
An Application of Recurrent Neural Networks
to Discriminative Keyword Spotting

Santiago Fernández1, Alex Graves1, and Jürgen Schmidhuber1,2

1 IDSIA, Galleria 2, 6928 Manno-Lugano, Switzerland
2 TU Munich, Boltzmannstr. 3, 85748 Garching, Munich, Germany

Abstract. The goal of keyword spotting is to detect the presence of
specific spoken words in unconstrained speech. The majority of keyword
spotting systems are based on generative hidden Markov models and
lack discriminative capabilities. However, discriminative keyword spot-
ting systems are currently based on frame-level posterior probabilities of
sub-word units. This paper presents a discriminative keyword spotting
system based on recurrent neural networks only, that uses information
from long time spans to estimate word-level posterior probabilities. In a
keyword spotting task on a large database of unconstrained speech the
system achieved a keyword spotting accuracy of 84.5 %.

1 Introduction

The goal of keyword spotting is to detect the presence of specific spoken words
in (typically) unconstrained speech. Applications of keyword spotting include
audio indexing, detection of command words in interactive environments and
spoken password verification. In general, it is most useful in domains where a
full speech recogniser is cumbersome and unnecessary, partly because less than
perfect detection rates are still very satisfactory.

Nonetheless, the same mathematical framework used in the majority of speech
recognisers also forms the basis for keyword spotting systems. The typical key-
word spotting system consists of a set of hidden Markov models (HMM), one
for each keyword plus one or more filler models [1]. The filler models character-
ize non-keyword events in the speech signal, such as other words, background
noises and silence. The approach is generative and therefore finds the sequence
of models most likely to have produced the observations. The output of the sys-
tem is post-processed before deciding on the presence or absence of keywords
in the utterance [2]. First, the confidence of the predictions is estimated. This
is typically done by computing the ratio of likelihoods between keyword model
hypotheses and filler model hypotheses. Finally, a threshold level is applied to
the confidence measure in order to achieve a compromise between the number
of true and false positives predicted by the system.

In general, a discriminative approach to keyword spotting is more suitable,
as it allows discrimination between keyword and non-keyword events, and also
among similar keywords. In addition, posterior probabilities can directly be
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used as an effective confidence measure. Recently, discriminative keyword spot-
ting systems have been explored in various papers. The most common ap-
proach [3,4,5] uses artificial neural networks (ANN) in the framework of hybrid
ANN/HMM systems [6,7]. In these systems, keywords are modelled by concate-
nating phoneme models. A phoneme classifier (typically a multi-layer percep-
tron) estimates frame-level posteriors. These local posterior estimates are accu-
mulated over the duration of a segment and, typically, the result is normalised
by the length of the segment. Another approach to discriminative keyword spot-
ting uses kernel machines and large margin classifiers with a set of models and
feature functions consistent with hybrid ANN/HMM systems [8].

The approach presented in this paper attempts to model full keywords in the se-
quence data stream, while previous discriminative keyword spotting systems are
based on sub-word units. It is based on recurrent neural networks (RNNs) trained
with the connectionist temporal classification (CTC) objective function. This ob-
jective function allows artificial neural networks to map unsegmented sequential
data onto a sequence of labels [9,10]. The proposed system uses information over
long time spans, thereby providing non-local estimates of the a posteriori proba-
bility of the presence of either keyword or non-keyword events in the speech signal.

There is a plethora of different keyword spotting systems, often tailored to
meet the requirements of particular tasks. However, there is little consensus on
how to define benchmark tasks [11]. We have opted to tackle a realistic keyword
spotting task in a large database of spontaneous and unconstrained speech where
an HMM-based speech recogniser achieves a word accuracy of only 65%.

The remainder of the paper is structured as follows. Section 2 provides a de-
scription of the system. Keyword spotting experiments are presented in section 3
and the results are shown in section 3.4. Section 4 offers a discussion on differ-
ences between previous approaches and the one presented in this paper, and
gives directions for future work. Final conclusions are given in section 5.

2 Method

2.1 Outline

The network architecture selected for the keyword spotting task is the bi-
directional long short-term memory recurrent neural network (BLSTM), which
has shown good performance in a series of speech tasks [12,13]. The network
is trained with the connectionist temporal classification (CTC) objective func-
tion [9,10].

The input to the recurrent network is the data sequence of a speech utterance.
The network has a soft-max output layer with as many output units as keywords
to be detected, plus one output unit associated with non-keyword events. The
target for the training algorithm is a list (which may be empty) of keywords
in the order in which they appear in the input speech utterance. No further
constraints are applied to the system. In particular, the segmentation of the
speech signal is not required and various pronunciation variants of the same
keyword can appear in the data set.
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Fig. 1. Discriminant keyword spotting with BLSTM and CTC. When a keyword is
detected the ANN produces a spike-like output with higher probability than the non-
keyword output (dashed line).

Once the network has been trained, its output typically consists of a series
of spikes corresponding to keyword events that have been detected in the input,
separated by long periods of activation of the non-keyword output unit (see
figure 1). The activation of every output unit at every time step is an estimate
of the probability of detecting a particular keyword (or non-keyword event) at
that time step.

2.2 BLSTM

The long short-term memory (LSTM) [14,15] is an RNN architecture designed
to deal with long time-dependencies. It addresses the problem of the back-
propagated error either blowing up or decaying exponentially for long time lags
in conventional RNNs. The hidden layer of an LSTM network consists of a set
of recurrently connected blocks containing one or more memory cells and three
multiplicative units (the input, output and forget gates), which allow writing,
reading or resetting of the information in the memory cell.

Bi-directional RNNs [16] address in an elegant way the need for delayed de-
cisions in some sequential tasks such as speech processing. Data sequences are
presented forwards and backwards to two separate recurrent networks, which
are connected to the same output layer. Therefore, for every point in a given
sequence, the network has complete sequential information about the points be-
fore and after it. An implementation of bi-directional LSTM (BLSTM) can be
found in [12].

2.3 CTC

Connectionist temporal classification (CTC) [9,10] is an objective function to
label unsegmented sequential data with RNNs. The basic idea behind CTC is to
interpret the network outputs as a probability distribution over all possible label
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sequences, conditioned on the input data sequence. Given this distribution, an
objective function can be derived that directly maximises the probability of the
correct labelling. Since the objective function is differentiable, the network can
be trained with standard back-propagation through time.

3 Experiments

3.1 Material

The experiments were carried out on a set of dialogues in German from the Verb-
mobil database [17]. The dialogues deal with the scheduling of date appointments
for meetings. The database consist in spontaneous and unconstrained speech,
with long silences and noises. The results provided along with the database for
a baseline automatic speech recogniser give an approximate idea of the difficulty
of processing this database: the HMM-based speech recogniser achieves a word
accuracy of 65% in an automatic, full transcription, of the test set [17].

The material used in the experiments corresponds to version 2.3 (March 2004)
of the Verbmobil database (except for CD-ROM number 53.1 of the training set
which was not available) [17]. It includes separate training, validation and test
sets. The database is speaker independent. Speakers were distributed equally
across sexes in all sets and every speaker appears in only one of the sets. The
training set includes 748 speakers and 23975 dialogue turns for a total of 45.6
hours of speech. The validation set includes 48 speakers and 1222 dialogue turns
for a total of 2.9 hours of speech. The test set includes 46 speakers and 1223
dialogue turns for a total of 2.5 hours of speech.

Due to the nature of the dialogues included in the database, we decided to use
dates and places as keywords for the detection task. This ensures a relatively
good coverage of keywords in the training, validation and test data sets. The
twelve keywords chosen were:

april, august, donnerstag, februar, frankfurt, freitag, hannover, januar,
juli, juni, mittwoch, montag

Note that the database includes various pronunciation variants of some of these
keywords (e.g. “montag” can end either with a /g/ or with a /k/). In addition,
several keywords appear as sub-words, e.g. in plural form such as “montags” or
as part of another word such as “ostermontag” (Easter Monday).

The orthographic transcription provided along with the database was exam-
ined for the presence in every utterance of one or more of the twelve keywords
selected. Once a keyword was found, the begin and end times for the keyword
were saved for evaluating the performance of the keyword spotting system at a
later stage. These times were provided along with the database and correspond
to the segmentation given by an automatic speech recognition system.

This procedure gave a total of 10469 keywords on the training set with an
average of 1.7% keywords per non-empty utterance (73.6% of the utterances
did not have any keyword); 663 keywords on the validation set with an average
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of 1.7% keywords per non-empty utterance (68.7% of the utterances did not
have any keyword); and 620 keywords on the test set with an average of 1.8%
keywords per non-empty utterance (71.1% of the utterances did not have any
keyword).

The list of keywords (which may be empty) in the order in which they ap-
pear in every utterance, forms the target sequence for the network’s training
algorithm.

Finally, the speech data was characterised as a sequence of vectors of thirty
nine coefficients, consisting of twelve Mel-frequency cepstral coefficients (MFCC)
plus energy and first and second order derivatives of these magnitudes. The coef-
ficients were computed every 10ms over 25ms-long windows. First, a Hamming
window was applied; secondly, a mel-frequency filter bank of 26 channels was
computed; and finally, MFCC coefficients were calculated with a 0.97 preempha-
sis coefficient. The input data was normalised to have zero mean and standard
deviation one on the training set.

3.2 Difficulty with HMMs

We briefly illustrate the difficulty of performing keyword spotting with a genera-
tive HMM with as few constraints as those required by our system. In particular,
no post-processing is applied. For these experiments every keyword was mod-
elled as a left-to-right HMM with sixteen states and observation probabilities
given by a mixture of Gaussians with diagonal covariance matrices. For the filler
model we used an HMM of the same type with three states. The grammar allows
one or more repetitions of any keyword or filler per utterance.

We experimented with: a) doubling the number of mixtures from two until a
maximum of 128 and re-estimating the parameters twice after every step; b) the
parameters of the HMMs with eight Gaussians were re-estimated for more than
five hundred iterations, with an evaluation of the results carried out every ten
iterations (henceforth, one step); and c) the first experiment was repeated with
HMMs initialized using the reference segmentation and increasing the number of
mixtures up to 256. The performance was evaluated on the validation set after
every step with insertion penalties from zero to minus one hundred in steps of
ten. For experiment b), the performance did not improve (it slightly decreased)
after 350 iterations.

The results on the test set for all experiments, optimised on the validation
set, showed negative accuracy due to the many false positives generated by the
system: of the order of three thousand in all cases. Hence, the importance of a
post-processing stage for HMMs that estimates the confidence of the predictions
and a threshold level for balancing true and false positives.

3.3 Setup

The CTC-BLSTM network was trained with the input sequences and keyword
targets from section 3.1. The network has, therefore, 39 input units and 13 units
in the output soft-max layer. Both the forward and backward hidden recurrent
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layers consist of 128 LSTM memory blocks with one memory cell per block,
peephole connections and forget gates. The input and output cell activation
functions are a hyperbolic tangent. The gates use a logistic sigmoid function
in the range [0,1]. The input layer is fully connected to the hidden layer and
the hidden layer is fully connected to itself and to the output layer. The total
number of weights in the network is 176,141.

Training was carried out with a learning rate of 10−4 and a momentum co-
efficient of 0.9. Weights were initialised with a Gaussian random distribution
with mean zero and standard deviation 0.1. In addition, Gaussian noise with a
standard deviation of 0.5 was added to the inputs during training to improve
generalization. The network was tested every five epochs on the validation set
and training finished once the error on the validation set stopped decreasing.

3.4 Results

The typical sequence of outputs for a trained network can be seen in figure 1. It
consists in a sequence of spikes associated with detected keywords and separated
by long periods during which the non-keyword output unit is the most active.
The CTC algorithm allows the network to keep any output active for as long as
necessary or as little as one time step only. To evaluate the results, at every time
step the output with the highest activation is chosen. If an output is the most
active for a period of time, we choose the highest activation during that period
as the probability of detecting the keyword, and the time at which the highest
activation occurs as the location of the detected keyword.

Spikes whose identity match a keyword in the speech signal and that appear
within the boundaries of the keyword in the speech signal are counted as true
positives, unless more than one spike is output in that period, in which case only
one of them counts as a true positive and the rest count as false positives. Those
spikes that appear out of the boundaries of the keyword in the speech signal are
considered false positives. The accuracy of the system is given by the number
of true positives minus the number of false positives divided by the number of
keywords in the data set.

Four networks were trained on the same task with different initial random
weights. Average accuracy over four runs was 84.5% with a standard error of
1.2%. The average probability of true positives was 0.98 with a standard error of
0.004. The average probability of false positives was 0.80 with an standard error
of 0.01. As expected, given the discriminative nature of the algorithm, setting
a posteriori a threshold level in between this probability levels did not increase
performance significantly (84.8% accuracy, with an standard error of 1.2%).
Table 1 shows the number of true and false positives by keyword for the network
with the best performance. As shown in the table, the system discriminates
almost perfectly between similar keywords such as “juni” and “juli”.

As of now, the CTC training algorithm does not constrain the spikes to appear
within the begin and end times of the speech pattern (it is assumed that a
reference segmentation is not available). The algorithm trains the network to
detect the correct sequence of keywords and in the right order for any utterance
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Table 1. Results by keyword for the ANN with the best performance. Accuracy is the
number of hits minus false positives divided by the actual number of keywords in the
test set. Average accuracy over four runs is 84.5 % with a standard error of 1.2 %.

Keyword # Hits # FPs # Actual % Accuracy
april 27 2 32 78.12

august 29 1 34 82.35
donnerstag 55 6 56 87.50

februar 55 1 60 90.00
frankfurt 18 0 25 72.00

freitag 40 4 45 80.00
hannover 76 5 86 82.56

januar 35 4 38 81.58
juli 53 1 56 92.86
juni 63 2 66 92.42

mittwoch 36 1 39 89.74
montag 79 3 83 91.57

Overall 566 30 620 86.45
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Fig. 2. The figure shows the dependency of the output unit associated with keyword
“donnerstag” at the time step when this keyword is detected in figure 1, with respect
to the network inputs at various time steps around the detection point (indicated by
an arrow at the top of the figure). In addition, the extent (0.9 s) and location of the
keyword in the speech signal is shown at the top of the figure. As can be seen, the
probability of detecting the keyword depends on the inputs over a long time span, and
decreases towards the end of the keyword which is the least discriminative part of it:
“tag” (day).

in the training set. Probably this makes training slower, but it seems that it
is not necessary to add this constraint to the training algorithm in order to
achieve good performance: when the results are evaluated without using the
segmentation, the average accuracy over four runs is 86.1% with a standard
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error of 0.7%. Of those keyword candidates appearing outside the boundaries in
the speech signal, only one was more than 0.5 s outside the reference segment.
This level of precision should be enough for tasks where high detection accuracy
is more important.

Finally, figure 2 shows, for a successful detection, the dependency of the net-
work output at the time when the keyword is detected with respect to the inputs
at some previous and following time steps. As can be seen, the probability of
detecting the keyword depends on the inputs over a long time span (of about
one second, or a hundred network time steps) and, for the example shown, the
dependency decreases towards the end of the keyword, which is the least dis-
criminative part of it.

4 Discussion and Future Work

The main difference between our approach to discriminative keyword spotting
and other discriminative systems is the capability of computing non-local poste-
riors for the keywords, i.e. the system uses information over long time spans to
compute the probability of a keyword appearing in the speech signal. In addition
to this, the a posteriori estimation of a threshold level to balance true and false
positives is not required.

The algorithm makes very few assumptions about the domain, which facili-
tates the development of systems for detection tasks. Nonetheless, if very high
precision in the location of spots is required, the system might benefit from
adding to the algorithm the constraint that keywords must be detected within
the boundaries established by the reference segmentation. However, not having
this constraint greatly simplifies the preparation of training data.

To make the system scale, one solution consists in implementing smaller net-
works. For example, one for each keyword, or one for each set of similar key-
words among which the system must discriminate. New networks can be added
to the system at any time. Under the assumptions that, for different networks,
the training data has similar characteristics and that the non-keyword output
unit is associated to a model of similar characteristics, which is reasonable, the
estimates of the a posteriori probabilities given by different networks can be
compared and used to determine the presence or absence of keywords in the
input data stream.

Another option to improve scalability consists in detecting sub-word units in
the signal and use these outputs as inputs for one of the existing systems that
builds keywords from sub-word units. The detection of sub-word units with the
system proposed in this paper will benefit from the same features and ease of use
described in this paper (see [9] for results on phoneme recognition with CTC-
BLSTM). Besides this, it is possible to feed the sub-word level predictions to
another CTC-BLSTM network with keyword-level outputs [10].

The choice of sub-word or word models depends on the task. In general, sub-
word units are more practical for audio indexing tasks because the system must
respond to searches for unknown keywords. However, in tasks such as detection
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of command words and spoken password verification the vocabulary is unlikely to
change. Also, the benefits of word-level discrimination (e.g. decreased confusion
among similar keywords) are most desirable in these cases, where security is
paramount.

5 Conclusion

We have presented a word-level discriminative keyword spotting system that
is fast, accurate and easy to use. The probability of detecting a keyword is
computed using information from long time spans. These probabilities can be
read directly from the outputs of a recurrent neural network. An a posteriori
estimate of an acceptance threshold level is not required. Finally, the system
makes few assumptions about the domain: only the input speech signal and a
list of keywords (which may be empty) in the order in which they occur in the
signal are necessary to train the system. The algorithm is general and can be
used for any task requiring the detection of patterns in sequence data. In a
keyword spotting task in a large database of unconstrained speech the system
achieved a keyword spotting accuracy of 84.5%.
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