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Basic Ideas

In order to understand the practical working of cyclones, it is necessary to
master a number of topics, which span a range of different disciplines. Fluid
mechanics, particularly relating to swirling flows, particle motion in a fluid,
and different aspects of particle properties, such as size and size distribution,
shape, and density, are all topics relevant to the later chapters.

This chapter contains a series of short discussions of these topics. Due to
the nature of the subject matter, it can be difficult to recognize a ‘red thread’
in this chapter, but the account of each particular topic should be sufficient
for appreciating the material in the subsequent chapters. Literature references
are given for the reader wishing to study the disciplines more broadly.

2.1 Gas Flow

This section discusses some aspects of fluid mechanics that are particularly
relevant to cyclones and swirl tubes.

2.1.1 Swirling Flow

Swirling flow, or vortex flow, occurs in different types of equipment, such as
cyclones, hydrocyclones, spray dryers and vortex burners. Swirling flow also
plays a central role in the developing fields of fluidics and process intensifi-
cation. It is also the basis for the operation of foam-breaking or ‘defoaming’
separators that have received significant industrial attention in recent years.

We derive the equations for the tangential velocity distribution in two
types of ideal swirling flows:

1. forced vortex flow, which is swirling flow with the same tangential velocity
distribution as a rotating solid body, and

2. free vortex flow, which is the way a frictionless fluid would swirl. The
tangential velocity in such a swirl is such that the moment-of-momentum
of fluid elements is the same at all radii.
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The tangential velocity distribution in real swirling flows is intermediate
between these two extremes.

In order to derive these equations, we start by considering the forces acting
on a fluid element in a swirling flow, as shown in Fig. 2.1.1. We use a cylindrical
coordinate system (r, θ, z) (Weisstein, 1999) fixed in space with the z-axis,
the axis of rotation, pointing out of the paper.

As the element rotates, it accelerates toward the center. If it did not accel-
erate it would continue in a linear path tangent to the orbit toward the axis
of rotation. This acceleration is the ‘centripetal acceleration’.

If we observe the element from a coordinate system, which is not fixed in
space by rotating with the element, the centripetal acceleration will not be
observed, but will appear as an apparent force directed away from the axis
of rotation, the ‘centrifugal force’ (Fig. 2.1.1 b). This latter force is similar in
nature to the gravity force, and acts away from the axis of rotation with a
magnitude equal to the mass of the element times the centripetal acceleration.

Fig. 2.1.1. A fluid element in a swirling flow, from two different points of view a a
fixed coordinate system, and b a coordinate system rotating with the element

Strictly speaking, Newton’s equations of motion apply only in a coordi-
nate system that is not accelerating (in this case, rotating). Nevertheless, for
mathematical simplicity, scientists and engineers often use an accelerating co-
ordinate system (a rotating one, for instance), and then devise a non-physical
or “pseudo force” (such as the “centrifugal force”) in order to apply or pre-
serve the equation of motion. We say “non-physical” because, in a rotating
coordinate system, it is not possible to identify a physical object which pro-
duces the force needed to satisfy Newton’s laws of motion. Also, real forces
always occur in pairs yet, if we were to shrink in size and hitch a ride atop
a tiny ball connected to a central post by a string and spin around the post,
the one and only force we would experience would be the inward force (or
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tension) exerted by the string. To then explain why the string does not pull
us inward toward the post, we create an outwardly directed “pseudo force”,
called the “centrifugal force”, whose magnitude is the mass of the spinning
object times the inwardly directed centripetal acceleration, or mv2

θ/r, where
vθ is the tangential velocity of the ball, and r the length of the string.

For a fluid element (as opposed to a solid or liquid particle, which we will
discuss later), the so-called “centrifugal force” is balanced by a force created
by a gradient in the static pressure. This pressure gradient acting over the
surface of the particle is the “string” tension in our spinning ball example
mentioned above. Thus, this latter force acts toward the axis of rotation and
keeps the element in its path. This is sketched in Fig. 2.1.2. Depending on
our point of view1, we could also say that this pressure force gives rise to the
centripetal acceleration or “centrifugal force”. As we shall see in Appendix 2.A
the pressure in a swirling flow increases with the distance from the axis of
rotation.

 

Centrifugal 
force 

Resultant 
pressure force 

Pressure force 

Fig. 2.1.2. Detail of a rotating fluid element in a rotating coordinate system, with
the forces acting on it indicated

Now imagine first that the swirling fluid has an infinite viscosity (behaves
like a solid body). Hence, no shearing motion exists between fluid layers at
different radii. In this case fluid elements at all radial positions are forced
to have the same angular velocity. The angular velocity, Ω, is measured in
radians per unit of time, usually seconds, and therefore has units s−1. It equals
vθ/r, with vθ the tangential velocity, measured in m/s. Swirl with constant Ω
is called ‘forced vortex flow’ or ‘solid-body rotation’:

vθ = Ωr (2.1.1)

This is the first ideal swirl flow.
In the other extreme, if the swirling fluid has no viscosity, the motion of

a given fluid element is not influenced by the neighboring elements at smaller
1 In principle, cause and effect cannot be identified in this type of flow
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and larger radii. If we, in such a fluid, bring an element to a smaller radius, its
tangential velocity will increase, since its moment-of-momentum (mass times
tangential velocity times radius of rotation: mvθr) will be conserved. We call
a vortex where moment-of-momentum is conserved in this way, ‘loss free’, or
‘frictionless’. In such a flow we have rvθ = C, with C a constant, so that:

vθ =
C

r
. (2.1.2)

This is the second ideal swirl flow. We should point out that the quantities
vθ, Ω and r are vectors since they have both magnitude and direction. Here,
however, we are only interested in their magnitudes and, for this reason, we
dispense with the vectorial notation.

These two ideal flow patterns are derived from the fundamental equations
of fluid mechanics in Appendix 2.A. This derivation is useful for a fuller un-
derstanding of the flow, but it is not essential for appreciating the material in
this book as a whole.

A real fluid will have some finite viscosity, which will cause transfer of
moment-of-momentum between layers at different radii. An additional trans-
port of moment-of-momentum will be caused by any turbulence present, due
to exchange of fluid elements between the layers.

A real swirling flow normally has a core of near solid-body rotation sur-
rounded by a region of near loss-free rotation as sketched in Fig. 2.1.3. This
is called a ‘Rankine vortex’.

 

Real vortex 

vθ 

r

Solid body rotation vθ = Ω r 

Loss free vortex, vθ = C/r 

Fig. 2.1.3. Sketch showing the two ideal vortex flows, and the tangential velocity
distribution in a real vortex

2.1.2 Static and Dynamic Pressure

The flow and pressure distribution within cyclones and swirl tubes is more
easily understood if we make clear the relation between static and dynamic
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pressures: p and 1/2ρv2, respectively, with ρ the density. The well-known
Bernoulli equation for steady flow of a frictionless, constant density fluid,
which can be derived from the Navier-Stokes equations (Bird et al., 2002),
states that:

p

ρ
+ gh+

1
2
v2 = constant along a streamline. (2.1.3)

In this equation, we recognize the static and dynamic pressures—the latter is
often called the ‘velocity head’—as the first and third terms on the left-hand
side. They have been divided by the fluid density.

This equation shows that static and dynamic pressures can be interchanged
in the flow field. In areas where the velocity is high, the static pressure will
be low and vice versa. This is the principle used in many flow meters, for in-
stance pitot tubes and venturi meters. It is especially important to appreciate
this interdependence between static and dynamic pressure when dealing with
swirling flows.

The left-hand side of Eq. (2.1.3) is sometimes called ‘Bernoulli’s trinomial’.
The second term is unimportant relative to the two others when discussing gas
cyclones and swirl tubes, since the fluid density is relatively low, and height
differences not very large.

In an actual flow situation, the fluid is not frictionless. Frictional dissipa-
tion of mechanical energy will therefore cause Bernoulli’s trinomial to decrease
in the flow direction, i.e. the trinomial is no longer constant, but decreases
along a streamline.

Frictionless flow is, nevertheless, a reasonably good approximation in the
outer part of the swirl in a cyclone, Bernoulli’s trinomial does not change very
much there.

Friction is taken into account in the ‘extended Bernoulli equation’, some-
times called the ‘frictional form of the Bernoulli equation’ or the ‘engineering
Bernoulli equation’ (Bird et al., 2002).

2.2 Particle Motion

We now look at the motion of a solid or liquid particle in a fluid, starting with
a general discussion and focusing on the particle motion in swirling gas flows
toward the end of the section.

In a gas cyclone or swirl tube, the particles of interest are almost always
moving relative to the gas at their terminal velocity, and the terminal velocity
of a given particle determines whether it will be captured or lost. This termi-
nal velocity is exactly analogous to that of a particle settling in the earth’s
gravitational field, g, under steady-state conditions except that, for a cyclone,
the radially directed centrifugal force, mv2

θ/r replaces the gravitational one.
This will be discussed in detail later.
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We are therefore interested in calculating the particle terminal velocity in
the swirling flow. We begin with the equation of motion of a particle in a fluid.

Applying Newton’s law to a particle moving in a fluid, equating its mass
times acceleration to the sum of the forces acting on it, we obtain

⎛
⎝

mass
times
acceleration

⎞
⎠ =

(
body
force

)
+
(

fluid
drag

)
+

⎛
⎝

unsteady
force
terms

⎞
⎠

where the body force is normally due to a gravitational field and/or a cen-
trifugal force. Following our earlier discussion, in using the term ‘centrifugal
force’ we are implying that the above force balance is being performed in a
reference coordinate systems that is rotating with the particle. The fluid drag
is the drag acting on the particle if it moves with a steady velocity relative to
the fluid, while the unsteady terms account for the effects of acceleration of
the particle relative to the fluid. With appropriate substitution into the above
expression the general equation of motion for a particle in a Newtonian fluid
becomes Clift et al. (2005):
(
πx3

6

)
ρp
dU′

dt
=
(
πx3

6

)
(ρp − ρ) a− CD

(
1
2
ρU′ ‖U′‖

)(
πx2

4

)

−
(

added
mass

)
−
(

Basset
term

) (2.2.1)

where U’ is the particle velocity vector relative to the gas and has cylindrical
coordinate components (U ′

r, U ′
θ, U

′
z); a is the acceleration vector of an external

force field (equal to g for a gravitational field); ρp and ρ are the particle and
fluid densities, respectively, and t is time. ‖·‖ denotes the absolute value (the
length) of the vector. Throughout this book we shall represent the particle
diameter with the symbol x.

The first term on the right-hand side represents the body force, and the
second term the drag FD acting on the particle when the flow around it is
fully developed, CD is the drag coefficient.

The two last terms on the right-hand side of (2.2.1) relate to fast, unsteady
motion. The added mass term accounts for the fact that when accelerating
a particle from rest, the surrounding fluid must also be accelerated. This
appears to ‘add mass’ to the particle. The Basset integral says that the drag
will, by rapidly changing motion, depend not only on its instantaneous velocity
relative to the fluid, but also on the previous motion since the fluid flow pattern
may not have had time to adjust, due to the fluid inertia. These two terms
are zero in steady movement.

Clift et al. (2005) showed that ignoring these two unsteady terms (in par-
ticular the Basset integral) can lead to errors for a rapidly changing motion
in liquid. Fortunately, in the case of gas cyclones we can safely ignore them,
even when calculating the rapid, small-scale turbulent motion, since the gas
inertia is relatively small. In fact, it turns out that this is true even for the case
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of hydrocyclones, where the carrier fluid is a liquid rather than a gas. Also
practical plant experience with their design and operation indicates that it is
not necessary to include either the added mass or the Basset terms appearing
on the right-hand side of (2.2.1).

The second term on the right-hand side in (2.2.1) can be simplified. In gas
cyclones we are concerned with small particles (small x) moving in a fluid of
low density (small ρ), so that the ‘particle Reynolds number’:

Rep ≡ ρ ‖U′‖x
µ

(2.2.2)

is relatively low, in spite of the relatively low viscosity µ. For low Rep, the
equations of motion—Eqs. (2.A.1) and (2.A.2) in Appendix 2.A—for the fluid
moving around the particle can be solved, and FD calculated. If there is no
slip between fluid and particle surface (that is: the fluid velocity is equal to
the velocity of the surface at the surface), the result is ‘Stokes drag law’ (Bird
et al., 2002):

FD = −3πxµU′. (2.2.3)

Comparing this with the expression for the fluid drag term of Eq. (2.2.1)
and, by using Eq. (2.2.2), we see that CD = 24/Rep, which is the particle’s
drag coefficient under conditions of laminar flow.

These simplifications produce the following equation of motion for the
particle: (

πx3

6

)
ρp
dU′

dt
= −3πxµU′ +

(
πx3

6

)
(ρp − ρ)a. (2.2.4)

If we solve this differential equation in one direction indicated by the index
i (replacing the vectors with their components in the i-direction, where i is
a Cartesian coordinate), assuming U ′

i = U ′
i,0 at t= 0, the particle velocity

relative to the gas becomes:

U ′
i =

x2 (ρp − ρ) ai

18µ

(
1 − exp

[
−18µt
x2ρp

])
+ U ′

i,0 exp
[
−18µt
x2ρp

]
=

(
ρp − ρ

ρp

)
τai

(
1 − e−t/τ

)
+ U ′

i,0e
−t/τ

(2.2.5)

where τ is called the ‘particle relaxation time’:

τ ≡ x2ρp

18µ
. (2.2.6)

For large t the exponential terms go to zero, and the particle reaches its
terminal velocity. If ρp � ρ, as it is in gas cyclones, the terminal velocity is
(dropping the index i):

U ′
t = U ′

Stk = τa =
x2ρp

18µ
a for ρp � ρ (2.2.7)



30 2 Basic Ideas

where the subscript Stk signifies that this is the ‘Stokes’ velocity’, i.e. the
terminal velocity of a particle when Stokes’ drag law applies. Small particles
in gas cyclones reach their terminal velocity quickly. We can see this from
Eq. (2.2.5): τ is small for small x (in the cases we are considering it is of the
order 10−3 s), so the exponential term goes to zero quickly. We may put this
into perspective for commercial cyclones for which the particle residence time
within the cyclone typically lies within the range of about 50 milliseconds
(ms) for small, high velocity cyclones to 1 to 2 seconds for large industrial
units such as those in use in large coal conversion units or fluid catalytic
cracking (FCC) units. This means that we can ignore the unsteady part of
Eq. (2.2.5), even for the rapid, small-scale velocity fluctuations caused by the
gas turbulence, and assume the particle will always be at its terminal velocity
relative to the gas.

In Fig. 2.2.1 velocity is plotted against time for a 10 µm particle of density
2700 kg/m3 (a typical density, close to, for instance, those of chalk or sand)
dropped in air in the field of gravity. The terminal velocity and τ are indicated.
The particle approaches its terminal velocity within a couple of milliseconds.

As mentioned, Stokes’ drag law is valid for low particle Reynolds numbers.
Another requirement for Stokes’ law to apply is that the surrounding fluid can
be considered a continuous medium. This is not so for very small (sub-micron
size) particles in gases, especially for sub-micron particles feeding cyclones
operating under high vacuum conditions. In some applications, for example,
vacuum assists with the drying of moist or solvent-laden incoming solids.
Here we have to take into account the fact that the gas consists of individual
molecules. This has two effects:

1. Collisions with gas molecules give rise to a fluctuating particle motion
(‘Brownian motion’). This can be neglected compared to any large-scale
turbulent particle dispersion.

2. A slip takes place between the gas and the particle as the free space
between the gas molecules becomes comparable to the particle size. This is
accounted for in the drag law by multiplying the terminal particle velocity
calculated from Stokes’ law, U ′

Stk, by the ‘Cunningham correction factor’,
Cc (Allen, 1990):

U ′ = U ′
StkCc = U ′

Stk

(
1 +

2λ
x

)
(2.2.8)

where λ is the molecular mean free path. This correction factor can be viewed
also as a correction to the viscosity term appearing in the denominator of
(2.2.7). Thus, the ’effective’ viscosity becomes the gas viscosity times the Cun-
ningham correction factor. It has the effect of always decreasing the effective
viscosity and, hence, the drag that all particles—not just the the sub-micron
particles—experience.

We now turn our attention to the behavior of a particle in a swirling
flow. Here, we can apply some of what we have previously discussed about
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Fig. 2.2.1. The velocity of a particle (x=10 µm, ρp=2700 kg/m3) dropped in air.
Calculation is according to Eq. (2.2.5)

a rotating fluid element to a solid or liquid particle. One difference, though,
is that the force arising from the pressure gradient in the fluid, which in
this context is akin to the buoyancy force acting in a gravitational field, will
not keep the particle in its path unless it has the same density as the fluid.
In gas cyclones the particle density is much higher than that of the carrier
gas, so the ‘buoyancy’ is low and the particle will move radially outward
in the vortex. This, then, becomes and defines the primary mechanism for
separation of particles within a cyclone. As we shall see, we can even ignore the
buoyancy when calculating the particle’s velocity, so that the only significant
force opposing the particle’s outward radial motion is a drag force.

If the particle moves with the same tangential velocity as the gas, and
we choose a coordinate system rotating with the particle, we can consider
the centrifugal force as analogous to the force of gravity. This allows us to
replace the acceleration a in Eq. (2.2.5) with the magnitude of the centripetal
acceleration: v2

θ/r, and we can say that a centrifugal force equal to mpv
2
θ/r,

where mp is the mass of the particle, acts on the particle (compare with
Eq. (2.A.12) in Appendix 2.A).

When ρp � ρ, the particle will thus be centrifuged outward (see Fig. 2.2.2),
resisted by drag, and will move with a terminal velocity relative to the gas of:

U ′
r = (Ur − vr) =

x2ρp

18µ

(
v2

θ

r

)
= τ

(
v2

θ

r

)
for ρp � ρ. (2.2.9)

This outward movement of the particle is, as mentioned, the principle of sep-
aration in all centrifugal separators, both for dedusting and demisting.

In addition to its mean movement, a particle in a cyclone will also have
a small scale, fluctuating motion in response to the local turbulence in the
gas. This is more severe for smaller particles, which are most affected by
the fluctuations in the gas velocity. The turbulent motion gives rise to some
dispersion and mixing of the particles.
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Fig. 2.2.2. Sketch showing gas and particle pathlines in a swirling flow field where
the gas has no radial velocity component, that is: vr = 0 in Eq. (2.2.9). The vectors
represent the radial, tangential and resultant particle velocity components

2.3 Particle Size

2.3.1 Definitions of Particle Size

The motion of a particle, and its separation in a cyclone, obviously depends
on its size, amongst other important factors, such as its density, shape, and
tangential velocity. By the term ‘size’ we normally mean the diameter. The
particle diameter can be defined in different ways, and one should be aware
which one is used in a given context. Clift et al. (2005) and Allen (1990)
review this issue. We mention here the definitions that are most relevant for
cyclones.

The ‘volume equivalent’ diameter is the diameter of a sphere with the
same volume as the actual particle2. The ‘surface equivalent’ diameter is the
diameter of a sphere with the same surface area as the actual particle. The
‘surface/volume diameter’ is the diameter of a particle with the same surface-
to-volume ratio as the actual particle.

To illustrate this, a cylindrical particle with height 2L and diameter L is
shown in Fig. 2.3.1, together with its equivalent spheres.

Very central to cyclone technology is the ‘dynamically equivalent’ particle
diameter. This is the diameter of an equi-dense sphere that has the same ter-
minal velocity as the actual particle. Calculating this can be difficult in the
range of intermediate Reynolds numbers, or when the Cunningham correc-
tion is significant. In the region where Stokes drag law applies, we call it the
‘Stokesian’ diameter.

2 If all the particles are of the same density, then the volume equivalent diameter
is the same as the mass equivalent diameter, since their mass is then proportional
to their volume.
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Cylindrical 
particle. 
Height: 2L
Diameter: L

Volume equivalent sphere. 
Diameter: 1.44 L

Surface equivalent sphere. 
Diameter: 1.58 L

Surface/volume 
equivalent sphere. 
Diameter: 1.2 L

Fig. 2.3.1. Sketch of a cylindrical particle with the different equivalent spheres

A similar measure, which is widely used in aerosol science, is the ‘aerody-
namic particle size’. This is the diameter of a sphere of density 1000 kg/m3

that has the same terminal velocity as the actual particle in air at normal
temperature and pressure in a gravity field.

Figure 2.3.2 from Kaye (1995) shows silhouettes of dynamically equivalent
particles. The more nonspherical the actual particle, the larger it needs to
be in order for it to settle with the same terminal velocity. The spheres to
the right are Stokes diameters, those to the left aerodynamic diameters. Since
uranium dioxide is far denser than 1000 kg/m3, the two diameters differ the
most for this type of particle.

2.3.2 Particle Size Distribution

The particle size distribution of a given dust or mist can be reported as a num-
ber, length, surface, volume or mass (weight) distribution. Figure 2.3.3 shows
number and volume distribution curves for a sample powder. The curves in
the figure are density curves : the function values f(x) represent the fraction of
particles in a given interval divided by the width of that interval. The definition
of the number density distribution fN (x) is thus:

fN (x)dx = the number fraction of particles with a diameter between
x− 1/2 dx and x+ 1/2 dx,

and the definition of the volume density distribution fV (x) is:

fV (x)dx = the volume fraction of particles with a diameter between
x− 1/2 dx and x+ 1/2 dx.

Since the particle volume is proportional to x3, the larger particles con-
tribute much more to the volume distribution than to the number distribution.
This can be seen in the shapes of the curves in Fig. 2.3.3. The larger parti-
cles contribute negligibly to the number distribution, which appears to go
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Fig. 2.3.2. Silhouettes of several different particle types along with their equivalent
aerodynamic and Stokesian diameters from Kaye (1995)

to zero, while they contribute substantially to the volume distribution. The
same holds true for the mass or weight distribution. For this reason it is also
difficult to obtain a statistically satisfactory volume distribution from sizing
methods based on particle counting if the particle size distribution is wide
(many small particles need to be counted for each large one).
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Fig. 2.3.3. Number and volume density distributions for a sample powder
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If one of the distributions is known, the others can be calculated; at least
this is the case if one assumes the particles to be spherical (Allen, 1990). For
instance, we can calculate the volume density distribution from the number
density distribution. Since the number fraction of particles in the diameter
interval: x− 1/2 dx and x+ 1/2 dx is fN (x)dx, then:

fV (x) ∝ πx3

6
fN (x) dx. (2.3.1)

We have to choose the proportionality constant so that the area under our
volume density distribution becomes unity:

fV (x) dx =
πx3

6 fN (x) dx
∞∫
0

πx3

6 fN (x) dx
. (2.3.2)

In addition to density distributions, a very widely used method of reporting
a particle size distribution is through the use of its ‘cumulative undersize
distribution’ F (x), defined as the fraction of particles with a diameter less
than x. F (x) is related to the density function f(x) by:

F (x) =

x∫

0

f (z)dz, f (x) dx = dF (x) (2.3.3)

where we have used z as the dummy variable of integration.
In Fig. 2.3.4 the cumulative undersize distributions corresponding to the

density functions in Fig. 2.3.3 are shown.
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Fig. 2.3.4. Cumulative number and volume distributions for the powder in Fig. 2.3.3

Throughout this book, we shall be using the volume distributions and, in
order to simplify the notation, we drop the subscript V from now on. In prac-
tice, one frequently encounters the terms ’mass’ or ’weight’ distributions such
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as that obtained from sieve analysis. It is important to recall that, irrespective
of the way in which the particle sizes are measured or reported, if the density
of the particles comprising the distribution does not change as a function of
particle size, then the particles’ mass and weight distributions are identical to
their volume distribution. This is so because the volume of any one particle or
fraction of particles is directly proportional to its mass or weight if its density
remains constant.

A number of model distribution functions exist, some of which fit the size
distributions of many powders quite well. The model functions used most
frequently are the ‘normal’ (or ‘Gaussian’) distribution, the ‘log-normal’ dis-
tribution and the ‘Rosin-Rammler’ distribution (Allen, 1990). These are given
in Appendix 2.B for reference. The latter two can be fitted particularly well
to the volume distributions of a wide range of powders. The Rosin-Rammler
distribution was used to produce Figures 2.3.3 and 2.3.4.

It should be added, however, that it is generally not necessary or even
necessarily desirable to represent a particle distribution by ‘fitting’ it to any
particular distribution function, a priori. Computer programs for designing
and evaluating cyclone performance normally utilize the ‘raw’ particle size
distribution data (often in cumulative form) in their internal computations.
This technique eliminates any errors pertaining to any differences that may
exist between the mathematical ‘fit’ of the data and the actual data that is
being fitted. Often it is observed that some distribution function does ‘fit’ the
majority of the measured distribution data but may, for example, fail to fit
the smallest particle size fraction. Under such conditions, if it were important
to know about the collection or losses of the ’fines’, one would not want
to use such a distribution model in practice. Instead, the actual measured
distribution data would be utilized for cyclone simulation purposes.

Finally, we consider the mean and spread of a particle size distribution.
The mean size can be defined in different ways, depending on which property
of the powder is important. A review of this can be found in Allen (1990).
In this book, we use the volume distribution, and the ‘volume mean’ particle
size, which is equivalent to the mass mean particle size, is defined as the first
moment of the volume distribution around zero:

〈x〉 =

∞∫

0

xf (x) dx. (2.3.4)

Other characteristic sizes are: the ‘median size’, xmed, defined as the size
at which F (x)=0.5, and the ‘mode’, defined as the size where f(x) takes its
maximum value.

We note here that the mean and the median sizes are often close in practice,
and that, of these two, the median size is much easier to determine by reading
directly off the cumulative size distribution. The median is therefore often
taken as the ‘mean’ particle size for a given powder in practice, while in the
model distribution functions the mean is that defined in Eq. (2.3.4). We shall
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follow common practice by using the median diameter as a measure of the
‘mean’ particle size in this book, we will refer to it as the ‘(mass) average’ or
the ‘median’ size, but always use the symbol xmed when we mean the median.

We may also characterize the particle size distribution through a parameter
that characterizes its spread, σ, the square of which is the second moment
around the mean :

σ2 =

∞∫

0

(x− 〈x〉)2 f (x) dx. (2.3.5)

The above parameters are very useful to characterize powders with only
two parameters, for instance for controlled laboratory experiments in which
results need to be related to the particle size distribution. However, they
rarely enter the considerations in engineering design. Those whose job it is
to design and/or troubleshoot cyclone systems in industry are generally faced
with designing or evaluating the performance based on what the upstream
process delivers, using a measured particle size distribution as a basis for
calculations.

2.4 Particle Density

In addition to size, one more particle property plays an important role in de-
termining particle motion in fluids, and therefore also in cyclones: the particle
density.

If the particle is a nonporous solid, its density is unequivocal, but if it is
porous, we need to distinguish the density of the solid material comprising
the particle (often called the ‘skeletal’ density) and the overall or effective
particle density, including both the solid material and the pores. The latter is
often called the ‘envelope density’ or ‘the density in a Stokes-settling sense’.
In practice, it is the envelope density that determines the behavior of the
particle in a fluid, and is therefore the density we wish to determine.

Particle density is often determined by some sort of pycnometry. If a liquid
is used as the pycnometric fluid, this is mostly done in a so-called ‘density
bottle’, where the masses are determined of:

• the empty bottle, m1

• the bottle containing the powder sample only, m2

• the bottle containing the powder sample filled with the liquid, m3

• the bottle filled with the liquid only, m4

The mass of the powder sample is given by (m2 −m1), while its volume is
given by [(m4−m3)−(m2−m1)]/ρl, where ρl is the density of the pycnometric
liquid. The density can then be found by dividing the mass of the sample with
its volume.

If the pycnometric fluid penetrates into the pores of the particles, the
density determined will be the skeletal density. In order to find the envelope
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density, some pycnometric fluid has to be found that will penetrate the in-
terstitial space between the particles, but not the pores within the particles.
Mercury can be used for this, whereby the mercury is added under vacuum,
so that it will penetrate the interstices between the particles properly. If one
is interested in the skeletal density, and the pores in the particles are fine, air
can be used as the pycnometric fluid in specially designed equipment.

We note that if, during particle sizing, the dynamically equivalent particle
size is determined, the problem of determining the appropriate particle density
is solved already.

We have now reviewed the most essential topics necessary for an appre-
ciation of the basic working of gas cyclones. We shall make frequent use of
these developments in the subsequent chapters, and we shall look at models
for cyclone performance based on the above-mentioned basic principles. We
hasten to add that a cyclone design based on these principles is only a start-
ing point. Many key issues for practical cyclone design and operation are of a
highly complex nature and cannot be described using the basic ideas of single
particles in swirling flows alone. Examples are the effect of inlet solids loading
on cyclone separation efficiency, the ‘natural turning point’ of the vortex, the
phenomenon of ‘hopper crossflow’, hopper venting, and the issue of cyclone
erosion. We will be discussing these and some related issues later on.

2.A Ideal Vortex Laws from the Navier-Stokes
Equations

In this appendix, we will derive the essential equations for swirling flow from
the basic equations of fluid mechanics: the Navier-Stokes equations. The
Navier-Stokes equations are derived in most textbooks on fluid mechanics,
for instance Bird et al. (2002).

The ‘equation of continuity’ states that material can neither be generated
nor destroyed. For an incompressible fluid the equation is:

∇ · v = 0 (2.A.1)

with v the fluid velocity vector.
The ‘momentum conservation’ equation states Newton’s law for a fluid

element: its mass times acceleration equals the sum of the forces acting on it:

ρ
Dv
Dt

= −∇p−∇ · τττ + ρg (2.A.2)

where ρ is the density, p the pressure and g the gravitational acceleration.
τττ is the deviatoric stress tensor (see below). The terms in (2.A.2) represent
from left to right:

• The mass times acceleration per unit volume. This is the density multiplied
by the absolute (or ‘material’) derivative of the velocity. The material
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derivative D/Dt gives the acceleration of a fluid element in a Eulerian3

frame of reference.
• The net force due to normal stresses per unit volume.
• The net force due to shear stresses per unit volume. τττ is the ‘deviatoric’

stress tensor, meaning that the pressure has been subtracted from the total
stress tensor, so that the sum of the three diagonal elements is zero. This
essentially leaves us with the shear stresses.

• The gravitational force per unit volume.

Equation (2.A.2) can be expressed in terms of its coordinate components.
For cyclones, it is convenient to use a cylindrical coordinate system (r, θ, z),
with the z-axis along the cyclone axis. Writing out the θ-component of Eq.
(2.A.2) gives (Bird et al., 2002):

ρ

(
∂vθ

∂t
+ vr

∂vθ

∂r
+
vθ

r

∂vθ

∂θ
+
vrvθ

r
+ vz

∂vθ

∂z

)
=

I II III IV V

− 1
r

∂p

∂θ
−
(

1
r2

∂

∂r

(
r2τrθ

)
+

1
r

∂τθθ

∂θ
+
∂τθz

∂z

)
+ ρgz

VI VII VIII IX X

(2.A.3)

In the shear stress components τ , the first index indicates the plane on
which the stress acts, and the second its direction.

This complicated looking equation can be simplified to give useful informa-
tion about swirling flow. In steady, axisymmetrical vortex flow with negligible
velocity in the r and the z-directions, the terms listed in Table 2.A.1 can be
eliminated4.

This leaves only term VII, and, since 1/r2 �= 0:

∂

∂r

(
r2τrθ

)
= 0. (2.A.4)

And, because the derivative of the quantity in parenthesis is equal to zero,
the quantity itself is a constant, which we call C1:

3 In a ‘Eulerian’ frame of reference time derivatives are stated in a stationary
frame. Therefore, in order to write the time derivative of a property ϕ for a fluid
element, we have to include both the local derivative (the rate of change of ϕ at
the stationary point) and the convective derivative (the rate of change of ϕ in the
direction in which the fluid element is moving). The Eulerian frame is in contrast
to a ‘Lagrangian’ frame where we state time derivatives following a fluid element
(or a particle).

4 We note that this is an idealized flow pattern, if the radial velocity in a cyclone
were zero, the cyclone would not function since, then none of the entering fluid
could make its way to the inner core, and, hence, out the vortex finder.
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Table 2.A.1. Eliminating terms in Eq. (2.A.3)

Term eliminated Reason

I steady flow, no change with time
II and IV no radial velocity
III and VI and VIII no gradients in the θ-direction (axisymmetric flow)
V and IX no gradients in the z-direction

τrθ =
C1

r2
. (2.A.5)

The next step is to relate the shear stress τrθ to the velocity field. The
simplest way of doing this is to assume a constant Newtonian viscosity, µ.
Then the expression for τrθ becomes (Bird et al., 2002):

τrθ = −µ
[
r
∂

∂r

(vθ

r

)
+

1
r

∂vr

∂θ

]
. (2.A.6)

Here the second term on the right-hand side can be eliminated if there are no
gradients in the θ direction. Doing this and substituting in the first part of
(2.A.4) gives:

∂

∂r

[
r3 (−µ)

∂

∂r

(vθ

r

)]
= 0 ⇒ ∂

∂r

[
r3
∂

∂r

(vθ

r

)]
= 0 (2.A.7)

- since µ is independent of r. The first equation above only implies the second
if µ �= 0. If µ = 0, any vθ profile will satisfy the first part.

The solution to (2.A.7) is:

vθ = C1r +
C2

r
. (2.A.8)

If we require that vθ does not become infinite at r = 0, C2 has to be zero,
giving the well known equation for a ‘forced vortex’ or ‘solid-body rotation’:

vθ = C1r = Ωr. (2.A.9)

This is one ideal vortex motion, where, as mentioned in the main text, the
angular velocity Ω is constant.

Another is the ‘loss-free’ vortex, which is a vortex motion in a fluid with a
viscosity of zero. We saw that if µ = 0, any radial vθ profile would satisfy the
first part of (2.A.7) under the assumptions. If we allow a radial velocity, so
that fluid elements can move radially in the vortex, this is no longer so. Doing
this and setting the viscosity and, therefore, the shear stress τrθ equal to zero,
we see that terms II and IV re-emerge, and that term VII of Eq. (2.A.3) is
eliminated. This leads to:

vr

(
∂vθ

∂r
+
vθ

r

)
= 0, (2.A.10)
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which has the solution:
vθ =

C

r
(2.A.11)

with C an integration constant. This is the familiar equation for the tangential
velocity distribution in a loss-free vortex. In this type of flow the moment-of-
momentum of fluid elements is constant in the radial direction.

Note that we could not have derived (2.1.2) by letting C1 equal zero in
(2.A.8) since the viscosity µ was assumed to be nonzero to arrive at (2.A.8)
in the first place.

In the same way that (2.A.7) was derived from the θ-component equation
of (2.A.2), two other differential equations for the flow field in a vortex mo-
tion can be derived from the r- and the z-component equations. They are,
respectively:

∂p

∂r
= ρ

v2
θ

r
(2.A.12)

and:
∂p

∂z
= ρgz. (2.A.13)

Equation (2.A.12) is the balance between the centrifugal force (or the
mass times the centripetal acceleration) and the pressure force, all on a per
unit volume basis. It shows, as we also saw on basis of heuristic arguments
in the main text, that the pressure in a vortex flow increases towards the
periphery and more so the stronger the tangential velocity. The radial pressure
distribution can be obtained by integrating the right-hand side over r.

Equation (2.A.13) simply says that the axial pressure distribution is the
hydrostatic pressure, which in gas cyclones is not very interesting, since the
fluid density is low.

This completes the derivation of the basic equations for swirling flows
from the Navier-Stokes equations. When deriving flow equations, particularly
in cylindrical coordinates, this method is safer than using heuristic arguments.

2.B Common Model Functions for Particle Size
Distributions

In this appendix, the most frequently used particle size distributions are given
for the reader’s reference. If you are a researcher interested in these distri-
butions, it is very instructive to program and graph these models using a
mathematics package (for instance Mathematica, or a freeware program called
MathGV), and have a look at how the shapes of the distributions change with
the parameters.

When studying cyclone performance, or any issue in powder technology, it
can be advantageous to fit models to the experimentally determined particle
size distributions obtained from laboratory measurements. In this way the
particle size distribution can be characterized using only two parameters: the
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mean size and the spread. Model functions may also make it possible to make
up for incomplete information about size distributions, as long as one is aware
of the dangers of doing so pointed out in Appendix 3.A.

2.B.1 The Normal Distribution

The density function for the normal distribution is:

f (x) =
1

σ
√

2π
exp

(
− (x− 〈x〉)2

2σ2

)
. (2.B.1)

To obtain the cumulative undersize function, we must integrate this:

F (x) =

x∫

−∞

1
σ
√

2π
exp

(
− (z − 〈z〉)2

2σ2

)
dz. (2.B.2)

For this distribution, the mean particle size 〈x〉, the median, and the mode
are all equal, and the spread is σ. In this purely mathematical distribution, x
can take on negative values, which is not physically meaningful.

2.B.2 The Log-Normal Distribution

The log-normal distribution is defined as: the distribution of a variable, the
natural log of which is normally distributed. Thus, for the distribution of the
natural log of particle diameters we get:

f (lnx) =
dF ′ (lnx)
d lnx

=
1

σ
√

2π
exp

(
− (lnx− 〈lnx〉)2

2σ2

)
. (2.B.3)

To obtain the distribution of the particle diameter itself rather than that of
its logarithm, we note that F ′(lnx), the fraction of particles with the logarithm
of their diameter less than ln x, is the same as F (x), the fraction of particles
with diameter less than x. Thus:

F ′ (lnx) =

ln x∫

−∞

1
σ
√

2π
exp

(
− (ln z − 〈ln z〉)2

2σ2

)
d ln z = F (x) . (2.B.4)

In order to write F (x) in terms of x rather than ln x, we change the
variable of integration:

F (x) =

x∫

0

1
σ
√

2π
exp

(
− (ln z − 〈ln z〉)2

2σ2

)
1
z
dz, (2.B.5)

which shows that the density function of x for the log-normal distribution is:
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f (x) =
1
x

1
σ
√

2π
exp

(
− (lnx− 〈lnx〉)2

2σ2

)
. (2.B.6)

One should be most careful when converting between cumulative and density
distributions for the log-normal distribution.

The log-normal distribution is skewed with a long tail at large particle
sizes. It fits the volume distributions of many powders very well. Because it
is skewed, the mode, the median and the mean particle sizes are all different.

2.B.3 The Rosin-Rammler Distribution

The Rosin-Rammler distribution is one that applies specifically to dusts gen-
erated by crushing. The density function is:

f (x) = nkxn−1 exp (−kxn). (2.B.7)

The shape of f(x) depends on the constants n and k. Integrating to find F (x)
and adding a constant to make it start at the origin gives:

F (x) = 1 − exp (−kxn). (2.B.8)

For this distribution the mode, median and mean sizes are different. Using
Eqs. (2.3.4) and (2.B.7) the mean particle size becomes:

〈x〉 = k−
1
nΓ

(
1
n

+ 1
)

(2.B.9)

where Γ is the Gamma function.
Mathematics packages, such as Mathematica, Matlab or Mathcad and

MathGV make it easy to fit these model distributions to sets of experimental
data. It is often helpful to do so, since this allows the particle size distribution
to be described by only two parameters. This also has its limitations, though.
We shall come across one in Appendix 3.A.




