2) can
also be expressed in the form:

Stk50 =
x2

50vθCS∆ρ

9µDx
=

x2
50vθCS∆ρ

9µ

Dx
≡ ds

Dx
, (8.2.3)

which is the ratio of the x50 particle’s “stopping distance” to some characteris-
tic cyclone dimension, in this case, the diameter of the vortex finder, Dx. This
stopping distance is the distance that particle of size x50 would travel against
fluid drag if the fluid surrounding the particle was to suddenly stop its mo-
tion. Thus when we apply Stokesian scaling, we are also implicity stating that
the dimensionaless stopping distance ratio, ds/Dx, reamins constant between
model and prototype. If, for example, we were to increase the size of a cyclone
so that Dx increases, in order for the Stokes number to remain constant, the
equilbrium particle’s stopping distance, ds, would also have to increase. If we
hold vθCS, ∆ρ and µ constant and double Dx, then x2

50 would have to double,
causing x50 to increase by the square root of 2. Thus, scaling-up a cyclone
always results in an increase in cut size if the other variables (comprising the
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stopping distance) are fixed. It is for this reason, and from this perspective,
that one sometimes encounters the statement “cyclones do not scale-up”.

For Rein < 2 × 104, Stkin50 can be seen to increase, showing that small
cyclones are less efficient than one would expect from Stokesian scaling. Our
defining equation, (8.1.4), for the Stokes number,

∆ρx2vch

18µD
≡ Stk (8.2.4)

shows that an increasing Stk50 means an increasing x50.
We can give an idea of the scale where this becomes a consideration. In a

cyclone with a tangential inlet of circular cross section working with ambient
air at an inlet velocity of 15 m/s, Rein = 2×104 would correspond to an inlet
diameter of 2 cm. The reduced efficiency is therefore only a feature in small
sampling cyclones or in very small ‘multicyclone’ banks. Cyclones in ‘small’
industrial units comprising multicyclone installations are seldom less than 15
cm in diameter.

We should mention that Lidén and Gudmundsson (1997) found some vari-
ation in Stk50 with Re, even at larger Re. Their study mostly concentrated
on small cyclones, typically a few centimeters in diameter.

Figure 8.2.1 includes data from cyclones of different geometries. Although
we can clearly see the trend in the figure, there is considerable scatter. For
Rein > 2× 104, (Stkin50)0.5 varies by a factor of 4, and so does the cut-point
diameter. Trying to predict the performance of all cyclones, irrespective of the
geometry, from a Stk50-Re plot is therefore not a worthwhile exercise. Even
so, the plot does give a ‘ball-park’ estimate of the Stkin50 of cyclones.

Since separation performance, as measured by Stk or Stkin50, is virtually
independent of Re it is not necessary to maintain a constant Re between the
model and the prototype when attempting cyclone scale-up. In most such
laboratory studies, it is far preferable to use air rather than water. This also
makes it easier to find a test dust, since many dusts give problems with solubi-
lization or swelling or incomplete particle wetting, among other things, when
dispersed in water.

8.2.2 Eu Only Weakly Dependent on Re

As we found for separation performance described above, Re-similarity is not
critical for the pressure drop, either. In Chap. 4 we found that many of the
empirical models for cyclone pressure drop only contain the ratio of inlet
to outlet areas, implying that Eu will be the same between geometrically
similar cyclones, irrespective of Re-similarity. Obviously, as was the case for
separation efficiency, this is only valid when Re is high enough that the friction
factor is essentially independent of Re. This should come as no real surprise
since the same situation holds true for most flow devices (such as pipes, elbows,
orifices, contractions and expansions, etc.) that operate in fully developed
turbulent flow. In such cases, pressure loss can be characterized by the formula:
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∆p = K
1
2
ρv2 (8.2.5)

where K is recognized as the familiar Eu number which we defined earlier.
For such devices it is well known that K is very weakly dependent upon Re
and can generally be treated as a constant in matters of practical interest.

This principle does have its limitation. The scaling rule of constant Eu and
the models in Chap. 4 have, in the authors’ experience, significantly overpre-
dicted pressure loss in very large-scale cyclones. There is a weak but definite
Re-number effect on the pressure loss coefficient Eu. This variation in Eu is
only with Re to the power of −0.17 to −0.2 but, when scaling up small scale
lab data by a factor of 10 or more, one can easily overpredict pressure loss by
50% or more.

In most cases, such an error on the conservative side in predicting pres-
sure drop is perfectly acceptable since, if anything, the plant will experience
less pressure drop through the cyclone installation and this seldom creates
an operational problem. However, if there is some delicate pressure balance
across a slide valve, for example, which relies on an accurate knowledge of
the cyclone’s pressure drop, then one should try to acquire the most accurate
estimate possible.

8.2.3 Some other Considerations

The above scaling rules have been found by experience to be valid in cyclones
of somewhat conventional designs operating at low solids loadings and normal
inlet velocities.

But cut size, grade-efficiency and pressure drop in such conventional de-
signs are not the only items one must consider when designing a cyclone or
evaluating its performance. Other factors will often play a crucial role; these
may include:

• the design configuration and operating environment at the gas outlet and
the solids discharge,

• the position and action of the vortex natural turning point,
• the effectiveness of the underflow seal in preventing gas upflow,
• the effect of solids loading upon overall separation efficiency and pressure

loss,
• the effect of wall roughness upon separation performance and pressure loss,
• the effects of physical damage, poor construction, wall deposits, wall flow

disturbances and other such nonideal conditions.

Most of these factors are discussed elsewhere in this book. The effects of the
natural turning point and solids loading are discussed in Chap. 9.

In geometries where the position of the end of the vortex is known to affect
performance (for instance if the cyclone length is near the ‘critical length’),
one would require Re-similarity between the model and the prototype if one
were to have confidence in the scale-up.
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8.2.4 Stk-Eu Relationships

In process engineering work the viewpoint is often taken that an improved
quality of separation or purification is achieved at a correspondingly higher
cost. Empirical relationships are developed which relate the quality of sepa-
ration achieved to the cost. Not surprisingly this includes both cyclones and
swirl tube separators. The measure of the quality of separation is the cut size,
x50 or the dimensionless cut size, Stk50, and the ‘cost’ is the pressure drop
required to achieve this, or its dimensionless measure: Eu.

It follows from Eqs. (8.1.7) and (8.1.11):

Stk50 = f (Eu) . (8.2.6)

Svarovsky (1984) found that for all ‘reasonable’ cyclone designs:

Eub

√
Stkb,50 =

√
12. (8.2.7)

The mean axial velocity in the cyclone body 〈vz〉 was used to evaluate the
Reynolds and Euler numbers. This is signified with the subscript b. His plot,
featuring the line representing Eq. (8.2.7) and his supporting data, is shown
in Fig. 8.2.2.
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Fig. 8.2.2. Eub vs. Stkb50 for a variety of cyclones according to Svarovsky (1984).
The line represents Eq. (8.2.7)

Others have presented similar correlations. Karpov and Saburov (1998)
give:

Eub Stkb50 = 0.8, (8.2.8)

which lies considerably above the line of Svarovsky, and thus gives a more
pessimistic view of cyclone performance.
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It is noteworthy that if one makes the reasonable assumption: H ∼=
3D, then Rietema’s criterion Cy50 = 3.5 (see Chap. 5) can be written
EubStkb50 = 0.92, which is very close to Eq. (8.2.8). However, as we saw
in Chap. 5, Rietema’s model predicts the effect of cyclone length correctly,
while Eqs. (8.2.7) and (8.2.8) do not.

We should also mention the work of Bürkholz (1989), who, by a variant
of dimensional analysis, derived a general separation parameter applicable
to various types of separation equipment based on impaction, including cy-
clones, mist-mats, lamellar fibre filters and packed beds. Bürkholz’ derivation
begins with a dimensional analysis including, in addition to the variables in
Eq. (8.1.2), a height H1, the gravitational acceleration, g, and the pressure
drop, ∆p. The two former variables are quickly eliminated, while inclusion of
the latter is an important aspect of the analysis, and allows Bürkholz to arrive
directly at a relationship between Stkin50 and Euin. We note that including
∆p in the analysis is not quite kosher in terms of dimensional analysis, since
∆p is not an independent, but a dependent, variable.

This procedure initially leads Bürkholz to a relation:

η(x) = f(Stkin, Rein, Euin) (8.2.9)

where the subscript in signifies that Bürkholz used vin as a characteristic
velocity. Note that Bürkholz’ definitions of Euin and Stkin miss the factors
1/2 and 18, respectively, in the numerators relative to our definitions.

Various further simplifications, partly based on experimental evidence and
similar in nature to the simplification that earlier allowed us to eliminate the
density ratio ∆ρ/ρ before, allow Bürkholz to reduce these three dimensionless
groups to one:

η(x) = f(ψA), ψA ≡ 1
4
ρs∆p

2
3 x

ρ
1
3µ

4
3D

2
3

= StkinRe
1
3
inEu

2
3
in

1
4

18
2

2
3

(8.2.10)

where the last numerical factor on the right-hand-side arises from the differ-
ent definitions of Stkin and Euin. Some of the simplifications leading to Eq.
(8.2.10) are easy to follow, while the reasoning behind one of them remains
obscure, at least to these authors.

Bürkholz found by experiment that in cyclones
√
ψA ≈ 1.7 for η(x) = 0.5,

i.e. by the cutsize of the cyclone. Substituting this in (8.2.10), and solving for
Euin gives:

Euin = 2

(
1.72

1
418Stkin50Re

1
3
in

) 2
3

. (8.2.11)

which is also a Stk-Eu relation.

1 This is a geometrical variable. Bürkholz’ initial derivation relates to a mist mat,
and H is its thickness
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These authors’ experience is that Svarovsky’s relation, Fig. 8.2.2 or Eq.
(8.2.7) works very well. We have presented the other relations for complete-
ness, and for the reader to recognize them should he or she encounter them in
other contexts. It is possible that the difference between the various relations
to some extent reflects a difference in the experimental methods on which
they are based, namely a difference in the method of measuring the outlet
pressure, as discussed in Chap. 4.

The line fitting the experimental results by Svarovsky (see Fig. 8.2.2 or
Eq. (8.2.7)) tells us that the Stokes number varies as the reciprocal of the
square of the Euler number. Furthermore, since the Stokes number varies as
the square of the cut size, x50, and the Euler number varies directly with pres-
sure loss, ∆p, it follows that the cut size is inversely proportional to pressure
loss. Thus, other factors unchanged, any attempt to decrease the cut size will
be accompanied by an increase in pressure loss.

Figure 8.2.2 also serves as a sort of benchmark for comparing cyclone
designs or for evaluating the performance of a working cyclone. For exam-
ple, if we were to gather test data on a lightly loaded cyclone system and
plot its Stokes number versus Euler number on Figure 8.2.2, the resulting
line should lie close to or below Svarovsky’s line. If, on the other hand, the
point were to lie significantly above his line, this would be a good indication
that something is hampering the cyclone’s performance. This could include
any number of factors: physical damage, poor constuction, wall deposits, wall
flow disturbances, blockage, gas upflow and even poor design practice. For
cyclones operating in parallel, connected by common plenums, an operating
point significantly above Svarovsky’s line may indicate problems arising from
cross-talk (see Chap. 16).

We may also use Svarovsky’s graph or equation to get a rough estimate of
the cut size that we could expect at some maximum allowable pressure loss.
In this case, we would first compute the Euler number knowing the allowable
pressure loss, the gas density and the superficial axial velocity (based on the
cyclone’s cross sectional area). We would then use Fig. 8.2.2 or Eq. (8.2.7) to
compute the corresponding Stokes number and, from this, the cyclone’s cut
size (knowing the gas properties, cyclone diameter and, again, the superficial
axial velocity). Clearly, we could reverse this process and obtain an estimate
of pressure loss corresponding to a given cut size.

The relationships derived in this chapter allow us to predict a cyclone’s cut-
point diameter, grade-efficiency curve, overall or ‘gross’ efficiency, and pressure
drop on the basis of measurements taken on another, geometrically similar,
cyclone. They also allow us to assess the performance of an operating cyclone
and determine whether or not there is something wrong with its design, or
with its physical/mechanical condition, or in the way in which it is operated.
We will look at an example in Appendix 8.B.
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8.A Inspecting the Equations of Motion

In this appendix we make the equations of motion for gas and particles dimen-
sionless, so that the parameters form dimensionless groups. If these groups are
equal for model and prototype, the governing equations are identical in the
two.

8.A.1 Equation of Motion for the Gas

The flow pattern of the gas can be determined by solving the Navier-Stokes
equations if there is no influence from the particles. If we assume a Newtonian
viscosity in Eq. (2.A.2), it becomes:

ρ
Dv
Dt

= −∇p− µ∇2v + ρg. (8.A.1)

Using a characteristic velocity vch, along with D and ρ as scaling param-
eters, we get the following dimensionless parameters:

v∗ ≡ v
vch

; p∗ ≡ (p− po)
ρv2

ch

; t∗ ≡ tvch

D
; ∇∗ ≡ D∇; ∇∗2 ≡ D2∇2;

D

Dt∗
≡ D

vch

D

Dt

.

Introducing these in Eq. (8.A.1), we get, after some work (Bird et al., 2002)

Dv∗

Dt∗
= −∇∗p∗ +

(
1
Re

)
∇∗2v∗ +

(
1
Fr

)
g
g
. (8.A.2)

The dimensionless velocity and pressure of the gas are thus determined by Re
and Fr. As mentioned in the main text, gravity only affects a flow pattern if
the system contains free surfaces or stratification layers. Thus, Reynolds num-
ber similarity with geometric similarity is enough to ensure dynamic similarity
for a gas cyclone with low solids loading.

This is the formal requirement for dynamic similarity, and is consistent
with the results of the classical dimensional analysis in the main text. As we
mentioned there, experience teaches us that over a wide range of operating
conditions Reynolds number similarity is not all that critical for Stokes num-
ber similarity between cyclones, and this indicates that, in this range, it is not
all that critical for dynamic similarity.

8.A.2 Equation of Motion for a Particle

The Lagrangian equation of motion of a particle rotating at the radial position
r in a centrifugal field with circumferential velocity vθ is (Eq. 2.2.4 resolved
in the radial direction)
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(
πx3

6

)
ρp
dU ′

r

dt
= −3πxµU ′

r +
(
πx3

6

)
∆ρ

v2
θ

r
(8.A.3)

where we have assumed that the particle is sufficiently small for Stokes drag
law to apply. Making this equation dimensionless, using the same scaling
parameters as above, vch, D and ρ, gives:

Stk
ρp

∆ρ

dU ′∗
r

dt
= −U ′∗

r + Stk
v∗θ

2

r∗
. (8.A.4)

If the motion is steady, the left-hand side is zero. The steady motion of the
particle is therefore determined by Stk, and ρp does not need to be included
explicitly in the analysis, as mentioned in the discussion following Eq. (8.1.4).
Also the density ratio ∆ρ/ρ does not occur in the equations when the added
mass and Basset terms are neglected.

Inspection of the equations of motion of the gas and particle phases has
thus confirmed the results of classical dimensional analysis, simplified the
results of the analysis further, and has, we trust, increased our understanding
of the physical significance of the dimensionless groups.

8.B Sample Cyclone Scaling Calculations

8.B.1 Calculating the Inlet Velocity in a Scale Model Required for
Re Similarity

Determine the velocity at which we would have to operate a 6” (152 mm)
diameter model cyclone to obtain Reynolds number similarity to a 48”
(1220 mm) industrial cyclone.

Operating Conditions:

Model: ρm = 1.19 kg/m3

Dm = 0.152 m (ID)
µm= 1.8 10−5 Pa s
vin,m= (to be determined)

Prototype: ρ = 1.30 kg/m3

D = 1.22 m
µ = 3.710−5 Pa s
vin = 22.4 m/s

Herein, the subscript m refers to the model, no subscript to the prototype.

Solution

Since Rein,m = Rein, it follows that,
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vin,m = ρvinDµm/(ρmDmµ)

and, upon substitution, we find that,

vinm = 82.4m/s!

This is an extremely high velocity and, for an inlet area of 5× 10−3 m2 (8
in2) for the model (corresponding to 0.33 m2 or 512 in2 for the prototype), the
model cyclone would require 0.42 m3/s or 15 ft3/sec of blower capacity (at a
considerable pressure loss). Such a flow condition would normally exceed the
limits of most laboratory facilities. Additionally, a laboratory-sized cyclone
operating at such high inlet velocities would exhibit such a small cut-point
diameter that it could prove difficult to collect sufficient overhead solids to
permit an accurate determination of the cut size and the grade-efficiency
curve. Static charge effects created at such high velocities, along with particle
agglomeration, could also complicate the analysis.

Although the 1.2 m diameter cyclone used in the preceding example may
seem rather large, many industrially important processes utilize cyclones of
at least this size. Some are as large as 4 m or 13 feet.

8.B.2 Predicting Full-Scale Cyclone Performance using a Scale
Model

A model cyclone of diameter D = 0.2 m operating at an inlet velocity vin

= 15 m/s at ambient conditions on a chalk powder of density 2700 kg/m3,
at low solids loading, is by testing found to have the grade-efficiency curve
shown in Fig. 8.B.1. The cyclone pressure drop was found to be 950 Pa.

We wish to predict the performance of a geometrically similar cyclone of
diameter D = 1.5 m operating with an inlet velocity vin of 20 m/s, separat-
ing catalyst particles from a gas consisting of light hydrocarbons at elevated
temperature and pressure in an FCC reactor installation.

Solution

We note from the experimental data reported above that the model’s cut-
point diameter, x50, is 0.98 µm. We do not have data at the same Re for
model and prototype, so we will make use of the approximations mentioned
in the main text. Rein is large enough in both model and prototype to assume
that the grade-efficiency is about the same in the two cyclones for the same
value of Stk, and that their Eu values are the same.

We look up the physical properties of gas and particles in the industrial
unit. They are summarized together with the relevant geometrical data in
Table 8.B.1

We begin by scaling the entire grade-efficiency curve. We calculate Stk
corresponding to the particle sizes in the model data. These values of Stk
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Fig. 8.B.1. Experimental grade-efficiency data for a laboratory model cyclone

Table 8.B.1. Relevant physical and operational data for model and prototype

Model Industrial unit

∆ρ 2700 kg/m3 1500 kg/m3

vin 15 m/s 20 m/s
µ 1.8.×10−5 kg/ms 1.5.×10−5 kg/ms
ρ 1.2 kg/m3 1.0 kg/m3

D 0.2 m 1.5 m
a 0.1 m 0.75 m
b 0.04 m 0.3 m

must correspond to the same efficiencies in the prototype, and we can back-
calculate the corresponding particle sizes. Using subscript i as an index for the
experimental points on the grade-efficiency curve, the scheme can be written:

Given (xi, ηi)model → calculate (Stki, ηi)model = (Stki, ηi)prototype →
calculate (xi, ηi)prototype

.

For instance, one of the points on the curve in Fig. 8.B.1 is: (xi, ηi) = (1.15,
0.637). Since we are assuming approximate dynamic similarity between the
model and prototype we can use Stk based on any characteristic velocity, such
as vin, which is the velocity we have been given. We then calculate:

Stkin,i =
∆ρx2

i vin

18µD
=

2700× (1.15 × 10−6
)2 × 15

18 × (1.8 × 10−5) × 0.2
= 8.27 × 10−4.

This is also the value of Stkin,i for the same ηi in the prototype, so we
can back-calculate the corresponding value of xi in the prototype by solving
for xi in:

8.27 × 10−4 =
1500 × x2

i × 20
18 × (1.5 × 10−5) × 1.5

giving: xi = 3.34 × 10−6m = 3.3 µm.
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Repeating this for all the points gives the data for the prototype shown
by the solid black points in Fig. 8.B.2.
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Fig. 8.B.2. G-E data for the model, with the calculated G-E data for the prototype

We can read off the cut size of the prototype in the figure, or we can
calculate it directly by setting Stkin50 equal in the two cyclones:

(
∆ρx2

50vin

18µD

)

model
=
(
∆ρx2

50vin

18µD

)

prototype
,

and solve for x50 in the prototype. The result is:

x50 = 2.85 × 10−6m = 2.8µm.

We see from the figure that we can expect all catalyst particles greater
than about 10 µm to be completely captured in the industrial unit. We also
see that the grade-efficiency curve for the prototype has the same s-shape
form as that of the model on the logarithmic scale.

One may quickly obtain a rough ‘back of the envelope’ estimate of the
overall or gross separation performance of a lightly-loaded cyclone as follows
(see also Sect. 3.2.3):

First, we ‘fit’ the experimental G-E data with a simple step function or
stair-step curve, as shown in Fig. 8.B.3, for example. This step function rep-
resentation of the s-shaped G-E curve has the properties:

η(x) = 0 for x < x50 and η(x) = 1 for x > x50.

Next, we note the weight percent of the feed particles > x50. This is our
estimate of the overall or gross collection efficiency. The weight percent < x50

comprises the losses.
The authors have found this technique to be quite useful in practice, espe-

cially in situations where one is anticipating the effect a change in cut-point
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Fig. 8.B.3. Grade-efficiency data for the prototype showing a stair-step type of
approximation

diameter may have upon total collection performance, namely, the loss frac-
tion.

When viewed from this ‘step function’ perspective the cyclone behaves in
a manner that is completely analogous to a perfect sieve: all particles entering
the ‘sieve’ (the cyclone) that are greater than the sieve openings (the cyclone
cut-point) are retained (captured). Likewise, all particles that enter but are
less than the sieve openings (cut-point) pass on though (exit with the overhead
gases). Even for the particle that may become ‘stuck’ in the sieve openings
there is an analogy—this is the cyclone’s cut size or, as it is sometimes called,
its cut-point.

Let us now try to estimate the overall pressure drop in the commercial
reactor cyclone. The discussion in the main text of this chapter and in Chap. 4
leads us to expect the Eu number to be the same for the two. In addition, we
can calculate Eu on basis of the inlet velocity:

(Euin)model =
(

∆p
1
2ρv

2
in

)

model

=
950

1
2 × 1.2 × 152

= 7.03

= (Euin)prototype =
(∆p)prototype
1
2 × 1.0 × 202

.

Solving for the pressure drop over the industrial prototype, we obtain a value
of 1400 Pa. We note that, even though the gas density was lower in the
commercial unit, the overall pressure drop for the commercial unit increased,
relative to the model, due the increase in inlet velocity.

It should also be pointed out that the Eu number of the commercial cy-
clone is essentially constant and independent of variations in any of the vari-
ables comprising this dimensionless number, such as gas density or inlet ve-
locity. Thus, if we were to know its pressure drop for any operating condition
then, knowing also the gas density and its inlet velocity, we could quite easily
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compute its Euler number. From this, we could then compute its pressure drop
at any gas density and/or inlet velocity of interest. In the above example, if
the inlet velocity were to be increased to 30 m/sec, the pressure drop would
increase to (30/20)2 × 1410 = 3170 Pa. Such simple scaling methods can be
of very practical value to the plant or support engineer.

We will leave it to the reader to locate the point corresponding to Stk and
Eu on the plot of Svarovsky, to see how well this cyclone works. Remember
to change the scale velocity from vin to 〈vz〉. You will find the necessary
information for this in Table 8.B.1.




