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Preface

This book includes the proceedings of the International Conference on Artificial
Neural Networks (ICANN 2007) held during September 9–13, 2007 in Porto, Por-
tugal, with tutorials being presented on September 9, the main conference taking
place during September 10-12 and accompanying workshops held on September
13, 2007. The ICANN conference is organized annually by the European Neural
Network Society in co-operation with the International Neural Network Society,
the Japanese Neural Network Society, and the IEEE Computational Intelligence
Society. It is the premier European event covering all topics related to neural
networks and cognitive systems. The ICANN series of conferences was initiated
in 1991 and soon became the major European gathering for experts in these
fields. In 2007 the ICANN conference was organized by the Biomedical Engi-
neering Institute (INEB - Instituto de Engenharia Biomédica), Porto, Portugal,
with the collaboration of the University of Beira Interior (UBI - Universidade
da Beira Interior), Covilhã, Portugal and ISEP, Polytechnic Engineering School,
Porto, Portugal. From 376 papers submitted to the conference, 197 papers were
selected for publication and presentation, following a blind peer-review process
involving the Program Chairs and International Program Committee; 27 papers
were presented in oral special sessions; 123 papers were presented in oral reg-
ular sessions; 47 papers were presented in poster sessions. The quality of the
papers received was very high; as a consequence, it was not possible to accept
and include in the conference program many papers of good quality. A variety
of topics constituted the focus of paper submissions. In regular sessions, pa-
pers addressed the following topics: computational neuroscience and neurocog-
nitive studies, applications in biomedicine and bioinformatics, spiking neural
networks, data clustering, signal and times series processing, learning theory,
advances in neural network learning methods, advances in neural network archi-
tectures, data analysis, neural dynamics and complex systems, ensemble learn-
ing, self-organization, robotics and control, pattern recognition, text mining and
Internet applications, vision and image processing. Special sessions, organized
by distinguished researchers, focused on significant aspects of current research,
namely: emotion and attention, understanding and creating cognitive systems,
temporal synchronization and nonlinear dynamics in neural networks, complex-
valued neural networks. Papers presented in poster sessions were organized in
the following topics: real-world applications, signal and time series processing,
advances in neural network architectures, advances in neural network training,
meta learning, independent component analysis, graphs, evolutionary comput-
ing, estimation, spatial and spatio-temporal learning. Prominent lecturers gave
six keynote speeches at the conference. Moreover, well-known researchers pre-
sented seven tutorials on state-of-the-art topics. Four post-conference workshops,
entitled “Cognitive Systems”, “Neural Networks in Biomedical Engineering and
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Bioinformatics”, “What It Means to Communicate” and “Neural Networks of the
Future?”, concluded the focus of ICANN 2007 on the state-of-the-art research
on neural networks and intelligent technologies. An in-depth discussion was held
on the prospects and future developments both in theory and practice in those
important topics. We would like to thank all the members of the local committee
for their contribution to the organization of ICANN 2007. A special thanks to
Alexandra Oliveira whose dedication and work quality were a major guarantee
of the success of ICANN 2007. We also wish to thank Alfred Hofmann and the
LNCS team from Springer for their help and collaboration in the publication of
the ICANN 2007 proceedings.

July 2007 Joaquim Marques de Sá
Lúıs A. Alexandre
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Alexandre Lúıs University of Beira Interior
Alhoniemi Esa Turku University
Andras Peter University of Newcastle



Organization IX

Anguita Davide Genoa University
Angulo-Bahon Cecilio Technical University of Catalonia
Apolloni Bruno University of Milan
Archambeau Cédric Université Catholique de Louvain
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Neural Network Approach for Mass Spectrometry Prediction by
Peptide Prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Alexandra Scherbart, Wiebke Timm, Sebastian Böcker, and
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A Marker-Based Model for the Ontogenesis
of Routing Circuits

Philipp Wolfrum1 and Christoph von der Malsburg1,2

1 Frankfurt Institute for Advanced Studies, D-60438 Frankfurt am Main, Germany
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Abstract. We present a model for the ontogenesis of information routing archi-
tectures in the brain based on chemical markers guiding axon growth. The model
produces all-to-all connectivity between given populations of input and output
nodes using a minimum of cortical resources (links and intermediate nodes). The
resulting structures are similar to architectures proposed in the literature, but with
interesting qualitative differences making them biologically more plausible.

Keywords: Information routing, shifter circuits, dynamic links, visual cortex.

1 Introduction

An important part of brain function is the routing of information between different ar-
eas. The routes along which information flows cannot be static, but must be adaptable
to the current requirements. The most prominent example for this necessity is visual
attention, where a certain mechanism ensures that only a selected portion of the visual
input reaches higher visual “target areas” like inferotemporal cortex (IT). Other exam-
ples in which information routing may be very useful include pitch-invariant recogni-
tion of melodies, or our ability to combine arbitrary words into grammatically correct
sentences. Such abilities require routing structures that provide physical connections
between all locations in a certain input region and all locations of a target area.

The necessity for dynamic information routing was appreciated early on [1], and
models for its use in object recognition [2] and for frame-of-reference transforms [3]
have been put forward. All-to-all routing between large cortical areas has to happen via
intermediate stages to be biologically plausible (see problem definition in Sect. 2 and [4]
for a detailed discussion). Several architectures for such a multi-stage routing have been
proposed, like Shifter Circuits [5], the SCAN model [6], or the minimal architecture of
[4]. What has been missing so far are models explaining the ontogenetic development
of routing structures in the brain.

2 Routing Structures

Let us pose the information routing problem as follows:

– Given are an input layer and an output layer both consisting of N feature nodes
(or simply nodes). We are looking for a routing network that establishes all-to-all
connectivity between those layers.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part II, LNCS 4669, pp. 1–8, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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– The routing happens via K − 1 intermediate layers of N nodes each.
– Nodes of adjacent feature layers can be connected by links. For connecting the

K + 1 feature layers, K stages of links are required, every stage containing N2

potential links.

Several anatomically plausible architectures have been proposed that meet these re-
quirements. The most prominent one is the so called Shifter Circuit [5]. While Shifter
Circuits implement a redundant connectivity between input and output, in [4] we pro-
pose an architecture that provides full connectivity while requiring the minimally pos-
sible number of feature nodes and links. A one-dimensional version of this connectivity
is shown in Fig. 1.

0 5 10 15 20 25 30
0

1

2

3

la
ye

r

nodes

Fig. 1. Routing architecture from [4]. The N = 27 nodes of the input layer 0 are connected to
all 27 nodes of output layer 3 via 2 intermediate layers and K = 3 stages of links. Note that this
connectivity requires “wrap-around” links, i.e. links between one end of the presynaptic layer and
the opposite end of the postsynaptic layer.

3 Ontogenetic Dynamics

How can ontogeny produce such routing circuits in the brain? Especially the large gaps
necessary between links on higher stages are difficult to explain with traditional learn-
ing rules. Here we will investigate whether chemical markers can help forming such
structures.

It is well known that axonal growth follows chemical gradients [7]. It was hypoth-
esized early that chemical markers could help forming the point-to-point retinotopic
mapping that exists between retina and the tectum [8], and Willshaw and von der Mals-
burg [9] presented a model that realizes the retinotectal mapping on the basis of a limited
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number of chemical markers present in the retina. Recent studies [10] have shown that
the mechanisms by which axons detect these gradients are much more sensitive than
previously assumed, allowing the question whether even more complicated patterns
than the retinotectal map can arise from chemical marker interaction.

We here present a model that explains the development of routing structures based
on chemical markers. For simplicity and ease of visualization we restrict ourselves here
to the case of one-dimensional feature layers. Let Ck

i,j denote the strength of the link
between node i in layer k to node j of layer k + 1. Ck

i,j can vary between 0 and 1, with
0 representing an absent link and 1 a fully grown one. We will refer to all links of one
stage by the N × N matrix Ck. When we make a statement that refers to the links of
all K stages we will leave out the superscript k (this also applies for other variables
introduced below).

We describe the growth of the links not directly in terms of C but of an unbounded
variable U , which codes for the real links via the sigmoid function

C =
1

1 + e−sU
, (1)

where s defines the steepness of the sigmoid. We let U start out at a homogeneous
negative value with some noise added (see Sect. 4 for a discussion of robustness to
noise), so that all links C are initially close to 0. The growth of U then follows the
differential equation

U̇ = F norm × F marker × F top, (2)

where × denotes elementwise multiplication. The three terms have the roles of restrain-
ing local growth of connections (F norm), keeping similarity of chemical markers on both
sides of a link low (F marker), and introducing topologic interactions (F top). Thanks to
the multiplicative combination, no “tuning” of the relative contributions of the terms is
required; the mechanism works for different network sizes without need for adjusting
many parameters.

The term
F norm

i,j = d −
∑

j̃

Ci,j̃ (3)

is a factor that tends to keep the sum of all efferent links from any position i close to a
desired value d. Once the combined link strengths exceed d, F norm turns negative, thus
letting the respective link shrink.

The term F marker makes a link’s change sensitive to the similarity of chemical mark-
ers in the two nodes it connects. These markers are channeled from the input layer to
higher levels by the very connectivity C whose growth in turn they influence. We as-
sume each node of the input layer to contain a different type of chemical marker ti
(for a discussion of the plausibility of this and possible alternatives, see Sect. 5). In
matrix notation this means that the marker distribution in layer 0 is the identity ma-
trix, M0 = IN×N , with the marker types on the 1st and the node location on the 2nd
dimension. Markers are then transported to higher layers via the existing links C:

Mk+1 = MkCk. (4)
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To calculate F marker, we first define a similarity term

F sim,k
i,j =

∑

t

Mk
t,i(M

k+1
t,j − Ck

i,jM
k
t,i), (5)

which is the similarity (dot product) of the marker vector on the presynaptic side with
that portion of the marker vector on the postsynaptic side that was not carried there
by the link itself. Therefore, the similarity term signals to the link how well the routes
between the part of input space it “sees” and its target node are already being served
by other links (see Fig. 2). The role of F marker is to let a link grow only if its similarity
term is not too large. We therefore set

F marker
i,j = 1 − H(F sim

i,j − α), (6)

with H(·) denoting the Heaviside function and a fixed parameter α.

Fig. 2. Role of the similarity term. Already well-established links (solid lines) carry markers from
input nodes A and B to intermediate nodes C and D, and from D to E. Therefore, a weak link C-E
(dotted line) finds a marker distribution at its target E that is similar to the one at its origin C. This
similarity keeps it from growing. Functionally, this mechanism prevents formation of redundant
alternative routes between two points.

The term
F top

i,j = β(Ci−1,j−1 + Ci+1,j+1) + Gi,j (7)

combines two different topological influences, their relative strength weighted by the
parameter β. The first part adds cooperation between parallel neighboring links. The
second term G favors the growth of links to the corresponding position in the next
layer (i.e. i = j) over links to faraway positions. We assume it here to be a bounded
hyperbolic function of position difference of the two end nodes: Gi,j = γ

|i−j|+γ , with
γ defining the steepness (see Fig. 3). G is necessary to tell the ontogenetic mechanism
how to align the coordinate systems of the layers it is connecting. A possible way of
implementing this term is to first allow development of a point-to-point mapping (e.g.
through the mechanism presented in [9]), which then serves as a guidance for the growth
of a routing connectivity.
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Fig. 3. The term G helps to align the coordinate systems of subsequent layers by favoring links
between nodes with corresponding positions (middle diagonal) over links between distant nodes.
γ = 0.6 like in the simulations of Sect. 4.

4 Results

We chose to investigate the growth of networks containing K = 3 link stages. Equation
(2) was integrated using the Euler method and the following parameter settings: s = 30
(steepness of sigmoid), α = 0.5 (threshold for marker similarity), β = 0.6 (strength of
neighbor interaction), γ = 0.6 (steepness of the hyperbolic term G). A delayed onset
of growth at higher stages improves the final results. We chose a delay of 15% and 30%
of overall simulation time for the middle and the highest stage, respectively.

First, we assumed d = 3 as target number of links per node (see (3)). With K = 3
link stages, this means that N = dK = 27 input and output nodes can be connected.
The network resulting from the ontogenetic mechanism for these parameter settings
is shown in Fig. 4. Note how the distance between links increases from 1 to 3 to 9
from bottom to top, thus producing non-redundant full connectivity. We can see in
Fig. 4(a) that the resulting network differs qualitatively from the manually produced
one of Fig. 1: There are no wrap-around links (i.e. links from a node on one side of the
feature layer to the opposite side of the next layer). Instead, these links appear on the
other side of the central link (cf. Fig. 4(b)). Interestingly, this new structure produces the
same perfect all-to-all connectivity as the one arising from theoretical considerations in
[4], while being biologically more plausible.

The mechanism can also grow routing structures between larger feature layers. For
this we only have to adjust the target number of links per node d, without changing any
of the other parameters. Fig. 5 shows simulation results for d = 5, i.e. N = d3 = 125
nodes per layer. We see that qualitatively the resulting structure is similar to the one
obtained for d = 3, except that now each node makes 5 connections to the next layer,
with appropriate spacings of 1, 5, and 25 nodes.

However, we also see that the structure in Fig. 5 is not as clean as the one in Fig. 4,
with several links not going to the “correct” targets. This results in an overall input-
output connectivity that is not perfectly homogeneous, i.e. some input-output pairs are
connected by two different routes, while others have no connection. For the structure
shown in Fig. 5, the strengths of the input-output connections have mean value and
standard deviation of μ ≈ 1 and σ ≈ 0.15.

The reason for the uneven final structure lies in the noise that was introduced to
the initial link strengths: We chose the initial values of U randomly from the interval
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(a) Connection structure of the full network.

(b) Matrices Ck of the full network of (a) shown separately.

Fig. 4. Results for N = 27 nodes per layer and a target number of links d = 3
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Fig. 5. Resulting connection matrices Ck for N = 125 nodes per layer and a target number of
links d = 5. The initial values of U contained 10% of additive noise.

[−16.5.. − 15], which means that they contain 10% of additive uniformly distributed
noise. Further simulations have shown that the mechanism generally results in a flaw-
less connectivity only if the initial conditions contain less than ≈ 5% of noise. The
growth of smaller networks is far less sensitive to noise: For N = 27, up to 20%
of additive noise in the initial conditions practically always results in the correct final
connectivity.

5 Conclusion

One assumption crucial for the model as presented here is that there be a unique chemi-
cal marker for every input node. This is very unlikely to be the case in the brain. Future
work will address the question how the N different chemical markers can be replaced
by a small number of marker gradients spread evenly over the input layer. Also, it is
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possible to replace the unique markers assumed here by stochastic, uncorrelated signals
produced by the different input nodes. Since these signals are orthogonal, their linear
superpositions arising at higher layers could still be decomposed and, most notably, the
scalar product of such superpositions would give exactly the same similarity term as as-
sumed in the model here. This would yield an activity-based instead of a marker-based
mechanism following the same mathematical model.

We have presented a neurally plausible ontogenetic mechanism modeling the for-
mation of routing circuits in the brain. The mechanism requires only signals that are
available locally at source and/or target of the respective connection. While the mecha-
nism may be important for understanding the development of certain wiring structures
of the brain, it may also turn out to have technological applications like the automatic
wiring of computer networks.
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Abstract. It is well documented that superior colliculus (SC) neurons integrate 
stimuli of different modalities (e.g., visual and auditory). In this work, a mathe-
matical model of the integrative response of SC neurons is presented, to gain a 
deeper insight into the possible mechanisms implicated. The model includes 
two unimodal areas (auditory and visual, respectively) sending information to a 
third area (in the SC) responsible for multisensory integration. Each neuron is 
represented via a sigmoidal relationship and a first-order dynamic. Neurons in 
the same area interact via lateral synapses. Simulations show that the model can 
mimic various responses to different combinations of stimuli: i) an increase in 
the neuron response in presence of multisensory stimulation, ii) the inverse ef-
fectiveness principle; iii) the existence of within- and cross-modality suppres-
sion between spatially disparate stimuli. The model suggests that non linearities 
in neural responses and synaptic connections can explain several aspects of 
multisensory integration.  

Keywords: Superior colliculus, multimodal integration, inverse effectiveness, 
cross-modality and within-modality suppression. 

1   Introduction 

Integration of stimuli from different sensory modalities (visual, auditive, tactile) plays 
a fundamental role in the correct perception of the external world and in determining 
the suitable behaviour of individuals towards external events [1]. The presence of 
multisensory neurons, able to integrate different sensory modalities into a complex re-
sponse, is well documented in various structures of the mammalian brain outside the 
primary sensory areas [1]. An important locus of multisensory interaction is a layered 
midbrain structure, the superior colliculus (SC). Many neurons in the deep layers of 
the SC receive converging visual, auditory and somatosensory afferents from various 
subcortical and extraprimary cortical sources [2]. Responses of such neurons to a 
combination of modality-specific stimuli differ significantly from those evoked by 
any of their unisensory inputs in a way that substantially facilitates the role of the SC 
in controlling attentive and orientation behaviour [3].  
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Many studies have been carried out to characterize how multisensory neurons in 
the SC integrate their unimodal inputs, and a consistent amount of physiological data 
has been gathered on their response to a variety of stimuli [4] [5] [6] [7]. These stud-
ies, which record single-unit activity in anesthetized animals, show that the responses 
of multimodal neurons in the SC are characterized by significant non-linear phenom-
ena, which make their qualitative analysis extremely difficult without the help of 
mathematical quantitative tools. First, a multisensory SC neuron has multiple recep-
tive fields (RFs), one for each of its sensory modalities. When two different sensory 
stimuli (e.g., auditory and visual) are present at close spatial proximity (as it occurs 
when they derive from the same event), their combination is typically synergistic pro-
ducing a neuron’s response which is significantly greater than that evoked by the most 
effective of the two unimodal inputs individually (multisensory enhancement) [1] [5] 
[8]. On the other hand, when the two stimuli are presented at different locations (i.e. 
they likely derive from different events) two alternative results can be observed: ei-
ther no interaction occurs or the neuron’s response to the within-field stimulus is con-
siderably depressed (multisensory depression) [4] [9].  

Multisensory enhancement is accompanied by another well known integrative 
principle called inverse effectiveness: combinations of weakly effective stimuli pro-
duce proportionally greater multisensory enhancement than more effective stimuli [1] 
[10]. Inverse effectiveness has functional sense in behavioural situations: the prob-
ability to detect a weak stimulus benefits more from multisensory enhancement than a 
high-intensity stimulus which is easily detected by a single modality alone [3] [11].  

Despite the great number of experimental results on multisensory SC response 
which has been gathered in recent years, we are not aware of mathematical models 
and neural networks able to encompass these data into a coherent theoretical structure. 
It is reasonable to expect that the properties of multi-modal integration do not only 
depend on neuronal individual characteristics, but above all reflect the organization of 
the circuitry that processes unimodal stimuli and conveys these stimuli toward multi-
sensory neurons. 

A fundamental contribution to identify the mechanisms of multisensory integration 
in SC can be obtained with the use of neural networks and computer simulations. 
These models can be of value not only to provide putative explanation for existing 
data, but also to suggest new experiments and to provide some rules for artificial rec-
ognition systems. 

The aim of this work is to develop an original neural network model, based on 
neurobiologically plausible mechanisms, able to reproduce and explain in-vivo results 
on multisensory integration in the SC. The model includes three neural networks, 
which communicate via synaptic connections. Two of them are unimodal and repre-
sent neurons coding visual and auditory stimuli, respectively; a downstream network, 
representing multimodal neurons in the SC, receives information from the upstream 
networks via feedforward synapses and integrates these information to produce the fi-
nal response. Furthermore, neurons in each network are interconnected via lateral syn-
apses. By adopting the previous structure and by using a single set of parameters, the 
model is able to reproduce a cluster of within- and cross-modality interactions in ac-
cordance with experimental data in the literature. 
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2   Method 

In this section we will describe the general structure of the model and we will discuss 
parameter assignment, on the basis of existing data in the literature. 

2.1   General Model Structure 

• The model is composed of 3 areas (see Figure 1). Elements of each area are or-
ganized in NxM dimension matrices, so that the structure keeps a spatial and 
geometrical similarity with the external world: neurons of each area respond only 
to stimuli coming from a limited zone of the space. Neurons normally are in a si-
lent state (or exhibit just a mild basal activity) and can be activated if stimulated 
by a sufficiently high input. Furthermore, each neuron exhibits a sigmoidal rela-
tionship (with lower threshold and upper saturation) and a first order dynamics 
(with a given time constant). The 2 upstream areas are unimodal, and respond to 
auditory and visual stimuli, respectively. A third downstream area represents 
neurons in the Superior Colliculus responsible for multisensory integration. 
These three areas have a topological organisation, i.e., proximal neurons respond 
to stimuli in proximal position of the space.  

Fig. 1. Schematic diagram describing the general structure of the network. Each grey circle 
represents a neuron. Neurons are organized into 3 distinct areas of 40x40 elements. Each 
neuron of these areas (V: visual, A: auditory and SC: multimodal in the superior colliculus) 
is connected with other elements in the same area via lateral excitatory and inhibitory intra-
area synapses (arrows Lex and Lin within the area). Neurons of the unimodal areas send feed-
forward excitatory inter-area synapses to multimodal neurons in the superior colliculus area 
located in the same position (arrows K). Multimodal neurons, in turn, send excitatory feed-
back inter-area connections to neurons of the unisensory areas (arrows F) (see text for  
details). 
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• Each element of the unisensory areas has its own receptive field (RF) that can be 
partially superimposed on that of the other elements of the same area. The ele-
ments of the same unisensory area interact via lateral synapses, which can be 
both excitatory and inhibitory. These synapses are arranged according to a Mexi-
can hat disposition (i.e., a circular excitatory region surrounded by a larger in-
hibitory annulus).  

• The elements of the multisensory area in the Superior Colliculus receive inputs 
from the two neurons in the upstream areas (visual and auditory) located in the 
same spatial position. Moreover, elements in the SC are connected by long range 
lateral synapses. 

• The multimodal neurons in the SC send back a feedback excitatory input to the 
unimodal neurons located in the same spatial position, i.e., detection of a multi-
modal stimulus may help reinforcement of the unisensory stimuli in the upstream 
areas. 

2.2   Mathematical Description 

In the following, quantities which refer to neurons in the auditory, visual or multisen-
sory areas will be denoted with the superscripts a, v and m, respectively. The spatial 
position of individual neurons will be described by the subscripts ij. 

The Receptive Fields of Unisensory Areas. In the present version we assume that 
each area is composed by 40x40 neurons (i.e.: N=40; M=40), to reduce the 
computational complexity of the computer implementation. Neurons in each area 
differ in the position of their receptive fields by 2.25 deg. Hence, each area covers 90 
deg in the visual, acoustic or multisensory space. In the following, we will denote 
with xi and yj the center of the RF of a generic neuron ij. The receptive field (say 
Rs

ij(x, y)) of neuron ij in the unisensory area s (s = a, v) is described with a gaussian 
function. The standard deviation of this function has been given so that the receptive 
fields of the visual neurons are approximately 10-15 deg in diameter, and those of 
acoustic neurons approximately 20-25 deg, according to data reported in literature [5]. 
The amplitudes of the Gaussian functions are set to 1, to establish a scale for the 
strength of the inputs generated by the external stimuli. According to the previous 
description of the RF, an external stimulus excites not only the neuron centered in that 
zone, but also the proximal neurons whose receptive fields cover such position. 

The Activity in the Unisensory Areas. Unisensory neurons are stimulated not only 
from external inputs, but also by connections with other elements in the same area and 
by a feedback connection from multisensory neurons in the downstream layer. Hence, 
the overall input for neuron in position ij can be written as follows: 

( ) ( ) ( ) ( ) . ,         ;  vastftltrtu s
ij

s
ij

s
ij

s
ij =++=  (1) 

rs
ij represents the input that reaches the neuron ij in presence of a sensory stimulus; 

this is computed as the inner product of the stimulus and the RF. The term ls
ij is the 

input coming from connections with other neurons in the same area. Synapses repre-
senting these connections are symmetrical and arranged according to a “Mexican hat” 
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function. Parameters which establish the extension and the strength of lateral synapses 
in the unimodal areas have been assigned to simultaneously satisfy several criteria: i) 
the presence of an external stimulus produces an activation bubble of neurons which 
approximately coincide with the dimension of the receptive field; ii) according to data 
reported in [4] we assumed that the surrounding inhibitory area is much larger than the 
activation bubble; iii) inhibition strength must be strong enough to avoid instability; iv) 
stimulating the suppressive region with a second stimulus can induce within-modality 
suppression greater than 50%. To avoid undesired border effects, synapses have been 
realized by a circular structure so that every neuron of each area receives the same 
number of side connections. Finally, fs

ij is the input to unisensory neurons induced by 
the feedback from the Superior Colliculus. Such connections exclusively link neurons 
placed in the same ij-position in the Colliculus and the unisensory area. Finally, neuron 
activity is computed from its inputs, through a static sigmoidal relationship and a first-
order dynamic. This is described via the following differential equation:  

( ) ( ) ( )( ). tutxtx
dt

dτ s
ij

s
ij

s
ijs ϕ+−=⋅  (2) 

The time constants, τs, which determines the speed of the answer to the stimulus, 
agrees with values (a few milliseconds) normally used in deterministic mean-field 
equations [12]. φ represents a static sigmoidal relationship, described by the following 
equation  

( )( ) ( )( ) . 
1

1
sss ptu

s

e
tu
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=

ϑ
ϕ  (3) 

where ϑ
s
 defines the threshold and ps sets the slope at the central point. These 2 pa-

rameters have been assigned to have negligible neuron activity in basal condition (i.e., 
when the input is zero), and to have a reliable transition from silence to saturation in 
response to unimodal and cross-modal inputs. Such function identifies 3 regions of 
work, depending on the intensity of the input: the under-threshold behaviour of a neu-
ron, an approximately linear region, and a saturation region. According to the previ-
ous equation, the maximal neuron activity is conventionally set at 1 (i.e., all neuron 
activities are normalized to the maximum). 

The Activity in the Multisensory Area. Neurons in this area are stimulated by the 
activities of the neurons in the two unisensory areas located in the same ij-position. 
This choice has been adopted since, according to experimental data, the auditory and 
visual RFs of a multisensory neuron are in spatial register [4], i.e., they represent 
similar regions in space. Furthermore, neurons in the superior colliculus also receive 
lateral synapses from other elements in the same area. 

We assumed that synapses in the multisensory area have a Mexican hat disposition, 
but they join only spatially distant neurons. This disposition of synapses has been 
adopted since data in the literature suggest the absence of within-modality integration 
of proximal stimuli, and cross-modal suppression between distal stimuli. Hence, the 
overall input, (say um

ij) to a multisensory neuron is computed as the sum of two  
elements: a feedforward term from upstream unimodal areas and lateral feedback 
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from distal neurons in the same area. Then, the activity of a multisensory neuron is 
computed from its input by using equations similar to Eqs. (2) and (3). 

3   Results 

The steady state responses of an SC neuron vs. the magnitude of the input stimulus 
are reported in Fig. 2, for an auditory (pointed line), a visual (dashed line) and a mul-
tisensory (continuous line) stimulation. These responses have been obtained by using 
either a single stimulus (auditory or visual), of increasing strength, or two paired 
stimuli (visual + auditory) located at the centre of the RF. From these curves, the dy-
namical range (defined according to the literature [6] as the difference in neuron ac-
tivity at saturation and at threshold) can easily been computed. Furthermore, by way 
of comparison the sum of the two unisensory responses is also presented in the same 
figure. Two aspects of these curves are of interest: first, the dynamical range to mul-
tisensory stimulation is much greater than the dynamical range to a single stimulus. 
Second, the neuron exhibits a superadditive behaviour (i.e. the response to a multisen-
sory stimulus is greater than the sum of the two unimodal responses) at low values of 
the input stimuli (just above threshold), while the behaviour tends to become simply 
additive (i.e. the multisensory response is equal to the sum of the unisensory re-
sponses) at high stimulation levels (close to saturation). In order to quantitatively 
evaluate the multisensory integration we computed the so-called “interactive index” 
[6]. This is a measure of the augmentation of the response induced by two stimuli of 
different modality compared with a single stimulus, and is defined as follows:  

. 100Index eInteractiv
max

max ⋅⎥
⎦

⎤
⎢
⎣

⎡ −
=

Ur

UrMr
 (4) 

where Mr (multisensory response) is the response evoked by the combined-modality 
stimulus, and Urmax (unisensory response) is the response evoked by the most  
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Fig. 2. Analysis of the response of multimodal neuron to unimodal and crossmodal stimuli. The 
responses were assessed stimulating the model with an acoustic ( ), a visual ( ) 
and two paired multisensory ( ) stimuli with increasing intensity. By way of compari-
son, the sum of the two unisensory responses ( ) is also presented in this figure. The 
stimulus was presented at the center of the RF of the observed SC neuron. 
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Fig. 3. Analysis of the interactive index vs. the intensity of the multimodal input, that under-
lines the phenomenon of the Enhancement and the inverse effectiveness principle. Interactive 
index (D %) is computed as the per cent increase of the multisensory response compared to the 
maximum unisensory response. 
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Fig. 4. Effect of the distance between two stimuli on the integrative response of the multisen-
sory SC neurons. A first visual stimulus was located at the center of the RF of the observed 
neuron. A second stimulus, either of the same modality (dashed line) or of a different modality 
(continuous line), is progressively moved from the center of the RF to the periphery. The dis-
tance between the two stimuli is shown in the x-axis. 

 

effective unisensory stimulus. Fig. 3 displays the interactive index computed at differ-
ent values of the input stimuli. According to the principle of inverse effectiveness,  
this index decreases from more than 500% in case of small stimuli (just above the 
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threshold, input = 8 - 12) down to 75% in case of strong stimuli. Finally, Fig. 4 ana-
lyzes the role of the distance between two stimuli on the integrated response. In these 
simulations a visual stimulus is located at the center of the RF, and either a second 
visual stimulus (within-modality interaction) or a second auditory stimulus (cross-
modality interaction) is moved from the center to the periphery. Results confirm that a 
second stimulus of a different modality located within the receptive field causes sig-
nificant cross-modal enhancement, whereas within-modality enhancement is mild 
(i.e., a second stimulus of the same modality, located inside the RF does not evoke a 
significantly greater response). If the second stimulus is moved away from the RF, 
one can observe significant within-modality suppression as well as significant cross-
modality suppression. Within modality suppression is strong in both modalities (audi-
tory and visual) leading to almost 70% reduction in the SC response. The suppressive 
regions are quite large (25-30 deg) in accordance with physiological data [4]. 

4   Discussion 

The present work was designed to elucidate possible neural mechanisms involved in 
multisensory integration in the Superior Colliculus. To this end, we developed a sim-
ple neural circuit which encompasses several mechanisms, still maintaining a moder-
ate level of complexity. Actually, the model aspires to represent a good compromise 
between completeness, on one hand, and conceptual (and computational) simplicity 
on the other. The basic idea of this model is that multimodal neurons in the Superior 
Colliculus receive their inputs from two upstream unimodal areas, i.e., one area de-
voted to a topological organisation of visual stimuli and another area devoted to a 
topological organisation of auditory stimuli. However, the exact location of these ar-
eas is not established in our model, i.e., we did not look for a definite anatomical 
counterpart. Experimental data suggest that multisensory neurons are created by the 
convergence of modality-specific afferents coming from different sources [2]. For the 
sake of simplicity, in this model somatosensory stimuli are neglected, i.e., we con-
sider only the problem of audio-visual integration. By incorporating the previous 
mechanisms, and using a single set of parameters, the model was able to make several 
predictions, which can be compared with experimental data. In the following, the 
main simulation results are critically commented: 

i) Inverse effectiveness – As it is evident in Figs. 2 and 3, the capacity of multisensory 
neurons to integrate cross-modal stimuli strongly depends on the intensity of the in-
put. In the present work the facilitatory interaction has been quantified using the in-
teractive index, which relates the multisensory response to the larger of the two 
unisensory responses. This index is affected by the intensity of the stimuli, and exhib-
its a significant decrease if stimulus intensity is progressively raised. This behaviour, 
which is known as “inverse effectiveness”, is a consequence of the non-linear charac-
teristic of neurons, and can be explained looking at the position of the working point 
on the sigmoidal relationship after application of the more effective input. First, let us 
consider the case in which, after application of the more effective stimulus, the  
SC neuron works in the lower portion of its sigmoidal relationship, close to the 
threshold. Then, application of a second stimulus may move the working point into 
the linear portion of the curve, thus causing a disproportionate increase in the  
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response compared with that evoked by the first input (superadditivity, enhancement 
greater than 100%). By contrast, if the neuron works in the central (quasi-linear) re-
gion, the effect of a second stimulus is simply additive. Finally, if the upper saturation 
region is approached one can have sub-additivity, since a second stimulus can induce 
only a minor increase in neuron activity. The last case is not simulated in this work 
since, with the present value of feedforward synapses, a single stimulus cannot move 
the working point close to the upper saturation region. Sub-additivity, however, can 
be mimicked by increasing the feedforward synapses. 

ii) Dynamic range – The multisensory dynamic range of multimodal neurons is 
greater than the unisensory dynamical range [6]. This signifies that the maximal re-
sponse evoked by a combination of auditory and visual stimuli in close spatial and 
temporal register is greater than the maximal response evoked by a single stimulus of 
either modality [6]. Such a property is explained in our model by the presence of two 
sigmoidal relationships, disposed in a series arrangement. Let us consider a single 
stimulus and progressively increase its intensity: in our model, the maximal response 
in the SC (see Fig. 2) is determined by the upper saturation of neurons in the upstream 
uni-modal area, and by the strength of the feedforward synapses linking this unimodal 
neuron to the downstream (multimodal) neuron. This input does not lead multimodal 
neurons to saturation. Consequently, if we apply a combination of a visual and an 
auditory stimulus and progressively increase their intensity (multisensory dynamic 
range), the downstream multimodal neuron can be driven closer to its upper saturation 
and exhibits a greater response.  

iii) Cross-modality vs. within modality integration – According to the literature [1] in 
our model a combination of two cross-modal stimuli within the RF results in signifi-
cant enhancement of the SC response, but the same effect is not visible when the two 
stimuli are presented as within-modality pairs. A second within-modality stimulus ap-
plied within the RF causes just a mild enhancement (Fig. 4). This result is the conse-
quence of the absence of lateral excitation between multi-modal neurons.  

iv) Spatial relationship between two (within-modal or cross-modal) stimuli – In 
agreement with experimental data [4], our model shows that, when the spatial dis-
tance between two stimuli is increased, the integration performed by multimodal neu-
rons changes from enhancement to suppression. In the present model the suppressive 
effect is evident both using within-modality and cross-modality stimuli. Similar ex-
empla are reported in [4].  
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Abstract. Neurotransmitter fields differ from neural fields in the underlying 
principle that the state variables are not the neuron action potentials, but the 
chemical concentration of neurotransmitters in the extracellular space. The 
dendritic arbor of a new electro-chemical neuron model performs a 
computation on the surrounding field of neurotransmitters. These fields may 
represent quantities such as position, force, momentum, or energy. Any 
computation performed by a neural network has a direct analog to a 
neurotransmitter field computation. While models that use action potentials as 
state variables may form associations using matrix operations on a large 
vector of neuron outputs, the neurotransmitter state model makes it possible 
for a small number of neurons, even a single neuron, to establish an 
association between an arbitrary pattern in the input field and an arbitrary 
output pattern. A single layer of neurons, in effect, performs the computation 
of a two-layer neural network. 

Keywords: Computational neuroscience, signal processing, pattern recognition, 
mathematical models, natural intelligence, neural fields. 

1   Introduction 

Neural fields have been studied for a long time [1]–[4] and comprehensively reviewed 
by several authors [5], [6]. This approach models the behavior of a large number of 
neurons by taking the continuum limit of discrete neural networks where the 
continuous state variables are a function in space representing the mean firing rates.  

The distinction between neural fields and neurotransmitter fields is the physical 
quantity under consideration. Neural fields attempt to model the spatial distribution of 
mean neuron-firing rates as real-valued function, while neurotransmitter fields model 
the concentration of neurotransmitters in the extracellular space as a real-valued 
function. The localization of neurotransmitters to the space within the synaptic cleft is 
seen as an evolutionary adaptation that limits diffusion and increases the efficiency. 

In order to develop the theory, we put forth a single proposition: the neurotransmitter 
cloud hypothesis. Empirical evidence and deductive arguments are provided which 
support this proposition, but verification will require further investigation and analysis. 
Acceptance of the hypotheses, like including an additional mathematical axiom, allows 
us to explore a new computational model that characterizes the electro-chemical 
properties of the neuron. 



20 D.S. Greer 

1.1   Evolution of the Nervous System 

Although the evolution of the senses and the central nervous system was a complex 
process that occurred over an extended time interval [7], we can attempt to understand 
some of the general constraints that may have influenced its development. One of 
these constraints was the need to evaluate the current state of the body and its 
immediate environment. This required the creation of internal representations that 
could be equated with physical quantities defined over the continuous variables of 
space, time, and frequency. These quantities included mass (external world), position 
(location of the body surface), energy (visible light and sound vibrations), and force 
(pressure on the body surface and the tension on the muscle cross-sections). 

In the standard neural network model, a synapse is characterized mathematically 
by a single real-valued weight representing the effect one neuron has on another. The 
products of the weights times the activation values of the input neurons are summed, 
and a nonlinear transfer function is applied to the result [8]. This model describes 
electrical and chemical synapses uniformly, that is, by a single real value. Examining 
the difference between electrical and chemical synapses, we note that electrical 
synapses, which may have a weighted response proportional to the number of ion 
channels connecting the pre- and postsynaptic neuron, are more than ten times faster. 
They are also more efficient, since they do not require the metabolism of 
neurotransmitters, or the mechanics of chemical signaling. However, chemical 
synapses are found almost exclusively throughout the central nervous systems of 
vertebrates. This raises the question: Given a time interval of several hundred million 
years, and the wide range of species involved, why has nature consistently retained 
the cumbersome chemical synapses and not replaced them with electrical synapses? 

We note that neurotransmitters, the core component of chemical synapses, are 
actually located outside the neuron cell walls in the extracellular space. Moreover, the 
chemical signaling often occurs in multiple-synapse boutons such as the one shown in 
Fig. 1. Within these complex synapses, which connect the axons and dendritic spines 
of many adjacent neurons, the density of neurotransmitter is equal to the sum of the 
contributions from each of the individual axons. 

Another constraint during the course of evolution was the limited amount of 
processing power available. Solutions that required more than a very small number of 
neurons were not feasible. In addition, the space within the organism that could be 
devoted to representing physical quantities was limited, so small, compact 
representations were preferable.  

If we leave the confines of the standard neuron model and consider the density of 
neurotransmitters as the state variables, we discover a number of advantages. The first  
is higher resolution; billions of small molecules can fit in the space occupied by a single 
neuron. The second is energy consumption; the concentration of neurotransmitters, like 
the concentration of ink on a sheet of paper, is passive and can store information 
indefinitely without expending energy. In contrast, action potentials require the 
continuous expenditure of energy in order to maintain state. Another advantage is that a 
very high-resolution representation can be maintained with only a few processing 
elements. For example, the terminal arbor of a single neuron that encodes a joint angle 
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can support a high-resolution model describing the location of the surface of the limb in 
space. This collection of related concepts results in the following conjecture. 

The Neurotransmitter Cloud Hypothesis. When multicellular fauna first appeared, 
organisms began to represent quantities such as mass, force, energy and position by 
the chemical concentration of identifiable molecules in the extracellular space. The 
basic principles of operation developed during this period still govern the central 
nervous system today. 

 
Fig. 1. This idealized view of multi-synapse boutons shows how the concentration of 
neurotransmitter perceived by multiple dendrites is the summation of that produced by three 
separate axon terminals. The summation occurs in the extracellular space and is separated from 
the intracellular summation by the nonlinear responses of the cell membranes. 

The basic laws of physics are based on quantities defined in space, time, and 
frequency, which can be internally represented by the chemical concentration of 
neurotransmitters in three-dimensional space. 

Neurotransmitter clouds in early metazoa would have suffered from two problems: 
chemical diffusion of the molecules and chemical inertia due to the large amounts of 
neurotransmitter required to fill in the extracellular space. As a result, evolutionary 
adaptation would have favored neural structures where the neurotransmitters 
remained confined to the small regions in the synaptic clefts between the pre- and 
postsynaptic neurons. 

In order to visualize how a computation can be performed on a neurotransmitter 
cloud, imagine the dendritic arbor of a neuron as a leafless tree with its branches 
inside of the cloud. The surface of the tree is “painted” with a shade of gray that 
corresponds to its sensitivity to a particular neurotransmitter. When multiplied by the 
actual concentration of neurotransmitter present in the extracellular space, and 
integrated over a region of space that contains the dendritic tree, the result is a first-
order approximation of the neuron’s response. We can mathematically represent the 
“shade of gray” that corresponds to the sensitivity of a neuron’s dendritic arbor in 
physical space by a function μ(x,y,z). 
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Axon 1 

τ1
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τ3
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2   Neurotransmitter Field Theory 

The mathematical formulation of neurotransmitter fields subsumes the functionality 
of the neural networks. That is, for every neural network, there exists a corresponding 
neurotransmitter field computation that generates an identical result. 

2.1   Inner Products 

The standard projection neural network calculation is based on the inner product of 
two vectors, a vector of input values, and a weight vector. Hilbert spaces generalize 
the inner product operation to continuous domains by replacing the summation of the 
products of the vector coefficients, with the integral of the product of two functions 
[9]. One of these two functions, μ(x,y,z), is used to represent the sensitivity of the 
dendritic arbor and is analogous to the weight vector. 

Let H be the space occupied by the neurotransmitter cloud, and let h(x,y,z) be a 
field corresponding to the density of transmitter in the extracellular space. To permit 
the use of Dirac delta (impulse) functions we use the Lebesgue integral and define 
μ(x,y,z) as a signed measure [9], [10]. Using the Lebesgue integral, instead of the 
conventional Riemann integral, allows us to model neurons that are able to 
discriminate neurotransmitter concentration at a single point, but may also exhibit 
sensitivity over entire regions. We conceptually model the operation of a neuron as an 
abstract Processing Element (PE). 

The dendritic arbor computation of the PE, which is analogous to the vector inner 
product, is defined by the integral of h and with respect to μ 

 response ( , , ) ( , , ) .
H

h x y z d x y zμ= ⌠⎮
⌡

                           (1) 

To demonstrate why a neurotransmitter field calculation subsumes the 
functionality of the standard neural network model, we examine the computation 
performed by a single-layer network with a single output node. For an m-dimensional 
input vector u = (u1, u2, …, um)T, a weight vector w = (w1, w2, …, wm)T, and a transfer 
function σ, the output v of a single-layer projection neural network is given by 

 T

1

( ) .
m

k k
k

v w uσ σ
=

⎛ ⎞= = ⎜ ⎟
⎝ ⎠
∑w u                                 (2) 

To construct an analogous neurotransmitter field computation, identify the input 
vector u with any set of m distinct points {(xk, yk, zk); 1 ≤ k ≤ m } in H, and let the 
input vector coefficients uk = h(xk, yk, zk) be defined by a function h∈L2(H). Let 
{δk} be the set of three-dimensional Dirac delta functions (product measures) 
defined by 

 ( ) ( ) ( ) .k k k kx x y y z zδ δ δ δ= − − −                         (3) 



 Neurotransmitter Fields 23 

For a single PE, let the transfer function σ be the same as the one used for the 
neural network. Setting 
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Thus, a PE with the measure μ performs the same calculation as the single-layer 
neural network. The biological meaning of the measure μ defined above is a 
mathematical model of a neuron with m points (idealized synapses) each with 
sensitivity wk and located at the spatial positions (xk, yk, z k ) on the dendritic surface. 
Since the calculations may be carried out by cells other than neurons, we use the term 
computational manifold to refer to the generalization of discrete neural networks to 
continuous spaces. 

2.2   Computational Manifolds 

In addition to the dendritic arbor, each neuron also has an axonal tree, or terminal 
arbor, which releases neurotransmitter into the extracellular space. Let τ(x,y,z) denote 
the function that quantitatively describes the output of a neuron in terms of the spatial 
distribution of chemical transmitter it generates. 

We use the index i to enumerate the set of neurons {Ni}. Each PE, Ni, has a unique 
dendritic arbor μi and a unique terminal arbor τi. Mathematically the neurotransmitter 
“clouds” are three-dimensional manifolds which we illustrate diagrammatically as 
rectangular blocks such as the input manifold H and the output manifold G shown in 
Fig. 2. To distinguish between the input and output spaces, we substitute the 
parameters (ξ,η,ζ ) for (x,y,z) in the input manifold H. 

Each processing element, Ni, such as the one shown in Fig. 2 consists of a receptor 
measure, μi(ξ,η,ζ ), a nonlinear cell-body-transfer function, σ, and a transmitter 
function τi(x,y,z). The receptor measure μi models the shape and sensitivity the 
dendritic arbor in the input manifold H, while transmitter function τi models the signal 
distribution in the terminal arbor and the concomitant release of neurotransmitters into 
the output manifold G. 

The inherent nonlinear relationship between the concentration of neurotransmitter 
in the extracellular space and the gating of the ion channels on the dendritic surface is 
characterized by the dendritic-cell-membrane-transfer function χd. At some point, 
increasing the concentration of neurotransmitter has a diminishing effect on the ion 
channels. Consequently, χd is nonlinear. Similarly, the axonal-cell-membrane-transfer 
function χa, characterizes intrinsic nonlinear response corresponding to the release of 
neurotransmitters by the axons terminals as a function of the neuron firing rate. The 
two transfer functions, χd and χa, as well as the cell-body-transfer function σ are 
analogous to a sigmoid transfer function, such as 1/(1+exp(-x) or the hyperbolic 
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tangent function, used in neural networks. We model the spatial variations in the 
responses of each processing element Ni using μi and τi and assume that χd and χa, are 
fixed functions of a single real variable which are uniform throughout all cells. 

 

i i

Ni

NH,G G

ad

H

 

Fig. 2. The processing element Ni models the operation of a single neuron. The receptor 
measure μi converts the continuous distribution of neurotransmitter in the input manifold H to a 
single real value, while the transmitter function τi converts a single real value to a continuous 
distribution of neurotransmitter in the output manifold G. The operation σ  models the 
nonlinear response of the cell to the dendritic inputs. The nonlinear response of the dendrite-
cell membrane and the axon-cell membrane are represented by χd and χa respectively. 

The transformation from a discrete real value back to a continuous field results 
from scaling the output of the nonlinear transfer function σ  by the transmitter 
function ( , , )i x y zτ . Taking into account the cell-membrane transfer functions and 
summing over all of the PEs gives the complete output function g. 

( )( , , ) ( , , ) ( , , ) ( , , )a d i i

i
H

g x y z h d x y zχ σ χ ξ η ζ μ ξ η ζ τ
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⌠
⎮
⌡

∑            (6) 

The receptor measures and the transmitter functions perform the complementary 
operations of converting back and forth between fields defined on continuous 
manifolds and discrete real values. 

2.3   Basis Functions 

The continuous version of a projection neural network defined by (6) can be extended 
by generalizing the notion of radial basis functions [11] to computational manifolds. 
For discrete neural networks, a set of pattern vectors{ }αu and a radial basis function θ 
form the discriminate functions ( )αθ −u u . The real-valued function ( )xθ  has its 
maximum at the origin and the properties ( ) 0xθ >  and ( ) 0xθ → as x → ∞ . 
Typically, ( )xθ   is the Gaussian, 2 2exp( / 2 )x σ− , or a similar function. 
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To construct the analogous continuous basis functions, we replace the discrete 
pattern vectors uα with a continuous field ρα. Each of the functions ρα(ξ,η,ζ ) 
represents a “pattern” density defined on the input manifold. If we wish, we can 
associate a particular “target” function gα(x,y,z) in the output manifold with each 
input pattern ρα . Assuming that there are several PEs available for each pattern, we 
assign a particular pattern to each Ni which we label ρ i . 

The equation corresponding to a basis-function neural network can be obtained by 
substituting either θ ( χd(h) – χd(ρ i)) or the less complex θ ( h – ρ i) for χd(h) in (6) 

( )( , , ) ( , , )a i i i

i
H

g x y z h d x y zχ σ θ ρ μ τ
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= − ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⌠
⎮
⌡

∑                  (7) 

where we have omitted the variables of integration (ξ,η,ζ ) for h, ρ, and μ. 
Each processing element now has an additional property ρi, which represents the 

pattern to which it is the most sensitive. For each PE, the integral inside (7) is 
maximum when h = ρi over the region of integration. This in turn maximizes the 
coefficient for the transmitter function τi. The sum of the transmitter functions {τi} 
associated with a particular input pattern ρα can then be defined to approximate the 
desired target function gα, thereby creating the required associations. 

The measures μi in (7) can identify the regions where the pattern ρi is the most 
sensitive. For example, we can imagine photographs of two different animals that 
appear very similar except for a few key features. The photographs, representing two 
patterns ρ1 and ρ2, are approximately equal, but the measures can be trained so that 
their value where the patterns are the same is small, but in the key regions where the 
patterns differ, they have much larger values. In this way, even though the two image 
patterns are almost the same, the output functions gα  that result from the integrals in 
Equation (7) could be very different.  

2.4   Computational Equivalence 

While models that use action potentials as state variables can form associations by 
using matrix operations on a large vector of neuron outputs, equation (7) shows the 
neurotransmitter state model makes it possible for a small number of neurons, even a 
single neuron, to establish an association between an arbitrary input pattern ρα(ξ,η,ζ ) 
and an arbitrary output pattern gα(x,y,z).  

A two-layer discrete neural network and a continuous computational manifold are 
shown in Fig. 3. As we have seen, the measures {μi} in the computational manifolds 
can replace the weights {wk} in the neural network; the corresponding summation 
takes place inside the cell. Since the transmitter functions {τi} can extend over a large 
area, even the entire output manifold, many different processing elements may 
contribute to the concentration of neurotransmitter at any particular point (x,y,z). 
Consequently, the summations in (6) and (7) are equivalent to the summations in a 
neural network where the weights correspond to the values of the transmitter  
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functions at a given point. This summation takes place outside the cell, as illustrated 
in Fig. 1. 

Both the integrals with respect to the measures μi, and the summations over the 
transmitter functions τi, in effect perform operations analogous to the inner product 
with a weight vector in a single-layer neural network. Consequently, together they 
perform an operation analogous to a two-layer neural network. 

 
Fig. 3. A neural network (A) transforms discrete vectors, while a computational manifold (B) 
transforms continuous fields. Neurons are points in the function space NH,G. Since there are 
effectively two summations, one in the intracellular space and one in the extracellular space, the 
receptor measure μ, together with the transmitter function τ, allow a single layer of neurons to 
perform the equivalent computation of a two-layer neural network. 

The collection of transmitter functions and receptor measures that comprise the 
synapses within a single neurotransmitter cloud can also be viewed as a two-layer 
neural network. In this formulation, a two-layer back propagation algorithm now 
takes place between the pre- and postsynaptic neurons, inside a single manifold, with 
the errors propagating back from the receptor measures to the transmitter functions. 

Computation manifolds are useful for describing a wide range of cognitive 
operations [12]. In particular, the architecture outlined in Fig. 3, with processing 
elements incorporating the patterns densities defined by (7), is well suited for 
generating stable, recursive associations on spectral manifolds [13]. 
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2.5   Function Spaces 

The nodes of the neural network shown in Fig. 3A are partitioned into the input layer, 
the hidden layer, and the output layer. In the computational manifold model, the input 
layer is analogous to the input manifold H, and the output layer is analogous to the 
output manifold G. Both H and G represent the continuous distribution of 
neurotransmitters in physical space. The “hidden” layer is the space NH,G, which 
equals the Cartesian product of two function spaces: the space of all possible 
(receptor) measures on H, and the space all possible output (transmitter) functions on 
G. The individual neurons Ni are points in this infinite-dimensional product space. 

When samples of a continuous function defined on a high-dimensional space are 
arranged in a lower dimensional space, the samples will in general appear to be 
discontinuous. Consequently, when a collection of processing elements, {Ni}, 
representing samples taken from the infinite-dimensional function space NH,Q are 
arranged in three-dimensional physical space, the outputs will seem discontinuous. 
The resulting firing rates may appear to be stochastic when in fact they are 
deterministic. Moreover, realistic neural field models that attempt to describe the 
observed firing rates of large groups of neurons as a continuous function in physical 
space will be difficult or impossible to create. 

Equations (6) and (7) express the computations of a neuron that is sensitive to a 
single neurotransmitter. Given the number of different chemicals that act as 
neurotransmitters, both inhibitory and excitatory, we clearly need to extend the model 
to account for their effects. If we have n different chemicals of interest in the 
extracellular space, we can model their concentration at each point as vector h(x,y,z) = 
(h1(x,y,z), h2(x,y,z), … , hn(x,y,z)). Any nonlinear interactions between the various 
neurotransmitters in the dendritic arbor will require the appropriate modifications to 
the integral equations on the input manifold. 

3   Neuroglia 

In the central nervous system of vertebrates, there are 10 to 50 times more glial cells 
than neurons [14]. Astrocytes, the most common type of neuroglia, are receptive to 
potassium ions and take up neurotransmitters in synaptic zones. Glial cells have also 
been shown to release neurotransmitters. 

Unlike neurons, glial cells do not generate action potentials. Consequently, if state 
is encoded in the firing of neurons, glia are relegated to a support role. However, in a 
neurotransmitter-centric model, glia can take a central position along side neurons. 
They may participate in both short-term and long-term memory as well as 
computations. However, since they lack action potentials, glial cells transmit the 
results of their computations more slowly. 

4   Conclusion 

In the standard neural network model, the state variables are the neuron action 
potentials, and a synapse corresponds to a single weight that represents the effect the 
presynaptic neuron has on the postsynaptic neuron. In the neurotransmitter field 
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model, the state variables are the concentrations of neurotransmitters in the 
extracellular space. In this formulation, a single layer of neurons is able to perform 
the computation of a two-layer neural network. One set of weights corresponds to the 
sensitivity of the dendritic arbor and the second set of weights corresponds to the 
amount of neurotransmitter released by the terminal arbor. The second summation 
occurs on the neurotransmitters in the extracellular space and remains separated from 
the intracellular summation by the nonlinear responses of the cell membranes. 

Compared to a neuron action-potential model, a neurotransmitter-centric model 
presents a broader and more comprehensive view of natural intelligence. It allows the 
chemical reactions that take place in many types of cells, including neuroglia, to be 
incorporated into a general framework of memory and computation. 
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Abstract. Motivated by a better understanding of cerebral information process-
ing, a lot of work has been done recently in bringing together connectionist
numerical models and symbolic cognitive frameworks, allowing for a better
modelling of some cerebral mechanisms. However, a gap still exists between
models that describe functionally small neural populations and cognitive archi-
tectures that are used to predict cerebral activity. The model presented here tries
to fill partly this gap. It uses existing knowledge of the brain structure to describe
neuroimaging data in terms of interacting functional units. Its merits rely on an
explicit handling of neural populations proximity in the brain, relating it to simi-
larity between the pieces of information processed.

1 Introduction

Activation studies, where subjects are asked to perform a specific task while data of their
brain functioning are collected through functional neuroimaging, have shown that sen-
sorimotor or cognitive functions are the offspring of the activity of large-scale networks
of anatomically connected cerebral areas [1]. However, knowing the cerebral substra-
tum of a cognitive function is necessary, although not sufficient, to be able to make the
accurate prognosis of the clinical aftermath of a lesion or the precise assessment of a re-
habSect.ilitation procedure. The main point is to interpret functional neuroimaging data
as the result of cerebral information processing, which can be tricky, even in the case of
a basic function such as categorisation [2]. This is worsen by the fact that neuroimaging
data are very indirect measures of the neuronal activity, e.g. the whole brain electrical
activity “seen” by each electrode in EEG, or the haemodynamic response to neuronal
energy demand provided by fMRI. Our long-term goal is to be able to predict the cog-
nitive behaviour from neuroimaging data, which are an indirect evidence of the real,
unknown, activity of the cerebral substratum. Currently, three main, and somehow inde-
pendent, approaches tackle partly the problem. Statistical methods focus on the analysis
of neuroimaging data that they relate loosely to cognitive functions through simplified
(e.g. “additive”) task models [3]. The other two approaches relate cerebral activity to
cognitive functions. Top-down modelling relies usually on a functional decomposition
of the large-scale networks components. The coarseness of the decomposition depends
on how strongly the models make use of high-level symbolic tools [4,5]. Computational
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neuroscience is based on the idea that the function performed by a single region emerges
from the activity of the neural network underpinning it [6]. The problem with this latter
approach is that even in such an accurate model of a functional unit, it is likely that
it will not inform us on how information is processed, due to the massive distribution
of information representation and processing throughout the whole network. Related to
the issue of explaining neuroimaging data, is the problem of information representa-
tion. Mukamel et al. [7] have shown that neuroimaging activation patterns are strongly
correlated to the firing rates of the neurons. However when integrating activity over a
neural population, the spatial activation pattern is lost. Moreover the widespread topical
organisation of cerebral regions [8] and the possible modulation of the neural sensitiv-
ity to stimuli [9] are in favour of a symbolic component of information that we think is
related to these activation patterns.

To address this challenge, we propose a preliminary model, called SimBa, that takes
into account both overall populations firing rates (as a numerical component) and spatial
activation patterns (as a fuzzy symbolic component). We hope that it will eventually
help to interpret the cerebral networks revealed by clinical functional neuroimaging in
terms of cognitive functions.

Section 2 presents the SimBa modelling framework itself while Sect.3 briefly presents
two applications illustrating each components of the model. Section 4 discusses some
other related models before concluding in Sect.5.

2 Presentation of SimBa

This section presents a model based on the causal connectivity paradigm that represents
large-scale cerebral networks as neuroanatomy-based networks of functional units. Pro-
cessed information is both numerical and symbolic and interactions between symbolic
and numerical aspects occur inside each functional component.

2.1 Causal Connectivity and Information Representation

The causal connectivity approach [10] characterises the information processing that oc-
curs in one functional unit along both symbolic and numerical aspects. This approach
inspired probabilistic [11] and information’s similarity-based [12] models (though the
latter contains also probabilistic aspects). The main idea is to consider each functional
unit as an information processor and the connections between them (i.e. axon bundles
linking together neural populations) as information transmitters. The information itself
is represented as two-dimensional data: i) a numerical component, called magnitude,
stands for the overall activation of the neuronal population that processed this piece of
information (thus allowing comparisons with neuroimaging data), and ii) a symbolic
component, called type, that qualifies the pattern of the firing neurons in the popula-
tion. Note that we do not manipulate rule-generated symbols that would then have to
be grounded, but we rather give a symbolic label to a pattern of activation. While the
model describes low-level functions, like sensory processing, those labels can be given
a semantic meaning based on the topic organisation of the primary cortex areas [8].
Information transmission has two modes since the numerical part is propagated us-
ing a dynamic Bayesian formalism quite similar as in [11], while the symbolic part
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is just passed along the numerical part, without modifications between the processors.
We describe now how information is processed by the functional units, where the two
components of information will really interact.

2.2 Pattern Categorisation

A functional unit is characterised by the function it performs on the incoming infor-
mation. This function depends on the role of this population in the network (whether it
is inhibition, categorisation, etc.). In this we do not depart from the traditional view of
causal connectivity [10]. As for the symbolic component, it will act as a way to modify
this action. It is well known that the primary cortex is functionally organised accord-
ing to the stimuli it receives [8]. For example, the auditory cortex presents a tonotopy,
meaning anatomically localised populations will have a receptive field centred on a
small interval of sound frequencies. Moreover, two overlapping populations will have
overlapping receptive fields. This kind of topic organisation appears in every primary
cortices and in fact can be generalised this way : similar stimuli trigger similar cere-
bral activation, i.e. activation of spatially-close neuronal populations. This suggests
that similarity between stimuli can be represented in terms of spatial proximity of neu-
ral population responding to them, this without restriction on the modality of the stimuli
(i.e. auditory, visual, etc.). From experimental observations [8] comes the main hypoth-
esis motivating this model, that this is true not only in the primary cortex but also in the
rest of the brain. Let us see in the next section how this will be practically used in the
model.

2.3 System Workflow and Formalism

Patterns and fuzzy sets. The symbolic component of information is represented by
a discrete fuzzy set, the core of which being the symbolic label of the population that
produced this piece of information and the support being composed of the symbolic
labels of populations known to be close to the producing one (see Fig.1). The single
symbol in the core of a fuzzy set characterises the set and is called its centre. When
processing incoming information, a functional unit compares its symbolic component
(i.e. its type) with the receptive field of the unit. This receptive field is represented as a
set of fuzzy set prototypes. This allows an easy comparison with the incoming type in
terms of similarity.

Notation conventions. Time is discretised, with a time step Δt of usually 1 ms (this
is sufficient regarding the time resolution of neural populations). An information is a
couple (M, T ) where M is the magnitude and T , the type. T is a fuzzy set defined on the

discrete domain DT . When considering a functional unit, (M (i)
in , T

(i)
in ) is the incoming

information on input i and (Mout, Tout) the outgoing information.

Spatial integration. Since a functional unit can receive several inputs, spatial integra-
tion is needed. This is where excitatory or inhibitory signals will be handled differently
and where the different modalities will be combined either linearly or not depending of
the role of the unit. For the magnitude, the combination uses classical addition and mul-
tiplication, whereas for the type, classical fuzzy operators are used [13]. For example,
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orange red purple
0

1

Fig. 1. A fuzzy set centred on the colour “red”. If “orange” belongs to the core of another set, the
patterns that get activated by “red” and “orange” are similar, meaning that they share neurons.

the following operators can be defined: (i) An operator AND (∧) used to aggregate two
sets defined on two distinct domains : let A and B be two fuzzy sets defined on DA and
DB , then ∀x = (xA, xB) ∈ DA × DB, (A ∧ B)(x) = min(A(xA), B(xB)). (ii) An
operator OR (∨) used to aggregate two sets defined on the same domains : let A1 and
A2 be defined on DA, then ∀x ∈ DA, (A1 ∨ A2)(x) = max(A1(x), A2(x)). (iii) A
function one used to make a set neutral for ∧ and absorbent for ∨ : let A be defined on
DA, then ∀x ∈ DA, one(A)(x) = 1. (iv) A function zero used to make a set neutral for
∨ and absorbent for ∧ : let A be defined on DA, then ∀x ∈ DA, zero(A)(x) = 0. The
use of these two later functions will not be illustrated for the sake of brevity, however
they play a noticeable role in the treatment of inhibition. Two aggregating functions are
constructed using these operators, as shown below (since all variables refer to the same
time step, it is omitted):

(T̃ , M̃) = (fspat(T
(1)
in , · · · , T

(n)
in ), gspat(M

(1)
in , · · · , M

(n)
in , u)) (1)

where u is a random variable that stands for numerical errors and non-modelled influ-
ences.

Temporal integration. To get the kind of graded response that is expected from a
stimulated neural population, a temporal integration is necessary. Moreover, by com-
paring the new incoming information with the previously processed one, habituation
can be simulated. This is a property of neural populations that can be described as,
when a stimulus is presented repeatedly, the overall activity of the population will de-
crease over time due to a lowering of activation thresholds and to fewer neurons being
recruited [14].

Magnitude. The magnitude M(t) got after temporal integration is the combination of
M(t − Δt), discounted by a discrepancy factor (i.e. a forgetting factor), and M̃(t)
given by (1). M̃(t) is also discounted by a factor that represents both the compatibility
between T (t − Δt) and T̃ (t) and the fact that M̃(t) is presented during only one time
step. This is shown in (2).

M(t) = kR.α(t).M̃ (t) + kL.M(t − Δt) (2)
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where α(t) = maxminx∈DT∩DT (T (t−Δt)(x), T̃ (t)(x)) is fuzzy-set consistency [13].

kR and kL can be related to respectively a response time τR (kR = 1 − e
− 3.Δt

τR ) and a

relaxation time τL (kL = e
− 3.Δt

τL ) in a transfer function. Note also that the magnitude
is bounded if M̃ is bounded : if ∀t, α(t) = 1 (its maximum value), then Mmax =
M̃max. kR

1−kL
.

Type. Temporally integrating the type means to construct a new type based on the type
at t − Δt and on the new incoming one T̃ (t). On the one hand, (i) the importance that
the latter should have in the combination depends on its consistency with the former
(the more consistent it is, the more impact it has) but on the other hand, (ii) a repeatedly
inconsistent incoming information should, after some time, trigger a shift of priority
and make the incoming information paramount. Also, (iii) T̃ (t) being representative of
only one time step should have much less influence on the combination than T (t− Δt)
which accounts for all the previous time steps. Finally, (iv) note that a high M̃ is as-
sociated with a change in the information, hence the update should be more efficient.
(iii) suggests the use of a weighted disjunctive combination, while (i) and (ii) suggest
a prioritised combination with a priority depending on the evolution of the consistency
between T and T̃ . The expression of a consistency-driven prioritised disjunction can be
found in [15], here modified into an additive/multiplicative context. We define I as an
inconsistency indicator. If xT is the centre of a fuzzy set T , then:

if I < threshold, ∀x ∈ D \ {xT (t−Δt)},

T (t)(x) = T (t − Δt)(x) + [T̃ (t)(x) − T (t − Δt)(x)].α.s(M̃ ) (3)

I = I + T̃ (t)(xT ) − T (t − Δt)(xT )].α.s(M̃) (4)

else ∀x ∈ D \ {xT̃ (t)},

T (t)(x) = T̃ (t)(x) + [T (t − Δt)(x) − T̃ (t)(x)].α.s(M̃ ) (5)

I = 0 (6)

Function s is increasing with the magnitude M̃ , and should tend toward 0 (resp. 1) when
M̃ tends toward 0 (resp. its maximum). These equations may look fairly complicated to
understand and Fig. 2 illustrates their behaviour on an example. The idea is quite simple
though : at each time step t, T (t − Δt) is modified slightly in the direction of T̃ (t). If
the centre of T (t − Δt) is to be modified, I is incremented by the same value instead.
Whenever I goes above a certain threshold, T̃ (t) becomes dominant, the priority is
shifted and I is set to 0 for another cycle to begin.

Once the inputs are integrated both spatially and temporally, the result is compared
to the set of prototypes that represents the population receptive field.

Comparison and decision. The receptive field of a functional population is composed
of a set of prototypes {Pi}i∈[1,··· ,p] defined on the same domain than the incoming in-
formation. Each of these Pi is associated with an output type Ei defined on D

out. The
centre of this pattern is the outgoing type characterised by the activation of the proto-
type Pi, while the other elements of the support are output types that are similar (i.e.



34 J. Erny, J. Pastor, and H. Prade

orange red purple
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1

T(t − Δt)

orange red purple
0

1

+ T̃(t)

orange red purple
0

1
IncoherenceIncoherence

−→ T(t)

Fig. 2. The fuzzy set T (t − Δt) is modified by T̃ (t), meaning that the values for “orange” and
“purple” are moved in the direction of T̃ (t), while the value for “red” is unchanged to keep the
result normalised. However, to reflect the inconsistency between the two types, the incoherence
value is increased.

types whose associated prototypes share neurons, see Fig.1). By comparing T with each
prototype, we can determine which patterns of neurons get activated by the incoming
information. Compatibility ai between T and Pi is ai = maxx∈D min(T (x), Pi(x))
(time is omitted since all variables are taken at the same time). Using then the simi-
larities contained in the {Ei}i∈[1,··· ,p], we can determine how overlapping patterns can
influence each other activation. Let bi be the total activation of Ei, namelly,

bi =
p∑

k=1

Ek(xi).αk (7)

Once the activation of all patterns is known, the “winner-takes-all” principle is applied
as a decision process, this is to account to the widespread lateral local inhibitions. The
type of the output is then Emax such that bmax = maxi∈[1,··· ,p](bi). Meanwhile, the
output magnitude Mout is being calculated in the following way:

Mout = g
(1)
out(βmax).g(2)

out(M, v) (8)

where g
(1)
out is a function from R to [0, 1] which ensures that a badly recognised type

will generate a low output magnitude, and where g
(2)
out is a function defined from R to

R which depends on the function of the unit in the network. v is a random variable
modelling the stochastic nature of the neuronal signal.

This new model is now illustrated on two small scale applications.

3 Applications

The first application is designed to illustrate how the handling of similarity between
patterns in our model can be used to account for a well-known perceptive illusion : the
McGurk effect [16]. The second application focuses on using magnitude processing to
reproduce synthetic neuroimaging results coming from an experimental study [17].
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3.1 McGurk Effect

The McGurk effect is an illusion affecting language perception where a mismatch
between a visual cue (lips articulating a phoneme) and an auditory cue (an actual
phoneme) strongly modifies auditory perception. For example, hearing the sound [ba]
while seing someone say [ga] results in the illusory perception of [da]. For this model,
we use the articulatory theory of language that characterises a phoneme by the way we
produce it. Table 1 represents a simplified French phonologic system. The second line
of the table, and the fact that only the articulation locus can be considered a visual fea-
ture, hint towards a similarity-based interpolation between [b] and [g] to perceive [d].
Consider a phoneme discriminatory component, that takes as its inputs an auditory ar-
ticulation mode MA, an auditory articulation locus LA and visual locus LV . The spatial
integration of these inputs is a linear pondered combination of LA and LV (LV is given
slightly more importance in the combination than LA for the locus is primarily a visual
cue), that is then non-linearly combined with MA. The output domain is constituted by
the different consonants. Similarity between the different output elements is also en-
coded (e.g. [d] is similar to both [b] and [g]) and the similarities between the different
articulation modes and loci are transported by the inputs. While LA and LV are con-
gruent in saying the locus is “labial”, there is no problem, the combination will activate
the prototype associated to [b] straightforwardly. However, if LA and LS carry different
pieces of information (say “labial” and “velar”), then both prototypes associated to [b]
and [g] will be activated, along with the prototype associated with [d] by means of the
similarity between “dental” and “labial” and between “dental” and “velar”. When then
applying (7), providing [d] is similar enough to [b] and [g], [d] can easily be the most
activated pattern and win. This is an informal description of how our model, which in
several respects is close to the one used in [12], can yield the expected output and thus
simulate the McGurk effect. Moreover it is important to notice that here the similarities
have not to be set by the programmer but could rather be learned by the system (see
Sect.4).

Table 1. Consonants in French phonologic system

�������locus
mode

labial dental velar

plosive voiceless p t k
plosive b d g
nasal m n

3.2 Visual Primary Cortex Response to a Simple Stimulus

The aim of this application is to replicate simulation results obtained by Pastor et al. [10]
in modelling data coming from a PET (Positron Emission Tomography) study by Fox
and Raichle [17]. In this study, a visual stimulus was repeatedly presented to partici-
pants while a PET camera was recording visual primary cortex activity. Different fre-
quencies for stimuli presentation were used. The results (an increase of activity along
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with the frequency, then a decrease) let the authors of [17] with different possible ex-
planations. By modelling the functional network involved, Pastor et al. [10] managed
to support one of this hypothesis. This is only a partial illustration of our model since
the symbolic part of information is actually unnecessary here. Its aim is to illustrate that
SimBa also keeps the same modelling power compared to homologous models with re-
spect to magnitude. We have used the same functional network than in [10] (see Fig.3).
The Total node is used to sum over time all activities coming from Inc. This can be
compared to the activity detected by the PET camera, provided it is scaled appropriately.
The scaled output of Total (given by (8)) is compared to activation data from [17] and
to simulation results from [10] in Fig.4.

It lacks though a real large-scale application that will make use of its similarity-based
categorisation. This is discussed in the next section.

Visual Cortex
Thalamic
structure

Inc

Inhib

Total

Outc

Thres

Int

Outt

Ext

Fig. 3. A pre-processed information from Ext is
passed to the input gate Inc. Outc stands for the
output gate. A cortico-thalamic loop allows dy-
namic threshold, hence habituation. Local inhibi-
tions are modelled with Inhib and the influence of
Outc on Inc represents a refractory period. Total
sums all activation in Inc to relate it to PET results.
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Fig. 4. Results of SimBa simulation
(black on the right) are plotted for the
different frequencies, along with the re-
sults appearing in [17] (gray on the left)
and in [10] (light gray in the middle)

4 Related Works and Discussion

This section discusses the model in the light of other related approaches. There are sev-
eral recent models that try to model cognitive cerebral functions while relating them to
their structure in the brain. For example, Randall O’Reilly [18] is interested in mod-
elling high-level cognitive function in a biologically plausible way. Although quite
similar in the general principles underlying his approach to cerebral modelling, and
letting aside the differences regarding the studied systems (high-level functions [19],
automatised perceptions for SimBa), SimBa relate neural activity to interacting simple
functional primitives (thanks to similarity-based model), while O’Reilly’s models pre-
cisely describes the functional roles of small neural populations. The neural blackboard
architecture proposed in [20] seems also to tackle the same issues that SimBa, but the
difference lies in that the former tries to solve some cognitive fundamental problems
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(such as the binding and grounding problems) using neural-like computation, while
Simba starts from the neural architecture to explain the cerebral information process-
ing. We can also mention the ACT-R cognitive model that has been used quite recently
to predict fMRI results [5], though in this case the modelling framework is not moti-
vated by knowledge of the cerebral structure but was designed long ago as a cognitive
architecture. SimBa is more strongly related to [12] but we claim that the model pro-
posed here involves a much smaller number of parameters for obtaining results that are
as good for the McGurk effect (the second illustration is not considered by [12]). In
short, SimBa is not intented as a concurrent to any of these approaches, but more as
providing a complementary angle of work, dealing with problems like similarity be-
tween patterns that have not been thoroughly explored yet, while including functional
models that can describe neuroimaging data as cognitive processes.

SimBa still lacks learning ability, a property quite necessary to model cerebral net-
works. It can be incorporated by adjoining some simple mechanisms to the current
framework. The learning can be resumed in an auto-organisation of the prototypes in
every node according to incoming information. Several simple processes are involved
to manage the set of prototypes : (i) introduction of a new prototype when the current
information was unknown, (ii) fusion of prototypes that are too similar, (iii) forgetting
of prototypes not used anymore. In addition to that, a way to learn similarities between
output symbols is necessary. This relies on the observation that when two different pro-
totypes are activated by an incoming information they must be somehow similar. Hence
(iv) the similarity of their associated outputs is increased accordingly. Conversely, (v)
when a prototype is activated alone, the similarity of its output with other outputs is
decreased. Balancing these five mechanisms, the set of prototypes is build gradually
according to the incoming information.

5 Conclusion

A framework for modelling large-scale networks as they appear in neuroimaging studies
has been presented. Information is being represented as a numerical/symbolic couple.
The numerical component relates to the integrated firing rates of neural populations
while the symbolic one relates to the spatial configuration of the firing neurons in the
same populations. The ability of the model to describe the links between the proxim-
ity of neural populations and the similarity of the information they process has been
demonstrated on a simple application. Although some important features, like learning
abilities, are still missing, as well as a large-scale modelling of real experimental data
that could validate more strongly the approach, this model has interesting aspects and
promising behaviour, in particular when it comes to cerebral categorisation.
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Abstract. We investigate human motor learning in an unknown envi-
ronment using a force measurement as the input to a computer controlled
plant. We propose to use the Feedback Error Learning (FEL) framework
to model the overt behavior of motor response to unexpected changes
in plant parameters. This framework assumes a specific feedforward and
feedback structure. The feedforward component predicts the required
motor commands given the reference trajectory, and the feedback com-
ponent stabilizes the system in case of imprecise estimates and initial
conditions. To estimate the feedback gain, we employ a novel technique
in which we probe the stability properties of the system by artificially
inducing a time delay in the sensory feedback pathway. By altering the
pole location of the plant during a sinusoidal tracking task, a feedforward
learning bandwidth was computed for each subject which measures the
ability to adaptively track time-varying changes in the plant dynamics.
Lastly, we use the learning bandwidth to compute a learning rate with
respect to the FEL model. This learning rate reflects the ability of the
subjects’ internal model to adapt to changes in an unknown environment.

1 Introduction

In this note, we will be concerned with the macroscopic level of brain-motor
control during a visuo-motor tracking task, in which we will estimate the two
macroscopic parameters: feedback gain and learning rate. The critical assump-
tions that we make are as follows: 1) the central nervous system (CNS) utilizes
internal models in the control of movement, 2) the CNS realizes a feedback sys-
tem with constant gains, and 3) neuronal plasticity is a fundamental mechanism
that allows that adaptive behavior of internal models.

The first assumption is a highly debated topic in the field of motor control.
Nevetheless the internal model concept is gaining ground as the results of various
experimental and theoretical results (see [1]). Roughly speaking, internal models
are ‘neural mechanisms that can mimic the input/output characteristics, or their
inverses, of the motor apparatus ’[1]. Consistent with these assumptions is the
Feedback Error Learning (FEL) framework originally proposed by Kawato [2] as
a model for lateral cerebellum. This model is shown in Fig. 1.
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Fig. 1. Feedback Error Learning Block Diagram. The desired trajectory is generated
in planning areas of cortex such as supplementary motor area (SMA), and premotor
area (PMA). This command is then relayed to lateral cerebellum (D1 and D2 areas.
See [3]) via internal capsule and pontine nuclei in brainstem.

The Task: We choose visuomotor tracking in an unknown, time-varying environ-
ment as the appropriate venue to explore the macroscopic parameters which we
hope may characterize human motor behavior.

The FEL algorithm in [2] is:

Ẇ = Γφ(qd) (ufb)
T (1)

where W is a weight matrix, φ(qd) is the basis function network, ufb is the
feedback control signal, and Γ is the learning rate.

We propose to use the FEL framework to model the motor response of human
subjects during a tracking task. Our goal is to estimate each subject’s learning
rate, Γ , associated with the training of the feedforward component under FEL.
To accomplish this goal, we first estimate the feedback gain, K, by artificially
inducing time delays in the sensory feedback pathway, and observe the resulting
motor response. Then, by varying the plant parameter sinusoidally, we compute
the performance error and estimate the learning rate.

2 Materials and Methods

5 adults (age 22-30 years; two males and three females) with no known motor
disorders participated in this study. Each subject gave written informed con-
sent after the consent forms and study protocol were approved by the Stanford
University Institutional Review Board.

2.1 Experimental Setup

Subjects were comfortably seated in a BiodexTM chair in front of a large com-
puter screen. Shoulder, chest, and leg straps were applied to restrict upper body
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Fig. 2. Example of the feedback display during the baseline task

motion. The preferred arm was placed in a custom built device with the purpose
of fixating the upper arm in a plane perpendicular to the floor, and with the
elbow in a 90 degrees angle, such that the hand would point upwards. The
device was setup individually for each subject according to his or her arm length
and shoulder height. The lower arm was placed in a cup 2 inches below the
wrist and tightened by a strap. A force sensor (Interface, Inc. 1500ASK-50 load
cell) placed between the cup and the device allowed for a measurement of force
between device and the subject’s arm, which could be converted in a differential
torque measure. The output of the force sensor was sampled at 1 kHz using
a commercially available digital to analog interface (CED Technologies Inc.,
Manchester, UK) in connection with custom written software in Microsoft Visual
C++. The filtered signal was then sent over a local area network using the
Win32 named pipes protocol to another computer that simulated the plant and
displayed the sensory feedback. The graphics were programmed in OPENGL.
To guarantee a constant framerate, three separate threads were used for data
collection, graphics display, and experiment control. This was important since
we required precise control over the artificially induced delay in the sensory
feedback pathway. All signals were stored for off-line analysis.

The measured signal was displayed on the screen by a torus. The subjects
were instructed to keep the torus within the path at all times. The path was
displayed by thin three dimensional rectangles that resembled a maze with right
angled turns. The horizontal position of the torus moved at a constant velocity,
while the vertical position of the torus was determined by the output of the
plant. The plant was a first order linear, time-invariant system. An example of
the feedback display is shown in Fig. 2.
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Experimental Procedure
The experiment was divided into three separate parts discussed below.

1. Baseline: The first part entailed the learning of the baseline plant. It con-
sisted of at least three trials through the path as depicted in Fig. 2.

2. Probing the Feedback Gain: This part consisted of eight separate trials in the
same path used for baseline. During each trial, an artificial sensory feedback
delay between 50 ms and 400 ms was introduced. The delays were arranged
in a pseudo-random order. Additionally, the delay started at a time between
0 and 15 seconds on each trial. The rational for introducing time delays in
explained in the next section.

3. Probing Internal Model Learning: The last part of the experiment consisted of
tracking a sinusoidal desired trajectory. This consisted of six separate trials.
During each trial, the pole of the plant was varied according to a0(t) = 2(0.5+
0.4 sin(2πfit)), where f0 = 0, f1 = 0.05, f2 = 0.1, f3 = 0.15, f4 = 0.2, f5 =
0.4. A typical performance observed will be shown in the following section.

2.2 Probing the Feedback Gain

We now discuss the second part of the experiment in more detail. We will assume
that since the baseline trials were performed successfully, the subject has learned
an adequate inverse internal model of the plant. Consider an nth order linear time
invariant plant with fixed feedback delays in position (Tp) and velocity (Tv). Let

P (s) =
bmsm + · · · + b0

sn + an−1sn−1 + · · · + a0
(2)

be a minimum phase, strictly stable plant, that is, the poles and zeros are in
open left half complex plane.

The constant feedback controller is given by: K = diag(Kp; Kv). It can be
shown that the closed loop transfer function is given by:

H(s) =
Kvbmsm+1+(Kpbm+Kvbm−1)sm+···+(Kpb1+Kvb0)s+Kpb0

(sn+an−1sn−1+···+a0)+(Kpe−sTp+sKve−sTv )(bmsm+···+b0)

+ sn+an−1sn−1+···+a0

(sn+an−1sn−1+···+a0)+(Kpe−sTp+sKve−sTv )(bmsm+···+b0)

(3)

In the experiment, we simplify the analysis by considering the case when
n = 1, and Kv = 0. The closed loop poles corresponding to the homogenous
solution, are the zeros of Z(s) = s + a0 + Kpb0e

−sTp . If the delay, Tp = 0, then
the system has a closed loop pole at −a0 < 0. For Tp > 0, there are an infinite
number of closed loop poles. It is well known that time delays can introduce
instability by shifting the poles to the right. Indeed, in this case, as Tp increases,
the poles begin to cross the jω axis two poles at a time. We will be interested in
the first pair of poles to reach the jω axis as this will result in resonance of the
closed loop system. This resonant frequency, ωc, will depend on the open loop
parameters, the feedback gain, and the time delay.
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Consider poles on the imaginary axis at s = iω for ω ∈ R. Thus, ω must
satisfy: Z(iω) = iω + a0 + Kpb0e

−iωTp = 0. At ω = ωc, we have: k sin Tpωc = ωc

and k cosTpωc = −a0 for Tpωc ∈
[

π
2 + 2nπ, π + 2nπ

]
where n = 0, 1, 2, · · · and

k = Kpb0. If given a critical frequency, ωc, and a0, then we can determine the
corresponding position feedback time delay, Tp, and feedback gain, Kp (assuming
b0) is known. Thus, our approach to determine the feedback gain is to randomly
introduce time delays, and determine the critical frequency of oscillation.

2.3 Probing Internal Model Learning

Having determined the feedback gain, K, we proceed to determine the learning
rate. We begin by considering in detail FEL applied to the first order linear plant.
We will assume that the pole of the system is unknown. The open loop dynamics
are given by: ẏ + a0y = b0u. The ideal inverse dynamics satisfy: u∗

ff = ṙ
b0

+
H(r)a0, where H(r) = r/b0. We assume that the actual feedforward command
is given by: uff = ṙ

b0
+H(r)â0, where â0 is an estimate of a0. Applying the FEL

algorithm (1), the update rule is given by

˙̂a0 = γH(r)Ke (4)

Since we do not know the subjects’ learning rate, γ, we cannot directly solve for
â0. However, conside the relation: u = ufb + uff = Ke + ṙ

b0
+ H(r)â0. Solving

for â0, we get

â0 =
u − Ke − ṙ/b0

H(r)
(5)

Notice that we have all the neccesary signals to compute â0. We measure the
signal, u, the input to the plant. Since we determined K in the previous step,
we can compute the feedback term, Ke. We also know ṙ/b0 and H(r), since we
implement b0 and r.

Computing the Learning Bandwidth and Learning Rate: The learning rate, γ, in
(4) reflects the ability of the feedforward component to track parameter changes
in the plant. A high learning rate will allow the feedforward component to track
plant parameters that change rapidly, however, will be more susceptible to noise.
A lower learning rate will reject parameter variation due to noise, but may be
unable to track fast parameter changes in the plant.

Thus, as an indirect measure of learning rate, we can observe the the ability
of the estimated parameters to track the time-varying plant parameters. In our
analysis, we will assume no noise is present in any signal loop. Since our goal is
to analyze the performance of the parameter estimate (output) to time-varying
changes in the plant parameters (input), we view the closed loop system as the
input-output system depicted in Fig. 3.

As the system depicted in Fig. (3). is a fairly complicated linear, time-varying
system, we approximate it by the frequency domain relation as

Â0(j(ω) = T (jω)A0(jω) (6)
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Fig. 3. In this figure, we recast the original framework to emphasize that we are viewing
the plant parameter variation, a0(t), as the input to a linear, time-varying system where
the parameter estimate, â0(t), is considered as the output

That is, T (jω) is the approximate bode plot of the closed loop system considering
a0(t) as the input, and â0(t) as the output. To compute T (jω), we use sinusoidal
inputs. Since the input is a sinusoid, the output will be given by |Â0(jωi)| =
|T (jωi)|, and thus we can construct a magnitude bode diagram. The procedure
is summarized as follows:

1. Select the frequency, fi, for the input sinusoid a0(t) in the system given in
Fig. 3.

2. Compute the parameter estimate, â0(t) using (5).
3. Compute the FFT of â0(t) and evaluate the peak magnitude at fi Hz.
4. Fit the Bode plot to e−

f
λ , where λ is defined to be the learning bandwidth.

There is a clear relationship between the learning bandwidth, λ, and learn-
ing rate, γ. The simulations suggests that a high learning rate results in a high
learning bandwidth. Unfortunately, a closed form expression relating these two
parameters is not easily determined for a general reference trajectory1. Never-
theless, we may compute numerically the learning rate as a function of learning
bandwidth for the specific parameters implemented2 in the experiment, namely
a0(t), b0 and r(t).

3 Experimental Results

To illustrate the methods, we show and discuss the input-output data of a typical
subject during the different phases of the experiment.
1 Asymptotic methods may be applicable when there exists a sufficient time-scale

separation between the learning rate, plant dynamics, and reference trajectory.
2 Note that the learning rate - learning bandwidth relationship also depends on the

value of K which is determined, not implemented, by the methods described in
section 2.2.
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Fig. 4. The top left figure shows the input-output data for the case fi = 0.05. In the
top right figure, we show the subjects input-output data at fi = 0.15 Hz. In the bottom
left figure, we plot equation (5) using our estimate of the feedback gain. The plant pole
was varied at fi = 0.05 Hz. In the top subplot, we show the true parameter, a0, in
dotted, and the subject’s estimated parameter, â0, in solid. In the bottom subplot, we
compute the magnitude of the FTT of â0. We observe a peak magnitude at 0.05 Hz.
In the bottom right figure, we plot equation (5) for the case, fi = 0.15 Hz. In this case,
we observe a decrease in parameter tracking performance. In the bottom subplot, a
magnitude peak at 0.15 Hz is observed. However, notice that there are more additional
frequencies present than in the previous case (bottom left). Also note that the peak
amplitude at fi = 0.15 Hz is lower than the peak amplitude at fi = 0.05 Hz on bottom
left.

Probing the Feedback Gain: For this subject, we found the critical time delay to
be 300 ms corresponding to a frequency of instability of 0.625 Hz. At this delay,
the observed frequency corresponded to a feedback gain of K = 0.43.

Probing the Learning Bandwidth: In Fig. 4., we show the subjects input-output
data and parameter estimates at fi = 0.05 and fi = 0.15 Hz. The top left figure
shows the input-output data for the case fi = 0.05. The dotted line indicates
the desired trajectory, while the solid line indicates the subject’s performance.
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Fig. 5. Subject Bode Plot and Simulation Bode Plot Comparison: We observe a rel-
atively good agreement between the two curves. Notice the similarity in the relative
magnitude changes at each frequency. Subject Bode Plot: The peak magnitudes are

indicated by stars. In solid, we fit the exponential, Ce− f
λ , to determine the subjects

learning bandwidth, λ. In this case, λ was found to be 0.30401.

Table 1. Table of feedback gain, learning bandwidth, and learning rate

Table of Results

Subject Feedback Gain Learning Bandwidth Learning Rate

A 0.43 0.304 0.642

B 0.43 0.3711 0.835

C 0.64 0.6542 1.15

D 0.73 0.73 1.2145

E 0.67 2.733 2.06

We also indicate the upper and lower bounds where points were deducted if
the trajectory exceeded these bounds. Notice, that nearly perfect tracking is
achieved while an oscillatory component of about 0.05 Hz is observed in the
control signal. In the top right figure, we show the subjects input-output data at
fi = 0.15 Hz. In this case, we observe an increase in errors in the output as the
subject is not able to compensate as well for the increase in frequency of the pole
variation. The subjects control input reflect this variation, but also appears to
contain frequencies which depend on the the increase in performance error. In the
bottom left figure, we plot equation (5) using our estimate of the feedback gain.
The plant pole was varied at fi = 0.05 Hz. In the top subplot, we show the true
parameter, a0, in dotted, and the subject’s estimated parameter, â0, in solid. In
the bottom subplot, we compute the magnitude of the FTT of â0. We observe a
peak magnitude at 0.05 Hz. In the bottom right figure, we plot equation (5) for
the case, fi = 0.15 Hz. In this case, we observe a decrease in parameter tracking
performance. In the bottom subplot, a magnitude peak at 0.15 Hz is observed.
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Fig. 6. Comparision of Subject A data with the FEL model based on the estimated
parameters: In the left column, we plot the true input in solid and the simulated input
in dotted. In the middle column, we plot the true output in solid, and the simulated
output in dotted. In the far right column, we plot the subject’s estimated parameter
in solid using equation (5), and the parameter estimate obtained via simulation using
equation (4) in dotted. The rows, (A-C), (D-F), and (G-I) correspond to pole frequency
of 0 Hz, 0.1 Hz, and 0.2 Hz, respectively.

However, notice that there are more additional frequencies present than in the
previous case (bottom left). Also note that the peak amplitude at fi = 0.15 Hz
is lower than the peak amplitude at fi = 0.05 Hz on bottome left.

The Bode plot of T (jω) in equation (6) is shown in Fig. 5. It was constructed
by taking the peak magnitudes of |Â0(jω)| at the corresponding input frequen-
cies, fi. The peak magnitudes are indicated by stars. In solid, we fit the expo-
nential, Ce−

f
λ , to determine the subjects learning bandwidth, λ. In this case, λ

was found to be 0.30401. Having determines the subjects learning bandwidth, λ,
and feedback gain, K, we can now numerically compute the feedforward learning
rate. Given the specific learning bandwidth, γ is determined by linear interpo-
lation between the data points. In this case, we found γ = 0.64.

Having determined all the required parameters in the FEL model, we can
now go back and simulate equation (4) using the subject parameters K and γ.
In Fig. 5., we compare the simulation Bode plot, and the subject’s Bode plot.
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Notice the similarity in the relative magnitude changes at each frequency. In
Fig. 6., we compare the input-output data as well as the parameter estimates.
That is, we compare the real subject data with the simulation based on the
measured parameters determined previously. In the left column, we plot the
subject’s input to the plant, and the estimated input based on the measured
learning rate and feedback gain. The true input is plotted in solid while the
simulated input is plotted in dotted. In the middle column, we plot the true
output in solid, and the simulated output in dotted. In the far right column,
we plot the subject’s estimated parameter in solid, and the parameter estimate
obtained via simulation in dotted. Subplots (A-C) correspond to fi = 0 Hz,
(D-F) correspond to fi = 0.1 Hz, and (G-I) correspond to fi = 0.2 Hz.

4 Conclusion

In this study, we characterized feedforward motor learning by probing the human
neuro-controller in an unknown time-varying environment. We assumed a sim-
ple yet powerful adaptive model known as Feedback Error Learning. We utilized
a novel time delay analysis technique to estimate the subjects’ feedback gains
during a step tracking task. With the estimated feedback gains, we were able to
construct a learning bandwidth by probing the system at various frequencies. An
approximate Bode plot was constructed and used to determine the bandwidth.
The learning rate was then numerically computed from the learning bandwidth.
To validate our results, we simulated the FEL model with the estimated param-
eters compared the results with the subject’s actual performance.
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Abstract. Many episodes are acquired in the hippocampus. An episode
is expressed by a sequence of elements that are perceived in an event.
Episodes are associated each other by events that contain information
shared among the episodes. Sequences must be recalled individually, even
if the sequences are overlapped at some representations. Therefore, se-
quence disambiguation is an essential function to dissociate overlapped
sequences. In this study, we especially focus on the location-dependencies
of the STDP effects on synaptic summation and the expression of AMPA
receptor. We firstly show that the hippocampal CA3 is divided into two
regions in which one region has spatial selectivity and the other has
temporal selectivity. Moreover, we confirm that the divided CA3 could
generate a code for sequence disambiguation in computer simulations.
Consequently, we suggest that the CA3 can be divided into two regions
characterized by their selectivity, and the divided CA3 contributes to
sequence disambiguation.

1 Introduction

Eichenbaum suggested that daily episodes are memorized as a relational network
in the hippocampus [1]. In the relational network, an episode is expressed by a
sequence of elements that are perceived in an event. Episodes are associated
each other by events that contain information shared among the episodes. For
example, let the hippocampus compose a simple relational network from these
two episodes, one is composed of events: A, B and C (A→B→C), the other
is composed of D, B and E (D→B→E), where the event B associates the two
episodes (C and E). Then, it is difficult to decide which pattern (C or E) should
be retrieved from event B. Such ambiguity of sequences becomes a problem for
retrieval. Thus, sequence disambiguation is an essential function for retrieving
original episodes.
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In the hippocampus, the CA3 region has unique recursive axons that are
called recurrent collaterals (RCs). Because of its uniqueness, many researchers fo-
cused on it and proposed many computational models of the CA3. Samura et al.
suggested that the CA3 can be divided into autoassociative and heteroassocia-
tive memory [2] and the functional division of the CA3 contributes to sequence
disambiguation [3]. They derived the hypothesis from location-dependencies of
RCs and Spike-Timing Dependent Plasticity (STDP), which is a rule of changing
synaptic weights. The former is that the projection of RCs differs according to
the subregional location of a neuron (CA3a, b and c) [4]. The later is that the
profiles of STDP differ depending on dendritic location of a synapse [5].

In addition to the above location-dependencies, we also incorporate two
location-dependencies into our study. The first one is that the effect of STDP on
synaptic summation differs according to the dendritic location of a synapse [6].
The second one is that the expression of AMPA receptor (AMPAR),which me-
diates fast synaptic transmission, also shows the dendritic location-dependency
[7]. The new location-dependencies affect the selectivity of a neuron to inputs.
In view of all location-dependencies, neurons, which have spatial or temporal
selectivity to inputs, concentrate in the specific subregions of the CA3. Conse-
quently, we suggest that the CA3 can be divided into two regions where there
are spatial or temporal selectivity, rather than autoassociative and heteroassocia-
tive memory. Moreover, we show that the divided CA3 contributes to sequence
disambiguation by computer simulations.

2 Anatomical and Physiological Backgrounds of
Hippocampus

2.1 Structure of Hippocampal CA3

The hippocampus is divided into three regions: Dentate Gyrus (DG), CA3 and
CA1. The CA3 is segmented into three subregions: CA3a (nearer CA1), CA3b
and CA3c (nearer DG) (Fig.1(a)). The CA3 connects with DG and Entorhinal
Cortex (EC) that works as an interface between the cortex and the hippocampus.
DG connects to all CA3 subregions and EC connects to only CA3a and CA3b
(Fig.1(a))[8].

2.2 Subregional Location-Dependencies

The CA3 neurons are connected recursively to other neurons by RCs. Fig.1(b)
shows the relationship between the location of a neuron and the projection of
its RCs [4]. First, the RCs of CA3c neurons are limited to the area surrounding
them. Second, the RCs of CA3b neurons are widely spread. Projections onto
CA3c become more temporal locations than their sources. Conversely, those
onto CA3a become more septal locations. Finally, the RCs of CA3a neurons
are limited to CA3a and CA3b. Projections onto CA3b become more temporal
locations. In addition to the location-dependency of the projection, the dendritic
locations of RCs depend on the relative positions between pre- and postsynaptic
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(a) (b)

Fig. 1. Structure of the CA3. (a) Connections within the CA3 and its dendritic lo-
cations (inverse triangle : soma, forked line: dendrite, dashed line: RCs, chain line:
connections from external regions). (b) Projections of RCs (circle: source neuron, el-
lipse: projection of circled neuron in it).

neurons [4]. As shown Fig.1(a), CA3a and CA3b neurons tend to receive RCs
near a soma, while CA3c neurons tend to receive them remote from a soma.
However, they receive RCs from CA3c near a soma.

2.3 Dendritic Location-Dependencies

In the hippocampus, STDP was observed as a rule of changing synaptic weights.
STDP determines the magnitude of a synaptic change and its polarity (LTP:long-
term potentiation or LTD:long-term depression) according to an interval between
pre- and postsynaptic spikes. Additionally, recent study suggested that STDP
turns asymmetric profile to symmetric one depending on the density of inhibitory
interneurons [5]. Symmetric profile STDP (SSTDP) was observed from a high-
density area near a soma, while asymmetric profile STDP (ASTDP) was observed
from a low-density area remote from a soma. Therefore, the change of STDP
profile correlates with a synaptic location in a dendrite. In other words, STDP
shows the dendritic location-dependency.

Furthermore, STDP(in fact LTP or LTD) location-dependently modulates
synaptic summation. Generally, synaptic summation is divided into two types.
The one is spatial summation under which a neuron can fire when inputs arrive
coincidentally. The other is temporal summation under which a neuron can fire
without simultaneous inputs. Xu et al. suggested that distal dendrite enhances
their activity when inputs arrive within a narrow time window (< 5ms) after
LTP induction. While proximal dendrite enhances their activity when inputs
arrive within a long time window (< 20ms) after that [6]. Consequently, after
repeat of LTP, distal dendrite shows spatial summation and proximal one shows
temporal summation.

Moreover, the expression of AMPAR also shows dendritic location-dependency
and supports the dendritic location-dependency of synaptic summation. It was
suggested that AMPAR expression becomes higher in distal stratum radiatum
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than proximal one, but the expression of NMDA receptor (NMDAR) show no
location-dependency [7]. These receptors mediate EPSP. However, they differ in
the time constant of EPSP. The EPSP time constant of AMPAR is shorter than
the one of NMDAR. Then, the time constant of EPSP relates to the summation
type of a synapse. A short time constant fits to spatial summation and a long time
one fits to temporal summation. Thus, the predominance of AMPAR in distal
dendrite means that distal dendrite suits for spatial summation, while the inferior
of AMPAR in proximal dendrite suits for temporal summation. Additionally,
the time constant of AMPAR and NMDAR, especially their rising time of EPSP
(AMPAR: ∼ 5ms, NMDAR: 8 ∼ 20ms) [9] is similar to the above time window.
Therefore, these findings are consistent with the dendritic location-dependency
of synaptic summation.

3 Spatial and Temporal Selectivity in Hippocampal CA3

Firstly, the type of synaptic summation affects temporal tendency to fire a neu-
ron. Under the temporal summation, neurons can fire when they receive inputs
within a long time windows. Conversely, under the spatial summation, neurons
can fire when they receive inputs within a short time window.

Moreover, the profiles of STDP also affects tendency to fire a neuron. Un-
der SSTDP, simultaneous firing leads to potentiation, and time lag leads to
depression. Neurons firing simultaneously are mapped onto synaptic weights as
a firing pattern of a network. Thus, when a postsynaptic neuron receives in-
puts from neurons that compose the same firing pattern as the postsynaptic
neuron, the postsynaptic one is likely to be activated regardless of the firing
order of these neurons. In contrast, ASTDP potentiates synapses when postsy-
naptic neurons fire after presynaptic firings. Conversely, if their firing orders are
reversed, synapses between them are depressed. As a result, synaptic weights
reflect the order of firing. Therefore, when a neuron receives inputs from presy-
naptic neurons through potentiated synapses in the memorized order, the neuron
is likely to be activated.

Here, we integrate the location-dependencies of the CA3. In CA3a and CA3b
where neurons receive RCs at proximal dendrites, temporal summation and
SSTDP coexist. Thus, neurons in CA3a and CA3b can fire when they receives
inputs from the memorized set of neurons regardless of the coincidence and order
of inputs. These regions are sensitive only to spatial information of inputs.While
spatial summation and ASTDP coexist in CA3c where neurons receive RCs at
distal dendrites, neurons in CA3c can fire when they coincidentally receives in-
puts from the memorized set of neurons in the memorized order. This region
is sensitive to temporal information of inputs. Consequently, the CA3 region is
divided into two regions where there are the spatial or temporal selectivity to
inputs.
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4 Hippocampal CA3 Model

4.1 Neuron Model

We revised a simple model that was suggested by Izhikevich [10] and the pro-
posed hippocampal CA3 model consists of the neuron models. The following
equation shows the membrane potential of the ith CA3 neuron at time t.

C
dvi(t)

dt
= k

(
vi(t) − vr

)(
vi(t) − vt

)
−ui(t) + Ii(t), (1)

where C is the membrane capacitance, vr is the resting membrane potential, vt
is the instantaneous threshold potential, u is the recovery current, and I denotes
the sum of excitatory postsynaptic potential (EPSP) evoked by inputs. The
recovery current of the ith neuron at time t is defined as follow:

dui(t)
dt

= a{b(vi − vr) − ui(t)}, (2)

where a is the recovery time constant, b is the effect of u on v. When the mem-
brane potential exceeds the threshold vpeak, the cell fires and the membrane
potential is reset to c and the recovery current is also reset to ui(t) + d, where d
means the total amount of outward minus inward currents. The total EPSP of
the ith neuron at time t is defined as follow:

Ii(t) = EDG·EC
i (t) + ECA3

i (t), (3)

where, EDG·EC
i (t) and ECA3

i (t) are the sum of EPSP evoked by inputs during a
period from the last spike timing of the ith neuron to present time t. They are
calculated as follows:

EDG·EC
i (t) = ΣkwDG·ECε(t − tk), (4)

where wDG·EC is the synaptic weight from DG or EC to CA3, ε(t − tk) denotes
the present amplitude of EPSP evoked by the kth spike during the period, tk is
the spike timing of the kth spike.

ECA3
i (t) = ΣjΣkwij(tkj + δij)ε(t − tkj − δij), (5)

where wij(tkj +δij) means the synaptic weight of RC between the ith and the jth
neuron when the kth spike of the jth neuron at time tkj arrived at the ith neuron
with axonal delay δij , ε(t − tkj − δij) is the present amplitude of EPSP evoked
by the kth spike of the jth neuron during the period. The following equation
shows the amplitude of single EPSP at elapsed time t′ since a spike arrived at a
neuron,

ε(t′) =
α

τ
t′ exp(

−t ′

τ
), (6)

where α is the amplitude of EPSP and τ is the time constant of EPSP. These
parameters differ according to the receptor type of a synapse.
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4.2 Synaptic Formation

First of all, as shown in Fig.2(a), we consider CA3 as two dimensional map
and defined x-axis and y-axis as CA3a→CA3c direction (the maximum value
is W ) and septal→temporal direction (the maximum value is H) respectively.
We assume that neurons are located on each x–y integral coordinate. Then,
the existing probability of a synapse between presynaptic neuron (xi, yi) and
postsynaptic one (xj , yj) is given by equation below.

P = exp
(

{(yj − yi)Cosθ + (xj − xi)Sinθ}2

ιR(xi)

+
{(xj − xi)Cosθ + (yj − yi)Sinθ}2

κR(xi)

)
, (7)

where R(x) is the projection range defined according to x-coordinate of presy-
naptic neuron. It is given as follow:

R(x) = λmin + λmax

(
1

1 + exp(x − 1.5W )

)
, (8)

where λmin is the minimum range and λmax is the maximum range.
As shown Fig.2, a neuron projects its RCs to other neurons (Fig.2(c)) on the

basis of the existing probability (Fig.2(b)). Then, the synaptic weights are ran-
domly set as 0 < wij ≤ winit. Moreover, the axonal delay and the receptor type
of each synapse are defined. The axonal delay of a synapse between presynaptic
neuron (xi, yi) and postsynaptic one (xj , yj) is calculated as follow:

δij = 1.0 + δmax

√
(xi − xj)2 + (yi − yj)2

H2 + W 2 , (9)

where δmax is the maximum delay. The receptor type of a synapse is defined
according to the dendritic location of a synapse. In this study, we simply suppose
that AMPAR is predominant in distal dendrite and NMDAR is predominant in
proximal one. Thus, the receptor type of RCs is set as NMDAR (τNMDA) in the
CA3a (xj ≤ W/3) and CA3b (W/3 < xj ≤ W/1.5). Conversely, the receptor
type of RCs is set as AMPAR (τAMPA) in the CA3c (W/1.5 < xj), but the
receptor type of CA3c-CA3c connections is set as NMDAR (τNMDA).

4.3 Learning Rules

Each synaptic weight of RCs is changed by ASTDP or SSTDP. Spike interval
Δt between the ith postsynaptic neuron and the jth presynaptic neuron is given
by

Δtij = (Ti − Tj) − η, (10)

where Ti and Tj denote the spike time of the ith postsynaptic neuron and that of
the jth presynaptic one, respectively. η is defined in consideration of the activity
of receptors that underlies STDP.
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Fig. 2. Formation of RCs. (a) Definition of x–y axis. (b) Existing probability of sypase
from the neuron (11,18) on the map (21×35) (cell: synapse, gray scale: the probability).
(c) Existence of synapses from the neuron (11,18) (black cell: existence of synapse).

In this study, we employ the semi-nearest-neighbor manner for pairing spikes
[11]. That is, for each presynaptic spike, we consider only one preceding postsy-
naptic spike and ignore all earlier spikes. All postsynaptic spikes subsequent to
the presynaptic spike are also considered. For each pre-/postsynaptic spike pair,
the synaptic weight is updated as follows:

Δwij = β
{
1.0− γ (0.12Δtij)

2
}

exp

(
− (0.12Δtij)

2

2

)
, (11)

wij (t + Δt) = wij (t) + Δwij , (12)

where β is the maximum modification width, γ shows the time constant of STDP.
In CA3c, a synapse is updated between the ith postsynaptic neuron and the jth
presynaptic one by ASTDP, the constant is defined by

γ =
{

0.01 Δtij ≥ 0
0.65 Δtij < 0.

(13)

While a synapse is updated by SSTDP in CA3a and CA3b, the constant is always
set to 0.65. In this study, if the total synaptic weight of a neuron exceeds wmax,
the neuron suspends potentiation of its synapses. After the suspension, if the
total synaptic weight of the neuron falls below wmax, potentiation is resumed.
Conversely, a synaptic weight becomes less than wmin, it is set to wmin.

4.4 Learning Phase and Retrieving Phase

We defined two phases (learning and retrieving) for this model. The model learns
the input sequences by changing synaptic weights during learning phase. Then,
the model suspends calculating equation (5) for memorizing smoothly. On the
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other hands, the model retrieves memorized patterns from inputs during re-
trieving phase. The connections from DG to CA3 contribute to memorization,
while those from EC to the CA3 are required for retrieval and EC connects only
to CA3a and CA3b [12]. Thus, during this period, inputs are limited to them.
Furthermore synaptic modification is suspended. During both phases, input se-
quences are applied to the model by the conventional input procedure [3].

5 Computer Simulations

5.1 Conditions

In this simulation, we set parameters as shown in Table 1 and constructed the
proposed model from 735 neuron models. Next, we defined 9 fixed patterns (A–I)
and random patterns (*). Each fixed pattern was represented by the activation
of 60 neurons and there were no overlap among them. The random patterns
were represented by the activation of 5% neurons selected randomly. Using above
patterns, we defined two overlapped sequences (sequence I and II). The sequence
I was *→A→B→C→D→E→* and the other was *→F→G→C→H→I→*. Each
sequence was applied to the model three times. Then the model memorized
them (learning phase). Following the memorization, we applied a part of each
sequence:*→A→B→C or *→F→G→C into the model (retrieving phase). Then,
we confirmed that the model could discriminate between the pattern C of the
sequence I and the pattern C of the sequence II by using a difference between the
sequences. For the confirmation, we evaluated a similarity given by the direction
cosine between the model output and a fixed pattern in each subregion.

Table 1. Parameters for the simulation

W 21 H 35 k 1.75 vr -55.0 vt -40.0 C 80

a 0.021 b -1.7 c -38.0 d 190.0 vpeak 10.0 wmin 1.0 × 10−7

wmax 7.1 wDG·EC 6.0 θ 0.25π ι 30 κ 6 λmin 0.5

λmax 2.5 ηCA3a 0 ηCA3b 0 ηCA3c 10 δmax 10 β 0.08

αNMDA 66.0 τNMDA 5.0 αAMPA 72.5 τAMPA 1.5

5.2 Results

Figs. 3(a) and (b) show the similarity in each sequence. At the beginning of
the cycle, random pattern was inputted to CA3a and CA3b. After that, next
patterns were applied to them every 10 unit times in the order of each sequence.
Although each pattern was applied only once in the cycle, as shown in these
figures, they showed periodic activation of fixed patterns in CA3a and CA3b.
Then, we compared the similarity of CA3c output in two sequences. As shown
in the Fig. 3(a), when pattern C was applied to the model, CA3c outputted
pattern D. When pattern C of sequence II was applied, CA3c outputted pattern
H (Fig. 3(b)). This means that the proposed model generated different activities
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Fig. 3. Similarity in each subregion. Gray level of each cell means similarity between
a retrieved pattern and a source pattern. (a) The similarity in the sequence I. (b) The
similarity in the sequence II.

according to the differences between the sequences in spite of the same pattern
C. The differences become a code for sequence disambiguation.

6 Conclusion

In this paper, we have focused on the location-dependencies elucidated from the
anatomical findings and the physiological findings. On the basis of the findings,
we have firstly suggested that CA3a and CA3b show temporal summation with
SSTDP, which fits to spatial selectivity, while CA3c shows spatial summation
with ASTDP, which fits to temporal selectivity. Consequently, we have suggested
that the CA3 is divided into two regions characterized by their selectivity. More-
over, we have shown that the divided CA3 could generate a code for sequence
disambiguation in the computer simulation. In the proposed model, previously
inputted patterns were periodically retrieved in CA3a and CA3b. Thus, the
model could buffer the differences between sequences. Then the information in
the buffer was transmitted to CA3c through the connections, which are sensitive
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to temporal information. Therefore, the difference in the buffer caused the differ-
ence of retrieved pattern in CA3c. In other words, a code which dissociates same
pattern in sequences was generated by the divided hippocampal CA3 model ac-
cording to the difference of previous inputs. Consequently, we have suggested
that the hippocampal CA3 is divided into two regions in which one region has
spatial selectivity and the other has temporal selectivity and the divided CA3
contributes to sequence disambiguation.
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Abstract. Lateral and elastic interactions are known to build a topol-
ogy in different systems. We demonstrate how the models with weak
lateral interactions can be reduced to the models with corresponding
weak elastic interactions. Namely, the batch version of soft topology-
preserving map can be rigorously reduced to the elastic net. Owing to
the latter, both models produce similar behaviour when applied to the
TSP. Unlike, the incremental (online) version of soft topology-preserving
map is reduced to the cortical map only in the limit of low tempera-
ture, which makes their behaviours different when applied to the ocular
dominance formation.

1 Introduction

Competitive learning neural nets that utilize lateral interactions to perform a
mapping from the stimulus space to the response space with preserving neigh-
bourhood relations are called topology-preserving maps [1]. Well-known example
of the above is Kohonen’s self-organizing map that became a standard unsuper-
vised learning algorithm [2].

It is known that elastic synaptic interactions can forge the topology as well.
An elastic net was first applied to solve the travelling salesman problem (TSP)
[3]. Another application of elastic synaptic interactions is the preservation of
topology in cortical mappings [4, 5, 6].

We already demonstrated the benefits of using both lateral and elastic inter-
actions for controlling the receptive field patterns [5,6]. In [7], we considered the
model utilizing only lateral interactions, which, unlike elastic ones, are biologi-
cally plausible, and applied it to the problems previously solved only with elastic
interactions. We proved that cortical map and elastic net can be derived from
the incremental (online) and batch soft topology-preserving map respectively [8].
Applied to the TSP, the equivalence of the batch topology-preserving map and
the elastic net was demonstrated.

In this paper, we consider the relations between lateral and elastic interac-
tions further. First, we derive the free energy function for an unsupervised net
of stochastic neurons with lateral interactions. The temperature incorporated in
this function serves as control parameter in the annealing schedule. Then, we
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consider the incremental and batch modes of learning resulting in correspond-
ing versions of soft topology-preserving mapping. The mapping utilizes only
weak lateral interactions that can be, therefore, approximated by the nearest-
neighbour ones. Considering the weight vector of a neuron as a “particle” mov-
ing in the space-time of imposed patterns, we decompose this particle trajectory
over these patterns. Using the decomposition for incremental and batch modes
of soft topology-preserving map, we derive the cortical map and the elastic net
respectively. We show that the batch version of soft topology-preserving map
is rigourously reduced to the corresponding elastic net. Unlike, the incremental
version of soft topology-preserving map is reduced to the cortical map only in
the low temperature limit. We tested the models on the relevant to them tasks:
the TSP and the development of visual cortex topology, namely the formation
of retinotopy and ocular dominance. The difference in derivation of the latter
systems results into the difference in their behaviour: the batch soft topology-
preserving map and the elastic net produce similar outputs whereas the incre-
mental soft topology-preserving map and the cortical map behave differently.

2 Topology-Preserving Maps

We consider a one-dimensional net of n stochastic neurons trained by N patterns.
The energy of this net, for a given stimulus, is

Ei(μ) =
1
2

n∑

j=1

hij |xμ − wj |2, (1)

where xμ is a given sample pattern, wj are the weight vectors, and h(i, j) is the
neighbourhood function.

Throughout, we consider weak, quickly decaying in the space, lateral interac-
tions. The latter give us the opportunity to consider nearest-neighbour interac-
tions only:

hij =

⎧
⎪⎨

⎪⎩

1, i = j;
γ, |i − j| = 1;
0, |i − j| � 2,

(2)

with 0 < γ < 1.
Instead of the “hard” assignment of Kohonen’s original algorithm with an

unique winner, we assume a “soft” assignment where every i-th neuron is as-
signed to a given μ-th pattern with a probability pi(μ);

∑
i pi(μ) = 1 [9,10,5,6,7].

The assignment probabilities minimizing free energy of the system (that is a
composite of the averaged energy and thermal noise energy) are found to be

pi(μ) =
e−βEi

∑n
k=1 e−βEk

, (3)

which gives the minimal free energy [9, 10, 5, 6, 7]

F (μ) = − 1
β

ln
( n∑

i=1

e−βEi

)
. (4)
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Incremental (online) learning strategies are derived through the steepest de-
scent minimization of function (4). The dynamics follows the free energy gradi-
ent, which result in the soft topology-preserving mapping [5, 6, 7]:

Δwj = −η
∂F

∂wj
= η

n∑

i=1

pi(μ)hij(xμ − wj). (5)

Soft mapping is based on soft competition, which allows all neurons to adjust
their weights with probabilities proportional to their topographic distortion. This
makes the weights move more gradually to the presented patterns. The strength
of the competition is adjusted by a temperature. The underlying mechanism,
deterministic annealing, is derived from statistical physics: it mimics an ordering
process during a system cooling. At high temperatures, the competition is weak
and the original energy landscape is smoothed by the noise, which helps to
eliminate local minima at the beginning of the ordering phase. On reducing the
temperature, the competition becomes stronger, the smoothing effect gradually
disappears, and the free energy landscape resembles the original one.

At low temperatures (β → ∞), equation (5) reduces to Kohonen’s map with
only nearest-neighbour interactions:

Δwj = −η
∂F

∂wj
= ηhjj∗(xμ − wj), (6)

where j∗ is the winning unit.
The batch learning mode, when the updating rule is averaged over the set of

training patterns before changing the weights, gives the following free energy:

〈F 〉 = − 1
βN

N∑

μ=1

ln
( n∑

i=1

e−βEi

)
. (7)

Minimization of energy (7) results in the batch version of soft topology-
preserving map:

Δwj = −η
∂〈F 〉
∂wj

=
η

N

N∑

μ=1

n∑

i=1

pi(μ)hij(xμ − wj), (8)

where η is the learning rate.
At low temperatures (β → ∞), (8) reduces to the batch mode of the Koho-

nen map. Goodhill applied the latter model with the special lateral interaction
function to modelling the formation of topography and ocular dominance in the
visual cortex [11].

3 Cortical Maps

Neural receptive fields of visual systems are ordered. The projections from retina
to optic tectum (in lower vertebrates), and from retina to lateral geniculate
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nucleus, then to primary visual cortex (in mammals) are topographic. The latter
means that neighbouring point in the retina are mapped to neighbouring points
in the cortex (tectum). The development of such continuous topographic map-
ping is called retinotopy. This order guarantees improvement of the recognition
abilities and, hence, facilitates the species survival. Indeed, without ordering
slight external or internal (neural) noise can results in absolutely unpredictable
(and possibly completely wrong) outcome, whereas the ordered receptive field
guarantees the recognition of a prototype that is, perhaps, not exactly the same,
but very similar to the stimulus. The development of neural receptive fields in a
way that they mimic stimulus distribution and become ordered is, thus, biolog-
ically meaningful. Together with retinotopy, ocular dominance and orientation
preference are developed.

Mammalian primary visual cortex is naturally binocularly innervated. During
development of many, though not all, mammalian species, each part of the visual
cortex becomes more densely innervated by one eye and less densely innervated
by the other. Eventually, so-called ocular dominance stripes, that are reminiscent
of the zebra stripe pattern, are developed. Moreover, exact details of the stripes
(their shape, spacing of the pattern, etc) are determined dynamically during
development rather than by genetics.

During development the visual cortex cells become largely respond to some
preferred orientations. Like ocular dominance, orientation selectivity forms its
own pattern: cells with the same orientation preference group to the same do-
main.

The idea of cortex as a dimension-reducing map from high-dimensional stim-
ulus space to its two-dimensional surface has proved to be fruitful [12, 4]. The
backward projection of each position on the cortex sheet to the position in stim-
ulus space is a convenient way to consider cortex self-organization — the way
in which it fills stimulus space defines the receptive field properties. Perform-
ing such a mapping induces two conflicting tendencies: (i) the cortical surface
should pass through the representative points in stimulus space; (ii) the area
of the sheet should be kept a minimum. This ensures the formation of smooth
receptive fields and, hence, the minimal “wiring” interconnecting the cortical
cells, which, in turn, ensures the closeness of the cortical cells representing simi-
lar stimuli. The stripes and patches seen within cortical areas have been argued
to be adaptations that allow the efficient wiring by such structures [13].

In cortical mappings, the topological order usually develops by elastic synaptic
interactions [4]. Let us derive cortical map from a topology-preserving map.

Taking the Taylor series expansion (in power of γ) results in

F = − 1
β

ln
n∑

i=1

exp
(

− β

2
|xμ − wi|2

)

+
γ

2

n−1∑

i=2

pi(μ)
(
|xμ − wi−1|2 + |xμ − wi+1|2

)
. (9)
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Fig. 1. Weight vector distribution of the cortical chain: (a) initial, (b) and (c) after
applying mapping (12) with βf = 200 and 1000 respectively (see other details in the
text). Stimuli and weight vectors are marked by open and filled circles respectively.
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Consider the weight vector as a “particle” moving in space-time x and de-
compose this particle trajectory:

wj = pj(ν)xν . (10)

Applying decomposition (10) to free energy (9) and taking the low tempera-
ture limit yield

F = − 1
β

ln
n∑

i=1

exp
(

− β

2
|xμ − wi|2

)
+

γ

2

n−1∑

i=1

|wi+1 − wi|2. (11)

Minimization of free energy function (11) results in the cortical mapping:

Δwj = −η
∂F

∂wj
= η

(
p̃j(μ)(xμ − wj) + γ(wj+1 − 2wj + wj−1)

)
, (12)

where

p̃j(μ) =
exp(−β

2 |xμ − wj |2)∑n
k=1 exp(−β

2 |xμ − wk|2)
(13)

is the reduction of pj(μ) to the case of lateral-free interactions.
We apply mapping (12) to modelling the development of retinotopy and ocular

dominance. Throughout, the training is cyclic with fixed sequence, i.e. before
learning starts a particular order of pattern presentation is fixed. The simulations
are performed for 32 cortical neurons with initial uniform random distribution
of the weight vectors within [−0.0667, 0.0667] × [−1, 1] rectangular (Fig. 1(a)).
The stimuli are placed regularly within the two columns of 16 units each at the
left and right boundary of the rectangular, which represent left and right “eye”
respectively. The ratio of the separation units between retinae to the separation
of neighbouring units within a retina defines the correlation of retinal units,
which is ≈ 1. The lateral interactions are allowed to decrease linearly with time:
γ = γ0(1 − t/T ) with γ0 = 0.03 and t = 0, .., T . The learning rate linearly
decreases too: η = η0(1 − t/T ) with η0 = 1. Let us look at evolution of the
weight vector distribution when the inverse temperature increases from β0 = 4
to different values of βf in steps of 0.01. For βf exceeding some threshold but
remaining relatively small, the weight vectors become distributed on the line
exactly between the left and right eye. For larger βf , the clusters consisting two
weight vectors are formed on this line (Fig. 1(b)). Increasing βf further leads to
breaking the spatial symmetry with one weight vector in a cluster moving toward
the left eye and another weight vector moving toward the right eye. Thus, the
retinotopy and ocular dominance simultaneously formed (Fig. 1(c)).

Unlike the considered cortical map, incremental soft topology-preserving map-
ping (5) doesn’t produce satisfactory results being applied to this problem.

4 Elastic Nets

The elastic net is based on elastic, diffusion-type, interactions [3]. This algorithm
works like an rubber ring: it gradually drags points on the ring towards the
“cities” and an elastic force keeps neighbouring points close to one another.
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Earlier, Simic showed the relationship between the Hopfied network and the
elastic net: it derived the latter from Hopfield’s objective function for the TSP
[14,15]. Let us show how to derive the elastic net from the batch version of soft
topology-preserving map.

Taking the Taylor series expansion (in power of γ) results in

〈F 〉 = − 1
βN

N∑

μ=1

ln
n∑

i=1

exp
(

− β

2
|xμ − wi|2

)

+
γ

2N

n−1∑

i=2

N∑

μ=1

pi(μ)
(
|xμ − wi−1|2 + |xμ − wi+1|2

)
. (14)

Consider the weight vector as a “particle” moving in space-time x and de-
compose this particle trajectory:

wj = 〈x(j)〉 =
N∑

ν=1

pj(ν)xν , (15)

where 〈x(j)〉 are the expected position of the particle at time j.
Applying decomposition (15) to free energy (14) yields

〈F 〉 = − 1
βN

N∑

μ=1

ln
n∑

i=1

exp
(

− β

2
|xμ − wi|2

)
+

γ

2N

n−1∑

i=1

|wi+1 − wi|2. (16)

Minimization of free energy function (16) results in the elastic net algorithm:

Δwj = −η
∂F

∂wj
=

η

N

( N∑

μ=1

p̃j(μ)(xμ − wj) + γ(wj+1 − 2wj + wj−1)
)
. (17)

Defining β ≡ 1
σ2 with the Gaussian distribution width σ, energy (16) takes

the exact form of the Durbin-Willshow elastic net energy [3]. Shrinking the
distribution width is, thus, equivalent to decreasing the system temperature.

Let us demonstrate how different algorithms work for the TSP. The simu-
lations are performed for 64 “cities” that are sites on a 8 × 8 regular square.
The elastic ring has 128 points. The training is cyclic with fixed sequence. The
inverse temperature β increases from 2 to 200 in steps of 0.01. The learning rate
is linearly decreasing function of time, i.e. η̂ = 1

N η = η̂0(1 − t/T ) with η̂0 = 1
and t = 0, .., T . Let us take γ = 0.06. Initially, the weight vectors are distributed
equidistantly on the unit radius circle (Fig. 2(a)). The batch topology-preserving
map (8) applied to the task produces one of the possible optimal tours (Fig.
2(b)). For the elastic net (17)), its elastic strength is allowed to decrease with
time passing: γ = γ0(1− t/T ) with γ0 = 0.06 , which can provide a finer pattern
than one for fixed γ [1]. Fig. 2(c) demonstrates the result. Thus, both lateral
and elastic interactions produce not the same but equally optimal tours for the
given task.
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Fig. 2. Weight vector distribution: (a) initial, (b) and (c) after applying learning rules
(8) and (17) respectively (see details in the text)
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5 Conclusion

Researchers always paid attention to the similarity of neural patterns produced
by lateral and elastic interactions, but not providing any rigorous proof of such
relationship [1, 16, 17, 18, 12]. This paper is aimed to provide this proof.

First, we demonstrated that the weak lateral interactions can be transformed
into the elastic ones. As result, the cortical map and the elastic net are derived
from the incremental and the batch soft topology-preserving maps respectively.
The temperature of the above maps is transformed into the Gaussian variance of
the cortical map and the elastic net. This fact elucidates indirect incorporation
of soft competition and deterministic annealing into the cortical map and the
elastic net, which makes them to be very powerful neurocomputational models.

Second, we analyzed the relevant models by applying them to the same task.
Application of the incremental soft topology-preserving map and the cortical
map to the development of the visual cortex revels their differences. Indeed,
these models are equivalent only in the low temperature limit. As known, at the
beginning of learning process when the temperature is high, the state trajectory
is very sensitive to any changes in the system and can take, therefore, any possible
direction.

Unlike the above, the batch soft topology-preserving map and the elastic net
are proved to be equivalent for all temperatures. As results, both models are
appeared to be equally successful in solving the TSP.
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Abstract. The objective of this paper is to introduce briefly the various soft 
computing methodologies and to present various applications in medicine. The 
scope is to demonstrate the possibilities of applying soft computing to medicine 
related problems. The recent published knowledge about use of soft computing 
in medicine is observed from the literature surveyed and reviewed. This study 
detects which methodology or methodologies of soft computing are used 
frequently together to solve the special problems of medicine.  According to 
database searches, the rates of preference of soft computing methodologies in 
medicine are found as 70% of fuzzy logic-neural networks, 27% of neural 
networks-genetic algorithms and 3% of fuzzy logic-genetic algorithms in our 
study results. So far, fuzzy logic-neural networks methodology was 
significantly used in clinical science of medicine. On the other hand neural 
networks-genetic algorithms and fuzzy logic-genetic algorithms methodologies 
were mostly preferred by basic science of medicine. The study showed that 
there is undeniable interest in studying soft computing methodologies in 
genetics, physiology, radiology, cardiology, and neurology disciplines. 

Keywords: Soft computing, Fuzzy-Neural systems, Fuzzy-Genetic algorithms, 
Neural-Genetic Algorithms, Probabilistic reasoning. 

1   Introduction 

Although computers were already used in medicine and the early medical systems 
appeared at about the same time as the seminal article by Zadeh - almost four decades 
ago - there was little communication between these research fields for many years [1,4]. 
But for the last two decades the situation has changed. A major transformation has 
occurred in the field of knowledge engineering and also medicine has been affected by 
this transformation. Many researchers had a bold vision of the way knowledge 
engineering would revolutionize medicine, and push the frontiers of technology 
forward. There are now numerous systems that use fuzzy logic (FL), neural networks 
(NNs), genetic algorithm (GA), and other techniques in approximate reasoning. 

Many of the early efforts to apply artificial intelligence to medical reasoning problems 
have primarily used rule-based systems [5]. Until the late 1980s, the practice of building 
knowledge-intensive systems was viewed uniformly as "extracting" rules from 
application experts, and putting those rules into an expert-system shell. Such programs 
are typically easy to create, because their knowledge is catalogued in the form of if-then 
rules. Developers built systems rule by rule, attempting to mimic with their rule bases the 
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problem-solving behaviours that application experts seemed to display. In relatively well-
constrained domain such programs show skilled behaviour. But this "knowledge mining" 
view has many weaknesses, as Clancey [6] showed in his analysis of the MYCIN 
(Knowledge-based Medical Expert System) system. Firstly, it is generally impossible to 
elicit from professionals in a given application area an adequate set of rules for all but 
trivial tasks. This elicitation problem has been called the "knowledge acquisition 
bottleneck," a mournful phrase that has been repeated so often in literature that it almost 
has become trite. In real-life situations, there is considerable degradation of performance 
due to both presence of ambiguity and incomplete information as well as inadequate 
modeling of the diseases by the rules. It is difficult to construct automatic systems to 
provide classification or pattern recognition tools or help specialists make a decision. 
Second, the resulting knowledge- based systems are generally difficult to maintain: 
Adding one more rule can change the behaviour dramatically. Other conventional 
methods like Bayes classifier and flow charts are also unable to deal with most complex 
clinical decision making problems. The choice of a method to solve this problem depends 
on the nature of problem like classification, automatic diagnosis, decision support. But 
usually it is not possible to solve the problem completely by using just one methodology. 
It is necessary to use different methodologies together in various combinations which are 
chosen appropriate to the nature of the problem. At this point the importance of soft 
computing (SC) methodologies is to come out.  

This paper surveys the use of SC in medicine based on searches in medical data 
base MEDLINE. The complementarities of FL, NNs and Probabilistic Reasoning 
(PR) have an important consequence: in many cases a problem can be solved most 
effectively by using FL, NN and PR in combination rather than exclusively. This is 
also one of our purposes in this paper: to present SC methodologies available to 
represent and manage imperfect knowledge in medicine. 

2   Literature Review 

We have already mentioned that one of the important goals of this paper is to survey 
the use of SC in medicine. Searches are based on MEDLINE medical and engineering 
database. The keywords used to search were based on the logical linguistic pattern; 

1. “fuzzy logic and neural networks and biomedical or medicine” 
2. “fuzzy logic and genetic algorithm and biomedical or medicine” 
3. “neural networks and genetic algorithm and biomedical or medicine” 
4. “fuzzy logic and neural networks and genetic algorithm and biomedical or 

medicine”. 

These linguistic patterns are suitable to find publications which contain SC 
methodologies. By using these patterns we also classify the publications in accordance 
with methodologies combinations. The search results show us popularity and 
applicability of the methodology combinations. To compare these results to the use of 
singular methodologies in studies, “fuzzy logic and biomedical or medicine”, “neural 
network and biomedical or medicine” and “genetic algorithms and biomedical or 
medicine” logical linguistic patterns are also searched in MEDLINE and results are 
showed in a separate graphics. 
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Observing the former studies which survey on the use of artificial intelligence (AI) 
methodologies in medicine, the database search was restricted for the last decade and 
especially the last five years need to be highlighted. The articles of Abbod et al.[7,8] and 
Mahfouf et al.[9] have a good coverage for the use of fuzzy logic, smart and adaptive 
engineering systems in medicine until the year 2001. All papers survey the use of fuzzy 
logic and adaptive systems in diagnosis, therapy and imaging areas of medicine. 

3   The Use of Soft Computing in Medicine 

Medicine is a diverse field. It consists of various specialized sub-branches. Roughly 
we can divide it into four broad fields as follows: basic science, diagnostic science, 
clinical science and surgical science. Each of these fields can be further sub-
classified. In the following sections, a brief description is given of key contributions 
which soft computing methodologies have made in each of the sub topics which have 
been identified in the literature search. Table 1 shows the separately distribution of 
soft computing studies as FL-NN, NN-GA and FL-GA, on medicine field. Please note 
that this table is prepared by considering only the last five years 2001-2006 studies.  

3.1   Basic Science 

According to MEDLINE database search results the use of SC methodologies in basic 
science of medicine is significantly increasing. Basic science is very suitable to all SC 
methodologies. For example, in biochemistry field there is a variety of phenomena 
with many complex chemical reactions, in which many genes and proteins affect 
transcription or enzyme activity of others. It is difficult to analyze and estimate many 
of these phenomena using conventional mathematical models. So, NNs, Fuzzy NNs, 
and the NN-GAs, have been applied to analysis in a variety of research fields. 
Especially biochemistry, biostatistics, genetics, physiology and pharmacology 
branches have applied to use of SC methodologies. Biochemistry, cytology, histology 
and pathology are the other branches which have applied to SC in their studies. 

FL-NN Applications in Basic Science 
The literature search results on the use of FL-NN methodologies in basic science of 
medicine take us to sub-branches like as cytology, physiology, genetics and 
biostatistics. In cytology, Ma et al. [10] have developed an application for cell slice 
image segmentation by using modern and traditional image segmentation technology. 
Because of the complex structure of cell and cell slice image it is always difficult to 
generally segmentate any kind of biological cell slice image. The study achieved to 
obtain good results for morphological image segmentation, which includes edge 
detection and regional segmentation, wavelet transform, by using fuzzy algorithms 
and artificial neural networks. 

When we look at physiology branch studies, we can easily say that the complexity 
of biological signals to push the researchers to use FL-NN systems to solve the 
physiological problems and get acceptable results. Das et al. [11] proves this 
determination with their study. Because of the complexity of signals and in order to 
improve the reliability of the recognition of diagnostic system they have preferred to 
use hybrid fuzzy logic neural network methodology for recognition of swallow 
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acceleration signals from artifacts. They train two fuzzy logic-committee networks 
(FCN); FCN-I and FCN-II. While the first one was used to recognize dysphagic 
swallow from artifacts, the second was used to recognize normal swallow from 
artifacts. Their evaluation results revealed that FCN correctly identified artifacts and 
swallows. Also they highlighted at the end of the study that the use of hybrid 
intelligent system consisting FL and NN provides a reliable tool for recognition and 
classification of biological signals. Catto et al. [12] and Futschik et al. [13] have used 
to FL-NN combining methodology to predict cancer tissue from gene expression data. 
Because of the poor accuracy of statistical analysis to prediction of tumor behaviors 
they preferred to use FL-NN methodology in their genetic science based studies. 
Knowledge-based neurocomputing was used by Futschik to contribute fuzzy rules 
which point to genes that are strongly associated with specific types of cancer.  

NN-GA Applications in Basic Science 
This category is the most preferred one for basic sciences disciplines. Biochemistry, 
biostatistics, genetics, histology, pathology, pharmacology and physiology are the 
disciplines which have some NN-GA applications.  

Agatonovic-Kustrin et al. [14-16] have done some studies on pharmacology by  
using NN-GA 9combining methodologies. Agatonovic-Kustrin [15] developed a 
simple model for prediction of corneal permeability of structurally different drugs as a 
function of calculated molecular descriptors using artificial NNs. They used a set of 
45 compounds with experimentally derived values to describe corneal permeability 
(log C). A genetic algorithm was used to select a subset of descriptors that best 
describe corneal permeability coefficient log C and a supervised network with radial 
basis transfer function was used to correlate calculated molecular descriptors with 
experimentally derived measure of corneal permeability. Their developed model was 
useful for the rapid prediction of the corneal permeability of candidate drugs based on 
molecular structure. 

Most drugs are excreted into breast milk to some extent and are bioavailable to the 
infant. The ability to predict the approximate amount of drug that might be present in 
milk from the drug structure is very useful in the clinical setting. This mission is 
studied by Agatonovic-Kustrin et al. [16]. They used GA and NN for to simplify and 
upgrade their previously developed model for prediction of the milk to plasma (M/P) 
concentration ratio, given only the molecular structure of the drug. As mentioned 
befo9re in their previous study GA was used for a same aim, to select a subset of the 
descriptors that best describe the drug transfer into breast milk and NN to correlate 
selected descriptors with them M/P ratio and developed a quantitative structure-
activity relationships (QSAR). The averaged literature M/P values were used as the 
artificial neural networks’s (ANN) output and calculated molecular descriptors as the 
inputs. Before each training run, data sets were split randomly into three separate 
groups and both weights and biases were initialized with random values. As a result 
unlike previously reported models, this developed model does not require 
experimental parameters and useful prediction of M/P ratio of new drugs and reduce 
the need for actual compound synthesis and M/P ratio measurements. 

Rask et al. [17] used GA to design NN structure in their automatic error reduction 
study for the real time dynamic biomechanical model of the human elbow joint with 
NN-GA combining methodology. They achieve the result of the GA networks 
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reduced the error standard deviation across all subjects. Ogihara et al. [18]  developed 
an anatomically and physiologically based neuro-musculo-skeletal model using  NNs 
by optimized GA, to emulate the actual neuro-control mechanism of human bipedal 
locomotion. These two studies were given as a sample to application of NN-GA 
combining methodologies on physiology science. 

3.2   Diagnostic Science 

Diagnostic science mainly includes clinical laboratory sciences and radiology sciences.   
Database search results show that the almost SC application studies done in radiology 
especially for interventional radiology. Interventional radiology is concerned with using 
imaging of the human body, usually from CT, ultrasound, or fluoroscopy, to do 
biopsies, place certain tubes, and perform intravascular procedures. 

If we compare to prefer and use of SC methodologies we clearly see that FL-NN 
applications is the first and nearly unique one for diagnostic science area. There are 
some applications which were done with NN-GA but these are very few when compare 
them to FL-NN applications. 

Image segmentation is one of the most important steps leading to the analysis of 
digital images, its main goal being to divide an image into parts that have a strong 
correlation with objects or areas of the real world. Image segmentation is an indispens-
able process in the visualization of human tissues, particularly during clinical analysis of 
magnetic resonance (MR) images. But, MR images always contain a significant amount 
of noise caused by operator performance, equipment, and the environment, which can 
lead to serious inaccuracies with segmentation. Shen et al. [19], Meyer-Baese et al. [20] 
and Wismuller et al. [21] have used FL-NN methodology in their recent studies to solve 
magnetic resonance imaging (MRI) problems. These studies are also good examples to 
use FL-NN and NN-GA methodologies. 

3.3   Clinical Disciplines 

MEDLINE database search results showed that the clinical sciences are the most 
popular and suitable area for the SC methodology applications in medicine. So far, 60% 
of SC methodology applications were done for clinical science disciplines. Although the 
studies shows a regular dispersion to all sub-branches of clinical science, according to 
search results evaluation it is obvious that the cardiology, neurology, critical care 
medicine, anesthesiology and physical medicine and rehabilitation are the most 
preferred disciplines. When we compare to preference of SC methodologies we clearly 
see that the FL-NN methodology is significantly the most preferred one. This result also 
shows parallelism with a result of the preference of SC methodologies in medicine. 
Another important result related to the use of SC in the clinical science is there is not 
any study that has used FL-GA methodology so far. 

FL-NN Studies in Clinical Science  
Anesthesiology. Anesthesia is defined as the loss of sensation resulting from pharma-
logical depression of nerve function or from neurological dysfunction [8]. There are 
some good examples of the use of adaptive systems for controlling blood pressure, 
analgesia, paralysis, unconsciousness and septic shock in the field of anesthesia.  
Zhang et al. [22] and Allen and Smith [23] have studied modeling and controlling 
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depth of anesthesia (DOA). In anesthesia, two approaches are being considered for 
measuring the DOA: indirect or direct [8]. The indirect method is achieved by 
monitoring clinical signs of anesthesia such as blood pressure and heart rate which are 
affected by the infused drugs. In contrast, the direct method measures anesthesia 
move directly from the nerves or the brain, such as in the muscle relaxation and 
evoked responses of the brain [8]. Allen and Smith have investigated utility of the 
auditory evoked potential (AEP) as a feedback signal for the automatic closed-loop 
control of general anesthesia using FL-NN methodology. A simple back-propagation 
NN was trained for AEP and its output used to FL infusion controller for the 
administration of anesthetic drugs. 

Cardiology. Cardiology is concerned with the heart and cardiovascular system and 
their diseases. The majority of work done on the utilization of adaptive systems has 
been to adaptive pacemakers. Recently, Ubeyli and Guler [24] have introduced a 
successful tool which is an adaptive neuro-fuzzy inference system for detection of 
internal carotid artery stenosis and occlusion. The internal carotid arterial Doppler 
signals recorded from 130 subjects and internal carotid artery conditions were 
detected by three adaptive neuro-fuzzy inference system (ANFIS) classifiers. In spite of 
spectral analysis of the Doppler signals produced information concerning the blood 
flow in the arteries, NNs may offer a potentially superior method of Doppler signal 
analysis to the spectral analysis methods. The predictions of the tree ANFIS classifier 
were combined by the fourth ANFIS classifier. Study results showed that accuracy 
rates of the ANFIS model were found to be higher than that of the stand-alone NN 
model and indicate that the proposed ANFIS model has some potential in detecting 
internal carotid artery stenosis and occlusion. 

The other literature works done successfully in cardiology discipline are; Kashihara 
et al. [25] have studied an automated drug infusion system using FL-NN methodology 
to control mean arterial pressure (MAP) in acute hypotension. Shyu et al. [26] proposed 
a method for detecting ventricular premature contraction (VPC) from the Holter system 
using wavelet transform and fuzzy neural network (FNN). Serhatlioglu et al. [27] have 
investigated the effects of diabetes mellitus on carotid artery by using a neurofuzzy 
system. 

Critical Care Medicine. Critical care is concerned with the therapy of patients with 
serious and life-threatening disease or injury. Intensive care medicine employs invasive 
diagnostic techniques and temporary replacement of organ functions by technical 
means. Critical care applications are close to anesthesia and pulmunology in their 
medical function. Blood pressure and respiration regulation, electroencephalogram 
(EEG) monitoring and pain relief are the main application areas of critical care 
medicine. 

Artificial ventilation of the lungs is one of the the major components of intensive 
care therapy. The aim is to deliver oxygen to the tissues and to remove carbon dioxide 
when the patient’s lungs are not able to function adequately [28]. The clinicians in the 
critical care unit adjust the various ventilator settings in order to achieve a reasonable 
level of oxygenation in the blood. Clinicians make these decisions based upon 
knowledge of the pathophysiology of the lungs and the patient’s condition and the 
past medical history [28]. Kwok et al. [28] have developed an ANFIS and multilayer 
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perceptron (MLP) in rule-base derivation for ventilator control and tested it with 
closed-loop simulations. The developed ANFIS model was a Sugeno-type fuzzy 
inference system which had three inputs and one output. The consequent parts were 
constants. Firstly clustering was applied to the training data using MATLAB toolbox. 
A hybrid algorithm (gradient descent and the least-square estimation algorithms) was 
used for training. Using the same data training dataset they developed a feed-forward 
MLP. It has same inputs and output as for the ANFIS model. The performance of 
these two models was compared to that of FAVeM which is a previously developed 
fuzzy advisor for ventilator management [29]. As a result the use of adaptive neuro-
fuzzy systems can facilitate the modeling of the clinicians’ knowledge in the 
development of intelligent advisors for intensive care ventilators. Both the ANFIS and 
MLP were shown to be able to model clinicians’ decision-making accurately. 
However, the ANFIS is more interpretable than the MLP.  

Neurology. Neurology is concerned with the diagnosis and treatment of nervous systems 
(central, peripheral, autonomic, neuromuscular junction and muscle) diseases.  

Most of the neurology studies were focused on sleep analysis, EEG and 
electromyogram (EMG) analysis subjects. Using nonlinear adaptive fuzzy approximator 
(NAFA), Zhang et al. [30] achieved to provide efficient nonlinear separation of single-
sweep evoked potentials (EPs), which allows for quantitative examination of the cross-
trial variability of clinical EPs. The NAFA is characterized by concise representation of 
structured knowledge, fast learning capability, as well as universal approximation 
property. It was applied to forecast the non-stationary EEG time-series and to estimate 
single-sweep EPs. 

In an unusual study, Palaniappan and co-workers [31] used neural network 
architecture for incremental supervised learning of analog multidimensional maps 
(fuzzy ARTMAP) and NNs for to design a new brain-computer interface (BCI). They 
aim was  to classify the best three of five available mental tasks for each subject using 
power spectral density (PSD) values of  EEG signals. They tested the system with ten 
experiments; employing different triplets of mental tasks for each subject. Their 
findings showed that the average BCI- fuzzy ARTMAP outputs for four subjects gave 
less than 6% of error using the best triplets of mental tasks identified from the 
classification performances of fuzzy ARTMAP. This clearly implies that the BCI- 
fuzzy ARTMAP can be successfully used with a tri-state switching device. 

4   Results and Discussion 

An overview of different SC techniques is presented in this paper along with the review 
of important medicine applications. The proficiency of SC techniques has been explored 
in almost every field of medicine. Based on this study future developments of SC 
technology in medicine can be tentatively forecast. Table 1 summary the number of 
applications of SC methodologies in medicine on a yearly basis. FL, NN and GA based 
search results are given here to help reader understand the situation and compare the 
number of cited SC based papers in medicine.  
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Table 1. The number of applications of SC methodologies in medicine on a yearly basis 

         
 Publication year      Total 

 1995-1999 2000 2001 2002 2003 2004 2005  
         

         

*FL 184 41 81 44 45 58 42 495 

NN 641 160 171 172 192 239 194 1769 

GA 43 20 18 17 14 28 29 169 

FL-NN 29 6 23 13 14 8 8 101 

NN-GA 17 2 5 5 6 6 5 46 

FL-GA 3 1 - 1 1 1 - 7 

FL-NN-GA 1 - - 1 1 1 - 4 

         
* FL:Fuzzy logic, NN:Neural networks, GA:Genetic algorithms, FL-NN:Fuzzy logic-Neural networks, 
   NN-GA:Neural networks-Genetic Algorithms, FL-GA:Fuzzylogic-Genetic Algorithms, 
   FL-NN-GA: Fuzzy logic-Neural networks-Genetic algorithms. 

 

Fig. 1. Comparison of the use of SC methods in medicine and sub-branches of medicine 

Especially radiology and neurology disciplines were used SC in classification and 
diagnosis studies. It should be noted that radiology, imaging and diagnosis studies are 
always related to other disciplines of medicine such as neurology, dermatology, 
pulmonology and oncology. To prevent to repeat one study in two areas and to find to 
correct group for study, all publications examined carefully.  

The preference of SC methodologies in medicine is illustrated in Figure 1. The 
mostly used methodology is FL-NN 70% then NN-GA 27% and FL-GA 3%. As far 
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FL-NN methodology is significantly used in clinical science of medicine. 60% of 
cited FL-NN studies are related clinical science. On the other hand NN-GA and FL-
GA methodologies were mostly preferred by basic science of medicine.   

The main findings of the study are: 

a. In genetics, physiology, interventional radiology, anesthesiology, cardiology, and 
neurology disciplines there are undeniable interest in studying SC methodologies. 
It proves to be very fruitful to study SC in these disciplines. 

b. In the field of clinical laboratory science and surgical science, there are no 
specific applications to date. 

c. SC methodologies give birth to new ideas in neighboring disciplines in medicine. 

The last point which we got from search results is that the SC term is not used well 
enough as a keyword in studies. Hybrid systems, combining systems, fuzzy-neural, 
fuzzy GAs, neural GAs terms are mostly preferred instead of SC.  

There is a growing interest in SC tools in medicine, which are used to handle 
imprecision and uncertainty, and to build flexibility and context adaptability into 
intelligent systems. It is obvious that the SC methodologies will be most preferred 
tools in medicine in the near future with its flexible information processing capability 
for handling real life ambiguous situations. A number of SC methods and theirs 
applications in medicine have been described in this paper. This paper can be used as 
a guide for future studies. The situation of present studies and virgin sub-branches of 
medicine may help researchers to orientate their study areas and to choose 
methodologies for their studies.  

Acknowledgments. The author wishes to thank Akdeniz University Scientific 
Researches Projects Management Unit for their financial support to this work.  

References 

1. Zadeh, L.A.: “Fuzzy Sets”. Information and Control 8, 338–353 (1965) 
2. Zadeh, L.A.: Outline of a New Approach to the Analysis of Complex Systems and 

Decision Processes. IEEE Transactions on Systems, Man, and Cybernetics, V. SMC 3(1), 
28–44 (1973) 

3. Zadeh, L.A.: Possibility Theory and Soft Data Analysis (University of California, 
Berkeley, Memorandum UCB/ERL M79/66, 1979) 

4. Akay, M., Cohen, M., Hudson, D.: Fuzzy sets in life science. Fuzzy Sets and Systems 90, 
219–224 (1997) 

5. Szolovits, P., Patil, R., Schwartz, W.: Artificial intelligence in medical diagnosis. Ann. 
Internal Med. 108, 80–87 (1998) 

6. WJ, C.: The epistemology of a rule-based expert system - a framework for explanation 
Artificial Intelligence, V. Artificial Intelligence 20, 215–251 (1983) 

7. Abbod, M.F., Diedrich, G.K., Linkens, D.A., Mahfouf, M.: Survey of utilization of fuzzy 
technology in Medicine and Healthcare. Fuzzy Sets and Systems 120, 331–349 (2001) 

8. Abbod, M.F., Linkens, D.A., Mahfouf, M., Dounias, G.: Survey on the use of smart and 
adaptive engineering systems in medicine. Artificial Intelligence in Medicine 26, 179–209 
(2002) 



78 A. Yardimci 

9. Mahfouf, M., Abbod, M.F., Linkens, D.A.: A survey of fuzzy logic monitoring and control 
utilization in medicine. Artificial Intelligence in Medicine 21(1-3), 27–42 (2001) 

10. Ma, Y., Dai, R., Li, L., Wu, C.: The state and development of cell image segmentation 
technology. Journal of Biomedical 19(3), 487–492 (2002) 

11. Das, A., Reddy, N.P., Narayanan, J.: Hybrid fuzzy logic committee neural networks for 
recognition of swallow acceleration signals. Computer Methods and Programs in 
Biomedicine 64(2), 87–99 (2001) 

12. Catto, J.W.F., Linkens, D.A., Abbod, M.F., Chen, M., Burton, J.L., Feeley, K.M., Hamdy, 
F.C.: Artificial intelligence in predicting bladder cancer outcome: a comparison of neuro-
fuzzy modeling and artificial neural networks. Clinical Cancer Research: An Official 
Journal of The American Association for Cancer Research 9(11), 4172–4177 (2003) 

13. Futschik, M., Reeve, A., Kasabov, N.: Evolving connectionist systems for knowledge 
discovery from gene expression data of cancer tissue. Artificial Intelligence In 
Medicine 28(2), 165–189 (2003) 

14. Agatonovic-Kustrin, S., Beresford, R., Yusof, A.: Theoretically-derived molecular 
descriptors important in human intestinal absorption. Journal of Pharmaceutical and 
Biomedical Analysis 25(2), 227–237 (2001) 

15. Agatonovic-Kustrin, S., Evans, A., Alany, R.G.: Prediction of corneal permeability using 
artificial neural networks. Die Pharmazie 58(10), 725–729 (2003) 

16. Agatonovic-Kustrin, S., Ling, L., Tham, S., Alany, R.: Molecular descriptors that influence 
the amount of drugs transfer into human breast milk. Journal of Pharmaceutical and 
Biomedical Analysis 29(1-2), 103–119 (2002) 

17. Rask, J.M., Gonzalez, R.V., Barr, R.E.: Genetically-designed neural networks for error 
reduction in an optimized biomechanical model of the human elbow joint complex. 
Computer Methods in Biomechanics and Biomedical Engineering 7(1), 43–50 (2004) 

18. Ogihara, N., Yamazaki, N.: Generation of human bipedal locomotion by a bio-mimetic 
neuro-musculo-skeletal model. Biological Cybernetics 84(1), 1–11 (2001) 

19. Shen, S., Sandham, W., Granat, M., Sterr, A.: MRI fuzzy segmentation of brain tissue 
using neighborhood attraction with neural-network optimization. IEEE Transactions on 
Information Technology In. Biomedicine 9(3), 459–467 (2005) 

20. Meyer-Baese, A., Wismueller, A., Lange, O.: Comparison of two exploratory data analysis 
methods for fMRI: unsupervised clustering versus independent component analysis. IEEE 
Transactions on Information Technology in Biomedicine 8(3), 387–398 (2004) 

21. Wismuller, A., Meyer-Baese, A., Lange, O., Auer, D., Reiser, M.F., Sumners, D.W.: 
Model-free functional MRI analysis based on unsupervised clustering. Journal of 
Biomedical Informatics 37(1), 10–18 (2004) 

22. Zhang, X.S., Huang, J.W., Roy, R.J.: Modeling for neuromonitoring depth of anesthesia. 
Critical Reviews in Biomedical Engineering 30(1-3), 131–173 (2002) 

23. Allen, R., Smith, D.: Neuro-fuzzy closed-loop control of depth of anesthesia. Artificial 
Intelligence in Medicine 21(1-3), 185–191 (2001) 

24. Ubeyli, E.D., Guler, I.: Adaptive neuro-fuzzy inference systems for analysis of internal 
carotid arterial Doppler signals. Computers in Biology and Medicine 35(8), 687–702 
(2005) 

25. Kashihara, K., Kawada, T., Uemura, K., Sugimachi, M., Sunagawa, K.: Adaptive 
predictive control of arterial blood pressure based on a neural network during acute 
hypotension. Annals of Biomedical Engineering 32(10), 1365–1383 (2004) 

26. Wu, L.Y., Hu, Y.H.: Using wavelet transform and fuzzy neural network for VPC detection 
from the Holter ECG. IEEE Transactions on Bio-Medical Engineering 51(7), 1269–1273 
(2004) 



 A Survey on Use of Soft Computing Methods in Medicine 79 

27. Serhatlioglu, S., Bozgeyik, Z., Ozkan, V., Hardalac, F., Guler, I.: Neurofuzzy classification 
of the effect of diabetes mellitus on carotid artery. Journal of Medical Systems 27(5), 457–
464 (2003) 

28. Kwok, H., Linkens, D., Mahfouf, M., Mills, G.: Rule-base derivation for intensive care 
ventilator control using ANFIS. Artificial Intelligence in Medicine 29(3), 185–201 (2003) 

29. Goode, K.M., Linkens, D.A., Bourne, P.R., Cundill, J.G.: Development of a fuzzy rule-
based advisor for the maintenance of mechanically ventilated patients in ICU: a model-
based approach. Biomedical Engineering, Applications Basis Communications 10, 236–
246 (1998) 

30. Zhang, J.H., Bohme, J.F., Zeng, Y.J.: A nonlinear adaptive fuzzy approximator technique 
with its application to prediction of non-stationary EEG dynamics and estimation of single-
sweep evoked potentials. Technology And Health Care: Official Journal of The European 
Society for Engineering and Medicine 13(1), 1–21 (2005) 

31. Palaniappan, R., Paramesran, R., Nishida, S., Saiwaki, N.: A new brain-computer interface 
design using fuzzy ARTMAP. IEEE Transactions on Neural Systems and Rehabilitation 
Engineering 10(3), 140–148 (2002) 



Exploiting Blind Matrix Decomposition

Techniques to Identify Diagnostic Marker Genes

Reinhard Schachtner1, Dominik Lutter1,2, Fabian J. Theis1, Elmar W. Lang1,
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Abstract. Exploratory matrix factorization methods like ICA and
LNMF are applied to identify marker genes and classify gene expression
data sets into different categories for diagnostic purposes or group genes
into functional categories for further investigation of related regulatory
pathways. Gene expression levels of either human breast cancer (HBC) cell
lines [5] mediating bone metastasis or cell lines from Niemann Pick C pa-
tients monitoring monocyte - macrophage differentiation are considered.

1 Introduction

The transcriptom comprises all cellular units and molecules needed to read out
the genetic information encoded in the DNA. Among others, the level of messen-
ger RNA (mRNA), specific to each gene, depends on environmental stimuli or
the internal state of the cell and represents the gene expression profile (GEP) of
the cell. High-throughput genome-wide measurements of gene transcript levels
have become available with the recent development of microarray technology [1].
Microarray data sets are characterized by many variables (the GEPs) on only
few observations (environmental conditions). Traditionally two strategies exist
to analyze such data sets: a) Supervised approaches can identify gene expression
patterns, called features, specific to each class but also classify new samples. b)
Unsupervised approaches like PCA [3], ICA or NMF [2] represent exploratory
matrix decomposition techniques for microarray analysis. Both approaches can
be joined to build classifiers which allow to classify GEPs into different classes.
We apply PCA, ICA and NMF to two well-characterized microarray data sets
to identify marker genes and classify the data sets according to the diagnostic
classes they represent.

2 The Data Sets

2.1 Breast Cancer Cell Lines - Bone Metastasis

The data set was taken from the supplemental data to [5]. The study investigated
the ability of human breast cancer (BC) cells (MDA-MB-231 cell line) to form
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bone metastasis. Data set 1 comprised 14 samples; experiments 1-8 showed weak
(7 and 8 mild) metastasis ability, while experiments 9-14 were highly active.
Data set 2 consists of 11 experiments, 5 among them of high and 6 showing weak
metastasis ability. Both data sets carry measured expression levels of 22283 genes
using the Affymetrix U133a chip. For each measurement, the flags A(absent) or
P(present) are provided. All genes showing more than 40% absent calls in one
of the two data sets were removed. The remaining data sets contained the same
10529 genes. The authors published a list of 16 potential marker genes, 14 of
which were still contained in the reduced data set.

2.2 Monocyte - Macrophage

For the monocyte - macrophage (MoMa) data set the gene-chip results from
three different experiments were combined. In each experiment human periph-
eral blood monocytes were isolated from healthy donors (experiment 1 and 2)
and from donors with Niemann-Pick type C disease (experiment 3). Mono-
cytes were differentiated to macrophages for 4 days in the presence of M-CSF
(50 ng/ml,R&D Systems). Differentiation was confirmed by phase contrast mi-
croscopy. Gene expression profiles were determined using Affymetrix HG-U133A
(experiment 1 and 2) and HG-U133plus2.0 (experiment 3) Gene Chips covering
22215 probe sets and about 18400 transcripts (HG-U133A). Probe sets only
covered by HG-U133plus2.0 array were excluded from further analysis. In ex-
periment 1 pooled RNA was used for hybridization whereas in experiment 2
and 3 RNA from single donors were used. The final data set consisted of seven
monocyte and seven macrophage expression profiles and contained 22215 probe
sets. After filtering out probe sets which had at least one absent call 5969 probe
sets remained for further analysis.

3 Data Analysis

The gene expression profiles are represented by an (N × M) data matrix X =
[x1 · · ·xM ] with each column xm representing the expression levels of all genes in
one of the M experiments conducted. Note that the data matrix is non-square
with N ≈ 103 · M typically. This renders a transposition of the data matrix
necessary when techniques like PCA and ICA are applied. Hence ICA follows
the data model XT = AS. Thus in the data matrix each row represents the
expression profile of all genes within one experiment, the rows of S contain the
nearly independent component expression profiles, called expression modes, and
the columns of A the corresponding basis vectors. In this study the JADE-
algorithm [4] was used throughout, though with the natural gradient and the
fastICA algorithm equivalent results were obtained. With NMF, a decomposition
is sought according to X = WH which is not unique, of course, and needs further
specification. The columns of W are usually called metagenes and the rows of H
are called meta-experiments. The localNMF (LNMF) algorithm [7] was applied
in this study.



82 R. Schachtner et al.

3.1 ICA - Analysis

We propose a method based on basic properties of the matrix decomposition
model as well as on available diagnostic information to build a classifier. ICA
essentially seeks a decomposition XT = AS of the data matrix. Column am

of A can be associated with expression mode sm, representing the m-th row of
S. The m-th row of the matrix A contains the weights with which the k ≤ M
expression levels of each of the N genes, forming the columns of S, contribute
to the m-th observed expression profile. Hence a concise analysis of matrix A
hopefully provides insights into the structure of the data set.

Each microarray data set investigated here represents at least two different
diagnostic classes. If the M expression profiles of XT are grouped together ac-
cording to their class labels, this assignment is also valid for the rows of A. Sup-
pose one of the independent expression modes sm is characteristic of a putative
cellular gene regulation process, which is related to the difference between the
classes. Then in all experiments, this characteristic profile should only contribute
substantially to experiments of one class and less so to the experiments of the
other class (or vice versa). Since the m-th column of A contains the weights with
which sm contributes to all observations, this column should show large/small
entries according to their class labels. In contrast to the method used by [6], the
clinical diagnosis of the experiments is taken into account. The strategy con-
centrates on the identification of a column of A, which shows a class specific
signature. The expression mode related to that column is assumed to provide
a good candidate for further class specific analysis. Informative columns were
identified using the correlation of each column vector of A with a design vector
d whose m-th entry is dm = ±1, according to the class label of experiment xi.

3.2 Local NMF - Analysis

With NMF, each column of X comprises the expression profile resulting from
one experiment. After applying the LNMF- algorithm [7], at least one column
of W, called a metagene is expected to be characteristic of a regulatory process,
which is related to the class specific signature of the experiments. Its contribu-
tion to the observed expression profiles is contained in a corresponding row of
matrix H, called a meta-experiment. Once an informative meta-experiment is
identified, further analysis can be focussed on the genes contained in the corre-
sponding metagene. As before all experiments are labeled according to known
diagnostics. The correlation coefficients c(hj ,d) between every meta-experiment
hj and d are then computed. Empirically, |c| > 0.9 signifies a satisfactory simi-
larity between a meta-experiment and the design vector. The number of extracted
basis components k, i.e. the metagenes, controls the structure of W and H. For
several decompositions X = WH using different numbers k of metagenes, the
rows of H are studied with respect to their correlation with the design vector.
A metagene is considered informative only if all entries of the corresponding
meta-experiment which belong to class 1 are smaller than all other entries of
that meta-experiment (or vice versa). After 5000 iterations, the cost function
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of the LNMF algorithm did not show noticeable changes with any of the data
sets investigated. For k = 2, . . . , 49, ten separate simulations were carried out
and only the simulation showing the smallest reconstruction error was stored.
Further matrix decompositions with k = 50, . . . , 400 metagenes were examined.
In the latter case, three simulations were performed only for each k.

4 Results

4.1 Breast Cancer Data Set

In order to test the classification algorithms for diagnostic purposes we first
selected the set of expression profiles from bone metastasis mediating breast
cancer cell lines provided by [5].

1 2 3 4 5 6 7 8 9 10 11 12 13 14

2

3

4

Fig. 1. Left: Entries of the 9-th column of matrix A as estimated with JADE, Right:
Matrix H using k = 4 as estimated with LNMF. Row 3 and 4 show a clear separation
between columns 1, . . . , 8 and columns 9, . . . , 14.

ICA Analysis. The analysis of the 14×14 matrix A identified one column with
a correlation coefficient of 0.89 (see Fig. 1). Hence s9 should contain genes which
provide diagnostic markers for the metastasis forming ability of the cell lines
considered. In [5], a list of 16 putatively informative genes is provided. As shown
in Table 1 the expression levels (taken from S) across all M experiments of many
of these genes exhibit a high correlation with the design vector d indicating a
rather high single discriminative power. Many of the genes belong to the most
negatively expressed genes of expression mode 9.

An even more revealing picture appears if one divides componentwise the rows
of the data matrix by the weighted row of the informative expression mode. The
resulting diagram marks genes which contribute most to the observation. Many
of the genes listed by [5] stick out as informative here (see Fig. 2).

NMF Analysis. The same data set was also analyzed using the LNMF algo-
rithm. The decomposition is very robust and highly accurate. Considering the
correlation between any row of matrix H and the design vector d, the decom-
positions into k = 4, 20, 45, 47 and k = 120, 230, 400 metagenes are suggested as
being most informative. Considering the case k = 4, two of the four rows of the
4 × 14 matrix H show excellent correlations to the design vector (weak/strong),
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Table 1. The correlation |c| of the gene vector sn with the design vector d for the 16
genes suggested by [5]. number denotes the column index in the data set X, gene name
denotes the affymetrix-ids, —– genes missing in the reduced data set.

number affymetrix-id gene name c-value number affymetrix-id gene name c-value

3611 204749-at NAP1L3 -0.96 3694 204948-s-at FST -0.89
1586 201859-at PRG1 -0.95 10480 222162-s-at ADAMTS1 -0.86
5007 209101-at CTGF -0.94 6133 211919-s-at CXCR4 -0.81
4311 207345-at FST -0.93 4233 206926-s-at IL11 -0.57
1585 201858-s-at PRG1 -0.92 3469 204475-at MMP1 -0.47
4529 208378-x-at FGF5 -0.92 4232 206924-at IL11 -0.43
5532 209949-at NCF2 -0.92 —- 210310-s-at FGF5 —–
860 201041-s-at DUSP1 -0.89 —- 209201-x-at CXCR4 —–
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Fig. 2. Componentwise ratio of row x9 with an9s9. The genes of [5] are marked with
crosses.

see Fig. 1, with coefficients c(row 3,d) = −0.91 and c(row 4,d) = 0.91, respec-
tively. Thus, a decomposition in a comparatively small set of metagenes perfectly
displays the diagnostic structure of the breast cancer data set. For the sake of
comparison, a decomposition into k = 20 metagenes revealed four informative
meta-experiments and their related metagenes. A comparison of the ten most ex-
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pressed genes in each of the four identified metagenes shows, that 5 genes were
also identified in case of k = 4, while 7 genes were also identified with ICA and
9 genes were identified with a SVM [8] approach as well. These genes are spread
over all four metagenes.

4.2 Monocyte - Macrophage Data Set

4.3 ICA Analysis

Using a decomposition into k = M = 14 independent expression modes, column
a7 of the resulting mixing matrix A showed a moderately strong correlation
|c| = 0.7 with the design vector d1 with components di = −1, i = 1, . . . , 7 and
di = 1, i = 8, . . . , 14 to discriminate GEPs taken from monocytes from those
taken from macrophages. Column 1 showed a correlation coefficient |c| = −0.95
with design vector d2 with components di = 1, i = 1, . . . , 4 and i = 8, . . . , 11,
while di = −1, i = 5, . . . , 7 and 12, . . . , 14. These signatures are shown in Fig. 3.
The signature of column 7 is not very clear cut. Hence a systematic investigation
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Fig. 3. Signature of column 7 (left) related with the discrimination monocyte vs
macrophage (case 1) and column 1 (right) related with the discrimination healthy
vs diseased (case 2) for k = M = 14 extracted expression modes

Table 2. Ten most strongly expressed genes in source 3 related with case 2 and in
source 6 related with case 1; * detected by ICA, k = 3, ** detected by ICA, k = 8

3neg 3pos 6neg 6pos

gene loki-id gene loki-id gene loki-id gene loki-id

1 4546 OAZ1* 5834 3GM2A 752 NFKBIA 530 GPNMB*
2 4257 C6orf62 5863 STAB1* 1780 S100A9 1914 MMP9
3 2592 ARPC2* 3901 GM2A 1495 IL8* 304 CTSB
4 3552 RPL7* 4490 HLA-A 2191 FCN1 1485 FUCA1*
5 1634 S100A4 4482 SOD2 1525 S100A8* 958 LIPA
6 4686 ITM2B 752 NFKBIA 5675 CSPG2 160 CD63
7 619 ARHGDIB 1495 IL8* 1392 TNFAIP3 788 LAMP1
8 4588 TMSB4X* 2892 HLA-B 464 DUSP1 2601 TFRC
9 1973 ALOX5AP 3237 SAT 965 PRG1 572 CSTB
10 2750 HLA-DRA* 332 PSAP* 2176 FPR1 3855 K-ALPHA-1
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Fig. 4. Signatures of columns 1 & 3 (left) for k = 3 and columns 3 & 6 (right) for
k = 8 related to cases 1 (monocyte vs macrophage) and 2 (healthy vs diseased)

Fig. 5. Signature of row 28 of Hk=29 (meta-experiment 28) and corresponding column
k = 28 of Wk=29 (metagene 28)

of the structure of the mixing matrices was carried out while increasing the
extracted number of expression modes from k = 2, . . . , 14. The resulting maximal
correlation coefficients |c(k)| showed little variation in both cases with average
values 〈|c1|〉 = 0.79 and 〈|c1|〉 = 0.94. The maxima occur at k = 3 in case 1
and at k = 8 in case 2. The corresponding column signatures are also shown in
Fig. 3. A list of the 10 most strongly expressed genes in each case is given in
Table 2. Note that the dimension reduction can be done during the whitening
step of the JADE algorithm. The information loss is not critical in any case as
the first three principal components cover 96, 1% of the variance.
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4.4 LNMF Analysis

Monocyte vs. Macrophage. A LNMF analysis was also performed on the 14
experiments of the MoMa data set. Again the number k of extracted metagenes
was varied systematically to identify an optimal decomposition of the N×M data
matrix X. For every k, the correlation coefficients between the meta-experiments
and the design vectors di, i = 1, 2 were computed. For k > 100, several meta-
experiments showing small entries for all monocytes < entries for the macrophage
experiments, indicated by a correlation of c > 0.9. Up to k = 90 mostly one
significant meta-experiment was observed, for k > 90, except k = 120, 170 and
190, at least two significant meta-experiments were detected. Rows of H related
to the reverse case of macrophage < monocyte do not appear at a comparable
level of correlation to the design vector. Figure 3 exhibits the signature of row
28 of Hk=29 and the related metagene.

Healthy vs. Diseased. In this case, the number of meta-experiments with
a strong correlation with the design vector reflecting over-expressed genes in

Table 3. The 10 most expressed genes in metagene 28; * detected by ICA, k = 3, **
detected by ICA, k = 8

metagene 28

k gene id k gene-nr. loki-id

1 530 *GPNMB** 6 2968 *HLA-DRB1
2 2511 *HLA-DRB1 7 2109 HLA-DRB1
3 3068 *CD74 8 170 GRN
4 3237 * SAT 9 3901 GM2A
5 327 *PSAP 10 4550 GRN

Fig. 6. Signature of meta-experiment h13 and corresponding metagene w13
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Table 4. The 10 most expressed genes in metagene 13

metagene 13

k gene loki-id k gene loki-id

1 2641 SAP18 6 954 NEDD8
2 3179 — 7 95 RPS25
3 2450 RAB1A 8 1501 ATP6V1C1
4 2657 SUMO1 9 5368 CHMP5
5 4713 RAB31 10 5594 TSPYL1

case of cell lines taken from Niemann Pick C patients increases nearly linearly
with increasing k. In case of under-expressed metagenes related to the disease,
only a few significant meta-experiments appear for k > 60. As an example, a
decomposition in k = 370 metagenes is considered. Meta-experiment 13 yields
c = −0.98 with respect to the separation between the classes ”healthy” and
”diseased” (see figure 6). The 10 most strongly expressed genes in metagene 13
which qualify as marker genes for the discrimination between healthy subjects
and Niemann Pick C patients are listed in Table 4.

5 Conclusion

The application of matrix decomposition techniques like ICA and NMF to mi-
croarray data explores the possibility to extract features like statistically inde-
pendent expression modes or strictly positive and sparsely encoded metagenes
which might offer a more favorable and intuitive interpretation of the underlying
regulatory processes. Combined with a design function, reflecting the experimen-
tal protocol, biomedical knowledge is incorporated into the data analysis task
which allows to construct a classifier for diagnostic purposes based on a global
analysis of the whole data set rather than a statistical analysis based on sin-
gle gene properties. This global analysis is based on the columns (ICA) or rows
(NMF) of a matrix which contains the weights with which the underlying expres-
sion modes or metagenes contribute to any given observation in response to an
applied environmental stimulus. If the signature of these column or row vectors
matches the experimental design vector, the related expression mode or metagene
contains genes with a high discriminative power which can be used as biomarkers
for diagnostic purposes. Furthermore a detailed statistical analysis of these infor-
mative genes combined with a data bank search for their functional annotations
might reveal underlying gene regulatory networks and can help elucidate the
processes at the roots of the disease investigated. In any case knowledge of such
marker genes allows to construct a simple and cheap chip for diagnostic purposes.
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Abstract. In todays bioinformatics, Mass spectrometry (MS) is the key
technique for the identification of proteins. A prediction of spectrum peak
intensities from pre computed molecular features would pave the way to
better understanding of spectrometry data and improved spectrum eval-
uation. We propose a neural network architecture of Local Linear Map
(LLM)-type for peptide prototyping and learning locally tuned regression
functions for peak intensity prediction in MALDI-TOF mass spectra. We
obtain results comparable to those obtained by ν-Support Vector Regres-
sion and show how the LLM learning architecture provides a basis for
peptide feature profiling and visualisation.

1 Introduction

In todays bioinformatics, Mass spectrometry (MS) is the key technique for the
identification of proteins. Matrix-assisted laser desorption ionization (MALDI)
is one of the most often used technique for the analysis of whole cell proteomes
in high-throughput experiments. There are different applications of MALDI-MS
where the prediction of peak heights (referred to as intensities) in the spectrum
are needed for further improvements: Protein identification is commonly done
by comparing the peak’s masses from a spectrum – the so called protein mass
finger print (PMF) – to theoretical PMFs in a data base, generating a score for
each comparison. Different tools are available for this purpose. For an overview
see [SCB05]. These tools rarely use peak intensities, because there is no model
to calculate the theoretical PMFs directly. The use of peak intensities could
improve the reliability of protein identification without lowering the error rate,
as was shown by Elias et al. for tandem MS[EGK+04].

Another application of MALDI where peak intensities are important is quan-
titative proteomics, where proteins in a complex sample are quantified or protein
abundances across different samples are compared. For the prediction of MALDI
PMF there has been one study so far by Gay et al. who applied different regres-
sion and classification algorithms[GBHA02]. Tang et al. used multi-layer neural
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networks to predict peptide detectabilities (i.e. the frequency with which peaks
occur in spectra) in LC/MS ion trap spectra[TAA+06] which is a related problem.

An algorithmic approach for peak intensity prediction is a non-trivial task
because of several obstacles: The extraction of PMF from spectra is a signal
processing task which can not be done perfectly. Data from this domain is always
very noisy and contains errors introduced by preprocessing steps in the wet lab as
well as in signal processing. Misidentifications may even lead to wrong sequences.
Intensity values can be distorted due to the unknown scale of spectra. It is
nearly impossible to come by a large enough data set from real proteins where
the content is known, i.e. there is no perfect gold standard, because of the not
reproducible and non-unique peptide/intensity relation.

To overcome these obstacles to predict peak intensities in MALDI-TOF spec-
tra based on a pre-selected training set of peptide/peak intensity pairs, a method
is needed, that is able to (a) determine peptide profiles and (b) learn locally tuned
regression functions for peak intensity prediction, since the peak intensity func-
tions may vary fundamentally for two different peptide profiles. For this purpose
we consider an artificial neural net architecture of Local Linear Map(LLM)-type,
since it combines unsupervised (a) and supervised (b) learning principles.

The LLM-architecture is well suited for this task due to its transparency. It
is simple to implement, can cope with large data sets, is easy adaptable to new
data by a slight deviation of the parameters without loss of information. Other
than for example support vector regression (SVR) it can be used for data min-
ing once adapted in a straight forward manner, as demonstrated in this work.
We propose a combination of unsupervised and supervised learning architecture
with comparable results in predicting the peaks intensities to ν-Support Vector
Regression (SVR) [TBTN06]. The mixture of linear experts derives implicit mod-
els for characterizing peptides and feature analysis as an unsupervised learning
task. The second step consists of supervised adaptation of the neural network
and prediction of peaks intensities.

2 Materials and Methods

2.1 Data

In this study we use one dataset A of peptides of MALDI mass spectra. It
consists of 66 spectra of 29 different proteins, with 16 of these proteins being
present in multiple spectra. Peak extraction steps include soft filtering, baseline
correction, peak picking and isotopic deconvolution in the corresponding raw
spectra. The resulting list of peaks is matched against masses derived from a
theoretical tryptic digestion. These steps for A result in 857 matched peaks
corresponding to 415 different peptides.

For preprocessing, normalization of the intensities is necessary, because spectra
do not have the same scale. For a MALDI spectrum the exact amount of protein
sample that leads to is not known, nor is it possible to scale spectra belonging to
the same protein by the same amount. There is no peptide that connects the scales
of spectra.
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The normalized intensities are therefore computed following two different
heuristics, in order to use values from different spectra together. In the remain-
der, the intensities refer to scaling the original intensity by “mean corrected ion
current”:

IM =
Iorig
i∑N

i=1 Iorig
i

with Iorig
i = Ii − Bi − Ni, i = 1, . . . , N

where Bi is the baseline value and Ni is the noise determined in the denoising
step. The original matched peaks intensity Iorig

i after denoising and baseline
correction is divided by the sum of all N values in the whole spectrum yielding
the scaled intensity IM . Subsequently, the natural logarithm of the intensities is
applied to compute the final intensity output values.

2.2 Feature Sets

One of the most important questions in conjunction with finding a model for pre-
dicting peak intensities is the representation of the peptides. A suitable feature
space is the precondition for success of any machine learning method.

We combine different properties of peptides to represent features of a peptide.
Amino acid frequencies, typically used in bioinformatics, in conjunction with
chemical features of the peptides are used to create the heuristically selected
18-dimensional feature space. It is built by different types of characterization
we assume to be relevant for MALDI ionization and additional features that are
chosen in an ad hoc feature forward selection.

Most of the peptides in the data set occur multiple times in different spectra
with different intensity values. Due to limitation of training data, we eliminate
outliers (potential noisy peptides) by mapping each peptide to one unique value,
the α-trimmed mean of all intensities per distinct peptide with α = 50%. The
α-trimmed mean is defined as the mean of the center 50% of an ordered list. In
the case of less than 4 peptides in the list a simple mean is taken.

2.3 Local Linear Map / Mixture of Linear Experts

The task of mass spectrometry prediction and peptide prototyping corresponds
to the task of unsupervised clustering as well as classification and supervised
prediction. The problem can be stated as follows:

Given a training set Γ = {(x,y)i, i = 1, . . . , N}, consisting of input-output
pairs: peptide patterns xi, which are elements of feature space X = IRt, and real-
valued outputs, i.e. intensities, yi ∈ IR. One promising approach would be to find
a set of clusters and prototypes representing the data points best according to
the statistical properties of the data provided. After assigning every input point
to a prototype, a prediction of a real-valued output Y has to be done.

For determining peptide prototypes and learning into the mapping the output,
i.e. intensity space, we propose to use the Local Linear Map (LLM)-architecture.
The LLM combines unsupervised vector quantisation algorithm for computing a
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voronoi tessellation of the input space X with supervised techniques for feature
classification.

The artificial neural net (ANN) of Local Linear Map-type [Rit91] was origi-
nally motivated by the Self-Organising Map by Kohonen [Koh82] and has been
shown to be a valuable tool for the fast learning of non-linear mappings C :
IRdin → IRdout .

A LLM consists of nl nodes vi, i = 1, . . . , nl. Each node consists of a triple

vi = (win
i ,wout

i ,Ai).

The vectors win
i ∈ IRdin are used to build prototype vectors adapting to the

statistical properties of the input data xξ ∈ IRdin provided. The vectors wout
i ∈

IRdout approximate the distribution of the target values yξ ∈ IRdout . The matrices
Ai ∈ IRdin×dout are locally trained mappings from the input to the output space.

Vector quantisation - In the unsupervised training phase the nl prototype vectors
are adapted following Neural-Gas (NG) learning rule. The distance between
input pattern xξ and prototype vi yields a ranking among the neural gas neurons.
The learning procedure changes the weights according to the ranking of the
prototypes ri(x, l), such that

Δwin
i = εin · hσ (ri(x, l)) ·

(
xξ − win

i

)
= εin · exp

(
−ri(x, l)

λ

) (
xξ − win

i

)
.

After adapting the prototypes, each of the input vectors x can be associated
with its closest prototype as a winner-takes-all (WTA) rule:

wκ = arg min
w

{
‖x − win

i ‖
}

. (1)

Training of local mappings from input to the output space is performed in the
second step. Subsequently to unsupervised adaptation and tessellation of the
input space X , a local expert is assigned to each of the nl voronoi cells.

The mapping of an arbitrary input vector x to an output C(X) is computed
by

C(x) = wout
κ + Aκ

(
x − win

κ

)
(2)

by the corresponding local expert wκ. The weights wout
i and the linear map Ai

are changed iteratively applying the learning rules:

Δwout
i = εout · hσ (ri(x, l)) · (yξ − C(xξ))

ΔAi = εA · hσ (ri(x, l)) · (yξ − C(xξ)) · (xξ − win
i )T

∥∥xξ − win
i

∥∥2

2.4 Evaluation

About 10% of the centered and normalized data are used for validation and
put aside. The remaining dataset is used to train the LLM and to find the best
parameter set using 10-fold Cross-Validation (CV). So, the remaining dataset is
split into 10 portions and one set is used for testing performance of the selected
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model. It was ensured that peptides from one spectrum as well as peptides
occurring in more than one spectrum are found in only one of the portions.

Model Selection: Grid search over the parameter space P =
(
nl, ε

A
)

is per-
formed to determine optimal parameters for learning. The remaining learning
parameters for the LLM were set to initial values εout = 0.3, εin = 0.5 and λ = 10
decreasing over time. A 10-fold-CV is done for each parameter set. For every
point in the parameter space the prediction accuracy for every training/test set
is determined by squared pearson-correlation coefficient r2 and root mean square
error (RMSE) of the test set. The choice of the best parameter set is made by
the best mean r2 over all 10 test sets while training the learning algorithm.

Model Assessment: The final model with the optimal parameters is chosen.
To validate its prediction (generalization) error on new data, the validation set
is used, which has not taken part in training.

3 Results

The following results are evaluated for two subsets of the entire data set A.
The first set, denoted by ATM, contains peptides mapped by α-trimmed mean
(2.2), whereas the second set, ADup, contains all peptides including these ones
occurring in multiple spectra. In the remainder, we refer to them as duplicates.
The validation set of ATM consists of 44 items and for ADup of 73 items. One
advantage of the ANN is, that is capable of dealing with duplicates straight-
forward, which means data points (xi,yi), (xj ,yj) in input space, ∃i, j, s. t.
xi = xj : yi �= yj in contrast to many other techniques, as for example, Support
Vector Regression (SVR).

3.1 Peptide Prototyping

A display of the prototype vectors resulting from the neural gas training allows
a profiling of peptides. In the following Fig. ?? a resulting parallel coordinates
plot used for multivariate data plotting for six prototypes in case of ADup is
shown. A set of parallel axes are drawn for each feature, where for each variable
the range of values (from min to max, from bottom to top respectively) covered
by the prototypes is shown.

The correlation of input space reflects in the prototype distribution. We
can see that some of the features (’VASM830103’,’WILM950102’,’FINA770101’,
’ARGP820102’) show a correlation to the mass, while no such tendency can
be observed for the other features. ’OOBM850104’ (measure of non-bonded en-
ergy), ’ROBB760107’ (information measure) and ’M’ (no. of methionine) show
the least similarity to any other feature. If we look at prototype 0 and 4, it can be
seen that they cover contrary outmost areas in data space in almost all features
except the three mentioned ones. Another thing to be noted is that prototypes
2 and 4 are near to each other for almost all features, except for the three men-
tioned features and arginin count as well as ’GB500’ (the last two being highly
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Fig. 1. Parallel coordinates plot for six prototypes in case of ADup. For every feature
the range of values covered by the prototypes is shown.

correlated), where they split up to almost the extremes. Similar behaviour can
be observed for the prototypes 1 and 3.

The six prototypes take three to five levels for each feature, two or more proto-
types sharing the same region. OOBM850104 and KHAG800101 (kerr constant
increment) show the most even distribution of prototypes.

Thus the prototypes share ranges in certain features and split up for others,
achieving a nice spread in data space: For a datapoint that is similar to two
prototypes sharing their space for a set of features, other features decide which
prototype it is assigned to.

Having observed these features being special, we can take a closer look at the
data points’ class assignment and there values these features (image not shown).
There is no visible correlation between any of ’M’,’OOBM850104’, ’ROBB760107’
and the class label except for the extreme ranges of the latter. For ’GB500’ there
is a split between data of the classes 0, 1, 2 and 3, 4, 5 which corresponds well to
the prototypes’ distribution for this feature. If this is due to other features slightly
correlated to each other or if they really carry no information with respect to the
target values has to be the subject of further studies.

3.2 Predicting Peaks Intensities

We compare the prediction capabilities of the LLM for the two data sets ATM
and ADup. The evaluation is done as described in 2.4. We perform a grid search
over all parameters and the parameter set is chosen yielding the best mean r2 of
training/test sets. For the exact results of r2 and RMSE see Table 1.

3.3 Penalizing Single Occurring Peptides

Peptides carrying not much information or being noisy should not be regarded
in the learning process or at least should be less weighted. At about 50% of the
peptides are represented only once in the data. We refer to them as “singles”. In
fact, their intensities show a wide spread distribution and may be not valuable



96 A. Scherbart et al.

Table 1. Comparison of capabilities of the LLM in predicting intensities for the studied
datasets ATM and ADup. The evaluation was done for K = 3, 6 and 10 prototypes.
The resulting performances are given by the best r2, the mean (r2) and σ2(r2) of all 10
test sets and the corresponding error RMSE, as well as for the validation set.

Test Valid

Dataset r2 ave(r2) σ2(r2) RMSE r2 RMSE

ATM,K = 3 0.6773 0.4341 0.1811 1.0359 0.1611 1.6028
ATM,K = 6 0.6318 0.4391 0.1421 0.8619 0.1148 1.7938
ATM,K = 10 0.6003 0.3845 0.1881 0.9241 0.157 1.7447

ADup,K = 3 0.647 0.433 0.1462 0.8237 0.1972 1.4516
ADup,K = 6 0.6168 0.4286 0.1356 0.8222 0.2195 1.4294
ADup,K = 10 0.5659 0.3599 0.1549 0.8872 0.137 1.5169

(a) (b)

Fig. 2. Scatterplots of target vs. predicted values for a penalized prediction of ADup with
K = 6 prototypes. The gray background results from a 2d density estimation of plotted
points. The plot (a) is given by the resulting mapped test sets, (b) is given by the corre-
sponding validation set. The mapped points show a wide spread and many are horizon-
tally aligned due to the mapping of the same prototype to the same output value.

regarding signal-to-noise-ratio. It seems to be reasonable to take the duplicates
more into account for the learning process. We introduce an additional factor to
the learning algorithm

εp = ε · f(peptideocc), where ε ∈
{
εin, εout, εA

}

such that single peptides are penalized and peptides occurring more than once
are more heavily weighted, ensuring, that not the whole learning process itself
is slowed down. The best evaluated function of peptide occurrence was f(x) =
− exp(−x/0.3)0.25+1.2. Moreover, the best parameters found by evaluation were
those, that took penalizing of single peptides into account.
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4 Discussion

Our results show that the new LLM-approach combining data mining and super-
vised learning yields similar results in prediction accuracy to our first approach
utilizing ν-SVR [TBTN06].

In Fig. 3 the results of the prediction accuracy for different number of proto-
types and for the studied data sets ATM and ADup are summed up. The mean
performance of the 10 test sets is compared to the performance of the validation
set in terms of r2 and RMSE.

(a) (b)

(c)

Fig. 3. Results of the prediction accuracy measured by (a) r2 and (b)RMSE for the
evaluated data sets ATM and ADup taking into account the differences in penalizing
single peptides. For every evaluation the results of the mean performance of the test
sets is plotted against the performance of the validation set. The prediction accuracy
of ADup yield (a) a higher correlation as well as (b) lower error compared to ATM,
whereas the prediction accuracy of the penalized prediction in comparison to normal
is not worse. (c) For the plot a discrimination according to the number of prototypes
is done. The best results are found for K = 3 and for K = 6 in both cases of data sets.
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From our results it is clear that peak intensities can be characterized and
predicted by the use of the heuristically selected feature set with high prediction
accuracy. It can be observed that considering the entire data set including du-
plicates instead of a α-trimmed mean mapped data set yields higher correlations
and a better generalization performance. Moreover, an alternative mapping for
the α-trimmed mean by the prototypes additionally incorporating the statistical
properties of the input data is yielded by the LLM.

The investigation of the treatment of single occurring peptides, which amount
50% of the entire data, did not issue a precise statement. Therefore a comparison
to data sets with more multiple spectra per protein would be helpful.

The visual inspection of the prototypes reveals that the peptides can be
grouped around a set of approximately 6 profiles. Those seem to have individual
mappings to peak intensity which can be discussed with biochemical experts.

The prediction capability and generalisation performance of our proposed
learning architecture are determined by r2 and RMSE of the validation set. For
this set just the first 10% of the entire data set are taken. The fact that some
test sets performance is worse than the performance of the chosen validation
set, can be explained by the static choice of the set. The different portions of
the entire data set yield a wide spread of correlation, resulting in high standard
deviation of r2 (see Table 1) over all the portions. There are test sets that seem
significantly worse in prediction performance over all training sets. There exists
a positive correlation to the number of test set examples.

5 Conclusion

We propose an algorithmic approach for peak intensity prediction in MALDI-
TOF spectra. The proposed model for peptide prototyping and prediction of
peak intensities with the architecture of Local Linear Map-type has been shown
to be a valuable neural network tool for these tasks combining unsupervised and
supervised learning architecture. The LLM includes determining peptide profiles
in the data set and the mixture of linear expert are able to learn locally tuned
regression functions for peak intensity prediction. The heuristically selected fea-
ture space is a good choice as the characteristics of peptides are reflected. Some
features do not contribute to the assignment of data points to one of the proto-
types. If this is due to the number of other features slightly correlated to each
other or if they really carry no information with respect to the target values has
to be the subject of further studies. The experiments with the considered data
set have demonstrated the capabilities of the proposed neural net.
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Abstract. The identification of cis-regulatory binding sites in DNA is a difficult 
problem in computational biology. To obtain a full understanding of the 
complex machinery embodied in genetic regulatory networks it is necessary to 
know both the identity of the regulatory transcription factors together with the 
location of their binding sites in the genome. We show that using an SVM 
together with data sampling, to integrate the results of individual algorithms 
specialised for the prediction of binding site locations, can produce significant 
improvements upon the original algorithms. These results make more tractable 
the expensive experimental procedure of actually verifying the predictions. 

Keywords: Computational Biology, Support Vector Machine, Imbalanced data, 
Sampling, Transcription Factor Binding Sites. 

1   Introduction 

Binding site prediction is both biologically important and computationally interesting. 
One aspect that is challenging is the imbalanced nature of the data and that has allowed 
us to explore some powerful techniques to address this issue. In addition the nature of 
the problem allows domain specific heuristics to be applied to the classification 
problem. Specifically we can remove some of the final predicted binding sites as not 
being biologically plausible. 

Computational predictions are invaluable for deciphering the regulatory control of 
individual genes and by extension aiding in the automated construction of the genetic 
regulatory networks to which these genes contribute. Improving the quality of 
computational methods for predicting the location of transcription factor binding sites 
(TFBS) is therefore an important research goal. Currently, experimental methods for 
characterising the binding sites found in regulatory sequences are both costly and time 
consuming. Computational predictions are therefore often used to guide experimental 
techniques. Larger scale studies, reconstructing the regulatory networks for entire 
systems or genomes, are therefore particularly reliant on computational predictions, 
there being few alternatives available.  

Computational prediction of cis-regulatory binding sites is widely acknowledged as a 
difficult task [1]. Binding sites are notoriously variable from instance to instance and 
they can be located considerable distances from the gene being regulated in higher 
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eukaryotes. Many algorithmic approaches are inherently constrained with respect to the 
range of binding sites that they can be expected to reliably predict. For example, co-
regulatory algorithms would only be expected to successfully find binding sites 
common to a set of co-expressed promoters, not any unique binding sites that might also 
be present. Scanning algorithms are likewise limited by the quality of the position 
weight matrices available for the organism being studied. Given the differing aims of 
these algorithms it is reasonable to suppose that an efficient method for integrating 
predictions from these diverse strategies should increase the range of detectable binding 
sites. Furthermore, an efficient integration strategy may be able to use multiple sources 
of information to remove many false positive predictions, while also strengthening our 
confidence about many true positive predictions. The use of algorithmic predictions 
prone to high rates of false positive is particularly costly to experimental biologists 
using the predictions to guide experiments. High rates of false positive predictions also 
limits the utility of prediction algorithms for their use in network reconstruction. 
Reduction of the false positive rates is therefore a high priority.  

In this paper we show how the algorithmic predictions can be combined so that a 
Support Vector Machine (SVM) can perform a new prediction that significantly 
improves on the performance of any one of the individual algorithms. Moreover we 
show how the number of false positive predictions can be reduced by around 80%. 

2   Background 

The use of a non-linear classification algorithm for the purposes of integrating the 
predictions from a set of cis-regulatory binding site prediction algorithms is explored in 
this paper. This is achieved by first running a set of established prediction algorithms, 
chosen to represent a range of different algorithmic strategies, on a set of annotated 
promoter sequences. Subsequently, an SVM is trained to classify individual sequence 
positions as a component of either a binding site or the background sequence. The set of 
predictions from the original algorithms, appropriately sampled to account for the 
imbalanced nature of the data set, and labeled with experimental annotations is used for 
the training inputs.  

Table 1. The 12 Prediction Algorithms used 

Strategy  Algorithm 
Scanning algorithms Fuzznuc 

MotifScanner [2] 
Ahab [3] 

Statistical algorithms  PARS 
Dream (2 versions) [4] 
Verbumculus [5] 

Co-regulatory algorithms MEME [6] 
AlignACE [7] 
Sampler 

Evolutionary algorithms  SeqComp [8] 
Footprinter [9] 
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A wide range of binding site prediction algorithms were used in this study. They 
were selected to represent the full range of computational approaches to the binding site 
prediction problem. The algorithms chosen were either reported in the literature or were 
developed in-house or by our collaborators in the case of PARS, Dream and Sampler. 
Table 1 lists the algorithms used along with references. Where possible, parameter 
settings for the algorithms were taken from the literature, if not available, default 
settings were used. 

3   Description of the Data  

Experimentally annotated sequences were used in this study. The yeast, S.cerevisiae 
was selected for the model organism; the use of this particularly well studied model 
organism ensures that the annotations available are among the most complete available. 
112 annotated promoter sequences were extracted from the S.cerevisiae promoter 
database [10] for training and testing the algorithms. For each promoter, 500 base-pairs 
(bp) of sequence taken immediately upstream from the transcriptional start site was 
considered sufficient to typically allow full regulatory characterisation in yeast [10]. In 
cases where annotated binding sites lay outside of this range, then the range was 
expanded accordingly. Likewise, where a 500 bp upstream region would overlap a 
coding region then it was truncated accordingly. Further details about how the data was 
obtained can be found in [11].  

 

Fig. 1. The formation of the windowed data. The 12 predictions from the original algorithms 
for the target site are concatenated with the predictions from the 3 sites on either side. This 
gives an input vector of 12 by 7 real numbers. The corresponding label of this vector is the 
annotation of the central nucleotide. 
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Predictions made by the original algorithms across the dataset were placed into a 
matrix consisting of 67,782 12-ary real valued vectors, each associated with a binary 
label indicating the presence or absence of an experimental annotation at that position, 
see Figure 1.  

Each 12-ary vector represents the predictions from all 12 original algorithms for a 
particular position in the dataset. All predictions in the matrix were normalised as real 
values in the range [-1,1] with the value of 0 allocated to sequence positions where an 
algorithm was unable to be run. Additionally, we contextualize the training and test 
datasets to ensure that the classification algorithms have data on contiguous binding site 
predictions. This is achieved by windowing the vectors within each of the 112 annotated 
promoter sequences. We use a window size of 7, providing contextual information for 3 
bp either side of the position of interest.  

Additionally this procedure carries the considerable benefit of eliminating a large 
number of repeated or inconsistent vectors which are found to be present in the data and 
would otherwise pose a significant obstacle to the training of the classifiers. 

A number of statistics summarising the dataset are shown in Table 2. 

Table 2. Summary of the data used 

Total number of sequences  112 
Total sequence length  67782 bp 
Average sequence length  605 bp 
Average number of TFBS sites per sequences 3.6 
Average TFBS width  13.2 bp 
Total number of TFBS sites  400 
Number of unique TFBS sites  69 
TFBS density in total dataset  7.8% 

4   Performance Metrics 

As approximately 8% of the dataset (see Table 2) is annotated as being a part of a 
binding site, this dataset is imbalanced. If the algorithms are to be evaluated in a useful 
manner simple error rates are inappropriate, it is therefore necessary to use other 
metrics. Several common performance metrics, such as Recall (also known as 
Sensitivity), Precision, False Positive rate (FP-Rate) and F-Score, can be defined using 
a confusion matrix (see Table 3) of the classification results. Precision describes the 
proportion of predictions that are accurate; Recall describes the proportion of binding 
site positions that are accurately predicted; FP-Rate describes the proportion of the 
actual negatives that are falsely predicted as positive; and the F-Score is the weighted 
harmonic mean of Precision and Recall. There is typically a trade off between Precision 
and Recall, making the F-Score particularly useful as it incorporates both measures. In 
this study, the weighting factor, β, was set to 1 giving equal weighting to both Precision 
and Recall. It is worth noting that for all these metrics a higher value represents 
improved performance with the solitary exception of FP-rate for which a lower value is 
preferable.  
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Table 3. The definition of performance measures  

 Predicted Negatives Predicted Positives 
Actual Negatives True Negatives - TN False Positives - FP 
Actual Positives False Negatives - FN True Positives - TP 

Recall = TP

TP + FN
Precision = TP

TP + FP

FP _ Rate = FP

FP +TN
F _ Score =

1+ β 2( )Recall × Precision

β 2Recall + Precision

 

5   Techniques for Learning Imbalanced Datasets 

Without addressing the imbalance of the two classes in the data, classifiers will produce 
negligible true positive predictions. This is due to the fact that predicting that every 
base-pair is not part of a binding site will give high accuracy, being correct 92% of the 
time (with no false positives). However such a predictor is obviously worthless.  

In this paper we address the problem of our imbalanced data in two ways: firstly by 
using data based sampling techniques [12, 13] and secondly by using different SVM 
error costs for the two classes [14].  

5.1   Sampling Techniques 

One way to address imbalance is simply to change the relative frequencies of the two 
classes by under sampling the majority class and over sampling the minority class. 
Under sampling the majority class can be done by just randomly selecting a subset of 
the class. Over sampling the minority class is not so simple and here we use the 
Synthetic Minority Oversampling Technique (SMOTE) [12]. For each member of the 
minority class its nearest neighbours in the same class are identified and new instances 
are created, placed randomly between the instance and its neighbours. In the first 
experiment the number of items in the minority class was first doubled and the number 
of randomly selected majority class members was then set to ensure that the final ratio 
of minority to majority class was 0.5. This value was selected using 5-fold cross 
validation experiments. 

5.2   Different SVM Error Costs 

In the standard SVM the primal Lagrangian that is minimized is: 

Lp =
w2

2
+ C ξ i

i=1

n

∑ − α i yi w.x i + b( )−1+ξ i[ ]
i=1

n

∑ − riξ i

i=1

n

∑

subject to :  0 ≤ α i ≤ C and α i yi

i=1

n

∑ = 0

 

Here C represents the trade-off between the empirical error, ξ, and the margin. The 
problem here is that both the majority and minority classes use the same value for C, 
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which as pointed out by Akbani et al [15] will probably leave the decision boundary too 
near the minority class. Veropoulos et al [14] suggest that having a different C value for 
the two classes may be useful. They suggest that the primal Lagrangian is modified to: 

Lp =
w2

2
+ C + ξ ii yi = +1{ }∑ + C− ξ ii yi =−1{ }∑ − α i yi w.x i + b( )−1+ξ i[ ]

i=1

∑ − riξ i

i=1

n

∑

subject to :  0 ≤ α i ≤ C + if yi = +1, 0 ≤ α i ≤ C− if yi = −1 and α i yi

i=1

n

∑ = 0

Here the trade-off coefficient C is split into C + and C−  for the two classes, allowing the 
decision boundary to be influenced by different trade-offs for each class. Thus the 
decision boundary can be moved away from the minority class by lowering C + with 
respect to C− . 

Akbani et al. [15] argue that using this technique should improve the position of the 
decision boundary but will not address the fact that it may be misshapen due to the 
relative lack of information about the distribution of the minority class. So they 
suggest that the minority class should also be over-sampled, using SMOTE, to 
produce a method they call SMOTE with Different Costs (SDC). This is one of the 
techniques we evaluate here.  

6   Biologically Constrained Post-processing 

One important concern when applying classifier algorithms to the output of many binding 
site prediction algorithms is that the classifier decisions could result in biologically 
unfeasible results. The original algorithms only predict reasonable, contiguous sets of base 
pairs as constituting complete binding sites. However when combined in our meta-
classifier each base pair is predicted independently of the neighbouring base pairs, and it is 
therefore possible to get lots of short predicted binding sites of length one or two base 
pairs. 

In this and a previous study, it was observed that many of the predictions made by 
the classifiers were highly fragmented and too small to correspond to biological binding 
sites. It was not clear whether these fragmented predictions were merely artifacts or 
whether they were accurate but overly conservative. Therefore, predictions with a length 
smaller than a threshold value were removed and the effect on the performance 
measures observed. It was found that removal of the fragmented predictions had a 
considerable positive effect on the performance measures, most notably for Precision 
and that an optimal value for the threshold is 6 bp. Interestingly, this value corresponds 
roughly to the lower limit of biologically observed binding site lengths which are 
typically in the range 5-30 bp in length.  

7   Results 

Before presenting the main results we should point out that predicting binding sites 
accurately is extremely difficult. The performance of the best individual original 
algorithm (Fuzznuc) is:   

 



106 M. Robinson et al. 

 Predicted Negatives Predicted Positives 
Actual Negatives TN= 83% FP = 10% 
Actual Positives FN = 4% TP = 3% 

 
Here we can see over three times as many false positives as true positives. This 

makes the predictions almost useless to a biologist as most of the suggested binding 
sites will need expensive experimental validation and most will not be useful. Therefore 
the key aim of our combined classifier is to significantly reduce the number of false 
positives given by the original algorithms. 

7.1   Results Using Sampling 

As described above the imbalanced nature of the data must be addressed. First the data 
is divided into a training set and test set, in the ratio 2 to 1. This gives a training set of 
32,615 84-ary vectors and a test set of 16,739 vectors.  

In the results here the majority class in the training set is reduced, by random 
sampling, from 30,038 vectors to 9,222 and the minority class was increased from 2,577 
vectors to 4,611 vectors using the SMOTE algorithm. Therefore the ratio of the majority 
class to the minority class is reduced from approximately 12 : 1 to 2 : 1. Other ratios 
were tried but this appears to give good results. The test set was not altered at all. 

As described earlier an SVM with Gaussian kernel was used as the trainable 
classifier, and to find good settings for the two free parameters of the model, C and γ 
standard 5-fold cross validation was used. After good values for the parameters were 
found (C = 1000, γ = 0.001), the test set was presented and the results are as follows: 

 Recall Precision F-Score FP-Rate 
Best Original Algorithm 0.400 0.222 0.285 0.106 
Combined Classifier - Sampling 0.305 0.371 0.334 0.044 

The first notable feature of this result is that the combined classifier has produced a 
weaker Recall than the best original algorithm. This is because it is giving fewer 
positive predictions, but it has a much higher precision. Of particular significance is that 
the FP-Rate is relatively low at 0.04, so that only 4% of the actual non-binding sites are 
predicted incorrectly. However this is still too large a figure to make the classifier useful 
to biologists. So we turn to our second Combined Classifier using SDC. 

7.2   Results Using SDC 

First the minority class was over-sampled using SMOTE. The size of the minority class 
was tripled to 7731 vectors so that the ratio of majority to the minority class was now 
about 4 : 1. Once again 5-fold cross validation was used to find appropriate values for 
the three free parameters of the SVM with different costs, namely C +, C−  - and γ. The 
best values found were: C += 680, C− = 1320 and γ = 0.0001. 

 
 Recall Precision F-Score FP-RATE 
Best Original Algorithm 0.400 0.222 0.285 0.106 
Combined Classifier - Sampling 0.305 0.371 0.334 0.044 
SDC 0.283 0.375 0.324 0.036 



 Identifying Binding Sites in Sequential Genomic Data 107 

This method has produced a good classifier, but it is not much better than the 
classifier using a straightforward SVM and sampling. However the FP-Rate has been 
further reduced to 0.036. 

7.3   Results After Post-processing 

Finally we investigate how the results can be further improved by removing those 
predictions of base-pairs being part of a binding site that are not biologically plausible. 
As described earlier we find that removing predictions that are not part of a contiguous 
predicted binding site of at least six nucleotides gives an optimal result. So here we take 
the predictions of the SDC algorithm and remove all those that do not meet this 
criterion. 

 
 Recall Precision F-Score FP-Rate 
Best Original Algorithm 0.400 0.222 0.285 0.106 
Combined Classifier - Sampling 0.305 0.371 0.334 0.044 
SDC 0.283 0.375 0.324 0.036 
SDC + Post-Processing 0.264 0.517 0.350 0.021 

 
This produces our best result by some way. The Precision of the prediction has been 

increased to 0.517 and the FP-Rate is now down to just 2%. 
To see how this has come about Figure 2 shows a fragment of the genome with  

the original algorithmic predictions, the SVM predictions, the result of post-processing 
the SVM predictions and the actual annotation. It can be seen that for this fragment the 
removal of the implausible predictions eliminates almost all the false positive 
predictions. 

 

Fig. 2. A fragment of the genome with the 12 original predictions, the actual annotations in 
black. The last row shows the predictions of the SVM and above it the effect of removing 
unrealistically short predictions. 

8   Discussion 

The identification of regions in a sequence of DNA that are regulatory binding sites is a 
very difficult problem. Individually the original prediction algorithms are inaccurate and 
consequently produce many false positive predictions. Our results show that by 
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combining the predictions of the original algorithms we can make a significant 
improvement from their individual results. This suggests that the predictions that they 
produce are complementary, perhaps giving information about different parts of the 
genome. The only problem of our approach is that the combined predictor can indicate 
implausibly short binding sites. However we have shown that by simply rejecting these 
binding sites, using a length threshold, gives a very low rate of false positive 
predictions. This is exactly the result that we wanted: false positives are very 
undesirable in this particular domain. 

On the technical issue of dealing with the highly imbalanced data we found that both 
sampling of the two classes and using the SDC algorithm gave similar results, with both 
methods dealing well with our data. 
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Abstract. DNA Microarray technology allows us to monitor the ex-
pression level of thousands of genes simultaneously. This technique has
become a relevant tool to identify different types of cancer.

Several machine learning techniques such as the Support Vector Ma-
chines (SVM) have been proposed to this aim. However, common SVM
algorithms are based on Euclidean distances which do not reflect accu-
rately the proximities among the sample profiles. The SVM has been
extended to work with non-Euclidean dissimilarities. However, no di-
ssimilarity can be considered superior to the others because each one
reflects different features of the data.

In this paper, we propose to combine several Support Vector Machines
that are based on different dissimilarities to improve the performance of
classifiers based on a single measure. The experimental results suggest
that our method reduces the misclassification errors of classifiers based
on a single dissimilarity and a widely used combination strategy such as
Bagging.

1 Introduction

DNA Microarray technology allows us to monitor the expression levels of thou-
sands of genes simultaneously across a collection of related samples. This tech-
nology has been applied particularly to the prediction of different types of cancer
with encouraging results [11].

A large variety of machine learning techniques have been proposed to this aim
such as Support Vector Machines (SVM) [9] or k Nearest Neighbors [8]. How-
ever the algorithms considered in the literature rely frequently on the use of the
Euclidean distance that fails often to reflect accurately the proximities among
the sample profiles [7,15,17]. This increases the false negative errors (cancerous
samples misclassified) although they are prohibitively expensive in our appli-
cation. The SVM can be extended to work with non-euclidean dissimilarities
[20]. In spite of this, no dissimilarity can be considered superior to the others
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because each one reflects just different features of the data and so a different set
of patterns is misclassified.

In this paper, we try to reduce particularly the false negative errors by com-
bining classifiers based on different dissimilarities. Several authors have pointed
out that combining non-optimal classifiers can help to reduce particularly the
variance of the predictor [16,21]. In order to achieve this goal, different versions
of the classifier are usually built by sampling the patterns or the features [4].
Nevertheless, in our application, this kind of resampling techniques reduce the
size of the training set. This may increase the bias of individual classifiers and
the error of the combination [21]. To overcome this problem, the diversity among
classifiers is induced in this paper by considering dissimilarities that reflect dif-
ferent features of the data. To this aim, the dissimilarities are first embedded into
an Euclidean space where a SVM is adjusted for each measure. Next, the classi-
fiers are aggregated using a voting strategy [16]. The method proposed has been
applied to the prediction of different types of cancer using the gene expression
levels with remarkable results.

This paper is organized as follows. Section 2 introduces the dissimilarities
considered to build the ensemble of classifiers. Section 3 presents the method to
combine classifiers based on dissimilarities. Section 4 illustrates the performance
of the algorithm in the challenging problem of gene expression data analysis.
Finally, section 5 gets conclusions and outlines future research trends.

2 The Problem of Distances for Gene Expression Data
Analysis

An important step in the design of a classifier is the choice of a proper dissimi-
larity that reflects the proximities among the objects. However, the choice of a
good dissimilarity is not an easy task. Each measure reflects different features of
the data and the classifiers induced by the dissimilarities misclassify frequently
different patterns. Therefore no dissimilarity can be considered optimal.

In this section, we comment shortly the main differences among several dissim-
ilarities proposed to evaluate the proximity between celular samples considering
the gene expression levels. For a deeper description and definitions see [7,15,10].

The Euclidean distance evaluates if the gene expression levels differ signifi-
cantly across different samples. When the experimental conditions change from
one sample to another the cosine dissimilarity is an interesting alternative. This
measure will become small when the ratio between the gene expression levels is
similar for the two samples considered. It differs significantly from the Euclidean
distance when the data is not normalized.

The correlation measure evaluates if the expression levels of genes change
similarly in both samples. Correlation based measures tend to group together
samples whose expression levels are linearly related. The correlation differs sig-
nificantly from the cosine if the means of the sample profiles are not zero. This
measure is sensitive to outliers. The Spearman rank dissimilarity is less sensi-
tive to outliers because it computes a correlation between the ranks of the gene
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expression levels. An alternative measure that helps to overcome the problem
of outliers is the Kendall-τ index. The Kendall’s τ is related to the Mutual In-
formation probabilistic measure [10]. Finally, the Kullback-Leibler divergence
evaluates the distance between the probability distribution of the gene expres-
sion levels for the samples. The Kullback-Leibler divergence is asymmetric and
should be symmetrized using the following equation: δ

(s)
ij = (δij + δji)/2.

Due to the large number of genes, the sample profiles are codified in high di-
mensional and noisy spaces. In this case, the dissimilarities mentioned above are
affected by the ‘curse of dimensionality’ [1,18]. Hence, most of the dissimilarities
become almost constant and the differences among dissimilarities are lost [14].
To avoid this problem, it is recommended to reduce aggressively the number of
features before computing the dissimilarities.

3 Combining Classifiers Based on Dissimilarities

In this section, we explain how the SVM can be extended to work directly
from a dissimilarity measure. Next, the ensemble of classifiers based on multiple
dissimilarities is presented. Finally we comment briefly the related work.

The SVM is a powerful machine learning technique that is able to deal with
high dimensional and noisy data [22]. In spite of this, the original SVM algorithm
is not able to work directly from a dissimilarity matrix. To overcome this pro-
blem, we follow the approach of [20]. First, the dissimilarities are embedded into
an Euclidean space such that the inter-pattern distances reflect approximately
the original dissimilarity matrix. Next, the test points are embedded via a linear
algebra operation and finally the SVM is trained and evaluated. We comment
briefly the mathematical details.

Let D ∈ R
n×n be the dissimilarity matrix made up of the object proximities

for the training set. A configuration in a low dimensional Euclidean space can
be found via a metric multidimensional scaling algorithm (MDS) [5] such that
the original dissimilarities are approximately preserved. Let X = [x1 . . . xn]T ∈
R

n×p be the matrix of the object coordinates for the training patterns. Define
B = XXT as the matrix of inner products which is related to the dissimilarity
matrix via the following equation:

B = −1
2
JD(2)J , (1)

where J = I− 1
n11T ∈ R

n×n is the centering matrix, I is the identity matrix and
D(2) = (δ2

ij) is the matrix of the square dissimilarities for the training patterns.
If B is positive semi-definite, the object coordinates in the low dimensional
Euclidean space R

k can be found through a singular value decomposition [5,12]:

Xk = VkΛ
1/2
k , (2)

where Vk ∈ R
n×k is an orthogonal matrix with columns the first k eigen-vectors

of XXT and Λk = diag(λ1 . . . λk) ∈ R
k×k is a diagonal matrix with λi the i-th
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eigenvalue. Several dissimilarities introduced in section 2 generate inner product
matrices B non semi-definite positive. Fortunately, the negative values are small
in our application and therefore can be neglected [5] without losing relevant
information about the data.

Once the training patterns have been embedded into a low dimensional Eu-
clidean space, the test pattern can be added to this space via a linear projection
[20]. Next we comment briefly the derivation.

Let Xk ∈ R
n×k be the object configuration for the training patterns in R

k

and Xn = [x1 . . . xs]T ∈ R
s×k the matrix of the object coordinates sought for

the test patterns. Let D
(2)
n ∈ R

s×n be the matrix of the square dissimilarities
between the s test patterns and the n training patterns that have been already
projected. The matrix Bn ∈ R

s×n of inner products among the test and training
patterns can be found as:

Bn = −1
2
(D(2)

n J − UD(2)J) , (3)

where J ∈ R
n×n is the centering matrix and U = 1

n1T 1 ∈ R
s×n. The derivation

of equation (3) is detailed in [20]. Since the matrix of inner products verifies

Bn = XnXT
k (4)

then, Xn can be found as the least mean-square error solution to (4), that is:

Xn = BnXk(XT
k Xk)−1 , (5)

Given that XT
k Xk = Λk and considering that Xk = VkΛ

1/2
k the coordinates for

the test points can be obtained as:

Xn = BnVkΛ
−1/2
k , (6)

which can be easily evaluated through simple linear algebraic operations.
Next we introduce the method proposed to combine classifiers based on dif-

ferent dissimilarities.
Our method is based on the evidence that different dissimilarities reflect differ-

ent features of the dataset (see section 2). Therefore, classifiers based on different
measures will not misclassify the same patterns. Figure 1 shows for instance that
bold patterns are assigned to the wrong class by only one classifier but using a
voting strategy the patterns will be assigned to the right class.

Hence, our combination algorithm proceeds as follows: First, a set of dissim-
ilarities are computed. Each dissimilarity is embedded into an Euclidean space
using equation (2). Next, we train a SVM for each dissimilarity computed. Thus,
the misclassification errors will change from one classifier to another. So the com-
bination of classifiers by a voting strategy will help to reduce the misclassification
errors. Finally, the test points are embedded in the Euclidean space induced by
the training patterns using equation (6).

A related technique to combine classifiers is the Bagging [4,2]. This method
generates a diversity of classifiers that are trained using several bootstrap sam-
ples. Next, the classifiers are aggregated using a voting strategy. Nevertheless
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Fig. 1. Aggregation of classifiers using a voting strategy. Bold patterns are misclassified
by a single hyperplane but not by the combination.

there are three important differences between Bagging and the method proposed
in this section.

First, our method generates the diversity of classifiers by considering different
dissimilarities and thus using the whole sample. Bagging trains each classifier
using around 63% of the training set. In our application the size of the training
set is very small and neglecting part of the patterns may increase the bias of
each classifier. It has been suggested in the literature that Bagging doesn’t help
to reduce the bias [21] and so, the aggregation of classifiers will hardly reduce
the misclassification error.

A second advantage of our method is that it is able to work directly with a
dissimilarity matrix.

Finally, the combination of several dissimilarities avoids the problem of choos-
ing a particular dissimilarity for the application we are dealing with. This is a
difficult and time consuming task.

Notice that the algorithm proposed earlier can be easily applied to other
classifiers such as the k-nearest neighbor algorithm that are based on distances.
In this case, our method can be applied in a straightforward way because the
dissimilarities should not be embedded in an Euclidean space.

4 Experimental Results

In this section, the ensemble of classifiers proposed is applied to the identification
of cancerous tissues using Microarray gene expression data.

Two benchmark gene expression datasets have been considered. The first one
consisted of 72 bone marrow samples (47 ALL and 25 AML) obtained from acute
leukemia patients at the time of diagnosis [12]. The RNA from marrow mononu-
clear cells was hybridized to high-density oligonucleotide microarrays produced
by Affymetrix and containing 6817 genes. The second dataset consisted of 49
samples from breast tumors [23], 25 classified as positive to estrogen receptors
(ER+) and 24 negative to estrogen receptors (ER-). Those positive to estro-
gen receptors have a better clinical outcome and require a different treatment.
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The RNA of breast cancer cells were hybridized to high-density oligonucleotide
microarrays produced by Affymetrix and containing 7129 genes.

Due to the large number of genes, samples are codified in a high dimensional
and noisy space. Therefore, the dissimilarities are affected by the ’curse of di-
mensionality’ and the correlation among them becomes large [18]. To avoid this
problem and to increase the diversity among dissimilarities we have reduced ag-
gressively the number of genes using the standard F-statistic [10]. The dissimilar-
ities have been computed without normalizing the variables because as we have
mentioned in section 2 this operation may increase the correlation among them.

The algorithm chosen to train the Support Vector Machines is C-SVM. The C
regularization parameter has been set up by ten fold-crossvalidation [19,3]. We
have considered linear kernels in all the experiments because the small size of the
training set in our application favors the overfitting of the data. Consequently
error rates are smaller for linear kernels than for non linear ones.

Regarding to the ensemble of classifiers, an important issue is the dimension-
ality in which the dissimilarities are embedded. To this aim, a metric Multidi-
mensional Scaling algorithm is first run. The number of eigenvectors considered
is determined by the curve of eigenvalues.
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Fig. 2. Eigenvalues for the metric MDS with the χ2 distance

Figure 2 shows the eigenvalues for the breast cancer data and the χ2 dissimi-
larity. The first eleven eigenvalues account for 85% of the variance. Therefore,
they preserve the main structure of the data.

The classifiers have been evaluated from two different points of view: on the
one hand we have computed the misclassification errors. But in our application,
false negative and false positives errors have unequal relevance. For instance, in
breast cancer, false negative errors corresponds to tumors positive to estrogen re-
ceptors that have been classified as negative to estrogen receptors. This will lead
a wrong treatment with very dangerous consequences to the patient. Therefore,
false negative errors are much more important than false positive errors.
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Table 1. Experimental results for the ensemble of SVM classifiers. Classifiers based
solely on a single dissimilarity and Bagging have been taken as reference.

% Error % False negative

Method Breast Leukemia Breast Leukemia

Euclidean 10.2% 6.9% 4% 6.94%
Cosine 14.2% 1.38% 4% 1.38%

Correlation 14.2% 2.7% 6.1% 2.7%
χ2 12.2% 1.38% 4% 1.38%

Manhattan 12.2% 5.5% 4% 4.16%
Spearman 16.3% 8.3% 6.1% 5.5%

Kendall-Tau 18.3% 8.3% 6.1% 5.5%
Kullback-Leibler 16.3% 30.5% 12.2% 19.4%

Bagging 6.1% 1.38% 2% 1.28%

Random genes 4.2% 4.16% 2.04% 4.16%
Combination 8.1% 1.38% 2% 1.38%

The estimation of errors for a small sample size is not an easy task. In this
paper, we have applied ten-fold cross-validation which gives good experimental
results for this kind of problems [19].

The combination strategy proposed in this paper has been also applied to the
k-nearest neighbor classifier. An important parameter in this algorithm is the
number of neighbors which has been estimated by cross-validation.

Table 1 shows the experimental results for the ensemble of classifiers using
the SVM. The method proposed has been compared with Bagging introduced in
section 3 and a variant of Bagging that generates the classifiers by sampling the
genes. Finally, the classifiers based on a single dissimilarity have been taken as
a reference.

From the analysis of table 1, the following conclusions can be drawn:

– The error for the Euclidean distance depends on the dataset considered,
breast cancer or leukemia. For instance, the misclassification error and false
negative error are larger for Leukemia. On the other hand, the combination of
dissimilarities improves significantly the Euclidean distance which is usually
considered by most of SVM algorithms.

– The algorithm based on the combination of dissimilarities improves the best
single dissimilarity which is χ2. Notice that for breast cancer false negative
errors are significantly reduced.

– The combination of dissimilarities performs similarly to Bagging sampling
the patterns. However,we remark that our method is able to work directly
from the dissimilarity matrix.

Table 2 shows the experimental results for the ensemble of k-NNs. The primary
conclusions are the following:

– The combination of dissimilarities improves the best classifier based on a
single dissimilarity and particularly for Leukemia data.
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– The Euclidean distance performs very poorly and it is significantly improved
by the combination of dissimilarities.

– The combination of dissimilarities outperforms clearly the Bagging
algorithm.

– Bagging errors are larger for k-nn classifiers than for SVM classifiers. This
can be justified because SVM is more robust when a subset of patterns is
neglected due to bootstrap sampling. The combination of dissimilarities does
not suffer from this drawback.

Table 2. Experimental results for the ensemble of k-NN classifiers. Classifiers based
solely on a single dissimilarity and Bagging have been taken as reference.

% Error % False negative

Method Breast Leukemia Breast Leukemia

Euclidean 14.2 % 6.94% 6.1% 4.1%
Cosine 16.3 % 2.77% 8.1% 2.77%

Correlation 14.2 % 4.16% 8.1 % 4.16%
χ2 10.2% 2.77% 2.0% 2.77 %

Manhattan 8.1 % 2.7% 2.0% 2.7%
Spearman 10.2 % 2.77 % 4.0 % 2.77%

Kendall-tau 8.1 % 2.77 % 2.0 % 2.77 %
Kullback 51 % 76 % 46.9 % 11.1 %

Bagging 14.2 % 6.9 % 6.1 % 6.9 %
Combination 8.1 % 1.38 % 2.0 % 1.38 %

5 Conclusions and Future Research Trends

In this paper, we have proposed an ensemble of classifiers based on a diversity
of dissimilarities. Our approach aims to reduce the misclassification error of
classifiers based solely on a single distance working directly from a dissimilarity
matrix. The algorithm has been applied to the classification of cancerous tissues
using gene expression data.

The experimental results suggest that the method proposed improves both,
misclassification errors and false negative errors of classifiers based on a single
dissimilarity. We also report that for dissimilarity based classifiers such as k-NN
our method improves significantly other combination strategies such as Bagging.

As future research trends, we will try to increase the diversity of classifiers by
random sampling the patterns for each dissimilarity.
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Abstract. This paper presents a locally recurrent globally feedforward fuzzy 
neural network, with internal feedback, that performs the task of separation of 
lung sounds, obtained from patients with pulmonary pathology. The filter is a 
novel generalized Takagi-Sugeno-Kang fuzzy model, where the consequent 
parts of the fuzzy rules are Block-Diagonal Recurrent Neural Networks. Exten-
sive experimental results, regarding the lung sound category of squawks, are 
given, and a performance comparison with a series of other fuzzy and neural fil-
ters is conducted, underlining the separation capabilities of the proposed filter. 

1   Introduction 

Pathological discontinuous adventitious sounds (DAS) are strongly related to pulmo-
nary dysfunction. Their clinical use for the interpretation of respiratory malfunction 
depends on their efficient and objective separation from vesicular sounds (VS). In or-
der to achieve this kind of separation, the non-stationarity of DAS must be taken into 
account. A number of nonlinear processing methods have been used in the past, with 
the wavelet transform-based stationary-non-stationary (WTST-NST) filter [1] provid-
ing the most accurate separation results. However, this method could not be easily 
implemented in real-time analysis of lung sounds. 

During the last years computational intelligence models, such as neural and fuzzy-
neural networks have been proposed, providing encouraging results. In particular, The 
Orthogonal Least Squares-based Fuzzy Filter has been suggested in [2] for real-time 
separation of lung sounds. A recurrent neural filter has been reported in [3], based on 
the Block-Diagonal Recurrent Neural Network (BDRNN) [4], which is a simplified 
form of the fully recurrent network, with no interlinks among neurons in the hidden 
layer. As shown in [3], due to its internal dynamics, the BDRNN filter is capable of 
performing efficient real-time separation of lung sounds. 

It is common knowledge that the fuzzy neural networks combine the benefits of 
fuzzy systems and those of neural networks. In particular, fuzzy inference provides an 
efficient way of handling imprecision and uncertainty while neural learning permits de-
termining the model parameters. Stemming from this fact and the modeling capabilities 
of the BDRNN mentioned above, in this work a recurrent fuzzy neural network is pro-
posed, for real-time separation of DAS from VS. The novelty of the proposed model 
lies in the consequent parts of the fuzzy rules, which are small block-diagonal recurrent 
neural networks, thus introducing dynamics to the overall network. 

2007 
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Extensive experimental results are given and a comparative analysis with previous 
works is conducted, highlighting the efficiency of the proposed filter. 

2   The Dynamic Block-Diagonal Fuzzy Neural Network 

The suggested dynamic block-diagonal fuzzy neural network (DBD-FNN) comprises 
r Takagi-Sugeno-Kang rules, [5], of the following form: 

( )( ) ( )     ( ) ( ) , 1, ...,l
l lIF k is THEN g k BDRNN k l r= =u uA , (1) 

where ( )lA  is the fuzzy region in the premise part and the sub-model BDRNNl is a 
block-diagonal recurrent neural network that implements the consequent part of the l-
th rule. For the sake of simplicity, a multiple–input – single–output model is used. 
Based on the structural characteristics of the TSK model, it can be divided into three 
major parts: the premise, the consequent and the defuzzification part. 

At each time instant k , the premise part is fed with the process variables 

1( ), ..., ( )mu k u k , which are used for defining the fuzzy operating regions. The firing 

strengths of the rules are calculated by the following static function: 

2

2
1

( ( ) ( ))1
( ) exp[ ]

2 ( ( ))

m
j lj

l
ljj

u k m k
k

k
μ

σ=

−
= − ⋅∏ ,   1,...,l r= , (2) 

where { , 1,..., }l ljm j m= =m  and { , 1,..., }l lj j mσ= =σ , 1,...,l r= , are the premise 

part parameters.  
The consequent parts of the model are dynamic, including the r sub-models of the 

rules. Each sub-model BDRNNl is a block-diagonal recurrent neural network, which is a 
two-layer network, with the output layer being static and the hidden layer being dynamic. 
The hidden layer consists of pairs of neurons (blocks); there are feedback connections be-
tween the neurons of each pair, introducing dynamics to the network. Therefore, the 
overall model is a locally recurrent globally feedforward fuzzy neural network [6]. 

The operation of the BDRNN with m inputs, r outputs and N neurons at the hidden 
layer is described by the following set of state equations: 
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where 
  (i) af  and bf  are the neuron activation functions of the hidden and the output 

layer, respectively. In the following, the activation functions are both chosen to 
be the sigmoid function. 

 (ii) ( )( ) ( ) [ ( )]ll
ik x k=x  is a N-element vector, comprising the outputs of the hidden 

layer of the l-th fuzzy rule. In particular, ( ) ( )l
ix k  is the output of the i-th hidden 

neuron at time k. 

(iii) ( )l
ijB b⎡ ⎤= ⎣ ⎦  and ljC c⎡ ⎤= ⎣ ⎦  are r N m× ×  and r N×  input and output weight ma-

trices, respectively. 
(iv) ( ) ( )

1, 2,,l l
i iw w  are the rules’ feedback weights, that form the  block diagonal feedback 

matrices, ( )lW . The scaled orthogonal form is employed in this work, [4], where 
the feedback matrices are described by the following formula: 
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1, 2,( )
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2, 1,

l l
i il
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i i

w w
W

w w

⎡ ⎤
⎢ ⎥=
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 1, 2,..., 2
Ni = . (6) 

The output of the model at time k, y(k), is determined using the weighted average 
defuzzification method: 
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Fig. 1. Configuration of the consequent part of the fuzzy rules 
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The configuration of the proposed BDRNN consequent part is presented in Fig. 1, 
where, for the sake of simplicity, a single–input – single–output BDRNN with two 
blocks of neurons is shown. 

The DBD-FNN is trained by use of the Dynamic Resilient Backpropagation algo-
rithm, which was developed in [7] and constitutes a powerful first order training algo-
rithm for batchwise learning, [8]. Only minor modifications are made, such that the 
method takes into consideration the special features of the DBD-FNN, requiring cal-
culation of the error gradients for the feedback weights using the notion of ordered 
derivatives, [9]. Since the scope of the paper is to highlight the model’s operation 
rather than the selected training algorithm, a detailed overview of RPROP can be 
found in [7]. 

3   The DBD-FNN Filter 

The DBD-FNN estimates both the non-stationary (DAS) and the stationary (VS) parts 
of the input signal. The network operates in parallel mode and is fed with the input 
signal ( )u k , which is the normalized zero-mean recorded lung sound. As a result, the 

outputs of the filter are estimations of the DAS (yNST) and the VS (yST). The configura-
tion of the proposed filter is shown in Fig. 2. 

)(kNSTy

)(kSTy

 

Fig. 2. Configuration of the DBD-FNN filter 

The same pre-classified lung sound signals used in [1, 2, 3], i.e. ten cases, are used 
as model generation sets. The lung sounds are divided to three categories [1]: the 
coarse crackles (CC), the fine crackles (FC) and the squawks (SQ). The case of 
squawks is examined in the present work. The sounds have been drawn from an 
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international sound database, [10]. The data set has been obtained by digitizing sec-
tions of 15 sec of the signals from the lung sound database by a 12-Bit Analog-to-
Digital (A/D) converter at a sampling rate of 2.5 kHz, divided into successive records 
of 1024 or 2048 samples each, with zero mean value and normalized. Then, all these 
records have been processed by the WTST-NST filter in order to obtain an accurate 
estimation of their stationary and non-stationary parts. Therefore, the non-stationary 
and stationary outputs of the WTST-NST filter are considered to be the desired ones. 

Several DBD-FNNs with different structural characteristics are examined. Addi-
tionally, various combinations of the learning parameters are tested. For each case, 
100 trials are conducted with random initial weight values and the results are aver-
aged. Selection of the model and the parameter combination is based on the criteria of 
(a) effective separation of DAS from VS and (b) a moderate complexity of the result-
ing model. The selected structural characteristics are given in Table 1. Training lasts 
for 1000 epochs and the selected learning parameters are given in Table 2.  

Table 1. Characteristics of the DBD-FNN structure 

Number of rules 4 
Number of blocks 2 

Coefficient of the sigmoid function, a 2 
Overlapping coefficient between initial membership functions, [0,1] 0.4 

Table 2. RPROP learning parameters 

Premise part Consequent part 

n+ n- minΔ  0Δ  n+ n- minΔ  0Δ  

1.05 0.95 1E-4 0.02 1.2 0.9 1E-4 0.1 

4   Experimental Results and Comparative Analysis 

In this section, the results obtained using the DBD-FNN to the case of squawks are 
presented. The processed records were selected so that the main structural morphol-
ogy of the DAS would be clearly encountered. The efficiency of the filter is tested us-
ing for evaluation the same cases of squawks that were used in [1, 2, 3]. 

The results obtained using the DBD-FNN filter are presented in Fig. 3 and Fig. 4, 
where “noisy” recorded vesicular sounds and separated DAS are depicted in parts (a) 
and (b), respectively. The position of waves identified visually (by a physician) as 
squawks were marked with arrowheads, in order to be compared with non-stationary 
signals separated automatically by the filter. Part (c) hosts the stationary filter’s output 
that corresponds to the vesicular sound. In this way, the performance of the proposed 
filter in separating the non-stationary parts of breath sounds was verified, according to 
the evaluation procedure for the WTST-NST, OLS-FF and BDRNN models. 

A burst of short squawks, which are included in a time section from a patient with 
allergic alveolitis (C5-2048 samples, 0.8192 sec) is displayed in Fig. 3(a). Despite the 
large concentration of squawks in this time section, their characteristics are clearly 
identified in the non-stationary output, as shown in Fig. 3(b). The pure vesicular  
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Fig. 3. (a) A time section of 0.8192 sec of squawks recorded from a patient with allergic alveo-
litis (case C5), considered as input. The arrowheads indicate waves, which have been visually 
identified as squawks. (b) The non-stationary output of the DBD-FNN filter. (c) The stationary 
output of the DBD-FNN filter. 
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sounds are accurately reconstructed in the stationary output, as depicted in Fig. 3(c). 
The efficiency of the proposed filter is highlighted in Fig. 4 as well. A time section of 
10 msec, corresponding to a squawk, is presented. It is clear that the model has effec-
tively detected the existence and the shape of the squawk, reproducing its morphology 
and location without any distortion. 

The evaluation of the performance of the DBD-FNN filter is based on qualitative 
and quantitative measures introduced in [1]: 

  (i) Auditory inspection of the DBD-FNN’s stationary output. The effect of the 
DBD-FNN on input breath sounds was tested in a qualitative manner by listen-
ing to its stationary outputs after digital-to-analog (D/A) conversion. 

 (ii) The rate of detectability: 100%E
R

R

N
D

N
= ⋅   

where EN  is the number of estimated DAS and RN  is the number of visually 

recognized DAS by a physician (considered as the true number of DAS in the 
input signal). 

(iii) The root mean squared error:  

[ ] 2

1

1
( ) ( )

fk

d
f k

RMSE y k y k
k =

= −∑ , where ( )y k  is the DBD-FNN output of the 

k-th sample, ( )dy k  is the respective actual output and fk  is the number of sam-

ples. It should be noted that the values of the RMSE do not always represent 
good separation results since they do not focus on the particular signal details a 
physician is interested in. They are only intended to provide an indication of the 
quality of achieving the desired input-output relationships, given the evaluation 
by the first two criteria. 
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Fig. 4. A section of 10 msec that contains a squawk (solid line), together with the estimation of 
the non-stationary part by the DBD-FNN filter (dashed line) 
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The results of the quantitative evaluation are presented in Table 3 for each case. 
These results show that the proposed filter produces a perfect separation, since the av-
erage rate of detectability is 100%. Additionally, during the qualitative testing of the 
DBD-FNN filter, by listening to its stationary outputs after Digital-to-Analog (D/A) 
conversion, the sounds were practically not heard, confirming a high quality separa-
tion performance by the DBD-FNN filter. 

Table 3. Performance of the DBD-FNN 

Case N NE /NR DR (%) 
C1 1024 2/2 100 
C2 1024 4/4 100 
C3 1024 5/5 100 
C4 1024 6/6 100 
C5 2048 26/26 100 

N: Number of samples 
NR: Number of visually recognized DAS by a physician 
NE: Number of estimated DAS using the DBD-FNN filter 
DR: Rate of detectability of the DBD-FNN filter 

It should be mentioned that, since the proposed filter requires only four neurons in 
the hidden layer of the consequent parts of the fuzzy rules, the operations of the DBD-
FNN (multiplications, additions and look-up table operations) can be delivered within 
the sampling period (0.4 msec), ensuring its real-time operation and, consequently, 
improving the procedure of clinical screening of DAS. 

In order to conduct a comparative analysis with other filters reported in literature, 
the DBD-FNN filter’s performance is evaluated with regard to the WTST-NST [1], 
the OLS-FF [2] and the DBRNN [3]. All four models are applied to the same cases of 
patients and the results are shown in Table 4. 

Table 4. Comparative analysis 

 Average DR (%) 
Average RMSE, 

non-stationary part 
Average RMSE, 
Stationary part 

WTST-NST 100 Not defined Not defined 
OLS-FF 96.36 0.0711 0.0679 
BDRNN 100 0.0650 0.0633 

DBD-FNN 100 0.0588 0.0590 

As shown in Table 4, the DBD-FNN filter exhibits a similar separation perform-
ance compared to the WTST-NST and the BDRNN, with respect to the average rate 
of detectability. Moreover, it outperforms all its competing rivals and particularly the 
static fuzzy filter OLS-FF with respect to the RMSE, leading to the conclusion that 
the recurrent model tracks effectively the dynamics of the non-stationary signal. Com-
pared to the other recurrent model, the DBD-FNN attains a lower RMSE while requir-
ing 50% less training time than the BDRNN does, for the same model complexity (72 
weights). This result can be attributed to the enhanced modeling capabilities of the lo-
cal modeling approach that the TSK fuzzy systems adopt. Furthermore, as discussed 
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in the previous subsection, the proposed filter satisfies the real-time implementation 
issue, a fact that constitutes a clear advantage over the WTST-NST model since it im-
proves the procedure of clinical screening of DAS. 

5   Conclusion 

A new recurrent fuzzy filter has been implemented for real-time separation of lung 
sounds. The filter model is based on the classic TSK fuzzy model, with the conse-
quent parts of the fuzzy rules consist of small block-diagonal recurrent neural net-
works. The scheme has been evaluated on pre-classified DAS, belonging to the sound 
category of squawks, selected from an international lung sound database. From the 
experiments and the comparative analysis with other separation schemes, it is con-
cluded that the DBD-FNN filter performs very efficiently in separating the DAS from 
VS despite the differences in their structural character, and is capable of performing 
real-time separation. Hence, the proposed filter can be used as an objective method 
for real-time DAS analysis. 
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Abstract. In order to understand the general principles along which
sensory processing is organized, several recent studies optimized partic-
ular coding objectives on natural inputs for different modalities. The
homogeneity of neocortex indicates that a sensitive objective should be
able to explain response properties of different sensory modalities. The
temporal stability objective was successfully applied to somatosensory
and visual processing. We investigate if this objective can also be ap-
plied to auditory processing and serves as a general optimization objec-
tive for sensory processing. In case of audition, this translates to a set
of non-linear complex filters optimized for temporal stability on natural
sounds. We show that following this approach we can develop filters that
are localized in frequency and time and extract the frequency content of
the sound wave. A subset of these filters respond invariant to the phase
of the sound. A comparison of the tuning of these filters to the tuning
of cat auditory nerves shows a close match. This suggests that temporal
stability can be seen as a general objective describing somatosensory,
visual and auditory processing.

1 Introduction

The human neocortex is to a great extent homogeneous throughout all its ar-
eas [1, 2]. This suggests that it should be possible to describe its structure and
dynamics with general concepts and models. This line of thinking appears most
prominent in experimental and theoretical work that proposes a “canonical mi-
crocircuit” as a basic computational unit [3]. Such a general view does imply
that any relevant computational neuronal model should explain response prop-
erties of neurons of different areas of the neocortex. Thus, one would expect that

J. Marques de Sá et al. (Eds.): ICANN 2007, Part II, LNCS 4669, pp. 129–138, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



130 A. Duff, R. Wyss, and P.F.M.J. Verschure

also in sensory processing, the same model can be applied to replicate response
properties of different modalities.

It has long been assumed, that sensory systems adapt to the statistical prop-
erties of their input leading to the general approach of explaining receptive field
properties of sensory systems by optimizing a particular coding objective for nat-
ural stimuli [4]. In a series of theoretical studies, several general coding principles
have been exploited for different sensory modalities. In visual processing, learn-
ing sparse codes from natural images leads to simple-cell like receptive fields as
found in primary visual cortex [5]. An extension of this approach to a multi-layer
network enabled to learn contour coding in natural images [6]. Similarly, optimiz-
ing for temporal stability can replicate properties of V1 simple cells [7], but also
invariant representations similar to V1 complex cells [8, 9, 10, 11, 12], color se-
lective cells [13] and viewpoint invariant object representations [14, 15]. Recently
it has been shown that the optimization of a multi layered network for temporal
stability combined with local memory can account for a complete visual hierar-
chy, including place fields, by processing a continuous natural input stream gen-
erated by a mobile robot [16]. In a different approach, a hierarchical model was
optimized based on a MAX-like operation for object recognition [17]. Another ob-
jective function, predictability, was proposed to yield self-emergent symbols in an
optimization process [18]. In auditory processing, it was shown that optimizing
a set of filters for efficiency can explain the formation of adequate auditory fil-
ters [19, 20, 21]. Further, optimizing a spectrographic representation of speech for
sparseness leads to similar spectro-temporal receptive fields (STRF) as observed
in primary auditory cortex [22]. Temporal stability optimization is not restricted
to a visual input stream but was also successfully applied to preprocess data for
somatosensory discrimination of texture [23]. This diversity of approaches to ex-
plain sensory processing contradicts several theoretical and anatomical studies
suggesting that the same computational strategy is likely to be involved in pro-
cessing information from different sensory modalities [1, 2, 24, 25, 26, 27].

In this study we investigate whether temporal stability may be an appropri-
ate objective for the auditory domain and serve as a general objective to repli-
cate neural responses in somatosensory, visual and auditory sensory processing.
Auditory processing begins when the cochlea transforms sound energy into elec-
trical signals and passes them to the auditory nerves. Ignoring the nonlinearities
and amplification features of the cochlea and the primary auditory system, the
response properties of auditory nerves can be described by a set of filters, with dif-
ferent frequency tunings, forming a spectro-temporal representation of the sound
[28]. It is not clear how this representation is tuned to the statistics of the sound
environment. In order to get a filter set adapted to the input statistics we op-
timize a set of complex filters to show a maximally stable response across time
for natural sounds. Following this approach we do not describe the details of how
cochlea and auditory nerve realize the spectro-temporal separation but reveal the
general principle around which sensory processing is organized. While different
types of filters emerge, we find that the tuning of the filters is in accordance with
experimental data from cat physiological data. This suggests that the response
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properties of auditory nerve fibers can be explained in terms of temporal stabil-
ity optimization. Thus the somatosensory, visual and auditory sensory processing
can be explained within the same framework of temporal stability.

2 Methods

2.1 Input

The natural sounds used to learn the stable representations consist of differ-
ent words in 6 distinct languages, spoken by three male and three female native
speakers. The sound samples are re-sampled to 22050 Hz from the language illus-
trations accompanying the handbook of the International Phonetic Association
(IPA) [29]. In addition to the raw sound wave we investigate band-passed sound
waves. We consider four different band-pass filters with characteristic frequency
bands of 1 Hz - 324 Hz, 324 Hz - 1050 Hz, 1050 Hz - 3402 Hz and 3402 Hz -
11025 Hz. According to the logarithmic organization of the cochlea we increased
the bandwidth of the different filters logarithmically.

2.2 Filters

We optimized a set of complex filters with an analysis window covering 5.8 ms
of the raw sound wave which corresponds to 128 data points. At each iteration
of the optimization the sound wave is shifted through this window by the time
interval τ . Thus, by changing τ we can change the overlap of subsequent analysis
windows.

The activity (Ai) of the filter i is given by the absolute value of the scalar
product between the input I and the complex filter function hi ∈ C

128. Real
and imaginary values can change independently and thus each filter is defined
by 256 parameters.

Ai = abs(hi · I) (1)

The absolute value function implies that the filters are not linear. Mathematically
they are equivalent to the energy model proposed by Adelson and Bergen [30]
and applied in different studies [9, 16, 23].

2.3 Optimization

In the present study we optimized a goal function which contains two terms such
that the total objective Ψ is given by:

Ψ = (1 − γ)Ψstab + γΨdecor (2)

where γ is used to balance between the relative contribution of the two objectives.
The first part is the temporal stability objective Ψstab given by:

Ψstab = −
∑

i

〈Ȧ2
i 〉t

vart(Ai)
(3)

Ai is the activity of the filter and the sum is over all filters i. Ȧ denotes the
discrete temporal differentiation given by:



132 A. Duff, R. Wyss, and P.F.M.J. Verschure

Ȧi = Ai(t) − Ai(t − τ) (4)

where τ is the time interval by witch the analysis window is shifted each iteration.
The floating average at time t, 〈 . 〉t is calculated iteratively with a time
constant ζ = 500 ms and defined by:

〈Ai〉t = (1 − 1
ζ
)〈Ai〉t−1 +

1
ζ
Ai(t) (5)

The temporal derivative in equation 3 is divided by the variance in order to avoid
the trivial solution where all the parameters of the filter are zero. The variance
is computed using:

vart(Ai) = 〈A2
i 〉t − 〈Ai〉2t (6)

As the filters should have different receptive fields, collectively representing the
statistics of the input, each of them must encode different information. There-
fore, the second term, i.e the decorrelation objective Ψdecor (7), is introduced to
augment the statistical independence of the filters.

Ψdecor = −
∑

j �=i

(ρij(Ai, Aj))2 (7)

ρij(Ai, Aj) =
〈AiAj〉t − 〈Ai〉t〈Aj〉t√

vart(Ai)vart(Aj)
(correlation) (8)

The filter functions hi change following an on-line learning algorithm along the
gradient in order to maximize the total objective function Ψ .

2.4 Time and Frequency Analysis

To characterize each of the filters we extracted the center frequency (CF), the
spectral bandwidth (BW), the quality factor (Q), the temporal extent (TE) and
the relative shift φ as key characteristics. The CF of the filter corresponds to
the maximum of the power spectrum of the filter function. This is the frequency
for which the filter is most sensitive. The BW is the width of the frequency
response measured at 10 dB down from the peak at the CF. Q corresponds to
the sharpness of the filter and is defined by the CF divided by the BW. The
subscript in Q10dB indicates the level at which the BW is measured. The TE of
a filter is defined as the width that is used to cover 90 % of the filter power. φ is
given by the relative phase shift of the real and the imaginary part of the filter
and is calculated with respect to the CF of the filter.

3 Results

We optimize 64 filters on the raw sound wave using an update interval τ between
0.1 - 2.8 ms in steps of ≈ 0.1 ms for different simulations. Each filter is defined
by its 256 parameters hi ∈ C

128. Most of the resulting filters are sinusoidal,
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Fig. 1. Auditory filters after temporal stability optimization using an update interval
τ of 0.7 ms. The plot shows a representative subset of the total population of 64 filters.
The filters are plotted in the time domain where the solid line corresponds to the real
part of the filter and the dashed line to the imaginary part. On top of each waveform
the key characteristics of the filter are indicated: center frequency (CF), relative shift
(φ), temporal extent (TE), spectral bandwidth (BW) and quality factor (Q).

amplitude modulated, and cover the whole window width (Figure 1). The filters
have a single peak frequency tuning such that their CF is well defined.

The investigation of the distribution of the CFs, shows that it matches the
Power Spectrum Density (PSD) of the sound (Figure 2). The higher the PSD in
a frequency interval, the higher the number of filters with a CF in this interval.

A part of the nonlinear sinusoidal filters (≈ 60%) exhibit a relative shift of
≈ π/2 between their real and imaginary components that conforms to a filter se-
lective for a particular frequency while being invariant to the phase of the sound
wave. Other filters have no relative shift and therefore do depend on the phase.

As pointed out above, the distribution of the CFs is correlated with the PSD
such that we only obtained filters within the lower part of the frequency spec-
trum. To enable the system to form filters with CFs in other frequency ranges
we band-passed the signal of the speech ensemble before optimizing. For each
band-passed signal we optimized 16 filters. The filter set that emerged covers a
frequency range of 120 - 5500 Hz. Frequencies higher than 5500 Hz are not cov-
ered as the main energy of the band-passed signal with the highest pass range,
lies between 3400 Hz and 5500 Hz. Preliminary experiments showed that higher
CFs can be obtained by applying higher band-pass (data not shown).

To get an impression of the distribution and coverage of the filter sets in
time and frequency, we considered the extent of the filters on the time-frequency
plane. (Figure 3 A). The filter set possesses both, temporally localized and non-
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Fig. 2. Distribution of the CFs (bars) and the PSD of the signal (line). The bars
indicate the relative density of filters for the corresponding frequency range. The PSD
is superimposed where the energy density is given in an arbitrary scale.

Fig. 3. Characteristics of the filter sets for the band-passed signals. A Tiling the time
frequency plane. The extent of each filter is represented by an ellipse. The height of the
ellipse corresponds to the frequency bandwidth and the width to the temporal extent of
the filter. The histogram at the bottom indicates the distribution of the temporal extent
for each filter set. B Q10dB of the optimized filters compared to the Q10dB measured
from cat auditory nerve fibers. For comparison the regression line for the optimized
filters and the physiological data are superimposed. Notice that the regression for the
physiological data only includes the data points with a frequency lower than 5500 Hz.
The physiological data is replotted from [28].

localized filters. Corresponding to the time frequency uncertainty relation, filters
with narrower temporal extent (TE) have a broader frequency extent (BW).
Further, one can observe that the TE decreases for higher frequencies.

In order to validate the emerged filters against physiological data we com-
pare the tuning of the filters to cat auditory nerve fibers [28]. The sharpness
(Q) of the optimized filters is consistent with the sharpness measured for cat
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auditory nerve fibers (Figure 3 B). Linear regression on the physiological data
in a range of 1− 5500 Hz i.e. the range covered by the filters that emerged from
temporal stability optimization, yields a stiffness of 0.744 [0.675, 0.831] and an
offset of −4.542 [−5.176, −3.908]. For the optimized filter set linear regression
yields a stiffness of 0.736 [0.703, 0.769] and an offset of −4.259 [−4.487, −4.031].
The numbers in brackets correspond to the 95% confidence interval. Thus, both
the stiffness and the offset of the two curves are very close. The deviation for the
stiffness is 1% and for the offset 6%. The confidence interval for the optimized
filters lie within the confidence intervals of the physiological data. This suggests
that some of the response properties of the auditory nerve fibers can be well
explained in terms of temporal stability optimization.

4 Discussion

In this study we investigated if temporal stability is a general objective under-
lying sensory processing and can be applied in the auditory domain. We have
shown that temporal stability optimization in the auditory domain leads to fil-
ters that extract the frequency content of speech. Due to a relative shift of π/2
between the real and imaginary parts of the complex filters, some filters have
an invariant response to the phase of the sound wave. Further we found that
the distribution of the CFs is related to the PSD such that frequency bands
with high energy have a high filter density. Our approach rendered filters which
show a quantitative match to the filter properties of the cat auditory nerve. This
suggests that the physiological properties of this part of the auditory pathway
can be explained in terms of temporal stability optimization.

The design of filters involves an inevitable trade-off between time resolution
and frequency resolution [31]. To get precise information about the frequency
content one has to integrate over a characteristic time length of the sound signal,
leading to a decrease in temporal precision. In other words, it is not possible to
design a filter that captures both the frequency and the timing of a sound with
arbitrary accuracy. However, in order to be able to process natural sounds it is
often important to have information about both frequency and timing. Which
spectro-temporal representation is optimal depends on a number of factors such
as the importance of the information available, the biological or computational
constraints and the statistics of the sound. A common mis-characterization of
the peripheral auditory system is that it performs a short time Fourier transform
(STFT) or a kind of wavelet decomposition. For the STFT, the bandwidth of
the signals is approximately constant whereas for a wavelet representation the
sharpness of the filters remains constant for all frequencies. Neither of the two
properties are observed experimentally [28]. Instead, similar to the filters found
in our approach, the sharpness of the auditory nerve fibers follows a sub-linear
power law (Figure 3 B). Therefore, an optimal set of filters for the analysis of
speech must exhibit both, Fourier and wavelet characteristics.
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This study is complementary to the work of Lewicki and Smith [19, 20, 21]
who optimized a set of real-valued linear filters, for sparseness on different sound
ensembles including speech. While all the filter responses resulting from Lewicki’s
approach must vary with the phase of the incoming signal due to linearity, we
have found that a part of the nonlinear complex filters are phase invariant. Sim-
ilarly, some of the auditory nerve fibers at the cochlea do code the phase of
the signal, which is important to determine sound location in the early auditory
pathway. At higher levels of processing, this phase information is lost, suggesting
that phase invariance constitutes a first step towards sound classification [32]. A
further difference to the work of Lewicki can be found in the distribution of the
CF of the filters. Optimizing for sparseness leads to a distribution of CFs covering
the whole frequency range up to the Nyquist frequency. Optimizing for tempo-
ral stability, however, results in a distribution which is correlated to the PSD
and therefore confined to reagions with high energy. The question that arises is
to what extent the features that carry the main energy also carry the relevant
information. For speech, the slowly varying features are the vowels whereas the
consonants vary much faster and have higher frequencies. Therefore, temporal
stability optimization tends to extract the information that is contained in the
vowels but mostly ignores the consonants whereas sparseness mainly extracts
features with higher frequencies. However, for word discrimination both vow-
els and consonants are important. We have shown that we can account for the
whole range of frequencies by band-passing the signal before optimizing for tem-
poral stability. Given the acoustic properties of the cochlea, such band-passing is
likely to happen already at a mechanical level at the basilar membrane [32]. The
subsequent levels of auditory information processing would therefore already be
supplied with an appropriately band-pass filtered signal.

In order to validate our results against experimental data, we compared the
learned filters with cat physiological data. Primary auditory cortex (A1) neurons
are characterized by Spectro-Temporal Receptive Fields (STRF) [33, 34, 35].
As our filters do not include a temporal component their activity is only depen-
dent on the spectral content of the sound and thus a direct comparison is not
possible. We could however compare the characteristics of the optimized filters
with the characteristics of the cat auditory nerve fibers. For this comparison it
is not clear to what extent human speech is an adequate auditory stimulus for
cats or whether animal vocalization would be more appropriate. Speech contains
a mixture of various auditory features which are present in different classes of
natural sounds [19]. Thus, given that any animal is exposed to a mixture of envi-
ronmental sounds and vocalization, speech constitutes a good compromise. We
have found, that the sharpness of the filters for the band-passed speech ensem-
ble matched the sharpness measured for cat auditory nerve fibers. Hence some
of the response properties of auditory nerve fibers can be explained in terms of
optimizing a set of complex filters for temporal stability. Therefore, temporal
stability can be considered a general objective underlying sensory processing.
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Abstract. In this paper we compare thirteen different methods to ob-
tain multi-class probability estimates in view of two medical case stud-
ies. The basic classification method used to implement all methods are
least squares support vector machine (LS-SVM) classifiers. Results in-
dicate that multi-class kernel logistic regression performs very well, to-
gether with a method based on ensembles of nested dichotomies. Also, a
Bayesian LS-SVM method imposing sparseness performed very well for
methods that combine binary probabilities into multi-class probabilities.

1 Introduction

This paper focuses on two issues: multi-class classification and probabilistic
outputs. Multi-class classification is less straightforward than binary classifica-
tion, in particular for margin-based classifiers such as support vector machines
(SVMs). Methods for multi-class tasks are based on the combination of binary
classifiers or on ’all-at-once’ classification. Binary classifiers are typically con-
structed by contrasting all pairs of classes (1-vs-1) or by contrasting each class
with all other classes combined (1-vs-All), or by other techniques such as error-
correcting output coding [1].

When using binary classifiers, results are frequently combined using a voting
strategy. Often, however, one is interested in class probabilities. These are impor-
tant because they give information about the uncertainty of class membership
as opposed to black-and-white class predictions. In medical decision making,
uncertainty information can influence the optimal treatment of patients.

In this paper, we compare many methods to obtain multi-class probability
estimates using two medium sized medical data sets dealing with pregnancies of
unknown location and ovarian tumors. For both conditions, early probabilistic
predictions are needed for optimizing patient care and its financial implications.
All-at-once, 1-vs-1, and 1-vs-All methods were used. Section 2 describes these
methods. Section 3 describes the data and the analysis methodology. The results
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are reported and discussed in Section 4. We assume data sets with data (xn, tn),
n = 1, . . . , N , with xn ∈ IRq and tn is one of k target classes (k > 2).

2 Obtaining Multi-class Probability Estimates

2.1 Least Squares Support Vector Machine Classifiers

The basic classification method used in this paper is the least squares support
vector machine (LS-SVM) classifier [2],[3]. This variant of standard SVMs can
be obtained by solving a linear system rather than a quadratic programming
problem. This adjustment results, at least for standard LS-SVMs, in a lack of
sparseness. However, methods to impose sparseness exist. The LS-SVM model
formulation in the primal space is

min
w,b,e

(
1
2
wT w +

1
2
γ

N∑

n=1

e2
n

)
, such that yn

[
wT ϕ(xn) + b

]
= 1 − en , (1)

for the classifier y(x) = sign[wT ϕ(x) + b], where yn is a binary class indicator
(encoded as −1 vs +1), w is a parameter vector, b is a bias term, en is the error
variable, and γ is a hyperparameter to control the amount of regularization.
The mapping ϕ : IRq → IRr maps the input space into a high-dimensional
feature space. By taking the Lagrangian for this problem, the classifier can be
reformulated in the dual space as y(x) = sign

[ ∑N
n=1 αnynK(x, xn) + b

]
, where

α1, . . . , αN are the support values. In this way we implicitly work in the feature
space by applying a positive definite kernel K(x, z) = ϕ(x)T ϕ(z). We used
the radial basis function (RBF) kernel function throughout this paper. This
kernel has parameter σ denoting the kernel width. Due to the 2-norm in the cost
function, typically sparseness is lost.

2.2 Creating Probabilistic Output from Binary (LS-)SVMs

We implemented four techniques to get probabilistic outputs from the binary LS-
SVM classifiers: a Bayesian LS-SVM [4] with and without sparseness induction,
and a transformation of the LS-SVM output using either an improvement on
Platt’s method [5],[6] or isotonic regression [7]. For non-Bayesian LS-SVMs, the
hyperparameters γ and σ have to be tuned using the training data. To do this,
we applied the leave-one-out method suggested in [8] with the predicted residual
sum-of-squares (PRESS) statistic.

Bayesian LS-SVM (bay; bays). MacKay’s evidence procedure was used for
the Bayesian LS-SVM [4],[9]. Here, two hyperparameters μ and ζ are used for
the slightly modified cost function 0.5μwT w +0.5ζ

∑N
n=1 e2

n such that γ = ζ/μ.
At the first level of the Bayesian procedure, the prior distribution for w and b is
set to be multivariate normal. The prior is multiplied by the likelihood function
to obtain the posterior. Maximization of the posterior (which is approximated by
a normal distribution) yields the ’most probable’ values for w and b, wMP and



Comparing Methods for Multi-class Probabilities 141

bMP. Since the prior distribution corresponds to the regularization term wT w
and the likelihood to the sum of the squared errors, such maximization is similar
to solving an LS-SVM. On the second level, μMP and ζMP are obtained by using
a uniform prior on log(μ) and log(ζ). At the third level, σ is updated. We denote
this algorithm by bay. We also applied it with a sparseness procedure (bays).
Since for LS-SVMs αn = γen, support values can be negative for easy cases.
Sparseness can be imposed by repeatedly pruning training data with negative
support values until none are left [10].

LS-SVM + Platt (plt). Based on (LS-)SVM output, Platt [5] estimates the
class probability P (y = 1|x) = 1

/(
1 + exp(Af + B)

)
, where the LS-SVM latent

variable f =
∑N

n=1 αnynK(x, xn)+b. Training data f values were used to find A
and B using maximum likelihood estimation. These f values were derived using
5-fold cross-validation (5CV) on the training data in order to obtain less biased
values. We used an improved implementation of Platt’s method [6].

LS-SVM + Isotonic Regression (iso). Zadrozny and Elkan [7] propose
the use of isotonic regression to obtain probabilities based on (LS-)SVM output
(f). This nonparametric regression technique maps f to probabilities using a
monotonically increasing function. The isotonic regression method used is that
of pooled adjacent violators [11]. The training cases are ranked with respect
to f . The corresponding class membership (coded as 0 versus 1 instead of −1
versus +1) is taken as the initial estimated probability of belonging to class y =
+1. If these initial probabilities are entirely separated in the ranking (i.e., they
are isotonic), they are taken as the final estimates. If the initial estimates are
not isotonic for two cases, both probabilities are averaged to serve as the new
estimates. This is repeated until the estimated probabilities are isotonic. Training
data f values used for the isotonic regression were again based on 5CV. When
a new f value fell between two training data f values with different estimated
probabilities, we estimated the probability for the new output value by means
of simple linear interpolation.

2.3 Methods to Combine Binary Probabilities

Let us denote the probability of a case to belong to the ith of k classes as
pi = P (t = i|x) (estimated by p̂i), and the probability of a case to belong to the
ith class conditional on membership of class i or j as pij = P (t = i|t ∈ {i, j}, x),
(estimated by p̂ij). To combine binary probabilities into multi-class probabilities
we used ten methods that we will shortly describe.

Refregier and Vallet (rvall; rvone) [12]. Taking two classes i and j, one
starts from the relation p̂ij/p̂ji ≈ pi/pj to estimate the multi-class probabilities
using any k−1 binary classifiers. Because

∑k
i=1 pi = 1 the multi-class probabili-

ties are estimated by solving a linear system. We implemented this method once
by averaging the multi-class probabilities for all subsets of k−1 binary classifiers
(rvall) and once by randomly selecting one such subset (rvall).
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Ensembles of Nested Dichotomies (endall; endone) [13]. This method
obtains multi-class probabilities by advancing through a tree of binary classi-
fiers. At the top level, all classes are divided into two subgroups for which a
binary classifier is trained. Subgroups that consist of more than one class are
again divided into two groups until all classes form a subgroup of their own.
The tree then consists of k leaves. The multi-class probability pi is obtained by
multiplying all binary probabilities involving pi. We implemented this method
once by averaging the multi-class probabilities of all trees (endall) and once by
randomly selecting one tree (endone). Of course, the number of different trees
for k classes T (k) grows exponentially with k such that endall is impractical
for large classes: T (4) = 15 but T (5) = 105.

Price et al. (pkpd) [14]. This method uses the probability of a union of
events, and by stating that p̂ij ≈ pij = pi/(pi + pj), one ends up with pi ≈
1
/[ ∑k

j=1,i�=j(1/p̂ij) − (k − 2)
]
.

1-versus-All Normalization (1van). This method simply normalizes all ob-
tained 1-versus-All probabilities such that they sum to 1.

Pairwise Coupling (pc-ht; pc-wu1; pc-wu2). The pairwise coupling method
was introduced by Hastie and Tibshirani [15]. They estimate pi by maximizing
the negative weighted Kullback-Leibler distance � between pij and p̂ij . After
setting the derivative of � with respect to pi to zero, they aim to estimate the
multi-class probabilities such that

k∑

j=1,i�=j

nijpij =
k∑

j=1,i�=j

nij p̂ij with
k∑

i=1

pi = 1, pi > 0 . (2)

An iterative procedure is used for this. This method is called pc-ht.
Wu et al. [16] derived two other pairwise coupling methods, based on the

assumption that the multi-class data are balanced such that weighting is not
necessary. They suggest to solve

pi

k∑

j=1,i�=j

pi + pj

k − 1
p̂ij , ∀i, with

k∑

i=1

pi = 1, pi ≥ 0 , (3)

which can be done by a linear system. We call this method pc-wu1. These authors
also suggest a second approach

min
p1,...,pk

k∑

i=1

k∑

j=1,i�=j

(
p̂jipi − p̂ijpj

)2 with
k∑

i=1

pi = 1, pi ≥ 0 , (4)

which is again solved by a linear system. Note that the expression in (4) is similar
to the basis of Refregier and Vallet’s method [12]. We call this method pc-wu2.
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Huang et al. (gbt1va) [17]. These authors proposed methods based on the
generalized Bradley-Terry model [17]. The Bradley-Terry model estimates the
probability that one object is preferred over another (in sports this can be
the probability that one player beats another). In multi-class classification based
on binary classifiers, p̂ij can be seen as the probability that class i beats class
j. Hastie and Tibshirani’s pairwise coupling method [15] is formally similar to a
Bradley-Terry model, but note that the different p̂ij values are not independent.
In the generalized Bradley-Terry model the players (classes) are repeatedly di-
vided into two teams playing a series of games. The model is used to estimate the
players’ individual skill. We implemented the method where teams are created
using the 1-versus-All strategy.

2.4 Duan et al.’s Softmax Methods (sm1va; sm1v1)

Duan et al. [18] propose to apply softmax functions to the outcomes of 1-versus-
All or 1-versus-1 (LS-)SVMs to directly estimate multi-class probabilities. For
the 1-versus-All strategy, the multi-class probabilities are computed as

p̂i = exp(aifi + bi)

/(
k∑

j=1

exp(ajfj + bj)

)
, (5)

where fi is the LS-SVM output for the 1-versus-All classifier for class i, and ai

(i = 1, . . . , k) and bi (i = 1, . . . , k) are parameters to be tuned by minimizing a
negative log-likelihood function on the training data. For the 1-versus-1 strategy,
the probabilities are computed analogously using the LS-SVM outputs for all 1-
versus-1 classifiers [18]. Regularized versions were also suggested in [18] but it
did not perform better in their own evaluation. The training data’s 1-versus-All
or 1-versus-1 LS-SVM outputs were obtained by 5CV on the training data.

2.5 Multi-class Kernel Logistic Regression (mklr)

Finally, an all-at-once method was used, being a weighted LS-SVM based version
of multi-class kernel logistic regression [19],[20]. In standard multi-class logistic
regression, the kth of k classes is taken as the reference class and k − 1 binary
models are simultaneously fitted in which each class is contrasted with the ref-
erence. This leads to the multi-class probabilities

pi = exp
(
βT

i x
)
/(

1 +
k−1∑

j=1

exp
(
βT

j x
)
)

. (6)

The regularized model parameters are found by optimizing the penalized log-
likelihood function using iteratively regularized re-weighted least squares. This
can be changed into an iteratively re-weighted LS-SVM algorithm where prob-
abilities are computed as in (6) using ϕ(x) instead of x.The hyperparameters γ
and σ were tuned using 10CV.
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3 Experimental Setup

3.1 Data

Two real world medical datasets were used in this paper. The first data set con-
tains 508 women with a pregnancy of unknown location (PUL), collected at St
Georges Hospital in London (UK). PUL is said to occur if a woman has a positive
pregnancy test but no physical signs of a pregnancy are found either intra- or
extra-uterine. A PUL can turn out to be any of three outcomes (k = 3): a failing
PUL (283 cases, 56%), a normal intra-uterine pregnancy (IUP) (183, 36%), or
an ectopic pregnancy (42, 8%). The last class the most difficult one, because it
is small does not seem to be well separated from both other groups. The inputs
used to predict the outcome (q = 5) are the ratio of the hCG levels at presenta-
tion and 48 hours later, the logarithm of the average hCG level, the logarithm
of the average progesterone level, vaginal bleeding, and the mother’s age.

The second data set contains 754 patients with at least one ovarian tumor
(in case of bilateral tumors only the worst tumor is included), collected by the
International Ovarian Tumor Analysis (IOTA) study group in nine centers across
Europe [21]. The type of ovarian tumor is one of the following four (k = 4):
benign (563 cases, 75%), primary invasive (121, 16%), borderline (40, 5%), and
metastatic (30, 4%). Again, the classes are clearly unbalanced. This time, the
borderline class will probably be the most difficult one since it is small and
contains ’borderline malignant’ tumors. The inputs used to predict the outcome
(q = 9) are the woman’s age, the maximal diameter of the lesion and of the
largest solid component, and the presence of i) a personal history of ovarian
cancer, ii) blood flow within the papillary projections, iii) irregular internal cyst
walls, iv) ascites, v) an entirely solid tumor, vi) bilateral tumors.

3.2 Performance Evaluation

The performance of all methods was evaluated using stratified 5CV [22]. The
data were split up in 5 folds of equal size with equal target class distributions.
Each fold served once as test set to test the methods after they were applied to
the other four folds that served as the training set. This resulted in five test set
results for each method. This 5CV procedure was repeated 20 times [22] such
that we obtained 100 test set results. All inputs were standardized to zero mean
and unit variance separately in each of the 100 training sets. The inputs in the
accompanying test sets were transformed with the same formulas used for their
training set colleagues.

The test set results were summarized by the area under the receiver operat-
ing characteristic (ROC) curve (AUC) [23] and by the average entropy error (log
loss). The AUC indicates how well a classifier has separated two classes. Perfect
classification yields an AUC of 1 while an AUC of 0.5 reflects random classifi-
cation. Even though multi-class AUC measures exist, we preferred to consider a
separate AUC for each class. The average entropy is computed as the average of
each case’s -log(p̂i) for its true class. The higher the estimated class probability
of each case’s true class, the lower the average entropy. The AUC and entropy
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results of the 100 test set evaluations were summarized by their median and
interquartile range (IQR).

Due to the complex experimental setup, we adopted a heuristic strategy to
compare methods. Based on [24], we used average ranks (AR). When comparing
the ten methods to combine binary class probabilities, their performance was
ranked for each of the four classification algorithms and these ranks were av-
eraged. The opposite was done when comparing classification algorithms. This
method summarized all obtained results well.

4 Results and Discussion

Because the first dataset has three classes and the second has four, we have AUC
information on seven classes. To reduce the output, we averaged the k AUCs for
each dataset. Lack of space precludes showing the full AUC results. The results
for the PUL and IOTA data are shown in Table 1. Even though differences
between methods were often not huge, the best probability combination methods
were endall and pc-wu1. pc-wu2 and gbt1va also performed very well. gbt1va’s
AR of 5.0 on the IOTA dataset is caused by degraded performance for the two
small classes when applying gbt1va to bay. Otherwise, this method performed
excellent. The methods pkpd, endone, and rvone were outperformed.

Table 1. Average AUC for the different methods shown as the median over all 100
test set results after 20 stratified 5-fold CV runs (IQR between brackets)

PUL bays bay plt iso AR sm1va sm1v1 mklr
endall .966 (.015) .959 (.024) .961 (.020) .961 (.024) 1.5 .963 (.024) .960 (.025) .964 (.018)
gbt1va .966 (.016) .960 (.025) .960 (.023) .960 (.025) 2.1
pc-wu1 .964 (.015) .946 (.038) .960 (.023) .959 (.027) 4.6
pc-wu2 .964 (.015) .946 (.040) .960 (.024) .958 (.026) 5.1
pc-ht .964 (.014) .945 (.037) .959 (.024) .959 (.025) 5.9
1van .963 (.020) .952 (.032) .958 (.026) .958 (.030) 6.0
endone .962 (.019) .948 (.035) .960 (.027) .953 (.031) 6.3
rvall .966 (.013) .946 (.037) .954 (.031) .951 (.030) 6.5
pkpd .964 (.016) .945 (.053) .958 (.025) .956 (.028) 7.1
rvone .962 (.016) .929 (.048) .948 (.031) .942 (.037) 9.9
AR 1.0 3.9 2.3 2.9
IOTA bays bay plt iso AR sm1va sm1v1 mklr
endall .881 (.029) .859 (.037) .869 (.027) .868 (.029) 1.0 .862 (.032) .861 (.034) .883 (.027)
pc-wu1 .878 (.029) .856 (.024) .862 (.031) .858 (.031) 2.5
pc-wu2 .878 (.027) .853 (.026) .857 (.031) .854 (.032) 4.1
rvall .877 (.029) .857 (.026) .857 (.034) .851 (.032) 4.6
gbt1va .878 (.028) .761 (.067) .858 (.035) .855 (.032) 5.0
1van .875 (.029) .840 (.035) .859 (.039) .847 (.034) 5.8
pc-ht .865 (.039) .852 (.037) .850 (.048) .853 (.026) 6.5
pkpd .874 (.029) .847 (.030) .849 (.036) .845 (.033) 7.3
endone .873 (.032) .835 (.038) .837 (.055) .831 (.031) 8.8
rvone .858 (.046) .836 (.045) .798 (.107) .790 (.072) 9.5
AR 1.0 3.4 2.4 3.3

Differences in average AUC were reduced by the ’easier’ classes. Bigger differ-
ences arose for the difficult classes ectopic pregnancy (PUL), borderline (IOTA),
and metastatic (IOTA). Similar conclusions could be drawn when looking at



146 B. Van Calster et al.

these classes only: endall performed best, followed by pc-wu1, pc-wu2, and
gbt1va.

The entropy results are shown in Table 2. This leads to a similar observation:
endall, gbt1va, and pc-wu1 performed best among the probability combination
methods. pkpd, endone, rvone, and 1van performed worst.

With respect to Duan et al.’s softmax methods [18], we can see that their
performance did not differ substantially, yet sm1va always had the advantage
over sm1v1. Also, their performance was similar to that of the best probability
combination methods. When looking at AUC performance, however, these meth-
ods seemed to perform less than the probability combination methods applied
to bays.

Table 2. Entropy for the different methods shown as the median over all 100 test set
results after 20 stratified 5-fold CV runs (IQR between brackets)

PUL bays bay plt iso AR sm1va sm1v1 mklr
endall .298 (.104) .378 (.169) .286 (.056) .288 (.095) 2.0 .273 (.070) .288 (.071) .276 (.063)
gbt1va .307 (.115) .402 (.170) .287 (.062) .310 (.154) 3.5
pc-wu1 .289 (.098) .421 (.229) .293 (.056) .302 (.107) 3.9
pc-ht .291 (.092) .430 (.225) .292 (.058) .299 (.085) 3.9
pc-wu2 .293 (.100) .427 (.260) .292 (.054) .312 (.115) 4.6
rvall .288 (.097) .404 (.204) .302 (.065) .318 (.122) 4.8
endone .320 (.107) .469 (.295) .291 (.065) .356 (.187) 7.0
1van .310 (.118) .441 (.216) .298 (.062) .323 (.156) 7.3
pkpd .324 (.123) .508 (.337) .293 (.060) .377 (.206) 8.6
rvone .313 (.129) .561 (.419) .308 (.067) .412 (.224) 9.5
AR 1.8 4.0 1.3 2.9
IOTA bays bay plt iso AR sm1va sm1v1 mklr
endall .495 (.063) .653 (.099) .512 (.039) .497 (.048) 1.0 .504 (.052) .510 (.054) .492 (.055)
pc-wu2 .503 (.069) .847 (.159) .527 (.039) .510 (.053) 2.8
pc-wu1 .502 (.065) .834 (.149) .536 (.035) .512 (.047) 3.3
gbt1va .546 (.117) .877 (.239) .517 (.046) .542 (.110) 5.5
pc-ht .530 (.074) .873 (.134) .545 (.045) .518 (.042) 5.8
rvall .506 (.066) .874 (.144) .559 (.038) .529 (.054) 5.8
endone .526 (.101) 1.18 (.530) .543 (.061) .576 (.115) 6.8
pkpd .526 (.082) 1.20 (.217) .534 (.059) .603 (.176) 7.0
1van .563 (.146) 1.26 (.239) .531 (.044) .553 (.116) 7.3
rvone .568 (.127) 1.41 (.664) .612 (.182) .764 (.331) 10.0
AR 1.5 4.0 2.3 2.2

Interestingly, mklr had excellent performance throughout. It was similar to
endall applied to bays, the best approach involving a probability combination
method.

The AR results for the four algorithms bays, bay, plt, and iso reveal that a
Bayesian LS-SVM with sparseness was better than one without, that bays was
better than plt and iso, and that bay is worse than plt and iso. Differences
between plt and iso were typically in favor of plt. Differences in performance
between probability combination methods were often smaller when bays or plt
were used.

Overall, on the present data sets the best methods are endall and mklr.
While the latter is an all-at-once method, the former is an ensemble method for
which many binary models have to be fit (25 when k = 4). This makes mklr more
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attractive. When using 1-versus-1 classifiers as the basis for obtaining multi-class
probabilities, pc-wu1 (preferably using bays) or sm1v1 are good methods. When
1-versus-All classifiers are used, sm1va or gbt1va (preferably using bays) can be
used. Out of the four implemented binary classification algorithms, bays seems
a good choice to obtain probabilistic outputs. Using isotonic regression instead
of Platt’s method to obtain probabilities did not result in a clear benefit.
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Abstract. In this paper we consider the question of whether it is pos-
sible to classify n-back EEG data into different memory loads across
subjects. To capture relevant information from the EEG signal we use
three types of features: power spectrum, conditional entropy, and condi-
tional mutual information. In order to reduce irrelevant and misleading
features we use a feature selection method that maximizes mutual infor-
mation between features and classes and minimizes redundancy among
features. Using a selected group of features we show that all classifiers
can successfully generalize to the new subject for bands 1-40Hz and
1-60Hz. The classification rates are statistically significant and the best
classification rates, close to 90%, are obtained using conditional entropy
features.

1 Introduction

Discovering subject-independent regularities in EEG signals associated with dif-
ferent types of cognitive processing is a very challenging problem which has been
addressed in only few studies [1,2]. Among the obstacles to finding unique pat-
terns of brain activity across subjects are: varying head shapes and sizes across
subjects might result in different electrode positions, different subjects might
use different strategies to solve a specific mental task resulting in different brain
activations, and the cortical areas across subjects can be organized differently
producing different patterns of activities.

The main objective of this paper is to construct a system that can classify
n-back EEG signals into different memory loads across subjects. Our strategy in
addressing this problem is to use highly informative and discriminative features
in combination with machine learning algorithms. Specifically, in this work, we
use newly proposed entropy-based features [3] that can capture non-linear spa-
tial and temporal dependencies among electrodes. In order to reduce irrelevant
and misleading features and improve generalization properties of the classifier,
it often helps to reduce the number of features by selecting the most informative
and discriminative features. In recent years, numerous algorithms for feature
selection have been proposed [4,2], and mutual information has been advanced
as an important measure of feature relevance [5,6]. In this work we use a fea-
ture selection method that maximizes mutual information between features and
classes and minimizes redundancy among features [5,6]. We show that using a
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selected group of features our classifiers can easily generalize to new subjects
with classification rates close to 90%.

2 Data Acquisition and Feature Extraction

The data set consists of EEG samples from 6 subjects while they performed
an n-back memory task [3]. In this task, individuals were shown computerized
visual displays consisting of a single target (a white circle) presented in 1 of 12
possible positions, each of which is on 1 of 12 equidistant radii of an imaginary
circular array from the center of the monitor. For each trial, the subject decided
whether the current target (a position of the white circle) was in the same or
different spatial location as in the example presented n-times before.

Electrical activity (EEG) was recorded from 62 electrodes using 10-20 Inter-
national System. We use 90 trials per subject and the total length of each trial is
2.2 seconds. In order to obtain better feature estimates, in this work we classify
EEG data using 5 trials long segments. This means that the number of sampling
points per segment is around 5,625, the length of a segment is 11 seconds, and
the number of examples per subject is 18.

Feature Extraction. We use the following 3 types of features: power spectrum
(F1), conditional entropy (F2), and conditional mutual information (F3). The
power spectrum features measure the total power, Pi, for each channel i for a
given frequency band. The number of F1 features is 62 (one per electrode)

F1 = {Pi}62
i=1. (1)

In contrast to power spectrum features, the entropy-based features capture both
linear and non-linear dependences. Furthermore, the conditional entropy and
mutual information features also capture dynamical properties of the EEG sig-
nals [3]. In calculating F2 and F3 features we use the following equations

F2 = {Hi = H(Xt
i |Xt−1

i )}62
i=1, (2)

F3 = {Iij = I(Xt
i ; X

t
j |Xt−1

i , Xt−1
j )}62

i,j=1, i �= j, (3)

where Hi denotes the entropy of the ith electrode and Iij measures the condi-
tional entropy between the ith and jth electrodes. With symbol Xt

i we denote
the output of the ith electrode at time t, and with Xt−1

j we denote the output
of the jth electrode at time t − 1. The total number of F2 features is 62, and
the number of F3 features is 1,891. The entropy-based features, F2 and F3, are
calculated following the procedure described in [3].

3 Feature Selection

Recently, we have demonstrated [3] that n-back EEG data can be successfully
classified, using F1-F3 features, into different tasks with classification rates that
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exceed 90%. However, in that single-subject study the classifiers were tested on
the same subject on which they were trained. Using the same features as reported
in [3] the classification rates are close to chance if one tries to generalize from a
group of subjects (used for training) to a new subject (used for testing).

In order to improve generalization properties of a classifier, it often helps to
reduce the number of features by selecting the most informative and discrimi-
native ones. A standard criterion used for selecting features is to maximize the
statistical dependence between the features and the class distribution variable
C [5,6]. A convenient measure for quantifying this dependence is mutual infor-
mation, I(f1, ..., fm; C), where fi denotes the ith feature and C denotes a class
variable. The feature selection method that uses this measure is called Mutual
Information Feature Selection (MIFS). However, in order to calculate mutual
information (MI), one has to estimate multivariate densities p(f1, ..., fm) and
p(f1, ..., fm, C) which is very difficult when the number of samples is small. For
this reason, a number of approaches have been proposed so that the MI is cal-
culated incrementally, one feature at a time [5,6]. As a consequence of treating
each feature independently, it is possible that some of the selected features carry
similar information. To overcome this problem, an additional term that mini-
mizes the redundancy between features is added to the objective function. In
this work, we use one such approach, MIFS-U, that has been proposed in [5].

In the following, we briefly outline the procedure for selecting and ranking
the features. We denote with F the initial set of all the features and with S the
final set of selected features. Initially, S is empty while F has n features. To add
the first feature to the set S, compute I(C; fi) for ∀fi ∈ F and select the feature
fi that maximizes the I(C; fi); set F ← F \ {fi} and S ← {fi}. Then, using
a greedy selection approach, repeat the following until the desired number of
features is reached: a) for all pairs of features (fs, fi), compute I(fs; fi), where
fs ∈ S and fi ∈ F , and b) choose the feature fi ∈ F that maximizes the following
expression

I(C; fi|fs) ≈ I(C; fi) − β
∑

fs

I(C; fs)
H(fs)

I(fi; fs), (4)

where H(fs) is the entropy of the feature fs and β is the parameter that controls
the tradeoff between the class-feature dependence and redundancy among the
features (feature-feature dependence). If we set β = 0, then the algorithm ignores
the redundancy and selects the features only based on the amount of the MI
between classes and features. By increasing β the algorithm excludes redundant
features more efficiently. In our implementation we set β = 1 as suggested in [5].

The advantage of the greedy search algorithm is that it is very fast since it
always considers one feature at a time. Unfortunately, the order in which the
features are added to the set S does not represent an optimal ranking of the
features (as a function of features’ importance for classification). To improve
the ranking of the features from the set S, we construct random subsets, each
containing a few features from S, and then train a classifier using each sub-
set separately. The ranking of each feature is obtained by comparing the average
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performance of the feature for its inclusion and exclusion in the input feature
subset. Our procedure is similar to the Taguchi algorithm [5] but instead of
orthogonal arrays we choose random arrays.

Once the selected features are ranked according to their importance for clas-
sification, the next step is to choose m features from the top of the list as the
optimal feature set. A natural approach for selecting this number would be to
train a classifier using a different number of top features and then select as the
optimal number of features the one that gives the highest classification rate.
Unfortunately, the optimal number obtained from the training set does not have
to produce the highest rate on the testing set.

In this paper, we use two different methods for evaluating a selected feature
set. In one method, we use a cross validation approach to select an optimal
number of features and in the other method we evaluate the whole feature set
by estimating the maximal performance on a new subject. In both methods we
train a classifier and rank the features using exclusively the training subjects.

The Nested Cross Validation (NCV) Method. In this method, we partition
the data repeatedly into three sets: a training set, an optimizing set, and a final
test set. The data from the new subject are partitioned into 2 disjoint sets:
an optimizing set and a test set. The optimal number of features is chosen by
maximizing the classification rate of the optimizing set. The final test set is used
only to evaluate a classifier and therefore provides an unbiased estimate of the
accuracy.

The Maximal Accuracy (MA) Method. Assuming that the number of the
selected features is m, we construct m different classifiers, Ck, where the kth clas-
sifier uses top k features and k = 1, ..., m. The final performance is estimated by
recording the maximal accuracy for each fold (subject) and then averaged over
the folds. This procedure can provide biased estimates (as previously noticed
in [7]). The reason is that classification rates are usually different for different
classifiers with different numbers of features even if we use random data. Some
classification rates will be higher than others by chance alone. Therefore, the
classification rate of the best performance could overestimate the true perfor-
mance.

Both of the above methods have advantages and limitations. The advantage
of the NCV approach is that it provides an unbiased procedure for selecting
the number of features. However, in order to accurately estimate the number of
features and the performance, one should have a sufficient number of examples
in both the optimizing and the test sets. When the amount of data is limited,
as is the case in our situation, both estimates can be skewed.

The MA method, on the other hand, utilizes all the test data and estimates the
best possible performance regardless of the number of features used. However,
the estimate can be highly biased. Fortunately, the estimates do not necessarily
have to include bias or the bias can be very small as we will show in the next
section.
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4 Statistical Analysis of the MA Method

In this section we provide a theoretical analysis that can help us to under-
stand the reasons why the estimates obtained using the MA method can be
highly biased. We also provide a way to evaluate the statistical significance of
the classification accuracy obtained with the MA method. We are testing the
hypothesis that the expected value of the classification rate is not obtained by
chance against the null hypothesis that the expected value of classification rate is
obtained by chance. To do that, we need to establish a baseline, the probability
that the correct results can be obtained by chance. Using the baseline value and
the standard deviation, we then calculate the p-value in order to determine the
statistical significance of our classification rates.

Baseline Estimation from a Theoretical Analysis. Let us assume that we
want to classify n test samples from 2 classes, and that a classifier assigns the
label to a test sample by chance. Then the probability that a sample is classified
correctly is 1/2. If we use a random variable Yi to indicate the classification
outcome, i.e. Yi = 1 to denote the correct classification and Yi = 0 to denote the
incorrect classification, then the classification rate (the proportion of labels that
are correctly-assigned) of the samples from the classifier is X =

∑ n
i Yi

n . From the
law of large numbers, the classification rate asymptotically approaches normal
distribution N (1/2, 1

4n ). If we try m independent classifiers, each of which uses
a different number of features, the expectation of the maximal classification rate
of these m classifiers is the expectation of the maximal number out of m i.i.d.
samples {Xi}m

i=1 from N (1/2, 1
4n ). In order to calculate the expected value, we

have to know the cumulative probability function of the maximal classification
rate X∗ = max(X1, ..., Xm), which can be easily calculated as

F (x) = Pr(X∗ ≤ x)
= Pr(max(X1, ..., Xm) ≤ x)
= Pr(X1 ≤ x) · · · Pr(Xm ≤ x)

= Φm(
√

4n(x − 1/2)),

where Φ(·) denotes the cumulative function of the standard normal distribution.
From the cumulative function, in addition to the expectation value, one can also
calculate the standard deviation of X∗ and the p-value

E[X∗] =
∫

xF ′(x)dx, (5)

Std[X∗] = (
∫

(x − E[X∗])2F ′(x)dx)1/2, (6)

p = Φ(
−|r − E[X∗]|√

Var[X∗]
), (7)

where r is the classification rate that we obtain from our classifiers. To illus-
trate the relationship between the expectations (variances), and the number of



154 L. Wu and P. Neskovic

classifiers (m) and samples (n), in Table 1 we show the results of numerical
simulations using a few different values for m and n. One can see that the fewer
test samples and the more classifiers one has, the larger the possibility that we
get good results simply by chance. When there is only one classifier m = 1, the
expected classification rate is 0.5, which means that the bias is zero. On the
other hand, if one takes the maximum over 10 classifiers, m = 10, the likelihood
of obtaining high rates by chance cannot be ignored even if one has a large pool
of samples, e.g., n = 144.

Table 1. Expectation values and standard deviation for different values of m and n

E[X∗](Std[X∗]) n=18 n=36 n=72 n=144

m=1 .50 (.12) .50 (.08) .50 (.06) .50 (.04)
m=10 .68 (.07) .63 (.05) .59 (.03) .56 (.02)
m=20 .72 (.06) .66 (.04) .61 (.03) .58 (.02)

Baseline Estimation by Shuffling the Test Samples. So far, we have con-
sidered random data and independent classifiers that assign a label to a test
sample by chance. In our case, classifiers with different numbers of features are
not independent since we always choose the features from the top of the ranking
list and therefore classifiers share some common features. That means that we
cannot just use the estimates from Table 1 but have to estimate the baseline
(probability that correct results can be obtained by chance) for a given data set.
We should note that the dependence among classifiers actually reduces bias. In
the limit, if the classifiers are completely dependent on one another, one effec-
tively has only one classifier and the bias is zero - the baseline is at chance. In the
other limit, for an infinite number of independent classifiers, one can get 100%
accuracy simply by chance. To get a more realistic estimation of the baseline,
we shuffle the data by assigning a label to each sample with probability 1/2. We
then calculate the classification rates from our classifiers using the MC method
on shuffled data.

5 Results

The raw data is processed using the surface Laplacian [8] and filtered into 4
different bands: 1-20Hz, 1-40Hz, 1-60Hz, and 1-80Hz. Classification is done for
each band separately in order to evaluate the importance of different frequency
ranges on performance. Within each band, we then extract the power spectrum
(F1), conditional entropy (F2), and mutual information (F3) features and form
three feature sets. For each feature set we select a subset of features and then
perform classification using the NCV and the MA method.

Feature selection is done in two steps: filtering the initial set of extracted fea-
tures into a smaller set, and ranking the smaller set of features according to their
importance for classification. The filtering is done using a MIFS-U method [5]
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that maximizes mutual information between features and classes and minimizes
redundancy among features. We use 10 bins to discretize feature values when
calculating mutual information between features and classes as well as mutual
information between features. When filtering F1 and F2 features, we start with
62 original features and reduce their number to 20 potentially relevant features.
When filtering F3 features, we start with a much larger set of 1,891 features,
and end up with 30 features. To rank the features, we generate 30 random sets
for F1 and F2 features, and 40 random sets for F3. We then train a Naive Bayes
(NB) classifier with Gaussian likelihood on each random set of features and use
the procedure described in [5] to assign relevance to each feature.

We use three different architectures to classify test samples: nearest neighbor
(NN) classifier [9], Naive Bayes classifier and support vector machines
(SVM) [10]. The number of classes is two; the task is to associate a given EEG
segment with either the 0-back or the 3-bask task. We train each of the classifiers
using a leave one out procedure: to train a classifier, select and rank features
we use five subjects. The tests are done on the subject that is left out. The
number of training examples is 180 and the number of testing examples is 36
(18 examples from the 0-back task and 18 examples from the 3-back task).

To evaluate selected features, we use the NCV and the MA method. In addi-
tion, we estimate the baseline of the MA method when tested on shuffled data.
The results are illustrated in Figures 1- 3 when using power spectrum, condi-
tional entropy, and conditional mutual information features respectively.

The NCV Method. In this method, we partition the data from a new subject
(test samples) into two sets: the optimizing set and the test set. We use the
optimizing set only to determine the optimal number of features, k, from the set
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Fig. 1. The average classification rates across subjects and for different frequency bands
using power spectrum features. Classification rates using: (a) the Maximal Accuracy
(MA) method (top plots) and the baselines (bottom plots), (b) the Nested Cross Val-
idation (NCV) method.
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Fig. 2. The average classification rates across subjects and for different frequency bands
using conditional entropy features. Classification rates using: (a) the MA method (top
plots) and the baselines (bottom plots), (b) the NCV method.
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Fig. 3. The average classification rates across subjects and for different frequency bands
using conditional mutual information features. Classification rates using: (a) the MA
method (top plots) and the baselines (bottom plots), (2) the NCV method.

of already selected features. Note that all the classifiers (for all the architectures)
are trained using different numbers of features on training data only and by
selecting the number of features we also select one of the classifiers, for each
of the three architectures (NN, NB, and SVM). Then, from the test data we
extract the same k features and test the classifiers. In order to test the classifiers
on all available data from a new subject, we divide the test samples into 3 folds.
Each time, one fold of samples is taken as optimizing set and the other 2 folds
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as a test set. After trying all folds as optimizing sets, we calculate the average
classification rate as shown in Figures 1(b)- 3(b).

The MA Method. Instead of selecting one classifier (for each architecture) and
a specific number of features, in this method we train 10 different classifiers on
5 subjects and use all the classifiers on the test subject. Each classifier uses a
different number of features (the kth classifier uses top k features). We record the
accuracy of the best classifier (for each architecture) and then choose another
group of 5 training and 1 testing subjects. The average over 6 folds is illustrated
in Figures 1(a)- 3(a), top plots.

Estimating the Baseline. To estimate the baseline, we randomize the test samples
to form 100 pools of random data in such a way that each sample is assigned
a label by chance. We then apply the MA method to the randomized data
to obtain the baseline for each frequency range. The results are illustrated in
Figures 1(a)- 3(a), bottom plots. We should contrast these values to the baseline
that one can get by chance when using 10 independent classifiers where each
classifier assigns a label by chance. This baseline can be obtained from the Table
1 using m = 10 (since in MA method we use 1-10 top features), and n = 36
(since the number of test examples from each task is 18). For these two numbers,
the expectation value is E(X) = 0.63 which is higher compared to the baseline
of our classifiers. It is clear that the strong dependence among the classifiers
significantly reduces the possibility of getting high classification rates by chance.
A relatively small baseline also means that the estimates obtained from the MA
method are not very biased. Another support for this statement comes from the
fact that the estimates obtained from the (unbiased) NCV method are very close
to those obtained using the MA method. The classification rates of all classifiers
are statistically significant for bands 1-40Hz and 1-60Hz with p < 1e − 10.

6 Summary

In this paper we consider the question of whether it is possible to classify n-back
EEG data into different memory loads across subjects. Specifically, we consider
whether a classifier that is trained on a group of subjects can generalize to a new
subject and correctly classify an EEG segment into 0-back and 3-back tasks.

To capture relevant information from the EEG signal we use three types of
features: power spectrum, conditional entropy, and conditional mutual informa-
tion. In order to reduce irrelevant and misleading features we use a feature se-
lection method that maximizes mutual information between features and classes
and minimizes redundancy among features. We evaluate the selected features
using the NCV and the MA method with three different types of classifiers.
Using statistical analysis, we show that in situations where the number of clas-
sifiers is large and the number of testing samples is small, the MA can produce
biased estimates. However, we demonstrate that a strong dependence among
the classifiers can significantly alleviate this problem and result in less biased
estimates.
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From our tests we conclude that all classifiers can successfully generalize to
the new subject for bands 1-40Hz and 1-60Hz and that classification rates of
all classifiers are statistically significant. The best classification rates, close to
90%, are obtained using conditional entropy features. Furthermore, we show
that both the conditional mutual information and the conditional entropy fea-
tures significantly outperform the power spectrum features for bands 1-40Hz and
1-60Hz. In contrast to the results reported in [3], the performance sharply de-
creases for frequencies above 60Hz which is in accordance with physiological
findings.
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Abstract. As a causality criterion we propose the conditional relative entropy. 
The relationship with information theoretic functionals mutual information and 
entropy is established. The conditional relative entropy criterion is compared 
with 3 well-established techniques for causality detection: ‘Sims’, ‘Geweke-
Meese-Dent’ and ‘Granger’. It is shown that the conditional relative entropy, as 
opposed to these 3 criteria, is sensitive to0. non-linear causal relationships. All 
results are illustrated on real-world time series of human gait. 

Keywords: Conditional relative entropy, human gait, mutual information, 
surrogate testing, VARMA-GARCH. 

1   Introduction 

We address the problem whether one time series serves as an input, a driving system, to 
another time series, a driven system. The traditional techniques consist of modeling the 
time series by means of vector autoregressive models, such as in the ‘Sims’, ‘Geweke-
Meese-Dent’ and ‘Granger’ criteria [3]. In this article a more general approach is taken by 
means of the conditional relative entropy (CRE). We derive a theorem in order to establish 
the link between CRE and conditional mutual information (CMI). This link allows to 
compute the CRE by means of available mutual information and entropy estimators. 

A comparison between the CMI and the three mentioned criteria on real-case gait 
time series shows that it performs equally well in the linear regime and outperforms 
these techniques in the non-linear regime. 

The paper is structured as follows. In section 2, the criterion is derived; this allows 
to appreciate conditional mutual information as a formal approach. Secondly, in 
section 3, we explain how the criterion can be computed based on finite sample 
estimators of entropy or mutual information. Section 4 considers an application of the 
criterion on real-case human gait time series. Finally, we end with conclusions. 

2   The Conditional Relative Entropy Framework 

As a formal criterion to causality detection we put forward that the distribution of a 
current observation of one time series, given its past observations, is statistically 

2007 
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dependent on the previous observations of a second times series. This is a definition 
in accordance with Granger [4], except that here the full distribution on the current 
observation is considered, rather than the expected value. More formally, suppose we 
dispose of 2 time series: Y(t): Y(t), Y(t-1), …and X(t): X(t), X(t-1),… Suppose that 
we want to assess whether X(t) causally explains Y(t). For a particular observation of 
past samples of Y(t): y(t-1), …y(t-n1) and past samples of X(t): x(t-1), …x(t-n2) we 
need to assess whether the distribution of the most recent variable Y(t) of Y(t) is equal 
if we also observe the past of X(t): 

    1

1 2

( ( ) | ( 1),..., ( ))

( ( ) | ( 1),..., ( ), ( 1),..., ( ))

P Y t y t y t n

P Y t y t y t n x t x t n

− − =
− − − −

. (1) 

For ease of notation we abbreviate the past observation of Y(t) from t-n1 up to t-1 
by 

1

1t
t n
−
−y  and a past observation of X(t) from t-n2 up to t-1 by 

2

1t
t n
−
−x . Note that we use 

capitals to denote variables and bold style to denote series. An information theoretic 
approach to verify whether two distributions are equal is obtained by means of the 
Kullback-Leibler divergence: 

              

( )( )
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1

1 1 1
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1
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( ( ) | , ) || ( ) |

( ( ) | , )
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− −
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− − −
−

=
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∑

y x y

y x
y x

y

. (2) 

However, conditioning on a particular past observation is overly simple and we 
need to average (2) over the prior of observing 

2

1t
t n
−
−x  and 

1

1t
t n
−
−y  : 

1 2

1 1( , )t t
t n t np − −
− −y x : 
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According to [2], see page 24, this is the definition of the conditional relative 
entropy: 

               ( )( )1 2 1

1 1 1( ( ) | , ) || ( ) |t t t
t n t n t nKL P Y t P Y t− − −
− − −= Y X Y .  (4) 

Using the definition of conditional probability, (3) can be written similarly as: 
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From the information inequality theorem, see theorem 2.6.3 in [2], it is well known 
that the Kullback-Leibler divergence is always larger or equal to 0. The same holds 
for the conditional relative entropy, this is the second corollary of the information 
inequality in [2]: 
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          ( )( )1 2 1

1 1 1( ( ) | , ) || ( ) | 0t t t
t n t n t nKL P Y t P Y t− − −
− − − ≥Y X Y . (6) 

The expression in (6) will only be 0 if and only if for all y(t), 
1

1t
t n
−
−y and 

2

1t
t n
−
−x the 

equality in (1) holds. Hence, expression (6) allows to verify whether observation of 

2

1t
t n
−
−x changes knowledge about y(t). The problem of directly computing (6) is that the 

required distributions in (1) as well as the prior 
1 2

1 1( , )t t
t n t np − −
− −y x  are not known. On the 

other hand, estimators of the entropy and mutual information see e.g. [11], have 
gained a lot of attention in the literature. Therefore, if we are able to establish a 
relationship between conditional relative entropy and entropy or mutual information, 
the expression in (4) could be estimated from the mutual entropy or mutual 
information estimators. This relationship is established in following theorem. 

2.1   Relationship Conditional Relative Entropy and Mutual Information 

Theorem 1. The conditional relative entropy in (4) can be expressed as conditional 
mutual information:  

( )( )1 2 1 2 1

1 1 1 1 1( ( ) | , ) || ( ) | ( ( ); | )t t t t t
t n t n t n t n t nKL P Y t P Y t MI Y t− − − − −
− − − − −=Y X Y X Y .         (7) 

Proof. A sketch of the proof is based on the definition of conditional probabilities and 
mutual information. Starting from the definition in (5):  
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Multiplying both the numerator and the denominator within the logarithm with 
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− −y x and using the convention that 0ln(0) = 0, this yields: 

 1 2 1 2

1 2
1 1

1 1 21 2

1 1 1 1
1 1

1 1 1
( ), ,

( ( ) | , ) ( , )
( ( ), , ) ln

( ( ) | ) ( , )t t
t n t n

t t t t
t n t n t n t nt t

t n t n t t t
t n t n t ny t

p y t p
p y t

p y t P− −
− −

− − − −
− − − −− −

− − − − −
− − −

= ∑
y x

y x y x
y x

y y x
.  (9) 

Applying the definition of conditional probability, 
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Applying the  definition of  conditional  probability , 1 2
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 and the denominator (10) yields: 
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The expression in (11) is equal to the conditional mutual information:  

                               
2 1

1 1( ( ); | )t t
t n t nMI Y t − −
− −= X Y . (12) 

This completes the proof.                                                                                                

2.2   Techniques for Causality Detection  

‘Sims’, ‘Geweke-Meese-Dent’ and ‘Granger’ criteria for causality detection are well-
established criteria for causality detection, see reference [3]. 

In [10] and a reference therein, concepts are defined which use (coarse-grained) 
conditional mutual information in a heuristic manner. However, a formal derivation to 
justify conditional mutual information as the result of using the conditional relative 
entropy framework is lacking in [10].  

Recently, causality in variance has been used to detect higher-order causal 
dependencies between times series, see e.g. [5]. In section 4, we will use a similar 
criterion as theorem 1 in [5] in order to verify whether the time series contain causal 
dependencies beyond those that can be assessed by Granger causality. Depending on 
the conditions, this theorem allows to assess whether there is ‘causality in variance’ or 
a ‘causality linear in variance’. We explain the conditions for these causalities in more 
detail in section 4, after the VARMA-GARCH has been introduced as an appropriate 
model for gait time series. 

3   Computation of Conditional Relative Entropy 

An intuitive interpretation of theorem 1 is stated as follows: 
2

1t
t n
−
−X does not causally 

explain Y(t), if it is conditionally independent of 
2

1t
t n
−
−X  given its past, i.e. 

1

1t
t n

−
−Y . Stated 

differently nothing can be learnt about Y(t) from 
2

1t
t n
−
−X  when 

1

1t
t n

−
−Y is known  or 

2

1t
t n
−
−X is not redundant regarding Y(t) conditioned on 

2

1t
t n

−
−Y .  

The mutual information from theorem 1 needs to be expressed in terms of 
unconditional mutual information, because mutual information and entropy estimators 
are most often provided unconditionally.  
The following result can easily be shown by applying the chain rule for information: 

2 1 1 2 1

1 1 1 1 1( ( ); | ) ( ; , ) ( ; )t t t t t
t n t n t t n t n t t nMI Y t MI Y MI Y− − − − −
− − − − −= −X Y Y X Y .  (13) 

It is also easily shown that this can be expressed in terms of the unconditional 
entropies: 
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This last formulation of the conditional mutual information in terms of unconditional 
entropies will be used for the experiments. 

The entropies are estimated by means of a recent k-nearest neighbor approach to 

entropy estimation, from [8]. The estimated entropy 
1 2

1 1ˆ ( , )t t
t n t nH − −
− −Y X  is computed as 

follows:  
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Y X

. (15) 

Where 
xdc en 

ydc are respectively the volumes of the dx- and dy-dimensional unit 

balls, dx and dy are respectively the dimensionality of 
2

1t
t n
−
−x and 

1

1t
t n
−
−y , i.e. n2 and n1 

respectively, and ε(i) is twice the distance from ( )
2 1

1 1,t t
t n t n
− −
− −x y to its k-nearest neighbor. 

Finally, ψ(.) is the digamma function. In the experiments we set ‘k’ equal to 8. We 
use the Euclidean distance here.  

4   Experiments 

The time series used in the experimental section of the paper are measured from the 
Tekscan FScan system. The time series are sampled at a sampling rate of 100 Hz. The 
forces exerted on the soles of the foot are measured from this system. An example of 
the global force/mass exerted on each foot is shown in figure 1.  
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Fig. 1. Trace of the total mass on the left foot and the right foot 
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This figure should be interpreted as follows: when the foot is lifted from the 
ground the total force exerted on a foot becomes equal to 0 during the period when 
there is no contact with the ground. When a foot strikes the ground, the force 
gradually builds up until a maximum is achieved. Also note that 2 maxima may be 
achieved. This is due to the landing of a foot followed by the pushing off a foot prior 
to a swing of the foot.  

In figure 2, the residual times series are shown after a 20th order VAR model has 
been fitted to the original gait time series. The original gait time series are shown as 
well, after the mean is removed and after scaling. This allows locating the residuals in 
the original time series. It is clear that the variance of the residuals is time dependent: 
the variance of the residual decreases when the corresponding foot does not touch the 
ground. Moreover, it can be observed that the variance of the residual in one time 
series is not only depending on the past variance of the same time series, but also on 
the past variance of the other time series. A high variance in 1 time series seems more 
likely when both the past variance of the same time series is high and the past 
variance of the other time series is low. 
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Fig. 2. The variance of the error changes with time 

4.1   A Model for Gait Time Series 

Gait characteristics, such as stride-to-stride variability, stride length, and gait speed 
have been studied before, see e.g. [6] for a review. The focus in gait literature so far 
has been on stride-to-stride fluctuations which exhibit fractal behavior. It has been 
shown that this fractal behavior changes with age and for certain pathologies [7]. 
Modeling of gait time series on a short time scale, taken here as approximately 30 s, 
has received so far little attention. Such models, however, may be important in the 
prediction of freezing of gait or falling [1].  

The initial observations made in section 4 motivate to model the time series by 
means of a VARMA-GARCH model [9]. The VARMA (Vector Autoregressive 
Moving Average) part is able to capture the time varying mean behavior (oscillating 
behavior). The GARCH (Generalized Autoregressive Conditional Heteroscedasticity) 
part of the model is able to model the time varying variance. A VAR-GARCH 
formulation of the model can be written as follows: 
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Here, Ai are the matrices that express the dependencies of the time varying mean on 
past observations, and Ux(t) and Uy(t) are error variables with time varying covariance 

matrix 1/ 2
| 1t t−Σ . The subscript of the covariance matrix denotes the covariance matrix at 

time t, based upon all past information available up to time t-1. The variables 
( )x tε and ( )y tε are i.i.d., i.e. independent and identically distributed, with zero mean 

and as covariance matrix I2, i.e. the identity matrix of size 2. The model in (17) for the 
covariance matrix is the VECH model of the GARCH formulation. In (17) VECH is 
used as an operator which takes a symmetric matrix as input and returns the lower 
triangular matrix as a column vector. The matrices C, Γj, and Gj express respectively 
the constant covariance matrix, dependency on past residuals and previous covariance 
matrices. In practice, q and r are taken equal to 1, due to the explosion in parameters 
in (17), e.g. for q = 1, r = 1, the total number of parameters is already equal to 21.  

4.2   Validation 

The gait time series can be used as ground-truth experimental time series, because 
forces exerted on the left foot will determine future forces on the right foot and the 
other way round. Hence, the left foot causally explains the right foot and the other 
way round.  

Validation in the Linear Regime. Here we test ‘Sims’, Geweke-Meese-Dent’ and 
‘Granger’ criteria and the CMI on the original time series. The linear interactions in the 
signal prevail, considering the small residuals that are left after fitting a VAR(20) 
model, where 20 refers to time lags 1 up to 20, as in figure 2. It can be expected that the 
3 mentioned techniques are able to capture the causalities within the original time series.  

In total 20 experimental time series are measured from 7 different patients 
suffering from Parkinson disease. In table I, we test the performance of all criteria, 
this both for causality from the left to the right foot and the other way round. All 
criteria correctly identify the causal dependencies in all 20 time series, except for 
Sims’ method which rejects causality for 1 patient from the right to the left foot. 

All methods were tested at the α = 0.05 significance level. For the traditional 
techniques the significance is computed from an F-test. However, for the conditional 
mutual information the distribution is not known in general. Hereto, we applied 
surrogate testing: blocks of n2 samples from X(t) are randomly permutated against 
Y(t). This technique removes the causal dependencies between X(t) and Y(t). The last 
expression in (14) is then computed under this null hypothesis of no causal 

∼
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dependencies. This process has been repeated 1000 times. Then computing (14) 
without performing permutations and comparing with the 950’th order statistic under 
the null-hypothesis allows to assess the statistical significance at the α = 0.05 level. 
Such a procedure is generally known as surrogate testing [12]. 

Table 1. Comparison between: ‘Sims’, ‘Geweke-Meese-Dent’, ‘Granger’ and ‘Conditional 
Mutual Information’ tests for causality detection 

 
Sims 

Geweke- 
Meese-

Dent 

 
Granger 

Conditional 
Mutual 

Information 

Left to 
right 

100 % 100 % 100 % 100 % 

Right to 
left 

95.0 % 100 % 100 % 100 % 

As can be seen from formula (14) n1 and n2 are parameters for the conditional 
mutual information criterion. We set n1 = 20 and n2 = 10. Other settings are tried as 
well, but this setting was not critical. In the case of the 3 other tests, similar 
parameters need to be set, these were taken similar as in the conditional mutual 
information criterion.  

Validation in the non-Linear Regime. The non-linear regime is obtained by first 
fitting a VAR(20) model to the original time series and considering the residual time 
series, as obtained in figure 2. On these residual time series we apply again the CMI 
criterion as in the linear regime and apply surrogate testing. 

On the other hand we fit the VECH model from (17) to the residuals. Then 
causality towards X(t) can be observed from the coefficients in Γ1. The coefficients 
γ12 and γ13 reveal information that propagates into X(t) and that originates partly from 
the other time series by means of  Ux(t-1)Uy(t-1) or fully by means of Uy(t-1) 
respectively. Causality towards Y(t) can be observed by the coefficients γ32 and γ31. 
These coefficients reveal the information that propagates into Y(t) and that originates 
partly from the other time series by means of  Ux(t-1)Uy(t-1) or fully by means of 
Ux(t-1) respectively. Hence, if at least one of the coefficients γ12 or γ13 is different 
from 0, there is a causal relationship from Y(t-1) towards X(t). On the other hand if at 
least one of the coefficients γ32 or γ31 is different from 0, there is a causal relationship 
from X(t-1) towards Y(t). Note that the causality can be bi-directional. The same 
holds for the coefficients in G1 of the VECH model in (17). Hence, only 1 of the 
coefficients γ12, γ13, g12 or g13 needs to be different from 0 to have a causality towards 
X(t). Similarly, only 1 of the coefficients γ31, γ32, g31 or g32 needs to be different from 
0 to have a causality towards Y(t). This is in fact a test similar to theorem 1 in [5] in 
order to have ‘causality in variance’ or ‘causality linear in variance’. We used the α = 
0.05 significance level to test whether coefficients are significantly different from 0, 
after the GARCH model has been fitted to the residuals.  

If a causal relationship is detected by the GARCH model this should also be the 
case for the for CMI criterion. In the case the GARCH model does not reveal a causal 
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relationship, it is still possible that a causal relationship exists. The GARCH model 
can only detect these relationships for second order dependencies. We propose 
following measure to quantify the correspondence between GARCH and the CMI: 

                             
( )
( )

#   
100%

#   

CMI yes and GARCH yes
perf

CMI yes or GARCH yes

= =
= ×

= =
.  (18) 

Hence, this is the ratio of the number of times both CMI and GARCH detect causality 
and the number of times at least one of the techniques detects causality. The 
performance measure of (18) is computed for the Sims, Geweke-Meese-Dent and 
Granger criteria in combination with the GARCH criterion as well. This performance 
measure is computed both for causality from the left foot to the right foot and the 
other way round. 

In table 2 we show performances of the different criteria.  As can be expected the 
‘Sims’, ‘Geweke-Meese-Dent’, and ‘Granger’ perform very poorly. Once the linear 
causal dependencies are removed, these techniques cannot reveal any other 
dependencies. On the other hand CMI and GARCH causality detection have a higher 
correspondence, affirming that CMI is indeed able to capture non-linear causal 
relationships. 

Table 2. Comparison between: ‘Sims’, ‘Geweke-Meese-Dent’, ‘Granger’ and ‘Conditional 
Mutual Information’ tests for causality detection in the non-linear regime 

 
Sims 

Geweke- 
Meese-

Dent 

 
Granger 

Conditional 
Mutual 

Information 

Left to 
right 

0 % 0 % 0 % 58.82 % 

Right to 
left 

0 % 0 % 0 % 66.67 % 

5   Conclusion 

The contribution in this paper is four-fold. Firstly, an information theoretic framework 
for causality detection is motivated from the conditional relative entropy (CRE) 
criterion. The CRE is formulated in terms of the information theoretic functionals: 
mutual information and entropy. The CRE allows to motivate conditional mutual 
information more thoroughly as opposed to previous research. 

Secondly, it is shown that a VARMA-GARCH model is a plausible model for gait 
time series. Thirdly, experiments on real-case gait time series have shown that 
conditional mutual information performs as well as the well established Granger and 
Geweke-Meese-Dent criteria for causality detection in order to affirm the linear 
causal relationships between the left and the right foot. Finally, it is shown that 
conditional mutual information outperforms these techniques when non-linear causal 
dependencies exist.  
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Abstract. Finding a template image in another larger image is a prob-
lem that has applications in many vision research areas such as models
for object detection and tracking. The main problem here is that under
real-world conditions the searched image usually is a deformed version of
the template, so that these deformations have to be taken into account
by the matching procedure. A common way to do this is by minimiz-
ing the difference between the template and patches of the search image
assuming that the template can undergo 2D affine transformations. A
popular differential algorithm for achieving this has been proposed by
Lucas and Kanade [1], with the disadvantage that it works only for small
transformations. Here we investigate the transformation properties of a
differential template matching approach by using resolution pyramids
in combination with transformation pyramids, and show how we can do
template matching under large-scale transformations, with simulation re-
sults indicating that the scale and rotation ranges can be doubled using
a 3 stage pyramid.

1 Introduction

Image registration using template matching, either directly on a pixel image or
on an array of images that result from an appropriate preprocessing step on an
image, is a fundamental step that serves as basis for many vision algorithms. The
most straightforward way is to take the patch containing the template, overlay
it onto the search image at all desired transformations (e.g. positions, rotations,
etc.), and calculate a matching score that indicates how well the transformed
template matches with the search image for each particular transformation.

In visual object classification and detection, this is the case for connection-
ist models that use nonlinearities alternated with correlation-based patch tem-
plate matching with feature-sets in a weight-sharing architecture [2,3,4]. The
weight sharing activity calculation basically corresponds to a feature search at
all positions of the input image. More complex transformations of the templates
(features) are usually not considered or included explicitly by building all trans-
formation variants of a basis feature.

In template-based tracking, the picture is similar, with the difference that we
can restrict the search to those templates and transformations that are likely to
occur according to the tracker state predictions. A third field of research where

J. Marques de Sá et al. (Eds.): ICANN 2007, Part II, LNCS 4669, pp. 169–179, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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template matching is important is motion processing (see e.g. [5]). Here, the task
is to find patch-to-patch correspondences between two images from consecutive
timesteps, in order to extract a displacement field that indicates how the different
patches move from one timestep to the next.

The main problem for template matching is the number of transformations
that have to be checked in order for the procedure to cope with deformations.
The appearance of real-world objects undergo severe changes as the objects
e.g. translate, rotate, come closer or rotate in 3D. Some of these transformations
can (and have to) by covered by the template matching procedure, while others
like true 3D appearance changes can only be captured as approximations and
only if the transformations remain sufficiently small. This is the case e.g. for
rotations in depth and approximately planar objects, whose transformation can
then be approximated by a projective transformation.

A popular approach is to introduce 2D transformations into the matching
process, in particular 2D affine transformations covering rotation, scaling and
shearing in addition to translation. That is, we then search the best match
between a search image and a template subject to its tansformations. In order
to achieve this, an extensively large number of transformed templates has to be
compared with the search image, corresponding to all possible combination of
transformations.

Three things can be done to alleviate the costs of matching under transforma-
tions. Firstly, not all transformations are equally important and interdependent,
so that we can sometimes search for separate transformation dimensions inde-
pendently. As a second point, we can assume small differences between template
and search image (introduced by small transformations), linearize and try to
calculate the template match for small transformations computationally more
effectively. And third, we can introduce search strategies for the transformation
parameters, e.g. by sampling the transformation parameter space first coarsely
to get a hint on the transformation range and then refining the search.

In this paper, we combine points 1, 2 and 3 by introducing a resolution
pyramid in combination with a transformation pyramid that allows to estimate
affine transformations for the image matching problem over a broad range of
parameters, calculating first the coarse transformations and refining them in
the successive stages of the pyramid. Although pyramidal approaches have been
proposed already a number of times in the vision systems community, here we
address explicitly the question of transformation pyramids for template match-
ing, analysing the potential of such methods for large scale transformations in
combination with Lucas-Kanade type 2D affine matching methods.

In the next section, we sketch the architecture of the approach. To this end,
we first summarize a popular differential approach for 2D affine template match-
ing and then show how we utilize it in a transformation pyramid. In the third
section, we show in simulations how the approach performs for large-scale trans-
formations. We show exemplar results of valid transformation ranges (since these
depend also on intrinsic object characteristics and generally cannot be formu-
lated for arbitrary objects).
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2 Approach

2.1 Template Matching with 2D Affine Transformations

A popular approach for template search under small transformations that works
well for the affine case has been introduced by Lucas and Kanade [1] and used
for many extensions like tracking of objects by means of point features and the
appearance transformations of the image patches around these points [6].

To compare two images we start with image points x = (x, y)T a template
T (x) and its “mask” resp. window of validity M(x) (either binary or continuous,
but zero outside of the region of validity of the template) on one hand, and the
search image I(x) with its warping transformation W(x) on the other hand. For
this paper, we restrict W(x) to be a linear transformation composed of an affine
transformation matrix A and a translation vector d, so that an image position
x transforms according to

x → W(x) = Ax + d . (1)

The target of the template match is to find the parameters A and d which
minimize a functional

F =
∫

[I(Ax + d) − T (x)]2M(x)dx , (2)

that is, which leads to the best Euclidean match between template and image
under consideration of the geometrical transformation eq. 1 of the search im-
age I(x).

The reason that we transform the search image I(x) and not the template
T (x) is that we consider the window M(x) to be attached to the template. If we
then transform the template, we would have to transform the window as well,
which makes the derivation more complicated (nevertheless, this is a matter
of interpretation of eq. 2 since template and search image are exchangeable).
For tracking applications, or if we are interested in keeping the template fixed,
the inverse transformation from the template to the search image can be easily
calculated according to A−1x − A−1d (e.g., if we want to say: “The pattern in
the search image corresponds to the template rotated by ... degrees”).

For small affine transformations it makes sense to write A = 1 + D (small
deviation D from the unity matrix 1), with the deformation matrix

D =
(

d1 d3
d2 d4

)
(3)

now completing the transformation parameters together with the displacement
vector

d =
(

d5
d6

)
. (4)

The 6 transformation parameters (4 for the deformation matrix D and 2 for
the displacement vector d) can be collected in a vector

z = (d1, d2, d3, d4, d5, d6)T . (5)
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A (local) minimization of the functional F (z) can then be achieved by using
gradient-descent. Nevertheless, since the warping of the image is the expensive
step, it is desirable to avoid too many iterations during the gradient descent. To
do few iterations, here we use the Newton method, setting ∇zF (z) = 0, with

∇zF (z) =
∫

2 [I(Ax + d) − T (x)] ∇zI(Ax + d)M(x)dx (6)

and linearizing and solving the equation system repetitively for z, as indicated
in [7].

We assume smooth changes in the search image. Linearization with respect
to x then yields

I(Ax + d) ≈ I(x) + [∇xI(x)]T (Dx + d) (7)

which we use to get

∇zI(Ax + d) ≈ [∇xI(x)]T [∇z(Dx + d)] (8)

with the 2 ∗ 6-matrix (for a 2-dimensional vector v)

∇zv =
[

(∇zv1)T

(∇zv2)T

]
. (9)

It is straightforward to calculate

g(x) := [∇xI(x)]T [∇z(Dx + d)]

=
[
x

∂I(x)
∂x

, x
∂I(x)

∂y
, y

∂I(x)
∂x

, y
∂I(x)

∂y
,
∂I(x)
∂x

,
∂I(x)

∂y

]T

(10)

and setting ∇zF (z) = 0 and extracting z, we arrive at the 6-dimensional linear
equation system

Tz = a (11)

with

T =
∫

M(x)
{
g(x)[g(x)]T

}
dx and (12)

a =
∫

M(x) [T (x) − I(x)]g(x)dx (13)

that can be solved z = T−1a by inverting T.

2.2 Template Matching in Resolution and Transformation Pyramids

The problem of the method from section 2.1 is that it works well as long as
the gradients introduced by eqs. 7 and 8 and incorporated into the method by
eq. 10 provide sufficient information. For large transformation parameters, this
may not be the case any more. A remedy then is to use coarser resolutions
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which smoothen the image, like in a Gaussian resolution pyramid, and combine
them with a transformation pyramid that allows to calculate the total transfor-
mation as a concatenation of single differential transformations for each stage.
(Transformation pyramids have been proposed repetitively in different contexts
but mostly in combination with translational transformations, see e.g. [8] for an
early proposal and [9] for an application of the same principle in a motion esti-
mation system. Here we show in simulations to what extent they can be applied
to the Lucas and Kanade type image matching procedures).

The idea is to use a pyramid with n levels (1: original, n: coarsest resolu-
tion, images and templates at different resolutions Ii(x), Ti(x)), and apply the
procedure on the coarsest level n with In(x), Tn(x) to get a first, rough estima-
tion of the transformation parameters An, dn, from which we get the first total
transformation estimate Atot

n−1, dtot
n−1 (the indices are chosen indicating that this

transformation is the currently best estimate for level n − 1). Afterwards, we
use the transformation parameters to warp the search image In−1(x) in order
to compare it with the template Tn−1(x) for a refinement of the transforma-
tion parameters. As a result we then get An−1, dn−1, which has to be composed
with Atot

n−1, d
tot
n−1 to get the improved estimate of the transformation parameters

Atot
n−2, dtot

n−2, with

Atot
i−1 := Ai Atot

i (14)

and

dtot
i−1 := di + dtot

i . (15)

This has to be repeated until we arrive at the lower end of the pyramid which
works on the images at original resolution. The expectation is that, since each
stage of the pyramid already receives a search image that was moved closer
to the template image (in terms of Euclidean match), the matching procedure
from sec. 2.1 can be applied further to improve the transformation estimation,
allowing to find image matches over a much broader range of parameters.

Figure 1 shows a schema of the resolution and transformation pyramid with
the mentioned warping, transformation estimation and transformation concate-
nation steps. If we are e.g. in a tracking application, we usually do already have
some initial estimate (from previous steps) of the overall transformation to start
with, which we can include as Atot

n , dtot
n to warp the search image In(x) at the

top of the pyramid. On the lower end of the pyramid, we get our total trans-
formation estimate Atot

0 , dtot
0 . In the following examples, we used a Gaussian

resolution pyramid with 3 levels, applied on images of 128x128 pixel size, so that
at each level of the pyramid the resolution halfened. The change in resolution
has to be taken into accout in the calculation of the total translation since in
eq. 15, dtot

i−1 and dtot
i were assumed to operate on the same spatial scale. For

different spatial scales, the translation vectors d have to be normalized, so that
for our case of the Gaussian pyramid, we used dtot

i−1 := di + 2dtot
i .
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Image warping Total transformation Differential transformation

I1(x)

I2(x)

In(x)

T1(x)

T2(x)

Tn(x)

W

W

W

W

An,dn

A2,d2

A1,d1

Atot
n ,dtot

n

Atot
2 ,dtot

2

Atot
1 ,dtot

1

Atot
0 ,dtot

0

Fig. 1. Transformation and resolution pyramid for the estimation of large-scale trans-
formations. On top of the pyramid coarse transformation estimates are calculated on
coarse resolutions of the search and template images In(x) and Tn(x), which are used to
warp the search image and refine the transformation estimate in the successively lower

stages of the pyramid. Atot
n ,dtot

n is an initial transformation based on prior knowledge,

Atot
0 ,dtot

0 is the overall transformation gained from the entire transformation pyramid.

3 Results for Large-Scale Transformations

The size of transformations that can be estimated with our method depend on
the particular structure of the template and search images. Two types of prop-
erties are beneficial for the estimation of large transformations: 1. There has to
be sufficient structure (so that there are pronounced minima in the functional
eq. 2) and 2. the structure has to be sufficiently smooth so that gradients can
drive the search towards a solution. Point 2 also implies that the minima are not
too narrow, which is the case e.g. for templates with no pronounced autocorre-
lation lengths (in the simple case of a random pattern template created using
white noise, there is basically no gradient information that can be used to find
the minimum, if search image and template are more than one pixel offset).

To quantify the results of simulations with the presented algorithm, we took
arbitrary single objects from the COIL1 database. We chose not to average the
results over a large image database (e.g., the entire COIL or more complex image

1 Columbia Object Image Library.
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Fig. 2. Typical template, mask, (cluttered) search image and match result. The task is
to find the transformation between the template and the rotated and scaled duck. On
the 2 rightmost images, the match on the search image (indicated by a black contour)
and the affine transformation error for different scaling factors and rotation angles are
shown. The cross indicates the current target transformation (-40 degree rotation and
scale factor 1.5) that was used to generate the search image. At the right, a logarithmic
scale (of basis 10: e.g. −2 are errors in the 10−2-range) indicates the transformation
error (Euclidean distance between the gained and the true affine transformation ma-
trix entries). Darker region correspond to good transformation matches, for the cross
position the transformation estimation error is already considerable, so that the match
is not perfect.
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Fig. 3. Clean condition, Euclidean distance between real and computed affine transfor-
mation matrix for template matching pyramids consisting of 1, 2 and 3 stages, applied
on the duck picture. The x and y-axes show the scaling factor (log 2: -1 meaning half
size, +1 meaning double size) and the rotation angle of the template object in the
search image. Darker regions of the graphs denote more accurate estimations of the
affine transformation. Notice the increase in size of the dark region for an increasing
number of stages, indicating that the pyramidal matching procedure is able to cope
with scaling factors of nearly 0.5 − 2.0 and rotation angles of about ±20 degrees.

databases) because of the dependency on the intrinsic object properties explained
above. Nevertheless, even from single objects the benefits of the method for large
scale transformations can be evaluated.

We used 2 different paradigms: In the clean condition, we searched for a
match between the original and the transformed version of the object and in the
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clutter condition, we searched a transformed version of the object in an image
with clutter.

In the following twofigures, we evaluated the affine transformationmatrix error.
We generated search images that were a rotated and scaled version of the template
and then run the method with a transformation pyramid of 1−3 layers.The result-
ing transformation matrix at each of the layers was then compared to the “real”
transformation matrix, calculating the Euclidean distance of all its entries, shown
in fig. 3. For easier visualization, we restricted the plots to affine transformations
that are a combination of homogeneous scaling and rotation. It can be seen that
the transformation pyramid increases the validity regions substantially.

To get a better quantitative idea of the estimation errors and to see how the
error distributes among scaling and rotation parameters, we extracted from the
affine transformation results a scaling parameter λ and a rotation angle α that
approximate A according to

A =
(

a1 a3
a2 a4

)
≈

(
λ 0
0 λ

) (
cos(α) − sin(α)
sin(α) cos(α)

)
. (16)
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Fig. 4. Clean condition, scaling error for a template matching pyramid consisting of
1, 2 and 3 stages. The x and y-axes again show the scaling factor and the rotation
angle of the template objects in the search image.
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Fig. 5. Clean condition, rotation error for a template matching pyramid consisting
of 1, 2 and 3 stages. The x and y-axes again show the scaling factor and the rotation
angle of the template objects in the search image.
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Fig. 6. Clutter condition, affine transformation error for a template matching pyramid
consisting of 1, 2 and 3 stages. The x and y-axes again show the scaling factor and the
rotation angle of the template objects in the search image. Although the absolute error
is larger than for the clean case (fig. 6), the increase of the region of valid transformation
estimations is even larger when going from 1 level to a 3-level pyramid.

Afterwards, we calculated the absolute difference between the real scale and
orientation (used to generate the transformed objects for the search image) and
the results after applying the transformation pyramid. Figs. 4 and 5 show the
results for scaling and rotation separately.

Figure 6 shows the results for a search image that contains a transformed
template object on a cluttered background. It can be seen that the gain (in
terms of a larger valid region where transformation parameters are accurately
estimated) is even larger than in the clean condition from fig. 3.

4 Conclusion

The translational parameters play a special role in the transformation estimation
process. In many cases, the estimation of the full system eq. 11 leads to spurious
or false minima, specially if the initial translational mismatch between template
and object in the search image is large [7]. Then it is beneficial to separate
the estimation of the translational parameters d from the estimation of the
affine transformation parameters A. This is something that we observed for the
pyramid method at all levels. We therefore estimated first the translation at each
level, and afterwards the affine transformation.

In the simulations we found that for the affine parameter estimation using
a pyramid with 3 levels, a single iteration of the Newton method from section
2.1 at each level already suffices to produce good matching results. The costly
part of the method, the warping of the search images at each pyramid level
(see fig. 1), therefore occurs only 3 times (and only once for the full resolution
image).

Since the Euclidean match in the functional eq. 2 is sensitive to differences
over the entire region of the mask M(x), it is important that the mask matches
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covers only the relevant parts of the template. In our case, we used a binary mask
calculated from the object itself by thresholding against a zero background (see
fig. 2). As soon as the mask and the template mismatch, the transformation
estimations degrade. Therefore, in tasks which require a template update, like
e.g. when a real object is being tracked which changes its appearance beyong 2D
affine transformations, care has to be taken that the mask is updated consistently
with the template.

The number of pyramid levels depends on the size and the structure/texture
of the template, since fine details are lost with increasingly coarse resolution.
In our case, the 3-level pyramid provided to be a good choice; with more levels
the results degraded since the highest level then did not have sufficient clues
to estimate its transformation correctly. One way to estimate the number of
needed pyramid levels without a fully extensive check is to regard the surface-
averaged reconstruction error of the highest hypothetical pyramid level only
(the level with the coarsest resolution), starting from the lowest possible resolu-
tion, and increasing step-by-step the number of pyramid levels, searching for a
minimum.

All shown plots were gained using the same image (see fig. 2), which provided
a good example with sufficiently detailed form but not too much resolution,
so that it still presented a challenge for the template matching process. For
other objects of the COIL database (which all have a comparable size), the
gained results were very similar in terms of gain of applicable transformation
range.

Summarizing, we have shown that transformation pyramids considerably ex-
tend the range of transformations that can be covered by template-matching
procedures of the Lucas and Kanade type. Transformation ranges for objects
increased from approx. [0.65 − 1.4] to [0.5 − 1.75] for the scaling factor and from
[−15, 15] to nearly [−30, 30] degrees for the rotation angle, providing good results
for situations with cluttered background.
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Abstract. In this paper, we discuss fuzzy classifiers based on Kernel
Discriminant Analysis (KDA) for two-class problems. In our method,
first we employ KDA to the given training data and calculate the com-
ponent that maximally separates two classes in the feature space. Then,
in the one-dimensional space obtained by KDA, we generate fuzzy rules
with one-dimensional membership functions and tune the slopes and bias
terms based on the same training algorithm as that of linear SVMs.
Through the computer experiments for two-class problems, we show that
the performance of the proposed classifier is comparable to that of SVMs,
and we can easily and visually analyze its behavior using the degrees of
membership functions.

1 Introduction

Support Vector Machines (SVMs) [1,2] are known to be a classifier with high
generalization ability because in SVMs, the input space is mapped into a high-
dimensional feature space to enhance linear separability, and the optimal sepa-
rating hyperplane is determined with the maximum margin in the feature space.

Inspired by the success of SVMs, many linear techniques are extended to non-
linear forms using a mapping to a high-dimensional feature space. These tech-
niques are called kernel-based methods. Kernel least squares [3], Kernel Principal
Component Analysis (KPCA) [4], and Kernel Discriminant Analysis (KDA) [5]
are the examples of such methods. Above all, because the component obtained
by KDA maximally separates two classes in the feature space, it is suitable for
pattern classification problems.

One of the disadvantages of SVMs, however, is that it is difficult to analyze
their behavior because the input space is mapped into a high-dimensional, in
some cases infinite, feature space. There are several approaches to tackle this
problem. In [6,7], SVMs are visualized by using geometric methods or combining
some linear classifiers. Another approach defines fuzzy classifiers in the feature
space [8,9]. In [8], to improve generalization ability the membership functions
are tuned so that the recognition rate of the training data is maximized.
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In this paper, we discuss fuzzy classifiers based on KDA for two-class problems
which overcome the disadvantage of SVMs and show high performance compa-
rable to SVMs. In our method, first we employ KDA to the given training data
and calculate the component that maximally separates two classes in the feature
space. Because this one-dimensional component well separates two classes, it is
suitable for our aim to construct the powerful classifiers whose behavior is easily
analyzable. Then, in the one-dimensional space obtained by KDA, we define a
one-dimensional membership function [10] for each class based on the Euclidean
distance from each class center.

To improve the performance of our fuzzy classifiers we need to tune fuzzy
rules, in other words, we need to tune the slope and the bias term of each
membership function. In our method, we show this tuning procedure can be
performed based on the same training algorithm as that of linear SVMs by
using the two-dimensional feature space whose axes are the distances from the
centers of membership functions.

In Section 2 we summarize KDA, and in Section 3 we describe how to construct
the proposed fuzzy classifiers. In Section 4, we show that the tuning procedure
of membership functions reduces to the same training algorithm as that of linear
SVMs, and in Section 5 we evaluate the proposed method using two-class data
sets [11].

2 Kernel Discriminant Analysis

In this section we summarize KDA, which calculates the component that maxi-
mally separates two classes in the feature space in two-class problems.

Let the sets of m-dimensional data belong to class i (i=1, 2) be {xi
1, . . . ,x

i
Mi

},
where Mi is the number of data belonging to class i, and data x be mapped into
l-dimensional feature space by the mapping function g(x). The aim of KDA is
to find the l-dimensional vector w, whose direction maximally separates the two
classes in the feature space.

The projection of g(x) on w is obtained by wT g(x)/‖w‖. In the following we
assume that ‖w‖ = 1. We find such w that maximizes the distance between the
class centers, and minimizes the variances of the projected data.

The square difference of each class center of the projected data, d2
c , is calcu-

lated as

d2
c = wT (c1 − c2)(c1 − c2)T w, (1)

where ci are the centers of class i data, obtained as follows:

ci =
1

Mi

Mi∑

j=1

g(xi
j) for i = 1, 2. (2)

We define

QB = (c1 − c2)(c1 − c2)T (3)

and call QB the between-class scatter matrix.
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Here, in order to simplify matters, we redefine the data sets as {x1
1, . . . ,x

1
M1

,
x2

1, . . . ,x
2
M2

} = {x1, . . . ,xM}, where M is the number of all data and M =
M1 + M2. In the following if there is no confusion, we use both representations
for data sets.

The variance of all the projected data, s2, is

s2 = wT QT w, (4)

where

QT =
1
M

(g(x1), . . . ,g(xM ))(IM − 1M )

⎛

⎜⎝
gT (x1)

...
gT (xM )

⎞

⎟⎠ . (5)

Here, IM is the M × M unit matrix and 1M is the M × M matrix with all
elements being 1/M . We call this matrix, QT , total scatter matrix.

Now, in KDA, we maximize the following criterion:

J(w) =
d2

c

s2 =
wT QBw
wT QTw

, (6)

but since w, QB, and QT are defined in the feature space, we cannot calculate
them explicitly. Here we need to use kernel tricks. Any solution w in the feature
space can be written as an expansion of the form

w = (g(x1), . . . ,g(xM ))α, (7)

where α = (α1, . . . , αM )T and α1, . . . , αM are scalars. Substituting (7) into (6),
we can rewrite the KDA criterion, J , as

J(α) =
αT KBα

αT KT α
, (8)

where

KB = (kB1 − kB2)(kB1 − kB2)
T , (9)

kBi =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1
Mi

Mi∑

j=1

H(x1,xi
j)

. . .

1
Mi

Mi∑

j=1

H(xM ,xi
j)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

for i = 1, 2, (10)

KT =
1
M

⎛

⎝
H(x1,x1) . . . H(x1,xM )

. . .
H(xM ,x1) . . . H(xM ,xM )

⎞

⎠

× (IM − 1M )

⎛

⎝
H(x1,x1) . . . H(x1,xM )

. . .
H(xM ,x1) . . . H(xM ,xM )

⎞

⎠
T

. (11)
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Here H(x,x′) = gT (x)g(x′) is a kernel function, and KT is a positive semidefi-
nite matrix. If KT is positive definite, the solution of (8) is given by

α = K−1
T (kB1 − kB2). (12)

If KT is positive semidefinite, the inverse K−1
T does not exist. One way to over-

come singularity is to add positive values to the diagonal elements:

α = (KT + εIM )−1(kB1 − kB2 ), (13)

where ε is a small positive parameter.
From the assumption that ‖w‖ = 1, we can calculate the projection of g(x)

on w, p, with kernel tricks as follows:

p = wT g(x)
= gT (x)w
= (gT (x)g(x1), . . . ,gT (x)g(xM ))α
= (H(x,x1), . . . , H(x,xM ))α. (14)

Using (14), training data {xi
1, . . . ,x

i
Mi

} for class i are expressed by
one-dimensional features {pi

1, . . . , p
i
Mi

}, where pi
j =(H(xi

j ,x1), . . . , H(xi
j ,xM ))α

for j = 1, . . . , Mi. We call this one-dimensional space, obtained by (14), KDA
space.

3 Classifier Architecture

3.1 Concept

We discuss fuzzy classifiers based on KDA for two-class problems. KDA is a pow-
erful tool to obtain the one-dimensional feature that well separates two classes
in the feature space. Hence, using KDA we can easily construct the powerful
fuzzy classifier whose behavior is easily analyzable.

In the proposed method, using (14), we calculate the class i one-dimensional
features. Then, in the KDA space, for each class we define the following fuzzy
rules:

Ri : if p is μi, then x belong to class i, (15)

where μi is the center of class i in the KDA space:

μi =
1

Mi

Mi∑

j=1

pi
j for i = 1, 2. (16)

3.2 Definition of Membership Functions

In the KDA space, for the centers μi, we define one-dimensional membership
functions mi(p) that define the degree to which p belongs to μi. Here, we consider
the two types of mi(p), i.e., without a bias term and with a bias term.
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Membership Functions Without Bias Terms. Based on the Euclidean
distance di(p) of p from the center μi, we define mi(p) as follows (see Fig.1):

mi(p) = 1 − di(p)
βi

, (17)

where di(p) is the Euclidean distance from the center μi, di(p) = |p−μi|, and βi

is a tuning parameter of the slope for mi(p). We allow negative values of mi(p)
so that any point p can be classified into a definite class.

We calculate the degree of each membership function for input datum x,
mi(p), and classify it into the class whose membership is maximum. This is
equivalent to finding the minimum Euclidean distance when βi in (17) is equal
to 1. If mi(p) is equal to 1, the input p is at the center of class i, μi.

Membership Functions with Bias Terms. In order to consider a more
general form of membership functions, we add a bias term, bi, to (17) as follows:

mi(p) = 1 − di(p)
βi

− bi. (18)

Figure 2 shows membership functions with bias terms in the KDA space.
When we use membership functions given by (17) or (18), we need to de-

termine the values of βi or those of βi and bi. This process is called fuzzy rule
tuning. This tuning procedure can be performed based on the same training
algorithm as that of linear SVMs. This tuning method is described in Section 4.

m1 (p) m2 (p)

p
1μ 2μ

0

1

D
eg

re
e 

of
 m

em
be

rs
hi

p

Fig. 1. Membership functions without bias terms in the KDA space
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Fig. 2. Membership functions with a bias term in the KDA space
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4 Fuzzy Rule Tuning

To tune membership functions of a fuzzy classifier, the steepest descent method
is usually used. In [8], membership functions are tuned to maximize the recog-
nition rate of the training data, by counting the numbers of correctly classified
and misclassified data after tuning. Here, we consider using the same training
algorithm as that of linear SVMs for fuzzy rule tuning of the classifier. In the
following, we describe the tuning procedure.

First, we consider the membership function with a bias term given by (18).
We define the function L(p) as the difference of m1(p) and m2(p):

L(p) = m1(p) − m2(p)

= −d1(p)
β1

+
d2(p)
β2

+ (b2 − b1). (19)

Now we set β = (− 1
β1

, 1
β2

)T , d = (d1(p), d2(p))T , and b = b2 − b1. Then (19) is
rewritten as follows:

L(d) = βT d + b. (20)

If the input datum p satisfies L(d) > 0, the datum is classified into Class 1,
and if L(d) < 0, it is classified into Class 2. When L(d) = 0, the datum is
unclassifiable.

From the above discussion, (20) is equivalent to the decision function of a
linear SVM in the two-dimensional space (d1(p), d2(p)). In the following, we call
the two-dimensional space, (d1(p), d2(p)), 2-D tuning space. If the point p is
between μ1 and μ2 in the KDA space, the following equation is satisfied:

d1(p) + d2(p) = μ for μ1 ≤ p ≤ μ2, (21)

where μ is the Euclidean distance between μ1 and μ2. Namely, μ = |μ2 − μ1|.
Similarly, if point p is outside of the interval [μ1, μ2], the following equation is
satisfied:

|d1(p) − d2(p)| = μ for p < μ1 or μ2 < p. (22)

Hence, the relationship between d1(p) and d2(p) is described as follows:

d2(p) =
{

−d1(p) + μ for μ1 ≤ p ≤ μ2,
d1(p) ± μ for p < μ1 or μ2 < p.

(23)

Therefore any point p in the KDA space is mapped on the reflexed line whose
slopes are ±1 in the 2-D tuning space, as shown in Fig. 3.

Classification using the decision function L(d) in the 2-D tuning space is
equivalent to that of fuzzy rules (15). Hence, given by training a linear SVM
in the 2-D tuning space and calculating the weight vector β and bias term b,
we can determine the parameters βi and bi. (But in this formulation, we cannot
determine the values of b1 and b2 uniquely. However, because the classification
boundary is invariant so long as b = b2 − b1 is constant, we can assume that
either bi is equal to 0).
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Fig. 3. 2-D tuning space

The decision function without a bias term in the 2-D tuning space is repre-
sented as

L(d) = βT d. (24)

In this case, training a linear SVM without a bias term [12] in the 2-D tuning
space, we can determine the parameters βi. The decision boundary, L(d) = 0,
goes through the origin in the 2-D tuning space.

5 Performance Evaluation

We evaluated the proposed fuzzy classifier using two-class data sets used in
[11]. As listed in Table 1, each problem has 100 training data sets and their
corresponding test data sets.

Throughout the experiments, we used RBF kernels:

H(x,x′) = exp(−γ‖x − x′‖2), (25)

where γ is a positive parameter for controlling the radius, and we set ε = 10−3

in (13) as used in [5].
We also show that we can easily analyze the behavior of the proposed fuzzy

classifier by visualizing each class membership function.

5.1 Generalization Ability

We compared the generalization ability of the proposed fuzzy classifier and
the SVM. In each method, we need to determine the value of kernel param-
eter γ and that of margin parameter C [1,2] of the SVM or the linear SVM
used in the proposed classifier. In the experiments, we determine those param-
eters by fivefold cross-validation of the first five training data sets changing
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Table 1. Benchmark data sets for
two-class problems

Data Inputs Train Test Sets

Banana 2 400 4900 100
Heart 13 170 100 100
Ringnorm 20 400 7000 100
Thyroid 5 140 75 100
Twonorm 20 400 7000 100
Waveform 21 400 4600 100

Table 2. Parameter setting

Data SVM KDA-FC1 KDA-FC2
γ C γ C γ C

Banana 15 100 15 50 15 1
Heart 0.1 50 1 100 0.5 5000
Ringnorm 15 1 0.5 8000 0.5 2000
Thyroid 15 100 15 50 10 500
Twonorm 0.5 1 0.1 10 0.5 1
Waveform 10 1 10 100 5 1

Table 3. Average recognition rates and standard deviations of the test data sets

Data SVM KDA-FC1 KDA-FC2

Banana 89.3 ± 0.5 88.1 ± 0.6 88.0 ± 0.6
Heart 83.7 ± 3.4 83.8 ± 3.3 83.4 ± 3.5
Ringnorm 97.8 ± 0.3 98.1 ± 0.2 98.2 ± 0.2
Thyroid 96.1 ± 2.1 95.7 ± 2.2 94.9 ± 2.2
Twonorm 97.6 ± 0.1 97.4 ± 0.3 96.1 ± 8.1
Waveform 90.0 ± 0.4 90.4 ± 0.3 90.1 ± 0.4

γ = [0.1, 0.5, 1, 5, 10, 15] and C = [1, 10, 50, 100, 500, 1000, 2000, 3000, 5000, 8000,
10000, 50000, 100000].

Table 2 lists the selected parameters by the above procedure. In Table 2,
KDA-FC1 and KDA-FC2 denote the proposed fuzzy classifiers using membership
functions without bias terms and with bias terms, respectively. For the optimal
values of γ and C, we trained SVMs and the proposed two types of KDA-FCs
for 100 training data sets and calculated the average recognition rates and the
standard deviations for the test data sets. Table 3 shows the average recognition
rates and the standard deviations for the two-class problems. The best result in
the row is shown in boldface.

The KDA-FC1 showed the best performance for the heart and waveform data
sets, and the KDA-FC1 performed better than the KDA-FC2 except for the
ringnorm data sets. For the twonorm data set, the standard deviation of the
KDA-FC2 is very large compared to those of other methods. Because the selected
parameters by cross-validation were not suitable for several data sets among 100
sets, their performance degraded considerably. From this, we can say that the
KDA-FC1 is more stable than the KDA-FC2. Except for the result of the KDA-
FC2 for the twonorm data set, the performance of the KDA-FCs is comparable
to that of SVMs.

5.2 Analysis of Classification

Here, we show that we can easily analyze the behavior of the KDA-FCs by vi-
sualizing each class membership function in the KDA space. Since KDA-FC1,
without bias terms, performed better than KDA-FC2, here we analyze the be-
havior of KDA-FC1.
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Fig. 4. Membership functions of the KDA-FC1 for the first heart test data set

Figure 4 shows the membership functions of the KDA-FC1 for the first heart
test data set among 100 sets. In Fig. 4, m1(p) and m2(p) show the membership
functions for Class 1 and Class 2, respectively, and their intersecting point A is a
classification boundary in the KDA space. The datum p1 belonging to Class 1 is
correctly classified with m1(p1) = 0.95 and negative m2(p1). Because m1(p1) is
almost 1 and m2(p1) is negative, p1 is considered to belong to Class 1 with high
reliability. On the other hand, although the datum p2 belonging to Class 1 is
correctly classified, the degree of Class 1 membership is negative, i.e., m1(p2) =
−0.14. Thus, the reliability of the classification result is considered to be low.

6 Conclusion

In this paper we discussed fuzzy classifiers based on KDA for two-class problems.
In the proposed method, first we employ KDA to the given training data and
calculate the component that maximally separates two classes in the feature
space. Then, in the one-dimensional space obtained by KDA, we introduce a
one-dimensional membership function for each class and generate classification
rules. We showed that the tuning procedure of the membership functions reduced
to the same training algorithm as that of linear SVMs.

From the computer experiments using benchmark data sets for two-class prob-
lems, we showed that the performance of the proposed fuzzy classifiers was com-
parable to that of SVMs. And by visualizing the membership functions in the
KDA space, we showed that we could easily analyze the behavior of the proposed
fuzzy classifiers.
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Abstract. Within the taxonomy of feature extraction methods, recently
the Wrapper approaches lost some popularity due to the associated com-
putational burden, compared to Embedded or Filter methods. The dom-
inating factor in terms of computational costs is the number of adaption
cycles used to train the black box classifier or function approximator,
e.g. a Multi Layer Perceptron. To keep a wrapper approach feasible, the
number of adaption cycles has to be minimized, without increasing the
risk of missing important feature subset combinations.

We propose a search strategy, that exploits the interesting properties
of Chow-Liu trees to reduce the number of considered subsets signif-
icantly. Our approach restricts the candidate set of possible new fea-
tures in a forward selection step to children from certain tree nodes. We
compare our algorithm with some basic and well known approaches for
feature subset selection. The results obtained demonstrate the efficiency
and effectiveness of our method.

1 Introduction

If irrelevant features are used to adapt a Multi Layer Perceptron (MLP) to a
certain task, the classifier has to handle a more complex decision surface. This
leads to increased time requirements for a successful adaption, it may decrease
the precision of the results and worsens the problem of overfitting. Therefore
feature selection methods are applied to find and sort out the irrelevant features
in the input data.

It is very common to characterize feature selection methods as “Filter”, “Em-
bedded” or “Wrapper” approaches (see [1] and [2]). Filter based approaches
operate on the data to find intrinsic interrelations of the variables, prior to any
application of a learning machine. On one hand, this includes data driven ap-
proaches like Principal Component Analysis or Non-Negative Matrix Factoriza-
tion [3]. On the other hand, supervised methods are applied which investigate
the correlation between the input data and the class labels or a target value.
Examples are the linear correlation coefficient, Fisher discriminant analysis or
information theoretic approaches.

Embedded methods use a specific learning machine, that is adapted with all
data channels available. After the training process is complete, the importance

J. Marques de Sá et al. (Eds.): ICANN 2007, Part II, LNCS 4669, pp. 190–199, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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of the inputs can be inferred from the structure of the resulting classifier. This
includes e.g. weight pruning in neural network architectures with OBD [4], Bayes
Neural Networks [5] or Random Forests [6].

The wrapper approach uses a learning machine, too, but the machine is ar-
bitrary, since in this case it is considered a black box and the features selection
algorithm wraps around the classifier, hence the name. A search strategy deter-
mines an interesting feature subset to train the learning machine. The resulting
error rate is used as evaluation criterion in the subset search process. Since fea-
ture relevance and optimality with respect to the classification error rate is not
always equivalent (as reported e.g. in [1]), it can be of advantage to use the
same algorithm in the feature selection process and the classification task. The
downside is, that this approach is prone to overfitting, a problem that has to be
dealt with in additionally.

In a recent feature extraction competition (see results in [7]) the successful
competitors used Embedded or Filter methods, while Wrappers were almost
completely absent. In [7] the authors conclude, that Wrappers where omitted, not
because of their capability, but their computational costs. Every time the search
strategy determines a new candidate subset of features, the learning machine has
to be adapted at least once, often even more, to produce reliable results. The time
used to train the classifier is the dominating factor in terms of computational
time. Since the used learning machine is considered a black box, it is not possible
to optimize within the classifier without losing generality. Therefore, we aim to
minimize the number of classifier evaluations imposed by the search algorithm
without a significant increase of the risk of missing important feature subsets.

Our proposed method achieves this goal by constructing a Chow-Liu tree
(CLT) [8] from the available data, see section 2. Then the obtained underlying
tree structure is used by a forward search algorithm to create feature subsets.
Through the inherent properties of the tree representation, the number of can-
didate subsets is considerably smaller, than e.g. in standard sequential forward
selection methods [11]. As an positive side effect, possibly redundant features
can be inferred directly from the CLT.

The main contribution of this work is the use of the CLT structure to minimize
the number of evaluation steps. The paper is organized as follows. Section 2
explains the foundations of Chow-Liu trees, while the application of Chow-Liu
trees in the context of feature selection is discussed in section 3. Some implication
of the proposed method are discussed in section 4. Thereafter, we present some
experimental results achieved with our method in comparison to other search
strategies. Additionally, section 5 discusses related work of relevance, before we
conclude in the final section.

2 Generation of Tree-Based Distributions

The basic idea of Chow-Liu trees (CLT) was presented in [8] and can be summa-
rized as follows. In order to approximate a n-dimensional probability distribu-
tion, a first-order dependency tree with n−1 relationships is constructed. Within
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Fig. 1. Twice the same dependence tree with different root nodes. On the left the
probability is expressed by P (x) = P (x3)P (x4|x3)P (x5|x3)P (x2|x3)P (x1|x2), on the
right it is P (x) = P (x2)P (x1|x2)P (x3|x2)P (x4|x3)P (x5|x3).

the tree the underlying distribution is expressed as product of second-order dis-
tributions. The resulting representation can be used e.g. in pattern recognition
tasks [8]. An example for a simple CLT is shown in figure 1. Please note that the
choice of the root node is arbitrary. The algorithm to compute the tree structure
minimizes the information difference between the original data and the depen-
dency tree. It was shown, that the method is a maximum likelihood estimator
for empirical data.

The problem of finding the optimal tree distribution is formulated as follow:
Be X =

{
x1, x2, . . . , xN

}
the given samples data set in the features space F and

we are looking for the tree Topt that maximizes the log likelihood of the data:

Topt = argmax
T

N∑

i=1

log T (xi) (1)

The solution is obtained in three steps. The algorithm is outlined below:

Algorithm 1. Chow-Liu-Tree(X)
Input: data set of observations X
Output: tree approximation Topt

Determine the marginal distributions P (xi, xj)
Compute the mutual information matrix I
Compute the maximum-weight spanning tree Topt

In the first part the pairwise mutual information Iij between each pair of
features i, j ∈ F using the pairwise marginal distributions is computed:

Iij =
∑

xixj

P (xi, xj) log
P (xi, xj)

P (xi)P (xj)
, i �= j (2)
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We used a histogram based approach to compute the pairwise marginal distri-
butions and the mutual information, but kernel density estimation approaches
are valid as well. For a more in depth discussion of different estimation methods,
the interested reader is referred to [9].

The second part of the algorithm runs a maximum-weight spanning tree
method on the mutual information matrix I, that is considered an adjacency
matrix for this purpose. Beginning with the two nodes that have a maximum
mutual information connection, further nodes are added with the next highest
MI values. Any edges that would form a cycle are ignored. The resulting tree
contains all nodes, while the sum of all weights of edges (which correspondes to
the mutual information) in the tree is maximized. A modified Kruskal or Prim
algorithm [10] can be applied for this task.

The obtained solution is non-ambiguous, if all the mutual information weights
are different. Otherwise, if several weights are equal, the solution Topt is possibly
non-unique, but all alternatives still satisfy equation 1 and therefore this non-
uniqueness property does not cause a problem.

In their work Chow and Liu showed, that the resulting dependence tree is
indeed an optimal tree approximation of the underlying distribution.

3 Chow-Liu Trees for Feature Selection

We propose a supervised method for feature selection based on Chow-Liu trees.
After further detailing our approach, we will discuss the benefits of using CLTs.
We assume, that for each sample xi ∈ X we have a label yi ∈ Y . We combine
both information in a single matrix Z = X ∪ Y , because for the purpose of
constructing the tree, the labels are considered another input dimension. Then
algorithm 1 is applied to compute the dependence tree. Each node of the tree
now represents a feature or rather the label data.

Our algorithm uses the computed tree structure to guide the search process,
that resembles the sequential forward selection strategy (SFS) (see chapter 4.3

Algorithm 2. SequentialForwardSelection(S, C, X, Y, ES)
Input: data set of observations X, the corresponding labels Y , the current feature
subset S, the candidate set of new features C, and the approximation error ES for
the subset S
Output: feature cbest to add to the feature subset

for ∀ci ∈ C do
Ei = TrainClassifier(X,Y, S ∪ ci)

end for
if ∃Ei ∈ E; Ei + ε < ES then

cbest = arg min
ci

(E)

else
cbest = ∅

end if
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Fig. 2. On the left, the root (representing the label data) is the only member of the
node set N , whose children form the candidate set. The SFS step is applied to the
candidate set C1 = {f2, f4, f5}. The best improvement shall yield the inclusion of
feature f2, which is included in the feature set and is added to N (right). The new
candidate set includes all children of f2 C2 = {f1, f4, f5}.

in [7]). The basic SFS algorithm starts with an empty feature subset and adds
one variable each step until a predefined number of features is reached, or the
approximation result does not improve any further. For one step, each candidate
is separatly added to the current subset and subsequently evaluated. The feature
that induced the best improvement is included in the resulting subset. If the
best new subsets improves more than a threshold ε, the new subset is returned,
otherwise the algorithm terminates. A SFS step is shown in algorithm 2.

We consider the tree node, that represents the label data Y , as root instance
of the dependence tree. All children of this node are treated as set of candidates
C for a slightly modified SFS step. After this SFS step the chosen feature is
added to the resulting feature subset. Besides this, the corresponding node in
the tree is added to the set of nodes N , whose children are considered candidates
for the next evaluation step. This is illustrated in figure 2.

Algorithm 3. Feature Selection with CLT(X, Y )
Input: data set of observations X and the corresponding labels Y
Output: feature subset S

Z ← X ∪ Y
T ← Chow-Liu-Tree(Z)
N ← ty {start with the node corresponding to the label data}
S ← ∅ {start with empty feature subset}
repeat

C ← children(N) {all children of the current node set are candidates}
c ← SequentialForwardSelection(S, C, X, Y )
N ← N ∪ cbest ∪ credundant {add the best and possible redundant features to the
search path}
S ← S ∪ cbest {add the best node to feature set}

until cbest = ∅ AND credundant = ∅
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The modification of the sequential forward selection is formed by the marking
of features that do not improve the classification performance, since these nodes
are either irrelevant or redundant features. The SFS step does not only return
cbest, but any feature, whose inclusion did not improve the approximation per-
formance more than threshold ε. In further candidate sets they are excluded,
but added to the set of nodes N , so that their children in the tree are considered
canidates in the next evaluation step.

The overall method is detailed in algorithm 3.

4 Discussion

In this section we will discuss the inherent advantages of using the computed
tree structure to guide the search process. The Chow-Liu tree is constructed as
maximum-weight spanning tree over the pairwise mutual information values of
each feature and the labels. Let us assume, all features are statistically indepen-
dent of each other, so there is no redundancy. A subset of these features contains
information about the class label, so the mutual information between these ones
and the label data is discriminatingly higher, than between any other pair. Dur-
ing the construction of the dependency tree, these features are connected to the
label node, since this maximizes equation 1. All meaningful features are children
of the root node. The labels that are irrelevant, are connected to any node, in-
cluding the root node, with equal probability. Therefore using the CLT approach
as filter method, stopping at this point and using only the children of the root
node as features is not a good idea, because irrelevant inputs are possibly part
of the children set.

Now consider adding redundant features f1 and f2 to the mix. The mutual
information between one feature and the labels is the same as the joint mutual
information between both features and the target value:

I(f1, y) ≈ I(f1 ∪ f2, y) (3)

They can be characterized by stating, that the mutual information between
these feature f1 and f2 is greater than the mutual information between the
features and the labels:

I(f1, f2) > max(I(f1, y), I(f2, y)) (4)

For this constellation of three nodes, the algorithm for constructing the
maximum-weight spanning tree will always include the connection between the
two features, since this maximizes the sum over the weights. Due to the tree
structure, the root representing the labels can be connected to one of them only.
This a plus in system identification tasks, because from the root’s perspective,
it is connected to the most informative feature and any features redundant to it
are located in the same branch of the tree.
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Any features that fulfill the condition of equation 4, but violate the redun-
dancy condition 3, will be added to the same branch, even if they sustain
new non-redundant information about the labels. Therefore the tree has to be
searched down the branches. The search path has to include redundant features,
because the informative feature is possibly connected to one.

From the sequential forward selection algorithm the CLT methods inherits
the inability to detect any features that are useful only in combination with
another (like the XOR problem [2]). The use of strategies to avoid this problem
like sequential forward / backward floating selection (SFFS/SFBS) [11] are not
very effective, because of the limited size of the candidate set. As a middle course
we suggest using the proposed CLT method to construct a feature subset, that
is used as starting point of a SBFS search afterwards. Preliminary results show
that in this case the SBFS algorithm only performs very few steps, before it
terminates as well.

Degenerated Trees
In the worst case, the tree is degenerated in such a way, that all nodes represent-
ing the input data are connected to the root node. All nodes contain informa-
tion about the target and there is no significant dependency between the input
channels. In this case the proposed method is reduced to the basic sequential for-
ward selection method with the additional costs for tree construction, but such
ill-conditioned input data indicates a problem that couldn’t be solved by the
means of feature selection methods. The maximum number of adaption cycles
AC for the SFS-like subset search is given by

ACmax =
nsub∑

i=0

(nall − i) , nall >= nsub. (5)

nall is the number of all available features and nsub is the number of features
chosen for the final subset.

The other extreme case is a tree that has no splitting nodes, all features are
lined up on a single path from the root to the only leaf. In terms of evaluation
steps, this is optimal, since at each step the candidate set contains a single node
only. So the minimum of adaption cycles is ACmin = nall.

Both discussed cases are not common for real-world data and will occur in
artificial datasets only. Typically, the obtained tree structures are somewhere
in between the described extrema. The exact value depends on the underlying
tree structure and the data interrelationship and is difficult to estimate. The
average number of children per non-leaf node for the Spambase data set from
UCI Machine Learning Repository [13] with 57 features is 2.48 with a variance
of 5.72. For a number of different data sets ranging from 100 to 1000 features the
average children per node is between 1.61 and 2.63, while the variance increased
proportional to the amount of features. Hence for the average case, induced by
the tree structure we conjecture an additional logarithmic dependency between
the features and the number of adaption cycles, compared to ACmin.
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5 Related Work and Experiments

The application of information theoretic measures like mutual information for
feature selection was suggested before in several publications. The construction
of classification and regression trees using the Information Gain criterion and
their application in form of Random Forests [6] as Embedded method is an
example.

A very similar idea to the Chow-Liu tree approach is the MIFS algorithm
[12]. The MIFS criterion approximates the joint mutual information, between
the features and the label data, which is difficult to estimate in high dimensional
spaces. The method is a filter approach that evaluates the features with respect
to the labels by computing the mutual information between those. Additionally
the mutual information between the candidate and the previously chosen features
in the subset is taken into account. The feature that maximizes the following
term is added to the subset of features

arg max
fi

(I(fi, y) − β
∑

fs∈S

I(fi, fs)). (6)

The parameter β is used to balance the goals of maximizing relevance to the
label and minimize the redundancy in the subset. Like the CLT method MIFS
uses the pairwise relations of the features and the label data. The main difference
is, that MIFS is used as data driven filter method, while the CLT approach is a
wrapper using a black box classifier.

For a number of examples from the UCI repository [13] we compared the
performance for the CLT, SFS and MIFS algorithms. As classifier we used a
standard MLP with two hidden layers with 20 and 10 neurons respectively.
After applying the feature extraction methods, the network was adapted using
the selected features only. The balanced error rate

BER =
1
2

(
false neg

false neg + true pos
+

false pos

false pos + true neg

)
(7)

for the classification problems was calculated using 10-fold cross-validation. This
measure accounts for any unbalanced class distributions. For comparison we
adapted a network with all available features, too.

The stopping criteria for SFS and CLT were identical, see section 3. For the
MIFS algorithm we introduced an additional random channel, independent from
the labels and the rest of the features. The feature selection was stopped when
the algorithm attempted to add this probe to the subset. In our tests we used
β = 0.15.

The results for the experiments are shown in Table 1.
The MIFS algorithm shows a mixed performance. Given that it is a filter

approach, MIFS does not have the advantage of using the classifier itself. Thus
the information theoretic approach yields features, that are not optimal in every
case for the training of the MLP. This seems to be the case for some examples
(see the results for the Ionosphere data set), but not all data sets. The number
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Table 1. The results for the different data sets and feature selection methods. The
balanced error rate is given in percent. The number of chosen features and the number
of evaluation steps are shown in parentheses.

Data set Features Samples All CLT SFS MIFS
f n balanced error rate(features/evaluation steps)

Ionosphere 34 351 20.08(34/-) 18.12(6/38) 18.47(3/130) 24.54(5/-)
Spambase 57 4601 13.81(57/-) 17.26(9/97) 17.39(8/477) 16.29(18/-)
GermanCredit 24 1000 41.70(24/-) 38.52(3/24) 39.06(4/110) 37.47(6/-)
Breast Cancer 30 569 13.78(30/-) 9.37(8/37) 13.44(4/140) 12.48(5/-)

of chosen features is higher, than for both wrapper approaches. Given its nature
as filter approach, MIFS is the fastest algorithm considered.

CLT tends to produce smaller error rate results compared to the SFS algo-
rithm, while the size of the feature set chosen by CLT is slightly higher. This
observation seems to be somewhat counterintuitive, although both approaches
act greedy when choosing the next feature, the difference is, that SFS does its
selection on the global level, while CLT choses on a local level (the current can-
didate set). This can help avoiding local minima in the search, but comes at the
cost of adding more features to the subset. The real advantage becomes clear if
the number of evaluation steps is compared. The CLT algorithm performs only
fractions of adaption cycles needed by the SFS method (given by equation 5).

6 Conclusion

We proposed a search strategy based on Chow-Liu trees for feature selection
methods. The tree structure is utilized in a forward search strategy by restricting
the candidate sets to the children of certain nodes in the tree. This way, some
advantages of the information theoretic approach used to construct the tree are
exploited.

This results in a significant reduction of performed evaluation steps in a wrap-
per feature selection strategy compared to standard methods like sequential for-
ward selection, while retaining a similar performance error. Compared to the
MIFS approach, a filter method using the mutual information in a similar way,
the results for CLT based feature selection are slightly better, but in terms
of computational costs the MIFS algorithm is cheaper. Within the domain of
wrapper approaches the speed of the CLT based feature selection method is
significant.
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Abstract. A novel discriminant analysis method is presented for the
face recognition problem. It has been recently shown that the predic-
tive objectives based on Parzen estimation are advantageous for learning
discriminative projections if the class distributions are complicated in
the projected space. However, the existing algorithms based on Parzen
estimators require expensive computation to obtain the gradient for op-
timization. We propose here an accelerating technique by reformulat-
ing the gradient and implement its computation by matrix products.
Furthermore, we point out that regularization is necessary for high-
dimensional face recognition problems. The discriminative objective is
therefore extended by a smoothness constraint of facial images. Our
Parzen Discriminant Analysis method can be trained much faster and
achieve higher recognition accuracies than the compared algorithms in
experiments on two popularly used face databases.

1 Introduction

Face Recognition (FR) is becoming an even more active research topic in the
forthcoming years. The challenge of FR is at first induced by the high dimension-
ality of facial images. The problem is more challenging in presence of structured
variations such as poses and expressions, which are difficult to be modeled and
cause the data to distribute in a complicated manifolds. Therefore, the research
in this field is not only useful for classifying faces, but also conducive to other
high-dimensional pattern recognition problems.

A substantial amount of efforts has been devoted to the FR problem, among
which Fisher’s Linear Discriminant Analysis is widely used. Modeling each class
by a single Gaussian distribution which shares a common covariance, LDA max-
imizes the Fisher criterion of between-class scatter over within-class scatter and
can be solved by Singular Value Decomposition (SVD). The facial feature extrac-
tion by LDA is called Fisherfaces [1]. The Fisherface method is attractive for its
simplicity, but the assumption of Gaussians with common variance heavily re-
stricts its performance. Moreover, Fisherface requires preprocessing by Principal
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Component Analysis (PCA) and the discriminative information may however be
lost during the unsupervised dimensionality reduction. Later many variants of
Fisherface such as [2] have been proposed. However, the Fisherface method and
its variants make use of only the first- and second-order statistics of the class
distributions while discarding the higher-order statistics.

Recently Goldberger et al. [3] proposed Neighborhood Component Analysis
(NCA) which learns a linear transformation matrix by maximizing the summed
likelihood of the labeled data. The probability density at each data point is es-
timated by using the neighbors in the transformed space, which turns out to
be the Parzen estimation of the posterior of the class label. Peltonen and Kaski
later proposed a very similar method called Informative Discriminant Analysis
(IDA) [4], in which they instead employ log-likelihood, i.e. the information of
predictive probability density. The likelihood formulation allows NCA and IDA
to model very complicated class distributions. It was reported that these two
methods outperform traditional discriminant analysis approaches in a number
of low-dimensional supervised learning problems. However, the optimization of
NCA or IDA requires the gradient of the Parzen-based objective, the computa-
tion of which is too expensive for most applications. To obtain an orthonormal
transformation matrix, IDA employs a reparameterization based on Givens ro-
tation, which even aggravates the computation and prevents its application to
high-dimensional data. Peltonen et al. later proposed a modified version [5] to
speed up the computation by using a small number Gaussian mixtures instead
of the Parzen method. This nevertheless loses the advantage of nonparametric
estimation. One has to insert additional EM iterations before computing the
gradient, and how to select an appropriate number of Gaussians is unclear.

In this paper we point out that the computational burden of calculating the
gradient in NCA and IDA can be significantly reduced by using matrix multipli-
cation. Next, the Givens reparameterization in IDA can be replaced by geodesic
updates in the Stiefel manifold, which further simplifies the optimization. Fur-
thermore, we propose to regularize the projection matrix by employing a smooth-
ness constraint. This is done by introducing an additional penalization term of
local pixel variance. We name the new method as Parzenface when applying our
discriminant analysis to the face recognition problem. The experiments on two
public facial image databases, FERET [6] and ORL [7], demonstrate that our
learning algorithm can achieve higher accuracy and run much faster than NCA
and IDA.

2 Parzen Discriminant Analysis

2.1 Unregularized Objective

Consider a supervised data set which consists of pairs (xj , cj), j = 1, . . . , n,
where xj ∈ R

m is the primary data, and the auxiliary data cj takes categorical
values. We seek for an m × r orthonormal matrix W by which the primary data
xi are projected into a lower-dimensional space. The objective is to maximize
the discriminative information, i.e. the sum of predictive log-likelihood
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J (W) =
n∑

i=1

log p(ci|yi) =
n∑

i=1

log
p(yi|ci)
p(yi)

+
n∑

i=1

log p(ci) (1)

in the projected space, where yi = WT xi.
If we estimate p(yi|ci) and p(yi) by the Parzen window method, the objective

becomes

J (W) =
n∑

i=1

log

∑
j:ci=cj

eij∑n
j=1 eij

+ const =
n∑

i=1

Ji + const, (2)

where Ji is the shorthand notation for log
[(∑

j:ci=cj
eij

)
/

(∑n
j=1 eij

)]
and

eij =

⎧
⎨

⎩
exp

(
−‖yi − yj‖2

2σ2

)
if i �= j

0 if i = j
(3)

with σ a positive parameter which controls the Gaussian window width.

2.2 Computing the Gradient

Our optimization algorithm is based on the gradient of J (W) with respect to
W

∇ ≡ ∇WJ =
n∑

i=1

∂Ji

∂W
=

n∑

i=1

n∑

j=1

∂Ji

∂‖yj − yi‖2 · ∂‖yj − yi‖2

∂W
. (4)

Notice that the chain rule in the inner summation applies to the subscript j, i.e.
treating yj as an intermediate variable and yi as a constant. Denote

Gij ≡ ∂Ji

∂‖yj − yi‖2 (5)

for notational simplicity. The gradient then becomes

∇ =
n∑

i=1

n∑

j=1

Gij (xi − xj) (xi − xj)
T W (6)

Direct computation of ∇ by going through all the vector pairs is too expensive
because it costs O(n2m2) time. However, careful examination of the formula
reveals that the computation can be significantly reduced:

n∑

i=1

n∑

j=1

Gij (xi − xj) (xi − xj)
T (7)

= 2

⎛

⎝
n∑

i=1

n∑

j=1

xiGijxT
i −

n∑

i=1

n∑

j=1

xiGijxT
j

⎞

⎠ (8)
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= 2

⎛

⎝
n∑

i=1

xiDiixT
i −

n∑

i=1

n∑

j=1

xiGijxT
j

⎞

⎠ (9)

= 2
(
XDXT − XGXT

)
(10)

= 2X(D − G)XT , (11)

where X = [x1,x2, . . . ,xn] and D is a diagonal matrix with Dii =
∑n

j=1 Gij .
That is, the gradient can be computed by matrix operations as

∇ = 2X(D − G)XT W. (12)

It is known that there exist fast algorithms that implement matrix multiplication
in O(τq) time where τ = min(m, n) and q a positive scalar less than 3 and
towards 2 [8]. Many researchers believe that an optimal algorithm will run in
essentially O(τ2) time [9]. In practice, if the matrix multiplication is accelerated
via the Fast Fourier Transformation (FFT), the computation of the gradient
(12) can be accomplished in O(τ2 log τ) time [8], which is already acceptable for
most applications.

2.3 Geodesic Flows on the Stiefel Manifold

Orthonormality of the transformation matrix is preferred in feature extraction
because it enforces the matrix to encode the intrinsic subspace in the most eco-
nomic way. The orthonormality constraint also prevents the learning algorithm
from falling into some trivial local minima. In addition, an orthonormal matrix
as the learning result is convenient for us to compare the new method with many
existing projective methods used in face recognition.

The set of m × r real orthonormal matrices forms a Stiefel manifold St(m, r).
Given the gradient ∇ at W, it has been shown [10] that the natural gradient in
such a manifold is given by

gradSt(m,r)
W J = ∇ − W∇T W, (13)

and an approximated geodesic learning flow with the starting point W by

Wnew = expm
(
t
(
∇WT − W∇T

))
W, (14)

where expm represents the matrix exponential and t a usually small positive
learning rate.

2.4 Regularization

An orthonormal matrix has (m − r)r + r(r − 1)/2 free parameters [11]. If this
number is comparable to or larger than the number of samples n, the discrim-
inant analysis problem probably becomes ill-posed. Unfortunately this is the
case in face recognition, especially when the facial images are sampled in high
resolutions. The learning objective must therefore be regularized.
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However, simple L2-norm used in e.g. Support Vector Machines is not suitable
for penalization here because summing the squared entries of an m×r orthonor-
mal matrix results in a constant r. One thus has to use some other regularization
techniques.

Notice that each column of W acts as a linear filter and can be displayed like
a filter image. It is a crucial observation we have made that many overfitting
projection matrices have highly rough filter images. That is, local contrastive
pixel groups dominate the filters, but they are too small to represent any rel-
evant patterns for face recognition. This motivates us to adopt a penalization
term Tr

(
WT ΩW

)
[12] to emphasize the smoothness prior of images, where the

constant matrix Ω is constructed by

Ωst = N (d(s, t); ρ). (15)

Here d(s, t) is the 2-D Euclidean distance of the locations s and t, and N the zero-
mean normal distribution. The variance parameter ρ controls the neighborhood
size and its value depends on the resolution of the facial images used. We find
that ρ ∈ (0.3, 0.8) works fine in our experiments with 32 × 32- and 23 × 28-sized
images. It is not difficult to see that Tr(WT ΩW) is an approximated version of
the Laplacian used in [12].

By attaching regularization term, we define the objective of Parzen Discrim-
inant Analysis (PDA) to be the maximum of

JPDA(W) =
1
2

n∑

i=1

log

∑
j:ci=cj

eij∑n
j=1 eij

− 1
2
λTr

(
WT ΩW

)
, (16)

where λ is a positive parameter that controls the balance between discrimination
and smoothness. The optimization of PDA is based on the gradient

∇̃ = X(D − G)XT W − λΩW. (17)

In the following experiments, we use the approximated geodesic update

Wnew = expm
(
t
(
∇̃WT − W∇̃T

))
W. (18)

We name our new method Parzenface when the Parzen Discriminant Analysis
is applied to the face recognition problem. The term Parzenface also refers to
the extracted features of facial images by using PDA.

3 Connections to Previous Work

Fisherface is a combined method which applies Fisher’s Linear Discriminant
Analysis (LDA) on the results of Principal Component Analysis (PCA). Fish-
erface and its variants are attractive because they have closed-form solutions
which can be obtained by (generalized) singular value decomposition. However,
these methods model each subject class by a single Gaussian class, which heavily
restricts their generalization in presence of different facial expressions, face poses
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and illumination conditions. In fact, these structural variabilities cause a subject
class to stretch in a curved but non-Gaussian manifold.

Recently some unsupervised methods such as Laplacianfaces [13] have been
proposed to unfold the structures of the face manifolds. Although it was reported
that they have better recognition accuracy in some cases, the discriminative per-
formance of these methods is naturally limited because they omit the supervised
information.

There exist two gradient-based approaches that are closely related to our PDA
method. Neighborhood Component Analysis (NCA) [3] learns a transformation
matrix (not necessarily orthonormal) to maximize the leave-one-out (loo) perfor-
mance of nearest neighbor classification. NCA measures the performance based
on “soft” neighbor assignments in the transformed space, which is similar to
the PDA objective except the logarithm function is dropped. However, without
the logarithm function, NCA lacks the connection to the information theory. By
contrast, PDA conforms the general assumption that the samples are indepen-
dently and identically distributed (i.i.d.). Here the “independence” refers to the
predictive version

p({ci}n
i=1|{yi}n

i=1) =
n∏

i=1

p(ci|yi), (19)

of which the maximization is equivalent to that of the PDA unregularized ob-
jective (1). In addition, the loss of orthogonality may cause NCA to fall in some
trivial local optima, for example, all columns of the transformation matrix con-
verging to a same vector.

Informative Discriminant Analysis (IDA) has the same objective as the unreg-
ularized one in Section 2.1. Peltonen and Kaski have shown that such predictive
likelihood has asymptotic connection to the mutual information criterion and the
learning metrics [4]. It has however been shown that the unregularized objective
is prone to overfitting in high-dimensional cases [14], as will also be illustrated
by experiment results in the next section. A significant drawback of IDA or
NCA is their slow implementation of the gradient computing ((4) in [4] and
(5) in [3]). The O(n2m2) running time restricts IDA and NCA to only small-
scale databases, which is nevertheless infeasible for face recognition. Another
expensive computation in IDA is induced by the reparameterization by Givens
rotation, which involves the trigonometric functions and further complicates the
gradient computation. In contrast, Parzenface is a fast approach to compute the
gradient by matrix multiplications and the updates within the Stiefel manifold
naturally maintain the orthonormality.

4 Experiments

4.1 Data

We have compared PDA and five other methods on two databases of facial images.
The first data set contains facial images collected under the FERET program [6].
2409 frontal facial images (poses “fa” and “fb”) of 867 subjects were stored in
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Fig. 1. The sample images from (top) FERET and from (bottom) ORL databases

the database after face segmentation. In this work we obtained the coordinates
of the eyes from the ground truth data of the collection, with which we calibrated
the head rotation so that all faces are upright. Afterwards, all face boxes were
normalized to the size of 32×32, with fixed locations for the left eye (26,9) and
the right eye (7,9). The second data set comes from the ORL database [7] which
includes 400 facial images of 40 subjects. There are 10 images taken in various
poses and expressions from each subject. We resize the ORL images to the size of
23×28 without further normalization. Example images from FERET and ORL
are displayed in Figure 1. We divide the images of each subject into two parts of
equal size, the first half for training and the rest for testing. The whole training
set is the union of the training part of all subjects, and so is the whole testing set.

4.2 Training Time

A major advantage of PDA (18) over its close cousins NCA [3] and IDA [4] is
that PDA requires much less training time. We demonstrate this by running
the compared algorithms on a Linux machine with 12GB RAM and two 64-bit
2.2GHz AMD Opteron processors.

We set the number of iterations for PDA and NCA to 10, and 10 × n for
IDA since IDA employs an online learning based on stochastic gradients. In this
way all algorithms go through a same number of training samples. We repeated
such training ten times and recorded the total time used in Table 1. It is easy
to see that PDA significantly outperforms NCA and IDA in efficiency. PDA
requires about 1/22 training time of NCA and 1/25 of IDA. The advantage is
more obvious for the FERET database of larger scale, where PDA is almost 84
times and 100 times faster than NCA and IDA, respectively.

4.3 Visualizing the Filter Images

It is intuitive to inspect the elements in the trained projection matrix W before
performing quantitative evaluation. If the projection matrix works well for the
FR problem, it is expected to find some semantic connections between the filter
images and our common prior knowledge about facial images.

Table 1. Training time of PDA and IDA on the facial image databases (in seconds)

database PDA IDA NCA

FERET (n = 1208, m = 1024, r = 10) 3,733 362,412 313,811
ORL (n = 200, m = 644, r = 10) 1,502 40,136 32,914
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Fig. 2. The first ten filter images of the ORL database using (from top to bottom)
Eigenface, Laplacianface, Fisherface, IDA and Parzenface

Figure 2 shows the first ten filter images of five compared methods, where
the top two are unsupervised and the bottom four supervised. We only plot
the ORL results due to space limit. The filter images of IDA contain almost
random pixels and there seems no pattern related to faces. This is probably
because IDA starts from the LDA projection matrix, but the latter suffers from
data scarce in face recognition. Fisherface and Laplacianface are better than
IDA since one can slightly perceive some contractive parts around or within the
head-like boundary. These parts however are too small and scattered all over
every filter image, which might cause overfitting of the projection matrix, e.g.
being sensitive to small shifts and variation. The contrastive parts of the NCA
basis mainly lie around the head, but these filters differ only in some tiny regions.
This is probably caused by the removal of the orthogonal constraint in NCA. By
contrast, Parzenface yields filter images that contain clearer facial semantics and
are hence easier for interpretation. For example, the fourth filter image is likely
related to the beard feature and the fifth may control the head shape. The filter
images of Eigenface also comprise some facial parts like eyes and chins, which
albeit are more blurred and may lead to underfitting for face recognition.

4.4 Face Recognition Accuracies

Classification of the testing faces is performed in the projected space by using
the nearest neighbor classifier. The face recognition accuracies with r ranging
from 10 to 70 are shown in Figure 3. Since the maximum output dimensionality
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Fig. 3. Face recognition accuracies of FERET (left) and ORL (right)

of Fisherface is the number of classes minus one, i.e. 39 for the ORL database,
we set a tick at 39 in the x-axis of the right plot for better comparison.

We found that NCA heavily suffers from the overfitting problem. Although
it can achieve excellent classification accuracies for the training set, the NCA
transformation matrix generalizes poorly to the testing data. Laplacianface per-
forms the second worst. This is probably because it requires a large amount of
data to build a reliable graph of locality, which is infeasible in our experiments.
This drawback is more severe for the ORL database which contains facial images
of different poses. The performance order of Eigenface, Fisherface and IDA de-
pends on the database used. Fisherface is the best among these three for FERET
while Eigenface is the best one for ORL.

The Parzenface learning can start from any orthonormal matrix. We set the
initial matrix to be the one produced by its best opponent, i.e. Fisherface for
FERET and Eigenface for ORL. The parameter σ in (3) and λ in (16) were ob-
tained by cross-validation using the training set. The face recognition accuracies
were then calculated by applying the trained Parzenface model to the testing set.
From Figure 3 we can see that the face recognition accuracies using Parzenfaces
are superior to all the other compared methods.

5 Conclusion

We have presented a new discriminant analysis method and applied it to the
face recognition problem. The proposed Parzenface method overcomes two ma-
jor drawbacks of existing gradient-based discriminant analysis methods by using
information theory. Firstly the computation of the gradient can be greatly accel-
erated by using matrix multiplication instead of going through all the pairwise
differences. Secondly we have proposed to employ the smoothness constraint of
images to regularize the face recognition problem. The empirical study on two
popular facial image databases shows that Parzenface requires much less training
time than the IDA and NCA methods while achieving higher face recognition
accuracies than the other compared methods.
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In this paper we focused on feature extraction by linear projections, but our
method can readily be generalized to the nonlinear version by using the kernel
extension. Moreover, the optimization is not restricted to the gradient ascend
flows. The convergence could be further improved by employing more advanced
techniques, such as conjugate gradients, in Riemannian manifolds.
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Abstract. Parts-based recognition has been suggested for generalizing
from few training views in categorization scenarios. In this paper we
present the results of a comparative investigation of different feature
types with regard to their suitability for category discrimination. So
patches of gray-scale images were compared with SIFT descriptors and
patches from the high-level output of a feedforward hierarchy related to
the ventral visual pathway. We discuss the conceptual differences, re-
sulting performance and consequences for hierarchical models of visual
recognition.

1 Introduction

The human brain employs different kinds of interrelated representations and
processes to recognize objects, depending on the familiarity of the object and
the required level of recognition, which is defined by the current task. There is
evidence that for identifying highly familiar objects, like faces, holistic templates
are used that emphasize the spatial layout of the object’s parts but neglect de-
tails of the parts themselves. This holistic prototypical representation requires
a lot of experience and coding capacity and therefore can not be used for all
the objects in every day’s life. A more compact representation can be obtained
when handling objects as combinations of shared parts. There is various biologi-
cal motivation for such a representation. The experiments of Tanaka [1] revealed
that there are high-level areas in primates ventral visual pathway that predict
the presence of a large set of features with intermediate complexity, generaliz-
ing over small variations and being invariant to retinotopical position and scale.
The combinatorial use of those features was shown by Tsunoda [2]. He observed
that complex objects simultaneously activate different spots in those areas and
that this activation is caused by the constituent parts. A parts-based represen-
tation is especially efficient for storing and categorizing novel objects, because
the largest variance in unseen views of an object can be expected in the position
and arrangement of parts, while each part of an object will be visible under a
large variety of 3D object transformations.

In computer vision literature there is a similar distinction into holistic and
parts-based approaches, depending on how feature responses are aggregated over
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the image. Parts can be local features of any kind. The response of a part detector
at different positions in an image means that the part might be present several
times but not that the probability is higher that the part is present at all. So
each peak in the multimodal response map is handled as a possible instance
of the part. In contrary to this, holistic approaches contain a layer that simply
accumulates the real-valued response of single features of the previous layer
over the whole image. This is only comparable to the biological definition if the
configurational information is kept.

Approaches with strong biological motivation are presented in [3,4]. Here hi-
erarchies of feature layers are used, like in the ventral visual pathway, where they
combine specificity and invariance of features. So there are cells that are either
sensitive to a specific pattern of activation in lower layers, in this way increas-
ing the feature’s complexity, or that pool the responses of similar features, so
generalizing over small variations. The output layer of the feedforward hierarchy
proposed in [3] contains several topographically organized feature maps which
are used directly by the final classifier. Following the above definition this is a
holistic approach. The similar hierarchy of [4] employs in the highest feature
layer a spatial max-pooling over each feature map in the previous layer, which
makes it a parts-based approach. Multimodal response characteristics and the
position of the parts are neglected.

Most other approaches work more directly on the images. Very typical holis-
tic approaches apply histograms, so e.g. in [5] the responses to local features are
simply summed and in [6] it is counted how often a response lies in a certain
range. In other holistic methods the receptive fields of the features cover the
whole image. So e.g. in [7] features obtained by principal component analysis
(PCA) on gray-scale images were used to classify faces. These features, so called
eigenfaces, show a very global activation and do not reflect parts of a face. In
contrary to PCA other methods produce so called parts-based features like the
nonnegative matrix factorization (NMF) proposed in [8] or a similar scheme pro-
posed in [9] yielding more class-specific features. Although during training the
receptive field of each feature covers the whole image, it learns to reconstruct
a certain localized region that contains the same part in many training views
(e.g. parts of normalized frontal views of faces). But usually those features are
used in a holistic manner, meaning that they are extracted at a single position
in the test image and in this way are only sensitive to the rigid constellation of
parts that was present during training. This limits the possibilities to general-
ize over geometric transformations, which is especially a drawback when using
few training examples in an unnormalized setting. Also the holistic approaches
perform bad in the presence of clutter and occlusion and often require extensive
preprocessing as localization and segmentation.

Other parts-based recognition approaches also use the maximum activation
of each feature, like the highest layer in [4]. In [10] the features are fragments of
gray-scale images. The response of a feature is binary and obtained by thresh-
olding the maximum activation in the image. The approach selects features
based on the maximization of mutual information for a single class. This yields
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fragments of intermediate complexity. An image is classified by comparing bi-
nary activation vectors to stored representatives in a nearest neighbor fashion.
Other approaches make use of the position and treat each peak in the response
map as possible part instance. In the scale invariant feature transform (SIFT)
approach in [11] gradient-histograms are extracted for small patches around in-
teresting points (see Fig. 1c). Each such patch descriptor is compared against a
large repertoire of stored descriptors, where the best match votes for the presence
of an object at a certain position, scale and rotation. The votes are combined
using a Generalized Hough Transform and the maximally activated hypothesis
is chosen. A similar scheme is proposed in [12]. Here image patches are used as
features and the algorithm is capable to produce a segmentation mask for the
object hypothesis that can be used for a further refinement process. In the bags
of keypoints approaches, e.g. [13], it is counted how often parts are detected in
an image. In contrast to holistic histogram-based approaches the presence of a
part is the result of a strong local competition of parts. Therefore it is more a
counting of symbol-type information than a summation over real-valued signal-
type responses. Parts-based recognition can be used to localize and recognize
objects at the same time and works well in the presence of clutter and occlusion.

In Sect. 2 we first comment on the task we want to solve and the nature of
the features required for this. Then we describe the investigated feature types
and our feature selection strategy. We give results for a categorization problem
in Sect. 3 and present our conclusions in Sect. 4.

2 Analytic Features

To generalize from few training examples, parts-based recognition follows the
notion that similar combinations of parts are specific for a certain category over
a wide range of variations. In this work we investigate how suitable different
feature types are for this purpose and which effort is needed in terms of the
number of used features. As has been argued in [10], it is beneficial that a single
part can be detected in many views of one category, while being absent in other
categories. So we need a reasonable feature selection strategy that evaluates
which and how many views of a certain category a feature can separate from
other categories and, based on those results, choose the subset of features that in
combination can describe the whole scenario best. For simple categories a single
feature can separate many views and therefore only few features are necessary to
represent the whole category. For categories with more variation more features
have to be selected to cover the whole appearance. This dynamic distribution of
resources is necessary to make best use of the limited number of features.

How well certain local descriptors can be re-detected under different image
transformations, as scale, rotation and viewpoint changes, was investigated in
[14]. Although this is a desired quality, it does not necessarily state something on
the usefulness in object recognition tasks. To underline that the desired features
should be meaningful, i.e. offer a compromise between specificity and generality
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at low costs, and to avoid confusion with approaches that learn parts-based
features, we will use the term analytic features.

We decided to compare patches of gray-scale images, for their simplicity, SIFT
descriptors, for their known invariance, and patches of the output of the feed-
forward hierarchy in [3], because of the biological background.

A SIFT descriptor as proposed in [11] describes a gray-scale patch of 16x16
pixels using a grid of 4x4 gradient-histograms (see Fig. 1c). Each histogram in
the grid is made up of eight orientation bins. The magnitude of the gradient at a
certain pixel is distributed in a bilinear fashion over the neighboring histograms
(in general four), where the orientation of the gradient determines the bin. The
gradient magnitudes are scaled with a Gaussian that is centered on the patch, in
this way reducing the influence of border pixels. Prior to the calculation of the
histogram grid a single histogram with a higher number of orientation bins is
computed for the whole patch. The maximum activated bin in this histogram is
used to normalize the rotation of the patch in advance. Finally the energy of the
whole descriptor is normalized to obtain invariance to illumination. In contrast
to [11], we do not extract SIFT descriptors at a small number of interesting
keypoints, but for all locations where at least a minimum of structure is present.
In this way only uniform, dark background is neglected and on the category
scenario in Fig. 3 on average one third of all descriptors is kept. We reduce the
number of descriptors for each image by applying a k-means algorithm with
200 components. A similar cluster step was also done in [15] to improve the
generalization performance of the otherwise very specific SIFT descriptors.

For the gray-scale patches we decided to use the same patch size as for the
SIFT approach and the influence of the pixels is also weighted with a Gaussian
that is centered on the patch.

The feedforward hierarchy proposed in [3] is shown in Fig. 1a. The S1-layer
computes the magnitudes of the response to four differently oriented gabor filters.
This activation is pooled to a lower resolution in the C1-layer performing a local
OR-operation. The 50 features used in S2 are trained as to efficiently reconstruct
a large set of random 4x4x4 C1-patches from natural images and are therefore
sensitive to local patterns in C1. Layer C2 performs a further pooling operation
and is the output of the hierarchy. Columns of 2x2 pixels are cut from the C2-
layer as shown in Fig. 1b and used as feature candidates. Because of the two
pooling layers, which offer a small degree of invariance to translation, a column of
2x2 pixels in C2 corresponds roughly to a patch of 16x16 pixels in the gray-scale
image.

We will refer to the parts-based approaches as GRAY-P, SIFT-P, and C2-P.
For SIFT-P each image i is described by the J = 4 × 4 × 8 = 128 dimensional
representatives of the 200 k-means clusters pin, n = 1 . . . 200. For GRAY-P the
pin are the patches of image i at all distinct positions n (J = 16 × 16 = 256).
Similar to this for C2 each pin is a column through the feature maps of image
i at a distinct position n as shown in Fig. 1b (J = 2 × 2 × 50 = 200). The pin

show a large variety. Therefore we will use all pin directly as feature candidates
wm, where m is an index over all combinations of i and n, and select a subset
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Fig. 1. a) Feedforward hierarchy in [3]. b) Columns of C2-layer are used as local fea-
tures. c) SIFT descriptor [11] is grid of gradient histograms each with 8 orientations.

of those candidates with a strategy that is described later. The response rmi of
feature wm on the image i is given by:

rmi = max
n

(G(wm,pin)) . (1)

For GRAY-P G(wm,pin) =
∑ J

j=1 hj(wj
m−wm)(pj

in−pin)
√∑

j hj(wj
m−wm)2

∑
j hj(pj

in−pin)2
is used which is

the normalized cross-correlation, where wm and pin are the means of vector
wm and pin respectively, and hj is a weighting which decreases the influence
of border pixels with a Gaussian. For C2-P the negative Euclidean distance

G(wm,pin) = −
√∑J

j=1(w
j
m − pj

in)2 shows better performance because of the
sparseness in this layer. The similarity between SIFT descriptors is given by their
dot product G(wm,pin) =

∑J
j=1 wj

mpj
in. The maximum activation per image is

chosen as response and spatial information is neglected.
Reflecting the remarks on feature selection given above, we decided to use

the following strategy: First we determine which views of a certain category
each individual candidate feature wm can separate. Therefore we compute the
response rmi for every training image with (1). Then the minimal threshold tm
is chosen that guarantees that all images with rmi above or equal to tm belong
the same category (see Fig. 2):

tm = min
{

t|∀ i|rmi≥t

j|rmj ≥t

li = lj

}
. (2)

Here li denotes the category label of image i. The images separated by the
threshold is assigned a constant score smi = k with respect to the feature wm.
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Fig. 2. Feature selection scheme. For visualization the images are sorted on their re-
sponse rmi. The threshold tm separates views of a single category (here ducks) from
all other images. To these views a score smi = k is assigned.

When the scores smi are determined for the set of candidate features M an
iterative process selects a given number of features by determining in each step
the best candidate feature m with:

m = arg max
m∈M

⎛

⎝
∑

i

f

⎛

⎝smi +
∑

q∈Q

sqi

⎞

⎠

⎞

⎠ (3)

and putting it from M into the set of already selected features Q. First (Q = ∅)
the feature is selected that is detected in the most views of a certain category.
Then successively the feature which causes the highest additional score is se-
lected. The function f(z) controls how effective a new feature can score for a
single image. When using a Heaviside function only a single feature can score
for an image. Here we use a Fermi function f(z) = 1

1+e−z and set k = 3. In
this way the feature gets only a high score for images that were not separated
yet, and a much lower score for images in which features have already been
detected.

3 Results

We tested the performance of the different feature types on the categorization
scenario shown in Fig. 3. The gray-scale images have a resolution of 128x128
pixels and show centered objects on dark background. The objects belong to
ten categories, where each category contains nine objects. Five objects per cat-
egory are used for training and the remaining four for testing. Each object is
represented by 30 views taken during a rotation around the vertical axis.

For each approach we ranked the candidate features from the complete set of
training images with the introduced selection framework. The first 75 selected
features for each approach are shown in Fig. 4a. The gray-scale patches contain
a lot of similar parts under different orientations. For C2 less complex patches
are selected that sometimes have only activation at the border or even seem to
stem from the background. The SIFT patches show the largest variety.

For the different tests we then varied the number of used features and the
number of training views that were used by a single layer perceptron (SLP),
as the final classifier. So first for each training and test image a vector was
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Fig. 3. Category scenario. Each category contains nine objects. Five are used for train-
ing and four for testing. Only two objects of both groups are shown here.
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Fig. 4. a) First 75 top ranked features for parts-based approaches. For C2 the corre-
sponding patch of the original gray-scale image and for SIFT the patch the descriptor
of which is most similar to the selected k-means component is shown. b) Error rates
depending on number of features for parts-based approaches.

calculated containing the responses of the selected features using (1). We let the
SLP converge on the training vectors, and after this calculated the recognition
performance on the complete set of test vectors. To increase both difficulty and
objectivity we did not distribute the training examples equally over the single
categories but repeated each test 50 times with random sets of training images
and so obtained a mean performance together with a standard deviation.
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Fig. 4b shows how the classification performance depends on the number of
selected features. For this test 10 random views were used per category for SLP
training. SIFT-P outperforms C2-P and GRAY-P. For small numbers of features
GRAY-P has the worst result, but shows the best improvement with increasing
feature number, while the performance of C2-P saturates early. Maybe the vari-
ability that is gained via quantity helps to overcome the missing invariance of the
very specific GRAY-P patches. C2-P patches make use of the invariance gained
by the hierarchical processing from the beginning. But they maybe too general
and only few qualitatively distinct features might exist.

Fig. 5 shows how the recognition performance depends on the number of
views per category that were randomly chosen for the training of the SLPs. In
this test we used 200 features for the parts-based approaches. On the right hand
side of the figure we give also results of SLPs that were trained on the original
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gray-scale images (GRAY-H) and on the complete C2-activations (C2-H). For
few training views SIFT-P is superior to the other approaches. C2-H is similar
to C2-P and GRAY-P, and takes the lead when using a large number of views.
GRAY-H shows the worst performance. More than the other approaches C2-
H profits from an increase in the number of training views. This confirms the
notion, that columns of C2-H, as used in C2-P, are invariant but too general.
Although this is a drawback for C2-P, it helps C2-H together with position
information to extrapolate well in the neighborhood of single views.

To provide reason for the shown differences Fig. 6 visualizes the same test with
the mean error rates given for individual categories. SIFT-P especially works
well for animals(1), bottles(2) and phones(9) but is outperformed by all other
methods on cans(5) and cups(7), and by C2-H also on ducks(7). The performance
of SIFT-P and GRAY-P on cups(7) is very poor and does not improve with
more training views. The patches for SIFT-P and GRAY-P contain only few
cup features but those are top-ranked and highly discriminative for the training
images, but maybe too specific to generalize over the test images.

To conclude, the holistic approaches (C2-H, GRAY-H) are good for categories
that do not vary much in shape during a rotation around the vertical axis, like
cans(5) or cups (7). Also the results on ducks(8) are good because only the
position of the head changes, while the body shape stays nearly unchanged.
When the change of the global shape is more extreme during rotation SIFT-P
performs better in comparison to the other approaches. This is especially true
for categories where the rotation in depth looks like rotation in plane (bottle(2),
brush(4), phone(9), tool(10)).

4 Conclusion

We evaluated the performance of different types of local feature when used in
parts-based recognition. We showed that SIFT descriptors are good analytic
features for most objects especially when the number of training views and the
number of features is limited. The biological motivated feedforward hierarchy in
[3] is powerful in holistic recognition with a sufficient number of training exam-
ples, but the patches from the output layer are too general and therefore show
weak performance in parts-based recognition. This is interesting because also
the calculation of a SIFT descriptor can be described as hierarchical processing:
First features are used that extract the magnitudes for 8 different local gradient
directions. Then a local winner takes all is applied over those features at each
position. Each of the 16 histograms in the 4x4 grid integrates over each direction
in a local neighborhood by summing the magnitudes (no non-linearity used as
for pooling in [3,4]). Finally the SIFT descriptor stands for a more global activa-
tion pattern in the grid. Besides the normalization of rotation for SIFT, it would
be interesting to investigate other reasons for the differences in performance in
future work. This could be beneficial for both feature types.

The most related work in the direction of analytic features was done in [16],
where Ullman introduced invariance over viewpoint in his fragments approach,
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or in the work of Dorko et al. in [15], where highly informative clusters of SIFT
descriptors are used. Since both approaches have not been applied to scenarios
with multiple categories, we hope that our comparative study provides further
helpful inside into parts-based 3D object recognition.
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Abstract. The goal of keyword spotting is to detect the presence of
specific spoken words in unconstrained speech. The majority of keyword
spotting systems are based on generative hidden Markov models and
lack discriminative capabilities. However, discriminative keyword spot-
ting systems are currently based on frame-level posterior probabilities of
sub-word units. This paper presents a discriminative keyword spotting
system based on recurrent neural networks only, that uses information
from long time spans to estimate word-level posterior probabilities. In a
keyword spotting task on a large database of unconstrained speech the
system achieved a keyword spotting accuracy of 84.5 %.

1 Introduction

The goal of keyword spotting is to detect the presence of specific spoken words
in (typically) unconstrained speech. Applications of keyword spotting include
audio indexing, detection of command words in interactive environments and
spoken password verification. In general, it is most useful in domains where a
full speech recogniser is cumbersome and unnecessary, partly because less than
perfect detection rates are still very satisfactory.

Nonetheless, the same mathematical framework used in the majority of speech
recognisers also forms the basis for keyword spotting systems. The typical key-
word spotting system consists of a set of hidden Markov models (HMM), one
for each keyword plus one or more filler models [1]. The filler models character-
ize non-keyword events in the speech signal, such as other words, background
noises and silence. The approach is generative and therefore finds the sequence
of models most likely to have produced the observations. The output of the sys-
tem is post-processed before deciding on the presence or absence of keywords
in the utterance [2]. First, the confidence of the predictions is estimated. This
is typically done by computing the ratio of likelihoods between keyword model
hypotheses and filler model hypotheses. Finally, a threshold level is applied to
the confidence measure in order to achieve a compromise between the number
of true and false positives predicted by the system.

In general, a discriminative approach to keyword spotting is more suitable,
as it allows discrimination between keyword and non-keyword events, and also
among similar keywords. In addition, posterior probabilities can directly be
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used as an effective confidence measure. Recently, discriminative keyword spot-
ting systems have been explored in various papers. The most common ap-
proach [3,4,5] uses artificial neural networks (ANN) in the framework of hybrid
ANN/HMM systems [6,7]. In these systems, keywords are modelled by concate-
nating phoneme models. A phoneme classifier (typically a multi-layer percep-
tron) estimates frame-level posteriors. These local posterior estimates are accu-
mulated over the duration of a segment and, typically, the result is normalised
by the length of the segment. Another approach to discriminative keyword spot-
ting uses kernel machines and large margin classifiers with a set of models and
feature functions consistent with hybrid ANN/HMM systems [8].

The approach presented in this paper attempts to model full keywords in the se-
quence data stream, while previous discriminative keyword spotting systems are
based on sub-word units. It is based on recurrent neural networks (RNNs) trained
with the connectionist temporal classification (CTC) objective function. This ob-
jective function allows artificial neural networks to map unsegmented sequential
data onto a sequence of labels [9,10]. The proposed system uses information over
long time spans, thereby providing non-local estimates of the a posteriori proba-
bility of the presence of either keyword or non-keyword events in the speech signal.

There is a plethora of different keyword spotting systems, often tailored to
meet the requirements of particular tasks. However, there is little consensus on
how to define benchmark tasks [11]. We have opted to tackle a realistic keyword
spotting task in a large database of spontaneous and unconstrained speech where
an HMM-based speech recogniser achieves a word accuracy of only 65%.

The remainder of the paper is structured as follows. Section 2 provides a de-
scription of the system. Keyword spotting experiments are presented in section 3
and the results are shown in section 3.4. Section 4 offers a discussion on differ-
ences between previous approaches and the one presented in this paper, and
gives directions for future work. Final conclusions are given in section 5.

2 Method

2.1 Outline

The network architecture selected for the keyword spotting task is the bi-
directional long short-term memory recurrent neural network (BLSTM), which
has shown good performance in a series of speech tasks [12,13]. The network
is trained with the connectionist temporal classification (CTC) objective func-
tion [9,10].

The input to the recurrent network is the data sequence of a speech utterance.
The network has a soft-max output layer with as many output units as keywords
to be detected, plus one output unit associated with non-keyword events. The
target for the training algorithm is a list (which may be empty) of keywords
in the order in which they appear in the input speech utterance. No further
constraints are applied to the system. In particular, the segmentation of the
speech signal is not required and various pronunciation variants of the same
keyword can appear in the data set.
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Fig. 1. Discriminant keyword spotting with BLSTM and CTC. When a keyword is
detected the ANN produces a spike-like output with higher probability than the non-
keyword output (dashed line).

Once the network has been trained, its output typically consists of a series
of spikes corresponding to keyword events that have been detected in the input,
separated by long periods of activation of the non-keyword output unit (see
figure 1). The activation of every output unit at every time step is an estimate
of the probability of detecting a particular keyword (or non-keyword event) at
that time step.

2.2 BLSTM

The long short-term memory (LSTM) [14,15] is an RNN architecture designed
to deal with long time-dependencies. It addresses the problem of the back-
propagated error either blowing up or decaying exponentially for long time lags
in conventional RNNs. The hidden layer of an LSTM network consists of a set
of recurrently connected blocks containing one or more memory cells and three
multiplicative units (the input, output and forget gates), which allow writing,
reading or resetting of the information in the memory cell.

Bi-directional RNNs [16] address in an elegant way the need for delayed de-
cisions in some sequential tasks such as speech processing. Data sequences are
presented forwards and backwards to two separate recurrent networks, which
are connected to the same output layer. Therefore, for every point in a given
sequence, the network has complete sequential information about the points be-
fore and after it. An implementation of bi-directional LSTM (BLSTM) can be
found in [12].

2.3 CTC

Connectionist temporal classification (CTC) [9,10] is an objective function to
label unsegmented sequential data with RNNs. The basic idea behind CTC is to
interpret the network outputs as a probability distribution over all possible label
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sequences, conditioned on the input data sequence. Given this distribution, an
objective function can be derived that directly maximises the probability of the
correct labelling. Since the objective function is differentiable, the network can
be trained with standard back-propagation through time.

3 Experiments

3.1 Material

The experiments were carried out on a set of dialogues in German from the Verb-
mobil database [17]. The dialogues deal with the scheduling of date appointments
for meetings. The database consist in spontaneous and unconstrained speech,
with long silences and noises. The results provided along with the database for
a baseline automatic speech recogniser give an approximate idea of the difficulty
of processing this database: the HMM-based speech recogniser achieves a word
accuracy of 65% in an automatic, full transcription, of the test set [17].

The material used in the experiments corresponds to version 2.3 (March 2004)
of the Verbmobil database (except for CD-ROM number 53.1 of the training set
which was not available) [17]. It includes separate training, validation and test
sets. The database is speaker independent. Speakers were distributed equally
across sexes in all sets and every speaker appears in only one of the sets. The
training set includes 748 speakers and 23975 dialogue turns for a total of 45.6
hours of speech. The validation set includes 48 speakers and 1222 dialogue turns
for a total of 2.9 hours of speech. The test set includes 46 speakers and 1223
dialogue turns for a total of 2.5 hours of speech.

Due to the nature of the dialogues included in the database, we decided to use
dates and places as keywords for the detection task. This ensures a relatively
good coverage of keywords in the training, validation and test data sets. The
twelve keywords chosen were:

april, august, donnerstag, februar, frankfurt, freitag, hannover, januar,
juli, juni, mittwoch, montag

Note that the database includes various pronunciation variants of some of these
keywords (e.g. “montag” can end either with a /g/ or with a /k/). In addition,
several keywords appear as sub-words, e.g. in plural form such as “montags” or
as part of another word such as “ostermontag” (Easter Monday).

The orthographic transcription provided along with the database was exam-
ined for the presence in every utterance of one or more of the twelve keywords
selected. Once a keyword was found, the begin and end times for the keyword
were saved for evaluating the performance of the keyword spotting system at a
later stage. These times were provided along with the database and correspond
to the segmentation given by an automatic speech recognition system.

This procedure gave a total of 10469 keywords on the training set with an
average of 1.7% keywords per non-empty utterance (73.6% of the utterances
did not have any keyword); 663 keywords on the validation set with an average
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of 1.7% keywords per non-empty utterance (68.7% of the utterances did not
have any keyword); and 620 keywords on the test set with an average of 1.8%
keywords per non-empty utterance (71.1% of the utterances did not have any
keyword).

The list of keywords (which may be empty) in the order in which they ap-
pear in every utterance, forms the target sequence for the network’s training
algorithm.

Finally, the speech data was characterised as a sequence of vectors of thirty
nine coefficients, consisting of twelve Mel-frequency cepstral coefficients (MFCC)
plus energy and first and second order derivatives of these magnitudes. The coef-
ficients were computed every 10ms over 25ms-long windows. First, a Hamming
window was applied; secondly, a mel-frequency filter bank of 26 channels was
computed; and finally, MFCC coefficients were calculated with a 0.97 preempha-
sis coefficient. The input data was normalised to have zero mean and standard
deviation one on the training set.

3.2 Difficulty with HMMs

We briefly illustrate the difficulty of performing keyword spotting with a genera-
tive HMM with as few constraints as those required by our system. In particular,
no post-processing is applied. For these experiments every keyword was mod-
elled as a left-to-right HMM with sixteen states and observation probabilities
given by a mixture of Gaussians with diagonal covariance matrices. For the filler
model we used an HMM of the same type with three states. The grammar allows
one or more repetitions of any keyword or filler per utterance.

We experimented with: a) doubling the number of mixtures from two until a
maximum of 128 and re-estimating the parameters twice after every step; b) the
parameters of the HMMs with eight Gaussians were re-estimated for more than
five hundred iterations, with an evaluation of the results carried out every ten
iterations (henceforth, one step); and c) the first experiment was repeated with
HMMs initialized using the reference segmentation and increasing the number of
mixtures up to 256. The performance was evaluated on the validation set after
every step with insertion penalties from zero to minus one hundred in steps of
ten. For experiment b), the performance did not improve (it slightly decreased)
after 350 iterations.

The results on the test set for all experiments, optimised on the validation
set, showed negative accuracy due to the many false positives generated by the
system: of the order of three thousand in all cases. Hence, the importance of a
post-processing stage for HMMs that estimates the confidence of the predictions
and a threshold level for balancing true and false positives.

3.3 Setup

The CTC-BLSTM network was trained with the input sequences and keyword
targets from section 3.1. The network has, therefore, 39 input units and 13 units
in the output soft-max layer. Both the forward and backward hidden recurrent
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layers consist of 128 LSTM memory blocks with one memory cell per block,
peephole connections and forget gates. The input and output cell activation
functions are a hyperbolic tangent. The gates use a logistic sigmoid function
in the range [0,1]. The input layer is fully connected to the hidden layer and
the hidden layer is fully connected to itself and to the output layer. The total
number of weights in the network is 176,141.

Training was carried out with a learning rate of 10−4 and a momentum co-
efficient of 0.9. Weights were initialised with a Gaussian random distribution
with mean zero and standard deviation 0.1. In addition, Gaussian noise with a
standard deviation of 0.5 was added to the inputs during training to improve
generalization. The network was tested every five epochs on the validation set
and training finished once the error on the validation set stopped decreasing.

3.4 Results

The typical sequence of outputs for a trained network can be seen in figure 1. It
consists in a sequence of spikes associated with detected keywords and separated
by long periods during which the non-keyword output unit is the most active.
The CTC algorithm allows the network to keep any output active for as long as
necessary or as little as one time step only. To evaluate the results, at every time
step the output with the highest activation is chosen. If an output is the most
active for a period of time, we choose the highest activation during that period
as the probability of detecting the keyword, and the time at which the highest
activation occurs as the location of the detected keyword.

Spikes whose identity match a keyword in the speech signal and that appear
within the boundaries of the keyword in the speech signal are counted as true
positives, unless more than one spike is output in that period, in which case only
one of them counts as a true positive and the rest count as false positives. Those
spikes that appear out of the boundaries of the keyword in the speech signal are
considered false positives. The accuracy of the system is given by the number
of true positives minus the number of false positives divided by the number of
keywords in the data set.

Four networks were trained on the same task with different initial random
weights. Average accuracy over four runs was 84.5% with a standard error of
1.2%. The average probability of true positives was 0.98 with a standard error of
0.004. The average probability of false positives was 0.80 with an standard error
of 0.01. As expected, given the discriminative nature of the algorithm, setting
a posteriori a threshold level in between this probability levels did not increase
performance significantly (84.8% accuracy, with an standard error of 1.2%).
Table 1 shows the number of true and false positives by keyword for the network
with the best performance. As shown in the table, the system discriminates
almost perfectly between similar keywords such as “juni” and “juli”.

As of now, the CTC training algorithm does not constrain the spikes to appear
within the begin and end times of the speech pattern (it is assumed that a
reference segmentation is not available). The algorithm trains the network to
detect the correct sequence of keywords and in the right order for any utterance
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Table 1. Results by keyword for the ANN with the best performance. Accuracy is the
number of hits minus false positives divided by the actual number of keywords in the
test set. Average accuracy over four runs is 84.5 % with a standard error of 1.2 %.

Keyword # Hits # FPs # Actual % Accuracy

april 27 2 32 78.12
august 29 1 34 82.35

donnerstag 55 6 56 87.50
februar 55 1 60 90.00

frankfurt 18 0 25 72.00
freitag 40 4 45 80.00

hannover 76 5 86 82.56
januar 35 4 38 81.58

juli 53 1 56 92.86
juni 63 2 66 92.42

mittwoch 36 1 39 89.74
montag 79 3 83 91.57

Overall 566 30 620 86.45
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Fig. 2. The figure shows the dependency of the output unit associated with keyword
“donnerstag” at the time step when this keyword is detected in figure 1, with respect
to the network inputs at various time steps around the detection point (indicated by
an arrow at the top of the figure). In addition, the extent (0.9 s) and location of the
keyword in the speech signal is shown at the top of the figure. As can be seen, the
probability of detecting the keyword depends on the inputs over a long time span, and
decreases towards the end of the keyword which is the least discriminative part of it:
“tag” (day).

in the training set. Probably this makes training slower, but it seems that it
is not necessary to add this constraint to the training algorithm in order to
achieve good performance: when the results are evaluated without using the
segmentation, the average accuracy over four runs is 86.1% with a standard
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error of 0.7%. Of those keyword candidates appearing outside the boundaries in
the speech signal, only one was more than 0.5 s outside the reference segment.
This level of precision should be enough for tasks where high detection accuracy
is more important.

Finally, figure 2 shows, for a successful detection, the dependency of the net-
work output at the time when the keyword is detected with respect to the inputs
at some previous and following time steps. As can be seen, the probability of
detecting the keyword depends on the inputs over a long time span (of about
one second, or a hundred network time steps) and, for the example shown, the
dependency decreases towards the end of the keyword, which is the least dis-
criminative part of it.

4 Discussion and Future Work

The main difference between our approach to discriminative keyword spotting
and other discriminative systems is the capability of computing non-local poste-
riors for the keywords, i.e. the system uses information over long time spans to
compute the probability of a keyword appearing in the speech signal. In addition
to this, the a posteriori estimation of a threshold level to balance true and false
positives is not required.

The algorithm makes very few assumptions about the domain, which facili-
tates the development of systems for detection tasks. Nonetheless, if very high
precision in the location of spots is required, the system might benefit from
adding to the algorithm the constraint that keywords must be detected within
the boundaries established by the reference segmentation. However, not having
this constraint greatly simplifies the preparation of training data.

To make the system scale, one solution consists in implementing smaller net-
works. For example, one for each keyword, or one for each set of similar key-
words among which the system must discriminate. New networks can be added
to the system at any time. Under the assumptions that, for different networks,
the training data has similar characteristics and that the non-keyword output
unit is associated to a model of similar characteristics, which is reasonable, the
estimates of the a posteriori probabilities given by different networks can be
compared and used to determine the presence or absence of keywords in the
input data stream.

Another option to improve scalability consists in detecting sub-word units in
the signal and use these outputs as inputs for one of the existing systems that
builds keywords from sub-word units. The detection of sub-word units with the
system proposed in this paper will benefit from the same features and ease of use
described in this paper (see [9] for results on phoneme recognition with CTC-
BLSTM). Besides this, it is possible to feed the sub-word level predictions to
another CTC-BLSTM network with keyword-level outputs [10].

The choice of sub-word or word models depends on the task. In general, sub-
word units are more practical for audio indexing tasks because the system must
respond to searches for unknown keywords. However, in tasks such as detection
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of command words and spoken password verification the vocabulary is unlikely to
change. Also, the benefits of word-level discrimination (e.g. decreased confusion
among similar keywords) are most desirable in these cases, where security is
paramount.

5 Conclusion

We have presented a word-level discriminative keyword spotting system that
is fast, accurate and easy to use. The probability of detecting a keyword is
computed using information from long time spans. These probabilities can be
read directly from the outputs of a recurrent neural network. An a posteriori
estimate of an acceptance threshold level is not required. Finally, the system
makes few assumptions about the domain: only the input speech signal and a
list of keywords (which may be empty) in the order in which they occur in the
signal are necessary to train the system. The algorithm is general and can be
used for any task requiring the detection of patterns in sequence data. In a
keyword spotting task in a large database of unconstrained speech the system
achieved a keyword spotting accuracy of 84.5%.
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Abstract. The spatiostructural features proposed for recognition of on-
line handwritten characters refer to offline-like features that convey infor-
mation about both the positional and structural (shape) characteristics
of the handwriting unit. This paper demonstrates the effectiveness of rep-
resenting an online handwritten stroke using spatiostructural features, as
indicated by its effect on the stroke classification accuracy by a Support
Vector Machine (SVM) based classifier. The study has been done on two
major Indian writing systems, Devanagari and Tamil. The importance of
localization information of the structural features and handling of trans-
lational variance is studied using appropriate approaches to zoning the
handwritten character.

1 Introduction

Handwritten character recognition (HCR) assumes considerable importance be-
cause of its applicability to pen-based interfaces and recognition of handwriting
on scanned documents. Online and offline handwriting recognition entail dif-
ferent modes of input, representation, processing and recognition strategies. In
this paper, we present studies on online handwriting data of two major Indian
writing systems. Offline-like features extracted from temporal sequences of po-
sitional co-ordinates for the characters are used to represent the units of online
handwriting.

Recognition of Indian script characters pose diverse challenges. Indian writ-
ing systems derived from the Brahmi script have syllabic character sets. Such
a writing system is characterized as an abugida, and has distinct symbols for
consonants, vowels and conjunct consonants as well as for the modifier symbols
of the above units. The combination of such modifiers with specific consonant
symbols often gives rise to a new symbol derived from the smaller units. The
shape of character units is perceptually more complex than in many other writ-
ing systems and occasionally varies with the context of its co-occurrence with
a vowel modifier unit. A character can be written using one or more strokes (a
maximum of around 10 for Devanagari script). Here a stroke is defined as the
trace of the pen-tip captured from a pen-down event till the following pen-lift
event. Some characters have common constituent stroke units. Hence it involves
less number of classes to represent the character set in Indian scripts when using
strokes compared to using character units.
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Tamil script is used in southern states of India as well as in Sri Lanka and
South East Asian countries. Tamil script consists of 33 basic consonant and vowel
units. Characters representing syllabic combinations of the above units can be
realized using 98 strokes, including dot strokes. Devanagari is the most widely
used Indian writing system. The 45 Devanagari consonant and vowel characters,
their modifiers and composite ligatures formed from these can be written using
123 strokes including dot strokes.

The next section gives an overview of approaches to online HCR. Section 3
describes the spatiostructural features for online handwriting. Section 4 describes
different methods for extraction of spatiostructural features. Section 5 presents
the results of studies on recognition of strokes.

2 Approaches to Online HCR

Online handwritten character recognition uses spatiotemporal features to rep-
resent the stroke unit, which involve the time sequence of sample values repre-
senting the information about the pen-tip. Features extracted can be positional,
structural or statistical. Offline character recognition uses spatioluminance based
features captured from the image of the character[11]. Since it is not possible to
demarcate stroke boundaries in the images of characters, stroke level recognition
cannot be performed. Feature extraction techniques applied to offline handwrit-
ten character data are presented in [12].

Zoning is a technique extensively used for extraction of features from offline
data. Zoning refers to the partition of a character image into distinct regions
called zones, which can be considered as sub-images, for feature extraction. Zon-
ing strategies and feature extraction involving zoning for offline recognition are
described in [12]. Online HCR approaches also considered zoning[9][13] for iden-
tification of the position of stroke points in a character with respect to predefined
regions for a small set of strokes. These approaches use the encoded sequence
of zones traversed to obtain the online features[3][6][7]. However, there has been
no mention of structural feature extraction from zones in any of these works.

There have been numerous studies to identify cardinal points on a
stroke[4][10]. Authors of [4] analyze the shape of handwritten characters to
identify shape points that are less susceptible to perturbations and useful for
description of characters. They also define a valence feature to describe a shape
point. Based on an empirical study, a subset of such features with low valence
have been identified to represent handwritten Tamil characters.

Various studies have presented observations that offline handwriting recogni-
tion offers less classification accuracy compared to online handwritten character
recognition[2][11]. Online data for a character also offers significant reduction in
space complexity compared to its offline counterpart. Since the two techniques
view a character from different perspectives, there is a significant amount of com-
plementarity in information across the representations, which can be used for
increasing the recognition accuracy[14]. There have also been methods proposed
for the extraction of online features from offline data[5].
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3 Spatiostructural Features

Spatiostructural features characterize the positional and structural or shape fea-
tures of a character. Localization of the structural features is achieved by con-
sidering regions called zones. Each structural feature characterizes the shape of
a stroke segment. The shape features are comparable to offline features because
these features can be extracted from the contour profiles of a stroke image. The
shape features considered in our studies are as shown in Figure 1. The cusp
feature is located around a point where the x and y derivatives of a stroke curve
vanish simultaneously. The bump points, where the derivative with respect to
either x or y vanishes, as well as stroke terminals have been quantized in 8
directions, where consecutive axes are oriented at a spacing of 45◦.

Fig. 1. The structural features that are extracted from the zones for representation of
a stroke: (a) line terminals with directional information, (b) bumps with orientation
information and (c) a cusp

A segment of online handwriting data corresponding to a structural feature
is a short temporal sequence of two-dimensional positional coordinates. This is
comparable to small spatially continuous segments that can be identified from
the contour of the stroke image occurring in the same spatial region within the
stroke bounds. The feature extraction module identifies the spatial regions in
the data of a stroke and determines the frequency of occurrence of shape fea-
tures in each zone. The objective of this work is to consider the spatiostructural
features to represent the online handwritten character data and to study the
effectiveness of these features extracted using different partitioning approaches
or zoning strategies.

The main issues in the extraction of spatiostructural features are as follows:

– What is the optimal number of zones needed to represent a handwritten
character in a writing system?

– What is the method of partitioning that will help in the identification of
optimal zones?

– What are the features to be extracted from each zone?
– How are shape features occurring at zone boundaries handled?

It is not straightforward to determine the number and choice of zones for an
effective representation. Most of the zoning techniques applied to offline recogni-
tion rely on empirical studies to identify the best choice of zoning strategy. The
use of genetic algorithms[8] is suboptimal in terms of its time and algorithmic
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complexity. Carefully identified zone boundaries (using training data variations)
may be more useful for printed or neatly written characters where variations in
writing a character are not significant.

With reduction in zonal area, the spatial resolution is enhanced. However, a
large number of zones or over-optimized zone boundaries may be inefficient in
handling inherent translational or rotational variations of the structural features
of a handwritten character. Significant positional information (local and global)
may be available with an optimal choice of the minimum number of zones. Our
approach involves empirical determination of the optimal zoning strategy. Fea-
tures that occur in the boundary of a zone have been assigned membership to
all zones sharing the boundary.

4 Zoning Strategies for the Extraction of Spatiostructural
Features

Figure 2 illustrates the different zoning strategies for a Devanagari stroke. Struc-
tural features are extracted from the segments of a stroke occurring in each zone.

Fig. 2. Strategies for zoning the data of a handwritten stroke: (a) single zone; (b)
3 horizontal zones; (c) 3 vertical zones; (d) quadrant zoning; (e) 6 zones; (f),(g),(h)
the 5 zone approach which involves overlapping and disjoint sub-regions; (i) 9-zones
homogeneous partitioning; (j) 9-zones heterogeneous partitioning

1. Single Zone Representation: The entire region of the stroke boundary is
considered to form one zone (Figure 2(a)). The study based on this repre-
sentation presents the effectiveness of using the frequency of occurrence of
structural features in a stroke for classification.

2. 3-Zone Representation – Horizontal Partitioning: Here the bounding rect-
angle of the stroke is divided into three horizontal zones (Figure 2(b)). This
representation uses the information of whether the shape based features
identified in a stroke belong to the top, bottom or middle part of the stroke
(when viewed as an image).
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3. 3-Zone Representation – Vertical Partitioning: Here the stroke area is di-
vided into three homogeneous vertical zones. The approach identifies the
structural features that occur in the 3 vertical blocks shown as in Figure
2(c). The maximum density of features mostly occurs in the middle zone.

4. 4-Zone Representation: The stroke area has been divided into quadrants,
similar to the division in the cartesian co-ordinate space (Figure 2(d)).

5. 6-Zone Representation: This gives information of whether a structural fea-
ture is located in the top, middle or bottom, as well as whether it is in the
left or the right half of the stroke area. This partitioning is shown in Figure
2(e).

6. 5-Zone Overlapping and Disjoint Subzone Partition: Figures 2(f)(g) and (h)
depict this zoning strategy, where the shaded regions represent the zones.
Figures 2(f) and (g) show two zones each, whereas the shaded corner regions
in Figure 2(h) all correspond to a single region. These 5 zones are equal
in area. But the difference from the previous zoning strategies is that we
consider overlap across zonal regions in Figures 2(f) and (g). Moreover, the
zone depicted in Figure 2(h) has disjoint sub-regions. This representation
is helpful in obtaining translational invariance for shape features within the
spatial bounds of a stroke.

7. 9-Zone Homogeneous Partitioning: In this case, the stroke area is divided
into 9 equal-area zones as shown in Figure 2(i). The advantage in this case
is a high level of localization of the structural feature information. This
intuitive partitioning approach can be viewed as a combination of the two 3-
zone partitioning strategies, where the availability of horizontal and vertical
information helps in locating the grid where the feature is positioned.

8. 9-Zone Heterogeneous Partitioning: Here, the zonal orientation is the same
as in the previous case. But the zones are chosen to be of different sizes or
areas. The reason for choosing this kind of zoning is to accommodate some
amount of translational invariance, similar to the 5-zone strategy. The 9-zone
heterogeneous partitioning is shown in Figure 2(j).

5 Studies on Stroke Recognition for Devanagari and
Tamil Writing Systems

Studies have been conducted on stroke databases of two Indian writing systems,
Devanagari and Tamil. The data used consists of 19398 training examples and
9080 test examples for Tamil, and 14269 training and 6929 test examples for
Devanagari writing system. The training and test sets have no examples in com-
mon. The number of stroke classes used for the study is 93 for Tamil and 117 for
Devanagari. Strokes having very small horizontal and vertical extent (like the
dot strokes for Devanagari and Tamil) have not been included in the study. Their
classification is subject to preclassification techniques based on their structural
properties.

The preprocessing techniques are aimed at producing a uniform representation
of the stroke, reducing variability across examples of the same class and reducing
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noise, while maintaining the structural characteristics of a stroke. Preprocessing
of strokes involves position normalization, followed by upsampling, smoothing
and size normalization preserving the stroke shape. The smoothing operation is
achieved by convolving a Gaussian filter with the abscissae and ordinates. The
values of parameters involved in preprocessing are experimentally determined.

The structural features have been extracted from a windowed sequence of
2-dimensional positional co-ordinates, with the window length empirically cho-
sen. The zones are identified within the rectangular area enclosed by the bound-
ing box of the stroke. The frequency of occurrence of shape features within each
zone constitutes its zonal information. Feature extraction results in a fixed di-
mensional feature vector describing the stroke. The length of the feature vector
is proportional to the number of regions considered because the zonal features
are concatenated to obtain the stroke feature vector. The classification module
used here is implemented using an SVM classifier. One-against-the-rest strategy
is used for multiclass classification. A rule-based approach is applied to identify
the character unit from the component strokes.

Table 1 shows the classification accuracy obtained using different partitioning
strategies for extraction of spatiostructural features from Devanagari and Tamil
strokes. A Gaussian kernel SVM has been used for classification, with an em-
pirically determined value of width (σ) and regularization (C) parameter. The
optimal value of σ is 20 and 10 for Devanagari and Tamil strokes respectively.
The value of C is 100 for both scripts. The discussion of the results in each case
follows.

Table 1. Classification accuracy using different zoning strategies for the extraction
of spatiostructural features

Zoning Strategy 1-zone 3 Hori- 3 Ver- 4-zones 5-zones 6-zones 9-zone 9-zone
zontal tical Homo- Hetero-
zones zones geneous geneous

Classi- Deva- 1-best 26.54 43.86 65.12 76.35 79.97 87.17 89.54 90.86
fication nagari 3-best 47.75 73.15 79.83 86.92 87.30 93.74 94.90 95.56
Accu- 1-best 39.53 82.35 84.28 81.38 87.69 83.45 89.69 89.97
racy Tamil 3-best 60.80 90.12 91.75 87.42 93.63 89.54 94.87 95.63

The results of the study using single zone representation show that the fre-
quency of occurrence of structural features without spatial information is in-
sufficient for classification. Analysis of the confusion matrix and a study of the
feature vectors of examples from confusable classes shows that there are groups
of different looking strokes which have the same frequencies of structural shape
features. Such a group of Tamil strokes is shown in Figure 3(a). It is the confusion
among such groups of strokes that causes a high rate of misclassification.

The inclusion of minimal y-positional information with the 3-zone horizontal
partitioning leads to a significant increase in the recognition accuracy. Analysis
of the structure of Tamil and Devanagari strokes (with a height of approximately
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1
3

rd the height of the character or more) reveals an inherent 3-zone structure
for most of the stroke classes, with the relative position of the characteristic
shape features maintained with respect to implicit horizontal reference lines
(Figure 3(b)).

Fig. 3. (a) 3 Tamil strokes which have similar frequencies of occurrence of structural
features for the single-zone approach; (b) inherent 3-zone structures in Devanagari and
Tamil strokes; (c) 2 pairs of Devanagari strokes showing the translational variations of
shape features that alter their zonal locations with respect to 4-zone strategy

With 3-zone vertical partitioning, the performance obtained is significantly
better than previous cases, implying that the discriminable information present
in such a vertical partitioning is more compared to a corresponding horizontal
partitioning. An implicit localization of structural features into 3 zones as ob-
tained through vertical partitioning is more observable in Tamil strokes, which
contributes to the better performance on Tamil data.

The classification accuracy corresponding to quadrant zoning is seen to be
improved for Devanagari script, but it is less than the 3-zone partitioning for
Tamil script. The lack of effectiveness of this kind of partitioning can be at-
tributed to the translational variations of characteristic shape features within
the stroke area. In some cases, as shown in Figure 3(c), minor shifts of the fea-
tures can result in different zonal locations of shape features. These variations
reduce discriminability when quadrant zoning is applied.

The 5-zone representation is seen to have considerable advantage, especially
for Tamil strokes, possibly due to the choice of zones such that a reasonable
degree of translation invariance has been accommodated. The presence of shape
features across overlapped zones gives a more robust measure of spatial informa-
tion. The choice of zones with a focusing on the central regions of the character
and the treatment of corners separately is another salient difference from the
previous approaches. The corner features are less susceptible to translational
variation because they are associated with line terminals and the bounding box
of the stroke. Moreover, since there is observed to be no pair of strokes which
have the same occurrence of corner structural features but which are differenti-
ated by the location of the corner, we are able to consider all corner features as
belonging to one (the fifth) region. The performance has largely improved with
this zoning strategy for Tamil strokes.

Partitioning a stroke into 6 homogeneous spatial zones increases spatial local-
ization and provides x positional information in addition to the 3-zone horizontal
partitioning approach. This additional information is observed to be more useful
for Devanagari script.
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Fig. 4. Figure showing structural properties of Devanagari and Tamil strokes

The amount of spatial information available in the 9-zone representations is
seen represent Devanagari and Tamil strokes well. The length and sparsity of
the feature vector have also increased compared to the previous approaches.
The feature vector has a dimension of 153 with an average of 10 − 20 non-zero
feature values, depending on the complexity of the shape of a stroke.

Heterogeneous 9-zone partitioning handles spatial displacement of structural
features within the stroke (which occurs naturally due to variations in handwrit-
ten characters). The best observed recognition accuracy is 90.86% for Devanagari
strokes and 90.77% for Tamil strokes, which corresponds to the 9-zone heteroge-
neous partitioning strategy with σ values for the Gaussian kernel chosen empir-
ically as 20 and 15 respectively. Thus by this partitioning method, we are able
to get a considerable improvement over the structural approach described in [1].

In the studies that have been presented, it is generally observed that the
recognition accuracy for Tamil strokes is higher than that for Devanagari strokes,
which can be explained based on the structural properties of Devanagari and
Tamil strokes. Most of the Tamil characters (consonants, vowels, consonant-
vowel or conjunct-consonant-vowel) are written as single strokes. The number
of stroke classes considered for Tamil is 93, as compared to 117 for Devanagari.
However, the distinctive structural features of Tamil strokes have more to add
to discriminability than their number. There are well-defined shape differences
even across similar Tamil strokes, which are not likely to be confused with noise
or with variations in writing a stroke. Some typical Tamil strokes have been
plotted in Figure 4(a).

Most Devanagari characters have a central vertical line with characterizing
shape features occurring on the left or on both sides. For such characters, we
can identify a nuclear stroke structure of which many other strokes can be real-
ized as perturbations. Common ways of writing such Devanagari characters are
as a single stroke or as 2 (or rarely 3) strokes. With 2 or more strokes, each
unit represents a smaller part of the character and some units are seen to be
repeated across characters. This kind of realization poses a problem when the
perturbations intended for a different stroke are likely to be sources of confusion
for variations from the “neat” way of writing the stroke. A number of Devana-
gari strokes which appear to be derived from perturbations of a nuclear stroke
structure are illustrated in Figure 4(b).

Analysis of the confusion matrix also shows that most of the misclassified
strokes are small in size have a simple structure. For Devanagari strokes, the
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misclassification can be attributed to very small diacritic strokes which have a
simple structure (mostly single lines or arcs). The confusions arise between struc-
tural differences across similar Devanagari strokes and variations for a stroke.

5.1 Performance Comparison

The classification accuracy reported for a structural classifier built on Tamil
strokes using online features is 82.80%[1]. The performance of the classifier us-
ing spatiostructural features is also compared with the performance using purely
online spatiotemporal features (Table 2). The performance of spatiotemporal
features is observed to be better as recognition accuracies with online features
are expected to be higher[11]. Spatiostructural features can be observed to offer
discriminability comparable to spatiotemporal features along with complemen-
tarity of information. They also possess writing direction invariance which is not
present in a representation using spatiotemporal features.

Table 2. Comparison of the accuracy of spatiostructural features based classifier with
positional coordinate sequence features, using SVM-based classifiers for both cases

Feature Spatiostructural Spatiotemporal

Devanagari (%) 90.86 95.14

Tamil (%) 90.77 92.03

6 Summary and Conclusion

The spatiostructural features that describe a handwritten stroke are extracted
by the evaluation of the frequency of occurrence of structural features in zones
defined within the bounding rectangle of the stroke. The empirical determination
of optimal zoning strategies for Devanagari and Tamil strokes has been described.
It has been observed that increasing the localization information of the features
adds to discriminability in most cases. Incorporation of translational invariance
for structural features is seen to enhance recognition accuracy and it has been
studied with heterogeneous zoning approaches. The best of the zoning strategies
identified in this study are seen to yield over 90% classification accuracy for both
Devanagari and Tamil writing systems. The Tamil recognition system based on
zoning has already been integrated into a handwriting interface used in real word
applications. The offline-like features are observed to be more suited to strokes
having larger curve lengths, especially complex strokes that represent conjunct
consonants and composite consonant-vowel units which do not have such high
classification accuracies with the online features based systems.

We must also keep in mind that the systems built with offline features are
not expected to perform as well as those built with online features. The com-
plementary information provided by such systems is useful for disambiguation
of confusable strokes and for classifier ensembles. The advantage of spatiostruc-
tural features is that it gives a robust direction-invariant representation of the
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stroke, using offline-like features traditionally extracted from images. But the
proposed method of extraction of shape features is done from online data and
consequently, it is easier to implement, more accurate and free from the overhead
associated with the storage and processing of offline character images.

Future work in this area is directed towards automating the identification of op-
timal zones for each dataset under study. The zoning strategy should not be too
complex with complicated boundary information and zones that are far from reg-
ular. There should not be a large number of zones, either, because in all such cases,
the complexity of processing and sparsity of the feature vector will be very high.
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Abstract. This paper describes an improved version of a previously
developed ANOVA and Functional Networks Feature Selection method.
This wrapper feature selection method is based on a functional decompo-
sition that grows exponentially as the number of features increases. Since
exponential complexity limits the scope of application of the method, a
new version is proposed that subdivides this functional decomposition
and increases its complexity gradually. The improved version can be ap-
plied to a broader set of data. The performance of the improved version
was tested against several real datasets. The results obtained are com-
parable, or better, to those obtained by other standard and innovative
feature selection methods.

1 Introduction

Enhancing learning machine generalization often motivates feature selection.
Feature selection reduces the number of original features by selecting a subset
that still retains enough information to achieve a good performance. In general,
feature selection approaches can be grouped into two categories [1]:

– Filter models that rely on the general characteristics of the training data to
select certain features without the need for any learning algorithm.

– Wrapper models that require a predetermined learning algorithm for feature
selection and that use this to evaluate and determine which features should
be selected.

Although wrapper models tend to be more computationally expensive that
filter models, since they tend to find features better suited to the predetermined
learning algorithm, they typically result in better performance [2].

The AFN-FS (ANOVA and Functional Networks Feature Selection) is a wrap-
per method based on functional networks and an analysis of variance decompo-
sition [3]. In several experiments this method produced accurate results while
maintaining a reduced set of variables. However, its main disadvantage is expo-
nential complexity, given a large number of features. This drawback limits the
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application of the method to datasets with a small number of features. This paper
describes a modification of the AFN-FS method that overcomes this drawback.
The new version of the method is applied to real-world classification datasets
and its performance results are compared to those obtained by other innovative
feature subset selection methods.

2 ANOVA and Functional Networks Feature Selection

2.1 A Brief Introduction to the AFN Method

The ANOVA and Functional Networks Feature Selection (AFN) method, as its
name indicates, is based on ANOVA and Functional Networks [4], which esti-
mates a function f in terms of n variables, f(x1, x2, . . . , xn), by approximating
its functional components.

According to Sobol [5], any square integrable function, f(x1, x2, . . . , xn), can
always be written as the sum of the 2n orthogonal summands:

f(x1, . . . , xn) = f0 +
n∑

i=1

fi(xi)+
n−1∑

i=1

n∑

j=i

fij(xi, xj)+ · · · + f12...n(x1, x2, . . . , xn).

This can be rewritten, in a simplified form, as:

f(x1, . . . , xn) = f0 +
2n−1∑

ν=1

fν(xν) (1)

where ν represents each possible subset formed with the variables {x1, x2,
. . . , xn} and where f0 is a constant that corresponds to the function with no
arguments.

Furthermore, if f(x1, x2, . . . , xn) is square integrable, then each summand is
also square integrable. Hence:

1∫

0

1∫

0

. . .

1∫

0

f2(x1, . . . , xn)dx1dx2 . . . dxn − f2
0 =

2n−1∑

ν=1

1∫

0

f2
ν (xν)dxν .

Denoting the left part of this equation as D, the variance, and each summand
in the right part as Dν :

D =
2n−1∑

ν=1

Dν .

The variance of the initial function can be obtained by summing the variance
of the components. This enables global sensitivity indices to be assigned to the
different functional components, adding up to one, such that:

GSIν =
Dν

D
ν = 1, 2, . . . , 2n − 1.
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The AFN method approximates each functional component fν(xν) in (1) as:

fν(xν) =
kν∑

j=1

cνjpνj(xν), (2)

where cνj are the parameters to be estimated and where pν is a set of orthonor-
malized basis functions. There are several alternative ways of choosing these
functions [4]. One is to use one of the families of univariate orthogonal functions
(for example, Legendre polynomials), form tensor products and select a subset.

The cνj parameters are learnt by solving an optimization problem:

Minimize J =
m∑

s=1

ε2s =
m∑

s=1

(ys − ŷs)2, (3)

where m is the number of available samples, ys is the desired output for the
sample s, and ŷs is the estimated output obtained by:

ŷs = f̂(xs1, . . . , xsn) = f0 +
2n−1∑

ν=1

kν∑

j=1

cνjpνj(xsν ). (4)

2.2 The AFN-FS Method

An extension of the AFN method was proposed as a feature selection method
in [3]. This is a wrapper method that applies a backward selection search but
discards several features in each step. The AFN method is used as an induction
algorithm that guides the search process based on the following indices that are
directly derived from the coefficients cνj in (4):

– Global sensitivity indices (GSI), obtained as the sums of the squares of the
coefficients cν :

GSIν =
kν∑

j=1

c2
νj ν = 1, 2, . . . , 2n − 1. (5)

– Total sensitivity indices (TSI), calculated for each variable xi adding the
overall global sensitivity index of each subset ν where the feature xi is in-
cluded:

TSIi =
2n−1∑

ν=1

GSIν such that xi ∈ ν i = 1, . . . , n (6)

It is important to emphasize that, while GSI denotes overall importance, in
terms of the variance of each functional component in (1), TSI indicates the
importance of each feature.

The AFN method was initially intended to solve regression problems [4]. How-
ever, as most of the feature selection studies [1,6,7] refer to classification prob-
lems, the mean squared error used for the optimization problem in (3) may not
be the most suitable [8]. Hence, cross-entropy was selected for the cost function



An Improved Version of the Wrapper Feature Selection Method 243

in order to improve results. For binary classification tasks, the optimization
problem in (3) can thus be written as:

Minimize J = −
m∑

s=1

ysln(ŷs) + (1 − ys)ln(1 − ŷs). (7)

This wrapper method requires an evaluation function, and, in this case, chosen
was mean accuracy from a five-fold cross validation (as in [1]). The pseudo-code
in Figure 1 illustrates the different steps in the AFN-FS method, the main points
of which are discussed below.

As a backward selection method, the selection process starts with the com-
plete set of features. An initial selection is done (lines 1-4) to ensure that some
features are discarded (note that the main repeat − until loop in lines 6-26 of
the pseudo-code may not discard any features). The term EVAL (first mentioned

Input : Complete set of features {x1,x2, . . . ,xn} and the desired output y
Output : Reduced set of features {xt1,xt2, . . . , xtrt} | rt < n and an estimate of the
desired output ŷ

1 accini,Cini ← EVAL({x1,x2, . . . ,xn})
2 Calculate GSI in (5) and TSI in (6) for each set of parameters in Cini

3 Discard features according to the thresholds σTini, σGini and σKini

4 Obtain a reduced set of features Sini = {xini1,xini2, . . . ,xinirini}
5 acc(t−1), C(t−1) ← EVAL(Sini)
6 Repeat
7 Calculate GSI in (5) and TSI in (6) for each set of parameters in C(t−1)

8 Discard features according to the thresholds σT , σG and σK

9 Obtain a reduced set of features St = {xt1, xt2, . . . , xtrt}
10 acct, Ct ← EVAL(St)
11 If (acct < acct−1) then
12 Repeat
13 Increase the number of coefficients (ncoeft) with the same set of features
14 acc′

t, C
′
t ← EVAL(xt1,xt2, . . . ,xtrt)

15 until (ncoeft > ncoeft−1) or (acc′
t ≥ acct−1)

16 If (acc′
t > acct) then

17 acct ← acc′
t

18 Endif
19 Endif
20 If (acct < acct−1) then
21 Repeat
22 Add a previously discarded feature, S′

t={xt1, xt2, . . . , xtrt} ∪ x(t−1)d

23 acc′
t, C

′
t ← EVAL(S′

t)
24 until (card(S′

t) ≥ card(S(t−1)) or (acc′
t ≥ acct−1)

25 Endif
26 until (acct > acct−1)

Fig. 1. Pseudo-code for the AFN-FS algorithm. EVAL stands for the evaluation func-
tion and card is abbreviation for cardinality.
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in line 1) refers to a complex process involving the induction algorithm and the
AFN method (briefly explained below in Figure 2). Note that the for loop in
Figure 2 is required because of the five-fold cross validation.

Input : Set of features {xt1, xt2, . . . ,xtrt} | rt ≤ n and the desired output y
Output : Mean accuracy, acc, and a set of learnt parameters, C

27 C ← ∅
28 for i ← 1 to 5
29 Approximate the desired output using (4)
30 Solve the optimization problem in (7)
31 Obtain the learnt parameters (cν)
32 C ← C ∪ {cν}
33 Calculate accuracy, acci

34 endfor
35 Calculate mean accuracy, acc

Fig. 2. Pseudo-code for the EVAL process

The accuracy in line 1 (accini) and subsequent lines in Figure 1 is the mean
accuracy from the five-fold cross-validation (for the sake of clarity, the standard
notation was not used). However, the set (Cini) includes five different sets of pa-
rameters for each of which the corresponding GSI and TSI indices are calculated
(line 2). The step in line 3 is subdivided into:

– Select those features whose TSI value is above an established threshold σTini

in a minimum of σKini folds.
– Using the GSI value, determine if a feature is important in its own right

or in combination with other features. Features or combinations of features
under the threshold σGini are eliminated.

Once several features are discarded, the selection process is repeated itera-
tively (lines 6-26) as long as the mean accuracy obtained in the present state
(acct) is higher or equal than that obtained in the previous state (acct−1). The
selection process (lines 7-10) has been explained above, so we will just focus on
the steps in the method that overcome degradation in accuracy, that is, lines
11-25 (for further details, see [3]):

– Increase the number of coefficients. Reducing the number of features means
decreasing the number of coefficients. Even with the right features, a reduced
number of parameters may not achieve a good estimate. This step increases
the number of coefficients, by considering more complex functions, in order
to avoid the degradation of the estimated output.

– Include discarded variables. Several variables can be discarded in one step
according to the global and total sensitivity indices. When a method becomes
less accurate, this step enables thresholds (σG and σT ) to be reestablished
in order to reconsider some of the discarded variables.
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3 Improving the AFN-FS Method

The AFN-FS method produces a satisfactory performance [3], and even out-
performs other feature selection methods while reducing the number of selected
features. It also has other advantages, such as allowing several variables to be
discarded in one step and interpreting the relevance of each selected or discarded
feature. However, it has one major drawback that limits its application, namely,
the exponential complexity of the functional decomposition in (1). Therefore, the
AFN-FS method can only be applied to datasets with a high ratio between the
number of samples, m, and the number of features, n. Specifically, the relation
should be m > 2n − 1. This requirement is not feasible in real-world datasets.
Therefore, we propose several modifications to the AFN-FS method that will
improve its scope of application. The pseudo-code for the AFN-FS method, as
illustrated in Figure 1, remains largely unchanged. Nevertheless, instead using
the equation in (4), we designed an incremental approximation to estimate de-
sired output.

3.1 Incremental Functional Decomposition

The main modification consists of handling functional decomposition incremen-
tally. This means that the desired output is initially estimated using a simple
approximation that does not include interactions between features. Thus, only
the univariate components in (1) are considered and all the other components
are 0:

ŷs = f0 +
n∑

i=1

ki∑

j=1

cijpj(xsi), (8)

where s is a specific sample, n is the number of initial features and ki is the set
of functions employed to estimate the functional component i. In this case, only
the feature xi is considered in the functional component.

Note that since the feature selection process depends on the function learnt,
the mean accuracy in (8) should have be high.

GSI and TSI are derived from the learnt parameters cij in the previous estima-
tion. As no interactions between features are considered, both sets of indices are
exactly equal. These indices point to the most relevant features, and using these,
the bivariate components in the functional decomposition can be considered for
estimating the desired output:

ŷs = f0 +
rt∑

i=1

ki∑

j=1

ctijpj(xsti) +
rt−1∑

i1=1

rt∑

i2=i1

k(i1,i2)∑

j=1

c(ti1,ti2)jpj(xsti1 , xsti2 ),

where {xst1, xst2, . . . , xstrt} is the subset of selected features in this step t.
Again, this estimation produces a set of TSI and GSI values that suggest a sub-

set of features from the previous set. A new approximation is implemented using
this subset of features and including the trivariate components of the functional
decomposition. The same process continues, with the addition of new functional
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components increasing the complexity of the approximation. The selection pro-
cess described in lines 1-4 and lines 5,7-8 in Figure 1 is thus subdivided into
several substeps that gradually increase complexity.

3.2 Repeating the Initial Selection

Using the modification explained in the previous section, the initial subset of
features is obtained by a simple approximation (see equation 8). Nevertheless,
in the previous AFN-FS method, this initial selection is never reconsidered, al-
though the next selections depend on it. Therefore, it is necessary to guarantee
the adequacy of this first selection. Therefore, a new loop is included in the
pseudo-code shown in Figure 1 that repeats the initial selection until the ac-
curacy obtained with the subset of features is greater than a threshold (σacc).
Thus, line 1 in Figure 1 changes to:

Repeat
accini,Cini ← EVAL({x1,x2, . . . ,xn})

until (accini > σacc)

The goal of this first selection is to discard as many features as possible, but
without negatively affecting mean accuracy.

3.3 Establishing the Thresholds

The AFN-FS method is very dependent on the different thresholds employed (σT ,
σG and σacc). In order to develop a fully automated process, an initial value for
these thresholds had to be determined. This is no easy task, as thresholds tend
to vary from one dataset to another.

For the threshold σT , the idea was to establish an initial value according to
different metrics obtained from the set {TSIt1, TSIt2, . . . , TSItrt}, where rt is
the number of selected features in the step t of the process, rt <= n. Several
experiments were conducted using different combinations of the mean and the
standard deviation for the set. The final value established was:

σT = TSI − SDTSI

2
, (9)

where TSI is the mean of the set {TSIt1, TSIt2, . . . , TSItrt} and where SD is
the standard deviation.

Although a similar process was implemented to assign σG, the high variability
of the global sensitivity indices –which depend on the problem being solved–
makes it very difficult to establish a starting value. However, several trials with
different datasets indicated that using a value between [0.01 − 0.02] led to a
good result. What this means is that the features or combinations of features
that represent more than 1% or 2% of the total variance need to be taken into
account.

As for σacc, this was fixed as the value obtained after training the AFN method
with the complete set of features.



An Improved Version of the Wrapper Feature Selection Method 247

4 Experimental Results

In order to evaluate the method described above, some real-world classification
problems used in previous studies [1,6,7] were selected. All are binary classifica-
tion problems that can be obtained from the UCI-Irvine repository [9], and only
the first problem could be dealt with using the original AFN-FS method. Table 1
describes these problems briefly.

Table 1. Dataset description. Baseline accuracy: accuracy when the main class is
selected.

Dataset Features Number of Samples Baseline Accuracy

crx 15 699 55.51
wdbc 30 569 62.74
wpbc 32 198 76.26

Ionosphere 34 351 64.10

The AFN method estimates a function by approximating its functional com-
ponents from a family of basis functions that has to be orthonormalized. In
a first approach, the polynomial family was selected for the experiments, and
the univariate polynomial functions {1, x1, x

2
1, x

3
1} were selected, leading to the

following set of orthonormalized functions:

{p1;1(x1), p1;2(x1), p1;3(x1)} ={
√

3(2x1 − 1),
√

5(6x2
1 − 6x1 + 1),

√
7(20x3

1 − 30x2
1 + 12x1 − 1)}.

(10)

Tensor products with these functions were formed to obtained bivariate and
trivariate functions. If we select polynomials of degree d, as univariate basis
functions for the n-dimensional basis functions, the tensor product technique
leads to polynomials of degree d × n, which is too high. However, we can limit
the degree of the corresponding n-multivariate basis to contain only polynomials
of degree dn or less. This was done with the dataset in our case, thus limiting
dn to 4 or 5, depending on the problem. Note that these bases are obtained
independently of the dataset, which means that they are valid for all the datasets
considered.

It is important to note that the experimental results used for the compara-
tive study were extracted from different works. Kohavi and John [1] described a
broad-based feature selection study mainly devoted to wrapper methods. These
wrapper methods were obtained by combining different induction algorithms
(Naive-Bayes, ID3 and C4.5) with standard search strategies (best-first-search
and hill-climbing). An innovative method for feature subset selection based on
neural networks and ant colony optimization (ANN-AC) is explained in [7].
Finally, Liu and Zhen use Support Vector Machines to develop an interesting
method called FS-FSF (Filtered and Supported Sequential Forward Search) [6].
For a fair comparison, the training and test sets for our research were generated
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in the same way as in those studies. Ten-fold cross-validation was employed in
[1] while, in the other works [6,7], 20% of the samples were randomly selected
to construct the test set. The rest of the samples form a training set that was
used for the feature selection process. Twenty different simulations were carried
out for each dataset in [6]. Results are summarized in Table 2.

Table 2. Results for the improved AFN-FS method compared to results for other
methods. Features: the mean number of features selected. Test acc: accuracy for test
datasets. BFS: best-first-search. HC: hill-climbing. ANN-AC: artificial neural networks
and ant colony optimization (see [7]).

Method Dataset
Other-studies Improved AFN-FS method

Features Test acc Features Test acc

AFN-FS 7.2 85.05
Naive-Bayes-BFS 5.9 86.23

ID3-HC crx 2.9 85.65 6.2 85.36
C4.5-BFS 7.7 85.80

ANN-AC
wpbc 14 77.50 8 78.00
wdbc 12 95.57 11 99.00

FS-SFS ionosphere 10 92.00 19 92.37

As previously mentioned, only the Crx dataset could be evaluated with the
previous AFN-FS method and the modified method, because of the impossibil-
ity of applying the previous AFN-FS method to the other datasets. Note that,
with respect to the previous AFN-FS results, the mean accuracy for this dataset
increases as the number of features is reduced. Furthermore, accuracy results
are similar to those obtained by the other methods, although they indicate that
more significant feature reduction can be achieved. In comparison with the ANN-
AC method, the improved AFN-FS method performs better with fewer features.
Finally, the improved AFN-FS method is slightly more accurate using more fea-
tures than the FS-SFS method for the ionosphere dataset. It is important to
note that this is a preliminary study and better performance results might be
obtained using families of functions other than (10). Finally, regarding computa-
tional time, although the method requires the evaluation of different subsets of
features, this evaluation is quite fast and the number of steps is reduced because
several variables are discarded in each. For example, it took around 2.5 seconds
to evaluate each possible subset of the wdbc dataset, and required 11 different
steps to reach a solution, for a total time of 11 × 2.5 seconds.

5 Conclusion

This paper describes several modifications to the AFN-FS method that extend its
scope of application and improve performance results. The modifications main-
tain the useful properties of the AFN-FS method, namely: a) several variables
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can be discarded in a single step, without the need to check all the possible
subsets, and b) the importance of each feature is given in terms of variance,
which allows results to be interpreted. The same modifications, however, also
overcome the main limitation of the method, namely, its exponential complex-
ity. It does this by subdividing the functional decomposition used to estimate
a given function. In order to obtain a fully automated method that was less
dependent on the data, we conducted several experiments to establish suitable
threshold values. The experimental results indicate the adequacy of the method
proposed. Note, however, that this is a work in progress, and that better results
are likely to be obtained using other families of functions. Future research will
address the application of the AFN-FS method to multi-class problems.
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Abstract. The simultaneous determination of odor classes and concentrations is 
solved by a kind of parallel-series perceptron models. Two groups of parallel 
single-output perceptrons are in series, and the former is responsible for 
classification, and the latter for location. The number of parallel perceptrons is 
equal to the number of odor classes. A multi-class learning problem is first 
decomposed into multiple two-class problems, and then solved by multiple 
parallel perceptrons, one by one. Each training subset is composed of the most 
necessary samples. And furthermore, some virtual samples are added to the weak 
side of any two-class learning subsets in order to arrive at a virtual balance. The 
experimental results for 4 kinds of fragrant materials show that the proposed 
parallel-series perceptrons with the electronic nose are effective. 

Keywords: Parallel-series perceptrons, simultaneous determination, odor classes 
and concentrations, electronic nose. 

1   Introduction 

An electronic nose is an instrument which comprises an array of electronic chemical 
sensors with partial specificity and an appropriate pattern recognition model, capable of 
recognizing simple or complex odors [1-2]. This kind of technique has wide application 
prospects in such fields as foods, fragrances and flavors, cosmetics, etc [1-2]. At the 
present day, however, electronic noses are only used to determine the classes of odors 
[3]. From a long-term point of view, electronic noses will unavoidably be employed to 
simultaneously estimate the classes, concentrations or strengths of odors. In order to 
implement the task, we need both a superior electronic nose and an appropriate 
classification method. 

Odors can be neither seen by eyes nor felt by hands. Not only that, it is well- known 
that the strengths or concentrations of odors are closely related to the environmental 
temperature. A material may be odorous when the environmental temperature is over a 
certain critical point; otherwise odorless when below. Therefore, a key point is how to 
make an electronic nose keep constant in spite of the changing environment. In 
addition, it is very important to avoid the operation effect given by different persons for 
the purpose of improving the reproducibility of electronic noses. 

2007
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In mathematics, the problem of how to simultaneously determinate the classes and 
strengths of odor samples is a multi-input multi-output (MIMO) function approximation 
problem if its physical meaning is left aside. There are the following several kinds of 
solutions. (A). Treat such a problem as a classification problem, one concentration for 
one class, and employ either an MIMO or multi-input single-output (MISO) classifiers 
[4-5] to solve it. (B). Look upon such a problem first as a classification problem and 
then as multiple MISO approximation problems [6]. (C). Regard such a problem as an 
approximation problem, and use multiple approximation model ensembles to solve it 
[3]. Because methods (A) and (C) are too complicated in structure and relatively low in 
predicted accuracy, this paper pays main attention to approach (B). 

Now no people yet suspect the capability of perceptrons for solving the small-scale 
classification problems [4-5]. However, the structure optimization and learning 
algorithms of multi-layer perceptrons (MLPs) suitable for the small-scale problems 
cannot be simply generalized to the larger-scale ones. As the number of classes 
increases, the computational complexity will quickly reach an unmanageable 
proportion [4-5]. What is more serious is that an MLP becomes quite easy to be caught 
in some local points during learning when the number of categories is relatively many. 
Therefore, up to now it is still a challenging task for MLPs to solve the multi-class 
learning problems. Modular neural networks [7-9] and neural trees [10] thus emerge as 
the times require. And the class-modular networks are especially attractive because 
they are relatively simple in structure and quite effective for the large-set 
classification problems [7]. It is a pity that the modular networks unavoidably run up 
against the imbalanced training problems when an n-class learning task is decomposed 
into n two-class tasks. Some solutions aiming at boosting up the minority training data 
examples include prior duplication and snowball [8, 11], re-calculation for the weight 
updated direction [12], example filtering and pruning from the majority classes [13-14], 
re-sampling [15], etc. However, the existing methods often result in the huge increase 
of computational load and the decrease of classification accuracy [8-9]. 

This paper uses parallel-series perceptron models to simultaneously determine the 
classes and concentrations of odor samples. Our ideas are as follows. Such a problem is 
regard as multiple MISO classification problems and solved with multiple single- 
output perceptrons. After determining the category of one odor sample by an MISO 
MLP, we then employ another MISO MLP to estimate its concentration and strength. 
In order to attain the goal, this paper will study the task decomposition of large-scale 
learning sets, the virtual balance of unbalanced sample distribution, and the structure 
optimization and fast learning of parallel-series perceptrons. 

2   A Practical Electronic Nose 

See Ref. [3] for details, omitted here. 

3   Parallel-Series MLPs and Task Decomposition 

3.1   Parallel-Series Perceptrons 

We use parallel-series MLPs to simultaneously determine the categories and 
concentrations of large-scale samples from n kinds of odors. At the learning stage, the 



252 G. Daqi, S. Jianli, and L. Xiaoyan 

problem is regarded first as an MIMO classification task and then as an MIMO function 
approximation task if its physical content is left aside. The MIMO classification task is 
accomplished by n single-output MLPs, and so is the following MIMO function 
approximation task. In that way, parallel-series MLPs come into being, shown as Fig. 1. 
According to the figure, two single-output MLPs in serial are on behalf of a specified 
odor, and the first is responsible for classification and the second for approximation. In 
order to determine their structures, each MLP for classification learns all the samples 
from the represented class and a small part from the neighboring, but each MLP for 
approximation only learns all the samples from the represented class. There is no need 
for the MLPs to learn the original large-scale dataset. At the stage of decision making, 
for a specified sample x, all n MLP classifiers ought to give their respective predictions. 
The MLP classifier with the max output, say MLP classifier j1, determines the label of 
x, and then, MLP j2 for approximation estimates the position of x, shown as Fig. 2. In 
other words, we need to use n MLP classifiers to determine x’s category according the 
max combination rule, but only a single MLP to estimate x’s concentration. 

3.2   Task Decomposition and Virtual Balance of Imbalanced Dataset 

The discussion given in the section about the solutions of task decomposition and 
imbalanced dataset is only suitable to MLP classifiers, because there are not such 
problems for MLPs for approximation. Each MLP for approximation only learns the 
samples from the presented class, and the problem of data imbalance does not exist. 

It is easy to decompose an n-class problem into n two-class ones. Naturally, n 
single-output MLP classifiers come into being, and each is responsible for forming the 
decision boundaries of its represented class. What is important is how to get rid of those 
distant futile patterns. Let us take the shaping of a 2-class training subset Ξ(j)={X(j), 
X(~j)} as an example to go into details on the formation of economic learning subsets, as 
shown in Fig. 3. The sample set X(j) from class ωj are expressed by dashed line in 
magenta; otherwise in other colors. When MLP classifier j is used to solve the 2-class 
problem {ωj, ~ωj}, say to separate X(j) from X(~j), an evident fact is that a large number 
of distant samples from ~ωj may have no any use for the formation of decision 
boundaries of ωj. In other words, besides all the samples from ωj, it is enough to only let 
a small part of samples from ~ωj take part in training MLP classifier j. Though the 
samples from ωj may distribute in irregular regions, we are always able to enclose all of 
them with an initial oblique ellipsoid Θj0. Of course, some samples from ~ωj will also 
be included in Θj0 at the moment. Next we can expand Θj0 to some suitable sphere. Our 
intention is like this. If within Θj0 the ratio of number of samples from ωj and ~ωj is 
small, which means that relatively many samples from ~ωj are included in, Θj0 is 
enlarged a little less; otherwise a little more. Let X∈RN×m be the original learning set, 

N(j), Nj and N~j the numbers of samples in Ξ(j), X(j) and X(~j), respectively, and X(j)=( )(
1
jx , 

)(
2
jx ,…, )( j

Njx )∈RNj×m the sample matrix from ωj. The detailed process forming the 

economic learning subset Ξ(j) is given as follows. 
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Fig. 2. Decision process of parallel-series perceptrons 
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Fig. 3. Formation of the training subset Ξ(j), ‘      ’−Samples from ωj 

(A) Draw an initial hyper-dimensional oblique ellipsoid Θ j0, which center μj and half 
axis directions coincide with those of X(j), and which sizes of major and minor axes 

are determined by the max Mahalanobis distance )(
max

jd  between all samples from 

ωj and the center μj. Let Σj be the covariance matrix of X(j), )(
max

jd  is calculated by 

( ) ( ) )1(max )(1)(

1

)(
max

T
j

j
pjj

j
p

Np

j

j

d μxΣμx −−= −

≤≤
 

If Σj is singular, X(j) is added a normal noise matrix 0.01N(θ, 1) with a mean vector 
θ and a variance matrix 0.011, and Σj is recalculated with X(j)+0.01N(θ, 1). If still 
singular, Σj has to be replaced by its main diagonal matrix. 
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(B) Calculate the initial number N~j0 of samples included within Θj0 and from ~ωj. 
Supposed xp∈X and xp∉X(j), N~j0 is calculated by the following loop: 
N~j0=0. 

For p=1:N-Nj 

If ( ) ( ) ( )2)(
max

1 jT
jpjjp d≤−− − μxΣμx  

N~j0←N~j0+1. 
End 

(C) Determine the minimum radius of the extended ellipsoid Θj. Our intent is that the 
fewer the samples from ~ωj are included within Θj0, the larger the max radius of Θj 
is. The min Mahalanobis radius of Θj can be determined by 

( ) )2(1 )(
max0~

)(
min

j
jj

j dNND +=  

If N~j0=0, which really means that ωj can be separated from ~ωj by an oblique 

ellipsoid, )(
max

)(
min 10 jj dD = . 

(D) Form the final learning subset Ξ(j), which consists of all the samples within Θj. 
Supposed xp∈X and xp∉X(j), Ξ(j) can be determined by the following loop 

Ξ(j)(Nj)=X(j). 
k=Nj. 
For p=1:N-Nj 

If ( ) ( ) ( )2)(
min

1 jT
jpjjp D≤−− − μxΣμx  

Ξ(j)(k+1) ←Ξ(j)(k)+xp,
 

k←k+1. 
End 
N~j=k. 
N(j)=Nj +N~j. 

In brief, Ξ(j)={X(j), X(~j)}∈R(Nj+N~j)×m in the m-dimensional space is only made up of 
all samples X(j) from ωj and a small part of samples X(~j) from ~ωj that are most 
neighboring to ωj, see Fig. 3 for details. In case a new class joins in after all the 
economic learning subsets have come into being and all the corresponding MLP 
classifiers been trained, it is enough to only re-train a small part of MLPs with the 
changed subsets. 

Without a doubt, if the number of samples in a two-class learning subset Ξ(j)={X(j), 
X(~j)} is equal each other, the final decision boundaries formed by MLP classifier j will 
be close to the central sections of margins between the two classes. However, the 
number of samples in two classes of Ξ(j) is often unequal when the one-versus-all 
decomposition method is employed. Under the situations, the final decision boundaries 
will unavoidably deviate from the central sections, which is quite unfavorable for the 
generalization improvement of MLP classifiers. 

Let us illustrate the case with a simple example. Suppose two classes ω1 and ω2 are 
in the 1-dimensional space, only one sample is situated at point 0.0 in ω1, and 10 
samples all located at point 1.0 in ω2. We take a single neuron with the sigmoid 
activation function (SAF) f(ϕ)=(1+exp(-ϕ))-1 to divide ω1 and ω2. When the decision 
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equation is x-0.5=0, which is just the midpoint, the sum-of-squared error is 
10×(1-(1+exp(-0.5))-1)2+(0-(1+exp(0.5))-1)2=1.5679. If the equation is x=0.0, which 
coincides across point 0.0, the sum-of-squared error is 10×(1-(1+exp(-1))-1)2+ 
(0-(1+exp(0))-1)2=0.9733. The sum-of-squared error of the former is unexpectedly 
larger than that of the latter. How incredible it is! And it is just the learning result of an 
MLP using the back-propagation (BP) algorithm! As a result, the generalization 
performance of MLPs trained with the unbalanced training subsets will be quite poor. 

According to the above analysis, we can infer that the final decision boundaries 
formed by MLP classifier j learning the imbalanced subset Ξ(j)={X(j), X(~j)} will be 
closer to X(j) because Nj is often several times smaller than N~j. Our solution to the 
unbalanced problem existing in the two-class training subsets is to add some virtual 
samples to the smaller side X(j). Definitely speaking, the samples in X(j) are virtually 
enlarged N~j/Nj times. If )( j

px  is from X(j), the pth updated weight increment ( )τ)( j
pwΔ  

is multiplied by an enlargement coefficient N~j/Nj; otherwise ( )τ)( j
pwΔ  keeps 

unchanged. All one needs to do is only to add some judgment conditions in the 
programming. Therefore, the following judgments are added in the τth iteration loop: 

( ) ( ) 0=Δ τjw . 

For p=1: N(j), 

If )( j
px ∈X(j) 

( )
( ) )3()()(

)(

~)()(

τ
τ

ττ
j

p

j

j

jjj E

N

N

w
ww

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−Δ←Δ  

Else 
( )
( ) )4()()(

)(
)()(

τ
τ

ττ
j

p

jjj E

w
ww

∂

∂
−Δ←Δ  

End 

In that way, all is right! There is hardly any additionally computational burden for 
training MLP classifier j with the unbalanced subset Ξ(j)={X(j), X(~j)}! 

4   Experimental Results 

The experiment aims at using an electronic nose of 16 semi-conducting metal-oxide gas 
sensors to simultaneously estimate the categories and concentrations of four kinds of 
fragrant materials, ethanol, ethyl acetate, ethyl caproate, and ethyl lactate. Each of 
fragrant materials is diluted with distilled water into 4 to 6 kinds of concentrations, and 
further, 50 liquid samples of each concentration are made up. In order to get the good 
repeatability, the headspace vapor of a liquid sample is measured only once. The 
measurement method and device were given in Ref [3]. Responses of sensors are 
limited in the range of 0.0 to 10.0V by hardware. Fig. 4 givens the principal component 
analysis (PCA) result for all the samples. According to the figure, there are 22 
measured points of concentration in 4 kinds of odors. 40 of measures for each 
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Fig. 4. Principal component analysis for the original dataset of 4 kinds of fragrant materials 

Table 1. Training subsets and learning parameters of 4 MLP classifiers 

Odor Ethanol Ethyl acetate Ethyl caproate Ethyl lactate 

No. samples in ωj, Nj 280 200 280 280 

No. samples from ~ωj, N~j0 79 92 6 82 

Nj/N~j0 3.0380 2.1739 46.6667 3.4146 

No. training samples 511 728 650 781 

Max Mah. distance )(

max

j
d  7.9064 615 8.9822 6.7458 

Weight enlargement factor 0.8250 2.0750 1.3214 1.7893 

Iteration epochs 2520 3770 15250 9730 

Learning time (sec) 3.7296 6.6953 28.7991 21.9690 

concentration are used as a part of the training set, and the remains as a part of the test 
set. Consequently, there are 40×23=920 samples in the training set, and 10×23=230 in 
the test set. Here, diluted water is also regarded as a measure point, namely the original 
point. The 4 classes are nonlinearly separable each other, and the relationship between 
the sensor responses and the odor concentrations is probably nonlinear. 

The number of input dimensions is 16 because there are 16 gas sensors in the  
array. Naturally, a compulsory decision rule comes into being that a sample is  
assigned to distilled water only on condition that all the 4 MLP classifiers say ‘Yes’. In 
order words, a certain sample ought not to be assigned to distilled water as long as  
one or more MLP classifiers say ‘No’. The structure and learning parameters of  
MLPs for classification are as follows. The numbers of hidden nodes are respectively 
h=8, the learning rate η=0.02, the max iteration step τmax=20000, and the allowable 
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root-mean- square (RMS) error ε*=0.10. The input variables are scaled into the range 
[0, 6.0] [16]. Table 1 given the formation process of the economic training subsets for 4 
MLP classifiers. The total learning time is 61.1930 sec (given by a PC with 2.6G CPU, 
256M RAM, the same below). As a result, the correct rate of classification for the 230 
test samples 100%. When every training subset is with the original 920 samples and the 
step of virtual balance is not adopted, the final correct rate for the test set is 
227/230=98.70%. If the step of virtual balance is not adopted, the classification 
accuracy is 228/230=99.13%, even if the MLPs are trained with the economic subsets. 

The structure and learning parameters of MLPs for approximation are as follows. 
h=5, the learning rate η=0.02, the max iteration step τmax=15000, and the allowable 
RMS error ε*=0.025. Since the measurement of distilled water is taken as the original 
point of all the curves, the numbers of samples for MLP for approximation are 280, 
200, 280 and 280 in each training subset, and 70, 50, 70 and 70 in each test subset in 
order, see Fig. 4 for details. The input variables are scaled into the range [0, 6.0] [16], 
and the target outputs are expressed by 

( ) ( ) )5(05.00.59.2*log1 )(
10

)()(
3 ++== j

p
j

p
j

p CCd φ  

Here, )( j
pC  is the target concentration of the pth sample )( j

px  in odor ωj, which 

measurement unit is ppm. The concentration of distilled water is forced to be 0.1 ppm. 
The target values of MLP classifiers are thus scaled in the range of [0.05, 2.95]. 

All the 16-5-1 MLPs for approximation iterate 15000 epochs and take 7.11, 5.19, 
7.11, and 7.11 sec, respectively. The RMS errors of predicted logarithmic 
concentrations of the test samples given by the 4 MLPs for their represented odors are 
0.017, 0.027, 0.030, and 0.016 in order. 

For the sake of comparison, we still consider the problem first an MIMO 
classification problem and then 4 MISO approximation problems, and employ either 
single-output MLPs with the different training subsets or support vector machines 
(SVMs) to solve it. For SVMs, the width factor γ=0.25, the insensitivity constant 
ε=0.005, and the capacity constant C=1000 [17]. Table 2 gives the learning and 
predicted results of different models and methods for simultaneously estimating the 
classes and concentrations of 4 kinds of fragrant materials. According to the table, the 
 

Table 2. Learning and predicted results of MLPs and SVMs for the 4 kinds of fragrant materials 

 

Classifiers and 
approximation model 

No. samples in the 
training subset  

Learning 
time (sec)

Virtual 
balance

Pred. acc. for 
the test set (%)

No. equivalent 
samples 

From 4 MISO MLPs 
to 4 MISO MLPs 

(511-781) / 
(200-280) 

87.71 Yes 100 59.00 

From 4 MISO MLPs 
to 4 MISO MLPs 

(511-781) / 
(200-280) 

87.71 No 99.13 59.00 

From 4 MISO MLPs 
to 4 MISO MLPs 

920 / (200-280) 191.34 No 98.70 59.00 

From 4 MISO SVMs 
to 4 MISO SVMs 

920 / (200-280) 103.66 No 99.57 733.13 
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proposed method and parallel-series perceptrons has advantages on comprehensive 
performance. However, the SVM models have to store a large number of support 
vectors, which is quite disadvantageous for solving the large-scale learning problems, 
in particular, the multi-output ones. 

5   Conclusion 

This paper regards the simultaneous determination of odor classes and strengths as a 
series classification and approximation problem. We first decompose such a problem 
into multiple MISO problems, and then employ multiple series MLPs to solve them one 
by one. An MLP is trained only a small part of samples from the represented class and 
the neighboring classes. The experimental results for simultaneously estimating the 
odor classes and strengths show that the proposed models are quite effective. 
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Abstract. Present work introduces a probabilistic recognition scheme for hand 
gestures. Self organizing feature maps are used to model spatiotemporal 
information extracted through image processing. Two models are built for each 
gesture category and, along with appropriate distance metrics, produce a validated 
classification mechanism that performs consistently during experi-ments on acted 
gestures video sequences. 

Keywords: Hand tracking, gesture recognition, gesture classification, self 
organizing feature map, markov processes. 

1   Introduction 

Gesture recognition continuously receives abundant attention, especially throughout the 
research fields of sign language recognition, multimodal human computer interaction, 
cognitive systems and robotics. Renewed focus on interdisciplinary studies lead 
scientists to review and confront the questions raised when attempting to model and 
extract the information that a gesture conveys. Since hand gestures can be used for a 
wide variety of communicative purposes, classification becomes a significant problem, 
starting at the level of defining gesture taxonomy through psychological studies. Most 
commonly, gesturing behavior can be classified on a spectrum that ranges from highly 
structured languages (e.g. sign languages), through universal symbols, to natural and 
unconscious gesticulation [1]. Studies also show that gesture classification is, in general, 
a multimodal task that should make use of both hand movement trajectories and 
linguistic cues [2], [3]. 

In terms of computer vision, appropriate feature extraction and tracking is the focus 
of many researchers, in order to apply classification schemes for the hand trajectory 
and/or the hand shape. Depending on the scope of a study, approaches vary from 
multimodal interpretation (gesticulation, natural language, facial expression, domain 
knowledge, etc.) to gesture classification through a single modality. Present work deals 
with the classification of gestures from visual cues, focusing on robustness, performance 
and user independence. Aiming for naturalistic data, our intention is to localize and 
track hands, classifying their trajectories regardless of the hand shape.  

An extensive review of several techniques is presented both in [4] and [5]. The first 
focuses mainly on SL recognition and classification issues, while examining closely 
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hand localization and tracking, and on various feature extraction techniques related to 
automatic analysis of manual signing. In addition, it addresses the linguistic aspect of 
SL and non manual signals, along with methodologies to incorporate these in the SL 
recognition chain. On the other hand, Wu and Huang delve more into works related to 
hand modeling (shape analysis, kinematics chain and dynamics) and computer vision, 
and pattern recognition issues associated to hand localization and feature extraction 
from image sequences. Classification schemes involve several methods, depending on 
the features and the stages of the procedure. Methods used include neural networks 
and variants, hidden markov models and variants, principal component analysis, and 
numerous other machine learning methods or combinations (decision trees, template 
matching, etc.). 

One of the most commonly proposed approaches involves feature extraction from 
the input signal and utilization of these features as input for a fine tuned HMM [6], 
[7]. In addition, variations of the previous group have been widely adopted [8], [9]. 
Other approaches employ alternate machine learning and artificial intelligence 
techniques such as recurrent fuzzy network [10], time delay neural network [11], 
finite state machines [12], Bayesian classifiers [13], etc. Finally, there have been 
several efforts combining more than one technique. Mantyla et al. [14] present a 
system for static gestures recognition using a self-organizing mapping scheme, while 
a hidden Markov model is used to recognize dynamic gestures. Black and Jepson [15] 
present an extension of the “condensation” algorithm, modeling gestures as temporal 
trajectories of the velocity of the tracked hands. Fang et al. [16] present an additional 
layer enhancing the HMM architecture with SOFM and improving their recognition 
rate by 5%, while introducing a fuzzy decision tree in an attempt to reduce the search 
space of recognized classes without loss of accuracy. 

Present work introduces a novel approach for applying a combination of self 
organizing maps and markov models for gesture classification. The features extracted 
include the trajectory of the hand and the direction of motion in the various stages of 
the gesture. The classification scheme is based on the transformation of a gesture 
representation from a series of coordinates and movements to a symbolic form and on 
building probabilistic models using these transformed representations. Our study 
indicates that, although each of the two sets of features (trajectory and motion 
direction) can provide distinctive information in most cases, only an appropriate 
combination can result in robust and confident user independent gesture recognition. 

2   System Overview 

The steps of the introduced procedure, which is depicted in Fig. 1, begin with an 
image processing module. Taking into consideration computational cost and robustness, 
we employed an accurate, near real-time skin detection and tracking module [17] 
allowing a rate of around 12 fps (frames per second) on a usual PC configuration, 
which is adequate for continuous gesture tracking. The process involves the creation 
of moving skin masks and tracking their centroids to produce an estimate of the user’s 
movements. The object correspondence heuristic makes it possible to individually 
track the hand segments correctly while the fusion of color and motion information 
eliminates any background noise or artifacts. 
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Following, each gesture instance is represented by a time series of points, 
representing the hand’s location with respect to the head of the person performing the 
gesture. Consequently, a gesture Gi containing l points can de expressed as an ordered 
set of points: 

1 1 2 2{( , ), ( , ),...( , )}i l lG x y x y x y= , (1) 

where l varies across different gesture instances. The system’s input is a set of 
gestures D, assigned to c different categories.  

The proposed modeling scheme is based on the transformation of a gesture 
representation from a series of coordinates and movements to a symbolic form which, 
in turn, is used to build the respective probabilistic models. The first transformation is 
based on the relative position of the hand during the gesture and is achieved using a 
self-organizing map model. Despite the fact that the map units are treated as symbols, 
the map’s neighborhood function provides a distance metric between them, that is 
used during the classification of an unlabeled gesture. Additionally, this enables the 
use of the Levenshtein distance metric for the comparison between these sequences of 
symbols and the definition of a “mean” string of symbols representing e.g. the 
gestures included in a Dj set. 

The second transformation is based on the optical flow of the gesture, aiming to 
describe the gesture’s direction changes. The symbols generated from this transformat-
ion constitute the set of angles of the gesture’s trajectory. This set is limited to quantized 
values that are treated as symbols in order to be used for the creation of an additional set 
of Markov models. 

For the classification of an unlabeled gesture, the Markov models created from the 
first transformation play the primary role, while the models created from the second 
transformation are used for validation and decisions in cases of low confidence 
classification.  

Fig. 1. Building gesture models from transformed gesture representations 

3   Probabilistic Models of Hand Movement 

The coordinates of all the points from all the gestures are used to train a hexagonal, 
two-dimensional grid SOM with the batch mode learning procedure. The points are 
fed to the map in an unordered form, inconsequently to the gesture instance they 
belong to and to their ranking position into the gesture. Following training, each point 
is assigned to the respective best matching unit (BMU) on the map, i.e. the unit of the 
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map closer to the point in the input data space, according to the Euclidean distance of 
the two vectors. Thus, a gesture Gi can be transformed from a series of points to a 
series of map units. 

1 2( ) ( , ,..., ), where ( , )i l i i iT G u u u u BMU x y= = .  (2) 

Function BMU(xi,yi) returns the index of the best-matching unit for point (xi,yi) and 
T(Gi) is the modified gesture representation. Given that ui is the index of a map unit, 
this function can be is declared as BMU:R2 ->S, where S is the set of the indices of  
all map units and can be treated as a set of symbols. In many cases, the ui value of 
consequent points of a gesture remains the same since, although the continuous 
movement of the hand is represented by the distinct points, consequent points are 
generally close in the input data space. Replacing consequent equal values of ui with a 
single value results in the following gesture definition, 

'
1 2 1( ( )) { , ,..., ,} : , [2, ] i i m t tG N T G u u u m l t l u u −= = ≤ ∀ ∈ ≠ , (3) 

where N is a function that removes consecutive equal ui values and Gi
’ is the 

transformed gesture instance. The transformation of the gestures with the use of the 
SOM can be considered a transformation of the continuous trail to a sequence of 
m discrete symbols, different for every gesture class, that define the finite states to 
build first order Markov chain models.  

Such a model, for each of the categories in the gestures’ data set, is created. The 
sequence of the ui values into the transformed gestures Gi

’ of Dj
’ set, will be used for 

the calculation of the transition probabilities of the model som
jMM  describing the j 

category and for the determination of the values of the function som
jπ , which is the 

first state probability function of this model. The result is a set somMM  of c Markov 
models. 

' ' ' '
1 2 1 2{ , ,..., } : { , ,..., }som som som som som

c i n iMM MM MM MM D G G G MM= = →  (4) 

These models are used to evaluate a new unlabeled gesture in order to be classified 
in one of the c categories. Fig. 2 depicts the above described transformation for a 
gesture instance.  

 

Fig. 2. Correspondence of gesture trajectory points to their respective BMUs on the SOM. 
These BMUs constitute the states of the Markov models. 
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With the purpose of providing a more descriptive representation of each gesture 
instance, an additional transformation is introduced, based on the optical flow of each 
gesture. This describes the different directions that the gesture trajectory presents 
instead of the spatial position of gesture points. In order to achieve such a representat-
ion, direction vectors are calculated from the consecutive gesture trajectory points. 
These angles are then quantized in 8 different symbolic values as depicted in Fig. 3. 
The segments of coordinates in Fig. 2 and Fig. 3 are considered to be a set of 
coordinates that belong to the same cluster (BMU and Quantized Angle for Fig. 2 and 
Fig. 3 respectively). In that sense, we define the transformation of a gesture instance 
Gi using the OF function as: 

1
1 2

1

( ) { , ,..., } : ( (arctan( )))i i
i m i r

i i

y y
OF G v v v v W Q

x x
−

−

−
= =

−
, (5) 

where vi are the quantized values, Q the quantization function and Wr a median 
function applied to the values of a fixed length window around the input value. The 
purpose of the later is to smooth the quantized values against possible instabilities of 
the hand during the gesture. Applying the transformation function along with function 
N (eq. 3) for the removal of the equal consecutive values we get 

''
1 2( ( )) { , ,..., }i i mG N OF G v v v= =  (6) 

The vi values define the states for a new set of Markov models ofMM  that is built 
using the transformed set Dj

’’. The first state probability function of
jπ  is also 

calculated using this set. 
'' '' '' ''

1 2 1 2{ , ,..., } : { , ,..., }of of of of of
c i n iMM MM MM MM D G G G MM= = →  (7) 

 

Fig. 3. Building a Markov model for a gesture’s optical flow 

4   Classification of an Unlabeled Gesture 

The classification of an input gesture will be based on the two sets of Markov models 
(eqs. 4 & 7). Let Gk be a gesture instance of unknown category, and Gk

’and Gk
’’ its 

transformed representations. Using the somMM  set of models, the probability of this 
gesture to belong in category j can be calculated as: 
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' 1( | )

m
som
i

som i
k j

S
P G MM

m
==
∑

 (8) 

The above equation averages the values som
iS , which represent an evaluation factor 

for each ui value of the Gk
’ transformed gesture with respect to the som

jMM  Markov 
model. These values are calculated as: 

max( ( ) ( | , ))
i

som som som
i u i j

z
S NF z P z u MM=  (9) 

arg max( )som
i i

z
u S= , (10) 

where z is a variable that indexes the units of the trained map, ( )
i

som
uNF z  is the 

distance of the unit z as defined by the self-organizing map Gaussian neighborhood 
function with the ui unit as its center. In equation (9), the proximity between the state-
unit z and the previous state-unit ut-1 of the gesture is multiplied with the probability 
of the transition from state-unit z to state-unit ut-1. As the z variable varies across all 
the units of the map, this product will provide the unit that combines a considerable 
transition probability from the previous state with a small distance onto the map grid 
from the current state. This unit will also be used as the previous state in the next step 
as defined by equation (10). The initial values used in the sum derive from the 
following equations. 

11 1 1max( ( ) ( )), arg max( )som som som som
u j

z z
S NF z z u Sπ= =  (11) 

Using the ofMM  set of models, the probability of this gesture to belong in category j 
can be calculated as: 

'' 1( | )

m
of
i

of i
k j

S
P G MM

m
==
∑

 

(12) 

The values of
iS are calculated from the following equations: 

1 1max( ( ) ( | , ))
i

of of of
i v i j

z
S NF z P z v MM

− −= , arg max( )of
i i

z
v S= , (13) 

where z is a variable that indexes the different states-directions and ( )
i

of
uNF z  a 

distance function between these states. These equations implement a search similar to 
the previous search on the map grid, but in this case the search is performed among 
the different possible gesture directions. The initial values are calculated in a similar 
way from the following equations. 

11 1 1max( ( ) ( )), arg max( )of of of of
v j

z z
S NF z z v Sπ= =

 
(14) 

In order to compare the length of the unknown gesture with the length of the gestures 
included in each Dj

’ set, a distance metric for the comparison of symbol strings is 
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necessary. From each set Dj
’, a Generalized Median gesture is calculated. Let S be a 

set of symbol strings si. We can then define m as a string that consists of a 
combination of all or some of the symbols used in the set and which minimizes the 
following expression. 

( )∑ ∈∀
is

ii SsmsL ,,

  
(15) 

where L(,) denotes the Levenshtein distance, one of the most widely used string 
distance metric. If the search for string m is restricted to the members of the set then 
m is the set median. But if m is a hypothetical string and the search is not restricted 
then m is the Generalized Median of the set. Using the above definition we calculate 

the Levenshtein distance ' '( | ( ))kj k jL L G M D=  between '
kG  and the Generalized 

median M(Dj
’) of each Dj

’ set. 
The category of the unknown gesture is primarily decided using the somMM  set of 

models. Subsequently, the category would be equal to: 

'arg max ( | )som
k j

j
P G MM

 
(16) 

In order for the category of the unknown gesture to be decided by the above 
equation the three following conditions must be fulfilled. 

'max( ( | ))som
k j

j
P G MM α≥

 
(17) 

' 'max( ( | ) 2 max( ( | )som nd som
k j k j

j j
P G MM P G MM β− ≥

 
(18) 

'

'

,arg max( ( | )
(arg max( ( | ))som

k j
j

som
k jk P G MM

j

L LM P G MMγ≤  (19) 

The two first conditions requires that the maximum probability calculated using 
position based models must exceed a threshold value a while the difference between 
the maximum probability and the second ranked ones must also exceed a threshold 
value β. These two values represent confidence thresholds. The last condition applied 
is that the Levenshtein distance between the gesture and the Generalized Median of 
the category with the maximum probability must be larger than the LM value of this 
category, multiplied by a user defined factor γ. This last comparison is made in order 
to assess the length of the unknown gesture with respect to the average length of the 
gestures of the category with the maximum probability. If one of these conditions is 
not fulfilled then the category of the unknown gesture is defined from a combination 
of values: 

' '' 1
arg max( ( | ) ( | ) )

( )

som of
k j k j

j kj

j

P G MM P G MM
L

M D

 
(20) 
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This classification rule combines the evaluation provided from both the somMM  
and ofMM  set of Markov models with the Levenshtein distance of the gesture and the 
Generalized median of the each category normalized by the length of the Generalized 
median. 

5   Experimental Results 

Fig. 4 shows a sample of frames from the input sequences that where used and 
indicative results of the hand localization and tracking module. 

  

Fig. 4. Sample of input sequences with hand tracking results 

Experiments were conducted, with the above dataset, in order to evaluate the 
recognition performance of the proposed method. When all the gesture instances are 
used for both training and testing, the recognition rate is 100%. To evaluate the 
generalization capabilities of the proposed method the 10-fold cross validation 
strategy was used. In this case the average recognition rate was 93%.  presents in 
detail the recognition percentages of each category.  

In order to compare the results of our system with one of the most commonly used 
approaches in the literature we employed an HMM based classifier [7], training one 
HMM per gesture class. We used continuous left-to-right models and a mixture of 3 
Gaussian probability density functions. During the decoding of a gesture it was tested 
against all models and the one with the highest log-likelihood value was selected as 
the winner. The above described process produced an average recognition rate of 
85%.  

Table 1. Proposed method’s  recognition rate per gesture category (93% average) 

Category %       Category %       Category %       Category %       Category % 

1 100  7 100  13 80  19 100  25 90 

2 100  8 100  14 80  20 90  26 90 

3 100  9 100  15 100  21 50  27 90 

4 100  10 100  16 90  22 70  28 100 

5 100  11 100  17 100  23 100  29 100 

6 100  12 100  18 100  24 60  30 100 
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(b) quantized optical flow vectors 

 
(c) smoothed optical flow vectors 

(a) plotted coordinates of all gestures instances  

Fig. 5. The gesture dataset 

6   Conclusion 

Present work introduced a novel modeling scheme for gesture recognition from hand 
trajectories. The system builds models for gesture categories utilizing SOMs that are 
trained with features extracted through image processing. Experimental results 
indicate that the system is capable of performing robustly while also evaluating its 
results. Intended experiments on alternate gesture corpora will be used to assess the 
capabilities of the system in a broader spectrum of gesture based interaction. Through 
further research, we intend to address the classification strategy for gestures that 
present low confidence results, i.e they belong to unknown categories, as well as the 
evaluation of the system’s gesture prediction capabilities. 
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Abstract. Classification of structured data (i.e., data that are repre-
sented as graphs) is a topic of interest in the machine learning community.
This paper presents a different, simple approach to the problem of struc-
tured pattern recognition, relying on the description of graphs in terms
of algebraic binary relations. Maximum-a-posteriori decision rules over
relations require the estimation of class-conditional probability density
functions (pdf) defined on graphs. A nonparametric technique for the es-
timation of the pdfs is introduced, on the basis of a factorization of joint
probabilities into individual densities that are modeled, in an unsuper-
vised fashion, via Support Vector Machine (SVM). The SVM training is
accomplished applying support vector regression on an unbiased variant
of the Parzen Window. The behavior of the estimation algorithm is first
demonstrated on a synthetic distribution. Finally, experiments of graph-
structured image recognition from the Caltech Benchmark dataset are
reported, showing a dramatic improvement over the results (available in
the literature) yielded by state-of-the-art connectionist models for graph
processing, namely recursive neural nets and graph neural nets.

1 Introduction

Learning from structured data, i.e. data that are represented as graphs, is a topic
that has received a significant attention from the machine learning community.
Classification of structured data is relevant to areas such as natural language
processing, bioinformatics, structural pattern recognition, and the Web applica-
tions. Neural network models were proposed, such as recursive neural nets (RNN)
[11] and graph neural nets (GNN) [7]. These architectures have the capability
of unfolding over labeled graph, in a backpropagation-through-time fashion, re-
cursively encoding information on the topology and on the label values into an
internal activation state. In spite of their strong theoretical properties, RNNs
and GNNs suffer from some drawbacks that might limit their real-world ap-
plication: (i) RNNs can process only acyclic structures, which only seldom fit
real-world scenarios; (ii) both RNNs and GNNs are complex machines, both from
a formal and from a computational point of view; (iii) unconnected graphs can-
not be processed; (iv) above all, they suffer from a drawback which they share
with the classic recurrent neural nets, the “long term dependencies” problem
[1]. In terms of graphical structures this problem takes the form of graphs with
long shortest-paths between certain pairs of nodes, e.g. high trees. The paper

J. Marques de Sá et al. (Eds.): ICANN 2007, Part II, LNCS 4669, pp. 271–280, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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looks at the problem of learning (discriminant functions) on structured domains
from a different perspective and introduces a simple and effective attempt to
overcome the above limitations. The proposed approach is suitable for directed
or undirected, connected or unconnected, cyclic or acyclic graphs. Labels may
be attached to nodes or edges as well. The approach simplifies significantly the
formalism and may be implemented by means of ordinarily available software
simulators. The idea is to describe the graph as an algebraic binary relation,
i.e., as a subset of the Cartesian product in the definition domain of the graph.
The class-posterior probabilities given the graph can then be reduced to a prod-
uct (joint probability) of probability density functions (pdf) evaluated over the
pairs in the relation. In order to apply the formalism, the problem of proper pdf
estimation has to faced.

Estimating pdfs is one major topic in unsupervised learning and in supervised
pattern recognition [5]. In fact, the right-hand-side of Bayes’ theorem requires
the knowledge of pdfs known as class-conditional probabilities [5]. Parametric
techniques (e.g. maximum-likelihood) are not promising in the present scenario,
since they rely on an arbitrary assumption on the form of the underlying, un-
known distribution. Nonparametric techniques (e.g. kn-nearest neighbors [5])
remove this assumption and attempt a direct estimation of the pdf from a data
sample. The Parzen Window (PW) is one of the most popular approaches, rely-
ing on a combination of local window functions centered in the patterns of the
training sample [5]. PW is limited in several respects, including: (1) the estimate
is not expressed in a compact functional form, but it is a sum of as many local
windows as the size of the sample; (2) the nature of the window functions may
yield a fragmented model, which is basically “memory based” and (by definition)
is prone to overfitting; (3) the whole training sample has to be kept in memory
in order to compute the estimate of the pdf over any new (test) patterns, result-
ing in a high complexity of the technique in space and time; (4) the PW model
heavily depends on the choice of an initial width of the local windows. For these
reasons, artificial neural networks (ANN) could be considered instead, given the
fact that they are nonparametric, “universal” models. Unfortunately, in spite of
the popularity of ANNs probability estimation (e.g., class posterior probability
modeling), only few and sub-optimal connectionist techniques for pdf estimation
are presented in the literature. This is due to the fact that modeling a pdf (whose
values are possibly in the range (0, +∞) and whose integral over the feature space
has to be 1) via ANN is a difficult unsupervised task. Support vector machines
(SVM) are a feasible alternative to ANNs for density estimation. SVMs were
originally developed within the framework of Vapnik’s machine learning theory
as trainable non-parametric discriminant functions for supervised classification
problems [12]. Supervised support vector regression (SVR) was then proposed
for function approximation and regression problems, relying on the empirical
risk minimization principle [10]. Although the problem of pdf estimation was
considered by Vapnik since the early Nineties [12], only a few SVM approaches
have been proposed. In [14], ad hoc training algorithms for SVM density esti-
mation are introduced, relying either on the empirical cumulative distribution



Unbiased SVM Density Estimation 273

function or on the PW estimates. In [6] a kernel-based density estimator is used,
relying on the idea of reducing the original data sample to a small subset, with
the aim of reducing the computational cost of classic nonparametric methods.

This paper introduces a SVM algorithm for unsupervised, nonparametric den-
sity estimation that shares similarities with the technique described in [14]. The
algorithm uses standard SVR (i.e., it may be implemented using any SVM sim-
ulation software which is suitable to SVR) and an unbiased version of the PW.
It takes in input an unlabeled data sample, and returns a SVM which encap-
sulates the estimated pdf. The unbiased technique has a significant impact on
the quality of the result. It overcomes the limitations of PW to a significant
extent, and it may lead to better pdf models than previous SVM techniques for
density estimation. Eventually, the model is used as a suitable paradigm for pdf
estimation over graphs, within the proposed structured pattern classifier. The
topics are addressed according to the following organization: the SVM density
estimation algorithm is presented first (Section 2), followed by a demonstration
(Section 3) featuring comparative evaluations on samples drawn from a mixture
of Fisher-Tippett pdfs. The probabilistic classifier for graphical data is presented
next (Section 4). Experiments on the Caltech Benchmark dataset are reported
(Section 5), showing a dramatic improvement over the established results yielded
by RNNs and GNNs. Conclusions are drawn in Section 6.

2 Unbiased Pdf Estimation Via SVM

Let us consider a pdf p(x), defined over a real-valued, d-dimensional feature
space. Again, let T = {x1, . . . ,xn} be an unsupervised sample of n patterns,
identically and independently distributed (i.i.d.) according to p(x). The PW
estimate of p(x′) from the sample T over a generic feature vector x′ has the
form p(x′) � 1

n

∑n
i=1

1
Vn

ϕ(x′−xi

hn
) [5], where ϕ(.) is the window function having

edge hn, and Vn = hd
n is the corresponding volume. The edge and the volume

are explicitly written as a function of n, since smaller regions around x′ are
considered as the sample size n increases, e.g. hn = h1/

√
n. The initial edge h1

has to be chosen empirically, and it heavily affects the resulting model on finite
samples. Asymptotic convergence of nonparametric models of this kind can be
found in [5]. Let us now consider a SVM that we wish to train in order to learn
a model p̃(.) of the probability law p(x) from the unsupervised dataset T . The
idea is to use the PW model as a target output for the SVM (as in [14]), and to
apply standard SVR. An unbiased variant of this idea is proposed, according to
the following unsupervised algorithm (expressed in pseudo-code):

1. Let hn = h1/
√

n, and Vn = hd
n

2. For i=1 to n do /* loop over T */
2.1 Let Ti = T \ {xi}
2.2 Let yi = 1

n

∑
x∈Ti

1
Vn

ϕ(xi−x
hn

) /* target output */
3. Let S = {(xi, yi) | i = 1, . . . , n} /* supervised training set */
4. Train the SVM via SVR over S
5. Let p̃(.) be equal to the SVM
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Unsupervised selection of optimal parameters for the SVM kernels may be ob-
tained applying the method described in [3]. Since the SVM output is assumed
to be an estimate of a pdf, it must be non-negative. The algorithm does not pre-
vent from negative values over certain regions of the feature space, e.g. regions
that are not covered by the data sample. A viable solution is forcing negative
outputs to zero once training is completed. In this respect, the introduction in
the training set of a small fraction of synthetic patterns featuring a zero target
in the regions adjacent to the support of the pdf may turn out to be effective
(smoothing down the estimate of the pdf along its tails, too). The support may
be obtained applying the technique proposed in [9]. Nevertheless, as in the pop-
ular kn-nearest neighbor nonparametric pdf estimation [5], p̃(.) is not necessarily
a pdf (in general, the integral of p̃(.) over the feature space does not equal 1).
If the size of the data sample and/or the dimensionality of the feature space are
large, the computational cost of the algorithm may become troublesome. The
PW estimation time (step 2.2 of the algorithm) grows as n2 with the sample size,
the SVR slows down its convergence, and the search for adequate parameters
for SVR becomes excessively demanding. In addition, if p(x) is varying substan-
tially over its support, the resulting number of support vectors may exceed a
critic fraction of the original patterns (e.g., 70 − 80% of the sample size). Un-
der these circumstances, a variant of the algorithm may be used, by taking the
Parzen window functions ϕ(.) as the kernels for the SVM (several SVM software
simulators feature the adoption of pre-computed kernels).

There is a major aspect of the algorithm that shall be clearly pointed out:
the PW generation of target outputs (steps 2-2.2) is unbiased. Computation of
the target for i-th input pattern xi does not involve xi in the underlying PW
model. This is crucial in smoothing the local nature of PW. The target (i.e.,
estimated pdf value) over xi is determined by the concentration of patterns in
the sample (different from xi) that occur in the surroundings of xi. In particular,
if an isolated pattern (i.e., an outlier) is considered, its exclusion from the PW
model turns out to yield a close-to-zero target value. This phenomenon is evident
along the tails of certain distributions (Section 3). It is seen that, in spite of its
simplicity, the approach overcomes most of the PW limitations. The following
Section shows that it may also turn out to be more accurate than other kernel-
based methods for density estimation.

3 Demonstration

An illustrative estimation task is considered. Samples are randomly drawn from
a mixture of 3 Fisher-Tippett distributions:

p(x) =
3∑

i=1

Πi

βi
exp

(
−x − μi

βi

)
exp

{
− exp

(
−x − μi

βi

)}
(1)

where Π1 = 0.35, Π2 = 0.5, and Π3 = 0.15 are the mixing parameters, and
the component densities are identified by the locations μ1 = 2.0, μ2 = 5.0,
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Fig. 1. Estimates for an increasing sample size: n = 100 (top), n = 1000 (mid), n =
10000 (bottom)
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μ3 = 7.0, and by the scales β1 = 0.6, β2 = 0.7, β3 = 0.5, respectively. Figure 1
shows the resulting (classic) PW and (unbiased) SVM models, estimated from
data samples of increasing size (n = 100, n = 1000, and n = 10000) randomly
drawn from the mixture. The estimates are plotted against the original pdf. A
standard Normal window function was used in both the classic PW and in the
proposed technique, with a standard initial edge h1 = 1.0. SVMs with radial basis
functions kernels are applied throughout the paper. As expected, both models
improve as the size of the sample increases. The SVM estimate is closer to the
reference pdf than the PW is, turning out to be also much smoother and less
sensitive to variations in the number n of training patterns. The SVM estimates
were forced to non-negative values by converting negative outputs to zero. The
PW is significantly affected by the presence of individual training points (e.g.,
along the tails of the distribution) belonging to low-probability regions. The
presence of local peaks violates the natural shape of the underlying pdf. It is
worth noticing the difference between the SVM curve and the form of the PW
model that, roughly speaking, provides the SVM with the target outputs during
training. Note that, by definition, no unbiased PW can be applied at test time
(no direct comparison w.r.t the SVM is possible), since the algorithm applies
only to patterns that are included in the training set. Fig. 2 plots the estimates
obtained using a fixed-size data sample of n = 200 random patterns from the
mixture, as a function of the initial edge h1, namely (from top-left to bottom-
right) 0.5, 1.0, 1.5 and 2.0. The PW estimates are heavily affected by the value
h1, while the SVM model exhibits a stabler behavior.
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Fig. 2. Estimates for a fixed sample size (n = 200) and varying edge: h1 = 0.5 (top
left), h1 = 1.0 (top right), h1 = 1.5 (bottom left), h1 = 2.0 (bottom right)
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Table 1. Integrated squared errors for increasing sample size

Parzen Window Weston et al. SVM Unbiased PW SVM
100 samples 1.324e-2 9.057e-03 6.219e-3

1000 samples 5.571e-3 1.403e-3 8.07e-4

10000 samples 2.188e-3 2.522e-4 1.403e-4

Finally, a quantitative comparison with a previous SVM density estimation
technique ([14], section 1.11) is carried out. In [14] the evaluation is expressed in
terms of integrated squared error (ISE), computed using Simpson’s method over
random samples drawn from a mixture of 2 Normal densities. The same criterion
(i.e., ISE) is adopted in this paper, taking in consideration random samples from
the Fisher-Tippet mixture and applying Simpson’s method over the support of
the pdf. Results are reported in Table 1 (for an increasing number of training
patterns).

4 A Novel Framework for Graphical Pattern Recognition

A graph G is a pair G = (V, E) where V is an arbitrary set of nodes (or, vertices)
over a given universe U , and E = {xj = (aj , bj) | aj , bJ ∈ U, j = 1, . . . , n}
is the set of edges. We consider directed as well as undirected, connected and
unconnected finite graphs (G is undirected iff (a, b) ∈ E ↔ (b, a) ∈ E), either
cyclic or acyclic. From an algebraic point of view, the graph is a binary relation
over U , i.e. G ⊆ U ×U . All the binary relations (graphs) involved in the learning
problem at hand (both in training and test) are assumed to be defined over the
same domain U . We rely on the assumption that the universe U is a (Lebesgue)
measurable space, in order to ensure that probability measures can actually be
defined. The measurability of finite graphs defined over measurable domains (and
with measurable labels) like countable sets or real vectors is shown in [8].

Labels may be attached to vertices or edges, assuming they are defined over
a measurable space. For the vertices, we consider a labeling L in the form of
d-dimensional vectors associated with nodes, namely L(G) = {�(v) | v ∈ V, �(v) ∈
Rd}. As regards the edge labels, for each (aj , bj) ∈ E a label is allowed in
the form �e(aj , bj) ∈ Rd=(aj ,bj)e, where de is the dimensionality of the con-
tinuous label domain. Labels are accounted for by modifying the definition of
xj = (aj , bj) ∈ E slightly, taking xj = (aj , �(aj), bj , �(bj)), �e(aj , bj)). Note that
the present framework requires that the nodes in the graph are individual ele-
ments of a well-defined universe. Consequently, it does not explicitly cover sce-
narios in which the nodes act only as “placeholders” in the specific graphical
representation of the data. If this is the case, and the actual input features are
completely encapsulated within label vectors, the previous definitions may be
replaced by xj = (�(aj), �(bj)) for each pair (aj , bj) ∈ E. This may turn out
to be effective in practical applications, but it is mathematically justified only
iff each label uniquely identifies the corresponding node. Examples of structures
that fit the present framework are: semantic networks, e.g. whose nodes are
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words from a given dictionary; subgraphs of the World Wide Web, where nodes
are extracted from the universe of possible URLs and node labels are a repre-
sentation of the information contained in the web page; scene descriptions in
syntactic pattern recognition, whenever nodes are extracted from the universe
of terminal/nonterminal symbols.

Let ω1, . . . , ωc be a set of separate classes. We assume that each graph belongs
to one of the c classes. The posterior probability of i-th class given the graph is
P (ωi | {x1, . . . ,xn}), where each xj = (aj , bj) is interpreted as a random vector
whose characteristics and dimensionality depend on the nature of the universe
U . The assumption of dealing with measurable universes allows the adoption of
probabilistic measures, and applying Bayes’ theorem [5] we can write:

P (ωi | {x1, . . . ,xn}) =
p({x1, . . . ,xn} | ωi)P (ωi)

p({x1, . . . ,xn})
(2)

where P (.) denotes a probability measure, and p(.) denotes a probability density
function (pdf). The quantity p({x1, . . . ,xn} | ωi) is a joint pdf that expresses
the probabilistic distribution of the overall binary relation {x1, . . . ,xn} over its
domain according to the law p(.). We assume that the pairs xj , j = 1, . . . , n (in-
cluding the corresponding labels) are independently and identically distributed
(iid) according to the class-conditional density p(xj | ωi). Roughly speaking,
p(xj | ωi), encapsulates three different, yet joint probabilistic quantities, all of
them conditioned on ωi: (1) the likelihood of observing any given pair of nodes
(edge), (2) the probability distribution of node labels, and (3) the pdf of edge
labels. In so doing, the probability of having an edge between two vertices is
modeled jointly with the statistical properties of the nodes and of their labels.

The iid assumption is in line with classical and state-of-the-art literature
on statistical pattern recognition and on random graphs. For instance, in the
ER random graph model [2] edges are iid according to a unique (e.g. uniform)
probability distribution over the whole graph. In the small worlds paradigm
[13] iid edges are inserted during the rewiring process that generates the graph.
Similar arguments apply also to scale-free networks. It is noteworthy that the
iid assumption does not imply any loss in terms of structural information. Once
a graph is given, its structure is encapsulated within the binary relation, which
does not depend on the probabilistic quantities involved in Eq. 2. Applying the
iid assumption, Eq. 2 can be rewritten as:

P (ωi | {x1, . . . ,xn}) =

∏n
j=1 p(xj | ωi)P (ωi)∏n

j=1 p(xj)
(3)

where p(xj) =
∑c

k=1 P (ωk)p(xj | ωk). Since the pairs xj are extracted from
a well-defined universe and the joint probabilities are invariant w.r.t. arbitrary
permutations of their arguments, there is no “graph matching” problem in the
present framework. Representing the graph as a relation implies looking at the
structure as a whole. This is a major difference w.r.t. other techniques that
require a visit of the graph in a specific order, and that are faced with the
problem of possible infinite recursion over cyclic structures.
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In order to apply Eq. 3 as a discriminant function for graphical pattern recog-
nition, we need to estimate P (ωi) and the class-conditional pdf p(xj | ωi)
for i = 1, . . . , c and j = 1, . . . , n. If good estimates of these quantities are
obtained, the maximum-a-posteriori decision rule expressed by Eq. 3 is ex-
pected to yield the minimum Bayesian risk (i.e., minimum probability of clas-
sification error) [5]. The quantity P (ωi) can be estimated from the relative
frequencies of classes over the training sample, as usual. The technique de-
scribed in Section 2 is used to estimate p(xj | ωi). It has to be applied for
c times, once for each independent subsample of the data which belongs to
a specific class. Since

∏n
j=1 p(xj) does not depend on ωi, it can be dropped

from Eq. 3. Taking the logarithm we obtain an equivalent discriminant function
gi({x1, . . . ,xn}) =

∑n
j=1 log{p(xj | ωi)} + log{P (ωi)}. In so doing, numerical

stability is gained when dealing with joint probabilistic quantities over large
graphs.

5 Experiments: Image Classification from the Caltech
Benchmark Dataset

The proposed technique is compared with RNNs and GNNs on an image clas-
sification problem from the Caltech benchmark dataset. The experiment (as in
[4]) is based on 4 classes, i.e. images of bottles, camels, guitars, and houses. For
each class, a subset of 350 images was extracted from the Caltech dataset. Half
of the images consists of positive examples of the class, while the others are
negative examples, i.e. images randomly sampled from the other classes. The
same data subsets as in [4] were used, each divided into training, validation and
test sets (150, 50, and 150 images, respectively). Each image was represented as
an undirected Region Adjacency Graph (RAG), obtained using the Mean Shift
algorithm and the k-means color quantization procedure as in [4]. Since RNNs
cannot deal with undirected graphs, application of the RNNs requires that the
RAGs are transformed into directed acyclic graphs (DAG) via breadth-first visit
and substitution of each undirected edge with a directed one. Each node of the
RAG has a 23-dimensional vector label, while edge labels are 5-dimensional [4].

Results are expressed in terms of recognition accuracy on a class-by-class basis
(see [4]). Average of the accuracies is reported in the last column of the Table 2.
It is seen that, although simple, the present approach outperforms the RNNs,
and it yields also a significant average improvement over the GNNs.

Table 2. Recognition accuracies on the Caltech Benchmark Dataset w.r.t. the results
reported in [4]

Models Bottles Camels Guitars Houses Avg.

Present approach 90.51 82.00 84.51 98.77 88.94

GNN 84.67 74.67 70.67 84.67 77.84

RNN 70.66 65.33 62.67 81.33 69.33
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6 Conclusion

There are two contributions of the paper: (1) an unbiased and easy to implement
technique for multivariate pdf estimation via SVM trained with standard SVR.
The model is effective, much stabler than PW, and it may yield improvement
over previous SVM algorithms for density estimation; (2) a novel and simple
approach to structured pattern recognition. Its core aspect is to look at a graph
as a binary relation, and to introduce a Bayesian classifier that involves the
estimation of a joint pdf over the relation itself. The SVM estimation technique
may be successfully used in this respect. Experimental comparison w.r.t. state-
of-the-art connectionist models for structured data confirms that the framework,
albeit not universal, turns out to be sound.
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Neural Mechanisms for Mid-Level Optical Flow  
Pattern Detection 
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Abstract. This paper describes a new model for extracting large-field optical 
flow patterns to generate distributed representations of neural activation to 
control complex visual tasks such as 3D egomotion. The neural mechanisms 
draw upon experimental findings about the response properties and specificities 
of cells in areas V1, MT and MSTd along the dorsal pathway. Model V1 cells 
detect local motion estimates. Model MT cells in different pools are suggested 
to be selective to motion patterns integrating from V1 as well as to velocity 
gradients. Model MSTd cells considered here integrate MT gradient cells over a 
much larger spatial neighborhood to generate the observed pattern selectivity 
for expansion/contraction, rotation and spiral motion, providing the necessary 
input for spatial navigation mechanisms. Our model also incorporates feedback 
processing between areas V1-MT and MT-MSTd. We demonstrate that such a 
re-entry of context-related information helps to disambiguate and stabilize more 
localized processing along the primary motion pathway. 

Keywords: Motion perception, optical flow, motion integration, motion 
gradient, feedback, navigation, area MT, area MSTd. 

1   Introduction 

The robust analysis of optical flow patterns is one of the basic computational tasks for 
steering egomotion of human and higher animals [9]. Self-motion induces typical 
patterns of optical flow on the retina which are analyzed by the visual system over 
several stages of hierarchically organized visual areas in the dorsal cortical pathway. 
The two cortical areas MT (medial temporal) and MSTd (dorsal medial superior 
temporal) are primarily concerned with the processing of optical flow. Cells in area 
MT represent proper features of optical flow information, e.g., motion direction and 
speed, in medium-size regions of the visual field [1]. MT cells project to area MSTd 
where cells have huge receptive fields and are tuned to specific patterns of optical 
flow. While [8] found evidence for a dominance of cells selective to radial and 
rotational flow (defining an orthogonal basis), the investigation of [10] found support 
for the existence of a continuum of flow sensitive cells with equally likely preference 
to spiral motion patterns. 

Previous approaches to modeling optical flow extraction have been suggested 
which consider MSTd cells sensitive to large-field optical flow. For example, [4] 
investigated the development of optical flow sensitive cells using a two-layer 
backpropagation network. [11] studied optical flow processing by MSTd cells using a 
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spatial retino-cortical mapping with log-polar magnification. In this model the output 
from direction selective MT cells were spatially integrated by MSTd cells with 
different selectivities that are fed forward to a heading map. The model by [17] was 
the first incorporating the functionality of speed gradient cells (at MT). Different 
pools of MSTd neurons spatially integrate motion responses and speed gradient 
responses separately to generate cells tuned to complex motion patterns. 

Our model extends previous models drawing upon own previous investigations on 
recurrent feedforward-feedback processing for integration and disambiguation of 
motion signals. Here we propose a new model mechanism for extracting changes in 
velocity by employing cells with asymmetric receptive field profiles oriented along 
the motion direction. This extends previously proposed speed gradient mechanisms by 
computing velocity changes. MSTd in turn integrates information signaled by MT 
gradient cells to form large-field motion cells selective to complex motion patterns. 
We demonstrate that MSTd gradient cells show position-independence properties 
with respect to variations of the location of centers of motion. Furthermore, we also 
incorporate predictive feedback from MSTd to MT that stabilizes the extraction of 
noisy complex motion patterns even in the presence of moving objects. 

2   Mid-Level Optical Flow Pattern Detection 

2.1   Input Sequences and Initial Motion Detection 

Our approach draws upon experimental evidence about the structure and function of 
the primary stages of the dorsal pathway in visual cortex. Initial motion detection is 
realized at the stage of the primary cortical area V1, while visual area MT focuses on 
the robust detection of salient motion components, tracking of localized features, and 
the disambiguation of locally ambiguous motion patterns that were caused, e.g., by 
the aperture problem [13]. Visual area MSTd is primarily concerned with the 
detection and representation of large whole field flow patterns, such as those that 
were generated by observer self-motion. 

Local motion detection is accomplished by a Reichard-like correlation scheme with 
shunting inhibition between half-detectors tuned to opposite movement directions. 
These activities feed into a feedforward-feedback loop modeling V1-MT interaction 
[2]. In a nutshell, motion sensitive cells in model MT integrate activities from V1 
direction selective cells by pooling same velocities over a spatial as well as directional 
neighborhood, essentially low-pass filtering the noisy motion estimates. The resulting 
activities are represented in a pool of motion cells in area MT. Pooled activities 

MTau are subsequently fed back to enhance V1 cell activations that are compatible 

with the velocity represented in model MT. The resulting activations were also fed 
forward into a population of MT model cells that compute changes in the MT velocity 
field representation. This processing and subsequent integration of these activities by 
large-field model MSTd cells are at the primary focus of this contribution and are 
described in subsection 2.2. 

The dynamics of each model area is described by a cascade model of linear-non-
linear-non-linear (LNN) processing [12] derived from single-compartment neuron 
models with firing-rate activation dynamics. We utilize three-stages of (a) input 
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filtering, (b) non-linear signal amplification (via feedback), and (c) shunting 
inhibition to realize activity normalization in a local neighborhood. This basic 
architecture has been utilized in previous models for static form as well as dynamic 
motion perception [14][2]. 

2.2   Detection of Motion Patterns and Gradients 

The V1-MT motion detection scheme is extended in several ways, namely (a) a neural 
mechanism to compute changes in the dense velocity representation (motion 
gradients) at the level of the MT/MSTl complex, (b) a stage of integrating gradient 
signals over a large spatial neighborhood to generate cell responses in model area 
MSTd, and (c) incorporating feedback to deliver a re-entry signal for stabilizing the 
processing of motion gradients. Similar to the approach developed by Tsotsos and 
colleagues [17] we employ mechanisms to measure local changes in velocity 
generating a gradient representation. Experimental evidence for the existence of cells 
sensitive to velocity gradients has been presented by, e.g., [16], and the spatial pattern 
of surround weighting was studied in [18]. 

V1

MT

motion gradient

MSTd

motion gradient

Motion pattern signals Navigation (heading)

 

Fig. 1. General outline of processing stages and communication pathways of the model. Bold 
arrows denote information flow currently implemented in the model, dashed arrows depict 
those connectivities that are planned to be included in further model extensions. Representation 
of motion in MT and MSTd denotes a location-velocity space, <x,y,θ,s>, while the gradient 
representations denote a location-velocity-gradient space, <x,y,Δθ,Δs>. 

The primary input to area MSTd is delivered via area MT where it is integrated 
over a large spatial neighborhood to generate the observed pattern specificity to large-
field motion patterns. Physiological investigations have demonstrated that cells in 
area MSTd respond primarily to large field motion patterns having different 
selectivities, e.g., expanding or contracting radial motion, clockwise or counter-
clockwise rotation, or linear superpositions that lead to spiral motion patterns [10]. A 
sub-population of cells also responds to pure translatory motion. MSTd activation in 
turn is fed back to cells in area MT to incorporate prediction and enhancement of 
noisy activation distributions. In all, we suggest a coherent architecture in which the  
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bidirectional signal flow defines a key component of functionality to achieve robust 
cortical motion representation (Fig. 1). Size ratios between cells in the different model 
cortical areas are defined in accordance to experimental data [6, 10] and were set to 
V1:MT:MSTd = 1:5:25. 

uθ,s1 us1(xoff(u))

motion gradient for direction θ and speed s1 motion gradient for direction θ and speed s2

Δu1
MT

us1(x–off(u))

uθ,s2 us2(xoff(u))

us2(x–off(u))

us1(x–off(u))

us1(xoff(u))

Δu2
MTus2(x–off(u))

us2(xoff(u))

 

Fig. 2. Mechanism of computing differences in velocity (gradient) in model area MT for two 
different speed amplitudes in the same direction (left: slow speed, right: fast speed). The size of 
sub-field integration scales as a function of the speed amplitude (see text). 

Detection of changes in MT motion fields (motion gradients). Motion is encoded 
by populations of cells sensitive to direction and speed, i.e., u = (θ, s). In order to 
keep the computational efforts in reasonable bounds we employ a rank-order coding 
approach [15] in which spike sequences are generated algorithmically and represented 
in ordered lists. This allows highly efficient on-demand representation of motion in 
various directions and allowing the detection of arbitrary speed amplitudes (see [3] 
for details). 

We propose a scheme to measure changes in the velocity field along local motion 

directions in MT, which are represented in a second pool of MT neurons, MTa
θuΔ , 

where Δu = (Δθ, Δs) symbolizes changes in velocity. The population of motion 
sensitive cells is sampled at each location by two sub-fields that are spatially offset 
along the movement direction at the target cell. For a given motion along direction θ 
and speed s = |u|, sampling locations of cells are at x–off(u) = x – uθ and xoff(u) = x + uθ, 
respectively (x denoting the spatial target location). The radius of the sampling 
kernels varies with the speed of the current velocity, i.e. r = |u|, such that we get an 
increased spatial uncertainty with increasing speed (see Fig. 2). In each sub-field the 
velocities are weighted and summed to derive a population response for the velocity. 
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The differences between velocities of the populations from both offset locations are 
defined by the quantity1 

( ) ( )( ) ( )( )uu xuxuxu offoff
MT

−−=Δ . (1) 

We specify cells to represent certain Δu which compute their activity utilizing the 
following non-linear mechanism2,  

( ) ( ) ( )( ) ( )( )uuuuuu xxxx off
MT

off
MTMTMT aaaa −Δ ⋅⋅=  (2) 

to generate a field of motion gradients. These activities are efficiently approximated 
similar as in [3]. Each local difference in activity is represented with respect to the 
direction of motion at the respective target location that defines a local gauge 
coordinate system (compare [17]). Activities of motion cells as well as of motion 
gradient cells are subsequently normalized by a process of divisive (shunting) center-
surround competition in the space-feature domain. For simplicity, at the moment, we 
employ normalization over gradient cell activities at single locations, namely 

( ) ( ) ( )( )∑
Δ

ΔΔΔ =
x uuu

u
xxx

aall

MTMTMT aaa
 

/
θθ

. (3) 

The resulting activations are then fed forward to cells in model area MSTd. 

MSTd gradient motion integration. Cells in model MSTd sum up the responses of 
corresponding MT gradient units over a large spatial neighborhood similar as in 
previous models [4][11][17]. The mechanism utilizes a convolution by a suitable 
kernel to weight activities in the spatial-feature domain 

( ) ( ) θφφ φθ
Ψ⋅Λ⋅=∑ ΔΔ ','

' xxx uu xx MTMSTd aa  (4) 

with separable kernels Λ and Ψ for weighting in the spatial and the direction domain, 
respectively. 

The spatial resolution of model area MSTd is down-sampled by a factor of 1:5. In 
the current version of our model we integrate responses of the MT gradient cells to be 

represented in a pool of motion cells, MSTda
θuΔ . Those cell responses resulting from 

non-zero directional differences, ΔθMT(x) ≠ 0, encode large-field motion patterns such 
as radial expansion/contraction, rotation, and spiral motion. For zero directional 
differences, ΔθMT(x) = 0, and vanishing speed gradients, ΔsMT(x) = 0, one gets cells 
with pure large-field translatory motion pattern selectivity (center of motion shifted to 
infinity). 

                                                           
1 To simplify the necessary calculations we employed a vector notation for computing the 

velocity differences. In order to represent the signals in a neurally plausible scheme direction 
and speed components could be represented in separate sub-populations of cells with proper 
sampling resolution. These quantities could then enter into competitive interactions. 

2 We suggest taking the product of the three measures to calculate a response that denotes a 
likelihood of the presence of the particular change in velocity. The independence of the three 
measures is assumed. 
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Motion pattern prediction and modulatory MSTd-MT feedback. Integrated 
measures of velocity changes, in turn, provide a context for more localized measures 
at the earlier computational stages (model area MT in our case). In other words, 
MSTd activation serves as a predictor signal that is fed back to gradient responses in 
area MT. This feedback is proposed to be modulatory and excitatory such that 
activities of cells in MT selective for a particular gradient direction can be amplified 
by MSTd gradient activation for the same (or similar) gradient direction. The 
modulation is denoted by the scheme (with constant coefficient C) 

( )MSTdMT aCa
θθ uu ΔΔ ⋅+⋅ 1  . (5) 

uMT

-uMT

MTmotion MTgradient

MSTdgradient

t – 1 

t 

 

Fig. 3. Sketch of mechanism employed for model MSTd-MT feedback of velocity measures 

 
The rationale is that MT activations gate the modulation signal so that existing 
gradient representations will be amplified by MSTd feedback or left unchanged  
in the case when no feedback signal exists. In case no feedforward activation has 
been computed at a given location feedback alone cannot generate new activities. 
This property stabilizes the network behavior in accordance with the no-strong 
loop hypothesis [7]. The feedback signal amplifies filtered feedforward activations 
at the second stage of the three-level cascade model briefly sketched above. The 
amplified responses subsequently undergo center-surround shunting competition 
(stage three of the cascade model). This realizes a biased competition since those 
activities in the competitive pool that were amplified now have a stronger bias  
and consequently reduce the activities of cells which have not received any 
feedback. 

The feedback mechanism is predictive in the sense that the amplification is shifted 

spatially to a location that coheres with the target motion direction, ( )xu MT , in the 

next frame of the sequence. In a nutshell, the prediction of a gradient measure (with 
amplitude and direction) utilized “votings” that were spatially shifted according to the 
velocity uMT at the target location (see Fig. 3). 
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3   Simulation Results 

The neural model has been tested on a variety of input motion sequences. In order to 
demonstrate its selectivity in the processing of large-field motion patterns and the 
response distribution of flow sensitive MSTd cells over time we first probe the 
network with a motion sequence of a simulated flight through a corridor with 
synthetically generated wall texture patterns (Fig. 4). Here the observer maneuvers 
such that a continuous sequence of steering commands lead to forward motion 
followed by left and right turns as well as reversing the spatial movement in between. 

 

 

Fig. 4. Results of recurrent V1-MT-MSTd processing for an image sequence from a flight 
through a tunnel and respective maneuvers over time. The four different pairs of flow field 
patterns represent the equilibrated motion estimates at different times each showing MT motion 
responses and MSTd gradient cell responses, respectively (color coded directions represent a 
mapping of corresponding radial/rotation/spiral patterns shown in the legend top left),  response 
trace of pattern selective MSTd gradient cells over time shown in center (see text). 

 

Fig. 5. Results of recurrent V1-MT-MSTd processing for the “Flower garden” sequence. Left: 
MT motion responses, center: MSTd gradient cell responses, right: histogram of MSTd gradient 
responses (see text for discussion). 

Equilibrated MT motion responses are shown that were generated by V1-MT 
feedforward/feedback interaction at different times of the temporal sequence and the 
corresponding results of integrated velocity gradients at the stage of area MSTd 
(equilibrated response of MT-MSTd feedforward/feedback interaction). The response 
tuning of large-field motion pattern responses of a continuum of MSTd cells 
(selective to radial expansion/contraction, clockwise/counter-clockwise rotation, and 
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spiral motion) is shown in the panel at the center. The display of responses of the 
motion pattern selective cells with different tunings demonstrates that the temporal 
course helps to infer the observer motion. 

We also tested the model using the “Flower garden” sequence (Fig. 5). This 
specifically investigates the computational results for scenes containing mutually 
occluding objects thus generating locations of temporally disappearing structure as 
well as structure reappearing at locations that were uncovered. The key observations 
are that (1) dense motion is computed with speeds corresponding to different depths 
of the scenic objects (including speed gradient in vertical direction of the ground 
plane), and (2) that motion gradient cells detect occlusion boundaries by signaling 
opposing motion directions. The gradient directions indicated might be surprising at a 
first glance but can be explained after a closer look at the mechanisms involved. The 
signal for “expansion” motion along the right tree boundary is generated by the 
different velocities (increasing speed) in motion direction from background to the tree 
region in front which is interpreted as acceleration. At the opposite tree boundary the 
speed difference indicates a decrease in the velocity (indicative for deceleration) 
which is signaled by cells tuned to “contraction” motion. A prediction of the model is 
that MSTd cells when probed by stimulus patterns containing significant depth 
structure and thus motion parallax should signal similar local pattern motion. 

 

 

Fig. 6. Results of recurrent V1-MT-MSTd processing for ground plane motion with view 
direction offset from motion direction.  Top: MT responses (initial response, after 2nd iteration), 
bottom: MSTd gradient cell responses, right panels: improvement of motion and gradient 
estimates (mean and median angular error) over time (see text). 

Finally, we probed the model with the flow pattern generated by forward observer 
motion over a ground plane with a view direction 15 deg. offset to the left from the 
translation axis (Fig. 6). This investigates the model properties in navigation tasks 
with different centers of motion due to varying view directions. The perspective effect 
of flows on the ground plane poses a problem for the model proposed by Tsotsos and 
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colleagues which employs speed gradient measures for flow pattern extraction [17]. 
As a consequence, the depth gradient for the ground plane leads to patches of 
different optical flow field interpretations, namely rotations to both sides of the center 
of motion, expansion below and above the center, and spiral motion segments in 
between. Our approach leads to a response pattern that is invariant against the surface 
projection. In addition, the study demonstrates how MT flow estimates as well as 
MSTd pattern representations were improved by the iterative feedforward-feedback 
interaction. MT motion responses are shown for the (noisy) initial estimates and after 
2 iterations as well as the corresponding responses for MSTd gradient cells. The 
temporal course of angular error reduction is shown over 3 iterations (right panels). 

4   Discussion and Conclusions 

We propose a novel neural architecture of motion detection, integration and the extraction 
of large field optical flow patterns building upon evidence about cells at different stages 
along the dorsal pathway of primate visual cortex. Our model makes several new 
contributions in comparison with previous computational models. In particular, a previous 
model of early motion detection and integration was extended using the same type of basic 
mechanisms, namely feedforward integration, modulatory feedback, and shunting 
competition. Unlike many other models, with the notably exception of the architecture 
proposed by Tsotsos and coworkers [17], we propose a stage of making explicit velocity 
changes. Unlike the Tsotsos’ model, we propose a speed sensitive scheme of difference 
filtering between sub-fields along the direction of motion at a target location. Our scheme 
can be considered as a more generalized approach that also allows detecting direction 
gradients (in addition to speed gradients) and measuring such velocity gradients in a gauge 
coordinate frame along the local direction of motion. This idea is reminiscent of the 
approach for dense texture flow field extraction that has been proposed by Zucker and 
coworkers [5]. Whereas, Zucker focuses on the long-range lategral connectivities for 
integration of oriented patterns in static form processing, we are concerned with measuring 
the direction changes in flow fields. For that reason, we suggested to employ a scheme that 
utilizes oriented receptive fields with excitatory and inhibitory sub-fields whose sizes scale 
with the speed of the motion patterns. Unlike the model proposed by Grossberg and 
colleagues [11] which utilizes feedforward integration only, we employ feedback and 
integrate velocity gradient information as well. The proposed scheme does not at the 
moment incorporate learning to automatically develop cells being selective for mid-level 
motion patterns, such as, e.g., [4]. 

As we have indicated in Fig. 1 that displays an overview of the computational 
architecture the extraction of large-field motion patterns serves as an input 
representation for further computations supporting different behavioral tasks. For 
example, the estimation of heading is useful for navigation in the spatial environment. 
In order to reliably extract the heading direction the complex motion field must be 
somehow decomposed into translatory and rotational flow-field components of 
different relative amounts. A mixture of expansion and rotation component in flow 
patterns occurs routinely during fixations of a target object while an observer is 
moving in a particular direction. Also scenic objects can move in certain directions 
independently of the observer and must be detected and segmented from the global 
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flow field. We suggest that motion and motion gradient information provide 
complementary information since the extraction of global motion pattern signals 
requires invariance against, e.g., the focus of expansion. On the other hand, estimating 
the heading direction needs to gain information about the localization of the focus-of-
expansion. Both type of information is robustly encoded in the motion and gradient 
signals at the level of model MSTd. Their proper combination remains a topic for 
further investigation. 
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Abstract. In this article we present an incremental method for building
a mixture model. Given the desired number of clusters K ≥ 2, we start
with a two-component mixture and we optimize the likelihood by repeat-
edly applying a Split-Merge operation. When an optimum is obtained, we
add a new component to the model by splitting in two, a properly cho-
sen cluster. This goes on until the number of components reaches a pre-
set limiting value. We have performed numerical experiments on several
data–sets and report a performance comparison with other rival methods.

1 Introduction

Clustering, apart from being on its own a challenging field of research, is useful
to a wide spectrum of application areas, such as pattern recognition, machine
learning, computer vision, bioinformatics, etc. The large interest of the scientific
community for the problem of clustering is reflected by the growing appearance
of related monographs [1],[2],[3],[4], journal articles and conferences. With the
advent of the Internet and the World Wide Web, scientific data from a wide range
of fields have become easily accessible. This convenience has further raised the
interest and expanded the audience of clustering techniques. Clustering can be
viewed as the identification of existing intrinsic groups in a set of unlabeled data.
Associated methods are often based on intuitive approaches that rely on specific
assumptions and on the particular characteristics of the data sets. This in turn
implies that the corresponding algorithms depend crucially on some parameters
that must be properly tuned anew for each problem.

A plethora of clustering approaches has been presented over the last years.
Hierarchical methods are based on a tree structure over the data according to
some similarity criteria. Methods based on partitioning, relocate iteratively the
data points into clusters until the optimum position of some cluster represen-
tatives (e.g. centers) is found; the popular “K-means” algorithm for instance
belongs to this category. On the other hand, model-based methods are closer to
the natural data generation mechanism and assume a mixture of probability dis-
tributions, where each component corresponds to a different cluster[1],[3],[4]. In
these methods the Expectation-Maximization (EM) algorithm [5] is the preferred
framework for estimating the mixture parameters due both to its simplicity and
flexibility. Moreover, mixture modeling provides a powerful and useful platform
for capturing data with complex structure. A fundamental concern in applying
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the EM algorithm, is its strong dependence on the initialization of the model
parameters. Improper initialization may lead to points corresponding to local
(instead of global) maxima of the log-likelihood, a fact that in turn may weigh
on the quality of the method’s estimation capability. Attempts to circumvent
this, using for example the K-means algorithm to initialize the mixture pa-
rameters, amounts to shifting the original problem to initializing the K-means.
Recently, several methods have been presented, aiming to overcome the problem
of poor initialization. They are all based on an incremental strategy for building
a mixture model. In most cases these methods start from a single component
and iteratively add new components to the mixture either by performing a split
procedure [6], or by performing a combined scheme of global and local search
over a pool of model candidates [7]. A similar in nature technique is to follow an
entirely opposite route and start with several components that iteratively will
be discarded [8]. An alternative strategy has been presented in [9] where a split-
and-merge EM (SMEM) algorithm was proposed. Initially the SMEM method
performs the usual EM algorithm to a K-order mixture model and an initial
estimation of the parameters. At a second level, repeated split-merge operations
are performed exhaustively among the K components of the mixture model that
re-estimate the model parameters until a termination criterion is met.

The idea of the SMILE method is to start with a mixture model with k = 2
and then to apply a Split & Optimize, Merge & Optimize (SOMO) sequence of
operations. If this leads to a model with higher likelihood we accept it and repeat
the SOMO procedure. In the opposite case we choose the model created just after
the Split & Optimize (SO) step, which corresponds to a mixture model with an
additional component. This is continued up to a preset number of components.
At that stage if the SOMO sequence does not produce a higher likelihood value,
the algorithm concludes. We have tested SMILE on a suite of benchmarks, with
both simulated and real data sets, taking in account a variety of cases, with
promising results. Comparisons have been made with existing methods of simi-
lar nature. The quality of the solutions offered by each method is rated in terms
of the associated log-likelihood value. An important test for SMILE is its appli-
cation to image segmentation problems. Here we have considered data arising
from MRI images and the results are quite encouraging.

The rest of the paper is organized as follows. In section 2 we present the
mixture models and the EM algorithm for parameter estimation, in section 3
we present in detail our incremental scheme where we lay out an algorithmic
description, while in section 4 we report results obtained by applying SMILE
to several data sets. Our conclusions and a summary are included in section 5
along with some remarks and speculations.

2 Mixture Models

Given a set of N data points A = {xi|xi ∈ Rd, i = 1, · · · , N}, the task of
clustering is to find a number of K subsets Aj ⊂ A with j = 1, · · · , K, containing
points with common properties. These subsets are called clusters. We consider
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here that the properties of a single cluster j, may be described implicitly via a
probability distribution with parameters θj .

A mixture model is a linear combination of these cluster-distributions, e.g.:

f(x|ΘK) =
K∑

j=1

πjp(x|θj) (1)

The parameters 0 < πj ≤ 1 represent the mixing weights satisfying
∑K

j=1 πj = 1,
while ΘK = {πj , θj}K

j=1 represents the vector of all unknown model parameters.
Mixture models provide an efficient method for describing complex data sets.
The parameters can be estimated by maximizing the log-likelihood, by using for
example the EM algorithm [5]. EM performs a two-step iterative procedure: The
E-step calculates the posterior probabilities:

z
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while the M -step updates the model parameters by maximizing the complete log-
likelihood function. If we assume multivariate Normal densities θj = {μj , Σj}
maximization yields the following updates:
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3 Split–Merge Mixture Learning

In this section we describe in detail the proposed method. To begin with, we
describe the operations used in the SOMO sequence.

3.1 The Split Operation

Suppose that the model currently contains k ≥ 2 components (clusters). The
selection of the cluster to be split is facilitated with one of the criteria below.

1. Maximum Entropy:

H(j) = −
∫

p(x|θj) log p(x|θj)dx (4)
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2. Minimum Mean Local Log-likelihood:

L(j) =
∑N

i=1 p(j|xiθj) log(p(xi|θj))∑N
i=1 p(j|xi, θj)

(5)

3. Maximum local Kullback divergence: (used also by SMEM [9])

J(j) =
∫

f(x|Θ) log
f(x|Θ)
p(x|θj)

dx (6)

where the density f(x|Θ) represents an empirical distribution [9].

Suppose that cluster j∗ is being selected for the split operation. Two clusters are
then created labeled as j∗1 and j∗2 . Their parameters are initialized as follows:

πj∗
1

= πj∗
2

=
πj∗

2
, Σj∗

1
= Σj∗

2
=

Σj∗

2
(7)

μj∗
1

= μj∗ +
√

λmax

2
vmax , μj∗

2
= μj∗ −

√
λmax

2
vmax , (8)

where λmax, vmax are the maximum eigenvalue and its corresponding eigenvector
of the covariance matrix Σj∗ .

3.2 The Optimization Operation

Let f(x|Θ∗
k) be the mixture without the j∗-th component, i.e.:

f(x|Θ∗
k) = f(x|Θk) − πj∗p(x|θj∗) =

k∑

j=1,j �=j∗

πjp(x|θj) (9)

The resulting mixture after the split operation takes the following form:

f(x|Θk+1) = f(xi|Θ∗
k) + (πj∗ − α)p(x|θj∗

1
) + αp(x|θj∗

2
) (10)

with 0 ≤ α ≤ πj∗ . In this mixture, the first term is inherited from the original
model, while the rest two, are the newly introduced components by the split
operation. The first term remains intact, while the other two are to be adjusted
so as to maximize the likelihood. This is facilitated by a partial application of
the EM algorithm, that modifies only the new component parameters α, θj∗

1
, θj∗

2
.

The following updates are obtained:
At the E-step:
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and at the M-step:
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(13)
After obtaining an optimum in the subspace of the newly introduced parameters,
a full space optimization is performed, again by the EM algorithm (Eqs. 2, 3).

3.3 The Merge Operation

During this operation two clusters are fused into one. Two clusters {k1, k2} are
selected according to any of the criteria that follow.

1. Minimum Distribution Distance (Symmetric Kullback Leibler)
∫

p(x|θk1) log
p(x|θk1 )
p(x|θk2 )

dx +
∫

p(x|θk2) log
p(x|θk2)
p(x|θk1)

dx (14)

2. Maximum Distribution Overlap (used also in [9])

N∑

i=1

p(k1|xi, θk1)p(k2|xi, θk2) (15)

Let the resulting cluster be labeled by k. Its parameters are then initialized as:

πk = πk1 + πk2 , μk =
πk1 ∗ μk1 + πk2 ∗ μk2

πk1 + πk2

, Σk =
πk1 ∗ Σk1 + πk2 ∗ Σk2

πk1 + πk2

(16)

The optimization step following the merge operation is in the same spirit as that
of section 3.2, e.g. we perform partial EM steps, allowing only the new (merged)
cluster parameters to vary. After obtaining an optimum in the subspace of the
newly introduced parameters, a full space EM optimization is performed.

3.4 Description of the Method

Initially we construct a mixture with two components, i.e. k = 2. Denote by
Θ1

k the mixture parameters, and by L(Θ1
k) the corresponding value of the log-

likelihood function. We perform in succession a split and an optimization op-
eration, obtaining so a model Θm

k+1 with k + 1 components. Similarly in what
follows, we perform a merge and an optimization operation, that creates a model
again with k components. Let Θ2

k be the new mixture parameters after this split-
merge operation and L(Θ2

k) the corresponding log-likelihood. If L(Θ2
k) > L(Θ1

k)
then we update the k-order model to Θ2

k and we repeat the SOMO procedure.
In the case where L(Θ2

k) ≤ L(Θ1
k), i.e. when the SOMO procedure fails to ob-

tain a better value for the likelihood, we discard the last merge operation and
update our model to Θm

k+1, which was obtained after the last SO operation, with
k + 1 components. The algorithm proceeds so, until we obtain a model with the
prescribed number of components (K) and the SOMO iterations fail to provide
further improvement to the likelihood.
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We now can proceed and describe our method algorithmically.

– Start with k = 2
– while k < K

1. Estimate the current log-likelihood L1
2. Perform SOMO operation:

• Split: select a cluster j∗ and divide it into two clusters j∗1 and j∗2 .
• Optimization operation: Perform partial-EM and then full EM.
• Merge: select two clusters k1 and k2 and merge them.
• Optimization operation: Perform partial-EM and then full EM.
• Estimate the log–likelihood L2

3. if L2 > L1 then:
Accept the fused cluster. Set L1 ← L2 and go to step 2.

else:
Reject the last merge operation. Set k ← k + 1.

– endwhile

4 Experimental Results

We have performed several experiments to examine the effectiveness of the
SMILE method. We have considered both real and simulated data sets of vary-
ing dimensionality. We compare against three incremental approaches, namely
the Greedy EM method1 [7], the Split and Merge EM (SMEM) [9], the MML-
EM 2 [8], as well as with the simple K-means initialized EM. The initialization
scheme in SMILE is predetermined in distinction to the contestant schemes
that depend heavily on random numbers. Hence, in order to obtain a meaning-
ful comparison, we performed 30 different runs for each data set with different
seeds and kept records of the mean value and the standard deviation of the log-
likelihood.

Experiments with simulated data sets
In Fig. 1 we give an example of the performance of our algorithm in a typical
2-dimensional data set that has been generated from a K = 5 Gaussian mixture.
Note that ellipses were created by covariances. Step 0 shows the solution with
one cluster, which in step 1 is split into two, with a log-likelihood estimation
L1 = −1727. Then, SMILE tests the optimality of this solution by perform-
ing a SOMO procedure (steps 2a, 2b), leading to a solution with L2 = −1973.
Since the SOMO fails (L2 < L1), we discard the last MO operation leading to a
K = 3 mixture model and continue with the next SOMO process (steps 3a, 3b).
In this case, this SOMO operation found a better solution L2 = −1272 (step
3b) in comparison with the one L1 = −1537 of step 2a. Therefore, we accept
this updated K = 3 model and perform another SOMO operation (steps 4a,

1 The software was downloaded from http://staff.science.uva.nl/∼vlassis/software/
2 The software was downloaded from http://www.lx.it.pt/∼mtf/
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Fig. 1. Visualization of the SMILE steps on a typical data set. Each figure shows the
current clusters and the corresponding value of the log-likelihood.
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Fig. 2. Simulated data sets used during experiments. We give also the clustering solu-
tion obtained by our method, i.e. their centers and the elliptic shapes.

4b), which however fails to further improve the likelihood. Finally, two other
SOMO calls are made that both fail before the final K = 5 solution is reached
(step 5a).

Several experiments were conducted using simulated data sets created by sam-
pling from Gaussian mixture models. Figure 2 illustrates eight (8) such data sets
containing N = 500 points. The first four sets (a,b,c,d) are in 2-dimensions, while
(e,f) (g,h) are in 5 and 10-dimensions respectively. The visualization for the sets
with dimensionality 5 and 10, is performed by projecting on the plane spanned
by the first two principal components. The clustering obtained by SMILE is dis-
played in Fig. 2. Table 1 summarizes the results obtained by the application of
the five contestants to the above mentioned data sets. Note that SMILE has re-
covered the global maximum in all cases; from the rest, only the Greedy EM and
SMEM methods yielded comparable results. For the data set of Fig.2c, SMILE
was the only method that obtained the global solution.
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Table 1. Comparative results obtained form the experiments in data sets of Fig. 2

Data set SMILE Greedy EM SMEM MML-EM K-means EM
(a) −2.82 −2.87(0.02) −2.82(0.00) −2.86(0.05) −2.89(0.01)
(b) −0.83 −0.83(0.01) −0.85(0.02) −0.98(0.13) −0.86(0.05)
(c) −3.92 −3.94(0.01) −3.94(0.00) −3.95(0.02) −3.93(0.01)
(d) −1.87 −1.87(0.00) −1.89(0.04) −2.00(0.17) −1.99(0.19)
(e) −4.54 −4.63(0.04) −4.55(0.02) −4.59(0.04) −4.61(0.02)
(f) −4.74 −4.74(0.00) −4.75(0.03) −4.80(0.07) −4.85(0.14)
(g) −7.19 −7.19(0.00) −7.19(0.00) −7.40(0.09) −7.44(0.33)
(h) −7.71 −7.71(0.00) −7.75(0.16) −7.82(0.03) −7.83(0.23)

Experiments with real data sets
Additional experiments were made using real data sets. In particular, we have
selected two widely used benchmarks. The first one is the CRAB data set of
Ripley [2], that contains N = 200 data belonging to four clusters (K = 4).
Original CRAB data are in five dimensions. Here we have also created a
2-dimensional data set by projecting the data on the plane defined by the second
and third principal components. We have also considered the renowned Fisher-
IRIS data set [10] with N = 150 points in d = 4 dimensions belonging to three
clusters (K = 3). In Table 2 we summarize the results obtained by the 5 con-
testants. Note, that in the case of the original CRAB data set, SMILE was the
only one that recovered the optimal solution.

Another experimental benchmark used is the Phoneme data set [10]. This is
a collection of two-class five dimensional data points. In our study we have ran-
domly selected a training set with N = 2800 and a test set with 2604 data points.
Figure 3 illustrates the performance of each method by plotting the log-likelihood
value versus the number of components K = [2, 10], in both the training and

Table 2. Comparative results obtained from the CRAB and the IRIS data sets

Data set SMILE Greedy EM SMEM MML-EM K-means EM
CRAB d = 5 −6.14 −6.35(0.14) −6.35(0.12) −6.86(0.01) −6.60(0.19)
CRAB d = 2 −2.49 −2.50(0.01) −2.50(0.00) −2.55(0.06) −2.52(0.06)

IRIS d = 4 −1.21 −1.23(0.02) −1.23(0.04) −1.25(0.04) −1.28(0.09)
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Fig. 3. Plots of mean log-likelihood objective function estimated by each method
against number of components K to the Phoneme data set
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the test sets. Observe that SMILE’s curve is consistently above all others, both
for the training and for the test set, implying superiority in performance and in
generalization as well. Note that again, there were cases where SMILE was the
only method that arrived at the global solution.

Application in image segmentation
In computer vision clustering finds application in image segmentation, i.e. the
grouping of image pixels based on attributes such as their intensity and spatial
location. We have tested SMILE to simulated brain MRI images available on the
site BrainWeb [11], where we have reduced them into half of their original size
(181 × 217). The segmentation of MRI mainly requires the classification of the
brain into three types of tissue: (GM, WM, CSF). Since we are aware of the true
class labels of the pixels we evaluate each method according to the computed
total classification error. Figure 4 illustrates four such MRI images together
with the segmentation result using a K = 5 Gaussian mixture, where in the
reconstructed images every pixel assumes the intensity value of the cluster center
that belongs. The overall classification error obtained from all the clustering
methods to these images are presented at Table 3. It is obvious that our method
achieves superior results for the tissue segmentation.

Original image

Segmentation result
(a) (b) (c) (d)

Fig. 4. Image segmentation results obtained by our method in four MRI images

Table 3. Percentage of misclassified pixels for the MRI of Fig.4 using K = 5 Gaussians

MRI image SMILE Greedy EM SMEM MML-EM K-means EM
(a) 36.76 37.24(0.23) 37.12(0.00) 38.31(0.94) 37.84(0.01)
(b) 35.88 36.50(0.04) 36.69(0.00) 37.48(0.89) 36.57(0.08)
(c) 35.48 35.60(0.12) 36.18(0.30) 37.05(0.48) 36.21(0.29)
(d) 37.88 38.20(0.19) 37.98(0.00) 39.37(0.58) 38.90(0.32)

5 Conclusion

In this study we have presented SMILE, a new incremental mixture learn-
ing method based on successive split and merge operations. Starting from a
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two-component mixture, the method performs split-merge steps to improve the
current solution maximizing the log-likelihood. SMILE has the advantage of not
relying on good initial estimates, unlike the other rival methods studied in this
article. The results of the comparative study are very promising. Several develop-
ments are possible that need further research. For example, consecutive multiple
split operations followed by corresponding merge steps may lead to even better
models. The persistent issue of discovering the optimal number of clusters in a
data set may be examined in the framework of this method as well.
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Abstract. Aside from the Expectation-Maximization (EM) algorithm,
Least-Mean-Square (LMS) is devised to further train the model param-
eters as a complementary training algorithm for Cluster-Weighted Mod-
eling (CWM). Due to different objective functions of EM and LMS, the
training result of LMS can be used to reinitialize CWM’s model param-
eters which provides an approach to mitigate local minimum problems.

1 Introduction

Foundations for data manifold have been set down for factorial components [6],
oblique transformations [7], ICA [13], generalized adalines [14] [8]. They have
been successfully applied in various temporal data analyses [5] [15]. Cluster-
Weighted Modeling (CWM) was introduced by Neil Gershenfeld [2] as an ele-
gant approach to approximate an arbitrary function and it can also be applied
to temporal time-series data prediction, characterization and synthesis. It is
derived from hierarchical mixture-of-experts type architectures [4]. The frame-
work is based on density estimation around Gaussian kernels which contain
simple local models describing the system dynamics of a data subspace. CWM
then assembles the local models into a global model that can handle nonlinear
and discontinuous data. CWM is trained by Expectation-Maximization (EM)
[1] algorithm which converges quickly. The resulting model has transparent lo-
cal structures and meaningful parameters, it allows one to identify and analyze
data subspaces. Least-Mean-Square is a common learning approach for universal
function approximators. In some cases one does not make full use of the density
estimation carried out by CWM, but only the expected value of the output for
a given input vector. Employing LMS learning to further train CWM’s result-
ing model parameters provides a good training option. The LMS learning for
cluster centers is similar to the supervised selection of centers in RBF networks
[10]. Wettschereck and Dietterich [12] have compared the performance of (Gaus-
sian) radial-basis function networks with unsupervised learning of the centers’
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locations and supervised learning of the centers’ locations. In their work the lat-
ter is able to exceed substantially the generalization performance of multilayer
perceptrons while the former can not.

EM algorithm is prone to local minimum which sometimes can lead to very
poor performance. The objective functions of EM and LMS are different, thus
the local minimum that CWM confronts would not be the same local minimum
in LMS learning. The training result of LMS learning can be used to reinitialize
CWM’s model parameters which provides an approach to mitigate local mini-
mum problems.

Section 2 reviews the concept of CWM. LMS learning for CWM is introduced
in section 3. Some experimental results are presented in section 4 and concluding
remarks are presented in section 5.

2 Cluster-Weighted Modeling

We start with a set of discrete or real valued input features x and an discrete
or real valued output target vector y. The most general model infers the joint
density p(y,x) of the data set, from which conditional quantities such as the
expected y given x, 〈y | x〉, and the expected covariance of y given x, 〈Py | x〉
can be derived.

We expand this joint density with M clusters which contain an output distri-
bution, and an input domain of influence, and an unconditioned cluster proba-
bility

p(y,x) =
M∑

m=1

p(y | x, cm)p(x | cm)p(cm) (1)

The input distribution is taken to be Gaussian distribution,

p(x | cm) =

∣∣P−1
m

∣∣1/2

(2π)Dx/2 e−(x−μm)T ·P −1
m ·(x−μm)/2, (2)

where Pm is the cluster-weighted covariance matrix in the feature space and Dx

is the dimension of input vectors.
The output distribution is taken to be

p(y | x, cm) =

∣∣P−1
m,y

∣∣1/2

(2π)Dy/2 e−(y−f(x,βm))T ·P −1
m,y·(y−f(x,βm))/2, (3)

where the mean value of the output Gaussian is replaced by the function f(x, βm)
with unknown parameters βm. Dy is the dimension of output vectors.

Consider the conditional forecast of the expected y given x,

〈y | x〉 =

M∑
m=1

f(x, βm)p(x | cm)p(cm)

M∑
m=1

p(x | cm)p(cm)
(4)
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The predicted y is a superposition of all the local functionals, where the weight
of each contribution depends on the posterior probability that an input point
was generated by a particular cluster.

Generally the local models are taken to be polynomial functions. CWM is
trained by a variant of the Expectation-Maximization (EM) algorithm.

In the E-step, we estimate the posterior probability using the current model
parameters

p(cm | y,x) =
p(y | x, cm)p(x | cm)p(cm)
M∑
l=1

p(y | x, cl)p(x | cl)p(cl)
(5)

In the M-step, we assume that the current data distribution is correct and
find the cluster parameters that maximize the likelihood of the data. The prior

probability is updated with p(cm) = 1
N

N∑
n=1

p(cm | yn,xn) and the cluster centers

are updated with

μm =

N∑
n=1

xnp(cm | yn,xn)

N∑
n=1

p(cm | yn,xn)
(6)

Define a cluster-weighted expectation of any function Θ(x),

〈θ(x)〉m =

N∑
n=1

θ(xn)p(cm | yn,xn)

N∑
n=1

p(cm | yn,xn)
(7)

which lets us update the cluster weighted covariance matrices, [Pm]i,j = 〈(xi −
μi)(xj − μj)〉m.

The model parameters are found by taking the derivative of the logarithm of
the total likelihood function with respect to parameters.

If we choose a local model that has linear coefficients with a bias term,

f(x, βm) =
Dx+1∑

i=1

βm,ifi(x) (8)

Take the derivative with respect to the j−th component of βm, then this gives
for the coefficients of the m−th cluster

0 = 〈[y − f(x, βm)]fj(x)〉m = 〈yfj(x)〉m −
I∑

i=1

βm,i 〈fj(x)fi(x)〉m (9)

For every components of βm, we can have its matrix form βm = B−1
m am with

[Bm]ij = 〈fi(x)fj(x)〉m and [am]j = 〈yfj(x)〉m.
Finally the output covariance matrices associated with each model are esti-

mated,

Py,m =
〈
[y − 〈y | x〉]2

〉
m

=
〈
[y − f(x, βm)][y − f(x, βm)]T

〉
m

. (10)
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3 Least-Mean-Square Training of CWM

Minimizing squared-error cost function of CWM’s training result to find another
solution from that we can have a more precisely fitted function. And it also
provides an alternative to find another solution when CWM is trapped in local
minimum. In general, we wish to improve CWM’s performance by applying LMS
learning. In our experiments and derivations, we use separable Gaussians with
off diagonal terms in the covariance matrices are zero for both input and output
covariances.

Here we derive the formulas of the LMS learning for CWM. Consider the cost
function EN is the sum of squared errors over the entire data set

EN =
1
2

N∑

n=1

(yn− < y | xn >)2 (11)

where yn is the n − th desired data and < y | xn > is the expected value given
the n − th input vector xn. Consider the squared error produced by a single
input-output pair

En =
1
2
(yn− < y | xn >)2 =

1
2
e2

n (12)

where en = yn− < y | xn >. And from the formula of < y | xn >,

< y | xn >=

M∑
m=1

f(xn, βm)p(xn | cm)p(cm)

M∑
m=1

p(xn | cm)p(cm)
=

A

B
(13)

Let A and B denote the nominator and the denominator respectly, we have the
following derivations.

Take the partial derivative with respect to priors p(cm),

∂En

∂p(cm)
= −enp(xn | cm)

[
f(xn, βm)B − A

B2

]
(14)

In order to keep the probabilistic constraint of priors, we define

p(cm) ≡ exp(zm)
M∑
l=1

exp(zl)
(15)

With the softmax activation function we can make sure that the value of p(cm)
is between 0 and 1. And their summation is equal to 1. We can initailize the
value of zmby assigning zm = ln(p(cm)).

Hence, we must update zm,

∂En

∂zm
= −enp(xn | cm)

[
f(xn, βm)B − A

B2

]
[p(cm) − p(cm)2] (16)
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Take the partial derivative with respect to cluster mean

∂En

∂μm,i
=

−enp(cm)p(xn | cm)
(

xn,i−μm,i

σ2
m,i

)
[f(xn, βm)B − A]

B2 (17)

Take the partial derivative with respect to cluster standard deviation

∂En

∂σm,i
=

−enp(cm)p(xn | cm)
[

(xn,i−μm,i)2

σ3
m,i

− 1
σm,i

]
[f(xn, βm)B − A]

B2 (18)

Take the partial derivative with respect to βm,

∂En

∂βm,i
= −en

[
p(xn | cm)p(cm)f(xn)i

B

]
(19)

We first initialize the model parameters using CWM’s training result, then
we calculate the error and the gradients. We update the cluster centers using
μk+1

m,i ← μk
m,i−η ∂En

∂μk
m,i

, where η is the learning rate and k is the iteration number.
Other parameters are updated in the similar way. In the cost function of LMS it
does not involve the output covariance at all. But it is still desirable to estimate
the log-likelihood value and the output covariances. Here we apply EM algorithm
to estimate only the output covariance in every epoch. The learning rates can be
different values between 0 and 1. Empirically, the learning rates we choose for
our experiments are between 0.001˜0.06. To scale each feature of the input and
output data to [−1, 1] beforehand could avoid numerical errors while updating
these parameters.

4 Experiments

4.1 Local Minimum

In this experiment we examine the four-clump data with known local minimum
[11]. There are four clusters generated from a Gaussian distribution with stan-
dard deviation of 0.2 around its center. There are totally 2000 points, the true
probability of data in the two dense clumps is 0.475 per clump, whereas the prob-
ability of data in two sparse clumps is 0.025 per clump. The centers of the two
dense clumps are located at [1, 1]T and [−1, −1]T respectively. The centers of the
two sparse clumps are located at [1, −1]T and [−1, 1]T . In our experiment, the
input space is 2 dimensional and the output of each cluster is a linear function
of each cluster’s input features. Figure 1 shows an example of local minimum.
There are two clusters positioned near each other thereby sharing density for the
same clump with center at around [−1, −1]T , and the cluster center at around
[0, 0]T tries to do the job of two clusters (modeling the two sparse clumps). We
initialize CWM with this particular intial condition, after CWM converged we
apply LMS learning. Here the learning rate for cluster centers is 0.06 and the
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Fig. 1. The initial location of local minima of four cluster centers

Fig. 2. The red circles represent the converged cluster centers of CWM. The black
cross ‘+’, represent the converged cluster centers of LMS-CWM. The arrows indicate
the directions of each cluster shift.

other learning rates are all set to 0.01. Then we reinitialize CWM with LMS’s
training result. First we initialize k-means with LMS’s resulting cluster centers,
then enters the EM algorithm. After CWM takes over LMS’s training result,
it successfully escapes from the local minimum and the centers are all located
at the correct locations. Figure 1 shows the initial centers of CWM and LMS-
CWM. Figure 2 shows the resulting centers’ locations after each training session
of CWM and LMS-CWM.
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4.2 Mackey-Glass Chaotic Time-Series Prediction

Mackey-Glass time-series is generated by the Mackey-Glass differential equation
[9]:

dx(t)
dt

= −0.1x(t) + 0.2
x(t − 17)

1 + x(t − 17)10
(20)

1000 samples of Mackey-Glass time-series are generated. The first 500 points
are used as the training set, and the last 500 points are used as the test set. CWM
is used to predict the values of the time-series at point x(t+85) from the earlier
points [x(t), x(t − 6), x(t − 12), x(t − 18)]. The delay time and the embedding
dimension in this paper are followed by the convention of other literatures. There
are some methods to decide the delay time and the embedding dimension [3].We
use the last 100 points from training set as our validation set and decide the
number of clusters which gives the minimal mean-square-error on validation set.
Here we choose 30 clusters with local linear models. The learning curves of CWM
and LMS-CWM are shown in Figure 3. Table 1 compares the Mean-Square-Error
of their performances.

We can see that the prediction accuracy is much improved by further using
LMS learning. The predicted time-series made by CWM and LMS-CWM are
shown in Figure 4 and Figure 5 respectively. The prediction made by LMS-
CWM is also much smoother.

Fig. 3. The RMSE learning curves of CWM(top) and LMS-CWM(bottom)
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Table 1. Mean-Square-Error of CWM and LMS CWM on training and test set

MSE CWM LMS-CWM

Training Set 0.0008027 0.0004293

Test Set 0.0006568 0.0004480

Fig. 4. The predicted time-series of CWM. The dashed line is CWM prediction, and
the solid line is the system output.

Fig. 5. The predicted time-series of LMS-CWM. The dashed line is LMS-CWM pre-
diction, and the solid line is the system output.
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Fig. 6. The learning curves of CWM(top) and LMS-CWM(bottom) on Rössler data

4.3 Rössler Chaotic System

The equations of Rössler system is given as

ẋ = −(y + z); ẏ = x + .15y; ż = .2 + z(x − 10) (21)

These equations are numerically integrated by fourth-order Runge-Kutta with
a fixed time step of Δt = .01. 2000 points are generated. The state vector is
reconstructed from sampling the time series of variable x as z(t) = [s(t), s(t +
1), s(t +2)]T , where s is the time series generated by variable x. Then we model
its evolution trajectories by fitting the fuction of input x = z(t) and output
y = z(t + 1). Here we use 6 clusters with quadratic local models. The learning
curves of CWM and LMS-CWM are shown in Figure 6.

5 Conclusion

In this work, we develop a LMS learning algorithm for CWM as a complementary
learning method. CWM provides a good initialization to LMS learning and we
wish to make use of both the advantages of EM and LMS. After LMS learning,
generally we can improve the prediction accuracy, but it may lose the benefit of
data density estimation when the log-likelihood value decreases. Due to different
objective functions of EM and LMS, the local minimum should be different.
Therefore, we can use the resulting parameters of LMS to reinitialize parameters
for CWM, and the parameters can be trained alternatively. This provides an
approach that we can mitigate the local minimum problem presented in this
work. The resulting model of LMS learning could be veiwed as a refinement of
CWM if only prediction accuracy is our main concern. Regularization techniques
shoud be investigated for the future work.
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Abstract. In this paper, we examine analysis of clusters of labeled sam-
ples to identify their underlying hierarchical structure. The key in this
identification is to select a suitable measure of dissimilarity among clus-
ters characterized by subpopulations of the samples. Accordingly, we
introduce a dissimilarity measure suitable for measuring a hierarchical
structure of subpopulations that fit the mixture model. Glass identifica-
tion is used as a practical problem for hierarchical cluster analysis, in
the experiments in this paper. In the experimental results, we exhibit
the effectiveness of the introduced measure, compared to several others.

1 Introduction

Hierarchical cluster analysis (HCA) [1, Ch. 6][2, Ch. 14][3, Ch. 10] has developed
as demand for data analysis increases. It is, in general, used to classify unlabeled
samples in a database into hierarchical clusters, based on a dissimilarity or sim-
ilarity measure between two samples. According to a resulting dendrogram, we
classify the samples into several classes. This process might be called labeling
samples with HCA. On the other hand, HCA can also be used to identify the
underlying hierarchical structure of clusters. When used for this purpose, the
hierarchical structure is derived from the clusters of labeled samples. This paper
focuses on using HCA to identify a hierarchical structure. The key in this iden-
tification is to select a suitable measure of dissimilarity among clusters, each of
which is characterized by a subpopulation of the samples. Accordingly, we intro-
duce a dissimilarity measure that was recently proposed in [4]. This measure is
used because it is appropriately defined to quantify dissimilarity among multiple
subpopulations of a population based on the mixture model. Glass identification,
that is identifying glasses by type, is used as a practical problem in the exper-
iments in this paper. In the experiments, we examine the effectiveness of the
measure in identifying the hierarchical structure of different types of glass and
compare this to several other measures. The results show that the introduced
measure is especially appropriate for identifying the hierarchical structure of
� This work was supported in part by Grant-in-Aid 18700157 and 18500116 for scien-

tific research from the Ministry of Education, Culture, Sports, Science, and Tech-
nology, Japan.
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clusters, and that the measure yields an accurate dendrogram without produc-
ing chain effects.

This paper is organized as follows. In Section 2, we present some notations
and introduce the measure to be used in HCA. We show the experimental results
in Section 3. Finally, our conclusions are set out in Section 4.

2 Preliminaries

We assume that the population of samples is based on the mixture model that
is commonly understood in the literature throughout this paper. Accordingly,
in this section, we explain the mixture model and then introduce a dissimilarity
measure that fits the population. This measure is used in HCA to identify a
hierarchical structure.

We formulate the mixture model shown in Figure 1 as follows. The population
of samples consists of M different subpopulations, each with a prior probability.
The subpopulation for generating a sample varies at each time-step according to
the prior probability for the choice of the subpopulation. At each time-step, one
of the subpopulations is chosen with the prior probability, and a sample is drawn
according to the probability distribution (PD) of the chosen subpopulation. To
facilitate exposition, we number the subpopulations with a label number. The
label number of each sample indicates the subpopulation from which it was
generated. We use X to express a stochastic variable (SV) over an arbitrary
sample space X and use Xi to denote X at time-step i ∈ N. Let L � {1, . . . , M}
be the entire set of label numbers. Let P(L) be the set of the probability density
functions (PDFs) of the subpopulation, that is,

P(L) � {Pm|m ∈ L} , (1)

where Pm denotes the PDF of the subpopulation m over X . If the label number
of a sample x ∈ X is m ∈ L, then from here on it is expressed: x ∼ Pm. For
every time-step i and every m ∈ L, we define the prior probability as

ω(m) � Pr (Xi ∼ Pm) . (2)

This means that a subpopulation is chosen at each time-step to generate each
sample independently and according to its prior probability ω. For simplicity,
we assume that ω(m) > 0 for every m ∈ L. This is an underlying assumption
throughout this paper. Hence, the following is always satisfied:

∑

m∈L
ω(m) = 1. (3)

For any positive number n, let Xn = (X1, X2, . . . , Xn) be SVs of the population.
This is sometimes written as X for brevity when we do not need to indicate n
explicitly. The expected value of any function y(x) over X with respect to Pm is
denoted by

EPm [y(x)] �
∫

x∈X
Pm(x)y(x) dx, (4)
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population observed
sequence

P1

P2

PM

ω(1)

ω(2)

ω(M)

X x1, x2, . . .

Fig. 1. The population based on the mixture model

for every m ∈ L. We use IC to denote an indicator function such that for any
condition C,

IC =

{
1, if C is true,
0, otherwise.

(5)

Next, we introduce the following measure that was recently proposed in [4]. It
is referred to as redundancy-based dissimilarity among PDs (RDSP). We propose
employing this measure in HCA because it is appropriately defined to quantify
dissimilarity among multiple subpopulations based on the mixture model.

Definition 1 (RDSP [4]). For any subset L ⊆ L, we define the squared dis-
similarity measure among multiple PDFs P(L) as

{RDS(P(L))}2 �
∑

m∈L
λL(m)D(Pm‖QL), (6)

where λL is a normalized probability given by

λL(m) � ω(m)∑
m∈L ω(m)

, (7)

and D(Pm‖QL) denotes the information divergence given by

D(Pm‖QL) = EPm

[
log

Pm(x)
QL(x)

]
, (8)

where the PDF QL, for any x ∈ X is:

QL(x) �
∑

m∈L
λL(m)Pm(x). (9)

From an information theory viewpoint, this squared RDSP represents the
amount of information loss involved in regarding multiple PDFs P(L) as merged
QL such that the population of the mixture model is drawn according to a single
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population observed
sequence

P1

P2

PM

QL

ω(1)

ω(2)

ω(M)

X x1, x2, . . .

Fig. 2. The population drawn intuitively according to a single PDF QL where L = L

PDF QL (see Figure 2). More intuitively, RDSP represents how multiple PDFs
are placed over the sample space. Hence, it vanishes if and only if all the PDFs
in P(L) are equal. It was shown in [4] that when |L| = 2, RDS(P1, P2) becomes
the Jensen-Shannon divergence [5,6] which is a metric between P1 and P2.

3 Experiments

The experimental results discussed here are for real data processed using HCA for
clusters of labeled samples. The experiments used a glass identification database
from the UCI repository of machine learning databases [7]. Glass identification
is a particularly interesting problem, as is mentioned in the database, as it is
often of use in criminal investigations, because the glass left at the scene of a
crime can be crucial evidence if it is correctly identified. The database consists
of 214 labeled samples featuring nine dimensions (attributes). These nine di-
mensions are the refractive index and weight percents of sodium, magnesium,
aluminum, silicon, potassium, calcium, barium, and iron in their corresponding
oxides. The glass samples in the database are labeled according to coded type.
Each sample is classified into one of six classes corresponding to the hierarchi-
cal structure shown in Figure 3. The six types of glass are classified broadly
as window or non-window class. The non-window class includes containers (C),
tableware (T), and headlamps (H). The window class is furthermore classified
into float-processed versus non-float-processed class. The float-processed class
includes float-processed building windows (FB) and float-processed vehicle win-
dows (FV), and the non-float-processed class includes non-float-processed build-
ing windows (NB). We partitioned all samples in the database into eight clusters
such that samples of each cluster have the same label, as shown in Table 1. The
samples of the FB and NB types are separated into two clusters according to
their exact ID numbers, because the number of samples for these two types is
much larger than those of the others.
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Fig. 3. The hierarchical structure of the types of glass

Table 1. Cluster number, glass type, number of samples, and ID number

cluster number glass type number of samples ID number in database
(m = 1, . . . , 8) (label code) in each cluster (1–214)

1 FB 35 1–35
2 FB 35 36–70
3 NB 40 71–110
4 NB 36 111–146
5 FV 17 147–163
6 C 13 164–176
7 T 9 177–185
8 H 29 186–214

The goal of this clustering task is to find the underlying hierarchical structure
of the types of glass from the clusters. We expect from Table 1 that the closest
clusters are 1 and 2, or 3 and 4 at the first or the second step, since the two
clusters in each pair are the same type. According to Figure 3, we expect clusters
1-2 and 5 to merge in a subsequent step, (where cluster 1-2 is the cluster produced
by merging clusters 1 and 2,) because clusters 1, 2 and 5 are all float-processed.
Moreover, we expect that clusters 1-2-5 and 3-4 will also merge, as cluster 1 to
5 all fall into the window class category.

We employed the following six methods with different measures to form hier-
archical clusters. Of these six methods, the nearest neighbor and the group aver-
age methods are sometimes referred to as linkage methods [2, Ch. 14][3, Ch. 10],
Ward’s method [8,9] is a centroid-based method, the clustering evaluation func-
tion method [10] is a kernel-based method, and the symmetric information
divergence and RDSP methods are clustering methods based on probabilistic-
dependent measures.
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NN Method: For the nearest neighbor (NN) method, the distance (dissimilarity)
measure between any two (prime or merged) clusters is the Euclidean distance
of the two closest samples in the different clusters. That is, for any subset L′ ⊂ L
and L′′ ⊂ L such that L′ ∩ L′′ = ∅, the dissimilarity is expressed by

ΔN (L′, L′′) = min
x′∈x(L′), x′′∈x(L′′)

√
(x′ − x′′)T (x′ − x′′), (10)

where T is the transposition of a vector, and for any subset L the set x(L) of
nine-dimensional samples means

x(L) �
⋃

m∈L
x(m), (11)

where for a total number n of samples, x(m) is defined as

x(m) � {xi ∈ X | xi ∼ Pm, i = 1, . . . , n} . (12)

In this experiment, x(m) is the set of samples of cluster m in Table 1. The
NN method always attempts to merge two clusters that minimize the distance
measure at each step of the mergence.

GA Method: The group average (GA) method is well recognized in the literature
to effectively measure the distance between two clusters. In this method, the
distance measure between any two (prime or merged) clusters is the average
distance between them. That is, for any subset L′ ⊂ L and L′′ ⊂ L such that
L′ ∩ L′′ = ∅, the distance between them is given by

ΔG(L′, L′′) =
1

nL′nL′′

∑

x′∈x(L′)

∑

x′′∈x(L′′)

√
(x′ − x′′)T (x′ − x′′), (13)

where for any subset L, nL denotes

nL �
∑

m∈L
nm, (14)

where nm is the number of elements in the set x(m). The GA method always
attempts to merge two clusters that minimize the distance measure at each step.

Ward’s Method: In this method, the distance between any two (prime or merged)
clusters is written as Ward’s measure [8,9]. That is, for any subset L′ ⊂ L and
L′′ ⊂ L such that L′ ∩ L′′ = ∅, the distance between them is written as

ΔW (L′, L′′) =
nL′nL′′

nL′ + nL′′

(
x̄(L′) − x̄(L′′)

)T (
x̄(L′) − x̄(L′′)

)
, (15)

where for any subset L, x̄(L) is given by

x̄(L) � 1
nL

∑

x∈x(L)

x. (16)

Similarly, Ward’s method always attempts to merge two clusters that minimize
the distance measure at each step.
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CEF Method: Recently, an advanced similarity measure was proposed in [10]
to evaluate the information potential between samples in multiple clusters. The
information potential is expressed as Renyi’s quadratic entropy and is based
on a Gaussian kernel function. For any subset L′ ⊂ L and L′′ ⊂ L such that
L′ ∩ L′′ = ∅, the similarity measure is given by

CEF (L′, L′′) =
1

2nL′nL′′

∑

x′∈x(L′)

∑

x′′∈x(L′′)

G(x′ − x′′, 2σ2), (17)

where for any x ∈ R
9 and any v2 ∈ R, the Gaussian kernel function G is:

G(x, v2) � 1
2πv

exp
(

−xT x

2v2

)
. (18)

Equation (17) is referred to as the clustering evaluation Function (CEF). From
here on when we employ the pseudo-distance measure [10, Eq. 16] based on the
CEF we call it the CEF method. In this method, the pseudo-distance measure
between any two (prime or merged) clusters is the kernel-based distance between
them. For any subset L′ ⊂ L and L′′ ⊂ L such that L′ ∩ L′′ = ∅, the pseudo-
distance measure is given by

ΔC(L′, L′′) = − log CEF (L′, L′′). (19)

The CEF method always attempts to merge two clusters that minimize the
distance measure at each step. The parameter σ was carefully tuned to ensure
the method works well. As a result, we set σ = 0.3 in this experiment. We
have seen that the distance between clusters is sensitive to the choice of the
σ parameter of the Gaussian kernel function. In fact, if σ = 0.5, the resulting
dendrogram is completely different from Figure 4(d).

SID Method: From here on when we employ to measure the distance between
two clusters we call it the SID method. The symmetric information divergence
measure, or SID, is one of the most well-known probabilistic-dependent measures
in the field. For any subset L′ ⊂ L and L′′ ⊂ L such that L′ ∩ L′′ = ∅, the SID
between QL′ and QL′′ is given by

ΔS(L′, L′′) = D(QL′‖QL′′) + D(QL′′‖QL′). (20)

However, since the integration of information divergence creates serious compu-
tational complexity, this is generally difficult to compute directly. Hence, for the
PDFs of the subpopulations, we use the approximated (empirical) SID desig-
nated by

ΔS(L′, L′′) ≈ 1
nL′

⎛

⎝
∑

m∈L′

∣∣∣∣∣∣

∑

x∈x(m)

log
QL′(x)
QL′′(x)

∣∣∣∣∣∣

⎞

⎠

+
1

nL′′

⎛

⎝
∑

m∈L′′

∣∣∣∣∣∣

∑

x∈x(m)

log
QL′′(x)
QL′(x)

∣∣∣∣∣∣

⎞

⎠ . (21)
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From the weak law of large numbers, we can readily show that (21) converges
to (20) in probability as nL′ → ∞ and nL′′ → ∞. Accordingly, the SID method
always attempts to merge two clusters that minimize the distance measure given
by (21) at each step.

RDSP Method: When the distance measure is produced by squared RDSP, we
call it the RDSP method. As with the above methods, the RDSP method at-
tempts to form hierarchical clusters. Since the RDSP is also expressed in terms of
information divergence, we approximate the squared RDSP to avoid computing
the integration. Whenever merging two clusters, for the PDFs of the subpopu-
lations, the RDSP method always selects the two (prime or merged) clusters L′

and L′′ that minimize the squared RDSP approximated by

ΔR(L′, L′′) =
{

RDS(P(L′ ∪ L′′))
}2

, (22)

≈ 1
nL′ + nL′′

{
rdsP(L′∪L′′)(x1, . . . , xnL′+nL′′ )

}2
, (23)

where for i = 1, . . . , nL′ + nL′′ , each sample is xi ∈ x(L′) ∪ x(L′′) and

{
rdsP(L′∪L′′)(x1, . . . , xnL′+nL′′ )

}2
�

∑

m∈L′∪L′′

∣∣∣∣∣∣

nL′+nL′′∑

i=1

Ixi∼Pm log
Pm(xi)
QL(xi)

∣∣∣∣∣∣
.

(24)
Equation (24) asymptotically converges to the squared RDSP in probability as
had been proved in [4]. In addition to this approximation, the RDSP deals with
multiple clusters (rather than only two) alleviating computational complexity
considerably. For example, when L′ = {1, 2} and L′′ = {3, 4} in (22), it is simply
calculated using {RDS(P1, P2, P3, P4)}2 rather than {RDS(Q1,2, Q3,4)}2 where
Q1,2 and Q3,4 denote merged PDFs.

In this experiment, since the subpopulation PDFs to be used in the SID and
RDSP methods are unknown, we assumed that the PDF Pm of each subpopu-
lation, where m = 1, . . . , 8, is a normal distribution of the nine dimensions and
estimated the mean and covariance matrix of Pm from the set of samples of clus-
ter m. For example, the mean and covariance matrix of P1 were computed from
samples whose ID numbers are 1–35 in Table 1. We also set exp(y) = 1.5y for
any y ∈ R in calculating the exponent of the PDF Pm of a normal distribution
and the base of the logarithm in (21) and (24). This is done simply to scale up
the tail of the PDF of a normal distribution to avoid overly small values. Note
that this scaling does not essentially affect any resulting dendrogram.

Figure 4 shows the resulting dendrograms of the six methods for the eight
clusters of samples shown in Table 1. The vertical axis in the figures represents
the distance measure for each method, which was adopted as a minimum value
at each step. The horizontal broken lines separate the clusters at proper levels
of the hierarchical structure. We confirm from the horizontal broken lines that
only the RDSP method successfully classified the clusters into float-processed
and non-float-processed classes at a low level in the hierarchical structure, and



Identifying the Underlying Hierarchical Structure of Clusters 319

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 5 4 3 8 7 6

cluster number and type of glass

E
uc

lid
ea

n 
di

st
an

ce

FB FB FV NB NB H T C

(a) NN method

 0

 1

 2

 3

 4

 5

7 8 1 5 2 4 3 6

E
uc

lid
ea

n 
di

st
an

ce

cluster number and type of glass

T H FB FV FB NB NB C

(b) GA method

 0

 50

 100

 150

 200

 250

 300

 350

7 8 6 2 5 1 3 4

cluster number and type of glass

in
cr

ea
se

 o
f s

um
 o

f s
qu

ar
es

T H C FB FV FB NB NB

(c) Ward’s method

 0

 2

 4

 6

 8

 10

 12

1 4 5 3 2 8 7 6

cluster number and type of glass

ke
rn

el
-b

as
ed

 d
is

ta
nc

e

FB NB FV NB FB H T C

(d) CEF method

 0

 10

 20

 30

 40

 50

1 2 3 4 5 8 7 6

cluster number and type of glass

S
ID

FB FB NB NB FV H T C

(e) SID method

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1 2 5 3 4 6 7 8

cluster number and type of glass

sq
ua

re
d 

R
D

S
P

FB FB FV NB NB C T H

(f) RDSP method

Fig. 4. Dendrograms for the eight clusters in Table 1

furthermore into the windows versus non-windows at a high level. From the
horizontal broken lines, we see that although the other methods also provided
appropriate classification into the window and non-window classes, they failed
to classify the clusters into float-processed and non-float-processed classes. It
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follows that RDSP is especially appropriate for identifying the hierarchical struc-
ture of clusters. Moreover, Figure 4 shows that the NN, CEF, and SID methods
produced a chain effect. In contrast, the RDSP method efficiently constructed
an accurate dendrogram without producing a chain effect.

4 Conclusion

This paper has introduced RDSP to identify the underlying hierarchical struc-
ture of clusters in HCA. The experiments for the glass identification database
confirmed that RDSP is especially appropriate for identifying the hierarchical
structure of clusters, and that RDSP efficiently and accurately creates dendro-
grams without chain effects.
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Abstract. Many clustering algorithms require some parameters that often are 
neither a priori known nor easy to estimate, like the number of classes. 
Measures of clustering quality can consequently be used to a posteriori estimate 
these values. This paper proposes such an index of clustering evaluation that 
deals with kernel methods like kernel-k-means. More precisely, it presents an 
extension of the well-known Davies & Bouldin’s index. Kernel clustering 
methods are particularly relevant because of their ability to deal with initially 
non-linearly separable clusters. The interest of the following clustering 
evaluation is then to get around the issue of the not explicitly known data 
transformation of such kernel methods. Kernel Davies & Bouldin’s index is 
finally used to a posteriori estimate the parameters of the kernel-k-means 
method applied on some toys datasets and Fisher’s Iris dataset. 

Keywords: Clustering evaluation, Kernel-k-means, Davies & Bouldin’s index, 
Number of classes estimation, Kernel estimation. 

1   Introduction 

Clustering methods based upon a kernel feature space usually reach a good clustering 
accuracy, even with datasets whose clusters cannot be linearly separated. This non-
linearly separation boundary may be indirectly obtained by transforming the input 

data space nx ℜ∈ into a high-dimensional space by applying a function φ , which 

may facilitate the discrimination [2]. This function is usually not explicitly known, 
but simply induced by the selected kernel. This fact does not trouble kernel clustering 
methods like kernel-k-means, nor other kernel methods like kernel-principal 
component analysis (kernel-PCA). All needed variables of these algorithms are 
indeed expressed as dot products that can then be computed as values of the kernel 
function, from the moment that this function fulfills Mercer’s conditions.  

A plethora of new kernel clustering methods have been proposed in recent years 
which give very impressive results with highly different data shapes. The most important 
among them include kernel-PCA which has been observed to perform clustering [4], and 
kernel-based clustering in feature space like kernel-k-means [1,8]. Whilst, two issues of 
clustering still remain: (1) estimating the parameters of the clustering method, like the 
number of clusters within the dataset, (2) evaluating the quality of the obtained 
clustering. Some heuristics exist to estimate the number of clusters [1,5]. But it appears 
as simple as pertinent to extend a classical evaluation method based upon the notion of 
compactness measure in order to deal with a kernel feature space.  
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In this paper, we propose to calculate Davies & Bouldin’s index in the feature 
space using the kernel trick. This allows to evaluate the result of the kernel clustering 
methods, and consequently to estimate the adequacy of their parameters like the 
number of clusters and the parameters of the kernel. 

The paper is organized as follows: Section 2 describes the kernel-based clustering 
method that we decided to deal with: the kernel-k-means. Section 3 presents DB 
index in both input and feature space. Section 4 shows some experimental results 
where DB index is used to determine the parameters of the kernel-k-means. 

2   From k-Means Algorithm to Its Kernel Extension 

Classical k-means algorithm [6] aims at clustering the dataset into a predefined 
number k of groups by minimizing a formal objective mean-squared-error (MSE) 
function. It is an easy iterative method whose main calculation consists in obtaining 
the distances from points to the centers of clusters. 

2.1   K-Means in Input Space 

Let X be a dataset of points {xi, i = 1 : n}, where n
ix ℜ∈ , and let k be the predefined 

number of clusters. K-means algorithm consists in the following iterative method: 
 

1. Initialize the k centers c
1
, …, c

k
 of clusters C

1
, …, C

k
. 

2. Assign each point x
i
 in X to its nearest center by computing 

the distances from x
i
 to all centers: 

2
ji cx −  for each j in 

{1,..,k}. This induces a new partition {C
1
, …, C

k
}. 

3. Update the centers c
1
, …, c

k
: they are defined as the centers 

of gravity of the corresponding clusters C
1
, …, C

k.
 

4. Go to step 2 until the partition {C
1
, …, C

k
} is stabilized. 

 

The k-means algorithm is significantly sensitive to the initial clusters centers. 
Relevant centers can be obtained by a random selection in the dataset X. Moreover, 
the algorithm should better be run multiple times with different initializations. The 
objective function MSE minimized by the algorithm can then be used to determine the 

best initialization: ∑ ∑
= ∈

−=
k

j Cx
ji

ji

cx
n

MSE
1

21
. 

2.2   k-Means Algorithm in Feature Space: Kernel-k-Means 

The k-means method gives poor results when the dataset is composed of non-linearly 
separable clusters. A way to encompass this problem is to perform k-means in a 
kernel-determined feature space using the kernel trick [8]. If the kernel K is adequate 
and well-tuned, then the algorithm becomes able to recognize non-Gaussian or non-
convex shaped clusters in input space. 
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The objective function MSE applied in the feature space corresponding to a 
function φ  is defined as follows [7]: 

∑ ∑
= ∈

−=
k

j Cx
ji

ji

cx
n

MSE
1

2
)(

1

φ

φφ φ , (1) 

where ∑
∈

=
φ

φ
φ

φ

ji Cx

i

j
j x

C
c )(

1
 denotes the center of gravity of φ

jC , the  cluster j in the 

feature space defined by Function φ . This function does no need to be explicitly 

known: according to the kernel trick, the calculation of any dot products in the feature 

space 2),(,)(),( Xyxyx ∈φφ  can be done without any explicit definition ofφ . It 

is rather induced by the choice of a positive semi-definite kernel function: 
ℜ→× XXK : , that explicitly defines the dot product between the points in X: 

)(),(),( yxyxK φφ= . The reason why k-means algorithm can easily be extended in 

the feature space is that its computation only needs dot products: indeed, as well 

points Xxi ∈  or centers φ
jc do not need to be computed, and the only necessary 

variables are the following Euclidian distances: 

XxbaK
C

xaK
C

xxKcx
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(2) 

 
 
 
 
 

(3) 

 

Except these equations, the kernel-k-means algorithm is completely equivalent to the 
precedent one. 

3   Davies and Bouldin’s Index 

Davies & Bouldin’s index is a well-known cluster validity index [6,11] that is used in 
classical clustering because of its simplicity and its relevance. In particular, it may be 
preferred to MSE in k-means, because it is let as a ratio of distances that does not 
necessarily decrease when the number k of classes increases; it can then be used in 
order to evaluate the accuracy of the selected k value. 
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Clustering evaluation may be obtained by other ways like the visualization 
approaches, such as PCA, MDS, Sammon’s maps [6]. More recently, learning 
techniques like Autoassociator networks, SOM, k-PCA have been developed to 
visualize high-dimensional data as two dimensional scatter plots [5,10,12]: the 
resulting representations allow a straightforward analysis of the inherent structure of 
clusters within the input data. Roberts & all [9] show that the minimization of a 
partition entropy or the maximization of a partition certainty may be used to estimate 
the right partitioning, by deciding the most adequate number of classes. 

In this paper, we propose to use the well-known cluster validity Davies & 
Bouldin’s index [6,11] in the feature space, as a way to evaluate the clustering quality 
of a given kernel clustering method. Clearly, any other clustering evaluation index 
could be used if and only if it can be written as a function of dot 
products Xyxyx ∈,,)(),( φφ .  

3.1   Davies and Bouldin Index in the Input Space: DB Index 

Let {C1, C2 … Ck} denotes a partition of the points in the set X obtained by a 
clustering method. The DB index for k clusters is defined as follows: 

∑
=

=
k

j
jR

k
DB

1

1
, (4) 

where 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ Δ+Δ

=
≠ ),(

)()(
max

mj

mj

jm
j CC

CC
R

δ
, with )( jCΔ  (resp. )( mCΔ ) the intra-cluster 

dispersion of cluster jC  (resp. mC ), and ),( mj CCδ  the inter-cluster distance 

between clusters  jC  and mC . 

In the input space, the classical choice of the Euclidean distance induces: 

21
)( ∑

∈
−=Δ

ji Cx
ji

j
j cx

C
C  and 

2
),( mjmj ccCC −=δ . 

DB index is a ratio, i.e. a variable without unit whose values can so be compared 
despite distinct numbers of classes. It decreases as clusters become more compact 
(lower )( .CΔ ) and more distinctly separated (higher ),( .. CCδ ). That is the reason 

why its minimal value may be used to indicate an adequate number of classes k.  
We now propose to extend its computation to deal with kernel clustering methods. 

3.2   DB Index in Feature Space: Kernel-DB 

After the transformation of the set X into a feature space by Functionφ , DB can still 

be easily computed. Indeed Euclidean intra-cluster dispersions and inter-clusters 
distances can be written as dot products of the φ -transformed points. 

First, intra-cluster dispersion is computed as follows: 
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substituting (3) in (5) we get:  
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yielding: 

∑ ∑∑
∈ ∈∈

−=Δ
φ φφ φφ

φ

j j
j

jij

j
Ca CbCx

ii baK

C

xxK
C

C ),(
1

),(
1

)(
2

. 
(7) 

With the commonly used Gaussian kernel function 2

2

2
)( ),( σσ
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−
−

= , equation 

(7) is simplified as follows: 
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Then inter-clusters distance between two centers φ
jc  and φ

mc  is defined in this way: 
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(9) 

Kernel DB index is then computed in the feature space according to the following 
algorithm:  

1. For each cluster φ
jC  in the feature space, calculate the 

intra-cluster dispersion )( φ
j

CΔ  using Equation (7) (or 

Equation (8) for Gaussian kernel). 

2. Calculate the inter-clusters distances ),( φφδ mj CC  between all 

pairs of centers using Equation (9). 
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3. For each cluster φ
jC , compute the corresponding value 

jR  

according to Equation (4). 

4. The value of kernel-DB obtained with k clusters is finally 
defined as the mean of the k values { }kjR j ,...,1, ∈∀ . 

4   Experiments 

The purpose of this section is to use kernel-DB as an estimation tool of the parameters 
of a kernel-clustering method. We focus on kernel-k-means, which is certainly one of 
the most used. Then, we decide to use the Gaussian kernel, because of its ability to 
make separable clusters that are initially compact and contiguous but not linearly-
separable. 

Gaussian kernel-k-means needs two parameters: the radius σ of the Gaussian 
kernel, and the number of classes k. We try to a posteriori estimate them conjointly, 
by considering that the better the choice of parameters, the better the quality of 
clustering i.e. the lower kernel-DB.  

For both parameters k and σ, some ranges of values can reasonably be a priori set: 
in all following examples, we decide: { }8,...,2∈k  and [ ]maxmin ,σσσ ∈ , where minσ  

and maxσ  respectively denote the minimal and maximal Euclidian distances between 

points in the initial space. The range of σ is then discretized by selecting 60 values 
equally spaced in the interval; the 5 smallest values are then conveniently rejected as 
irrelevant, because minσ is very close to 0 in our examples. 

Kernel-DB results are presented on two graphs: 

o Graph “Effect of the parameters on the clustering quality”: for each 
{ }8,...,2∈k , a function kernel-DB is plotted in term of the variable 

[ ]maxmin ,σσσ ∈ ; these k-plots should help to tune both parameters; 

o Graph “Kernel-DB  and MSEΦ indexes”: kernel-DB is compared to the MSE 
index computed in the feature space (MSEΦ). The comparison is applied for 
a constant σ: indeed, MSEΦ is not defined as a ratio, and simple distances can 
not reasonably be compared in different feature spaces. 

  

The problem of the initializations of the kernel-k-means for each pair of 
parameters ( )σ,k  is solved by computing the algorithm 10 times with different initial 

cluster centers which are randomly selected in X.  Only the minimal values of kernel-
DB and MSEΦ among the 10 initializations are kept in the graphs. 

Finally, we represent for each example the classification obtained with the a priori 
known number k of classes (that should correspond to the value minimizing kernel-
DB). It allows verifying the accuracy of the clustering in the input space. 

4.1   Example 1: “Gaussian Square” 

The dataset consists of 520 datapoints in a 2-dimensional space (Fig. 1): 4 Gaussian 
clusters are centered in the four corners of the square {(-1,-1),(1,-1),(1,1),(-1,1)}.  
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Fig. 1. “Gaussian square” classification σ=0.7 (up), Effect of the parameters on the clustering 
evaluation (left), Kernel-DB  and MSEΦ indexes (right) 

Moreover, some points are randomly selected on the four segments of this square, 
according to a uniform probability density function. 

We observe that the “best” classification meant by DB is achieved with the dot line 
k=4 (Fig. 1, left and right). Moreover, this classification corresponds to our 
perception (Fig. 1, up). In this case, the kernel clustering is not sensitive to the sigma 
value: smaller or larger values of σ would give similar results. MSEΦ can be thought 
as an easily interpretable index, but kernel-DB could be preferred because of its clear 
minimum. 

4.2   Example 2: “2-Spheres” 

The second example we investigate is composed of two spheres in 3D (Fig. 2). The 
dataset consists of 800 points defined as follows: 400 points are randomly selected 
(uniform pdf) within a shell defined by the two spheres of radius 0.015 and 0.08; the 
400 other points are selected in the same way in the shell defined by the two spheres 
of radius 0.485 and 0.49 centered like the first sphere.  

In this example (Fig. 2, up), the clusters are no more linearly-separable, but the 
kernel-clustering still gives good clusters. Without any knowledge of σ, the estimation 
of the value k is complex (Fig. 2, left): the dot line “k=2” reaches a minimal value, 
but only on the reduced interval [ ]25.0,0∈σ . Such a reduction could be obtained 
following Jenssen [3], by first selecting a plausible radius of the Gaussian kernel 
thanks to a Parzen window size selection procedure. 

Then, we remark that if one of these parameters is already known or estimated then 
the other one may easily be assessed (Fig 2, left and right). 
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Fig. 2. “2-spheres” classification σ=0.2  (up), Effect of the parameters on the clustering 
evaluation (left), Kernel-DB  and MSEΦ indexes (right) 
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Fig. 3. “Fisher’s iris” σ=20 classification plot on the 2 dimensional PCA (up), Effect of the 
parameters on the clustering evaluation (left), Kernel-DB  and MSEΦ indexes (right) 
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4.3   Example 3: Fisher’s Iris 

Iris dataset is formed with 150 points in R4 that belong to 3 different classes [13]. 
This case is more difficult: the dot line “k=3” (Fig. 3, left) does not allow detecting 

3 as the right number of classes, nor the kernel-DB function with σ=20 (Fig. 3, right). 
The assessed value seems rather to be 2, although 3 looks like the second most 
plausible value. Iris is indeed known as a complex case, because of the proximity 
between two classes (Fig. 3, up). 

5   Conclusion 

We presented an extension of the well-known Davies and Bouldin’s index in the 
feature space using the kernel trick. We were motivated by the fact that most 
clustering algorithms need to evaluate their results, particularly in order to a posteriori 
estimate the number of clusters. The experiments on some small examples show that 
this kernel-DB index could be used as a helpful clustering evaluation tool for the 
kernel-clustering methods. The problem of conjointly estimating the whole set of 
parameters is clearly not achieved, but kernel-DB still gives good results when some 
ranges of parameters are beforehand reduced. 

These results encourage the application of such kernel clustering evaluation 
indexes as tools to choose the kernel or to estimate its parameters as well as the 
number of classes. A future work would consist in making automatic the tuning of the 
parameters and in applying it on more interesting real datasets. 
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Abstract. In the field of computer vision feature matching in high di-
mensional feature spaces is a commonly used technique for object recog-
nition. One major problem is to find an adequate similarity measure
for the particular feature space, as there is usually only little knowledge
about the structure of that space. As a possible solution to this problem
this paper presents a method to obtain a similarity measure suitable for
the task of feature matching without the need for structural information
of the particular feature space. As the described similarity measure is
based on the topology of the feature space and the topology is generated
by a growing neural gas, no knowledge about the particular structure of
the feature space is needed. In addition, the used neural gas quantizes
the feature vectors and thus reduces the amount of data which has to be
stored and retrieved for the purpose of object recognition.

1 Introduction

In the field of computer vision objects are often represented by feature vectors
describing local areas of them (e.g., [1,2,3]). These local descriptors often are vec-
tors of high-dimensional feature spaces. To identify equal or similar objects, for
example for the purpose of object recognition, feature matching techniques are
common, and for these matching techniques similarity measures for the feature
vectors are needed. One major problem when choosing the similarity measure
is often the lack of knowledge about the structure of the feature space. For ex-
ample the features in the SIFT feature space as described by Lowe [1] are not
uniformly distributed. Using the Euclidean distance – as Lowe does – leads to
the problem, that the direct distance between two features cannot be used as
an absolute measure of their similarity. Accordingly, Lowe uses a workaround
for this problem with the drawback that it requires each object to have at least
one unique (i.e., identifying) feature. This is a general problem of non-uniform
feature spaces. Wrongly presumed uniformity can result in a classification of
unsimilar features as similar and vice versa. Some approaches try to improve
the matching of features in the non-uniform feature space by using dimension-
ality reduction techniques such as Principal Component Analyses (PCA) [4].
For example Ke and Sukthankar showed in [5] that using PCA can improve
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the matching of features in SIFT space. But they still rely on the Euclidian
distance and the proposed workaround of Lowe. This paper describes how to
obtain a similarity measure which is suitable for the task of feature matching
without knowledge of the particular structure of the high-dimensional feature
space. Using a growing neural gas as described by Fritzke in [6], the topology of
the feature space is first learned and then used as a basis for the similarity mea-
sure. The similarity between two feature vectors will incorporate the length of
the shortest path between those two nodes of the neural gas the feature vectors
are mapped on. Besides the ability to adapt to non-uniformly distributed feature
spaces the neural gas also quantizes the feature vectors. On the one hand, this
can be accompanied by a possible loss of information. But on the other hand, it
also vastly reduces the amount of data which has to be stored and retrieved for
feature matching purposes. In section 2 we recall the functionality of growing
neural gas on which our similarity measure will be based. The proposed measure
is derived in section 3, after which the description of the experiments (section 4),
the summary of the results (section 5), and a conclusion (section 6) follow.

2 Growing Neural Gas Revisited

The growing neural gas (GNG) used for the similarity measure is described
in detail by Fritzke in [6]. The GNG is similar to the self organizing maps of
Kohonen [7]. In contrast to the self organizing maps the GNG does not have a
fixed number of nodes (often also called “neurons” or “units”). It is subject to a
data driven growing process which ends when a halting criterion (e.g., a minimal
quantization error or a maximum number of nodes) is complied with. Figure 1
depicts the growing process of a GNG on a non-uniformly distributed, two-
dimensional feature space Ω. The set S of nodes of the GNG is initialized with
two nodes. Both nodes are associated with different random vectors w ∈ Ω, called
reference vectors. That are random positions in the high-dimensional feature
space Ω. In addition, every node s ∈ S has an accumulated error Es initialized
with 0. The edges of the GNG, which connect the nodes, have an attribute
“age”. During the growing process this attribute makes it possible to detect
edges which are not needed any more and thus to delete them. At first, the set
of edges C, C ⊆ S × S, between the nodes is empty. A new feature vector ξ ∈ Ω
is processed as follows: Those two nodes s1 and s2 the reference vectors ws1 and
ws2 of which are closest (in terms of Euclidean distance) to the feature vector
ξ are selected. If there is no connecting edge between s1 and s2 in C, an edge
between s1 and s2 is added to C. By setting the age of the edge to 0 the edge
(if it already existed) is refreshed. The accumulated error Es1 of the nearest
node s1 is increased by the square of the distance between the feature vector ξ
and the reference vector ws1 . Next, the reference vector of s1 and all reference
vectors of the direct neighbors of s1 are adapted. The age is increased by one
for those edges the endpoints of which have been moved in the previous step.
If the age of an edge reaches a threshold amax, the edge will be removed. When
this leads to an isolated node it is also removed. The value of amax defines the
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Fig. 1. A growing neural gas at different points in time. The dark shaded areas repre-
sent the values of a non-uniformly distributed, two-dimensional feature space Ω which
should be characterized by the GNG.

stiffness of the generated topology. A small value leads to an unstable topology, a
very high value leads to an only slow detachment of isolated areas in the feature
space. A value of 100 for amax turned out to be a good medium choice. After a
number λ of input feature vectors (e.g., λ = 300) a new node r is added to the
GNG if the halting criterion is not met yet. For this purpose two nodes of S are
selected: first, the node q with the highest accumulated error Eq and secondly,
that node f of all nodes adjacent to q that has the highest accumulated error
Ef . The new node r is added to S and obtains a reference vector wr which is
the average between wq and wf . The accumulated error Er of r is interpolated
between the accumulated errors Eq and Ef , which were reduced by a fraction
in a preceding step. Next, the set of edges C is extended by an edge between
r and q and an edge between r and f . The edge between q and f is removed
from C. In a last step the accumulated errors of all nodes are reduced by a
fraction β. This last step simulates a kind of aging on the accumulated errors,
thus giving newer errors more weight and avoiding a build-up of small errors
over time. With respect to the behaviour of the neural gas the parameter β
influences how good the neural gas can adapt to fine structures in the feature
space. Summarizing, the algorithm produces a graph with nodes explicitly linked
to their closest neighbors. The graph is a subset of the Delaunay triangulation,
a property we refer to later in subsection 3.3 as Delaunay property. Using the
GNG to quantize vectors of high-dimensional feature spaces, the return value
for an input feature vector ξ ∈ Ω could be the reference vector or just the the
nearest node (which is the definition we will apply in subsection 3.3).
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3 Defining a Similarity Measure on a Feature Space

The neural gas described in the previous section generates a topology of the
feature space which can be used for a similarity measure. The generated topology
is represented by a graph the nodes of which are the nodes of the GNG and the
edges of which connect neighboring and thus similar nodes. Accordingly, we can
describe the distance between two nodes (and later between two feature vectors
of the high-dimensional space) by the number of edges on the shortest path
between them. By doing so we utilize the ability of the neural gas to reflect
the structure of the feature space. To develop our similarity measure we need
a distance matrix for the GNG graph. This distance matrix is derived by the
calculation of paths of length n, where n is the number of edges connecting
two nodes. How to determine nodes that are reachable on paths with a distinct
length is described in subsection 3.1. The derivation of the distance matrix is
then described in subsection 3.2, after which we are able to define our topology-
independent similarity measure in subsection 3.3.

3.1 Paths of Distinct Length

Once the growing neural gas has learned the topology of the feature space using
N nodes, an N × N distance matrix D can be generated that contains for every
node the shortest distance to all other nodes. The distance matrix D can be
calculated using the fact that the adjacency matrix of a graph to the power
of n codes for every node the subsequent nodes which are n edges away. This is
explained in the following. First we give an example of a simple graph:

The adjacency matrix A of this graph describes in every column ai the direct
neighbors of node i, i = 1, . . .N :

A =

⎛

⎜⎜⎜⎜⎝

0 1 1 0 0
1 0 0 0 1
1 0 0 0 1
0 0 0 0 1
0 1 1 1 0

⎞

⎟⎟⎟⎟⎠

The multiplication of a column vector b := (b1, b2, . . . , bN)T and an N × N ma-
trix M can be seen as a linear combination of the columns mi of M :
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Mb = b1m1 + b2m2 + . . . + bNmN . The multiplication of two N × N ma-
trices G and H can be done column by column as multiplication of columns hi

of H and matrix G:

GH =

⎛

⎝Gh1 Gh2 . . . GhN

⎞

⎠ .

Thus, the square A′ = AA of adjacency matrix A contains in every column a′
i

a linear combination of the columns aj of A:

A′ =

⎛

⎝a′
1 a′

2 . . . a′
N

⎞

⎠ =

⎛

⎝Aa1 Aa2 . . . AaN

⎞

⎠ .

As every column ai of adjacency matrix A describes the adjacent nodes of node i,
every column a′

i of A′ describes all adjacent nodes of the adjacent nodes of
node i or in other words, it describes those nodes which are reachable from
node i on paths of length 2. The values of the entries a′

ij of matrix A′ describe,
how many paths of length 2 between node i and node j exist. Accordingly,
another multiplication of A′ with A results in a matrix A′′ = A′A = AAA the
columns a′′

i of which describe the nodes that are reachable from node i on paths
of length 3. In general, the adjacency matrix of a graph to the power of n codes
the nodes that are connected via paths of length n.

3.2 Distance Matrix D

For the task of calculating the distance matrix D, i.e., the matrix that contains
for every node the shortest distance to all other nodes, the precise values of the
exponentiated adjacency matrix are not needed. The information whether or not
there is a path of length n between two nodes is satisfactory. Thus it is sufficient
to use boolean values 0 and 1 and to replace the addition by the disjunction
and the multiplication by the conjunction when exponentiating the adjacency
matrix. Then the distance matrix D is calculated as follows:

D = D0 −
N−1∑

i=0

i∨

j=0

Aj with

D0 =

⎛

⎜⎝
N · · · N
...

. . .
...

N · · · N

⎞

⎟⎠ , A0 =

⎛

⎜⎝
1 0

. . .
0 1

⎞

⎟⎠ ,

and A1 = A the adjacency matrix, A2 = A′, A3 = A′′, etc. D is symmetric and
its entries are either positive or zero, zero if and only if they are elements of
the diagonal. The complete computation of distance matrix D requires N ma-
trix multiplications. For each matrix multiplication N2 matrix elements have to
be computed, which requires N conjunctions and N − 1 disjunctions for every
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element. Therefore the distance matrix D can be calculated in O
(
N4

)
. But the

computing time can be further reduced to O
(
kN3

)
if a maximum depth k for

a path between two nodes is used instead of a complete computation of the dis-
tance matrix with depth N . As normally one is not interested in the similarity
of features beyond a certain threshold, the exact distance between those very
unsimilar features can be disregarded without posing too many restrictions to
possible applications. Thus, for most applications at stake the computational
complexity of O

(
N3

)
of the proposed similarity measure compares to other

all-pairs shortest path algorithms such as Floyd-Warshall [8].

3.3 Topology-Independent Similarity Measure d

Having defined the distance matrix D for the nodes of the GNG, we will now
derive our topology-independent similarity measure d. (As we will define d as
a pseudometric, we should properly speak about a dissimilarity measure rather
than a similarity measure, but we will adhere to the more colloquial term.)

Let Ω be the high-dimensional feature space. Features ξ are represented as
points in this metric space: ξ ∈ Ω. Furthermore, let S := {s1, s2, . . . , sN} be the
set of nodes of the GNG as introduced in section 2. The quantization operation
induced by the growing neural gas is a mapping Q : Ω → S, Q(ξ) = s, with s

the node ξ is assigned to by the GNG. Now we first can define a metric d̃ on S:

d̃ : S × S → IR, d̃(si, sj) := dij

with dij the entries of the distance matrix D: D = (dij)i,j=1,...,N . The met-
ric axioms (i) non-negativity, (ii) identity of indiscernibles, (iii) symmetry, and
(iv) triangle inequality obviously hold true for d̃ because of the properties of D

mentioned in subsection 3.2. Given d̃, we can define a topology independent
pseudometric d on Ω now:

d : Ω × Ω → IR, d(ξ, η) := d̃ (Q(ξ), Q(η)) .

As different feature vectors can be mapped on the same node of the GNG the
second metric axiom is not necessarily fulfilled. This means d is a pseudometric
only, i.e., only the following axioms hold true:

(i) d(ξ, η) ≥ 0,
(iii) d(ξ, η) = d(η, ξ),
(iv) d(ξ, η) ≤ d(ξ, ρ) + d(ρ, η).

Properties (i) and (iii) are induced by the corresponding properties of d̃. Prop-
erty (iv) holds true because of the Delaunay property of the growing neural gas
mentioned in section 2. The concrete values of d depend on the granularity of
the similarity measure. This granularity is determined by the halting criterion
of the GNG. Thus, the precision of the similarity measure can be controlled
by adjusting the halting criterion. Figure 2 shows an example of our similarity
measure in a schematical way.
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Fig. 2. Topology-independent similarity measure. The gray areas represent the feature
vectors ξ of the high-dimensional space Ω. Some nodes of the growing neural gas, i.e.,
some elements of set S , are depicted by red and green dots. The numbers they are
labeled with are those values of the metric d̃ which express the distance between the
red node and each of the green nodes. For example, the shortest distance between the
red node and the upper green node labeled with “2” is a path of 2 edges.

4 Experiments

We carried out our experiments on a database of 798 gray value images, a few of
which are shown in figure 3. As features we consider patches of 18×18 pixels, thus
our high-dimensional feature space Ω has 324 dimensions. These features are not
optimal descriptors for the purpose of object recognition. Nevertheless, we chose
them for the evaluation of the similarity measure because they can be evaluated
more easily by visual inspection than more advanced feature descriptors such
as the SIFT vectors, for which a visual interpretation is much harder. Per sam-
ple image we extracted about 250 feature vectors, the positions of which have

Fig. 3. Database. A selection of 798 sample images on which we carried out our exper-
iments.
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Fig. 4. Quantization of feature vectors by the growing neural gas. Each column stands
for one node of the GNG, e.g., the first column represents s1 ∈ S , the second col-
umn s2 ∈ S , etc. Each entry (i.e., row) of a column shows one feature vector ξ ∈ Ω
in form of a 18 × 18 gray value patch, which has been assigned to this node. In each
case a column shows the last 10 feature vectors which have been mapped onto it. The
features marked by a green frame are those which are the last assigned.

been determined with a KLT detector [9], resulting in a total of about 200,000
features. We ran the growing neural gas algorithm as described in section 2.
After the processing of λ = 300 feature vectors we added one node to the GNG
and stopped the growing procedure after it consisted of 300 neurons. (All of the
200,000 features have been used for the generation of the GNG according to
the algorithm described in section 2. After 300 nodes have been incorporated
into the gas not many changes of the topolopy of the GNG were caused by
the remaining features. Thus, those remaining features contributed to the sta-
bilization of the GNG only, rather than to its overall topoloy.) Figure 4 shows
exemplarily how some feature vectors have been quantized.

5 Results

The final purpose of defining feature vectors and endowing their space with a
suitable similarity measure, is the adequate encoding of the characteristics we
intend to measure. In this case the application is an encoding of the visual char-
acteristics of objects for purposes such as storage, classification, or recognition.
Therefore, we have to analyze whether the features classified as being (math-
ematically) similar are also assessed by humans as being (visually) similar. In
other words, the similarity (or difference) we determine by the proposed method
must bear some correlation with the perceptual similarity (or difference) of two
feature vectors. As Santini and Jain point out in [10], if our systems have to
respond in an “intelligent” manner, they must use a similarity model resembling
the perceptual similarity model of humans. Having these considerations in mind,
we decided to assess the quality of the similarity measure d by a visual inspection
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Fig. 5. Classification of feature vectors into 8 neighboring nodes of the growing neural
gas. The columns represent the nodes. The entries of the columns are the last 10 feature
vectors which were mapped onto them. The distance between the nodes is equivalent
to the number of columns between them.

of the feature classification. Figure 5 shows again nodes of the growing neural
gas, represented by 8 columns of the 10 last assigned feature vectors each. This
time neighboring columns show adjacent nodes of the GNG, thus the number
of columns between two nodes in the diagram is proportional to the distance
between the nodes in the GNG. For example, the node represented by the first
column and the node represented by the last column have a distance of 7 edges.
We can summarize the results of the visual inspection as follows: Firstly, the
similarity between features belonging to one node (i.e., features within one col-
umn) is, in general, larger than between features of different nodes. Secondly,
one can observe a gradual decrease in similarity from the left to the right node
for most of their assigned features. For example, the second column displays a
larger overall similarity to the first column than the last column. Summarizing,
one can say that the classification of features emerged from the proposed sim-
ilarity measure corresponds to the assessment of the perceptual similarity by
humans. Object recognition experiments remain to be done.

6 Conclusion

We considered the problem of endowing a feature space with an adequate similar-
ity measure. Often researchers make unwarranted assumptions about the metric
of the space. Usually it is assumed to be Euclidean. In this paper we presented
a similarity measure for high-dimensional feature vectors which is independent
from the actual structure of the feature space in the sense that no a priori know-
ledge on the topology of the feature space is necessary. The similarity measure
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is based on the advantageous distribution of the nodes in a growing neual gas.
In addition, the use of a growing neural gas provides a quantization of the high-
dimensional feature vectors. Despite a possible loss of information, this reduces
the amount of data which has to be stored and searched for in further process-
ing. The described similarity measure is particularly useful for object recognition
tasks where an object is represented by a set of feature vectors, as it seems to
correspond to human perceptual similarity assessment.
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Abstract. Fuzzy Labeled Self-Organizing Map is a semisupervised
learning that allows the prototype vectors to be updated taking into
account information related to the clusters of the data set. In this pa-
per, this algorithm is extended to update individually the kernel radii
according to Van Hulle’s approach. A significant reduction of the mean
quantization error of the numerical prototype vectors is expected.

1 Introduction

The main objective of this paper is to carry out a comparison of a Fuzzy Labeled
Self-Organizing Map algorithm (FLSOM) with its modified version in terms of
mean quantization and topographic errors. In this proposed version of FLSOM,
the kernel radii of the neurons are individually updated, maximizing the mutual
information between the input and output of the neuron and minimizing the
mutual information between the outputs of the neurons. A significant reduction
of the mean quantization error is expected due to this reform.

The paper contains brief descriptions of individual kernel radii updating in
section 2 and FLSOM algorithm in section 3. The proposed modification of
FLSOM is presented and tested in sections 4 and 5.

This work is part of the SensorControl project “Sensor-based online control of
pickling lines”, which is sponsored by ECSC whose agreement number is RFS-
CR-04052. The contractors are Betriebsforschungsinstitut GmbH (BFI), Rassel-
stein GmbH (TKS-RA), Centro Sviluppo Materialia S.p.A. (CSM), Universidad
de Oviedo (UniOvi) and Svenska Miljinstitutet AB(IVL). The main objective of
the SensorControl project is the development of a sensor for acidic measurement
and supervision techniques of coil surface defects for implementation in steel
pickling plants.

2 Kernel-Based Topographic Map Formation

The SOM algorithm [6][7] has a kernel function centered on the winning neuron
that is usually considered as a Gaussian. In this way, a neighborhood radius is
created influencing to a high degree the neighbor neurons of the winning unit
while the values of the prototype vectors are updated during the training. This

J. Marques de Sá et al. (Eds.): ICANN 2007, Part II, LNCS 4669, pp. 341–348, 2007.
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kernel function is responsible for the SOM property of topology preservation.
However, the quantization error can be improved modifying this kernel function
by means of maximizing the mutual information between the input and output of
the neuron and minimizing the correlations between the outputs of the neurons
[11]. This can be achieved maximizing the differential entropy [2] whenever the
kernel output distribution is uniform.

In [11] Van Hulle obtains the distribution of the squared Euclidean distances
of the data vectors to the mean of the Gaussian kernel and its output is defined
according to the cumulative of that distribution as an incomplete gamma distri-
bution. The learning rules appear in equations (1) and (2). They are obtained
from the entropy of the kernel output by means of derivation with respect to the
prototype vector wi and the kernel radius σi.

Δwi = ηw Λ(i, i∗, σΛ)
v − wi

σ2
i

(1)

Δσi = ησ Λ(i, i∗, σΛ)
1
σi

(
‖ v − wi ‖2

d σ2
i

− 1
)

, ∀i, (2)

Λ(i, i∗, σΛ) = exp
(

−‖ ri − ri∗ ‖2

2σ2
Λ

)
, (3)

σΛ(t) = σΛ0 exp
(

−2 σΛ0
t

tmax

)
, (4)

where v is the input data vector, ηw is the learning rate for prototype vectors, ησ

is the learning rate for kernel radii, d is the number of dimensions in the input
data space, t is the time step, tmax is the maximum number of time steps, ri and
ri∗ are the lattice coordinates of the updated neuron i and the winning neuron i∗,
respectively, Λ is a monotonous decreasing function of the lattice distance from
the winner (in this case is a Gaussian), σΛ and σΛ0 are the neighborhood range,
which is used as a neighborhood cooling term and its initial value, respectively.
Term (3) is added to allow competitive-cooperative learning. The winning neu-
ron and its neighborhood determine the values during the training giving the
topological information. Moreover, the values of the kernel radii are updated
individually using this term avoiding the statistical dependency between the
outputs of the neurons.

3 FLSOM Algorithm

Using SOM for classification tasks is an important feature to identify the clusters
of the input data space, their relationships between each other and with the
process variables. A classical method of classification after training consists of
carrying out an assignment of each prototype vector to a certain cluster obtaining
a new component plane. In this case, the clustering process is composed of two
phases [13]. In the first phase, the SOM network is trained whereas in the second
phase a partitive clustering algorithm, e.g. K-means, is applied to obtain several
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clustering structures of several numbers of clusters since the optimum number
of clusters is unknown. The optimum clustering structure is chosen by means
of a clustering validation index. This procedure is useful when the number of
clusters and the classification (fuzzy or crisp distribution) of each data vector are
not known beforehand [8][9]. However, these methods have the drawback of not
influencing the training since they happen after it and don’t modify the values
of the prototype vectors.

This can be corrected using FLSOM [14]. In this algorithm, the classification
task influences the values of the prototype vectors and both of them take place
at the same time during the training. In this way, FLSOM can be considered as
a semisupervised algorithm. The training algorithm is based on an energy cost
function of the SOM (ESOM) proposed by Heskes in [4]. The cost function of
equation (5) includes a term (EFL) that represents the labeling or classification
error of the prototype vectors yi of the classification map with regard to the
probabilistic vectors x supplied by the training data set.

EFLSOM = (1 − β)ESOM + β EFL, (5)

Each labeling data vector x, which is associated with a numerical data vector
v, is assigned in a fuzzy way according to a probabilistic membership to the
clusters of the data set. This stage is critical in the data preprocessing, but
obviously the algorithm can be applied to crisp distributions. A Gaussian kernel
in the input data space is included within term EFL so that the prototype vectors
w close to the data vectors v determine the classification task. It is formulated
in equation (6).

gγ(v, wi) = exp
(

−‖ v − wi ‖2

2γ2

)
, (6)

The learning rules are obtained by means of derivation of energy cost function
(5) with respect to the numerical and labeling prototype vectors, wi and yi, re-
spectively. These learning rules are expressed in equations (7) and (8) considering
using the squared Euclidean metric in the algorithm.

Δyi = αl β gγ(v, wi) (x − yi), (7)

Δwi = α (1 − β) exp
(

−‖ ri − ri∗ ‖2

2σ(t)2

)
(v − wi) + αw β

1
4γ2 (v − wi) ‖ x − yi ‖2

(8)

4 Modification of the Algorithm

As stated above, FLSOM is formulated according to energy cost function (5).
First term ESOM corresponds to the typical approximation of the numerical pro-
totype vectors w to the input data vectors v. This prototype update is carried
out by the gradient of ESOM or ∂ESOM

∂wi
that turns out the first term of learn-

ing rule (8) considering the squared Euclidean as metric to be used. It can be
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observed that this term corresponds to the basic sequential version of the SOM
training algorithm where the numeric prototype vectors wi are updated. In that
version, the kernel radii take the same value instead of being individually up-
dated as in the kernel-based topographic map formation proposed in [11]. This
individual updating should imply an improvement of the mean quantization er-
ror of the trained map. In this way, the original version of the FLSOM has been
extended to this individual kernel radius updating obtaining learning rule (9) to
update the numerical prototype vectors wi.

Δwi = αw (1 − β)Λ(i, i∗, σΛ)
v − wi

σ2
i

(9)

+αw β
1

4γ2 (v − wi) ‖ x − yi ‖2

The algorithm is completed with learning rules (2) and (7) to update kernel
radius σi and labeling prototype vector yi, respectively.

Therefore, there are two mean quantization errors. The first is quantization
error eqw related to the approximation of numerical prototype vectors wi to
numerical data vectors v and the other is quantization error eql related to the
approach of labeling prototype vectors yi to labeling data vectors x. Both errors
can be weighted by parameter β of the cost function.

Two maps are obtained after training with this algorithm. One map contains
the component planes that correspond to the numerical variables and it is related
to topographic error etw. The other map represents the component planes of the
clusters defined in the data set and it is associated with topographic error etl.

Several advantages are obtained by means of the use of this algorithm. The
visualization of the clusters improves the data understanding. Moreover, the
algorithm is a robust classifier since it uses fuzzy data sets allowing the use of
contradictory data.

5 Experimental Testing

Four data sets were used to check the algorithm performance according to the
mean quantization error and the topographic error. This topographic error mea-
sures the percentage of map units whose two BMUs are not adjacent in the
output space [5]. The map size must be equal for both algorithms since the er-
rors depend on it. Parameter β was chosen equal to 0.5 for both of them taking
an intermediate weight of the quantization errors eqw and eql.

In this case, the algorithms are being evaluated on the same data that is used
for training. This is tolerable for errors eqw and etw because both of them measure
a kind of distortion which should basically be the same for both training and
test data. Since the aim of the paper is to improve eqw, that option has been
chosen.

In FLSOM algorithm the radii σ(t) decrease monotonically and linearly. The
advisable minimum is equal to 1, since any value below produces maps which
do not preserve the data topology. The training was carried out in two phases
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according to [12]: first with large neighborhood radius in phase 1, and then
finetuning with small radius in phase 2.

Parameter γ represents the kernel radius in the input space and it was con-
sidered as a constant since it is not described in detail in [14]. It affects both
quantization and topographic errors. Its value was chosen equal to 0.5 because
it seems the most appropriate for a normalized input data distribution with zero
mean and unitary variance.

Iris Data Set. The iris data set was extracted from UCI repository of machine
learning databases [10]. It was considered as a crisp distribution and is composed
of 150 instances, 4 numerical variables and 3 clusters. The trained map size was
a lattice of 8 x 8. Regarding FLSOM, the number of epochs was equal to 150 for
both training phases. The kernel radius σ(t) was within interval [2,1] in phase
1 and it was equal to 1 in phase 2. The parameters for this algorithm were β
= 0.5, α = 0.01, αl = 0.1, γ = 0.5. The number of epochs was equal to 150 in
relation to the proposed algorithm and its parameters were β = 0.5, αw = 0.001,
αl = 0.01, γ = 0.5, ησ = 0.0001 · αw, σΛ0 = 4, tmax=101250.

Balance Scale Data Set. This data set was extracted from UCI repository of
machine learning databases [10]. It was considered as a crisp distribution and it
has 625 instances, 4 numerical variables and 3 clusters. The map size was 10 x
10. Regarding FLSOM, the number of epochs was equal to 30 for both training
phases. The kernel radius σ(t) was within interval [3,1] in phase 1 and it was
equal to 1 in phase 2. The parameters for this algorithm were β = 0.5, α=0.01,
αl = 0.5, γ = 0.5. The number of epochs was equal to 30 in relation to the
proposed algorithm and its parameters were β = 0.5, αw = 0.01, αl = 0.5, γ =
0.5, ησ = 0.0001 · αw, σΛ0 = 4, tmax=84375.

Fuzzy Data Set. The fuzzy data set was formed as a fuzzy distribution of three
clusters applying fuzzy c-means to a random data set composed of 200 samples
of two dimensions. It was formulated in this way since it was difficult to find a
correct fuzzy distribution in a known database. The trained map size was equal
to 10 x 10. Regarding FLSOM, the number of epochs was equal to 150 for both
training phases. The kernel radius σ(t) was within interval [3,1] in phase 1 and
it was equal to 1 in phase 2. The parameters for this algorithm were β = 0.5, α
= 0.01, αl = 0.01, γ = 0.5. The number of epochs was equal to 150 in relation
to the proposed algorithm and its parameters were β = 0.5, αw = 0.001, αl =
0.01, γ = 0.5, ησ = 0.0001 · αw, σΛ0 = 4, tmax=135000.

SensorControl Data Set. The data from the SensorControl project was con-
sidered as a crisp distribution and is composed of 215 instances, 5 process vari-
ables and 3 clusters. The lattice of the trained map was 11 x 11. Regarding
FLSOM, the number of epochs was equal to 30 for both training phases. The
kernel radius σ(t) was within interval [3,1] in phase 1 and it was equal to 1 in
phase 2. The parameters for this algorithm were β = 0.5, α = 0.5, αl = 0.5, γ =
0.5. The number of epochs was equal to 30 in relation to the proposed algorithm
and its parameters were β = 0.5, αw = 0.01, αl = 0.5, γ = 0.5, ησ = 0.0001 · αw,
σΛ0 = 4, tmax=29025.
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Table 1. Description of columns according to their number in Fig. 1

No. Description

1 eqw or mean quantization error of numerical prototype vectors wi using FLSOM

2 eqw or mean quantization error of numerical prototype vectors wi using FLSOM & Kernel-based

3 etw or topographic error of numerical prototype vectors wi using FLSOM

4 etw or topographic error of numerical prototype vectors wi using FLSOM & Kernel-based

5 eql or mean quantization error of labelling prototype vectors yi using FLSOM

6 eql or mean quantization error of labelling prototype vectors yi using FLSOM & Kernel-based

7 etl or topographic error of labelling prototype vectors yi using FLSOM

8 etl or topographic error of labelling prototype vectors yi using FLSOM & Kernel-based
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Fig. 1. Results for the four data sets

5.1 Results

In the proposed algorithm, the radii were initialized randomly from a uniform
distribution [0, 0.1]. The weights or values of the prototype vectors (wi and yi)
were randomly initialized for both algorithms. Fifty maps were obtained for each
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algorithm and dataset. The errors mentioned in Table 1 were calculated for each
map and their distributions are shown in Fig. 1. The boxes represent the typical
distribution indicating the lower quartile, median, and upper quartile values.
Notches estimate the medians for box to box comparison.

The results seem to prove that the mean quantization using the proposed
algorithm is always less than the map trained using FLSOM, especially for eqw.
Also, the distribution variance of this type of error is quite narrow and less than
obtained with FLSOM. The mean quantization error eql related to the classifica-
tion task is slightly better than obtained with FLSOM. However, the topographic
error of the numerical variables etw seems to be better in FLSOM. Although a
similar value of etw could be achieved by the proposed algorithm since its vari-
ance allowed it to be obtained. It seems that the proposed algorithm reduces
the mean quantization error at the expense of increasing its numbers of folds
in the input space. However, the definition of topographic preservation depends
on the chosen tool. Besides Kiviluoto’s approach [5], other topology preserva-
tion indexes [1][3] carry out a more complete analysis, taking into account the
neighborhood and the isometry that corresponds between the lattice neurons
and the prototype vectors, but their computational costs are higher. Moreover,
the original version of FLSOM uses twice the number of epochs.

6 Conclusion

FLSOM is a version of SOM algorithm where the prototype vectors are influenced
by the labeling data vectors that define the clusters of the data set. This paper
aims to improve the quantization error of this algorithm by means of individual
kernel radius updating according to Van Hulle’s approach, modifying the term
that corresponds to numeric prototype vectors. The proposed algorithm was
compared with the original one using four data sets to test both of them. The
results seem to prove that the mean quantization error is reduced with the
proposal of modification.

As future work, this proposed algorithm will be employed to train the data
that belongs to the SensorControl project to obtain several models which will
be selected with a suitable topographic error. This model will try to estimate
the optimum line speed that minimizes the surface defects of the steel strip in
the pickling line.
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348 I.M. González and H.L. Garćıa
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Abstract. Early studies on visual pathway circuitry demonstrated that
synapses arrange to self-organize cortical orientation selectivity maps.
It is still a debate how these maps are set up, so that diverse studies
point to different directions to conclude about the main role played by
feed-forward or intracortical recurrent connectivity. It is also a subject
of discussion the way neurons communicate each other to transmit the
information necessary to configure the circuits supporting the features
of the central nervous system. Some studies claim for the necessity of a
precise spike timing to provide effective neural codes. In this article we
simulate networks consisting of three layers of integrate-and-fire neurons
with feed-forward excitatory modifiable synapses that arrange to conform
orientation selectivity maps. Features of receptive fields in these maps
change when the precision of correlated firing decreases as an effect of
increasing synaptic transmission jitters.

1 Introduction

Studies of cortical activity in primary visual cortex of cat demonstrated that
cortical neurons were more effectively activated when a certain receptive field
on the retina was stimulated. Many neurons in the cortex respond preferentially
to bars of stimulation disposed on a concrete orientation on the visual space.
Pioneering work of Hubel and Wiesel showed that the position of the recep-
tive fields, the orientation selectivity and the ocular dominance present a global
columnar organization in the cortex.

However, it is still a debate how cortical orientation selectivity is set up. While
diverse physiological and theoretical studies support the role of feed-forward
connectivity for orientation selectivity, other reputable works point to a larger
influence of intracortical circuitry and inhibitory connections.

It is also an issue of controversy the way neurons communicate each other to
conform the proper circuitry that robustly supports different features of the cen-
tral nervous system. Much of the initial discussion focused on whether neurons
use rate coding or temporal coding. While many works address the possibility
of having a sparse neural code based on neural assemblies [2], synchronous fire
chains [3], or oscillations [6], other studies claim for the existence of neural codes
that require a precise inter-neural communication to be arranged [5].
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Across the visual pathway of mammals neural activity becomes more vari-
able, the correlated activity among neurons becomes less precise and, further-
more, synaptic jitters (i.e. the variability of synaptic transmission latencies)
increase. For example, in the developing rat neocortex, Markram et al. (1997)
[4] measured fluctuations in excitatory post-synaptic potentials latency of 1.5 ms
between layer 5 neurons which is a very large value in comparison with the sub-
millisecond produced by retinogeniculate connections [1]. Increasing transmission
jitters reduces significantly the precision of the correlated firing [9]. The question
that arises now is how this reduction of the time accuracy of spike transmissions
could affect to the organization of feature maps.

In this article we analyze the self-organization of receptive fields and orienta-
tion selectivity maps in feed-forward networks of integrate-and-fire (IAF) neu-
rons with modifiable connections. Our results show how changes in the precision
of the correlated firing among neurons do not prevent the emergence of orienta-
tion selectivity maps but affect the features of receptive fields. This means that
reducing the exactitude of inter-neural communication does significantly influ-
ences the configuration of receptive fields in this sort of feed-forward networks.
The way we modified this accuracy of the correlated activity was by introduc-
ing incremental physiologically plausible changes in the synaptic transmission
jitters, i.e. increasing the variability of synaptic transmission delays.

We attack the problem by a spike-time dependent plasticity (STDP) approach,
where modifiable excitatory synapses change during a learning process to con-
verge towards a self-organizing structure that presents orientation sensitive re-
ceptive fields.

2 The Integrate-and-Fire Neuron Model

The traditional form of an IAF neuron consists of a first order differential equa-
tion (eq. 1) with a subthreshold integration domain [where the neuron integrates
its inputs I(t)] and a threshold potential (not explicitly represented in the equa-
tions) for action potential generation [7].

Cm
dVm(t)

dt
= I(t) − [Vm(t) − Vrest]

Rm
, (1)

where Cm is the neuronal membrane capacitance, Vm the membrane potential,
Rm the membrane resistance, Vrest the resting potential and I(t) the synaptic
input current. For the purposes of this paper, I(t) has been modeled as in eq. 2.

I(t) =
∑

j

ωjg(t̂j)[Esyn − Vm(t)] + noise, (2)

where ωj represents the connection weight (or synaptic efficacy) between neu-
ron j (presynaptic) and the current neuron (postsynaptic), g(s) is the synaptic
conductance, t̂j is the time relative to the last spike of the presynaptic neuron
j [also taking into account the existence of a synaptic delay (δ) and a jitter
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of transmission delay (ι), modelled as the mean and the standard deviation of
a Gaussian distribution of synaptic latency, respectively], Esyn is the reversal
potential or synaptic equilibrium and, finally, noise represents the background
synaptic noise [following a Gaussian distribution with parameters (μn, σn)].

Synaptic conductance has been modeled (eq. 3) by the difference of two nega-
tive exponential functions with different time-constants, τr and τd, which affect
the rise and decay times of the conductance curve, respectively.

g(t) = ĝ
[
e−1/τr − e−1/τd

]
, (3)

where ĝ modulates the maximum synaptic conductance.
For the computational implementation of the IAF neuron model, equation 1

has been integrated by the Backward Euler Integration Method, and we chose a
time resolution of Δt = 0.1 ms to ensure the stability of the system and to allow
the introduction of all the physiological phenomena that could contribute to
precise correlated firing and —as for transmission synaptic jitter— occur within
a time order smaller than 1 ms.

To complete the neuron model, it was included an absolute refractory period
(of 2.5 ms) and an after-hyperpolarization potential where the membrane po-
tential decays to when an action potential occurs. This after-hyperpolarization
potential is calculated as the 20% of the membrane potential once it exceeded
the threshold potential: Vm(tf ) = 1.2 × Vm(tf − Δt), where tf is the spike time.

In computer simulations of the neuron model above, synaptic conductances
have to be updated at each simulation step, which constitutes a crucial task
from the point of view of computational efficiency. The basic problem consists of
computing the overall conductance in a more efficient manner than the simple
convolution of spike trains with conductance functions of all synapses at each
simulation step.

Starting from conductance equation 3, the Z-transformation of the discretiza-
tion of g(t) was used to get a recursive expression of g[n] as a function of only a
few previous terms. This recursive function allows us to state each value of the
overall conductance at step n as a function of a reduced number of the previous
values of the conductance and the presynaptic spike trains, which significantly
increases the computational efficiency of the model [8].

3 Effects of Jitter on the Precision of Correlated Firing

As revealed by physiological and theoretical studies (see [9]), increasing the
synaptic transmission jitters —defined as the variability of the synaptic delay—
affects the precision of the correlated firing in a monosynaptic connection. When
this correlated activity is measured by cross-correlation analysis of the activity of
two monosynaptically connected neurons, the increasing of transmission jitters
is evidenced by significant changes in the monosynaptic peak of the correlogram.
For results in figure 1 two monosynaptically connected IAF neurons following
the model above were simulated. The left graph of the figure shows the correl-
ogram for a simulation with jitter of ι = 0.1 ms, while the jitter for the right
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Fig. 1. Simulation of a monosynaptic connection with two different synaptic jitters.
Left: jitter ι = 0.1 ms; position of maximum peak = 2.1 ms; maximum peak amplitude
= 143 spikes; width at 50% of maximum peak amplitude = 3.3 ms; witdth at 25% of
maximum peak amplitude = 7.4 ms. Right: jitter ι = 1.5 ms; position of maximum
peak = 3.1ms; maximum peak amplitude = 10 spikes; witdth at 50% of maximum
peak amplitude = 6.6 ms; witdth at 25% of maximum peak amplitude = 10.6 ms.

graph of the figure was 1.5 ms. As can be visually appreciated, changes in the
jitter affect the amplitude, position and width of the monosynaptic peak and,
consequently, reveal changes in the precision of the correlated firing.

In this paper we present the results of simulation of feed-forward networks
of excitatory IAF neurons with spike-timing plastic synapses and analyze the
effects of changing synaptic jitters into the self-organization of receptive fields
and their orientation selectivity.

4 STDP Learning Mechanisms

Modifiable synapses are modeled by a STDP rule (see equations 4 and 5). STDP
rules model synaptic plasticity by considering into their formulation the precise
timing of neuronal activity, so that synaptic efficacies are enhanced or reduced in
a way that depends on the time distance of each post- and presynaptic spike. For
the network architecture that we present in this paper, only excitatory synapses
are considered, which are governed by equations 4 and 5.

W (t) =
{

0 if t < 0
e−t/τw if t ≥ 0,

(4)

where τw is the learning time constant for synaptic modifications that depend on
the distance between the post- and the presynaptic spikes (see figure 2). Synaptic
depression by negative distances of post- and presynaptic spikes (left half of the
learning window) has not been included in the model: weight reductions are only
modulated by the occurrences of postsynaptic spikes (see equation 5).

Δωj(t) = s(t)

⎡

⎢⎣
∑

tf
j <t

W
(
t − tfj

)
+ η

⎤

⎥⎦ + ζ − ξωj(t), (5)
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where s(t) is the activity of the postsynaptic neuron at the current time, with
s(t) = 1 if the postsynaptic neuron fires, and s(t) = 0 if the postsynaptic neurons
remains at rest; W is the STDP learning window (see figure 2); tfj it the time
step f when the presynaptic neuron emitted an action potential; η is a learn-
ing rate constant that modulates the amplitude of incoming synaptic weights
reductions due to the emission of each postsynaptic spike; ζ represents a sort of
activity-independent synaptic enhancement: without activation, a synapse will
slowly approach some non-zero efficacy; finally, ξ modulates the reduction of
each synapse at a rate proportional to its current weight.
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Fig. 2. Learning window W (t) for excitatory synapses. The change in the synaptic
weight depends on the difference between the post- and the presynaptic spikes.

5 Simulating Feed-Forward Networks with Different
Jitters

The network architecture for simulations consists of three two-dimensional layers
of 32×32 IAF neurons with feed-forward modifiable excitatory connections from
input to output. There are not lateral connections. Receptive fields of neurons
in intermediate and output layers consists of a 11×11 array of afferent synapses
from the presynaptic layer, centered at the position of the postsynaptic neuron,
assuming layers as circular matrixes for neighboring considerations. Synaptic
weights are initialized as a function of the distance between each post- (i) and
presynaptic (j) neuron: wij(0) = λe

√
(xi−xj)2+(yi−yj)2/σ, where x and y are the

row and column of the neuron position in the layer, and λ is a scale factor.
In table 1 default neuronal, synaptic and learning parameters are shown. Neu-

rons in the input layer are stimulated by convolving two-dimensional Gaussian
functions with a stationary noise signal that follows a Gaussian distribution
[with parameters N (μn, σn)] (see figure 3). This convolution introduces an ac-
tivity correlation in the network that allows the emergence of receptive fields
and orientation selectivity maps in the absence of lateral connections, as it will
be shown later.

Neurons in the intermediate and output layers receive, as a stimulation signal,
a source of synaptic noise current which integrates with the presynaptic input
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Table 1. Simulation parameters. A) Default physiological parameters for each IAF
neuron. τm represents the membrane time-constant; Vthres is the threshold potential; ϑ
is an after-hyperpolarization factor; ρ is an absolute refractory period. B) Synaptic and
transmission parameters. C) Parameters for synaptic learning. (i, ii and iii represent
input, intermediate and output layers, respectively).

A) Neuronal parameters
Δt τm Cm Vrest Vthres ϑ ρ

0.1 ms 1 ms 0.1 nF −70 mV −40 mV 0.2 2.5 ms

B) Synaptic parameters
δ τr τd μn σn

1.0 ms 4.0 ms 1.0 ms 2.7 nA 0.5 nA

C) Learning parameters

τ i−ii
w τ ii−iii

w η ζ ξ

11 ms 5 ms −0.57 9.5 · 10−4 1.25 · 10−6
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Fig. 3. Network input stimulation pattern: stationary signals following a Gaussian dis-
tribution N (2.7 μA, 0.5 μA) are convolved with a two-dimensional Gaussian function.
X and Y axes represent position of neurons in the input layer.

from neurons in the preceding layer. Synaptic transmission delay has been mod-
elled (see section 2) as a Gaussian distribution of synaptic latencies with a mean
of δ = 0.1 ms —the same for all simulations— and a standard deviation that
represents synaptic jitter (ι).

In figure 4 results from one simulation of the feed-forward architecture above
are shown. All synapses in the network have a same synaptic transmission jitter
of ι = 0.1 ms. On the left panel of the figure, an orientation selectivity map for
the output layer is represented which emerges from the self-organization of all
synapses in the network, which are modifiable via the STDP rule of equations 4
and 5. On the center panel a smoothed version of the orientation selectivity map
is shown. As can be observed at both panels, a typical arrangement of orientation
selectivity bands and singularities emerges on the map. Finally, on the right panel
of the figure, the receptive fields of the neurons in the output layer are visualized:
a gray-level scale has been used to represent the synaptic weights (0: black; 1:
white) at each 11×11 receptive field. As can also be visually appreciated at this
panel, clusters of neurons with similar receptive fields additionally emerge with
the self-organizing process.
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180
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Fig. 4. Self-organization of feed-forward synapses from the intermediate layer to the
output layer (simulation time = 50, 000 ms). All synapses in the network had an uni-
form jitter of ι = 0.1 ms. Left panel shows the orientation selectivity map for the
output layer: each colour square represents one neuron’s orientation selectivity as it is
indicated at the color scale bar on the right (in degrees). Center panel is a smoothed
version of left panel. Right panel shows the receptive fields for the output layer: each
gray-level square of 11× 11 pixels represents one’s cell incoming synaptic weights from
11 × 11 presynaptic neighboring neurons.

In figure 5 similar graphs as in figure 4 are shown but for one simulation with
a larger synaptic jitter of ι = 1.5 ms instead for the whole synaptic tree of the
network. Moreover, in figure 6 results from a simulation of the network architec-
ture with a non-uniform jitter are presented. For the simulation of this figure,
jitter was modeled as a bi-dimensional inverse Gaussian function to have a min-
imun value of jitter at the central synapse at each receptive field in the network
and also an increasing jitter when it is going from the center to the periphery of
the receptive fields, as it has been formulated in the following equation:

J(x, y) = Γ − 
e−[([x−χ/2]2+[y−Υ/2]2)/σ], (6)

where Γ is the maximum likely jitter, 
 is a scale factor; x and y are the row
and column of position of the presynaptic neuron, respectively; χ × Υ = 11 ×
11 neurons is the size of the receptive field (matrix dimensions of incoming
synaptic weights), and σ is the standard deviation of a Gaussian function.

At both figures (5 and 6) orientation selectivity maps and clusters of receptive
fields still emerge, as for the smaller jitter values of figure 4, by synaptic self-
organization, so that a significant reduction in the precision of the correlated
firing introduced by increasing the jitters (see section 3) does not dramatically
preclude the formation of receptive fields and orientation selectivity maps.

In table 2 we have gathered several measurements taken on the results from
simulations of the network architecture above with different jitter arrangements.
Receptive field clusters (i.e. grouping of receptive fields visually observable) have
been identified on each panel (right panel of figures 4, 5 and 6) by image pro-
cessing techniques based on region growing. A threshold level has been set to
consider a receptive field as formed by those afferent synapses with an efficacy
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Fig. 5. Self-organization of synaptic feed-forward projections from the intermediate
layer to the output layer, for a simulation of 50, 000 ms. All synapses in the network
had an uniform jitter of ι = 1.5 ms. See figure 4 for explanations and details.

180
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Fig. 6. Self-organization of synaptic feed-forward projections from the intermediate
layer to the output layer, for a simulation of 50, 000 ms. Jitter was modeled by an
inverse Gaussian distribution with Γ = 1.5 ms, � = 1.4 ms and σ = 9 (see equation 6),
giving a maximum likely jitter of ι =≈ 1.5 ms at the periphery of each receptive field
and a minimum jitter of ι = 0.1 ms at its center. See figure 4 for details.

weight ≥ 0.5. Elongation measurements of clusters and receptive fields have been
calculated as 1 − 4π · area/perimeter2.

As revealed from the results shown in figures 4, 5 and 6, although increas-
ing jitters (in an uniform or non-uniform manner) does not prevent the self-
organization of receptive fields and orientation selectivity maps, significant dif-
ferences can be found by closely inspecting the size and shape of the receptive
fields and their clusters. Data from cluster measurements (see the upper table)
throw a not very dissimilar number of clusters and neurons conforming them, but
the high standard deviations blur the significance of those dissimilarities. On the
other hand, receptive field measurements show significant differences in size and
elongation of receptive fields: as uniform jitter increases, the size and the elon-
gation of the receptive fields linearly decrease (with linear regression coefficients
of γ = 0.94 and γ = 0.85, respectively). Moreover, as can be seen in table 2,
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Table 2. Cluster and receptive field measurements from simulations of networks
with different jitters. Each measurement was obtained as an average of three simula-
tions with identical parameters (and 50, 000 ms of simulation time each). Four former
columns show measures from simulations with an uniform jitter for the whole synapses
in the net; two later columns show the results for synaptic jitters configured by an
inverse Gaussian function (Γ = 1.0 ms; � = 0.9 ms; see equation 6). Cluster elongation
for all jitters (0: circle; 1: line): mean ≈ 0.4, std. dev. ≈ 0.1, median ≈ 0.4.

Cluster measurements (averaged for 3 simulations of 50, 000 ms each)
0.1 ms 0.5 ms 1.0 ms 1.5 ms σ = 18 σ = 9

#Clusters 12.7 15.3 14.3 16 13.6 14
Mean of #neurons 81 64 63.5 77.8 77.3 66.5

Std. dev. of #neurons 73.3 65.3 58.2 102.1 64.7 69.7
Median of #neurons 87 41.5 63.6 28 62.7 45.5

Receptive field measurements (averaged for 3 simulations of 50, 000 ms each)
0.1 ms 0.5 ms 1.0 ms 1.5 ms σ = 18 σ = 9

Mean of size (synapses) 19.6 17 15.3 12.5 14.8 14.3
Std. dev. of size (synapses) 4.2 3.9 4.5 4.1 4.3 4
Median of size (synapses) 19.7 17.3 15.6 13 15 14.3

Mean of elongation (0: circle; 1:line) 0.71 0.70 0.69 0.67 0.69 0.69
Std. dev. of elongation 0.16 0.16 0.16 0.17 0.17 0.17
Median of elongation 0.73 0.72 0.72 0.65 0.72 0.72

non-uniform jitter arrangements confirm this tendency that would seriously im-
pede synaptic self-organization and formation of orientation selectivity maps
for larger non-realistic jitter values. (Our results for uniform jitters larger than
1.5 ms addressed to that direction, although they are not shown here).

Finally, we have not appreciated significant differences in statistics of the
distributions of orientation selectivity in maps with different jitter arrangements
for the physiological values of jitter managed in our simulations. Parameters of
table 1 were empirically set to ensure convergence to significant network states.
Changes in those parameters can drive the network to trivial or oscillating states.

6 Conclusion

In this paper we simulated feed-forward networks of IAF excitatory neurons with
modifiable synapses —by a STDP learning rule— to study how the precision of
the correlated activity affects the self-organization of receptive fields and orien-
tation selectivity maps. For this purpose, we analyzed the effects of increasing
the jitters of transmission delay to the final arrangement of neural receptive
fields. Our main results show how by reducing the precision of the interneural
correlated activity, the mean size and elongation of receptive fields at the output
layer get linearly decreased.

If synaptic jitter values remain into realistic physiological ranges, these
changes in the shape of receptive fields do not preclude the self-organization of
orientation selectivity maps in this sort of excitatory feed-forward architecture.
These results are in close agreement with works claiming for the unnecessary
sharpness of time precision of interneural spike transmission for the conformation
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of some sort of emerging neural features as orientation selectivity. Moreover, al-
though the increasing variability of neural responses along the visual pathway
could affect the shape of receptive fields, as our results support, measured physi-
ological magnitude of these variability seems not to be a determinant to prevent
the emergence of self-organizing orientation selectivity maps.
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Abstract. The Self-Organising Map is a popular unsupervised neural
network model which has been used successfully in various contexts for
clustering data. Even though labelled data is not required for the training
process, in many applications class labelling of some sort is available. A
visualisation uncovering the distribution and arrangement of the classes
over the map can help the user to gain a better understanding and anal-
ysis of the mapping created by the SOM, e.g. through comparing the
results of the manual labelling and automatic arrangement. In this pa-
per, we present such a visualisation technique, which smoothly colours a
SOM according to the distribution and location of the given class labels.
It allows the user to easier assess the quality of the manual labelling by
highlighting outliers and border data close to different classes.

1 Introduction

The Self-Organising Map (SOM) [1] has been successfully used for clustering
various kinds of data. It provides a topology-preserving mapping from a high-
dimensional input space to a lower-dimensional, in most cases a two-dimensional,
output space, which is an easily understandable representation. To reveal the
cluster structures on the SOM, many visualisations techniques have been devel-
oped to help the user analyse and use the map.

In many applications, the data might already be assigned to classes, which
can be utilised to compare the manual labelling with the automatic arrangement
of the SOM. The distribution and arrangement of these classes on the map
may reveal outliers, and ‘conflicts’ between the (manual) assignment and the
clustering of the SOM - those data items are especially interesting to inspect, as
they might denote a labelling of bad quality, or correlations between data items
that were not obvious to the observer. In this paper, we propose a visualisation
of the SOM based on class labels that helps the user in quickly and easily finding
those interesting data points, exploiting the class information for unsupervised
learning. We want to colour the map in continuous regions in such a way that the
regions reflect the distribution and location of the classes over the map, similar
as e.g. a political map does for countries.
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The remainder of this paper is organised as follows. Section 2 gives an overview
of related work on the SOM and SOM-based visualisations. Section 3 presents
the approach of colour flooding, while Section 4 describes some graph-based ap-
proaches. In Section 5 we demonstrate our methods in experiments, and Section 6
gives conclusions and an outlook on future work.

2 Self-organising Map

The SOM is a neural network model for unsupervised learning. It provides a
mapping from a high-dimensional input space to a lower-dimensional, in most
cases a two-dimensional, output space. This output space is in many applications
organised as a rectangular grid of units, a representation that is easily under-
standable for users due to its analogy to 2-D maps. Each of the units on the map
is assigned a weight vector, which is of the same dimensionality as the vectors
in the input space. During the training process, randomly selected vectors from
the input space are presented to the Self-Organising Map, and the unit with
the most similar weight vector to this input vector is determined. The weight
vector of this unit, and, to a lesser extent, of the neighbouring units, are adapted
towards the input vector, i.e. their distance in the input space is reduced. As
a result of this training process, the output space will be arranged in a way to
represent the input space as closely as possible. An important property of the
SOM is that the mapping it generates is topology preserving – elements which
are located close to each other in the input space will also be closely located in
the output space, while dissimilar patterns will be mapped on opposite regions
of the map.

2.1 Self-organising Map Visualisations

The SOM itself does not explicitly assign data items to clusters, nor does it
identify cluster boundaries, as opposed to other clustering methods. Thus, vi-
sualising the mapping created by the SOM is a key factor in supporting the
user in the analysis process. A wealth of methods has been developed, mainly
to visualise the cluster structures of the data.

Some visualisation techniques rely solely on the weight vectors of the units.
Among them, the unified distance matrix (U-Matrix [2]) is a technique that
shows the local cluster boundaries by depicting pair-wise distances of neighbour-
ing prototype vectors. It is the most common method associated with SOMs and
has been extended in numerous ways. The Gradient Field [3] has some similari-
ties with the U-Matrix, but applies smoothing over a larger neighbourhood and
uses a different style of representation. It plots a vector field on top of the lattice
where each arrow points to its closest cluster centre.

Other visualisation techniques take into account the distribution of the data.
The most simple ones are hit histograms, which show how many data sam-
ples are mapped to a unit, and labelling techniques, which plot the names and
categories, provided they are available, of data samples onto the map. More



Visualising Class Distribution on Self-organising Maps 361

sophisticated methods include Smoothed Data Histograms [4], which show the
clustering structure by mapping each data sample to a number of map units, or
graph-based methods [5], showing connections for units that are close to each
other in the feature space. The P-Matrix [6] is another density-based approach
that depicts the number of samples that lie within a sphere of a certain radius
around the weight vectors.

Other techniques adjust the inter-unit distances in the SOM during the train-
ing process to more clearly separate the cluster boundaries [7].

Several advanced methods for colouring a SOM have been proposed. In [8] a
method to assign colours to the SOM to visualise cluster structures is employed.
The colours are not chosen randomly as in other applications, but in a way
that differences perceived in the colours reflect the distances within the cluster
structures as much as possible. The method is based on a non-linear projection
of the SOM into the CIELab colour space. [9] employs a similar method: first, a
clustering is applied on top of the SOM, then the map is coloured by projecting
it to a sub-space in an RGB-cube.

If the input data mapped is (manually or automatically) assigned to classes,
this information can be visualised on the SOM. This can help the user in identi-
fying similarities between classes. She can spot outliers, which might be errors in
the manual labelling, and data items close to other classes, which might be worth
taking a closer look at. [10] e.g. uses Gabriel-graphs, a subgraph of the Delauny
triangulation, on top of projection methods such as the SOM, to highlight iso-
lated (all neighbours have different classes) and border (at least one neighbour
has a different class) data. When it comes to displaying such information by
colouring the SOM, a very simple approach to visualise the class distribution is
by displaying a pie-chart for each node on the map. The pie-chart is split into n
sectors, where n is the number of different classes of the data items mapped onto
this unit. The sizes of the sectors are determined by the fraction each class con-
tributes to the total number of data items mapped to the unit, and the sectors
are coloured with the colour assigned to each class. However, this visualisation
is not suited to allow the user to get a quick overview over the class distribution
on the whole map.

3 Colour Flooding the SOM

One intuitive approach to visualise the class distribution over the map is to use
the method of colour flooding. Each unit on the map is thereby first substituted
by a coloured point. Then, the points iteratively spread their colour outwards.
At each iteration, we can either add one more ring-shaped layer around the
already coloured area of the point, or grow by one graphical unit (e.g. pixel).
The spreading continues as long as the areas reached are not yet coloured by
a different substitution point. The result is a coloured map showing the class
distribution, as illustrated in Figure 1(a).

If there are more class labels per unit, we substitute the units by a single-
coloured point per class. Next, we arrange the points so that they are aligned as
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(a) Sequential spreading of colours (b) Instability effect

Fig. 1. Colour flooding

much as possible with points of the same colour on neighbouring units. Then,
the flooding process works as described above.

Colour flooding seems to be a feasible approach and generates good visual-
isations, however, it has a serious disadvantage when it comes to the stability
of the resulting colouring. A slightly different layout of the map, leading to a
slightly different locations of substitution points, may result in a drastic change
in the size and shape of the coloured regions. An illustration of this problem is
given in Figure 1(b). The slightly different located lower yellow point results in a
‘path’ open for the red point to spread to the left edge of the map. Even without
changing the position of colour points, a change in the order in which pixels are
occupied (e.g. by random selection) can have similar effects. The problem seemed
to be in the nature of the method, therefore we abandoned this approach.

4 Graph-Based Colouring

A more promising approach in terms of stability is to use a graph-based segmen-
tation of the map. In this section we outline the used segmentation, Voronoi di-
agrams, and present different solutions for dealing with the multi-class problem.

4.1 Voronoi Diagrams

A Voronoi diagram [11] of a set of Points P , located on a plane, partitions this
plane in exactly n = |P | Voronoi regions, each being assigned to one point p ∈ P .
We define some notations which we will use for describing our method:

– R = {r1, r2, ..rn|n ≥ 0} is the set of all Voronoi regions on the SOM.
– C = {c1, c2, ..cm|m ≥ 0} is the set of all classes that exist in the data set.
– C(ri) = {ci1, ci2, ...} is the set of classes present in the region ri.
– F (ri, cj) ∈ R+ is the contribution fraction which class cj has from all the

data items of region ri.

A Voronoi region is defined as all the points x on the plane belonging to one
region R(pi) that are closest to the point pi:

R(pi) = {x : |x − pi| <= |x − pj |, ∀j �= i}. (1)
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In our case, the number of regions is equal to the number of units with at
least one data item mapped onto. Units with no data items mapped onto them
will be split and become parts of other regions.

If each region contains only data items from one class, they can be assigned
the corresponding class colour. Since this is a rather unrealistic case, we have to
find methods to solve the multi-class problem.

4.2 Basic Voronoi Region Segmentation

If each Voronoi region is thought of as a grid of pixels, we can generate a
chessboard-like visualisation. Each class colour present in the region occupies
its corresponding fraction of pixels, which are assigned using a uniform distribu-
tion function. An illustration of this approach can be seen in Figure 2(a).

Another method is similar to unit substitution in the colour flooding approach:
each unit is substituted by n points, each of which is assigned to one of the n
classes present. The points are located almost in the same position of the unit,
and are arranged to be as closely as possible to neighbouring regions of the same
colour. The Voronoi region is then further partitioned into smaller areas, but
the global arrangement, i.e. the size and position of the other regions, is not
changed. This is illustrated in Figure 2(b). There are still shortcomings with
this approach, e.g. classes spanning over 3 neighbouring regions might not be
connected well.

(a) Chessboard like partitioning (b) Region Substitution and segmentation

(c) Angular Sector partitioning

Fig. 2. Different segmentation methods

Yet another technique is to segment the Voronoi regions angularly into sectors,
similar to how pie charts are constructed. The angles are calculated according to
the class contribution fraction on the unit, the orientation of the sectors accord-
ing to the neighbouring classes. There are, however, still cases that cannot be
solved satisfactorily. Consider the setting in Figure 2(c). The method described
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would produce a colouring as in the second image. The red area, however should
be connected both to the left and right region, which could to some extent be
achieved if we allow sectors to be split, as in the third image. An ideal colouring
would be however smoother. It should also show isolated areas, as the yellow
area in the example of Figure 2(c), as isolated areas in the middle of the region,
rather than as a sector stretching to the edges of it.

4.3 Smoothed Voronoi Region Segmentation

In this section we present an approach to achieve a smooth and optimal segmen-
tation of the regions based on an attractor function. We introduce the concept of
connection lines, which are imaginary lines that connect the points of a region ri

with the middle of the edge to a neighbouring region rj , if there is a class c which
is present in both regions. This is illustrated in Figure 3. The function assigning
class colours to pixels is called attractor function, as it is similar in effect to a
magnet attracting objects. The function is applied to a region, a connection line
segment, a class and a number n denoting the number of pixels to be assigned.

Fig. 3. Connection lines between neighbouring Voronoi regions

All pixels in the region are sorted according to their distance to the connection
line segment. The distance d is defined as the distance between a point P and
the closest point on a line segment P0P1. After all pixels are sorted, the first n
unassigned pixels nearest to the line segment are coloured by the given class. The
following types of attractor functions can be identified for a class c in region r:

1. The class c is isolated: there is no neighbouring region rj ∈ rn that contains
data of the same class c, as shown in Figure 4(a). This is the simplest case,
as we do not need to consider a cluster that extends to other regions. Thus
we use a point attractor by adding a segment with length 0 (a point) in
the location of the point of the region and assign the corresponding fraction
F (r, c) of pixels for the class c.

2. There is only one neighbouring region r1 that contains the class c, as in
Figure 4(b)). We want to attract the coloured pixels at the region border
close to r1. Thus we add a line segment from the site location to the middle
point of the common edge e (the edge between r and r1) and apply the
attractor function on this segment with the corresponding fraction of pixels.
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3. There are two neighbouring regions r1 and r2 that contain data items of the
class c and that are themselves neighbours to each others (cf. Figure 4(c)),
which implies that r,r1,r2 share a vertex v. In this case we use a point
attractor by adding a line segment of length 0 to the point at the common
vertex v. When all of the three regions concentrate the colour at this point,
we have a coloured cloud extending over the three regions.

4. There is more than one neighbouring region, namely m regions {rj , rk, .., rm}
that have the class c, but none of them is a neighbour of the other (see
Figure 4(d)). We treat each of these regions similar as in second case, with
the difference that we now have m line segments, one to each neighbour-
ing region. Consequently, the number of pixels assigned to each line is not
corresponding to F (r, c), but rather F (r, c)/m.

(a) (b) (c) (d)

Fig. 4. Types of Attractor Functions

Border smoothing by weighting the line segments. Although using the
attractor function creates a smooth partitioning of the Voronoi regions itself,
rough transitions can occur on the border of two regions, as illustrated in the
left image in Figure 5(a). This is the case when either the contribution to the
class c in the two regions is different, or the regions itself differ in size.

To solve this problem, we modify the above mentioned function which sorts the
pixels according to their distances to a line segment. Two weights are assigned
to the two ends of the line segment, and are used in measuring the distance. If
p is the point to be measured and p1p2 is the line segment, then the weighted
distance is:

dw(p, p1, p2) = d(p, p1, p2) + |pp1|(1/w1)2 + |pp2|(1/w2)2 (2)
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where d(p, p1, p2) the normal (not weighted) distance and w1, w2 the weights
for the line segment ends p1 and p2 respectively. As a result, the pixels tend
to be concentrated more around the end point with the larger weight. For
two neighbouring regions having the same class, where the contribution frac-
tion for the class c are f1 for region r1 and f2 for region r2, we assign to the
points of the line segments connecting the two regions the weights as follows:
the points at the distant ends of the segment receive the weights w1 = f1
and w2 = f2, and the common point on the edge of the Voronoi region is
assigned a weight of the value w1+w2

2 , as illustrated in the middle image of
Figure 5(a). This implies that the pixel concentration on both sides of the com-
mon edge is the same for both regions regardless of the values of the contribu-
tion fractions. As a result, we get a smoothed border as in the right image of
Figure 5(a).

(a) Smoothing region border transition

(b) Levels of granularity: threshold of 0%, 50% and 100% contribution fraction

Fig. 5. Improvements to the smooth segmentation method

Minimum class contribution threshold. Some regions have classes with a
low contribution value – if one is interested in having a visualisation of a cer-
tain abstraction level, the class colouring might show too many unimportant
details. This can simply be solved by introducing a threshold for the minimum
contribution fraction a class must have of a unit in order to be shown in this
unit. Depending on the application, it may be useful to not apply this threshold
to the dominant class of the region, otherwise some regions might be left un-
coloured. Figure 5(b) shows a comparison between three different thresholds of
0% (showing all), 50% and 100% (showing only the dominant class), respectively.
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5 Experiments

For the experiments presented in this section, we used the BankSearch data
set, a standard benchmark for clustering and classification methods. It consists
of four main categories (Banking & Finance, Programming languages, Science
and Sport), which are further divided into a total of eleven subcategories (cf. the
class-legend in Figure 6). Each category contains 1.000 documents, thus totalling
to 11.000 documents for the whole data set.

Fig. 6. Class Colouring applied on the Banksearch data set

Figure 6 depicts the trained SOM, using 20% as the minimum class fraction
for the colouring. Some areas on the map are marked by a circle – these are
sample regions where isolated or boundary data is found. The area marked with
‘1’ holds documents from the Java and Commercial banks categories, the later
however mainly describing a financial application implemented in Java. The
area marked with ‘2’ has two documents from Astronomy and a single Java
document mapped onto. However, after inspecting it becomes clear that the
‘Java’ document is actually a wrongly labelled document from the Astronomy
category. The Soccer category contains documents about soccer and other related
team sports. Besides those, area ‘3’ holds additionally some documents from the
category Building societies, which all talk about a specific organisation becoming
the sponsor of a rugby cup competition – the documents would therefore as well
fit in the sports category. In all examples described, the visualisation assisted
the user in quickly spotting the interesting areas.

6 Conclusions and Future Work

In this paper we presented several approaches for colouring a Self-organising
Map according to the class labels attached to the input data items. The basic
idea of using colour flooding was extended to a graph-based segmentation of the
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map using Voronoi regions. The visualisation provided by this method offers a
smoothly coloured map that can assist the user in quickly discovering interesting
data items on the map as outliers or other overlapping areas. As future work,
we want to combine the chessboard segmentation with the attractor functions.
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Abstract. Self-organizing map (SOM) has been studied as a model of
map formation in the brain cortex. Neurons in the cortex present a re-
fractory period in which they are not able to be activated, restriction that
should be included in the SOM if a better description is to be achieved.
Altough several works have been presented in order to include this bio-
logical restriction to the SOM, they do not reflect biological plausibility.
Here, we present a modification in the SOM that allows neurons to enter
a refractory period (SOM-RP) if they are the best matching unit (BMU)
or if they belong to its neighborhood. This refractory period is the same
for all affected neurons, which contrasts with previous models. By includ-
ing this biological restriction, SOM dynamics resembles in more detail
behavior shown by the cortex, such as non-radial activity patterns and
long distance influence, besides the refractory period. As a side effect,
two error measures are lower in maps formed by SOM-RP than in those
formed by SOM.

1 Introduction

The self-organizing map (SOM) is presented as a model of the self-organization
of neural connections, which is translated in the ability of the algorithm to
produce organization from disorder [1]. One of the main properties of the SOM
is the ability to preserve in the output map those topographical relations present
in input data [2], This property is achieved through a transformation of an
incoming signal pattern of arbitrary dimension into a low-dimensional discrete
map (usually one or two-dimensional) and to adaptively transform data in a
topologically ordered fashion [3,2]. Each input data is mapped to a single neuron
in the lattice, the one with the closest weight vector to the input vector, or best
matching unit (BMU). The SOM preserves relationships during training through
the learning equation, which establishes the effect each BMU has in any other
neuron. Weight neurons are updated accordingly to:

wn(t + 1) = wn(t) + αn(t)hn(g, t)(xi − wn(t)) (1)

Where α(t) is the learning rate at time t and hn(g, t) is the neighbourhood func-
tion from BMU neuron g to neuron n at time t. In general, the neighbourhood
function decreases monotonically as a function of the distance from neuron g
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to neuron n. The SOM tries to preserve relationships of input data by starting
with a large neighbourhood and reducing it during the course of training [2,4].

As pointed out by Ritter [3], SOM and related algorithms share the idea of us-
ing a deformable lattice to transform data similarities into spatial relationships.
The lattice is deformed by applying learning equation (1).

Altough SOM has been widely applied in data visualization and clustering,
it has also been studied as a model of the brain cortex. For example, in [5,6]
it has been studied to understand the map formation in visual cortex, and in
[7] as a model of brain maps from sensorial areas to cortical regions. However,
SOM fails to reproduce the activity patterns present in the cortex [15,?], altough
some variants, as the one proposed in [8], in which a modification in the kernel
is considered to include surround inhibition, achieve the formation of pinwheel
patterns similar to those observed in the visual cortex. In these models, however,
influence from BMUs to neighbors is radial and symmetrical. In [18] non-radial
patterns of activity from BMU to its neighbors are reported as a consequence
of differentiated influence based on the relative frequency each BMU includes
neurons as neighbors. In [17], a recursive rule allows non radial neighborhood
adaptation as a consequence of the pulling from BMUs to the direct neighbors
whereas these neighbors further pull their neighbors.

Concepts analogous to the refractory period have also been included in the
SOM. For example, in [12] the BMU is relaxed in order to modify the magnifi-
cation exponent. In [19] a traveling wave of activity induced in BMU allows its
neirghbors to be more likely to be the next BMU, which can be interpreted as
a refractory period for those neurons not included in the wavefront. In [20] an
activation memory is defined for each neuron, in order to define the new active
neuron, and a modification in the BMU selection mecanism is presented, so if
the memory parameter is high, the previous winner neuron will win again unless
another neuron matches very close the input data, which, again, may be seen as
a refractory resctriction for those neurons with a low memory parameter.

In these modifications, the refractory time depends on the weight modifica-
tion which may not be a biologically realistic behavior [14]. Here, we study the
effects of including a refractory period that does not depend on this or any other
quantity in the neurons for the SOM, the SOM-RP, and show that it is possible
to obtain maps equivalent to those obtained with the SOM.

2 The Self-organizing Map with Refractory Period
(SOM-RP)

Once an input vector is maped to a neuron, the later becomes a BMU and is
activated, as well as its neighbors. Biologically, the activation of a given neuron
is achieved trough the electrical opening of ion channels which, due to concen-
tration gradients and charge differences between the out and inside of the cell,
drive positive ions into the cell. This changes the potential (inside relative to
outside) of the cell, from it’s resting potential to the activity one [13].
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For this change of potential to take place, a fair amount of positive ions
must flow into the cell, thus reversing the concentration gradient of this ions
for a moment. Since the diffusion force plays an important role in the activation
process, this cannot take place until the concentration difference is reestablished,
so when the proper channels open, positive ions will indeed flow into the neuron.
The time in which the necessary concentration is not present is referred to as
the absolute refractory period, referred here as refractory period [14,13]. While
there also exists a relative refractory period in which the neuron can become
active but needs a far greater stimulus to do so, we will not consider it in the
present work.

In this work, we are interested in the SOM capabilities to form maps that
resemble the input space distribution even when some of the neurons in the
network are not able to learn for a given period of time, which affects the SOM
dynamics as the weight folding may follow other routes.

We propose a modification that allows active neurons to enter a refractory
period. By active neurons we mean BMU and those neurons within its neigh-
borhood. The studied modifications are two: in the first one, each BMU and a
subset of its neighbors enter a refractory period in which they are not able to be
affected by any other BMU for a given time. Two variables are defined here: τ
and d. τ is the refractory period and is defined as the number of input vectors for
which an affected neuron is not able to learn trough eq. (1). τ does not depend
on the weight update value or any other variable and is the same throughout the
learning process and for all affected neurons. d is the radius of a hypersphere in
the lattice centered at the BMU, which defines the set of neurons that will fall
into refractory period. If d is greater than the actual neighborhood width, then
d is set to that width.

In the second modification studied in this work, BMUs and all its neigh-
bors present a maximum number of times they can be affected before entering
the refractory period, named c. Once this maximum is achieved, they enter the
refractory period and stay there for τ vectors. That is, c acts as a delay for the
neurons to enter refractory period. Once again, τ is the same for all sleeping
neurons.

3 Simulations and Results

In order to study SOM-RP dynamics, several thousand maps were formed
for six data sets: spiral, random and unitary circumference (2-dimensional);
iris (4-dimensional); Mexican elections (ME) (6-dimensional) and ionosphere
(34-dimensional) data sets.

In order to verify self-organization in the SOM-RP two error measures were
quantified and compared to the error measures present in the maps formed
by eq (1). Altough there are several error measures for the maps obtained by
SOM and there is no solid definition of the energy function [9,10,11], the topo-
graphic error (TE) as well as the error quantization (EQ) were the error measures
quantified for the obtained maps, as they are good measures of the quality of
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topographic mapping and vector quantization. In order to test sensitivity and
self-organization, several thousands of experiments were made for two lattice
sizes, N × N (N = 20 and 30), as well as for the initial learning parameter
0 < α(0) ≤ 1 and for the initial neighborhood size 1 < hn(g, 0) ≤ N . Practically,
for each

– learning set (circumference, spiral, random, iris, ionosphere, ME data),
– number of epochs (between 1 and 30),
– τ (between 0 and 25)
– d (between 0 and 25) (for modification 1)
– c (between 0 and 25) (for modification 2)

the initial learning parameter α(0) was chosen randomly from (0, 1] as well as the
initial neighborhood width was chosen from [1, N ]. The final learning parameter
was 0.0001 (α(r) = 0.0001) whereas the final width was decreased to 0 by an
exponential function. In both modifications, if τ = 0 then SOM-RP is reduced
to SOM.

Fig. 1 shows TE and EQ as a function of τ and d for the first modification,
whereas fig. 2 presents TE and QE as a function of c and τ for the second
modification. What is observed is that error measures are in general lower for
SOM, corner (0,0), than for SOM-RP. However, it is important to notice that
this is condensed information for several thousand maps, with different epoch
numbers, as well as different neighborhood width and α values.

Fig. 1. TE (top) and EQ (bottom) for modification 1 for the six data sets
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Fig. 2. TE (top) and EQ (bottom) for modification 2 for the six data sets

Altough TE and EQ are in general greater in SOM-RP than in SOM, let us
consider, as shown in fig. 3, only the 5% of maps with the lowest TE values. Here
maps formed by SOM-RP (τ > 0) are much more frequent than those formed
by SOM. In some data sets, none of the low-error maps were formed by SOM.
While this does not justify the use of SOM-RP if one desires to optain a single
map with low TE or EQ, it does suggest that, if the time and computational
power are available to make several thousands of maps for the same data set,
and choose the best one, it is a good idea to use SOM-RP, for that will yield
maps with lower error meassures. If, how ever, a single or a couple of maps are
to be performed on each data set, as argumented below, it is preferable to use
the traditional SOM. This low error maps were obtained for several values of
both τ and d (or c for modification 2) (see fig. 4).

On a 30x30 lattice we performed thousands of simulations of both SOM and
SOM-RP and examined how frequent a given TE was achieved. The results are
shown in fig 5.

As we can see, on all cases, the traditional SOM presents spikes in the fre-
quency histogram which are further left than the spikes present in the SOM-RP
frequency histogram. This means that the most likely TE of the SOM is lower
than the most likely TE of the SOM-RP.

This drawback is of importance if a small number of maps are made, however,
as can be seen above, if a large enough number is made and the map with lowest
TE is chosen, then the SOM-RP is very likely to produce a map with significantly
lower TE than SOM.
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Fig. 3. The 5% of the maps with lowest TE are considered. τ is indicated in the x axis
(τ = 0 is the original SOM), while in the y axis is considered the number of maps for
that τ that are in the group of the maps with very low errors. The first six figures are
for modification 1 and the last six for modification 2.

Fig. 4. τ and c for the 5% of the maps with the lowest TE for the six data sets and
lattice of size 20x20
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Fig. 5. Frequency of maps (y axis) for TE (x axis) for lattices of size 30x30 for SOM
(squared) and SOM-RP (cross)

Fig. 6. Weight folding in the SOM (left) and in the SOM-RP (right) for t = 2, 4, 6, 10
for the ring data set (only included as an example for weight folding). It is observed that
the SOM-RP presents, in general, smooth borders that fit the input vectors. SOM-RP
parameters were τ = 2 and d = 2.

Folding in the SOM-RP is affected as shown in fig. 6. It is observed that
the SOM-RP approximates better the ring data set as it shows smooth borders
which contrast with the borders in the SOM weights. This is a consequence of
the refractory period in which neurons enter after being affected. When a neuron
enters this period, some of its neighbors may be able to learn the new input.
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Fig. 7. Activity patterns in the SOM-RP for consecutive times. Non radial patterns
of activity are formed because of the refractory period. Here, the parameters for the
SOM-RP were τ = 2 and d = 3 in a 20x20 lattice.

Thus, the network learning may be improved if some of the neurons do not take
part in the process for some periods of time. It is also observed that the bottom-
right corner is not properly folded, once again, as a consequence of the refractory
period. The refractory period may help the network to properly fold, but, if τ
is large enought and the area of influence is also large, then the folding may be
disrupted.

The activity patterns in the SOM are radial and symetrical, which is different
from the patterns formed in SOM-RP, as shown in fig 7. The BMU affects all its
neighbors, but only a subset of them (defined by the d parameter, d = 3 in the
example) will become inactive for τ input vectors (τ = 2). Once τ input stimulus
are maped, the refractory neurons become susceptible and may be affected by
BMUs or even become BMU. Neurons in BMU’s neighborhood might not modify
their weight vector, as they might be in a refractory period. Closer neurons to
BMU may be refractory, while farther neurons (also included in neirghborhood)
may be affected. This long-distance effect has biological foundations [21].

4 Discusion and Conclusions

Map formation is possible when homogeneus refractory periods are included in
neurons. We are interested in studying the properties of SOM when a refractory
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period is included in its neurons. Altough it is not possible to give a recipe for
τ , d and h values, we have shown it is possible that the map folds properly to
approximate input space, which is an important restriction to be included in the
SOM if is to be studied as a more realistic model of the brain cortex.

In nature, refractory periods are important as they allow neurons to repolarize
and become susceptible for further activation. In general, it had been identified
as a restriction in neurons that should not be considered in artificial models,
no matter they are supposed to explain the general aspects of self-organization
in the brain. Here, we have incorporated a homogeneous refractory period and
the results are, we believe, interesting, in the sense that are equivalent (in terms
of errors) to those obtained by SOM, but achieved by following a different and
more realistic route.

The fact that learning took place in the SOM-RP, reafirms the fact that the
learning process is a distributed one, for modifications in ’small’ regions of the
lattice do not affect the overall behaviour of the map. This, of course, can be seen
with many other modifications to the original SOM. It is however of interest,
that the overall behaviour of the map is little affected by phenomena which are
not instantaneous: for several values of τ the properties of the SOM are not
dramatically altered, which suggests that the distribution of information and
processing capabilities in the SOM are robust enough as to go arround lasting
obstacles.

The existence of a refractory period drives the BMU arround the grid, forcing
it to fall into non-recently visited sites. Since in general τ will be significantly
smaller than the number of input vectors, this is translated into further spreading
the neurons associated with each stimulus. This will in turn make the conver-
gence of the mapping slower. This is not necesarly a drawback, for it also makes
the distribution of the weight vectors more uniform in the input space, thus
allowing a better mapping.

Non-symetrical activity patterns are present in the cortex, but the SOM fails
to reproduce them. With the proposed SOM-RP, those patterns, as well as long-
distance influence, are achieved.
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Abstract. A technique called component planes is commonly used to vi-
sualize variables behavior with Self-Organizing Maps (SOMs). Neverthe-
less, when the component planes are too many the visualization becomes
difficult. A methodology has been developed to enhance the component
planes analysis process. This methodology improves the correlation hunt-
ing in the component planes with a tree-structured cluster representation
based on the SOM distance matrix. The methodology presented here was
used in the classification of similar agro-ecological variables and produc-
tivity in the sugar cane culture. Analyzing the obtained groups it was
possible to extract new knowledge about the variables more related with
the highest productivities.

1 Introduction

A traditional technique to detect dependencies between variables is the use of
scatter plots. In addition, when the variables are more than a pair, it is possible
to generate a scatter plot matrix with several sub-plots where each variable is
plotted against each other variable. However, in this technique the number of
pairwise scatter plots increases quadratically with the number of variables [5].
This type of visualization is thus not practical in applications where the analysis
of many variables is necessary.

Another visualization technique consists on using the so-called SOM com-
ponents planes [6], the number of sub-plots grows linearly with the number of
variables. In addition, this technique is able to cluster variables with similar
behaviors. Every SOM component plane is formed by the values of the same
component in each prototype vector. Therefore, they can be seen as a sliced
version of the map [10]. After plotting all component planes, relations between
variables can be easily observed. The task of organizing similar components
planes in order to find correlating components is called correlation hunting [13].
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However, when the number of components is large it is difficult to determine
which planes are similar to each other. Different techniques can be used to reor-
ganize the component planes in order to aid the correlation hunting. The main
idea is to place correlated components close to each other.

One of the most often used techniques in correlation hunting is the projection
of the component planes on another plane. This projection can be done using,
e.g. another SOM, as the work of Vesanto et Ahola. [13]. Another interesting ap-
proach was introduced by Sultan et al. [9] they presented a binary tree-structured
vector quantization (BTSVQ) algorithm. The BTSVQ uses SOMs for visualiza-
tion, and the partitive k-means clustering, to group similar component planes
and organizing them into a binary tree structure. This hybrid algorithm is used
to improve the process of data analysis and visualization of gene expression
profiles.

The approach of Vesanto and Ahola [13] is adequate to organize the com-
ponent planes, but it is an inefficient tool for visualization when the number
of planes is large. It is difficult to clearly observe the relationships between the
component planes due to the quantity of planes to show in a same space. Sultan’s
algorithm is more adequate to organize a large quantity of data. Its binary tree
structure allows the analysis of groups of component planes at different levels.
Nevertheless, the algorithm proposed to organize the SOM component planes
make use of k-means as a clustering algorithm, and the SOM is only employed
to show the data.

In this paper we present a methodology to enhance the visualization and
analysis process of a large quantity of component planes. This methodology
uses a SOM to project the component planes. This SOM is partitioned into in
clusters with a technique based on the SOM distance matrix. A tree structure is
generated from different clustering levels of the SOM, in order to clearly visualize
the groups of component planes. The methodology presented here was used
in the classification of similar agro-ecological variables and productivity in the
sugar cane culture. Analyzing the obtained groups it was possible to extract new
knowledge about the variables more related with the highest productivity.

This paper presents the following structure. In the next section the method-
ology is explained. Third section focuses on the application of the methodology
to the sugar cane case. Finally, in section four conclusions and future extensions
of this work are presented.

2 Methods

2.1 Self-organizing Maps

A Self-Organizing Map (SOM) [6] is composed of artificial neurons situated
on a but regular low-dimensional grid. This grid can be in one, two or three
dimensions, generally two are used. The neurons in the grid have rectangular
or hexagonal form. Each neuron i represents an n-dimensional prototype vector
mi = [mi1, . . . , mis], where s is equal to the dimension of the input space. In
the beginning of the training process the prototype vectors are initialized with
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random values. On each step of the training a data vector x from the input data
is selected and presented to the SOM. The unit mc closest to x is located into the
map, this winner unit is called the best-matching unit (BMU). The BMU and
its neighboring prototype vectors on the grid are moved in the direction of the
sample vector, mi = mi +α(t)hci(t)(x − mi) where α(t) is the learning rate and
hci(t) is a neighborhood kernel centered on the winner unit c. The learning rate
and neighborhood kernel radius decrease monotonically with time. Through the
iterative training, the SOM organizes the neurons so that neurons that represent
similar vectors in the input space are located on the map in contiguous zones,
trying to conserve the linear or nonlinear relations of the input space.

2.2 SOM Component Planes

SOM allows a straightforward visual inspection because the prototype vectors
are organized according to their similarity in a low-dimensional grid. This feature
is helpful when it is needed to handle large multidimensional vectors. A way to
improve this inspection is by means of the component plane representation. A
component plane (CP ) is a projection of the same input variable from each vector
prototype on a grid. For example, having the prototype vectors m1, . . . , mi.
The component plane which represents the first input variable will be formed
by CP1 = [m11, . . . , mi1] in general CPs = [m1s, . . . , mis] where s is equal
to the dimension of the input space. Hence, the number of component planes
will be equal to the input space dimension. In addition, the component planes
are visualized in an grid identical to that of the SOM. However, the difference
between the component plane grid and the SOM grid is that on this new grid
each neuron does not plot a prototype vector, instead it represents a component
of this vector. Each component in the component plane grid conserves the same
place that the prototype vector in the SOM grid. Finally, every component on
the component plane is visualized by giving to each neuron a color according to
the relative value of the respective component in that neuron. As a result, it is
possible to obtain color maps of the component planes in order to compare them
and look for relations between variables.

2.3 Correlation Hunting

The component planes analysis can be a tool for discovering relations between
variables. Comparing the planes, it is possible to observe similar patterns in
identical positions indicating correlation between the respective components.
Even, local correlations can be found if two parameter planes resemble each
other in some regions. The process to find these relationships is called correlation
hunting. The expression correlation does not include just linear correlations, but
also nonlinear and local or partial correlations between variables [13].

The correlation hunting can be realized manually or automatically. However,
in many cases the manual analysis is difficult because usually the component
planes are not ordered. In addition, the comparison becomes more difficult when
the number of components increases. In order to overcome this drawback, it
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is possible to apply reorganization of the component planes such that similar
component planes could be located close to each other [14]. To do this, the
component planes can be projected on a plane. The projection could be done
using, e.g., Sammon’s mapping [8], CCA [3] or another SOM. In this paper
SOM was used as projection technique. The projection process using SOM is
the following:

1. Each component plane is transformed into a vector and then normalized to
ignore different scales of the components.

2. The vectors are further processed by calculating a measure of distance be-
tween them.

3. The measure of distance between component planes i and j can be defined
as the value of the correlation of each map position, formally distCP (i, j) =
mc ∗ (CPi, CPj) where mc is a suitable measure of correlation, in this paper
the Pearson correlation coefficient is used.

4. A covariance matrix is generated with the obtained distances.
5. The vectors of the covariance matrix are used as inputs to a new SOM.
6. Each component plane grid from the old SOM is projected to the new SOM.
7. This projection is realized locating in the place of the BMUs of the new SOM,

the respective component planes grids from the old SOM. Hence, planes with
high correlation are located near each other.

An advantage of using a SOM for component plane projection is that the
placements of the component planes can be shown on a regular grid. In addition,
an ordered presentation of similar components is automatically generated. A
disadvantage is that the choice of grouping variables is left to the user. This task
is complicated when the number of component planes is large.

2.4 Distance Matrix Based Clustering of the SOM

Having a projection of component planes in a new SOM, it is possible to use
a method to cluster the new SOM in order to find component plane groups.
For example, partitive (e.g., k-means) or agglomerative clustering algorithms
(e.g., agglomerative hierarchical clustering) are used to cluster the prototype
vectors [15]. Nevertheless, those approaches do not take into account the SOM
neighborhoods. To cope with this drawback, a cluster distance function can be
used to consider the neighborhoods into account. The U-matrix [11] had been
used as an effective cluster distance function [16]. The U-matrix visualizes dis-
tances between each map unit and its neighbors, thus it is possible to visualize
the SOM cluster structure. This method is usually applied to select clusters
from the map by hand. This selection is normally subjective because it is based
on the visual perception of each person. Vellido et al. [12] proposed an algo-
rithm to do distance matrix based clustering automatically. In this algorithm, the
U-matrix is used to identify cluster centers from the SOM. The rest of the map
units are then assigned to the cluster whose center is closest. The algorithm is
the following:
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1. Compute the distance matrix local minima. This is done by finding the set
of map units i for which:

f(mi, Ni) ≤ f(mj , Nj), ∀j ∈ Ni (1)

where Ni denoted the set of neighboring map units of the map unit i and
f(mi, Ni) is some function of the set of neighborhood distances ‖mi−mj‖ j ∈
Ni, associated with map unit i. In the experiments, median distance was
used. The set of local minima may have units which are neighbors of each
other. Only one minimum from each such group is retained.

2. For the initialization, let each local minimum be one cluster: Ci = mi. All
other map units j are left unassigned.

3. Calculate distance d(Ci, mj) from each cluster Ci to (the cluster formed by)
each unassigned map unit j.

4. Find the unassigned map unit with smallest distance and assign it to the
corresponding cluster.

This algorithm provides an automatic discrimination of clusters which permits
an easier exploration of similar component planes. Although, when the number
or component planes is large is desirable an approach that permits to organize
the component planes in a structure, and to analyze clusters at several levels of
detail. Hence, the idea of considering super-clusters, consisting of several sub-
clusters, making easier the analysis of the large quantity of planes.

2.5 Tree-Structured Component Planes Clusters Representation

In order to analyze the component planes clusters at several detail levels, it is
possible to make a tree-structured representation of them. The Vellido’s algo-
rithm is used to obtain different partitioning levels of the clustering of the SOM
in an attempt to achieve this goal. The Vellido’s algorithm provides a partition-
ing of the map into a set of base clusters. The number of clusters is equal to
the number of local minima on the U-matrix; allowing different levels of clus-
tering. Regarding the equation 1 it is possible to observe that the local minima
depends on the set of neighboring map units (Ni) from the map unit i. Hence,
Ni depends on the amount of neighbors chosen to i. As a result, when the neigh-
borhood is large, the number of local minima is small and therefore the number
of clusters too. Varying the neighborhood size it is possible to obtain different
cluster quantities, see figure 1.a. So, it is possible to find different cluster levels,
and as a result, build a tree structure that will permit to have several levels of
detail, see figure 1.b and figure 2.

An outline of the algorithm to generate the tree-structured component planes
clusters representation is given below.

1. Tree-generation.
(a) Calculate the SOM U-matrix used for the projection process.
(b) Apply the Vellido’s algorithm to the obtained U-Matrix. Use a neigh-

borhood value of 1, and save the results (nodes and component planes
clusters).
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Fig. 1. Tree-structured component planes clusters representation. (a) Clusters obtained
varying the neighborhood size (n) in Vellido’s algorithm. (b) Clusters levels obtained.

Fig. 2. Different levels of detail of the tree-structured component planes cluster repre-
sentation. (a) When neighborhood is 3 (n = 3) temperature (T), radiation (Ra), sugar
cane variety 2 (V2), and productivity (Prod) are in the same cluster. Productivity is
shown on dotted line. (b) When neighborhood is 1 (n = 1) radiation of first month after
seed (Ra1AS), radiation of first month before harvest (Ra1BH), sugar cane variety 2
(V2) and productivity (Prod) form a cluster. The local correlation between Ra1BH,
Ra1AS and productivity is shown on dotted lines.

(c) Use the Vellido’s algorithm to partition the map again increasing the
neighborhood by 1.
– If the cluster’s quantity is equal to the previously obtained, repeat

c.
– If the cluster’s quantity is different, save the results and repeat c.
– Stop when the neighborhood value is the same to that of the maximal

neighborhood value taken to train the SOM used for the projection.
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2. Visualization.
(a) Arrange the component planes at nodes of the tree generated in step 1.
(b) Each group found with a specific neighborhood value is showed as a level

of the tree and every cluster parent is connected to his children.
(c) The cluster structure is visualized using the component planes already

computed in the first SOM.

The aforementioned algorithm uses the projection of component planes in
a SOM, and the distance matrix based clustering in a complementary fashion.
Thus, a tree-structurated representation of the component planes clusters is built
in order to improve the correlation hunting process. The highest confidence in the
clustering result of this method is achieved when samples with visually similar
component planes are placed in the same child of the clustering tree.

3 Case Study: Sugar Cane Culture

3.1 Problem Description

SOM has proved to be effective for the exploratory analysis of agro-ecologic data
and has become a very useful technique in ecological modeling [7]. SOMs are
recommended in cases when it is essential to extract features out of a complex
data set [1]. Moreover, it is useful for generating easily comprehensible low-
dimensional maps, improving the visualization and data interpretation [2,4]. For
these reasons, methodologies based in SOM were selected as tools for exploring
the data in this study case. The objective of this case study was to determinate
which variables are more related to the productivity in the sugar cane culture
in a specific region. The methodologies previously shown were used to classify
zones with similar productivity, in order to find similar patterns of behavior.
Finally, analyzing these patterns it was possible to acquire new knowledge about
the relationship between the agro-ecological variables and productivity. A more
detailed description of the problem is presented as following:

A plant is affected by diverse variables (e.g., climate, soil) during its life. These
variables have different effects on the plant at different moments of its develop-
ment (e.g., germination, flowering). Moreover, the combination and/or change
of these variables in certain moments determines the development states of the
plant. This mixture of factors finally determines the crop production. For exam-
ple, in the sugar cane case, expert knowledge indicates that the most relevant
periods are the beginning and the end of plant development. In the first months
(after sowing) the vegetative structure is formed (e.g., leafs grows allowing the
photosynthesis process), in this moment the water is very important to improve
the development of the plant. During the last months (approximately thirteen
months after sowing) the plant accumulates the major part of saccharose. In this
moment not much water is essential because the plant is totally developed. These
periods are the most important in the agricultural productivity. Accordingly, to
determine how and when the variables affect the plant development would be
very helpful to support decision making (e.g. in what moment to seed and/or to
harvest in order to obtain a better productivity).
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3.2 Classification of Agro-Ecological Variables Related with
Productivity

The database used was provided by a sugar cane research center located in the
region under study. The data base contains information collected during seven
years (1999 to 2005). The agro-ecological variables used for this experiment are
listed as follows. Climate variables are Temperature Average (T), Relative Hu-
midity Average (RH), Radiation (Ra), and Precipitation (P). Soil variables are
Order (Ord), Texture (Tex) and Depth (Dee). Topographic variables are Land-
scape (Ls) and Slope (Sl). Other variables are Water Balance (WB) and Variety
(V). Finally, productivity (P) of each cultivated zone. As it was mentioned be-
fore, the most relevant periods in the sugar cane are the beginning and the end
of plant development. Therefore, it is possible not using all the climate data set
and to use only the data from 1, . . . , x Months After Sowing (xAS) and 1, . . . , x
Months Before Harvest (xBH). In our case study x = 5 was used. Soil variables
and Variety were ordered using a presence/absence coding, 0 represents pres-
ence and 1 absence. As a result, the vector which defines a cultivated zone (CZ)
is compound of 54 variables, 1328 vectors were used representing each one the
characteristics of a cultivated zone.

All the variables were scaled [-1,1] in order to allow their comparison in mag-
nitude. Then, it was created a matrix with 1328 vectors CZs (CZmatrix) com-
posed by 54 variables each one. Notice that the output of this sugar cane model
is the productivity. Nevertheless, in this case the productivity was used as input
in order to find the component planes related with. The CZmatrix was used as
input for a SOM with 400 neurons (20x20) and it was trained with the batch
algorithm. With this SOM, it was possible to generate 54 component planes,
one for each agro-ecological variable. These component planes were projected
in a new SOM composed of 400 neurons (20x20) and it was trained with the
batch algorithm. Finally, this last map was clustered and the clusters were or-
ganized. For this aim it was used the algorithm for tree-structured component
planes clusters representation showed in the previous section. The results can be
observed in figure 1.

Some interesting aspects can be found here. When n = 3 (where n is the
neighborhood), it is possible to locate in a same cluster the temperature, radia-
tion and production, each component plane with similar patterns, figure 1.b on
dotted line and figure 2.a. In addition, it is possible to view when n = 1 that
radiation of first month after seed, radiation of first month before harvest and
productivity present similar patterns, figure 1.b on dotted line and figure 2.b.
Thanks to the tree-structured representation, it is easier to group the clusters to
facilitate the observation of local correlations. As an example, in the right side
and in the top of left side of the component planes, figure 2.b, it was possible
to see that when the productivity was high most of the values of Ra1BH and
Ra1AS were high too (represented for a dark gray). Drawing the BMUs of the
component planes productivity, Ra1BH and Ra1AS in a scatter plot, figure 3,
it is possible to detect high values of productivity when there are high values of
Ra1BH and Ra1AS.
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As a conclusion, the radiation of the first month after seed and the radiation of
the first month before harvest are more correlated with the productivity than the
other variables. In addition, a local correlation is observed between a majority
of high values of radiation and high productivity.

Fig. 3. BMUs of the component planes: productivity, radiation 1 month before harvest
(Ra1BH) and radiation 1 month after seed (Ra1AS)

4 Conclusion

This paper has presented a methodology to enhance the component planes analy-
sis process. This methodology improves the correlation hunting in the component
planes with a tree-structured clusters representation based on the SOM distance
matrix. This tree-structured representation permits the analysis of component
planes clusters at several levels of detail. This methodology can be applied in
cases where the number of component planes is very large, witch is quite often
in agro-ecological modeling. As an case study, the methodology presented here
was used in the classification of zones with similar agro-ecological conditions
and productivity in the sugar cane culture. Analyzing the obtained groups of
agro-ecological variables and cultivated zones it was possible to find a relation-
ship between the radiation during the first month after seed, the first month
before harvest, and high productivity. More analysis can be made in order to
improve the decision support in the sugar cane culture based on the aforemen-
tioned methodology. This paper shows only a part of this work. Future work will
be focus on the analysis of other patterns.

Although, the tree-structured is a good method to show clusters, it would
also be desirable to obtain a measurement of similarity between clusters in each
branch of the tree. Future work will be focused on the study of a similarity
measurements to improve the tree-structured clusters representation.
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A Dynamical Model for Receptive Field

Self-organization in V1 Cortical Columns

Jörg Lücke

Gatsby Computational Neuroscience Unit, UCL, London WC1N 3AR, UK

Abstract. We present a dynamical model of processing and learning in
the visual cortex, which reflects the anatomy of V1 cortical columns and
properties of their neuronal receptive fields (RFs). The model is described
by a set of coupled differential equations and learns by self-organizing the
RFs of its computational units – sub-populations of excitatory neurons. If
natural image patches are presented as input, self-organization results in
Gabor-like RFs. In quantitative comparison with in vivo measurements,
we find that these RFs capture statistical properties of V1 simple-cells
that learning algorithms such as ICA and sparse coding fail to reproduce.

1 Introduction

Self-organizing systems are commonly used to study learning in biological net-
works and/or to learn from a set of presented inputs. Classical examples are
systems that learn input categories [1] or systems that are learning the neighbor-
hood relationship of the input data [2]. Based on recent results on the anatomical
fine-structure of cortical columns [3], we show how self-organization can be used
to extract basic constituents of the input. The presented bottom-up approach is
based on earlier work on this subject [4,5] and shows the applicability of the ap-
proach to natural images. We find that the components extracted by the model
have a higher degree of similarity with in vivo measurements of simple-cells than
the classical algorithmic approaches of ICA [6,7] and sparse coding [8,9].

2 System Dynamics

Our model column consists of k neuron populations or hidden units p1, . . . , pk

and N input units y1, . . . , yN . The inputs Ĩ1, . . . , Ĩk to the hidden units originate
from external neural units y1, . . . , yN and influences the hidden units via afferent
fibers Rαj with Iα =

∑
j Rαjyj. We implement a feed-forward inhibition that

ensures that the inputs Ĩ1, . . . , Ĩk sum to zero: Ĩα = Iα − 1
k

∑
β Iβ . It follows that

Ĩα =
∑

j R eff
αj yj with R eff

αj = Rαj − 1
k

∑
β Rβj . R eff

1 , . . . ,R eff
k will be referred to

as effective RFs or just RFs of the column. Fig. 1 visualizes the afferents and the
internal connectivity of the system. Note that the dynamics is formulated on the
population level and that there are different alternatives of its implementation.
Fig. 1 is a visualization of entities that are relevant for the dynamics.

The hidden units of the system model sub-networks of excitatory neurons
as found in cortical columns [3]. We use a polynomial approximation of such
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Fig. 1. Sketch of a cortical column with k = 3 sub-populations of excitatory neurons
(visualized as black vertical bars). Input to the column originates from N external
units y1 to yN . In a first processing stage the input is integrated. The inputs I1 to I3

are via feed-forward inhibition transformed to mean-free inputs Ĩ1 to Ĩ3. These inputs
drive the self-excitatory sub-populations with activities p1 to p3. I is the mean input.
Triangular arrow hats denote excitatory (solid) and mixed (hollow) influences, empty
circles inhibitory influences. Lateral inhibition between the self-excitatory populations
is modulated by the bifurcation parameter ν. Dashed lines indicate the influence of
dynamic variables on the modification of the populations’ receptive fields R1 to R3.
P and Y are the sums of input unit activities and population activities, respectively.
pmax is equal to the greatest population activity.
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self-excitatory units as suggested in [10]. Together with a particular inhibitory
coupling between the self-excitatory units the dynamics is given by:

ν(t) = (νmax − νmin)t̃ + νmin, t̃ =
1
T

mod(t, T ), (1)

d

dt
pα = a

(
p2

α − ν(t) pα max
β=1,...,k

{pβ} − p3
α

)
+ κĨα + σ pα ηt , (2)

︸︷︷︸
self-excitation

︸ ︷︷ ︸
lat. inhibition

︸ ︷︷ ︸
self-inhibition

︸ ︷︷ ︸
input

︸ ︷︷ ︸
noise

where κ is the coupling to input Ĩα and where σ parameterizes multiplicative
Gaussian white noise. Eqn. 1 represents a linear increase of the dynamics’ bi-
furcation parameter ν. The time t̃ runs from 0 to 1 within the time interval
[0, T ). After time t = T a new input is presented and the increase of ν starts
anew. We refer to such a cycle as ν-cycle. Dynamics (1) and (2) implement a
particular kind of lateral competition between the hidden units that has proven
to be advantageous for learning distributed input encodings. The parameter ν
increases competition between the hidden units, and initially active units are
deactivated during a ν-cycle. The dynamics of neural activity, (1) and (2), has
been studied earlier [10] and represents an abstraction of a model that was based
on sub-populations of explicitly modeled excitatory neurons [4].

The non-linear evaluation of an input pattern according to (1) and (2) couples
into a dynamics of Hebbian-type synaptic plasticity given by:

d

dt
Rαj =

ε

N

(
[pα]+ yj − [pα]+ Y Rαj

)
iff P (t) < χ , (3)

where P =
∑k

α=1 pα and Y =
∑N

j=1 yj are overall-activities of hidden units
and input units, respectively, and where [pα]+ = pα if pα ≥ 0 and [pα]+ = 0
otherwise. To learn with slowly increasing competition between the RFs1 we
change, after each ν-cycle, the threshold for learning χ and the maximal level of
lateral inhibitory coupling νmax:

Δχ = −λχ (χ − aχP ) and Δνmax = −λν (aν − P ), (4)

where λχ and λν are modification rates. The second equation increases νmax to
counteract the effect of RFs that are increasingly specialized to the input.

Self-organization of an initially unstructured system is commonly character-
ized by: (A) random fluctuations that result in structural seeds, (B) a positive
feed-back loop amplifying certain structures or modes, and (C) a negative feed-
back loop that counteracts amplification and finally keeps the system in an active
equilibrium. For our system we start in a state with all afferents initialized to
the same value Rαj = 1

N . (A) After an input is presented, ν is increased and the
noise in (2) breaks the symmetry among the activities pα (compare [10]). Hidden
units are deactivated until P (t) < χ. During the remainder of the ν-cycle the
RFs are modified according to their activities (3). This implies that just some
1 Which is related but not identical to the competition between the hidden units.
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or only one RF is significantly changed to become more similar to the presented
input. (B) Hidden units with RFs similar to a certain type of input are likely
to remain active if such an input is presented. Their RFs will therefore further
specialize to this input type. (C) Lateral inhibition in (2) forces the system to
specialize to different input patterns and the negative term in (3) prevents the
afferents from growing infinitely.

For our dynamics the control of lateral inhibition represents the crucial part.
If we learn after inhibition selects a single unit, i.e. as in winner-take-all (WTA)
networks, a distributed encoding of presented input is not observed even if it
consists of easily to identify combinations of basic components. The same ap-
plies if we learn after inhibition has selected, e.g., K units (K-WTA). In contrast,
dynamics (3) modifies RFs during the process of deactivation of hidden units.
Furthermore, learning favors input that results in a relatively sparse activation
of the hidden layer (small P (t)). If we learn according to dynamics (1) to (4) and
if the presented input consists of combinations of basic constituents, the system
self-organizes its RFs to represent these constituents. Continuously increasing
competition between the RFs (4) crucially helps in guiding the self-organization
process. With increasing competition groups of initially similar RFs (we initial-
ize with a relatively large χ) decay into ever smaller sub-groups. For a similar
system, such a type of self-organization was therefore termed hierarchical self-
organization in [11].

Equations (1) to (4) represent a dynamical model of a cortical column. Before
applying the dynamics to input, we have to find a set of parameters that lets the
system operate in the interesting non-linear regime between no competition and
competition with WTA characteristics. Choosing parameters is straightforward
and good results can be obtained for a large range of different parameters. To
determine the particular set of parameters used in this paper2 we have tuned
the parameters using the so-called bars test [12] as a benchmark. Once the set
of parameters is chosen, the system is extraordinarily robust with respect to
different types of input.

3 Simulation Results

To model input to our dynamics that resembles input received by cortical col-
umns in V1, we will use gray-level images patches as input. We expect the column
model to self-organize its RFs such that the activities of hidden units can repre-
sent the input distributedly. Input is taken from 20 randomly selected images
of the van Hateren database [7] that do not show man-made structures. We use
difference of Gaussians (DoG) transformed versions of these images to emulate
the preprocessing of visual input by the retina and the lateral geniculate nucleus
(LGN). We used a standard deviation of σ+ = 1.0 pixels for the positive part
and σ− = 3.0 pixels for the negative part, consistent with the biologically mea-
sured ratio [13] of σ+

σ−
≈ 1

3 . From the 20 images we randomly selected patches of

2 Eqn. 1: νmin = 0.4, T = 25ms; Eqn. 2: a = 200ms−1, κ = 1.0ms−1, σ = 0.01ms−1;
Eqn. 3: ε = 0.02; Eqn. 4: λχ = 5 × 10−5, aχ = 1.2, λν = 10−3, aν = 0.7.
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Fig. 2. RFs of the model column if natural images are used as input. (A) Effective
RFs R eff

α after 2 × 106 ν-cycles if difference of Gaussians (DoG) filtered images are
used as input. For each of k = 100 RFs, values are color coded to lie between dark
blue (-max) and dark red (+max) where max is the maximal absolute value of the
RF, max = maxj |R eff

αj |, which ensures that R eff
α = 0 is assigned to the same color

(green) for all RFs. See (C) for the color coding scheme. (B) Effective RF α = 97
of the simulation displayed in (A). The index j is replaced by the two-dimensional
vector x. The same coding scheme as in (A) is used with max = 1.67 × 10−3 in this
case. The small arrows in the center represent the principal axes of the Gaussian
envelope after the RF was matched with a Gabor wavelet. The lengths of the arrows
are the wavelet’s standard deviations σx = nx

f
and σy =

ny

f
. The dimensionless entities

nx and ny (f is the wavelet frequency) are used for further analysis (see Fig. 4). (C)
The same RF as in (B) plotted in three dimensions to illustrate the color coding. (D)
Three examples of matching the RFs with Gabors. RFs 4 and 31 illustrate artifacts of
rectangular sampling and Gabor matching, respectively. Columns show original RFs
(1st column), corresponding filters that act on the raw pixel images (2nd column),
Gabor wavelet matches of the raw filters (3rd column), and differences (residuals) of
raw filters and Gabor fits, which shows the error made by the wavelet approximation
(4th column).
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Fig. 3. Orientation and frequency distribution of RFs. (A) Distribution of frequency
vs. angle for the RFs displayed in Fig. 2A after being transformed to filters on the
raw pixel values and matched with Gabor wavelets. RFs are relatively homogeneously
distributed in orientation space apart from a preference of horizontal and vertical RFs.
(B) Distribution of RFs in frequency space. Receptive fields cluster around f ≈ 0.1 cycles

pixel
and cover approximately one octave.

N = 20 × 20 pixels whose values were scaled linearly to lie in the interval [0, 1].
In Fig. 2A the effective RFs of a system with k = 100 hidden units are shown
for DoG preprocessed input after being trained for 2 × 106 ν-cycles3. The RFs
have the familiar Gabor-like shape (see Fig. 2C) and represent filters acting on
the already DoG transformed images. For comparison with physiological data as
obtained in simple-cell recordings, we first have to compute the corresponding
filters that act on the raw images. For DoG preprocessed input this amounts
to a convolution of the RFs in Fig. 2A using the same DoG-kernel as for the
preprocessing of the image. In Fig. 2D the resulting filters are shown for three
examples. The filters are, in theory, infinitely large but are virtually zero for
all pixels outside a central region of 40 × 40 pixels. For further analysis, and
as is customary in the literature, we match the real filters using Gabor wavelet
functions (see e.g. [14,15]). Matching works well in most cases but the artificial
rectangular sampling can result in notable artifacts. The effect of these artifacts
on the later analysis can be well understood, however, and they will be discussed
below using RFs 4 and 31 in Fig. 2D.

An analysis of the parameters of the matched Gabors shows a relatively even
distribution of RF positions (data not shown). Plotting orientation vs. frequency
(Fig. 3A) shows a distribution similar to the ones obtained by using independent
component analysis (ICA) [6,7] and sparse coding [8,9]. The orientation pref-
erences are relatively evenly distributed apart from a stronger preference for
3 To reduce undesirable boundary effects, image patches (20×20 pixels) are large com-

pared to patch sizes used by other methods (e.g. 12×12 in ICA [6] and sparse coding
[8,9]). Larger patch sizes exceed the already extensive computational resources re-
quired to simulate dynamics (1) to (4). Note that the range of preferred spatial
frequencies is determined by the DoG preprocessing (Fig. 3B). Increasing this fre-
quency with a smaller DoG kernel is not possible because the standard deviation of
its positive part is already as small as one pixel.
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Fig. 4. Distributions of RF extensions parallel and orthogonal to the RFs’ wave vector
(compare Fig. 2B). nx and ny are parameters of wavelets that were matched to the RFs
acting on the raw input, Rraw (compare Fig. 2D). nx is the size of the Gaussian envelope
in wave vector direction expressed in terms of the wave length of the wavelet and ny

is the size of the Gaussian envelope orthogonal to the wave vector. (A) Distribution
in the nx/ny-plane of the k = 100 RFs displayed in Fig. 2A (blue) together with
the distribution of macaque simple-cells (bright magenta) as measured in vivo [15].
The data points of the three RFs displayed in Fig. 2D are explicitly labeled. (B) The
distributions displayed in (A) overlaid with the corresponding distributions of RFs
obtained using sparse coding (yellow) as described in [9] and ICA (green) as described
in [7]. Data are taken from [15]. The dashed diagonal line is the bisection line.

vertical and horizontal orientations. As for sparse coding and ICA, and unlike
RFs measured in vivo, the RFs obtained in our model are clustered around a
preferred frequency which is given by f ≈ 0.1 cycles

pixel (see Fig. 3). In our case, the
frequency distribution is largely explained by the bandpass properties of the DoG
preprocessing, which prefers frequencies in the range of the obtained filters.

The most notable feature of the RFs in Fig. 2A is the variation in the widths
and lengths of their Gaussian envelopes. In [15] an analysis of properties of the en-
velopes relative to the wavelets’ frequency was suggested as a means for comparing
the RFs of computational models with data. For quantitative comparison the RF
parameters are plotted in the nx/ny-plane with nx = σxf and ny = σyf where f
is the frequency of the matched wavelet and σx and σy are, respectively, the stan-
dard deviations of the Gaussian envelope in the direction of, and perpendicular
to, the wave vector (compare Fig. 2B). Fig. 4A shows the distribution predicted
by our model together with in vivo measurements of simple-cell RFs in macaque
primary visual cortex [15]. Both distributions have similar variance and show the
same correlation between nx and ny, with a preference for RFs to be elongated in
the ny-direction if they are distant from the origin. Note that the RF distribution
in cat primary visual cortex also shows this property [14,15]. Two notable differ-
ences between the measured distribution and the RFs of the model are the absence
of model RFs with values near the origin and with values far away from it.
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The absence of RFs distant from the origin can be explained by the chosen
data representation which restricts RFs to a rectangular patch size. As can be
seen in Fig. 2D (2nd row), the Gabor match results in a Gaussian envelope
that is artificially restricted in ny-direction. Because of the range of preferred
frequencies, Fig. 3, this prevents values of ny from being larger than ny ≈ 0.8.
The cluster of data points near (0.5, 0.7) in Fig. 4A can therefore be interpreted
as a consequence of rectangular patch sizes (compare RF 4). Less artificial or
larger patches would move some of these points, e.g. RF 4, further away from
the origin and presumably closer to the measured data.

RFs with values near to the origin are associated with what was called ‘globu-
lar’ RFs in [15], i.e., RFs with no or weak orientation preference. Although RFs
with weak orientation preference are actually developed by our system (see, e.g.,
RF 31 in Fig. 2D), the plot in Fig. 4 does not show any points near the origin.
The reason for this is that we use Gabor wavelets to match localized RFs whose
positive and negative parts sum to zero. Even in the case of perfectly radial
symmetric RFs, Gabor matching would break the symmetry to a preferred ori-
entation (compare Fig. 2D, 3rd row). RFs measured in vivo have values near the
origin in Fig. 4 because they are not subject to this effect. Many of the simple-cell
RFs in [15] are therefore essentially matched by a Gaussian, which represents a
degenerated wavelet with zero frequency.

Comparison of the distribution predicted by our model and distributions pre-
dicted by sparse coding [8,9] and ICA [6,7] are shown in Fig. 4B. Sparse coding
seems to partly predict the measured ny/nx-correlation but shows an incorrect
preference for RFs elongated in nx-direction near (0.5, 0.5). The distribution of
RFs obtained using ICA is concentrated in a small region on the bisecting line
near (0.7, 0.7). ICA neither predicts the variety of Gaussian envelopes nor any
preference for RF elongation in any direction.

In contrast to sparse coding and ICA, the distribution predicted by our model
is in good agreement with in vivo measurements (see Fig. 4). It has to be clearly
stated, however, that the results depend on various choices made in the experi-
ment and the analysis. In particular these are: the DoG preprocessing, rectangu-
lar patches that restrict RFs, and Gabor matching which can artificially remove
globular RFs. Likewise, different preprocessing and analysis techniques can af-
fect the RF properties of other computational systems (see [15] for a discussion).
Bearing in mind these various influences, it can nevertheless be stated that the
dynamics described in this paper captures a property of simple-cell RFs that has
not been reproduced by earlier systems. That is, the broad distribution of RFs
in the ny/nx-space and their ny/nx-correlation with elongation of RFs in ny-
direction if they are distant from the origin (Fig. 4). For our RFs this property
is already recognizable by considering the raw RF data as displayed in Fig. 2A.

4 Discussion

Motivated by cortical interconnectivity and earlier modeling work we have de-
veloped and analyzed a dynamical bottom-up model of a cortical column. The
system models the first stages of columnar processing and self-organization of
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afferent fibers. Its dynamics is based on self-excitatory populations, feed-forward
inhibition, and modulation of lateral inhibitory coupling (compare [3] and [16]).
Anatomically the model predicts that two stages of processing (see Fig. 1) are
required to enable the emergence of a distributed stimulus encoding. The integra-
tion stage has linear response properties and projects to an evaluation stage with
non-linear responses of neurons. For V1 our model predicts that these two stages
are a pre-requisite for the emergence of Gabor-like RFs. For natural images, no
simple-cell-like RFs were obtained without feed-forward inhibition. With the use
of feed-forward inhibition, self-organization generated a rich diversity of RFs if
randomly selected and DoG filtered image patches were presented. Similar to
properties of simple-cell RFs and classical models thereof the obtained RFs show
sensitivity to different spatial orientations, frequencies, and locations. Further-
more, as analyzed by matching Gabor wavelets, the RFs show a specific variety
in the extents of their Gaussian envelopes relative to their frequencies. This
feature is consistent with in vivo measurements of simple-cell like RFs [14,15]
(Fig. 4A) and has earlier not been reproduced to such an extend as reported
here. Only very recently, in two functionally motivated approaches developed
in parallel to this work, distributions of Gaussian envelopes comparable to the
one presented here were reported. The resulting distributions in [17] are broader
than in vivo measurements, however. In the model suggested in [18], which im-
plements a form of sparse coding, RF distributions are obtained that contain
globular RFs. These RFs can be matched by degenerated Gabor wavelets and
correspond to points near the origin of an nx/ny-plot. Otherwise the RFs are
reminiscent of those obtained by sparse coding (compare Fig. 4B). That is, they
partly match the measured distributions well but show, distant from the origin,
numerous RFs that are incorrectly elongate in nx- instead of ny-direction. Also
note that the model in [18] was tuned to fit the data. The classical models for the
emergence of simple-cell RFs [8,7,6], in particular ICA, do not accurately repro-
duce the experimental data (see Fig. 4B). Bottom-up models for the emergence
of Gabor-like RFs include BCM [19] and CBA [20], which model learning based
on single neurons. Quantitative comparison of the RFs obtained with these sys-
tems is difficult. To the knowledge of the author, no data about the variability
of Gaussian envelops (as used in Fig. 4) is available for BCM; and RFs obtained
with CBA do not seem localized enough for an analysis using Gabor matching.

To conclude, we have defined and simulated a dynamical model of a cortical
column. The dynamics evaluates input using a balance between excitation and
two forms of inhibitory interaction. If coupled to Hebbian synaptic plasticity, the
dynamics induces a self-organization process of afferent fibers. If natural images
are used as input, self-organization results in Gabor-like RFs of columnar sub-
populations. These RFs match the variability of simple-cell RFs better than clas-
sical methods. The dynamics models important functions associated with cortical
columns and represents, by directly combining cortical anatomy and the emer-
gence of neuronal RFs, a coherent model of the first stages in columnar processing.

Acknowledgments. I gratefully acknowledge funding by the Gatsby Charitable
Foundation and by the EU project FP6-2005-015803.
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Abstract. In this paper, we propose an evolutionary approach to deal with short-
comings on conventional focused crawling systems in semantic web environment.
Thereby, meta-evolution strategy for collaboration among multiple crawlers has
to be efficiently carried out. It is based on incremental aggregation of partial se-
mantic structures extracted from web resources, which are in advance annotated
with local ontologies. To do this, we employ similarity-based matching algorithm,
so that fitness function is formulated by summing all possible semantic similari-
ties. As a result, the best mapping condition (i.e., the fitness is maximized) is ob-
tained for efficiently i) reconciling semantic conflicts between multiple crawlers,
and ii) evolving semantic structures of web spaces over time.

1 Introduction

Since the first idea of focused web crawlers was introduced in [1], this work has been
regarded as a potential solution to the problem of indexing the exponentially growing
information on the web. Focused crawling is designed to only gather documents on
a specific topic, thus reducing the amount of network traffic and downloading cost.
Basically, focused crawling has to be able to analyze the behavior information about the
users. Examples of such data are social connections [2], a set of bookmarks [3], and a set
of URL sequences visited by users [4]. As depended on the characteristics of a given
dataset, the proper methodologies such as heuristic searching, graph matching, time-
series analysis, and semi-supervised learning should be chosen (sometimes, in hybrid
manners).

Now, in this paper, we consider on the focused crawling process on semantic web
space1 in which resources are, in advance, annotated by referring to the local domain on-
tologies. Each user behavior while browsing these semantic web spaces can be enriched
with semantic information (e.g., metadata) extracted from the corresponding resources.
Thereby, the crawler can be expected to efficiently estimate the particular intention (or
contexts) of users for assisting their information searching tasks. More importantly,

1 In fact, we have firstly introduced a preliminary study of focused crawling on semantic space
with an example of the product image files assumed to be annotated with the local domain
ontologies of e-commerce business sites [5].
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multiple crawlers can share and integrate the pieces of partial information about a cer-
tain web space all together.

However, problem is that local domain ontologies are semantically heterogeneous
with each other. Such heterogeneities are caused by lexical differences as well as struc-
tural mismatches [6]. Thereby, we propose an evolution strategy to cooperate to find
out the optimal semantic structures of local ontologies. This crawling system is com-
posed of a centralized meta-crawler, and multiple crawlers. Mainly, the meta-crawler
can merge the semantic substructures discovered by multiple crawlers, and spread the
refined (or crystallized) semantic information for the other crawlers. We want to note
our contributions of this paper, as follows;

– Minimization of semantic conflicts between partial knowledge obtained from the
crawlers, and

– Detection of newly changed semantic information in evolvable ontologies.

The remainder of this paper is as follows. In the following Sect. 2, we simply address
the problem and preliminary notations for formalizing the problem. The evolution strat-
egy will be explained in Sect. 3, and experimentation will be shown in Sect. 4. Finally,
we will compare the proposed approach with the previous work in Sect. 5, and draw a
conclusion in Sect. 6.

2 Problem Description

Given a set of candidate (or frontier) resources on semantic web space, we want user
intention model to be comparable with annotations2 of the resources.

Definition 1 (User intention). User intention is represented as

FU i = {〈fα, wα〉|fα ∈ F̃Sj, wα ∈ [0, 1]} (1)

where each feature fα (e.g., labels obtained from annotations) is assigned the weight
value wα between [0, 1], and initial value Δ is defined by the user (in this paper, as 0.5).
F̃Sj stands for a set of features of j-th semantic web space.

More importantly, the user intention model is changed, as he continues to browse. We
note that it is based on i) adjusting feature weights with ii) merging features.

Property 1 (Adaptability). With resources selected by users over time, the user model
FU (t)

i is changed into

FU (t+1)
i = FU (t)

i + {fβ|fβ ∈ FSj}(t). (2)

If fβ discovered at (t) is already existing in FU (t)
i , the corresponding weight value is

reinforced (and the rest are discouraged) by

w(t+1)
α = w(t)

α × {
1 + η if fβ = fα (∈ FU (t)

i )

1 − η × w(t)
α

N
(t)
i −1

otherwise.
(3)

2 Resource annotation is represented as a set of triples, e.g., 〈fi, rij , fj〉. These features fi and
fj can be regarded as classes in ontologies. For details, please refer to [6].
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where η is the coefficient for the learning rate. N (t)
i is the size of FU (t)

i , i.e., the number
of different features related to the corresponding user U . On the other hand, if feature
fβ is new, it should be simply merged. We can assert these unmatched features at time
t into FU i, because they can be possibly related to user intentions and preferences.
Let the matched and unmatched features denoted as F+

i and F−
i , respectively. (In this

paper, they are simply obtained by string matching between a feature and a label from

an annotation.) The matching ratio ρ+ is defined as ρ+ = |F+
i |

|FUi| and we can trivially

compute the unmatching ratio ρ− = 1 − ρ+.
Thus, the size of FU (t)

i is expanded to

N (t+1)
i = N (t)

i + |F−
i | (4)

where |F−
i | ≤ |FU i|, and also, the weight values of F−

i should be initialized by Δ. In
next step, all the weight values in FU i should be normalized by

w′
α =

wα∑
〈fγ ,wγ〉∈FUi

wγ
(5)

and then, FU i is represented as {〈fα, w′
α〉|fα ∈ FSj , w

′
α ∈ [0, 1]}. This can be re-

garded as the error reduction procedure caused by initialization of newly merged fea-
tures.

Now, we want to briefly describe the problem caused by semantic heterogeneity. As
browsing the resources under heterogeneous spaces, the user intention model FU i is
repeatedly expanded by |F−

i | as shown in Equ. 4. It makes the existing major features

converges to zero by subtracting Δ ·
( |F−

i |
Ni+|F−

i |

)
and much harder to discriminate the

user intention. This problem is very similar to the so-called “curse of dimensionality”
in machine learning community. In order to maintain the discrimination power, the
crawlers need to keep the number of features constant (|F−

i | = 0) or, if possible, lower

(N (t+1)
i < N (t)

i ) by mapping semantic features (or substructures).

3 Evolution Strategy Discovering Semantic Structures

Once a crawler ci of user ui finds new feature f
(t)
i from a semantic web space FSj ,

it has to share the feature with other crawlers via a centralized meta-crawler, as shown
in Fig. 1. As introduced in [7], the meta-crawler needs to conduct knitting operation
K(FSj ,

⋃
ci∈C〈fα, relαβ , fα〉), i.e., aggregating semantic substructures to find out the

best mappings among all of the substructures.

3.1 Measuring Semantic Similarity

Beside the numerous relationships that can be found, new relationships between fea-
tures can be inferred between FSj and 〈fα, relαβ , fα〉. One particular relationship that
will be interesting here is similarity. In order to obtain possible relationships between
different semantic structures, semantic identification of the entity pairs (i.e., correspon-
dences) is very important. As a matter of fact, most of the matching algorithms use some
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Crawler

Meta-Crawler Web Space

Fig. 1. Collaborative focused crawling architecture; The dotted circles are indicating the partial
knowledge discovered by multiple crawlers

similarity measure (or distance) in order to match entities. Some distances can be estab-
lished from the local features of entities. For instance, the name of entities can be the
basis for matching them. Many techniques have been developed for comparing strings,
based on their structures (like edit distance), their morphology (through lemmatization),
their entry in lexicons (using WordNet). Some other distances, more in the spirit of net-
work analysis, can be defined from the structure of the network. For instance, Euzenat
and Valtchev [8] defines all possible similarities (e.g., SimC , SimR, SimA) between
classes, relationships, attributes, and instances.

Given a pair of features from an annotation newly discovered from a web space
by a crawler and semantic substructure already established in meta-crawler, semantic
similarity measure SimF is assigned in [0, 1].

Definition 2 (Semantic similarity). Semantic similarity (SimF ) between f and f ′ is
defined as

SimF(f, f ′) =
∑

E∈N (F)

πF
E MSimY (E(f), E(f ′)) (6)

where N (F) ⊆ {E1 . . . En} is the set of all relationships in which features participate
(for instance, subclass, instances, or attributes). The weights πF

E are normalized (i.e.,∑
E∈N (F) πF

E = 1).

If we consider feature labels (L) and three relationships in N (F), which are the su-
perclass (Esup), the subclass (Esub) and the sibling feature (Esib), Equ. 6 is rewritten
as:

SimF(f, f ′) = πF
L simL(L(Ai), LF (Bj))

+ πF
supMSimF(Esup(f), Esup(f ′))

+ πF
subMSimF(Esub(f), Esub(f ′))

+ πF
sibMSimF(Esib(f), Esib(f ′)). (7)

where the set functions MSimF compute the similarity of two entity collections.
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As a matter of fact, a distance between two set of features can be established by
finding a maximal matching maximizing the summed similarity between the features:

MSimF(S, S′) =
max(

∑
〈f,f ′〉∈Pairing(S,S′) (SimF(f, f ′))

max (|S|, |S′|) , (8)

in which Pairing provides a matching of the two set of classes. Methods like the
Hungarian method allow to find directly the pairing which maximizes similarity. The
OLA algorithm is an iterative algorithm that compute this similarity [8]. This measure
is normalized because if SimF is normalized, the divisor is always greater or equal to
the dividend.

Finally, given two semantic structure, we can measure the semantic similarity by
using Equ. 8.

3.2 Meta-evolution Strategies

Meta-evolution strategy is a global combinatorial optimization method based on heuris-
tics [9]. In this paper, the meta-crawler can find out the optimal state with the fit-
ness function. Once the meta crawler can gather semantic substructures from multiple
crawlers, it has to find out the best mapping between a set of the substructures and local
ontology (we do not need to consider how much the onology is constructed). By us-
ing semantic similarity measurement given in Equ. 6, the fitness function is defined, as
follows.

Definition 3 (Fitness). Given a semantic web space F̃Sj , let a meta-crawler be able
to communicate with K crawlers {ck|k ∈ [1, K]}. The fitness function is formulated as

fitness
(t)
FSj

= MSimF(FS(t−1)
j ,

K�⋃

k=1

ΔFU (t)
k ) (9)

where ΔFU (t)
k = FU (t)

k − FU (t−1)
k is a semantic substructure sent by crawler ck.

K� = K
NG

, i.e., the number of crawlers in a group where NG is the number of randomly
generated groups.

Newly discovered features are collected (i.e.,
⋃K�

k=1 ΔFU (t)
i ), and they are compared

with the semantic structure which is built until previous step t−1. The collecting process⋃
means generating population to be evolved for the combinatorial optimization. Here,

at a certain time t, the population can be generated by applying feature merging scheme
to a set of features discovered by multiple crawlers.

Definition 4 (Population). The population is represented as a set of tuple P(t) =
〈F , R, E〉 where

– F and R are finite sets whose elements are labels of features and relations, respec-
tively, and

– E is a set of multiple relations among features, i.e., E ⊆ F ×R F .
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As an example, when two feature triples

〈price, SubClass, shipping cost〉 and 〈price, SiblingClass, brand name〉 (10)

are collected, the population is represented as

〈shipping cost ×SuperClass price ×SiblingClass brand name〉. (11)

Thus, the meta-crawler in this paper should be simply carrying out the following
evolution steps. It is very similar to the well-known natural selection process [10].

– Reproduction (or Initialization). Multiple crawlers are randomly organized into

NG populations. Each population is represented as P(t)
k =

⋃K�
k

i=1{〈F , R, E〉} where
a set of features merging the features discovered by crawlers. We take into account
two cases of grouping scheme; the group sizes K� (i.e., the number of crawlers)
are i) identical, and ii) distinct.

– Crossover. The populations P(t)
k are randomly split into two sub-populations (i.e.,

P(t)+
k + P(t)−

k ), and intermixed with others (i.e., P(t+1)
k = P(t)+

k + P(t)−
k′ ).

– Mutation. With predefined mutation coefficient τM , randomly selected populations
and features are mutated by P(t+1)

k . Simply, for this mutation, we change relation-
ships between the selected features.

– Selection. Each population is evaluated by fitness function in Equ. 9. The only
populations whose fitness is greater than threshold τS are selected.

Mainly, we emphasize two effects by exploiting this meta-evolution strategy to col-
laboration based on meta-crawler.

1. Reconciling conflicts: In [11], semantic conflicts are classified into three levels;
instance level, concept level, and relation level. In this paper, we are focusing on
conflicts in concept level.

2. Detecting changes: As monitoring the new populations containing semantic sub-
structures during a certain time, we can realize semantic changes on the local on-
tologies.

4 Experimental Results and Discussion

In order to prove the performance of this system, we acquired and analyzed exper-
imental results. We used Java Genetic Algorithms Package3, and more importantly,
for mapping the semantic substructures, Alignment API4. We evaluated the processes
for estimating local ontologies and constructing meta-evolution strategy, by interacting
multiple crawlers.

Five students were asked to browse the web spaces5 to search for particular items.
We generated 20 crawlers for each student. Fig. 2 shows three different cases of building

3 JGAP, http://jgap.sourceforge.net/
4 Alignment API, http://alignapi.gforge.inria.fr/
5 This testing bed is obtained from [6].
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Fig. 3. Matching ratio for three web spaces

semantic structure of a given web space. The proposed methods (e.g., ‘Meta-ES with
Fixed/Random Size’) using meta-evolution strategy have outperformed about 12% and
15% matching ratio, respectively. More particularly, we found out that the meta-crawler
of which population size is static has shown the best performance.
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Also, we tested the proposed system as changing the number of crawlers (from 5 to
40). As shown in Fig. 3, in three web spaces, the matching ratios are linearly in propor-
tion to the number of crawlers. However, after over 30-34 crawlers, the performances
were decreased. We think this is caused by conflicts between crawlers. It means that we
need to find the optimal number of crawlers.

5 Related Work

There have been various studies to model and infer the context on user searching tasks
in information retrieval (IR) systems. Especially, like our user intention modeling, some
studies have proposed to model user contexts from implicit relevance feedback (Implicit
RF) for efficient focused crawling. Kelly and Teevan [12] classified the contextual IR
systems, with respect to what kind of user behaviors are observed. The interested behav-
iors are depended upon the goal of target applications. Internet surfing [13] is related
to scrolling and clicking, while bookmark sharing system [14] has to focus on book-
marking, deleting, and reusing. Moreover, some studies have investigated to model the
contents accessed to by users like binary voting model [15] and the proposed method.

In this paper, user’s browsing pattern is the only behavior that we are interested. Also,
the annotated semantic information, instead of content itself, is the main target of this
study. Meanwhile, it also has involved in some related studies for building consensual
knowledge base acquired from end-users. Such methods are CO4 [16] and meta-level
patterns [17]. In our work, the consensus are represented as a set of features most fre-
quently applied to local ontologies.

6 Conclusion and Future Work

With semantically heterogeneous web spaces, we were motivated to overcome the in-
formation searching problem based on cooperative crawler framework. The aim of this
paper is seamless interoperability for user’s focused crawling with meta-evolution strat-
egy. In particular, emergent semantics (e.g., reconciling conflicts and detecting changes)
were efficiently recognized to improve performance of the meta-crawler.

Most importantly, we are expecting that this study is very appropriate to many ap-
plications (e.g., business process, information integration, and so on) in era of semantic
web.

As future work, we, above all, plan to develop the semantic transformer for trans-
lating different ontology languages, because it was the main problem of merging oper-
ation. Also, after building consensus ontology, we want local ontologies to be clearly
socialized based on extracting social features from relationships between ontologies
[18], in order to construct society of ontologies.
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Abstract. This paper introduces the use of 15 different readability in-
dices as a fingerprint that enables the classification of documents into dif-
ferent categories. While a classification based on such fingerprints alone is
not necessarily superior to document categorization based on dedicated
dictionaries per se, the document fingerprints can enhance the overall
classification rate by applying proper data fusion techniques. For other
applications text mining related applications such as language classifica-
tion, the detection of plagiarism, or author identification, the accuracy
of text categorization methods based on readability fingerprints can even
exceed a dictionary-based approach. A novel addition to the readability
indices is the addition of histograms based on the word length of all the
dictionary words used in the text and a dictionary of the most common
easy words in the English language.

1 Introduction

Document classification and Automated Text Categorization (ATC) refers to
the classification of documents into one or more predefined classes or categories.
Practical applications of document classification can range from spam filtering,
author identification, document searching, homeland security, and fault diagno-
sis [9,12]. The vast amount of documents that can be retrieved online in digital
form motivates the need for efficient automated document organization and clas-
sification systems [14].

A readability index is a metric that indicates how hard a text is to read. Of-
ten a readability index is expressed in grade level, originally indicating the grade
level for which a particular book is appropriate. The literature cites a variety of
readability indices often for different purposes such as the ease of automation,
estimating the language complexity for military manuals and instructions, eval-
uating readability for readers with English as a second language and so on. The
readability indices are often based on the average number of words per sentence
and the averaged word complexity as expressed by the number of syllables or the
word length. Many of the commonly used readability indices were introduced in
the fifties, sixties, and seventies and ease of computerized evaluation was usually
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not considered while defining readability indices. This paper introduces the idea
that a collection of different readability indices can be used as a characteristic
fingerprint for a document that can bring additional value for document clas-
sification. While for many documents classification tasks the use of dedicated
dictionary-based text encoding might lead to an inherently superior classifica-
tion per se, even in these cases the generation readability fingerprints can be used
in a data fusion procedure to further increase the correct classification rate.

This paper is organized as follows: section 2 provides a brief introduction to
readability indices and describes the generation of a readability-based finger-
print for a document; section 3 shows the use of readability fingerprints for text
categorization by language using an unsupervised self-organizing map; section
4 shows how the same technique can be used for author identification; section
5 compares binary supervised text categorization on the TechTC benchmark
dataset from Gabrilovich and Markovitch at Technion [8].

2 Use of Readability Indices to Fingerprint Documents

A readability index indicates how easy a text is to understand for a particular
target population of readers and documents. Readability indices have been de-
fined for different target populations of readers such as students in the lower
six grade levels, high school students and students with a university education,
foreign students with English as a second language, military pilots, and soldiers.
By the same token different readability indices have been defined for amongst
others: computer manuals, military instruction manuals, and electronic docu-
ments. Most readability indices are based on heuristic formulas that take into
account the average number of words per sentence, the average word complexity,
and sometimes consider which fraction of words in a text can be considered as
familiar words.

The comprehension of a document can be considered as is an interaction
between the particular reader, whose possible prior knowledge of aspects of the
content and the text features would influence the ease with which they access
the text, as well as the aspects of the text itself, such as text size, layout, and
font type. Readability can be assessed by conducting surveys and readability
tests.

We developed software to automatically determine 15 commonly used read-
ability indices for electronic documents. The software is a C-based scriptable
shell that generates Perl routines for dedicated text analysis tasks. The software
for estimating readability indices was first extensively benchmarked with several
online programs listing different readability indices. As an example, Figure 1
shows text statistics and readability indices for the Notebooks of Leonardo.

In addition to the readability indices, the text fingerprints consist of 48 ad-
ditional numbers that describe three 16-bin histograms: (a) a histogram for the
wordlengths for the 3,000 Dale-Chall easy words [4] ; (b) a histogram for the
wordlength with the easy words removed from the text; and (c) a wordlength
histogram for all the words in the text. The Dale-Chall easy word list [4] contains
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Description Abbreviation MetricValue Interpretation Comment year Introduced by
   Number of characters without spaces CHR 103011
   Number of syllables SYL 310378
   Number of words WRD 239016
   number of sentences SEN 9761
   Estimated # of long words (>10 char) (LONG) 14373
   Estimated # of complex words  (3 syl) (3SYL) 33057
   Estimated # of complex words (4 syl) (4SYL) 11736
   Estimated # of fog words (3 syl*)) (3SYL*) 16624 Drop trivial ending syllables such as -ing, -ed, etc.

   Average # of characters per word A_CHR_W 4.31
   Average # of syllables per word A_SYL_W 1.30
   Average # of words per sentence A_WRD_S      24.49

   MJE Gunning Fog Index FOG_MJE 12.2
   Wordstem-based Gunning Fog Index FOG_STM 12.58 Number of years of formal education necessary to easily read a text 1952 Robert Gunning
   Gunning Fog Index FOG3 15.33
   Gunning Fog Index FOG4 11.76
   Coleman-Liau Readability Index CLRI 8.36 U.S. grade level for grades 4 to college level 1975 Meri Coleman and T. L. Liau
   Flesch-Kincaid Grade Level FKGL 9.28 Grade Level, for U.S. Navy technical documents 1976 Rudolph Flesch and J. Kincaid
   Automated Readability Index ARI 11.11 U.S. grade level, originally for Air Force technical documents 1967 E. A. Smith and R. J. Senter
   SMOG Index SMOG 9.65 "Simple Measure of Gobbledygook" in # years of US education 1969 G. Harry Mclaughlin
   FRES Score FRES 72.12 Numerical score between [1..100] for [easy .. Difficult] 1948 Rudolph Flesch

   FORCAST readability Grade Level FORCAST 13.91 Grade level, U.S. Army technical Manuals and forms 1992 Thomas Sticht
   Powers-Sumner-Kaerl Grade Level PSK_GL 5.61 Kindergarten to 7th graders, US army technical manuels & froms 1958 Powers, Sumners, Kaerl

   Laesbarhedsindex LIX  49.37 difficult [0..100] Works for any Western European language 1979 Björnsson, Hård, and Segerstad 
   Rate Index RIX   6.21 grade 12 Can be translated into grade level, any european language 1981 Anderssen
   Linsear Grade Level LWR 15.63 Grade level, U.S. Air force technical Manuels
   McAlpine EFLAW Index EFLAW   45.59 confusing Devised for readers with English as a second language 2004 McAlpine

   Dale-Chall RGS DC_RGS 8.19 1975 revised list of 3000 familiar words, for all grade levels 1948/1975 Edgar Dale and Jeanne S. Chall
   Easy word percentage EW_PER 78.88 Based on list of 3000 familiar words 1975 Edgar Dale and Jeanne S. Chall
   SPACH*:                                           SPACH1 3.98 Intended for grades 1-3; 1974 revised list of 1065 easy words 1974
   SPACH:                                            SPACH2 4.66 Same as above without wordstemming

   FRY_X = Avg syllables/100 words FRY_X 129.86 Use chart to translate Fry indices in a grade level 1977 Edward Fry
   FRY_Y = Avg sentences/100 words FRY_Y 4.08

Fig. 1. Summary of 24 readability related indices (highlighted in column 3) used in a
text fingerprint for The Notebooks of Leonardo da Vinci [3]

3,000 familiar words that can be understood by more than eighty percent of
fourth grade students. Words that are not on the Dale-Chall list can be inter-
preted as unfamiliar and are therefore more difficult to read. An example of two
of these histograms is shown in Figure 2.

The Dale-Chall readability index is based on the fraction of Dale-Chall words
in a text and was described in the now out-of-print 1948 book by Edgar Dale and
Jeanne S. Chall entitled “A Formula for Predicting Readability.” The original
list initially contained 763 familiar words and was modified to 3,000 words in
1995. As an example, the formula for the Dale-Chall reading Grade Score (RGS)
is given below:

RGS = 0.1579 × DS + 0.0496 × ASL + 3.6365

Where DS is the percentage of words in the text that are not in the list of
3000 familiar dale-Chall words, and ASL represents the average sentence length,
in words per sentence. The Dale-Chall readability index is not the most widely
used index, but is considered more accurate than more popular indices such as
the Flesch Reading Ease score [7], or the Flesch-Kincaid Grade Level [10].

A nice comprehensive survey on the different readability indices can be found
in a document written by William H. DuBay [6]. In this study we used a total
of 72 fingerprints: (a) 24 fingerprints that are or are associated with several
of the popular and less popular readability indices listed by DuBay; and (b)
48 fingerprints associated with the three 16-bin wordlength histograms. Most
readability indices are based on simple metrics that have to be derived from the
text such as the average number of characters per word, the average number
of syllables per word, and the average number of words per sentence. Some
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Fig. 2. Histograms for the wordlength of the familiar words (left hand side) and the
wordlength of all the words with the familiar words removed for the notebooks of
Leonardo da Vinci [3]

readability indices have in addition a dictionary of easy words used to determine
the fraction of easy words in a text. Different readability indices have different
rules for operations such as wordstemming, and counting syllables. It is word
pointing out again here that most readability indices were defined without any
consideration for the easy by which their calculation could be automated for
processing digital documents.

3 Characterizing Text by Language with Readability
Indices

Readability fingerprints were applied to encode 71 books in 5 different languages.
The books were obtained as digital documents from the Project Gutenberg web-
site [15] and consisted of 34 English books, 6 Latin books, 12 Dutch books, 7
German books, and 12 books in French. A typical Kohonen map [11] is repro-
duced in Figure 3.

Note that the different language categories are not equally represented, that
some books are split up in several parts, other books are represented several
times in different languages, and that certain authors (e.g. Shakespeare) have
several books in the pool. The only preprocessing of the documents, after de-
termining the readability fingerprints, was a straightforward normalization (i.e.,
center each variable and divide by the standard deviation). The purpose of this
study is not to claim that fingerprinting text based on (mostly English language-
based) readability fingerprints is the best way to classify text. Obviously a dic-
tionary encoding with typical small frequent word dictionaries for the different
languages would work as well if not better. Nevertheless we can definitely con-
clude that fingerprinting texts with readability indices deserves consideration,
and can probably boost the performance of any language classifier if proper
data fusion techniques are applied. An example of data fusion for increased pre-
diction performance based on different representations of the data is presented
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Fig. 3. Kohonen map (toroidal geometry) for 71 documents in 5 languages with 72
fingerprint features. Note that top and bottom and right-hand and left-hand side should
wrap around.

in these proceedings in the paper by Chanjian Huang et al. A representation of
the 71 books based on the first and the second principal components is shown in
Figure 4. Different language regions can easily be delineated in this case there
is just one document that does not fit the linear separations.

A spectral clustering [1] with a Gaussian kernel was fairly robust (i.e., similar
results can be obtained within a wide range for the kernel Parzen window, and
the specified number of clusters) and resulted in the confusion matrix repro-
duced in Table 1. The results for spectral clustering were slightly better, but
otherwise similar to those obtained based on a K-means clustering. Note that
the largest source for the error is that 4 Dutch texts are classified as German
books. Considering that the four misclassified texts actually dated from the sev-
enteenth and eighteenth century, where Dutch was a lot more similar to German
as is currently the case, this is actually a very reasonable result. The other Dutch
text that was misclassified as a Latin book is actually a medical text with an
abundance of Latin terms in the text.

The experiments on book categorization by language were repeated in several
different ways, but now rather than using the 72 fingerprints containing readabil-
ity indices information and three 16-bin wordlength histograms, we either con-
sidered only the 48 variables associated with the word histograms, or eliminated
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Fig. 4. Principal component representation of 71 books in 5 different languages

Table 1. Confusion matrix for spectral clustering of 71 texts in 5 different languages

Language English Dutch German French Latin

English 34 0 0 0 0

Dutch 0 7 4 0 1

German 0 0 7 0 0

French 1 0 0 11 0

Latin 1 0 0 0 5

the 48 variables associated with the word histograms were eliminated from the
fingerprints. In both cases the classification results were by far inferior to the
classification based on the 72-variable fingerprints. Depending on the specific
documents, and the specific text categorization task we consistently noticed that
the wordlength histogram information is about as relevant as the variables that
are immediately associated with the readability index information.
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4 The Use of Readability Indices for Document
Classification

Good text categorization benchmark datasets are the Reuters-21578 collection,
the 20 Newsgroup OHSUMED and the TIPSTER corpus. For this study we
choose a subset of Tech TC-100, which contains 100 binary classification datasets
whose categorization difficulty (as measured by a baseline linear SVM classifier)
is uniformly distributed between 0.6 and 0.92. The data can be downloaded from
the Technion repository for text categorization datasets [Gabrilovich 2004]. The
data were collected with an automated data acquisition methodology for datasets
with desired properties as described by Davidov et al. [5]. Each dataset consists
of binary categories with an average of 150-200 documents (depending on the
specific test collection).

For this study we used a subset of Tech TC-100 consisting of 19 binary classifi-
cation datasets: the first 10 binary datasets and the remaining datasets with the
highest categorization difficulty. The datasets were encoded with 72 readability
fingerprint indices (24 readability related indices, and three 16-bin wordlength
histograms). In this case we selected the same number of documents as indi-
cated in the study by Gabrilovich and Markovitch [8]: the documents had an
equal number of instances for both categories, and only the largest documents
were used in this study. We used partial-least squares (PLS) [16] and kernel
partial least squares (K-PLS) [13] in a leave-one-out mode for doing the binary
classifications. The results are summarized in Figure 5 and compared with results
obtained with dictionary-based encoding by Gabrilovich and Markovitch.

Looking at Figure 5, it can be concluded that the classifications based on
K-PLS fingerprints are comparable or superior in six cases to classifications
based on linear SVMs and a dictionary-based encoding. It is actually expected

No Cat_ID1 Cat_ID2 # Docs PLS_finger K-PLS_finger SVM_100 C4.5_100 KNN_100 SVM_0.5 C4.5_0.5 KNN_2%
1 1622 42350 163 0.613 0.662 0.863 0.773 0.838 0.744 0.75 0.729
2 6920 8366 140 0.643 0.735 0.919 0.897 0.927 0.897 0.897 0.907
3 8308 8366 144 0.583 0.618 0.829 0.743 0.793 0.829 0.807 0.862
4 10341 10755 145 0.706 0.790 0.771 0.811 0.708 0.820 0.792 0.794
5 10341 14271 145 0.628 0.731 0.681 0.788 0.618 0.813 0.820 0.796
6 10341 14525 158 0.632 0.674 0.590 0.507 0.590 0.564 0.615 0.514
7 10341 61792 153 0.712 0.79 0.757 0.803 0.717 0.796 0.822 0.810
8 10341 186330 147 0.721 0.796 0.701 0.800 0.729 0.848 0.854 0.826
9 10341 194927 159 0.660 0.761 0.737 0.770 0.737 0.801 0.769 0.821

17 10385 312035 145 0.675 0.717 0.650 0.536 0.655 0.486 0.519 0.543
28 10567 46076 142 0.690 0.746 0.650 0.900 0.593 0.943 0.936 0.879
46 14630 20186 157 0.688 0.764 0.596 0.949 0.468 0.929 0.949 0.833
51 17360 20186 145 0.696 0.751 0.597 0.875 0.563 0.903 0.931 0.852
53 18479 20186 152 0.651 0.756 0.645 0.934 0.533 0.921 0.928 0.875
58 20186 61792 153 0.758 0.817 0.592 0.892 0.582 0.842 0.928 0.731
61 20673 312035 139 0.640 0.676 0.640 0.787 0.618 0.839 0.838 0.812
75 186330 46076 145 0.752 0.772 0.650 0.716 0.672 0.822 0.764 0.832
80 194915 20186 157 0.669 0.79 0.404 0.561 0.547 0.398 0.603 0.442
82 194915 194927 164 0.579 0.713 0.631 0.706 0.613 0.763 0.706 0.639

Fig. 5. Comparison of 20 binary text classifications for a subset of tech TC-100, using
PLS and K-PLS on readability fingerprints and other methods based on dictionary
encodings [8]
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that dictionary-based encoding would be superior to readability fingerprints: the
fact that this is not always the case is actually surprising and warrants further
study. In the past we extensively compared K-PLS classification and regression
on benchmark data with SVMs, and found that both methods yield compara-
ble results when the same kernel is used [2]. In this case of the benchmarks in
Figure 5, the SVMs are actually linear SVMS, but the K-PLS method still com-
pares favorably with C4.5 or K Nearest Neighbors (KNN). Note also that the
classification accuracy based on fingerprints would drastically decrease if the 48
wordlength histogram data were not considered in the text fingerprints (results
not shown).

From these benchmark studies it can be concluded that for certain datasets
and binary text categorization tasks readability fingerprints are an appropriate
way to represent the data and that such a text encoding can possible boost
the accuracy of a text categorization system by applying proper data fusion
techniques.

5 Conclusion

This paper shows for the first time that the use of different readability indices
can be utilized for document categorization. Two benchmark studies were con-
ducted: a language classification experiment, and a comparison on a subset of
the Tech TC-100 data. While a classification based on such fingerprints alone
is not necessarily superior to document categorization based on dedicated dic-
tionaries per se, the document fingerprints can enhance the overall classification
rate by applying proper data fusion techniques.
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Abstract. The immense amount of unstructured information available on the 
Web poses increasing difficulties to fulfill users’ needs. New tools are needed 
to automatically collect and filter information that meets users' demands. This 
paper presents the architecture of a personal information agent that mines web 
sources and retrieves documents according to users’ interests. The agent oper-
ates in two modes: "generation of space of concepts" and "document filtering". 
A space of concepts for a domain is represented by a matrix of asymmetrical 
coefficients of similarity for each pair of relevant terms in the domain. This ma-
trix is seen as a Hopfield neural network, used for document filtering, where 
terms represent neurons and the coefficients of similarity the weights of the 
links that connect the neurons. Experiments conducted to evaluate the approach 
show that it exhibits satisfactory effectiveness. 

1   Introduction 

With the expansion of the Web, users face increasing difficulties to fulfill their infor-
mation needs. Contribute to this scenario the unstructured nature of the data stored on 
the web, mostly text documents formatted using the HTML language, and the dy-
namic nature of the Web that requires that users continually carry out new searches to 
check for new documents of interest. This situation has motivated the development of 
personal information filtering software agents that continuously search the web look-
ing for documents of interest for their users.   

Although the research on information software agents is recent, the idea of devel-
oping systems directed to fulfill information needs of specific users can be traced 
back to the late 1950’ies. In his Business Intelligence System, Luhn (1958) proposed 
that librarians create user profiles that should be used to produce lists of suggestions 
of new documents for each user. Requests of particular documents should be recorded 
and used to automatically update users’ profiles. Luhn identified several key aspects 
of modern information filtering systems, although the technology available at that 
time severely restricted the implementation of his ideas. 

Information needs change from user to user. Therefore, information filtering sys-
tems have to be personalized in order to fulfill individual user’s interests, taking the 

 2007 



418 A. Marin et al. 

role of personal assistants. Such a personalized information filtering system has to 
satisfy three requirements: 

1. Specialization: the system selects the documents relevant to the user and discards 
the others; 

2. Adaptation: information filtering is an iterative process done for large periods of 
time, during which user’s interests change; 

3. Exploration: the system should be able to explore new domains, in order to find 
something new potentially interesting to the user. 

 

A number of different models and systems have been implemented for information 
retrieval and filtering. Typically, these systems consist of three main components: 
document representation, user’s interests representation and algorithms used to match 
user’s interests to documents representations (Salton, G.; McGill, 1997; Yan, T. W.; 
Garcia-Molina, 1999).  

Hopfilter is a personal agent that mines web information sources and retrieves 
documents according to user’s interests. This paper describes in detail the architecture 
of Hopfilter; a general overview can be found elsewhere (Adán-Coello, Tobar, 
Freitas, and Marin, 2007).  

In general lines, Hopfilter works in the following way: initially, the user manually 
selects a document collection on an interesting subject. Through automatic indexa-
tion, the system generates the terms that better represent the content of the collection. 
With the use of statistical functions that calculate the co-occurrence of the terms in 
the collection, the system generates a similarity matrix containing terms and coeffi-
cients that indicate the degree of relationship between every pair of terms. This matrix 
of similarity is interpreted as a knowledge net or a space of concepts. The space of 
concepts represents a neural net with neurons (terms) interconnected through synaptic 
weights (relationship coefficients). The filtering process starts when a document to be 
filtered is used as an input pattern to the network. When the network converges to a 
state of equilibrium, the amount of active neurons indicates whether the document is 
compatible with the concepts stored in the memory of the net or not. If the document 
is considered relevant, the user is notified that the filtered document contains informa-
tion of interest. 

The generation of the space of concepts for filtering is done by an adaptation of the 
method used by Chen et al. (1994, 1998) to generate a list with the main ideas (con-
cepts) raised during a session of an Electronic Brain Storming System. 

The article is organized as follows. In section 2 the architecture of Hopfilter is pre-
sented. Section 3 presents the results of some experiments conducted to evaluate the 
agent. Section 4 closes the paper with some final remarks. 

2   The Architecture of Hopfilter 

The filtering agent is composed of the following modules: User interface (UI), Web 
interface (WI), Document Preprocessing (DPP), Automatic Indexing (AI), Generation 
of the Space of Concepts (GSC), and Artificial Neural Net (ANN). The UI and WI 
modules interface with the user and with the web, as their names suggest, and are not 
on the focus of this paper. 
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The filtering agent can operate in two modes: "generation of space of concepts" 
and "document filtering". The generation of space of concepts mode uses the modules 
DPP, AI and GSC. The document filtering mode involves the modules DPP, AI and 
ANN.  For running in the “document filtering” mode, a space of concepts (SC) for the 
considered domain must already be available. The functioning of each mode of opera-
tion is briefly described below; each module will be described in details in the se-
quence.   

To generate the space of concepts a collection of n documents selected by the user 
about a specific domain must be submitted to the agent. The preprocessing module 
removes the tags of the document, producing plaint text words.  From the words iden-
tified, the module of automatic indexing generates the terms (indexes) that better 
represent the document collection and computes asymmetric coefficients of similarity 
for each pair of generated terms. The terms with their respective asymmetric coeffi-
cients of similarity are arranged into a matrix of similarity (space of concepts). The 
agent interprets the space of concepts as being a Hopfield artificial neural net (Hop-
field, 1982), where terms correspond to neurons and asymmetric coefficients of simi-
larity to neuron connections weights. 

To filter a document, the agent initially identifies the words in the document, using 
the preprocessing module, and generates the terms that represent the document using 
the automatic indexing module. The artificial neural net module uses the terms gener-
ated by the indexing module to create a vector of the form x = { x1, x2..., xn }, where n 
is equal to the number of terms in the space of concepts, and xi, corresponds to the i’th  
term generated by the mechanism. xi will be 1 if the i’th  term is present in the space 
of concepts or 0 otherwise. This vector is used to activate the Hopfield neural net.  
Once activated, the net will search for a state of equilibrium. When such a state is 
found, the number of active neurons indicates the relevance of the filtered document. 

2.1   Preprocessing 

The preprocessing module receives a Web page and outputs plain text. HTML tags, 
punctuation marks, dates, numbers and several other symbols are removed from the 
input document. 

2.2   Automatic Indexing 

When a document is indexed the result is a list of terms, or indexes that represents the 
document content. Automatic indexing consists of three operations: removal of stop-
words, work stemming, and term formation. 
 
Removing stopwords. After identifying the words in the input document, using the 
preprocessing module, the words that are not relevant for characterizing the content of 
the document are removed. To assist in this process it is used a dictionary with around 
46,000 words. Dictionary entries can be manually marked by the user as stopwords. 
By default, articles, pronouns, conjunctions, prepositions, adverbs, numerals, and 
linking and auxiliary verbs are not considered discriminant words, and as such treated 
as stopwords. All words in the input document that are not found in the dictionary are 
kept in a table for posterior analysis. If desired, these words could be included in the 
dictionary by the user, allowing its constant update. 
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Word stemming. The purpose of this step is to reduce the number of cognate words 
to be indexed. The algorithm implemented is an adaptation of the Lancaster Stem-
ming Algorithm (Paice, 1990) for the Portuguese language that removes only the 
suffixes of the words. 
 

Term formation. Adjacent words resulting from the previous step are used to form 
terms. A term can be formed by one, two or three words. For example, with the three 
words, "tax", "credit" and "exchange" it is possible to form up to six terms: "tax", 
"tax-credit", "tax-credit-exchange", "credit", "credit-exchange" and "exchange". For 
each term it is computed a term frequency, tf, that represents the number of times the 
term appears in the document. When the agent operates in the "generation of space of 
concepts" mode, it is also calculated the document frequency for the term, df, that 
represents the number of documents, in the collection of documents, where the term 
appears. 

2.3   Generation of the Space of Concepts  

The objective of this module is to calculate asymmetrical coefficients of similarity for 
each pair of terms, generating a matrix containing the terms and the respective coeffi-
cients, or degrees of relationship. This matrix, also called matrix of similarity, repre-
sents the space of concepts.   
 
Term selection. Normally, the amount of terms generated by the module of automatic 
indexation is very high. To reduce the time needed to compute the coefficients of 
similarity, only the most important terms must be considered. Term selection is based 
on the importance of the terms in a document collection. We define the importance of 
term j, dj, in a collection of n documents by the following equation 
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jj ××=  

where tfj is the frequency of term j in the document collection, dfj is the document 
frequency of term j in the document collection, ts is the term size in words, and n the 
amount of documents that compose the collection.  ts is used to increase the weight of 
terms formed by two or three words, because those terms are more descriptive than 
single word terms.  

The frequency of term j in a collection of documents, tfj, is calculated by equation 2: 
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where tfji is the frequency of term j in document i. 
 
Computing the asymmetric coefficients of similarity. The asymmetric coefficients 
of similarity for each pair of terms i and j are calculated by the asymmetric clustering 
function used by Chen et al. (1994) represented by equations 3 and 4 below. 
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Equation 3 computes the similarity from term j to term k and equation 4 from term k 
to term j; dij represents the weight of term j in document i; dik represents the weight of 
term k in document i, and dijk represents the weight of terms j and k in document i.  

The factor dij, that represents the weight of term j in document i, is calculated by 
equation 5 below: 
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where tfij represents the number of occurrences of term j in document i, and dfj repre-
sents the number of documents in a collection of n documents in which the term  
occurs. The factor dij is proportional to the frequency of term j in document i and 
inversely proportional to the number of times term j occurs in the collection of n 
documents: a term that seldom appears in the documents has a high weight, while a 
term that occur in many documents has a low weight. Terms that occur quite fre-
quently can be very general and as such have very little discriminant power.  

The factor dijk indicates the relative importance of terms j and k in document i. It is 
computed by equation 6 below. 
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where tfijk represents the number of simultaneous occurrence of terms j and k in 
document i, and dfjk represents the number of documents, in a collection of n docu-
ments, in which terms j and k occur simultaneously.   

The result of this step is a matrix of similarity or a measure of the distance between 
each term. The similarity matrix represents the space of concepts and can be seen as a 
neural network, where terms represent neurons and the coefficients of similarity the 
weights of the links that connect the neurons.   

2.4   Hopfield Neural Network 

This module is used to filter a document by means of the Hopfield neural network  
as discussed in section 2.3. Initially the document to be filtered is submitted to the 
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preprocessing and automatic indexing modules, in such way that it will be represented 
by a set of terms or indexes, as done for generating the space of concepts. These terms 
will define the elements of an n dimension input vector to the net, for a space of con-
cepts with n terms. The input vector will have the form x = {x1,x2,...,xn}, where xi will 
1 if the i-th term of the space of concepts is present in the document to be filtered and 
0 otherwise. 
 
Initialization of the net.  At time t = 0, each neuron of the net (representing a given 
term) will assume its corresponding value in vector x, as described by equation (7). 

 
  
 

where yi(t) is the output of neuron i at time t = 0 and xi (with value 0 or 1) is the input 
value to neuron i at time t = 0. 
 
Activation and iteration. Network activation and iteration are done by the transfer 
function shown below. 
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where fs(netj) is the sigmoid function. θ1 e θ0 are empirically defined constants and 
netj is computed by the following expression 

 
 
 

 
where wij is the weight of the connection between neurons i and  j, and xi(t) is the 
value of neuron i at time t. 

The implemented artificial neural net executes the update of the neurons synchro-
nously, that is, the values of all neurons are updated at the same time. 
 
Convergence. The previous step is repeated until no significant alterations in the 
outputs of the neurons between two consecutive iterations are detected, as described 
by equation 10. 
 

 
 
 
 

where Ε, defined empirically, corresponds to the maximum allowed variation between 
the output values of the neurons in two consecutive iterations, indicating that the net 
should be stable.  

When the net converges, the number of active neurons is counted. The higher the 
number of active neurons the higher the relevance of the document, according to the 
space of concepts stored in the memory of the net. 
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3   Experimental Evaluation 

Hopfilter was evaluated using documents copied from the Brazilian Federal Revenue 
site (http://www.receita.fazenda.gov.br) to a local document base. A collection of 59 
documents was selected and classified by an expert user.  The space of concepts was 
constructed using 22 documents of the collection dealing with the subject “income 
tax”. For the filtering experiment, 37 documents were chosen randomly, 17 of which 
were relevant to the subject “income tax”, according to the classification made by the 
expert. 

The agent effectiveness in filtering documents was measured using the precision 
and recall rates, widely used by the information retrieval community (Rijsbergen, 
1979). The precision is calculated dividing the number of relevant documents re-
trieved by the total number of retrieved documents. The recall is calculated dividing 
the number of relevant documents retrieved by the number of relevant documents 
available in the document base. 

Four parameters were decisive to produce satisfactory results: the number of neu-
rons in the net, the energy Ε, the bias θ1, and the curvature θ0. For a net with 25 neu-
rons, θ0 = 0.01, θ1 = 0.7, and Ε = 0.025, precision and recall rates were of 83.33% and 
88.23%, respectively. A good performance when compared with similar systems 
(Vallim and Adán-Coello, 2003; Salton and McGill, 1997). 

4   Concluding Remarks 

The nature of natural language used in Web pages presents semantic characteristics 
that make it very difficult to construct mechanisms for automatic information re-
trieval, filtering and extraction. For example, synonymy (different words express the 
same idea) and polysemy (a word has several meanings) make it difficult to determine 
if a given page is relevant for the user’s interests.   

Despite the inherent difficulties to filter texts written in natural language, the ex-
periments conducted so far suggest that concept spaces and associative memories are 
an effective option to represent document content. However, the selection of terms to 
compose the space of concepts is a decisive factor for a good performance of this 
approach. Terms very common in the considered domain have low descriptive power 
and can reduce substantially the filtering precision rate. The investigation of semiau-
tomatic methods for identifying such and the use of ontologies to face the difficulties 
presented by synonymy and polysemy are among the planned future works for in-
creasing the effectiveness of Hopfilter. 
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Abstract. Recurrent Neural Network (RNN) models have been shown
to perform well on artificial grammars for sequential classification tasks
over long-term time-dependencies. However, there is a distinct lack of the
application of RNNs to real-world text classification tasks. This paper
presents results on the capabilities of extended two-context layer SRN
models (xRNN) applied to the classification of the Reuters-21578 corpus.
The results show that the introduction of high levels of noise to sequences
of words in titles, where noise is defined as the unimportant stopwords
found in natural language text, is very robustly handled by the classifiers
which maintain consistent levels of performance. Comparisons are made
with SRN and MLP models, as well as other existing classifiers for the
text classification task.

1 Introduction

This paper explores the capabilities of extended two-context layer simple recur-
rent neural network models (xRNN) [21,23,22] for classifying real-world news
titles from the Reuters-21578 Corpus [13]. The more complex architectures of
RNNs have been shown to have powerful computational capabilities [24,4] and
stable behaviour [19,11].

However, many of these recurrent models have only been applied to artificially
generated grammars and benchmarking datasets, but there is no equivalent re-
search on real-world text classification (TC). The reasons for applying such neu-
ral network approaches to the domain of TC are many, including robust and
adaptable behaviour in the face of noisy [8], new and ever-changing information
such as that presented by the Internet. In addition, RNNs specifically have the
inherent property of being able to encode and learn information that is depen-
dent on learning memory-dependent, contextual and sequential information.

A Simple Recurrent Network (SRN) or Elman Network [6] can only em-
body network activation information from the t-1 timestep during learning, the
memory span is not sufficient for sequence learning that requires longer time-
dependencies.

Recent work [19,9] on extended RNN architectures with more context lay-
ers and various layer-to-layer configurations has shown that the stability and
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computational power of these architectures is greater than with SRNs and a
potential solution to the rapid decay of information during training in RNNs,
often referred to as the “problem of vanishing gradients” [7].

2 Description of Recurrent Neural Model Used for Text
Classification Task

The two hidden layer SRN architecture (xRNN) [21,23,22] used in this study
is shown in Figure 1. The context layers take copies of previous hidden layer
activations, and add them to respective current activations. In a conventional
RNN, context layers essentially take one-to-one copies of activations. However,
using the hysteresis decay function (discussed in subsection 2.2), the context
layers are able to selectively maintain varying percentages of activations from
previous states, giving an architecture that is potentially more finely tunable.

Hidden
Layer

Input Layer

Hidden
Layer

Context Layer

Output Layer

Context Layer

Activations Copied Back

Activations Copied Back

Fig. 1. An xRNN recurrent network, which is an Elman/SRN network with two hidden
and two context layers instead of one of each. The arrows indicate the hidden unit
activations that are copied to the respective context units.

2.1 Formal Definition of xRNN Model

The input to a hidden layer Hn is constrained by the underlying layer Hn−1, as
well as the incremental context layer Cn. The activation of a unit Hni(t) at time
t is computed on the basis of the weighted activation of the units in the previous
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layer H(n−1)i(t), and the units in the current context of this layer Cni(t), which
are constrained by the logistic function f :

Hni(t) = f(
∑

k

wkiH(n−1)i(t) +
∑

l

wliCni(t)) (1)

The units in the context layers sum the information using the equation:

Cni(t) = (1 − ϕn)Hni(t − 1) + ϕnCni(t − 1) (2)

where Cni(t) is the activation of a unit in the context layer at time t. The
self-recurrent connections are represented using the hysteresis value ϕn. The
hysteresis value of the context layer Cn−1 is lower than the hysteresis value of
the next context layer Cn. This ensures that the context layers closer to the
input layer will perform as memory that represents a more dynamic context.
Having higher hysteresis values, the context layers closer to the output layer will
incrementally build more stable sequential memory.

2.2 Hysteresis Function of the Context Layers

The hysteresis function [14], which is applied to the context layers of the xRNN
model, is inspired from the mechanism in biological neurons that enables them to
maintain their activation states even after the excitatory impulse disappears [12].
This parameter needs to be optimised for the architecture and the dataset being
used, allowing the fine tuning of performance as required for each classification
task and dataset.

Fine tuning the hysteresis values allows the xRNNs to superimpose and ex-
tend different time-dependencies, retaining contextual information over longer
sequences for the classification task to be learned. For example, a value of 0.8
means that the context unit is retaining 80% of its current activation and there-
fore only 20% of new activation is copied to it.

3 Description of Text Corpus Used in Experiments

The Modified Apté (“ModApté”) Split [1] of the Reuters-21578 Text Categorisa-
tion Test Collection corpus [13] was used as it has been an important, prevalent
and standard benchmarking corpus in Information Retrieval (IR) and Machine
Learning (ML).

In order to ensure that there were enough training samples for the networks,
two pairs of related categories from this split were concatenated to give 8 cat-
egories, as opposed to the 10 normally used categories from this corpus subset.
The corpus consists of ≈10,000 titles. For the training set, ≈1,000 news titles
were used, the first 130 of each of the 8 categories; all the other ≈9,000 news
titles were used in the test set.
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3.1 Definition of Noise

Noise is generally defined in the field of IR as the insignificant, irrelevant words
or so-called stopwords which are normally present in any natural language text.
Stopwords have an average distribution in any standard English language corpus
and do not normally contribute any information to classification tasks; examples
are “and”, “but” and “the”.

4 Representation of Text Corpus: Deriving Word Vectors
and Feature Reduction

With over 10,000 unique words in the Reuters-21578 corpus, techniques have to
be used to transform the dimensionality or feature space of the data into a smaller
feature set. The dimension reducing preprocessing step adopted represents the
titles of the corpus in the form of “semantic vectors” [23,22], a variation on
the well-known Vector Space Models [16] such as the TF-IDF (term frequency–
inverse document frequency) representation.

The features are transformed into weighted vector representations for each
word in such a way that the number of dimensions for each word vector is thus
a function of the total number of classes in the corpus. Each word is given a
unique decimal value ranging from 0 to 1 that associates it with a particular
class, with high values for strong associations to a class, and small values for
weak associations.

4.1 Semantic Vectors

The semantic vector preprocessing strategy represents words as vectors which
have a likelihood of occurring in a particular semantic category; the advantage
of this representation is that word vectors are independent of the number of
examples present in each category:

v(w, ci) =
Normalized frequency of w in ci

C∑

j

Normalized frequency of w in cj

(3)

for j ∈ {1, · · ·n}

where:

Normalized freq. of w in ci =
Freq. of w in ci

No. of titles in ci
(4)

The normalised frequency of appearance of a word w in a semantic category
ci (i.e. the normalised category frequency) is computed as a value v(w, ci) for
each element of the semantic vector, divided by normalising the frequency of
appearance of a word w in the corpus (i.e. the normalised corpus frequency). C
is the total number of classes.
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5 Performance Measures Used for Comparison of
Experimental Results

An important step that must always be taken after TC experiments is to quantify
the performance of the various approaches used in a way so as to derive useful
and comparable representations of the results.

5.1 Recall and Precision

The standard measures of recall and precision (R-P) [15] used in IR and ML
were chosen for evaluating the performances of the classifiers, to address the
capabilities of xRNNs from an IR viewpoint. These two measures were then
combined to give what is termed the Fscore measure. If:

– α, number of correctly classified documents to a specific category
– β, number of incorrectly classified documents to a specific category
– γ, number of incorrectly rejected documents from a specific category

then Table 1 gives the formulae used to derive R-P measures used for presenting
results in this paper.

Table 1. Efficiency measures used in information retrieval and machine learning to
evaluate the performance of various classification approaches

IR AI

Recall Sensitivity α
α+γ

Precision Predictive Value α
α+β

5.2 Fscore Measure

FN =

(
1 + N2

)
∗ precision ∗ recall

(precision + (N2 ∗ recall))

For the purposes of comparison, results are represented as the weighted mean
of precision and recall; this Fscore is termed the F1 measure where recall and
precision are evenly weighted by setting N = 1.

6 Experimental Setup: Optimising xRNN Parameters

Well-defined methodologies must be adopted to ensure that good model general-
isation is maintained and potential pitfalls avoided. The following optimisation
steps were taken to ensure that the models and experiments were properly vali-
dated.
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6.1 Determining the Optimal Number of Input, Output and Hidden
Units

The input layer of the xRNN accepts a series of vectors, one for each word in
the title, whilst the output layer represents the class to which the title belongs.
Since there were 8 main categories for the training/testing, the input layer of the
xRNN had 8 units for the 8 dimensions of the semantic vectors for each word.
Furthermore, there were 8 output units that represented the 8 possible desired
output preferences for the respective semantic category of the title.

For determining the optimal number of hidden units, the “forward selection”
method was used until the best rate of convergence and a stopping criterion
were found – this was set to 6 hidden units. The hidden layers had a one-to-one
connection to their respective context layers, that is, the 6 hidden units were
connected to 6 respective units in the context layer.

6.2 Cross-Validation and Determination of Optimal Hysteresis
Values

Generalisation error was maintained at low levels by the adoption of a boot-
strapping cross-validation approach, where subsamples of the data were used.
Each subsample is a random sample with replacement from the full sample that
allows the reuse of the dataset efficiently [3]. The networks were optimised by
constantly resampling [20] during the initial optimisation experiments to derive
the parameter values that gave the best R-P outputs and the lowest generali-
sation error on the training set. These settings were maintained throughout all
the experiments unless otherwise stated or required.

The important derivation of the optimal hysteresis parameters for the xRNN
network have been described in [2]. The experiments were performed by iterating
through incremental hysteresis values in steps of 0.1, starting from {0.0, 0.0} for
the first (C1) and second context (C2) layers through to {1.0, 1.0} respectively.
The optimal settings adopted for C1 and C2 were set at 0.2 and 0.7 respec-
tively. These values were taken as the benchmarks for all comparisons. All the
experiments that follow were performed using the same conditions for learning
rate (0.01), number of epochs (900) and momentum (0.6) using the standard
backpropagation algorithm.

7 Experiments Performed and Results Obtained

The xRNN models were used to classify various configurations of the Reuters-
21578 Corpus training/test sets to test several hypotheses. Each series of ex-
periments was repeated a number of times and the results compared; the main
appropriate [5] statistical test done for significance between different results was
the two-sample T-test. Given differences in the results can be deemed statistically
significant, unless otherwise stated.
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7.1 Experimental Series I: Importance of Word Order and Ranking

This series of experiments used training and test sets of the Reuters-21578 Cor-
pus with the original, reversed, randomised, ranked and reverse ranked word
orders from the titles to ascertain whether sequential word ordering was im-
portant. The results are compared and presented in Table 2; in all the tables,
the results are ranked according to the mean Fscore measures for 50 separately
initialised networks given in the final column.

Table 2. Summary of micro-averaged R-P classification performances on the five main
orderings of the Reuters-21578 Corpus used to train/test the xRNNs

Version of corpus Highest performing Mean performance
dataset used for network on dataset (%) for 50 networks (%)

the xRNN models Recall Precision F-Measure Recall Precision F-Measure

Reversed Ranked 94.41 94.05 94.23 94.14 93.41 93.80
Fully Ranked 94.82 94.33 94.57 93.88 93.28 93.58
Randomised 93.64 93.26 93.45 92.72 92.12 92.42
Original Corpus 94.10 93.32 93.71 92.59 91.73 92.16
Reversed Original 93.72 92.96 93.34 92.26 91.39 91.83

The xRNNs performed best on the reverse ranked versions of the corpus, fol-
lowed by the ranked version. However, unexpectedly, the xRNNs trained/tested
on the randomised version of the corpus show a statistically significant improve-
ment in their classification over the original word order of the corpus. The worst
performance was obtained when the reversed version of the original corpus was
used.

7.2 Experimental Series II: Removal of Stopwords, TFIDF
Representation and Sensitivity Analysis Comparisons

The next set of experiments used the corpus stripped of all stopwords from the
titles to show the degree of significance of noise. Another experiment used the
classic TF-IDF representation of words. Then, a series of sensitivity analysis
experiments were done, whilst keeping all parameters constant but using the
three, two and single highest word vector values from each title of the corpus to
train/test the xRNNs; these experiments would show whether there was a cut-off
point for the number of words required to maintain classification performance.
The results are compared and presented in Table 3.

The xRNNs trained/tested using only the three highest value ranked vectors
from each title in the corpus showed the best classification results of this series
of experimental comparisons. Compared to the original word order results as
given in Table 2, using the three highest vectors is statistically better as is using
a corpus with all the stopwords removed, but only by a very small amount. The
gain from removing stopwords does not seem extremely important, at least not
to the degree expected. Usefully, the xRNNs trained/tested using the TF-IDF
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Table 3. Summary of R-P classification performances on the five other datasets derived
from the Reuters-21578 Corpus used to train/test the xRNNs

Version of corpus Highest performing Mean performance
dataset used for network on dataset (%) for 50 networks (%)

the xRNN models Recall Precision F-Measure Recall Precision F-Measure

3 Highest Vectors 93.82 93.55 93.69 93.16 92.64 92.90
No Stopwords 94.00 93.04 93.52 92.72 91.90 92.31
2 Highest Vectors 93.31 92.59 92.95 92.47 91.88 92.17
TF-IDF 93.40 91.95 92.67 92.12 91.04 91.58
1 Highest Vector 91.29 91.26 91.28 90.94 90.84 90.90

vector representation produced significantly lower results (91.58%) when com-
pared to the results using the original word order (92.16%) using the semantic
vector representation, to give a significant advantage over TF-IDF.

7.3 Experimental Series III: Artificially Noisy Datasets

Experimental Series I demonstrated, unexpectedly, that the xRNNs were not
relying on word ordering. In fact, randomising the word orders in titles tended
to statistically improve classification performance by the xRNNs. Thus, this
series of experiments using artificially augmented versions of the Reuters-21578
Corpus were deemed appropriate.

Three versions of the corpus were created. Titles were artificially made noisy
by introducing controlled amounts of random stopwords by a factor of two, four
and six times; this effectively increased each title in the original corpus from an
average of 8 words to ≈16, ≈32, and ≈48 words respectively. Table 4 shows the
results obtained.

Table 4. Summary of R-P classification performances on the three artificially noisy
datasets derived from the Reuters-21578 Corpus by the introduction of stopwords

Version of corpus Highest performing Mean performance
dataset used for network on dataset (%) for 10 networks (%)

the xRNN models Recall Precision F-Measure Recall Precision F-Measure

Noise Factor 2 93.43 92.59 93.01 92.39 91.63 92.01
Noise Factor 4 93.09 92.54 92.81 91.28 90.37 90.82
Noise Factor 6 92.42 91.71 92.07 86.40 85.63 86.01

Although there is a statistically significant drop in the mean classification
performance values using these artificially very noisy datasets, nevertheless, it
can be seen that the xRNNs are able to maintain reasonably significant R-P
performances even in the face of high levels of noise. However, mean performance
begins to drop when the title lengths reach 48 words.
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8 Conclusion

The experiments showed that for this task of classifying the Reuters-21578 Cor-
pus, the xRNN models, interestingly, did not rely on the strict sequential ordering
of the words in the titles. In fact, randomising titles improved classification –
the networks seemed to be aggregating important contextual keyword informa-
tion over long sequences instead to give ≈94.0% in terms of R-P performances.
On the same original corpus, SRNs gave performances with an average value of
45.29% and 45.10% for recall and precision respectively, an unexpectedly low
value, highlighting the importance of the hysteresis-driven xRNN models. The
Multi-Layer Perceptron (MLP) models gave ≈90.0% for R-P using the highest
keyword values from each title of the corpus. There was a very significant gain of
≈4% to using the xRNN model in both comparisons. The memory capacity for
contextual information was being maintained by the xRNNs using the hysteresis
feedback parameter even in the face of excessive levels of noise.

Although mean values over many networks tended to be lower with greater
levels of noise, it was still possible to find, by careful model selection from a
population of trained networks, xRNNs that maintained very high levels of R-P.
Other results [2] have shown that carefully choosing the hysteresis decay values of
the context layers is critical for maintaining consistent R-P performance. Slight
deviations from the optimal derived values can cause a catastrophic drop in R-P
performance; the hysteresis value settings are especially important for networks
trained on increasing noise levels.

Comparisons with different ML approaches on this corpus are given in [18].
For example, SVMs [10] achieve ≈92.0% in their combined F-measure scores
using micro-averaging for 10 categories. Using the KL-divergence approach to
Naive Bayes [17], R-P performances of ≈90.0%-91.0% have also been achieved.
Nevertheless, the results reported in this paper reinstate confidence in RNN
approaches to TC, giving performances that are on par with the most powerful
alternative ML techniques to TC.
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Abstract. Multidimensional Scaling algorithms (MDS) are useful tools
that help to discover high dimensional object relationships. They have
been applied to a wide range of practical problems and particularly to
the visualization of the semantic relations among documents or terms in
textual databases.

The MDS algorithms proposed in the literature often suffer from a
low discriminant power due to its unsupervised nature and to the ‘curse
of dimensionality’. Fortunately, textual databases provide frequently a
manually created classification for a subset of documents that may help
to overcome this problem.

In this paper we propose a semi-supervised version of the Torgerson
MDS algorithm that takes advantage of this document classification to
improve the discriminant power of the word maps generated. The algo-
rithm has been applied to the visualization of term relationships. The
experimental results show that the model proposed outperforms well
known unsupervised alternatives.

1 Introduction

The Multidimensional Scaling Algorithms (MDS) are multivariate data analysis
techniques that allow us to visualize high dimensional object relationships in an
intuitive way. A large variety of algorithms have been proposed to this aim (see
for instance [15,10,16]). In particular, the Torgerson MDS algorithm [10] has
been applied to visualize the underlying structure of high dimensional data.

An interesting application of the Torgerson MDS algorithm is the visualiza-
tion of the semantic relations among terms or documents [15,17] in text mining
problems. This visual representation gives more information than just the hard
classification of terms or documents and is particularly helpful for novel users
[8]. However, the algorithms proposed in the literature often have a low discrim-
inant power, that is, terms that belong to different topics overlap strongly in
the word map. Therefore, the resulting maps are often useless to identify the
different semantic groups in a given textual collection. This is mainly due to the
unsupervised nature of the algorithm and to the ‘curse of dimensionality’ [6,17].
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The visualization of term relationships has been usually done in the literature
by non-supervised techniques. Moreover, common semi-supervised algorithms
[14] can not be applied because the categorization of a small subset of terms is
a complex and time consuming task [1,19]. However, textual databases provide
often a classification for a subset of documents [1] because this is easier for
human experts. This suggests that the organization of terms into topics can be
improved considering the available labels in the space of documents.

In this paper we present a modification of the Torgerson MDS algorithm that
improves the visualization of the term relationships taking advantage of a cat-
egorization for a subset of documents. To this aim, rather than modifying the
error function as is usually done by supervised clustering algorithms [20] we
define a semi-supervised similarity that takes into account the document class
labels. Next, the Torgerson MDS algorithm is applied to generate the word map
considering this similarity matrix. Finally the new algorithm has been tested us-
ing a real textual collection and has been exhaustively evaluated through several
objective functions.

This paper is organized as follows. In section 2 the Torgerson MDS algorithm
is introduced. Section 3 presents the new semi-supervised MDS algorithm. In
section 4 the algorithm is applied to the visualization of term relationships.
Finally section 5 gets conclusions and outlines future research trends.

2 The Torgerson MDS Algorithm

Let X(n × d) be a matrix of n objects represented in R
d and D = (δij) the

dissimilarity matrix made up of the object proximities. The Multidimensional
Scaling algorithms look for an object configuration in a low dimensional space
(usually two for visualization) in such a way that the inter-pattern Euclidean
distances reflect approximately the original dissimilarity matrix.

A large variety of algorithms have been proposed in the literature. In this
paper we have considered the Torgerson MDS algorithm [10] because it exhibits
several properties interesting for text mining problems. First, the algorithm with
the Euclidean distance is equivalent to a linear PCA [10] that can be solved effi-
ciently through a linear algebraic operation such as the Singular Value Decom-
position (SVD) [5]. Second, the optimization problem doesn’t have local minima.
Notice that many MDS algorithms such as Sammon or certain neural based tech-
niques [16] rely on non-linear optimization methods that can get stuck in local
minima. Finally, the Torgerson MDS algorithm can be considered with certain
similarities equivalent to the Latent Semantic Indexing (LSI) [4] that has been
succesfully applied in text mining problems.

Next we introduce briefly the Torgerson MDS algorithm. For a detailed ex-
planation see [10].

Define the matrix A(n×n) as [A]ij = aij = − 1
2δ2

ij . The inner product matrix
B can be obtained as:

B = XXT = HAH (1)
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where H is a centering matrix defined as:

H = I − 1
n
11T (2)

where 1 = [1 1 . . . 1]T is a column matrix of n ones and I(n × n) is the identity
matrix.

The Torgerson MDS algorithm looks for a projection W : R
d → R

k to a
lower dimensional space such that the Euclidean distances in R

k preserve as
much as possible the original dissimilarities. The object coordinates that verify
this condition are given [10] by:

Xk = V kΛ
1
2
k , (3)

where V k is the n×k orthonormal matrix whose columns are the kth first eigen
vectors of B and Λk = diag(λ1, . . . , λk) is a diagonal matrix with λi the ith
eigenvalue of B.

The object coordinates in equation (3) can be obtained through a SVD. This
operation is particularly efficient when only the first eigenvectors are needed [11]
as it happens for visualization purposes.

3 A Semi-supervised MDS Algorithm

The word maps generated by the Torgerson MDS algorithm often suffer from
a low discriminant power. The unsupervised nature of the algorithm favors the
overlapping between different topics in the map. Moreover, due to the “curse of
dimensionality” the words concentrate around the center map and the smaller
distances become often meaningless [18,6].

In this section we explain how the categorization of a subset of documents
by human experts can be exploited to improve the word maps generated by the
MDS algorithm. The novelty of this problem relies in that we are trying to im-
prove an unsupervised technique that works in the space of terms considering
the available labels in the space of documents. To this aim rather than modifying
the error function as is usually done by supervised clustering algorithms [20] we
define a semi-supervised similarity that takes into account the class labels. This
similarity will reflect both, the semantic classes of the textual collection and the
term relationships inside each class. Once the semi-supervised dissimilarities are
computed, the Torgerson MDS algorithm can be applied to generate a visual rep-
resentation of the term relationships. Notice that our approach allow us to extend
to the semi-supervised case any algorithm that works from a dissimilarity matrix.

Let ti, tj be two terms and {Ck}c
k=1 the set of categories created by human

experts. The association between terms and categories are usually evaluated in
the Information Retrieval literature by the Mutual Information [23] defined as:

I(ti; Ck) = log
p(ti, Ck)

p(ti)p(Ck)
, (4)

where p(ti, Ck) denotes the joint coocurrence probability of term ti and class Ck.
p(ti), p(Ck) are the a priori probability of occurrence of term ti and class Ck
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respectively. The Mutual Information is able to capture non-linear relationships
between terms and categories.

However, it has been pointed out in the literature [23] that the index (4)
gives higher score to rare terms. To overcome this problem we have considered
a weighted version of the previous index defined as

I ′(ti; Ck) = p(ti, Ck) log
p(ti, Ck)

p(ti)p(Ck)
. (5)

This index reduces obviously the weight of the less frequent terms.
Now, we can define a similarity measure between terms considering the class

labels. This measure will be referred as supervised similarity from now on. Ob-
viously, this similarity should become large for terms that are related/unrelated
with the same categories of documents. This suggests the following definition for
the term similarity:

s1(ti, tj) =
∑

k I ′(ti; Ck)I ′(tj ; Ck)√∑
k(I ′(ti; Ck))2

√∑
k(I ′(tj ; Ck))2

. (6)

The numerator of this similarity will become large for terms that are corre-
lated with similar categories. Notice that the index (6) can be considered a
cosine similarity between the vectors I ′(ti; ·) = [I ′(ti; C1), . . . , I ′(ti; Cc)] and
I ′(tj ; ·) = [I ′(tj ; C1), . . . , I ′(tj ; Cc)]. This allow us to interpret the new similarity
as a non-linear transformation to a feature space [22] where a cosine similarity is
computed. Other dissimilarities can be considered in feature space but we have
chosen the cosine because it has been widely used in the Information Retrieval
literature. Finally the similarity (6) is translated and scaled so that it takes
values in the interval [0, 1].

The similarity defined above can be considered an average over all the cat-
egories. Next, we provide an alternative definition for the supervised similarity
that considers only the class with higher score. It can be written as

s2(ti, tj) = max
k

{Ī(ti; Ck) ∗ Ī(tj ; Ck)} , (7)

where Ī is a normalized Mutual Information defined as

Ī(ti; Ck) =
I(ti; Ck)

maxl{I(ti; Cl)}
. (8)

This normalization factor guarantees that s2(ti, ti) = 1. The similarity (7) will
get large when both terms are strongly correlated with one of the classes.

The supervised measures proposed earlier will score high terms that are re-
lated with the same categories. However, for visualization purposes it is also
interesting to reflect the semantic relations among the terms inside each class or
among the main topics. This information is provided by unsupervised measures
such as for instance the cosine. This justifies the definition of a semi-supervised
similarity as a convex combination of a supervised and an unsupervised measure.
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This similarity will reflect both, the semantic groups of the textual collection and
the term relationships inside each topic. It is defined as follows:

s(ti, tj) = λssup(ti, tj) + (1 − λ)sunsup(ti, tj) , (9)

where ssup and sunsup denote the supervised and unsupervised measures respec-
tively. The parameter λ verifies 0 ≤ λ ≤ 1. This parameter will determine if
the resulting map reflects better the semantic classes of the textual collection (λ
large) or the semantic relations among the terms (λ small).

The semi-supervised similarity (9) has an interesting property that is worth
to mention. The standard deviation for the semi-supervised similarity histogram
is 0.18 while for the cosine similarity is 0.04. Therefore, most of the similarities
for the unsupervised measure are zero or close to zero. This suggests that cosine
similarity is strongly degraded by the ‘curse of dimensionality’ [2]. On the other
hand, the standard deviation for the semi-supervised dissimilarity is larger and
thus, it is more robust to the ’curse of dimensionality’. Hence, any algorithm
based on dissimilarities will perform better [18,6].

Finally the Torgerson MDS algorithm introduced in section 2 is applied to
derive a visual representation of the semi-supervised similarities. To this aim,
the similarity (9) must be transformed into a dissimilarity using for instance the
following rule δij = 1 − sij [10]. Then, the Torgerson MDS algorithm can be
used to get an approximate representation of the data in a space of dimension
< n − 1 where n is the sample size.

The semi-supervised MDS algorithm presented earlier assumes that the whole
textual collection is categorized by human experts. However, it is very common
in text mining problems that only a small percentage of the textual collection
is labeled [1]. Hence, we have a small training set of categorized documents and
a much larger test set of documents not labeled. In this case, it has been sug-
gested in the literature that the test documents should be classified considering
the clustering hypothesis [7]. That is, the classifier should not split test docu-
ments that belong to the same cluster. A large variety of techniques have been
proposed in the literature based on this hypothesis. In this paper we have con-
sidered the Transductive Support Vector Machines (TSVM) [22] because they
have been successfully applied to the categorization of document collections [12].
The Transductive SVM aims at finding a decision function that maximizes the
margin of both, labeled and unlabeled patterns. This technique allow us to re-
duce significantly the misclassification error of the inductive SVM, particularly
when the training set is very small [12].

Once the documents are classified using the TSVM, the semi-supervised simila-
rity (9) is computed as in the supervised case. However, those terms that appear in
less than five documents categorized by human experts or by the TSVM are con-
sidered unreliable and the similarity is computed in an unsupervised way (λ = 0).

4 Experimental Results

In this section we apply the proposed algorithms to the construction of word maps
that visualize term semantic relationships. The textual collection considered, is
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made up of 2000 scientific abstracts retrieved from three commercial databases
‘LISA’, ‘INSPEC’ and ‘Sociological Abstracts’. For each database a thesaurus cre-
ated by human experts is available. Therefore, the thesaurus induces a classifica-
tion of terms according to their semantic meaning. This will allow us to exhaus-
tively check the term associations created by the map.

Assessing the performance of algorithms that generate word maps is not an
easy task. In this paper the maps are evaluated from different viewpoints through
several objective functions. This methodology guaranty the objectivity and va-
lidity of the experimental results.

The objective measures considered in this paper quantify the agreement be-
tween the semantic word classes induced by the map and the thesaurus. There-
fore, once the objects have been mapped, they are grouped into topics with a
clustering algorithm (for instance PAM [13]). Next we check if words assigned
to the same cluster in the map are related in the thesaurus. To this aim we have
considered the following objective measures:

The F measure [3] has been widely used by the Information Retrieval commu-
nity and evaluates if words from the same class according to the thesaurus are
clustered together. The entropy measure [23] evaluates the uncertainty for the
classification of words from the same cluster. Small values suggest little overlap-
ping among different topics in the map and are preferred. Finally the Mutual
Information [21] is a nonlinear correlation measure between the word classifica-
tion induced by the thesaurus and the word classification given by the clustering
algorithm. This measure gives more weight to specific words and therefore pro-
vides valuable information about changes in the position of specific terms.

Table 1. Empirical evaluation of several semi-supervised visualization algorithms for
a collection of scientific abstracts

F E I

Torgerson MDS 0.46 0.55 0.17
Least square MDS 0.53 0.52 0.16

Torgerson MDS (Average) 0.69 0.43 0.27
Torgerson MDS (Maximum) 0.77 0.36 0.31
Least square MDS (Average) 0.70 0.42 0.27
Least square MDS (Maximum) 0.76 0.38 0.31

Table 1 shows the experimental results for the semi-supervised MDS algo-
rithms proposed in this paper. Two unsupervised techniques have been consi-
dered as reference, the Torgerson MDS algorithm introduced in section 2 and
a standard least square MDS algorithm [10]. For each technique, two semi-
supervised similarities have been considered, the average (see equation (6)) and
the maximum (see equation (7)). As unsupervised measure we have selected the
cosine because it has been widely used by the information retrieval community
[9] with reasonable good results. For other possible choices see [9].

The least square MDS has been always initialized by a PCA to avoid that the
algorithm get stuck in a local minima. The λ parameter in the semi-supervised
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measures has been set up to 0.5 which achieves a good balance between structure
preservation and topic separation in the map. From the analysis of table 1 the
following conclusions can be drawn:

– The semi-supervised techniques improve significantly the word maps gener-
ated by the unsupervised ones. In particular, the semi-supervised Torgerson
MDS (rows 3-4) reduces significantly the overlapping among the different
topics in the map (E is significantly reduced). The Mutual Information is
particularly improved which suggests that the overlapping among the spe-
cific terms that belong to different topics is reduced in the map. Finally, the
F measure corroborates the superiority of the proposed algorithm.

The least square MDS algorithm (rows 5-6) improves similarly the maps
generated when the semi-supervised dissimilarities are considered. This sug-
gests that many algorithms that work from a dissimilarity measure can ben-
efit from the ideas presented in this paper.

– The maximum semi-supervised similarity gives always better results than the
average. This can be explained because the maximum supervised similarity
is defined considering only the class that is more correlated with the terms.
This feature improves the separation of the topics in the map.

Finally figure 1 illustrates the performance of the semi-supervised Torgerson
MDS algorithm from a qualitative point of view. For the sake of clarity only a
subset of words that belong to three topics have been drawn. We report that
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the term associations induced by the map are satisfactory and that the semantic
topics can be easily identified in the map.

As we have mentioned earlier, in text mining applications only a small subset
of documents is categorized by human experts. Therefore, from a practical point
of view it is very important to evaluate the sensibility of the method proposed
to the percentage of categorized documents. The Transductive SVM has been
implemented using the SVMlight software. For the multicategory classification we
have considered the ‘one against one’ approach. The regularization parameters
C and C∗ for training and test sets respectively have been set up to one. Finally,
λ = 0.5 in the semi-supervised measures. The empirical results suggest that this
value allow us to identify easily the semantic topics in the word maps and the
term relationships.

Figure 2 shows the evaluation measures when the percentage of documents
labeled range from 0% to 100%. According to this figure the quality of the word
maps generated is similar whenever the percentage of documents labeled is larger
than 10%. Moreover, with only 5% of documents categorized the performance
is not significantly degraded. Finally, we report that the semi-supervised MDS
algorithms with only 10% of documents categorized improve significantly the
unsupervised counterparts (0% of documents labeled).

5 Conclusions and Future Research Trends

In this paper we have proposed a semi-supervised version of the Torgerson MDS
algorithm for textual data analysis. The new model takes advantage of a catego-
rization of a subset of documents to improve the discriminant power of the word
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maps generated. The algorithm proposed has been tested using a real textual
collection and evaluated through several objective functions.

The experimental results suggest that the proposed algorithm improves sig-
nificantly well known alternatives that rely solely on unsupervised measures.
In particular the overlapping among different topics in the map is significantly
reduced improving the discriminant power of the algorithms.

Future research will focus on the development of new semi-supervised clus-
tering algorithms.

Acknowledgements. Financial support from Junta de Castilla y León grant
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Guimarães, Portugal

pcortez@dsi.uminho.pt
http://www.dsi.uminho.pt/˜pcortez

2 Department of Electronic and Electrical Engineering, University College London, Torrington
Place, WC1E 7JE, London, UK
m.rio@ee.ucl.ac.uk

3 Department of Informatics, University of Minho, 4710-059 Braga, Portugal
{pns,mrocha}@di.uminho.pt

Abstract. Forecasting Internet traffic is receiving an increasing attention from
the computer networks domain. Indeed, by improving this task efficient traffic
engineering and anomaly detection tools can be developed, leading to economic
gains due to better resource management. This paper presents a Neural Network
(NN) approach to predict TCP/IP traffic for all links of a backbone network, using
both univariate and multivariate strategies. The former uses only past values of
the forecasted link, while the latter is based on the neighbor links of the backbone
topology. Several experiments were held by considering real-world data from the
UK education and research network. Also, different time scales (e.g. every ten
minutes and hourly) were analyzed. Overall, the proposed NN approach outper-
formed other forecasting methods (e.g. Holt-Winters).

Keywords: Link Mining, Multilayer Perceptrons, Multivariate Time Series, Net-
work Monitoring, Traffic Engineering.

1 Introduction

Nowadays, more and more applications are migrating into TCP/IP networks (e.g. VoIP,
IPTV). Hence, it is important to develop techniques to better understand and forecast
the behavior of these networks. In effect, TCP/IP traffic prediction is gaining more at-
tention from the computer networks community [18,12,1,2]. By improving this task,
network providers can optimize resources, allowing a better quality of service. Also,
traffic forecasting can help to detect anomalies (e.g. security attacks, viruses or an ir-
regular amount of SPAM) by comparing the real traffic with the forecasts [8,7].

Often, TCP/IP traffic prediction is done intuitively by network administrators, with
the help of marketing information on the future number of costumers and their behav-
iors [12]. Yet, this may not be suited for serious day-to-day network administration.
Developments from the areas of Operational Research and Computer Science as lead to
solid forecasting methods that replaced intuition based ones. In particular, the field of
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Time Series Forecasting (TSF), deals with the prediction of a chronologically ordered
variable, where the goal is to model a complex system as a black-box, predicting its be-
havior based in historical data [10]. The TSF approaches can be divided into univariate
and multivariate, depending if one or more variables are used. Multivariate methods are
likely to produce better results, provided that the variables are correlated [14].

Several TSF methods have been proposed, such as the Holt-Winters [10] and Neu-
ral Networks (NN) [9,16,2]. Holt-Winters was developed for series with trended and
seasonal factors and more recently a double seasonal version has been proposed [17].
In contrast with the conventional TSF methods (e.g. Holt-Winters), NNs can predict
nonlinear series. In the past, several studies have proved the predictability of network
traffic by using similar methods. For instance, the Holt-Winters was used in [8,6] and
NNs have also been proposed [18,7,2].

Recently, there has been an increasing interest in Link Mining, which aims at the
discovery of useful patterns in graph structured datasets [4]. For a given goal (e.g. pre-
diction), the idea is to use models that learn from data extracted from correlated links.
The Internet backbone, which is made up of core routers that transport data through
countries or continents, is a fertile ground for Link Mining.

This work will use recent real-world data from the United Kingdom Education and
Research Network (UKERNA) backbone. NNs will be used to predict the traffic for all
18 links of this backbone network, under univariate and multivariate approaches. The
former is based on the previous traffic from the current link, while a heuristic rule is
proposed for the latter, where the NNs are fed with data from current and the direct
neighbor links. Furthermore, the predictions will be analyzed at different time scales
(e.g. every ten minutes, hourly) and compared with other methods (e.g. Holt-Winters).

2 Time Series Data

The data collection was based in the Simple Network Management Protocol (SNMP),
which quantifies the traffic passing through every network interface with reasonable
accuracy [15]. SNMP is widely deployed by every Internet Service Provider/network
and the collection of this data does not induce any extra traffic on the network. This work
will analyze traffic data (in Mbit/s) from all links of the UK academic network backbone
(UKERNA). This backbone contains a total of eight core routers and 18 links. Figure 1
plots the respective direct graph. The data was recorded into two datasets (every 10
minutes and every hour), between 12 AM of 14th June 2006 and 12 AM of 23th July
2006. The obtained multivariate series included 2 missing periods for the 10 minute
data, which were replaced with a linear interpolation. The missing values are explained
by the fact that the SNMP scripts are not 100% reliable, since the SNMP messages
may be lost or the router may not reply on time. Yet, this occurs very rarely and it is
statistically insignificant. The hourly multivariate series contains 936 observations for
each link, while the 10 minute data encompasses a total of 5613 time records.

As an example, the hourly traffic of two neighbor links, London-Cosham (LC) and
Cosham-Bristol (CB), is plotted in Figure 2. In the first case (LC), it is clear the in-
fluence of two seasonal components due to the the intraday and intraweek cycles. The
weekly pattern is less visible in the second example (CB).
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Fig. 2. The hourly IP traffic rate for the London-Cosham (left) and Cosham-Bristol (right) links

3 Forecasting Methods

A Time Series Forecasting (TSF) model assumes that past patterns will occur in the
future. Let yt = (y1t, . . . , ykt) denote a multivariate series, where yij is the jth chrono-
logical observation on variable i and k is the number of distinct time variables (r = 1
when a univariate setting is used). Then [14]:

ŷpt = f(y1t−1, . . . , y1t−n, . . . , yrt−1, . . . , yrt−n)
et = yp,t − ŷpt

(1)

where ŷpt denotes the estimated value for the pth variable and time t; f the underlying
function of the forecasting model; and et is the error (or residual).
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The overall performance of a model is evaluated by an global accuracy measure,
namely the Root Mean Squared Error (RMSE) and Relative RMSE (RRMSE), given in
the form [19]:

RMSE =
√∑P+N

i=P+1 e2
i /N

RRMSE = RMSE/RMSEypt
× 100 (%)

(2)

where P is the present time; N is the number of forecasts; and RMSEypt
is the RMSE

given by the simple mean prediction. The last metric (RRMSE) will be adopted in this
work, since it has the advantage of being scale independent, where 100% denotes an
error similar to the mean predictor (ypt).

Due to the temporal nature of this domain, a sequential holdout will be adopted
for the forecasting evaluation. Hence, the first TR = 2/3 of the series will be used
to adjust (train) the forecasting models and the remaining last 1/3 to evaluate (test)
the forecasting accuracies. Also, an internal holdout procedure will be used for model
selection, where the training data will be further divided into training (2/3 of TR) and
validation sets (1/3 of TR). The former will be used to fit the candidate models, while
the latter will be used to select the models with the lowest error (RMSE). After this
selection phase, the final model is readjusted using all training data.

3.1 Neural Networks

Neural Networks (NNs) are innate candidates for forecasting due to their nonlinear and
noise tolerance capabilities. Indeed, the use of NNs for TSF began in the late eighties
with encouraging results and the field has been growing since [9,16,18,2].

The multilayer perceptron is the most popular NN used within the forecasting do-
main [9,16,18]. When adopting this architecture, TSF is achieved by using a sliding
time window, in a combination also named Time Lagged Feedforward Network in the
literature. A sliding window is defined by the set of time lags used to build a forecast.
For instance, given the univariate time series 1,2,3,4,5,6 and sliding window {1, 2, 4},
the following training examples can be built: 1, 3, 4 → 5 and 2, 4, 5 → 6. In a multi-
variate setting, k sliding windows are used: {L11, . . . , L1W1}, . . . , {Lk1, . . . , LkWk

},
where Lij denotes a time lag for the ith variable.

In this work, a fully connected multilayer network with one hidden layer of H hidden
nodes and bias connections will be adopted (Figure 3). The logistic activation function
is applied on the hidden nodes and the output node uses a linear function [5]. The overall
model is given in the form:

ŷp,t = wo,0 +
∑I+H

i=I+1 f(
∑k

s=1
∑Ws

r=1yst−Lsrwi,j) (3)

where wd,s is the weight from node s to d; (if d = 0 then it is a bias connection); j ∈
{1, . . . , I} is an input node; o is the output node; and f the logistic function ( 1

1+e−x ).
Before training, all variables are scaled with a zero mean and one standard deviation.

Then, the initial NN weights are randomly set within [−0.7, +0.7]. Next, the training
algorithm is applied and stopped when the error slope approaches zero or after a max-
imum of E epochs. Since the NN cost function is nonconvex (with multiple minima),
NR runs are applied to each neural setup, being selected the NN with the lowest error
[5]. After training, the NN outputs are rescaled to the original domain.
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Fig. 3. The multilayer perceptron architecture for multivariate time series forecasting

Under this setting, the NN performance will depend on the number of hidden nodes
(H), the selection of the k variables used in the multivariate model and the time window
used for each variable. All these parameters can have a crucial effect in the forecasting
performance. Feeding a NN with uncorrelated variables or time lags with affect the
learning process due to the increase of noise. In addition, a network with few hidden
nodes will have limited learning capabilities, while an excess of hidden nodes will lead
to overfitting or generalization loss. Since the search space for these parameters is high,
an heuristic procedure will be used for the model selection step (see Section 4).

3.2 Naive and Holt-Winters Methods

Two TSF methods will be used as a baseline comparison with the proposed NNs. The
most common naive forecasting method is to predict the future as the present value.
This setup will be termed NV1. Other possibility is to use a seasonal variant, where the
forecast will be given by the observed value for the same period related to the previous
daily (NVD) or weekly (NVW) cycles [17].

The Holt-Winters [10] is another important univariate forecasting technique from
the family of Exponential Smoothing methods. The predictive model is based on some
underlying patterns such as a trend or a seasonal cycle (K1), which are distinguished
from random noise by averaging the historical values. Its popularity is due to advantages
such as the simplicity of use, the reduced computational demand and the accuracy of the
forecasts, specially with seasonal series. More recently, this method has been extended
to encompass two seasonal cycles (K1 and K2) [17].

4 Experiments and Results

All forecasting methods were implemented in the R environment, an open source and
high-level programming language for data analysis [13]. The NNs were trained with
the E = 100 epochs of the BFGS algorithm [11], from the family of quasi-Newton
methods and available at the nnet R function, while the number of NN runs was set to
NR = 3. The number of tested hidden nodes (H) was within the range {0,2,4,6} [2].
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Table 1. The best neural forecasting models

Scale
Link 10 minutes 1 hour

H Wp Wn H Wp Wn

BR 6 {1,2,3,144,145} – 0 {1,24,25,168,169} –
BC 0 {1,2,3,4,5,6} {1} 0 {1,24,25} –
LC 0 {1,2,3,4,5,6} {1,2,3,4,5,6} 0 {1,24,25,168,169} {1,24,25}
LLe 0 {1,2,3,4,5,6} – 0 {1,24,25,168,169} –
WR 0 {1,2,3,4,5,6} – 0 {1,24,25,168,169} –
WL 0 {1,2,3,4,5,6} – 0 {1,24,25,168,169} –
WG 0 {1,2,3,144,145} {1,2,3,144,145} 2 {1,24,25} –
ELe 4 {1,2,3,72,73} {1,2,3,4,5,6} 0 {1,24,25,168,169} {1,168,169}
EG 0 {1,2,3,4,5,6} {1,2,3,4,5,6} 0 {1,168,169} {1,168,169}
RB 0 {1,2,3,144,145} – 0 {1,24,25,168,169} {1,24,25}
CB 0 {1,2,3,4,5,6} {1,2,3,144,145} 0 {1} {1,168,169}
CL 0 {1,2,3,4,5,6} {1,2,3,144,145} 0 {1,168,169} {1,24,25}
LeL 4 {1,2,3,144,145} – 0 {1,24,25} {1,168,169}
RW 4 {1,2,3,144,145} {1,2,3,144,145} 0 {1,24,25,168,169} {1}
LW 0 {1,2,3,4,5,6} {1} 0 {1,24,25} –
GW 0 {1,2,3,4,5,6} {1} 2 {1,168,169} –
LeE 0 {1,2,3,144,145} – 0 {1,24,25,168,169} {1}
GE 0 {1} {1} 2 {1,24,25,168,169} {1,24,25}

Two configurations are used for the variable selection. The first is the simple uni-
variate model. The second multivariate setup will use topology information from the
backbone (Figure 1), where the predicted traffic is based on the past values of the cur-
rent link (p) plus the previous traffic observed in the closest neighbor links that are
expected to influence the predicted link (p). For instance, the link Londom-Cosham
(LC) presents only one direct neighbor (LeL)1, while the connection Leeds-London
(LeL) contains two (WLe and ELe). Several sliding windows were heuristically set
for each series based on their characteristics. It should be noted that in previous uni-
variate IP traffic forecasting work [2], this sliding window setup obtained high qual-
ity results. For the single variable model, the tested time window (Wp) was within
the range {1}, {1,2,3,4,5,6}, {1,2,3,72,73} and {1,2,3,144,145} (10 minute scale); and
{1}, {1,24,25}, {1,168,169} and {1,24,25,168,169} (hourly data). Under the multivari-
ate setting, similar sliding windows were used for the target variable (p). Regarding the
other variables, the same window (Wn) will be applied to all neighbor links. For these
links, the tested windows were {1}, {1,2,3,4,5,6} and {1,2,3,144,145} (10 minute data)
and {1}, {1,24,25}, {1,168,169} (1 hour scale).

The forecasting neural models appear in Table 1. Interestingly, the multivariate
neighborhood heuristic is the best option to forecast 11 (10 minute series) and 10
(hourly data) of the 18 links. In general, the multivariate model uses a similar or even
higher number of time lags for the predicted variable p than the neighbor links (the

1 The link CL is not considered, since its origin (Cosham) matches the LC connection destina-
tion.
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Table 2. Comparison of the forecasting models (RRMSE values, in percentage)

Scale
Link 10 minutes 1 hour

NV HW NN NV HW NN
BR 7.1 4.8 4.5±0.0 U 35.3 25.2 24.8±0.0 U

BC 19.1 18.0 16.2±0.0 M 69.8 68.7 63.2±0.0 U

LC 7.5 5.4 5.2±0.0 M 37.1 27.8 22.4±0.0 M

LLe 6.7 4.0 3.8±0.0 U 35.6 25.2 21.3±0.0 U

WR 8.9 6.8 6.4±0.1 U 40.5 34.0 34.1±0.0 U

WL 12.9 10.5 10.5±0.0 U 59.1 69.0 58.4±0.0 U

WG 7.1 4.6 4.6±0.0 M 36.0 25.1 24.8±0.1 U

ELe 9.6 8.5 8.3±0.0 M 44.3 44.3 40.6±0.0 M

EG 13.1 10.8 10.2±0.0 M 56.3 67.5 57.5±0.0 M

RB 6.6 2.9 2.6±0.0 U 36.5 15.0 14.6±0.0 M

CB 13.4 11.1 10.2±0.0 M 57.8 58.0 53.8±0.0 M

CL 10.9 9.7 8.8±0.0 M 42.3 45.4 57.2±0.0 M

LeL 7.4 4.6 4.4±0.0 U 37.6 31.7 34.9±0.0 M

RW 6.9 4.0 3.7±0.0 M 36.5 19.0 19.5±0.0 M

LW 21.6 21.5 18.8±0.0 M 87.0 87.0 80.8±0.0 U

GW 9.3 7.4 6.7±0.0 M 41.9 39.4 41.7±0.1 U

LeE 7.5 4.6 4.3±0.0 U 38.7 30.1 29.2±0.0 M

GE 11.5 11.5 11.8±0.0 M 54.8 80.8 90.7±1.6 M

Mean 10.4 8.4 7.8 47.8 44.1 42.8

exception is link CB for the hourly series). Moreover, only seven models denote non-
linearity (H > 0): BC, ELe, LeL and RW, for the 10 minute data; and WG, GW and
GE for the hourly series. These results confirm the notion that real/short time Internet
traffic can be modeled by small networks.

The three naive methods (NV1, NVD and NVW) were tested on the model selec-
tion step. For all cases, the best model was NV1, which will be adopted as the naive
benchmark. Turning to the Holt-Winters (HW) models, the internal parameters were
optimized using a 0.05 grid search for the best training error (RMSE), which is a com-
mon procedure within the forecasting field. For the hourly series, non seasonal, seasonal
(K1 = 24 or K1 = 168) and double seasonal variants (K1 = 24 and K2 = 168) were
tested. Within the selection stage, the weekly seasonal variant (K1 = 168) presented
the lowest errors. The exception were the links BC, CB, LW (non seasonal model) and
LC (daily seasonal with K1 = 24). Regarding the 10 minute series, only non seasonal
and daily seasonal (K1 = 144) models were tested, since trended effects should be
higher than seasonal components at this scale. In effect, the non seasonal version was
the best option for all links except BC, CB and GE.

The forecasts with the selected models were performed on the test sets (with 1871
values for the 10 minute series and 312 elements for the hourly data). Table 2 shows the
forecasting errors (RRMSE) for each method. Thirty runs were applied for the NNs
and the results are shown as the mean with the respective 95% t-student confidence
intervals. The type of forecasting model is also shown for the NN method: univariate
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Fig. 4. Neural forecasts for the first day RW (top) and first week LC (bottom) links

(U) or Multivariate (M). Finally, the global performance is presented in the last row in
terms of the mean error.

The analysis will start with the 10 minute data. As expected, the naive method gets
the worst performance. The NV is only the best option for the last link (GE), presenting
the highest mean error. The HW comes in second place. When compared with NV,
the mean error decreases 2 percentage points. Moreover, it is the best method for 3
series (WL, WG and GE). Nevertheless, the proposed approach (NN) is clearly the best
solution, outperforming (with statistical significance) other methods in 15 (of 18) links
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and presenting the lowest mean error. Also, it should be noted that the multivariate
heuristic (M) is highly relevant, exceeding the NV/HW models in 10 of 11 cases.

The hourly scale is harder to predict, since the RRMSE values are around five
times higher than those obtained for the 10 minute series. NV is still the worst strategy,
although it is now the best choice for 3 links (EG, CL and GE). Next comes the HW,
which presents the lowest errors in 4 cases (WR, LeL, RW and GW). Again, the NNs
obtain the best forecasts, presenting an overall performance 1.3/5.0 percentage points
below the HW/NV errors and being the best option for 11 links. At this time scale, the
multivariate model outperforms the other methods in half the cases (5 of 10).

For demonstrative purposes, Figure 4 presents the traffic forecasts for the first day
of the 10 minute RW data (top) and the first week of the hourly LC series (bottom). In
both cases, a high quality fit is achieved by the NN forecasts, which are close to the
real values. Another relevant issue is related with the computational complexity. The
proposed solution is very fast and can be used in real-time. For instance, with a Pentium
Dual Core 3GHz processor, the thirty runs of the NN training and testing required only
15.8 (10 minute RW link data) and 3 (the hourly LC series) seconds.

5 Conclusion

In this work a Neural Network (NN) is proposed to forecast the Internet traffic for all 18
links of the UK academic network backbone. In particular, univariate and multivariate
strategies were tested. The former used past data from the predicted link, while the latter
used topology information, i.e. the direct neighbor links were also fed into the predic-
tive model. Recent data, collected from the United Kingdom Education and Research
Network (UKERNA), was analyzed using two forecasting types (or scales): real-time
(every 10 minutes) and short-term (hourly values). Also, a comparison was made with
two baseline benchmarks, the naive (NV) and Holt-Winters (HW) methods.

The NN multivariate strategy outperformed the univariate approach in 61% (real-
time forecasts) and 56% (short-term predictions) of the links considered. Overall, the
NN results are promising, with a global Relative Root Mean Square Error (RRMSE)
of 7.8% (10 minute series) and 42.8% (hourly data). Indeed, the proposed NN solution
produces the best forecasts, surpassing other methods in 83% (10 minute scale) and
61% (hourly series) of the cases. Moreover, the NNs are very fast and can be applied
in real-time. Therefore, the proposed approach opens room for producing better traffic
engineering tools and methods to detect anomalies in the traffic patterns. This can be
achieved with minimal use of computation resources and without producing any extra
traffic in the network, since a passive monitoring system was adopted.

In future work, the comparison will be extended to other forecasting techniques (e.g.
ARMA models [3]); the proposed approach will be applyed to traffic demands of spe-
cific Internet applications (e.g. VoIP); and distinct forecasting horizons will be tested,
i.e. from one to several lookaheads. For this last option, several models could be used,
where each NN is trained for a specific n-ahead forecast. As an alternative, the one
step-ahead forecasts could be used iteratively as inputs. Under a multivariate setting,
this would require the simultaneous forecasting of the predicted and direct neighbor
NNs.
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Abstract. An ANN-based classifier for voltage wave disturbance was devel-
oped. Voltage signals captured on the power transmission system of CHESF, 
Federal Power Utility, were processed in two steps: by wavelet transform and 
principal component analysis. The classification was carried out using a combi-
nation of six MLPs with different architectures: five representing the first to 
fifth-level details, and one representing the fifth-level approximation. Network 
combination was formed using the boosting algorithm which weights a model’s 
contribution by its performance rather than giving equal weight to all models. 
Experimental results with real data indicate that boosting is clearly an effective 
way to improve disturbance classification accuracy when compared with the 
simple average and the individual models. 

Keywords: Artificial Neural Network, Power Quality Disturbance, Principal 
Component Analysis, Wavelet Transform. 

1   Introduction 

In recent years, the power quality has become an important issue for electricity com-
panies, equipment manufacturer, and users. The main reason for this interest is the 
great proliferation of devices and microprocessors used in several electronic equip-
ments employed in the industrial control systems, like as computers, high-speed driv-
ers, and other no-linear loads. That is, any device that depends on a volatile memory 
chip for information storage is potentially at risk from power quality events. 

To improve electric power quality, some electric utility companies are investing 
significantly in monitoring their power system in real time. By analyzing the data 
recorded in the monitoring system, it is possible for the engineers to diagnose the 
problems and recommend appropriate actions to mitigate their effect, besides evaluat-
ing the electric power quality provided. 

This paper proposes a method that automatically analyzes voltage waveforms and 
classifies its type by means of Artificial Neural Network (ANN).  This methodology 
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analyzes the voltage signal samples by the Wavelet Transform (WT); then applies 
Principal Component Analysis (PCA) to the wavelet coefficients; and finally classi-
fies different voltage disturbances using combination of ANNs. 

Information about the wavelet coefficients of all decomposition level of the voltage 
signal was used by introducing the PCA which is useful to reduce the dimension of 
the input vectors. Then a neural classifier constructed from this data will certainly 
presents better performance in relation to other base that only uses the wavelet coeffi-
cients of the first decomposition level or the level of higher energy, observing that the 
wavelet coefficients of other levels that were discharged contain relevant information 
of the voltage signal. 

The resilient backpropagation (RPROP) training algorithm was used to train the 
ANNs and the boosting learning method was applied to combine them.  

A comparison between the individual models and the combined approach of the 
models using the simple average and the boosting method was performed.  

This paper is organized as follows. Sections 2 and 3 introduce a description of the 
WT and PCA, respectively. Section 4 describes the preprocessing of the data. Section 
5 discusses about the training and architecture of the ANNs. Section 6 provides ex-
perimental results of the proposed classifier involving multiple neural networks using 
the boosting algorithm and simple average. Finally, section 7 concludes with a sum-
mary of this paper. 

2   Discrete Wavelet Transform 

The main goal of the WT is to decompose the information contained in a signal into 
characteristics at different scales. Wavelet analysis overcomes the limitations of the 
Fourier methods by employing analyzing functions that are local both in time and 
frequency. The WT is well suited to wideband signals that are not periodic and may 
contain both sinusoidal and impulse components typical of fast power system tran-
sients [1]. 

Wavelet transform has been used successfully for different applications in areas of 
signal processing, and recently WT has been proposed as an analysis tool of transients 
in power systems [2]. 

 An efficient way to implement the discrete wavelet transform (DWT) using filters 
was developed in 1988 by Mallat [3]. Besides the discretization of the time-frequency 
plane, the independent variable of the signal is also discretized. That is possible by a 
simple modification in the CWT mathematical notation, which will result in the fol-
lowing expression: 
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where ( )kψ  is the mother wavelet. The variables m and n are integers that scale and 

dilate to generate wavelets. The scale index m indicates the wavelet’s width, and the 
location index n gives its position. The DWT(m,n) are the wavelet coefficients. Usu-
ally a0 and b0 are integers. The smallest integer step for the scale, a0 =2, is known as 



 Boosting Algorithm to Improve a Voltage Waveform Classifier 457 

dyadic scale, and the smallest integer step of translation is b0 =1. Thus, the dyadic 
wavelets became: 
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The dyadic wavelet is implemented by the pyramidal multiresolution decomposi-
tion technique. At first, the digitalized signal c0[n] is decomposed into its detailed 
d1[n] and approximation c1[n] versions, using the filters g[n] and h[n], respectively. 
The digital filter g[n] is a highpass filter. Therefore, the filtered signal d1[n] is a de-
tailed version of the signal c0[n] and possesses high-frequency components (e.g. sharp 
variations in the power disturbance signal) by comparison to the approximation signal 
c1[n], because the filter h[n] is a lowpass filter. The decomposition of the original 
signal c0[n] into c1[n] and d1[n] represents the first level decomposition. Mathemati-
cally, they are defined as: 
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3   Principal Components Analysis 

A common problem in statistical pattern recognition is that of feature selection or 
extraction. Feature extraction refers to a process whereby a data space is transformed 
into a feature space that, in theory, has exactly the same dimension as the original data 
space. However, transformation is designed in such a way that the data set may be 
represented by a reduced number of effective features and yet retains most of the 
intrinsic information content of the data. This process is known as dimensionality 
reduction. As we can see, the aim of this technique is to minimize information loss 
while maximizing reduction in dimensionality. 

Principal Components Analysis (PCA) [4], also known as the Karhunen-Loève 
transformation in communication theory, is a quantitatively rigorous method for 
achieving this simplification. The method generates a new set of variables called 
principal components. Each principal component is a linear combination of the origi-
nal variables. All the principal components are orthogonal to each other so there is no 
redundant information. The principal components as a whole form an orthogonal 
basis for the space of the data. 

In order to perform PCA on the data, we represent the set of feature vectors by an 
n-dimensional wavelet coefficient vector ( x ): 

nxxx ,,,x …21= . (5) 

where n is the vector size, and the ith variable in x ( xi ) takes on values from the 
wavelet coefficient of the ith element in the wavelet coefficient vector. We now find a 
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set of n-dimensional orthogonal unit vectors, (u1, u2, . . ., un ), to form an orthonormal 
basis for the n-dimensional feature space. We form projections of x (ai) onto the set of 
unit vectors: 

i
T

ia ux= . (6) 

In doing so, we perform a coordinate transformation in the feature space, such that 
the unit vectors (u1, u2, . . ., un ) form the axes of the new coordinate system and 
transform the original random vector x into a new random vector a with respect to the 
new coordinate system: 

naaa ,,,a "21= . (7) 

In PCA, the choice of the unit vectors (u1, u2, . . ., un ) is such that the projections 

(ai) are uncorrelated with each other. Moreover, if we denote the variance of ai by iλ , 

for i = 1, 2, …, n , then the following condition is satisfied: 

nλ λ λ 21 >>> " . (8) 

In other words, the projections, ai contain decreasing variance, these projections ai 
are called the principal components. It can be showed [4] that the variance 

)λ, λ,(λ 21 n,"  corresponds to the eigenvalues of the data covariance matrix R. In 

order to reduce the dimensionality of the feature space from n to p where p < n while 
minimizing the loss in data variance, we form a reduced feature space by taking the 
first p dimensions with the largest variance. In this case, the reduced feature vectors 
of the documents are represented by the p dimensional random vector: 

pp aaa ,,,a "21= . (9) 

4   Data Preprocessing 

The 60Hz voltage waveform captured by the Digital Fault Recorder (DFR) during the 
event at a sampling rate of 128 sample/cycle per 14 cycles, yielded 1792 samples. 
This signal is preprocessed in two steps: 

First Step. The main objective at this stage is to extract the maximum information in 
the wavelet domain at different levels of resolution. In this regard, the signal is de-
composed by mean of db6 wavelet [5]. The number of subbands (level of resolution), 
to be used for signal decomposition, is chosen in such a way that the signal at the 
fundamental frequency, is included in the middle of the lowest frequency subband, in 
order to limit the effects of fundamental spectral contents on the other subbands [6]. 
Consequently, as the DFR captures the 60Hz voltage waveform at 7,680Hz, the signal 
was decomposed at level 5 thus yielding a total of 1844 wavelet coefficients. 

Second Step. The wavelet coefficients are submitted to a transformation to reduce the 
number of characteristics by mean of PCA, however still keeping most of the infor-
mation content [7]. At this stage, the characteristics were reduced by taking the first 
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few principal components, where the sum of the variance exceeded 90% of the total 
variance of the original data (wavelet coefficients), to guarantee the minimization of 
information loss while maximizing reduction in dimensionality. Table 1 shows the 
size of the wavelet coefficients and PCA vectors, and the sum of the total variance in 
the retained components with the largest variance. 

Table 1. Size of the wavelet coefficients and PCA vectors 

Wavelet 
coefficients 

Size of the wavelet 
coefficients vector 

Size of the 
PCA vector Total variance (%) 

cA5 66 5 97.3 
cD5 66 35 92.1 
cD4 122 50 90.6 
cD3 233 85 90.5 
cD2 456 100 90.4 
cD1 901 195 90.3 

           cA- Approximation coefficient; cD- Detail coefficient 

Preprocessing the voltage signal data provides the ANN for a faster and more effi-
cient learning, thus these new data are now normalized and uncorrelated. 

4.1   Development of Input/Output Data 

In this work, five disturbance types are proposed to be classified, namely: Voltage 
Sag, Voltage Swell, Harmonic Distortion, Oscillatory Transients, and Supply Inter-
ruption. Therefore, it is necessary that the neural network accomplishes six classifica-
tion classes, where the additional class corresponds to the case of no disturbance, i.e., 
normal operation. 

Six knowledge bases were created, according to the level of resolution of the de-
composed signal by the WT, as shown in Table 2.  

The database to be preprocessed consists of 730 examples of each class, and the 
algorithm to accomplish this process was implemented in the MATLAB®. This pro-
gram prepares the neural network training, validation and test set, and stores all the 
parameters (averages, standard deviations, and PCA transformation matrix) necessary 
to preprocess new voltage signal. 

The Partitioning of Data. In accordance to the 10-fold cross validation technique 
with stratification, the examples should be divided into 10 stratified partitions.  

The 4,380 examples were divided up into 20% for the test set, 20% for the valida-
tion set, and 60% for the training set. 

Codification of the Neural Network Output. The classification is encoded using  
1-of-m output representation for the m classes, where the k-th element of the desired 
output is indicated by 1 (one) if the input vector belongs to class k, otherwise it is 
indicated by 0 (zero). 
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Table 2. Composition of the Input Data 

Base Filter Bandwidth (Hz) 
1 2 3 4 5 6 

0 – 120 - - - - - cA5 
120 – 240 - - - - cD5 - 

240 – 480 - - - cD4 - - 

480 – 960 - - cD3 - - - 

960 – 1,920 - cD2 - - - - 

1,920 – 3,840 cD1 - - - - - 

5   ANNs Architecture and Training  

The resilient backpropagation (RPROP) training algorithm eliminates the harmful 
effect of having a small slope at the extreme ends of sigmoid squashing transfer func-
tions. Only the sign of the derivative of the transfer function is used to determine the 
direction of the weight updates; the magnitude of the derivative has no effect on the 
weight update. RPROP is generally much faster than the standard backpropagation 
algorithm. It also has the remarkable property of requiring only a modest increase in 
memory requirements [8]. 

In order to find the best MLP network architecture having a single hidden layer, an 
algorithm was implemented in MATLAB®. To decide on the best node configuration 
in the hidden layer, ten experiments were carried out with random initialization of 
weights and varying number of hidden nodes. 

All of the ANNs used have one input layer, one hidden layer, and one output layer. 
The nodes of the hidden and output layers used the sigmoid activation function. The 
maximum number of iterations for all of the trainings was set to 2500 epochs. The 
training stops if the early stopping flag  implemented in MATLAB® occurs 20 times 
consecutively, or if the maximum number of epochs is reached, or if the error gradient 
reaches a minimum, or still if the error goal in the training set is met. The early stop-
ping method has the objective of improving generalization of the neural networks. 
MATLAB® implements this technique, monitoring the error on the validation set 
during the training process.  

The developed program reads the preprocessed data set and accomplishes the fol-
lowing steps: 

1. Generates the 10 partitions; 
2. Combines partitions in a random way to arrange the 

training, validation, and test set; 
3. Takes the first number of hidden node in the range 

[Ni,Nf] as defined by the user; 
4. Initiates the weights and bias at random; 
5. Trains the neural network until any stopping condi-

tion occurs; 
6. Stores the MSE in the validation set and the parame-

ter values of the ANN; re-initializes weights and 
bias, and trains again using the same architecture; 
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7. Compares the error in the current validation set 
with the previous one, and stores the parameter val-
ues of the ANN associated with the lowest error. 

8. Increments the hidden node and goes to step 4, re-
peating this procedure until the number of hidden 
nodes has been achieved Nf; 

9. When Nf is reached, takes the next partition and goes 
to step 4, repeating this procedure until the Parti-
tion 10 has been accomplished; 

When the Partition 10 is reached, the parameter value of the architecture corre-
sponding to the best ANN is stored and the program is finished. 

The selection of the best architectures for each base was accomplished by varying 
the number of hidden node from 10 to 100 with an increment of 1. The best architec-
ture which was chosen using the smallest mean square error (MSE) on the validation 
set and the MSE on the training, validation and test set are shown in Table 3. 

Table 3. ANNs Arquitecture and Mean Square Error on Training, Validation, and Test Set 

MSE Base ANNs 
Architecture Training  Validation  Test 

6 5-88-6 0.0280 0.0347 0.0364 
5 35-95-6 0.0055 0.0215 0.0292 
4 50-100-6 0.0116 0.0342 0.0431 
3 85-86-6 0.0127 0.0373 0.0427 
2 100-73-6 0.0190 0.0465 0.0512 
1 195-47-6 0.0205 0.0481 0.0489 

6   Results 

6.1   Individual Neural Networks 

To evaluate the network performance, new data was collected from the Transmission 
System of CHESF. Table 4 presents the number of misclassified examples by each 
ANN using this new test set. 

As shown in Table 4, the two best neural networks are the 5 and 6, which were 
trained using the coefficients of the fifth-level detail (cD5) and approximation (cA5), 
respectively. 

6.2   Networks Ensemble 

An obvious approach to making decisions more reliable is to combine the outputs of 
different models. Several machine learning techniques do this by learning an ensem-
ble of models and using them in combination: prominent among these are schemes 
called bagging, boosting, and stacking [9]. 
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Table 4. Number of Examples Misclassified by each ANN 

Disturbance No. ANN 1 
(cD1) 

ANN 2 
(cD2) 

ANN 3 
(cD3) 

ANN 4 
(cD4) 

ANN 5 
(cD5) 

ANN 6 
(cA5) 

Sag 52 23 26 20 23 8 6 

Normal 88 19 18 11 7 2 12 

Harmonic 27 8 5 5 0 4 4 

Swell 42 0 0 0 0 0 0 

Transient 49 5 3 5 5 1 2 

Interruption 47 22 17 8 3 0 0 

Total 305 77 69 49 38 15 24 

Simple Average. A composite output was formed for each of the six output nodes by 
averaging the six individual networks outputs. In [10] this simple average is used but 
only two knowledge bases (all detail coefficients and all approximation coefficients) 
are used to train the ANNs. The final decision of the classifier corresponds to the 
output with the largest value (the winner-takes-all method). Table 5 presents the 
classification results of the ANNs ensemble. 

Even though four of the six ANNs have presented very poor performance when work-
ing by itself, the combination of them applying the simple average improves the system 
significantly. It is important to point out that the quality of individual classifier in the 
ensemble has substantial implication for the overall classifier performance [11], [12]. 
 

Table 5. Performance of the Neural Networks Ensemble by Simple Average 

Disturbance No. True False Percentage 
Error 

Sag 52 47 5 9.61 

Normal  88 86 2 2.27 

Harmonic 27 27 0 0.00 

Swell 42 42 0 0.00 

Transient 49 48 1 2.04 

Interruption 47 47 0 0.00 

Total 305 297 8 2.62 

Boosting Method. Metalearning algorithms take classifiers and turn them into more 
powerful learners (models). Some of these algorithms work for both classification and 
regression, depending on the base learner.  

Ideally, the models complement one another, each being a specialist in a part of the 
domain where the other models don’t perform very well. The boosting method for 
combining multiple models exploits this insight by explicitly seeking models that  
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complement one another. Boosting uses voting (for classification) or averaging (for 
numeric prediction) to combine the output of individual models. It combines models 
of the same type – e.g. decision trees. It is interactive, i.e. each models is influenced 
by the performance of those built previously. It encourages new models to become 
experts for instances handled incorrectly by earlier ones. Boosting weights a model’s 
contribution by its performance rather than giving equal weight to all models. 

In order to combine the six ANNs developed we used the free software Weka [13] 
which provides implementations of learning algorithm that could be easily applied to 
the networks outputs.  

By experiments, the attributes types of the base learner, which produced best re-
sults to solve the problem of power disturbance classification, were numeric to the 
inputs (outputs of the ANNs) and nominal to the output (desired output). 

Table 6 shows the performance of the neural network ensemble by bagging, where 
the combination of all ANNs presented a percentage error of 1.97 against 2.62 pre-
sented by the simple average. 

Table 6. Performance of the Neural Networks Ensemble by Bagging 

Disturbance No. True False Percentage Error 

Sag 52 48 4 7.69 

Normal  88 87 1 1.14 

Harmonic 27 26 1 3.70 

Swell 42 42 0 0.00 

Transient 49 49 0 0.00 

Interruption 47 47 0 0.00 

Total 305 299 6 1.97 

7   Conclusion 

In this paper, we proposed an ANN-based automatic classifier for power system dis-
turbance waveforms. The real base was preprocessed by WT and PCA in order to be 
transformed into a suitable training data to the ANNs. To construct the classifier, 
single hidden layer MLP networks were trained using the RPROP algorithm. Six 
models were obtained after training the ANNs with six different bases. The six net-
works with the best performance were then selected. Next, they were combined by the 
simple average and bagging algorithm. 

Comparing the outputs of individual neural networks and combined approaches us-
ing simple average and bagging, revealed how the combined approaches were able to 
outperform each component model used individually.  The combined ANNs by the 
bagging algorithm provided a mean to improve performance of the system.   

Even though four ANNs performed poorly when acting alone, the new system 
formed by combining models using the bagging algorithm was capable of overcoming 
this issue in a way that was superior to the simple average. 
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Abstract. This paper presents an approach (SOINN-DTW) for recog-
nition of temporal data that is based on Self-Organizing Incremental
Neural Network (SOINN) and Dynamic Time Warping. Using SOINN’s
function that eliminates noise in the input data and represents topologi-
cal structure of input data, SOINN-DTW method approximates output
distribution of each state and is able to construct robust model for tem-
poral data. SOINN-DTW method is the novel method that enhanced
Stochastic Dynamic Time Warping Method (Nakagawa,1986). To con-
firm the effectiveness of SOINN-DTW method, we present an extensive
set of experiments that show how our method outperforms HMM and
Stochastic Dynamic Time Warping Method in classifying phone data and
gesture data.

1 Introduction

Recognition and modeling of time-series data are fundamental techniques for
gesture recognition and speech processing. Time-series data observed from hu-
man gestures and speech have noise and individual differences. Therefore, it is
difficult to recognize and model these time-series data.

A common approach for time-series data is the use of the Hidden Markov
Model (HMM), a powerful generative model that includes hidden state structure.
In fact, HMM is used for speech recognition[1] and speaker adaptation [2] and
speech synthesis[3]; it is standard technique for speech processing. The most
successful cases of its application are in speech processing. Therefore, HMM is
frequently used for gesture recognition. In [4][5], the HMM state which outputs
a discrete value is used. In [6][7], the HMM state which outputs a continuous
value is used according to the distribution of a mixture of Gaussians. A Hidden
semi-Markov model (Segment model), which is an HMM with explicit state
duration probability distributions, is proposed in [8]. In HMM, time-series data
are modeled using a Markov model that has finite states. For example, phoneme
data are often modeled using an HMM that has three states because it is difficult
to estimate parameters of HMM that have too many states using finite training
data. In general, timescales of data change according to the kind of data. For
that reason, long sequential data might not be able to be modeled using an HMM
that has finite states.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part II, LNCS 4669, pp. 465–475, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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On the other hand, Dynamic Time Warping (DTW) is capable of calculat-
ing summation of local distance, and calculating the global distance between
two sequential data correctly. Nevertheless, using DTW, it is difficult to model
sequential data containing individual differences.

With that background, Stochastic DTW[9], which uses advantages of both
DTW and HMM, is proposed. In Stochastic DTW, probabilistic distance is used
instead of Euclidean distance (local distance); a probabilistic path is used instead
of a warping path. In addition, a time-series number of a template sequence
corresponds to a number of state, and a Gaussian distribution is used for the
output distribution. However, not all output distribution is approximated by
a Gaussian distribution because the output distribution changes according to
feature vector types and their number involved.

In this paper, we propose a method that can approximate the output dis-
tribution of each state in detail according to the kind of feature vector and its
number. In the proposed model, the output distribution of state is approximated
using a Self-Organizing Incremental Neural Network (SOINN), which can grow
incrementally and accommodate input data of online non-stationary data distri-
bution [10]. As [10] reported, the design of a two-layer neural network enables
it to both represent the topological structure of unsupervised data and to re-
port the reasonable number of clusters. It can eliminate noise in the input data
both dynamically and efficiently. Using SOINN’s function of representation of
the topological structure, the topological structure of the output distribution
is represented in a self-organizing manner. In addition, the time-series number
of the template sequence corresponds to the number of state. We define this
proposed model as SOINN-DTW.

The main contribution of this paper is introducing this approach, SOINN-
DTW, which can approximate the output distribution of state in a detailed and
flexible manner according to the kind of feature vector. Results show that this
approach has advantages for the classification performance of time-series data.
We present an extensive set of experiments that highlight how SOINN-DTW
outperforms HMM and Stochastic DTW in classifying phone data and human
motion data.

2 Approach

2.1 Overview of SOINN

The SOINN is a self-organized growing neural network. This network can grow
incrementally and accommodate input data of online non-stationary data distri-
bution [10]. As [10] reported, the design of a two-layer neural network enables
it to represent the topological structure of unsupervised online data, report the
reasonable number of clusters, and give typical prototype data of every cluster
without prior conditions such as a suitable number of nodes or a good initial
codebook. The SOINN implements two main functions for our purposes. One is
to perform unsupervised clustering of online data. The other is to learn topology
structures to represent unsupervised online data.
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(a) This figure illustrates an artificial 2D
dataset with noise as input to the SOINN.
The dataset is separable into five parts: a
sinusoid, two concentric circles, and two
datasets that satisfy a 2D Gaussian distri-
bution.

(b) This figure illustrates the SOINN out-
put. We infer that five clusters exist in the
artificial input data.

Fig. 1.

Two major benefits are gained from using SOINN: (1) It can eliminate noise
in the input data both dynamically and efficiently. (2) It can represent the topo-
logical structure of unsupervised online data. As one instance, Fig. 1 (a) depicts
raw input data to the SOINN. The output we obtained are shown in Fig. 1 (b).
We can find that the noise in the input data was reduced considerably and that
the output contained five clusters that approximate the raw data. We describe
a brief outline of SOINN here. Details of SOINN are described elsewhere [10].

In SOINN-DTW, SOINN is used for approximation of the distribution of
each state. Using two major benefits, the topological structure of each state’s
distribution is represented.

2.2 SOINN-DTW

In SOINN-DTW, the global distance between training data is calculated using
DTW. In addition, a template model is constructed based on DTW. Let N be
the number of training data which belong to category C. Then we explain the
construction procedure of the template model from N training data.

[STEP 1: Selection of standard data]
Standard data P ∗ of the template model are selected from among N training data
belonging to category C. Standard data P ∗ are determined using the following
equation.

P ∗ = arg min
Pm

{
N∑

n=1

D(Pm, Pn)

}
({Pn, Pm} ∈ C) (1)

In eq. (1),Pm, Pn denote training data which belong to category C. In addition,
D(Pm, Pn) denotes the global distance in symmetric DTW, where T ∗ is the time
length of standard data P ∗.
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(a) Process of STEP 2. (After DTW, the
optimal path between the standard data
and training data is determined. Corre-
sponding data in the optimal path are in-
put into each SOINN.))

(b) Two kinds of probability distribution
formed by the node set of SOINN

Fig. 2.

[STEP 2: Allocation of samples to each state]
Let p∗j be a sample of standard data P ∗ at time j. Let pn

i be a sample of
training data Pn(n ∈ C) at time i. After DTW, the standard data P ∗ and
the training data optimal (warping) path between p∗j and pn

i is determined as
i = wn

j (j = 1, 2, · · · , T ∗), such that the global distance D(P ∗, Pn) is minimized.
Sample pn

i at time i is divided to each state (SOINN) j of the template model
according to i = wn

j . This allocation of samples is done from time 1 to time T ∗.
[STEP 2] is executed for all training data (without P ∗). As a result, N − 1

optimal path is determined as wn(n = 1, · · · , N − 1). The allocation of samples
is also done according to wn. We define the set of samples that is allocated to
each state j (SOINN) as Zj .

Next, the set of samples Zj is input to SOINN. The topological structure of
the distribution generated byZj is represented after learning by SOINN. Sam-
ples in Zj are scarce when training data are scarce. The learning performance
of SOINN worsens if samples which are included in Zj are scarce. A set of sam-
ples from Zj to Zj+L−1 is input to SOINN (state j) to prevent the problem.
The set of samples which is allocated to each state j (SOINN) is defined as
Z∗

j = {Zj , Zj+1, · · · , Zj+L−1} again, where L denotes the number of segments
and is the parameter in SOINN-DTW. The method of setting L is described
in Section 3.2. The state number is re-defined as T ∗ − L − 1 in SOINN-DTW.
Fig. 2(a) represents the process of STEP 2.

[STEP 3: Learning by SOINN]
After Z∗

j is input into SOINN and learned by SOINN, the number of node sets
(clusters) that are connected by edges is output by SOINN. We estimate the
output distribution of SOINN (state j) from these node sets. The method of
parameter estimation is described in Section 2.3.
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2.3 Recognition of Input Data

By calculation of the global distance between the template model and input
data, the category to which input data belongs is decided.

Recurrence Formula of SOINN-DTW: The global distance between the
template model TMc of category c and input data IP is calculated using the
following recurrence formula.

Q(i, j) = max

⎧
⎪⎨

⎪⎩

Q(i, j − 1) + C(xi, Sj)
Q(i − 1, j − 1) + 2C(xi, Sj)
Q(i − 1, j) + C(xi, Sj)

(2)

In eq. (2), C(xi, Sj) denotes likelihood. The C(xi, Sj) is output from the state
j (Sj) of the template model TMc when the samples xi of input data IP are
input to Sj . In SOINN-DTW, DTW is performed such that the summation of
likelihood is maximized. Results obtained using DTW show that summation of
likelihood E(IP , TMc) is represented in the following equation:E(IP , TMc) =
Q(IIP , Jc) 2Jc

(IIP +Jc)
Here,IIP denotes the time length of the input data IP , and Jc denotes the

time length of the template model TMc

Calculation of likelihood C(xi, Sj): After learning by SOINN, the num-
ber of node sets (clusters) which are connected by edges is output by SOINN
(fig.2(b)). We define one cluster that is output by SOINN as inner class. Like-
lihood C(xi, Sj) is calculated using the position vector of the node set in the
inner class. For this study, we define two likelihoods (global likelihood and local
likelihood) and define the sum of those two likelihoods as C(xi, Sj).

Global likelihood
All nodes in state Sj are used for calculation of global likelihood. The node
set in state Sj is approximated by a Gaussian distribution. Here, the Gaussian
distribution has a full-covariance matrix Σj . We define the output probability
from the Gaussian distribution as Pglobal(xi|Sj) and define global likelihood as
log(Pglobal(xi|Sj)). In addition, μj of Pglobal(xi|Sj) is the average vector of all
nodes in state Sj. Σj are calculated using maximum likelihood estimation.

Local likelihood
Local likelihood is calculated using nodes in inner classes. Classes1–3 in
Fig. 2(b) represent inner classes. Here, nodes in an inner class are scarce. For
that reason, the node set of inner classes is approximated not by a Gaussian dis-
tribution, which has a full-covariance matrix, but by a Gaussian kernel function.

Let Ujk be inner class k in SOINN (Sj); the output probability Plocal(xi|Ujk)
is estimated from all nodes in Ujk as follows.

Plocal(xi|Ujk) =
1

(2πh2
jk)M/2 exp{−‖xi − xjk‖2

2h2
jk

} (3)
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In eq. (3), xjk is the average vector of all nodes in Ujk. Width parameters hjk

are calculated using maximum likelihood estimation.
Using Pglobal(xi|Sj) and Plocal(xi|Ujk), likelihood C(xi, Sj) is represented as

follows:

C(x, Sj) = α log(
K∑

k

ωkPlocal(xi|Ujk)) + (1 − α) log(Pglobal(xi|Sj)) (4)

where α = 0.5 is in SOINN-DTW. Weight ωk is ωk = Njk

Nall
j

(
∑K

k wk = 1). In

eq. (4), Nall denotes the number of nodes in SOINN(Sj); K is the number of
inner classes in SOINN.

3 Experiment

In this section, to evaluate the general modeling performance of SOINN-DTW,
we performed experiments and used two datasets (gesture data and phoneme
data) for experiments. In particular, we used moving images (gestures) that
directly captured human motion, using no devices such as data gloves. For this
experiment, we compared our SOINN-DTW to HMM and Stochastic DTW.

3.1 Comparative Method

Hidden Markov Model: The HMM that we used was the left-to-right model
based on mixed Gaussian probabilities having a diagonal-covariance matrix for
each state. The model parameters are learned from training data using the
Baum-Welch algorithm. In addition, to improve the performance of estimation,
the segmental k-means method is used for setting of initial parameters.

Stochastic DTW: An asymmetric recurrence formula, which is used in the
Stochastic-DTW method, is as follows.

Q(i, j) = max

⎧
⎪⎨

⎪⎩

Q(i − 2, j − 1) + log P (ai−1|j) + log P (ai|j) + log PDP1(j)
Q(i − 1, j − 1) + log P (ai|j) + log PDP2(j)
Q(i − 1, j − 2) + log P (ai|j) + log PDP3(j)

(5)
State probability P (ai|j) and state transition probability PDP1,2,3(j) are calcu-
lated as shown in [9].

In Stochastic DTW, because the symmetric recurrence formula is used in
SOINN-DTW, we used the asymmetric recurrence formula (eq. (5)) and the
symmetric recurrence formula for calculation of global distance. Here, we used
a recurrence formula that exchanged C() for P (ai|j) in eq. (2).

3.2 Parameter Setting

Through preliminary experimentation, we set parameters that SOINN had and
parameters that SOINN-DTW had. Here, the content of preliminary experimen-
tation was an isolated word recognition task of five classes. For the phoneme
classification task and the gesture classification task, we used parameters that
were set through preliminary experimentation.
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Table 1. Conditions of the phoneme classification experiment

Table 2. Classification rate in the phone classification task [%] (TD40(TD80) denotes
the number of training data)

Method SO-DTW ST-DTW(1) ST-DTW(2) HMM

TD40 [%] 56.36 30.81 51.71 47.69 (5S,2M)

TD80 [%] 62.55 33.83 55.46 51.90 (5S,4M)

Parameter of SOINN: In SOINN, to eliminate noise, parameters (λ,agedead)
were used for creation and deletion of edges. From results of preliminary exper-
imentation, we set these parameters as λ = 10000, agedead = 30000. SOINN
also has parameters c, α1, α2, α3, β, γ. We set these parameters respectively as
c = 1, α1 = 1/6, α2 = 1/4, α3 = 1/4, β = 2/3, γ = 3/4 as [10] reported.

Parameter of SOINN-DTW: Furthermore, SOINN-DTW has a parameter
(number of segments) L. The number of samples was adjusted using that pa-
rameter L. When we set L as a large value, samples at different times were input
into the same state; features of the time series were ignored. In contrast, when
we set L as a small value, samples were scarce, and the learning performance of
SOINN worsened.

Therefore, we set L according to feature dimension p and number of training
data N . From results of preliminary experimentation, we set L as the minimum
value at which L ≥ 6p

N was filled.

3.3 Phoneme Classification

Experimental condition: We used the ked-TIMIT dataset[11]. Experimental
conditions are shown in Table 1. With regard to HMM, we performed experi-
ments (table 1) and searched for optimal parameters (number of state, number
of mixture), such that HMM had the best classification performance.
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Table 3. Condition of gesture classification experiment

Table 4. Correct classification rate in the motion classification task [%]

Method SO-DTW ST-DTW(1) ST-DTW(2) HMM

[%] 98.70 97.50 96.53 93.71(S11)

Result of phoneme classification: After 10 experiments, the average clas-
sification rate is shown in Table 2. Here, [SO-DTW] denotes SOINN-DTW,
[ST-DTW(1)] denotes Stochastic-DTW, which uses the asymmetric recurrence
formula, [ST-DTW(2)] denotes Stochastic-DTW, which uses the symmetric re-
currence formula. In Table 2, (·S, ·M) in the classification rate of HMM de-
notes the parameter of the situation in which HMM has the best classification
performance. In addition, S is the number of states and M is the number of
mixtures.

For HMM, we changed the state’s number N1 (1 ≤ N1 ≤ 13) and performed
experiments. Results of experiments show that the classification rate is maximum
in 3 ≤ N1 ≤ 7. Next, in 3 ≤ N1 ≤ 7, we changed the state’s number M1
(1 ≤ M1 ≤ 4) and performed experiments. Consequently, the classification rate
is maximum, as shown in Table 2.

Regarding Stochastic-DTW, the performance of Stochastic-DTW using the
symmetric recurrence formula was better than that of Stochastic-DTW using
the asymmetric recurrence formula ([9]).

According to Table 2, the performance of the SOINN-DTW was clearly better
than that of either Stochastic-DTW or HMM.

Fig. 3. Examples of moving images used for experiments
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3.4 Gesture Classification

The dataset used for the experiment was created manually, extracting only the
gesture part from the moving images. Extracted gestures are M1–M7 in Fig. 3.
The time length of gestures are various: 110–440 frames.

Image processing: The image processing method that is applied in this ex-
periment is represented below.

Step 1. After smoothing each frame of the input images, we calculated the
difference between frames.

Step 2. We converted the RGB value to a luminance value, and converted color
images to binary images.

Step 3. We extracted a self-correlation feature [12] for the time-series direction.
A (3 × 3) mask was applied to calculate the correlation feature, giving a nine-
dimensional real value vector. Here, the value of the center mask does not
represent the feature of motion. And, we did not use the value of the center
mask for the feature vector.

Experimental condition: The experimental conditions are as shown in
Table 3. For HMM, we performed experiments (Table 3) and searched for the
optimal number of states N2 (1 ≤ N2 ≤ 15) such that HMM has the best
classification performance.

Result of gesture classification: After 100 experiments, the average classi-
fication rate is shown in Table 4. According to Table 4, the performance of the
SOINN-DTW was better than that of Stochastic-DTW and HMM.

4 Discussion

4.1 Comparison to Stochastic DTW and HMM

In SOINN-DTW, to implement a robust model for time-series data, The output
distribution of state was approximated in detail by SOINN. In addition, we used
a symmetric recurrence formula for calculation of the global distance.

Results of experiments show that SOINN-DTW markedly improved the clas-
sification performance over that of Stochastic-DTW. Using SOINN-DTW, it is
possible to represent the topological structure of the output distribution in each
state. In addition, because the number of states is determined as the time length
of standard data, we need not set an optimal number of states preliminarily. On
the other hand, when HMM is used for modeling of time-series data, we must set
the number of states and the number of mixtures preliminarily. For this reason,
we performed experiments and searched for optimal parameters that gave HMM
the best classification performance.

Experiments show that the classification performance of SOINN-DTW was
better than the best classification performance of HMM. Consequently, SOINN-
DTW considerably improved the classification performance over that of HMM.
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Table 5. Comparison of classification rates obtained using SOINN-DTW and classifi-
cation rates obtained using methods that do not use SOINN

Not using SOINN Use SOINN

Approach [Approach.1] [Approach.2] SOINN-DTW SOINN-DTW

[%] 58.41 58.86 62.55 (α = 0.5) 63.22(α = 0.45)

4.2 Contribution to Classification by SOINN

In this section, we discuss how the SOINN performance contributes to classifica-
tion performance. We compared SOINN-DTW to two methods that do not use
SOINN and evaluated the contribution to classification performance of SOINN.
The two methods that do not use SOINN are the following.

Approach 1. In Approach 1, Z∗
j were input into SOINN. From Z∗

j , we cal-
culated the Gaussian distribution P (xi|Sj) using maximum likelihood esti-
mation. We defined likelihood C(xi, Sj) as C(xi, Sj) = log(P (x|Sj)) (only
global likelihood).

Approach 2. For Approach 2, Z∗
j were input into SOINN. We defined likeli-

hood C(xi, Sj) as C(xi, Sj) = log(Pglobal(xi|Sj)) (only global likelihood).

Experimental conditions are as shown in Table 1. We set the number of training
data as 80 in the experiment. The average classification rates of SOINN-DTW,
Approach 1 and Approach 2 are shown in Table 5. According to Table 5, the clas-
sification performance of SOINN-DTW was better than that of either Approach
1 or Approach 2.

In SOINN-DTW, the local likelihood obtained after learning by SOINN is
used for calculation in DTW. However, in Approach 1 and Approach 2, the local
likelihood is not used for calculation in DTW. The result suggests that the local
likelihood obtained after learning by SOINN contributes to the classification
performance.

Next, we discuss which likelihood (global and local) contributes to the clas-
sification performance. We performed experiments and searched for optimal α
in eq. (4) such that SOINN-DTW had the best classification performance. Con-
sequently, the best classification rate is obtained in (α) = 0.45, which suggests
that both the global likelihood and the local likelihood contribute to classifica-
tion performance.

5 Conclusion

We proposed SOINN-DTW, which improved Stochastic DTW. We used two real
datasets for experiments and performed experiments to evaluate the general mod-
eling performance of SOINN-DTW in comparison to our SOINN-DTW method
with HMM and Stochastic DTW. Results show that SOINN-DTW markedly im-
proved the classification performance over that of HMM and Stochastic DTW.
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Abstract. Quantitative models are very successful forr extrapolating the basic 
trend-cycle component of time series. On the contrary time series models failed 
to handle adequately shocks or irregular events, that is non-periodic events such 
as oil crises, promotions, strikes, announcements, legislation etc. Forecasters 
usually prefer to use their own judgment in such problems. However their 
efficiency in such tasks is in doubt too and as a result the need of decision 
support tools in this procedure seem to be quite important. Forecasting with 
neural networks has been very popular across the Academia in the last decade. 
Estimating the impact of irregular events has been one of the most successful 
application areas. This study examines the relative performance of Artificial 
Neural Networks versus Multiple Linear Regression for estimating the impact 
of expected irregular future events.  

Keywords: Shocks, Irregular events, Forecasting, Artificial Neural Networks. 

1   Introduction 

Historically, quantitative models have appeared to be very successful in extrapolating 
the basic trend-cycle component of time series [3], [6], [15], [17]. However time 
series models have been proved insufficient when it comes to handling shocks or 
irregular events, that is non-periodic events such as promotions, announcements, 
regulations, strikes, dramatic price increases due to oil crises etc. That kind of events, 
introduce an additive or multiplicative impact in the baseline series [2], [13]. Both 
Literature review and common practice suggest that forecasters use their own 
judgment for adjusting time series for irregular events, surprisingly not so 
successfully too [8], [9]. 
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Forecasting with neural networks has been very popular across the Academia in the 
last decade [1], [5], [11], [12], [19]. While batch forecasting was not one of the 
success areas [4, [17], estimation of irregular events’ impact proved to be a very 
fertile one [14]. Lee and Yum have proposed a formal framework for judgmental 
adjustments in time series for irregular events using Artificial Neural Networks 
(ANN) in order to estimate the additive impact of irregular events. This framework 
has been enhanced by Nikolopoulos and Assimakopoulos in (2003) [18], so as to 
incorporate a variety of supportive models, such as Multiple Linear Regression 
(MLR) or Nearest Neighbors approaches. 

2   Adjusting Time Series for Irregular Events 

A shock or irregular event is a non-periodic event; an expert should be able to identify 
its appearance in a series, as well as the parameters that affected it (and potentially 
quantify them). Consequently the impact of such an event in the past could be 
quantified and removed from a series resulting in a filtered series – far more 
appropriate for extrapolation. On the other hand, the future appearance of irregular 
events could be known in advance, and if an expert could forecast or even know the 
values of the event’s parameters, an appropriate model could estimate the potential 
impact on the baseline series. As baseline series is defined as a filtered series, 
including only trend and cycle components, that is the series excluding seasonality 
and irregular events [16].   

Lee and Yum in (1998) [14], have defined all the necessary entities so as to 
describe, adjust for and forecast the impact of an irregular event . An expert in the 
field (someone possessing all the necessary domain knowledge for the time series 
under consideration) should: 

• Define Judgmental Factors: i.e promotions  
• Identify Historical Judgmental Events: an expert should be able to identify when 

exactly an irregular event has happened 
• Remove Impact of Judgmental Instances from Time-series Historical Data and 

create Filtered Time-series Data 

On the expectation of a future irregular event, an expert should adjust his forecasts. 
This is a very tricky procedure that introduces major amount of error in the 
forecasting process, thus need for automated system support is more than essential. 
The forecaster/expert should be able to:  

• Create Judgmental Case Base: the expert should be aware of a future scheduled 
promotion so as to adjust baseline forecasts respectively. 

• Build a model for judgmental adjustment: a model should be built so as to 
estimate the impact of the future events, based on the impacts of similar events in 
the past. There are very few studies on this topic; methods used from time to time 
include complex methods such as ANN, the Delphi method and AHP [7].  
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3   Forecasting the Impact of Future Irregular Events Using Neural 
Networks 

An irregular event may be explained from more than one judgmental factor and 
parameters. Many and different, multiple  or single events may appear in the historic 
data of a time series. The ideal objective would be to approximate the relationship 
between each factor’s parameter and the impact it results in the historic baseline series. 
An assumption that such a non-linear function exists has to be made. This function 
takes as arguments all parameters values for a specific historic event, and gives as 
output the impact in the series under consideration. For the parameters/arguments that 
do not appear in a historic irregular event, value equal to zero is assigned. In this 
section, we will present the use of special case of Artificial Neural Networks, the 
Multilayer Perceptrons).   

3.1   Multilayer Perceptrons 

We employed a fully connected multilayer perceptron with two hidden layers and an 
output layer [10]. Similar networks have been utilized in order to forecast the impact 
of future events. In our case the size of the input signal is equal to the maximum 
number of factors’ parameters explaining the historic irregular events, with each input 
representing one parameter. For example if promotions (with duration, type, budget 
and media used as exploratory parameters) and regulations (with date of 
announcement, date of application, type as exploratory parameters) describe past 
irregular events for a specific product, seven parameters are used in total thus the 
multilayer perceptron will have seven input nodes. The size of the output signal is 
equal to 1. In order to forecast the impact of a possible future event, the network is 
trained first with all historic data as the training set, using Back Propagation 
algorithm. Each historic event is considered to be one training example and the 
impact it has is considered to be the desired response of the network. Then the future 
event’s parameters are fed into the network with the form of an input signal. For each 
parameter in the input signal that does not appear in the future event, value 0 is 
assigned. Signal flow through the network progresses in a forward direction, from left 
to right and on a layer-by-layer basis reaching the output node. The outcome is the 
predicted impact of the event.  

3.2   ANN Training Methods 

Three methods were applied for training ANN in our specific problem of estimating 
irregular events’ impact in time series. 

• 1st Method (Simple Training): the fully connected model with 2 hidden layers and 
the number of neurons in each layer being equal to the input size is trained with 
Back Propagation algorithm once. Leave one out method is used if the size of the 
training sample is less than 100 and non-asymptotic mode is used on any other 
case. The final trained network is used to produce forecasts. 

• 2nd Method (Repeated Training): the fully connected model with 2 hidden layers 
and the number of neurons in each layer being equal to the input size is trained 
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with Back Propagation algorithm 10 times. Each time the Mean Square Error 
(MSE) over the training sample is calculated. The network with the smallest 
MSE error is used to produce the forecasts. 

• 3rd Method. (Advanced training): all different fully connected networks up to 2 
hidden layers and no more neurons per hidden layer than the input size are 
trained 10 times each. The number of different networks is limited by the 
constraint that the second hidden layer is not allowed if the first hidden layer does 
not contain neurons equal in number with the input size. Each time MSE over the 
training sample is calculated. The network with the smallest MSE error is used to 
produce the forecasts. For example, if input size is 5 each of the different ANN 
networks is trained 10 times. 

From these three methods the most appropriate, in terms of out of sample 
forecasting accuracy, for the problem under consideration was the 3rd one, and that is 
the one used in the following evaluation section. 

4   Simulation 

Each dataset is constructed from 15 single or multiple events – the 10 first as a 
learning set and the next 5 for out of sample accuracy - measured in terms of Mean 
Absolute Percentage Error (MAPE)  

 

Factors-Parameters 
Two Factors are considered, promotions and strikes:  

• Promotion has positive effect and is described via three parameters  
• Budget, ranging from 50 –150, with step 10 (representing 1000€€ ), 
• Duration, ranging from 1-14 (days), 
• Media-used, with values: 1 (Paper), 2 (Paper+Radio), 3 (Paper+Radio+TV) 

• Strike with negative effect described via two parameters  
• Percentage, ranging from 20%-100%=0.2-1 with step 0.05 (representing 

% participation in the strike) 
• Duration, ranging from 1-7 (days) 
The parameters are set in priority order, that is a promotion is defined either 

with only a, or a and b, or a, b and c. (not only b or b and c etc). As a result the 
input vector of the ANN networks is five. 

 
Impact Formula 
For the construction of the test events we consider the following formalisation: 

Impact = f(Factors parameters) + Noise 
    For function f, two formulas are considered: Linear and Non-linear 

• Promotion - Linear :  0.7 x Budget + 5 x Duration + 20 x Media 
• Strike – Linear : - 100 x Percentage – 2 x Duration 
• Promotion - Non Linear :  (0.5 x Budget) x ((Duration/14) + Media) 
• Strike – Non Linear : - 50 x Percentage x ((Duration/7)+1) 
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Noise 
Two levels of Gaussian noise N(μ,σ2) are considered: Low Ν(0,10) and High Ν(0,30) 

 

Runs 
We consider at least 10 different randomization seeds for the Noise distribution for 
each combination of the experiment factors (parameters involved, function formula, 
level of noise).  

In total 360 datasets with 15 events each have been constructed, thus the 
forecasting accuracy is tested on 360x5=1800 events (out of sample). In each dataset 
ANN is following a new learning process over 10 events (or even less if it uses an out 
of sample criterion) and produces forecasts for 5 events. The events are put in an 
order in each dataset. The first 10 are used for learning and the next 5 for testing. 

ANN trained with the third proposed method are competed with classical MLR, 
with independent variable the relative factors’ parameters and dependent variable the 
impact in the baseline time series (absolute value or alternatively signaled percentage 
change). The results are presented in the following tables 1 to 11: 

Table 1. P3S2, All cases (MAPE) 

P3S2 
MLR ANN 
43.3% 42.6% 

Table 2. P3S2, Formula type and Noise level (MAPE) 

P3S2_FL 
MLR ANN 

13.4% 29.3% 
P3S2_FNL 

MLR ANN 
73.2% 56.0% 

P3S2_NH 
MLR ANN 

47.1% 47.5% 
P3S2_NL 

MLR ANN 
39.5% 37.7% 

P3S2 is the most complex class involving two factors described by three and two 
parameters respectively. These two factors have also controversial impact, that is 
some times when applied simultaneously, might result in zero impact, fact that makes 
this problem even more difficult. Randomly distributed single and multiple events are 
used in this experiment. Thus models have to provide forecasts both for multiple and 
single expected future irregular events. 
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Table 3. P3S2, Combinations of formula type and noise level (MAPE) 

P3S2_FL_NH 
MLR ANN 

13.4% 28.9% 
P3S2_FL_NL 

MLR ANN 
13.3% 29.7% 

P3S2_FNL_NH 
MLR ANN 
80.8% 66.2% 

P3S2_FNL_NL 
MLR ANN 
65.7% 45.8% 

 
In general ANN performs slightly better. ANN present clear advantage in non-

linear relationships, while MLR present their advantage in the linear ones. The effect 
of noise creates problems in both approaches. 

Table 4. P1S1, All cases (MAPE) 

P1S1 
MLR ANN 

21.3% 30.7% 

Table 5. P1S1, Noise level (MAPE) 

P1S1_NH 
MLR ANN 

23.3% 32.9% 
P1S1_NL 

MLR ANN 
9.3% 28.5% 

 

Table 6. P2, All cases (MAPE) 

P2 
MLR ANN 

26.5% 28.7% 
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P1S1 is the simplest case of those involving two judgmental factors. Since each 
factor is described via only one parameter, non-linear functions cannot be applied (as 
defined in the framework of this experiment). In general MLR performs better, 
without this result being differentiated according to the level of noise. 

Table 7. P2, Formula type and Noise level (MAPE) 

P2_FL 
MLR ANN 
4.6% 6.6% 

P2_FNL 
MLR ANN 

48.4% 50.8% 
P2_NH 

MLR ANN 
29.3% 32.7% 

P2_NL 
MLR ANN 

23.7% 24.8% 

Table 8. P2, Combinations of formula type and noise level (MAPE) 

P2_FL_NH 
MLR ANN 
6.2% 7.5% 

P2_FL_NL 
MLR ANN 
3.1% 5.8% 

P2_FNL_NH 
MLR ANN 

52.3% 57.6% 
P2_FNL_NL 

MLR ANN 
44.4% 43.7% 

Table 9. P1, All cases (MAPE) 

P1 
MLR ANN 
7.2% 8.5% 
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P2 involves only one judgmental factor described by two parameters. In general 
MLR performs slightly better. ANN present an advantage only in non-linear 
relationships with low level of noise. The effect of noise creates problems in both 
approaches boosting the error up to 50%. 

Table 10. P1, Noise level (MAPE) 

P1_NH 
MLR ANN 

10.1% 10.3% 
P1_NL 

MLR ANN 
4.3% 6.7% 

 
P1 is the simplest case involving only one judgmental factor described by only one 

parameter. As expected, MLR presents better results than ANN for all levels of noise. 
Also the level of error is smaller than any other case examined.  

Table 11. All cases (MAPE) 

 P3S2 P1S1 P2 P1 
MLR 43.3% 21.3% 26.5% 7.2% 
ANN 42.6% 30.7% 28.7% 8.5% 

 

This final table proves, that as the problem under consideration becomes more 
difficult/complex, the level of error escalates accordingly. The only case where ANN 
presents better results - no matter what the formula type - is the most complex case of 
P3S2. The errors are climaxing regularly from 7.2% up to almost 43% for the most 
difficult to forecast case. The final level of error – over 40% - indicates as well the 
difficulty of the problem of forecasting the impact of irregular events. 

5   Conclusion 

This study examined the relative performance of Artificial Neural Networks versus 
Multiple Linear Regression for estimating the impact of expected irregular future 
events. There is strong evidence that no winner can be nominated at this point. The 
simpler the problem (more linear and lower dimension) the greater the advantage for 
regression approaches. The more complex the problem and ANN present critical 
advantage. Thus, a selective protocol would be ideal so as ANN can be used in certain 
cases and MLR in others.  
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In detail, the effect of following factors has been discussed:  

• Linearity: the major finding of this study is that when nonlinearities exist in 
the underlying formula that describes the irregular event, ANN seem to be 
more appropriate. 

• Noise: the level of noise just makes things worse in terms of forecasting 
accuracy, but it does not nominate a winner. So, ANN and MLR perform 
equally badly in greater levels of noise. 

• Complexity: the more complex the irregular event (more factors X 
parameters needed to describe it) and ANN perform comparatively better. 
However in the simpler cases, that manager face all the time in every-day 
forecasting, MLR performs pretty adequately. 

Future research should focus on constructing an expert model that either through a 
selective protocol or an intelligent combination could exploit the advantages of these 
two different approaches.  
 
Acknowledgments. Dr K. Nikolopoulos has been supported for this research from the 
Manchester Business School Research Support Fund 2006/7 [Research Project - 
“Innovative Forecasting Methodology for Television Ratings” - £2000]. 
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Abstract. Biomedical signals are generally contaminated with artifacts and
noise. In case artifacts dominate, the useful signal can easily be extracted with
projective subspace techniques. Then, biomedical signals which often represent
one dimensional time series, need to be transformed to multi-dimensional signal
vectors for the latter techniques to be applicable. In this work we propose the ap-
plication of a greedy kernel Principal Component Analysis(KPCA) which allows
to decompose the multidimensional vectors into components, and we will show
that the one related with the largest eigenvalues correspond to an high-amplitude
artifact that can be subtracted from the original.

1 Introduction

In many biomedical signal processing applications a sensor signal is contaminated with
artifact related signals as well as with noise signals of substantial amplitude. The former
sometimes can be the most prominent signal component registered, while the latter is
often assumed to be additive, white, normally distributed and non-correlated with the
sensor signals. Often signal to noise ratios (SNR) are quite low. Hence to recover the
signals of interest, the task is to remove both the artifact related signal components as
well as the superimposed noise contributions. Projective subspace techniques can then
be used favorably to get rid of most of the noise contributions to multidimensional sig-
nals. But many biomedical signals represent one dimensional time series. Clearly pro-
jective subspace techniques are not available for one dimensional time series to suppress
noise contributions, hence time series analysis techniques often rely on embedding a
one dimensional sensor signal in a high-dimensional space of time-delayed coordinates
[6], [16]. As embedding is a non-linear signal manipulation [11] Kernel Principal Com-
ponent Analysis (KPCA) should be a suitable technique. KPCA can simultaneously
retain the non-linear structure of the data while denoising is achieved with better per-
formance because the projections are accomplished in the higher-dimensional feature
space. The KPCA method represents a projective subspace technique applied in feature
space which is created by a non-linear transformation of the original data. In the fea-
ture space a linear principal component analysis is performed. Denoising is achieved by
considering the projections related to the largest eigenvalues of the covariance matrix.

The mapping into feature space is avoided by using kernel functions which implic-
itly define a dot product in feature space computed using data in input space [10]. The
kernel matrix (a dot product matrix) of the mapped data is easily computed and nat-
urally its dimension depends on the size of the data set and the transformation. The
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entries k(i, j) of the matrix depend on the corresponding data points and are computed
according to the defined kernel function. The size of the kernel matrix represents a com-
putational burden once its eigendecomposition must be achieved. In practice, the goal
of projective subspace techniques is to describe the data with reduced dimensionality
by extracting meaningful components while still retaining the structure of the raw data.
Then only the projections on the directions corresponding to the most significant eigen-
values of the kernel (or covariance matrix) need to be computed. The exploitation of
methods like the well-known Nyström method to achieve a low rank eigendecompo-
sition is a strategy that has been considered in [4],[15]. Furthermore these techniques
can also achieve a solution without the manipulation of the full matrix. We show how
Nyström’s method can be applied to KPCA leading to what is usually known as greedy
KPCA. In this work we reformulate both KPCA and greedy KPCA under a unifying
algebraic notation underlying the differences between both approaches. And we exploit
such greedy techniques to extract high-amplitude artifacts from EEG recordings. The
extracted artifact is then subtracted from the original recording thus obtaining a cor-
rected version of the original signal.

EEGs are generally distorted by signals generated by eye movements, eye blinking,
muscle activity, head movements, heart beats and line noise. Particularly, eye movements
and blinking are major sources of EEG contamination. These ocular movement based sig-
nals (EOG) are of larger amplitude than cortical signals (EEG). As they propagate over
the scalp, they are recorded in most EEG derivations. Especially the frontal channels
often show prominent EOG artifacts which obscure the underlying EEG signals. The
availability of digitalized EEG signals makes possible the application of more sophis-
ticated techniques than simple linear filtering. More recently independent component
analysis (ICA) [14], [9], blind source separation [8] or adaptive filtering techniques [7]
have been discussed. The most recent works use independent component analysis: [9]
used the INFOMAX algorithm [13], [17] applied the joint approximative diagonalization
of eigen-matrices algorithm (JADE), in [8] an approximate joint diagonalization of time-
delayed correlation matrices (SOBI) was used while in [14] the fast fixed point algorithm
(FastICA) has been applied. In all the works except [13], the EOG channels are included
in the processed data set. In this work we propose the application of a kernel technique to
the multidimensional signal obtained by embedding a single univariate EEG signal in its
time-delayed coordinates. And after reconstruction and reverting the embedding, the ar-
tifact is isolated. The corrected EEG is obtained subtracting the artifact from the original
signal. Naturally, this method can be applied also in parallel to a subset of channels.

2 The Kernel Greedy Approaches to Decompose Univariate
Signals

Time series analysis techniques often rely on embedding one dimensional sensor signals
in the space of their time-delayed coordinates [11]. Embedding can be regarded as a
mapping that transforms a one-dimensional time series x = (x[0], x[1], ..., x[N − 1])
to a multidimensional sequence of K = N − M + 1 lagged vectors

xk = [x[k − 1 + M − 1], . . . , x[k − 1]]T , k = 1, . . . , K (1)

The lagged vectors X = [x1 · · ·xK ] lie in a space of dimension M .
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Kernel Principal Component Analysis (KPCA) relies on a non-linear mapping of
given data to a higher dimensional space, called feature space. Without loosing gen-
erality, let’s assume that the data set is centered and split into two parts yielding the
mapped data set

Φ = [φ(x1)φ(x2) . . . φ(xR), φ(xR+1) . . . φ(xK)] = [ΦR ΦS ] (2)

In denoising applications, the first step of KPCA is to compute the projections of a
mapped data set onto a feature subspace. Considering L eigenvectors (columns of U)
of a covariance matrix (a correlation matrix if the data is centered) corresponding to the
L largest eigenvalues, the projections of the mapped data set Φ are

Z = UT Φ (3)

The columns of the matrix U form a basis in feature space onto which the data set is
projected. This basis can be written as a linear combination of the mapped data

U = ΦBA (4)

The matrix A is a matrix of coefficients and either ΦB = Φ (KPCA) or ΦB = ΦR

(greedy KPCA), representing a subset of the data set only. Note that the column j of
Z depends on the dot products ΦT

Bφ(xj). However to avoid an explicit mapping into
feature space, all data manipulations are achieved by dot products [10] and the kernel
trick is applied. For instance, using an RBF kernel, the dot product between a vector
φ(xi), with i ∈ B, and φ(xj) is computed using a kernel function that only depends on
the input data

k(xi,xj) = exp(−‖xi − xj‖2

2σ2 ) (5)

Finally, to recover the noise-reduced signal after denoising in feature space, the non-
linear mapping must be reverted, i.e. the pre-image in input space of every signal, de-
noised and reconstructed in feature space, must be estimated. Denoising using KPCA
thus comprises two steps after the computation of the projections in the feature space:
a) the reconstruction in feature space and b) the estimation of the pre-image of the re-
constructed point φ̂(xj) = Uzj , where zj represents the projections of a noisy point
xj . These two steps can be joined together by minimizing the Euclidian distance of the
image φ(p) of a yet unknown point p from φ̂(xj)

d̃(2) = ‖φ(p) − φ̂(xj)‖2

= (φ(p) − φ̂(xj))T (φ(p) − φ̂(xj)) (6)

The central idea of the fixed-point method [10] consists in computing the unknown pre-
image of a reconstructed point in the projected feature subspace by finding a p which
minimizes that distance (eq.6). If an RBF kernel is considered, the iterative procedure
is described by the following equation

pt+1 =
XB(g♦kpt)

gT kpt

(7)
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where ♦ represents a Hadamard product, g = Azj . The components of the vector
kpt = k(XB ,pt) are given by the dot products between φ(pt) and the images ΦB

of the training subset XB . The algorithm must be initialized and p0 ≡ xi is a valid
choice [11]. The points pk then form the columns of X̂, the noise-free multidimensional
signal matrix in input space. The one-dimensional signal, x̂[n], is then obtained by
reverting the embedding, i.e. by forming the signal with the mean of the values along
each descendent diagonal of X̂ [12]. Note that if x̂[n] corresponds to the high amplitude
artifact, then the corrected signal is computed as y[n] = x[n] − x̂[n].

2.1 Computing the Basis

The projections Z of the training set are also related with the eigenvectors of a matrix
computed using only dot products (K), the kernel matrix. Naturally the entries of the
latter matrix can be easily computed using the kernel trick thus avoiding an explicit
mapping of the data set. Furthermore, considering a singular value decomposition of
the data set

Φ = UD1/2VT (8)

where D is a diagonal matrix with its non-zero eigenvalues of the kernel matrix (or of
the covariance matrix) ordered according to λ1 > λ2 > ... > λL... > λR and V and U
are the R eigenvectors of the kernel and covariance matrices, respectively. The data set
can be approximated using an SVD decomposition with the L most significant singular
values and the corresponding eigenvectors. Then substituting the SVD decomposition
(eq.8) in eqn. (3) the L projections for each element of the data set read

Z = D1/2VT (9)

The two approaches, KPCA and greedy KPCA, respectively, arise from two distinct
strategies to deal with the eigendecomposition of the kernel matrix (K) of the data set.
In KPCA, where the whole data set is used to compute the kernel matrix, matrix A is
computed using the largest eigenvalues (D) and corresponding eigenvectors (V). And
by manipulation of eqns. (3 ) and (9), the basis vector matrix is obtained as

U = ΦVD−1/2 (10)

In greedy KPCA a low-rank approximation of the kernel matrix is considered. This
leads to the eigendecomposition of matrices with reduced size. Considering that the
training set was divided into two subsets, the kernel matrix can be written in block
notation [15],[4]

K =
[

Kr Krs

KT
rs Ks

]
(11)

where Kr is the kernel matrix within subset ΦR, Krs is the kernel matrix between sub-
set ΦR and ΦS and Ks is the kernel matrix within the subset ΦS . The approximation
is written using the upper blocks of the original matrix [15], [4]

K̃ =
[

Kr

KT
rs

]
K−1

r

[
Kr Krs

]
(12)
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It can be shown that the lower block is approximated by Ks ≈ KT
rsK

−1
r Krs. The R

eigenvectors V corresponding to the R largest eigenvalues are then computed as

VT = HT
[
Kr Krs

]
= HT ΦT

R

[
ΦR ΦS

]
(13)

where H can be computed following different strategies [15], [4] and [1]. The latter [1]
refers to an incomplete Cholesky decomposition K̃ = CT C, with

C =
[
L L−T Krs

]
(14)

The matrix L is a triangular matrix corresponding to the complete Cholesky decompo-
sition of Kr = LT L.

The R × R matrix Q = CCT and its eigendecomposition VqDVT
q are used to

obtain the low rank approximation of the kernel matrix. In particular the eigenvectors
(see eq. 13) are computed with H = L−1VqD−1/2. The eigenvectors are orthogonal
(VT V = I) and consequently the data, in the feature space, is represented by non-
correlated projections (Z). The manipulation of equations (13), (9) and (3) gives the
basis vector matrix

U = ΦRL−1Vq (15)

The eigenvectors in the matrix Vq should be placed according to their corresponding
eigenvalues. The first column should have the eigenvector corresponding to the largest
eigenvalue and so on. Furthermore the matrix should have L < R columns to enable
projections of the data onto the directions related to the L largest eigenvalues. Note that
the pivoting index of the incomplete Cholesky decomposition [1] leads to the selection
of ΦR within the training set. Further note that in any practical implementation the data
is not centered in the feature space. However their centering can be achieved in matrix
C, i.e. , after the incomplete Cholesky decomposition of the kernel matrix.

2.2 Choosing Training and Testing Subsets

In the last section it was discussed that with an incomplete Cholesky decomposition
it is possible to compute the parameters of the model using a training data set divided
into two subsets. But the parameters usually depend on both subsets. However, there
are approaches, where the parameters depend on only one of the subsets [15] whose
elements are chosen randomly. In this application, we consider an hybrid approach
which leads to the choice of three subsets of data. We start by splitting the data (with
J vectors) into two data sets: the training set with K vectors and the testing set which
contains the remaining data to be processed. In this application, we consider to form
the training set with two strategies

– choosing the K vectors randomly.
– choosing the K vectors that correspond to a subsegment (with artifact) of the seg-

ment to be processed.

The subset R of the training set is chosen using a Cholesky decomposition performed
with the symmetric pivoting algorithm [1]. The methodology is based on the minimiza-
tion of the trace tr(Ks−KT

rsK
−1
r Krs) applied to iteratively update the subset R. So by
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identifying the maximum value of the trace operator (the pivot), an element of subset S
is moved to the subset R and the matrix Kr increases its size while the others decrease.
The process stops when the trace of the matrix corresponding to the actual approxima-
tion is less than a threshold [1], [5] and/or the matrix Kr is not well conditioned [2].

3 Numerical Simulations

The method described in the previous section will be applied to the removal of promi-
nent EOG artifacts from EEG recordings. The corrected EEG is obtaining by subtract-
ing the artifact from the original channel.

Two experiments will be discussed: one dealing only with the details of the appli-
cation of the method to a single channel; the other application illustrates the use of the
algorithm to ease visual inspection of critical segments. The algorithm is always applied
to segments of 12s or 10s (typical window size on displays) duration. The multidimen-
sional signal is obtained with an embedding into an M = 11 feature space. An RBF
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Fig. 1. Fp2 channel (with reference to Cz): all subsegments contain an EOG artifact

0 1 2 3 4 5 6
Time (sec)

Fig. 2. Greedy KPCA algorithm in different steps: - top random selected training set, - middle
extracted EOG signal and bottom - corrected EEG
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Fig. 3. Corrected EEG using as training set: top first subsegment of fig. 1, bottom the second
segment of fig. 1

kernel is used with σ = maxi(‖xi − xmean‖), i = 1, . . . , J , where xmean is the mean
of the data set.

Single Channel Analysis. A frontal (Fp2-Cz) EEG channel sampled at 128Hz was
used. The segment of the signal containing high-amplitude EOG artifacts is shown in
fig. 1). After embedding, the data set with J = 1526 vectors was split into testing and
training sets. The training set is formed with roughly 25% of the data considering the
following strategies

1. A random choice of K = 381 data vectors. Fig. 2 (plot on top) illustrates the
random choice by plotting the first row of the training data vectors according to
their time reference.

2. Using all vectors that correspond either to the first subsegment of the signal (0−3s)
or to the second subsegment (3 − 6s).

The incomplete Cholesky decomposition algorithm is used with R = 20. For the
three cases data were projected onto L = 6 basis vectors (U) which correspond to the
leveling off of the eigenspectrum of matrix Q. Fig. 2 shows the result of the application
of the algorithm when the training set is selected randomly. Fig. 3 shows the first 6s
of the corrected EEG when the training set was formed by a subsegment of the signal.
It is easily visible that when the training set do not have ”examples” of the features to
extract the algorithm does not work well. The strongly negative features present in the
first subsegment are not represented in the second subsegment. Then when the training
set is formed with vectors belonging to the 2nd segment, the artifact is not removed (see
fig. 3- plot on bottom).

Multichannel Analysis. The algorithm is applied in parallel to recordings from 4 dif-
ferent EEG electrodes all of which contain a high amplitude EOG interference. The
segments each have a duration of 10s and fig. 4 (on the left) shows a subsegment of
3s. After embedding, the training set was formed with roughly 25% of the multidimen-
sional data set. The incomplete Cholesky decomposition with R = 20 was used. In
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(b) Corrected EEG

Fig. 4. EEG signals placed according 10 − 20 system with reference to Cz. Only 3s of the 10s
are plotted. Channels processed: Fp2, Fp1, F3 and F7.

the feature space, the mapped multidimensional signal is projected onto L directions
chosen according to the eigenspectrum of matrix Q (see table 1).

Note that the number of directions of the Fp channels is higher because the artifacts
have a higher energy in these recordings. The results of the processing are plotted in
fig. 4 and firmly corroborate our previous conclusions. Note that the algorithm has only
one parameter (L), so it is very easy to do an automatic tool to provide on-line help in
any visual inspection and analysis of the recordings.

Table 1. Multichannel Analysis. Number of directions to project data

Fp1 Fp2 F3 F7

L 6 6 4 3

4 Concluding Remarks

In this work we present a new variant of greedy KPCA algorithms where the data is
split into training and testing sets. The data set is projected onto basis vectors computed
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with the training set only. This strategy is important to decrease the computational bur-
den of kernel principal component analysis methods when large data sets are involved.
In the proposed variant the complexity of the algorithm is related with the splitting of
the training set into two subsets. This procedure is achieved by computing the trace of a
matrix in each step which involves the manipulation of the whole training set. In our ap-
plication, we conclude experimentally that with 20 steps we form a subset with R = 20
elements that allows to estimate the L < R basis vectors needed to project the data.
In what concerns the artifact elimination, the proposed method needs the information
contained within a single channel only, hence can be applied to each channel separately.
Thus only channels which contain such artifacts need to be processed. Our preliminary
results show good performance in removing artifacts like eye or head movements. In
summary, the method achieves the separation of EEG signal recordings into two com-
ponents: artifacts and undistorted EEG. Although this is ongoing work, we present a
method that is intended to ease a visual inspection of the EEG recordings by an experi-
enced clinician, hence might be useful in some critical segment analysis like the onset
of ictal seizures. It is also to be noticed that despite the variety of methods applied, it
is not possible to conclude about their performance once they use distinct databases,
different measures and goals. The proposed method needs to be evaluated in a more
quantitative and systematic approach, concerning for instance the spectral distortion in
the important frequency ranges of EEG. A plug-in to EEGLAB platform [3] has been
developed to introduce the method in the clinical routine and facilitate the comparison
with other methods.
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Abstract. Recent neurocognitive researches demonstrate how the nat-
ural processing of auditory sentences occurs. Nowadays, there is not an
appropriate human-computer speech interaction, and this constitutes a
computational challenge to be overtaked. In this direction, we propose a
speech comprehension software architecture to represent the flow of this
neurocognitive model. In this architecture, the first step is the speech
signal processing to written words and prosody coding. Afterwards, this
coding is used as input in syntactic and prosodic-semantic analyses. Both
analyses are done concomitantly and their outputs are matched to ver-
ify the best result. The computational implementation applies wavelets
transforms to speech signal codification and data prosodic extraction
and connectionist models to syntactic parsing and prosodic-semantic
mapping.

1 Introduction

The research of Spoken Language Understanding (SLU) software is derived from
two joint technologies: Automatic Speech Recognition (ASR) and Natural Lan-
guage Processing (NLP). These two technologies are complementary: the natu-
ral language can help in the speech recognition through information in syntax
and semantics, and the speech recognition can improve the understanding of
the language with contextual information, such as the intonation of the words
(prosody)[1].

This work argues that it is possible to unify several computational systems
to represent the speech understanding process. Thus, we propose a software
architecture the SUM, a Speech Understanding Model, based on a neurocog-
nitive model of auditory sentence (section 4). Through SUM, we searched a
computational representation for speech signal codification, prosody, syntactic
and semantic analysis. The SUM is illustrated in the figure 1.

Wavelet transform is used for the signal processing and prosodic codification.
The wavelets codification is fully described in the section 4. The connectionist
subsystems used in syntactic parsing and definition of semantic contexts are
described in the sections 4. Finally, in section 5 we describe how the integration of
the subsystems occurs, while in section 6, the results concerning the consequences
of this work are presented.
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Fig. 1. The Speech Understanding Model - SUM

2 Related Work

The SLU is the first part of spoken dialog systems [2]. In our work, we apply
two parts of SLU systems: speech recognizer and language parser. Moreover,
to improve this process, we take as base recent neurocognitive researches that
demonstrate the relevance of prosody to the natural processing of auditory. Thus,
we present to follow some related works in speech recognizer, language parser
and prosody. Wavelets transforms have been proposed as an alternative to tra-
ditional methods to perform speech analysis as MFCC (Mel Frequency Cepstral
Coefficients), which applies Fourier transform. Some limitations of MFCC have
been observed, such as easily noise corruption and a signal frame representa-
tion that can hold more than one phoneme [3]. Wavelets extract speech signal
characteristics by sub-band division [4]. Software to determine semantic context
has been the focus of researches, in spite of some work about handmade sen-
tence labeling [5]. This handmade method is expensive and laborious, however,
it permits a full and deep semantic analysis [6]. On the other hand, the shallow
semantic analysis is fully statistical and more robust than deep analysis [6]. Some
methods have been developed using shallow semantic analysis approach. All of
them do a classification by distance clustering based on context determination by
sentence structure. Neural networks are applied to thematic indexing of spoken
documents [7]. Kompe [8] pointed out the importance of accent analysis to word
recognition and focus in speech context determination. In this direction, Zhang
et al. [9] used Kompe’s concepts to create an automatic focus kernel extraction
and to differentiate a pair of words with similar linguistic structure but with
different meanings.
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3 Neurocognitive Model

Angela Friederici proposes a neurocognitive model of auditory sentence process-
ing that identifies which parts of the brain were activated at the time, given
the different applied tests. She divided the processing of the auditory sentences
in four large phases [10]. Indeed, the most recent research indicates that the
prosody processing description must be added to the neurocognitive model [11].
This model is illustrated in figure 2.

Fig. 2. Improved sequence of neurocognitive model of auditory sentence

In the first phase (phase 0 ), it is done an acoustic characteristic extraction and
signal codification. In this process, the pitch is isolated in the right hemisphere
and the affective signal (emotions) is distinguished from the linguistic signal.
Thus, the pitch variation (affective signal) defines the prosodic characteristics,
which determine the processing segmentation. The linguistic characteristics will
be analyzed at the syntactic level by the left hemisphere of the brain during the
second phase [10]. The second phase (phase 1 ) performs the syntactic analysis
and it occurs only in the left hemisphere of the brain. The syntactic analysis
is not affected by the prosody and the semantics, and it is processed according
to an independent manner [12]. The syntactic evaluation process occurs where
the structure sentence errors cause the need of corrections without semantic
analysis [13]. This means that the syntactic structure errors must be corrected
before semantic analysis. The semantic analysis is performed in the third phase
(phase 2 ), where there is a query in the words category memory, which can be
observed in tests where the sentences had been organized to produce conflicts
related to category and gender [12]. The semantic analysis apparently awaits
the syntactic analysis output in order to solve interpretation problems brought
about mainly by the words categories contextualization. If the sentences are well
structured, they will be evaluated by gender, category and semantic context of
the involved words [10][13]. The fourth and last phase (phase 3 ) the integration
among syntax, semantics and prosody, necessary to review problems not resolved
in the previous phases takes place. The syntax structure correction is necessary
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when there are lexical terms organization problems [10]. The syntax structure
correction is necessary when lexical terms organization problems occur [10].

4 The Implementation of Speech Understanding
Model - SUM

We have propose a software architecture based on the natural auditory sentence
processing to represent Friederici’s neurocognitive model [14]. From the four
described phases in the neurocognitive model, we propose the architecture of
SUM, as illustrated in figure1. In SUM, the first phase extracts from speech signal
coefficients, which were obtained through mathematic transforms applied. These
coefficients provide information about the speech signal and they are used in the
subsequent phases. The second computational phase is the application of speech
coefficients to carry out the syntactic parsing. In the third phase the coefficients
are used to define semantic contexts. The linguistic and prosodic information
embedded in the coefficients is used to verify the similarity with predefined
semantic patterns. The fourth phase receives the analyses from second and third
phases’ outputs. In this phase, the most likely context is indicated as answer to
each analyzed sentence.

Speech signal processing. In this work, wavelet multiresolution analysis is
used to extract the characteristics of the speech signal. We divided these signal
characteristics in prosodics and semantics. Wavelet permits wave decompositions
in scale (dilation) and temporal displacement (translation). The scale enables the
signal differentiation between frequency levels, whereas the translation defines
the band wideness in analysis [15]. If we vary only the scale, the wavelets can work
as filterbanks with multiresolution analysis [16]. This means that it is possible
to obtain more details of signal in different frequency levels. The scale is defined
by

φ(x) =
√

2
∑

k

hkφ(2x − k)

where hk is a low-pass filter and k is the scale index. The mother-wavelet will
be inserted in this scale by

ψ(x) =
√

2
∑

k

gkψ(2x − k)

where gk is a high-pass filter. These parameters permit high frequencies to be
analyzed in narrow windows and low frequencies in wide windows.

In this SUM implementation we use the multiresolution analysis to speech
signal codification. We define this process in two ways: phonetic and prosodic
approaches (fig 3). The phonetic coefficients are obtained from a single decompo-
sition of wavelet coefficients. The prosodic coefficients are extracted by wavelets
from F0 variation (pitch).

We can extract the spectral density in each sub-band to phoneme identification
[17] and calculate from the leaves of the wavelet multiresolution tree are the
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Fig. 3. Coefficients extraction from speech signal

phonetic coefficients. This coefficients are used as word patterns in connectionist
systems to process language. The identification of prosodic characteristics is
done through the F0 analysis. According to Kadambe, it is necessary to detect
the wavelet maximum points to acquire information on the variations of the F0
speech, which correspond to the glottal closure instants (GCI) [18]. The prosodic
coefficients are the variance of F0 detected by wavelet multiresolution analysis
and will be applied to semantic and prosodic analysis.

Syntactic analysis. The syntactic analysis is processed by SARDSRN-RAAM
system, developed by Mayberry and Miikkulainen [19]. The phonetic coefficients
are trained by RAAM (Recursive Auto-Associative Memory) net, whose activa-
tion enables the sequencing of the words in the phrase by the SARDSRN-RAAM.
In this training, the phonetic coefficients are associated to words. Afterward, the
temporal sequence of the component words is initiated, and the sentence pattern
presented in the input layer is distributed to the hidden layer and to SARDNET
(Sequential Activation Retention and Decay Network). This net, also feeds the
hidden layer that, in turn, transfer its codes to a context layer, characterizing
the SRN (Simple Recurrent Network) in the SARDSRN-RAAM. In the end, the
output layer generates a pattern sentence that is decoded by the RAAM net (see
figure 4).

Prosodic-semantic analysis. The prosodic-semantic analysis system receives
the phonetic and the prosodic coefficients from wavelet transform. The seman-
tic processing is composed by four chained Growing Hierarchical Self-Organizing
Maps (GHSOM) [20](see figure 5). In the first GHSOM net, the input is provided
by prosodic coefficients from wavelet transform applied on the speech signal. In
the second GHSOM net, the phonetic map organizes groups of words according
to their linguistic structure and pronunciation. The net that forms the prosodic-
semantic map uses the output information from the activated neuron in the
phonetic map and the activation in the prosodic map. The training of this com-
position enables the semantic word clustering in the map. Finally, the last map
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Fig. 4. SARDSRN schema

is responsible for grouping sentences that are informed by the user. The codifi-
cation of each component word of the sentence supplied by the system user is
made by the activation of the preceding maps. The composition of the output of
semantic map for each word is the input of the sentences map. The recognition
of speech patterns is performed by the sentences map, which indicates the most
likely sentence.

Fig. 5. Maps organization to phonetic, prosodic, semantic and sentences clustering

Evaluation. The sentences resulting from systems’ recognitions are evaluated
after syntactic and prosodic-semantic processing. The SARDSRN-RAAM system
indicates an error rate in each sentence output and the semantic maps system
points to the winner neuron in the sentences map. We elaborated an algorithm
to perform this evaluation: if a syntactic error rate is lower than 0.5, then we
must reject the syntactic structure; if the distance from trained patterns in the
sentences map is higher than 2, we must reject the semantic context; if there is
a failure just in the syntactic analysis, the system points out the best sentence
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of the prosocid-semantic analysis; if the failure occurs just in the semantics, the
system returns the sentence found in the syntactic analysis; if both analyses fail,
the sentence is considered incomprehensible; if both have a successful recognition,
they are indicated to the user as being good results. The result of this algorithm
is the output of our SUM implementation. For each spoken sentence, the system
generates the most reasonable written sentence as result.

5 Simulation of the SUM

Training. We apply wavelet transforms to obtain patterns to train the neural
networks. We record 8 sentences to extract 13 words segmented by hand spoken
by three Brazilian Portuguese speakers. The records are made in Brazilian Por-
tuguese, but here we present only the translation of the sentences. The spoken
sentences trained were (with acronyms marked with small letters):

acronym sentence acronym sentence
tbstc the boy saw the cat tdctc the dog chased the cat
tcltg the cat liked the girl tcstd the cat saw the dog
tdbtb the dog bit the boy tbbtg the boy bit the girl
tgltd the girl liked the dog tgctb the girl chased the boy

We used the Matlab to apply the wavelet transform on the speech signal. The
wavelet transform used was Daubechies’ wavelet transforms with eight filter
coefficients (db4 filter in Matlab). The phonetic coefficients were obtained with
three decomposition levels and the prosodic coefficients with two decomposition
levels. The prosodic and phonetic coefficients are obtained directly from wavelet
transform (figure 6). In the SARDSRN-RAAM system, the order of training
input is guided by a grammar definition with written sentences. The training is
stopped when the error rate in each sentence is lower 0.01. The simulation of
system maps was proceeded by GHSOM Matlab toolbox [20]. All GHSOM maps
were chained as described in section 4.

Recognition. In recognition, the same wavelet codification process was realized.
We select three spoken sentences with each verb of the lexicon. The sentences
were spoken by a single speaker. The selected sentences to recognize were (with
acronyms marked with capital letters):

acronym sentence acronym sentence
TBSTG the boy saw the girl TCBTB the cat bit the boy
TGSTC the girl saw the cat TDBTC the dog bit the cat
TDSTB the dog saw the boy TGBTC the girl bit the cat
TDLTG the dog liked the girl TBCTC the boy chased the cat
TGLTB the girl liked the boy TDCTG the dog chased the girl
TBLTC the boy liked the cat TCCTD the cat chased the dog
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Fig. 6. a) original wave and phonetic coefficients and b) wavelet coefficients with zero-
crossing marks and prosodic coefficients

Fig. 7. The final sentences map

In the SARDSRN-RAAM recognition, for each sentence the system presents
the best likely sentence. For example, the sentence TBSTG was recognized as sen-
tence trained tbbtg, TGSTC as tgctb, TDSTB as tdbtb, TBLTC as tbstc, and so on.
It is important to stand out that we recognized (by estimation) not known sen-
tences. As illustration of the map estimation, the not trained sentence TDLTG
match with trained sentence tcltg, TBCTC with tdctc, and so on. Each sentence
corresponds to recognized neuron, as it is shown in figure 7, that it illustrates the
resultant grouping of sentences in the sentences map. We chosed the sentences
TDBTB (the dog bit the boy) and TCCTD (the cat chased the dog), that they
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are not in the set of training. In the first sentence, we got a prosodic-semantic
match in tcltg (the cat liked the girl). The syntactic subsystem returned the
same written sentence (the dog bit the boy), although not trained. In the sec-
ond sentence, the syntactic subsystem presented the wrong sentence the cat boy
the dog. The result of sentences map was a distance 0 from pattern tdctc (the
dog chased the cat) (see figure 7). These two examples mean that, in the case
of the first sentence, the syntactic subsystem got the correct sentence, but the
maps system have a bad choice. In the case of the second sentence, the syntactic
system fails, but the maps system returned the best likely sentence.

6 Conclusion

The SUM model is a software architecture to guide the computational implemen-
tation of the auditory sentence process. The proposal of implementation to SUM
consists in the codification of the speech signal through coefficient wavelets.

The results obtained from wavelet transform allowed an appropriate speech
signal and prosody codification for the use in the connexionist systems to syn-
tactic and semantic representation. The resultant codification demonstrates that
there is an interface between existent linguistic parsing connectionists systems
to analyze text and the speech. This opens a new method to implementation of
systems for written language. The use of artificial neural nets in the syntactic
and prosodic-semantic processing was presented as a facilitator in the language
modeling process. The training through examples provided by connectionists
systems simplifies the work necessary to define grammars and contexts of the
language.

The use of hierarchies of maps for definition of semantic contexts might use
the prosodics information as guide for linguistic parsing. As analyzed, this notion
has a biological inspiration in the presented neurocognitive model.

Finally, the computational prototype that demonstrates the processing of the
SUM resulted in a complementing analysis system. Therefore, when the syntactic
analysis does not offer reliability, it is possible to evaluate prosodic-semantic
analysis, such as in human speech understanding.
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Abstract. In time series prediction problems in which the current series
presents a certain seasonality, the long term and short term prediction
capabilities of a learned model can be improved by considering that sea-
sonality as additional information within it. Kernel methods and specifi-
cally LS-SVM are receiving increasing attention in the last years thanks
to many interesting properties; among them, these type of models can
include any additional information by simply adding new variables to the
problem, without increasing the computational cost. This work evaluates
how including the seasonal information of a series in a designed recur-
sive model might not only upgrade the performance of the predictor, but
also allows to diminish the number of input variables needed to perform
the modelling, thus being able to increase both the generalization and
interpretability capabilities of the model.

1 Introduction

Time series forecasting is a challenge in many fields. There exist many techniques
that are applied to the problem of predicting new values in univariate time se-
ries [1]. Neural Networks, Fuzzy Systems, Support Vector Machines, AR-ARMA
models, etc., are among the paradigms that have been applied to that problem.
It is a complex problem, that in general has several points in common with func-
tion approximation problems. A good analysis of the time series is necessary to
properly tackle the prediction problem, normally treated as a modeling problem,
in which new series values x̂(t+h) are predicted using previous values (x(t− 0),
x(t − 1), . . ., x(t − τ)) in the general model

x̂(t + h) = F (x (t − 0) , x (t − 1) , . . . x (t − τ)) . (1)

For example, when it is detected that the series presents a certain seasonality,
this seasonality has to be included in the prediction model [10,11,13,14]. In kernel
methods, including LS-SVM, this seasonality information can be included by
simply adding new variables to the problem that represent this information,
with the important advantage that they don’t increase the computational cost
[10,13].

This work emphasizes the importance of including the seasonal information of
a series in a recursive model when dealing with a seasonal time series prediction
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problem. As it will be shown in the examples, including seasonal information
might not only upgrade the performance of a recursive predictor, but also can
be seen as a way to diminish the number of input variables needed to perform
the modelling with an objective performance.

This work will make use of Least Squares Support Vector Machines, that are
a powerful and convenient tool for time series prediction problems, as shown
in several works [10,12]. The simulations will be performed in three well known
time series, using recursive LS-SVM predictors.

The rest of the work is structured as follows. Section 2 briefly reviews the
LS-SVM learning methodology for modelling problems, and addresses how to
consider seasonal information within the kernel method. Section 3 reviews the
concepts of recursive prediction and direct prediction for long term time series
forecasting. Section 4 analyses the time series proposed for the simulations, and
addresses the seasonality present in the series. Section 5 presents the simulations,
and section 6 concludes the paper.

2 Least Squares Support Vector Machines

LS-SVMs are reformulations to standard Support Vector Machines (SVMs) that
lead to solving linear Karush-Kuhn-Tucker systems [5]. LS-SVMs are regular-
ized supervised approximators, closely related to regularization networks and
Gaussian processes, but that additionally emphasize and exploit primal-dual
interpretations from optimization theory [6].

The LS-SVM model [6] is defined in its primal weight space by

ŷ = ωT φ(x) + b (2)

where ωT and b are the parameters of the model, φ(x) is a function that maps the
input space into a higher dimensional feature space, and x is the n-dimensional
vector of inputs xj . In Least Squares Support Vector Machines for function
approximation, the following optimization problem is formulated,

min
ω,b,e

J(ω, e) =
1
2
ωT ω + γ

1
2

N∑

i=1

e2
i (3)

subject to the equality constraints (inequality constraints in the case of SVMs)

ei = yi − ŷ(xi), i = 1 . . .N (4)

Solving this optimization problem in dual space, leads to finding the λi and
b coefficients in the following solution

ŷ =
N∑

i=1

λiK(x, xi) + b (5)

where the function K(x, xi) is the kernel function defined as the dot product
between the φ(x) and φ(xi) mappings.
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In case we consider Gaussian kernels, the kernel function K(x, xi) takes the
form

K(x, xi) = exp
[
−‖x − xi‖2

σ2

]
(6)

where σ is the width of the kernel, that together with the regularization param-
eter γ, are the hyper-parameters of the problem. Note that in the case in which
Gaussian kernels are used, the models obtained resemble Radial Basis Function
Networks (RBFN); with the particularities that there is an RBF node per data
point, and that overfitting is controlled by a regularization parameter instead of
by reducing the number of kernels [6]. In LS-SVM, the hyper-parameters of the
model can be optimized by cross-validation. Nevertheless, in order to speed-up
the optimization, a more efficient methodology by Lendasse et al. can be found
in [3]. A Matlab toolbox for LS-SVMs can be found in [4].

2.1 Incorporating Seasonal Information on LS-SVM Predictors

LS-SVMs present a very good performance for function approximation and time
series prediction problems [12]. From the computational complexity point of
view, kernel methods in general don’t suffer from the curse of dimensionality in
the number of input dimensions, but in the number of training data points. This
makes easy to include additional information to a kernel-based model, and to
check and verify the performance of the modified model.

In case the current series presents seasonality, one or several variables indi-
cating time step within the season of the horizon to be predicted h (for example
represented as s(t + h)) can be added within the model such that the general
modelling equation becomes

x̂(t + h) = F (s(t + h), x (t − 0) , x (t − 1) , . . . x (t − τ)) . (7)

In this general model, a variable selection approach should be used in order
to identify which value of τ is optimum and to identify if the inclusion of s(t+h)
improves the performance of the designed model. We note here that there the
series of previous series values don’t necessarily have the structure x(t − 0),
x(t−1), . . ., x(t−τ) but is also taken in many cases as (x(t−0), x(t−δ), x(t−2∗δ),
. . ., x(t − τ ∗ δ)). A simple wrapper method to perform this variable selection
can perform a set of different LS-SVM optimizations, using cross-validation to
check which input structure obtained the best performance. In order to decrease
the computational demand of the wrapper procedure, the LS-SVM optimizations
can be performed using a simple grid-search method using n-fold cross-validation
optimization with a low value of n. This simple but effective procedure would
assure that a suboptimal subset of variables is obtained.

3 Recursive Prediction

In general, in time series prediction problems, two types of predictions can be
needed: short term predictions and long term predictions. Long term time series
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prediction is a more complex task since the uncertainty increases with the horizon
of prediction. In this case, but also valid for short term predictions, two trends
can be taken to tackle the problem: direct prediction and recursive prediction
[2]. Direct prediction implies the construction of different models, one for each
different prediction horizon needed. The performance with this strategy can be
expected to be better in prediction accuracy. However, direct prediction has
the drawback that too many models might be needed to obtain the long term
prediction [7,8], and the time series behaviour understandability vanishes as
several different models are needed.

On the other side, recursive prediction only uses one model to predict all the
horizons needed. For example, a one-horizon-ahead recursive model would have
the structure

x̂(t + 1) = F (s(t + 1), x̂ (t − 0) , x̂ (t − 1) , . . . x̂ (t − τ)) (8)

where for a certain long prediction, the first input values x̂ (t − 0), x̂ (t − 1),
. . ., x̂ (t − τ) are known, and the rest are estimated recursively, using the own
model outputs as inputs for further horizons. The performance of the recur-
sive model has to be evaluated, by recursively applying the model to predict
all the horizons needed. The drawback of recursive prediction, is that the error
committed in nearest horizons can be transmitted to further horizons. However,
the interpretability of the predictor improves since a single model is used. It is
also important for interpretability of the predictor, to use a low number of input
variables in the model. This work considers recursive predictors due to this char-
acteristic. Furthermore, on series presenting seasonality, by using the seasonal
information, the number of needed input variables can be highly decreased as it
will be shown in the simulations.

4 Time Series Considered

Three well known time series will be used in the simulations section, two natural
and one artificial. The evaluation of the performance is done using the mean
squared error MSE. First is the ESTSP’2007 conference proposed Benchmark.
The data set provided is shown in fig. 1. The number of samples in the time series
is 875 and it represents the temperature of the pacific ocean along different years
(nio phenomenon).

The second example measures the monthly river flow series in cubic feet per
second of the Snake river taken from [15]. Fig. 2 shows the shape of the series.
The series presents a high level of noise, although with a recognizable pattern in
the series behavior. One thousand data points are considered from the series.

Third, the Mackey-Glass time series has been considered. It is a well known
series, widely used in the literature of time series prediction problems for com-
paring different methodologies. The time series is described by the following
delay differential equation

dx(t)
dt

=
ax(t − τ)

1 + x10(t − τ)
− bx(t) (9)
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Fig. 1. ESTSP’2007 dataset

Fig. 2. Monthly river flow series in cubic feet per second of the Snake river, in the
period of 1904 until 1994, see [15]

One thousand data points were generated with an initial condition x(0) = 1.2
and τ = 17 based on Runge-Kutta method. The plot of the 1000 data points of
the series is shown in fig. 3.

4.1 Seasonality in Time Series

Seasonality in time series occurs when there is a certain pattern that is repeated
each k elements. Both data series in fig. 1 and fig. 3 show to have a certain
seasonality. The period of the seasonality can be obtained by a number of tech-
niques (for example using the autocorrelation function, etc.). In this work, the
period has been obtained by evaluating the distances between the supposed-
seasons data. The specific period for which the sum of squared distances among
the different seasons data was lowest, was taken as a solution.

For the first series, the period found was 52; fig. 4 shows the superposition
of the different seasons of 52 data samples of the time series. In the LS-SVM
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Fig. 3. Mackey-Glass dataset

Fig. 4. Different seasons on the original time series

model, as it was explained in the previous section, a variable s(t+h) (indicating
the time step within the season of the horizon to be predicted h) is added as a
new input variable to improve the prediction accuracy. Therefore this variable
will take values from 1..52 in the first series.

For the river flow series, the period found was 12. Again the dummy input
variable s(t + h) will take values from 1..12 in the data. For the Mackey-Glass
series, the period found was 100. The dummy input variable s(t+h) takes values
within 1..100.

5 Simulations

For the ESTSP series, the 875 available data points, were subdivided into 750
for training and 125 for test. The 750 data points of training were subdivided
in 5 folds in order to perform cross-validation. Table 1 shows, for the ESTSP
series, the 5-fold cross-validation MSE when performing the variable selection
procedure for different values of τ , when taking and not taking into account the
step in the season s(t+1). The MSE error values were obtained by averaging the
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Table 1. MSE for different values of τ in the prediction of the ESTSP series

with s(t + 1) without s(t + 1) with s(t + 1) without s(t + 1)
τ CV MSE CV MSE τ CV MSE CV MSE

τ = 0 1.9200 9.9137 τ = 30 2.7074 2.7937
τ = 1 1.8569 9.1367 τ = 31 3.4971 2.8207
τ = 2 1.8959 7.9905 τ = 32 3.4819 4.0388
τ = 3 1.9212 6.9163 τ = 33 2.8270 4.7843
τ = 4 1.9231 5.8499 τ = 34 2.6153 2.8965
τ = 5 1.9990 4.4584 τ = 35 2.7655 2.8938
τ = 6 1.9877 3.9261 τ = 36 2.9527 2.6832
τ = 7 2.0227 3.2318 τ = 37 4.1308 2.8232
τ = 8 2.0634 3.8275 τ = 38 3.0988 2.7649
τ = 9 2.0954 3.1310 τ = 39 2.8392 3.1840
τ = 10 2.1736 3.5667 τ = 40 2.6673 2.4541
τ = 11 2.1695 3.0814 τ = 41 2.7504 2.5552
τ = 12 2.2897 3.0111 τ = 42 2.8703 2.6058
τ = 13 2.3114 3.1275 τ = 43 2.8337 2.7602
τ = 14 2.3291 3.1848 τ = 44 2.5114 2.7639
τ = 15 2.7397 3.2884 τ = 45 2.7441 2.9026
τ = 16 2.5867 3.2100 τ = 46 2.8401 3.0102
τ = 17 2.8654 3.5485 τ = 47 2.9558 3.1622
τ = 18 2.8517 3.0566 τ = 48 3.0410 3.2489
τ = 19 2.6734 3.0138 τ = 49 3.2325 4.6163
τ = 20 2.7672 3.0245 τ = 50 3.0265 2.9617
τ = 21 3.0418 3.8905 τ = 51 3.2920 3.3118
τ = 22 3.0123 3.1254 τ = 52 2.6466 2.6950
τ = 23 3.0601 3.3506 τ = 53 2.5654 2.7210
τ = 24 3.0054 3.1378 τ = 54 2.9528 2.7376
τ = 25 2.7860 3.4053 τ = 55 2.4548 2.5118
τ = 26 3.0281 3.1866 τ = 56 2.5397 2.5004
τ = 27 3.3303 3.2246 τ = 57 2.6691 4.5925
τ = 28 2.8248 2.9309 τ = 58 2.6442 4.5990
τ = 29 4.0679 2.8582 τ = 59 2.4935 2.4893

evaluation of all possible recursive predictions of 50 values in the validation data
sets, for the 5-fold cross-subdivision execution (in total 5 executions∗(n−τ −50)
possible recursive evaluations of 50 points).

As it can be seen from the results, the optimal subset of variables selected is
given by τ = 2 with s(t + 1) as an additional 3rd variable. The results show also
a strong improvement by considering the time step within the season s(t + h)
when performing the recursive long term prediction. An important aspect too is
that the performance of the recursive models that don’t include s(t+h) improves
as more variables are considered (note however that the CV MSE becomes less
reliable as less executions are considered). Therefore we can claim that, for this
example, the generalization capability of the model improves by selecting the
seasonal variable s(t + h), the number of needed previous regressors is highly
reduced in order to obtain a good performance, and therefore the interpretability
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Table 2. MSE for different values of τ in the prediction of the river flow series

with s(t + 1) without s(t + 1) with s(t + 1) without s(t + 1)
τ CV MSE CV MSE τ CV MSE CV MSE

τ = 0 6.5685e+005 5.6874e+006 τ = 15 1.0810e+006 2.3535e+006
τ = 1 6.1162e+005 7.1418e+006 τ = 16 1.1014e+006 1.9368e+006
τ = 2 6.4388e+005 4.9638e+006 τ = 17 1.0537e+006 1.4113e+006
τ = 3 6.9242e+005 6.8089e+006 τ = 18 7.6881e+005 7.7071e+005
τ = 4 9.6028e+005 6.2684e+006 τ = 19 3.4948e+006 2.5201e+006
τ = 5 8.7902e+005 3.5305e+006 τ = 20 7.3939e+005 2.0663e+006
τ = 6 7.3270e+005 4.7662e+006 τ = 21 1.1007e+006 9.9358e+005
τ = 7 1.1813e+006 1.4217e+006 τ = 22 9.6651e+005 7.2736e+005
τ = 8 9.3182e+005 2.8930e+006 τ = 23 9.7015e+005 1.4095e+006
τ = 9 2.0916e+006 1.2748e+006 τ = 24 7.1251e+005 7.3901e+005
τ = 10 1.9071e+006 1.3087e+006 τ = 25 7.1103e+005 7.2339e+005
τ = 11 4.2063e+006 1.4718e+006 τ = 26 8.8594e+005 1.0067e+006
τ = 12 1.7122e+006 9.1647e+005 τ = 27 6.8981e+005 7.2266e+005
τ = 13 1.4986e+006 1.1707e+006 τ = 28 7.0264e+005 7.0201e+005
τ = 14 7.3917e+005 8.4034e+005 τ = 29 1.2067e+006 7.9432e+005

of the designed recursive model highly improves too, since only 3 input variables
are needed. The average MSE of the test dataset (for all possible evaluations of
50 recursive predictions) for the optimal model is 0.502.

A similar test was performed for the river flow time series. From the 1000
data points, 500 were used for the 5-fold CV procedure, and the rest were left
for testing. Table 2 shows, for the river flow time series, the 5-fold cross-validation
MSE when performing the variable selection procedure for different values of τ ,
when taking and not taking into account the step in the season s(t + 1). The
MSE error values is obtained by averaging the evaluation of all possible recursive
predictions of 15 values in the validation data sets, for the 5-fold cross-subdivision
execution.

Again from these results we can claim that there is a strong improvement
by considering the time step within the season s(t + h) when performing the
recursive long term prediction. The optimal subset of variables selected is given
again by τ = 2 with s(t + 1) as an additional 3rd variable. The improvement
in the recursive performance occurs specially for low values of τ , which is more
interesting since it provides a better interpretability, apart from the better gen-
eralization. The average MSE of the test dataset (for all possible evaluations of
50 recursive predictions) for the optimal model is 3.9434e+007.

For the Mackey-Glass time series, from the 1000 data points, 750 were used
for the 5-fold CV procedure, and the rest were left for testing. Table 3 shows, for
the Mackey-Glass time series, the 5-fold cross-validation MSE when performing
the variable selection procedure for different values of τ , when taking and not
taking into account the step in the season s(t + 1). Again the MSE error values
is obtained by averaging the evaluation of all possible recursive predictions of 50
values in the validation data sets, for the 5-fold cross-subdivision execution.
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Table 3. MSE for different values of τ in the prediction of the Mackey-Glass time
series

with s(t + 1) without s(t + 1) with s(t + 1) without s(t + 1)
τ CV MSE CV MSE τ CV MSE CV MSE

τ = 0 1.2685e-002 8.4784e-002 τ = 10 5.2343e-004 3.1777e-004
τ = 1 5.6779e-003 2.8835e-002 τ = 11 2.9709e-004 2.7430e-004
τ = 2 3.3021e-003 7.6521e-002 τ = 12 2.1550e-004 1.3528e-004
τ = 3 4.7557e-003 5.5396e-002 τ = 13 1.6134e-004 7.7161e-005
τ = 4 3.4582e-003 2.5383e-002 τ = 14 9.6428e-005 2.6098e-005
τ = 5 3.8077e-003 9.9448e-003 τ = 15 8.5424e-005 2.3221e-005
τ = 6 2.6703e-003 8.0764e-003 τ = 16 6.5617e-005 8.1119e-006
τ = 7 1.9553e-003 3.5603e-003 τ = 17 4.6230e-005 5.6362e-006
τ = 8 1.4060e-003 2.2706e-003 τ = 18 4.0625e-005 3.6452e-006
τ = 9 9.0794e-004 4.5214e-004 τ = 19 2.3944e-005 1.7243e-006

For the Mackey-Glass time series, there is an improvement by considering the
time step within the season s(t + h), but only for low values of τ . This can be
due to the absence of noise in this artificial time series. From the point of view of
the interpretability, that requires a low number of input variables in the model,
it is more convenient to include the time step s(t + 1) since for low values of
τ the performance improves and then less variables are needed. However, from
the point of view of the performance, the optimal subset of variables selected is
given by τ = 24 without s(t + 1) as an additional variable.

6 Conclusion

In time series prediction problems in which the current series presents a cer-
tain seasonality, the seasonal information has to be included within the de-
signed predictor. Kernel methods and specifically LS-SVM, allows including
the seasonal information by simply adding new variables to the problem, with-
out increasing the computational cost. This work has evaluates the inclusion
of the seasonal information of a series presenting seasonality in a recursive
model. Three well known time series have been used in the simulations, two
natural and one artificial. The results have shown that the performance of the
recursive model is upgraded, but also that it is possible to diminish the num-
ber of needed input variables needed to perform the modelling. The general-
ization capabilities of the model increases as less input variables are needed,
and therefore the interpretability capability of the recursive model is also im-
proved. However for noiseless series, including additional information can lead
to a worse performance. Nevertheless even for those cases, when a low num-
ber of input variables is preferred, including the seasonal information can be
convenient.



On Incorporating Seasonal Information on Recursive Time Series Predictors 515

References

1. Weigend, A.S., Gershenfeld, N.A.: Time Series Prediction: Forecasting the Future
and Understanding the Past. Addison-Wesley, London, UK (1993)

2. Ji, Y., Hao, J., Reyhani, N., Lendasse, A.: Direct and Recursive Prediction of Time
Series Using Mutual Information Selection. IWANN 2005. In: Cabestany, J., Prieto,
A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 1010–1017. Springer,
Heidelberg (2005)

3. Lendasse, A., Ji, Y., Reyhani, N., Verleysen, M.: LS-SVM Hyperparameter Selec-
tion with a Nonparametric Noise Estimator. In: Duch, W., Kacprzyk, J., Oja, E.,
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Abstract. Testing the validity of the Efficient Market Hypothesis (EMH) has 
been an unsolved argument for the investment community. The EMH states that 
the current market price incorporates all the information available, which leads 
to a conclusion that given the information available, no prediction of the future 
price changes can be made. On the other hand, technical analysis, which is es-
sentially the search for recurrent and predictable patterns in asset prices, at-
tempts to forecast future price changes. To the extend that the total return of a 
technical trading strategy can be regarded as a measure of predictability, technical 
analysis can be seen as a test of the EMH and in particular of the independ-
ent increments version of random walk. This paper is an initial attempt on creat-
ing an automated process, based on a combination of a rule-based system and  a 
neural network, of recognizing one of the most common and reliable patterns in 
technical analysis, the head and shoulders pattern. The systematic application of 
this automated process on the identification of the head and shoulders pattern 
and the subsequent analysis of price behavior, in various markets can in prin-
ciple work as a test of the EMH.  

Keywords: Efficient market hypothesis, technical analysis, head and shoulders 
price pattern, neural networks. 

1   Introduction 

Advocates of technical analysis state that there exists predictive power in the price 
movements of financial assets, and that by analyzing historical prices one can reduce 
risks and increase returns. Technical analysis is based on the belief that stock time 
series, volume and other statistics often show similarities that repeat in time and con-
sequently can be used in stock prices prediction and contribute in profits. The tools 
that technical analysts use are the observation of patterns (head and shoulders, trian-
gles etc), and the calculation of indices (MACD, RSI etc.). One of the most often and 
reliable pattern in technical analysis is the head and shoulders pattern. 
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On the other hand, the efficient market hypothesis (EMH) states that security pric-
es incorporate and reflect all the information publicly available and we cannot benefit 
and make gains by using this information in order to predict stock prices, since it has 
already been built-in the stock prices. Based on the existence of an efficient market, 
we can conclude that all prices react and adjust immediately to reflect all information 
available. Consequently, profits cannot be increased by analyzing historical data, 
since past data do not influence the outcome of future data. One basic condition of 
(semi-strong) efficient market hypothesis is the Random Walk 2 (RW2) hypothesis, 
which states that the natural logarithm of prices pt = lnPt follows a random walk with 
independent but not identically distributed (INID) increments, i.e., 
 

ttt pp εμ ++= −1 . 

 
where μ is the expected price change or drift and εt is the random shock. RW2 allows 
for unconditional heteroskedasticity in the εt’s, a particularly useful feature given the 
time-variation in volatility of many financial asset return series. 

Technical analysis can be seen as an “economic” test of the RW2 hypothesis. In 
that view, there several contributions to the relevant literature, however with conflict-
ing results. The overwhelming majority of these contributions concentrate on technic-
al indicators, such as moving averages, oscillators, etc, since it is straightforward to 
implement the relevant trading systems. Characteristic examples of these studies are, 
for FX markets are [1] and [2] and for stock markets [3], [4], [5] and [6]. Regarding, 
the recognition of technical patterns the literature is sparse. To our knowledge, in [7] 
it is the first time that a systematic and automatic approach to technical pattern recog-
nition is proposed, using nonparametric kernel regression. The authors claimed that 
several technical indicators do provide incremental information. In discussing those 
results [8] and [9] warned that data-snooping and survivorship biases can be severe 
when evaluating technical rules, which can lead researchers to falsely conclude that 
technical trading strategies can predict future price movements. Finally, in [10] there 
is the first attempt to quantify a technical pattern with a rule-based system. In particu-
lar, the authors specified several explicit criteria that should be met in order to identi-
fy the head and shoulders pattern. In [11] the author investigated the profitability of a 
trading system based on the identification of that pattern in the FX markets. 

In this paper we focus on the reliable identification of the head and shoulder pat-
tern in the stock markets. As we demonstrate the rule-based pattern identification 
system used by [10] and [11] is very sensitive to the values of the parameters used. As 
a result existing patterns can be overlooked by an automated pattern recognition sys-
tem. To deal with this problem we incorporate in our two-stage automated pattern 
recognition system neural models that add robustness to the identification process. 

The rest of the paper is organized as follows. In section 2 we discuss the head and 
shoulders technical pattern and its rule-based automatic recognition. In section 3 we 
describe how we can add robustness to that process with the inclusion of a post-
processing stage based on a neural network. Finally in section 4 we summarize and 
conclude. 

 

(1) 

Methodology for Testing the Efficient Market Hypothesis 517 



2   Automatic (Rule-Based) Recognition of the Head and Shoulders 
Pattern 

2.1   The Head and Shoulders Price Pattern  

In the technical analyst’s community, the head and shoulders price pattern is one of 
the most credible. It could be observed in its normal or inverse (or upside-down) 
form. An uptrend is formed in the first case as prices make higher-highs (peaks) and 
higher-lows (troughs) in a stair-step fashion. The end of the uptrend is signified by the 
formation of the right shoulder.  

The line defined by the two troughs is called the neckline, while completion of the 
pattern and confirmation of a new downtrend occur when the “neckline” is penetrated. 
After the neckline penetration as a last effort to continue the uptrend and if prices are 
unable to rise above the neckline, they usually decline rapidly. The same one observes 
in the reverse head and shoulders pattern, where there are market bottoms and a 
downtrend is formed in the beginning and it is reversed later on.  

 

 

Fig. 1. The head and shoulders price pattern for Acher Daniels Midland Co. (ADM) stock 
traded at NYSE (graph from http://stockcharts.com/education/ChartAnalysis)  

 
In Fig. 1 we can see the head and the two shoulders as well as the two trough  of
head and shoulders pattern. The blue line is the neckline. After the formation of the 

right shoulder the stock price follows a downtrend and after a while it crosses the 
neckline. This is the point of completion of the pattern.  
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 the 



 

Fig. 2. The head and shoulders price pattern, as defined by the combinations of four consecu-
tive peaks (P0, P1, P2 and P3) and the troughs between them (T0, T1, T2)  

 
The investor should either sell the stock in order to prevent major losses, or short 

sell it in order to pursue profits. It is worth noticing that the neckline after the comple-
tion of the formation is also a strong resistance level for the stock price since the stock 
price fails to penetrate it for second time.  

As we mentioned before the normal head and shoulders pattern signs a trend rever-
sal (downtrend). Besides the graphical part, we should observe that the volume of the 
stock does not accompany the price, in this case the volume decreases on the head and 
it is specifically light on the right shoulder as shown on the graph below. 

2.2   Rule-Based Definition of the Head and Shoulders Pattern 

In  automating  the  recognition  of  the  head  and shoulders  formation,  we  use  the  de-
finition of [10] according to which the following five specific conditions should be 
met, in order to define the head and shoulders pattern. For simplicity, the four consec-
utive peaks are named as P0, P1, P2 and P3 and the troughs between them as T0, T1, 
T2 (see Fig. 2). 
 
SHS1. The head is higher than the shoulders: 
 

( )P2 max P1,P3> . 

 
SHS2. The pattern is preceded by a generally positive underlying trend: 
 

P1 > P0  &  T1 > T0 . 

 
SHS3 (balance). The left (right) shoulder must be at least as high as the midpoint 
between right (left) shoulder and its preceding (anteceding) trough: 
 

(2)  

 
(3) 
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P1 0.5 (P3 T2)  &  P3 0.5 (P1 T1)≥ ⋅ + ≥ ⋅ + . 

 
SHS4 (symmetry). The time between left shoulder and head must not be more than 
2.5 times the time between head and right shoulder and vice versa: 
 

P2 P1 P3 P2 P3 P2 P2 P1  2.5 ( )  &   < 2.5 ( )t t t t t t t t− < ⋅ − ⋅ ⋅ − . 

 
SHS5 (time limit). Let τ denote the time at which the price St falls below the neckline: 
 

( )T1 T2 T1  T1 ( ) ( ) (T1 T2)S t t t tτ < + − − ⋅ − . 

 
This must not happen too long after the formation of the right shoulder, say: 
 

P3 P3 P1    ( )t t tτ < + − . 

 
The former criteria are crucial because they combine at least 4 technical concepts 

of smoothed trends, trend reversal, resistance levels and volatility clustering. SHS1 
and SHS2 suggest the existence of and upward trend between P0 and P2. 

  

2.3   Automatic Discovery of the Head and Shoulders Pattern in Price Series 

The criteria SHS1 to SHS5 were coded in the form of a Matlab script. The script reads 
through a price series, St, and identifies the combination of peaks (P0, P1, P2 and P3) 
and the troughs between them (T0, T1, T2) that satisfy the above criteria. In doing so, 
it uses a rolling window of prices of length w, i.e., {St, St+1, …, St+w}, for t = 1, …, 

w, where n is the total number of price quotes (Sn is the last available price in the 
series). The script also computes the neckline intercept and slope and produces a 
figure with the entire head and shoulders formation and the neckline, with the identi-
fied peaks and troughs annotated with the observation number and the corresponding 
price.  

In Table 1 we can see the data generated from the script that corresponds to an 
identified head and shoulders price pattern, for the stock CNET Networks, Inc. For 
each peak and through we can read the observation number and the corresponding 
price, i.e., P0 is identified at S42 = 57.62, T0 at S66 = 30.31, P1 at S112 = 60.13, etc. The 
length of the rolling window used was w = 50 observations. The neckline intercept 
and slope were also calculated from the script; a = 38.0530 and b = 0.0534 corres-
pondingly. 

(4)

  (5) 

 (6)

 

 (7) 
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n-



 
In Fig. 3 we can see the graph for CNET generated by the script based on the data 

given in Table 1 and the calculated intercept and slope. The first five marked points 
shown (from left) are P1, T1, P2, T2, P3 and they are annotated as: observation num-
ber, price. The neckline is also plotted. The sixth point (far most in the right), i.e., S230 
= 53.25, is the neckline and price series bisection point. According to technical analy-
sis when the head and shoulders formation breaks through the neckline a significant 
decline follows, which is what we observe in Fig.3. 

In Fig. 4 we can see the graph generated by the Matlab script for ADM for which 
the technical analysis chart is also given in Fig. 1. As we can see the script has cor-
rectly identified the head and shoulders pattern identified by technical analysts in 
Fig.1. If we were using the script in the context of a technical trading system, at the 
breakout point S3428 = 39.73 a short position should be taken.  

However, as we can see in those two cases the size of the rolling window is not 
fixed but it varies (actually, for CNET the rolling window size is w = 50, for ADM is 
w = 20). If there does not exist a head and shoulders pattern in the price series, the 
value of w is irrelevant. But if there exists one, the algorithm will discover the pattern 
only if w is at least equal to the number of observations needed for the pattern to un-
fold. A solution to this problem, is to run the algorithm a number of times, with w 
taking several values, lets say from 20 to 150 with a step of 10. 

Moreover, the pattern recognition algorithm is very sensitive to the values of the  
parameters of the criteria SHS3 (0.5) and SHS4 (2.5) and in many cases, it fails to 
recognize an existing head and shoulders pattern. For example, it fails to recognize 
the pattern for EBAY, Inc traded at NASDAQ, but when we change the parameter 
value for SHS3 from 0.5 to 0.4 it recognizes the pattern successfully as we can see in 
Fig. 5. 
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Table 1.  Automatic head and shoulders pattern recognition for CNET Networks, Inc. traded at 
NASDAQ. Rolling window length w = 50. Neckline intercept a = 38.0530, slope b = 0.0534.  

Obs. P0 T0 P1 T1 P2 T2 P3 Price 
30 0 0 0 0 0 0 0 40.00 
42 1 0 0 0 0 0 0 57.62 
66 0 1 0 0 0 0 0 30.31 

112 0 0 1 0 0 0 0 60.13 
129 0 0 0 1 0 0 0 44.94 
161 0 0 0 0 1 0 0 79.00 
191 0 0 0 0 0 1 0 48.25 
213 0 0 0 0 0 0 1 70.56 
243 0 0 0 0 0 0 0 24.62 
299 0 0 0 0 0 0 0 21.44 

 



 
Fig. 3. Automatic head and shoulder price pattern recognition (figure generated from a Matlab 
script) for CNET Networks, Inc. traded at NASDAQ. Rolling window length w = 50. Neckline 
intercept a = 38.0530, slope b = 0.0534. Price series used for pattern recognition: 3/5/1999 to 
31/8/2000. 

 

 
Fig. 4. Automatic head and shoulder price pattern recognition for Acher Daniels Midland Co. 
(ADM) stock traded at NYSE. Rolling window length w = 20. Price series used for pattern 
recognition: from 2/1/1996 to 31/12/1999. 
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Fig. 5. Automatic head and shoulder price pattern recognition for ΕΒΑΥ, Inc. traded at NAS-
DAQ. The head and shoulders pattern is not recognized, unless the criterion SHS3 is changed 
to: P1 > 0.4(P3 + T2), P3 > 0.4(P1 + T1). 

3   Robust Identification of the Head and Shoulders Pattern with 
Neural Networks 

As we have seen, some of the conditions that should be met in order to identify a 
head and shoulder pattern impose very strict limits. This is particularly true for condi-
tions SHS3, SHS4 and SHS5. As a result, in many cases (e.g., Fig. 5) existing head 
and shoulder patterns are not being recognized by the algorithm. This has serious 
implications on the validity of any study using this algorithm in the context of eva-
luating the informational content of the particular price formation. Fine-tuning, the 
criteria SHS3 to SHS5 for every price series under examination, is not a plausible 
solution either, when hundreds of stocks must be analyzed.   

Our approach in dealing with this problem is to build a neural network which will 
be able to identify robustly the head and shoulders pattern. This will be done by 
“post-processing” the peaks and troughs recognized by the algorithm, by carefully 
adding noise to them. The trained network will be then able to identify patterns that 
otherwise would be missed. We demonstrate this procedure below. 

First we have to create our training dataset. A rolling vector with seven inputs, x = 
{x1, x2, …, x7}, reads through the data organized as in Table 1, from right to left and 
from top to bottom. This is repeated for as many price paths as possible. When P0 = 1 
then x1 = 1 and the next inputs x2 to x7 are expressed as a percent of their correspond-
ing prices relative to the price at P0. For example, if the price at P0 is 30 and the price 
at T0 is 40 then x1 = 1, x2 = 1.33, etc. The network target y is 1 when the input vector 
corresponds to a head and shoulders pattern, otherwise is 0. 
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For illustrational purposes, we applied the above procedure to three stocks: CNET, 
MARVEL and ADM. A single training dataset was created with 194 vectors. A part 
of the training inputs can be seen in Table 2. The line with the bold numbers corres-
ponds to an input identifying a head and shoulders pattern. In total, there were only 
three lines corresponding to the head and shoulders pattern.  

 

Table 2.  Network input vectors for CNET Networks, Inc. traded at NASDAQ, MARVEL 
Technology Group, Ltd. traded at NASDAQ and Acher Daniels Midland Co. traded at NYSE 
(194 input vectors)

x1 x2 x3 x4 x5 x6 x7 

… … … … … … … 
0.65476936 0.79858067 0.80025047 0.68712169 0.86579002 0.79252766 1.00000000 
0.79252766 1.00000000 0.87789606 1.25130453 1.15675224 1.47443123 1.12920058 
1.00000000 0.87789606 1.25130453 1.15675224 1.47443123 1.12920058 1.27301190 
0.87789606 1.25130453 1.15675224 1.47443123 1.12920058 1.27301190 1.09851805 

1.12920058 1.27301190 1.09851805 0.36171989 0.43122521 0.36151117 0.43519098 

… … … … … … … 

 
Next, we trained 6 back-propagation neural networks, with one hidden layer, with 

the number of hidden units, λ, ranging from 3 to 6. The network outputs are given in 
Table 2. In the first column of the same Table we can see the target output (1 indi-
cates the presence of the head and shoulder pattern).  

 

Table 3.  Automatic head and shoulders pattern recognition with neural networks for CNET 
Networks, Inc. traded at NASDAQ, MARVEL Technology Group, Ltd. traded at NASDAQ 
and Acher Daniels Midland Co. traded at NYSE (194 input vectors). Number of hidden units λ 
= 3 - 6. The first column is the target output. Columns 2 to 5 are the network outputs. 

 λ = 3 λ = 4 λ = 5 λ = 6 
 … … … … 

1 0.98586000 0.99575000 0.99493000 0.99084000 
0 0.00016041 0.08738100 0.52662000 0.00022027 
0 0.00076142 0.00017389 0.00011368 0.00168490 
 … … … … 

1 0.96278000 0.96752000 0.97137000 0.96923000 
0 0.00178220 0.01331200 0.02402800 0.00520230 
 … … … … 

0 0.00017280 0.00016699 0.10528000 0.00018539 
1 0.96932000 0.95560000 0.93783000 0.96248000 
0 0.00019253 0.00018189 0.08615600 0.00025253 
 … … … … 
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As expected, all the neural network models are able to identify the presence of the 
head and shoulder pattern, although only three such vectors were included in the 
training dataset. The trained neural networks have learned to recognize the patterns 
identified by the criteria SH1 to SH5, but they are not still able to identify existing 
patterns which were wrongly rejected by the algorithm (see Fig. 5 for the stock of 
EBAY). We rectify this problem, i.e., we make the identification process more robust 
to small deviations from the identification criteria, by adding noise to the variables of 
the training dataset. For example, by adding random disturbances from a univariate 
distribution [0, 0.25] to the inputs x3, x4, x6 and x7 (see Table 2) we effectively change 
the criterion SHS3 roughly to: P1 > 0.3(P3 + T2), P3 > 0.3(P1 + T1). Criteria SHS4 
and SHS5 are also (indirectly) being affected, since the changes in the values of the 
peaks and troughs affect the points in time tP1, tP2, tP3, tT1 and tT2.  

To illustrate this, we added 60 new training vectors generated from the three initial 
vectors corresponding to head and shoulder price patterns. From each initial vector we 
generated 20 new training vectors, by adding random disturbances from a univariate 
distribution [0, 0.25] to the inputs x3, x4, x6 and x7. Then, we trained a neural network 
using the new (extended) dataset. Now, the trained network was able to recognize not 
only the head and shoulder patterns from CNET, MARVEL and ADM, but also from 
EBAY without making any direct adjustments to the criteria SHS3 to SHS5. 

Concluding, our proposed two-step procedure for an automating robust identifica-
tion of the head and shoulders pattern is as follows: 

1. Apply the pattern recognition criteria (in their original form) to several stock 
price histories and create a dataset in the form of Table 2. 

2. Add carefully designed noise to the dataset and then use it to train a neural 
network. 

In the future, in order to identify the head and shoulder pattern for any stock first 
we have to create the pattern recognition data in the form of Table 2, and then we feed 
that dataset to the neural network to identify the presence or not of the pattern. 

4   Summary and Conclusions 

The incentive behind the creation of an automatic  recognition tool  for  the head and 
shoulders technical pattern is that, it can be used for evaluating the validity of its use 
as a predictive indicator of the future price behavior. By applying the process of au-
tomatic pattern recognition to a large number of stocks across different markets, we 
can assess the statistical significance of the predictive capacity of the pattern. This 
will hopefully be a contribution to the continuing debate regarding the hypothesis of 
efficient markets.  

However, first we have to ensure that all (or nearly all) existing patterns are recog-
nized. To that end, here we presented the basic stages of a proposed approach for 
robust identification of the head and shoulders technical pattern, based on a combina-
tion of rule-based data pre-processing and a final step of identification with a neural 
network. 

Rule-based pattern recognition suffers from sensitivity to the parameters of the im-
plemented criteria. Small deviations can lead to wrongly rejecting an existing pattern.  
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We attempt to rectify this problem by a post-processing stage of the data generated by 
the rule-based pattern recognition. As we demonstrated, by adding carefully designed 
noise to that data we effectively transform the cut-off points of the pattern recognition 
criteria to ranges of acceptable values. A neural network trained with that data, can 
serve as a robust identification tool of the head and shoulders pattern. 

 Concluding, here we presented an approach for identifying the head and shoulders 
pattern which, in principle at least, alleviates the problem of sensitivity to the parame-
ter values of the rule based systems. However, before putting our approach into prac-
tice, our immediate future work, is to fine-tune the noise processes we add to the data 
before training the neural network.  
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Abstract. In this paper we discuss sparse least squares support vec-
tor regressors (sparse LS SVRs) defined in the reduced empirical feature
space, which is a subspace of mapped training data. Namely, we define an
LS SVR in the primal form in the empirical feature space, which results
in solving a set of linear equations. The independent components in the
empirical feature space are obtained by deleting dependent components
during the Cholesky factorization of the kernel matrix. The indepen-
dent components are associated with support vectors and controlling the
threshold of the Cholesky factorization we obtain a sparse LS SVM. For
linear kernels the number of support vectors is the number of input vari-
ables at most and if we use the input axes as support vectors, the primal
and dual forms are equivalent. By computer experiments we show that
we can reduce the number of support vectors without deteriorating the
generalization ability.

1 Introduction

In a support vector machine (SVM), among training data only support vectors
are necessary to represent a solution. However for a difficult classification prob-
lem with huge training data, many training data may become support vectors.
Since this leads to slow classification, there are several approaches to reduce
support vectors [1,2,3]. Keerthi et al. [2] proposed training L2 support vector
machines in the primal form. The idea is to select basis vectors by forward selec-
tion and for the selected basis vectors train support vector machines by Newton’s
method. This process is iterated until some stopping condition is satisfied.
Wu et al. [3] imposed, as a constraint, the weight vector that is expressed by
a fixed number of kernel functions and solved the optimization problem by the
steepest descent method.

A least squares support vector machine (LS SVM) [4,5] is a variant of an SVM,
in which inequality constraints in an L2 SVM is replaced by equality constraints.
This leads to solving a set of linear equations instead of a quadratic programming
program. But the disadvantage is that all the training data become support
vectors. To solve this problem, in [4,5], support vectors with small absolute values
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of the associated dual variables are pruned and an LS SVM is retrained using
the reduced training data set. This process is iterated until sufficient sparsity
is realized. In [6], LS SVMs are reformulated using the kernel expansion of the
square of Euclidian norm of the weight vector in the decision function. But the
above pruning method is used to reduce support vectors. Because the training
data are reduced during pruning, information for the deleted training data is
lost for the trained LS SVM. To overcome this problem, in [7], independent
data in the feature space are selected from the training data, and using the
selected training data the solution is obtained by least squares method using
all the training data. In [8] based on the concept of the empirical feature space
proposed in [9], least squares SVMs are formulated as a primal problem and
by reducing the dimension of the empirical feature space, sparse LS SVMs are
realized

In this paper we extend the sparse LS SVM discussed in [8] to function ap-
proximation. Namely, we define the LS support vector regressor (SVR) in the
primal form in the empirical feature space. Since the empirical feature space is
finite, we can train a primal LS SVM directly by solving a set of linear equations.
To generate the mapping function to the empirical feature space, we need to cal-
culate the eigenvalues and eigenvectors of the kernel matrix. Instead, we select
the maximum independent components in the kernel matrix by the Cholesky
factorization. The independent components are associated with support vectors
and reducing the number of independent components we obtain a sparse LS
SVM. For linear kernels the number of support vectors is the number of input
variables at most and if we use the Euclidean axes as support vectors, the primal
and dual forms are equivalent.

In Section 2, we clarify the characteristics of the empirical feature space, and
in Section 3 we derive a set of linear equations for training LS SVMs in the
empirical feature space and formulate sparse LS SVMs. In Section 4, we show
the validity of the proposed method by computer experiments.

2 Empirical Feature Space

In this section, we summarize the characteristics of the empirical feature space.
Let the kernel be H(x,x′) = gT (x)g(x), where g(x) is the mapping function

that maps the m-dimensional vector x into the l-dimensional space. For the M
m-dimensional data xi, the M × M kernel matrix H = {Hij} (i, j = 1, . . .M),
where Hij = H(xi,xj), is symmetric and positive semidefinite. Let the rank of
H be N (≤ M). Then H is expressed by

H = U S UT , (1)

where the column vectors of U are eigenvectors of H and U UT = UT U = IM×M ,
IM×M is the M × M unit matrix, and S = diag (σ1, . . . , σN , 0, . . . , 0). Here,
σi (> 0) are eigenvalues of H , whose eigenvectors correspond to the ith columns
of U .
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Defining the first N vectors of U as the M × N matrix P and

Λ = diag (σ1, . . . , σN ), (2)

we can rewrite (1) as follows:

H = P Λ PT , (3)

where PT P = IN×N but P PT �= IM×M .
We must notice that if N < M , the determinant of H vanishes. Thus, from

H(x,x′) = gT (x)g(x), the following equation holds:
M∑

i=1

ai gT (xi) = 0, (4)

where ai(i = 1, . . . , M) are constant and some of them are nonzero. Namely, if
N < M , the mapped training data g(xi) are linearly dependent. And if N = M ,
they are linearly independent and there are no non-zero ai that satisfy (4).

Now we define the mapping function that maps the m-dimensional vector x
into the N -dimensional space called empirical feature space [9]:

h(x) = Λ−1/2 PT (H(x1,x), . . . , H(xM ,x))T . (5)

We define the kernel associated with the empirical feature space by

He(x,x′) = hT (x)h(x′). (6)

Clearly, the dimension of the empirical feature space is N . Namely, the em-
pirical feature space is spanned by the linearly independent mapped training
data.

We can prove that the kernel for the empirical feature space is equivalent to
the kernel for the feature space if they are evaluated using the training data.
Namely [9,8],

He(xi,xj) = H(xi,xj) for i, j = 1, . . . , M. (7)

The relation given by (7) is very important because a problem expressed
using kernels can be interpreted, without introducing any approximation, as the
problem defined in the associated empirical feature space. The dimension of
the feature space is sometimes very high or infinite. But the dimension of the
empirical feature space is the number of training data at most. Thus, instead
of analyzing the feature space, we only need to analyze the associated empirical
feature space.

3 Least Squares Support Vector Regressors

3.1 Training in the Empirical Feature Space

The LS SVR in the feature space is trained by minimizing

1
2

wT w +
C

2

M∑

i=1

ξ2
i (8)
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subject to the equality constraints:

wT g(xi) + b = yi − ξi for i = 1, . . . , M, (9)

where yi is the output for input xi, w is the l-dimensional vector, b is the bias
term, g(x) is the l-dimensional vector that maps the m-dimensional vector x into
the feature space, ξi is the slack variable for xi, and C is the margin parameter.

Introducing the Lagrange multipliers α = (α1, . . . , αM )T into (8) and (9), we
obtain the dual form as follows:

Ωα + 1b = y, (10)
1T α = 0, (11)

where 1 is the M -dimensional vector: 1 = (1, . . . , 1)T and

Ωij = gT (xi)g(xj) +
δij

C
, δij =

{
1 for i = j,
0 for i �= j,

y = (y1, . . . , yM )T . (12)

Setting H(x,x′) = gT (x)g(x′), we can avoid the explicit treatment of variables
in the feature space.

The original minimization problem is solved by solving (10) and (11) for α
and b as follows. Because of 1/C (> 0) in the diagonal elements, Ω is positive
definite. Therefore,

α = Ω−1(y − 1 b). (13)

Substituting (13) into (11), we obtain

b = (1T Ω−11)−11T Ω−1y. (14)

Thus, substituting (14) into (13), we obtain α. We call the LS SVR obtained by
solving (13) and (14) dual LS SVR.

The LS SVR in the empirical feature space is trained by minimizing

Q(v, ξ, b) =
1
2

vT v +
C

2

M∑

i=1

ξ2
i (15)

subject to the equality constraints:

vT h(xi) + b = yi − ξi for i = 1, . . . , M, (16)

where v is the N -dimensional vector and h(x) is the N -dimensional vector that
maps the m-dimensional vector x into the empirical feature space.

Substituting (16) into (15), we obtain

Q(v, ξ, b) =
1
2

vT v +
C

2

M∑

i=1

(yi − vT h(xi) − b)2. (17)
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Equation (17) is minimized when the following equations are satisfied:

∂Q(v, ξ, b)
∂v

= v − C

M∑

i=1

(yi − vT h(xi) − b)h(xi) = 0 (18)

∂Q(v, ξ, b)
∂b

= −C

M∑

i=1

(yi − vT h(xi) − b) = 0. (19)

From (19)

b =
1
M

M∑

i=1

(yi − vT h(xi)). (20)

Substituting (20) into (18), we obtain
⎛

⎝ 1
C

+
M∑

i=1

h(xi)hT (xi) − 1
M

M∑

i,j=1

h(xi)hT (xj)

⎞

⎠v

=
M∑

i=1

yi h(xi) − 1
M

M∑

i,j=1

yi h(xj). (21)

Therefore, from (21) and (20) we obtain v and b. We call the LS SVR obtained
by solving (21) and (20) primal LS SVR.

3.2 Sparse Least Squares Support Vector Regressors

In training LS SVRs in the empirical feature space we need to transform input
variables into the variables in the empirical feature space by (5). But this is
time consuming. Thus, instead of using (5), we select independent training data
that span the empirical feature space. Let the first M ′ (≤ M) training data be
independent in the empirical feature space. Then, instead of (5), we use the
following equation:

h(x) = (H(x1,x), . . . , H(xM ′ ,x))T (22)

By this formulation, x1, . . . ,xM ′ becomes support vectors. Thus, support vectors
do not change even if the margin parameter changes. And the number of sup-
port vectors is the number of selected independent training data that span the
empirical feature space. Thus for linear kernels, the number of support vectors
is the number of input variables at most. The selected training data span the
empirical feature space but the coordinates are different from those of the empir-
ical feature space, namely those given by (5). Thus, the solution is different from
that using (5) because SVRs are not invariant for the linear transformation of
input variables [10]. As the computer experiments in the following section show,
this is not a problem if we select kernels and the margin parameter properly.
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We use the Cholesky factorization in selecting independent vectors [10]. Let
H be positive definite. Then H is decomposed by the Cholesky factorization into

H = L LT , (23)

where L is the regular lower triangular matrix and each element Lij is given by

Lop =
Hop −

p−1∑
n =1

Lpn Lon

Lpp
for o = 1, . . . , M, p = 1, . . . , o − 1, (24)

Laa =

√√√√Haa −
a−1∑

n =1

L2
an for a = 1, 2, . . . , M. (25)

Here, Hij = H(xi,xj).
Then during the Cholesky factorization, if the diagonal element is smaller

than the prescribed value η (> 0):

Haa −
a−1∑

n =1

L2
an ≤ η, (26)

we delete the associated row and column and continue decomposing the matrix.
The training data that are not deleted in the Cholesky factorization are inde-
pendent. If no training data are deleted, the training data are all independent
in the feature space.

The above Cholesky factorization can be done incrementally [10,11]. Namely,
instead of calculating the full kernel matrix in advance, if (26) is not satisfied,
we overwrite the ath column and row with those newly calculated using the
previously selected data and xa+1. Thus the dimension of L is the number of
selected training data, not the number of training data.

To increase sparsity of LS SVRs, we increase the value of η. The optimal
value is determined by cross-validation. We call thus trained LS SVRs sparse LS
SVRs.

If we use linear kernels we do not need to select independent variables. Instead
of (22), we use

h(x) = x. (27)

This is equivalent to using ei (i = 1, . . . , m), where ei are the basis vectors in
the input space, in which the ith element is 1 and other elements 0. We call
the primal LS SVR using (27) primal LS SVR with orthogonal support vectors
(OSV), and the primal LS SVR with selected independent training data LS SVR
with non-orthogonal support vectors (NOSV).
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4 Performance Evaluation

We compared the generalization ability of primal, sparse, and dual LS SVRs
using the Mackey-Glass [12], water purification [13], orange juice1, and Boston2

problems listed in Table 1. For the first three problems, one set of training data
set and test data set are given. But the Boston problem is not divided into
training and test data sets. As discussed in [14], we used the fifth and the 14th
variables as the outputs and call the problems the Boston 5 and 14 problems,
respectively. For each problem, we randomly divided the data set into two with
almost equal sizes and generated 100 sets of training and test data sets.

For primal LS SVRs we set η = 10−9 and for sparse LS SVRs, we selected the
value of η from {10−6, 10−5, 10−4, 10−3, 10−2, 0.05} by fivefold cross-validation.

In all studies, we normalized the input ranges into [0, 1] and used linear and
RBF kernels. We determined the parameters C, γ for RBF kernels, and η by five-
fold cross-validation; the value of C was selected from among {1, 10, 50, 100, 500,
1000, 2000, 3000, 5000, 8000, 10000, 50000, 105, . . . 1014}, the value of γ from
among {0.01, 0.1, 1, 5, 10, 15, 20, 30}.

Table 1. Benchmark data sets

Data Inputs Train. Test

Mackey-Glass 4 500 500

Water Purification 10 241 237

Orange Juice 700 150 68

Boston 13 506 —

We determined the margin parameters and kernel parameters by fivefold cross-
validation. For RBF kernels we determined the optimal values of γ and C for
primal and dual LS SVRs. Then setting the optimal values of γ determined by
cross-validation for primal LS SVRs, we determined the optimal values of η and
C for sparse LS SVRs.

For the Boston 5 and 14 problems we performed cross-validation using the
first five training data sets. For RBF kernels we performed cross-validation for
each training data set changing the values of γ and C and selected the value
of γ whose associated average of the absolute approximation errors (AAAE) is
the smallest. Then we took the median among five γ values as the best value of
γ. Then, again we took the median among the best values of C for the best γ
associated with the five training data sets. Then, for the best values of γ and
C, we trained the SVR for the 100 training data sets and calculated the AAAEs

1 ftp://ftp.ics.uci.edu/pub/machine-learning-databases/
2 http://www.cs.toronto.edu/˜delve/data/datasets.html
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and the standard deviation of the approximation errors for the test data sets.
For linear kernels we took the median of the best values of C associated with
the first five training data sets.

For sparse LS SVRs, for each value of η we determined the best value of C.
We selected the largest value of η whose associated AAAE for the validation
data set is comparable with that for η = 10−9.

Table 2 lists the parameters obtained according to the preceding procedure.
The margin parameters for the OSV are the same with the dual LS SVR except
for the Mackey-Glass problem. Except for those of OSV, the values of C for the
primal LS SVRs are sometimes larger than those for the dual LS SVRs. And
the values of γ for water purification, orange juice, and Boston 5 problems are
different.

Table 2. Parameter setting for linear and RBF kernels. The parameters were deter-
mined by fivefold cross-validation.

Data Linear RBF

OSV NOSV Dual Primal Sparse Dual

C C C γ C η C γ C

Mackey-Glass 1013 105 107 30 109 10−6 109 30 109

Water Purification 10 106 10 20 50 0.05 50 30 10

Orange Juice 100 105 100 10 1010 10−4 108 0.01 107

Boston 5 1 1 1 10 500 10−2 500 15 50

Boston 14 1 104 1 10 3000 10−2 3000 10 50

Table 3 shows AAAEs for the test data sets. For Boston 5 and 14 problems
the standard deviations are also shown. For Boston 5 and 14, we statistically
analyzed the average and standard deviations with the significance level of 0.05.
Numerals in italic show that they are statistically inferior among linear or RBF
kernels.

For linear kernels, as theory tells us OSV and dual LS SVR show the same
results. The AAAE for the orange juice problem by NOSV is smaller than that
of the dual LS SVR (OSV) but the AAAE for the Boston 14 problem by NOSV
is statistically inferior. The reason for the Boston 14 problem is that for the dual
LS SVR (OSV) the best values of C are the same for the five training data sets
but for NOSV the best values ranged from 50 to 108. Thus, the median of the
best values was not best even for the first five files. For RBF kernels the AAAEs
for the Mackey-Glass, water purification, and Boston 5 problems by the primal
LS SVR and the sparse LS SVR are worse than by the dual LS SVR but there
is not much difference.
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Table 3. Comparison of the averages of the absolute approximation errors and the
standard deviations of the errors for the linear and RBF kernels

Data Linear RBF

OSV NOSV Dual Primal Sparse Dual

Mackey-G. 0.0804 0.0804 0.0804 0.000508 0.000531 0.000323

Water P. 1.20 1.20 1.20 0.982 0.980 0.962

Orange J. 4.31 4.09 4.31 3.94 4.02 3.99

Boston 5 0.0425 0.0429 0.0425 0.0290 0.0292 0.0276

±0.00160 ±0.00169 ±0.00160 ±0.00156 ±0.00160 ±0.00181

Boston 14 3.41 3.47 3.41 2.36 2.38 2.27

±0.146 ±0.148 ±0.146 ±0.164 ±0.158 ±0.145

Table 4 lists the number of support vectors for linear and RBF kernels. The
numerals in the parentheses show the percentage of the support vectors for the
sparse LS SVR against those for the dual LS SVR. For OSV we used all the
input variables. Thus, the number of support vectors is the number of input
variables. But for NOSV, we selected independent data. For the orange juice
problem the support vectors were reduced from 700 to 120. By setting η = 10−3

and C = 105 we could still reduce the number to 41 with AAAE of 4.16. Thus
even if the number of input variables is larger than that of the training data, we
can considerably reduce the number of support vectors by NOSV. If the number
of input variables is much smaller than that of the training data, we can reduce
support vectors considerably using OSV or NOSV.

For RBF kernels, the number of support vectors for primal solutions is the
number of training data at most. By sparse LS SVR the reduction ratio was 42%
to 77%.

Table 4. Comparison of support vectors for the linear and RBF kernels

Data Linear RBF

OSV NOSV Dual Primal Sparse Dual

Mackey-G. 4 5 (1) 500 498 384 (77) 500

Water P. 10 10 (4) 241 241 103 (43) 241

Orange J. 700 120 (80) 150 150 63 (42) 150

Boston 5 13±0 13±0.2 (5) 255±12 255±12 134±5 (53) 255±12

Boston 14 13±0 13±0.1 (5) 255±12 255±12 132±5 (52) 255±12
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5 Conclusion

In this paper we formulated the primal LS SVR in the empirical feature space
and derived the set of linear equations to train the primal LS SVRs. Then we
proposed the sparse LS SVR restricting the dimension of the empirical feature
space controlling the threshold of the Cholesky factorization. According to the
computer experiments, for all the data sets tested, the sparse solutions could
realize sparsity while realizing generalization ability comparable with that of
primal and dual solutions.
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Abstract. Content-based image retrieval (CBIR) is an important and widely 
studied topic since it can have significant impact on multimedia information re-
trieval. Recently, support vector machine (SVM) has been applied to the prob-
lem of CBIR. The SVM-based method has been compared with other methods 
such as neural network (NN) and logistic regression, and has shown good re-
sults. Genetic algorithm (GA) has been increasingly applied in conjunction with 
other AI techniques. However, few studies have dealt with the combining GA 
and SVM, though there is a great potential for useful applications in this area. 
This paper focuses on simultaneously optimizing the parameters and feature 
subset selection for SVM without degrading the SVM classification accuracy 
by combining GA for CBIR. In this study, we show that the proposed approach 
outperforms the image classification problem for CBIR. Compared with NN 
and pure SVM, the proposed approach significantly improves the classification 
accuracy and has fewer input features for SVM. 

1   Introduction 

Content-based image retrieval (CBIR) techniques are becoming increasingly impor-
tant in multimedia information systems in order to store, manage, and retrieve image 
data to perform assigned task and make intelligent decisions. CBIR uses an automatic 
indexing scheme where implicit properties of an image can be included in the query 
to reduce search time for retrieval from a large database [1].  

Features like color, texture, shape, spatial relationship among entities of an image 
and also their combination are generally being used for the computation of multidi-
mensional feature vector. The features such as color, texture and shape are known as 
primitive features. Images have always been an essential and effective medium for 
presenting visual data. With advances in today’s computer technologies, it is not sur-
prising that in many applications, much of the data is images. There have been con-
siderable researches done on CBIR using artificial neural networks [1-4].  

Recently SVM which was developed by Vapnik [5] is one of the methods that is 
receiving increasing attention with remarkable results in pattern recognition. SVM 
classifies data with different class labels by determining a set of support vectors that 
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are members of the set of training inputs that outline a hyperplane in the feature 
space. SVM provides a generic mechanism that fits the hyperplane surface to the 
training data using a kernel function. The user may select a kernel function for the 
SVM during the training process that selects support vectors along the surface of this 
function. When using SVM, two problems are confronted such as how to choose the 
optimal input feature subset for SVM, and how to set the best kernel parameters. 
These two problems are crucial, because the feature subset choice influences the ap-
propriate kernel parameters and vice versa [6]. Therefore, obtaining the optimal fea-
ture subset and SVM parameters must occur simultaneously.  

Genetic algorithm (GA) has the potential to generate both the optimal feature sub-
set and SVM parameters at the same time. We aim to optimize the parameters and 
feature subset simultaneously, without degrading the SVM classification accuracy. 
The proposed approach performs feature subset selection and parameters setting in an 
evolutionary way. In the literature, only a few algorithms have been proposed for 
SVM feature selection [7-9]. Some other GA-based feature selection methods were 
proposed [10-11]. However, these papers focused on feature selection and did not 
deal with parameters optimization for the SVM classifier.  

This paper focuses on the improvement of the SVM-based model by means of  
combining GA and SVM in detecting the underlying data pattern for image classifica-
tion in CBIR using color features based joint HSV (Hue, Saturation and Value) histo-
gram and texture features based on co-occurrence matrix.  

2   Research Background 

This section presents how to extract image features such as color and texture features 
[1]. A brief introduction to the SVM and basic GA concepts are also described.  

2.1   Image Features 

(1) Color 
For representing color, we used HSV color model because this model is closely re-
lated to human visual perception. Hue is used to distinguish colors (e.g. red, yellow, 
blue) and to determine the redness or greenness etc. of the light. Saturation is the 
measure of percentage of white light that is added to a pure color. For example, red is 
a highly saturated color, whereas pink is less saturated. Value refers to the perceived 
light intensity. Color quantization is useful for reducing the calculation cost. Further-
more, it provides better performance in image clustering because it can eliminate the 
detailed color components that can be considered noises. The human visual system is 
more sensitive to hue than saturation and value so that hue should be quantized finer 
than saturation and value. In the experiments, we uniformly quantized HSV space into 
18 bins for hue (each bin consisting of a range of 20 degree), 3 bins for saturation and 
3 bins for value for lower resolution.  

In order to represent the local color histogram, we divided image into equal-sized 
33×  rectangular regions and extract HSV joint histogram that has quantized 162 bins 

for each region. Although these contain local color information, the resulting repre-
sentation is not compact enough. To obtain compact representation, we extract from 
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each joint histogram the bin that has the maximum peak. Take hue h , saturation s , 
and value v  associated to the bin as representing features in that rectangular region 
and normalize to be within the same range of [0, 1]. Thus, each image has the 

)27(333 =××  dimensional color vector.  

 
(2) Texture  
Texture analysis is an important and useful area of study in computer vision. Most 
natural images include textures. Scenes containing pictures of wood, grass, etc. can be 
easily classified based on the texture rather than color or shape. Therefore, it may be 
useful to extract texture features for image clustering. Like as color feature, we in-
clude a texture feature extracted from localized image region.  

The co-occurrence matrix is a two-dimensional histogram which estimates the pair-
wise statistics of gray level. The thji ),(  element of the co-occurrence matrix repre-

sents the estimated probability that gray level i  co-occurs with gray level j  at a 

specified displacement d  and angle θ . By choosing the values of d  and θ , a sepa-
rate co-occurrence matrix is obtained. From each co-occurrence matrix a number of 
textural features can be extracted. For image clustering, we used entropy, which is 
mostly used in many applications. Finally, each image has the )9=(3×3  dimensional 

texture vector. 

2.2   Support Vector Machine (SVM) 

The goal of SVM is to find optimal hyperplane by minimizing an upper bound of the 
generalization error through maximizing the distance, margin, between the separating 
hyperplane and the data. SVM uses the preprocessing strategy in learning by mapping 
input space, X  to a high-dimensional feature space, F . By this mapping, more flexi-
ble classifications are obtained. A separating hyperplane is found which maximizes 
the margin between itself and the nearest training points.  

The feature space is very high-dimensional space where linear separation becomes 
much easier than input space. This is equivalent to applying a fixed non-linear map-
ping of the data to a feature space, in which a linear function can be used.  

A simple description of the SVM algorithm is provided as follows. Consider a pat-
tern classifier, which uses a hyperplane to separate two classes of patterns based on 

given a training set n
iii yxS 1},{ ==  with input vectors Tn

iii xxx ),...,( )()1(=  and target 

labels }1,1{ +−∈iy . Support vector machine (SVM) classifier, according to Vapnik’s 

original formulation, satisfies the following conditions: 

bxwbxwyxf
n

i
iii +=+〉⋅〈== ∑

=1

)(  (1) 

where w  represents the weight vector and b  the bias. 
In the non-linear case, we first mapped the data some other Euclidean space F , us-

ing a mapping,  ))(...,),(()()...,.,( 11 nn xxxxxx ψψψ == . Then instead of the 

form of dot product, we use kernel function )()(),( yxyxK φφ= . There are several 

kernel functions as follows:  
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– Linear kernel: j
T
iji xxxxK =),(      (2) 

– Polynomial kernel: d
j

T
iji rxxxxK )(),( += γ , 0>γ    (3) 

– Radial basis function kernel:  )exp(),(
2

jiji xxxxK −−= γ , 0>γ  (4) 

– Sigmoid kernel: )tanh(),( rxxxxK j
T
iji += γ    (5) 

 

Using a dual problem, the quadratic programming problems can be re-written as 
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with the decision function )),(sgn()(
1
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i
ii += ∑

=
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In this paper, we define the image classification problem for CBIR as a nonlinear 
problem and use the RBF kernel to optimize the hyper plan. 

2.3   Genetic Algorithm (GA)  

Genetic algorithm (GA) is an artificial intelligence procedure based on the theory of 
natural selection and evolution. GA uses the idea of survival of the fittest by progres-
sively accepting better solutions to the problems. It is inspired by and named after 
biological processes of inheritance, mutation, natural selection, and the genetic cross-
over that occurs when parents mate to produce offspring [12]. GA differs from con-
ventional non-linear optimization techniques in that it searches by maintaining a 
population of solutions from which better solutions are created rather than making 
incremental changes to a single solution to the problem. GA simultaneously possesses 
a large number of candidate solutions to a problem, called a population. The key fea-
ture of GA is the manipulation of a population whose individuals are characterized by 
possessing a chromosome. 

Two important issues in GA are the genetic coding used to define the problem and 
the evaluation function, called the fitness function. Each individual solution in GA is 
represented by a string called the chromosome. The initial solution population could 
be generated randomly, which evolves into the next generation by genetic operators 
such as selection, crossover and mutation. The solutions coded by strings are evalu-
ated by the fitness function. The selection operator allows strings with higher fitness 
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to appear with higher probability in the next generation. Crossover is performed be-
tween two selected individuals, called parents, by exchanging parts of their strings, 
starting from a randomly chosen crossover point. This operator tends to enable to the 
evolutionary process to move toward promising regions of the search space. Mutation 
is used to search for further problem space and to avoid local convergence of GA. 

GA has been extensively researched and applied to many combinatorial optimiza-
tion problems. Furthermore GA has been increasingly applied in conjunction with 
other AI techniques such as NN and CBR. Various problems of neural network design 
have been optimized using GA. GA has also been used in conjunction with CBR to 
select relevant input variables and to tune the parameters of CBR. But, few studies 
have dealt with integration of GA and SVM, though there is a great potential for use-
ful applications in this area. 

3   The Combining GA and SVM Approach for CBIR 

This study presents approaches for improving the performance of SVM in two as-
pects: feature subset selection and parameter optimization. GA is used to optimize 
both the feature subset and parameters of SVM simultaneously for CBIR. 

3.1   Parameter Optimization 

Feature subset selection is essentially an optimization problem that involves searching 
the space for possible features to find one that is optimum or near-optimal with re-
spect to a certain performance measures such as accuracy. In a classification problem, 
the selection of features is important for many reasons: good generalization perform-
ance, running time requirements and constraints imposed by the problem itself. 

In the literature there are two methods to solve the feature selection problem: The 
filter method and the wrapper method. The distinction is made depending on whether 
feature subset selection is done independent of the learning algorithm used to con-
struct the classifier or not. In the filter method, feature selection is performed before 
applying the classifier to the selected feature subset. The filter method is computa-
tionally more efficient than the wrapper method. The wrapper method trains the clas-
sifier system with a given feature subset as an input, and it estimates the classification 
error using a validation set. Although this is a slower procedure, the features selected 
are usually more optimal for the classifier employed.  

Feature subset selection plays an important role in the performance of image classi-
fication in CBIR. Furthermore, its importance increases when the number of features 
is large. This study seeks to improve the SVM based CBIR. The GA-based approach 
for feature subset selection in the SVM is proposed in this work.  

3.2   Feature Subset Selection 

One of the important problems in SVM is the selection of the values of parameters 
that will allow good performance. 
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Selecting appropriate values for parameters of SVM plays an important role in the 
performance of SVM. But, it is not known beforehand which values are the best for 
the problem. Optimizing the parameters of SVM is crucial for the best classification 
performance. 

This paper proposes, GA as the method of optimizing parameters of SVM. In this 
study, the radial basis function (RBF) is used as the kernel function for CBIR. There 
are two parameters while using RBF kernels such as C  and γ . These two parameters 
play an important role in the performance of SVMs. In this study,  C  and γ  are en-
coded as binary strings, and optimized by GA. 

3.3   The Proposed Approach 

In general, the choice of the feature subset has an influence on the appropriate kernel 
parameters and vice versa. Therefore the feature subset and parameters of SVM need 
to be optimized simultaneously for the best classification performance. 

The procedure of the proposed approach optimizes both the feature subset and pa-
rameters of SVM simultaneously for CBIR. The procedure starts with the randomly 
selected chromosomes which represent the feature subset and values of parameters of 
SVM. Each new chromosome is evaluated by sending it to the SVM model. The SVM 
model uses the feature subset and values of parameters in order to obtain the perform-
ance measure. The performance measure is used as the fitness function and is evolved 
by GA. The chromosomes for the feature subset are encoded as binary strings stand-
ing for some subset of the original feature set list. Each bit of the chromosome repre-
sents whether the corresponding feature is selected or not. 1 in each bit means the 
corresponding feature is selected, whereas 0 means it is not selected.  

Each of the selected feature subsets and parameters is evaluated using SVM. This 
process is iterated until the best feature subset and values of parameters are found. 
The data set is divided into a training set and a validation portion. GA evolves a num-
ber of populations. Each population consists of sets of features of a given size and  
the values of parameters. The fitness of an individual of the population is based on the 
performance of SVM. SVM is trained on a training set using only the features of the 
individual and the values of parameters of the individual. The fitness is the average 
classification accuracy of SVM over a validation set. At each generation new indi-
viduals are created and inserted into the population by selecting fit parents which are 
mutated and recombined. The fitness function is represented as follows: 

NonzerosWAccuracySVMWfuntionfitness ×+×= 21 _  (8) 

where 1W  is the weight for SVM classification accuracy, AccuracySVM _  is SVM 

classification accuracy; 2W  is the weight for the number of features and Nonzeros is 

the number of selected features. 
During the evolution, the simple crossover operator is used. The mutation operator 

just flips a specific bit. With the elite survival strategy, we reserve the elite set not 
only between generations but also in the operation of crossover and mutation so that 
we can obtain all the benefit of GA operation. The details of the proposed algorithm 
are explained in Table 1. 
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Table 1. The proposed algorithm 

Step 1 Define the string (or chromosome): features and parameters of SVM are encoded into
 chromosomes 

Step 2 Define population size, probability of crossover and probability of mutation. 
Step 3 Generate binary coded initial population randomly. 
Step 4 While stopping condition is false, do Step 4–8. 
Step 5 Decode ith chromosome to obtain the corresponding parameters and feature subsets.  
Step 6 Apply the parameters and feature subsets to the SVM model to compute the output.  
Step 7 Evaluate fitness 
Step 8 Calculate total fitness function of population 
Step 9 Reproduction 

9.1 Compute the ration of each fitness function over total fitness function  
9.2 Calculate cumulative probability 
9.3 Generate random number between [0, 1]. If the random variable less than the value 

gained from 9.1, then select first string. Otherwise, select ith string. 
Step 10 Generate offspring population by performing crossover and mutation on parent pairs. 
Step 11 Stop the iterative step when the stopping condition is reached. 

4   Experiments 

4.1   Experimental Design 

To show the effective classification of the proposed approach, called the combining GA 
and SVM approach, we checked the classification accuracy. Classification results using 
color and texture features of real world images will be shown. All experiments were per-
formed on a Pentium IV with 512 Mbytes of main memory and 100 Gbytes of storage. 
We experimented on 2,000 images where most of them have dimensions of 192×128 
pixels. The 2,000 images can be divided into 10 categories with 200 images each such as 
such as airplane, eagle, horse, lion, polar bear, rose, zebra, tiger, valley and sunset.  

The dataset for the combining GA and SVM approach is separated into two parts: the 
training dataset, and the validation dataset. The ratios are about 0.8 and 0.2. Addition-
ally, to evaluate the effectiveness of the proposed approach, we compare two different 
models with arbitrarily selected values of parameters and a given all feature subset. The 
first model uses neural network (NN) and the second model uses pure SVM. 

4.2   Experimental Results 

In order to evaluate the combining GA and SVM approach, we set the detail parame-
ters for GA as follows: population size 200, crossover rate 0.9, mutation rate 0.1, two-
point crossover, roulette wheel selection, and elitism replacement. We set 20=l , 

20=m and 36=n . According to the fitness function of Eq. (8), 1W  and 2W  can influ-

ence the experiment result. We defined 8.01 =W  and 2.02 =W  for experiments. The 

termination criteria are that the generation number reaches generation 500 or that the 
fitness value does not improve during the last 100 generations. The best chromosome 
is obtained when the termination criteria satisfy.  

Table 2 shows both training and validation average success rates that were 
achieved under the different models.  
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Table 2. Average image classification accuracy of NN, pure SVM and the combining GA and 
SVM approach 

Classifier Type of kernel Training (%) Validation (%) 
NN 
Pure SVM 
GA + SVM  

－ 
RBF 
RBF 

89.33 
92.37 
96.75 

86.50 
91.15 
93.50 

As can be seen, the combining GA and SVM approach has consistently given the 
best performance of the other models as shown 96.75% average success rate on the 
training dataset and 93.50% on the validation dataset in table 2 and average number of 
features is 14.  

In order to test the superiority of the proposed approach, we perform the McNemar 
test which is used to examine whether the proposed approach significantly outper-
forms the other models. This test is a nonparametric test for two related samples using 
the chi-square distribution. This test may be used with nominal data and is particu-
larly useful with ‘before–and-after’ measurement of the same subjects. We performed 
McNemar test to compare the performance for the test data. As a result, the combin-
ing GA and SVM approach outperforms NN at the 1% statistical significance level, 
and pure SVM at the 5% statistical level.  

5   Conclusion 

In this paper, we presented the GA-based approach to improve the performance of 
SVM in CBIR. SVM parameters and feature subsets were optimized simultaneously 
in this study because the selected feature subset has an influence on the appropriate 
kernel parameters and vice versa.  

As far as we know, previous studies have not dealt with the combining GA and 
SVM approach although there is a great potential for useful applications in CBIR. 
This paper focuses on the improvement of the image classification accuracy by means 
of the combining GA and SVM approach for CBIR. 

We conducted experiments to evaluate the classification accuracy of the proposed  
approach with RBF kernel, NN and pure SVM on 2,000 real-world image dataset with 
10 image categories. Generally, compared with NN and pure SVM, the proposed 
approach has good accuracy performance with fewer features. 

This study showed experimental results with the RBF kernel of SVM. In future 
work, we also intend to optimize the kernel function, parameters and feature subset 
simultaneously. We would also like to expand the proposed approach to apply to 
instance selection problems. 
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Abstract. In this paper, we describe a feature extraction method: Global and 
Local Preserving Projection (GLPP). GLPP is based on PCA and the recently 
proposed Locality Preserving Projection (LPP) method. LPP can preserve local 
information, while GLPP can preserve both global and local information. In this 
paper we investigate the potential of using GLPP for image categorization. More 
specifically, we experiment on palmprint images. Palmprint image has been at-
tracting more and more attentions in the image categorization/recognition area in 
recent years. Experiment is based on benchmark dataset PolyU, using Error 
Rate as performance measure. Comparison with LPP and traditional algorithms 
show that GLPP is promising. 

1   Introduction 

Biometrics has been attracting more and more attentions in recent years. Two possible 
biometric features, hand geometrical features and palmprint image features, can be 
extracted from hand. Hand geometrical features such as finger width, length, and the 
thickness are adopted to represent extracted features, but these features frequently 
vary due to the wearing of rings in fingers, besides, the width of some fingers may 
vary during pregnancy or illness. Palmprint image features have several advantages 
over such physical characteristics [6]: (1) low-resolution imaging; (2) low intrusive-
ness; (3) stable line feature and (4) high user acceptance. 

Palmprint image categorization/recognition approaches can be classified two main 
classes, namely local feature based methods [2, 5, 7] and feature extraction based 
methods [1, 3, 4, 6, 8]. Local feature-based methods is mainly centralized on points 
and lines feature, texture analysis of the original palmprint image while feature ex-
traction based method consider second-order statistics information of the original 
palmprint image. Not encountering the problem of extracting structure features is the 
advantage of the latter methods. PCA, ICA, KPCA and KICA are successful sub-
space-based methods commonly used in palmprint recognition and searching systems.  
                                                           
* Corresponding author. 
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In this paper we describe a feature extraction method: Global and Local Preserving 
Projection (GLPP), it is based on PCA and Locality Preserving Projection (LPP) [23] 
which can preserve local information. GLPP can preserve both global and local in-
formation of the data.  

The remainder of this paper is organized as follows. Section 2 describes GLPP algo-
rithm and several other methods. Section 3 describes the image recognition procedure. 
Section 4 presents the experiment results. Conclusions are provided in Section 5. 

2   Feature Extraction 

In image processing applications, the original data within high-dimension space can not be 
directly processed because of the course of dimension and need to find a low-dimension 
representation of data. We perform feature extraction for dimension deduction.  

2.1   Global Locality Preserving Projection (GLPP) 

We first describe Locality Preserving Projections (LPP). LPP, a linear approximation 
of the nonlinear Laplacian Eigenmap [9, 10, 23], is a recently proposed method for 
dimensionality reduction [11]. LPP can make low-dimension representation of the 
original high-dimension data space with locality information preserving.  

The generic problem of linear dimensionality reduction problem is as follows:  

1. Given the original data X = {x1, x2, · · · , xm} in high-dimension space Rn. 
2. Find a mapping that transforms the original data points into a new set of data 

points Y = {y1, y2, · · · , ym} in a low-dimension space Rl (l < n).  

Because the target transformation is limited to linear transformation, it can be rep-
resented as a projection matrix A. These new yi = A·xi represents the original xi. 

For a high-dimension data X, the distance between xi indicates the similarity rela-
tionship between data. The low-dimension representation is desired to preserve this 
information. LPP is the algorithm which is equipped with this property [12, 24]. 

The LPP algorithm procedure for data matrix X is as follows [11]: 

Step 1. Constructing the adjacency graph on X: Let G denotes a graph with m 
nodes. If xi and xj are close, we put an edge between node i and j. Con-
struct the edges by choosing the k nearest neighbors: Nodes i and j are 
connected by an edge if i is among k nearest neighbors of i or j is among  
k nearest neighbors of i. The edges can also be constructed by  
ε-neighborhoods [11]. 

Step 2. Choosing the weights on X: Let W denotes an m×m sparse symmetric ma-
trix and Wij is the weight of the edge between vertices i and j (Wij = 0, if 
there is no edge). Cosine similarity is used to set the weight (other similar-
ity function may also be used). 

Step 3. Eigenmaps on X: Eigenvectors and eigenvalues are calculated for the gen-
eralized eigen-decomposition problem: 

XLXT a = λXDXT a (1) 
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Let the column vectors a1, · · · , al be the solutions of Equation (1), ordered according 
to their eigenvalues, λ1 < · · · < λl: 

xi → yi = AT xi, A = (a1, a2, · · · , al) (2) 

where yi is a l-dimensional vector, and A is a n × l matrix. 
LPP can preserve locality information. However, the problem is that when X is in 

the high dimensional manifold, which is the case for image processing, LPP will fail 
by the curse of high-dimension. Global Local Preserving Projection (GLPP) can deal 
with the problem.  

GLPP is based on PCA and LPP, it proceeds as follows: 

Step 1. Calculate T as the global information preserving transforming of X. This step is 
similar to PCA, by setting a parameter g, we can deduce the original high dimensional 
space to much lower dimensional space while keeping most global information: 

(1) Calculate the data covariance matrix by 

Rx(0) = E{x(t)xT(t)}. (3) 

(2) Calculate the SVD of Rx(0) by 

Rx (0) = UDVT (4) 

where V is the eigenvector matrix and D is the diagonal matrix whose diagonal 
elements correspond to the eigenvalues of Rx (0).  

(3) Sort the eigenvalues in descending order.  
(4) Choose the global preserving parameter g. The value of g varies form 0 to 1. In 

this paper, we set g to be 0.999 to preserve most global information. 
(5) Keep the top k the eigenvalues. The value of k is chosen that  

( [ ],  1,..., )

_

Sum eigenvalues i i k
g

total eigenvalues

= >  (5) 

where, 

_ ( [ ],  1,..., )total eigenvalues Sum eigenvalues i i n= =  (6) 

where n is X is dimension. 
(6) Keep the top k column vectors.  
(7) Get T, i.e., from n-dimensional data X to k-dimensional subspace T: 

T = VTX. (7) 

Step 2. Constructing the adjacency graph on T. 
Step 3. Choosing the weights on T. 
Step 4. Eigenmaps.  

2.2   Algorithms for Comparison 

2.2.1   Principal Component Analysis 
Principal Component Analysis (PCA) is a classical multivariate data analysis method 
that is useful in linear feature extraction [18, 19, 25, 26]. PCA is obtained first by 
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subtracting the mean x  of the n-dimensional data set. The covariance matrix is calcu-
lated and its eigenvectors and eigenvalues are found. The eigenvectors corresponding 
to the m largest eigenvalues are retained, and the input vectors xn are subsequently 
projected onto the eigenvectors to give components of the transformed vectors zn are 
in the m-dimensional space.  

2.2.2   Independent Component Analysis 
Independent Component Analysis (ICA) first performs the dimensionality reduction 
by data sphering (whitening) which project the data onto its subspace as well as nor-
malizing its variance [20, 21, 28]. Data sphering transformation Q is given by Q = Ds

-

1/2
 Us

T, The whitened vector z∈Rn
 is obtained via z = Qx. The orthogonal factor V in 

ICA can be found by minimizing the mutual information in z. Then the ICA transfor-
mation W' is given by y =  W'x, where W'=VQ.  

2.2.3   Kernel Principal Component Analysis 
Kernel Principal Component Analysis (KPCA) generalizes the PCA approach to non-
linear transformations using the kernel trick [33], working in the feature space of a 
positive semi-definite kernel written implicitly as a dot product in that space. KPCA 
is to transform the input data into a higher-dimensional feature space. The feature 
space is constructed such that a nonlinear operation can be applied in the input space 
by applying a linear operation in the feature space [27]. 

2.2.4   Kernel Independent Component Analysis 
Kernel Independent Component Analysis (KICA) is the kernel counterpart of ICA 
[13, 14, 15]. Let the inner product be implicitly defined by the kernel function k in F 
with associated transformation Φ . KICA will extend nonlinearly the centering and 
whitening of the data.  

(1) Centering in F: We shift the data ( )
i

Φ x (i=1,…,k) with its mean ( ))E(Φ x , to 

obtain data 

( ) ( ) ( ( ))i iΦ x Φ x E Φ x′ = −  (8) 

with a mean of 0.  
(2) Whitening in F: ˆ ( ) ( )i iΦ x QΦ x′=  (i=1,…,k) is a unit matrix.  

(3) Transformation of test vectors:  
* ˆˆ ˆz ( ) ( , z)kΦ z X= =WQ WA . (9) 

Ŵ denotes the orthogonal transformation matrix, Q̂ is the matrix obtained from ker-
nel centering and whitening.  

In this paper, we adopt cosine kernel for both KPCA and KICA. 

3   Image Categorization 

We use Nearest Neighbors (NN) to perform the image categorization/recognition 
process. NN is a non-parametric inductive learning paradigm that stores training in-
stances in a memory structure on which predictions of new instances are based [16]. 
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The similarity between the new instance and an example in memory is computed 
using a distance metric. In this study, we use Euclidian distance.  

For palmprint image recognition, NN treats all palmprints as points in the m-
dimensional space and given an unseen palmprint p, the algorithm classifies it by the 
nearest training palmprint. 

4   Experiment Results 

The image dataset we use is the benchmark , available on 
[11]. There are 600 images with 100 classes (each class has 6 images). 
These images are preprocessed with wavelet [29, 30, 31, 32]. We use the Leave-One-
Out method for performance evaluation. For feature extraction, the reduced dimen-
sions vary from 1 to 35. We use Error Rate to estimate recognition performance.  

Error Rate: Error Rate is defined by the ratio of the number of correct predictions 
and the number of all test samples. Error Rate varies from 0 to 1. A perfect classifier 
should achieve an Error Rate of 0 for each class. The lower the Error Rate, the better 
the performance. 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

LPP KPCA KICA GLPP PCA ICA

minimum Error Rate

 

Fig. 1. Minimum Error Rate of GLPP and traditional feature extraction algorithms. Y-axis 
denotes the Error Rate. X-axis denotes the feature extraction algorithms; their location is ar-
rayed by sorting their performance from the worst to the best (from left to right).  

Fig. 1 shows the minimum Error Rate of GLPP, LPP and four traditional feature 
extraction algorithms: PCA, ICA, KPCA and KICA. The results show that GLPP is 
much better than LPP, GLPP achieves a minimum Error Rate of 0.038 and LPP 
achieves 0.072. The results also show that the performance of GLPP is comparable 
with traditional methods. ICA achieves the best performance with a minimum Error 
Rate of 0.033, which is just slightly better than the performance of GLPP. 

Fig. 2 shows the Error Rate curves under different number of reduced dimensions 
for GLPP, LPP and the traditional algorithms (PCA, ICA, KPCA and KICA). The 
results in the figure show that GLPP is uniformly better than LPP. This figure also 

PolyU Palmprint Database
palmprint 
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shows that both GLPP and LPP are much better than the traditional methods when the 
number of reduced dimensions is less than 15. For reduced dimensions over 25, the 
performance of GLPP is better than KPCA and KICA, comparable with PCA and 
ICA. GLPP achieves its best performance (that is, its lowest Error Rate of 0.038) at 
24 reduced dimensions. GLPP can still achieve relatively high performance at about 
just 3 dimensions. This is greatly better than the traditional methods. 
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Fig. 2. Error Rate curves of feature extraction methods with different reduced dimensions. The 
lower is the error rate, the better is the method. 

5   Conclusion 

In this study, we describe a feature extraction method--Global and Local Preserving 
Projection (GLPP), which is based on PCA and LPP. While Locality Preserving Pro-
jection (LPP) can preserve local information, GLPP can preserve both global and 
local information. To demonstrate the efficiency of GLPP, we apply it to palmprint 
image categorization/recognition. In experiment, we use the benchmark palmprint 
image dataset PolyU, and adopt Error Rate as the performance measure. Comparison 
is done with LPP and traditional methods: PCA, ICA, KPCA and KICA. The results 
show that GLPP is better than LPP, KPCA and KICA, and is comparable with PCA 
and KCA. GLPP can achieve relatively high performance with just very few reduced 
dimensions, which is a great advantage over traditional methods. 
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Abstract. This paper presents iris recognition for personal identification using 
neural networks. Iris recognition system consists of localization of the iris re-
gion and generation of data set of iris images and then iris pattern recognition. 
One of the problems in iris recognition is fast and accurate localization of the 
iris image. In this paper, fast algorithm is used for the localization of the inner 
and outer boundaries of the iris region.  Located iris is extracted from an eye 
image, and, after normalization and enhancement it is represented by a data 
set.  Using this data set a neural network is applied for the classification of iris 
patterns. Results of simulations illustrate the effectiveness of the neural sys-
tem in personal identification. 

1   Introduction 

The biometrics technology that uses various physiological characteristics of human 
plays important role in identification of personals. These physiological characteristics 
are face, facial thermo grams, fingerprint, iris, retina, hand geometry etc. [1].  Iris 
recognition is one of the most reliable biometrics that uses iris characteristics of hu-
man eyes and plays important role in accurate identification of each individual. Iris 
region is the part between the pupil and the white sclera. This field sometimes is 
called iris texture. The iris texture provides many minute characteristics such as freck-
les, coronas, stripes, furrows, crypts, etc [2-6]. These visible characteristics are unique 
for each subject. Such unique feature in the anatomical structure of the iris facilitates 
the differentiation among individuals. The human iris is not changeable and is stable. 
From one year of age until death, the patterns of the iris are relatively constant over a 
person’s lifetime [1,3].  Because of uniqueness and stability, iris recognition is a reli-
able human identification.  

Iris recognition consists of the iris capturing, pre-processing and recognition of the 
iris region in a digital eye image. Iris image pre-processing includes iris localization, 
normalization, and enhancement. Each of these steps uses different algorithms. In iris 
localization step, the determination of the inner and outer circles of the iris and the 
determination of the upper and lower bound of the eyelids are performed. The inner 
circle is located between the iris and pupil boundary, the outer circle is located be-
tween the sclera and iris boundary. A variety of techniques have been developed for 
iris localization. In [3-6], the system with circular edge detector, in [7] a gradient 
based Hough transform are used for the localizing of the iris. Also circular Hough 
transform [8], random Hough transform are applied to find the iris circles and  

2007 
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complete the iris localization. In [10] Canny operator is used to locate the pupil 
boundary. These methods need a long time to locate iris. In this paper a fast iris local-
ization algorithm is proposed. 

Various algorithms have been applied for feature extraction and pattern matching 
processes. These methods use local and global features of the iris. Using phase based 
approach [3-6], wavelet transform zero crossing approach [8,15], Gabor filtering [10], 
texture analysis based methods [8,10,11,12] the solving of the iris recognition prob-
lem is considered. In [13,14] independent component analysis is proposed for iris 
recognition. 

Daugman [3-6] used multiscale quadrature wavelets to extract texture phase struc-
ture information of the iris to generate a 2,048-bit iris code and compared the differ-
ence between a pair of iris representations by computing their Hamming distance. 
Boles and Boashash [9] calculated a zero-crossing representation of 1D wavelet trans-
form at various resolution levels of a concentric circle on an iris image to characterize 
the texture of the iris. Iris matching was based on two dissimilarity functions. San-
chez-Avila and Sanchez-Reillo [15] further developed the method of Boles and 
Boashash by using different distance measures (such as Euclidean distance and Ham-
ming distance) for matching. Wildes et al. [8] represented the iris texture with a 
Laplacian pyramid constructed with four different resolution levels and used the nor-
malized correlation to determine whether the input image and the model image are 
from the same class.  

Today with the development of Artificial Intelligence (AI) algorithms, iris recogni-
tion systems may gain speed, hardware simplicity, accuracy and learning ability. In 
this paper a fast iris segmentation algorithm and also an iris recognition system based 
on neural networks are proposed.  

This paper is organized as follows. In section 2 the iris preprocessing steps that in-
clude iris localization, normalization and enhancement are described. In section 3 the 
neural network which is used for iris pattern recognition is described. Section 4 pre-
sents experimental results. Section 4 includes the conclusion of the paper. 

2   Iris Recognition 

2.1   Structure of Iris Recognition System 

Fig.1 shows the architecture of the iris recognition system. The iris recognition sys-
tem includes two operation modes: training mode and on-line mode. At fist stage 
using iris images the training of recognition system is carried out. The image recogni-
tion system includes iris image acquisition and iris recognition. The iris image acqui-
sition includes the lighting system, the positioning system, and the physical capture 
system [8]. The iris recognition includes pre-processing and neural networks blocks. 
During iris acquisition, the iris image in the input sequence must be clear and sharp. 
Clarity of the iris’s minute characteristics and sharpness of the boundary between the 
pupil and the iris, and the boundary between the iris and the sclera affects the quality 
of iris image. A high quality image must be selected for iris recognition. In iris pre-
processing, the iris is detected and extracted from an eye image and normalized.  
Normalized image after enhancement is represented by the array that describes grey-
scale values of the iris image. This array becomes the training data set for the neural 
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network. Neural network is trained for all iris images. After training, in online mode 
using input digital images of iris, neural network performs classification and recog-
nizes the patterns that belong to a certain person’s iris. 

 
 
 
 
 

Fig. 1. Steps of iris recognition 

2.2   Iris Localization  

An eye image contains not only iris region but also some unuseful parts, such as the 
pupil, eyelids, sclera, and so on. For this reason, at first step, the segmentation will be 
done to localize and extract the iris region from the eye image. Iris localization is to 
detect the iris area between pupil and sclera. So we need to detect the upper and lower 
boundaries of the iris and determine its inner and outer circles. A number of algo-
rithms has been developed for iris localization. One of them is based on the Hough 
transform. An iris segmentation algorithm based on the circular Hough transform is 
applied in [7,8]. At first, the canny edge detection algorithm is applied. The eye image 
is represented using edges by applying two thresholds to bring out the transition from 
pupil to iris and from iris to sclera. Then circular Hough transform is applied to detect 
the inner and outer boundaries of the iris (Fig. 2). The circular Hough transform is 
employed to deduce the radius and centre coordinates of the pupil and iris regions. In 
this operation, the radius intervals are defined for inner and outer circles. Starting 
from the upper left corner of iris the circular Hough transform is applied. This algo-
rithm is used for each inner and outer circle separately. The votes are calculated in the 
Hough space for the parameters of circles passing through each edge point. Here 
some circle parameters may be found. The parameters that have maximum value are 
corresponded to the centre coordinates x

c 
and y

c
. After determining centre coordinates, 

 

 

Fig. 2. A localised iris image 
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the radius r of the inner circle is determined. The same procedure is applied for the 
outer circle to determine its centre coordinates and radius. Using determined inner and 
outer radiuses the iris region is detected. The application of the Hough transform 
needs long time to locate the boundaries of the iris. 

2.3   Iris Localization Using Rectangular Areas 

In this paper, a fast algorithm for detecting the boundaries between pupil and iris and 
also sclera and iris has been proposed. To find boundary between pupil and iris we 
must detect the location (centre coordinates and radius) of pupil. In more case the 
pupil is not located at the middle of an eye image. The pupil is a dark circular area in 
an eye image.  Besides the pupil eyelids and eyelashes are also characterized by black 
colour. So it causes difficulties to find right place of pupil by using point by point 
comparison on the base of threshold technique. In this paper, we are looking for the 
black rectangular region in an iris image (Fig. 3). Searching starts from the vertical 
middle point of the iris image and continues to the right side of the image. A threshold 
value is used to detect the black rectangular area. Starting from the middle vertical 
point of iris image, the greyscale value of each point is compared with the threshold 
value. As it is proven by many experiments the greyscale values within the pupil are 
very small. So a threshold value can be easily chosen.  If greyscale values in each 
point of the iris image are less than threshold value, then the rectangular area will be 
found. If this condition is not satisfactory for the selected position, then the searching 
is continued from the next position. This process starts from the left side of the iris, 
and it continues to the end of the right side of the iris. In case, if the black rectangular 
area is not detected, the new position in the upper side of the vertical middle point of 
the image is selected and the search for the black rectangular area is resumed. If the 
black rectangular area is not found in the upper side of the eye image, then the search 
is continued in the down side of image. In Fig. 3(a), the searching points are shown by 
the lines. In Fig. 3(a,b), the black rectangular area is shown in white colour. Choosing 
 

        

(a)                                                               (b) 

Fig. 3. Detecting the rectangular area: a) The lines that were drawn to detect rectangular areas 
b) The result of detecting of rectangular area 
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Fig. 4. Finding the centre of the pupil 

the size of the black rectangular area is important and it affects the accurate determi-
nation of the pupil’s position. If we choose small size, then this area can be found in 
the eyelash region. In this paper a (10, 10) rectangular area is taken to accurately 
detect the location of the pupil. After finding the black rectangular area, we start to 
detect the boundary of the pupil and iris. At first step, the points located in the bound-
ary of pupil and iris, in horizontal direction, then the points in the vertical direction 
are detected (Fig. 4). The border of the pupil and the iris has much a larger greyscale 
change value. Using a threshold value on the iris image, the algorithm detects the 
coordinates of the horizontal boundary points of (x1,y1) and (x1,y2), as shown in  
Fig. 4. The same procedure is applied to find the coordinates of the vertical boundary 
points (x3,y3) and (x4,y3). After finding the horizontal and vertical boundary points 
between the pupil and the iris, the following formula is used to find the centre coordi-
nates (xp,yp) of the pupil. 

The same procedure is applied for two different rectangular areas. In case of small 
differences between coordinates, the same procedure is applied for four and more 
different rectangular areas in order to detect accurate position of pupil’s centre.  After 
finding centre points, the radius of the pupil is determined. 
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Because of the change of greyscale values in the outer boundaries of iris is very 
soft, the current edge detection methods are difficult to implement for detection the 
outer boundaries. In this paper, another algorithm is applied in order to detect the 
outer boundaries of the iris. We start from the outer boundaries of the pupil and de-
termine the difference of sum of greyscale values between the first ten elements and 
second ten elements in horizontal direction. This process is continued in the left and 
right sectors of the iris.  The difference corresponding to the maximum value is se-
lected as boundary point. This procedure is implemented by the following formula. 
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Here DL and DR are the differences determined in the left and right sectors of the 
iris, correspondingly. xp and yp are centre coordinates of the pupil, rp is radius of the 
pupil, right is the right most y coordinate of the iris image. In each point, S is calcu-
lated as 
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where i=xp, for the left sector of iris j=10,…,yp-(rp+10), and for the right sector of iris  
j=yp+(rp+10). Ix(i,k) are greyscale values.  

The centre of the iris is determined using   

2/)(    ,2/)( LRrRLy ss −=+=  (4) 

L=i, where i correspond to the value  max(|DLi|) , R=j, where j correspond to the 
value   max(|DRj|).  

2.4   Iris Normalization 

The irises captured from the different people have different sizes. The size of the irises 
from the same eye may change due to illumination variations, distance from the camera, 
or other factors. At the same time, the iris and the pupil are non concentric. These fac-
tors may affect the result of iris matching. In order to avoid these factors and achieve 
more accurate recognition, the normalization of iris images is implemented. In normali-
zation, the iris circular region is transformed to a rectangular region with a fixed size. 
With the boundaries detected, the iris region is normalized from Cartesian coordinates 
to polar representation. This operation is done using the following operation (Fig. 5).  

 

                               

Fig.  5. Normalization of iris 

θ∈[0,2π]    r∈[Rp,RL(θ)] 
xi=xp+r×cos(θ) 
yi=yp+r×sin(θ) 

(5) 

Here (xi,yi) is the point located between the coordinates of the papillary and limbic 
boundaries in the direction θ. (xp,yp) is the centre coordinate of the pupil,  Rp is the 
radius of the pupil, and RL(θ) is the distance between centre of the pupil and the point 
of limbic boundary.  

In the localization step, the eyelid detection is performed. The effect of eyelids is 
erased from the iris image using the linear Hough transform. After normalization  
(Fig. 6(a)), the effect of eyelashes is removed from the iris image (Fig. 6(b)). Analysis 
reveals that eyelashes are quite dark when compared with the rest of the eye image. 
For isolating eyelashes, a thresholding technique was used. To improve the contrast 
and brightness of image and obtain a well distributed texture image, an enhancement 
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is applied. Received normalized image using averaging is resized. The mean of  
each 16x16 small block constitutes a coarse estimate of the background illumination. 
During enhancement, background illumination (Fig. 6(c)) is subtracted from the nor-
malized image to compensate for a variety of lighting conditions. Then the lighting 
corrected image (Fig. 6(d)) is enhanced by histogram equalization. Fig.  6(e) demon-
strates the preprocessing results of iris image. The texture characteristics of iris image 
are shown more clearly. Such preprocessing compensates for the nonuniform illumi-
nation and improves the contrast of the image.  

Normalized iris provides important texture information. This spatial pattern of the 
iris is characterized by the frequency and orientation information that contains freck-
les, coronas, strips, furrows, crypts, and so on. 

 
 

(a) 
 
 

(b) 
 
 

(c) 
 
 

(d) 
 
 

(e) 

Fig. 6. a) Normalized image, b) Normalized image after removing eyelashes c) Image of non-
uniform background illumination, d) Image after subtracting background illumination, d) En-
hanced image after histogram equalization 

2.    Neural Network Based Iris Pattern Recognition 

In this paper, a Neural Network (NN) is used to recognise the iris patterns. In this 
approach, the normalized and enhanced iris image is represented by a two-
dimensional array. This array contains the greyscale values of the texture of the iris 
pattern. These values are input signals for the neural network. Neural network struc-
ture is given in Fig. 7. Two hidden layers are used in the NN. In this structure,  
x1,x2,…,xm are greyscale values of input array that characterizes the iris texture in-
formation, P1,P2,…,Pn are output patterns that characterize the irises. 

The k-th output of neural network is determined by the formula 
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where vjk are weights between the hidden and output layers of network, uıj are weights 
between the hidden layers, wil are weights between the input and hidden layers, f is the 

5
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activation function that is used in neurons. m is the number of input signals, h1 and h2 
are the number of neurons in hidden layers, n is the number of output neurons (k=1,..,n). 

After activation, the backpropagation learning algorithm is applied for training of 
NN. The trained network is then used for the iris recognition in online regime. 

 
 

 

 

 

 

 

Fig. 7. Neural Network Architecture 

3   Experimental Results 

In order to evaluate the iris recognition algorithms, the CASIA iris image database is 
used. Currently this is largest iris database available in the public domain. This image 
database contains 756 eye images from 108 different persons. Experiments are per-
formed in two stages: iris segmentation and iris recognition. At first stage the above 
described rectangular area algorithm is applied for the localization of irises. The ex-
periments were performed by using Matlab on Pentium IV PC. The average time for 
the detection of inner and outer circles of the iris images was 0.14s. The accuracy rate 
was 98.62%. Also using the same conditions, the computer modelling of the iris local-
ization is carried out by means of Hough transform and Canny edge detection realized 
by Masek [7] and integrodifferential operator realized by Daugman [3-6]. The aver-
age time for iris localization using Hough transform is obtained 85 sec, and 90 sec 
using integrodifferential operator. Table 1 demonstrates the comparative results of 
different techniques used for iris localization. The results of Daugman method are 
difficult for comparison. If we use the algorithm which is given in [16] then the seg-
mentation represents 57.7% of precision. If we take into account the improvements 
that were done by author then Daugman method presents 100% of precision. The 
experimental results have shown that the proposed iris localization rectangular area 
algorithm has better performance. In second stage the iris pattern classification using 
NN is performed. 50 person’s irises are selected from iris database for classification. 
The detected irises after normalization and enhancement are scaled by using averag-
ing. This help to reduce the size of neural network. Then the images are represented 
by matrices. These matrices are the input signal for the neural network. The outputs of 
the neural network are classes of iris patterns. Two hidden layers are used in neural 
network. The numbers of neurons in first and second hidden layers are 120 and 81, 
correspondingly. Each class characterizes the certain person’s iris. Neural learning 
algorithm is applied in order to solve iris classification. From each set of iris images, 
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two patterns are used for training and two patterns for testing. After training the re-
maining images are used for testing. The recognition rate of NN system was 99.25%.  
The obtained recognition result is compared with the recognition results of other 
methods that utilize the same iris database. The results of this comparison are given in 
table 2. As shown in the table, the identification result obtained using the neural net-
work approach illustrates the success of its efficient use in iris recognition. 

Table 1. Accuracy rate for iris segmentation 

Methodology Accuracy rate Average time 

Daugman [17]  57.7% 90 s 

Wildes [8] 86.49% 110 s 

Masek [7]  83.92% 85 s 

Proposed 98.62% 0.14 s 

Table 2. The recognition performance of comparing with existing method 

Methodology Accuracy rate 

Daugman [4] 100% 

Boles [9] 92.64% 

Li Ma [10] 94.9% 

Avila [15] 97.89% 

Neural Network 99.25% 

4   Conclusion 

An iris recognition system for personal identification is presented in this paper. A fast 
iris localization method is proposed. Using this method, iris segmentation is per-
formed in short time. Average time for iris segmentation is obtained to be 0.14 sec on 
Pentium IV PC using Matlab. Accuracy rate of iris segmentation 98.62% is achieved. 
The located iris after pre-processing is represented by a data set.  Using this data set 
as input signal the neural network is used to recognize the iris patterns. The recogni-
tion accuracy for trained patterns was 99.25%. 
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Abstract. Imaging algorithms often require reliable methods to evaluate the 
quality effects of the visual artifacts that digital processing brings about. This 
paper adopts a no-reference objective method for predicting the perceived 
quality of images in a deterministic fashion. Principal Component Analysis is 
first used to assemble a set of objective features that best characterize the 
information in image data. Then a neural network, based on the Circular Back-
Propagation (CBP) model, associates the selected features with the 
corresponding predictions of quality ratings and reproduces the scores process 
of human assessors. The neural model allows one to decouple the process of 
feature selection from the task of mapping features into a quality score. Results 
on a public database for an image-quality experiment involving JPEG 
compressed-images and comparisons with existing objective methods confirm 
the approach effectiveness.  

Keywords: Image quality assessment, feedforward neural networks, JPEG. 

1   Introduction 

In most applications, the effectiveness of compression methods for digital images 
(such as JPEG) depends on their impact on the visual fruition of pictures by 
consumers. Subjective testing [1] is the conventional approach for quality evaluation; 
these methods measure perceived quality by asking human assessors to score the 
overall quality of a set of test images. These tests yield accurate results; nonetheless, 
they are very difficult to model in a deterministic way. 

Objective methods [2] instead, aim to estimate perceived quality, bypassing human 
assessors. These techniques measure image quality by processing numerical quantities 
(“objective features”) extracted from images. To be effective, objective models must 
cohere with subjective opinions of quality perception. In most cases, the assessment 
system has to know the reference (uncompressed) image [2, 3]. By contrast, no-
reference (NR) methods assess perceived quality by receiving as input only the 
compressed image [2, 4-6].  

This paper presents a method using neural networks for the objective assessment of 
JPEG compressed images. A Circular BackPropagation (CBP) feedforward network 
[7] processes objective features worked out from JPEG images, and returns the 
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associated quality scores. As the neural-based set-up does not require any information 
about the original uncompressed image, the overall objective method follows a  
no-reference approach.  

2   Quality Assessment of JPEG Images 

Figure 1 shows a schematic representation of the proposed no-reference quality 
assessment system for JPEG compressed images: a CBP network directly yields the 
quality assessments associated with input vectors of features worked out form the 
image. The design of the objective system takes into account that 1) several features 
characterizing images jointly affect subjective judgments, and 2) non-linear 
relationships may complicate the modeling process. The effectiveness of the neural-
network approach lies in the ability to decouple the problem of feature-selection from 
the design of an explicit mathematical model; to this purpose, the CBP network 
provides a paradigm to deal with multidimensional data characterized by complex 
relationships. The function that maps feature vectors into quality ratings is learned 
from examples by use of an iterative training algorithm. Hence, the design of the 
objective metric is not involved in the set-up of the mapping function. 

In this research, color correlogram [8] is used to characterize the information in 
image data. Color correlograms proved to be an effective technique for color texture 
analysis [8], but they have never been used in objective assessment models. Section 3 
will discusses the feature-extraction process and introduces the feature-selection 
criteria. Indeed, Section 4 will describe the CBP neural network and the design 
strategy for the neural assessment system. 

FEATURE 
EXTRACTOR

NEURAL 
NETWORK 

Jpeg image

feature 
vector 

quality 
score 

 

Fig. 1. The proposed no-reference quality assessment system 

3   Feature-Based Image Representation: Definition and Selection  

3.1   Local-Level Objective Features 

The present approach works out objective features on a block-by-block, local basis 
from pixel values. To this purpose, the image is split into non-overlapping squares of 
32x32 pixels, and each block is characterized by the associate set of numerical 
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features; this allows the method to take into account the space-variant nature of 
perceptual mechanisms.  

The picture blocks are characterized by objective features derived from the color 
correlograms [8]. A color correlogram expresses how the spatial correlation of pairs 
of colors changes with distance. Let S denote an image subregion that includes RS× CS 
pixels, and let Ηs denote the color correlogram worked out from S. As a result, the 
matrix element ),( jik

SΗ  counts the pairs of pixels that: 1) have color levels Li and Lj, 

respectively, and 2) are separated by k pixels. Formally, if dist() denotes the measure 
of distance between pixels, then ),( jik

SΗ  is defined as follows:   

{ }kqpSnmSdistLqpSLnmSnmji ji
k
S ====Η ]),[],,[(;],[  ;],[  s.t.   ,),(),(  (1) 

In the present work, the operator dist() embeds the L1-norm. 
Table 1 presents the set Φ of objective features derived from the correlogram that 

have been used in this research. The set involves some of the quantities that were 
formalized in [9] to characterize the co-occurence matrix, an image descriptor similar 
to the color correlogram. This choice was mostly justified by the established scientific 
relevance of that fundamental research. In this table, the features Difference entropy 
and Contrast exploit the following definition: 
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Table 1. Objective features derived from the color correlogram 
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3.2   Global-Level Features 

Human assessors are usually asked to provide one overall quality score per image. 
Thus, from a modeling perspective, one vector must encompass the feature-based 
image description to be associated with the single score. Toward this end, after local-
level feature computation, statistical descriptors unify block-based information to 
characterize the whole image by using one data vector. From a formal perspective, let 
I(l) be the l-th original picture, and denote by ζq(·) the JPEG coding algorithm 
operating at a compression ratio, q; thus, I(l,q) denotes the digital image obtained as 
ζq(I

(l)). Then the overall feature-computation algorithm can be outlined as follows. 
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Inputs: a picture I(l,q),an objective feature fu; 

1. Block-level feature extraction.  

1.a Split I(l,q), into nb non-overlapping squares to 

 obtain a set of blocks: { }b
ql

j
ql njb ,..,1;),(),( ==Β .      

1.b For each block ),(),( qlql
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2. Feature integration into one image descriptor.   

Assemble the global description vector, x(l,q), for the 
image I(l,q) as: 

( ) { }100,..,10,0),( ),(, == αα
ql

u
ql

u Fpx . (4) 

where pα() is the percentile of order αth. 

To sum up, the feature-extraction process represents the JPEG-compressed image, 
I(l,q), by a global pattern, x(l,q), whose dimensionality is d=11.  

3.3   A Statistical Approach to Feature Selection 

Table 1 presents a list of six objective features derived from the color correlogram. 
Indeed, a crucial aspect in the proposed approach consists in picking out those 
descriptors that are most informative; many features will eventually be discarded 
because they do not carry significant information or because they are mutually 
correlated. 

The present framework tackles that feature-selection procedure empirically; the 
data set is obtained by applying JPEG compression, ζq(·), to a library of training 
images, Ω={I(l),l=1,..,np}, at different compression ratios, q=q1,..,qn. The resulting 
sample, Ω ={I(l,q),l=1,..,np; q=q1,..,qn} includes ns = qnnp JPEG-compressed images. 
By applying the feature-extraction process presented in Section 3.2 to each element in 
Φ={ fu, u=1,..,nf}, the vector x(l,q) characterizing I(l,q) would lie in a huge, intractable 
space having dimension d=11nf.  

In the present research, features have been selected statistically by using a 
procedure [6] based on Principal Component Analysis (PCA) [10]. The procedure 
exploits an unsupervised analysis of data and already proved to be effective in quality 
assessment frameworks [6]. As a result, objective features are selected according to 
their relevance in characterizing the compressed images, removing any a priori 
assumption on the relevance of the specific artifacts. 
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4   CBP for Image Quality Prediction 

In the proposed system the feed-forward neural network map feature-based image 
descriptions into the associated estimates of perceived quality, which, in the present 
formulation, are represented as scalar values.  

Theory proves that feed-forward networks embedding a sigmoidal nonlinearity can 
support arbitrary mappings [11]. The MultiLayer Perceptron (MLP) model [11] 
belongs to this class of networks, and has been proved to perform effectively in those 
problems where the target-mapping function can be attained by a few computing units 
endowed with global scope. The “Circular Back Propagation” (CBP) network [7] 
extends the conventional MLP by adding one additional input, which sums the 
squared values of all the network inputs. By this formulation the properties of the 
MLP structure remain unaffected. At the same time, CBP theory shows that this 
additional unit enables the overall network either to adopt the standard, sigmoidal 
behavior, or to drift smoothly to a bell-shaped radial function. More importantly, the 
selection between either model is entirely data-driven and stems from the empirical 
training process, hence model selection does not require any a priori assumption. 
Such a behavioral adaptiveness makes CBP networks quite interesting for application 
to perceptual problems, where even the domain structure is often obscure. 

The CBP architecture can be formally described as follows. The input layer 
connects the ni input values (features) to each neuron of the “hidden layer.” The j-th 
“hidden” neuron performs a non-linear transformation of a weighted combination of 
the input values, with coefficients wj,i ( j=1,…, nh; i=1,…, ni): 
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where sigm(z)=(1+e-z)-1, and aj is the neuron activation. Likewise, the output layer 
provides the actual network responses, yk, (k = 1,…, no): 
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The structural CBP enhancement still allows one to adopt conventional back-
propagation algorithms [11] for weight adjustment. Hence an efficient tool is 
available for an effective training. A quadratic cost function measures the distortion 
between the actual NN output and the expected reference score on a sample of 
training patterns. The cost is expressed as:  
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where np is the number of training patterns, and tk are the desired training outputs. In 
the present application, k=1 and the expected output is given by the quality 
assessment (score) measured experimentally from a human panel.  
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4.1   Improving Robustness by Using Ensembles  

Statistical fluctuations in the empirical training set give rise to the problem of getting 
robust estimators. A classic approach to increasing the reliability of the neural approach 
is to use an “ensemble” [12] of different networks trained on the same problem. Indeed, 
averaging the predictions of several estimators [12, 13] can reduce the variance, σ, that 
stems from statistical noise in training data. In principle, an ensemble of N statistically 
independent estimators can decrease the variance in the estimate up to: 

N/22 σσ =  (8) 

The approach (8) means using several networks in parallel [14, 15]. Of course, 
building independent estimators is the crucial issue. When few patterns are available 
as compared with the data dimensionality, an approach based on the theory of 
receptive fields [11] can apply. This method partitions the high-dimensional input 
space into several, lower-dimensional subspaces, and provides a specialized neural 
network for each of them. The overall estimate is obtained by combining (typically, 
averaging) the contributions of the “local” estimators. 

In an ideal ensemble (8), the subspaces should be disjoint from one another. In fact, 
these assumptions seldom hold in real domains, hence the prediction (8) represents an 
asymptotic target; in addition, it is not always easy to find a space-partitioning strategy 
that results in an effective prediction. On the other hand, the space-partitioning method, 
when applicable, can reduce the dimensionality of input patterns for each neural 
network in the ensemble, thus enhancing the network’s generalization ability.  

In the specific problem of quality prediction, a coordinate-partitioning approach indeed 
allows one to split the input vector, x, reasonably into N subvectors of lower dimension-
ality. These subvectors form the training sets for each network in the ensemble (Fig. 2). 
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Fig. 2. The data space is partitioned and multiple networks in the ensemble contribute to the 
final score 

5   Experimental Results 

The public database [16] of the Laboratory for Image and Video Engineering (LIVE) 
of the University of Texas at Austin provided a testbed for the proposed method. The 
database includes 175 test images (including either 480x720 pixels or 768x512 
pixels), which had been generated by JPEG-coding 29 original color images at 
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varying compression ratios. The LIVE database associates the compressed images 
with the quality scores that were prompted by a panel of human assessors that took 
part in a subjective-quality experiment. People were asked to measure the perceived 
qualities of the viewed images by using a continuous scale divided into five regions, 
which was subsequently remapped linearly into the range [1, 100]. The experiments 
adopted the conventional procedure of working out a Mean Opinion Score (MOS) per 
image, by averaging all the subjective scores associated with each image; this served 
the purpose of characterizing pictures with statistically reliable quality judgments. 
The resulting overall sample included 175 image-MOS pairs. 

5.1   System Set-Up 

The procedure described in Section 3 for feature selection was first applied to the whole 
set, Φ, of objective features listed in Table 1. The features derived from the correlogram 
matrix were worked out in HSV color space, which is supposed to provide better 
correspondence with human visual perception of color; in particular, the Hue layer was 
used. Besides, the radius amplitude, k, was set at a fixed value k = 2. This choice aimed 
at minimizing computational complexity and was subsequently supported experi-
mentally, as it was found that larger values of k did not alter the statistical distributions 
of features significantly.  

The unsupervised feature selection showed that, in spite of the large number of 
possible candidates within Φ, only a limited subset of quantities derived from the color 
correlogram proved most representative. The selection procedure pointed out three 
objective measures: diagonal energy, entropy and homogeneity. The relatively high data 
dimensionality, d=3*11, required the use of an ensemble structure based on the 
subspace-partitioning strategy. Such an approach inherently matched the definition of 
the features, which could be naturally partitioned into three groups. Thus, the ensemble 
included three CBP networks, each covering a single objective feature; as a result, the 
actual input vector for each network had a dimensionality d(i) =11.  

The final system set-up phase consisted in sizing the neural network that 
constituted each element of the ensemble. The approach proposed by Widrow and 
Lehr [17] provided an effective and practical method for tackling such a sensitive 
problem; that method aims to ensure that the available training data will effectively 
drive the adjustment of the network coefficients. For symmetry, the number of 
neurons eventually was nh = 3 for all of the involved neural networks. Each CBP 
network was trained by the accelerated version of BackPropagation [18]. 

5.2   Evaluating the Run-Time Performance in Quality Assessment 

The evaluation of the method’s generalization ability adopted a K-fold strategy [19]. 
Such a procedure was chosen for the present research because it is known to provide 
reliable results when the available data set is relatively small. Toward that end, the 
sample of 29 image contents (175 pictures) was repeatedly split into ‘folds’; an 
‘image content’ includes one original picture and all pictures derived from that after 
JPEG coding. Therefore, in each ‘experimental run,’ 23 image contents made up the 
training set for the networks in the ensemble, whereas the remaining four image 
contents provided a test set; the latter ones never entered any step of the training 
process, and served to assess the system generalization performance empirically.  
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The overall experimental procedure involved five different experimental runs. For 
each run, measuring the generalization error required to compare the quality scores, y, 
predicted by the ensemble with the actual scores, t, collected from human assessors.  
The discrepancies between these quantities were interpreted by different statistical 
descriptors: 

• Pearson’s correlation coefficient, ρ, between y and t; 
• the mean prediction error, μ err, between y and t; 
• the mean value of the absolute prediction error, μ|err|; 
• the root mean square (RMS) error between y and t.   

Accordingly, Table 2 report the results obtained by each experimental run. In 
compliance with cross-validation theory, one might estimate the generalization error 
by simply averaging over the error results obtained from each run. Individual results 
from each run, however, were also informative, as empirical evidence showed that the 
assessment system attained satisfactory performances in all runs. Furthermore, 
generalization performances were characterized by a very small variance among 
different runs; this indirectly supports the robustness of the ensemble approach.  

Table 2 shows that the system always attained correlation coefficients, ρ, higher than 
0.9, and scored an absolute prediction error, μ|err|, smaller than 0.15, corresponding to an 
estimation accuracy higher than 93%. In this respect, the empirical strategy adopted (K-
fold across image contents) proved effective to assess the model’s generalization ability, 
and should be compared with the results obtained by other no-reference approaches. 
The experiments by Wang et al. [4] and [5], for example, allow fair comparisons, as 
both involved the images from the LIVE database.  

The non-linear quality prediction model proposed by Wang et al. [4] used cross-
validation for assessing generalization performance, as the image contents for testing 
were not included in the training set. The reported results for two runs give RMS 
errors of 0.76 and 0.89, respectively, on a quality scale in the range [1, 10]. The 
neural method proposed in this paper improved over that model because, in a larger 
series of runs, quality predictions (rescaled within the range [1, 10]) scored RMS 
errors lying in the interval [0.55, 0.84]. Similar conclusions can be drawn when 
comparing the CBP-based predictions with the results reported in the work by Pan et 
al. [5]. The adaptive algorithm proposed therein exploited a measure of blocking 
artifacts and attained a correlation coefficient ρ=0.92 between subjective ratings and 
estimated quality scores. Table 2 shows that the neural system yielded higher 
correlation coefficients, with the minor exception of Run #2. 

Table 2. Test results on the experiments involved in K-fold cross validation 

 Run #1 Run #2 Run #3 Run #4 Run #5 

ρ 0.93 0.92 0.97 0.95 0.96 

μerr -0.008 0.01 0.01 -0.05 0.03 

μ|err| 0.15 0.15 0.09 0.11 0.11 

RMS 0.18 0.18 0.11 0.15 0.13 
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Abstract. This paper presents a bio-inspired connectionist approach
for motion description through sequences of images. First, this approach
is based on the architecture of oriented columns and the strong local
and distributed interactions of the neurons in the primary visual cortex
(V1). Secondly, in the integration and combination of their responses in
the middle temporal area (MT). I propose an architecture in two layers :
a causal spatio-temporal filtering (CSTF) of Gabor-like type which cap-
tures the oriented contrast and a mechanism of antagonist inhibitions
(MAI) which estimates the motion. The first layer estimates the local
orientation and speed, the second layer classifies the motion (global re-
sponse) and both describe the motion and the pursuit trajectory. This
architecture has been evaluated on sequences of natural and synthetic
images.

1 Introduction

The visual perception of motion helps us to detect the pattern of 3D moving
objects, its depth, speed and direction estimation, etc. Out of all of them, the
optic flow field is an important source of information about the egomotion of
the visual system, for guiding the navigation and in particular for indicating the
direction in which the observer is moving.

The research in connectionism is inspired by complexity of neural interac-
tions and their organisation in the brain that can help us to propose a feasible
bio-inspired connectionist model. Visual perception of motion has been an ac-
tive research field for the scientific community since motion is of fundamental
relevance for most machine perception tasks [1].

Recent research on computational neuroscience has provided an improved
understanding of human brain functionality and bio-inspired models have been
proposed to mimic the computational abilities of the brain for motion perception
and understanding [2].

Several bio-inspired models exist for visual perception of motion some of them
are inspired by the primary visual cortex (V1) with a strong neural cooperative-
competitive interactions that converge to a local, distributed and oriented

J. Marques de Sá et al. (Eds.): ICANN 2007, Part II, LNCS 4669, pp. 573–582, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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auto-organisation [3,4,5]. The others are inspired by the middle temporal area
(MT) with the cooperative-competitive interactions between V1 and MT and an
influence range [6,7]. And some others are inspired by the middle superior area
(MST) for the coherent motion and egomotion [8,9]. For more details see [2].

All these models are specialised in each visual cortical area of the brain. These
models are based on the local detections by integration of various work direc-
tions upon different scales and spaces to end with a global answer. In this paper
I present a bio-inspired connectionist approach for motion description through
sequences of images that classifies the motion into three types : null motion, mo-
tion and egomotion, furthermore it shows the speed and direction of motion and
the path pursuit of moving objects in the scene. To begin with, I show the main
characteristics of each stage of the proposed approach. Next, I continue with
the manipulation of different parameters issued by the mechanism of antagonist
inhibitions (MAI). After this, I show three neuromimetic indicators for motion
description. Finally, I carried out some experiments on real and synthetic images
and end with propositions for future work.

2 Bio-inspired Connectionist Approach

This section broadly describes the mathematical and biological foundations of
the proposed bio-inspired model for motion description through sequences of
images based on the connectionist approach reported in [2,10].

2.1 General Architecture

The first stage of this bio-inspired connectionist approach is mainly based on the
causal spatiotemporal Gabor-like filtering and the second stage is a local and
massively distributed processing defined in [2,10], where they have proposed a
retinotopically organised model of the following perception principle : the local
motion information of a retinal image is extracted by neurons in the primary
visual cortex (V1) with local receptive fields restricted to small areas of spatial
interactions (first stage : causal spatio-temporal filtering, CSTF); these neurons
are densely interconnected for excitatory-inhibitory interactions (second stage
: mechanism of antagonist inhibitions, MAI). The figure 1 shows the general
architecture for this model.

I will describe in this section these two stages : the causal spatio-temporal
filtering (CSTF) integrated by two processes and the mechanism of antagonist
inhibitions (MAI). The processes of the first stage are : the spatial processing
for modelling the orientation selectiveness of V1 neurons and the temporal pro-
cessing for modelling the speed selectiveness of MT neurons. Finally the connec-
tionist processing takes advantage of the excitatory-inhibitory local interactions
of the cerebral cortex in the human beings and their self-organising mechanisms
for coherent motion estimation. The biological foundations and the mathemat-
ical details will not be discussed in this paper (for reference see [2,10]). The
neuromimetic indicators will be presented in subsection 2.2.
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Fig. 1. Architecture of bio-inspired connectionist model (adapted of [10])

Causal Spatio-temporal Filtering (CSTF). The first stage of the model de-
picted by spatial filtering and temporal processing of figure 1 performs a causal
spatio-temporal filtering. It models the magnocellular cells seen as motion sen-
sors that depend on the gradient of image intensity and on its temporal deriva-
tives [11,12,13]. This filtering is performed in two steps (see equation 1) : a
Gabor-like spatial filtering and a causal temporal processing [14,10].

Ht,θ,v(x, y) =
∫

Sθ(x − v̂1, y − v̂2)dt (1)

v̂1 =
t̂

τ − 1
v1cosθ, v̂2 =

t̂

τ − 1
v2sinθ (2)

where Sθ(·, ·) is the Gabor-like spatial filtering, v = (v1, v2) the speed vector and
τ the number of images in the subsequence, and 0 ≤ t̂, t < τ .

For the spatial filtering, Gabor-like filters are implemented as image convolu-
tion kernels in Θ different directions. I usually work with Θ = 8 for simplicity.

Then the causal temporal processing involves the computation of a temporal
average of Gabor-like filters for each direction and for a set of search places
that correspond to V assumed as different speeds of each pixel (positives and
negatives). In other words, for each given assumed direction and speed, these
Gabor-like filters reinforce the local motion with the average of the Gabor filters
applied to past images on the assumed anterior places. This principle is valid
under the strong hypothesis of a very high sampling frequency to ensure a local
motion detection and an immediate constant local speed. For more details on
this filtering see [2,10].

The computations described in this subsection have been parallelised and
implemented on FPGA1 circuits for real-time embedded motion perception [14].

Mechanism of Antagonist Inhibitions (MAI). The second stage of the
model described in [2] (depicted to the right of figure 1) emulates a mechanism
of antagonist inhibitions by means of excitatory-inhibitory local interactions in
the different oriented cortical columns of V1.
1 A Field Programmable Gate Array is a semiconductor device containing pro-

grammable logic components and programmable interconnects.
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Fig. 2. Topology and interactions in the mechanism of antagonist inhibitions, MAI

In this mechanism each neuron receives both excitation and inhibition signals
from neurons in a neighbourhood or influence range to regulate its activity. The
figure 2 shows the excitatory and inhibitory local interactions where neurons
interact with their close neighbours in this mechanism that change the internal
state of neurons and their influence range generates a dynamic adaptive process.

Usually in excitatory-inhibitory neural models, the weighted connections to
and from neurons have modulated strength according to the distance from one
another. Nevertheless, I call it a mechanism of antagonist inhibitions because the
inhibitory connections among neurons regulate downwards the activity of oppos-
ing or antagonist neurons, i.e. neurons that do not share a common or similar
orientation and speed. On the other hand, excitatory connections increase the
neuron activity towards the emergence of coherent responses, i.e. grouping neu-
ron responses to similar orientations and speeds through an interactive process.

Then the updating of the internal state of a neuron is

η ∂H(x,y,T )
∂T = −A · H(x, y, T )

+(B − H(x, y, T )) · Exc(x, y, T )
−(C + H(x, y, T )) · Inh(x, y, T )

(3)

where −A ·H(·) is the passive decay, (B −H(·)) ·Exc(·) the feedback excitation
and, (C + H(·)) · Inh(·) the feedback inhibition. Each feedback term includes
a state-dependent nonlinear signal (Exc(x, y, T ) and Inh(x, y, T )) and an au-
tomatic gain control term (B − H(·) and C + H(·), respectively). H(x, y, T )
is the internal state of the neuron localised in (x, y) at time T , Exc(x, y, T ) is
the activity due to the contribution of excitatory interactions in the neighbour-
hood ΩΩE

(x,y) and Inh(x, y, T ) is the activity due to the contribution of inhibitory

interactions in the neighbourhood ΩΩI

(x,y). Both neighbourhoods depend on the
activity level of the chosen neuron in each direction. A, B and C are the real
constant values and η is the learning rate. For more details on the excitation
and inhibition areas see [2,10].

Let ρ be the influence range of neuron (x, y) in this stage. This neuron receives
at most ρ2 excitatory connections from neurons with the same direction and
speed and at most (V ·Θ−1)·ρ2 inhibitory connections from other close neurons.

At this level, each pixel correspond to Θ · V different neurons that encode
informations of directions and speeds.
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The computations described in this subsection analysing its neural and synap-
tic parallelism have been implemented on FPGA circuits [15].

2.2 Neuromimetic Indicators

The visual perception of motion is not totally determined in the local responses
of the V1 neurons. They are processed to obtain the speed after being collected
and combined from V1 and being integrated in MT. It is this combination of
signals that resolve the local ambiguity of responses of neurons in V1 [2]. This
activity is the inspiration of the last part of figure 1.

Table 1. Experimental ranges for neuromimetic motion indicator (NMI)

Condition Description

NMI < 0.10 Null motion
NMI < 1.00 Small moving objects or noise
NMI < 5.00 One or two moving objetcs
NMI < 10.00 Three to five moving objects
NMI < 40.00 Six or more moving objects, or ego-motion
NMI < 250.00 Ego-motion or big moving objects
NMI < 400.00 Ego-motion
NMI ≥ 400.00 Not processed

Controlled Generation of Sequences of Real Images. I analysed the active
neurons in each direction and speed, the frequencies of active neurons after
updating (ANaU) and the negative updating increase (NUI) through m different
sequences of real images (about 384 × 288 pixels per image).

Next, to analyse egomotion, I selected n images of each sequence of real images
and for each selected image I generated Θ × V controlled subsequences (Θ=
different directions and V = different speeds).

Finally for motion classification, I took a subsequence of each sequence of real
images where : a) the motion does not exist, b) one object moves and c) two or
more objects move simultaneously. The interpretation of the different obtained
values are shown below.

Motion Type. The equation 3 shows the updating rule in the MAI for the
active neurons. Let S be an image sequence and let R ⊂ S be a subsequence of
size Card(R) = τ and let p be the percentage of the neurons to update.

The MAI mechanism updates p% of active neurons and I obtain in it two
frequency percentages : the active neurons after updating (ANaU) and negative
updating increase, (NUI, see the right side in the equation 3).

The frequencies of the products of ANaU and NUI indicators in all the
different controlled subsequences described in section 2.2 inspires us to propose
our neuromimetic motion indicator : NMI = ANaU ∗ NUI. The experimental
ranges of NMI are shown in table 1.
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Speed and Direction. MT neurons sum the responses of V1 neurons with re-
ceptive field positions inside a local spatial neighbourhood that is defined through
time and generates a response according to the speed of the visual stimulus [2].
This locality of the MAI mechanism on all the several considered motion direc-
tions in V1 bring an emerging answer to the global direction [2,10].

On the other hand, neuro physiological studies roughly indicate that neurons
in MT of the visual cortex of primate brains are selective to speed of visual
stimuli; which implies that neurons respond strongly to a preferred direction
and speed [6].

For each processed subsequence R in the equation 1 I define

sat+ = maxt,θ,v(Ht,θ,v(x, y)), sat− = mint,θ,v(Ht,θ,v(x, y)) (4)

where sat+ and sat− are the positive and negative saturation, respectively.
For each direction and speed of each neuron, I count the neurons with a

response greater than at. This parameter is the average of positive and negative
saturations. The equation 6 shows its behaviour and the equation 5 computes
this frequency in direction θ with speed v.

C(θ, v) =
∑

(x,y) D(at, Ht,θ,v(x, y))) (5)

D(at, Ht,θ,v(x, y)) =
{

1 if Ht,θ,v(x, y) > at
0 otherwise

(6)

where D(·, ·) is the threshold of the CSTF filtering.
The collection and combination in MT for direction estimation is:

E(θ, v) = 3·C(θ, v)+2·(C(θ−φ, v)+C(θ+φ, v))+C(θ−2φ, v)+C(θ+2φ, v) (7)

where φ = 2π
Θ is the separation in degrees between each oriented column and

E(·, ·) is the sum of several oriented responses of V1 that activate a neuron
in MT. Finally, I computed the frequencies for negative and positive supposed
speeds by the equations:

G+ =
∑

v>0,θ

C(θ, v), G− =
∑

v<0,θ

C(θ, v) (8)

Then I arrange E(θ, v) in direction according to each speed and arranged G+

and G− too for processing them to obtain speed and direction indicators. These
indicators will be described in the next two paragraphs.

Speed. To obtain the winner speed, I propose the neuromimetic speed indicator
(NSI) defined by equation 9:

NSI =
100 · min(G+, G−)

max(G+, G−)
(9)

With this indicator I compute the relative speed (rs) that compares the differ-
ent speed frequencies and their proportion. The table 2 shows my experimental
values of vi ∈ {−2, −1, 0, 1, 2} and v1, v2 the frequencies of |vi| = 1, |vi| = 2,
respectively.
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Table 2. Experimental ranges for neuromimetic speed indicator (NSI)

Type Condition Relative speed Prototype speed

NSI > 70.0 rs = (100.0 − NSI)/29.0 0
Weak if v1 > v2 NSI > 12.0 rs = (71 − NSI)/59 + 1 1

otherwise rs = (12 − NSI) ∗ 0.3529/12 + 2 2

NSI > 22.0 rs = (NSI ∗ 0.6470)/22 + 2.3530 3
Strong if v1 < v2 NSI > 39.0 rs = (NSI − 22)/10 + 3 4

otherwise Speed not processed ≥ 5

Direction. Finally, for an interpretation of directions integration for each neuron
in MT, I compute E(θ, v) of the equation 7 for each direction and speed.

Next, I arrange their values from major to minor and I take the first three. If
these candidates are contiguous, the winner will be at the centre of the three can-
didates’ directions. This is my neuromimetic direction indicator, NDI. Finally,
if the maximum of the two computed speeds in the equation 8 is the negative
one, the winner direction will be its antagonist, ei, θ = θ − 180˚.

3 Experiment Results

I chose four sequences of images : the Yosemite Fly-Through (sequence of syn-
thetic images), the Hamburg Taxi, the BrowseB (issue of video surveillance) and
the CatEyes (an experiment with a little camera on cat’s head). They include
various frames of RGB gray-scaled images (15, 42, 875 and 1334 images) with
the sizes of 316 × 252, 256 × 191, 384 × 288, 320 × 200, respectively.

The figure 3 shows in each row four images of a sequence, their graph of
neuromimetic indicators and their path. NMI are between 0 (null motion) and
3000 (egomotion), NSI between 0 and 6 (because I suppose five speeds), and
NDI is in {1, 2, 3, 4, 5, 6, 7, 8} (0˚, 45˚,..., 315˚, respectively).

The first sequence, the synthetic Yosemite Fly-Through sequence shows an
aeroplane flying on the mountains. This sequence presents an egomotion with a
speed of five pixels (below the image) that diverge and two pixels for the moving
clouds to the right (above the image). The NMI is between 300 and 450, then
according to the table 1 it proposes an egomotion with a speed of 2 pixels per
image moving at around 45˚. The global motion is similar to the Yosemite
Fly-Through data. The trajectory describes its evolution.

The real Hamburg Taxi sequence shows three moving cars and a pedestrian.
The NMI is between 6 and 18, then according to the table 1 there are about
three moving objects and the global speed is 2 pixels per image moving at ap-
proximatly 180˚ in the first half of the sequence and the second half at around
135˚. The trajectory shows the evolution of the taxi.

The BrowseB sequence issue of video surveillance in the hall of INRIA lab-
oratory in Grenoble, France, may be split into three parts : (1) a person walks
to the centre, stops and returns; (2) null motion; (3) another person walks in,
stops and goes farther.
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Fig. 3. Sequences of real and synthetic images used in this work: Yosemite, Taxi,
BrowseB and CatEyes in each two rows, respectively, and from the top-left to the
down-left in clockwise direction, four images of each sequence. In the last two columns
on the right their neuromimetic indicators and their trajectory are shown.

The first part in this sequence (images 0 to 220) may be split into three parts
according to NMI : two parts with motion and the other part with null mo-
tion that correspond to the first person walking between 90˚ and 135˚ and with
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speed of 4 to 2 pixels per image, stops and returns between 270˚ and 315˚ and
with speed of 2 to 4 pixels per image, respectively.

In the second part (images 221 to 325) there is null motion. The last part
may be split too into three parts according to NMI : (1) motion, (2) generally
null motion and (3) motion, respectively to describe this part of the BrowseB
sequence. The person walks generally to 0˚ with speed of 1-2 pixels per image.
Next, a period of null motion with very weak motions (see pics in the graph
between image 550 and 750). Finally, the person moves to about 90˚ with a
speed of about 2 pixels per image. The trajectory shows the evolution of the
three parts of this sequence.

Finally, the last sequence is the CatEyes sequence which is an issue of an
experiment with a little camera on the cat’s head that walks in the field. The
cat walks toward north-west but it looks to the left, to the right and behind.
This sequence has a strong egomotion problem. The NMI is between 10 and
2600. Most of the time it is bigger than 400, then according to the table 1
there is egomotion but it is not processed. On the contrary, the computed speed,
direction and trajectory in this model show its real evolution.

4 Conclusion

This work is based on the Castellanos-Sánchez model [10] : a neuromimetic
connectionist model for visual perception of motion. A model fully inspired by
the visual cortex system, the superior areas and their relations.

In this paper I took advantage of the low-level analysis to detect local motions
to obtain the global speed, direction and trajectory. They are determined by the
neuromimetic motion indicators issued by MAI mechanism. This is a strong
simplification of the model presented in [16] that utilised three layers but here I
utilised only the first two layers of this model.

The first experiments show that this model is capable of estimating the null
motion, simple motion and egomotion with an estimation of global speed and
direction in an environment where other persons or objects move. The estimation
of motion is robust in quite complex scenes without any predefined information.
Nevertheless, the estimation of NMI is fastidious. The global experimental values
are correct for the sequences of real images of ±33% the size of 384 × 288 that
is used in this approach.

My current work include experimenting on the other sizes of the images for
the generalisation of the NMI, studying the same neuromimetic indicators for
the moving fields only, the dynamic multipursuit, the topology optimization of
MAI for its implementation in FPGA circuits and its applications in real time
for video surveillance and autonomous robotics.

Acknowledgement. “Fondo Mixto Conacyt-Gobierno de Tamaulipas”#51623.



582 C. Castellanos-Sánchez

References

1. McCane, B., Novins, K., Grannitch, D., Galvin, B.: On benchmarking optical flow.
Computer Vision and Image Undestanding, 126–143 (2001)

2. Castellanos-Sánchez, C.: Neuromimetic connectionist model for embedded visual
perception of motion. PhD thesis, Université Henri Poincaré (Nancy I), Nancy,
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Abstract. This work investigates the role of color in object recognition.
We approach the problem from a computational perspective by measur-
ing the performance of biologically inspired object recognition methods.
As benchmarks, we use image datasets proceeding from a real-world
object detection scenario and compare classification performance using
color and gray-scale versions of the same datasets. In order to make our
results as general as possible, we consider object classes with and with-
out intrinsic color, partitioned into 4 datasets of increasing difficulty and
complexity. For the same reason, we use two independent bio-inspired
models of object classification which make use of color in different ways.
We measure the qualitative dependency of classification performance on
classifier type and dataset difficulty (and used color space) and compare
to results on gray-scale images. Thus, we are able to draw conclusions
about the role and the optimal use of color in classification and find that
our results are in good agreement with recent psychophysical results.

1 Introduction

The use of color information in object recognition remains to this day a contro-
versial issue, both from the point of view of psychologists and computer scientists.
Although much experimental work has been done on the subject in psychophys-
ical science, the results are sometimes contradicting or inconclusive: early works
[1,2] proposed “shape” theories of object recognition, claiming that color is an ir-
relevant feature for recognition. In contrast, more recent investigations [6,17,13]
seem to show that color does improve recognition(“shape+surface”), especially
when objects have so-called diagnostic, i.e., class-specific intrinsic colors. To our
knowledge, however, there are no experiments that investigate the validity of both
theories using realistic objects in cluttered real-world scenes.

In computational implementations of object recognition systems, the use of
color information is not too common. Instead, many object recognition systems
are restricted to the use of shape information (e.g., gradients, local orientation
or wavelet representations). Reasons for this are manifold: first of all, the use
of color information triplicates the amount of data that needs to be processed.
Furthermore, color is an ambiguous cue: its optimal representation should always
depend on the task at hand. Hence, little consensus exists about the features that
should be extracted from color information, and therefore the use of color always
poses quite complex design questions which one would rather avoid if possible.
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Lastly, the fact exists that recognition on gray-scale images has been shown to
perform successfully in a wide range of domains and applications, so it could be
argued that further improvement is not necessary.

In this study, it is investigated whether the use of additional color informa-
tion improves accuracy in a challenging real-world classification task, and if so,
under what circumstances. Obviously, not all outcomes of such an experiment
will allow definitive statements about the issue at hand. However, we believe
that unambiguously identifying a classification problem where color does make
a difference would be quite worthwhile in itself and allow to draw meaningful
conclusions. Assuming that recognition in the human brain is at least as good as
the computational models tested here, one may safely conclude that the human
brain could profit still more. In addition to theoretical considerations, this paper
should give indications if and how color information can best be used to improve
performance in challenging computational classification tasks.

1.1 Related Work in Computational Object Recognition

Interestingly, the number of proposals for object recognition architectures that
can use color information is relatively small. Two principal approaches can be
tentatively discerned: color histogram and receptive field methods. The color
histogram technique was triggered by [12] and followed up by many researchers.
Here, color histograms of objects are compared by using dedicated histogram
metrics. This approach is powerful and highly invariant to noise and geometric
distortions like rotation, occlusion and translation, but does not analyze the
spatial structure of objects at all. In contrast, receptive field methods analyze
an image by means of spatially localized convolution filters, followed by further
processing or direct classification of the obtained information. Convolution filters
can directly combine information from different color channels. This approach
preserves some of the spatial structure of an object and exhibits invariance to
noise and distortions that strongly depends on the convolution filters that are
being used. A prominent publication in this direction is [5]. Both approaches,
color histogramming and receptive field methods, have also been successfully
applied to recognition in gray-valued images. It has been attempted to combine
these two techniques theoretically [11] and in a working recognition system [8].
The system presented in [8] is especially interesting since it uses a very large
number of visual features including color and, in contrast, a very simple classifier,
suggesting that classification works best when combining as many informative
features as possible. The classifiers tested in this study use an adaptive receptive
field approach since the geometrical structure of objects must be taken into
account. We know, of no study that systematically tests the usefulness of color
information using real-world classification problems and large datasets of objects.

2 Datasets

The classification problem considered in this study originate from a car classi-
fication task within a comprehensive cognitive architecture for advanced driver
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assistance [9]. The architecture contains modules for (real-time) detection, seg-
mentation, classification and tracking of objects in colored real-world traffic video
scenes. Using the architecture, several datasets of increasing difficulty were cre-
ated, and different steps to encode the color information were performed for
each set.

Experiments are conducted for all color representations of each dataset. The
goal of classification was to discriminate cars from background objects or object
parts (e.g., trees, parts of the horizon, lane markings, guardrails a.s.o.) Since
cars do not usually possess a single diagnostic color, and in order to make the
classification task still harder, a second object class “signal board” was added.
These objects were abundant in some training videos and pose a strong challenge
for any classifier since they cannot usually be segmented correctly due to occlu-
sion. In addition, signal boards in Germany have a standardized appearance of
diagonal red and white stripes and thus possess unique diagnostic colors, which
makes them interesting for this study.

The binary classification problem of car against background is therefore ex-
tended to a multi-class problem. This is desirable since the classification task is
thus less specialized than a purely binary object-against-background-classification
would be. In this way, we expect that the results are more easily generalizable1. In
the following sections, we will describe steps that were taken in order to increase
the generality of the scenario still further.

2.1 Data Generation and Levels of Difficulty

Initially, the architecture described in [9] was used to generate object candidates
from several hours of highway and inner-city traffic videos. By visual inspection,
datasets of car, signal board and clutter (not belonging to the “car” and “signal
board” classes) object images were selected. Object candidates are resized to a
common size of 64x64 pixels, and all datasets described below contain images of
these dimensions. For the selection of car objects, different criteria were applied
to obtain different datasets of object images. For details please consult table 1.
Example objects from different datasets are shown in fig. 1.2

2.2 Color Representations

By default, the color representation in computer graphics is RGB. Due to the
inherently ambiguous nature of color, different color spaces may be used that
are tailored for special purposes and circumstances, and indeed a multitude of
other color spaces has been proposed. We focus on color spaces that try to
match human color perception as closely as possible, like the CIE La∗b∗ color
space[10] which was designed just for this purpose. We therefore perform the
experiments in this study using the RGB, HSV and the polar CIE La∗b∗ color
spaces concurrently. HSV is a standard computer vision color space which is
included for comparison because of its simple and efficient transformation rules.
The details of the color space transformations can be found, e.g., in [10].
1 Although, of course, there is no practical way to prove this.
2 All datasets are available online from www.gepperth.net/alexander/downloads.html
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Table 1. Information about the datasets used in this study. Since the criteria are
progressively relaxed from dataset I to IV, each preceding dataset is contained in all
successors: I ⊂ II ⊂ III ⊂ IV. For all datasets, 4766 non-object(clutter) images and
537 signal board images were used.

dataset nr of examples description

I 574 single back-view of a whole car,
fills at least 25% of image

II 949 like I, plus front-views
III 1462 single view of a car(back/front), 50% of car must be in image,

filling at least 25% of image
IV 1748 not restr. to single view, 25% of car must be in image,

filling at least 25% of image

Fig. 1. Typical color object images from datasets I through IV. Top row: car images
from dataset I (4 leftmost images) and dataset II (4 rightmost images). Second row:
signal board examples, identical in all datasets. Third row: car images from dataset III
(4 leftmost images) and dataset IV (4 rightmost images). Bottom row: clutter objects,
identical in all datasets. Keep in mind that each dataset contains its predecessors; the
shown images illustrate, for each dataset, the kind of objects that are added compared
to the preceding dataset. Note that color images are reproduced in gray-scales on paper.

2.3 Error Measures

Since the number of training examples is relatively low, all results are verified
by k-fold cross-validation. In k-fold cross-validation, the data is divided into k
subsets of equal size. One of the k subsets is then retained as the validation
dataset for testing the classifier and the remaining k − 1 subsets are used as
training data. The cross-validation process is then repeated k times, with each
of the k subsets used exactly once as validation set to compute the classification
error. The k classification results are averaged to produce a single classification
error. The classifier is then trained k times, each time leaving out one of the
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subsets from training and using it to compute the classification error. Note that
cross-validation is quite different from “split-sample” or “hold-out” method that
are commonly used in machine learning. In the split-sample method, only a
single subset (validation set) is used to estimate the generalization error, instead
of k different subsets, i. e. there is no crossing. The distinction between cross-
validation and split-sample is extremely important because cross-validation is
markedly superior for small data sets. This fact is demonstrated in [4]. In this
study, a value of k = 5 is chosen in order to have a minimum of 100 car and
signal board objects in the test set. For each partitioning of a dataset, a receiver-
operator characteristic (ROC) is computed and used to obtain an average ROC
over 5 partitionings, which is taken to represent the outcome of an experiment
for a particular dataset. For reducing a ROC to a single number, we consider
the equal-error condition where the false positive (non-object examples that are
classified as object) and the false negative (object examples that are classified
as non-object) rates are identical.

3 Classification Methods

Since it is impossible to test all available classification architectures, we select
two models which have been shown to be of value for visual classification tasks:
the Visual Hierarchy (VH) [16] and the SCNN [3] classifiers.

Both models differ in the way color is handled: whereas VH extracts form
features from a gray-valued version of its input and uses spatially coarse color
information only at its last classification stage, SCNN integrates color infor-
mation from the beginning3, and no explicit separation between intensity (gray
value) and color is made (see fig. 3 for details). Both approaches may be justified
or at least made plausible, and one purpose of this paper is to give support to
one or the other approach if possible. In this way, hints about the most efficient
use of color in computational object classification may be arrived at.

To all intents and purposes, the description of the classification models could
stop more or less here, and the less technically inclined reader may skip the rest
of this section. In the following, a more detailed account of the working of both
models is given.

Both the VH and the SCNN model are convolutional neural network (CNN)
models [7] in the sense that they can perform whole-image classifications us-
ing block operations, i.e., operations that treat each image pixel independently
of its position. The operations are mainly convolutions with filters determined
by learning algorithms, but also other operations like subsampling, pooling or
competitive mechanisms. Both classification models define unsupervised learn-
ing rules for determining well-suited convolution filters. In this way, both models
are able to compute a (possibly high-dimensional) feature space which is unique
to each classification problem. The final supervised classification takes place in
that feature space.
3 SCNN was initially conceived to handle intensity information only, but the extension

to color is trivial and is discussed later in this section.
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Fig. 2. Classification models used in this study. Left: the VH processing model as
described in [16]. The C2 layer calculates 53 features. Right: the SCNN model as
described in [3]. 49 filters are applied to the input layer instead of 16 as in the best-
performing model given in [3]; this number matches the 53 features of the VH model
quite closely. For both models, the input dimension is set to 64x64 pixels. For extensions
to both models that are considered here, please see fig. 3.

Both models allow a large number of architectures to be formed by varying
layer numbers and sizes, transfer functions, filter sizes a.s.o. Since it is not the
goal of this study to perform an in-depth comparison of the two models, they
will be taken in the form they are used in recent publications [3,15]. The SCNN
model is (trivially) extended to allow the use of color information . In order to
reduce computational complexity, and to mimick the pooling stages of the VH
classifier, the training examples are resized to a size of 25x25 pixels for use with
the SCNN model. In this way, SCNN can be used in the same configuration as
in [3]. Fig. 2 shows the computational architecture of both models.

3.1 Extending SCNN in Order to Use Color

In order to apply the SCNN model to vector-valued pixels (as is the case for color
images), a simple procedure is applied: each pixel is simply substituted by all
vector entries arranged consecutively. In this way, the x-dimension of an image
is extended by a factor of N (where N is the dimension of each pixel vector, here
N = 3) while the y-dimension is unaffected. Care must be taken when choosing
the SCNN structure: input layer filters must always come to start on a pixel
boundary; this can be ensured by a correct choice of filter sizes and overlaps.
Otherwise, the image thus constructed is treated as a gray-valued image, and the
normal SCNN training algorithm can be applied. Fig. 3 gives a visual impression
of this process.

3.2 Adapting VH to Different Color Representations

In the RGB color representation, VH calculates an intensity value from the RGB
data and uses the intensity image for calculating a task-optimized feature space.



Color Object Recognition in Real-World Scenes 589

Fig. 3. Right: VH architecture for classification of color objects as described in [15].
The C2 layer is extended to include 3 additional feature maps formed from the down-
sampled R,G and B color channels. The C2 layer is thus constructed from 53 maps.
Left: extension of the SCNN model to handle vector-valued RGB input pixels. As ex-
plained in the text, each RGB triplet is represented by 3 pixels extended into the x
direction. The input is thus 3 times larger than in the gray-value case. Correspondingly,
the x-dimension of filters in the input layer is tripled to 15 pixels. The classification
layer consists of 16 feature maps.

When going to the HSV and La∗b∗ color spaces, a slightly different approach is
used: the Value (V) and the luminance (L) are used for calculating the feature
space when using these color representations. Instead of downsampled R, G, and
B maps, the downsampled S, V maps in the case of HSV and a∗, b∗ maps in the
case of La∗b∗ are added to the C2 layer. Therefore, the C2 layer comprises only
52 instead of 53 (for RGB) feature maps in these cases.

4 Experiments

Experiments are conducted for the gray-scale, the RGB, the HSV and the La∗b∗

representation of datasets I through IV using the VH and the SCNN classification
methods summarized in section 3. This gives a total of 16 experiments for each
classifier model. Results were obtained according to section 2.3, using datasets
described in section 2.

5 Results

As the tables 2 and 3 plainly show, the use of color can improve (VH model) or
impair (SCNN model) classification for both object classes. In the rest of this
section, we will discuss the improvements obtained by using the VH model.
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Table 2. Classification errors for cars. Left table: VH classifier, right table: SCNN
classifier. All numerical values are given in percent.

Dataset Gray-valued RGB HSV pLa∗b∗

I 5.3 4.7 5.3 4.6
II 5.0 4.8 5.8 4.0
III 9.5 6.7 9.5 6.5
IV 11.1 8.0 11.1 7.6

Dataset Gray-valued RGB HSV pLa∗b∗

I 6.3 8.4 8.1 8.4
II 7.0 9.8 10.0 9.6
III 9.1 12.5 11.2 12.4
IV 11.2 14.0 13.9 14.9

Table 3. Classification errors for signal boards. Left table: VH classifier, right table:
SCNN classifier. All numerical values are given in percent.

Dataset Gray-valued RGB HSV pLa∗b∗

I 11.0 9.3 7.3 10.9
II 10.8 9.8 7.5 10.9
III 11.4 9.8 7.8 11.8
IV 11.1 9.8 7.8 11.4

Dataset Gray-valued RGB HSV pLa∗b∗

I 11.3 13.3 14.1 12.9
II 10.7 13.9 15.0 14.2
III 11.6 13.3 13.7 13.8
IV 11.2 14.1 14.0 13.4

5.1 Results for Cars

As expected, classification performance deteriorates when going from dataset I
to dataset IV. The relative improvement increases, suggesting that color is more
useful when the classification task is harder.

5.2 Results for Signal Boards

Since the signal board object class does not differ across datasets, the differences
in classification performance are quite small. The differences spring from the fact
that a more complex car class can be more easily confused with signal boards. In
fact, it is surprising that classification performance is not improved more clearly
by the use of color given the fact that signal boards have a clearly defined
diagnostic color. This can be easily understood when considering that the main
source of confusion are cars and not clutter objects. Preliminary experiments
where only signal boards had to be distinguished from clutter indeed showed a
far stronger performance difference between gray-scale and color images.

6 Discussion

As a leading remark, we want to state that we have not addressed the difficult
issue of color constancy in this article. We are well aware of this fact: the reason
we do not believe it plays a role here is that we do not perform object identi-
fication but rather categorization with few categories and many objects. As we
expected and as was shown, the classifiers are able to generalize sufficiently in
order to deal with this problem.

As the results plainly show, the use of color improves classification perfor-
mance for all datasets when using the VH model. In the case of the SCNN
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model, results tend to deteriorate when switching to color images. These findings
persist, although to different degrees, when treating the problem using different
color spaces, suggesting that the color space should always be adapted to the
classification task as mentioned in the introduction.

For the signal board class with its clearly defined diagnostic color, the im-
provements are stronger than for cars but not as strong as one would naively
assume. As explained before, this is likely due to confusions with car objects
which can have similar colors; when leaving out the car class, the classification
of signal boards improves more strongly by using color.

What can be learned from these results? First of all, one can infer conclu-
sions about the preferable way of using color in computational classification.
Generally speaking, results are roughly comparable for gray-valued images but
get markedly better for color images using the VH model, whereas they deterio-
rate for the SCNN model. This effect persists over all color spaces and difficulty
levels, suggesting that it is systematic: the way color is used in the VH model
(see section 3) seems to be more appropriate to the presented task. Although it
cannot, from these results, be concluded in all generality that this is a preferable
way of using color, it may be concluded that it is a very sensible starting point
when going from gray value to color classification.

Secondly, one can use these results to argue against “shape only” theories of
object recognition. Based on the classification results, we cautiously argue in the
line of [14], where experimental evidence for a “shape+surface” representation in
object classification is reviewed. In contrast to many experimental results which
suggest “shape only” representations, we believe (based on our results) that color
is especially relevant in realistic, cluttered and visually noisy environments. It
should be kept in mind that many related experiments were performed under
idealized conditions, and that line drawings and images on white backgrounds are
not abundant in natural scenes. What is more, recalling the discussion from the
previous paragraph, we argue that it is sufficient to represent color as an overall
object feature with little spatial structure. Thus, the dimensions for color and
shape are well separated: it may be be that color plays some role in the definition
of shape, but this study suggests that it is used mainly at a quite abstract level
for purposes of overall object class separation.
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Abstract. Poses and gestures are an important part of the nonverbal
inter-human communication. In the last years many different methods for
estimating poses and gestures in the field of Human-Machine-Interfaces
were developed. In this paper for the first time we present an exper-
imental comparison of several re-implemented Neural Network based
approaches for a demanding visual instruction task on a mobile sys-
tem. For the comparison we used several Neural Networks (Neural Gas,
SOM, LLM, PSOM and MLP) and a k-Nearest-Neighbourhood classifi-
cator on a common data set of images, which we recorded on our mobile
robot Horos under real world conditions. For feature extraction we use
Gaborjets and the features of a special histogram on the image. We also
compare the results of the different approaches with the results of human
subjects who estimated the target point of a pointing pose. The results
obtained demonstrate that a cascade of MLPs is best suited to cope with
the task and achieves results equal to human subjects.

1 Introduction and Motivation

In recent years the Human-Machine Interaction has reached a large importance.
One of the most important and informative aspects of nonverbal inter-human
communication are gestures and poses. In particular, pointing poses can simplify
communication by linking speech to objects or locations in the environment in a
well-defined way. Therefore, a lot of work has been done in recent years focusing
on integrating pointing pose estimation into Human-Machine-Interfaces.

Numerous approaches, which can estimate the target of such a pointing pose
have been developed in recent years. Our goal is to provide an approach, which
can be used to estimate a pointing pose on a mobile robot by means of low-cost
sensors. Therefore, in this paper we refer only to approaches using monocular
images to capture the pose of the user. Second, approaches that do not use
Neural Networks to estimate the target of the pointing pose like Haasch [1],
who used an object-attention system and a skin color map or Nickel [2], who
estimated the target by the use of a virtual line through the tracked hand and
head of the user, are also not considered in this paper.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part II, LNCS 4669, pp. 593–602, 2007.
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Fig. 1. (left) Our robot Horos, used for experimental investigation of the pointing
pose estimation is shown. The images for the estimation of the pointing target were
taken with the firewire camera (located in the right eye). (right) The configuration
used for recording the ground truth training and test data. The subject stood in front
of the robot and pointed at one of the marked targets on the ground in a distance of
1 to 3 m from the subject. The distance of the robot to the subject varied between 1
m and 2 m.

However there are several approaches that utilize different Neural Networks
to estimate the pointing pose. Nölker and Ritter [3] used Gaborfilters in com-
bination with a Local Linear Map (LLM) and a Parametrized Self-Organizing
Map (PSOM) to estimate the target of a pointing pose on a screen the user is
pointing to. Richarz et al. [4] recently also used Gaborfilters on monocular im-
ages and a cascade of Multi-Layer Perceptrons (MLP) as function-approximator
to determine the target point of a pointing-pose on the ground. Takahashi [5]
suggested to use a special kind of histogram features in combination with a SOM
to estimate the pose of a person in an image. Finally, since the head pose is typ-
ically also important for a pointing pose, approaches estimating the head pose
are also considered in this paper: Krüger and Sommer [6] utilized Gaborfilters
and a LLM to estimate the head pose, while Stiefelhagen [7] presented a system
that works on edge-filtered images and uses a MLP for head pose estimation.

All these approaches achieved more or less good results for their particular
task, but can not be compared with each other, because they use different images
captured in different environments and they use different combinations of meth-
ods for feature extraction as well as different Neural Networks for approximating
the target point or the direction of the pose.

Therefore, for this paper we implemented and compared several selected neu-
ral approaches, all trained and tested with the same set of training and test data.
In this way we give an overview of the suitability of the different approaches for
the task of estimating a pointing pose on a monocular image. The referred ap-
proaches suggest different applications for the recognition of a pointing pose.
In our comparison we choose an application where a user points at a target on
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the ground which is similar to the application Richarz [4] suggested. We imple-
mented this approach on our mobile robot Horos (HOme RObot System, see
Fig. 1 left), making it navigate to the specified targets, thus enabling a user to
control the robot only by means of pointing.

The remainder of this paper is organized as follows: First, in Sect. 2 we give
an overview of our test environment used to obtain the training and test data
for our comparison. In Sect. 3, the preprocessing steps performed on every image
and the methods for feature extraction we used in our approach are explained.
In Sect. 4, we shortly describe the Neural Network techniques we compare in our
approach. Section 5 describes the experimental investigations we conducted and
compares the results of the different approaches. We conclude with a summary
in Sect. 6 and give a perspective on possible improvements we plan to investigate
in the near future.

2 Training-Data and Ground-Truth

We encoded the target points on the floor as (r, ϕ) coordinates in a user-centered
polar coordinate system (see Fig. 1). This requires a transformation of the esti-
mated target into the robot’s coordinate system (by simple trigonometry), but
the estimation task becomes independent of the distance between user and robot.
Moreover, we limited the valid area for targets to the half space in front of the
robot with a value range for r from 1 to 3 m and a value range for ϕ from −120◦

to +120◦. The 0◦ direction is defined as user-robot-axis, negative angles are on
the user’s left side. With respect to a predefined maximum user distance of 2
m, this spans a valid pointing area of approximately 6 by 3 m on the floor in
front of the robot in which the indicated target points may lie. Figure 2 shows
the configuration we chose for recording the training data and our robot Horos

which was used to record images of the subjects. The subjects stood at distances
of 1, 1.5 and 2 m from the robot. Three concentric circles with radii of 1, 2 and
3 m are drawn around the subject, being marked every 15◦. Positions outside
the specified pointing area are not considered. The subjects were asked to point
to the markers on the circles in a defined order and an image was recorded each
time. Pointing was performed as a defined pose, with outstretched arm and the
user fixating the target point (see Fig. 2).

All captured images are labeled with the distance of the subject and the
radius r and angle ϕ of the target, thus representing the ground truth used for

Fig. 2. Typical examples of images of subjects taken by the frontal camera of the robot
in several demanding real world environments with background clutter. The left three
images are from the trainig data, the right three images from the test data.
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training and also for the comparison with humans as pointing pose estimators
(see Section 5). This way, we collected a total of 2,340 images of 26 different
interaction partners in demanding real world environments with background
clutter. This database was divided into a training subset and a validation subset
containing two complete pointing series (i.e two sample sets each containing all
possible coordinates (r, ϕ) present in the training set). The latter was composed
from 7 different persons and includes a total of 630 images. This leaves a training
set of 19 persons including 1,710 samples.

3 Image Preprocessing and Feature Extraction

Since the interaction partners standing in front of the camera can have different
heights and distances, an algorithm had to be developed that can calculate a
normalized region of interest (ROI), resulting in similar subimages for subse-
quent processing. We use an approach suggested by [4] to determine the ROI
by using a combination of face-detection (based on the Viola & Jones Detector
cascade [8]) and empirical factors. With the help of a multimodal tracker [9]
implemented on our robot, the direction and the distance of the robot to the
interacting person can be estimated. The cropped ROI is scaled to 160*100 pix-
els for the body and the arm and 160*120 pixels for the head of the user. Then
a histogram equalization is applied. The preprocessing operations used to cap-
ture and normalize the image are shown in Fig. 3. Since some of the approaches
mentioned in Sect. 1 use a Background Subtraction ([5], [7]) while others do not
([3], [4] and [6]) we optional use a Background Subtraction to test its influence
on the pose estimation result.

Fig. 3. Steps of preprocessing and feature extraction: the raw distorted image of the
camera (a) is transformed into an undistorted image (b) and the face of the user is
detected by means of [8]. Based on the height of the face in the picture and the distance
of the user, two sections of the image are extracted and transformed into grayscale
images (c). On these images a histogram equalization is used (d). Subsequently features
are extracted in different ways. First, Gaborfilters placed at defined points of the image
(marked as dots in (e)) were used. The second approach is to count how often pixel
belonging to a pre-segmented user appear in every row and column of the image (f).
A Background Subtraction can optionally be used between steps (d) and (e).
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On the normalized image regions we extracted features for the approximation
of the target position the user is pointing to. We therefore compared two possi-
ble methods. First, we used Gaborfilters of different orientations and frequencies
bundled in Gaborjets that we located on several fixed points in the image sec-
tions. Gaborjets are also used in the approaches of [3], [4] and [6]. Second, we re-
implemented the approach presented by [5]. Based on a background model, in this
case, we could subtract the background from the image and count the number of
pixels which belong to the user in every row and column. The several steps of pre-
processing and feature extraction used in our comparison are shown in Fig. 3.

4 Used Techniques for Approximation of the Target

One objective of our approach is the experimental comparison of selected Neural
Network based pointing pose estimators including a simple k-Nearest-Neighbour
method well known as reference technique. In the following, the different methods
used for comparison are presented:

k-Nearest-Neighbour Classification: The k-Nearest-Neighbour method
(k-NN) is based on the comparison of features of a new input with features
of a set of known examples from the training data. A distance measure is used
to find the k nearest neighbours to the input in the feature space. The label
that appears most often at the k neighbours is mapped on the new input. This
method allows only classification and not an approximation between the labels
of two or more neighbours. Therefore, we slightly modified the method in our
approach in a SoftMax-manner where the label for the input fk(x) is determined
as follows:

fk(x) =
∑

i

li ·
(

1/di∑
j 1/dj

)
(1)

In this way, the labels li of the k nearest neighbours contribute to the output
and are weighted by their Euclidian distance di to the input.

Neural Gas: A Neural Gas network (NG, [10]) approximates the distribu-
tion of the inputs in the feature space by a set of adapting reference vectors
(neurons). The weights wi of the neurons are adapted independently of any
topological arrangement of the neurons within the Neural Net. Instead, the
adaptation steps are affected by the topological arrangement of the receptive
fields within the input space, which is implicitly given by the set of distortions
Dx = {‖x − wi‖ , i = 1, · · · , N} associated with an input signal x. Each time an
input signal x is presented, the ordering of the elements of the set Dx determines
the adjustment of the synaptic weights wi. In our approach, each neuron also
has a label li which is adapted to the label of the input signal.

Self-organizing Map: An approach very similar to the NG is the well-known
Self-Organizing Map (SOM, [11]). The SOM differs from the NG in the fact
that the neurons of the SOM are connected in a fixed topological structure. The
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neighbours of the best-matching neuron are determined by their relation in this
structure and not by their order in the set Dx. We modified the SOM so that
every neuron has a learned label as we did with the NG above.

Local Linear Map: The Local Linear Map (LLM, [12]) is an extension of the
Self-Organizing Map. The LLM overcomes the discrete nature of the SOM by
providing a way to approximate values for positions between the nodes. A LLM
consists of n nodes which each represent a pair of reference vectors (win

i ,wout
i )

in the in- and output-space and an associated only locally valid linear mapping
Ai. The answer ybm of the best-matching neuron of the LLM to an input x is
calculated as follows:

ybm = wout
bm + Abm

(
x − win

bm

)
(2)

The weights win
i ,wout

i and the mapping matrix Ai have to be learned during
the training process. See [12] for more details.

Parametrized Self-organizing Map: Like the LLM, a Parametrized Self-
Organizing Map (PSOM, [13]) is also an extension of the SOM. While the LLM
computes only a linear approximation of the output, a PSOM uses a set of non-
linear basis manifolds to construct a mapping through the reference vectors a.
A basis function H(s,a) is associated with each reference vector a. These basis
functions realize a smooth interpolation of intermediate positions between the
reference vectors. The interpolation is an iterative process starting at the best-
matching reference vector. The topological order of the reference vectors has to
be provided for the organization of the PSOM. In our approach we use a SOM
to obtain this topological order.

Multi-layer Perceptron: For our comparison we used a cascade of several
MLPs as decribed in [4]. The (r, ϕ) coordinates of the target point are estimated
by separate MLPs. The radius r is estimated by a single MLP while ϕ is deter-
mined by a cascade of MLPs which first estimate a coarse angle ϕ′ and second
the final angle ϕ depending on r and ϕ′.

5 Results of Comparing Experimental Investigations

To have a simple reference for the quality of the estimation, 10 subjects were
asked to estimate the target point of a pointing pose on the floor. At first, the
subjects had to estimate the target on a computer screen where the images of
the training data set were displayed. The subject had to click on the screen at
the point where they estimated the target. Thus, the subjects were estimating
the target on the images having the same conditions as the different estima-
tion systems. Second, we determined the estimation result the subjects achieved
under real world circumstances. Here each subject had to point at a target on
the ground and a second subject had to estimate the target. The results of the
human based reference experiments are included in Fig. 4 and Fig. 5. The la-
bel Human 2D refers to the experiments on the computer screen and the label
Human 3D refers to the results under real world conditions.
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Fig. 4. Results for the estimation of the radius (top) and the angle of the target position
(bottom). For each method the percentage of the targets estimated correctly and the
mean error is determined. At the right side, the results of the human viewers (2D on
computer screen, 3D in reality) are given for comparison. Methods that achieve a result
equal to that of the human viewers are marked with a shaded background.

The results of the several neural approaches for estimating the target position
are shown in Fig. 4 and Fig. 5. As described in Sect. 2 the ground truth data is a
tuple (r, ϕ) with the target radius r and the target angle ϕ. The separate results
for the estimation of r and ϕ are shown in Fig. 4. For the correct estimation
of the target point, r as well as ϕ had to be estimated correctly. We defined
the estimation result being correct if r differed less than 50 cm from the ground
truth radius and ϕ differed less than 10◦ from the ground truth angle. Figure 5
shows the results for a correct estimation of both values.

Every of the six selected approaches was trained and tested on the same train-
ing data set. For each system, we used five different feature extraction strategies:
first only Gaborfilters were utilized, second we combined Gaborfilters with an
additional Background Subtraction to reduce the effects of the different cluttered
backgrounds in the images. Third, we used only those Gaborfilters that had a
high discriminant value extracted by means of a Linear Discriminant Analysis
(LDA) executed over all predefined Gaborfilter positions. Fourth, we combined
Gaborfilter, Background Subtraction and utilized only the relevant features ex-
tracted by the Discriminant Analysis mentioned above. In the last setup, we
did not apply the Gaborfilters but the column and row histograms of the pre-
segmented persons in the images as proposed in [5].
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Fig. 5. The results for the estimation of the target point of the pointing pose. The
target point is determined by the radius r and the angle ϕ. Unlike Fig. 4, showing
the separate results for the estimation of r and ϕ, here the results for the correct
estimation of both values are shown. As in Fig. 4 the results of the human viewers (2D
on computer screen, 3D in reality) are given for comparison.

Fig. 6. The computation times of the different methods. A method capable of running
with a minimum of 12.5 images per second on our mobile robot has to process one
image in less than 80 ms (Athlon 2800, SUSE Linux).

These results demonstrate, that a cascade of several MLPs as proposed in
[4] is best suited to estimate the target position of a user’s pointing pose on
monocular images. A Background Subtraction and the information delivered by
a Discriminant Analysis can be used to improve the results. The best system is
capable of estimating r as good as humans with their binocular vision system in
a real world environment and even better than humans estimating the target on
2D screens. The estimation of ϕ does not reach equally good values. The system
is able to reach a result equally to humans on 2D screens, but it is not able to
estimate the angle as good as humans in a real world setting. This is because
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the estimation of the depth of a target in a monocular image is difficult for both,
human and function approximators.

In our experimental comparison, the LLM and the MLP deliver a better result
than the SOM and the Neural Gas. We suppose this result is caused by the ability
of the MLP and the LLM to better approximate the output function in regions
with few examples. The cascade structure of the MLP approach as proposed in
[4] makes it possible to estimate ϕ better than the other approaches. However,
since r is estimated by a single MLP and the MLP-result for r is better than
that of the other approaches, we believe that a cascade organization of the other
Neural Networks would not lead to a better result than that achieved by the MLP
cascade. The PSOM delivers a relatively bad result in comparison to the other
approaches. This is based on the fact, that only few basis points could be used
due to the very long computation time of the PSOM. Figure 6 finally shows the
computation times of all methods. Except the k-NN and the PSOM, all methods
are able to process more than 12.5 images per second at the robot’s on board
PC. The k-NN method needs a long running due to the many comparisons which
are needed to get the best neighbours to given observations. The computation
time of the PSOM is especially high because of the iterative gradient descent
along the PSOM structure that is needed to get the best suited output.

6 Conclusion

We presented an experimental comparison of several re-implemented Neural Net-
work based approaches for a demanding visual instruction task on a mobile sys-
tem. Since our goal is to provide an approach, which copes with the task by
means of low-cost sensors, we refered to approaches using monocular images. Of
the relevant approaches a cascade of Multi-Layer Perceptrons proved to be best
suited for this task. All methods profit from the use of a Background Subtrac-
tion and the information delivered by a Discriminant Analysis. The comparison
of the different methods had shown, that the usage of Gaborfilters for feature
extraction leads to better results than the histogram based features. The best
system is able to estimate the radius r of the target point better than human
subjects do, but there are still problems in estimating the angle ϕ of the target
due to the use of monocular images. This problem could be reduced by means
of a stereo camera, which delivers the lacking depth information. Possibly the
angle of the estimated target might not be as important if an other application
is chosen, for example, if the user is pointing at certain objects in the surround-
ings allowing a model-based pointing pose specification instead of a non-specific
target point on the ground.
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Abstract. In this paper, a SVM regression based method is proposed for 
background estimation and foreground detection. Incoming frames are treated 
as time series and a fixed-scale working-set selecting strategy is specifically 
designed for real-time background estimation. Experiments on two representat-
ive videos demonstrate the application potential of the proposed algorithm and 
also reveal some problems underlying it. Both the positive and negative reports 
from our study offer some useful information for researchers both in the field of 
image processing and that of machine learning.  

Keywords: Support vector machine, regression, foreground-background 
segmentation. 

1   Introduction 

Foreground-background segmentation is an essential procedure in real-time video 
surveillance. It has an important impact on the performance of object recognition and 
tracking in the successive stage. Fundamentally, foreground- background segmentation 
is the extraction of the interesting foreground regions or objects, given an incoming 
video of the scene. There have already been several algorithms to solve this problem, 
such as algorithms based on background subtraction, color distributions, motion, as 
well as range and stereo. One category of these algorithms is based on the assumption 
that the background is known and with very few fluctuations. In this case, a simple 
algorithm which subtracts the current picture from the stored background picture is 
used for the foreground detection [1]. However, this method obviously fails when real-
world image sequences show a complex structured background and a frequently 
changing illumination (daylight, clouds, shadows). Therefore a background sequence 
has to be adapted by the input sequence, which motivates another category of 
segmentation algorithms. These methods address the problem of segmentation given a 
dynamic background and model the pixel-wise color distribution of the background via 
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statistical methods [2, 3]. They have advantages in fast learning and adapting. But they 
are based on a prior assumption of the distribution of the colors and fluctuations, under 
which unexpected peak numbers impair their segmentation ability. 

To overcome the dilemma of background subtraction model and the statistical 
methods, researchers proposed to use an estimating-detecting structure for background-
foreground segmentation. In this method, the current background is estimated using 
information from former frames and difference between the estimated value and 
current value is calculated to determine whether a moving object emerges in the 
video. One of the popular background estimating methods is Kalman filtering [4]. It is 
fundamentally a filtering algorithm based on linear time series (though it has non-
linear version). 

Recently, Support Vector Machine (SVM) has received increasing interest for its 
remarkable performance in pattern recognition field. It is a kernel based approach, 
which allows the use of linear, polynomial and RBF kernels and others that satisfy 
Mercer’s condition [5, 6, 7, 8]. Both the theoretical foundation and empirical 
experiments demonstrate that SVM have good generalization ability for non-linear 
classification and estimation [6, 9]. Researchers have endeavored to applying SVM to 
nonlinear noise filters and time series predictions, and encouraging results have been 
reported [10, 11]. In this paper, SVM is used as a non-linear estimator to capture 
important information of the dynamic background and a foreground-background 
segmentation strategy is proposed based on it. 

The proposed method is based on least squares support vector machines (LS-
SVM), a modified version of standard support vector machines, which employ a 
sum squared error loss function and just requires solving a quadratic programming 
problem with equality constraints [12, 13]. LS-SVM has a fundamental relationship 
with ridge regression. Furthermore, enlightened by the adaptive LS-SVM [14], a 
specified LS-SVM with fixed-scale working set is designed for the dynamic 
background modeling. 

The rest of this paper is organized as follows: Section 2 provides a brief review to 
LS-SVM. In Section 3 we propose an estimating-detecting strategy based on LS-SVM 
regression for foreground-background segmentation. The experimental results are 
given in Section 4. Finally the discussions and conclusions are presented in Section 5.   

2   Brief Reviews to LS-SVM Regression 

Given a training set of N  samples ( ){ }N
iii yx 1, =  with input features d

i Rx ∈  and 

output value Ryi ∈ , the standard LS-SVM regression can be formulated as following 

optimization problem in primal space: 

( )

( ) Niebxwyts

ewwewJ

ii
T

i

N

i
i

T

,...,1,..

2

1

2

1
,min

1

2

=++=

+= ∑
=

ϕ

γ
 (1) 

F.



 Real-Time Foreground-Background Segmentation Using Adaptive SVM Algorithm 605 

In formula (1), ( ) dd RR
~

: →•ϕ  is a function which maps the input space into a so-

called higher dimensional feature space. dRw
~

∈  is the weight vector in primal 
weight space, b is the bias term and Niei ,...,1,0, =  are error variables.  

Using Lagrange multipliers and matrix transformation, optimizing problem (1) can 
be converted to a set of linear equations in the dual space as formula (2). For more 
details, see [13] 
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, for Ni ,...1= , Nj ,...,1= . K is the kernel  function,

 for example, linear kernel, polynomial kernel or RBF kernel.  This implies  that the
training procedure of LS-SVM regression just requires solving a linear system.
There have already been some fast training algorithms based on heuristic working-
set selecting methods and matrix techniques [14, 16].  

In primal weight space one has the model for the estimation of input value x . 
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3   The Proposed Adaptive LS-SVM for Foreground-Background 
Segmentation 

Literature [13, 15] reveals that LS-SVM has the ability to learn statistical information 
from the training dataset and for samples generated by the same distribution, it makes 
good estimations. Based on this property of LS-SVM, an estimating-detecting 

structure is modeled to adapt the dynamic background. Let ( )cr
k

,ρ  be the intensity of 

pixel ( )cr,  on frame k . ( ) ( ) ( ){ }cr
T

crcr ,,
1

,
0 ,...,, ρρρ  consist a series intensities from the 

incoming frames. Former intensities on each pixel are learned via LS-SVM and the 
current values are estimated. If the current intensity deviates far away from the 
estimated value, it is probably caused by a foreground object moving across this pixel. 
Basically, the procedure can be summarized as Fig. 1. 

Two critical problems should be considered in this method. One is how to 
efficiently learn the statistical information from former frames. The other is what 
criteria can be used to determine whether the current color represent a pixel of a 
moving object, given the background itself is changing.  
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Fig. 1. Estimating-Detecting structure for foreground -background segmentation 

A modified training method of LS-SVM is proposed to solve the first problem. For 
regularly changing cases, given some heuristic strategies, LS-SVM is able to 
approximate the training dataset via a few support vectors. Enlightened by the 
adaptive LS-SVM in [14], a few representative incoming frames are selected and 
added to a working set according to given conditions. LS-SVM regressor is trained 
using these samples. This strategy does not only save the computational time but also 
adaptively excludes the redundant information remote from the current frame. For the 
second problem, when a new frame comes, it is firstly estimated using the already 
trained SVM and then deviations between the predicted and real values are calculated. 
A dynamic threshold is employed to determine whether the pixel is a background 
pixel. The threshold is updated according to the errors between the real value and the 
estimated value.  

Pseudocodes of the proposed algorithms are illustrated as Fig. 2. For simplification, 

tρ  is used to denote the intensity of pixel ( )cr,  on the tth frame. In Fig. 2 , S  can be 

viewed as a buffer area which temporarily stores the incoming frames. It is an 
intermediate strategy for working set selection. W is the number of samples contained 
in the working set. Empirically, it is set 3 to 7. The incoming frames are treated as time 
series in the proposed algorithm. A time window d  is set on them. The input features 
of a training sample are intensity of pixels on consecutive d  frames and the output 
feature is intensity of that pixel on frame next to them .It is based on the fact that under 
ordinary conditions, the color of a frame is most related to several frames coming before 
it. Besides, since the background is dynamic (for example, influenced by regularly 

changing illumination), an adaptive threshold *
te  is used in the detecting stage. M  in 

*
te  is a constant set by the user. In our experiment, M  is set 5.0. The updating strategy 

of the threshold is employed as the last line in Fig. 2. 

When next frame comes 
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Fig. 2. Pseudocodes of the adaptive LS-SVM algorithm for real-time foreground-background 
segmentation 

4   Experiments and Results 

The proposed algorithm is imbedded in a video-processing framework using 
Microsoft’s Visual C++. It is run on an HP personal computer, utilizing a 3.06GHz 
Pentium IV processor with a maximum of 512MB memory available. To evaluate the 
performance of the proposed algorithm, Gaussian mixture model (GMM), a widely 
used background model, is also implemented in this framework. Besides, RBF kernel 
with 100,0.1 == γσ  is used in the proposed algorithm. (The parameters are 

empirically selected by our experiments). Two videos are tested both by the proposed 
algorithm and GMM algorithm.  

//Initialize. 
{ } { }0,...,0,0,...,, 110 == −+WdsssS ;  // S is the working set 

t=0; 
//Training and segmentation when a new frame comes. 

if(t<W+d){ 

tts ρ= ; 

} 
Else { 
if( the SVM-training condition is satisfied){ 

//Incoming frames are treated as time series 
//Construct W samples 
for(i=0;i<W;i++) 
{ ( )idiii sssx +−++= 110 ,...,, ; 

idi sy += ;} 

Use { ( ) 1,,1,0,, −= Wiyx ii h } to train SVM. 

} 
//Background-Foreground Segmentation 
Use SVM to Predict current color tρ̂ ; 

ttte ρρ ˆ−= ; 

If( *
tt ee < ) { 

Output that this pixel is a background pixel;} 
Else { 
Output that this pixel is a foreground pixel;} 
if( the updating condition is satisfied){ 
for(i=1;i<W+d;i++) 
{ ii ss =−1 ; } 

tis ρ=  

} 
t++; 

Adjust *
te  according to [ ] teetMe ttt +•−•= −

**
1)1( ; 

} 



608 Z.  Hao et al. 

 
 (a) 

 
(b) 

 
(c) 

Fig. 3. (a)-(c): Comparisons between the proposed algorithm and GMM on video 1. Images on 
the left column are grabbed from the original video. Those on the middle column are generated 
by the proposed algorithm and the right column by GMM algorithm. 

 

 
(a) 

 

 
 (b) 

 

 
 (c) 

Fig. 4. (a)-(c): Comparisons between the proposed algorithm and GMM on video 2. Images on 
the left column are grabbed from the original video. Those on the middle column are generated 
by the proposed algorithm and the right column by GMM algorithm. 

F.
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Video 1 consists of  300 incoming frames, with 10 frames per second. It is taken in 
a room for the surveillance of moving objects. Regular changing of illumination make 
it has a non-static background. At the beginning of this video, there are several frames 
without any foreground objects. Fig. 3. (a), (b) and (c) illustrate the comparisons 
between the proposed algorithm and GMM algorithm. It is clear that the proposed 
algorithm is able to segment the foreground objects from the video while keeping 
fewer noises than GMM algorithm. This implies that it has good ability to learn the 
statistical information from the background and in this case the proposed algorithm 
has a comparable performance. This enlightened us that the proposed algorithm has 
the potential for background modeling and it once again demonstrates the good 
statistical learning ability of SVM regression. 

However, experiments also exhibit some underlying problems. Video 2 is a video 
with 500 frames. It is taken on a highway with running cars across the screen from the 
beginning to the end. Besides, the camera is not fixed but has a regular small 
vibration, causing the background regular changing. In this case, the proposed 
algorithm exhibits worse performance than GMM. Two factors cause this. One is that, 
in video 2, color contrast between the foreground and background is not so sharp as 
video 1. And unfortunately, the proposed algorithm uses intensity, which makes it 
lose some color information. The other factor is that, the powerful learning ability of 
SVM has become a two-edged sword in this case. Since there are moving objects 
even at the beginning of the video, successive running foreground objects seriously 
disturb the learning procedure of SVM regression, making it lose the ability for 
correctly segmenting the foreground objects from background.  

Furthermore, experiments show that different values of d  in the proposed 
algorithms have small impact on the effect of the segmentation, namely, results 
obtained under 1=d  are almost similar to those under 5,4,3,2=d . This might be 
explained by the reason that the current frame is mostly influenced by the preceding 
frame closest to it. Yet, too large value of W  will slow down the running speed of the 
segmentation procedure. Results presented in Fig. 3 and Fig. 4 are those with the 
parameters 6=W  and 1=d .  

5   Discussions and Conclusions 

Based on LS-SVM regression, a background-foreground segmentation method is 
proposed in this paper. It treats successive frames of a video as time series. A fixed-
scale working set selecting strategy is specifically designed for the segmenting 
procedure. It opens a door for the application of SVM regression in dynamic 
background modeling. Experiments on two videos illustrate the potential of the real-
world application of the proposed algorithm. They also demonstrate the good 
statistical learning ability of LS-SVM regression.  

However, studies of this paper also reveal that a lot of work should be done before 
perfect results are reached. Intensity, instead of complete information of colors, is 
used in the proposed algorithm for the reason of reducing the computational time. If 
fast training method, such as the adaptive incremental-decremental algorithm is 
developed and implemented, full color information can be included. Besides, the 
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working-set updating strategy has to be further improved to suit the application of LS-
SVM regression in background modeling. A more self-adaptive strategy should be 
designed so that the segmentation procedure will be more robust even when there are 
a lot of moving objects at the beginning of the video. This is what we plan to study in 
the future.  
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Abstract. This study deals with image superresolution problems simul-
taneously with accompanying image registration problems. The goal of
superresolution is to generate a high resolution image by integrating low-
resolution degraded observed images. We propose a Bayesian approach
whose prior is modeled as a compound Gaussian Markov random field
(MRF). This approach is advantageous in preserving discontinuity in the
original image, in comparison to the existing single-layer Gaussian MRF
models. Maximum-marginalized-likelihood estimation of the registration
parameters is carried out by a variational EM algorithm where hidden
variables are marginalized out and the posterior distribution is approxi-
mated by a factorized trial distribution. High resolution image estimates
are obtained as by-products of the EM algorithm. Experiments show that
our Bayesian approach with two-layer compound models exhibits better
performance in terms of mean square error and visual quality than the
single-layer model.

1 Introduction

Superresolution aims at recovering visual information that has been lost in the
imaging process by integrating multiple observed images with low resolution so
as to output a higher-resolution (HR) image than defined in the imaging process.
An earliest superresolution algorithm was based on a frequency-domain approach
by Tsai & Huang [1]. After that, a number of superresolution algorithms have
been proposed, as summarized in recent review articles [2,3,4].

Bayesian methods developed originally in neural computation literature [5,6]
have recently been applied to image superresolution [7,8] and have yielded fruit-
ful results by successfully avoiding overfitting. However, image models assumed
in these studies are not enough because edge preservation is not considered well.
Natural images contain edges (discontinuity in pixel values) naturally originat-
ing from textures and occlusions of the objects in the scene. Therefore, image
models incorporating edge information are desired.

Superresolution often has a problem that the estimation of the HR image
cannot be separated from the estimation of registration parameters for the
imaging process. If we try to estimate both the parameters and the HR image
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simultaneously, we have to search for an optimum point in the very
high-dimensional product space composed of possible parameters and HR im-
ages. Selecting a single estimate out of a high-dimensional space is faced with
the danger of overfitting. A solution to this overfitting problem accompanying
the joint optimization is provided by Bayesian marginalization [7,9], where the
unknown HR image is integrated out from the search space, which improved the
registration accuracy over joint MAP methods [10]. However, since the exist-
ing models are based on Gaussian Markov random fields (MRFs) with only a
single layer, discontinuity stemming from possible edges is often ruined in the
estimated image.

In this article, we propose a Bayesian superresolution scheme for compound
MRFs, which have an additional layer of edge representation adaptively inferred
from the data. The proposed scheme not only avoids overfitting but also preserves
the edge information. Marginalization of this two-layer model is analytically
intractable, and then an approximate procedure based on the variational EM
algorithm is derived.

The organization of the rest of this article is as follows. In Sect. 2, we briefly
review Bayesian superresolution methods. Section 3 describes a linear Gaus-
sian probabilistic forward model for the image formation process. In Sect. 4,
we propose compound MRFs used for the prior model and describe the dif-
ficulty in marginalizing compound MRFs. In Sect. 5, we present a variational
EM algorithm with efficient factorization approximation. Section 6 shows several
experimental results and Sect. 7 concludes the article.

2 Bayesian Superresolution

Suppose there are observed T images D = {yt}T
t=1 where each of the observed

images yt has the size of MO × NO. The goal of superresolution here is to
estimate an MH × NH HR image x, where r = MH/MO = NH/NH is called
a resolution enhancement factor. The numbers of pixels in observed and HR
images are denoted by PO = MONO and PH = MHNH, respectively. The images
are regarded as lexicographically stacked vectors.

Each observed image is produced from the unknown HR image x by the imag-
ing process described by unknown parameters θ. We estimate the parameters
by maximizing the marginalized likelihood p(D|θ):

θ̂ = arg max
θ

p(D|θ). (1)

The marginalized likelihood is derived by integrating the product of the prior
(the preference about the HR image) and the likelihood (the imaging process):

p(D|θ) =
∫

dx p(x)
∏

t

p(yt|x, θ). (2)
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After obtaining the estimate θ̂, we can estimate the HR image based on the
posterior distribution p(x|D, θ̂), which is again obtained from the prior and the
likelihood according to the Bayes rule:

p(x|D, θ̂) =
p(x)p(D|x, θ̂)

p(D|θ̂)
. (3)

We have to specify the two fundamental distributions p(x) and p(yt|x, θ).
The prior p(x) embodies our a priori desire on the HR image and is usually
chosen as an MRF that poses smoothness constraints. The likelihood p(yt|x, θ)
is designed according to the image formation process from the HR image x to
an observed image yt. The parameter vector θ represents the parameters in the
observation process, such as the amount of shift and the angle of rotation.

The prior p(x) and the likelihood p(yt|x, θ) must be set carefully so that they
should faithfully represent the physical process and that the integration of (2)
should be performed efficiently. Amongst the existing Bayesian superresolution
methods [7,9], only the Gaussian distributions have been employed because of
their mathematical tractability. However, the Gaussian priors represent merely
smoothness constraints between neighboring pixels but do not represent the
edges that should be contained in many HR images.

3 Image Formation Process

It is assumed that there is an underlying image formation process from x to
yt such that the HR image x is geometrically warped, blurred with a point
spread function (PSF), downscaled, and corrupted by Gaussian noise to form
the observed low resolution image yt:

yt = Wtx + εt for t = 1, . . . , T, (4)

where Wt is the matrix that operates warping, blurring, and downscaling, and εt

is the additive noise that obeys iid Gaussian N(0, β−1I)1, where β is the inverse
variance of the isotropic Gaussian. Figure 1 depicts this process. Although this
formation process is represented by the linear matrix Wt consisting of a huge
number of elements, it is governed by a relatively small number of parameters
such as registration parameters θ and the resolution enhancement factor r.

The image formation process (4) is equivalently represented as the probabilis-
tic forward model

p(yt|x, θ) = N(yt|Wt(θ)x, β−1I) for t = 1, . . . , T. (5)

The important advantage of such linear Gaussian likelihood is mathematical
tractability of the integration in the marginalized likelihood (2) when it is com-
bined with a Gaussian prior for HR images.
1 N(μ, Σ) denotes the Gaussian distribution with mean μ and covariance Σ, and

N(y|μ, Σ) denotes the Gaussian density function of y.
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Scene Warped Blurred Downscaled Noise added

Fig. 1. An illustration of the image forming process

4 Edge-Preserving Compound MRF Prior

A compound MRF is an MRF with an additional latent variable layer called
the line process that controls the local correlation among pixel values [11,12].
The introduction of the latent variable enables explicit expression of the possible
discontinuity in the HR image. The latent variable is adaptively inferred from
the data so that edge preservation should be achieved.

We introduce several notations about neighborhood relations as follows: N (i)
is the set of neighboring pixels of the pixel i, and i ∼ j stands for “the pixels i
and j are adjacent.”

The line process η consists of the binary latent variables ηij ∈ {0, 1} for the
neighboring pixel pairs i and j. Then, the compound MRF is expressed as

p(η,x) =
1
Z

exp
{

−ρ

2
E(η,x) − Ψ(η)

}
, (6)

where ρ is an inverse temperature; E is an energy function that defines the char-
acteristics of the probability distribution; and Ψ(η)=log

∫
dx exp{−ρE(η,x)/2}

and Z =
∑

η exp{−ρE(η,x)/2 − Ψ(η)} guarantee that the distribution is nor-
malized. In particular, we use the following energy function2:

E(η,x) =
∑

i∼j

[ηij · (xi − xj)2 + (1 − ηij) · λ], (7)

where the summation
∑

i∼j is taken over all pairs of neighboring pixels. The
latent variable η switches the local characteristics of the prior by indicating
whether a pair of pixels take similar values or take independent values. When
ηij = 1, the pixels i and j are strongly smoothed due to the quadratic penalty,
whereas there is no smoothing when ηij = 0. The mixture of the quadratic
and constant penalties accomplishes one form of robust estimation; if MAP
estimation is employed, this energy function reduces to Hampel’s robust cost
function [13]. The “smoothing all” case η = 1 is equivalent to the single-layer
Gaussian MRF model in which all pixel pairs are smoothed.

We can rewrite the compound MRF with the line process (6) as

p(η,x) = p(η)p(x|η), (8)
2 In fact, η = 0 gives an improper prior, but we can exclude this case by letting

E(0,x) = ∞.



Edge-Preserving Bayesian Image Superresolution 615

where
p(η) = Ber(η|ν) , p(x|η) = N(x|0, ρ−1A−1

η ). (9)

Here, ν = sig(λρ/2) ≡ 1/(1 + exp(−λρ/2)) is the parameter for the Bernoulli
distribution Ber(η|ν) =

∏
i∼j νηij (1 − ν)1−ηij and the matrix Aη is defined by

[Aη]ij =

⎧
⎪⎨

⎪⎩

∑
k∈N (i) ηik , i = j ,

−ηij , i ∼ j ,

0 , otherwise.
(10)

To estimate the registration parameters according to the maximum-marginal-
ized-likelihood (MML) rule (1), we need to compute the marginalized likelihood.
The marginal prior

p(x) =
∑

η

p(η,x) (11)

is used in (2), which gives the marginalized likelihood for the compound model

p(D|θ) =
∑

η

∫
dx p(η,x)

∏

t

p(yt|x, θ). (12)

Unfortunately, since this marginalized likelihood has the summation
∑

η over all
2(MO−1)(NO−1) configurations of ηij , which requires exponential order of com-
putational complexity, a direct implementation of the above algorithm is in-
tractable. Therefore, some approximation techniques are required for a practical
implementation for the compound model. We present a tractable variational EM
algorithm in the following section.

5 Variational EM Estimation

5.1 Variational EM Algorithm

First, we review a variational view of the EM algorithm suggested by Neal &
Hinton [14], in which the EM algorithm is formulated as minimization of the
variational free energy F (q, θ), which is a functional of the trial distribution q
and a function of the parameter vector θ. The trial distribution q(η,x) is an
arbitrary probability distribution for the unknown variables η and x. Although
the trial distribution can take any form in principle, we assume for the sake of
tractability that it possesses a factorized form: q(η,x) = q(η)q(x). Owing to
this assumption, the computational complexity can be relaxed into polynomial
order, if log-determinant elimination is performed as will be shown later.

The free energy is given by

F (q, θ) = −
∑

η

∫
dx q(η,x) log

p(η,x, D|θ)
q(η,x)

. (13)
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The joint minimum point of the free energy [q̂, θ̂] = arg minq,θ F (q, θ) gives
the MML estimate θ̂ for the registration parameters and the trial distribution
q(η,x) that optimally approximates a posterior distribution p(η,x|D, θ) in the
Kullback-Leibler divergence sense [14]. Therefore, both of the MML estimate (1)
and the posterior distribution (3) are obtained by the free energy minimization;
this is Bayesian superresolution.

The EM algorithm minimizes the free energy according to an iterative proce-
dure of a coordinate-descent type; after the initialization of the parameter vector
θ0, the lth (l ≥ 1) iteration performs the following E and M steps:

E-step: ql = argmin
q

F (q, θl−1), (14)

M-step: θl = arg min
θ

F (ql, θ). (15)

These steps are iterated until the convergence is attained. The M-step opti-
mizes the parameters towards the MML direction, whereas the E-step opti-
mizes the trial distribution so as to approach the true posterior distribution
p(η,x|D, θ) [14].

5.2 Free Energy Calculation

Since the joint density p(η,x, D|θ) in the numerator of the free energy (13) can
be decomposed as the product of densities of the three layers, the free energy is
calculated as

F (q, θ) = −〈ln p(η)〉 − 〈ln p(x|η)〉 − 〈ln p(D|x, θ)〉 + 〈ln q(η,x)〉, (16)

where the angle bracket pair 〈·〉 denotes the expectation with respect to q(η,x).
Each term is calculated as

−〈ln p(η)〉 = − ln ν
∑

i∼j

〈ηij〉 − ln(1 − ν)
∑

i∼j

(1 − 〈ηij〉), (17)

−〈ln p(x|η)〉 =
PH

2
ln(2π/ρ) − 1

2
〈ln|Aη|〉 +

ρ

2
〈xTAηx〉, (18)

−〈ln p(D|x, θ)〉 =
TPO

2
ln(2π/β) +

β

2

∑

t

〈‖yt − Wt(θ)x‖2〉, (19)

〈ln q(η)〉 =
∑

i∼j

[〈ηij〉 ln〈ηij〉 + (1 − 〈ηij〉) ln(1 − 〈ηij〉)], (20)

〈ln q(x)〉 = −PH

2
ln(2πe) − 1

2
ln|Σ|. (21)

The log-determinant term 〈ln|Aη|〉 =
∑

η q(η) ln|Aη| in (18) is intractable again
due to the summation over exponential-order configurations. Here, we simply
ignore this term. This type of log-determinant elimination has been implicitly
performed in many studies (e.g. [12,15]) and does not seem to bring serious
problems.
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5.3 E-Step: Optimal Trial Distribution

Under the assumption of the factorized trial posterior and the introduction of
log-determinant elimination, the optimal trial distribution is given analytically
as

q∗(x) = N(x|μ, Σ), (22)

where Σ =
(
ρ〈Aη〉 + β

T∑

t=1

WT
t Wt

)−1
, μ = βΣ

( T∑

t=1

WT
t yt

)
(23)

and

q∗(η) = Ber(η|ν̄) =
∏

i∼j

ν̄
ηij

ij (1 − ν̄ij)1−νij , (24)

where ν̄ij = sig
(ρ

2
(λ − 〈(xi − xj)2〉)

)
. (25)

Compared to the single layer model in which q(η) is fixed at 1, the compound
model can adaptively change the effect of smoothing by balancing λ and 〈(xi −
xj)2〉 = (μi −μj)+Σii +Σjj − 2Σij . Since the expectation 〈(xi −xj)2〉 contains
variance terms, the uncertainty about pixel values is taken into account, which
is beneficial to avoid being too sensitive against noise. And the magnitude of the
inverse temperature ρ changes the gradient of the sigmoid function.

5.4 M-Step: Optimizing Parameters

Since the free energy nonlinearly depends on the registration parameters, opti-
mization based on scaled conjugate gradients [16] is employed in the M-step. We
can reduce computational efforts by calculating only the term that is dependent
on θ, 〈‖yt − Wt(θ)x‖2〉 = ‖yt − Wt(θ)μ‖2 + tr (Wt(θ)TWt(θ)Σ), in which the
uncertainty about the HR image is also considered via the posterior covariance.

6 Experiments

We conducted experiments with synthetically generated data sets, and the results
by the compound MRF model (CGMRF) were compared with those by the
single-layer MRF model (SGMRF).

The data sets were generated by the following procedure. A given original
image x was first transformed by translational and rotational motions, where
the amounts of shift and rotation were randomly drawn from the respective
uniform distributions Unif(−2, 2) and Unif(−4/(180π), 4/(180π)), blurred with
a Gaussian PSF with a standard deviation of 2, then downscaled by a factor of
r = 4, and finally corrupted by Gaussian noise of signal to noise ratio (SNR)
30 dB to generate T = 16 observed images {yt}. Figure 2 shows six original
images of the size of 40 × 40; the first five were clipped from public standard
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Fig. 2. Six original images used in the experiments. From left to right, Cameraman,
Lenna, Peppers, Girl, Beads, License.

Table 1. Mean ISNR with standard deviation in 30 experiments for 6 different images

Model CGMRF [dB] SGMRF [dB]

Image Cameraman 4.92 ± 0.09 4.49 ± 0.06
Lenna 10.17 ± 0.14 9.64 ± 0.13
Peppers 6.34 ± 0.13 6.09 ± 0.09
Girl 7.81 ± 0.05 7.49 ± 0.05
Beads 10.23 ± 0.19 9.75 ± 0.14
License 7.66 ± 0.34 7.39 ± 0.09

Total 7.86 ± 1.92 7.47 ± 1.86

images and the sixth License picture was taken by the authors. From each of the
original images, 30 different data sets were generated.

The EM algorithm started with initial translational and rotational motion
parameters being set at all zero. The EM algorithm was terminated when all of
the following three criteria were satisfied: F l+l −F l < 10−3, ‖μl+1 −μl‖/‖μl‖ <
10−4, and ‖θl+1 − θl‖/‖θl‖ < 10−5.

For every 180 data sets, both CGMRF and SGMRF superresolution methods
of r = 4 resolution enhancement were carried out. The quality of the resultant
HR images is measured by ISNR (improvement in SNR) defined by

ISNR = 10 log10
‖x̃ − x‖2

‖x̂ − x‖2 [dB], (26)

where x̂ is an estimated HR image, and x̃ is the bilinearly interpolated image
of the first frame y1. The results are summarized in Table 1. Our edge-adaptive
CGMRF model achieved about 0.4 dB improvement on average for all the six
images, in comparison to the SGMRF model.

One of the results for Cameraman is shown in Fig. 3, where the HR images
estimated by the CGMRF and SGMRF models are displayed together with one
of the observed images and an extracted edge field in CGMRF. Figure 4 shows
the results for License. Both the CGMRF and SGMRF models exhibit clear
resolution enhancement beyond that of the observed image, but the image re-
constructed by the CGMRF model yields more enhanced edges.

Throughout the experiments, the hyperparameter values were fixed at ν =
0.55, ρ = 20, and β = 3000, suggesting the robustness of the algorithm against
image changes. Although different hyperparameters would prefer different im-
ages, we did not focus on hyperparameter optimization in this study.
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(a) Observed image (1/16) (b) CGMRF: Extracted edge

(c) SGMRF: Estimated image (d) CGMRF: Estimated image

Fig. 3. Superresolution of Cameraman

(a) Observed image (1/16) (b) CGMRF: Extracted edge

(c) SGMRF: Estimated image (d) CGMRF: Estimated image

Fig. 4. Superresolution of License
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7 Conclusion
We presented a Bayesian superresolution algorithm that explicitly models the
edges by using a compound MRF and thus controls the effect of smoothing
adaptively. Edge identification was robust and based on the noise-compensated
posterior estimate of the HR images. Overfitting of registration parameters was
successfully avoided. The advantage of our superresolution algorithm over the
non-adaptive, single-layer MRF model was confirmed with various images even
with fixed hyperparameters. Achievement of further adaptiveness by training
hyperparameters remains as a future study.
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Abstract. This paper presents an adaptive neurofuzzy controller for tip position 
tracking control of a single link flexible manipulator. The controller has a self- 
organizing fuzzy neural structure in which fuzzy rules are generated during the 
control process using an online learning algorithm. In order to demonstrate the 
superior performance of the proposed controller, the results are compared with 
those obtained by using the proportional-derivative (PD) and neural network 
controllers. Moreover, since the proposed controller requires no a priori 
knowledge about the system, it can efficiently cope with the uncertainties such 
as payload mass variations.  

Keywords: Single link flexible manipulator, neural network controller, 
neurofuzzy controller. 

1   Introduction 

The control of robotic manipulators has been studied with great interest by many 
researchers over the past years. Major advantages of flexible manipulators include 
small mass, fast motion, and large force to mass ratio, which are reflected directly in 
the reduced energy consumption, increased productivity, and enhanced payload 
capacity. Flexible manipulators have important applications in space exploration, 
manufacturing automation, construction, mining, hazardous operations, and many 
other areas [1]. 

In general, robot manipulators have to face uncertainties in their dynamics, such as 
payload mass, friction, and disturbance. Therefore, it is difficult to obtain an accurate 
model for a flexible link manipulator [2]. Thus, model based control systems may not 
be easily implemented in flexible link control practice.  

There are many different techniques for the control of flexible manipulators such 
as [3]-[7]. Over the past few decades, intelligent controllers such as neural network, 
fuzzy and neurofuzzy controllers have attracted considerable attention and interest. 
This interest resulted from their remarkable model-free characteristic which provides 
the capability of learning and nonlinear mapping. However, neural network 
controllers require a predefined structure which may lead to additional time-
consuming computations during the control process. The other drawback of neural 
network controllers is their output dependency on the selection of the initial values of 
neural network weights. The main problem of fuzzy controllers is the appropriate 

2007 



622 S. Sarraf, A. Fallah, and T. Seyedena 

definition of fuzzy membership functions and rules. Therefore, in recent years, fuzzy-
neural network controllers which combine the human reasoning capabilities of fuzzy 
systems in dealing with uncertainties with the capabilities of neural networks in 
learning and generalization have been proposed as a powerful technique for control of 
flexible link manipulators.  

In this paper an adaptive neurofuzzy controller for tip position tracking control of a 
single link flexible manipulator is presented. In order to show the superior 
performance of the neurofuzzy controller, the results are compared with the results of 
the PD and neural network controllers. To achieve this goal, at first we introduce the 
neural network controller and demonstrate its preference over the PD controller by 
simulation results. Then, some drawbacks of the neural network controller are 
mentioned. Finally, to overcome these problems the neurofuzzy controller is proposed 
and simulation results are discussed. 

2   The Flexible Manipulator Dynamics  

The flexible link manipulator is shown in Fig. 1, whereθ  is the hub position and 

( ),W x t is the elastic deflection along the length x of the link.  

The dynamic model of a robot manipulator is derived using a Lagrangian assumed 
modes method based on Euler- Bernoulli beam theory, and can be expressed as 

( , ) ( )
00

Fric
M q C q q K

qq q
.

 
(1) 

where M, C, K, τ   represent the matrices of inertia, Coriolis and centrifugal 
forces, stiffness effect, and  the torque applied to the hub, respectively. 

1 2
T

Nq q q q= ⎡ ⎤⎣ ⎦ is the ( )1N × vector, iq is the ith elastic mode and N is the 

number of deflection modes [1, 3]. By incorporating the dynamic model of armature-
controlled servomotor into the dynamic model of the flexible link and assuming the 
armature inductance to be neglected, the model of a robot manipulator including 
actuator dynamics can be obtained: 

ˆˆ ( , ) ( )
00

Fric v
M q C q q K

qq q
.

 
(2) 

Where v  is the control voltage applied to the dc-servomotor. 
Since the zero dynamics associated with the tip position are unstable, the system is 

non-minimum phase and it is difficult to control the tip position [8]. Therefore, to 
overcome this problem, the redefined output with stable zero dynamics was achieved 
in [9], choosing the appropriate value for α . The redefined output is defined as 

( , )
a

W h t
y

h
.

 
(3) 

where h denotes the length of the link. 
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Fig. 1. Model of flexible link manipulator 

3   Neural Network Controller 

The structure of the proposed control system is depicted in Fig. 2. As can be seen in 
this figure, the controller is composed of two parts: The conventional proportional-
derivative type (PD) controller and the intelligent controller (the neural network or the 
nerofuzzy controller). The PD controller initially controls the system and maintains 
the stability of the system during the learning phase of the other controller. 

The three-layer neural network controller consists of 6, 15 and 1 neurons in its 
input, hidden and output layers, respectively. The neural network controller training is 
accomplished using the back-propagation (BP) algorithm. Since our purpose is to 
control the tip position of a flexible arm along with suppressing the tip deflection, the 
terms e ,  and  W should be incorporated in the cost function which is to be 
minimized in the learning algorithm. The cost function can be expressed as [3]: 

1 2 3
1

, ,
2

T T TJ e k e e k e W h t k W h t .
 

(4) 

 

Fig. 2. The proposed control scheme 
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Simulations are carried out using the link parameters mentioned in [3]. In order to 
show the effectiveness of the neural network controller, the results achieved by this 
controller are compared to those obtained from the PD controller. 

Figs. 3 and 4 depict the simulation results of the PD controller and the neural 
network controller for a sequential step desired trajectory, respectively. As shown in 
Fig. 3, although the PD controller is able to stabilize the system, the tip deflection of 
the flexible link cannot be effectively suppressed. In contrast, Fig. 4 demonstrates that 
the control performance is obviously improved and the tip deflection is decreased in 
the next steps. Fig. 4 also indicates the learning characteristic of the neural network 
controller. 

 
(a) (b) 

Fig. 3. Simulation results of the PD controller with 20pM gr= . (a) tip position, (b) tip 

deflection. 

 
(a) (b) 

Fig. 4. Simulation results of the neural network controller with 20pM gr= . (a) tip position, 

(b) tip deflection. 
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The performance of the neural network controller, having the structure as 
mentioned in this section, depends on the initial values of its parameters such and the 
predefined structure. This can be seen in Figs. 4 and 5. In Fig. 4, the neural network 
weights are initialized to the values between [ ]0.1 0.1−  . As can be seen in this 

figure, a satisfactory response of both the tip position and tip deflection are achieved. 
However, if the initial values of the neural network are assigned in the range of 

[ ]0.01 0.01−  , the response becomes deteriorated which is presented in Fig. 5. An 

examination of Fig. 5 also demonstrates that the learning process is not completed in 
the second sequence of the step input. It should be noted that although greater initial 
values of the neural network weights hasten learning process of the neural network, 
which obviously appears in Fig. 4, the main drawback is that this selection may cause 
instability for other inputs with different forms and magnitudes. Therefore, a 
compromise between the selection of neural network initial weights and the learning 
rate should be performed. 

 

(a) (b) 

Fig. 5. Simulation results of the neural network by choosing smaller initial weights with 
20pM gr= . (a) tip position, (b) tip deflection. 

Moreover, in order to examine the performance of the neural network controller in 
the presence of uncertainties, such as tip payload variation, we change the tip payload 
mass from 20pM gr= , which was used in previous simulations, to 400pM gr=  

and plot the results. Figs. 6, 7 show the results of the PD and the neural network 
controller.  

By comparing Fig. 6 with Fig. 7, it can be discovered that while the tracking 
performance obtained by the neural network control strategy remains quite 
satisfactory with a slightly increased tip deflection and  overshoot, results of the PD 
controller obviously become deteriorated by increasing the tip payload mass. This 
also confirms the noticeable preference of the neural network controller performance. 
However, the aforementioned drawbacks of the neural network controller still exist. 
Therefore, the design of a modified controller such as a neurofuzzy controller receives 
considerable attention. 
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(a) (b) 

Fig. 6. Simulation results of the PD controller with 400pM gr= . (a) tip position, (b) tip 

deflection. 

 
(a) (b) 

Fig. 7. Simulation results of the neural network controller with 400pM gr= . (a) tip position, 

(b) tip deflection. 

4   Neurofuzzy Controller 

Our proposed neurofuzzy controller is a network based on the radial basis function 
(RBF) which can be considered a Takagi-Sugeno (TS) fuzzy system by considering 
each neuron as a fuzzy rule. Fig. 8 shows the schematic diagram of an RBF network. 

An RBF network can also be regarded as a special two-layer network in which the 
hidden layer performs a fixed transformation with no adjustable parameters and it 
maps the input space onto a new space. The output layer then implements a linear 
combination on this new space and only adjustable parameters are the weights of this 
linear combination [10]. In other words, it is anticipated that our neurofuzzy 
controller (or RBF network) is developed in such a way to obtain the inverse 
dynamics of the flexible link manipulator and map the input space which consists of  

, , , ,d q q onto the control voltage v .  
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The activation function can be described as 

( ) exp 1,2, ,
T

l l l lX X M S X M l L
 

(5) 

where [ ]1 2
T

kX x x x=  is the input vector, 1 2[ ]Tl l l klM m m m= is 

the vector of  centers, 2 2 2
1 2[1/ 1/ 1/ ]l l l klS diag s s s= is the vector of widths, 

and L  is the number of activation function or the number of neurons [4]. The output 
of the neurofuzzy controller is obtained using (6) which verifies the equivalence 
between the RBF network and TS fuzzy system by considering the weight vector w as 
the TS weights.  

[ ][ ]1 1
T

L Ly w wφ φ=  (6) 

 

Fig. 8. Structure of the RBF network 

The learning algorithm is initially started from a network with no neurons in the 
hidden layer ( 0L = ). Then the first neuron is added to the network and is initialized to 

1 1 0(1),C X σ σ= =  (7) 

Where 0σ  is a predetermined constant value.  

For a given input vector ( )X n , the Euclidean norm is used to compute the 

distances of ( )X n to all center vectors and to find the minimum distance, mind . If 

mind is smaller than a predefined constant threshold, then the adjustable parameters of 

the RBF network are updated using the conventional gradient descent algorithm that 
minimizes a modified cost function (4). Otherwise, if mind  is larger than threshold, a 

new neuron (or a new fuzzy rule) will exist with the parameters defined as 

1 1 min 1
1

1
( ), , ( ) ( )

L

L L L l
l

C X n d w n w n
L

σ+ + +
=

= = = ∑  (8) 
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(a) (b) 

Fig. 9. Simulation results of the neurofuzzy controller  with 20pM gr= . (a) tip position, (b) 

tip deflection. 

  
(a) (b) 

Fig. 10. Simulation results of the neurofuzzy controller  with 400pM gr= . (a) tip position, 

(b) tip deflection. 

Simulation results of the tip position and tip deflection of the flexible link by using 
the neurofuzzy controller are shown in Fig. 9. As can be clearly seen in this figure, 
considerable improvement is obtained by using the proposed neurofuzzy controller as 
compared to the other two controllers shown in Figs. 3 and 4. This is due to the 
neurofuzzy controller structure which is modified during the online learning 
algorithm and takes the inverse dynamics of the flexible link. In contrast, the simple-
structure linear conventional PD controller exhibit inability to compensate for the 
nonlinear dynamics of the link. Furthermore, despite rather acceptable performance of 
the neural network controller, the predefined structure of this controller can not 
represent the appropriate structure which hinders the controller from getting the 
inverse dynamics of the system. 

To study the effect of an uncertain condition such as payload variation on the 
performance of the neurofuzzy controller, we change the tip payload mass from 

20pM gr=  to 400pM gr= . Fig. 10 shows the results of this situation. It can be 
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seen that the neurofuzzy controller efficiently compensates for the partly changed 
nonlinear dynamics by modifying its structure and weights and confirms the 
advantages of the neurofuzzy controller. 

5   Conclusion 

In this paper, an adaptive neurofuzzy control strategy was proposed and its superiority 
over the conventional PD controller and the neural network controller are 
demonstrated. Simulation results also verify the satisfactory performance of the 
neurofuzzy controller in dealing with uncertainties such as the variation of the tip 
payload. 
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Abstract. This paper details a computationally efficient (suboptimal)
nonlinear Model Predictive Control (MPC) algorithm with structured
neural models and discusses its application to a polymerisation reactor.
Thanks to the nature of the model it is not used recursively, the predic-
tion error is not propagated. The model is used on-line to determine a
local linearisation and a nonlinear free trajectory. The algorithm needs
solving on-line only a quadratic programming problem. It gives closed-
loop control performance similar to that obtained in the fully-fledged
nonlinear MPC, which hinges on non-convex optimisation.

1 Introduction

Model Predictive Control (MPC) is recognised as the only advanced control
technique which has been very successful in practical applications [8], [15], [17].
MPC algorithms can take into account constraints imposed on both process
inputs (manipulated variables) and outputs (controlled variables), which usually
decide on quality, economic efficiency and safety. Furthermore, MPC techniques
are very efficient in multivariable process control.

Structure of the model and the way it is used decide on accuracy, computa-
tional burden and reliability of nonlinear MPC. Fundamental (first-principles)
models, although potentially very precise, are usually not suitable for on-line
control because they are very complicated and may lead to numerical problems
resulting, for example, from ill-conditioning or stiffness. Since neural network
models [1] are able to approximate precisely nonlinear behaviour of technolog-
ical processes [3], [11], have relatively small number of parameters and simple
structure, they can be effectively used in MPC algorithms as process models
[3], [5], [6], [7], [11], [12], [13], [14], [17], [18]. In light of practical importance
linearisation-based MPC techniques, in which only a quadratic programming
problem is solved on-line, deserve consideration [2], [6], [7], [10], [11], [17], [18].
Compared to MPC algorithms with full nonlinear optimisation, they are subop-
timal, but the accuracy is usually sufficient.

Neural network models are usually trained using the rudimentary backpropa-
gation algorithm which yields one-step ahead predictors. Naturally, they are not
suited to be used recursively in MPC for long range prediction since the predic-
tion error is propagated. Recurrent neural models are reasonably less popular.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part II, LNCS 4669, pp. 630–639, 2007.
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So as to solve the problem resulting from the inaccuracy of one-step predictors in
MPC a multi-model approach has been proposed in [4], [16] for linear processes.
For each sampling instant within the prediction horizon one independent linear
model is used, the prediction error is not propagated. In this work a different
approach to modelling is studied.

The paper describes a computationally efficient suboptimal MPC algorithm
with Nonlinear Prediction and Linearisation (MPC-NPL) [6], [7], [17], [18], based
on structured neural network models and its application to a polymerisation
process. Only one structured model is used, but analogously as the multi-models
it has the ability to predict future values of the output without taking into
account previous predictions calculated within the prediction horizon. Thanks
to this feature the model is not used recursively, the prediction error is not
propagated. The algorithm gives good closed-loop performance and, unlike the
nonlinear MPC technique, which hinges on nonlinear optimisation, it uses on-line
only the numerically reliable quadratic programming approach.

2 Model Predictive Control Algorithms

In the MPC algorithms [8], [17] at each consecutive sampling instant k a set of
future control increments is calculated

Δu(k) = [Δu(k|k) Δu(k + 1|k) . . .Δu(k + Nu − 1|k)]T (1)

It is assumed that Δu(k + p|k) = 0 for p ≥ Nu, where Nu is the control horizon.
The objective is to minimise the differences between the predicted values of the
output ŷ(k + p|k) and the reference trajectory yref (k + p|k) over the prediction
horizon N . The following quadratic cost function is usually used

J(k) =
N∑

p=1

(yref (k + p|k) − ŷ(k + p|k))2 +
Nu−1∑

p=0

λp(Δu(k + p|k))2 (2)

where λp > 0 are weighting factors. Typically, Nu < N , which decreases the
dimensionality of the optimisation problem. Only the first element of the deter-
mined sequence (1) is applied to the process, the control law is then

u(k) = Δu(k|k) + u(k − 1) (3)

At next sampling instant, k + 1, the prediction is shifted one step forward and
the whole procedure is repeated.

Since the constraints have to be usually taken into account, future control
increments are determined as the solution to the following optimisation problem
(assuming hard output constraints [8], [17] for simplicity of presentation)

min
Δu(k|k)...Δu(k+Nu−1|k)

{J(k)}

subject to
umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1
−Δumax ≤ Δu(k + p|k) ≤ Δumax, p = 0, . . . , Nu − 1
ymin ≤ ŷ(k + p|k) ≤ ymax, p = 1, . . . , N

(4)
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The prediction equation for p = 1, . . . , N is

ŷ(k + p|k) = y(k + p|k) + d(k) (5)

where the quantities y(k+p|k) are calculated from a nonlinear model. The“DMC
type” disturbance model is used in which the unmeasured disturbance d(k) is
assumed to be constant over the prediction horizon. It is estimated from

d(k) = y(k) − y(k|k − 1) (6)

where y(k) is a measured value while y(k|k − 1) is calculated from the model.
Let the Single-Input Single-Output (SISO) process under consideration be

described by the following nonlinear discrete-time equation

y(k) = f(x(k)) = f(u(k − τ), . . . , u(k − nB), y(k − 1), . . . , y(k − nA)) (7)

where f : �nA+nB−τ+1 −→ �, τ ≤ nB. Using the prediction equation (5) and
the model (7), the output predictions for p = 1, . . . , N are calculated from

ŷ(k + p|k) = f(u(k − τ + p|k), . . . , u(k|k)︸ ︷︷ ︸
Iuf (p)

, u(k − 1), . . . , u(k − nB + p)︸ ︷︷ ︸
Iu−Iuf (p)

, (8)

ŷ(k − 1 + p|k), . . . , ŷ(k + 1|k)︸ ︷︷ ︸
Iyp(p)

, y(k), . . . , y(k − nA + p)︸ ︷︷ ︸
nA−Iyp(p)

) + d(k)

The predictions ŷ(k + p|k) depend on Iuf (p) = max(min(p − τ + 1, Iu), 0) future
values of the control signal (i.e. decision variables of the MPC algorithm), where
Iu = nB − τ + 1, Iu − Iuf (p) values of the control signal applied to the plant
at previous sampling instants, Iyp(p) future output predictions and nA − Iyp(p)
plant output signal values measured at previous sampling instants. It is evident
that for prediction the model has to be used recursively, because the predictions
depend on the predictions calculated for previous sampling instants within the
prediction horizon. In spite of the fact that a one-step ahead predictor is given
as the result of backpropagation training, it is used for N -step ahead prediction.
Since model inaccuracies are unavoidable, the prediction error is propagated.

3 MPC-NPL Algorithm with Structured Neural Models

3.1 Structured Neural Model of the Process

Rewriting the model (7) for sampling instants k − 1, . . . , k − N + 1 one has

y(k − 1) = f(u(k − τ − 1), . . . , u(k − nB − 1), (9)
y(k − 2), . . . , y(k − nA − 1))

...
y(k − N + 2) = f(u(k − τ − N + 2), . . . , u(k − nB − N + 2), (10)

y(k − N + 1), . . . , y(k − nA − N + 2))
y(k − N + 1) = f(u(k − τ − N + 1), . . . , u(k − nB − N + 1), (11)

y(k − N), . . . , y(k − nA − N + 1))
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Using (11), the quantity y(k − N + 2) given by (10) can be expressed as

y(k − N + 2) = f(u(k − τ − N + 2), . . . , u(k − nB − N + 2), (12)
f(u(k − τ − N + 1), . . . , u(k − nB − N + 1),

y(k − N), . . . , y(k − nA − N + 1)),
y(k − N), . . . , y(k − nA − N + 2))

which can be rewritten as the function

y(k − N + 2) = fN−2(u(k − τ − N + 2), . . . , u(k − nB − N + 1),
y(k − N), . . . , y(k − nA − N + 1)) (13)

Model arguments rearrangement can be repeated for all y(k − N + 2), . . . , y(k),
giving the functions fN−2, . . . , f0. Finally, one has

y(k) = f(u(k − τ), . . . , u(k − nB), (14)
f1(u(k − τ − 1), . . . , u(k − nB − N + 1), . . . ,

y(k − N), . . . , y(k − nA − N + 1)), . . . ,
fnA(u(k − τ − nA), . . . , u(k − nB − N + 1),

y(k − N), . . . , y(k − nA − N + 1)))

which can be rewritten as the function

y(k) = f0(u(k − τ), . . . , u(k − nB − N + 1), (15)
y(k − N), . . . , y(k − nA − N + 1))

The obtained equation (15) represents the structured model. Using (5) the out-
put predictions for p = 1, . . . , N calculated from the structured model are

ŷ(k + p|k)=f0(u(k − τ + p|k), . . . , u(k|k)︸ ︷︷ ︸
Iuf (p)

, u(k − 1), . . . , u(k − nB − N + 1 + p)︸ ︷︷ ︸
Iu−Iuf (p)

,

y(k − N + p), . . . , y(k − nA − N + 1 + p)︸ ︷︷ ︸
nA

) + d(k) (16)

For the structured model Iu = nB + N − τ . As in the case of the model (7), the
predictions ŷ(k + p|k) calculated by means of the structured model (15) depend
on Iuf (p) future values of the control signal, Iu − Iuf (p) values of the control
signal applied to the plant at previous sampling instants. Unlike the classical
predictions (8), they do not depend on the predictions calculated for previous
sampling instants within the prediction horizon, but only on nA values of the
plant output signal measured at previous sampling instants. As a result, the
structured model is not used recursively, the prediction error is not propagated.

In the sequel it is assumed that a feedforward neural network with one hid-
den layer and linear output [1] is used as the function f0 in (15), hence f0 :
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�nA+nB−τ+N −→ � ∈ C1, τ ≤ nB + N − 1. Output of the model can be
expressed as

y(k) = f0(x(k)) = w2
0 +

K∑

i=1

w2
i vi(k) = w2

0 +
K∑

i=1

w2
i ϕ(zi(k)) (17)

where zi(k) and vi(k) are the sum of inputs and the output of the i-th hidden
node, respectively, ϕ : � −→ � is the nonlinear transfer function (e.g. hyperbolic
tangent), K is the number of hidden nodes. Recalling the prediction of the
structured model (16) one has

zi(k + p|k) = w1
i,0 +

Iuf (p)∑

j=1

w1
i,ju(k − τ + 1 − j + p|k)+ (18)

+
Iu∑

j=Iuf (p)+1

w1
i,ju(k − τ + 1 − j + p)+

+
nA∑

j=1

w1
i,Iu+jy(k − j − N + 1 + p)

Weights of the network are denoted by w1
i,j , i = 1, . . . , K, j = 0, . . . , nA + nB −

τ + N , and w2
i , i = 0, . . . , K, for the first and the second layer, respectively.

3.2 MPC-NPL Optimisation Problem

In the MPC-NPL algorithm [6], [7], [17], [18] at each sampling instant k the
neural model is used on-line twice: to determine the local linearisation and the
nonlinear free trajectory. It is assumed that the output prediction can be ex-
pressed as the sum of the forced trajectory, which depends only on the future
(on future input moves Δu(k)) and the free trajectory y0(k), which depends
only on the past

ŷ(k) = y0(k) + G(k)Δu(k) (19)

where

ŷ(k) = [ŷ(k + 1|k) . . . ŷ(k + N |k)]T (20)

y0(k) =
[
y0(k + 1|k) . . . y0(k + N |k)

]T
(21)

The dynamic matrix G(k) of dimensionality N × Nu is calculated on-line from
the linearisation of the nonlinear model taking into account the current state of
the plant

G(k) =

⎡

⎢⎢⎢⎣

s1(k) 0 . . . 0
s2(k) s1 . . . 0

...
...

. . .
...

sN (k) sN−1(k) . . . sN−Nu+1(k)

⎤

⎥⎥⎥⎦ (22)
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The step-response coefficients of the linearised model are determined from

sj(k) =
min(j,nB+N−1)∑

i=1

bi(k) −
min(j−1,nA+N−1)∑

i=1

ai(k)sj−i(k) (23)

where ai(k) and bi(k) are coefficients of the linearised model. Calculation of
these quantities and the nonlinear free trajectory is detailed in the following
subsections.

On the one hand, the suboptimal prediction calculated from (19) is different
from the optimal one determined from the nonlinear neural model as it is done
in MPC algorithms with nonlinear optimisation [17]. On the other hand, thanks
to using the superposition principle (19), the optimisation problem (4) becomes
the following quadratic programming task

min
Δu(k)

{
J(k) =

∥∥yref (k) − y0(k) − G(k)Δu(k)
∥∥2 + ‖Δu(k)‖2

Λ

}

subject to
umin ≤ JΔu(k) + uk−1 ≤ umax

−Δumax ≤ Δu(k) ≤ Δumax

ymin ≤ ŷ(k) ≤ ymax

(24)

where vectors of length N are

yref (k) =
[
yref (k + 1|k) . . . yref (k + N |k)

]T
(25)

ymin(k) =
[
ymin . . . ymin]T

(26)

ymax(k) = [ymax . . . ymax]T (27)

vectors of length Nu are

umin(k) =
[
umin . . . umin]T

(28)

umax(k) = [umax . . . umax]T (29)

Δumax(k) = [Δumax . . . Δumax]T (30)

uk−1(k) = [u(k − 1) . . . u(k − 1)]T (31)

J is the all ones lower triangular matrix of dimensionality Nu × Nu and Λ =
diag(λ0, . . . , λNu−1).

Structure of the MPC-NPL algorithm is depicted in Fig. 1. At each sampling
instant k the following steps are repeated:

1. Linearisation of the structured neural model: obtain the matrix G(k).
2. Find the nonlinear free trajectory y0(k) using the structured neural model.
3. Solve the quadratic programming problem (24) to determine Δu(k).
4. Apply u(k) = Δu(k|k) + u(k − 1).
5. Set k := k + 1, go to step 1.
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Fig. 1. Structure of the MPC algorithm with Nonlinear Prediction and Linearisation
(MPC-NPL)

3.3 On-Line Linearisation of the Structured Neural Model

Defining the linearisation point as a vector composed of past input and output
signal values corresponding to the arguments of the structured neural model (15)

x̄(k) = [ū(k − τ) . . . ū(k − nB − N + 1) ȳ(k − N) . . . ȳ(k − nA − N + 1)]T

(32)
and using Taylor series expansion at this point, the linear approximation of the
model, obtained at a sampling instant k, can be expressed as

y(k) = g(x̄(k)) +
nB+N−1∑

l=τ

bl(x̄(k))(u(k − l) − ū(k − l))+ (33)

−
nA+N−1∑

l=N

al(x̄(k))(y(k − l) − ȳ(k − l))

where al(x̄(k)) = −∂f0(x̄(k))
∂y(k−l) , bl(x̄(k)) = ∂f0(x̄(k))

∂u(k−l) . Taking into account the struc-
ture of the neural model and corresponding equations (17), (18), the coefficients
of the linearised model are calculated from

al(x̄(k)) =

⎧
⎪⎨

⎪⎩

0 l = 1, . . . , N − 1

−
K∑

i=1

w2
i

dϕ(zi(x̄(k)))
dzi(x̄(k))

w1
i,Iu+l−N+1 l = N, . . . , nA + N − 1

(34)

bl(x̄(k)) =

⎧
⎪⎨

⎪⎩

0 l = 1, . . . , τ − 1
K∑

i=1

w2
i

dϕ(zi(x̄(k)))
dzi(x̄(k))

w1
i,l−τ+1 l = τ, . . . , nB + N − 1

(35)

If hyperbolic tangent is used as the function ϕ, dϕ(zi(x̄(k)))
dzi(x̄(k)) = 1−tanh2(zi(x̄(k))).
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3.4 Calculation of the Nonlinear Free Trajectory

The nonlinear free trajectory y0(k + p|k), p = 1, . . . , N , is calculated on-line
recursively from the general prediction equation (5) using the structured neural
model defined by (17) and (18)

y0(k + p|k) = w2
0 +

K∑

i=1

w2
i ϕ(z0

i (k + p|k)) + d(k) (36)

The quantities z0
i (k + p|k) are determined from (18) assuming no changes in the

control signal from a sampling instant k onwards, i.e. u(k + p|k) := u(k − 1) for
p ≥ 0. One has

z0
i (k + p|k) = w1

i,0 +
Iuf (p)∑

j=1

w1
i,ju(k − 1) +

Iu∑

j=Iuf (p)+1

w1
i,ju(k − τ + 1 − j + p)+

+
nA∑

j=1

w1
i,Iu+jy(k − j − N + 1 + p) (37)

From (6) and (17), the unmeasured disturbance is

d(k) = y(k) −
(

w2
0 +

K∑

i=1

w2
i ϕ(zi(k))

)
(38)

4 Simulation Results

The process under consideration is a polymerisation reaction taking place in a
jacketed continuous stirred tank reactor [9]. The reaction is the free-radical poly-
merisation of methyl methacrylate with azo-bis-isobutyronitrile as initiator and
toluene as solvent. The output NAMW (Number Average Molecular Weight) is
controlled by manipulating the inlet initiator flow rate FI .

Three models of the process are used. The fundamental model [9] is used as
the real process during simulations. An identification procedure is carried out,
as a result a linear model and a structured neural model are obtained. Three
MPC algorithms are compared:

a) the MPC algorithm with the linear model,
b) the MPC algorithm with Nonlinear Optimisation (MPC-NO) with the struc-

tured neural model containing 6 hidden nodes (K = 6),
c) the MPC-NPL algorithm with the same structured neural model.

The horizons are N = 5, Nu = 3, the weighting coefficients λp = 0.2. The
manipulated variable is constrained, Fmin

I = 0.003, Fmax
I = 0.06, the sampling

time is 1.8 min.
As the reference trajectories, four set-point changes occurring at k = 1 are con-

sidered, namely from NAMW = 20000 to NAMW = 25000, NAMW = 30000,
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Fig. 2. Left: simulation results of the MPC algorithm with the linear model, right:
simulation results of the MPC-NPL (dashed) and MPC-NO (solid) algorithms with
the same structured neural network model

NAMW = 35000 and NAMW = 40000, respectively. Simulation results of the
considered MPC algorithms are depicted in Fig. 2. The MPC algorithm with the
linear model works satisfactorily for the smallest set-point change, but for bigger
ones the system becomes unstable. Both nonlinear algorithms with the struc-
tured neural model are stable. Moreover, for four considered set point changes
the closed-loop performance obtained in the suboptimal MPC-NPL algorithm
with quadratic programming is similar to that obtained in the computationally
demanding MPC-NO approach, in which a nonlinear optimisation problem has
to be solved on-line at each sampling instant.

5 Conclusion

Reliability, computational efficiency and closed-loop accuracy are the advantages
of the presented MPC-NPL algorithm with structured neural network models.
The MPC-NPL algorithm uses on-line only the numerically reliable quadratic
programming procedure, the necessity of full nonlinear optimisation is avoided.
Although suboptimal, in practice the algorithm gives performance comparable
to that obtained in MPC schemes with nonlinear optimisation.

The structured neural model predicts future values of the output without
taking into account previous predictions calculated within the prediction hori-
zon. The structured model is not used recursively, the prediction error is not
propagated. Conceptually, the modelling idea presented in this paper can be
regarded as the modification of the linear multi-model approach [4], [16] so as
to effectively deal with nonlinear processes. Instead of having a set of separate
models, i.e. one model for each sampling instant within the prediction horizon,
only one structured neural model is used. The presented idea is general, various
structured model types and resulting MPC algorithms can be developed [6].
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7. �Lawryńczuk, M., Tatjewski, P.: An efficient nonlinear predictive control algorithm
with neural models and its application to a high-purity distillation process. In:
Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2006.
LNCS (LNAI), vol. 4029, pp. 76–85. Springer, Heidelberg (2006)

8. Maciejowski, J.M.: Predictive control with constraints, Harlow. Prentice-Hall, En-
glewood Cliffs (2002)

9. Maner, B.R., Doyle, F.J., Ogunnaike, B.A., Pearson, R.K.: Nonlinear model predic-
tive control of a simulated multivariable polymerization reactor using second-order
Volterra models. Automatica. 32, 1285–1301 (1996)

10. Morari, M., Lee, J.H.: Model predictive control: past, present and future. Comput-
ers and Chemical Engineering. 23, 667–682 (1999)

11. Nørgaard, M., Ravn, O., Poulsen, N.K., Hansen, L.K.: Neural networks for mod-
elling and control of dynamic systems. Springer, London (2000)

12. Parisini, T., Sanguineti, M., Zoppoli, R.: Nonlinear stabilization by receding-
horizon neural regulators. Int. Journal of Control. 70, 341–362 (1998)

13. Piche, S., Sayyar-Rodsari, B., Johnson, D., Gerules, M.: Nonlinear model predictive
control using neural networks. IEEE Control Systems Magazine 20, 56–62 (2000)

14. Pottmann, M., Seborg, D.E.: A nonlinear predictive control strategy based on radial
basis function models. Computers and Chemical Engineering 21, 965–980 (1997)

15. Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technol-
ogy. Control Engineering Practice 11, 733–764 (2003)

16. Rossiter, J.A., Kouvaritakis, B.: Modelling and implicit modelling for predictive
control. Int. Journal of Control 74, 1085–1095 (2001)

17. Tatjewski, P.: Advanced control of industrial processes, Structures and algorithms.
Springer, London (2007)
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Neural Dynamics Based Exploration Algorithm

for a Mobile Robot

Jeff Bueckert and Simon X. Yang

Advanced Robotics and Intelligent Systems Lab
School of Engineering

University of Guelph, Guelph, Canada

Abstract. A primary goal for an autonomous mobile robot is to explore
and perfrom simultaneous localization and mapping (SLAM). During
SLAM, the robot must balance the opposing desires of pose certainty
maintenance and information gain. Much of previous research has ig-
nored the need of pose maintenance. This paper provides the first step
in developing a neural dynamics based algorithm which considers both in-
formation gain and pose maintenance when determining the robot’s next
pose. Simulation results show that the algorithm is able to provide the
robot with an exploration plan to fully explore the tested environments.
The next step is to apply the algorithm in a full SLAM environment.

1 Introduction

To build an accurate model of its environment, an autonomous mobile robot must
solve three subtasks: localization, mapping and motion control [2,1]. Localization
is the task of estimating the robot’s position. Mapping is the task of using sensor
data to build a representation of the environment. Finally, motion control is the
task of steering the robot to the desired location.

In the SLAM problem, motion control is typically not considered. And in
most exploration implementations (mapping and motion control), localization is
not considered. This is the case for [4, 3]. Both search for a new location where
the information gain is expected to be the greatest and then use a path plan-
ning algorithm to reach the location. Neither algorithm considers pose certainty
maintenance. The robot should balance reducing pose uncertainty and informa-
tion gain when building a map. There is limited research into developing an
integrated approach to exploration which satisfies these needs [5].

However, while the work put forward in [5] successfully considers pose uncer-
tainty during exploration, it is based on extended Kalman filter SLAM (EKF
SLAM). EKF SLAM requires the presence and recognition of landmarks in the
environment; modification to an environment may not be possible in all situa-
tions [6,1]. Furthermore, EKF SLAM is limited to sparse maps, has a high update
cost; and, if a past data association is found to be incorrect, it is impossible to re-
vise it [6]. The work in [7] combines exploration and pose certainty maintenance
by encouraging loop closure. This provides improvement in pose certainty over
frontier based exploration [7]. The additional resources required and maintenance

J. Marques de Sá et al. (Eds.): ICANN 2007, Part II, LNCS 4669, pp. 640–649, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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of topological maps are a small increase in computational load [7]. However, the
method uses an expensive laser scanner for a sensor payload as compared to
relatively inexpensive sonar sensors.

A second flaw with [4] is that it does not update sensor data between frontiers
which may be a significant distance apart. As a result the robot does not increase
its certainty by revisiting areas, nor is it able to observe changes in these areas.
This makes this approach unsuitable for dynamic environments.

Neural dynamics show promise in the field of mobile robotics. The work in [8]
uses a shunting model neural network to provide real-time path planning for
a point robot in three dimensions and the ability for a point robot to track a
moving target in two dimensions. This work is able to cope with a dynamic
environment and it is computationally efficient. The shunting model neural net-
work has also been used in [9] to solve the problem of complete area coverage
navigation.

The proposed research focuses on using a neural network to provide an ex-
ploration plan for an existing grid-based SLAM algorithm. This is an integrated
approach as the neural network will consider minimizing pose uncertainty when
determining the next pose for the robot. The neural network presented in [9]
is the model on which this neural network is based. Unlike the work in [9], the
map used by the neural network is an occupancy grid map. Unexplored areas
of the map are the excitatory inputs for the network, while the inhibitory in-
puts are obstacles detected in the environment. A secondary excitatory input
is used whose activation will be controlled by pose uncertainty. This input is
explored areas; and it will encourage the robot to visit previously explored areas
to improve pose and map certainty.

The research is divided into three stages. The initial stage forgoes the SLAM
algorithm. Instead the localization procedure is assumed to be perfect. This
allows the exploration algorithm to be developed without the additional com-
plications of SLAM. Next the exploration algorithm will be implemented in an
environment with SLAM. In this second implementation the algorithm will not
use the second excitatory input relegated by pose uncertainty. This allows a
baseline to be established for comparison with the final version of the algorithm.
Plus, any problems in marrying the exploration algorithm with the grid-based
SLAM algorithm may be resolved. The final version of the algorithm implements
the second excitatory input. This paper focuses on the first stage of the research.

The problems tested in this paper are four environments of varying complexity.
As previously stated, localization is assumed to be perfect. Sensor readings are
assumed to be imperfect and corrupted with white Gaussian noise.

2 The Proposed Exploration Algorithm

For mapping the robot maintains an occupancy grid map. Robot movement is
restricted to the grid cells adjacent to the robot’s location. After moving, the
robot re-samples its sensors. This avoids the problem in [4] where the sensors are
not sampled between frontier locations that can be a greater than one grid cell
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apart, making the algorithm suitable for dynamic environments. The proposed
algorithm for exploration is composed of 5 steps:

1. Refresh sensor data.
2. Update occupancy grid to reflect sensor data.
3. Fuzzify occupancy grid values using neural input functions.
4. Update neural network using output from neural input functions.
5. Determine next pose for the robot.

The process is repeated until the map is sufficiently revealed.

2.1 Occupancy Grid Updating

Updating the occupancy grid is done as described in [6]. The values used for
the parameters in the update process are l0 = 0, lfree = log (0.4/0.6) and locc =
log (0.6/0.4). The parameter l0 denotes prior knowledge of the occupancy of the
map; it is chosen to be 0. It is assumed nothing is known apriori to the mapping
process; therefore, cells have equal probability of being occupied or free. The
information gained by detecting either an obstacle or a free space has the same
weight. The magnitude was also chosen to be relatively small so that no single
datum indicating an obstacle or a free space can overwhelm the status of the
grid cell. Instead, a history of data indicating the same state is needed for the
grid cell to converge to a state.

2.2 Neural Input Function

The values of the occupancy grid map are classified before they are used as input
for the neural network. Each cell in the occupancy grid has membership in two
fuzzy classifications: unexplored and obstacle. Absolute uncertainty is a value of
0.5 in the occupancy grid; this value generates the maximum excitatory input. A
grid cell that is certainly an obstacle, a 1 in the occupancy grid map, generates
the maximum inhibitory input. A grid cell that is guaranteed to be empty, a 0
in the occupancy grid map, generates no input at this stage in the research. A
single value combining the fuzzy classifications for the single cell is generated by

n (mi) = f (mi) − g (mi) , (1)

where mi is the ith cell in the occupancy grid map, f (a) is the unexplored
membership function, g (a) is the obstacle membership function, and n (a) is
the neural input function response. Five different types of membership functions
were used: Gaussian, sigmoidic, step, trapezoidal and triangular Fig.1.

2.3 Neural Network Updating

The neural network in the algorithm employs the shunting model equation,

dxt

dt
= −Axi + (B − xi)S+

i − (D + xi)S−
i , (2)
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Fig. 1. Neural input functions

where xi is the neural activity of the ith neuron; A is the passive decay; B and
D are the upper and lower bounds; and, S+

i and S−
i are the total excitatory

and inhibitory inputs to neuron i respectively. Equation 2 was developed by
Grossberg [10] through the work put forth by Hodgkin and Huxley and their
neural membrane equation [11].

The neural network used in the algorithm is a two dimensional network where
the neurons have a one to one relationship with the occupancy grid cells. Neuron
connections only exist between neurons that lie within a radius of r = 2 of each
other (Fig. 2).

The variables S+
i and S−

i are chosen such that the equation for each neuron’s
activity is

dxi

dt
= −Axi + (B − xi)

⎛

⎝[Ii]
+ +

M∑

j=1

wij [xj ]
+

⎞

⎠ − (D + xi) [Ii]
− . (3)

The passive decay is A = 50, and the upper and lower bounds of neural activity,
B and D, are 1. The input to a neuron is Ii = En (mi), where E = 100. The

r

i

j
w

ij

Fig. 2. Adjacent neuron map
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two nonlinear functions, [a]+ and [a]−, are defined as [a]+ = max {0, a} and
[a]− = max {0, −a}. The connection weight between neurons i and j is given
by wij = f (|mi − mj|), where |mi − mj | is the Euclidean distance between mi

and mj . The function f (a) is f (a) = μ/a if 0 ≤ a < r; f (a) = 0 if a ≥ r,
where μ = 2. This equation allows excitatory signals to propagate throughout
the network over time while the inhibitory signals only have a local effect [9].

2.4 Determining Next Pose

The principle factor in determining the robot’s next pose is the neural activity of
the adjacent neurons. However, there are other costs that we wish to minimize:
change in orientation and proximity to obstacles. Changes in orientation should
be minimized as they increase the cost of exploration. The robot should not hug
obstacles so that greater information is obtained from sensors facing obstacles.
Only neurons that have positive neural activity are rewarded for minimizing
these secondary costs to avoid neurons with negative activity becoming the best
candidate for the next pose.

The work in [9] proposes a reward function for minimizing changes in orien-
tation,

yj = c

(
1 − |Δθj |

π

)
. (4)

The parameter c is a positive constant and |Δθj | is the absolute change in
orientation associated with moving from mi to mj ; it is bounded on [0, π].

A second reward function is developed to encourage the robot to maintain a
distance between itself and any identified obstacles,

zj = d · q (rj) . (5)

The parameter d is a positive constant and rj is the Euclidean distance from
mj to the nearest occupancy grid map cell with a value greater than or equal to
0.75. The function q (rj) is defined as

q (rj) =
{

rj/rcut-off if rj ≤ rcut-off
1 if rj > rcut-off

. (6)

The parameter rcut-off defines at what point extra distance between the robot
and the obstacle provides no additional benefit. If rcut-off is too large, the robot
will avoid entering narrow corridors.

The next robot pose is chosen as the adjacent occupancy grid cell mj that
maximizes the sum of the neural activity for the occupancy grid cell, xj , and
the associated rewards from Eq. (4) and Eq. (5):

mnext ⇐ xmnext = max {xj + yj + zj , j = 1, . . . , k} , (7)

where k is the number of neighboring neurons. In this implementation, k ≤ 8.



Neural Dynamics Based Exploration Algorithm for a Mobile Robot 645

2.5 Computational Complexity

The complexity of the algorithm depends linearly on the area of the occupancy
grid that is used [9]. The number of required neurons is N = Nx × Ny, where
Nx and Ny are the dimensions of the occupancy grid map [9]. The design of
the neural network allows each neuron to have at most 8 neighbors. Therefore,
an upper bound on the total number of neural connections is 8N ; giving the
algorithm a computational complexity of O (N) [9].

3 Simulation

The simulated robot occupies one grid cell. The simulated robot has 12 sonar
sensors that have a maximum range of 10 grid cells and have a beam width
of 30◦. This configuration was chosen so that no blind spots existed directly
adjacent to the robot. If a blind spot did exist, the robot would choose it as
its next pose. This is unsafe as there would be no certainty regarding the cell’s
status as an obstacle.

Four maps are used to test the algorithm; each measures 50 by 50 grid cells.
Location (0, 0) is taken as the top left corner; Table 1 gives the starting robot
pose for each map. The geometry of the maps is provided in Fig. 3 and they are of
increasing complexity. The map M1 is an environment where there are no corri-
dors; the map M2 is an environment where one corridor exists in an corner behind
a square obstacle; and, the map M3 is another structured environment that is
different by introducing an alcove into a central obstacle. The map M4 is a map

Table 1. Starting robot pose for test maps

Test Starting pose
map x y θ

m1 34 5 π/2
m2 25 25 π
m3 45 45 π
m4 39 13 π/2

R

(a) M1

R

(b) M2

R

(c) M3

R

(d) M4

Fig. 3. Maps used for testing
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that represents a less structured environment - one that represents what a mobile
robot might encounter in nature. The robot’s starting position is denoted by R.

3.1 Simulation Results

Algorithm performance was analysed using two metrics: time and energy. Time
is measured as the number of iterations to sufficiently reveal the map, t. Energy
is measured as the distance the robot travels to reveal the map, l. The simulation
trials were run once with no reward functions and once with the reward functions
being used. The values for c = 2.5 × 10−6, d = 0.04 and rcut-off = 3 were
determined experimentally. In each trial, the five different neural input functions
were tested.

No Rewards. With no reward functions, the next pose is determined only
through neural activity. There is no extra incentive for the robot to follow a
straight path or follow a path that distances itself from obstacles. The results
for each map are presented in Table 2; the best paths generated for each map
are presented in Fig. 4.

In Fig. 4 two robot behaviors are apparent: wall following, and a tendency
to zigzag locally while globally following a straight path. These behaviors are
caused by blind spots that occur when the robot is approaching a wall. Once
a robot is directly adjacent to the wall, the sensors cannot reliably detect an
obstacle diagonal to the robot - leaving the area unexplored and attracting the
robot toward it. Free space on the opposite side does not attract the robot as

Table 2. Simulation results with no rewards. *Robot did not completely explore the
environment.

Neural input M1 M2 M3 M4

function t l t l t l t l

Gaussian 328 402.8 364 441.9 352∗ 410.0∗ 215∗ 275.5∗
Sigmoidic 332 389.8 345 402.2 338* 363.7* 418* 512.0*

Step 291 377.4 337 405.3 356 394.9 328 402.1
Trapezoidal 294 379.6 324 373.7 358 457.8 343 420.5
Triangular 378 425.0 384 446.1 383 399.6 426 511.7

(a) M1 step (b) M2 trapezoidal (c) M3 step (d) M4 step

Fig. 4. Best paths using no rewards
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the unexplored areas do; so, there is nothing to deter circumnavigating the wall.
Once the area around the wall is explored, the robot is drawn to the interior, as
seen in Fig. 4(a) and Fig. 4(c).

While the robot exhibits these potentially undesirable behaviors, three of the
five neural inputs functions were able to provide an exploration plan for each
of the maps tested: the step, the trapezoidal and the triangular neural input
functions (Table 2).

With Reward Functions. With the inclusion of the reward functions, the
mobile robot now attempts to maintain a distance from obstacles and receives a
slight reward for minimizing changes in its orientation. Table 3 lists the results
for each map while Fig. 5 presents the best paths generated for each map.

Backtracking is more of an issue when using the reward functions, Fig. 5(b)
and 5(d). The robot avoids close proximity to obstacles, and while zigzagging is
reduced in Fig. 5(a) compared to Fig. 4(a), it could be improved further. The
maps M1 and M3 show the greatest improvement and present reasonable paths.

No neural input function was able to sufficiently map the environment for the
map M4. All except the triangular neural input function revealed approximately
the same map and had the exact same problem area: the top right corner. Due to
the narrow corridor that exists in this location, as the robot enters the corridor it
detects the walls but it is unsure if the obstacle is directly ahead of it or diagonal
to it. Therefore, the robot is deterred from entering the corridor. This problem
may be averted by using a greate number of sensors with narrower beam widths.

Table 3. Simulation results with reward functions. *Robot did not completely explore
the environment.

Neural input M1 M2 M3 M4

function t l t l t l t l

Gaussian 278 358.4 413 508.7 244 310.7 490∗ 632.9∗
Sigmoidic 354 452.2 407 512.6 387 495.1 409* 518.8*

Step 280 358.7 353* 456.1* 263* 328.9* 422* 531.8*
Trapezoidal 335 434.8 459* 554.7* 312 395.7 422* 527.6*
Triangular 499* 623.3* 437* 543.0* 499* 610.0* 499* 623.7*

(a) M1 Gaussian (b) M2 sigmoidic (c) M3 Gaussian (d) M4 sigmoidic

Fig. 5. Best paths using rewards
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4 Conclusion

The research has generated an algorithm that has been shown to be able to
provide a successful exploration plan for a mobile robot. The algorithm has
been presented with both with and without reward functions.

With no reward functions, the robot tended to maintain a close proximity
to obstacles and to exhibit a local zigzagging behavior. The close proximity
to obstacles is a concern for sensor efficiency and safety. If a sensor reading is
spurious, the robot may run into an obstacle. Different neural input functions
were also examined; the trapezoidal and step neural input functions performed
the best.

The reward functions had mixed effects on the algorithm’s performance. Occa-
sionally the reward functions discouraged the robot from exploring new territory
in favor of maintaining the current heading or avoiding a narrow corridor, Fig.
5(d). There were also occasions where the reward functions benefited the algo-
rithm, Fig. 5(a) and Fig. 5(c). The Gaussian neural input function proved to
provide the best overall exploration solution.

The algorithm presented is to be used in conjunction with a grid-based SLAM
algorithm. This avoids the need for landmark recognition as is the case in [5].
Unlike frontier based approaches in [4, 3], this algorithm allows the path to be
changed at any time, making better use of the sensors that are available.

5 Future Work

Further work may yield a better combination of parameters for the reward func-
tions. While providing large advantages in some situations, the reward functions
are not as consistent as desired. The problem with pursuing this is a matter of
time due to range of values for the paramters. Another avenue of further work is
to re-examine the simulation data to find a common problem among the trials
and develop a reward function to avoid this fault.

In the larger research framework, the work presented here is a large step in
developing a neural dynamics based exploration algorithm for a SLAM envi-
ronment. What must be done next is to implement this algorithm in a SLAM
environment as opposed to an environment where perfect localization is assumed.
This will provide a performance baseline for the algorithm. Modifications can
then be made with additional excitatory inputs and reward functions. As shown
in other works, such as in [7], an exploration algorithm that considers pose main-
tenance generates maps of higher fidelity. As a result, presumably these new
reward functions will be conditioned by pose certainty and may reward a robot
who has greater pose uncertainty to choose a new pose that might increase pose
certainty. Moreover, the algorithm should be tested in a dynamic environment
as the benefits of the safety attained from maintaining a distance from obstacles
may become more apparent.
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Abstract. This paper discusses the problem of cooperation of economic
optimisation with Model Predictive Control (MPC) algorithms when the
dynamics of disturbances is comparable with the dynamics of the pro-
cess. A dynamic neural model is used in the suboptimal nonlinear MPC
algorithm with Nonlinear Prediction and Linearisation (MPC-NPL), a
steady-state neural model is used in approximate economic optimisation
which is executed as frequently as the MPC algorithm. The MPC-NPL
algorithm requires solving on-line only a quadratic programming prob-
lem whereas approximate economic optimisation needs solving a linear
programming problem. As a result, the necessity of repeating two non-
linear optimisation problems at each sampling instant is avoided.

1 Introduction

The hierarchical (multilayer) control system structure has been used for years
in process control [1], [2], [3], [13]. The regulatory control layer keeps process
at given operating points and the optimisation layer calculates these set-points.
Model Predictive Control (MPC) algorithms [9], [12], [13] are usually used at
the regulatory layer largely due to their unique ability to take into account con-
straints imposed on process inputs (manipulated variables) and outputs (con-
trolled variables) or state variables, which usually decide on quality, economic
efficiency and safety of production and efficiency in multivariable process control.

When the classical multilayer control system structure is used, it is usually
assumed that the disturbances are slowly-varying when compared to the dynam-
ics of the process. Thanks to such an assumption, the steady-state nonlinear
economic optimisation problem can be solved reasonably less frequently than
the MPC controllers execute. Provided that the dynamics of disturbances is
much slower than the dynamics of the plant, such an approach gives satisfactory
results. In many practical cases, however, the dynamics of the disturbances is
comparable with the process dynamics. Very often the disturbances, for example
flow rates, properties of feed and energy streams etc., vary significantly and not
much slower than the dynamics of the controlled process. In such cases operation
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in the classical hierarchical structure with frequency of the economic optimisa-
tion much lower than that of MPC can result in a significant loss of economic
effectiveness [13]. Ideally, it would be best to perform full nonlinear optimisation
but with increased frequency. Obviously, because of high computational burden,
such an approach has limited applicability and is rarely implementable on-line.

This paper discusses a computationally efficient approach to the problem of
cooperation of economic optimisation and MPC algorithms. An additional ap-
proximate economic optimisation problem is solved as frequently as the MPC
executes. It recalculates the optimal operating point determined by the nonlin-
ear economic optimisation layer which is activated infrequently. A steady-state
neural model is used in the approximate and nonlinear economic optimisation,
a dynamic neural model is used in the suboptimal nonlinear MPC algorithm
with Nonlinear Prediction and Linearisation (MPC-NPL) [7], [8], [13]. Funda-
mental models, although potentially very precise, are usually not suitable for
on-line control and optimisation because they are very complicated and may
lead to numerical problems (e.g. ill-conditioning, stiffness, etc.). Neural models
[4], [5], [11] are used because they have excellent approximation abilities, small
number of parameters and simple structure. Moreover, problems typical of fun-
damental models are not encountered because neural models directly describe
input-output relations of process variables, complicated systems of algebraic and
differential equations do not have to be solved on-line.

2 MPC Cooperating with Economic Optimisation

2.1 Economic Optimisation Problem

The objective of the economic optimisation is to maximise the production profit
and satisfy the constraints, which determine safety and quality of production.
Typically, the economic optimisation layer solves the following problem (for sim-
plicity of presentation Single-Input Single-Output (SISO) process is assumed)

min
us

{JE(k) = cuus − cyys}

subject to
umin ≤ us ≤ umax

ymin ≤ ys ≤ ymax

ys = fs(us, hs)

(1)

where u is the input of the process (manipulated variable), y is the output
(controlled variable) and h is the measured (or estimated) disturbance, the su-
perscript ’s’ refers to the steady-state. The function fs : �2 −→ � ∈ C1 denotes
a comprehensive steady-state process model. The quantities cu, cy represent
prices resulting from economic considerations, umin, umax, ymin, ymax denote con-
straints imposed on input and output variables, respectively. Nonlinear nature
of the steady-state model ys = fs(us, hs) means that the economic optimisation
requires solving on-line the nonlinear optimisation problem (1).
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2.2 Model Predictive Control Optimisation Problem

In the MPC algorithms [9], [13] at each consecutive sampling instant k a set of
future control increments is calculated

Δu(k) = [Δu(k|k) Δu(k + 1|k) . . .Δu(k + Nu − 1|k)]T (2)

Only the first element of the determined sequence (2) is applied to the process,
the control law is u(k) = Δu(k|k) + u(k − 1). At next sampling instant, k + 1,
the prediction is shifted one step forward and the whole procedure is repeated.

Let us
eo denote the optimal solution to the economic optimisation problem

(1). Using the nonlinear steady-state model ys = fs(us, hs), the value ys
eo cor-

responding to us
eo is calculated. The quantity ys

eo is then passed as the desired
set-point to the MPC optimisation problem

min
Δu(k)

{J(k) =
N∑

p=1

(ys
eo − ŷ(k + p|k))2 +

Nu−1∑

p=0

λp(Δu(k + p|k))2}

subject to
umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1
−Δumax ≤ Δu(k + p|k) ≤ Δumax, p = 0, . . . , Nu − 1
ymin ≤ ŷ(k + p|k) ≤ ymax, p = 1, . . . , N

(3)

where N and Nu are the prediction and control horizons, respectively, λp > 0.

3 Neural Models in MPC Cooperating with Economic
Optimisation

As increasing the frequency of the economic optimisation layer is limited in
practice because of its high computational burden, the MPC layer is often sup-
plemented with additional steady-state target optimisation [6], [12], [13]. Steady-
state target optimisation closely cooperates with the MPC layer, the steady-state
operating-point determined by the nonlinear economic optimisation layer acti-
vated infrequently is recalculated as frequently as the MPC executes. Typically,
in steady-state target optimisation a simplified constant linear model is used.
Conceptually, it would be better to use a more accurate model.

Structure of the considered control system is depicted in Fig. 1. It consists of
nonlinear economic optimisation, approximate steady-state target optimisation
and the suboptimal MPC-NPL algorithm. A steady-state neural model is used in
economic optimisation and steady-state target optimisation whereas a dynamic
neural model is used in the MPC-NPL algorithm. Economic optimisation, in
which the nonlinear optimisation problem (1) is solved, is executed infrequently.
At each sampling instant steady-state target optimisation and MPC optimisation
problems are solved. Steady-state target optimisation recalculates the optimal
set-point when economic optimisation is not activated. The MPC-NPL optimisa-
tion problem is of quadratic programming type, steady-state target optimisation
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Fig. 1. Structure of the control system with nonlinear economic optimisation, steady-
state target optimisation and the MPC-NPL algorithm

is of linear programming type. The measured disturbance h is used in all layers.
The optimal operating point determined by nonlinear economic optimisation is
denoted by ys

eo whereas the optimal operating point recalculated by steady-state
target optimisation is denoted by ys

ssto.
Let the dynamic model of the process under consideration be described by

y(k) = g(x(k)) = f(u(k − τ), . . . , u(k − nB), y(k − 1), . . . , y(k − nA), (4)
h(k − τh), . . . , h(k − nC))

where f : �nA+nB+nC−τ−τh+2 −→ � ∈ C1, τ ≤ nB, τh ≤ nC .
A feedforward neural network with one hidden layer and linear output [4] is

used as the function f in (4). Output of the model can be expressed as

y(k) = f(x(k)) = w2
0 +

K∑

i=1

w2
i vi(k) = w2

0 +
K∑

i=1

w2
i ϕ(zi(k)) (5)

where zi(k) and vi(k) are the sum of inputs and the output of the i-th hidden
node, respectively, ϕ : � −→ � is the nonlinear transfer function, K is the
number of hidden nodes. Recalling input arguments of the nonlinear model (4)

zi(k) = g(x(k)) = w1
i,0 +

Iu∑

j=1

w1
i,ju(k − τ + 1 − j) +

nA∑

j=1

w1
i,Iu+jy(k − j) (6)

+
Ih∑

j=1

w1
i,Iu+nA+jh(k − τh + 1 − j)
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Weights of the network are denoted by w1
i,j , i = 1, . . . , K, j = 0, . . . , nA + nB −

τ + 1, and w2
i , i = 0, . . . , K, for the first and the second layer, respectively,

Iu = nB − τ + 1, Ih = nC − τh + 1.
Similarly as the dynamic model (4), a feedforward neural network with one

hidden layer and linear output is used as the steady-state model ys = fs(us, hs)

ys = fs(us, hs) = w2s
0 +

Ks∑

i=1

w2s
i vs

i = w2s
0 +

Ks∑

i=1

w2s
i ϕ(zs

i ) (7)

where
zs

i = w1s
i,0 + w1s

i,1u
s + w1s

i,2h
s (8)

Weights of the second network are denoted by w1s
i,j , i = 1, . . . , Ks, j = 0, 1, 2,

and w2s
i , i = 0, . . . , Ks, for the first and the second layer, respectively. Neural

models are trained using input-output data obtained from the real process or
from simulation of the fundamental models.

3.1 On-Line Model Approximation in Steady-State Target
Optimisation

The steady-state neural model is linearised on-line taking into account the cur-
rent state of the process determined by u(k − 1) and h(k)

ys = fs(us, hs)|us=u(k−1), hs=h(k) + H(k)(us − u(k − 1)) (9)

where H(k) is the derivative of the nonlinear steady-state model

H(k) =
dfs(us, hs)

dus

∣∣∣∣
us=u(k−1), hs=h(k)

(10)

In contrast to the standard steady-state target optimisation approach with a
constant linear model [6], [12], [13], the discussed formulation uses a linearised
model derived on-line from the steady-state neural model. Taking into account
structure of the steady-state neural model described by (7) and (8), one has

H(k) =
Ks∑

i=1

w2s
i

dϕ(zs
i )

dzs
i

∣∣∣∣
us=u(k−1), hs=h(k)

w1s
i,1 (11)

Considering the nonlinear economic optimisation problem (1), the equivalent
steady-state target optimisation problem is formulated as the linear program-
ming task

min
us

{JE(k) = cuΔus − cyΔys}

subject to
umin ≤ us ≤ umax

ymin ≤ ys ≤ ymax

ys = fs(us, hs)|us=u(k−1), hs=h(k) + Δys

Δys = H(k)Δus

Δus = us − u(k − 1)

(12)
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Let us
ssto denote the optimal solution to the steady-state target optimisation

problem (12). Using the linearised steady-state model the value ys
ssto correspond-

ing to us
ssto is found. The quantity ys

ssto is then passed as the desired set-point
to the predictive controller optimisation problem.

3.2 On-Line Model Approximation in the Suboptimal MPC-NPL
Algorithm

In the MPC-NPL algorithm [7], [8], [13] at each sampling instant k the dynamic
neural model is used on-line twice: to determine the local linearisation and the
nonlinear free trajectory (Fig. 1). It is assumed that the output prediction can be
expressed as the sum of the forced trajectory, which depends only on the future
(on future input moves Δu(k)) and the free trajectory y0(k), which depends
only on the past

ŷ(k) = y0(k) + G(k)Δu(k) (13)

where

ŷ(k) = [ŷ(k + 1|k) . . . ŷ(k + N |k)]T (14)

y0(k) =
[
y0(k + 1|k) . . . y0(k + N |k)

]T
(15)

The dynamic matrix G(k) of dimensionality N × Nu is calculated on-line from
the nonlinear model taking into account the current state of the plant

G(k) =

⎡

⎢⎢⎢⎣

s1(k) 0 . . . 0
s2(k) s1 . . . 0

...
...

. . .
...

sN (k) sN−1(k) . . . sN−Nu+1(k)

⎤

⎥⎥⎥⎦ (16)

where sj(k) are step-response coefficients of the linearised model

sj(k) =
min(j,nB)∑

i=1

bi(k) −
min(j−1,nA)∑

i=1

ai(k)sj−i(k) (17)

Taking into account the structure of the neural model described by the (5) and
(6), coefficients of the linearised dynamic model are calculated on-line from

al(x̄(k)) = − ∂g(x̄(k))
∂y(k − l)

= −
K∑

i=1

w2
i

dϕ(zi(x̄(k)))
dzi(x̄(k))

w1
i,Iu+l l = 1, . . . , nA (18)

and

bl(x̄(k)) =

⎧
⎪⎨

⎪⎩

0 l = 1, . . . , τ − 1
∂g(x̄(k))
∂u(k − l)

=
K∑

i=1

w2
i

dϕ(zi(x̄(k)))
dzi(x̄(k))

w1
i,l−τ+1 l = τ, . . . , nB

(19)
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The linearisation point is the vector composed of past input and output signal
values corresponding to the arguments of the nonlinear model (4)

x̄(k) =
[
ū(k − τ) . . . ū(k − nB)ȳ(k − 1) . . . ȳ(k − nA)h̄(k − τh) . . . h̄(k − nC)

]T

(20)
On the one hand, the suboptimal prediction calculated from (13) is different

from the optimal one determined from the nonlinear neural model as it is done
in MPC algorithms with nonlinear optimisation [7], [13]. On the other hand,
thanks to using the superposition principle (13), the MPC optimisation problem
(3) becomes the following quadratic programming task

min
Δu(k), εmin, εmax

{J(k) =
∥∥yref (k) − y0(k) − G(k)Δu(k)

∥∥2 + ‖Δu(k)‖2
Λ +

+ρmin ‖εmin‖2 + ρmax ‖εmax‖2}
subject to

umin ≤ JΔu(k) + uk−1 ≤ umax

−Δumax ≤ Δu(k) ≤ Δumax

ymin − εmin ≤ ŷ(k) ≤ ymax + εmax

εmin ≥ 0, εmax ≥ 0
(21)

where vectors of length N are

yref (k) = [ys
eo . . . ys

eo]
T or yref (k) = [ys

ssto . . . ys
ssto]

T (22)

ymin(k) =
[
ymin . . . ymin]T

(23)

ymax(k) = [ymax . . . ymax]T (24)

vectors of length Nu are

umin(k) =
[
umin . . . umin]T

(25)

umax(k) = [umax . . . umax]T (26)

Δumax(k) = [Δumax . . . Δumax]T (27)

uk−1(k) = [u(k − 1) . . . u(k − 1)]T (28)

J is the all ones lower triangular matrix of dimensionality Nu × Nu and Λ =
diag(λ0, . . . , λNu−1). If at the current sampling instant nonlinear economic op-
timisation is used, yref (k) = [ys

eo . . . ys
eo]

T , if approximate steady-state target
optimisation is used, yref (k) = [ys

ssto . . . ys
ssto]

T . Because the output constraints
are present in the MPC optimisation problem, the infeasibility problems may
occur. That is why the output constraints are softened by means of slack vari-
ables [9], [13] (the vectors εmin and εmax of length N), ρmin, ρmax are positive
weights. The free trajectory y0(k) is calculated recursively on-line from the non-
linear neural model (5), (6) assuming no changes in control signals from time
instant k (i.e. u(k + p|k) := u(k − 1), p ≥ 0).
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4 Simulation Results

The process under consideration is a polymerisation reaction taking place in
a jacketed continuous stirred tank reactor [10]. The reaction is the free-radical
polymerisation of methyl methacrylate with azo-bis-isobutyronitrile as initia-
tor and toluene as solvent. The output NAMW (Number Average Molecular
Weight) is controlled by manipulating the inlet initiator flow rate FI . Flow rate
F of the monomer is the measured disturbance.

Three models of the process are used. The fundamental model [10] is used as
the real process during simulations. An identification procedure is carried out,
as a result two neural models are obtained, namely a dynamic one (K = 6)
and a steady-state one (Ks = 4). In the MPC-NPL algorithm the horizons
are N = 10, Nu = 3, the weighting coefficients λp = 0.2, the sampling time
is 1.8 min.

Since maximum production rate is required, the following performance func-
tion is used at the economic optimisation layer

JE(k) = −F s
I (29)

The following constraints are imposed on the manipulated variable

Fmin
I ≤ FI ≤ Fmax

I (30)

where Fmin
I = 0.0035 m3/h, Fmax

I = 0.033566 m3/h. The product should satisfy
some purity criteria, i.e. the output variable is constrained

NAMWmin ≤ NAMW (31)
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Fig. 2. Simulation results of the polymerisation reactor with nonlinear economic op-
timisation used once at k = 3 (left) and “ideal” nonlinear optimisation repeated as
frequently as the MPC controller executes (right), i.e. TE = 1
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Fig. 3. Simulation results of the polymerisation reactor with nonlinear economic opti-
misation used 25 times less frequently than the MPC controller executes, i.e. TE = 25:
without (left) and with (right) steady-state target optimisation

where NAMWmin = 20000 kg/kmol. The same constraints imposed on manip-
ulated and controlled variables are taken into account in economic optimisation,
steady-state target optimisation and MPC-NPL optimisation problems. It is as-
sumed that changes in the disturbance signal can be described by the equation

F (k) = 2 − 1.6(sin(0.008k) − sin(0.08)) (32)

Let TE denote the intervention period of the nonlinear economic optimisation
layer, when it is executed as often as the MPC controller TE = 1. Simulation re-
sults of the polymerisation reactor with single economic optimisation (performed
at k = 3) and with TE = 1 are depicted in Fig. 2. If nonlinear economic optimisa-
tion is performed only once, the set-point value is constant, JE = −37187.72 (for
comparison JE is calculated for the whole simulation horizon after completing
the simulations). On the contrary, economic optimisation repeated as frequently
as the MPC controller executes takes into account changes in the disturbance
F , a new optimal steady-state operating point is calculated for each sampling
instant, JE = −52458.67. Because the output constraint (31) is implemented as
soft in the MPC-NPL algorithm, it is temporarily violated.

Fig. 3 shows simulation results of the polymerisation reactor with nonlinear
economic optimisation used 25 times less frequently than the MPC controller
executes, i.e. TE = 25 in two cases, namely without (JE = −51010.58) and with
steady-state target optimisation (JE = −52458.67). Thanks to the introduction
of approximate steady-state target optimisation which needs solving on-line only
a linear programming problem, the nonlinear economic optimisation problem
does not have to be repeated at each sampling instant. The trajectory of the
system is practically the same as in the “ideal” case when nonlinear economic
optimisation is repeated at each sampling instant.
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5 Conclusion
Cooperation of model predictive control algorithms with economic steady-state
optimisation is investigated in the paper. It is particularly important when the
dynamics of disturbances is comparable with the dynamics of the process. The
emphasis is put on computational efficiency. The MPC-NPL algorithm needs
solving on-line only a quadratic programming problem, approximate steady-
state target optimisation requires solving only a linear programming problem,
the necessity of repeating two nonlinear optimisation problems at each sampling
instant is avoided. A dynamic neural model is used in the nonlinear MPC-NPL
algorithm, a steady-state neural model is used for economic optimisation.
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Abstract. Reservoir Computing (RC) uses a randomly created recur-
rent neural network where only a linear readout layer is trained. In this
work, RC is used for detecting complex events in autonomous robot navi-
gation. This can be extended to robot localization based solely on sensory
information. The robot thus builds an implicit map of the environment
without the use of odometry data. These techniques are demonstrated
in simulation on several complex and even dynamic environments.

1 Introduction

Autonomous robot navigation systems have been extensively developed in the
literature [1,2,3,4]. Early navigation strategies are either deliberative (generation
of robot trajectories based on path planning) or reactive (robot control based
on a direct mapping of sensory input to actions). Current state-of-the-art au-
tonomous robot control architectures are hybrid [1]: they have an underlying
reactive controller which takes care of the real-time critical and simple tasks
such as obstacle avoidance; while an upper deliberative control layer steers this
reactive part. Information flow in this architecture is both downwards, from ab-
stract deliberative tasks to concrete physical reactive behaviours, and upwards,
from physical data to abstract symbols used for deliberation.

This paper investigates two cases of upward information flow: a system for
recognizing complex robot events in particular environments (such as detecting
if the robot goes through a door, given only sensory input); and a system for
determining the current robot location, solely based on sensory information.
Both are achieved using the same setup.

These tasks have been shown to be difficult [5]. Traditional algorithms based
on the Simultaneous Localization and Mapping (SLAM) concept are expensive
to implement due to limited computational efficiency and also hold uncertainties
during the calculation of the robot’s pose [5].

This work uses an implicit way of forming a representation of the robot’s envi-
ronment that is based on a Recurrent Neural Network (RNN), more specifically
using Reservoir Computing (RC). This is a term that groups three similar com-
puting techniques, namely, Echo State Networks [6], Liquid State Machines [7],
and BackPropagation DeCorrelation [8]. All three techniques are characterized
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by having an RNN that is used as a reservoir of rich dynamics and a linear read-
out output layer. Only the readout layer is trained by supervised learning, while
the recurrent part of the network (the so called reservoir) has fixed weights, but
is scaled so that its dynamic regime is at the edge of chaos. Theoretical analysis
of reservoir computing methods [9] and a broad range of applications [10] (which
often even drastically outperform the current state-of-the-art [11]) show that RC
is very powerful and overcomes the problems of tradititonal RNN training such
as slow convergence and computational requirements.

The short-term memory, present in these networks, is crucial for solving the
event detection and localization tasks. It is not only the instantaneous sensory
inputs that are needed to solve the tasks, but also the sensory history [12] and
dynamics.

It has already been shown in [13] that RC can be used to detect events in an
autonomous robot setting. This work extends these results by also considering
dynamic environments for event detection, and goes largely beyond that work
by using it to construct implicit maps of the environment for robot localization.

The idea of employing a neural network as a localization model for the robot
is also inspired by biological systems. Experiments accomplished with rats show
that the hippocampus in their brain forms activation patterns that are associated
with locations visited by the rat. These so called place cells are the most common
evidence for such fact. They fire when an animal is in a particular location in its
environment [14].

The data (robot sensors and actuators) are generated using a simulator de-
veloped in [3]. It is a completely reactive controller trained by reinforcement
learning to explore the environment. The dataset collected from the simulator
is used to train an RC system in order to detect events as well as to predict the
robot location in particular environments.

2 Reservoir Computing

The current work uses the Echo State Network approach as a learning system
for detection of events as well as for robot localisation. The random, recurrent
neural network (or reservoir) is composed of sigmoidal neurons and is modelled
by the following state update equation:

x(t + 1) = f(Winu(t) + Wx(t)), (1)

where: Win is the connection matrix from input to reservoir; W is the weight ma-
trix for the recurrent connections between internal nodes; f is the hyperbolic tan-
gent function; and u(t) is the input vector at time t. The initial state is x(0) = 0.

The output y(t) of the network at time t is given by

y(t) = Wout

[
x(t)
1

]
, (2)

where Wout is the readout matrix.
The matrices Win and W are fixed and randomly created at the beginning. If

ni and nr denote the number of inputs and neurons inside the reservoir, respec-
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tively, then Win is a nr × ni matrix. W is a nr × nr matrix where each element
is drawn from a normal distribution with mean 0 and variance 1. It is then re-
scaled by first dividing the matrix by its spectral radius (the largest absolute
eigenvalue) and then multiplying it by 0.95. The spectral radius of the rescaled
matrix is thus 0.95 which is close to the edge of stability (around a spectral ra-
dius 1). The value of the spectral radius could be further optimised for each ex-
periment, but a quick grid search showed that 0.95 is near optimal for all cases.

The (nr+1)×no matrix Wout is the only matrix trained during the experiment
(with no denoting the number of outputs). Let ŷfish(t)1 denote the desired
output at time t, then the readout matrix is created by solving (in the mean
square sense) the following equation:

Wout ·
[
x(1) x(2) . . . x(nt)

1 1 . . . 1

]
= [ŷfish(1) ŷfish(2) . . . ŷfish(nt)], (3)

where nt is the total number of time samples.
Prior to training, the desired outputs are relabelled in order to optimise the

classification results. Each line of the original target data Ŷ represents one de-
sired output over time, and each output consists of +1 and −1. But the number
of positive desired outputs can be fairly different from the number of negative
desired outputs in each line. In order to get optimal classification through re-
gression (i.e. through solving (3) in the least square sense), each element ŷi(t)
of the i-th line ŷi of Ŷ is rescaled so that the whole line ŷi sum up to 0:

ŷi
fish(t) =

⎧
⎨

⎩

ni
++ni

−
ni

+
if ŷi(t) > 0

−ni
++ni

−
ni

−
if ŷi(t) < 0

, (4)

where ni
+ = |{ŷi(t)|ŷi(t) > 0}| and ni

− = |{ŷi(t)|ŷi(t) < 0}| denote the number
of positive and negative required outputs in the i-th line of Ŷ, respectively.

3 Robot Model and Controller

The dataset used to train reservoir networks is generated by a simulator used
in [3]. Next the environment and robot controller are described briefly. The en-
vironment of the robot is composed of repulsive and attractive objects. Each
object has a particular color, denoting its respective class. Obstacles are consid-
ered repulsive objects while targets are attractive objects [2]. The robot model is
shown in Fig. 1. The robot interacts with the environment by distance, color and
contact sensors; and by one actuator that controls the adjustment on the move-
ment direction. Sensor positions are distributed homogenously over the front of
the robot (from -90◦ to +90◦). Each position holds three sensors (for distance,
color and contact perception) [2]. In this work, the robot model has 17 sensor
positions, differing from [3]. The velocity of the robot is constant. At each iter-
ation the robot is able to execute a direction adjustment to the left or to the
right in the range [0, 15] (degrees).
1 ŷfish(t) refers to the desired output after applying the fisher labeling given by (4).
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Fig. 1. Robot model

The robot controller (based on [3]) is composed of hierarchical neural net-
works which are adjusted by classical reinforcement learning mechanisms. The
controller constructs its navigation strategy as the robot interacts with the en-
vironment. Only already trained robot controllers, which all show very good ex-
ploratory behavior after training, are used for generating data. The data (from
distance and color sensors, and actuator) collected from the robot simulator are
used to train and test reservoir networks in a Matlab environment using the
RCT Toolbox2 [10]. Gaussian noise is added to distance sensors data by the
robot simulator.

4 Event Detection in Robot Navigation

Event detection in noisy environments is not a trivial task. There can be very
similar scenes from the robot’s perspective so that precise event detection be-
comes very difficult to accomplish [9]. Two different experiments are conducted
for the event detection task. The environments used are shown in Fig. 2. They
are composed of a large (blue) corridor with a (yellow) target at each end (they
appear as dark and light gray objects in black and white format). During simula-
tion, the robot keeps navigating through the corridor and capturing the targets
(that are sequentially put back in the same location). There are four possible
events of predefined duration and location, which are labeled in Fig. 2. The in-
terpretation should be: when the robot passes through a predefined location, an
event should be detected (e.g. entering the corridor corner area, passing through
the middle of the corridor). The second environment is the same as the first en-
vironment, except for a new blinking object in the middle of the corridor (with
random blink interval) which can block the robot’s way.

Experiment 1 is accomplished considering the first environment and experi-
ment 2 takes place in the second environment. Both experiments take 120.000
time steps of simulation time. The original dataset is resampled by a factor of

2 This is an open-source Matlab toolbox for Reservoir Computing which is freely
available at http://www.elis.ugent.be/rct
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Fig. 2. Environments used for the event detection task. Four events are labeled and
shown graphically (by arrows) in the first enviroment. The second environment adds a
dynamic obstacle in the middle of the corridor, indicated by an arrow. A typical robot
trajectory (after controller learning) is shown in the second environment. Two boxes
in the environment are used as targets for the robot.

100, resulting in a smaller dataset of 1.200 observations. The original sampling
rate is high (it takes approximately 2000 time steps to go from one side of the
simulation environment to the other), which is useful to efficiently control the
robot with the implemented controller. But when applying the sensory input to
the reservoir it is very important that the internal dynamics and memory of the
reservoir are in the same temporal range as the temporal range needed to solve
the task. We achieved this by resampling the input, which effectively slows down
the dynamics in the reservoir [15]. A grid search of the resampling rate showed
that the optimal time range was achieved with a resampling factor of 100.

The inputs to the network are distance and color sensors and a robot actuator
(current direction adjustment) suming up 35 inputs which can range from 0 to
1. Parameter configuration is as follows. The reservoir is composed of 400 nodes,
scaled to a spectral radius of |λmax| = 0.95. The readout layer has 4 output
units (one for each event detector) which are postprocessed by a winner-take-all
function. This function sets the output of the most activated neuron to 1 whereas
the others are set to −1. Note that if all the neurons output a negative value,
then the winner-take-all function set every output to −1 (this means no event is
detected). The input nodes are connected to reservoir nodes by a fraction of 0.3
and are set to -0.15 or 0.15 with equal probabilities. The performance measure
considers the number of mispredicted observations and is based on a 3-fold cross-
validation method (so, 400 observations, resampled from 40.000 time steps, are
selected as test data).

The results are shown in Fig. 3 and summarized in Table 1. Each experiment
is evaluated 30 times with different stochastically generated reservoirs and the
results are averaged over these 30 runs. It is possible that the robot develops a
cyclic and rhythmic trajectory in experiment 1 (see Fig. 3). The trained reser-
voir is able to detect the 4 events very precisely with a performance of 99 % on
test data. One could argue that the reservoir learns to recognize the rhythmic
behavior and not the actual event per se. Experiment 2 is devised to test this
hypothesis. It shows that a reservoir can still detect the events precisely (per-
formance of 95.8 % on unseen data) even though a dynamic object breaks the
rhythmic robot trajectory.
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Fig. 3. Left: Events plot during a simulation for experiment 1 (a) and experiment 2 (b).
An asterisk represents the predicted event by the reservoir (on test data). The actual
events are points connected by lines. The mis-predictions are labeled by an extra circle.
Two small rectangles emphasize two events that are not recognized by the reservoir in
the bottom plot. Right: Neuron output for detecting event 1 for experiment 1 (a) and
experiment 2 (b). The thick line is the actual neuron output whereas the dashed line
is the desired outcome (not visible in (a)).

Table 1. Summarized results. For each experiment, thirty (30) runs with the same
robot dataset are accomplished (that is resampled by a factor of 100). Every run is based
on an 3-fold cross-validation method (experiment 5 uses 6-fold cross-validation). The
trainning and test errors are the mean over these 30 runs. The first two experiments are
event detection tasks whereas the other three are robot localization tasks. Experiments
2 and 5 consider dynamic objects in the environment.

Experiment Time steps Train Error Test Error

1 1200 0.6 % 1.0 %
2 1200 0.9 % 4.2 %

3 1800 2.9 % 10.3 %
4 1200 1.7 % 12.4 %
5 3600 10.9 % 22.1 %

5 Localization in Robot Navigation

The previous section has shown that an RC network can be used to detect com-
plex events in robot navigation with rather good performance. Now this section
extends the experiments to robot localization tasks. Instead of only detecting
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events, we rather want to predict the current location of the robot based on the
same kind of sensory information (giving rise to a more difficult and interesting
problem). Localization (or position detection) for mobile robots is usually com-
putationally expensive in terms of space and time requirements [5]. Traditional
algorithms are based on explicit maps which must be constructed before robot
localization is possible. This section shows how a reservoir can be used for robot
localization. Similar work which uses a Long-Short Term Memory RNN for this
task is described in [16].

Two maze-like environments are used for the robot localization task (see
Fig. 4). The first environment contains 64 predefined locations, that are dis-
played by small triangles labeled by numbers. Differently from [16], the entire
environment is tagged with labels (not only rooms). This feature makes it pos-
sible to use a more precise trajectory planner.

The same reservoir parameter configuration as in the previous section is used
for the following experiments. The resampling rate for the dataset is also 100.
Exceptions are: the size of the readout layer is equivalent to the number of
predefined locations in the environment; and the postprocessing function for
the readout units is the winner-take-all function which always takes the most
activated neuron and set it to 1 (the others are set to −1). So, there is always
a predicted location (in contrast to the no event detected situation in previous
section). Here also a 3-fold cross-validation is used for performance measure (last
experiment is based on a 6-fold cross-validation).

Experiment 3 is accomplished with the first environment from Fig. 4 and lasts
180.000 time steps (before resampling). The resulting robot occupancy grid can
be seen in the same figure: it shows that the reservoir is predicting the robot
location very well (on test data), with very few mispredictions that are not far
located from the actual location (10.3 % is the test error, see Table 1).

Experiment 4, accomplished in the second environment, represents a new
challenge for the reservoir-based position detector: the environment has several
symmetries and identical areas. For instance, going from position 27 to 26 looks
the same for the robot as going from position 22 to 24. The simulation has
120.000 time steps. The resulting occupancy grid in Fig. 4 shows an efficient
position detector, featuring a performance of 87.6 % of correct predictions on
test data (see Table 1).

Experiment 5 uses the third environment in Fig. 4, that is the same as the first
environment, but with additional 11 slow moving obstacles distributed through
the environment (moving obstacles are also considered in [16]). These dynamic
objects change the robot behavior and also add more noise to sensor readings.
The simulation has 360.000 time steps. The respective occupancy grid in Fig. 4
shows that the reservoir is correct in most of the predictions (77.8 %). Some of
the mispredictions are located a bit further from the actual position, due to the
new source of dynamics and noise.

Experiments only considering distance sensors (removing actuator and color
sensor data) result in the same performance reported for the previous
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Fig. 4. Environments used for the experiments (left) and respective resulting robot
occupancy grids (right). First environment is tagged with 64 labels displayed by small
triangles. In the occupancy grid, an asterisk represents the predicted location (on test
data, that is 1/3 of the total data) while connected points are the actual robot positions.
Mispredicted locations display an additional circle. The second environment has 29
labels distributed through very similar areas. The third environment is the same as
the first environment but with additional slow moving obstacles (represented by small
rectangles) which add more noise and dynamics to sensor readings and to the robot
trajectory, respectively.

experiments in this section. The reservoir network also copes with the kidnap-
ping situation (also reported in [16]). In a new experiment using the environ-
ment from experiment 3, the robot is replaced from location 54 to location
27. The network is able to predict sucessfully the robot position after 7 time
steps (see Fig. 5). Note that the RC network is not trained with the kidnapping
situation.
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Fig. 5. Occupancy grid after kidnapping the robot in first environment of Fig. 4. An
additional triangle is placed at the actual robot position. At time step 255, the robot is
moved from position 54 to position 27. The reservoir network takes 7 time steps until it
first predict sucessfully the current robot position (at time step 262). The robot visits
4 locations (27, 28, 22 and 21) until the sucessfull prediction.

6 Conclusions and Future Work

In this work we show that it is possible to detect complex events and locate
a robot in even dynamic environments with a random dynamic system which
is processed by just a single linear readout layer. The proposed system shows
very good performance in difficult environments such as mazes or environments
which are highly symmetric. To achieve this we only use the dynamics of the
sensory information, not the actual behaviors (as in [13]). Besides, no decrease on
reservoir performance is reported when experiments on robot localization only
consider distance sensors.

This paper only scratched the surface of what could be possible with this
technology. As future work we plan to implement it on a real robotic platform,
as it is considered the standard and best evaluation method for robotic systems.
In this way we can also make comparisons to existing SLAM techniques. Addi-
tionaly, a deliberative robotic system can now be constructed so that actual path
planning and navigation is accomplished based on the information gathered by
the RC-based localization system.

From an RC view, we could improve performance by tuning the reservoir dy-
namics and time scales for different tasks. For instance, experiments with robots
with variable speeds during simulation can be tackled by inducing distinct reser-
voir dynamics (creating different time scales in the reservoir operation). Future
work also includes the unsupervised detection and generation of locations, much
resembling actual place cells. Finally, the implicit map stored in the reservoir
could be made explicit by using an RC system in a generative setting: given
a location as input, the reservoir could start creating expectations (much like
’dreaming’) of possible paths and environments.
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Abstract. This paper demonstrates the use of CMAC neural networks
in real world applications for the system identification and control of
nonlinear systems. As a testbed application, the problem of regulating
fluid height in a column is considered. A dynamic nonlinear model of
the process is obtained using fundamental physical laws and by train-
ing a CMAC neural network using experimental input-output data. The
CMAC model is used to implement a model reference control system.
Successful experimental results are obtained in the presence of distur-
bances.

1 Introduction

Due to uncertainty and complexity, accurate models of dynamic systems are of-
ten difficult to obtain. As a result, it is a challenge to design a controller that
causes the system to respond in a desired way. Biological control systems, on
the other hand, are successful despite imprecise information and complex situ-
ations. Therefore, there has been a great effort to model them. Recent studies
in biology, neuroscience, and psychology have led to detailed theories regarding
the anatomy and physiology of the cerebellum, which is the part of the brain
responsible for learning and voluntary motions. Albus proposed a mathemati-
cal description of how the cerebellum computes addresses where control signals
are stored, organizes memory, and generates output signals. Based on this de-
scription, he proposed a manipulator control system called the cerebellar model
articulation controller (CMAC),[1].

CMAC gained more attention after Miller [2] used the CMAC network for
real-time control of a full-scale multidegree-of-freedom industrial robot with con-
siderable success. CMAC controllers are widely used in robotic applications. For
example, CMAC is utilized to perform feedforward kinematics control of four-
legged robot in straight-line walking and step climbing, [3]. Shiraishi [4] used
a CMAC controller for fuel-injection system and experimentally evaluated the
CMAC performance on a research vehicle in a configuration fully compatible
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with production hardware. In order to achieve high-precision position control, an
adaptive CMAC model reference control system is proposed [5]. They provided
analytical methods based on a discrete-type Lyapunov function to determine the
varied learning-rate parameters of the CMAC. Both the modeling and the gen-
eralization capabilities are improved in [6], where special kernel network based
on the CMAC is proposed.

In this work, we provided detailed analysis on how CMAC can be integrated
in model reference control and on how CMAC is trained using experimental
data [7].

2 Model Derivation from Physical Laws

The fluid testbed, shown in Fig. 1a, consists of three subsystems. The relation-
ship between the fluid height y(t) in the column and the output flow rate wout(t)
is first obtained. The relationship between the armature voltage Vu(t) and the
input flow rate win(t) is then derived. This analysis account for the dynamics of
the DC pump. Finally, a pressure sensor is used to determine the column height.

DC Pump

Pressure
Sensor

y(t)

Compression
Clamp

Holding
Tank

(a)

y(t)

ωin

out

oy

ω

Cross-Sectional
Area   A N

Cross-Sectional
Area   A C

Lower T-Connector

(b)

Fig. 1. Experimental setup: (a) Simplified representation of the fluid testbed (b)
Schematic representation of the fluid column

A detailed view of the column is shown in Fig. 1b. The pump transfers water
from the holding tank to the top of the column with a volume flow rate win(t)
[in3/sec]. The cross-sectional area of the column is AC=0.196 [in2]. At the base
of the column water drains back into the holding tank with a flow rate wout(t)
[in3/sec]. The cross-sectional area of the nozzle is AN=0.00503 [in2]. The vertical
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displacement between the top of the nozzle and the T-connector is y(t) + y0,
where y0=1.75 [in]. The fluid dynamics is described by a single-input single-
output state-space model whose input is win(t) and whose output is y(t). Mass
conservation leads to the differential equation

ẏ =
1
Ac

[win(t) − wout(t)]. (1)

The atmospheric pressure at the top and base of the column are the same and
friction is neglected. Torricelli’s equation, which provides a relationship between
the output flow rate and the fluid height above the nozzle [8], and analyzing the
DC pump dynamics yields a first-order nonlinear differential equation relating
the input armature voltage Vu(t) to output fluid head height y(t)

ẏ = −AN

AC

√√√√
2g

1 − A2
N

A2
C

√
y(t) + y0 +

1
AC

(α +
√

α2 + βVu). (2)

In the first-order nonlinear model, the only unknown parameters are α and β,
which come from DC pump dynamics. The head height y(t) is obtained from
the pressure sensor voltage.

3 The Cerebellar Model Articulation Controller
(CMAC)

The CMAC network is used to approximate a nonlinear function of the form yi =
f(xi), where xi is a multidimensional input vector, and yi is a multidimensional
output vector. The CMAC network is an associative neural network, in that
the input xi serves as an address key to memory locations whose contents are
summed to form the network output. Fig. 2 shows that the CMAC network
performs the mapping from xi to yi in several stages.

The input xi is first quantized into one of n possible values, q1 to qn, which
span the input space. The quantization levels can be fixed or variable. The input
to the decoder in Fig. 2 is xi and the output is the quantization level

qk = Q(xi) =
⌊

xi − xmin

r

⌋
(3)

where xi ∈ [xmin, xmax] and �p� = largest integer less than the real number p.
xmin and xmax are the minimum and the maximum value of the input, respec-
tively. The function Q returns an integer qk for the input xi and qk ranges from
0 to qmax − 1, which is the total number of available quantization levels. For
simplicity, in this work, the quantization resolution is fixed as

r =
xmax − xmin

qmax
. (4)

The CMAC neural network contains a conceptual memory whose contents
are summed to form the CMAC output. The quantization level qk maps into
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Fig. 2. Diagram of a CMAC neural network

Table 1. The row vector θk indicates which cells in the conceptual memory are acti-
vated by the quantization level qk. 1s in the table shows activated memory locations.

qk θk

0 1 1 1 . . . 1 0 0 0 0 0 0 0 0

1 0 1 1 1 . . . 1 0 0 0 0 0 0 0

2 0 0 1 1 1 . . . 1 0 0 0 0 0 0

. . . . . . . . . . . . . . . .

qmax − 1 0 0 0 0 0 0 0 0 1 1 1 . . . 1

A∗ memory cells of the conceptual memory, that is A∗ represents the number
of memory cells that are activated at any time by a particular quantization
level. Any two adjacent quantization levels activate memory cells that overlap
by A∗ − 1. It is convenient to introduce a row vector θ that indicates which
memory cells in the conceptual memory are activated by a given quantization
level qk. The number of columns in θ is equal to the size of the conceptual
memory. The vector θk associated with each quantization levels qk is shown in
table 1.

In this work weights are updated each time an input is applied. The algo-
rithm is

w(i, k) = w(i, k − 1) +
γ

A∗θT
k [dk − θkw(i, k − 1)] (5)

where k=1,2,...,m is the sample number, i represents the iteration, dk is the
desired response and γ is the learning factor. It has been shown that any given
input xk activates A* memory locations in the conceptual memory. The weights
stored in these memory locations are summed to produce the output

yk = θkw. (6)
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4 Identification and Control of the Fluid Testbed Using
CMAC Neural Networks

This section shows how the CMAC neural network can be used to obtain a
dynamic model of the fluid testbed and to implement a model reference controller
for regulating fluid height.

4.1 NARMA Representation of the Fluid Testbed

Based on the nonlinear representation of the fluid testbed model given by
equation 2, it is reasonable to represent the nonlinear system with a discrete-time
model of the form (NARMA representation [9])

y(k + 1) = f [y(k)] + g[Vu(k)], (7)

where f(·) and g(·) are memoryless and nonlinear functions. This result follows
by approximating dy

dt by (y(k + 1)T − y(kT ))/T , where T is the sample period.
Using this approximation

f [y(k)] = y(k) − T
AN

AC

√√√√
2g

1 − A2
N

A2
C

√
y(k) + y0,

g[Vu(k)] =
T

AC

(
α +

√
α2 + βVu(k)

)
. (8)

Given the NARMA representation of the fluid testbed, the task of identifying
the functions f(·) and g(·) using CMAC neural networks is considered in the next
section.

4.2 System Identification Using CMAC Neural Networks

In system identification, control engineers can obtain a dynamic model by ob-
serving the input-output history of the system. Ideally, we desire a model that
is valid over a wide operating range. The functions f(·) and g(·) in the NARMA
representation of the fluid testbed (equation 8) are approximated using neural
networks Nf and Ng, respectively, Fig. 3. It is desired that the fluid testbed
output y(k) and the neural network model output ŷ(k) in Fig.3 are identical for
the same input Vu(k). Figure 3 suggests that the input for the neural network
Nf is the plant output y(k) and the input for the neural network Ng is armature
voltage Vu(k). The output of the networks are summed to produce the neural
network model output ŷ(k). This response is compared against the plant output.
Neural networks Nf and Ng are trained using the error e(k) between the actual
plant output y(k+1) and the neural network model output ŷ(k+1) to minimize
J =

∑K
k=1[y(k +1)− ŷ(k +1)]2, =

∑K
k=1 e(k). Experimental data for the system

identification is obtained by regulating the fluid height ± 3 [in] about the 11
[in]operating point.
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Fig. 3. Identification of the plant. The error between the estimated and actual plant
output is used to train the neural networks Nf and Ng .

The output of the neural network model is the sum of the outputs of the two
neural networks Nf and Ng as seen in Fig. 3. The output of the neural network
Ng for the kth input Vu(k) is

Ng[Vu(k)] = θg
i (Vu(k))wg , (9)

where θg
i is n dimensional column vector described in section 3, and the weight

vector of the neural network Ng is wg . A similar expression for the output of the
neural network Nf is

Nf [y(k)] = θf
i (y(k))wf . (10)

It follows that the output of the neural network model is

ŷ(k + 1) = θg
i wg + θf

i wf . (11)

Weights of the neural networks Nf and Ng are adjusted using the error be-
tween the fluid testbed output and neural network model output using the non-
batch training method described in section 3

wf (i, k) = wf (i, k − 1) +
γ

A∗(θf
k )T e(k)

wg(i, k) = wg(i, k − 1) +
γ

A∗ (θg
k)T e(k) (12)

For each data point, only A∗ number of weights are updated. The training iter-
ations are completed when the magnitude of e(k) fall below a specified value for
each data pair (xk,dk).

4.3 Model Reference Control

The objective of model reference control is to have the plant output track a
reference model output. The design procedure given in [9] is used in this section.
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The desired response corresponds to that of a second-order system with settling
time, ts=20 [sec] and peak overshoot, Mp = 5 %. In addition a rise time of 8
[sec] is desired. The second-order model transfer function is

Gm(s) =
ΔYm(s)
ΔR(s)

=
w2

n

s2 + 2ζwns + w2
n

, (13)

where wn is the natural frequency, ζ is the dimensionless damping ratio, and
ΔYm(s) is the desired response due to an input ΔR(s). For the given design
specifications, wn and ζ are 0.35 [rad/sec] and 0.7, respectively. The zero-order
hold discrete-time equivalent model of the transfer function in equation 13 is

Gm(z) = (1 − z−1)Z{Gm(s)
s

}

=
0.1986z + 0.1002

z2 − 1.0729z + 0.3717
(14)

where the sample period T is 2 [sec]. This sample period was chosen because it is
a factor of seven smaller than the smallest identified time constant. It is desired
that the closed-loop response of the fluid testbed follows that of the reference
model

ym(k + 1) = α1ym(k) + α2ym(k − 1) + β1r(k) + β2r(k − 1), (15)

where α1=1.0729, α2=-0.3717, β1=0.1986, and β2=0.1002.
By choosing the control input

Vu(k) = g−1[−f [y(k)] + α1y(k) + α2y(k − 1) + β1r(k) + β2r(k − 1)] (16)

the closed-loop response is

y(k + 1) = α1y(k) + α2y(k − 1) + β1r(k) + β2r(k − 1). (17)
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Fig. 4. Block diagram of the model reference control system
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This result is obtained by substituting equation 16 into 7. This method is only
applicable if the function g(·) is invertible. In the case of the fluid testbed,
g[Vu(k)] is given by equation 8 and Vu(k) is positive. For each value of g[Vu(k)],
there is a unique value of Vu(k). Also note that this method is only applicable if
the functions f(·) and g(·) are known. In the control law specified by equation
16, the function f(·) and g−1(·) are implemented by neural networks Nf and Nc,
respectively. A block diagram of the reference model control system is shown in
Fig. 4. The previous section described how Nf and Ng were trained. We now
consider how Nc is trained.

4.4 Training the Neural Network Nc

In order to implement the control structure given in equation 16, it is necessary to
train the neural network Nc so that it approximates the inverse of the function
g(·). Because the nonlinear function g(·) is approximated by Ng, the neural
network Nc is trained so that Nc[Ng(Vu(k))] ≈ Vu(k) as Vu(k) varies over the
input range. In other words, we need to find Nc = N−1

g . A block diagram of the
system used to train Nc is shown in figure 5. The weights of the neural network
Nc are adjusted using the error e(k) between the input Vu(k) and the output of
the neural network Nc using the non-batch training algorithm

wc(i, k) = wc(i, k − 1) +
γ

A∗ (θc
k)T e(k). (18)

Given the training strategies for the neural networks Nf , Ng, and Nc, the model
reference control system is implemented as shown in Fig.4.

e(k)

e(k)

(k)V
N  [V (k)] N  [N  [V (k)]]g u  c g u

u

Σ

_
 N g N c

+

(  . ) (  . )

Fig. 5. Block diagram of the system used to train Nc

5 Results and Conclusions

This sections shows the performance of the CMAC-based model reference control
system. Four separate experiment were performed. In the first three experiments,
the CMAC controller regulated the head height about nominal values of 3, 11,
and 19 [in]. In the final experiment, the ability of the CMAC controller to reject
a constant disturbance was investigated. Fig. 6a, 6b and 6c show the response
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Fig. 6. Experimental response of the closed-loop system using a CMAC controller at
operating point of (a) 3, (b) 11 and (c) 19 [in]. Response of the closed-loop system to
a disturbance input at 11 [in] (d).

of the reference model, closed-loop system, and the armature input voltage, for
the case where the nominal operating point are 3, 11 and 19 [in]. The response
of the closed-loop system has a large steady-state error at the 3 [in] operating
point. The CMAC controller, however, achieves a small steady-state error at the
other two operating points.

The ability of the CMAC controller to disturbance rejection is also exam-
ined. The compression clamp located at the pump inlet is restricted at position
1 during system identification and control experiments. To generate a known
disturbance, this clamp is set to position 2 and the open position. At position 3,
the pipe is completely closed. The plant response to the disturbances is plotted
in the Fig. 6d at the operating point of 11 [in].
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A model reference control scheme based on the plant differential equation is
developed and is experimentally tested. Successful results are obtained even un-
der large disturbances. Future work will include comparisons of the implemented
method with well known control techniques.
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Abstract. This work presents a methodology for the land-cover classification of 
satellite images based on clustering of the Kohonen’s self-organizing map 
(SOM). The classification task is carried out using a three-stage approach. At 
the first stage, the SOM is used to quantize and to represent the original patterns 
of the image in a space of smaller dimension. At the second stage of the 
method, a filtering process is applied on the SOM prototypes, wherein 
prototypes associated to input patterns that incorporate more than one land 
cover class and prototypes that have null activity are excluded in the next stage 
or simply eliminated of the analysis. At the third and last stage, the SOM 
prototypes are segmented through a hierarchical clustering method which uses 
the neighborhood relation of the neurons and incorporates spatial information in 
its merging criterion.  The experimental results show an application example of 
the proposed methodology on an IKONOS image.  

Keywords: Pattern recognition, self-organizing maps, image processing, 
remote sensing. 

1   Introduction 

The self-organizing map (SOM), proposed by Kohonen [5], has been widely used in a 
variety of applications, including areas as pattern recognition, data compression, 
biological modeling, signal processing, and data mining [6]. Important properties as 
the input space approximation, topological ordening and density matching, allied with 
the simplicity of the model and the easiness to implement its learning algorithm 
justify the success of the SOM and place it as one of the main models of neural nets in 
the present time. 

This work presents a methodology that explores the characteristics and properties of 
the SOM to perform the unsupervised classification of remotely sensed images. Since 
the first satellites were launched for the purpose of searching for terrestrial resources, 
the digital classification of remotely sensed images has acquired a growing importance 
in the automatic recognition of the land cover patterns [8]. Presently, the enormous 
quantity of images that are being collected by sensor systems that are more and more 
sophisticated and modern require the development of innovative classification 
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methodologies, which allow an automatic and efficient identification of the great 
volume of information available in the images and at the same time makes the mapping 
process of terrestrial surfaces less subjective and with greater potential for reuse in 
subsequent situations. 

The classification method proposed here performs a cluster analysis of the image 
data employing an approach consisting of three processing stages through SOM. 
Firstly, the SOM is used to map the original patterns of the image to a reduced set of 
prototypes (neurons) arranged in a two-dimensional grid. Afterwards, a filtering 
process is applied on the SOM prototypes, wherein prototypes associated to input 
patterns that incorporate more than one land cover class are excluded in the next stage 
of the analysis, and prototypes that have null activity are simply discarded. At the last 
processing stage, an agglomerative hierarchical clustering method is applied over the 
filtered SOM, generating a dendrogram of clustered prototypes with different degrees 
of similarity. Each level of dendrogram obtained corresponds to a different clustering 
configuration of SOM prototypes that can be utilized to represent the classes by which 
the original image will be classified.  

The remainder of the paper is organized in the following form: section 2 describes 
the SOM and its properties, section 3 presents a brief explanation about the 
unsupervised classification of satellite images, while section 4 explains the proposed 
classification methodology. An application example of the proposed approach on an 
IKONOS image is shown in the section 5, and section 6 gives the conclusions and 
final considerations pointing out the advantages of the proposed method on 
conventional classification methods. 

2   SOM 

SOM is a type of artificial neural net based on competitive and unsupervised learning. 
The network essentially consists of two layers: an input layer I and an output layer U 
with neurons generally organized in a 2-dimensional topological array. The input to 
the net corresponds to a p-dimensional vector, x, generally in the space ℜp. All of the 
p components of the input vector feed each of the neurons on the map. Each neuron i 
can be represented by a synaptic weight vector wi = [wi1, wi2 ,..., wip]

T, also in the  
p-dimensional space. 

For each input pattern x a winner neuron, c, is chosen, using the criterion of 
greatest similarity:  

{ }i
i

min |||| wxwx c −=−  (1) 

where ||.|| represents the Euclidian distance. The winner neuron weights, together with 
the weights of the neighboring neurons, are adjusted according to the following 
equation:  

wi(t +1) = wi(t) + hci(t)[x(t) - wi(t)]                                     (2) 

where t indicates the iteration of the training process, x(t) is the input pattern and hci(t) 
is the nucleus of neighborhood around the winner neuron c.  
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Once the SOM algorithm has converged, the 2-dimensional array of neurons 
displays important statistical characteristics of the input space, summarized as 
follows: 

i) Approximation of the input space: the basic objective of SOM is to store a large 
set of input vectors by finding a smaller set of prototypes that provides a good 
approximation to the original input space.  

(ii) Topological ordering: the SOM algorithm attempts to preserve as well as 
possible the topology of the original space, i.e., it tries to make the neighboring 
neurons in the 2-dimensional array (output space) present weight vectors that 
represent neighboring patterns in the input space.  

(iii) Density Matching: the SOM reflects the probability distribution of data in the 
input space. Regions in the input space where the input patterns x are taken with a 
high probability of occurrence are mapped onto larger domains of the output space, 
and thus with better resolution than regions in the input space from which input 
patterns x are taken with a low probability of occurrence. 

In the literature there are some proposed algorithms that seek to automatically (or 
semi-automatically) interpret and segment the neurons of a trained SOM [1, 2, 9, 10]. 
As will be presented in section 4, the SOM segmentation strategy employed in this 
work utilizes an agglomerative hierarchical clustering method that incorporate more 
information about the data clusters in its merging criterion beyond the usual inter-
cluster distance information. 

3   Unsupervised Classification of Remotely Sensed Images 

The unsupervised classification of remote sensing images is based on the principle 
that the computational algorithm is capable of identifying by itself the classes of the 
image. This type of classification is frequently performed through clustering methods.  

Although there are a large quantity of different clustering methods in the pattern 
recognition area [11], the majority of software or computational systems meant to the 
digital processing of remotely sensed images perform unsupervised classification 
based on the partitional clustering methods, such as K-means and ISODATA.   

Despite being widely used, these partitional clustering methods have various 
limitations. The objective functions that they used begin with the assumption that the 
number of classes, K, is known a priori. In the hypothesis that an inadequate K’ value 
has been chosen, the method will impose, through the use of optimization techniques, 
K’ clusters to the data.  The user must also manually specify various parameters in 
order to control the clustering process, among them: the initial centroids of each 
cluster, the maximum number of iterations, thresholds to perform the division, fusion, 
or exclusion of clusters. K-means and ISODATA are very sensitive to these 
parameters, which can generate different partitions when various simulations are done 
for the same data set. Facing this, the optimal value of these parameters is frequently 
encountered through trial and error. These needs certainly increase the level of 
interaction between the user and the computational algorithm, consequently 
increasing the degree of subjectivity of the categorization process of the image.  
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Other no less important limitations of partitional algorithms, such as K-means and 
ISODATA, are: the high computational cost when the data to be analyzed is very 
large (at each iteration, all of the pixels in the image are compared with all of the 
clusters centroids) and the existence of suppositions about the cluster forms. 
Generally only one prototype (centroid) is used to represent a cluster, thus these 
methods become adequate only for the analysis of clusters that have hyperspherical 
formats.  

Another possible, though uncommon, way of performing unsupervised classification 
of remotely sensed images is through hierarchical clustering methods. Unlike partitional 
methods, hierarchical methods do not require the user to specify the number of clusters 
and other additional parameters beforehand. Another significant advantage of these 
methods is that they make it possible to visualize the result of the classification by 
means of a dendrogram which illustrates in a hierarchical form the degree of similarity 
between the clusters that are formed by fusions (or divisions) at each successive stage of 
the analysis. However, hierarchical methods have some characteristics that prevent their 
application in the classification of remotely sensed images: (a) in general they require 
memory space in the order of O(N2), in which N is the number of records in the data set; 
(b) the results can be difficult to interpret, mainly for large data sets; (c) in order to 
determine the cutoff of the dendrogram (ideal number of clusters) some decision criteria 
must be applied [11]. 

4   Proposed Methodology 

The key point of the unsupervised classification method of satellites images proposed 
here is to perform the clusters analysis of the image through a set of SOM prototypes 
instead of working directly with the original patterns of the scene. For this, an 
approach consisting of three processing stages through SOM is utilized with the 
objective to discover representative clusters of prototypes for each land-cover class of 
interest. The three processing stages, which consist basically of the training, filtering 
and segmentation of the SOM, are described in the following subsections. 

4.1   Training 

At the first processing stage a sample set collected from the original image is used to 
train the SOM. Unlike pixel by pixel approaches that only use the spectral 
information of individual points to find homogenous regions, the proposed method 
performs the sampling of the image through pixel windows. The idea is to incorporate 
in the classification process information about the neighborhood (context) of the 
pixels, considering that isolated pixels are not able to represent the majority of cover 
land patterns, especially in the case of images that have higher spatial resolutions. The 
sample windows are collected uniformly across the entire region of the image, 
without overlappings and at regular intervals. All of the samples are square and have 
the same size. 

In order to train the SOM, some parameters must be specified to define the 
structure of the map and to specifically control the stated training. With the objective 
of guaranteeing good mapping of the original patterns, the proposed methodology 
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defines in a particular way the neural net parameters based on the existing literature, 
on experimental tests, and some peculiarities of the application of SOM on remotely 
sensed images. However, since the SOM can be sensitive to choice of its training 
parameters, other alternatives can also be sought out to obtain good maps [4]. 

The proposed methodology utilizes the following parameters to train the SOM: 
linear initialization of weights, batch training mode, gaussian neighborhood function 
and rectangular shape to organize the two-dimensional array of neurons of the net. 

The size of the map is one of the free parameters of SOM that particularly depends 
on the input image and the objectives of the classification. If the objective is to detect all 
of the patterns in the image, including those with low probability of occurrence, large-
sized maps must be employed in the analysis; in the opposite case, if the interest is 
concentrated only on the predominant patterns in the scene, a smaller-sized SOM can be 
utilized. Nevertheless, the performance of the proposed classification methodology is 
not significantly affected if sufficiently large sizes for the SOM are utilized. Although 
maps with larger dimensions than are necessary have a larger quantity of inactive 
neurons, as shows the next processing stage, this event is not prejudicial within the 
proposed methodology. 

4.2   Filtering 

The second stage of the proposed approach consists of filtering two types of 
prototypes that generally appear in the mapping of image patterns through SOM. 
These prototypes, denominated here as inactive and heterogeneous, can act as borders 
(or “interpolation units”) in the SOM grid contributing to the separation of clusters. 

The inactive prototypes correspond to the neurons that have null activity in the 
SOM competitive learning process, i.e., they are not associated with any input pattern. 
These prototypes are simply eliminated of the analysis. 

Heterogeneous prototypes are those that have a high degree of spectral-textural 
heterogeneity and are normally associated with input patterns that incorporate more 
than one land cover class. Most of the time, these patterns correspond to transition 
regions between land cover classes present in the image and are captured in 
consequence of the sampling through pixel windows. Prototypes that are considered 
heterogeneous are excluded in the third stage of the proposed approach, in which the 
hierarchical clustering method is applied. The objective of excluding these prototypes 
is to prevent them (and consequently the input patterns associated with them) from 
being erroneously attributed to one of the classes that are part of them. Heterogeneous 
prototypes can be seen as noisy or divergent patterns, and if they are not filtered the 
hierarchical method can incorporate them in the clusters that will be produced or 
retain them in separate clusters. And because in hierarchical methods, data or cluster 
fusion at a determined level can not be corrected in subsequent levels, incorrect 
interpretations regarding the classes and/or the number of classes of the image can be 
made. The input patterns associated with these heterogeneous prototypes are 
particularly classified only at the end of the analysis, considering the neighboring 
pixels that have already been labelled. 
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The spectral-textural heterogeneity degree of each prototype of the SOM is 
computed from Haralick’s co-occurrence matrix [3]. Since the weight vectors of the 
SOM prototypes have the same dimensions as the input patterns (that in this case are 
pixel windows), it makes it possible to generate an image of each prototype of the net 
and to calculate the co-occurrence probability of all pairwise combinations of grey 
levels in each one of them. The energy (sometimes called uniformity) was the 
measure chosen to calculate the spectral-textural heterogeneity of each prototype from 
co-occurrence matrix. This measure, described through the equation (3), gets values 
next to 1 when the area of interest presents uniform texture (similar grey levels), and 
values that tend to zero when the area is not uniform. 

∑∑ θ=
i j

djiPENE ,),(                                   (3) 

where θ,),( djiP  is the co-occurrence probability of two grey levels i and j, separate to 

a distance  d in the direction θ.  
The prototypes whose ENE’s satisfy the relationship given below are considered 

heterogeneous and are consequently filtered:  

.
2

1
ENEENEENE σ+μ>                                        (4) 

Here ENEμ  and ENEσ  are, respectively the average and the standard deviation of the 

ENE’s of all of the prototypes.  

4.3   Segmentation 

At the last processing stage of the proposed approach, an agglomerative hierarchical 
clustering method is applied to the trained and filtered SOM prototypes.  

The hierarchical clustering method utilized here has two important characteristics. 
The first one of them is the imposition of restrictions to the possible SOM prototype 
fusions. Unlike traditional hierarchical clustering methods, which consist of 
comparing all of the pairs of objects to decide on a fusion, the approach utilized in 
this work verifies the possibility of fusions only between adjacent (or neighboring) 
prototype pairs in the SOM grid. Another important characteristic is that beyond using 
inter-cluster distance information the employed merging criterion also incorporates 
space information of the image pixels associated to the SOM prototype clusters. 

The distance information (Dij) between two prototype clusters i and j is calculated 
using the euclidean metric and the nearest neighbor method (or single linkage 
method). The values of Dij are normalized within the interval [0,1]. 

The space information is calculated through two indices, denominated spatial 
boundary index and spatial compactness index. These indices, developed by Marçal 
and Castro [7], are computed here from classified image using the SOM prototype 
clusters (classes) in each level of the dendrogram generated by hierarchic method. 

The spatial boundary index (Bij) calculates the boundary length between all class 
pairs (i,j) considering eight neighbors for each pixel (four adjacent and four oblique). 
Its formula is given as follows:  
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where bij is the number of boundary counts for the class pair (i,j) and N is the number 
of classes in the dendrogram level that is being analyzed. The idea behind this index 
is that two classes that have a significant common boundary should be more likely to 
merge than classes with very little or no common boundaries [7]. 

The spatial compactness index (Cij), defined through the equation (6), is based on 
the number of self-boundary counts for each class (bii). This index penalizes the 
merger of compact classes. In the same way that the index Bij, the index Cij results 
values within the interval [0,1]. 
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The merging criterion adopted here establishes that the pair of prototype classes 
(i,j) that to present the lowest value resultant of the average computed between Dij, Bij 

and Cij is selected for merger. 
At the end of this stage there is a dendrogram that shows in a hierarchical way the 

similarity levels between the SOM prototypes. Each level of dendrogram obtained 
corresponds to a different clustering configuration of SOM prototypes that can be 
utilized to represent the classes by which the original image will be classified. 

5   Experimental Results 

This section shows an application example of the proposed methodology on a test 
image. The image used in the experiments (provided by Engesat/Brazil, © Space 
Imaging) has 385×350 pixels and is composed of three spectral bands of the IKONOS 
satellite. The study area shows irrigation pivots in the region of Andaraí in the Bahia 
state, Brazil. Six large land cover classes are present in the scene: sparse vegetation, 
forest, two types of exposed soil, and two stages of coffee plantation. The Fig. 1(a) 
shows a color composite of the test image.  

In accordance with the procedures described in the subsection 4.1, 1292 sample 
windows of size 9×9 were collected from test image and used to train a SOM 
composed of 225 neurons arranged in a 15×15 rectangular grid. 

The Fig. 1(b) shows the images of each SOM prototype (neuron) arranged in the 
rectangular grid after the training. By means of them it is possible to visualize 
prototype clusters that correspond to the land cover classes present in the original 
image. It is also possible to observe the topological ordering and density matching 
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(a) (b) 

properties in the mapping produced by the neural net. Land cover classes with similar 
spectral attributes are mapped to neighboring regions of the two-dimensional output 
grid and those that occupy bigger areas in the original image are mapped to a bigger 
number of prototypes of the grid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. (a) Color composite of the image used in the tests. (b) Image of the SOM prototypes 
arranged in the rectangular grid after the training. The images shown in (a) and (b) are in 
different scales. 

 
After the SOM training, the prototypes filtering process was applied. In this 

experiment, 10 SOM prototypes presented null activity and 39 presented a high 
degree of spectral-textural heterogeneity, given that its values of energy (ENE) 
exceeded the threshold defined in the equation (4). Thus, of the 225 total prototypes, 
49 of them were filtered, remaining 176 prototypes to be analyzed in the following 
stage. 

In the last processing stage, the agglomerative hierarchical method (described in 
the section 4.3) was applied on the filtered SOM prototypes. Consequently, a 
dendrogram consisting of 176 levels was generated, each level with a different 
configuration of SOM prototypes clusters. 

Since the image presents six large land cover classes (previously cited), the level of 
the dendrogram composed by six SOM prototype clusters was chosen to effect the 
classification of the scene. Fig. 2(a) shows the SOM grid segmented in 6 clusters. The 
squares marked with “ο” and “×” are, respectively, the inactive and heterogeneous 
prototypes that were filtered in the previous stage. 

To perform the classification of all pixels of the test image, the image was entirely 
run through considering 9×9 pixel windows (size equal to the sample windows) and 
comparing with all of the SOM prototypes. This comparison was performed using 
distances calculated between considered pixel windows and each one of the 
prototypes. The central pixel of the pixel window received the prototype label that 
presented the shortest distance from it. In the sequence, each one of the pixels of the 
image that were associated to any heterogeneous prototype was reclassified using the 
neighboring pixel class that has the least (spectral) distance from it. Fig. 2(b) shows 
the classification results for the test image using the proposed methodology. 
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Fig. 2. (a) Filtered and segmented SOM grid. (b) Result of the test image classification by 
proposed methodology.  

 
Attempting to evaluate the classification generated by the proposed method, and 

considering the absence of terrestrial truth for the test image, the present work 
performed the classification of the image in a supervised manner using a multilayers 
Perceptrons (MLP) neural net, and considered these results as a reference (or “true”) 
to calculate the Kappa agreement index (normally used to evaluate the accuracy of 
image classification). The MLP net was trained with a sample set collected from 
original image by an image analyst. The Kappa index obtained here was 0.82, which 
allows to conclude that the classification result of the test image by method presented 
in this work was very satisfactory. 

6   Conclusions and Final Considerations 

In this work, an approach consisting of three processing stages through SOM was 
proposed to perform the unsupervised classification of satellite images. The key point 
of the proposed method is to perform the clusters analysis of the image through a set 
of SOM prototypes instead of working directly with the original patterns of the scene. 
This approach significantly reduces the complexity of the analysis, making it possible 
to use methods that have not normally been considered viable for the processing of 
remotely sensed images, such as agglomerative hierarchical methods. Moreover, the 
proposed method presents advantages that make it as a promising alternative to carry 
out the classification of remotely sensed images. Among these, we can point out:  

(a) The method does not require a previous definition of the number of classes to 
perform the classification of the image. It does not occur in the majority of the 
conventional unsupervised classification methods. 

(b) The distributed representation of the classes by means of prototype groups 
gives the method the potential to discover geometrically complex and varied data 
clusters. Methods such as K-means use a single prototype (centroid) to represent each 
class and because of this are only capable of adequately detecting clusters that have 
hyperspherical formats. 

(a) (b) 

forest 
exposed soil 1 
exposed soil 2 
coffee plantation 1

coffee plantation 2
inactive 

heterogeneous

sparse vegetation 
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(c) The method uses a particular approach to classify pixels situated in transition 
regions between classes. This procedure contributes to increasing the accuracy of the 
resulting classification.  

(d) The utilization of an agglomerative hierarchical clustering method allows the 
user to observe the relationships that exist between the land cover patterns existing in 
the image at different cluster levels. It can be very helpful in applications where the 
structure of the information present in the image is not clearly known.   

(e) The proposed method employs an efficient merge mechanism that incorporates 
more information about the data in each cluster. Traditional clustering methods use 
only inter-cluster distance information to decide on the merging of clusters. 
Integration of spatial characteristics helps to increase the understanding of some 
classes confusable with others. 

In addition to the test image utilized in the experiments shown here, the proposed 
method has also been applied to other high and medium resolution images, with 
satisfactory results.  

As future works, it is intended to apply modified versions of cluster validation 
indices, as considered in [2], to automatically determine the cutoff of the dendrogram 
(ideal number of clusters) for the image. Comparisons of performance with 
conventional classification methods and sensitivity analysis also must be executed. 

References 

1. Costa, J.A.F., Netto, M.L.A.: Clustering of Complex Shaped Data Sets via Kohonen Maps 
and Mathematical Morphology. In: Proceedings of the SPIE Conference on Data Mining 
and Knowledge Discovery, Orlando, FL, vol. 4384, pp. 16–27 (2001) 

2. Gonçalves, M.L., Netto, M.L.A., Costa, J.A.F., Zullo Júnior, J.: Data Clustering using 
Self-Organizing Maps Segmented by Mathematic Morphology and Simplified Cluster 
Validity Indexes. Proceedings of IEEE International Joint Conference on Neural 
Networks 1, 8854–8861 (2006) 

3. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural Features for Image Classification. 
IEEE Trans. on Systems, Man and Cybernetics 3(6), 610–621 (1973) 

4. Kaski, S., Lagus, K.: Comparing self-organizing maps. In: Vorbrüggen, J.C., von Seelen, 
W., Sendhoff, B. (eds.) Artificial Neural Networks - ICANN 96. LNCS, vol. 1112, pp. 
809–814. Springer, Heidelberg (1996) 

5. Kohonen, T.: Self-Organizing Maps, 2nd edn. Springer, Berlin (1997) 
6. Kohonen, T., Oja, E., Simula, O., Visa, A., Kangas, J.: Engineering Applications of the 

Self-Organizing Map. Proceedings of the IEEE 84(10), 1358–1384 (1996) 
7. Marçal, A.R.S., Castro, L.: Hierarchical Clustering of Multispectral Images using 

Combined Spectral and Spatial Criteria. In: IEEE Geoscience and Remote Sensing 
Letters 2, 59–63 (2005) 

8. Richards, J.A.: Analysis of Remotely Sensed Data: the Formative Decades and the Future. 
In: IEEE Transactions on Geoscience and Remote Sensing 43, 422–432 (2005) 

9. Vesanto, J., Alhoniemi, E.: Clustering of the Self-organizing Map. In: IEEE Transactions 
on Neural Networks 11, 586–602 (2000) 

10. Wu, S., Chow, T.W.S.: Clustering of the Self-organizing Map using a Clustering Validity 
Index based on Inter-cluster and Intra-cluster Density. Pattern Recognition 37, 175–188 (2004) 

11. Xu, R., Wunsch II, D.: Survey of Clustering Algorithms. In: IEEE Transactions on Neural 
Networks 16, 645–678 (2005) 



Performance Analysis of MLP-Based Radar

Detectors in Weibull-Distributed Clutter with
Respect to Target Doppler Frequency

Raul Vicen-Bueno�, Maria P. Jarabo-Amores, Manuel Rosa-Zurera,
Roberto Gil-Pita, and David Mata-Moya

Signal Theory and Communications Department
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Abstract. In this paper, a Multilayer Perceptron (MLP) is proposed
as a radar detector of known targets in Weibull-distributed clutter. The
MLP is trained in a supervised way using the Levenberg-Marquardt back-
propagation algorithm to minimize the Mean Square Error, which is able
to approximate the Neyman-Pearson detector. Due to the impossibility
to find analytical expressions of the optimum detector for this kind of
clutter, a suboptimum detector is taken as reference, the Target Sequence
Known A Priori (TSKAP) detector. Several sizes of MLP are considered,
where even MLPs with very low sizes are able to outperform the TSKAP
detector. On the other hand, a sensitivity study with respect to target
parameters, as its doppler frequency, is made for different clutter condi-
tions. This study reveals that both detectors work better for high values
of target doppler frequency and one-lag correlation coefficient of the clut-
ter. But the most important conclusion is that, for all the cases of the
study, the MLP-based detector outperforms the TSKAP one. Moreover,
the performance improvement achieved by the MLP-based detector is
higher for lower probabilities of false alarm than for higher ones.

1 Introduction

Neural Networks can be applied to detect known targets in coherent Weibull
clutter. It is possible because Neural Networks trained in a supervised way can
approximate the Neyman-Pearson detector [1], which is usually used in radar
systems design. This detector maximizes the probability of detection (Pd) main-
taining the probability of false alarm (Pfa) lower than or equal to a given value
[2]. The detection of targets in clutter is the main problem in radar detection
systems. Many clutter models have been proposed in the literature [3], although
one of the commonly accepted models is the Weibull one [4,5].

The research shown in [6] set the optimum detector for target and clutter
with arbitrary Probability Density Functions (PDFs). Due to the impossibility
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to obtain analytical expressions for the optimum detector, only suboptimum so-
lutions were proposed. The Target Sequence Known A Priori (TSKAP) detector
is one of them and is taken as reference for the experiments. Also, these solutions
convey implementation problems, some of which make them non-realizable.

One kind of Neural Network, the MultiLayer Perceptron (MLPs), has been
probed to be able to approximate the Neyman-Pearson detector when they are
trained in a supervised way to minimize the Mean Square Error (MSE) [7,8].
They have been applied to the detection of known targets in different radar
environments [9,10].

In this work, MLPs are trained to approximate the Neyman-Pearson detector
for known targets in coherent Weibull clutter and white Gaussian noise. As
for designing the MLPs, no assumption is made about the target or the radar
environment. So they are expected to outperform the suboptimum solutions,
which need to have a priori some knowledge of the environment, as occurs with
the TSKAP one. According to it, a study of the MLP size is carried out for typical
values of clutter parameters. The work is completed with a sensitivity study with
respect to the spectrum spread of the clutter and the doppler frequency of the
target, in order to demonstrate the best behavior of the MLP-based detector.

2 Radar Target, Clutter and Noise Models

The radar is assumed to collect N pulses in a scan, so input vectors (z) are
composed of N complex samples, which are presented to the detector. Under
hypothesis H0 (target absent), z is composed of N samples of clutter and noise.
Whereas under hypothesis H1 (target present), a known target characterized by
a fixed amplitude (A) and phase (θ) for each of the N pulses is summed up to
the clutter and noise samples. Also, a doppler frequency in the target model (fs)
is assumed, where PRF is the Pulse Repetition Frequency of the radar system
(the sampling rate of the process).

The noise is modeled as a coherent white Gaussian complex process of unity
power, i.e., a power of 1

2 for the quadrature and phase components. The clutter
is modeled as a coherent correlated sequence with Gaussian AutoCorrelation
Function (ACF), whose complex samples have a modulus with a Weibull PDF:

p(|w|) = ab−a|w|a−1e−( |w|
b )a

(1)

where |w| is the modulus of the coherent Weibull sequence and a and b are the
skewness (shape) and scale parameters of a Weibull distribution, respectively.

The NxN autocorrelation matrix of the clutter is given by

(Mc)h,k = Pcρ
|h−k|2
c ej(2π(h−k) fc

PRF ) (2)

where the indexes h and k varies from 1 to N , Pc is the clutter power, ρc is the
one-lag correlation coefficient and fc is the doppler frequency of the clutter.
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The relationship between the Weibull distribution parameters and Pc is

Pc =
2b2

a
Γ

(
2
a

)
(3)

where Γ () is the Gamma function.
The model used to generate coherent correlated Weibull sequences consists of

two blocks in cascade: a correlator filter and a NonLinear MemoryLess Trans-
formation (NLMLT) [4]. To obtain the desired sequence, a coherent white Gaus-
sian sequence is correlated with the filter designed according to (2) and (3). The
NLMLT block, according to (1), gives the desired Weibull distribution to the
sequence.

Taking into consideration that the complex noise samples are of unity variance
(power), the following power relationships are considered for the study:

– Signal to Noise Ratio: SNR = 10 · log10
(
A2

)

– Clutter to Noise Ratio: CNR = 10 · log10 (Pc)

3 Optimum and Suboptimum Neyman-Pearson Detectors

The problem of optimum radar detection of targets in clutter is explored in [4]
when both are time correlated and have arbitrary PDFs. The optimum detector
scheme is built around two non-linear estimators of the disturbances in both
hypothesis, which minimize the MSE. The study of Gaussian correlated targets
detection in Gaussian correlated clutter plus noise is carried out, but for the cases
where the hypothesis are non-gaussian distributed, only suboptimum solutions
are studied.

The proposed detectors basically consist of two channels. The upper channel
is matched to the conditions that the sequence to be detected is the sum of the
target plus clutter in presence of noise (hypothesis H1). While the lower one is
matched to the detection of clutter in presence of noise (hypothesis H0).

For the detection problem considered in this paper, the suboptimum detection
scheme (TSKAP) shown in the fig. 1 is taken. Considering that the CNR is very
high (CNR >> 0 dB), the inverse of the NLMLT is assumed to transform the
Weibull clutter in Gaussian, so the Linear Prediction Filter (LPF) is a N-1 order
linear one. Then, the NLMLT transforms the filter output in a Weibull sequence.
Besides being suboptimum, this scheme presents two important drawbacks:

1. The prediction filters have N-1 memory cells that must contain the suitable
information to predict correct values for the N samples of each input pattern.
So N+(N-1) pulses are necessary to decide if the target is present or not.

2. The target sequence must be subtracted from the input of the H1 channel.

There is no sense in subtracting the target component before deciding if this
component is present or not. So, in practical cases, it makes this scheme non-
realizable.
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Fig. 1. Target Sequence Known A Priori Detector

4 MLP-Based Detector

A detector based on a MLP with log-sigmoid activation function in its hidden
and output neurons with hard limit threshold after its output is proposed. The
MLP-based detector tries to overcome the drawbacks of the scheme proposed in
the Section 3. Also, as MLPs have been probed to approximate the Neyman-
Pearson detector when minimizing the MSE [8], it can be expected that the
MLP-based detector outperforms the suboptimum scheme proposed in [4].

In our case of study, MLPs are trained to minimize the MSE using the LM
backpropagation algorithm with adaptive parameter [12]. As this algorithm is
based on the Newton method, MLPs with few hundred of weights (W ) are able
to achieve good performances and converge in few epochs with this algorithm.

Three sets of patterns are generated for the training: train, validation and
test. Train, validation sets are used for cross-validation purposes, which avoids
overfitting. To improve the generalization of the trained MLPs, the training is
stopped if the estimated MSE with the validation set increases during the last
ten epochs of the training. Finally, the test set is used to obtain the performance
of the MLPs trained working as radar detectors, i.e., to obtain the Pfa and
Pd estimation by Moltecarlo simulations. All the patterns of the three sets are
generated under the same conditions (target parameters: SNR and fs ; and
clutter parameters: CNR, a, fc and ρc) for each case of study.

Before the training process, MLPs are initialized using the Nguyen-Widrow
method [14] and, in all cases, the training process is repeated ten times. Once
all the MLPs are trained, the best MLP in terms of the estimated MSE with
the validation set is selected. With this selection, the problem of keeping in local
minima at the end of the training is practically eliminated.

The architecture of the MLP considered for the experiments is I/H/O, where
I is the number of MLP inputs, H is the number of hidden neurons in its
hidden layer and O is the number of MLP outputs. As the MLPs work with
real arithmetic, if the input vector (z) is composed of N complex samples, the
MLP will have 2N inputs (N in phase and N in quadrature components of the N
complex samples). The number of MLP independent elements (weights) to solve
the problem is W = (I +1) ·H +(H +1) ·O, considering the bias of each neuron.
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5 Results

The performance of the detectors exposed in the previous sections is shown in
terms of the Receiver Operating Characteristics (ROC) curves, which relates
the Pd with the desired Pfa. The ROC curves are shown with the Pfa axis
in a log scale, because in a linear scale it is not able to appreciate correctly
the performance differences between the detectors, specially when the study of
the MLP size is carried out. The experiments developed are designed for an
integration of two pulses (N = 2). So, in order to test correctly the TSKAP
detector, patterns of length 3 (N +(N −1)) complex samples are generated, due
to memory requirements of the TSKAP detector (N − 1 pulses).

The MLP architecture used to generate the MLP-based detector is 6/H/1.
The number of MLP outputs (1) is established by the problem (binary detection).
The number of hidden neurons (H) is a parameter under study in this work.
And the number of MLP inputs (6) is establish because a comparison under the
same conditions with a reference radar detector is made. In this case, a total
of 3 pulses are considered because the memory requirements of the TSKAP
detector.

The a priori probabilities of H0 and H1 hypothesis is supposed to be the
same. Three sets of patterns (train, validation and test) are generated under the
same radar conditions for each experiment. The first and the second ones have
5 · 103 patterns, respectively. The third one has 5 · 106 patterns, so the error
in the estimations of the Pfa and the Pd is lower than 10% of the estimated
values in the wost case (Pfa=10−4). Attending to previous studies of detection
of targets in clutter [4,5,6], typical values of the target and Weibull-distributed
clutter are taken. The values related with the clutter are: CNR = 30 dB, fc = 0
Hz and a = 1.2, whereas the target parameter is: SNR = 20 dB. The coherent
white Gaussian noise is considered with unity power. For the case of study,
the fs (target parameter) is modified in order to obtain the behavior of the
detectors with respect to target parameter variations. Moreover, the ρc (clutter
parameter) is modified, as occur in actual radar environments, in order to check
if the previous behavior continues or not.

A study of the MLP size is carried out under the conditions exposed above. For
this study, the target doppler frequency is fixed to fs = 0.5 · PRF and the one-
lag correlation coefficient of the clutter is established to ρc = 0.90. The results
obtained are shown in fig. 2. As can be observed, a MLP size greater than 6/20/1
gives lower performance improvement and higher computational cost increase
than this size. So, a MLP size of 6/20/1 (W > 121 weights) is selected for the
next experiments because the tradeoff between performance improvement and
computational cost. Moreover, greater MLP sizes than 6/30/1 where probed but
very low improvements were achieved. The MLP size proposed and lower ones
than this are enough to outperform the performance achieved with the TSKAP
detector, as it is demonstrated below. Experiments with different fs and rhoc

parameters were carried out and the conclusions obtained about this study were
the same.
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Fig. 2. MLP-based detector performances for different MLP sizes (6/H/1)

Fig. 3. Power Spectral Densities of the different correlated Weibull-distributed clutters
(a = 1.2) and different doppler frequencies of the target

The Power Spectral Densties (PSDs) of the Weibull-distributed clutter with
unity powers (Pc = 1) and target with power Ps are shown in fig. 3. As the
target is constant in time, its PSD is a Delta function. The target PSDs for
different doppler frequencies are presented. According to the PSD of clutter
with different ρc, we can observe that the greater is this parameter (ρc → 1), the
lower is the spread of the clutter spectrum. So in these situations, the separation
of both hypothesis (decision H0 or H1) will be easier than in situations where
the correlation coefficient is far from 1.

Once the MLP-based detector is designed and the target and clutter PSDs
are analyzed, the sensitivity of the detectors performances with respect to target
parameters is studied. In this case, the detector sensitivity to the fs is analyzed.
Fig. 4 and 5 show the behavior of the MLP-based and TSKAP detectors with
the variation of the fs in different clutter conditions. Analyzing the results, sev-
eral aspects can be highlighted. First: in all the cases, the MLP-based detector
is better than the TSKAP one, independently of the fs and ρc considered in the
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(a) (b)

Fig. 4. TSKAP and MLP-based detectors ROC curves for different doppler frequencies
of the target and one-lag correlation coefficients: (a) ρc = 0.99 and (b) ρc = 0.90

(a) (b)

Fig. 5. TSKAP and MLP-based detectors ROC curves for different doppler frequencies
of the target and one-lag correlation coefficients: (a) ρc = 0.80 and (b) ρc = 0.70 (right)

studies. Second: as was expected with the analisis of the PSDs, the detectors per-
formances are better for high correlated clutter environments (ρc → 1). Third:
both detectors are better for targets with high fs. And four: the performance
improvement achieved by the MLP-based detector with respect to the TSKAP
one is greater for low Pfa’s than for high Pfa’s. Finally, because of the difference
between performance detectors for all the cases, it is demonstrated that a MLP
size lower than 6/20/1 is able outperform the TSKAP one.

6 Conclusion

The influence of the MLP size is studied in order to implement MLP-based radar
detectors to detect known targets in a Weibull-distributed plus white Gaussian
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noise radar environment. This study avoid us to propose a MLP-based detec-
tor with a structure of 6/20/1, although a detector with lower MLP size (lower
computational cost) than this is able to outperform the detector took as refer-
ence, the TSKAP one.

In all the cases under study (variation of fs for different clutter conditions
(ρc)), the MLP-based detector outperforms the TSKAP one. Moreover, the per-
formance improvement achieved by the MLP-based detector increases with the
decrease of the ρc. The obtained results show that the TSKAP detector not only
requires that CNR >> 0 dB, but its performance hardly gets worn when ρc

moves away from 1. On the other hand, the MLP is a non-parametric technique
and it doesn’t require any a priori information of the inputs, as occurs with
the TSKAP detector (parametric technique). In that way, it is able to approx-
imate the Neyman-Pearson detector in all the cases, where the approximation
error will only depend on its size (number of weights or freedom degrees of the
MLP) and the ability of the training algorithm to find the minimum of the error
function.
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Abstract. This work describes a complete indoor location system, from its 
creation, development and deployment. This location system is a capable way 
of retrieving the position of wireless devices using a simple software solution, 
no additional hardware is necessary. The positioning engine uses artificial 
neural networks (ANN) to describe the behaviour of a specific indoor 
propagation channel.  The training of the ANN is assured using a slight 
variation of the radio frequency fingerprinting technique.  Results show that the 
location system has high accuracy with an average error below two meters. 

Keywords: Location, positioning, wifi, wireless, artificial neural networks, 
backpropagation. 

1   Introduction 

The location paradigm began years ago when systems like Decca, OMEGA, Alpha 
and Loran C were developed. Loran C was developed by the United States Navy 
during World War II. This system main objective was to help US and UK military 
ships navigation. Several radio beacon towers were deployed along sea coast. Using 
these radio beacons and their known location, the ships were capable of locating 
themselves. This was an important tactical advantage and it is still used today, 
although some modifications were made. Current location systems are more technical 
advanced, but almost all of them use the same principle of Loran – radio 
triangulation. This is the case of the well known Global Positioning System (GPS). 
GPS uses geo-stationary satellites as radio beacons, and provides almost a global 
coverage real time location system.  

1.1   Current State of the Art 

Satellite navigation systems, like North American GPS or the future European 
Galileo, are mainly focused on providing position for outdoor environments. These 
systems provide a global coverage with a three to five meters average error available 
for public usage. Although satellite navigation systems have good accuracy they are 
not suitable to indoor environments where a good clear view to the sky is not 
available [1]. Other systems are mainly focused on indoor location environments. 
Systems like Active-Bat [2] developed by AT&T and Cricket [3] use ultrasound time 
of flight measurements, others like Active-Badge [4] use small infrared tags that 
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provide symbolic information, like a name of a room. Infrared has limited range 
hence it has not become very popular. PinPoint 3D [5] uses radio frequency lateration 
to provide an accuracy of three meters and requires a special developed infrastructure. 
SpotON [6] project developed a 3D location system using RFID tags. SmartFloor [7] 
uses a sensor grid installed on a floor and the accuracy depends of the sensor spacing 
distance. These systems require a special infrastructure that needs to be deployed. 

Implementing a location system using WLAN communication infrastructure has 
been for some time target of intensive research. Various approaches have been 
proposed, mostly based on the received signal strength. One of the first systems to be 
introduced was RADAR [8], developed by Microsoft Research Group. RADAR uses 
received radio strength to map the user current location and it uses an empirical model 
(K-Nearest Neighbor) as well as a simple signal propagation model. The accuracy of 
this system is about four meters for 75% of the time and it uses special developed 
access points.  

R. Battiti et al. [9] describe a system capable of deriving the location using neural 
networks. In this work it is described the training phase, always present in a RF 
fingerprinting  based system, and the neural network architecture used. Despite the 
accuracy (about 2.3 meters), the results are only compared to test data and 
information about software developed, radio strength reading method and system 
architecture is inexistent.  M. D. Rodriguez et al. [10] also describe a location system 
for hospital services based on a neural network. In this work the SNR is used to 
calculate the user position and all the processing is done in the wireless client. Their 
results show an error below 4 meters 90% of the time. Bayesian models are also used 
to calculate a wireless device position, D. Madigan et al. [11] propose a system with 
an accuracy of four meters. A. Haeberlen et al. [12] describe a probabilistic approach 
and their location system provides symbolic information, like the office number 
inside a building.   

1.2   Indoor Location System 

Indoor location can be important when one thinks of services that can be applied in 
huge buildings, like shopping centers, office buildings, museums, warehouses, 
universities, etc. Imagine a warehouse equipped with a location system, one can know 
exactly the position of a package allowing an increase in the company’s efficiency. 
Think of a museum where tourists can receive in their cell phones important 
information depending on the place they are or the art work they are seeing. Imagine 
receiving on your cell phone great price discounts when you walk along a store in 
your favorite shopping center. This one might not be so great, but the applications and 
advantages of an accurate and reliable indoor location system are tremendous. This is 
the aim of this work, to develop a low cost, reliable and accurate location system 
using today’s technology. 

2   Technical Description 

The indoor location system was developed taking in account two different scenarios. 
The first, named macro-location, is a large scale implementation and provides 
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symbolic information, like the name of room. This information is retrieved from the 
access point where the client is associated. The second scenario, named micro-
location, gives the position of the wireless client by using spatial coordinates with 
high accuracy. The macro-location system is a simple solution to retrieve a client 
location in a symbolic way. Since micro-location solution provides the exact location, 
with spatial coordinates it was the target of a much more intense research and 
development. The two systems complement each other. 

2.1   Macro-location 

In a typical office wireless LAN there are several access points distributed in a 
defined way in order to offer good signal reception and sufficient bandwidth. 
Knowing which client is associated with which access point plays a critical role in the 
macro-location scenario. In fact, the main objective of the macro-location is to 
retrieve the location of the mobile client using the access point coverage. Despite the 
existence of several ways of knowing in which access point the client is associated 
some disadvantages can be found in each one of them. There is the need for a general 
solution that can be easily deployed to the existing variety of vendors and 
manufacturers. 

The final solution is based on the remote syslog [13] capability of most access 
points in the market. Remote syslog allows a device to send important messages to a 
central server that gathers all the data.   

 

Fig. 1. Macro - location system architecture 

 
With this method when a client associates/disassociates, the access point informs 

the server of this event by sending a syslog packet. The server has specific developed 
software in order to treat these messages and collect them into a database. Then it is 
possible to search for the location of a client or to see which clients are in an area. 

2.2   Micro-location 

The micro-location system allows the location of a WiFi device in an indoor scenario 
with an average error below two meters. The system uses a location method, called 
radio frequency fingerprinting.  This technique requires profiling the entire location 
scenario before the location itself takes place. At each location or point, several 
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measurements are taken and stored. This phase is often denominated calibration. Due 
to propagation effects, like fading, several measurements are taken to minimize this 
effect. After profiling the entire area, typically one building with multiple floors, the 
location system is ready to answer location requests. After the calibration phase is 
finished there are several RSSI vectors associated to each spatial coordinate. In a 
typical office floor, the adequate number of RSSI vectors was found to be between 10 
and 20. Considering that n base stations exist, then the signal strength vector (R) is 
defined as: 

).,..,( 21 iniii aaaR =                                         (1) 

Where aij corresponds to the measurement collected from point i from base station j. 
The complete RF fingerprinting matrix (M) is given by combining spatial information 
with the RSSI vector: 

{ } ...1,),,( miRyxM iii ==
                                       

(2) 

The RSSI vectors become the input of an artificial neural network (ANN)[14]. The 
number of neurons and of hidden layers of the ANN depends of the application and 
the size of the input data. The ANN inputs are the RSSI values measured by the 
wireless client and the output are the spatial coordinates X and Y. In scenarios where 
a third coordinate is necessary, like multiple floor buildings, the ANN output number 
increases to three. The multilayer perceptron architecture combined with the 
nonlinearity of the input and hidden layer activation functions, which are based on the 
hyperbolic tangent sigmoid function provided the generalization and adaptability 
needed for a proper and accurate location system.  

The ANN training uses the backpropagation algorithm [4] based on a batch 
approach. The algorithm modifies the weights of each of the neurons to minimize the 
median square error between the output and the real values. The output layer 
activation function is linear, since the outputs are spatial coordinates. The number of 
outputs is typically two, since a two-dimensional plane was used to describe the 
possible locations of a device in an office floor. 

The training process of a neural network must be adequate so that problems like 
over-fitting should not arise. Over-fitting occurs when too much training is applied to 
the ANN. This means that the ANN will be fitted exactly to the training data, 
therefore losing all the generalization capabilities. On the other hand, a poor training 
makes the ANN not to learn adequately  

Another significant parameter in artificial neural networks is the learning rate. It 
affects the learning capability of the ANN, and a suitable value is required to perform 
an adequate training.  The correct setting of the learning rate is often dependent on the 
size and type of input data and is typically chosen through experimental testing. Its 
value can also be adapted during the training phase, therefore becoming time 
dependent. The value for the learning rate chosen was 0.01. This low value is related 
to the nature of the input values that were between -1 and 1. 

After the training process the ANN is ready to receive data and calculate the 
wireless client position. The location process follows a client-server architecture. 
Each time a request is sent by the server, the wireless client that is being located 
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gathers RSSI values and sends them back to the server. The request handling, RSSI 
measurement and measurement report is assured by special developed software that 
must be installed on the client. This software does not affect the client processing 
power and does not require a huge amount of memory usage. After receiving the 
RSSI measurements, the server normalizes them and uses the trained ANN to 
calculate the client’s position. This position is showed on a web interface special 
developed for this system. This interface provides a real-time location visualization of 
the wireless client. 

 

Fig. 2. Wireless client position using a floor plan 

Typically, a floor plan is used to help identify the location of the client. Displayed 
expressions should be numbered for reference. The numbers should be consecutive 
within each section or within the contribution, with numbers enclosed in parentheses 
and set on the right margin.  

3   Results 

3.1   Macro-location 

The macro-location system was tested in the Instituto de Telecomunicações building 
using three Cisco access points. These APs were configured to send all the logs to the 
central server. Various location scenarios were tested, including fast moving clients, 
turning off one or more APs and also turning off the client. In all cases the location 
system provided the location information correctly. Increasing the number of access 
points has little effect in the system. The network performance is unaffected since the 
log packets are small and not in sufficient number to cause a major impact on typical 
office LAN.   

3.2   Micro-location 

Since the location system performance depends on the RSSI values from the various 
access points, it is important to study the behavior of these signals over time. The 
standard deviation from the several RSSI values at the same location can not take 
large values, since it will degrade the location system performance. Normally, the 
transmitted power in access points in a typical WLAN is constant. The results 
presented here were collected in a typical deployment scenario – a shopping center. 
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This test bench had four day duration and consisted of placing a WiFi device 
collecting 20 measurements at each time in intervals of five minutes. The access 
points used on this test were the ones that existed on the shopping centre that are from 
several ISPs. Since the shopping centre entrances are equipped with counting sensors, 
the RSSI results were crossed with the number of people that were inside the building. 
This way it might be possible to conclude something about the effect of the constant 
movement of people and its effect on the radio propagation.  

 

 

Fig. 3. Shopping center scenario - RSSI difference from its average and visitor number over 
time -channel 1 

Analyzing figure 4, it is clear that the number of people roaming in the shopping 
centre has an effect of the RSSI value measured, since the difference from the average 
RSSI has its maximum values (about -4 dB) at night. Most of the time, the RSSI 
variation is not large enough to have a profound impact on the location system. A 
signal variation between 0 and 4 dB is a typical small scale fading value, which is 
observed on the measurements taken at the same point with 300 milliseconds 
intervals.  

 

Fig. 4. Average location and training error versus number of neurons 

 
The behavior of the artificial neural network, as mentioned before, has a 

dependency on the parameters values. The mean square error (MSE) value provides 
an understanding of the number of neurons that should be used. Crossing the MSE 
values with the average error gives the optimal number of neurons that, in this case, is 
near twelve (Figure 5).  
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In this situation the ideal number of neurons of the hidden layer was found to be 
twelve. This number makes a good commitment between the training MSE and the 
average error. Nevertheless, the number of neurons used in the hidden layer must be 
adapted to each situation and to the size of the training data set. During the location 
phase the wireless client is asked to perform RSSI measurements. The number of 
measurements has influence in the accuracy and duration of the location process. 
Increasing the number of measurements improves accuracy but increases the location 
duration. A good compromise between location response time and accuracy is a number 
that goes from five and eight readings, that corresponds to a 2 seconds time interval.  

 

 

Fig. 5. Average error variation versus number of neurons and sampling size 

Analyzing the behavior of the average error when there is a variation in the number of 
neurons in the ANN hidden layer and the number of samples (readings) used, it is 
possible to understand that there is an optimal neural network size. According to figure 6, 
the average error is minimized when the number of neurons of the neural network hidden 
layer is between 10 and 16. The sampling size also matters, as it is shown on the graphic, 
a low number of samples, has a negative impact on the location system performance. A 
low number of samples degrades the final average error values, compromising the system 
accuracy. This phenomena is explained when one thinks of radio propagation 
characteristics. Indoor propagation is always affected by effects like small scale fading, 
multipath, scattering and diffraction.  Retrieving just one sample is just too low, since the 
location algorithm is based on the average RSSI values. 

The mean square error is the output value of the neural network training. It is a 
figure of merit of the NN training and according to its value it is possible to conclude 
how well the NN has adapted to the input values. As figure 7 shows, MSE has large 
values when a low number of neurons is used. This is a natural behavior of the neural 
network, since there is a large set of data, and it is almost impossible to converge to a 
good final solution with a low number of neurons no matter the number of readings. 
A low number of readings also degrades the neural network capability of converging. 
The adequate number of readings should be higher than five. A higher number of 
readings does not significantly improve the neural network learning performance.  
The number of neurons used has a high impact on the mean square error of the 
learning phase.  
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Fig. 6. MSE variation according to number of neurons and samples 

It is important to study the behavior of the error in the location system. A low 
average error is not always a sign of optimal performance. The error histogram 
provides a clear insight of the location system accuracy.  

 

 

Fig. 7. Error histogram using 12 neurons, 3 access points and 5 readings 

Using different settings, like the number of hidden neurons, access points and 
readings, it is possible to acquire the optimal settings for different scenarios and user 
requirements. Using a sufficient number of readings for an adequate accuracy (5 
readings), the average error value is 2.4 meters (Figure 8). The maximum error value 
is 7 meters, and for about 80% of the samples, the error is below 3 meters. This result 
is improved increasing the number of readings to 20 (Figure 9), where the average 
error drops down to 1.9 meters. 

Using additional measurements decreases the maximum error to five meters. 
According to figure 43 the location system offers an error less than one meter for 50% 
of the samples. Also for 90% of the samples the error is below three meters. 
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Fig. 8. Error histogram using 12 neurons, 3 access points and 20 readings 

4   Conclusion and Future Work 

This work provides a description of a wireless location system. Using a simple 
software solution, with no additional hardware, the location system has a good 
accuracy that can be improved by increasing the number of readings at the cost of 
lowering the location response time.   

The use of RF fingerprinting is a valid solution to provide accurate positioning 
techniques. Nevertheless, it can be time consuming gathering measurements and 
profiling a large indoor scenario. This time was minimized using a simple and fast 
RSSI measurement and calibration tool, which can be used in an easy way. The usage 
of radio frequency fingerprinting requires employing mathematical approaches to 
solve the location problem. Methods like using propagation models and nearest 
neighbor were evaluated and it was concluded that their performance was inadequate. 
Artificial neural networks applied to the location paradigm offer sufficient 
adaptability between different scenarios, contrary to other algorithms used in other 
location applications. ANN based location algorithm provides enough flexibility and 
its final accuracy competes directly with the best known location applications.    

The idea behind an indoor location system is its capability of providing accuracy 
while being simple to use. The location system developed can be easily deployed in 
existing WLAN with minimal cost and difficulty. Additionally it does not require any 
changes in the existing WLAN infrastructure, only a small software program must be 
installed in the client’s device. This software does not interfere with the client’s 
normal usage of its device. The system robustness is not compromised by minimal 
environmental changes in the indoor scenario, and it is immune to the multi-path and 
small scale fading effects, typical encountered on indoor radio propagation.  

This location system is divided into two parts, the macro and the micro-location. 
Although some testing was made to ensure the interaction between those two systems, 
a final and efficient solution was not achieved. The main goal is to choose the 
adequate neural network according to the output of the macro-location system. 
Possible future work includes a seamless integration between the two systems.  
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Presently, the local system has been deployed in two different scenarios with an 
average location error below two meters. In the future, one can expect to improve its 
accuracy and lower the time required to perform the initial calibration. 
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Abstract. The accurate calculation of the resonance frequency and input 
resistance of microstrip antennas is a key factor to guarantee their correct 
behavior. In this paper we presented an adaptive neuro-fuzzy inference system 
(ANFIS) that calculates resonant frequency and input impedance of the 
microstrip dipole antenna’s (MSDAs). Although the MSDAs’ resonant 
frequency greatly depends on the dipole’s length, it also depends on the dipole’s 
width, the antenna substrate’s permittivity value, and its size (which affects 
resonant frequency). Input impedance, like resonant frequency, changes with 
these parameters. According to test results accuracy of ANFIS  is calculated 
98.91% for resonant frequency while 95.81% for input resistance calculation. 

Keywords: Microstrip dipole antenna, ANFIS, resonance frequency, input 
resistance. 

1   Introduction 

Technical literature has broadly investigated Microstrip patch antennas (MSPAs). 
These antennas are lightweight, aerodynamically conformable to aircraft and missile 
surfaces, compatible with solid-state devices, and simple and inexpensive to 
construct. Furthermore, by adding loads between the patch and the ground plane (i.e. 
pins and varactor diodes), one can design adaptive elements containing variable 
resonant frequency, impedance, polarization, and radiation pattern [1]. 

Nevertheless, narrow bandwidth is one major drawback of the microstrip antennas. 
Consequently, printed antennas work efficiently by closely matching their resonant 
frequency. Therefore, this parameter’s accurate evaluation is fundamental in the 
microstrip antenna design process. A correct evaluation of the resonant frequency and 
the printed antenna’s input resistance requires a rigorous full-wave model [2]. The 
Finite Element Method (FEM), the Method of Moments (MoM), and Finite 
Difference Method (FDM) have proved useful for analysis of such antennas by 
providing rigorous solutions to the present problem [3-5]. However, this technique 
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requires significant computation and is time-consuming. Recently, studies developed 
alternative methods for resonant frequency determination using fuzzy logic (FL), 
neural networks (NNs), and combined adaptive neuro-fuzzy inference systems 
(ANFIS) [2,6-8]. 

We developed an adaptive neuro-fuzzy inference system that calculates resonant 
frequency and the microstrip dipole antenna’s (MSDAs) input impedance. Although 
the MSDAs’ resonant frequency greatly depends on the dipole’s length, it also 
depends on the dipole’s width, the antenna substrate’s permittivity value, and its size 
(which affects resonant frequency). Input impedance, like resonant frequency, 
changes with these parameters.  

The past two decades have witnessed significant advances in FL and NNs. Some 
have unsuccessfully used FL and NN separately to find the MSDA’s resonant 
frequency and input impedance. The FL system’s difficulty stems from constituting 
correct membership functions and rule base. Insufficient training sets resulted in NNs 
producing unstable results. The synergism of FL systems and NN produced a system 
capable of learning, thinking, and reasoning. This tool determines the imprecisely-
defined complex system’s behavior. The neuron-fuzzy system’s purpose is to apply 
neural learning techniques to identify and tune the neuro-fuzzy system’s parameters 
and structure. These neuro-fuzzy systems combine the benefits of these two powerful 
paradigms into a single capsule. Their multi-functionality makes them suitable for a 
wide range of scientific applications. Their strengths include fast and accurate 
learning, good generalization capabilities, excellent explanation facilities (formed by 
semantically meaningful fuzzy rules), and can accommodate both data and existing 
knowledge about any present problem. 

ANFIS can find a model that closely matches the inputs with the target. Fuzzy 
interface system (FIS) is a knowledge representative where each fuzzy rule describes 
the system’s local behavior. Viewing FIS as a feed forward network structure where 
the primary inputs and intermediate results are sent to compute the output allows us to 
apply the same back-propagation principle in the neural networks. The network 
structure that implements FIS is called ANFIS and employs hybrid learning rules to 
train a Sugeno-style FIS with linear rule outputs. 

Among the various methodology combinations in soft computing, fuzzy logic and 
neuro-computing are the most common (hence the tem neuro-fuzzy systems). Such 
systems play an important role in the initiation of rules from observations. It is a 
powerful tool for quickly and efficiently dealing with imprecision and nonlinearity 
wherever it occurs. Neuro-adaptive learning techniques work similarly to neural 
networks. These techniques allow the fuzzy modeling procedure to learn information 
about a data set that computes the membership function parameters, allowing the 
associated fuzzy inference system to track the given input/output data. A neural-type 
structure similar to a neural network that maps inputs through input and output 
membership functions and associated parameters can be used to interpret the 
input/output map. This eliminates the normal feed forward multilayer network’s 
disadvantages (difficult to understand or modify). We explain MSDAs and how to use 
ANFIS to train a fuzzy inference system that calculates both the resonant frequency 
and input impedance. 
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2   Microstrip Dipole Antennas 

Rectangular microstrip antennas are classified according to their length-to-width ratio. 
An antenna with a narrow rectangular strip (strip width less than 0.05 λ ) is a microstrip 
dipole. A broad rectangular antenna is called a microstrip patch [9]. Figure 1 shows the 
microstrip printed dipole antenna containing a conventional half-wave dipole loaded with 
two open-circuited stubs. The antenna, printed on a PCB substrate, is fed either by cable, 
surface mount connector, or printed transmission line. Where ‘L’ represents length, ‘W’ 
is dipole width, ‘Ds’ is distance between the dipole edges and substrate edges, H is the 

substrate thickness and “ rε ” is the substrate’s dielectric’s constant value. 

 

Fig. 1. Geometry of a microstrip dipole antenna 

 
As Figure 1 shows, MSDAs, using the transmission line model, can be designed 

for the lowest resonant frequency. The formula calculating the value of L and W is 
shown below. The effective dielectric constant of a microstrip line is: 
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The microstrip’s line length (L) is: 
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Where;         
λ :wavelength 
c :velocity of light 

f :frequency 

Thus 
2

L
λ= . 

We fixed the space between the symmetrical metal patches on the substrate at 1mm 
and the antenna is fed from this space. By changing the antenna parameters L, W, H, 

rε , and Ds, we obtained 61 antenna configurations, using 51 for training and the rest 
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for testing. We used materials used for antenna design such as FR-4, RT/duroid and 
Rogers TMM. We obtained the antenna substrate’s thickness and permittivity values 
from producer firms’ catalogs. We used Ansoft High Frequency Structure Simulator 
(HFFS) software, based on FEM, to compute and test the data set. 

3   Adaptive Neuro-Fuzzy Inference System  

3.1   Structure of ANFIS 

ANFIS is a multilayer neural network-based fuzzy system [7]. Its topology is shown 
in Figure 2, and the system has a total of five layers. In this connectionist structure, 
the input and output nodes represent the descriptors and the activity, respectively, and 
in the hidden layers, there are nodes functioning as membership functions (MFs) and 
rules. This eliminates the disadvantage of a normal feedforward multilayer network, 
which is difficult for an observer to understand or to modify. For simplicity, we 
assume that the examined fuzzy inference system has two inputs x and y and one 
output, the activity. To present the ANFIS architecture, two fuzzy if-then rules based 
on a first order Sugeno model are considered:  

Rule 1: If (xis A1)and (yis B1) then (f1= p1x+ q1y+ r1)  
Rule 2: If (xis A2)and (yis B2) then (f2= p2x+ q2y+ r2)  

 

Fig. 2. (a) A two-input first-order Sugeno fuzzy model  (b) equivalent ANFIS architecture 

where x and y are the inputs, Ai and Bi are the fuzzy sets, fiare the outputs within the 
fuzzy region specified by the fuzzy rule, pi, qi and ri are the design parameters that 
are determined during the training process. In the first layer, all the nodes are adaptive 
nodes with anode function: 
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1, ( ), 1, 2i Aio x for iμ= =  

where x is the input to node i, and Ai is the linguistic label (low, high, etc.) associated 
with this node function. In other words, O1,i is the membership function of Ai, and it 
specifies the degree to which the given x satisfies the quantifier Ai. Usually we choose 
μAi(x) to be bell-shaped with maximum equal to 1 and minimum equal to 0. As the 
values of the parameters {ai, bi, ci} change, the bell-shaped functions vary 
accordingly, thus exhibiting various forms of membership functions on linguistic 
label Ai. Parameters in this layer are referred to as premise parameters.  

Every nodes in second layer is is a fixed node labeled Π (Figure 2), whose output 
is the product of all the incoming signals: 

2, ( ) ( ), 1, 2
i ii i A Bo x y for iω μ μ= = × =  

Each node output represents the firing strength of a rule. 
In layer 3 every node is a fixed node labeled N. The ith node calculates the ratio of 

the ith rule's firing strength to the sum of all rules' firing strengths: 

3,
1 2

, 1, 2i
i io i

ωϖ
ω ω

= = =
+

 

Outputs of this layer are called normalized firing strengths. Every node i in layer 4 is 
an adaptive node with a node function 

4, ( )i i i i i i io f p x q y rϖ ϖ= = + +  

where iω  is a normalized firing strength from layer 3 and (pi ,qi , ri) is the parameter 

set of this node. Parameters in this layer are referred to as consequent parameters. The 
single node in the last layer is a fixed node labeled Σ, which computes te overall 
output as the summation of all incoming signals: 

overall output
5

 = ,
fi iio fi ii ii i

ϖϖ
ω

∑∑= =
∑  

Thus we have constructed an ANFIS system that is functionally equivalent to first-
order Sugeno fuzzy model. 

3.2   Hybrid Learning Algorithm 

From the proposed ANFIS architecture the overall output can be expressed as linear 
combinations of the consequent parameters. The output f  in figure 2 can be written 

as: 

1 2
1 2 1 1 1 1 2 2 2 2

1 2 1 2

1 1 1 1 1 1 2 2 2 2 2 2

( ) ( )
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which is linear in the consequent parameters p1, q1, r1, p2, q2, and r2. To train the 
above ANFIS system, the following error measure will be used: 

^ 2

1

( )
n

k k
k

E f f
=

= −∑  

where kf  and  ^
kf  are the kth desired and estimated outputs, and n is the total 

number of pairs (inputs-outputs) of data in the training data set. The learning 
algorithms of ANFIS consist of the following two parts: (a) the learning of the premise 
parameters by back-propagation and (b) the learning of the consequence parameters by 
least-squares estimation [7]. More specifically, in the forward pass of the hybrid 
learning algorithm, functional signals go forward till layer 4 and the consequent 
parameters are identified by the least squares estimate. In the backward pass, the error 
rates propagate backward, and the premise parameters are updated by the gradient 
descent. During the learning process, the parameters associated with the membership 
functions will change. The computation of these parameters is facilitated by a gradient 
vector, which provides a measure of how well the fuzzy inference system is modeling 
the input/output data for a given set of parameters. It has been proven that this hybrid 
algorithm is highly efficient in training the ANFIS [13,14]. Therefore, in the present 
study the proposed ANFIS model was trained with the backpropogation gradient 
descent method in combination with the least –squares method. 

4   Result and Discussion 

We presented a new approach based on ANFIS to calculate MSDP’s resonant 
frequency and input impedance. We used two ANFIS classifiers to calculate the 
resonant frequency and input impedance. Each ANFIS classifier was specially trained 
for each problem. Sixty-one different antenna parameters were obtained by changing 

the antenna parameters L, W, H, rε , and DS. The data set was divided into two 

separate data sets: 51 were used for training while rests were used for testing.  Table 1 
shows system training and Table 2 shows test data. The data from Table 1 is 
important to antenna designers because it presents a number of antenna features for 
different frequencies. All data sets obtained by 3-D simulations used Ansoft High 
Frequency Structure Simulator (HFFS). All materials that used for this study came 
from producer firms’ catalogs. We used the training data set to train each ANFIS, 
whereas the testing data set was used to verify the accuracy and effectiveness of each 
trained ANFIS model. 

We used triangular membership functions for resonant frequency calculations and 
Gaussian membership functions defined below for input resistance: 

2
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1

i iA b

i

i

x c

a

μ =
⎧ ⎫⎛ ⎞−⎪ ⎪+ ⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

where ia , ib and ic  are the membership function’s parameters. 
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Table 1. Part of the training set used for ANFIS 

 Frequency 
[GHz] 

Resistance 
[Ohm] 

rε  

 

H 
[mm] 

W 
[mm] 

L 
[mm] 

Ds 
[mm] 

HFSS 
Results 

ANFIS 
Result 

HFSS 
Results 

ANFIS 
Result 

1.0e+003 * 

2.1 1.6 3 33 15 5.81 5.8043 1850 1.8500 

3.27 1.6 3 33 15 4.87 4.8899 1763 1.7630 

4.40 1.6 3 33 15 4.31 4.2996 1682 1.6937 

4.90 1.6 3 33 15 4.11 4.1289 1642 1.6420 

6.00 1.6 3 33 15 3.77 3.7700 1520 1.5200 

9.20 1.6 3 33 15 3.09 3.0900 1306 1.3060 

4.40 0.457 3 33 15 4.44 4.4600 730 0.7300 

4.40 0.965 3 33 15 4.43 4.3883 1608 1.6080 

4.40 3.175 3 33 15 4.09 4.0844 1341 1.3410 

4.40 1.6 1 33 15 4.65 4.6500 2889 2.8890 

4.40 1.6 2 33 15 4.49 4.4900 2257 2.2570 

4.40 1.6 5 33 15 4.23 4.2300 1139 1.1390 

4.40 1.6 3 19 15 6.47 6.4710 960 0.9627 

4.40 1.6 3 43 15 3.45 3.4431 1945 1.9274 

4.40 1.6 3 59 15 2.55 2.5322 2005 1.9926 

4.40 1.6 3 67 15 2.25 2.2559 2100 2.1039 

4.40 1.6 3 33 5 4.28 4.2798 915 0.9150 

3.27 6.35 4 51 15 2.88 2.8800 918 0.9180 

9.20 1.91 1.75 15 8 6.01 6.0100 863 0.8630 

3.75 3 4.5 37 16 3.85 3.8500 1244 1.2440 

2.2 5.08 4.25 43 12 3.92 3.9200 905 0.9050 

 
Each of ANFIS used 51 training data sets in 300 training periods. Error tolerance 

was 0 and the output membership function was linear. L,W,H, rε and Ds were inputs 

of each ANFIS. The outputs were f, for the first and Rin for the second. We used three 
linguistic terms for each input.  

After training, 10 testing data sets were used to validate the ANFIS model’s 
accuracy for the resonant frequency and input resistance’s calculation. The testing 
data consisted of different types of material values and varied in size. Figures 3 and 4 
show the comparisons for resonant frequency. While Figure 3 compares the results 
between the training data set and FIS output, Figure 4 shows the testing set and FIS 
output. Figures 5 and 6 compare the results of training and test data sets with FIS 
output for input resistance. 
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Table 2. Test data set of ANFIS and results 

 
 

 
Frequency 

 [GHz] 
 

 
Resistance 

[Ohm] 
 

rε  

 

H 
[mm] 

W 
[mm] 

L 
[mm] 

Ds 
[mm] 

HFSS 
Results

ANFIS 
Results 

Error 
(%) 

HFSS 
Results 

ANFIS 
Results 

Error 
(%) 

3.75 2.50 3.00 33 15 4.46 4.41 1.07 1490 1612.8 8.23 

4.40 3 4.00 33 15 4.00 3.92 1.83 1167 1195.6 2.45 

2.10 2.50 4.50 23 20 6.96 6.90 0.83 599 607.7 1.45 

4.9 1.91 2.5 29 16 4.68 4.68 0.12 1693 1578.8 6.74 

6 1.6 3 47 15 2.73 2.68 1.60 1778 1814.5 2.05 
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Fig. 3. Comparison of training data set results and FIS results for resonant frequency 
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Fig. 4. Comparison of testing data set results and FIS results for resonant frequency 



 An Adaptive Neuro-Fuzzy Inference System for Calculation Resonant Frequency 717 

The ANFIS model’s test performance was defined after comparing the simulation 
results and FIS results. In Table 1, the f-labeled column shows the simulator results 
while the ANFIS-labeled column shows the FIS results. In Table 2, the ANFIS model 
calculates the resonance frequency with 1.07%, 1.83%, 0.83%, 0.12%, and 1.60% 
with relative error value, respectively. These results show the ANFIS’s mean 
accuracy at 98.91% with the minimum accuracy as 98.17%. The second ANFIS 
model’s mean accuracy was 95.81%. Our proposed system performed better in 
calculating resonant frequency than input impedance. These results signify that the 
proposed ANFIS has the potential in calculating MSDAs’ resonant frequency and 
input resistance. 
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Abstract. A procedure to estimate the parameters of GARCH pro-
cesses with non-parametric innovations is proposed. We also design an
improved technique to estimate the density of heavy-tailed distributions
with real support from empirical data. The performance of GARCH pro-
cesses with non-parametric innovations is evaluated in a series of ex-
periments on the daily log-returns of IBM stocks. These experiments
demonstrate the capacity of the improved estimator to yield a precise
quantification of market risk.

1 Introduction

Market risk is associated with losses in the value of a portfolio that arise from
unexpected fluctuations in market prices (security prices) or market rates (in-
terest or exchange rates) [1]. The quantification of market risk is an important
tool used by risk analysts to understand, quantify and manage the risk profile of
an investment. Risk measures such as VaR and Expected Shortfall are employed
to assist in decisions about how much risk an institution is willing to take, to
identify risk factors that may be particularly harmful, and for regulatory pur-
poses. The process of measuring risk involves two steps. In the first step, the
distribution of future losses and gains for the portfolio value for a time horizon
τ in the future (one day, for instance) is modeled. The usual approach consists
in assuming that the statistical description for the price changes in the future is
similar to that of changes in the recent past. A parametric form for the distribu-
tion of the portfolio returns is assumed. The parameters of this model are then
selected by performing a fit to historical data. In the second step, measures that
quantify the risk associated to extreme losses are computed from this distribu-
tion. The most common measure is Value at Risk (VaR), which is a percentile
of the distribution at a given probability level p (usually high, e.g. 95% or 99%).
[1]. Assuming a time horizon of a day, the value of VaR is the threshold above
which one should expect to observe losses 100−p days out of a hundred days, on
� This work has been supported by Consejeŕıa de Educación de la Comunidad
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average. Expected Shortfall (ES) is an alternative measure of risk that estimates
the expected value of losses conditioned to being above the threshold given by
VaR.

The calculation of VaR or ES for a known probability distribution of portfolio
returns at horizon τ is relatively straightforward. However, the intrinsic random-
ness in the behavior of the market, the difficulty in modeling the distribution
of extreme events using limited empirical evidence, and the time-dependence of
the volatility [2] make it difficult to obtain accurate estimates of the distribu-
tion of returns (especially in the tail), and therefore of VaR and ES. In this
investigation we use a family of GARCH processes [3,4] with non-parametric
innovations whose parameters are estimated in a transformed space to account
for the leptokurtosis (heavy tails) of the returns distribution. These processes
provide an accurate statistical description of the extreme losses in the tail of the
conditional distribution of daily log-returns. Furthermore, they can be used to
compute measures of risk that are very precise.

2 Models for Time Series of Financial Asset Prices

Consider the time series of daily prices of a financial asset {St}T
t=0. In general,

the time-series of financial product prices are non-stationary. For this reason, it
is common to model the time series of logarithmic returns

rt = 100 · log

(
St

St−1

)
, t = 1, 2, . . . , T. (1)

which, besides being quasi-stationary, has other desirable properties [2].
Typically, the autocorrelations between returns are small and short-lived. By

contrast, the time series of financial asset returns are usually heteroskedastic.
That is, the volatility or standard deviation of the returns exhibits a time-
dependent structure [5]. This is the well-known phenomenon of volatility cluster-
ing: Large price variations (either positive or negative) are likely to be followed
by price variations that are also large. This phenomenon is evidenced by a plot
of the autocorrelations in the powers of the absolute values of returns

Cδ = corr(|rt+h |δ, |rt|δ) , h = 1, 2, . . . , (2)

These correlations are positive for various delays in the range of weeks to months.
The highest values are usually achieved for δ = 1 [6]. This behavior, known as
the Taylor effect, is displayed in Fig. 1 for the returns of IBM stocks.

GARCH processes are time-series models that have been proposed to account
for the time-dependent structure of the volatility in financial time series [3,4]. In
this work we consider power GARCH(1,1,δ) processes, which are a generalization
of the standard GARCH(1,1) process [6]. A time series {rt}T

t=1 follows a power
GARCH(1,1,δ) process with normal innovations if

rt = σtεt

σδ
t = γ + α|rt−1|δ + βσδ

t−1 , (3)
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Fig. 1. Plots of the autocorrelation function between |rt|δ and |rt+h|δ for h ∈
{1, ..., 10}. Each curve corresponds to a different value of h = 1, 2, . . . , 10. The se-
ries {rt}T

t=1, with T = 9190 values, corresponds to the standardized returns of IBM
stocks from 1962/07/03 to 1998/12/31. The maximum of each function is shown with
a cross. All maxima are located close to the value δ = 1.

where 0 < δ ≤ 2, γ > 0, α ≥ 0, β ≥ 0, α + β < 1 and the innovations
εt ∼ N (0, 1) are distributed according to a standard normal distribution. The
condition α + β < 1 is sufficient to guarantee the existence of E[σδ

t ] and E[|rt|δ]
for any value of δ [6]. Power GARCH processes take into account the correlation
between |rt+1|δ and |rt|δ. The usual choice is δ = 2, which corresponds to the
standard GARCH process. The parameters of the model are then estimated
by maximizing the model likelihood with standard optimization algorithms that
generally employ gradient descent. Nevertheless, an empirical analysis of the data
(see Fig. 1) suggests using a value of δ closer to 1. In the experiments carried
out in the present investigation, the value δ = 1 is chosen and an optimization
method that does not need to compute the gradient is used to maximize the
likelihood. The value of δ = 1 is preferred to δ = 2 to allow for the possibility of
infinite-variance models for the innovations (for instance, if the innovations are
assumed to follow a stable distribution [7], whose second and higher moments
do not exist).

If rt exhibits correlations with rt+h for a range of values of h (usually h small)
it is possible to add an autoregressive component to the GARCH process. The
simplest one is an AR(1) process

rt = φ0 + φ1rt−1 + σtεt

σt = γ + α|rt−1 − φ0 − φ1rt−2| + βσt−1 , (4)

where |φ1| < 1 is a necessary condition for stationarity. Assuming Gaussian
innovations, the likelihood for the parameters of this GARCH process given a
time series {rt}T

t=1 is
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L(θ|{rt}T
t=1) =

T∏

t=1

ψ

(
ut

σt

)
1
σt

, (5)

where θ = {φ0, φ1, γ, α, β}, ut = rt − φ0 − φ1rt−1 is the empirical autoregressive
residual and ψ(x) is the standard Gaussian density function. To evaluate (5) we
define u0 = 0, u1 = r1 − μ̂ and σ0 = σ̂ where σ̂ and μ̂ are the sample standard
deviation and sample mean of {rt}T

t=1.
If a GARCH process like the one described in (4) is fitted to the daily

returns of a financial asset, the model captures the time-dependent volatil-
ity quite accurately. However, the empirical innovations of the model ut/σt =
(rt − φ0 − φ1rt−1)/σt do not follow a standard Gaussian distribution. In partic-
ular, the empirical distribution of the residuals has larger kurtosis (i.e., heavier
tails) than the Gaussian distribution. This mismatch in the loss tail of the distri-
bution for the innovations reflects the fact that the model is unable to correctly
describe extreme events, causing it to severely underestimate measures of market
risk such as VaR or Expected Shortfall. We propose to address this shortcom-
ing by estimating the parameters of the GARCH process (4) assuming that the
innovations εt follow an unknown distribution f which is estimated in a non-
parametric way.

3 GARCH Processes with Non-parametric Innovations

The goal is to maximize (5) replacing ψ by f , the (unknown) density function
for the innovations {εt = ut/σt}T

t=1. One possible solution to the problem is to
use a non-parametric kernel density estimator f̂ :

f̂(x ; {ci}N
i=1) =

1
Nh

N∑

i=1

K

(
x − ci

h

)
, (6)

where {ci}N
i=1 are the centers of N Gaussian kernels denoted by K and h is

the smoothing parameter. If c1, ..., cN ∼ f , h → 0 and Nh → ∞ as N → ∞,
then f̂ can approximate f to any degree of precision [8]. If h is optimally chosen
then the Asymptotic Mean Integrated Square Error (AMISE) between f and
f̂ converges like O(N−4/5) [9]. The parameter h can be automatically fixed
(under some assumptions) as a function of {ci}N

i=1 following Silverman’s rule
of thumb [9]. The function f̂ can be seen as a radial basis function network
[10] that approximates the actual density. The network uses Gaussian densities
as basis functions with standard deviation h and centers {ci}N

i=1 (the only free
parameters); there is no bias term in the network and the output weights are
1/N . Alternatively, f̂ can be interpreted as a mixture of N Gaussians model.

If ψ is replaced by f̂ in (5) then

L(θ, {ci}N
i=1|{rt}T

t=1) =
T∏

t=1

f̂

(
ut

σt
; {ci}N

i=1

)
1
σt

, (7)
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where the parameters of the model are θ and {ci}N
i=1. Assuming that there are

as many Gaussians with centers {ci}N
i=1 as training data {rt}T

t=1 (N = T) and
that h is held fixed, (7) can be maximized by iterating the following steps: First,
(7) is maximized with respect to each of the {ct}T

t=1 holding θ fixed. This is
accomplished by setting ct = ut/σt, t = 1, 2, . . . , T . Second, (7) is maximized
with respect to θ (holding {ct}T

t=1 fixed) using a non-linear optimizer. This last
step is the same as the one used for calibrating a standard GARCH process. A
maximum of (7) is obtained by iterating these steps until the likelihood shows
no significant change in two consecutive iterations. Note that the parameter h in
the model cannot be determined by maximum likelihood. The reason is that the
value of the likelihood increases without bound as h tends to zero. A suitable
value of h at the end of the first step is computed using Silverman’s rule of thumb,
as a function of {ct}T

t=1. If T is sufficiently large, at convergence, f̂ should be an
accurate non-parametric estimate of the true distribution f . Note that after the
first step in each iteration, f̂ can be interpreted as a kernel density estimator of
a density g where u1/σ1, ..., uT /σT ∼ g. This is the basis for the analysis carried
out in the next section.

3.1 Density Estimation for Heavy-Tailed Distributions

Density estimators based on Gaussian kernels like f̂ do not work well when
heavy-tailed distributions are estimated. The difficulties are particularly severe
in the modeling of extreme events, which are crucial in the quantification of
risk. The origin of this shortcoming is that samples from heavy-tailed distri-
butions usually include very few points in the tails. The estimator designed in
the previous section tends to assign very low probability to regions with spare
samples.

One possible solution to this problem consists in performing the density esti-
mation in a transformed space where the kernel estimator is believed to perform
better [11]. Assuming such a transformation is known, the non-parametric esti-
mator f̂ , which models the density in the transformed space, is

f̂(x ; {ci}N
i=1 ; gλ) = |g′λ(x)| 1

Nh

N∑

i=1

K

(
gλ(x) − gλ(ci)

h

)
, (8)

where gλ maps the original space to the transformed space and λ is a set of
parameters that specify gλ within a family of monotonic increasing transforma-
tions. This process of estimating the density in a transformed space is similar to
standard density estimation based on kernels with varying widths [11].

The key aspect that should be considered in the choice of gλ is that if ci ∼ f
then gλ(ci) should follow a distribution close to normality [11]. A trivial transfor-
mation that achieves this is Φ−1(F (ci)) ∼ N (0, 1), where F is the accumulated
distribution for f and Φ−1 is the inverse of the standard Gaussian distribution.
The difficulty is that if we knew F then we would also know f as f = F ′ and
the estimation process would not be necessary. Nevertheless, it is possible to
approximate F by means of a parametric distribution F̂λ that can account for
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the heavy tails in F . The parameters λ of F̂λ can be estimated by maximum
likelihood to {ci}N

i=1. The final transformation is gλ(x) = Φ−1(F̂λ(x)). In this
manner, a hybrid estimation is performed where the parametric model corrects
for the tails of the non-parametric estimator.

To incorporate this idea into the algorithm proposed in Section 3 the first
step of the algorithm is divided into two parts. In the first one the parameter λ
of the transformation gλ is found by maximizing the likelihood given the values
{ut/σt}T

t=1 observed and F̂λ. In the second part, the density of {ut/σt}T
t=1 is

estimated by means of (8) where h is now determined using Silverman’s rule
of thumb in the transformed space as a function of {gλ(ut/σt)}T

t=1. The second
step of the algorithm remains unchanged: f̂(x ; {ci}N

i=1) is replaced in (7) by (8).
One technical problem that remains is that the location and scale of u1, ..., uT

can be fixed in two different ways. One through the parameters θ of the GARCH
process and another one through f̂ and the centers of the kernels {ct}N

i=1. This
can lead to convergence problems and should be avoided. To address this problem
f̂ is forced to have always the same location and scale. This is achieved by
standardizing {ut/σt}T

t=1 before the first step on each iteration of the algorithm.
Finally, a parametric family of distributions F̂λ needs to be selected to fully

specify the family of transformations gλ(x) = Φ−1(F̂λ(x)). The choice used
in our investigation is the family of stable distributions [7] which should have
enough flexibility to account for the empirical properties of the marginal dis-
tribution of returns [5]. This family of distributions is parameterized in terms
of a location parameter, a scale parameter, a parameter describing the decay of
the tails and, finally, a parameter allowing each tail to have a different behav-
ior. Other possible alternatives would be normal inverse Gaussian distributions
[12], hyperbolic distributions [13] or the superclass of these last two families: the
generalized hyperbolic distributions [14].

4 GARCH Processes with Stable Innovations

At each iteration of the proposed algorithm we are estimating the density g,
where u1/σ1, ..., uT /σT ∼ g, twice. First, in a parametric way assuming g be-
longs to the family of stable distributions and, second, in a non-parametric way
making use of the former estimate. It is possible that using only the first para-
metric estimate a better or equivalent solution than the one obtained by means
of the non-parametric technique is reached. This would happen if the innova-
tions of the GARCH process in (4) were actually stable. In this case εt would
follow a stable distribution with 0 as location parameter and 1 as scale pa-
rameter: εt ∼ S(a, b, 1, 0; 0), where a is the index of stability, or characteristic
exponent, b is the skewness parameter, and the scale and location parameters
are held fixed and equal to 1 and 0, respectively. The last parameter with value
0 indicates that the first parameterization proposed by Nolan [7] is used. To
account for this situation two alternative models are compared in our exper-
iments. One where the distribution of the innovations is estimated in a non-
parametric way as described in Section 3 and another one where the innovations
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are assumed to be stable. In this way, by comparing the performance of both
models it is possible to determine whether implementing the non-parametric
estimate represents an actual improvement. The parameters of the GARCH
model with stable innovations, θ, a and b are also estimated by maximum
likelihood.

5 Model Validation and Results

To assess the capacity of the proposed models to accurately quantify market
risk the general backtesting procedure described in [15] is followed. We perform
a sliding window experiment on the daily returns of IBM stocks from 1962/07/03
to 1998/12/31, a total of 9190 measurements (see Fig. 3). From the series of re-
turns 8190 overlapping windows with T = 1000 elements each are generated.
Each window is equal in length to the previous window but is displaced forward
by one time unit (one day). The parameters of the models are estimated by
maximum likelihood using the data included in each window. Finally, the per-
formance of the models is tested on the first point to the right of the training
window. The testing process consists in calculating the cumulative probability
that a model assigns to the first point out of the window and then applying
it the inverse of the standard Gaussian distribution. This way, we obtain 8190
test measurements for each model that should follow a standard Gaussian dis-
tribution under the null hypothesis that the model is accurate. The application
of the statistical tests described in [15] to those test measurements allows us to
validate the models.
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Fig. 2. Plots in logarithmic scale of the different model density functions. The non-
parametric density and the stable density have been obtained as averages of the densi-
ties estimated in the sliding window experiment. To compute these averages only the
densities for one in every fifty windows are used (a total of 163 densities). The stable
densities are scaled so that their standard deviation is 1.
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The estimation techniques designed are implemented in R [16]. The non-linear
optimization method used to maximize the likelihood was the downhill simplex
method included in the function constrOptim. To avoid that the optimization
process gets trapped in a local maximum, the algorithm is rerun using different
initial random values, and the best solution found is selected. Stable distributions
have no general known closed form expressions for their density [7]. To evaluate
the stable density we employ the technique described in [17]. The density is
computed exactly on a grid of 213 equally spaced points. Outside this grid the
density function is calculated by linear interpolation from the values in the grid.
To evaluate the accumulated stable distribution we use the R package fBasics
[18] that implements the method described by Nolan [7]. Finally, the parameter
a of the stable densities is restricted to be greater than 1.5, a value which should
be sufficiently low to account for the heavy tails in the distribution of returns.

Table 1 displays, for each model, the results of the statistical tests performed
over the test measurements obtained as described in Section 5. The level of sig-
nificance considered to reject the null hypothesis on each test is 5%. The GARCH
model with stable innovations fails all the tests but the one for Exceedances at
the 95% level. The p-values obtained by this model for the tests Exc 99% and
ES 95% are rather low. In particular, the result for ES 95% reflects the failure
of the model to accurately describe the loss tail of the conditional distribution
of returns. The results of the GARCH model with non-parametric innovations
are remarkable. The model obtains very high p-values in all tests except for one.
In particular, the test for Expected Shortfall at the 99% level fails. This is the
most demanding test and it requires the model to correctly account for extreme
events. In our case the test fails because of one single extreme event, a loss of
around 5% that took place on January 19, 1970 (see Fig. 3). Immediately prior
to that observation, the value estimated for a in the stable distribution that
characterizes the transformation gλ is fairly high 1.97, indicating that the tails
are not very heavy and that the local fluctuations of the returns were expected
to be small in size (smaller than the loss observed) with a high degree of confi-
dence. If this point is removed, the p-value obtained in the test ES 99% is 0.31
and all the other tests give results above the level of significance 0.5. It is also
interesting to see that the model can properly account for the 25% loss that took
place on October 19, 1987 (Black Monday, see Fig. 3). The difference with the
previous instance is that the value estimated for the parameter a right before
Black Monday is fairly low (1.88), which signals that the distribution tails are
very heavy and that large fluctuations have a non negligible chance of being
observed. This low value of a originates in a sequence of large, but not extreme,
fluctuations in the period immediately before Black Monday.

Figure 2 displays the average stable density and average non-parametric den-
sity obtained in the sliding window experiment. The tails of the stable and
non-parametric densities are heavier than those of the standard Gaussian den-
sity. Moreover, those two distributions are not symmetric, both densities assign
a higher probability to returns close to 5 than to returns close to -5. However, the
right tail of the non-parametric density displays a fast decay for returns greater
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Table 1. p-values obtained from the statistical tests performed. From left to right tests
for Value at Risk, Exceedances and Expected Shortfall at levels 99% and 95%. See [15]
for a description of the tests.

Model VaR 99% VaR 95% Exc 99% Exc 95% ES 99% ES 95%

stable 1.5e-3 0.01 3.7e-5 0.08 0.026 4e-4

non-parametric 0.51 0.66 0.49 0.86 0.042 0.31
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Fig. 3. Returns of IBM stocks from 1962/07/03 to 1998/12/31. The loss on January
19, 1970 has been singled out. The model proposed has difficulties to account for such
a loss. The loss on October 19, 1987 known as Black Monday, has also been marked.
This loss is correctly modeled.

than 5. This decay does not appear in the right tail of the stable density. This
Figure also shows how the tails of the non-parametric density are on average
slightly less heavy than those of the stable distribution, specially in the right
tail, corresponding to gains. This is probably the reason for the better perfor-
mance of the non-parametric GARCH process and would agree with previous
studies based on extreme value theory, which suggest that the tails of stable
densities are probably too heavy to model asset returns [19,20].

6 Conclusion

A GARCH process with non-parametric innovations is proposed. We also de-
scribe a procedure to estimate the parameters of the model and the density of
the innovations by maximum likelihood in a transformed space. That density is
modeled using a non-parametric estimate based on kernels whose width is fixed
using Silverman’s rule of thumb. In the transformed space the non-parametric
estimate provides a more accurate model of heavy-tailed densities. A sliding win-
dow experiment using the returns of IBM stocks was carried out to evaluate the
performance of the model. The experiments show that the new process provides
very accurate estimates of risk measures.
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Abstract. This paper describes a research where the main goal was to predict 
the future values of a time series of the hourly demand of Portugal global 
electricity consumption in the following day. In a preliminary phase several 
regression techniques were experimented: K Nearest Neighbors, Multiple 
Linear Regression, Projection Pursuit Regression, Regression Trees, 
Multivariate Adaptive Regression Splines and Artificial Neural Networks 
(ANN). Having the best results been achieved with ANN, this technique was 
selected as the primary tool for the load forecasting process.  The prediction for 
holidays and days following holidays is analyzed and dealt with. Temperature 
significance on consumption level is also studied. Results attained support the 
adopted approach.     

Keywords: Artificial neural networks, load forecasting. 

1   Introduction 

The emergence of the energy markets, demanding higher efficiency levels, together 
with the establishment of new standards on environment preservation, has been 
enhancing the load forecasting importance in modern power systems operation. These 
harder requirements demand more sophisticated tools for power systems operation 
planning and, therefore, more accurate predictions of future load evolution.  

The use of ANN in power systems, particularly, in load forecasting is not new. In 
fact, load forecasting embodies one of the most successful ANN applications in the 
power systems area [1]-[23]. This achievement may be explained by ANN top 
regression abilities, its adapting capacity, its tolerance to noisy data, and because 
formal system modeling is not necessary. 

This paper describes the main results of a research project where the main goal was 
to forecast the hourly consumption diagram of the Portuguese power system in the 
following day. This project was developed under the framework of a contract with the 
Portuguese transmission company.  

This paper has the following structure: Section 2 presents the adopted approach. 
Section 3 synthesizes the preliminary study carry out in order to select the forecasting 
regression tool. Section 4 describes the used ANN and main results obtained. The 
problem of holidays is also handled in Section 5. Section 6 describes the analysis of 
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temperature influence in load consumption in the studied system. Finally, Section 6 
presents the main conclusions of this work. 

2   Methodology 

Computational intelligence methods usually require a groundwork stage of data 
preparation. In this study, the historical data comprises load evolution, in a 15 min 
base, from year 2001 to 2005. The first step was to abridge this set to a 60 min base, 
once the goal is to produce hourly forecasts. In a second step, we divided this set in 
daylight saving period (summer) and winter, accordingly to Portuguese legislation.  

In each training experience, the patterns were normalized to have zero mean and a 
standard deviation of one. This removes of offset issues and measurement scales. The 
patterns’ set was divided into two sets: one for training and validation (about ¾ of the 
data) and the other for testing (about ¼). 

The research performed subsequently may be divided in the following main 
phases: 

1. Selection of the forecasting regression tool. This study has shown that ANN 
performed better than competing methods in the actual problem; 

2. ANN training (the forecasting tool selected in the previous phase). Goal: to 
outcome the 24-hour load diagram of the following day. Searching for the best 
generalization performance by experimenting different architectures and 
training optimization procedures; 

3. Analysis of holidays’ effects and establishment of appropriate procedures to 
deal with these special events; 

4. Analysis of temperature effects on load consumption. 
 

Phase 1 consisted of training and performance evaluation of a number of regression 
tools, in order to verify the most suitable for the current forecasting problem. As 
shown in the next section, ANN presented the best results, having been selected as the 
main forecasting tool in this project. 

Phase 2 comprised the usual ANN training phase and performance evaluation. 
Holidays may be considered as an abnormal event in a load time series. Although 

their rate of occurrence is relatively small, in relation to the regular days, their effects 
on performance degradation is substantial. Two types of holidays’ effects may be 
considered: in one hand, forecasts tend to be higher than they should, as the 
consumption in holidays is comparatively lower; on the other hand, the forecasts that 
depend on data series values that correspond to holidays have a tendency to be lower 
than they should. The implementation of procedures to deal with this concern is the 
main goal of phase 3. 

Phase 4 examines the inclusion of temperature effects on the forecasting performance. 

3   Selecting the Forecasting Regression Tool 

This phase starts with the data preparation. The historical load series involves 
consumption data from year 2001 to 2005, in a 15 min base. Additionally, there is 
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also information about holidays and dates of daylight saving times (accordingly to 
Portuguese regulation). The data was arranged in an hourly base, and prepared to be 
input by the competing regression alternatives: K Nearest Neighbors (KNN), Multiple 
Linear Regression (MLR), Projection Pursuit Regression (PPR), Regression Trees 
(RT), Multivariate Adaptive Regression Splines (MARS) and ANN.  

For a matter of time economy, these tools were trained to predict the consumption 
in the following hour, instead of the 24-hour consumption in the following day. This 
option is based on the assumption that methodologies performance would be ranked 
similarly in the following hour forecasting and in the following day forecasting. 

The performance evaluation was based in the following error measures: 

• Mean Squared Error (MSE) 
• Root Mean Squared Error (RMSE) 
• Mean Absolute Error (MAE) 
• Normalized Mean Squared Error (NMSE) 
• Normalized Mean Absolute Error (NMAE) 
• Correlation coefficient (ρr) between actual and predicted values 
 

In order to obtain reliable error estimates, one adopt the “12-fold cross-validation” 
experimental method,  that it consists basically of dividing the set of standards in 12 
groups, using 11 of then for training and only 1 for test. The process is repeated 12 
times, changing the test group each time. The different algorithms had been adapted 
and tested with the same training and test sets. Data patterns were constructed both 
from the original data series and after a normalization process (zero mean and pattern 
deviation one). The final stage involves the comparison of the average errors attained 
with each method. 

Table 1 presents the best results obtained with each regression tool, showing that 
ANN performs better than competing methodologies in the present study in all the 
criteria.   

Table 1. Comparison of errors obtained with the competing methods  

Method MSE RMSE MAE NMSE NMAE ρρ 
KNN 0.0437 0.2051 0.1559 0.0488 0.1876 0.9784 
MLR 0.0865 0.2931 0.2245 0.0985 0.2712 0.9499 
PP 0.0153 0.1228 0.0881 0.0173 0.1065 0.9916 
RT 0.1061 0.3239 0.2539 0.1205 0.3067 0.9394 
MARS 0.0533 0.2294 0.1648 0.0606 0.1991 0.9700 
ANN 0.0060 0.0770 0.0553 0.0068 0.0668 0.9966 

4   ANN Description  

4.1   Training Algorithm 

In this work, we used a feedforward type ANN, trained with the Adaptive 
Backpropagation algorithm (APA) [24]. This algorithm was developed from the 
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classical Backpropagation [25]-[28], but instead of a single fixed learning rate for all 
weights, it uses a distinct adaptable learning rate for each weight. Each learning rate is 
incremented or decremented depending of the error surface on that particular weight 
direction being monotonous or not. This way, the learning rate may increase 
thousands of times for some weights and decrease until it becomes zero (insignificant) 
for other weights. The training time required by APA is generally lower than for other 
training algorithms. The stop training criterion was based on the cross validation 
principle, in order to fight against overfitting.  

4.2   Architecture Definition 

The optimization of ANN architecture (number of layers, active connections and 
number of weights) still remains an open problem. In scientific literature one may 
find several architecture definition approaches, based on different principles like 
network pruning, upstart,  weight decay, cascade correlation, genetic algorithms and 
others [29]-[33]. However, there’s no recognized methodology able to assure that a 
given architecture is in fact the optimal one. Still, very good performance results may 
be obtained with non-optimal ANN architectures, provided that some concerns are 
taken into consideration during training. 

In the present study, the search for an adequate ANN architecture was based on 
guided trial-and-error experiments that take into account the following: 

1. Complex ANN architectures are rarely needed in load forecasting applications. 
Generally, the function to be mapped is not complicated. Moreover, complex 
ANN would capture the data noise (load fluctuation); 

2. The comparison between training and test errors provides indications about 
ANN architecture complexity competence. Large errors in both sets suggest a 
deficient ANN capacity to map the data. In this case, one should increase the 
number of hidden units. When the test error is considerably higher than 
training error, this indicates that ANN has captured the training data 
idiosyncrasies and was not able to generalize it to the testing set. As one uses a 
validation set for stop training criterion, this is probably caused by an 
excessive ANN capacity. In this case, the number of hidden units should be 
reduced. 

The application of these ideas led to the ANN architecture presented in Fig. 1. This 
ANN has 75 inputs: 

1 – Holiday (assumes the value 1 in holidays and 0 otherwise) 
2, 3 – Weekday information 
4-27 – load diagram - 2 days before the forecasting day 
28-51- load diagram - 1 week before the forecasting day 
52-75- load diagram - 2 weeks before the forecasting day 

The use of the cyclic variable d (period=7) is advantageous in terms of training, in 
order to pass that information to the ANN. This can be achieved by defining 2 inputs 
based in sine and cosine functions. So the weekday is interpreted by a periodic 
measure, each day type being univocally specified. 
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Fig. 1. Architecture of the ANN that produced the best results 

 
The mean absolute percentage error (MAPE) obtained was 2.20% for winter period 

and 1.99% for summer, corresponding to a global error of 2.07%. Note that these 
errors refer to the raw performance, i.e., the performance before the holiday treatment 
described in the next section. Fig. 2 shows two forecasting examples.   
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Fig. 2. Next day diagram forecasting examples 
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5   Holidays Treatment 

As mentioned before, holidays occurrences produce two kinds of effects:  

1. Holidays’ forecasts tend to be higher than they should, as the consumption in 
holidays is comparatively below a regular day; 

2. The forecasts on regular days that depend on holidays’ data have a tendency 
to be lower than they should. 

As the ANN described in the previous section has a “holiday” input, the first effect 
is automatically coped with. Fig. 3 illustrates this outcome, showing the forecasts with 
(ANN1) and without (ANN2) the holiday variable turned on. 

In the second case, if the forecasting day is not weekend (holidays have a minor 
effect on weekends), input variables corresponding to the holiday are replaced with 
one of its neighbor workdays. This approach is illustrated in Fig. 4. The last 
anomalous days type analyzed correspond to holidays’ “bridges” – when a holiday 
occurs in a Thursday or Tuesday, a considerable number of people doesn’t work in 
the day between the weekend and the holiday. The consumption in these days is 
usually inferior to a regular day.  

Table 2 presents the hourly MAPE obtained for the years 2004-05, after the 
application of the solutions designed to deal with special days. The global average 
MAPE results in 1.70%. 
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Fig. 3. Illustration of Holiday variable effect 
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Fig. 4. Forecasting on days that depend on Holidays data  
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Table 2. Global MAPE obtained for each hour 

Hour MAPE Hour MAPE Hour MAPE 
0 1.40% 8 1.94% 16 2.03% 
1 1.39% 9 1.82% 17 1.99% 
2 1.40% 10 1.71% 18 1.94% 
3 1.38% 11 1.69% 19 1.88% 
4 1.38% 12 1.68% 20 1.88% 
5 1.35% 13 1.74% 21 1.84% 
6 1.38% 14 1.86% 22 1.80% 
7 1.63% 15 1.97% 23 1.62% 
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Fig. 5. Dealing with “bridges”  

 
The analysis of the holidays’ “bridges” shows that the relation between the 

consumption in these special days and their neighbor regular days varies a lot, 
depending on season of the year and on the holiday type. Therefore, it was decided to 
deal with holidays’ “bridges” using the average relation between these days and their 
neighbors – the consumption in a holiday’s “bridge” is about 90% of its ordinary 
neighbor days. Fig. 5 illustrates the effect of this approach. 

6   Temperature Effects 

Temperature is frequently perceived as an indispensable variable in the load 
forecasting process. However, its importance depends, not only on the kind of 
forecast (long-term, short-term), but also on the type of climate (in temperate 
climates, like Portugal, temperature effects are not so critical) and on the quality of 
the temperature forecast (the load depends on the real temperature and not on 
forecasted one). Besides, the quality of the temperature time series may be also 
decisive: first, there is the question of representativity (are the temperature values, 
usually taken in a given spot, descriptive of the all country?); in second place, there is 
the data quality (absence or scarce occurrence of anomalous temperature variations).  
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Table 3. Additional temperature inputs considered and performance obtained 

ANN name Additional inputs MAPE (%) 
ANNt1 <T(d)> 2.09 
ANNt2 <T(d)>, <T(d-1)>, <T(d-2)> 2.28 
ANNt3 <T(d)>, Tmin(d), Tmax(d) 2.06 

 
Table 4. Additional temperature inputs considered and performance obtained 

Case MAPE (%) 
without Temperature (ANNd1) 2.07 

Base 2.06 
1 2.13 
2 2.33 

with 
Temperature 

(ANNt3) 
3 2.63 

 
On the other hand, part of the temperature effects are already incorporated in the load 
data of the previous days. 

In this study, the empirical analysis of temperature effects was performed as follows: 

1. Inclusion of temperature inputs in the ANN followed by training using 
real temperature values; 

2. Analysis of load forecasting performance sensitivity to errors in 
temperature forecasting. 

In the first step, three ANN were tested. The input/output scheme used was similar 
to the one presented in Fig. 1 but adding temperature inputs. Table 3 presents the 
supplementary inputs considered in each tested case and the performance obtained in 
each case. In this table, <T(d)> stands for average temperature of day d, Tmax(d) and 
Tmin(d) represent the maximum and minimum temperature of day d.  

These errors obtained with ANNt1 and ANNt3 are comparable with the one 
obtained in Section 0 (2.07%). Being so, one may conclude that, the temperature 
series does not bring significant information gain for the load forecasting problem. 
Besides, the temperature values used so far were the real ones. In practice, the next 
day temperature would have to be forecasted and, naturally, subject to inaccuracies. 
The final step of the present study consists of simulating temperature forecasting 
deviations and analyzing the subsequent errors changes. For this purpose, we used the 
best performance case (ANNt3) and introduce small random values to temperature 
inputs. The random intervals considered were the following: 

1. [-1; +1] º C; 
2. [-2; +2] º C;  
3. [-3; +3] º C. 

The results obtained are presented in Table 4. As expected, the error increases with 
the random limit, which simulates the temperature forecasting error. Moreover, even 
for the lowest temperature forecasting error considered, the MAPE is larger than in 



736 J.N. Fidalgo and M.A. Matos 

the case without temperature inclusion. This substantiates the conclusion that, in this 
case, the temperature should not be included in the load forecasting process. 

7   Conclusion 

This paper describes a load forecasting implementation for the prediction of the 
hourly load diagram of the following day. Special events like holidays and days 
following holidays are analyzed and dealt with. The effect of temperature on 
forecasting performance is also studied, showing that, based on the available data, no 
advantage is obtained by the inclusion of temperature in the ANN inputs set. A 
possible explanation for this result may be the moderate Portugal climate, where the 
temperature variation is smooth and implicitly keyed in the load evolution. A 
complementary justification is related with the quality of temperature data like the 
existence of faulted values and the use of local data to represent of the whole country.  
The results obtained support the adopted approaches.  
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Abstract. This work uses artificial neural networks, whose architecture were 
developed using genetic algorithm to realize the hourly load forecasting based 
on the monthly total load consumption registered by the Energy Company of 
Pernambuco (CELPE). The proposed Hybrid Intelligent System – HIS was able 
to find the trade-off between forecast errors and network complexity. The load 
forecasting produces the essence to increase and strengthen in the basic grid, 
moreover study into program and planning of the system operation. The load 
forecasting quality contributes substantially to indicating more accurate 
consuming market, and making electrical system planning and operating more 
efficient. The forecast models developed comprise the period of 45 and 49 days 
ahead. Comparisons between the four models were achieved by using historical 
data from 2005. 

Keywords: Genetic Algorithm, Artificial Neural Network, Load Forecasting. 

1   Introduction 

A task faced every day in the electric utility is the load forecasting, which is 
accomplished in several periods of time: short-term, mid-term, and long-term 
forecasts. This data is used as input for several studies, such as planning, operation 
and electric power market. Traditionally, load forecasting techniques use statistical 
methods of time series analysis, which include linear regression, exponential 
damping, and Box Jenkins [1]. Recently, techniques of artificial intelligence such as 
Artificial Neural Network have been used as a traditional method, presenting better 
results [2]-[6]. 

The Brazilian electric sector has gone through constant changes, where 
organizations such as ANEEL (National Agency of Electric Energy) and ONS 
(National Power System Operator), which were created in the end of 1990s, have 
created strict regulation year after year that demands more and more efficiency in 
electric power supply to the consumer. These requirements are more noticeable in the 
quality of the supplied energy, in the reduction of the inherent losses of energy and in 
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the system economy.  The appropriate measures to meet the requirements are: the 
updating of the “Machine of Distribution” and a larger competitiveness between 
utilities of distribution. 

This work presents the description of four developed models in order to mitigate 
and solve the problem of hourly load forecasting in a period of 45 and 49 days ahead. 
Two new developed models are added to the two current models of the software 
PREVER [11]. PREVER is software developed in 2005 by CELPE and the Federal 
University of Pernambuco - UFPE. The models operate to accomplish the forecast in 
the period of 45 days (PREVER) and 49 days (proposed models) ahead. The objective 
of these mid-term forecasts is to inform the ONS about the hourly load in order to 
formulate the Monthly Program of Operation (PMO). 

This paper is organized as follows: section 2 presents the variables of the models 
and the arrangement of the database; section 3 describes the architecture and the 
training of the neural networks; section 4 presents the proposed forecast models; 
section 5 provides experimental results of the analysis and comparisons among the 
four models; and finally, section 6 concludes with a summary of this paper. 

2   Variables and Database Arrangement 

Several technical publications in this area [3], [8]-[10] point out the correlation 
between the electric power consumption and the climatic factors (relative humidity of 
the air, temperature, depth of rainfall, etc.), considering these climatic variables as 
important inputs to accomplish the load forecasting. However, these variables present 
historical series difficult to obtain. Regarding this problem, we decided to use a time-
window in the temporal series [2]. Then, a search for characteristics in the series itself 
was realized. These characteristics were evaluated and used as inputs of the neural 
networks. The researched inputs were: 

• D’: The hourly consumption of today normalized in the range 0 to 1 to be 
forecasted in 45 days ahead (D’+45); 

• D’-1: The hourly consumption of yesterday normalized in the range 0 to 1 to 
be forecasted in 45 days ahead (D’+45); 

• FSN: Binary code that indicates whether the day to be forecasted is an 
anomalous day or not, which is done in the following way: 

 1 Bit: [0] to no-anomalous day  and  [1] to anomalous day; 
 2 Bits: [0 1] to no-anomalous day and [1 0] to anomalous day. 

• CDS: Binary code from 1 to 7 associated with the days of the week which the 
day to be forecasted belongs to, for example: Tuesday = [0010000]. 

• D: The hourly consumption of today normalized in the range 0 to 1 to be 
forecasting 49 days ahead (D+49); 

• M: Twenty-four inputs containing the average hourly consumption of the current 
day (e.g. Monday 23 April), the same day of the last week (e.g.  Monday 16 
April) and the same day of the week before last (e.g. Monday 9 April); 

• Sz: Two normalized inputs that are formed by the average of the average daily 
consumptions of the month associated with the days that were used to calculate 
the variable M; and the average daily consumption of the month associated 
with the day to be forecasted  (D+49); 
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• Cm: Binary code from 1 to 12 associated with the month that the day to be 
forecast belongs to, for example: February = [010000000000]; 

• m: Normalized number in the range from 0 to 1 representing the month (m) of 
the day to be forecasted, given by (1) , where mmax = 1.1·12, and mmin = 0.9·1. 

m
minmax

min

mm

mm

−
−=  . (1) 

The supplied original data corresponds to the hourly load consumption of the 
distribution system of CELPE in the period from January 2000 to December 2005 
including the period of the rationing responsible for an abrupt decrease in the curve of 
the load. The hourly load consumptions in the period of the rationing (from May to 
July 2001) were removed from the original database. Therefore, the database has 
2100 days which corresponds to 50.400 hours. The original data supplied by CELPE 
was preprocessed and used for training and evaluating the performance of the four 
forecast models developed. 

For the forecast model in the period of 45 days ahead (Model of PREVER), the 
anomalous days were eliminated (holidays), forming the database with 969 training 
patterns. On the other hand, for the forecast model in the period of 49 days ahead, the 
anomalous days were included in the training patterns, although they were classified 
as a weekend day [11] (Saturday or Sunday according to the characteristic of the load 
curve), resulting a total of 1608 patterns for training. The data of 2005 were used only 
for evaluating the developed models. 

The load values were normalized to fall in the range 0 to 1 according to (2), where 
LN is the normalized load value, L is the hourly load value registered by CELPE, Lmax 
is the maximum hourly load added to 10% of itself and Lmin is zero. 

minmax

min
N LL

LL
L

−
−=   (2) 

The databases, created to accomplish the load forecasting in the period of 45 and 
49 days ahead, have their patterns distributed in the following way: 60% for the 
training set, 30% for the validation set and 10% for the test set. The patterns of each 
group were selected in a random way. 

The main objective of the models based on ANNs is to learn from patterns of 
known value and to generalize for new ones. The performance of the system will be 
measured by the percentage of the mean-square error (MSE) specified in (3), and by 
the mean absolute percentage error (MAPE) specified in (4): 

∑∑
= =

−
⋅

⋅=
P

1i

N

1j

2
ijij

minmax
% )LL(

PN

-LL
100MSE ˆ , (3) 

where 
ijL̂  is the load forecasting value for the pattern i and output  j, Lij is the real 

value of the load for the pattern i and output j, N is the number of output units of the 
network and P is the total number of patterns. 



 Using Genetic Algorithm to Develop a Neural-Network-Based Load Forecasting 741 

∑
=

−
⋅=

P

1k k

kk

% L

LL

P

1
100MAPE

ˆ
, (4) 

where k is the index related to k-th hour in the period of analysis, 
kL̂  and Lk are the 

load forecasting consumption and real load consumption at hour k, respectively. 

3   Architecture and Training 

All of the experiments accomplished in this work created ANNs with the MLP 
architecture, using the resilient backpropagation (RPROP) training algorithm [7]. The 
RPROP performs a local adaptation of the weight-updates according to the behavior 
of the error function. The RPROP algorithm operates in the batch mode and falls in a 
supervised training category. 

All of the ANNs used have an input layer, a hidden layer and an output layer. The 
nodes of the hidden layer use the tan-sigmoid activation function and those of the 
output layer use the log-sigmoid activation function. The maximum number of 
iterations for all of the trainings was set to 2500 epochs. The training stops if the early 
stop method implemented by MATLAB® happens 20 times consecutively, or if the 
maximum number of epochs is reached, or if the error gradient reaches a minimum, or 
still if the error goal on the training set is met. The early stop method has the objective 
of improving generalization of the neural networks. 

The networks were created varying number of the nodes in the hidden layer from 
30 to 130 with an increment of 1. In each step, ten neural networks were created to 
mitigate problems of random initialization of weights. The average of the MSE on the 
validation set was calculated from those ten neural networks created by random 
weights initializations. Then, the average was used in two different ways to choose 
the neural network architecture: a) the architecture was chosen by the smallest value 
of the MSE on the validation set; b) the average was normalized into the range from 0 
to 1, then they were given as the input to the fitness function (fa) of the Genetic 
Algorithm – GA. This fitness function was defined using a weighted average of the 
following normalized variables: average of the MSE on the validation set, number of 
hidden nodes and size of the input vector of the network. 

Defined the architecture, the 10-fold cross validation method was used to obtain 
“the best neural network”. This method has become a standard method in practical 
terms [12]. Therefore the patterns were divided in ten independent partitions, and 
each partition has 10% of the data. In each experiment three partitions were used to 
validate, one, to test and the six remaining partitions were used to train the ANNs. 

4   Load Forecasting Models 

In this work, the combination of the new variables and the variables, at first, 
characterized in [11] were also analyzed in the previously section 2. Starting from the 
combination of those variables, eight trials were carefully analyzed by the procedure 
described in section 3. Then, 101 networks architectures, for each one of the eight 
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trials, were created because of the varying number of nodes in the hidden layer. The 
best neural network architecture of each trial was chosen using the smallest average of 
the MSE on the validation set. The best network among the eight architecture chosen 
previously was selected using the smallest MSE on the test set, which was the one in 
the TRIAL 7 (E7) that corresponds to the forecast model in the period of 49 days 
ahead, as shown Fig. 2(a). 

The second model (Fig. 2(b)) was created by the Hybrid Intelligent System – HIS 
[13], whose architecture was chosen by the GA, developed specially to accomplish 
this objective. The GA attempts to reduce the architecture size, acting directly in the 
choice of the number of hidden nodes and in the arrangement of the input variables 
more appropriate to solve the problem. Two restrictions were imposed to the GA 
before choosing the best arrangement of the input: either the variables Cm or m 
should be present in the network input, not both, since these two variables give the 
same information (month of the day to be forecast) in a different way; and the 
variables M and CDS should be present in all arrangements of the network input. 

More than analyzing the trials described in Table 1, the GA can create new 
networks by combination of possibilities described in Table 2. The final search space 
by the genetic algorithm is formed using the trials described in Tables 1 and 2, giving 
a total of 1212 points, where each point is represented by the average of the MSE on 
the validation set of the 10 networks, the numbers of inputs and hidden nodes. The 
trials, described in Table 1, give a total of 808 points (8080 networks), where the 
processing time of the GA was not calculated, and the stop criterion was established 
by the amount of generations in which no  more capable individual could be found. 

The GA with the characteristics presented in Table 3 has yielded the architecture of 
the model shown in Fig. 2 (b). 

Table 1. Trials as functions of input 

Trials 
Input Variables 

Vector 
Number of 

Inputs 
Trials

Input Variables 
Vector 

Number of 
Inputs 

E1 [ M DS ] 31 E5 [ M Sz CDS ] 33 
E2 [ M Cm CDS ] 43 E6 [ D M Sz Cm CDS ] 69 
E3 [ D M CDS ] 55 E7 [ D M Sz m CDS ] 58 
E4 [ D M Cm CDS ] 67 E8 [ M Sz m CDS ] 34 

Table 2. Combination possibilities for new individuals' creation 

Trials 
Input Variables 

Vector 
Range of 

hidden node 
Trials 

Input Variables 
Vector 

Range of 
hidden node 

GA – E09 [ M m CDS ] 30-130 GA – E11 [ M Sz Cm CDS ] 30-130 
GA – E10 [ D M m CDS ] 30-130 GA – E12 [ D M Sz  CDS ] 30-130 

 

Table 3. Select individual to choose the architecture using GA 

Trials 
Select 

Individual 
Hidden 
Nodes 

Created 
Individual 

Generation 
Total of 

Tested Individual 

GA – E08 [ M Sz m CDS ] 52 140 131 1310 
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4.1   PREVER Models 

Previously, the procedure adopted by CELPE for hourly load forecasts was a mixing 
of statistical techniques with specialists’ knowledge.  Then, in order to improve and 
automate it, the new software denominated PREVER implemented in MATLAB  
was developed. The new system makes use of a hybrid approach of ANN-based 
techniques and heuristic rules to adjust the short and mid-term electric load 
forecasting in the time period of  3, 7, 15, 30, and 45 days. PREVER has all the 
necessary functions to be considered as a user-friendly computer software: graphical 
interface, importing, and exporting data from Excel spreadsheets compatible with the 
spreadsheets used by CELPE, integrated database that allows the validation of the 
results of the load forecasting by the new system and on-line help function. 

Currently, on 15th day of every month a report on the load forecasting of the next 
month must be sent by CELPE to ONS. The electrical utilities need to accomplish the 
load forecasting at least 45 days ahead, so PREVER was projected to accomplish the 
load forecasting in this period. However, it can forecast the electrical load in other 
time periods, such as 3, 7, 15, and 30 days ahead. The two new models proposed in 
this paper can operate in the period of 49 days ahead. This specific time of period is 
useful because the behavior of the seasonal changes in the load can be used to 
improve the load forecasting. 

PREVER makes it possible to forecast for a period of 45 days ahead, accomplished 
by two models: the first model returns the values of an ANN output and the second 
returns the values of the combination of an ANN with heuristic rules, whose 
procedures are described in [11]. The models are shown in Fig. 1 (a) and (b), whose 
outputs are the 24 normalized hourly load forecasting and inputs are the variables 
discussed previously in section 2. 

    
(a)                    (b) 

Fig. 1. (a) Neural Model of the PREVER System (b) Hybrid Model of the PREVER System 

4.2   Proposed Models 

In order to improve performance of the PREVER system, new input variables were 
investigated. During the search process a Genetic Algorithm was developed to 
automate the choice of the neural network architecture. This automatic form of 
creating ANNs constitutes a Hybrid Intelligent System. This hybrid system is 
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necessary to reduce numbers of input variables, without deteriorating the result of the 
load forecast model. At the end of the search for input variables, we obtained two 
models: one chosen by the smallest MSE on the validation set [11] and another by the 
developed HIS. These two models, already discussed in section 4, can be seen in  
Fig. 2 (a) and (b). 

    
(a)                                                             (b) 

Fig. 2. (a) Model Proposed Created by Traditional Method, (b) Model Proposed Created by 
Hybrid Intelligent System 

5   Comparison of the Models 

To compare the four models discussed previously, the hourly load consumption of 
CELPE in the entire year 2005 was used. In order to show a summery of the results, 
we decided to divide them into 12 groups corresponding to the months of the year. 
The forecast error was accomplished in three types: the first, the entire year 
considering the anomalous days; the second, without considering anomalous days; 
and the third, just considering the anomalous days. The MAPE (4) was used to 
evaluate the models. 

At first, comparative analysis between the proposed models (E7 and GA-E8) and 
the PREVER system will be done. After this, analysis of the model E1 with emphases 
to the holidays will be done. Table 4 presents the monthly average MAPE in 2005. 
There, we observe that the average error of the proposed models (E7 and GA-E8) and 
“PREVER-ANN with adjustment” is approximately. The difference between the 
monthly average error of “PREVER-ANN with Adjustment” and the model E7 is 
approximately 0.01% which can be considered insignificant. Besides, it can be seen 
that the developed networks are more stable than “PREVER-ANN without 
Adjustment”, since they present lower standard deviation. 

Table 5 describes the behavior of the models without considering the anomalous 
days. There we can notice that the monthly average MAPE of the model E7 is 2.95% 
against 2.99% presented by “PREVER-ANN with adjustment “ which means that the 
model E7 has a slight improvement in forecasting electrical load in typical working 
days. Table 6 presents the MAPE on anomalous days in 2005. The adjustments done 
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in the neural network of PREVER on anomalous days account for its better 
performance compared with the other models. Although the model GA-E8 presents 
the best average (7.12%), its standard deviation (4.63) is not only better than the 
“PREVER-ANN with Adjustment”. Observing the data, there are 3 days on which the 
error was significantly higher than the average, leading to a higher standard deviation. 
These days are: New Year’s Day (01/01/2005), Carnival (07/02/2005) and Christmas 
(25/12/2005). Obviously these days must be treated in another way, not only as a 
simple characterization of a Saturday or Sunday behavior. 

Analyzing Tables 5 and 6, it can be observed that the errors on holidays or 
anomalous days are higher than the errors on the others days. In this case, it is very 
important to observe the model E1, because it was the best as shown Table 5. 

In order to consider this potentiality, the two combined models were also analyzed. 
The first, combining E1 (anomalous days) and E7 (others days) and the second, 
combining E1 and GA–E8 (others days). The results are presented on Table 4 in 
column E7/E1 and GA-E8/E1. As expected, the combined models achieved small 
errors when compared with the models E7 and GA-E8. 

Table 4. Monthly average MAPE in 2005 

Month PREVER PREVER E1 E7 GA-E8 E7/ E1 GA-E8/E1 
 without Adj. With Adj.      

Jan 3.94 3.20 5.19 4.09 4.42 3.95 4.45 
Feb 4.11 3.45 4.25 3.49 3.46 3.53 3.62 
Mar 6.00 3.55 7.13 4.54 4.34 4.50 4.26 
Apr 3.78 3.83 6.09 3.37 3.22 3.34 3.18 
May 2.95 2.89 3.05 2.83 3.50 2.82 3.46 
Jun 4.12 3.63 3.27 2.97 3.56 2.90 3.54 
Jul 2.18 2.32 2.40 1.96 1.92 1.98 1.95 

Aug 3.15 2.55 2.65 2.21 2.23 2.21 2.23 
Set 5.19 2.55 4.70 2.83 2.90 2.69 2.77 
Oct 6.11 2.39 5.43 2.75 2.64 2.60 2.50 
Nov 3.88 2.49 5.01 2.78 2.87 2.68 2.70 
Dec 3.59 4.63 3.77 3.80 4.26 3.56 3.87 

Average 4.08 3.12 4.41 3.13 3.28 3.06 3.21 
Std. Dev. 1.18 0.71 1.45 0.75 0.81 0.73 0.79 

The comparisons with the “PREVER with adjustment” show that combined 
model E7/E1 gets small average errors and that the combined model GA-E8/E1 
becomes closer. Among all analyses done, it is important to point out that the 
proposed HIS was able to find the trade-off between errors and network complexity. 
The complexity of model E7 is 58x127x 24= 10414 connections while the model 
GA-E8 is 34x52x24=3016 that represents less than 30% of the connections 
presented by the model E7. On the other hand, the average error (Table 4) is 3.13% 
to the model E7 against 3.28% presented by the model GA-E8 that represents an 
increase of less then 5%. 



746 R.R.B. de Aquino et al. 

Table 5. Monthly average MAPE in 2005 without anomalous days 

Month PREVER without Adj. PREVER with Adj. E1 E7 GA-E8 
Jan 2.70 2.51 4.65 3.32 3.86 
Feb 3.33 3.04 3.87 3.07 3.17 
Mar 6.09 3.51 7.25 4.52 4.28 
Apr 3.64 370 6.17 3.34 3.17 
May 2.95 2.89 3.02 2.78 3.44 
Jun 4.13 3.62 3.23 2.86 3.52 
Jul 2.14 2.29 2.34 1.91 1.87 

Aug 3.15 3.15 2.65 2.21 2.23 
Set 4.74 2.41 4.73 2.65 2.74 
Oct 5.75 2.20 5.45 2.53 2.43 
Nov 3.39 2.30 5.19 2.70 2.72 
Dec 3.27 4.31 3.75 3.52 3.85 

Average 3.77 2.99 4.36 2.95 3.11 
Std. Dev. 1.20 0.68 1.49 0.68 0.73 

Table 6. Daily average MAPE in 2005 of the anomalous days 

Month PREVER without Adj. PREVER with Adj. E1 E7 GA-E8 
01/01/2005 25.94 16.73 21.73 24.02 20.37 
02/01/2005 18.01 11.63   4.27   6.29   4.72 
07/02/2005   5.41 11.38 14.28 12.81 11.83 
08/02/2005 11.16   3.11   2.97   4.45   2.13 
09/02/2005 15.30   6.19   4.83   3.57   3.49 
25/03/2005   3.38   4.61   3.72   4.99   6.21 
21/04/2005   8.02   7.70   3.57   4.50   4.80 
01/05/2005   3.03   3.01   4.05   4.06   5.30 
24/06/2005   3.69   3.69   4.18   6.18   4.79 
16/07/2005   3.45   3.31   4.11   3.51   3.18 
07/09/2005 18.38   6.55   3.67   7.87   7.54 
12/10/2005 17.01   8.17   4.64   9.33   9.02 
02/11/2005 17.54   4.08   2.07   4.25   5.00 
15/11/2005   4.31   6.41   2.76   3.58   5.08 
31/12/2005   7.65   9.23   4.28   6.17   7.29 

Average 10.68   7.19   5.56   7.19   7.12 
Std. Dev.   7.10   3.81   5.09   5.20   4.63 

6   Conclusion 

The results demonstrated that the developed models presented errors according to the 
kind of the day. On anomalous days, the model AG-E8 was superior, whereas on days 
without anomalies the model E7 was better. Finally, the developed models holding 
much simpler architecture were more precise than the models presented in PREVER. 

Another important point to note is that the hybrid intelligent system enables the 
network architecture to be processed more speedily. It is worth to point out that the 
HIS really reduce the complexity of the ANN, i.e. decrease numbers of connections in 
the network. In spite of the fact that the model GA-E8 sometimes presents results 
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inferior to both “PREVER-ANN with adjustment” and E7, it always showed 
reasonable accuracy compared to them. This was achieved with a more simple 
architecture, demonstrating strong relationship between the combination of input 
variables and number of neurons in the hidden layer of the ANN. 

The combination of model E1 to forecast the anomalous days has also improved 
the performance of the new combined models proposed in this paper. 

Acknowledgments. The authors would like to thank to CNPq and CAPES-Brazil for 
financial research support.  
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Separation and Recognition of Multiple Sound
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Abstract. Many applications would emerge from the development of
artificial systems able to accurately localize and identify sound sources.
However, one of the main difficulties of such kind of system is the natu-
ral presence of multiple sound sources in real environments. This paper
proposes a pulsed neural network based system for separation and recog-
nition of multiple sound sources based on the difference on time lag of
the different sources. The system uses two microphones, extracting the
time difference between the two channels with a chain of coincidence de-
tection pulsed neurons. An unsupervised neural network processes the
firing information corresponding to each time lag in order to recognize
the type of the sound source. Experimental results show that three si-
multaneous musical instruments’ sounds could be successfully separated
and recognized.

1 Introduction

By the information provided from the hearing system, the human being can
identify any kind of sound (sound recognition) and where it comes from (sound
localization) [1]. If this ability could be reproduced by artificial devices, many
applications would emerge, from support devices for people with hearing loss to
safety devices. With the aim of developing such kind of device, a sound local-
ization and recognition system using Pulsed Neuron (PN) model [2] have been
proposed in [3]. PN models deal with input signals on the form of pulse trains,
using an internal membrane potential as a reference for generating pulses on its
output. PN models can directly deal with temporal data, avoiding unnatural
windowing processes, and, due to its simple structure, can be more easily imple-
mented in hardware when compared with the standard artificial neuron model.
The system proposed in [3] can locate and recognize the sound source using only
two microphones, without requiring large instruments such as microphone arrays
[4] or video cameras [5].

However, the accuracy of the system deteriorates when it is used in real en-
vironments due to the natural presence of multiple sound sources. Therefore,
an important feature of such system is the ability of identifying the presence
of multiple sound sources, separating and recognizing each of them. This would
enable the system to define an objective sound source type, improving the sound
localization performance.

J. Marques de Sá et al. (Eds.): ICANN , Part II, LNCS 4669, pp. 748–757, 2007.
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In order to extend the system proposed in [3], this paper proposes a PN based
system for separation and recognition of multiple sound sources, using their time
lag information difference. Based on the time lags’ firing information, the sound
sources are recognized by an unsupervised pulsed neural network.

2 Pulsed Neuron Model

When processing time series data (e.g., sound), it is important to consider the
time relation and to have computationally inexpensive calculation procedures
to enable real-time processing. For these reasons, a PN model is used in this
research.

Figure 1 shows the structure of the PN model. When an input pulse ik(t)
reaches the kth synapse, the local membrane potential pk(t) is increased by the
value of the weight wk. The local membrane potentials decay exponentially with
a time constant τk across time. The neuron’s output o(t) is given by

o(t) = H(I(t) − θ) I(t) =
n∑

k=1

pk(t) (1)

where n is the total number of inputs, I(t) is the inner potential, θ is the threshold
and H(·) is the unit step function. The PN model also has a refractory period
tndti, during which the neuron is unable to fire, independently of the membrane
potential.
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Fig. 1. A pulsed neuron model

3 Proposed System

The basic structure of the proposed system is shown in Fig. 2. This system
consists of three main blocks, the frequency-pulse converter, the time difference
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Fig. 2. Basic structure of the proposed system

extractor and the sound recognition estimator. The time difference extractor and
sound recognition estimator blocks are based on a PN model.

The left and right signals’ time difference information is used to localize the
sound source, while the spectrum pattern is used to recognize the type of the
source.

3.1 Filtering and Frequency-Pulse Converter

In order to enable pulsed neuron based modules to process the sound data, the
analog input signal must be divided on its frequency components and converted
to pulses. A bank of band-pass filters decomposes the signal, and each frequency
channel is independently converted to a pulse train, which rate is proportional
to the amplitude of the correspondent signal. The filters’ center frequencies were
determined in order to divide the input range (100 Hz to 16 kHz) in 72 channels
equally spaced in a logarithm scale.

3.2 Time Difference Extractor

Each pulse train generated at each frequency channel is inputted in an inde-
pendent time difference extractor. The structure of the extractor is based on
Jeffress’s model [7], in which the pulsed neurons and the shift operators are or-
ganized as shown in Fig. 3. The left and right signals are inputted in opposed
sides of the extractor, and the pulses are sequentially shifted at each clock cy-
cle. When a neuron receives two simultaneous pulses, it fires. In this research,
the neuron fires when both input’s potentials reach the threshold θTDE . The
position of the firing neuron on the chain determines the time difference.

This work uses an improved method, initially proposed in [8], which consists
on deleleting the two input pulses when a neuron fires for preventing several false
detections due to the matching of pulses of different cycles, as shown in Fig. 4.
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Fig. 4. Pulse deleting algorithm in Time Difference Extractor

3.3 Sound Recognition Estimator

The sound recognition estimator is based on the Competitive Learning Network
using Pulsed Neurons (CONP) proposed in [6]. The basic structure of CONP is
shown in Fig.5.

In the learning process of CONP, the neuron with the most similar weights to
the input (winner neuron) is chosen for learning in order to obtain a topological
relation between inputs and outputs. For this, it is necessary to fire only one
neuron at a time. However, in the case of two or more neurons firing, it is
difficult to decide which one is the winner, as their outputs are only pulses,
and not real values. In order to this, CONP has extra external units called
control neurons. Based on the output of the Competitive Learning (CL) neurons,
the control neurons’ outputs increase or decrease the inner potential of all CL
neurons, keeping the number of firing neurons equal to one. Controlling the inner
potential is equivalent to controlling the threshold. Two types of control neurons
are used in this work. The No-Firing Detection (NFD) neuron fires when no CL
neuron fires, increasing their inner potential. Complementarily, the Multi-Firing
Detection (MFD) neuron fires when two or more CL neurons fire at the same
time, decreasing their inner potential.
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Fig. 5. Competetive Learning Network using Pulsed Neurons (CONP)

The CL neurons are also controlled by another potential, named the input
potential pin(t), and a gate threshold θgate. The input potential is calculated
as the sum of the inputs (with unitary weights), representing the frequency of
the input pulse train. When pin(t) < θgate, the CL neurons are not updated
by the control neurons and become unable to fire, as the input train has a too
small potential for being responsible for an output firing. Furthermore, the inner
potential of each CL neuron is decreased by a factor β, in order to follow rapid
changes on the inner potential and improving its adjustment.

Considering all the described adjustments on the inner potential of CONP
neurons, the output equation (1) of each CL neurons becomes:

o(t) = H

(
n∑

k=1

pk(t) − θ + pnfd(t) − pmfd(t) − β · pin(t)

)
(2)

where pnfd(t) and pmfd(t) corresponds respectively to the potential generated by
NFD and MFD neurons’ outputs, pin(t) is the input potential and β (0 ≤ β ≤ 1)
is a parameter.

4 Experimental Results

In this work, several sound signals generated by computer were used: three single
frequency signals (500 Hz, 1 kHz and 2 kHz), and five musical instruments’
sounds (“Accordion”, “Flute”, “Piano”, “Drum” and “Violin”). Each of these
signals were generated with three different time lags: −0.5 ms, 0.0 ms and +0.5
ms, with no level difference between left and right channels.

4.1 Separation of Multiple Sound Sources

Initially, the time difference information is extracted as described in section 3.2.
The used parameters for the signal acquistion, preprocessing and time difference
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Table 1. Parameters of each module used on the experiments

Input Sound

Sampling frequency 48 kHz
Quantization bit 16 bit
Number of frequency channels 72

Time Difference Extractor

Total number of shift units 121
Number of output neurons 41
Threshold θTDE 1.0
Time constant 350 μs

(a) single frequency signals (b) musical instruments

Fig. 6. Output of Time Difference Extractor for three different signals

extraction are shown in Table 1. The 48 kHz sampling frequency causes the pulse
train to shift 20.83 μs at each clock cycle (Fig.3), resulting in output time lags
of 41.66 μs for each neuron.

Figure 6(a) shows the output of the time difference extractor for an input
composed by the 500 Hz single frequency signal (+0.5 ms lag) the 1 kHz signal
(0.0 ms lag) and the 2 kHz signal (−0.5ms lag) The x-axis corresponds to the time
lag (calculated from the firing neuron in the time difference extractor) and the
y-axis corresponds to the channels’ frequency. The gray-level intensity represents
the rate of the output pulse train. Figure 6(b) shows the output relative to the
musical instruments’ sounds “Drum” (+0.5 ms lag), “Flute” (0.0 ms lag) and
“Violin” (−0.5 ms lag). Again, each time lag shows a different firing pattern in
each position.

Figure 7(a) shows the extraction of the firing information for each of the
identified instruments in Fig. 6. It can be seen that the frequency components
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Fig. 7. Extraction of the independent time lags firing information

are constant along time. Furthermore, Fig 7(b) to (d) show the output firing
information of each sound (Mix), together with the original firing information
for the independent sounds with no time lag (Single). All data is normalized
for comparison, showing that important components are similar. As both results
present firing in different frequency components for each time lag, it is possible
to recognize the type of sound source for each time difference.

4.2 Recognition of Independent Sound Sources

Each time lag’s firing information is recognized by the CONP model described
in section 3.3. Initially, the firing information of each type of sound source is
extracted with no time lag. This data is used for training CONP, according to
the parameters shown in Table 2.

The five musical instruments’ sounds were applied to the CONP in all combi-
nations of three simultaneous sounds with the three time lags (60 combinations).
Table 3 shows the average accuracy of the CONP model for each instrument in
each position. The recognition rate is calculated by the ratio between the number
of firings of the neuron corresponding to the correct instrument and the total
number of firings.



Separation and Recognition of Multiple Sound Source Using PN Model 755

Table 2. Parameters of CONP used on the experiments

Competitive learning Neuron

Input Number of CL neurons 72
Number of CL neurons 5[units]
Threshold θ 1.0 ×10−4

Gating threshold θgate 100.0
Rate for input pulse frequency β 0.11785
Time constant τp 20[msec]
Refractory period tndti 10[msec]
Learning coefficient α 2.0 ×10−7

Learning iterations 1000

No-Firing Detection Neuron

Time constant τNF D 0.5[msec]
Threshold θNF D -1.0 ×10−3

Connection weight
to each CL neurons 0.8

Multi-Firing Detection Neuron

Time constant τMF D 1.0[msec]
Threshold θMF D 2.0
Connection weight

from each CL neurons 1.0

Table 3. Results of sound recognition

Recognition Rate[%]

Input \ Time Lag −0.5ms 0.0ms +0.5ms

Acordion 89.9 88.1 88.8
Flute 92.3 94.4 92.4
Piano 62.5 32.9 64.0
Drum 90.3 89.1 88.6
Violin 79.7 78.4 79.0

In this result, the accuracy of “Piano” was particularly bad at the central po-
sition. Figure 8 shows the weights of the neurons corresponding to the sounds of
“Accordion”, “Flute” and “Piano” after learning. Not only the “Piano” neuron
does not present any relevant weight but also some of the highest weights are very
similar to the weights of other instruments’ corresponding neurons (e.g., inputs
4 and 23). The reason for this pour performance is that the “Piano” sound is not
constant, presenting a complex variation along a short period of time. This char-
acteristic makes this kind of sound difficult to be learned by the CONP model.
Nevertheless, other instruments’ sounds could be correctly identified in all posi-
tions with accuracies higher than 78%. This confirms the efficiency of the pro-
posed system on identifying multiple sources based on the time lag information.

Similarly to the human being, the proposed system cannot distinguish be-
tween two simultaneous similar sound sources. For instance, the results shown
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(a) two identical “Violin” signals (b) single “Violin” signal
on the left and central positions on the central position

and “Flute” signal on the right position

Fig. 9. Output of Time Difference Extractor for two identical signals

in Fig. 9(a) show the output of the Time Difference Extractor for signal com-
posed by the “Violin” sound coming from the left and central directions (-0.5
ms and 0.0 ms lags) and the “Flute” sound in the right direction (+0.5 ms lag).
For reference, Fig. 9(b) shows a single “Violin” signal on the central position.
As expected, only two firing patterns can be observed, on corresponding to the
“Flute” sound at +0.5 ms and another corresponding to the “Violin” sound at
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-0.25 ms. This is, however, an unrealistic situation, as in applications on real
environments the occurrence of two identical simultaneous sounds is very im-
probable, not compromising the applicability of the system.

5 Conclusion

This paper proposes a system for multiple sound source recognition based on a
PN model. The system is composed of a time difference extractor, which sepa-
rates the spectral information of each sound source, and a CONP model which
recognizes the sound source type from the firing information of each time lag.

The experimental results confirm that the PN model time difference extractor
can successfully separate the spectral components of multiple sound sources.
Using the time lag firing information, the sound source type could be correctly
identified in almost all cases. The proposed system can separate the multiple
sound sources and classify the each sound.

Future works include the application of the proposed system to real sound
signals, and also the use of the information of the sound sources type for locating
this source with high precision. The implementation of the current system in
hardware using an FPGA device is also in progress.
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Abstract. This paper presents a novel system that performs text-independent 
speaker authentication using new spiking neural network (SNN) architectures. 
Each speaker is represented by a set of prototype vectors that is trained with 
standard Hebbian rule and winner-takes-all approach. For every speaker there is 
a separated spiking network that computes normalized similarity scores of 
MFCC (Mel Frequency Cepstrum Coefficients) features considering speaker and 
background models. Experiments with the VidTimit dataset show similar 
performance of the system when compared with a benchmark method based on 
vector quantization. As the main property, the system enables optimization in 
terms of performance, speed and energy efficiency. A procedure to create/merge 
neurons is also presented, which enables adaptive and on-line training in an 
evolvable way. 

Keywords: Spiking Neural Network, Speaker Authentication, Brain-like Pattern 
Recognition, Similarity Domain Normalization. 

1   Introduction 

Computer-based speaker authentication presents a number of possible scenarios. 
Text-dependent, text-independent, long sentences, single words, speaker willing to be 
recognized, or speaker trying to hide its identity are some examples. For each of these 
scenarios, different specifically tuned processing techniques seem to be most 
effective. Of particular interest to our research is the short-sentence text-independent 
problem, which is typically comprised of input utterances ranging from 3 seconds to 1 
minute and to be authenticated, a certain speaker does not necessarily need to present 
the same word or sentence spoken during the training. Due to the short length of the 
signal, it is not possible to acquire long-term dependencies of features which could 
supply additional information to the enhancement of performance. Thus, state 
machines to detect phonemes, words, and bigrams, can not be setup with full strength. 

Based on these properties, during the last years there has been a convergence to the 
use of, firstly, Vector Quantization (VQ) [1] and, lately Gaussian Mixture Models 
(GMM) [2][3] to tackle the text-independent speaker authentication problem. These 
are the methods we use as inspiration for the design of a new spike-based system. VQ 
is used as benchmark for comparison purposes. 
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SNNs have been widely used in neuroscience for modelling brain functions. Only 
recently, attempts to use SNN in machine learning and pattern recognition have been 
reported [4][5], mainly trying to model vision in a more brain-like way. In speech, 
SNN has been applied in sound localization [6], and a preliminary study used SNN 
for recognition of spoken numbers [7][8]. However we are not aware of systems that 
use SNN to deal specifically with the speaker authentication problem. The use of 
SNNs for pattern recognition is still in an early stage but it has already being reported 
that the computation with spikes opens-up some new aspects that are not explicitly 
present in traditional ways of computing and which could eventually enable further 
advances in the field. As examples of properties that are not considered in traditional 
networks we mention: 

• Information encoding – Despite it is still not clear how the information encoding 
effectively happens in the brain, there is strong evidence showing that the spike 
encoding is optimal in terms of data transmission efficiency (maximum data 
transmission); 

• Processing time – Experimental evidence shows that some types of cognitive 
processes are accomplished in the brain in a very short time (e.g. 150 ms for 
visual system) and can be improved upon training (minimum processing time); 

• Energy efficiency – Mammalian brains are known for having more than 1010 
neurons [9], with neurons operating in a very low spiking rate (1-3 Hz). These 
numbers suggest that the wiring and connectivity strength are setup is such a 
way that the processing is done with the minimum energy consumption 
(minimum neuronal activity). 

In this work, we present two distinct network architectures that perform 
classification tasks using spiking neurons. The highlight of the new architectures is 
the inclusion of two techniques that have already demonstrated to be efficient in 
traditional methods. They are: 

• creation of prototype vectors through unsupervised clustering, and 
• adaptive similarity score (similarity normalization). 

In section 2 we describe the general overview of the speaker authentication system 
and the speech signal pre-processing stages. Section 3 presents the SNN models and 
section 4 is devoted to experimental results, which is followed by conclusion and 
future directions. 

2   System Description 

Speakers are identified considering physiological (related to the vocal tract) and 
behavioural characteristics included in a speech signal. The human auditory system 
extracts these characteristics through the decomposition of the incoming sounds in the 
frequency domain according to the MEL scale [10], where different frequency bands 
are processed in parallel pathways. Among numerous models describing such 
behaviour we use in this work MFCC [10], that are extracted only in the parts of a 
signal which contains speech. For voice activity detection, we use a simple algorithm 
based on the energy of a signal after a low-pass Butterworth Filter is applied as 
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described in [11]. Each frame of the signal containing speech fragments generates an 
MFCC vector that is translated into spikes using Rank Order Coding [4]. A network 
of spiking neurons is assigned to each speaker, which after proper training decides 
whether or not a claimant is authenticated. 

2.1   Normalizations 

Speaker authentication is well known for its high variability between training and test 
conditions. In order to attenuate this problem, several techniques have been used. The 
majority of the recent attempts usually normalize the features and/or the way of 
computing similarity. In the features level (parameter domain), we use cepstral mean 
subtraction of the MFCC features.  

In the similarity domain, we have embedded within the spiking neural network 
model a similarity normalization technique, in which the authentication score is 
calculated not only based on the similarity between a test sample and the speaker 
model, but on the relative similarity between the test sample and speaker model and 
test sample and background model. With this procedure, the variations in the testing 
conditions are taken into account when computing similarity. The normalization on 
the similarity domain has been already extensively implemented in traditional 
methods of speaker verification and currently is found in most of state-of-art speaker 
authentication methods. In our implementation to be described in more details in 
Section 3, the normalized similarity is computed allocating excitatory connections to 
neurons representing the claimant model and inhibitory connections to neurons 
representing the background model. 

3   Spiking Neural Network Model 

Our design for speaker authentication uses two/three layers feed-forward network of 
integrate-and-fire neurons where each speaker has its own network. Neurons have a 
latency of firing that depends upon the order of spikes received and the connections’ 
strengths. The postsynaptic potential (PSP) for a neuron i at time t is calculated as: 

 (1) 

where mod ∈ (0,1) is the modulation factor, j is the index for the incoming connection 
and wj,i is the corresponding synaptic weight. When PSP reaches a given threshold 
(PSPTh), an output spike is generated and the PSP level is reset. A detailed description 
of the dynamics of these neurons is given in [4]. 

3.1   Architecture 1 – Integration of Binary Opinions 

Receptive field neurons encode each feature of a frame, typically MFCC, to the time 
domain (using Rank Order Coding [4]). There is one neuron encoding each feature. 
The output of the receptive field neurons is a spike time pattern in every frame. Layer 
1 (L1) is composed of two neuronal maps. One neuronal map has an ensemble of 
neurons representing a speaker model (speaker prototypes). Each neuron in the 
neuronal map is to be trained to respond optimally to different parts of the training 
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utterances. The second neuronal map in L1 is trained to represent the background 
model. Several ways to represent background models, that can be universal or unique 
for each speaker, are described and analyzed in [3]. 

Similarly to L1, L2 has two neuronal maps representing the speaker and the 
background model. Each L2 neuronal map is composed of a single neuron. L1 and L2 
are connected as follows: a) excitatory connections between neurons corresponding to 
neuronal maps with the same label (L1 speaker to L2 speaker and L1 background to 
L2 background), and b) inhibitory connections between neurons with differing 
neuronal map labels (L1 speaker to L2 background and L1 background to L2 
speaker). Effectively, L2 neurons accumulate opinions in each frame of being/not 
being a speaker and being/not being the background. Figure 1 shows the architecture. 

The dynamics of the network is described as follows: for each frame of a speech 
signal, features are generated (currently using MFCC) and encoded into spiking times 
using the receptive field neurons. The spikes are then propagated to L1 until an L1 
neuron emits the first output spike, which is propagated to L2. If a neuron in L2 
generates an output spike the simulation is terminated. Otherwise, the next frame is 
propagated. Before processing the next frame, L1 PSPs are reset to the rest potential, 
whereas L2 neurons retain their PSPs, which are accumulated over consecutive 
frames, until an L2 output spike is generated. 

The classification is completed when a neuron in L2 generates an output spike or 
all frames and all spikes in the network have been propagated. If the L2 neuron 
representing the speaker releases an output spike, the speaker is authenticated. If no 
spikes occur in L2 after all frames have been processed or an L2 neuron representing 
the background releases an output spike, the speaker is not authenticated. 

 

Fig. 1. SNN architecture 1. Frame-by-frame integration of binary opinions. 

It is important to notice that in the architecture described, L2 neurons accumulate 
opinions of being/not being a given speaker collected over several frames. Each frame 
provides a binary opinion (yes/no), formed based on two criteria: high similarity of 
the input frame to a certain prototype represented by an L1 neuron, in such way that 
the similarity causes an L1 neuron to fire (coincidence detector). In addition, the 
frame needs to be more similar to a speaker prototype than to a prototype representing 
the background in order to fire first (competition among neurons). The latter property 
implements the similarity domain normalization and enables the network to adapt to 
variations inherently present in the speaker authentication problem. 
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The output in each frame, however, does not give a notion of how similar the input 
frame is from a prototype. In general, traditional methods that apply similarity domain 
normalization, compute the relative distance between the closest prototype of a 
speaker model and the closest prototype of the background model. To overcome this 
constraint and to extract the normalized similarity scores in each frame, we propose a 
second network architecture which requires some additional steps. 

3.2   Architecture 2 – Integration of Similarity Scores 

In this new and more complex configuration, the network is composed of 3 layers. 
Similarly to the previous architecture, the encoding of features from each frame into 
exact spike times in carried out by receptive field neurons. Layer 1 (L1) has two 
neuronal maps (speaker and background model) where each neuron is trained to 
respond optimally to a certain input excitation. The neurons in L1 are set to detect the 
closest prototype in both speaker and background model. Only one neuron is allowed 
to spike in each L1 map. 

 

Fig. 2. SNN architecture 2 – Frame-by-frame integration of similarity scores 

Each L1 neuron is connected to a set of layer 2 (L2) neurons. The set of L2 
neurons are connected to the receptive field neurons with the same connection 
weights as the corresponding L1 neuron, however they receive the spike train with a 
certain delay. The delay is set in such a way that L1 output spikes arrive in L2 before 
the arrival of incoming spikes from the receptive field neurons. L1 output spikes are 
effectively used to raise the PSP of all neurons in the set to a level where spikes can 
occur. Thus, in L2 only the neurons belonging to the winner set (closest prototype) 
become active and can generate output spikes with the arrival of the spikes from the 
receptive fields. The main characteristic of each set of L2 neurons related to an L1 
neuron is that each neuron has the same incoming weight connection from the 
receptive field neurons, but different PSP thresholds. Therefore the neurons in a set 
spike at different levels of PSP. Upon the arrival of the input trains of spikes into L2 
neurons, several neurons from the winner set are expected to fire. The neurons with 
lowest PSPTh first, followed by neurons with higher PSPTh levels. 
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Layer 3 (L3) integrates L2 spikes with excitatory connections between neuronal 
maps with the same labels and inhibitory connections between neuronal maps with 
differing labels. Thus, PSP levels in L3 denote the normalized similarity between the 
most similar speaker prototype and the most similar background prototype.  

Similarly to the behaviour of the previous network, PSPs on L1 and L2 are reset 
every frame, whereas in L3 the PSPs are accumulated over several frames. Figure 2 
illustrates the network architecture which implements the normalized similarity 
between the closest prototypes. 

The simulation is terminated when L3 emits an output spike or there are no more 
frames to be processed. Each frame is processed until all the spikes are propagated or 
until all L2 neurons representing the speaker or background emit spikes. 

3.3   Synaptic Plasticity and Structural Adaptation – SNN Training 

The training is done in the synapses connecting receptive field neurons and L1 in a 
similar fashion for both network architectures. To update weights during training, a 
simple rule is used [4]: 

)(
, mod jorder
ijw =Δ  (2) 

where wj,i is the weight between the receptive field neuron j and neuron i of the L1, 
mod ∈ (0,1) is the modulation factor, order(j) is the order of arrival to neuron i of a 
spike produced by neuron j. For each training sample, we use the winner-takes-all 
approach, where only the neuron that has the highest PSP value in L1 has its weights 
updated. 

The postsynaptic threshold (PSPTh) of a neuron is calculated as a proportion c ∈ [0, 
1] of the maximum postsynaptic potential (PSP) generated with the propagation of the 
training sample into the updated weights, such that: 

)max(PSPcPSPTh =  (3) 

The procedure for training the network and creating new neurons is adapted from 
[5] and is summarised with the following pseudo-code: 

Until weights converge 

For all phrase samples in the training set 
For each frame 

Create a new neuron 
Propagate the frame into the network 
Train the newly created neuron using equations (2) and (3) 
Calculate the similarity between weight vectors of newly created 
neuron and existent neurons within the neuronal map 
If similarity > Threshold 

Merge newly created neuron with the most similar neuron using 
(4) and (5) 

To merge a newly created neuron with an existing neuron the weights W of the 
existing neuron n are updated calculating the average as 

Frames

Framesnew

N

WNW
W

+
+

=
1

 (4) 

where NFrames is the number of frames previously used to update the respective 
neuron. Similarly, the average is also computed to update the corresponding PSPTh: 
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Alternatively, the network structure and the number of desired prototypes 
(neurons) can be defined a priori, using a k-means-like clustering algorithm to update 
the weights of the winner neuron. In this case, a simple heuristic can be described in 
two steps: 

1. Initialization of neurons’ weights 
For each neuron 

Propagate a random frame of the training set into the network 
Update the neuron’s weights using (2) and (3) 

2. Recursive training 
Until weights converge 

For all phrase samples in the training set 
For each frame 

Propagate each frame into the network 
Find the maximally activated neuron (the neuron with maximum PSP) 
Create a new neuron and train it using (2) and (3). Update weights of 
the maximally activated neuron merging it to the new neuron (using (4) 
and (5)) 

In our experiments we use the latter method to try to reproduce as close as possible 
the scenario of the benchmarking algorithm (VQ with k-means clustering). 

In SNN architecture 1, L1 neurons are fully connected to neurons in L2. The 
weights are set in order to accumulate positive or negative opinions of each input 
frame to each speaker (W = 1 for the links between each L1 neuronal map and its 
corresponding L2 neuron. W = -1 when the label of L1 neuronal map differs from the 
label of L2 neuron. 

In SNN architecture 2, the connections between L1 neuron and the corresponding 
set of neurons in L2 are excitatory (W = 1). Neurons in L2 are fully connected to L3 
neurons. There are excitatory connections (W = 1) between neurons belonging to the 
neuronal maps with same label and inhibitory connections (W = -1) otherwise. 

4   Experimental Results 

We have implemented the spiking network models proposed in the previous sections 
and used the speech part of the VidTimit dataset [12] for performance evaluation. 
VidTimit contains 10 utterances of 43 different speakers. In order to reproduce the 
experiments described in [12], the system is trained to authenticate 35 users using 6 
utterances from each user. The remaining 4 utterances of each user have been used for 
test. In addition, the 4 utterances of the 8 remaining users have been used to simulate 
impostor access. Thus, the number of true claimants for each individual model is 4 
utterances, and the number of impostors that try to break into each model is (35 - 1 
remaining users x 4 utterances) + (8 impostors x 4 utterances), which gives a total of 
168. For all individual models of the entire dataset, we have (35 users x 4 utterances), 
totalizing 140 true claimant samples and (35 users x 168 utterances) = 5880 false 
claimant samples. 

The speech signal is sampled at 16 kHz, and features are extracted using standard 
MFCC with 19 MEL filter sub-bands ranging from 200 Hz to 7 kHz. Each MFCC 
feature is then encoded into spikes. We have 19 neurons in L1. Encoding was not 
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further optimized despite experiments demonstrate that it plays an important role to 
the overall performance of the system. 

We train a specific background model for each speaker. For the sake of simplicity 
we use the following procedure. The background model of a speaker i is trained using 
the same amount of utterances used to train the speaker model, with the utterances 
randomly chosen from the remaining training speakers. 

For comparison purposes, we have also implemented a standard vector quantization 
(VQ) algorithm [1] with k-means clustering. Training was done with the same features 
(19 MFCCs) and the same strategy for selecting background models was applied. We 
tested the performance for different number of prototypes. We are only reporting here 
the best result, which has been obtained with 32 prototypes for speakers and 32 
prototypes for the background model. The prototypes were selected without any 
systematic optimization procedure. The VQ performance can be seen in Figure 3. These 
results are comparable with the work presented by [12], where with the same dataset 
authors reported total error TE = false acceptance rate (FAR) + false rejection rate 
(FRR) = 22 % in slightly different setup conditions using Gaussian Mixture Model. 

With respect to the SNN implementation, we have defined a priori the number of 
neurons in L1 neuronal maps for the speaker and background model (80 neurons 
each). The modulation factor was set to 0.9 for L1 neurons in architecture 1 and L1 
and L2 neurons in architecture 2. The other layers are composed of neurons with 
modulation factor = 1. 

In the experiments with SNN architecture 1, PSPTh of L2 neurons are defined as a 
proportion p of the number of frames used for identification. For instance, if an 
utterance used for authentication is composed of 40 frames and p is 0.2, the PSPTh 
used for authentication is 40 x 0.2 = 8. PSPTh of L1 neurons are calculated as a 
proportion c of the maximum PSP during training according to (3). The performance 
for p = 0.2 and different values of  c are shown in Figure 4 (on left). 

In the SNN architecture 2, PSPTh of L3 neurons are defined as a proportion p (0.2 
was used) of the number of frames used for identification. PSPTh of L1 neurons are 
calculated as a proportion c of the maximum PSP during training according to (3). A 
set of L2 neurons have the PSPTh levels ranging from 0 to the maximum PSPTh of 
their corresponding L1 neuron (equally spaced). Figure 4 (on right) shows a typical 
performance using 20 PSPTh levels for different c. Notice that, in this scenario for 
values of c below 0.4 the FRR starts to rise again. This trend is expected when the 
system reaches an operation point where the set of PSPTh levels in L2 are not acting 
properly to compute distances. 

In our experiments, SNN parameters were optimized by hand. Figure 3 and Figure 4 
clearly show that VQ and SNN manifest a similar error trend, with a slightly better 
performance to VQ when the FAR and FRR curves intersect each other. However, we 
can not conclude that VQ has a better performance when comparing to SNNs nor that 
one SNN network configuration is better than another. We can conclude that both 
network architectures proposed here are able to process frames of speech data using 
spiking times, can accumulate opinions over many frames and can discern whether 
they represent or not represent previously trained patterns. The advantages of these 
networks are that they enable to perform multiple criteria optimization of parameters to 
reach data transmission efficiency, minimum processing time, and minimum energy 
consumption. 
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Fig. 3. Vector Quantization (VQ) performance on VidTimit dataset. FAR is the false acceptance 
rate, FRR is the false rejection rate, and TE is the total error (FAR+FRR). 

  

Fig. 4. Typical SNNs performance for different values of c (proportion of the maximum PSP 
generated by a training sample). On left: SNN Architecture 1. On right: SNN Architecture 2. 
The same trained weights were used in both architectures. 

5   Conclusion and Future Directions 

We have presented for the first time two network architectures of spiking neurons for 
speaker authentication. These networks process streams of speech signals in a frame-
based manner. The output layers accumulate positive and negative opinions of being a 
certain speaker as well as being a background. The main difference is that, in each 
frame, architecture 1 outputs a binary opinion and architecture 2 gives a notion of 
similarity between the incoming frame and the closest prototypes. 

Connection weights between receptive fields and L1 can be trained to respond to 
different parts of an utterance, closely corresponding to the usage of k-means 
algorithm to create codebooks [1], or a set of gaussians in GMM [2][12]. Our models 
also incorporate the idea of normalized similarity, which demonstrated to be very 
effective in several classical models [1][2]. 

The main drawback of the system is that the neuron model implemented in this 
work [4] reduces its classification efficiency when the features are encoded in small 
numbers of neurons in a non sparse space. Thus, it may be required to use population 
of neurons to add sparseness to features encoding to handle more challenging tasks. 

The procedures suggested in Section 3.3 based on k-means and network structural 
adaptation enable continuous and adaptive training. The main properties of these 
procedures are: a) k-means: needs to define in advance the number of neurons, can 
present initialization and local minima problem; b) network structural adaptation: an 
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additional parameter for merging neurons needs to be tuned, and a different division 
of the feature space can be obtained according to the order of the training samples [5]. 

While the dynamics of the network architectures have proven suitable to perform 
speaker authentication, further development is needed to take advantage of their main 
properties, in particular with the inclusion of multi-criteria parameter optimization 
procedures to reach a better data encoding [13], minimize processing time and reduce 
the overall number of spikes. In this direction, we plan to optimize parameters in 
larger scale experiments of speaker authentication. 
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Abstract. We present a biologically-inspired neural model addressing
the problem of transformations across frames of reference in a posture
imitation task. Our modeling is based on the hypothesis that imitation
is mediated by two concurrent transformations selectively sensitive to
spatial and anatomical cues. In contrast to classical approaches, we also
assume that separate instances of this pair of transformations are re-
sponsible for the control of each side of the body. We also devised an
experimental paradigm which allowed us to model the interference pat-
terns caused by the interaction between the anatomical on one hand, and
the spatial imitative strategy on the other hand. The results from our
simulation studies thus provide predictions of real behavioral responses.

1 Introduction

Although imitation has been extensively addressed in developmental psychol-
ogy, it has become a current topic in neuroscience and experimental psychology
[1, 3, 6, 9, 10, 11, 4]. The starting point of these investigations was the discovery,
in monkey and human brain, of mirror neurons, which are activated by both
the execution and the observation of goal-directed actions [1,10,11]. In humans,
the mirror circuit, gets also activated during the presentation of intransitive
gestures or body postures [10]. In this work, we focus on the process of transfor-
mation across frames of reference, required for imitation of arbitrary gestures.
In psychology, anatomical and spatial types of imitation are usually considered
distinct [5, 6, 9, 10]. On one hand, anatomical imitation considers the observed
movements with respect to the observed person’s body. On the other hand, spa-
tial imitation considers only the spatial location of the limbs with respect to the
observer, regardless of the orientation of the demonstrator. When the imitator
and the demonstrator are facing each other, this form of imitation is usually
denoted as specular or mirror [4, 6, 5, 10].

We hypothesize that the computations associated with these two forms of
imitation are simultaneously computed in the brain. Given the task constraints,
a competitive process then selects the correct response [5, 4, 6, 13]. Such a com-
petition usually produces measurable interferences on reaction times [5, 4, 9]. In
addition to the previous hypothesis, we suggest that anatomical imitation should

J. Marques de Sá et al. (Eds.): ICANN 2007, Part II, LNCS 4669, pp. 768–778, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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not be considered too strictly. We propose here that an anatomical mapping be-
tween contralateral limbs, which mirrors the relationship between the limb joints,
also exists. Therefore, our model assumes that distinct pairs of spatial and ana-
tomical transformations are responsible of the control of each side of the body. As
a consequence, when an arm posture is presented with either the left or the right
arm for example, an imitative response is computed in parallel for both arms of
the imitator. Here, we apply a biologically-inspired modeling approach, known as
the Dynamic Field Theory [8, 13], to the problem of conflicting transformations
across frames of reference. We will first present an experimental paradigm which
will help determine the interferences between different imitative strategies dur-
ing a task requiring the imitation of meaningless body postures. Then, we will
briefly describe a neural model, capable of computing both anatomical and spa-
tial imitative transformations. Finally, we will discuss the particular interference
patterns predicted by our model and their implications for future research.

2 Model

2.1 Experimental Scenario and Setup
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Fig. 1. Experimental variables and
considered frames of reference
(FR)

We consider the imitation of body postures
where the orientation of the right upper arm
is varied. The visual perspective of the demon-
strator’s body can also vary from side to front
view. The task instructions require either a
spatial or an anatomical imitative response
with either the right arm (the corresponding
one) or the left arm (the opposite one). The
stimulus variables, shown in Figure 1, are: ϕD,
the demonstrator arm elevation, θD, its orien-
tation relative to the body in the horizontal
plane, and φD, the orientation of the body
with respect to the observer. The response
variables are: ϕI

L and ϕI
R, the elevation of the

left and right arm of the imitator, and θI
L and

θI
R, their orientations on the horizontal plane.

The desired responses are:

θI,A
L = θI,A

R = θD

θI,S
L = −θI,S

R =

⎧
⎨

⎩

−180 − (θD + φD) θD + φD < −90
θD + φD |θD + φD| ≤ 90

180 − (θD + φD) θD + φD > 90

(1)

where the additional index, A or S, denotes the anatomical or the spatial imi-
tative strategy, respectively. An illustration of these transformations are shown
in Figure 2. Let us then define the discrepancy D between the response of both
strategies, which is is given by the difference between the response of the in-
structed strategy and that of the other. Spatial and anatomical transformations
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are said to be perfectly congruent when the discrepancy D = 0. Note that ideal
congruency conditions are not equivalent for both arms.

An experimental trial consists first of the presentation of a starting posture
which the model is requested to imitate according to the task instructions. Then,
the arm posture is abruptly changed, and the subject has to keep imitating as fast
as possible. During a single trial, only the arm posture is modified, whereas the
body orientation is left unchanged. Experiment 1 investigates the interferences
produced by both imitative strategies when their initial responses are congruent
and the amplitude of the change of arm posture is kept constant across the trials.
The pair of initial and target postures consists of the arm raising from a neutral
down position (ϕD = 0◦), where the responses of both transformations are always
congruent, to a position on the horizontal plane (ϕD = 90◦). The arm elevation is
thus the only degree of freedom which changes during a trial. Complementarily,
Experiment 2 investigates the influence of a horizontal postural change, which
amount is denoted by ΔθD. Indeed, in such conditions, depending on the stimuli,
the discrepancy between the responses of the transformations may vary.

D = 0◦ D = 0◦ D = ±90◦D = ±90◦ D = 0◦D = 0◦ D = ±90◦ D = ±90◦

D = 0◦
Initial posture
Final posture D = ±90◦ D = 0◦D = ±90◦ D = 0◦D = ±90◦ D = 0◦ D = ±90◦
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 = -90◦φD
 = 180◦

Fig. 2. Examples of anatomical and spatial imitative strategies in various conditions.
The discrepancy between the response of the transformations are given for each arm.

2.2 Neural Fields

This section briefly describes our model, which is composed of networks known
as neural fields [8,12,13]. Formally, a neural field is composed of a continuous set
of neurons, where each of them fires maximally for a specific value r uniformly
distributed in the parameter space Γ . Since the modeled variables consist of arm
and body orientations, we consider the parameter space as the ensemble of di-
rections in the three dimensional space, i.e, Γ = {r ∈ R

3| ‖r‖ = 1}. Each neuron
of the network is fully connected by means of recurrent synaptic weights WR,
exhibiting symmetry, rotational invariance and center-surround characteristics.
The neural field dynamics follows

τ u̇(r, t) = −u(r, t) + x(r, t) + h(t) +
∮

Γ

WR(r′, r) f
(
u(r′, t)

)
dr′ (2)
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where u(r, t) ∈ R is the membrane potential of the neuron with time constant τ ∈
R and the preferred direction r at time t. f(y) = max(0, y), x(r, t) corresponds to
the external input and h(t) to a global modulatory input. The weight linking two
neurons, with preferred directions r′ and r, is given by a periodical Gaussian-like
profile defined as

WR(r′, r) = αR
(
g(r′, r) − 1

)
where g(r′, r) =

1
κ

exp
(

(Mr′)T r − 1
2σ2

)
(3)

y

x

z

f (u(r,t))

u(r,t)

p(t)

u(r,t) = 0

Competing inputs Winning input

Time

Overlapping inputs Averaging 
of the inputs

Fig. 3. (Left) Graphical representation of a neu-
ral field activity. (Right) Evolution of the neural
activity during a selection process involving two
competing inputs (top), and between two partially
overlapping inputs (bottom).

αR > 0 and σ > 0 are, re-
spectively, the amplitude and
variance of the weight pro-
file. M refers to a transfor-
mation or mapping matrix.
In this case M = I, i.e.,
the identity matrix, but dif-
ferent mappings will be de-
scribed later in the text. κ =
1 − e−

1
σ2 is a normalization

factor ensuring that g(r′, r) ∈
[0, 1]. This type of neural dy-
namics is known to form an
attractor bump on the surface
of the neural field (see Fig. 3),
through which this class of
networks is suggested to con-
vey information. As a read-
out mechanism, we consider
the population vector p̂(t) ∈ Γ . It consists of a weighted summation of the
firing rate of each neuron with its preferred direction and is given by

p̂(t) = p(t)/‖p(t)‖ where p(t) =
∮

Γ

f
(
u(r, t)

)
r dr (4)

Moreover, we define E(t) = ‖p(t)‖ as the energy of the network response. Since
further in the text we consider several neural fields within a large network, we will
denote with an index i the network variables corresponding to those of a neural
field i. The external input xi(r, t) can be composed of a direct sensory input
and of synaptic projections from one or several different neural fields. A sensory
input is constrained to represent a variable value s(t) ∈ Γ , and projection from
a population j to a population i is done through synaptic weights W ji. The
external input of a neural field i is then written as

xi(r, t) = βi
(
g(r, si(t)) − η

)
+

∑

j

∮

Γ

W ji(r′, r) f
(
uj(r′, t)

)
dr′ where

W ji(r′, r) = αji
(
g(r′, r) − ηji

)
(5)
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Fig. 4. Architecture of the model: Within each network corresponding to a given arm,
two streams compute separately the anatomical and the spatial transformations

where βi is the strength of the representation of the sensory variable si(t), ηji is
a normalization term, and αji > 0 is the amplitude of the weights. Similarly, the
modulatory input hi(t) can consist of a constant input or of synaptic projections
from other neural populations. In the latter case, we have

hi(t) =
∑

j

∮

Γ

W ji(r′, ri) f
(
uj(r′, t)

)
dr′ (6)

where ri ∈ Γ is constant and W ji corresponds to that defined in Equ. (5).

2.3 Network Architecture

The model architecture, depicted in Figure 4, consists of two networks, one for
each arm. Within a single network, two main streams process separately the
spatial and the anatomical transformation. Their outputs are projected to a
competitive network to select the appropriate response. Since the task instruc-
tions specify which arm should be used, the model does not perform the selection
of the effector.

As External Inputs, the two streams receive visual input in the form of the
arm and body orientation vectors sArm and sBody ∈ Γ , relative to the reference
frame of the observer (shown in Fig. 1):

sArm =
(

sin(ϕD) sin(θD + φD) , cos(ϕD) , − sin(ϕD) cos(θD + φD)
)T

sBody =
(

sin(φD) , 0 , − cos(φD)
)T (7)

These inputs are fed into the input populations of each transformation according
to Equ. (5). Note that the spatial transformation does not need the orientation of
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the demonstrator’s body. The input populations also receive an external modu-
lation applied asymmetrically to each stream. According to the task instructions,
the inputs of the relevant network receive a positive modulation, whereas those
of the other receive inhibition, i.e., hTask and −(hTask +Δh), respectively, where
hTask > 0 is a constant, and Δh ∈ {0, Δh0}. When Δh = Δh0 � 0, the network
corresponding to the irrelevant transformation is completely inhibited. This case,
where only the relevant transformation is active, is considered as the baseline
condition.

The Spatial Transformation consists of mapping the orientation of the
demonstrator’s arm with the imitator’s left and right arm, regardless of the
demonstrator’s body. For a given arm, two neural populations are required.
The former receives the visual input and is connected to the latter through
synaptic projections. Using Eqs. (1) and (5), the correct mapping functions for
the left and the right arm are given by M = ML,Sp and M = MR,Sp, respec-
tively, where

ML,Sp =
{

diag(1, 1, −1) sArm
z < 0

I otherwise and MR,Sp = diag(−1, 1, 1)ML,Sp

(8)
Since the frames of references of each arm are symmetric, so are the mapping
matrices.

The Anatomical Transformation requires the combination of the orientation
of the demonstrator’s arm and that of his/her body [12]. Neurophysiological data
suggest that such a transformation is performed through gain fields, which are
neural populations combining inputs from several external sources [14]. We define
a gain field as a continuous set of neural fields denoted by GFφ, where each of
them is preferentially tuned to a specific body orientation φ. The population
encoding the demonstrator’s arm orientation projects to each of them using
Equ. (5) with mapping function M = Ry(−φ), where Ry(−φ) is the rotation
matrix around axis Y with angle −φ. The body orientation is fed to the subfields
through their modulatory input hGFφ(t) according to Equ. (6), with M = I and
rGFφ = (sin φ, 0, −cosφ). The gain field projects to the output population of the
transfromation by synaptic projections with M = I.

The Response Selection is performed by a neural field receiving projections
from the output population of both transformations. The competition arises
naturally as an effect of the network recurrent connectivity, producing a winner-
take-all type of operation [8, 13]. As illustrated in Figure 3, according to the
intrinsic distance metric given by the breadth σ of the recurrent connections,
close and overlapping inputs tend to average whereas distant ones compete. In
our model, since the output strength of both streams are asymmetrically bal-
anced, the correct response is always selected by the network. The network also
receives a go signal by means of its modulatory input. Prior to the presentation
of the target posture, hSel(t) = −hGo � 0 so that the neural field is completely
inactive. When the target posture is presented, the network is uninhibited, i.e.,
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hSel(t) = 0, and the selection process begins. The network response is read-out
using the population vector (Equ. (4)), which directly represents the selected
arm posture in the frame of reference of the imitator.

3 Results

We simulated the two experiments described in Section 2.1. The demonstrator’s
arm and body postures, were systematically varied across each trial during both
experiments1. Moreover, in experimental conditions involving the use of the left
arm, the subnetwork corresponding to the right arm was not considered, and
vice versa.

3.1 Reaction Times and Accuracy

The mean reaction times and the errors resulting from the transformations were
measured in both experiments. Reaction times (RT) were defined as the time
when the response energy E(t) of the selection network reached a given threshold,
whereas the transformation errors (Err) were defined as the angular distance
between the population vector response p̂(t) after network convergence, and
the correct target position. Moreover, since we do not model the dynamics of
arm movements, reaction times should be considered to be times of movement
initiation rather than times of movement completion.
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Both experiment

Fig. 5. a) Mean reaction times and b) transformation errors observed in both ex-
periments. c) Reaction times during Experiment 2 in the baseline conditions shown
according to the amount of postural change ΔθD.

1 The respective range of arm and body orientations are θD ∈ {k · 22.5◦|k ∈ {0..8}}
and φD ∈ {k · 22.5◦|k ∈ {0..15}}. The amplitude of postural change in Exp. 2 is in
the range ΔθD ∈ {k · 22.5◦|k ∈ {1..8}}. The model parameters are: the amplitudes
of the weights, αR = 12, αSArm,SOut = αAArm,GFφ = αGFφ,AOut = 5.4, αABody,GFφ =
8.0, and αAOut,Sel = αSOut,Sel = 5.0; the breadth of the weights profiles and their
offset, unless specified, σ = 0.5 and η =

∮
Γ

g(r, r′) dr, then σABody,GFφ = ∞ and
ηAArm,GFφ = 1.0; the amplitude of the inputs, βSArm = βAArm = βABody = 0.5.
These parameters were chosen so that the response energy of both transformations
are equal for an equivalent task modulation. Finally, the task modulatory inputs and
go signal are, hTask = 0.5, Δh0 = 0.75 and hGo = 1.5.
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As reported in Figure 5a, in both experiments, the average reaction times in
anatomical conditions were longer than in the spatial task. Indeed, the former
transformation requires more computations. In addition, a slight, but not sig-
nificant increase in average reaction times can be noticed when comparing the
normal condition with the baseline. Nevertheless, a difference between these con-
ditions was observed on the transformation errors (see Fig. 5b). Indeed, a compe-
tition between the parallel transformations results in larger errors. In Experiment
2, the amplitude of the postural change ΔθD was different across trials. The re-
action times dependency on this experimental variable in the baseline conditions
is shown in Figure 5c. For small postural changes, reaction times were longer,
but then decreased for larger ΔθD. This effect is caused by the center-surround
recurrence in the neural dynamics, resulting in longer convergence times when
moving from one attractor state to another, which is sufficiently close.

3.2 Interference Patterns
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Relative Transformation Errors
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Spatial task

5τ

-5τ
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Fig. 6. Results of Experiment 1: Reaction
times and transformation errors relative to
the baseline condition are shown

Then, we were interested in determin-
ing the interference patterns result-
ing from the competition between the
two transformations. The reaction
times and transformation errors were
considered relative to the baseline
conditions. Let us denote them, re-
spectively, by ΔRT = RT − RT0, and
ΔErr = Err − Err0, where RT0 and
Err0 correspond to the reaction times
and errors measured in the baseline
conditions. In Figure 6, data from Experiment 1 are given according to the dis-
crepancy D between the responses of the anatomical on one hand, and the spatial
transformation on the other hand. First, since the processing time of the spatial
transformation is shorter, it interferes earlier with the anatomical transforma-
tion, and conversely. As an effect, the strength of the interferences on reaction
times were globally higher in anatomical conditions. Next, the reaction times
increased with the discrepancy between the responses, whereas transformation
errors behaved slightly differently. The errors did also increase with the discrep-
ancy, but only within a small range. For outermost distances, they decreased until
approximately zero. This effect is the result of the averaging of close responses
on the neural field. Similar effects were observed in Experiment 2 (see Fig. 7),
i.e., the interference patterns were globally more important under anatomical
conditions and the error patterns also depended on the discrepancy between the
responses. Further, the interference patterns on reaction times exhibited a com-
bination of the effects of both the discrepancy D between the responses and the
amount ΔθD of arm postural change that were shown earlier in Figure 5c and 6.
In conditions close to ideal congruency between the transformations, a general
facilitatory effect was primarily produced which was even stronger for mid-range
distances. In addition, an interaction between both variables on reaction times
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Fig. 7. Results of Experiment 2: Reaction times relative to the baseline condition. On
top of each plot, examples of experimental conditions are shown. In each case, the
largest arrow corresponds to the response of the relevant transformation.

was observed. It produced a small shift of the interference pattern relative to
the discrepancy D, which depended on ΔθD. In anatomical conditions, when
the response of the spatial transformation is in the course of that of the ana-
tomical transformation, the facilitory effect is strengthened, whereas when the
former is located at a distance, it is weakened. Since this dependency between
the responses is primarily caused by the difference in processing times, its effect
is reversed in spatial conditions. Finally, because the errors were measured after
network convergence, they were not different from those reported in Experiment
1 (see Fig. 6).

4 Discussion

In this paper, we have presented a biologically-inspired neural model addressing
the problem of transformations across frames of reference in a posture imitation
task. Our modeling is based on the hypothesis that such an imitation process is
mediated by two concurrent transformations, corresponding to the spatial and
the anatomical imitative strategies [5, 4, 6, 13]. We also devised an experimental
paradigm which allowed us to measure the interference patterns that the interac-
tion between the anatomical on one hand, and the spatial imitative strategy on
the other hand produced. In addition, we also assumed that separate instances
of the pair of transformations are responsible for the control of each side of the
body. Since our experiments did not involve the use of both arms simultaneously,
this latter hypothesis does not rule out the fact that the processes of each arm
may be coupled and located within a single brain region [1, 10]. As such, our
results provide predictions of real behavioral responses.

Similar to other works which applied the Dynamic Field approach [8,13], our
work goes beyond usual binary models, often proposed in experimental psychol-
ogy [15]. Besides the fact that this framework allows the modeling of continuous
stimulus variables and responses, which are more common in imitative behaviors,
it is of high biological significance. Neurophysiological studies have shown that,
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in the superior temporal sulcus, body and arm postures are encoded into neural
populations where each neuron exhibits tuning to a specific posture [2]. Similarly
distributed representations, and correlates of decisional processes have also been
reported in many other sensorimotor brain areas [7,14]. Together, these findings
strengthen our approach by grounding it on a strong biological basis.

Behavioral studies on imitation report greater interferences during tasks where
the spatial transformation is irrelevant, as compared to tasks where anatomical
imitation has to be avoided [5, 9, 4]. Our model supports this observation, but
explains it in terms of the longer processing time required by the anatomical imi-
tative strategy, which needs to process an additional variable. Usual accounts for
the greater influence of the spatial transformation consider primarily a stronger
linkage with the decisional process [4, 5, 10, 15]. Although both hypotheses are
compatible, one may be interested in determining their respective influence,
which would need more investigations.

Our modeling study also showed that combining of transformations produces
interferences. One may wonder why the nervous system would use a combination
of two strategies for solving imitation tasks since they produce interferences. Our
simulations show that, in specific conditions, their interaction result in positive
effects. For instance, when the imitator and the demonstrator are face to face,
mirror imitation is faster, whereas anatomical imitation is more effective when
the imitator looks at the back of the demonstrator. From this, we can propose
an alternative hypothesis explaining that, in unconstrained conditions and when
people are facing each other, mirror imitation is the most usual strategy for
copying meaningless gestures [3]. Rather than assuming that mirror imitation
has a stronger influence on the selection process [9, 10, 4], we suggest that this
strategy is the one which exhibits the maximal congruency between the con-
current transformations. Additional neurophysiological evidence supporting our
hypotheses can be found in an fMRI study showing that some of the brain ar-
eas activated during the imitation of finger movements are more active during
specular than during anatomical imitation [10]. In this experiment, the authors
did not consider the hypothesis that an anatomical mapping could exist between
contralateral hands. The mirror condition which they showed to produce higher
brain activation, corresponds in our approach to a condition where the responses
of the parallel strategies are perfectly congruent. Since this case is effectively the
one in which our model produces responses with the highest energy, the nervous
system may hence be naturally biased toward this strategy.
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Abstract. The main topic in this work was the development of a hybrid 
intelligent system for the hourly load forecasting in a time period of 7 days 
ahead, using a combination of Artificial Neural Network and Adaptive Neuro-
Fuzzy Inference System. The hourly load forecasting was accomplished in two 
steps: in the first one, two ANNs are used to forecast the total load of the day, 
where one of the networks forecasts the working days (Monday through 
Friday), and the other forecasts the Saturdays, Sundays and public holidays; in 
the second step, the ANFIS was used to give the hourly consumption rate of the 
load. The proposed system presented a better performance as against the system 
currently used by Energy Company of Pernambuco, named PREVER. The 
simulation results showed an hourly mean absolute percentage error of 2.81% 
for the year 2005. 

Keywords: Hybrid System, Neuro-Fuzzy System, Artificial Neural Network, 
Load Forecasting. 

1   Introduction 

The load forecast is a subject of utmost importance to aid in the planning studies, 
schedule of operation, enlargements and reinforcements of the basic grid [1], [2]. 

Recently, short-term load forecasting (7 days ahead) has become extremely 
important, as this type of forecast is directly linked to the electricity bill forecasting 
that due to the privatization processes and to the appearance of competition in the 
Brazilian electricity grid is now a subject of great importance for the agents of the 
area. Therefore, for the current model of the Brazilian electric system an efficient load 
forecasting implies making a profit on the commercialization process. 

Several researches have been carried out in order to improve planning and operation 
of these systems. Specifically, that the required load forecasts may be divided into short-
term, mid-term and long-term forecasts. Traditionally, load forecasting techniques use 
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statistical methods of time series analysis, which include linear regression, exponential 
damping and Box Jenkins [3]. In recent years, techniques of artificial intelligence such 
as artificial neural network (ANN) have been used, obtaining promising results [4]-[7]. 
Electric load forecasting based on Hybrid systems has also become one of the attractive 
tools to resolve this problem [8] with quite satisfactory results. 

Currently, CELPE uses the software PREVER to accomplish its hourly load 
forecast, which was developed by the research group of artificial neural network in 
the Digital Laboratory of Power System - LDSP/UFPE. The PREVER system 
accomplishes the load forecast using ANN and heuristic rules providing an efficient 
forecast system with small error [9]. The aim of this work is to improve the hourly 
load forecast, automating it and incorporating the implicit knowledge of the specialist 
in the system by the ANFIS. The developed system makes use of a hybrid approach 
implemented in MATLAB® to accomplish the load forecasting in the period of 7 days 
ahead. 

2   Proposed Scheme for Load Forecasting 

The creation of the proposed system was divided in two stages. In the first stage, the 
daily forecasting consumption system was developed and next, the system that gives 
the behavior of the hourly load forecasting. 

During the accomplishment of the first stage, the behavior of the data represented 
by the electric load consumption curves was analyzed in order to obtain an effective 
database. Afterwards, the artificial neural networks were created to provide the 
forecast of the daily total consumption. From observation of the analyzed data, two 
architectures of neural networks were created, one to forecast the daily total 
consumption of the day of the week (Monday through Friday) and other network to 
forecast the consumption of the holidays and weekend days (Saturday and Sunday). 
The forecast of the total consumption of one holiday was accomplished as being a 
Saturday or Sunday, depending on the characteristic of the electric load curve of that 
specific holiday [9]. 

In the second stage of the process, a study of the behavior of the load curve relating 
to the total consumption of the day was accomplished in order to create the database 
of the neuro-fuzzy system (ANFIS) and its architecture. After the analyses, it was 
concluded that to obtain a better behavior for the electric load curve of holidays, it 
would be better to use the coefficients of the hourly consumption of the same holiday 
in the previous year. However, for the days of the week that are not a holiday, we 
should use the coefficients generated by the ANFIS system. 

 

Fig. 1. Diagram of the load forecasting model 

ANFIS 
(Provide the rate of consumption per hour) 

ANN input

ANFIS input

ANN 
(Forecast the total daily consumption)

Hybrid System 
output 

(Hourly load 
forecasting) 
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An illustration of the flow chart of the load forecasting model is given in Fig. 1. 
ANN is used to forecast the total daily consumption in the period of 7 days ahead. 
ANFIS system gives the hourly load forecasting coefficients that multiplied by the 
total load consumption produce the hourly load forecasting. 

3   Neural Network Architecture 

3.1   Database Arrangement 

The database is of fundamental importance to generate powerful forecasting models, 
because their outputs are strongly related to the quality and arrangement of the 
information used in the learning process. 

The problem approached in this work is based on the hourly load forecasting for 7 
days ahead. The data used in this work were made available by CELPE and they 
correspond to the hourly load consumption data in the period from January 2000 until 
December 2005. 

All the data were unified in two files, one containing working days and the other 
the holidays, Saturdays and Sundays. From these data, the pattern was arranged for 
the information of the year, the day of the week, the month of the year, total load of 
the day and the day of the week to be forecast using the 1-of-m code. 

The value of the hourly load was normalized (LN) to fall in the range 0 to 1 by 
using (1): 

minmax

min
N LL

LL
L

−
−= . (1) 

where LN is the hourly load value registered by the CELPE’s system, Lmax and Lmin are 
the maximum and the minimum hourly load value among all the observed values, 
respectively. In this work Lmin = 0 and Lmax = 1.1·LAmax, where LAmax is the maximum 
value of the actual load data. The objective of factor 1.1 is to turn the values of future 
loads up to 10% above LAmax into values below the unit after their normalization. 

The data to create the working day set was pre-selected using the mean and the 
standard deviation parameters. Initially, for every month the total consumption of a 
specific working day (Monday through Friday) was divided by the number of times 

that specific day appears in the month. Next, the mean x ij_t and the standard 
deviation σij_t were calculated for every day of the week in each month and in each 
year. Using these values, two limits were created: 

tijtijtijmin σxx ____ −= . (2) 

tijtijtij σxx ___max_ += . (3) 

where, i specifies the month of the year i = 1 to 12, j specifies the day of the week j = 
1 to 7 and t specifies the year t = 2000 to 2004 of the training set. 

The patterns of the database were limited to lower and upper values given in (2) 
and (3), respectively. That is, if a given pattern was lower than xmin_ij_t or greater than 
xmax_ij_t, it was discarded from the data. 
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The procedure mentioned above was not used to create the data set of the holidays 
and weekend days, because this would reduce the amount of data significantly. 
However, the data regarding the more critical period of the rationing in Brazilian 
electric power system (May through July 2001) were eliminated from this data set.  

In this work, a holiday is considered by the specialist to be as one Saturday or one 
Sunday, according to [9]. In other words, the specialist indicates beforehand if the 
load behavior of that specific holiday is more correlated with the load behavior of 
Saturday or Sunday. Because the load curves of the holidays are either close to the 
load curves of one Saturday or one Sunday, the hourly load data of holidays were just 
used in the test set. 

The networks are created using the basic principle of dividing the samples into 
three subsets that are mutually exclusive, defined as: training set used to train the 
network; validation set used to avoid the overtraining, thus improving generalization; 
and test set used to compare different models and to plot the test set error during the 
training process. The idea is that the system performance in the test set represents its 
performance in the real world. This means that no example of the test set should be 
available in the training set of the network [10]. 

The neural network of the working days has eleven inputs: the first three represent 
values of the electric load demand for 42, 35, 28, 21, 14 and 7 days before the day to 
be forecast, and the other five define the day of the week to be forecast (Monday 
through Friday). The output supplies the day to be forecast with total demand. 

The neural network of the holidays and weekend days are characterized by the 
following inputs: the first two represent the value of the electric load for 14 and 7 
days before the day to be forecast, and the others define the day of the weekend day to 
be forecast (Saturday and Sunday). The output supplies the day to be forecast with the 
total demand. 

A total amount of 475 and 374 examples constituted the data that represents the 
working days and the weekend days, respectively. These data were divided in the 
following way: 60% for the training set, 30% for the validation set and 10% for the 
test set. The patterns of each data set were randomly mixed. 

The main objective of the load forecasting system based on ANN is to learn from 
pattern of known values and to generalize for new ones. The performance of the 
system will be measured by percentage of the mean-square error (MSE) (4) and by 
the mean absolute percentage error (MAPE) in (5). 

∑∑
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where Lmax and Lmin are the maximum and minimum of the hourly load values, in the 
representation of the problem, respectively; N is the number of output units of the 
ANN; P is the total number of patterns in database; Lpi and Tpi are actual and desired 
target output of the ith neuron in the output layer, respectively. 
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where P is the total number of patterns in database; Lp and Tp are the actual and 
desired output value for a given input, respectively. 
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Attempting to achieve an estimated error nearest to the true error, the 10-fold cross 
validation method [10] was chosen to generate the training, validation and test sets. 
Therefore, the patterns were divided in ten independent partitions, each partition 
having 10% of the data. In each experiment, three partitions were used for validation; 
one, to test; and the six remaining partitions were used to train the ANNs. 

3.2   Network Architecture and Training 

All of the experiments accomplished in this work created ANNs with the MLP 
architecture, using Levenberg-Maquardt (LM) training algorithm.  

All of the ANNs used have an input, a hidden and an output layer. The maximum 
number of iterations for all of the trainings was set to 2500 epochs. The training 
stopped if the early stopping implemented by MATLAB® happened 15 times 
consecutively, or if the maximum number of epochs is reached, or if the error gradient 
reaches a minimum, or still if the error goal in the training set is met. 

To decide on the best configuration of nodes in the hidden layer, ten experiments 
were carried out with random initialization of weights and with varying number of 
hidden nodes from 3 to 30 with an increment of 1. The number of hidden nodes in the 
best neural network for the working days and weekend days are respectively three 
(Fig. 2a) and five (Fig. 2b). 
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Fig. 2. a) ANN for load forecasting of working days. b) ANN for forecasting of weekend days. 

4   ANFIS Architecture 

One method of improving the intelligent hybrid systems consists of combining the 
main characteristics of ANN and fuzzy logic. The ANFIS system creates rules based 
on any set of input-output data, acquiring the knowledge of the specialist in the form 
of fuzzy if-then rules. The method for the fuzzy modeling procedure to learn 
information about a data set works similarly to that of neural networks. 

The ANFIS system was developed by Jyh-Shing Roger Jang which combines back-
propagation neural network with supervised learning capability and fuzzy inference 
system. The neural network is basically a multilayer feedforward network in which each 
node performs a particular function (node function) on incoming signals as well as a set 
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of parameters pertaining to this node. The fuzzy inference system used was the type 
Takagi-Sugeno [11], where the output of each rule is a linear combination of input 
variables plus a constant term, and the final output is the weighted average of each 
rule’s output. 

The aim of the proposed system is to forecast the hourly load demand in the time 
period of 7 days ahead. In this way the developed system generates coefficients that 
represent the hourly proportion of the total load demand of the day to be forecast, 
which is responsible for supplying the behavior of the load curve to that day. 

The aim of the proposed system is to forecast the hourly load demand in the time 
period of 7 days ahead. In this way the developed system generates coefficients that 
represent the hourly proportion of the total load demand of the day to be forecast, 
which is responsible for supplying the behavior of the load curve to that day. The 
coefficient is called hourly consumption multiplayer mch , computed by (6). 

Dchh CmC ⋅= . (6) 

where Ch is the hourly demand and CD is the total demand of the day. 
Analyses of the normalized load curve were accomplished, being verified that to 

obtain a better behavior of the holiday load curve, it would be better to use the 
coefficients of the hourly load demand of this same holiday from the previous year. It 
is important to point out that the proposed system allows the user to use or not this 
strategy, according to the kind of the holiday. 

4.1   ANFIS: Structure and Training  

The ANFIS system generates an inference system that supplies the coefficients that 
represent the hourly load curve behavior; therefore, 24 neuro-inference systems were 
created, one for every hour of the day. Relating to the holidays, the percentage value 
for every hour was the percentage value of this same holiday in the previous year, that 
is, for this kind of day, the neuro-fuzzy system was not used. 

In order to create the training set of the ANFIS system, the data of the hourly load 
demand regarding the period from January 2002 until December 2004 were used 
except for the load data relating to the holiday. For each hour, the training set is 
characterized by three inputs and one output: 

• Input 1: Relative value of hour i, seven days before the day to be forecast. 
• Input 2: Day of the week of the day to be forecast corresponding to one value 

from 1 to 7, denoting in this order the day from Sunday until Saturday. 
• Input 3: Month of the day to be forecast corresponding to one value from 1 to 

12, denoting in this order the months from January until December. 
• Output: Percentage of the hour i of the day to be forecast. 

The relative value for hour i is calculated by the following equation: 

24,,1,
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)( …== i
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T
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r
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where, Vr(i) is the relative value of the load demand for hour i, Ch(i) is the load 
demand of hour i and CT is the total load demand of seven days before the day to be 
forecast. 



 Combined Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System 785 

The training data set forming by the input/targets pairs was properly mixed up. It is 
worth to pointing out that the data was not normalized, thus the MATLAB® normalized 
the data automatically using an internal routine. 

Each one of the 24 databases has 1089 patterns, which were mixed up and divided 
into ten independent partitions of 10% to generate the training, validation and test 
sets. These subsets were distributed in the following way: 70% for the training set, 
20% for the validation set and 10% for the test set. 

The ANFIS structure that accomplishes the training of the parameters associated to 
the Fuzzy Inference System (FIS) was chosen, in order to generate the better FIS to 
represent the problem. 

Table 1 represents the ANFIS structure and the number of membership functions 
of the initial FIS using the subtractive clustering method [12] according to the time  
interval. In this system, the amount of membership function of the input is equal to 
the number of cluster centers. 

Table 1. Number of membership functions related to the hour of the day and ANFIS structure 

Number of Membership Functions Hour ANFIS Structure 
06 8 h 3-18-6-1 
07 7 h 3-21-7-1 
08 6, 19, and 24 h 3-24-8-1 
09 9, 10, 18, 22 and 23 h 3-27-9-1 
10 2 to 5 h, 11 to 17 h and 20 to 21 h 3-30-10-1 
11 1 h 3-33-11-1 

 

Fig. 3. The ANFIS architecture to supply the hourly coefficients of hour 8 

The 24 neuro-fuzzy systems do not necessarily have the same structure. Fig. 3 
shows the ANFIS architecture used to model the load forecasting system that supplies 
the hourly load demand coefficient of hour 8. Note that the figure shows five layers, 

3rd layer

1st Layer 

2nd Layer
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where the 1st one is the input layer, the 2nd is the layer that contains the membership 
functions, the 3rd is the rule layer, the 4th is the layer of the output parametric 
functions and the 5th is the output layer. The figure illustrates a fuzzy inference 
system that looks like a multilayer feedforward neural network. 

At the final training process, the 24 systems were able to represent the knowledge 
of the specialist based on the information present in the training set. During the 
training process, the membership functions continually change their parameters, 
which mean that at the end of the training, the FIS has a different architecture from 
that given at the beginning. 

In order to choose the best FIS, the 10 arrangements of training, validation and test 
set were trained, that is, 10 systems to each hour were created. 

5   Results 

In order to verify the performance of the forecasting system on the load data 
pertaining to CELPE, forecasts were accomplished in the period from January until 
December 2005. 

The results were compared with the PREVER system, software currently used by 
CELPE to accomplish the load forecasting in short and mid-term [9]. 

To forecast the hourly load, the coefficients in the time period of 7 days ahead 
forecasted by the FIS are multiplied by the total load demand in kWh supplied by the 
neural network. Having the forecasted hourly load, the monthly mean MAPE can be 
calculated. 

Table 2 presents a comparison among the hourly mean MAPE given by the 
models: “PREVER with and without adjustment” [9] and the developed model, in 
each month of 2005. As shown on the last line of this table, the mean value of the 
developed system and the “PREVER with adjustment” presented the same value, 
showing that the proposed method performed well in representing the heuristic rules 
implemented in the PREVER system. 

Table 2. Hourly mean MAPE in the period of 7 days 

Month Developed model 
PREVER 
without 

adjustment 

PREVER 
with 

adjustment 
Jan 2.62 4.06 2.21 
Feb 2.74 3.80 2.55 
Mar 3.59 4.79 4.00 
Apr 2.42 3.59 2.53 
Mai 3.83 2.59 4.22 
Jun 2.84 3.22 2.73 
Jul 1.97 2.14 1.87 

Aug 1.89 2.53 2.13 
Sep 3.26 3.38 3.35 
Oct 2.63 3.24 2.48 
Nov 2.88 3.53 2.40 
Dec 3.01 3.55 3.29 

Mean 2.81 3.37 2.81 
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Table 3. Hourly mean MAPE in the period of 7 days ahead 

Month Developed model 
PREVER 
without 

adjustment 

PREVER 
with 

adjustment 
Jan 2.62 23.09 4.64 
Feb 3.16 7.85 4.26 
Mar 3.98 18.23 6.88 
Apr 4.03 9.36 5.23 
Mai 2.46 2.84 2.55 
Jun 4.11 17.08 3.68 
Jul 2.30 3.26 2.48 

Aug - - - 
Sep 1.30 7.62 8.93 
Oct 4.73 11.79 4.80 
Nov 3.52 5.29 5.50 
Dec 6.28 6.70 9.08 

Mean 3.50 10.28 5.27 

Another analysis comparing the hourly load forecasting error of the holidays given 
by the developed system and the PREVER is presented in Table 3. 

It is important that the proposed model provide a high performance in forecasting the 
electric load of holidays and anomalous days, which are hardly studied in papers [13]. 

As can been seen, the developed system presented lower error as against the 
“PREVER with and without adjustment” in all the months but July. The mean MAPE 
to the holidays of the year 2005 is 3.50% as against 10.28% and 5.27% presented by 
the PREVER with and without adjustments, respectively. Consequently, the new 
system is certainly an improvement on the PREVER system. 

6   Conclusion 

The results show that the developed system is a trustful system, presenting error 
inside the acceptable standard [8]. It presents a very simple architecture that uses 
neural network with small number of nodes, leading to a faster training due to the 
lower amount of parameter to be updated. 

The main advantages of this model are: simple structure, faster training and no 
necessity of temperature and others climatic variables. 

Another advantage of this system is the high performance to model the load curve 
behavior independent of the type of the day to be forecast, that is, the load curve 
behavior has the tendency to follow the real load curve, even so the forecast values 
may be in lower or higher level. 

New techniques must be developed to improve the performance of load forecasting, 
especially for the holidays and anomalous days, as well as, a new approach to modeling 
load forecasting system for others periods of time then just for only 7 days ahead. 

Acknowledgments. The authors would like to thank to CNPq and CAPES-Brazil for 
financial research support. 
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Abstract. A universal approximator, such as multilayer perceptron, is a tool 
that allows mapping of any multidimensional continuous function. The aim  
of this paper is to discuss a method of perceptron training that would result in 
its ability to map the functions constituting the solutions of partial differential 
equations of first and second order. The developed algorithm has been validated 
by means of equations whose analytical solutions are known. 

1   Introduction 

Today’s science and engineering encounter many problems that can be reduced to 
finding solutions to partial differential equations. Considering practical applications, 
the issues such as heat transfer, fluid dynamics, mechanics of materials, and 
electromagnetic field modeling are among the most important. However, in the 
majority of real cases there is no possibility of finding analytical solutions to the 
differential equations connected with the above questions, which has contributed to 
the development of many numerical methods for differential equations, the most 
popular being finite boundary method, finite element method or finite volume method 
(widely used in computational fluid dynamics). Oftentimes they prove to be very 
efficient; however, not always. As an example 3D models can be mentioned, where 
the computational complexity of the numerical methods frequently prevents finding 
the solution within a reasonable time range. Their imperfections can also be noticed 
while solving the coupled problems, which make allowances for mutual influence of 
fields, like electromagnetic field and fluid flow field in magnetohydrodynamics 
problems. 

These drawbacks of the classic numerical methods clearly justify the search for 
alternative algorithms for differential equations solutions. One of the approaches 
recommends taking advantage of artificial neural networks. 

Theoretically, neural networks are universal approximators of any continuous 
function. Therefore it is assumed that they can map the solution functions of any 
given differential equation. For these reasons the issue of adopting neural networks to 
solve differential equations has been taken up by many authors [1-4].  

The main justification for the present research is the fact that neural models are 
characterized by a significantly smaller number of parameters than classic models, 
which is of crucial importance in case of  more complex, high-dimensional problems. 
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A large majority of literature in this field deals with the application of radial 
networks (RBF). The networks applied are usually the standard radial networks or the 
ones with a specially selected structure and radial functions [5-7].  Since it is local 
approximation of the dependence under consideration that is characteristic of radial 
networks, the methods incorporating them to solve differential equations must be 
similar (because of their local approach to the problem) to classic numerical methods 
like FEM, FDM or FVM, and therefore, inevitably, the same disadvantages will be 
encountered, and namely the necessity of dense sampling of space as well as potential 
gross inaccuracies between mesh nodes. 

On the contrary, multilayer perceptrons take a global approach, where particular 
neurons influence the value of the function realized by the network in the whole 
domain of arguments. All components of the analytical solution of a differential 
equation also globally and simultaneously influence the value of a depended variable.  
For this reason the solution obtained by perceptron is significantly closer to the 
analytical solution of the equation, which can be assumed as the optimal one. 

One method of solving a partial differential equation with the help of perceptron 
involves adopting of a trial solution, which is a function constituted by two 
components: the analytical component, which ensures that the boundary conditions 
are met, and the neural network-based component, responsible for differential 
equation being satisfied [8]. Unfortunately, the application of this method is restricted 
to the areas with regular, orthogonal boundaries. There have been some attempts to 
handle the inconvenience by resorting to synergy of two networks: the network of the 
multilayer perceptron approximating the differential equation and the RBF radial 
network responsible for satisfying boundary conditions [9]. It must be remembered, 
however, that application of RBF for boundary conditions modeling involves a partial 
loss of the advantages that the ’pure’ perceptron solution offers. An additional 
inconvenience of Lagaris method is a limitation to a perceptron with only one hidden 
layer, which will not always prove the optimal structure. 

Delpiano and Zegers have developed a method where a perceptron with any 
number of layers can be applied to solve differential equations directly [10]. Still, 
owing to their algorithm only the direct solutions to the first order equations can be 
obtained in this way, which definitely reduces its applicability. 

This paper presents an extension of the above method, which will enable any 
multilayer perceptron to solve differential equations of both the first and the second 
order. It will significantly widen the range of applications of the method so as to 
cover the majority of differential equations employed in most branches of modern 
science and engineering. 

2   Description of the Method 

A solution of a partial differential equation aims at finding such a function which 
satisfies the differential equation within the space of arguments under consideration 
and simultaneously satisfies the assumed boundary conditions.   

In order to solve a differential equation by means of a neural network, an objective 
function must be defined. Through minimization of the function the neural network 
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will be trained. A differential equation may be reduced to the form of an objective 
function, which is the sum of squares of deviations from the solution of the given 
equation at the points sampling the space under consideration, and squares  
of deviations from the values evaluated by the boundary conditions. The equation (1) 
is an example of such function for solving PDE with Dirichlet (DC) and Naumann 
(NC) boundary conditions. The spatial distribution of the points may be either random 
or determined by methods analogous to meshing in classic numerical methods. 
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(1) 

where: NE - a number of points probing a differential equation in an analyzed area, 
NDC, NNC - a number of points probing boundary conditions (Dirichlet, Naumann),  
y(N) – a dependent variable, a output of the neuron in the last (N-th) layer, which  
corresponds to the output of network, x1, x2 – independent variables, inputs of a neural 
network. 

Another problem concerns weights selection for both performance function 
component responsible for satisfying of the differential equation (WE) as well as the 
component responsible for boundary conditions (WBC). The weights fitted will differ 
depending on the problem considered, in some cases the focus being on the very 
differential equation, while other times on the most accurate approach to the boundary 
conditions. 

2.1   Calculation of Partial Derivatives 

Perceptron, through its successive layers, transforms the input vector into the ouput 
vector, realizing the function being approximated. 

( ) ( )( )
⎪⎩

⎪
⎨
⎧

=
>=

0

0)(

nx

nsf
y

i

n
iin

i

n

 ; ( ) ( ) ( ) ( )n
i

M

j

n
j

n
ij

n
i byws

n

+= ∑
−

=

−
)1(

1

1  (2) 

where: yi
(n) – an output of the i-th neuron in the n-th layer, fi

(n) – an activation function 
of the i-th neuron in the n-th layer,  si

(n) – a weighted sum of inputs of the neuron, wij
(n) 

– a weight of the j-th input of the neuron, bi
(n) – a bias of the neuron, M(n) – a number 

of neurons in n-th layer, xi – the i-th input of a network. 
The application of continuous activation functions (linear, sigmoid) in neurons 

enables the calculation of partial derivatives (with respect to input vector components) 
of the functions realized by the network. The method of analytical evaluation of these 
derivatives resembles calculating of the network output values and consists in the 
propagation of the given partial derivative through the successive layers of the 
network in its output direction. Derivatives of the first, second and higher orders can 
be calculated by means of this technique [11]. 

The first order derivative of the i-th neuron in the n-th layer with respect  to the 
network input xa, which corresponds to an independent variable in a differential  
equation, is evaluated in equation (3). 
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The second order derivative with respect to the input xa is: 
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The mixed derivative with respect to inputs xa and xb is: 
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(5) 

2.2   Network Learning 

Training of the neural network comes down to the optimization of its weights. It also 
holds true for the neural networks that, besides the function values, also evaluate  
the values of their partial derivatives with respect to the network inputs. Among  
the simplest ways of training in case of such a network are evolutionary methods and 
direct methods [12]. However, it is the gradients methods that prove to be far more 
efficient a way of network weights optimization. 
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In order to apply gradient methods, the gradient of the performance function must 
be calculated (Eq. 6), and this, when the function incorporates not only the values  
of the function realized by the network but also its derivatives, necessitates  
the extension the classic method of error backpropagation: 
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(8) 

Where y(N) is a neuron output in the last (N-th) layer, an output on a neural network, 
( )n
iδ is an influence of the i-th neuron in the n-th layer on the network output. 
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Apart from the need to calculate the derivative of the function being realized  
by the network with respect to weights, mixture derivatives must be evaluated, both 
with respect to weights and with respect to one or more network inputs: 
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After the derivatives have been calculated, one of many methods of gradient 
optimization can be applied. In the research discussed method suggested by 
Lavenberg-Marquad was used, recognized as the most efficient technique of network 
training [13].  
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3   Experiments 

As part of this research the method testing was carried out making use of several 
model examples. For each example the analytical solution was known. The quality  
of the solution obtained by means of a neural network was measured calculating 
deviations of the neural network output and the values of the function that constituted 
the analytical solution. 

Neural networks were trained using a mesh of 100 points obtained by considering 
ten equidistant points in x and y directions. An accuracy of each solution provided  
by the MLP solver was evaluated at 100 training points and 800 test points  
(in the domain of the equation) and presented in charts. 

The weights of the MLP were initialized with the Nguyen-Widrow rule. 

Problem 1: A first order partial differential equation 
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The analytic solution (Fig. 1) is ( ) ( ) 2/)1(2/332, −⋅+−= xexyyxz . 

A multilayer perceptron with two inputs, five sigmoid neurons in one hidden layer 
and one linear output was used for solving of the equation. Fig. 1b illustrates accuracy 
of  the solution provided by the neural network. 
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Fig. 1. Problem 1: an exact solution (a) and an accuracy of the computed solution (b) 

Problem 2: A second order partial differential equation 
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The analytic solution of the equation (Fig. 2a) is ( ) 223, yxyxz += . The neural 

network consisted two input units, five hidden and one liner output. Fig. 2b displays 
an accuracy of the obtained solution. 
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Fig. 2. Problem 2: an exact solution (a) and an accuracy of the computed solution (b) 

Problem 3: A second order partial differential equation with irregular boundary 
conditions 
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The analytic solution is ( ) ( )( )xyxxyxz sincos, +−+= .  

A MLP with following structure was employed: two input neurons, three sigmoid 
neurons in first hidden layer, eight sigmoid neurons in second hidden layer and one 
linear output neuron. 
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Fig. 3. Problem 3: an exact solution (a) and an accuracy of the computed solution (b) 
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4   Conclusion 

The research has proved that perceptron may be applied as a tool to find solutions  
to problems represented by partial differential equations of first and second order.  
The results obtained indicate a good solution convergence. 

The method presented is a nondeterministic one, the result obtained being 
dependent on the random input weights of the network. At the initialization of the 
neural network no preliminary techniques were applied that would aim at providing 
for the geometries of the modeled systems or the characteristics of the problem. It can 
be assumed that a further development of the method in this direction may increase 
the probability of achieving the equation solution and reducing calculation time.  

Since it is assumed that any multilayer perceptron (with continuous activation 
functions) can be employed in this method, there is room for the application  
of the already existent, comprehensive methodology for perceptron training and 
optimization of their structure, which yields huge developmental potential  
for the improvement of the presented method. 

A promising way of achieving a solution faster seems to be the parallelization  
of the algorithm. The most efficient technique would be to apply the parallelization 
method through the partition of learning dataset. In case of the algorithm discussed 
here it would involve a parallel calculation of the performance function gradient  
in separate areas of the analyzed space, followed by the summing of these values  
in order to calculate the global gradient used to update the weights. This approach 
should lead to almost linear increase in performance as a result of a growing number 
of computer processors in case of high-dimensional problems. 
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A Two-Layer ICA-Like Model Estimated by

Score Matching
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University of Helsinki and Helsinki Institute for Information Technology

Abstract. Capturing regularities in high-dimensional data is an impor-
tant problem in machine learning and signal processing. Here we present
a statistical model that learns a nonlinear representation from the data
that reflects abstract, invariant properties of the signal without making
requirements about the kind of signal that can be processed. The model
has a hierarchy of two layers, with the first layer broadly corresponding to
Independent Component Analysis (ICA) and a second layer to represent
higher order structure. We estimate the model using the mathematical
framework of Score Matching (SM), a novel method for the estimation
of non-normalized statistical models. The model incorporates a squaring
nonlinearity, which we propose to be suitable for forming a higher-order
code of invariances. Additionally the squaring can be viewed as mod-
elling subspaces to capture residual dependencies, which linear models
cannot capture.

1 Introduction

Unsupervised learning has the goal of discovering the underlying statistical struc-
ture of a stream of observed data. This is a difficult problem since most real world
data has a complex structure which is hard to capture without prior knowledge.
Typically, linear models like Independent Component Analysis (ICA) are uti-
lized. Previous nonlinear extensions of ICA have incorporated prior knowledge
on the data [1] [2], so they are not applicable to general data with unknown
structure. Therefore we attempt to move towards more general models that can
extract complex higher order structure rather than presupposing it. In addition,
there is a strong incentive to develop algorithms for the efficient estimation of
unsupervised statistical models since recent experiments show they can signifi-
cantly improve the performance of supervised models [3].

Here we present a model that goes beyond the limitations of ICA without sac-
rificing generality. It has two layers of weights freely learned from the data, along
with a nonlinearity forming a nonlinear representation of the input. The model
is specified as a generalization of previous ICA-type models like Topographic
ICA (TICA)[4] and Independent Subspace Analysis (ISA)[2]. Since both layers
are learned from the data, no prior structure is imposed on the second layer.
� Urs Köster is supported by a scholarship from the Alfried Krupp von Bohlen und

Halbach-foundation.
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Learning in models like this can be done by maximizing the likelihood of
the model distribution wrt. observed data. Here one often faces the problem
that a model PDF (probability density function) cannot be normalized, and a
straightforward estimation of the model is not possible. With Score Matching
we present a novel approach to attack this problem. We recently showed [5] that
a consistent estimation of the parameters maximizing the likelihood is possible
without knowledge of the normalization constant. While other methods based
on Monte Carlo methods or approximations have been successfully applied in
the past, Score Matching has the advantage that it is a computationally efficient
method guaranteeing statistical consistency.

The paper is organized as follows: In section 2, we present the two-layer prob-
abilistic model in more detail, and we explain how it can be estimated using the
Score Matching framework. In section 3 we first verify the estimation method
by applying the model to artificial data with a known statistical structure. Fol-
lowing this, we present results on real-world data, image patches and natural
sounds. The discussion, section 4, puts the new model in perspective with re-
lated methods. We highlight the important difference that our model gives rise
to sparse connections in the second layer, which is not the case for related work
on Contrastive Divergence [6] or modelling “Density Components” [7]. Finally in
section 5 we conclude the paper with remarks about the scalability of the model
and sketch some possible extensions to other types of data and more than two
layers.

2 Model and Estimation

2.1 A Two-Layer Model

While supervised learning methods have often used multiple representation lay-
ers, as in multi-layer Perceptrons trained with backpropagation, few unsuper-
vised methods have used such a multi-layer representation. A major problem
is that it is usually impossible to obtain the probability distribution of such a
model in closed form. For this reason training such models often seems to require
a lot of computational resources, because Markov Chain Monte Carlo or similar
approximative methods have to be applied.

Still multi-layer models can provide a superior representation for a wide vari-
ety of data. We suggest that the lack of suitable estimation principle is a major
reason for the poor performance of multilayer models in the past. Using the novel
Score Matching approach we show that a very simple and general model can be
demonstrated to perform well on a variety of tasks. We propose that our new
approach provides a viable alternative to simpler models. Since we formulate it
as a generalization of ICA, we find an intuitive way to interpret the results of
the model in terms of generalized independent components.

The model that we present here is a bare-bones two layer network with two
layers of weights and a scalar nonlinearity acting on the sum of the inputs to
each unit.

yi = Vig(Wx) (1)
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The output of one top-level unit yi is thus obtained from the data vector x given
the weight matrix W, the row of weights Vi as well as the nonlinearity g(u). The
size of W and V is chosen to be equal to the data dimensionality n for simplicity,
but the estimation method we propose can also deal with overcompleteness in
one or both layers. The weight matrix V is further constrained to have non-
negative elements.

After the first layer of weights W has performed a linear transform of the
data, the scalar nonlinearity g(u) is applied to the outputs. This nonlinearity is
the same for all units, and it is fixed in advance rather than learned from the
data. We choose to focus on a squaring for the first nonlinearity, i.e. g(u) = u2

where the nonlinearity is taken to be element-wise. The second layer V computes
linear combinations of these squared outputs. There are several ways to interpret
the squaring nonlinearity that we propose here. Firstly, we would like to point
out the connection to our work on Independent Subspace Analysis (ISA) [2],
where the components inside a subspace are squared to compute the L2-norm of
the projection onto a subspace. This provides a way to model dependencies of
squares that cannot be removed by a simple linear transform. Modelling these
dependencies explicitly allows a better fit to the data than linear models could
achieve, since high correlations exist between the activity of similar features even
if they are linearity uncorrelated. [8] The second way to describe the model is
to in terms of invariant features. This can provide high selectivity to certain
aspects of the data while ignoring aspects that are not relevant to describe the
statistical structure of the input. From this point of view the outputs would be
features highly invariant under a specific kind of transformation on the input
data. A sum of squares, an operation that preserves amplitude but discards the
phase of a signal, could perform such an invariant feature extraction [9].

Finally there is an output nonlinearity acting on the second layer outputs.
It has the purpose of shaping the overall model PDF to match the statistics
of the data. In principle, this could be matched to the optimal distribution for
the data under consideration e.g. by an iterative optimization. For simplicity
however, we assume the data can be modeled in terms of sparse sources, so we
choose an element-wise square root nonlinearity of the form h(u) = −

√
u + 1.

Such a convex choice of h is related to supergaussianity of the PDF.
For learning, the outputs of the second nonlinearity are summed together to

define a probability distribution q over the input data.

log q(x|W, V ) =
n∑

i=1

h (Vig(Wx)) (2)

Intuitively, this model can be thought of as a two layer neural network processing
the incoming data vector and computing the probability that the data came
from the distribution defined by the model. This immediately provides a means
of training the model by adjusting the parameters to maximize the likelihood of
the model given the observed training data.
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Fig. 1. Graphical representation of the two-layer model

For estimation, we usually need to compute the log-likelihood of the model

log l(W,V|x) =
n∑

i=1

h (Vig(Wx)) − log (Z(W, V )) (3)

where Z denotes the normalization constant of the distribution, which is obtained
by integrating over all space. It is obvious that the normalization constant cannot
be computed in closed form, which makes the estimation of the model impossible
with standard methods. Therefore we apply the novel estimation method Score
Matching which is described below.

2.2 Score Matching

As we stated above, the probability distribution of the data can in general only
be obtained up to a multiplicative constant. This makes it impossible to com-
pute the likelihood of the model, and standard optimization methods like gra-
dient descent on the log-likelihood cannot be used. In the past, Monte Carlo
methods such as Contrastive Divergence [10] have been applied to this prob-
lem, or approximations of the likelihood were used. Here we circumvent the
problem by focusing on the score function of the density, Ψ (η;W,V) with re-
spect to η, where η is a variable which replaces the data vector x for notational
unambiguity.

Ψ (η;W,V) = ∇η log p(η;W,V) (4)

Additionally we can define the data score function Ψx(.) = ∇η log px(.) for the
distribution of observed data. The model is optimized by matching the data and
model score functions (hence the name Score Matching). We can achieve this by
minimizing the squared distance

J(W,V) =
1
2

∫

η

‖Ψ(η;W,V) − Ψx(η)‖2dη (5)
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This could painstakingly be computed using a nonparametric estimation of the
density, but as shown in [5] the expression can be expressed in a much simpler
form in terms of derivatives of the data score function:

J̃(W,V) =
1
T

T∑

t=1

n∑

i=1

[
∂

∂ηi
Ψ i(x(t);W,V) +

1
2
Ψ2

i (x(t);W,V)
]

+ C (6)

Here the J̃ indicates a sampled version of the objective function, but in the limit
of T → ∞ and given the existence of a nondegenerate optimum, this estimator
is statistically consistent. C is a constant that does not depend on any the
parameters. Estimation of the parameters can easily be performed by following
the gradient of this function wrt. the parameters.

3 Experiments

3.1 Methods

We performed experiments on a variety of data to show the power and adapt-
ability of the model. The focus was on natural data, i.e. natural image patches
and speech recordings, to demonstrate the particular suitability of our model
to this very complex and rich kind of data that is poorly modeled by simpler
methods. For the natural data we performed preprocessing in the form of whiten-
ing (decorrelation), Contrast Gain Control by dividing each data vector by its
L2-norm, and some dimensionality reduction by PCA.

In general we start the optimization by learning the independent components
of the data, which is achieved by clamping the second layer weights to the identity
matrix. This serves to avoid local minima and speed up the convergence of the
algorithm. After this, the second layer connections are learned. It is an important
feature of the estimation method that learning for the first layer is not stopped;
rather the first layer features start to move away from ICA features to adjust to
the second layer as it forms more complex and invariant features.

An additional technical constraint was the use of L2-normalization on the
rows of V, corresponding to the second layer output vectors. This prevents indi-
vidual units from “dying” and also sets a bound on the maximum activity. We
verified that it does not qualitatively change the structure of the outputs. W
was constrained to be orthogonal as it is customary with ICA algorithms. For
the optimization we used a stochastic gradient approach with mini batches con-
sisting of 100 data samples. Not only does this significantly increase the speed
of convergence, but we found that without stochasticity, local minima hindered
the convergence of the second layer weights.

3.2 Artificial Data

As a first test for the model and estimation method we generated data according
to the ISA model[2]. This is supergaussian data with dependencies within, but
not between subspaces of the data variables. This data was then mixed with
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Fig. 2. The model was tested with ISA data, convergence is fast and finds the global
minimum. We show (a) the product of the estimated demixing and known mixing
matrix, (b) the learned second layer weights. The rows of the matrices are sorted in
ascending order on the columns of V. This does not affect the result and is purely for
easier visualization.

a random mixing matrix A. We used 10,000 samples of 21-dimensional data
generated with a subspace size of three.

Figure 2 shows how the first layer weights W invert the mixing up to sub-
space membership, while V determines which variables belong together in one
subspace. Since the dimensionality of V is 21×21, and there are only 7 subspaces,
some rows of V go to zero and some are duplicated. Contrary to later experi-
ments, both weight layers were initialized randomly and learned simultaneously,
and no normalization on the rows V was performed.

3.3 Experiments on Natural Images

After confirming the identifiability of the method, we tested the model on natural
images which have a particularly rich statistical structure with many higher order
dependencies. We use 20,000 image patches of 12×12 pixels, whitened, performed
Contrast Gain Control [11] and reduced the data dimensionality to 120 by PCA.
We specified the dimensionality of both W and V to be 120 × 120. Optimizing
W first gives familiar ICA features as shown in fig. 3a. In fact variants such as
TICA and ISA can easily be performed by setting V appropriately. The second
layer learns connections between similar first layer features (fig. 3b), giving rise
to complex-cell like outputs which are invariant to the spacial phase of the data
(fig. 3c). Continued learning on the first layer features increased the similarity
of the position and size of filter feeding into the same second layer unit while
keeping the phase difference. This result was also confirmed with an overcomplete
model.

3.4 Audio Data

In order to demonstrate the general applicability of our model to a variety of
data, we also tested it on speech data from the TIMIT database. We sampled
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(a) First Layer

(b) Second Layer (c) Some Outputs

Fig. 3. a) First layer filters show the classical Simple-Cell type structure. b) Con-
nection in the second layer are sparse, with connections between similar units. c) A
random selection of outputs where each row shows the most active contributers to the
response with the black bars indicating “synaptic strength”, i.e. how strongly the filter
contributes to the output.
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(a) First Layer
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Fig. 4. (a) The first layer gives outputs localized in both frequency and time. (b) The
second layer gives connections between features with dependencies of squares.

random rectangular sound windows of 8ms length, and resampled them to 8kHz.
We also applied our standard preprocessing consisting of removing the DC com-
ponent, whitening and contrast gain control. Simultaneously we reduced the
dimensionality from 64 to 60 which amounts to low-pass filtering and serves to
eliminate artifacts from the windowing procedure. The results are presented in
figure 4.

4 Discussion

We have shown that an unsupervised model using two completely flexible layers
of weights to learn the statistical structure of its input data can effectively be
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estimated using Score Matching. While including previous extensions of ICA as
special cases, this is far more general that previous models. For example ISA
forces the filters to group into subspaces of a constant size and with an equal
contribution, and did not allow a single filter to be active in more than one higher
order unit. These constraints have been lifted with the new model. Topographic
ICA is also included in our model as a special case. If the second layer is fixed to
an identity matrix convolved with a kernel (neighborhood function) that leaks
activity to off-diagonal elements, a topographic ICA model can be estimated. A
more complex topography can be obtained by allowing interactions other than
along the main diagonal.

Two models have recently been proposed that have a similar hierarchical
structure but are estimated differently. Most close related to our work is the
work by Osindero et al. [6]. Instead of using the traditional “independent com-
ponent” point of view, the model is defined as a “product of experts” model
following Student-t distributions. The estimation is performed using contrastive
divergence (CD), which was recently shown [12] to be equivalent to Score
Matching. The key difference between the models is in the results obtained on
natural data. While Osindero et al. report sparse activation of second layer
units, we also see sparse connectivity, which has interesting implications not
only because of the striking similarity to biological networks, but also for effi-
cient signal processing.

The second work that we would like to mention is that of Karklin and Lewicki
[7]. They present a generative two layer model that performs ICA on the data
followed by a variance-modelling stage as in TICA[4]. Contrary to the PoT model
of Osindero et al. and our SM model, both layers are estimated separately using
the maximum a posteriori estimate. The authors observe that in contrast to
our model, the first layer units do not change significantly depending on the
“density components” modelling the variance of the first layer outputs. Applied
to natural stimulus data, this model gives rise to broadly tuned features in the
second layer that describe global properties of the data. Again this is in contrast
to the sparse connectivity obtained from our model.

5 Conclusion

We have presented a two layer model that that can be used to learn the statistical
structure of various kinds of data. By using the novel estimation principle Score
Matching, unsupervised learning in this type of model is made faster and more
straightforward than with alternatives such as Monte Carlo methods. Contrary
to previous linear models, higher order dependencies in the data can be captured
to give better models of real world data. Compared to similar models [6] [7], we
report the emergence of sparse connectivity in the second layer. Furthermore
our model is very general, so it can be overcomplete, and it can be extended to
incorporate a third or more layers.
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Abstract. We propose a new nonparametric test for component inde-
pendence which is based on application of data compressors to ranked
data. For two-component data sample the idea is to break the sample in
two parts and permute one of the components in the second part, while
leaving the first part intact. The resulting two samples are then jointly
ranked and a data compressor is applied to the resulting (binary) data
string. The components are deemed independent if the string cannot be
compressed. This procedure gives a provably valid test against all possi-
ble alternatives (that is, the test is distribution-free) provided the data
compressor was ideal.1

1 Introduction

In this work we consider a classical problem of mathematical statistics which
has important applications in machine learning: component independence. A
sample Z1, . . . , Zn is given, generated i.i.d. according to some distribution FZ .
Each element Zi consists of two (or more) components Z1

i and Z2
i . We wish to

test whether the components are independent of each other. That is, H0 is that
the marginal distributions are independent whereas H1 is that there is some
dependency. No assumption is made on the distribution FZ . Type I error of
a test occurs when it rejects H0 while H0 is actually true, and Type II error
occurs when the test accepts H0 but H1 is true. Normally one wishes to make
both errors as small as possible. In non-parametric statistics a typical approach
is to construct a test that has Type I error fixed at some pre-specified level and
Type II error tends to 0 when the sample size increases; an asymptotic result of
this kind is usually the best one can achieve.

This problem is closely related to the problem of feature selection which is very
important for pattern recognition, regression estimation and related machine
learning tasks. The problem is to determine which features (components) from
a multi-dimensional sample are relevant for estimating (predicting) the value of
a distinguished feature (the label). Component independence can be applied to
solving this problem either componentwise, that is, testing whether the label is
1 This research was supported by the Swiss NSF grants 200020-107616 and 200021-

113364.
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independent of a given component (ignoring al others), or applied to different
groups of components. For overview of the problem and issues arising applying
these approaches see e.g. [3,7].

Component independence is a well-known problem of mathematical statistics.
A classical statistical approach is to model the data with some family of distri-
butions, which leads to constructing parametric tests. However, there are many
nonparametric tests also; some of the tests use ranks of elements within the joint
sample, instead of using the actual samples. Such is, for example, Wilcoxon’s test,
see [4] for an overview (which also makes some additional assumptions on the
distribution, and so is not valid against some alternatives).

In this work we present a simple nonparametric distribution-free rank test for
component independence based on data compressors.

The idea to use real-life data compressors for testing classical statistical hy-
potheses, such as homogeneity, component independence and some others, was
suggested in [9,10]. In these works statistical tests based on data compressors
are constructed which fall into the classical framework of nonparametric mathe-
matical statistics, in particular, the Type I error is fixed while Type II error goes
to 0 under a wide range of alternatives. The hypotheses considered there mostly
concern data samples drawn from discrete (e.g. finite) spaces. Some tests for
continuous spaces are also proposed based on partitioning. Here we extend this
approach to rank tests, allowing testing component independence without the
need of partitioning the sample spaces and making them finite. The idea of using
data compressors for tasks other than actual data compression was suggested in
[1,2,5], where data compressors are applied to such tasks as classification and
clustering. These works were largely inspired by Kolmogorov complexity, which
is also an important tool for the present work.

An “ideal” data compressor is the one that compresses its input up to its
Kolmogorov complexity. This is intuitively obvious since, informally, Kolmogorov
complexity of a string is the length of the shortest program that outputs this
string. Such data compressors do not exist; in particular, Kolmogorov complexity
itself is incomputable. Real data compressors, however, can be considered as
approximations of ideal ones.

In this work we provide a simple empirical procedure for testing component
independence with data compressors; we show that for an ideal data compressor
this procedure provides a statistical test which is valid against all alternatives
(Type II error goes to zero); while Type I error is guaranteed to be below a pre-
defined level (so-called significance level) for all data compressors, not only for
ideal ones. It should also be noted that the theoretical assumption underlying
data compressors used in real life is that the data to compress is stationary.
Thus the tests designed in [9,10] are provably valid against any stationary and
ergodic alternative, while these tests are based on real data compressors, not only
on ideal ones. In our case, the alternative arising in rank test under H1 is not
stationary. Thus we prove theorems only about ideal data compressors, and real
data compressors can be used heuristically. However, it can be conjectured that
the same results can be proven for some particular real-life data compressors,
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for example for those which are based on the measure R from [8] or on the LZ
algorithm [12].

2 Main Results

Component independence testing is the following task. A sample Z = Z1, . . . , Zn

is given where each Zi consists of r components Z1
i , Z2

i , . . . , Zr
i , Zj

i ∈ R
dj . The

sample is generated according to some probability distribution FZ on R
d, where

d :=
∑r

j=1 dj . The goal is to test whether the components are distributed inde-
pendently. That is, H0 is that

FZ(Z1
1 ∈ T1, . . . , Z

r
1 ∈ Tr) =

r∏

j=1

FZ(Zj
1 ∈ Tj) (1)

for all measurable Tj ⊂ R
dj , 1 ≤ j ≤ r. H1 is the negation of H0 (the equality (1)

is false for some selection of the sets Tj , 1 ≤ j ≤ r). Again, no assumption is
made on the form of the distribution FZ .

A code ϕ is a function ϕ : B∗ → B∗ from the set of all finite words over binary
alphabet B = {0, 1} to itself, such that ϕ is an injection (that is, a �= b implies
ϕ(a) �= ϕ(b) for a, b ∈ B∗). A trivial example of a code is the identity ϕid(a) = a.
Less trivial examples that we have in mind are data compressors, such as zip,
rar, arj, or others, which take a word and output a “compressed” version of
it (which in fact is often longer than the original) from which the original input
can always be recovered. We will construct (reasonable) tests for homogeneity
from (good) data compressors.

Fix any code ϕ and construct the test for component independence Iϕ in four
steps.

Step 1. Break the sample into two halves, leave the first one intact and randomly
and independently permute the elements within each component in the second
half. More precisely, assume that n = 2m for some m and define the samples X
and W as the first and the second half of the sample Z: X1 = Z1, . . . , Xm = Zm

and W1 = Zm+1, . . . , Wm = Z2m (if n is odd then make samples X and W
of sizes [n/2] and n − [n/2]). Construct the sample Y from W by permuting
the elements within each component independently: Y j

i = W j
πj(i)

, 1 ≤ i ≤ m,
1 ≤ j ≤ r where πj are permutations of {1 . . .m}, selected at random (with
equal probabilities) independently of each other.

Step 2. Make the resulting two samples single-dimensional. Construct samples
X̄ = X̄1, . . . , X̄m and Ȳ = Ȳ1, . . . , Ȳm as follows:

X̄t := x11
t , x21

t , . . . , xd1
t , x12

t , x22
t , . . . , xd2

t , . . .

where xij
t is the jth element in the binary expansion of the ith component of Xt

(in case the expansion is ambiguous always take the one with more zeros), and
analogously for Y . Denote the described function which converts X to X̄ (and
Y to Ȳ ) by τ .
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Step 3. Order two samples jointly and transform them into a binary string, 0 for
an element of the first sample and 1 for an element of the second. Let

Z1 ≤ Z2 ≤ · · · ≤ Zn

denote the joint sample constructed by ordering jointly two samples X̄ and Ȳ .
Construct the word

A = A1 . . . , An

as follows: for each i Ai = 0 if Zi is taken from the sample X̄ (Zi ∈ X̄) and Ai = 1
if Zi is from the sample Ȳ (Zi ∈ Ȳ ) where ties are bracken by randomization:
if Zj = Zj+1 = · · · = Zj′ and there are m elements of the sample X̄ which are
equal to Zj and k elements of the sample Ȳ which are equal to Zj then the word
Aj . . . Aj′ is chosen randomly from all (m+k)!

m!k! binary words which have m zeros
and k ones, assigning equal probabilities to all words. Let |K| denote the length
of a string K.

Step 4. Finally, the actual tests consists in evaluating the length of the binary
string A compressed by a code ϕ.

Definition 1 (Test Gϕ). For any code ϕ the test for component independence
Gϕ is constructed as follows. It rejects the hypothesis H0 (outputs reject) at the
level of significance α if

|ϕ(A)| ≤ log αN (2)

where N := n!
(m!)2 and log is base 2, and accepts H0 (outputs accept) otherwise.

The intuition is as follows. Observe that if the components are independent, then
permuting them (independently) does not change the distribution of the data.
In other words, the two samples constructed in Step 1 (the first one simply a
half of the original sample and the second one with permuted components) are
distributed according to the same distribution if and only if the components are
independent.

Further, if we have two samples, order them jointly and construct a binary
string as described in Steps 2 and 3, then the resulting binary string is random
(more precisely, has equal probability of being any string from the set of all
binary strings with m zeros and m ones) if and only if the samples were generated
according to the same distribution; that is, if and only if the components were
independent.

Thus a data compressor may be able to compress this binary string to about
log N bits, but no code can compress many such strings to less than log N −t bits
(t > 0), since there are N such strings and only 2−tN binary strings of length
log N − t. The next proposition formalizes this property. In other words, it says
that for any code the type I error can be made bounded by any pre-specified α.

Proposition 1 (Type I error). For any code ϕ and any α ∈ [0, 1] the Type I
error of the test Gϕ with level of significance α is not greater than α:

FZ(Gϕ(Z) = reject) ≤ α (3)

for all FZ ∈ H0.
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Remark 1. The proposition still holds if H0 is rejected when

|ϕ(A)| ≤ n + log α − log n. (4)

Proof. Under hypothesis H0 the samples X and Y are distributed according
to the same distribution. Consequently, the samples X̄ and Ȳ are distributed
according to the same distribution, since they are obtained from X and Y by
applying the same function. Thus, under H0 for every string a ∈ Bn such that
a consists of m zeros and m ones P (A = a) = 1/N (that is, all such strings are
equiprobable). Since there are only αN binary strings of length log αN and ϕ is
an injective function, that is each codeword is assigned to at most one word, we
get FZ(|ϕ(A)| ≤ log αN) ≤ 1

N Nα = α which together with the definition of Gϕ

implies (3).
The statement of the Remark can be derived from Stirling’s expansion

for N . ��
Remark 2. The term − logn in (4) is due to the fact that there are only n!

(m!)2

strings with m zeros and m ones (among 2n all binary strings of this length).
So the code ϕ can specifically assign shorter codewords to these strings. As real
data compressors are not designed to favour strings of this particular ratio of
zeros and ones, in practice it is recommended to omit the term − logn in (4).

Obviously, for some codes the test is useless (for example if ϕ is the identity
mapping) and Proposition 1 is only useful when the Type II error goes to zero.
Next we will define “ideal” codes (the codes that compress a word up to its
Kolmogorov complexity) and show that for them indeed the probability of accept
goes to zero under any distribution in H1, that is, the test is valid against all
alternatives.

Informally, Kolmogorov complexity of a string A is the length of the shortest
program that outputs A (on the empty input). Clearly, the best, “ideal”, data
compressor can compress any string A up to its Kolmogorov complexity, and not
more (except may be for a constant). Next we present a definition of Kolmogorov
complexity; for fine details see [11,6]. The complexity of a string A ∈ B∗ with
respect to a Turing machine ζ is defined as

Cζ(A) = min
p

{l(p) : ζ(p) = A},

where p ranges over all binary strings (interpreted as programs for ζ; minimum
over empty set is defined as ∞). There exists a Turing machine ζ such that
Cζ(A) ≤ Cζ′(A) + cζ′ for any A and any Turing machine ζ′ (the constant cζ′

depends on ζ′ but not on A). Fix any such ζ and define Kolmogorov complexity
of a string A ∈ {0, 1}∞ as

C(A) := Cζ(A).

Clearly, C(A) ≤ |A| + b for any A and for some b depending only on ζ.

Definition 2 (ideal codes). Call a code ϕ ideal if some constant c the equality
|ϕ(A)| ≤ C(A) + c holds for any binary string A.

Clearly such codes exist.
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Proposition 2 (Type II error: universal validity). For any ideal code ϕ
Type II error of the test Gϕ with any fixed significance level α > 0 goes to zero
FZ(Gϕ(X, Y ) = accept) → 0 for any FZ in H1.

Proof. First observe that the function τ that converts d-dimensional samples X
and Y to single-dimensional samples X̄ and Ȳ has the following properties: if
X and Y are distributed according to different distributions then X̄ and Ȳ are
also distributed according to different distributions. Indeed, τ is one to one, and
transforms cylinder sets, that is sets of the form

{x ∈ R
d : xi1j1 = b1, . . . , x

itjt = bt; bl ∈ {0, 1}, t, il, jl ∈ N(1 ≤ l ≤ t)},

to cylinder sets. So together with FX (FY ) it defines some distribution FX̄ (FȲ )
on R. If distributions FX and FY are different then they are different on some
cylinder set T , but then FX̄(τ(T )) �= FȲ (τ(T )).

We have to show that Kolmogorov complexity C(A) = |ϕ(A)| of the string A
is less than log αN ≥ n + log α − log n for any fixed α from some n on. To show
this, we have to find a sufficiently short description s(A) of the string A; then
the Kolmogorov complexity |ϕ(A)| is not greater than |s(A)| + c where c is a
constant.

If H1 is true then FX �= FY and so there exist some interval T = (−∞, t] and
some δ > 0 such that |FX(T ) − FY (T )| > 2δ. Then we will have

1
m

|#{x ∈ X ∩ T } − #{y ∈ Y ∩ T }| > δ (5)

from some m on with probability 1.
Let A′ be the starting part of A that consists of all elements that belong to T

and let m1 := #{x ∈ X ∩ T } and m2 := #{y ∈ Y ∩ T }. A description of A′ can
be constructed as the index of A′ in the set (ordered, say, lexicographically) of
all binary strings of length m1+m2 that have exactly m1 zeros and m2 ones plus
the description of m1 and m2. Thus the length of such a description is bounded
by the sum of

log
(m1 + m2)!

m1!m2!
≤ (m1 + m2)h

(
m2

m1 + m2

)

and
log m2 + log m1 + const,

where h is the entropy function

h(t) = −t log t − (1 − t) log(1 − t)

(the inequality follows from n! ≤ nn for all n). Let Ā denote the remaining part
of A (that is, what goes after A′). The length of the description of Ā is bounded
by

(m̄1 + m̄2)h
(

m̄2

m̄1 + m̄2

)
+ log m̄2 + log m̄1 + const
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where m̄1 = m − m1 and m̄2 = m − m2. Since h is concave and 1/2 is between
m2

m1+m2
and m̄2

m̄1+m̄2
, from Jensen’s inequality we obtain (using h(1/2) = 1)

1 −
(

m1 + m2

n
h

(
m2

m1 + m2

)
+

m̄1 + m̄2

n
h

(
m̄2

m̄1 + m̄2

))
> 0.

Denote this difference by γ. Clearly, Clearly, γ is positive and depends only on
δ. To uniquely describe A we need the description of A′ and Ā; these have to
be encoded in a self-delimiting way; the length of such a description s(A) is
bounded by the lengths of description of A′, Ā plus log n and some constant.
Thus

n + log α − log n − |ϕ(A)| ≥

n+ logα− 2 log(k +m)− m1 + m2

n
h

(
m2

m1 + m2

)
− m̄1 + m̄2

n
h

(
m2

m̄1 + m̄2

)
− c

≥ nγ − 2 log n − c

for some constant c; clearly, this expression is greater than 0 from some
k, m on. ��

So, as a corollary of Propositions 1 and 2 we get the following statement.

Theorem 1. For any code ϕ and any α ∈ (0, 1] the Type I error of the test Gϕ

with level of significance α is not greater than α. If, in addition, the code ϕ is
ideal then the Type II of Gϕ error tends to 0 as the sample size n approaches
infinity.

3 Discussion

We have presented a theoretical justification for a simple procedure which can be
used empirically with any available data compressors. Perhaps the main advan-
tage of the proposed test is that nothing has to be known about the distribution
generating the sample: it does not have to be continuous (or discrete), and can
have any form.

In particular, in machine learning one is interested in predicting the value of
a (real-valued) label based on available features. Some features may be redun-
dant and can hinder the analysis, so one often wishes to exclude such features
before applying any machine learning methods for prediction. However, nothing
is usually known about the distributions governing the data. In such a setting
our test can be applied either to test individual features for independence from
the label (applying the test to samples consisting of feature-label pairs) or joint
independence of a subset of features from the label.

Let us now consider the requirements on the data compressor that we posed.
First of all, to achieve the bound on the Type I error (Proposition 1) the com-
pressor can be arbitrary. However, for the Type II error to go to zero we require
the compressor to be ideal. An ideal compressor is a compressor that can notice
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any regularity in the data (and use it for compression). However, for our pur-
poses, being able to spot only certain type of regularities is sufficient to compress
the data. In particular, as we have shown, under H1 for sufficiently large samples
the binary string to be compressed can be bracken into two parts which have
different frequencies of 0s and 1s. It can be conjectured that a data compressor
which can compress (in asymptotic, up to the entropy), data generated by an
arbitrary stationary source, can be used for our purposes also — that is, Type
II error should go to zero under H1 for such compressors too. However, this
question is yet open.

A question that we have not addressed explicitly is the speed of convergence in
Proposition 2 (the convergence of the probability of Type II error to zero under
H1). This speed of convergence depends on two factors: the data compressor
used and the distribution of the sample. Clearly, if the dependence is very slight
than a larger sample will be required to detect it. Our analysis (cf. the proof of
Proposition 2) suggests that for reasonably behaved data compressors the speed
of convergence is exponential in the size of the sample, with constants depending
on the actual distribution; this should follow from the fact that the empirical
distribution function converges to the true distribution function governing the
data with exponential speed. More accurate analysis is, however, a topic for
future studies.
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Abstract. In this paper, the K-pages graph layout problem is solved by a new
neural model. This model consists of two neural networks performing jointly in
order to minimize the same energy function. The neural technique applied to this
problem allows to reduce the energy function by changing outputs from both net-
works –outputs of first network representing location of nodes in the nodes line,
while the outputs of the second one meaning the page where the edges are drawn.

A detailed description of the model is presented, and the technique to mini-
mize an energy function is fully described. It has proved to be a very competitive
and efficient algorithm, in terms of quality of solutions and computational time,
when compared to the state-of-the-art heuristic methods specifically designed for
this problem. Some simulation results are presented in this paper, to show the
comparative efficiency of the methods.

1 Introduction

In the last few years, several graph representation problems have been studied in the
literature. Most of them are related to the linear graph layout problem, in which the
vertices of a graph are placed along a horizontal “node line”, or “spine” (where K half-
planes or pages intersect) and then edges are added to this representation as specified
by the adjacency matrix. The objective of this problem is to minimize the total number
of crossings (adding over all K pages) produced by such a layout.

Some examples of problems associated to this linear graph layout problem (or K
pages crossing number problem) are the bandwidth problem [1], the book thickness
problem [2], the pagenumber problem [3,4], the boundary VLSI layout problem [5] and
the single-row routing problem [6] and automated graph drawing [7]. Another important
application is the design of printed circuit boards [8], since, for the case of non-insulated
wires, overlapping wires between electrical components may cause short circuits and
thus may be avoided as much as possible.
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Several authors study a restricted version of this problem in which the vertex order is
predetermined and fixed along the node line, and edges are drawn as arcs in one of the
pages [9]. Other authors are more interested in the variant in which the node order is
not fixed [10]. For this variant, it has been considered necessary to first find an optimal
ordering of the vertices in order to compute the layout.

This problem is NP-hard [11,12]. So, many researchers have focused on finding ef-
ficient algorithms (some of them specially designed for the case of certain families of
graphs) to solve the graph layout problem.

A comparison of several heuristics for this problem is presented in [9,13], includ-
ing greedy, maximal planar, one-page, bisection and a neural heuristic, among others.
Concretely, the neural model developed in [14] (and based on Takefuji and Lee’s work
[15,16]) was tested and obtained very good results, although authors indicate the possi-
bility of non-convergence of this method. Due to the use of binary neurons, the model
needs 2M neurons to represent the solution for a graph of M edges. In addition, this
model is only intended to solve the 2-pages graph layout problem, and needed to pre-
process the graph in order to obtain a good node ordering.

In this work we present a neural model designed to solve this problem. One of the
differences of our model with the algorithms developed in literature is that there is no
need of assigning a good ordering of the vertices at a preprocessing step. This optimal
node order is computed by the model, as well as the relative position of the arcs.

Our model is a variant of the multivalued MREM model which has obtained very
good results when applied to other combinatorial optimization problems [17,18,19,20],
guaranteeing the convergence to local minima of the energy function.

2 Formal Description of the Problem

Let G = (V, E) be an undirected graph where V = {vi} is the set of vertices and
E = (ei,j) is a symmetric binary matrix where ei,j = 1 if edge (vi, vj) exists.

The K-pages book Crossing Number Problem consists in placing graph nodes on
a horizontal “node line” in the plane. Every edge can be drawn as an arc in one of the
half-planes (pages), which intersect that line, see Fig. 1. The objective is to minimize the
number of edge crossings. This problem belongs to the class of NP-hard optimization
problems, even if node order is fixed and the number of pages is K = 2.

An example of linear embedding of the complete graph K7 in 4 pages, with 0 cross-
ings, is drawn in Fig. 1. In this figure, we can observe the representation of pages 1
and 2 in the left side and pages 3 and 4 in the right hand side. First and third pages are
represented as half-planes above the node line, while the second and fourth pages are
under the node line.

Crossings Detection
Let us consider 4 positions in the node line verifying 1 ≤ i < k < j < l ≤ N , where i,
j, k and l are assigned to nodes vi, vj , vk and vl. Then, edges (vi, vj) and (vk, vl) cross
each other if, and only if, both are represented (drawn) in the same page.

In Fig. 2, we can observe that edges (vi, vj) and (vk, vl), represented in the node line
and with endpoints i < k < j < l, produce a crossing, whereas if i < j < k < l they
do not, when both are represented in the same half-plane.
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Page 1

Page 2

Page 3

Page 4

Fig. 1. Optimal linear layout for K7 in 4 pages

ii jj kk l l

Fig. 2. Crossing condition i < k < j < l

It seems reasonable to define Vva,vb
= k to indicate that the edge (va, vb) will be

represented in the k-th page or half-plane. If the edge does not exist, we will denote
Vva,vb

= 0 for simplicity.
These definitions allow us to define the number of crossings by means of the cost

function:
C =

∑

i

∑

k>i

∑

j>k

∑

l>j

δ(Vvi,vj , Vvk,vl
)(1 − δ(Vvi,vj , 0)) (1)

where δ(x, y) = 1 if x = y, otherwise it equals 0 (Krönecker delta function).
In Eq. (1), the term δ(Vvi,vj , Vvk,vl

) expresses that edges (vi, vj) and (vk, vl) will be
drawn in the same page, whereas (1 − δ(Vvi,vj , 0)) indicates that the edge exists.

3 Previous Heuristics

Cimikowski [9,13] presented a comparison of some heuristic approaches to solve the
2-pages graph drawing problem. All of them, except the neural one developed therein,
can be extended to solve the K-pages problem. We make here a brief summary of them:

– Edge-length heuristic (e-len): This heuristic initially orders all edges by their length
(the length of edge (a, b) is |b−a|). Intuitively, longer edges are most likely to pro-
duce a big number of crossings than shorter edges and hence should be embedded
first in the layout. So, each edge is sequentially added to the page of smallest in-
crease in the number of crossings.

– One-page heuristic (1-page): This heuristic initially embeds all edges in the first
page. After this, a “local improvement” phase is carried out, in which each edge is
moved to the page with the smallest number of new crossings. Edges are selected
for movement in order of non-increasing local crossing number, that is, the number
of crossings involving an edge.
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– Greedy heuristic (greedy): In this method, edges are sorted according to the node
index of its ends, that is, first, all edges (1, i) (in increasing order of i), then (2, i),
etc. Edges are added, in this order, to the page which results in the smallest increase
in the number of crossings.

4 The Neural Model MREM

It consists in a series of multivalued neurons, where the state of i-th neuron is charac-
terized by its output (vi) that can take any value in any finite set M. This set can be a
non numerical one, but, in this paper, the neuron outputs only take value in M ⊂ N.

The state vector V = (v1, v2, . . . , vN ) ∈ MN describes the network state at any
time, where N is the number of neurons in the net. Associated with any state vector,
there is an energy function E : MN → R, defined by the expression:

E(V ) = −1
2

N∑

i=1

N∑

j=1

wi,jf(vi, vj) +
N∑

i=1

θi(vi) (2)

where W = (wi,j) is a matrix, f : M × M → R is usually a similarity function since
it measures the similarity between the outputs of neurons i and j, and θi : M → R is a
threshold function. At each step, the state vector will be evolving to decrease the value
of the energy function.

The cost function (number of crossings in the graph given by Eq. (1)), must be iden-
tified with the energy function of Eq. (2). As a result, we obtain wi,j = 1 if i < j and 0
otherwise. The similarity function f(vi, vj) and the threshold θi can be expressed as:

f(vi, vj) = −2
∑

k

∑

l>k

δ(Vvi,vk
, Vvj ,vl

)(1 − δ(Vvi,vk
, 0))

θi(vi) = −
∑

j

wi,j

∑

k≤j

∑

l>k

δ(Vvi,vk
, Vvj ,vl

)(1 − δ(Vvi,vk
, 0))

To solve our problem we have considered two MREM neural networks:

– The first network (the ‘vertices’ net) will be formed by N neurons, being N the
number of nodes in the graph. Neurons output (the state vector) indicate the node
ordering in the line. Thus, vi = k will be interpreted as the k-th node being placed
in the i-th position in the node line. Hence, the output of each neuron can take value
in the set M1 = {1, 2, . . .N}.

– The second network (the ’edges’ net) will be formed by as many neurons as edges in
the graph, M . The output of each neuron will belong to the set M2 ={1, 2, . . . , K}.
As mentioned before, for the arc (vi, vj), Vvi,vj = k will indicate that (vi, vj) will
be embedded in the k-th page. For simplicity, let us denote the absence of edge
(vi, vj) as Vvi,vj = 0.

Initially, the state of the ‘vertices’ net is randomly selected as a permutation of
{1, 2, . . . , N}, and the initial state of the ‘edges’ net is a random element from MM

2 =
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{1, 2, . . . , K}M . At any time, the net is looking for a better solution than the current
one, in terms of minimizing the energy function.

In this paper, we study the permutation of two nodes and the change in the location
of an edge. These produce the energy increment given in the next subsections. As an ad-
ditional technique for improvement, we have also considered changes in the position of
four edges (‘change-4’), since our studies have demonstrated that this dynamics is able
to undo some crossings which can not be broken just by changing one edge position.

4.1 Permutation of Two Nodes

When two vertices va and vb permute their order a and b in the node line, we should
take into account that the unique edges changing their position (and therefore changing
the number of crossings) are those that have exactly one endpoint in {va, vb}.

Let us study the increase in the number of crossings depending on the relative posi-
tions of the endpoints.

Consider a position x in the line and let us see how the number of crossings with
the edge (vx, va) is modified when it becomes the edge (vx, vb) since nodes a and b
permute their positions. Hence, the arc represented with endpoints (x, a) will be drawn,
after the update, with endpoints (x, b), and the unique edges modifying the number
of crossings due to the change must be in the same page and must have an endpoint
vs represented between a and b (a < s < b) and the other, vt, outside that interval
((t < a) or (t > b)). Some cases, depending on the position of x, are considered:

1. Case x < a < s < b: As shown in Fig. 3 (1), if t < x < a < s < b the number of
crossings is increased in one unit, since the edge (t1, s) crosses the arc (x, b), but
not (x, a). If x < t < a < s < b, a crossing disappears (the arc (t2, s) cuts (x, a)
but not (x, b)) and, at last, if x < a < s < b < t, the number of crossings will be
increased in 1 unit (analize the arc (s, t3)).

2. Case a < x < b: As shown in Fig. 3 (2), if t < a < x < s < b, or a < x < s < b <
t, a new crossing is introduced (represented by the cuts of arcs (s2, t1) and (s2, t2)
with the new edge (x, b)), whereas if t < a < s < x < b or a < s < x < b < t the
number of crossings is reduced since crossings of (s1, t1) and (s1, t2) with (a, x)
disappear.

3. Case a < s < b < x: A crossing is introduced if a < s < b < t < x (arc (s, t2))
and will be erased if t < a < s < b < x, or, a < s < b < x < t (arcs (t1, s) and
(s, t3)), as shown in Fig. 3 (3).

We must also take into account the change in the number of crossings with edges
(vx, vb). Its study is similar to the already made for (vx, va), it suffices to permute the
literals a and b and to change the sense of the inequalities.

Finally, let us consider changes in the number of crossings produced between edges
(va, vx) and (vb, vy). All possible changes are shown in Fig. 4. There are different cases:

1. Case a < y < x < b:
– Edges (a, x) and (y, b) (Fig. 4 (1)) are transformed into (x, b) and (y, a)

(Fig. 4 (2)), vanishing the existing crossing.
– Edges (a, y) and (x, b) (Fig. 4 (2)) are transformed into (b, y) and (x, a)

(Fig. 4 (1)), causing the apparition of a crossing.
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Fig. 3. Changes in the number of crossings when permuting nodes va and vb, represented at
positions a and b. An edge represented by the arc (a, x) will be transformed into the arc (b, x).
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Fig. 4. Changes in the number of crossings when permuting nodes va and vb. Edges represented
by arcs (a, x) and (y, b) are transformed into arcs (b, x) and (y, a).

2. Case y < a < b < x:
– When edges (a, x) and (y, b) (Fig. 4 (3)) are transformed into (x, b) and (y, a)

(Fig. 4 (4)), a new crossing is formed.
– Arcs (a, y) and (x, b) (Fig. 4 (4)), are transformed into (b, y) and (x, a) (Fig. 4

(3)), and a crossing is eliminated.

We can derive an explicit formula for the increase of energy related to all these cases,
just by considering that Eq. (2) (the number of crossings) can be rewritten as:

E =
∑

i

∑

j

wi,j

∑

k

wj,k

∑

l

wk,lδ(Vvi,vk
, Vvj ,vl

)(1 − δ(Vvi,vk
, 0))

and by denoting g(x, y, s, t) = δ(Vx,s, Vy,t)(1−δ(Vx,s, 0)), then the increase of energy
caused by the permutation of nodes a and b is given by:

ΔE =
∑

i∈{a,b}

∑

j

wi,j

∑

k

wj,k

∑

l

wk,l (g(vi, vj , vk, vl) − g(v′i, vj , vk, vl))

+
∑

i

∑

j∈{a,b}
wi,j

∑

k

wj,k

∑

l

wk,l

(
g(vi, vj , vk, vl) − g(vi, v

′
j , vk, vl)

)

+
∑

i

∑

j

wi,j

∑

k∈{a,b}
wj,k

∑

l

wk,l (g(vi, vj , vk, vl) − g(vi, vj , v
′
k, vl))

+
∑

i

∑

j

wi,j

∑

k

wj,k

∑

l∈{a,b}
wk,l (g(vi, vj , vk, vl) − g(vi, vj , vk, v′l)) (3)

where v′s = va if vs = vb; v′s = vb, if vs = va; otherwise v′s = vs.
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4.2 Change of the Position of an Edge

When the edge with endpoints va, vb is represented in a given page and its location
changes from its current page to the k-th page, an increase (or decrease) of the energy
function (number of crossings) is produced and is given by

ΔE(k) = (1 − δ(Vva,vb
, 0))

∑

a<s<b

∑

(t<a)∨(t>b)

(2δ(Vva,vb
, Vvs,vt) − 1) ·

·(1 − δ(Vvs,vt , 0)) · max{δ(Vvs,vt , Vva,vb
), δ(Vvs,vt , k)} (4)

This expression can be obtained from Eq. (2), by simplifying the difference between
the number of crossings before and after the possible change, since edges (vx, vy) with
both endpoints located between a and b in the node line (a < x < b, a < y < b), or
both placed outside the interval [a, b], i. e., x, y �∈ [a, b], do not contribute to modify the
number of crossings with (va, vb), which is the changed edge.

In the improvement technique, since four edge positions are to be changed, the proce-
dure to compute the energy increment consists in analysing independently the increase
produced by the assignment of each individual edge to each of the K pages. Then,
it must be taken into account the possible crossings between the selected edges. This
produces a hyper-matrix ΔE = (ΔE(k1, k2, k3, k4))k1,k2,k3,k4 which represents the
increase of energy the i-th considered edge is moved to the ki-th page.

5 Implementation for K-Pages Book Graph Layout Problem

Several dynamics can be used to solve this problem with our model, but we have chosen
the following one due to its simplicity and efficiency:

1. Initialization: Given a graph with N nodes and M edges, a random feasible initial
configuration V 0 is selected for the location of the nodes. This initial state will be
a permutation of the set of node indices {1, 2, . . . , N}.

For the edges set, the initial state vector W 0 will be a random element of the
set {1, 2, . . . , K}M . As usual, the output Vvi,vj = k means that the arc (i, j) will
be embedded in the k-th page.

2. Two positions a and b in the node line are selected in all possible ways.
Firstly, the net studies the increase of energy when vertices va and vb are per-

muted by using Eq. (3). If the energy is reduced, the net permutes the vertices:
va(t + 1) = vb(t), vb(t + 1) = va(t). Secondly, the net studies to change the
page in which the edge (va, vb) is located. To this end, the increase of energy
given by Eq. (4) is computed and the change Vva,vb

(t + 1) = k0 is done, where
ΔE(k0) = min

1≤k≤K
ΔE(k).

3. If all possible combinations of two nodes positions and all possible edge locations
have been considered and no change has been made, both networks have converged
to a local minimum of the energy function (the cost function) and state vectors
represent the obtained solution.

In this case, in order to break some crossings, we apply the additional im-
provement technique ‘change-4’. For each possible combination of 4 edges, the
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net studies the hyper-matrix ΔE, computes min
k1,k2,k3,k4

ΔE(k1, k2, k3, k4) and the

corresponding update is performed.

6 Simulation Results

In this Section we test the performance of our model and compare it with some of
the heuristic methods proposed in [9,13] for a test set formed by graphs belonging to
well-known graph families. Concretely:

– Complete graphs Kn, where all n nodes are interconnected (no self-connections).
the graph Kn has n(n+1)

2 edges.
– Circulant graph Cn(a1, . . . , ak), where 0 < a1 < . . . < ak < n+1

2 is a graph with
n vertices such that vertex i is adjacent to vertices i±a1, . . . , i±ak(mod(n)). The
circulant graph Cn(a1, . . . , ak) has n · k edges.

In order to test the efficiency of out method, we use the heuristics given in [9]. Con-
cretely, those named e-len, 1-page and greedy, described above. In addition, compara-
tive results of Cimikowski’s neural model (CN) are presented in the case K = 2.

We must note that CN is a neural model which needs the fine-tuning of some pa-
rameters, and our model does not. Also, CN needs of a preprocessing step in which
graph nodes are ordered and then remain fixed along the iterations. Our model is able
to dynamically obtain a very good ordering.

For every graph, 10 independent executions of our model were performed.
For the case of K = 2 pages, results are shown in Table 1. It can be observed that,

although CN obtains very good results, our proposal is able to achieve better solu-
tions. Considered heuristics obtain good solutions, but do not perform better than our
proposal.

Table 1. Comparative results of our model for the 2-pages graph problem, for the considered
test graphs. Numbers between parentheses indicate the average number of crossings in all the 10
executions of our model, if this average differs from the minimum obtained.

Graph |V | |E| Prop. CN e-len 1-page greedy
K6 6 21 3 3 3 4 5
K7 7 28 9 9 11 9 13
K8 8 36 18 18 18 30 27
K9 9 45 36 36 42 50 50
K10 10 55 60 60 80 92 84
C20(1, 2) 20 40 0 (3.8) 2 0 0 0
C20(1, 2, 3) 20 60 19 (24.2) 24 36 48 40
C20(1, 2, 3, 4) 20 80 74 (79.3) 74 90 118 108
C22(1, 2, 3) 22 66 22 (26.9) 26 40 54 44
C22(1, 3, 5, 7) 22 88 198 (226.5) 200 306 294 286
C24(1, 3) 24 48 11 (19.4) 14 22 16 22
C26(1, 3) 26 52 11 (18.8) 16 24 16 24
C28(1, 3, 5) 28 84 80 (98.0) 86 138 138 130
C30(1, 3, 5) 30 90 92 (113) 96 148 150 140
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Table 2. Results for K = 3 and K = 4 pages problems. Numbers between parentheses indicate
the average number of crossings in all the 10 executions of our model, if this average differs from
the minimum obtained.

K = 3 K = 4

Graph Prop. e-len 1-page greedy Prop. e-len 1-page greedy
K6 0 1 1 1 0 0 0 0
K7 2 4 3 4 0 1 1 1
K8 5 6 8 12 0 4 4 4
K9 9 15 23 19 3 7 8 8
K10 20 27 49 40 7 12 22 19
C20(1, 2) 0 (0.9) 0 0 0 0 (0.1) 0 0 0
C20(1, 2, 3) 4 (8.5) 2 10 2 0 (1.4) 1 2 1
C20(1, 2, 3, 4) 21 (27.5) 60 71 45 11 (15.3) 6 15 4
C22(1, 2, 3) 5 (9.4) 5 12 4 0 (3.7) 1 1 1
C22(1, 3, 5, 7) 96 (106.7) 141 184 166 38 (49.4) 85 101 99
C24(1, 3) 2 (7.3) 0 12 0 0 (3.6) 0 0 0
C26(1, 3) 5 (7.7) 2 14 2 0 (2.4) 1 1 1
C28(1, 3, 5) 31 (44.4) 70 71 55 11 (20.8) 29 31 32
C30(1, 3, 5) 43 (53.6) 59 73 61 19 (29.1) 26 30 37

For larger problem sizes, K = 3 and K = 4, we can observe the same fact as above,
since our proposal outperforms the heuristic methods in most cases. This means that
our method is a significant improvement for this problem, since these heuristics are
well-known to perform very well [13].

Regarding computational time, it must be noted that, although spending more time in
obtaining a solution, our method is able to achieve good solutions on average, while the
heuristics herein considered always achieve the same solution, no matter the number of
times they are executed.

7 Conclusions and Future Work

In this work we have presented a neural model especially designed to solve some kinds
of combinatorial optimization problems. This model is a variant of the multivalued
model MREM formed by two networks. The dynamics of each of these networks de-
pends on the outputs of the other network, and they are updated alternatively, to reach
an equilibrium state corresponding to a local minimum of the common energy function.

We have tested our model with the well-known K-pages graph linear layout problem
from graph theory. The proposed model avoids some of the drawbacks of other models
in specialized literature, like the absence of convergence guarantees or the fine-tuning
of parameters. In addition, it does not need a pre-processing stage to obtain a good node
ordering, since it can be achieved dynamically.

By using some test instances, we have observed that our model is, at least, compara-
ble to the other models, and it is able to achieve, in many cases, better solutions.
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Future research lines cover aspects such as developing new dynamics for the model
which could help to achieve better results. This model is also applicable when the node
line is not a straight line, it can be a circle, or another geometry.
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Abstract. Treatment of general structured information by neural networks is an
emerging research topic. Here we show how representations for graphs preserving
all the information can be devised by Recursive Principal Components Analysis
learning. These representations are derived from eigenanalysis of extended vec-
torial representations of the input graphs. Experimental results performed on a
set of chemical compounds represented as undirected graphs show the feasibility
and effectiveness of the proposed approach.

1 Introduction

The representation of graphs via numerical vectors is the first necessary step to the
application of numerical methods for clustering, classification, and regression. Tradi-
tional approaches select apriori a set of structural features of interest and represent each
graph via a vector where each component reports how much the associated structural
feature is matched. An example of this approach can be found in QSPR/QSAR studies
in Chemistry, where topological indexes are used as features.

A different approach has been proposed in the last 10 years in the neural networks
field, where Recursive Neural Networks have been proposed and successfully applied in
applications involving structured patterns (e.g. see [8,2,4,1,6]). The underpinning idea
at the basis of this type of neural networks is the dynamic generation of feed-forward
networks (encoding networks) whose topology matches the topology of the input and
which exploit shared weights to cope with structures of different sizes. The output of
these encoding networks is a numerical representation of the input structure. The ad-
vantage of this approach with respect to the former approach is that learning procedures
can be exploited to adapt the numerical representations to the classification or regression
task at hand. For example, if another neural network (output network) is used to post-
process (either for producing a classification or a numerical prediction) the output of the
encoding networks, the error obtained by the output network can be back-propagated
to the encoding networks and the (shared) weights of the encoding networks adapted to
contribute to the minimization of the loss function of interest. Almost all the proposed
models in the family of recursive neural networks are only able to directly deal with
directed acyclic graphs (and other derivable structures, such as trees and sequences).

An additional approach has been pursued by kernel methods for structured patterns
(see [3] for a survey). These methods avoid to explicitly generate numerical vectors
representing the input graphs, but directly compute the similarity between two graphs
through a kernel function that implicitly projects each graph into a numerical feature
space and that returns the dot product between corresponding vectors into the feature

J. Marques de Sá et al. (Eds.): ICANN 2007, Part II, LNCS 4669, pp. 826–835, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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space. One problem with this approach is that almost all the proposed kernels are de-
fined for structures with vertexes annotated by discrete variables, and very often the
calculation of the kernel is computationally very demanding. Finally, as in the case of
topological indexes, kernels are usually defined apriori, regardless of the specific task
of interest and regardless of the available dataset.

In this paper, we address the problem to devise vectorial representations of graphs
from a dataset preserving all the information needed to discriminate among them.
Specifically, we show how a recently proposed approach to the calculation of Recur-
sive PCA [7] for sequences and trees can be adapted to graphs, either with directed or
undirected arcs. The aim is to provide a method to generate informative representations
which are amenable to be used into already well known unsupervised and supervised
techniques for clustering, classification, and regression. The applicability and effec-
tiveness of the proposed method is evaluated on a dataset of chemical compounds of
significant diversity and sizes, involving thousands of atoms and bonds.

2 Principal Components Analysis for Sequences and Trees

In [7] it is shown how Principal Component Analysis can be extended to the direct
treatment of sequences and trees. More specifically, given a temporal sequence x1,x2,
. . . ,xt of input vectors xi ∈ R

k, where t is a discrete time index, we are interested in
modeling the sequence through the following linear dynamical system:

yt = Wxxt +
√

αWyyt−1 (1)

where Wx ∈ R
p×k and Wy ∈ R

p×p are the matrices of synaptic efficiencies, which
correspond to feed-forward and recurrent connections, respectively, yt ∈ R

p is an out-
put vector, α ∈ [0, 1] is a gain1 parameter which modulates the importance of the past
history, i.e. yt−1, with respect to the current input xt. The aim is to define proper synap-
tic matrices, with dimension p as small as possible, such that yt can be considered a
good “encoding” of the input sequence read till time step t, i.e., the sequence is first
encoded using eq. (1), and then, starting from the obtained encoding yt, it should be
possible to reconstruct backwards the original sequence using the transposes of Wx
and Wy. This requirement implies that the following equations

xt = WT
xyt (2)

yt−1 = Wxxt−1 + Wyyt−2 = WT
yyt (3)

should hold. In fact, the aim of recursive principal component analysis is to find a low-
dimensional representation of the input sequence such that the expected reconstruction
error, i.e. the sum of the (squared) differences between the vectors generated by equa-
tion (2) and the original input vectors for different values of t

error(t) =
t∑

i=1

‖xi − WT
x(WT

y)t−iyt‖2 (4)

1 Here, without loss of generality, we focus on the case where α = 1 and y0 is the null vector.
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is as small as possible, i.e. we look for the smallest value of p such that error(t) is
minimized.

In [7] it has been shown that, when considering several sequences but the same
synaptic matrices, zero error, i.e. an exact solution to the above minimization error,
can be obtained by performing eigenanalysis of extended vectorial representations of
the input sequences, where a sequence at time t is represented by the vector

[xT
t , . . . ,xT

1 ,0T, . . . ,0T
︸ ︷︷ ︸

(T−t)

]

where T is the maximum length for any input sequence. This representation can be
understood as an explicit representation of a stack where a new input vector, e.g. xt+1,
is pushed into the stack by shifting to the right the current content by k positions, and
inserting (adding) xt+1 into the freed positions:

[0T,xT
t , . . . ,xT

1 ,0T, . . . ,0T
︸ ︷︷ ︸

(T−t−1)

] + [xT
t+1,0

T, . . . ,0T
︸ ︷︷ ︸

(T−1)

] = [xT
t+1,x

T
t , . . . ,xT

1 ,0T, . . . ,0T
︸ ︷︷ ︸

(T−t−1)

]

More precisely, let X be the matrix which collects all the vectors of the above form
(for all sequences at any time step). If the input vectors xi ∈ R

k have zero mean,
s = T · k, UΛUT is the eigenvalue decomposition of XXT and Ũ ∈ R

s×p∗
is the

matrix obtained by U removing all the eigenvectors corresponding to null eigenvalues
λi, then p∗ is the smallest value for which the synaptic matrices defined as:

W̃x ≡
ŨT

[
Ik×k

0(s−k)×k

]

︸ ︷︷ ︸
adding to the first k positions

∈ R
p∗×k

and

W̃y ≡ ŨT
[
0k×(s−k) 0k×k

I(s−k)×(s−k) 0(s−k)×k

]

︸ ︷︷ ︸
shifting to the right of k positions

Ũ ∈ R
p∗×p∗

,

have error(T ) = 0. Please, note that smaller synaptic matrices can be obtained by
removing from Ũ eigenvectors corresponding to smallest eigenvalues, i.e. p < p∗.
Doing that, however, it is not clear whether the optimal value of error(T ) given p is
obtained.

A similar, but a bit more elaborated result can be obtained for trees (with maximum
outdegree b), where the linear dynamical system considered is

yu = Wxxu +
b−1∑

c=0

Wcychc[u] (5)

where u is a node of the tree, chc[u] is the c + 1-th child of u, and a different matrix
Wc is defined for each child.
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3 Graphs and Recursive Principal Component Analysis

The basic idea of standard Principal Component Analysis is to discover orthogonal di-
rections (i.e. principal components) of maximum variance of the data. These directions
allow to define the subspace of smallest dimensionality where data is embedded. A nice
feature of principal components is that they define a (linear) projection from the original
space to the embedding space which can be “inverted” so to reconstruct the “original”
vector from its projection into the embedding space. The projection into the embedding
space (encoding) and the reconstruction from the embedding space (decoding) are op-
erations which are preserved also into the recursive version of PCA for sequences and
trees. When considering the possibility to extend Recursive PCA to graphs either with
directed or undirected edges we have to face two problems: i) how to deal with cycles
during the encoding; ii) how to identify the origin and destination of an edge during
decoding.

Cycles may be present in directed graphs and are present in undirected graphs by def-
inition2. Their presence is problematic when considering the encoding function since it
introduces mutual functional dependences among vertexes. In fact, the encoding func-
tion is usually defined by induction: the basis is applied to vertexes with no out-coming
edges, for which there is no functional dependency, and the induction step is applied to
the remaining vertexes. For example, in the case of rooted trees, the encoding for leaves
(basis) is given only as function of the label attached to them, while the encoding for
internal vertexes is given as function of both the attached label and the encoding of the
children. The encoding of a whole tree is obtained by considering the encoding for the
root of the tree. If a cycle is present, the above scheme suffers the problem of mutual re-
cursion, which from a mathematical point of view can be translated as the definition of a
(linear) dynamical system whom state vector (i.e., the output of our encoding function)
may eventually diverge or converge to a single or few attractors. In the first case, no
stable encoding can be obtained; in the second case, the same encoding (i.e. attractor)
is obtained for different input graphs, which consequently cannot be discriminated.

The second main problem, i.e. the identification of the origin and destination of an
edge during decoding, is not present in the case of sequences (which can be seen as
linked lists) and trees, since each vertex in this type of data structures is reachable by
a single path from the beginning of the list or from the root, respectively. This prop-
erty implies that it is possible to define the decoding function again by an inductive
process: the basis is applied to vectors in the embedding space which lie in a designed
subspace (e.g. around the origin, or which satisfy a specific “termination” property), i.e.
when a vector in the embedding space belongs to the designed subspace or it satisfies
the specific termination property, the decoding process is terminated for that vector; the
induction step is applied when the basis does not apply, i.e. the information about the
label is generated as a function of the vector, as well as one (for lists) or several (for
trees) further vectors in the embedding space to which the inductive process is recur-
sively applied. This decoding scheme generates trajectories into the origin space which
can unambiguously be assigned to paths in a tree (or a single path for a list). When

2 In fact, edges into undirected graphs can be traveled in both directions, and thus any graph
with at least one edge generates a cycle of length 2 if the connected vertexes are different.
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Fig. 1. Examples of undirected (a) and directed (b) graphs with labeled vertexes. The integer
number associated to each vertex constitutes the enumeration of the vertex within the same graph.

considering graphs the above scheme cannot work, since in general a vertex can be
reached by several paths, and it is not obvious how to assign a “vertex” semantic to
each step of the generated trajectories, i.e. if the same label is generated by different
trajectories or from the same trajectory at different decoding steps, how can we be sure
that its interpretation is that the same vertex of the graph has been generated via differ-
ent paths or we are facing the generation of different vertexes with the same label ?

Here we propose to solve the above problems with a coding trick. The basic idea is to
enumerate the set of vertexes following a given convention and representing a (directed
or undirected) graph as an (inverted) ordered list of vertex’s labels associated with a
list of edges for which the vertex is origin and where the position in the associated list
is referring to the destination vertex. The idea is that the list is used by the (linear)
neural network during encoding to read one by one the information about each vertex
and associated edges, pushing the read information into an internal stack (the encod-
ing space). Decoding is obtained by popping from the internal stack, one by one, the
information about vertexes and associated edges. Just to give a concrete example, let
consider the two graphs in Figure 1. The enumeration for each vertex is reported as an
integer besides each vertex. Assuming that the maximum number of vertexes in the in-
put graph domain is 4, the representation for the undirected graph shown in Figure 1(a)
is as follows

[(c, [0]), (d, [0, 1]), (e, [0, 1, 1]), (d, [0, 0, 1, 1])]. (6)

The representation is used as follows during the encoding process: the first element of
the list tells the neural network to push into the internal stack a vertex with associated
label c and no edge with itself. Then the neural network reads the second element of
the list: a vertex with label d is pushed into the internal stack together with the informa-
tion that the current vertex has no edge with itself, but shares an edge with the vertex
previously pushed into the stack. Subsequently the third element of the list is read and
the neural network pushes into the internal stack a vertex with label e and the following
information about edges: no edge with itself, shared edge with the vertex previously
inserted into the internal stack, and shared edge with the vertex inserted two time steps
before, and so on. Please, note that, since the edges are undirected it is sufficient to rep-
resent only the upper (or lower) part of the incidence matrix describing the connectivity
of the graph.



Recursive Principal Component Analysis of Graphs 831

For the directed graph shown in Figure 1(b) the representation is as follows

[(c, [0, 0, 0, 1]), (d, [1, 0, 1, 0]), (e, [1, 0, 0, 0]), (d, [0, 1, 0, 0])].

The use of the representation during the encoding is similar to the one described above,
with the difference that now the full incidence matrix should be represented in order
to retain the information about the direction of the edges. Thus, when considering the
first element of the list, the interpretation of the information about the edges, i.e. the list
[0, 0, 0, 1], should be understood as follows: the first element of the associated edge list
is 0, which means that there is no edge arriving from the vertex pushed as first into the
internal stack; the same for the second element and for the third one; the last element
of the list is 1, which means that there is an edge arriving from the vertex which will be
pushed as fourth into the internal stack.

A linear dynamical system supporting the above idea may be the following

yi = Wv[vT
label,v

T
edges]

T + Wyyi−1 (7)

where i ranges over the enumeration of the vertexes, i.e. positions in the list representing
the graph, vlabel ∈ R

k is the numerical encoding of the current label, vedges ∈ R
N

is the vector representing the information about the edges entering the current vertex
where N is the maximum number of vertexes that the system can manage for a single
input graph, and y0 is the null vector. Thus vT = [vT

label,v
T
edges]

T ∈ R
k+N and the

space embedding the explicit representation of the stack is s = N(k+N) since no more
than N vertexes can be inserted. It should be noted that this size of the stack is needed
only if the input graphs are directed, and the above system is basically equivalent to
system (1) for sequences.

However, if undirected graphs are considered, a specific space optimization can be
performed. In fact, when inserting the first vertex into the internal stack only the first
entry of the vector vedges may be non null (the one encoding the self-connection), since
no other vertex has already been presented to the system. In general, if vertex i is being
inserted, only the first i components of vedges may be non null. Because of that, the
shift operator embedded into matrix Wy may “forget” the last component of each field
into which the internal stack is organized. Just to exemplify this point, let consider the
encoding of graph (6). Recall that we assumed that the maximum number of vertexes
per graph was 4 and let assume that input symbols are coded via a 10 bits code, so
we have for each vertex a coding vector v of dimension d = k + N = 14. Now let
consider the organization of the internal stack when all the vertexes of the graph have
been read. It can be readily understood that the stack only needs 14+13+12+11 bits.
In fact, the first vertex inserted into the stack has a single edge bit which is non null,
the second vertex only 2 bits, and so on. Thus, all the codes for the inserted vertexes
can loose the current last bit of the code every time they are shifted to the right because
of a push into the stack. Since the first inserted vertex (code) is shifted to the right 3
times, it will “forget” the last three bits of the code, which however are 0s since the
first inserted vertex can just have coded an edge which is a self-connection. The second
inserted vertex (code) will be shifted to the right 2 times, so it will loose the last 2 bits
of the code, which however are 0s since the second inserted vertex can just have coded
one edge as self-connection and a second one as a connection with the first inserted
vertex, and so on for the other inserted vertexes.
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Formally, the shift operator described above can be implemented by the following
matrix

S ≡

⎡

⎢⎢⎢⎢⎢⎢⎣

0d×s

I(d−1)×(d−1) 0(d−1)×(s−d+1)
0(d−2)×d I(d−2)×(d−2) 0(d−2)×(s−2(d−1))
0(d−3)×(2d−1) I(d−3)×(d−3) 0(d−3)×(s−3(d−1))

· · ·
0(k+1)×(s−k−1) I(k+1)×(k+1)

⎤

⎥⎥⎥⎥⎥⎥⎦

and the optimal matrices defined as W̃v ≡ ŨT

[
Id×d

0(s−d)×d

]
and W̃y ≡ ŨTSŨ.

4 Experimental Evaluation

The data used for testing our approach is derived from the data set of the PTC (Predic-
tive Toxicology Challenge, [5]) originally provided by the U.S. National Institute for
Environmental Health Sciences - US National Toxicology Program (NTP) in the context
of carcinogenicity studies. The publicly available dataset (see http://www.predictive-
toxicology.org/data/ntp/) is a collection of about four hundred chemical compounds.
Figure 2 shows four compounds of the data set using the typical chemical graphical
visualization where the vertexes without symbols are carbon atoms (C) and the hydro-
gens (H) and their bonds (completing the carbon valence) are not shown (hydrogen
suppressed graphs). As shown in Figure 2 the data include a range of molecular classes
and molecular dimension spanning from small and simple cases to medium size with
multi-cycles.

In order to represent these chemical structures and their components, we use for
each compound undirected vertex labeled and edge labeled graphs (i.e. a graph with
labels associated to vertexes and edges). The vertexes of these graphs correspond to
the various atoms and the vertexes labels correspond to the type of atoms. The edges
correspond to the bonds between the atoms and the edges labels correspond to the type
of bonds. This explicit graph modeling can be obtained through the information directly
extracted by standard formats based on connection table representation, limited, in our
case, to the information on atoms type (including C and H), bond type (single, double
or triple) and their 2D-topology, as implicit in the set of vertexes connections. Here, we
do not assume any specific canonical ordering of such information, assuming directly
the form provided in the original PTC data set.

TR073 TR267

TR007

TR175

Fig. 2. Four chemical compounds belonging to the used data set
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Table 1. Occurrences of atoms symbols in the data set and statistical properties of the dataset and
of each split

Chemical Symbol C N O P S F Cl Br H Na
Frequency 3608 417 766 25 76 11 326 46 4103 22

Dataset # examples Max. number Max. number Avg. number Tot. number
Split atoms bonds atoms (bonds) items

(atoms+bonds)

Training 235 70 73 24.42 (24.76) 11,557
Test 159 67 66 23.03 (23.38) 7,379
Total 394 70 73 23.86 (24.20) 18,936
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Fig. 3. Eigenvalues from rank 2 to 50 are shown. The most significant eigenvalue, caused by the
introduction of ydummy , is not shown since it is very high (32189.69), as well as eigenvalues
beyond rank 50. Only 949 eigenvalues over 3115 are non-null, i.e. p∗ = 949.

For testing our approach, we have considered molecules with atoms occurring at
least more than 3 times in the original data set and with a maximum dimension (num-
ber of vertexes) of 70. In all, 394 distinct chemical compounds are considered, with the
smallest having 4 atoms. 10 distinct atoms occur in the used data set, corresponding to
the following chemical symbols: C, N, O, P, S, F, Cl, Br, H, Na. In Table 1 we report
the frequencies of such atoms through the compounds. Among the 394 compounds,
235 graphs are selected for training, and the remaining 159 graphs are used for testing
the generalization ability of the system, i.e. the ability to successfully decode the com-
ponents of the input chemical compound starting from the vector encoding the whole
compound. In Table 1 we have summarized some general statistics about each split.

Symbols are represented by 10-dimensional vectors (i.e. k = 10) following a “one-
hot” coding scheme. Bond’s type is coded by integers in the set {0, 1, 2, 3}, where 0
represents the absence of a bond and the other numbers are for single, double and triple
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Fig. 4. Plots of the experimental results obtained for the training (top) and test (down) sets

bonds, respectively. Triple bonds occur only 2 times in the training set and 3 times in
the test set. Double bonds occur 910 times in the training set and 599 times in the test
set. The remaining bonds are single.

Since the graphs do not have self-connections for vertexes, we can avoid to repre-
sent the information about self-connections. Thus, because the maximum number of
vertexes in the dataset is N = 70, we have an input dimension for each vertex which is
d = k+(N−1) = 10+69 = 79 (recall that we do not consider self-connections) which
leads to a stack size of s =

∑N−1
i=0 (d − i) = 3115, since the graphs are undirected. We

used the dummy state ydummy described in [7] to get zero-mean vectors.
The spectral analysis required around 27 cpu/min on an Athlon 1900+ based com-

puter using Scilab. Values for the main eigenvalues are plotted in Figure 3.
In Figure 4 we have reported the training (top) and test (bottom) decoding errors for

both label atoms and edges. The error in decoding is computed as follows. Each graph
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is first fed into the system, so to get the final encoding y for the graph. Then the final en-
coding is decoded so to regenerate all the items (atom and bond labels) of the graph. A
decoded atom label is considered to be correct if the position of the highest value in the
decoded label matches the position of the 1 in the correct label, otherwise a loss of 1 is
suffered. A decoded bond entry is considered to be correct if its rounding to the nearest
integer matches the target bond entry. If there is a mismatch a loss of 1 is suffered.

The final error is computed as the ratio between the total loss suffered and the total
number of items (atom labels and total number of bond entries) in the dataset. For the
bond entries we have normalized with respect to the number of bits that have been
explicitly decoded by the system.

From the experimental results it is clear that learning is quite successful. In fact, with
as few as 350 components it is possible to get a training error below 1% and a test error
below 2% for both atoms and edges labels.

5 Conclusion

We have suggested a way to compute recursive principal components for both directed
and undirected graphs with labeled vertexes and edges. Feasibility and efficacy of the
proposed approach has been demonstrated on a dataset of chemical compound of sig-
nificant variety and size. The obtained representations are quite informative and can be
used as input vectors for any type of classification or regression method, such as Neural
Networks and Support Vector Machines.
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Abstract. We propose a method to estimate the graph structure from data for a 
Markov random field (MRF) model. The method is valuable in many practical 
situations where the true topology is uncertain. First the similarities of the MRF 
variables are estimated by applying methods from information theory. Then, em-
ploying multidimensional scaling on the dissimilarity matrix obtained leads to a 
2D topology estimate of the system. Finally, applying uniform thresholding on 
the node distances in the topology estimate gives the neighbourhood relations of 
the variables, hence defining the MRF graph estimate. Conditional independence 
properties of a MRF model are defined by the graph topology estimate thus ena-
bling the estimation of the MRF model parameters e.g. through the pseudolikeli-
hood estimation scheme. The proposed method is demonstrated by identifying 
MRF model for a telecommunications network, which can be used e.g. in analys-
ing the effects of stochastic disturbances to the network state. 

Keywords: Graphical models, Graph structure estimation, Markov random fields 
(MRF), Multidimensional scaling, Mutual Information. 

1   Introduction 

Markov random field (MRF) models are used extensively for modelling statistically 
systems consisting of interacting variables. The structure of MRF model, the form of 
the joint probability distribution of the variables, can be chosen in many ways to de-
scribe best the properties of the underlying system. One such model is a widely used 
continuous-state linear-Gaussian model [14] with a Gaussian joint probability distri-
bution. Ising model and Potts model [20] are examples of discrete-state models 
adopted from statistical physics with their joint probability distributions defined 
through the Boltzmann distribution [15]. Before choosing an appropriate MRF model 
for the underlying interacting system we need to know which variables of the system 
interact explicitly with which variables. These interactions are defined by the graph 
presentation of the MRF model as undirected, symmetric, links between the nodes in 
the graph, the nodes describing the MRF model variables.  

Hence the identification of MRF model is a two-stage process. First the underlying 
structure of the interacting components, the graph presentation, is identified, and then 
the parameters for the selected graph structure are identified. In the literature the latter 
stage has been considered extensively whereas the first stage is usually assumed to be 
solved through domain knowledge. However, domain knowledge hardly ever is 
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sufficient in practice for perfect identification of the graph structure. Hence in this 
paper we will tackle the problem of MRF graph structure estimation.  

For Bayesian networks, closely related to MRF models, a Bayesian approach for 
determining the graph structure has been proposed by [6]. However, this includes 
exploring the space of topologies which grows exponentially with the number of 
nodes in the network [2]. Hence the method is computationally challenging in particu-
lar for networks having large number of nodes while also suffering some other practi-
cal issues [2]. 

We are considering here mainly large MRF models by which we mean MRF mod-
els having a large state space size, usually growing exponentially as the number of 
network nodes. For example with the binary-state Ising model the number of possible 
network states grows as 2M, where M is the number of nodes in the network. The 
graph structure estimation scheme we are proposing here for such large MRF models 
is necessary in particular for systems where the node-to-node interactions are at least 
partially unknown. Also when the topology information available from several 
sources is inconsistent the method has value in deriving the best graph structure esti-
mate directly from data. An example of inconsistent topology information is a mobile 
telecommunications network of base stations in which interaction topology is a com-
bination of network connection topology and geographical topology.  

The proposed method for estimating the graph structure of a MRF model first es-
timates the pairwise dependencies of all the MRF variables with a measure based on 
mutual information (MI), a basic concept in information theory [3]. When identified 
from real data we will consider the statistical significance that the MI is nonzero; de-
noted here as SSMI. Pairwise dependencies are interpreted as a similarity matrix. 
Similarity matrix is then transformed into a dissimilarity matrix and multidimensional 
scaling (MDS) [5] is applied to construct a 2-dimensional topology estimate, with 
nodes presenting variables and their distances their maximally preserved similarities. 
Defining a uniform neighbourhood threshold distance constructs neighbourhood rela-
tionships and provides the graph structure estimate. 

The rest of the paper is organised as follows. Section 2 contains a brief introduc-
tion to MRF models and discusses some typical MRF models. Through Sections 3 
and 4 we will introduce the method for estimating the MRF graph structure. Some 
appropriate dependency measures are presented in Section 3, while in Section 4 we 
will show how the final graph structure estimate can be derived by applying MDS and 
thresholding. Section 5 considers a general parameter estimation scheme applicable 
after having estimated the underlying graph structure. Section 6 contains a case-study 
by applying binary-state Ising model on a telecommunications network. Finally we 
conclude in Section 7. 

2   Markov Random Field Models 

Markov random fields (MRFs) [2] define a set of models which satisfy specified con-
ditional independence properties. MRF models are a natural choice for modelling 
spatial data consisting of a set of interacting variables, see e.g. [4]. The conditional 
independence assumptions are represented as a graph, presenting the variables as 
nodes and the neighbourhood relations as undirected, symmetric links, between the 
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nodes. Based on the graph the MRF model can be defined as a joint probability distri-
bution through a graph property, collection of cliques [2]. After the model structure is 
chosen and the graph structure known the model parameters can be estimated. Fig. 1 
shows an example of MRF graph. 

2.1   Some Properties of MRFs 

We will denote the states of the nodes in the graph by xi, where i is the index of a 
node, and i = 1,...,M, where M is the number of nodes (variables) in the model. Condi-
tional independence of states xi and xj at nodes i an j, given the states of the rest of the 
nodes, denoted with x-ij, is defined as [2] 

)|()|()|,( ijjijiijji xpxpxxp −−− = xxx . (1) 

For two nodes in MRF to satisfy the conditional independence property, a suffi-
cient and necessary condition is that the nodes are not neighbours to one another in 
the graph structure, i.e. there does not exist a link between the two nodes in the graph. 
Hence in MRF only neighbouring nodes are conditionally dependent. This leads to a 
concept called a Markov blanket [2] defined for each node and consists of nodes in 
which the node studied is conditionally dependent. For MRF the Markov blanket of 
node i being the set of its neighbours, N(i), the conditional probability of this node is 
expressed as 

)|()|( )(iNjiii xxpxp ∈− =x . (2) 

2.2   MRF Model: The Joint Probability Distribution  

The most general form of the joint probability distribution for a MRF, with given 
conditional independence properties, is defined through the collection of cliques [2]. 
A clique is a subset of graph nodes which are all neighbours to one another, i.e. they 
are fully connected in the graph. 

1 2 3

4 5
 

Fig. 1. An example of a MRF graph structure 

Hence, for example, each neighbour pair forms a clique. A maximal clique is a 
clique which may contain other cliques as a subset but is not itself a subset of any 
other clique. As an example, consider the above Fig. 1 where nodes 1, 2, and 4 form a 
maximal clique of size 3.  

A potential function of a clique is any positive definite function of clique states. 
The potential function need not have a probabilistic interpretation and thus need not 
be normalized. The most general form of a joint probability distribution of the node 
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states with given independence properties is a product of potential functions of the 
maximal cliques. However, in what follows we consider only potential functions of 
maximal cliques that are products of potential functions of node-pairs within the 
maximal clique and potential functions of single nodes. When denoting the potential 
functions as ψC(xi, xj) and ψD(xk), where C denotes the set of all the node pairs and D 
the set of all the nodes in the graph, and indices, Cji ∈),(  and Dk ∈ , the joint prob-
ability distribution can be defined as 

∏ ∏∈ ∈
−=

Cji Dk kDjiC xxxZp
),(

1 )(),()( ψψx . (3) 

Here Z is a normalisation constant, or partition function, and is given by 

∑ ∏ ∏∈ ∈
=

x Cji Dk kDjiC xxxZ
),(

)(),( ψψ . (4) 

This is a rather general formulation for MRF models into which real models, such as 
the continuous state Gaussian model, and the discrete state Ising and the Potts models 
can be reduced to.  

2.3   Examples of MRF Models 

In this section we will give three examples of typical MRF models, namely the Ising 
model, the Potts model, and the Gaussian MRF (GMRF). The first two are discrete 
states models while GMRF is a continuous state model. We will use the notations of 
Section 2.2, and denote the number of nodes as M.  

The most general form of a binary state model is the Ising model [20], origin in 
statistical physics, but has also many other applications, such as image analysis [18]. 
When including loading of the nodes to Ising model the joint distribution of the model 
can be written in a factorised form similar to (3) as 

})(exp{

))(exp()exp()(

0),(
1

0),(
1

∑∑
∏∏

∈∈
−

∈∈
−

−+=

−=

Dk kkCji jiij

Dk kkCji jiij

hhxHxxJZ

hhHxxxJZp x
. (5) 

In the first form the exponential factors correspond to the potential functions of single 
node cliques and node-pair cliques. The product of these factors results into the sec-
ond form of the joint distribution shown. Here Jij, Η, and h0 define the scalar parame-
ters of the model, and hi are known loads affecting the states of the nodes. Later in 
Section 6 we will assume that Jij = J, uniform through the MRF structure. Each node 
xi can have either state -1, or +1. Due to its properties Ising model can be used for 
modelling systems that can exhibit coherent behaviour such as discontinuous state 
transitions and hysteresis [20], hence also applied in the analysis of telecommunica-
tions networks [13]. 

Potts model [20] can be considered as an extension of the Ising model to any inte-
ger number, q, of states. The joint distribution of the Potts model factorises similarly 
to the product of potential functions of single node cliques and node-pair cliques as 
the Ising model, and can be written in general form as 

∏∏ ∈∈
− −=

Dk kkCji jiij hhxHxxJZp )))((exp()),(exp()( 0),(
1 δx . (6) 
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Here δ is the Kronecker delta-function, hence two nodes i and j contribute together to 
the joint probability only if they are in equal states. Parameters Jij and h0 are here as 
with the Ising model, whereas H is a function of the node state xk. Potts model also 
has first-order phase transitions (q > 4) in two dimensions [20], hence applicable for 
describing systems exhibiting discontinuous phase transitions. 

Continuous-state GMRF can be written as a product of node-pair potentials, hence 
neglecting the loading terms included in the previous two models. This leads to the 
usual Gaussian form, and here we assume, without loss of generality, that the expecta-
tion values of the joint Gaussian are zero: 

)exp()2(

}exp{)exp()(

2
12/12/

),(
1

),(
1

QxxQ

x

TM

Cji jiijCji jiij xxJZxxJZp

−=

−=−=

−

∈
−

∈
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π
. (7) 

Here Q is a MxM precision matrix (inverse covariance matrix) with elements Jij, and 
Z is a normalisation constant defined by the last form of (7). In GMRFs working with 
the precision matrices has some advantages to working with the covariance matrices; 
a value of an element in the precision matrix is non-zero if and only if the two nodes 
corresponding to that element are neighbours [14]. GMRFs have the property that all 
the conditional distributions of the nodes are Gaussian, and being probability distribu-
tions no explicit normalisation constant is needed.  

2.4   Interpretations of the Graph Structure 

Graph structure of a MRF only describes direct connections between the variables; 
the neighbourhood relations. The three MRF models considered above all utilize these 
neighbourhood relations in the model structures through the products of the states of 
neighbouring nodes. 

We may interpret the graph structure as an estimate of a true topology of a system, 
in which the node-to-node interactions are more complicated than just binary ones. In 
the most general concept all the nodes interact continuously with each other and the 
strength of interaction depends e.g. on the distances between the nodes. If we can ob-
tain an estimate for the true topology of the system first, the graph structure can then 
simply be defined by thresholding; nodes only within a given threshold distance from 
one other in the true topology estimate are considered as neighbours, resulting into the 
binary neighbourhood relations and thus to the graph structure estimate. Hence, in 
general, there exist an infinite number of true system topologies corresponding to a 
single graph structure. 

In some applications the graph structure may, however, present the true topology 
perfectly. As an example consider a telecommunications system when neglecting the 
affect of the loading to the network. Now there only exists logical (binary) connec-
tions between the nodes in the network; the graph structure can describe these connec-
tions perfectly. In practice the situation is more complicated since the loading of the 
nodes significantly influences the node states, and the loading between nodes physi-
cally close to each other usually correlate strongly. Hence there exist both the binary 
logical connections and the continuous connections due to physical locations between 
the nodes, and the graph structure can no longer describe this topology perfectly. 
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If more complicated node relations need to be considered, in the extreme all the 
nodes are interpreted as neighbours to each other with their strength of interaction 
depending on their distance. Although the model has more power to describe more 
complicated systems, the drawback is in lost simplicity of the model due to lost condi-
tional independence properties. For example, in the case of the continuous state 
GMRF the precision matrix is full, and the benefits gained in the computation due to 
sparseness of the precision matrix are lost [14]. 

3   Measures to Describe Dependencies of MRF Nodes 

In this paper we aim at finding an estimate for the graph structure of a MRF model 
from data. The first step is to model the MRF node (variable) dependencies, which we 
will consider in this section by defining a dependency measure based on information 
theory. We will also consider an approximation scheme to this measure, and discuss 
some alternative measures for describing the node dependencies.  

All the measures introduced here are estimated from a finite size data set. Hence 
the measures are uncertain and the uncertainty depends on the amount of data avail-
able. Therefore, instead of using these measures directly as measures of dependency, 
we will use the probability that – given the data – the null hypothesis of the two nodes 
being statistically independent must be discarded. We refer this probability as the sta-
tistical significance of dependency. Statistical significance is much less sensitive to 
the amount of data available and hence more appropriate for comparing dependencies 
of several node pairs or several observation sets of varying size to each other. 

3.1   Statistical Significance of Mutual Information 

In information theory mutual information (MI) [10] measures the amount of informa-
tion one random variable contains about another random variable [3]. MI being based 
on the fundamental concept of entropy is an appropriate measure for describing the 
node dependencies in a MRF. Let us consider two random variables, X and Y. The MI 
of X and Y is defined as the difference between the entropy of X and its conditional 
entropy given Y [3]: 
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⎤
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where the lower case letters, x and y, refer to the values of the corresponding random 
variables, X and Y. The joint probability of X and Y is denoted as pXY, while pX and pY 
are the corresponding marginal probabilities. From the definition follows that MI is 
symmetric: I(Y; X) = I(X; Y). 

As the MI estimate is based on a finite size data set we will now consider a more 
robust dependency estimate, the statistical significance of MI (SSMI). SSMI is de-
fined through a null hypothesis that the two variables, X and Y, are statistically inde-
pendent, i.e )()()0( obs

Y
obs

XXY ppp = , where )(obs
Xp  and )(obs

Yp  are the marginal probability 
distributions of X and Y derived from the observed joint state distribution, )(obs

XYp . The 
MI under the null hypothesis is zero. However, MI estimated from any finite set of 
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observations is positive under null hypothesis with probability one. Estimate for the 
distribution of MI under null hypothesis and M observations can be obtained by first 
generating N sets of M state pairs according to )0(

XYp , and then calculating from each of 
the M state pairs a total of N mutual information estimates. The probability density of 
mutual information under null hypothesis and obtained from data of length M, f(0)(I; 
M), is now estimated as the histogram of the N MI values. The SSMI, XYσ , that 
when a mutual information IXY(M) has been observed, the null hypothesis must be 
discarded, is  

( ) ( )dIMMIIfMMIIP
MI

XYXYXY

XY

∫ <=<=
)(

0

)0()0( );();(σ . (9) 

As SSMI is a probability it always lies between 0 and 1. As SSMI is calculated by 
simulating random observations under null hypothesis, its computation is not deter-
ministic for any finite M. Consequently, the SSMI fluctuates from estimation to esti-
mation even with identical data. 

3.2   Approximation of SSMI: Statistical Significance of Chi-Squared Statistics 

By making two approximations, the first in approximating logarithm with the mean 
value of its lower and upper bounds, and the second in assuming the finite size sample 
data is χ2-distributed, we end up in an approximation of SSMI [9]. This approximate 
measure of the SSMI is here called the statistical significance of chi-squared statistics 
(SSCSS). When estimated from a sample data set this dependency measure can be 
derived as follows.  

We consider again the two random variables, X and Y, and let M denote the total 
number of observations. We denote by Mxy the number of times X assumes the value x 
and Y the value y, respectively. By marginalising, we may further derive from Mxy the 
number of times X has a particular value x, Mx, and Y has a value y, My. Now, accord-
ing to the null hypothesis, the expected number of any value pair (x, y), denoted as 
mxy, is mxy = (MxMy)M

-1. The chi-squared statistics for the two variables is now [11] 

∑ −−=
yx xyxyxy mmM

,
122 )()(χ . (10) 

The number of degrees of freedom of test variable (10) is obtained as D = IJ - I - J +1, 
where I and J are the total number of possible states of variables X and Y [11].  

SSCSS is now defined with the chi-square probability distribution (incomplete 
gamma function) as 

∫ −−
Γ

=
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χ

dttt
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where Г denotes gamma function [11]. This integral tells the significance of the de-
pendency between the two variables described by the chi-squared statistics, and as 
SSMI, it lies between zero and one. Not including simulations of random numbers the 
calculation of SSCSS is more feasible than that of SSMI. 
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3.3   Dependency Measures Based on Rank Correlation 

Spearman rank-order correlation coefficient (SR) and Kendall’s tau (KT) are depend-
ency measures of random variables based on rank correlation [11]. In general, the idea 
in rank correlation is to use the ranks of the values of the data points among all the 
other sample values, instead of the sample values themselves. In SR the value of each 
data point is replaced by its rank among all the other sample values, hence employing 
the absolute ranks of the data points. KT uses relative ranks of the data points by 
comparing whether a sample value is higher in rank, lower in rank, or equal in rank 
than the sample value to which it is compared to. Hence, in KT, only magnitudes of 
the data point values are needed.  

Let us first consider the SR in more detail. We will denote the data values of two 
random variables, X and Y, as xi and yi, indices referring to the observation number, 
and i = 1,...,M, where M is again the number of observations. When denoting the rank 
of point xi as Ri and the rank of yi as Si, the SR for the two random variables, X and Y, 
is defined as the linear correlation coefficient of the ranks 

212212 })({})(}{))(({ −− ∑∑∑ −−−−=
i ii ii ii SSRRSSRRr , (12) 

where R and S  are the mean values of the Ri’s and Si’s [11]. All ties in the ranks are 
assigned the mean value of the ranks that these values would have if their values were 
to differ only slightly. 

Again we wish to find the significance of a nonzero value of r. This can be done by 
computing a test value t = r[(M-2)/(1-r2)]-1/2, which is approximately distributed ac-
cording to Student’s distribution with M-2 degrees of freedom. This approximation 
does not depend on the original distribution of the sample values, and hence the ap-
proximation is always the same. The statistical significance of SR is now obtained by 
integrating the corresponding Student’s distribution from -t to t [11]. 

By using the same notations as previously, the calculation of KT is based on the 
comparison of the ordering of the relative ranks in two consecutive data point values 
in x to the respective ordering in y. If the relative ordering of the ranks is the same, 
then the data pair (xi, yi) is called concordant, and if opposite, the data pair is called 
discordant, respectively. If tie occurs only in x’s then the pair is called an extra y-pair, 
and if the tie appears only in y’s the pair is called an extra x-pair. In case of both pair 
ending in tie, the pair is ignored [11]. KT is now 

extraxdiscordantconcordantextraydiscordantconcordant

discordantconcordant

++++
−=τ , (13) 

where the labels refer to the number of occurrences of the respective events in the 
data. Under the null hypothesis of no dependency between the two variables, the sta-
tistical significance of KT, can be approximated as a normal distribution with zero 
mean and variance (4M+10)/[9M(M-1)] [11]. 

4   Estimation of the MRF Graph Structure 

Dependencies between the variables in a MRF, estimated with any of the measures 
described in Section 3, can be interpreted as similarities. Transforming these pairwise 
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similarities into dissimilarities they can be presented as a symmetric dissimilarity ma-
trix. The second step in finding an estimate for the graph structure is now to apply 
multidimensional scaling (MDS) [5] on the dissimilarity matrix. This results in a  
2-dimensional topology estimate of the true system topology, with nodes presenting 
the MRF variables and the distances between the nodes the maximally preserved 
similarities of the variables. The estimate for the graph structure is now obtained from 
the topology estimate by considering nodes within a certain threshold distance from 
one another as neighbours. 

4.1   Multidimensional Scaling 

MDS transfers dissimilarity measures of variables into a low dimensional distance 
map with nodes of the map presenting the variables and node inter-distances their 
similarities. First the similarity measures need to be turned into dissimilarity measures 
by subtracting similarity value from unity. Both the similarity and the corresponding 
dissimilarity matrix are symmetric when using any of the dependency measures pre-
sented in Section 3.  

Let us consider two nodes i and j with symmetric dissimilarity δij = δji [5]. Our goal 
is to find a topology for the nodes in 2-dimensions in which the inter-distances of the 
nodes optimally describe their dissimilarities. We will denote the coordinates of nodes 
i and j as xi and xj and their Euclidean distance in the mapping as dij(xi,xj). We apply 
non-metric multidimensional scaling (e.g. [17]) in which the optimal coordinate val-
ues in 2-dimensions are searched by minimising Kruskal’s stress-1 criterion [7], [8] 

2/1
,

2
,

2
1 }),(}ˆ),({{ ∑∑ −=

ji jiijji ijjiij dddS xxxx . (14) 

Here )(ˆ
ijij fd δ=  are called the target distances, or disparities, and are monotonically 

related to the observed similarities δij: f(δij) < f(δkl) ⇔ δij < δkl. The stress-1 criterion can 
be minimised e.g. by using the Shepard-Kruskal scaling algorithm, see e.g. [7], [8]. 

4.2   MRF Graph Structure Estimate as Applying MDS on Node Similarities 

Applying MDS on the similarities estimated for the MRF variables, the topology es-
timate that results approximates continuously the similarities of the variables in two 
dimensions. Hence we have obtained a topology estimate in two dimensions for the 
system variables. The graph structure estimate for the MRF can be derived by defin-
ing a threshold for node distances, uniform through the estimated topology, and then 
interpreting nodes within this distance from one another as neighbours. The graph 
structure estimate is now defined as undirected links between the neighbouring nodes. 
The graph structure estimate defines the conditional independence properties of the 
MRF model, and hence enables the estimation of the parameters of the joint probabil-
ity distribution of the MRF model. 

An obvious difficulty related to the estimation of the node neighbourhoods is in 
choosing an appropriate threshold value. One option is to specify the average number 
of node neighbours on the basis of the properties of the system considered, and then 
define the threshold value accordingly. If no information on the preferred average 
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number of neighbours exists the only way is to vary the threshold value and analyze 
the uncertainty of the model parameters in the parameter identification stage.  

One has to keep in mind that since the graph estimate is based on the threshold 
value, this choice may have drastic effects on the qualitative properties of the model. 
For example, when selecting too small a threshold value for a system behaving coher-
ently the resulting network is not fully connected and the coherence may be lost. 
Similarly, choosing a threshold ending in too large a neighbourhood size for a system 
consisting of nearly independent variables may result in false coherent behaviour. 

The method for estimating the graph structure is valuable in many practical situa-
tions where the graph structure may not be completely known in advance by the do-
main knowledge. In cases there exists some partial prior knowledge about the 
neighbourhoods of the variables these can be easily implemented to the graph ob-
tained by simply adding or removing links between the nodes.  

4.3   Identifiability of the Graph Structure 

The estimate for the graph structure was obtained by thresholding the node distances 
in the network topology estimate resulted when applying MDS. There are two obvi-
ous situations where the topology estimate can not be directly obtained with MDS. 
The first one is when the system variables to be modelled are behaving coherently, i.e. 
when all the variables are constantly in equal states through all the observations. In 
this situation the similarity lies in unity through all the variable pairs, and no MDS 
map can be obtained. We may interpret all the nodes interacting explicitly with each 
other, and hence define all the nodes as neighbours to one another.  

The second, opposite, situation arises when the variables are independent on each 
other, thus their states do not correlate. Since the similarity equals zero through all the 
variable pairs, again no solution is obtained with MDS. In this case the system can be 
modelled as a set of independent variables. 

5   Estimation of the MRF Model Parameters 

Successful identification of the graph structure enables the second part of the MRF 
model identification; the estimation of the MRF model parameters. How to estimate 
the parameters may depend on the model type chosen. A general approach for finding 
model parameter estimates is the maximum likelihood (ML) method [16]. To apply 
the ML method the partition function (normalisation term) of the joint distribution is 
needed. For large MRF models this is extremely difficult to calculate [19]. 

Pseudolikelihood estimation scheme [1], closely related to the ML method has 
been applied successfully in the literature [4]. In this procedure the model parameters 
are estimated from the product of the conditional probability distributions of the 
nodes (full conditionals). This is highly advantageous since now the partition function 
of the joint probability distribution need not to be calculated. By further utilising the 
conditional independence assumptions of (2), we find that each of these full condi-
tionals only depends on the set of neighbouring nodes (Markov blanket) of a node, 
defined by the MRF graph structure estimate. By using the same notations as in 
Section 2, and by denoting the model parameters with θ, the pseudolikelihood estima-
tion can be formulated as  
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where the second equality is obtained by using the monotonicity of log-function. The 
full conditionals needed in the estimation can be easily estimated as fixing the states 
of the neighbouring nodes of a node studied in the MRF joint probability distribution. 
Hence this estimation scheme is easily derived and it is effective in many situations, 
in particular when the state space of the MRF model is large. 

6   Case Study: Applying Ising Model on Telecommunications 
Network Data 

To illustrate the methods proposed in this paper, we will consider here the identifi-
cation of a MRF model for a telecommunications network. Telecommunications net-
works are examples of complex networks, and since exhibiting diverse phenomena 
such as coherence in state, discontinuous phase transitions, and hysteresis, we apply 
here the Ising model appropriate to describe such phenomena. In particular we aim 
here at modelling the behaviour of a set of base transceiver stations (BTS) which are 
the basic elements of which a telecommunications network, such as a GSM network, 
consists of.  

6.1   Synthetic Network Data 

Before using the MRF graph structure estimation scheme for real telecommunications 
networks, we will first test that the graph estimation scheme works with a synthetic 
network by comparing the topology recovered from the generated data with SSMI 
similarity measure and MDS to the true topology of the network. In [12] we have 
tested this reconstruction scheme with few parameterisations of model (5) and found 
that this scheme works quite well except the special cases discussed in Section 4.3.  

To demonstrate the method, the Ising model parameters (J, H, h0) were given val-
ues (0.1, 0.55, 0.3) and the external loads of the nodes were drawn independently 
from uniform distribution with interval [0, 1]. The synthetic network contained 30 
nodes and we generated 270 network state observations by using Markov Chain 
Monte Carlo methods with Gibbs sampling [10].  
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Fig. 2. The geographical (left), the logical (middle) and the estimated topology (right) of the 
synthetic network 
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As explained in Section 2.4, in general there exists two inconsistent topologies for 
a telecommunications network; the first, the logical topology, resulting from binary 
logical connections of the nodes and the second, the geographical topology, resulting 
from continuous connections due to physical locations between the nodes. Here the 
logical topology is defined through thresholding the node distances in the geographi-
cal topology and then applying MDS. We specified the average number of neighbours 
to be 8.8, and the value for the threshold was selected accordingly. Since the logical 
and geographical topologies are here consistent, the estimated topology is quite simi-
lar to them, as Fig. 2 shows. 

6.2   Real Network Data 

In real networks as state data for a BTS we use key performance indicators (KPIs), 
which describe qualitative properties of BTSs. The state data is obtained as unifying 
four KPI variables, each scaled into interval [0, 1], by calculating the Euclidean dis-
tance of each observation consisting of the four KPI values from an optimal value, 1. 
Then defining a threshold distance from 1 the unified state data is discretised into 
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Fig. 3. The geographical (left), the logical (middle) and the estimated topology (right) of the 
real network 
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Fig. 4. On left the predicted probabilities for state -1 (‘o’) as a function of corresponding data 
based probabilities. Optimal predictions are presented with dashed line. The estimated MRF 
graph structure is shown on right. 
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binary values (-1, +1) – here 51.3% of states had value -1. As the load data for the 
nodes we use another KPI variable. The network contains 29 nodes with 269 network 
state observations, giving 269*29=7801 node state observations. More information on 
the real data set can be found in [12]. 

Fig. 3 shows the geographical (left) and logical topologies (middle) of the real 
network and the topology estimate based on SSMI and MDS. The logical topology is 
obtained by applying MDS on the domain-based logical node connections. Fig. 3 
shows that many of the neighbour relations in the estimated topology are the same as 
in the geographical and logical topologies. Recall from Section 2 that now both the 
physical locations of the nodes and the logical connections affect the state behaviour 
of the nodes. Since the two topologies based on the domain-knowledge are inconsis-
tent the estimated topology is now expected to be somewhat different to them. Fur-
ther, since both the domain-based topologies affect the behaviour of the nodes, the 
best topology estimate is the one derived directly from the data, hence combining the 
effects of the two topologies.  

Now the estimate for the graph structure, shown on right of Fig. 4, is defined ac-
cording to the system properties by selecting the threshold value as having on the av-
erage of 8.34 neighbours per node, corresponding to the average amount of 
neighbours among the true logical node relations. Now the graph structure estimate 
can be compared e.g. to the graph structure according to the logical topology by com-
paring the average logical distance between the neighbouring nodes in the graph 
structure estimate, here 1.55, to the average logical distance among all the nodes, here 
1.85. Since the first number is lower than the second the estimated graph structure 
captures some of the true logical neighbours. 

The model prediction results, after estimating the model parameters (J, H, h0) with 
the pseudolikelihood method of (15), are presented on left of Fig. 4, showing the av-
erage predicted probabilities for state -1 for each node as a function of the corre-
sponding state probabilities calculated from data. Hence the results show that the pro-
posed graph estimation scheme works here leading to decent results. 

7   Conclusion 

Identification of a Markov random field (MRF) model can be considered in two parts: 
first the identification of the graph structure and second the selection of the model 
structure and the identification of the model parameters. The latter is considered ex-
tensively in the literature and the first one is usually bypassed by assuming the topol-
ogy information known e.g. through the domain knowledge.  

In many practical applications, however, the domain knowledge is often imperfect 
and the topology is either partly or completely unknown, or there may exist several 
inconsistent topology information. Hence in this paper we proposed a method for es-
timating the graph structure for a MRF model from data. The method is particularly 
valuable for large MRF models where the graph structure information is uncertain. 
We demonstrated the method by applying the topology estimation scheme on a tele-
communications network, where the method was found to give decent results in spite 
of using a binary approximation scheme for continuous state variables. 
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Neural Substructures for Appraisal in Emotion: 
Self-esteem and Depression 
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Abstract. In an attempt to bridge the gap between appraisal theory and the 
neuroscience of emotions, we have created a computational neural model in 
which a discrepancy between the internal value of global self-esteem and a 
more temporary, stimulus-inspired current self-esteem initiates an ongiong 
emotional response. We assign possible neural correlates to the nodes in this 
model, amongst which the orbitofrontal cortex and cingulate gyrus. We propose 
disruptions of the model analogous to states of depression. 
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1   Introduction 

The goal of the present paper is to find a common ground between appraisal theory, a 
framework firmly grounded in decades of psychological research on the emergence of 
emotions, and neuroscientific literature on the structures in the human brain that may 
underlie this process. According to appraisal theory, emotions are continuously created 
as responses to a recurrent, permanent process of assessment as to whether ongoing 
events are (potentially) beneficial or damaging, be it directly or indirectly. Different 
emotions represent differential outcomes of this assessment [1].  

A recent and detailed appraisal based framework is the Component Process Model 
(CPM) [1], in which several Stimulus Evaluation Checks (SEC’s) are identified. These 
SEC’s are organised in terms of four appraisal objectives: relevance, implication, coping 
potential and normative significance. These form the main headers under which SEC’s 
such as novelty and discrepancy-from-expectation are divided. In the CPM, it is claimed 
that these SEC’s will always be applied in the same order. 

Although appraisal theory, and the associated CPM to an even greater extent, point to 
several aspects of emotion of which neural correlates could potentially be found, 
precious little effort has been made to make the connection to the neurosciences. This 
area of science has made enormous progress in recent years, and many structures have 
been identified that have a role in emotional function, both on the side of emotion 
perception as on the production and regulation of affective states [2]. The structures 
involved form closely intertwined networks, and it has been proposed that there is a 
ventral system for rapid production of affective states, centered around the amygdala, 
insula, ventral striatum and ventral regions of anterior cingulate gyrus and prefrontal 
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cortex, as well as a dorsal system for regulation of these states, encompassing 
hippocampus and dorsal regions of cingulate gyrus and prefrontal cortex [2]. Due to the 
necessarily non-intrusive nature of research techniques and distributed character of 
emotional brain correlates, however, it remains difficult to pinpoint the exact function of 
an area, and thereby the exact mechanism underlying particular behaviours. 

2   Self-esteem 

In the current paper, we attempt to bridge the gap between these two research  
traditions through a neurally based computational model of the appraisal of self-esteem. 
Self-esteem has long been known to be involved in the development of feelings of 
anger. It has long been thought that it was low self-esteem per se that caused anger and 
aggression [3] but more recently it has been suggested that an instability of [4] 
or/combined with threat to self-esteem [5] creates violent responses. Baumeister et al 
(1996) [3] also point out that it is not low self-esteem per se, but a discrepancy between 
a global high self-esteem and a more temporary perception of a disagreement with this 
self-assessment somewhere in the outside world that gives rise to anger. This global 
self-esteem is generally viewed as a trait that is determined in youth and adolescence, 
and that retains similar values throughout life [6]. There is a distinction between this and 
self-evaluations, which refers to the way people evaluate their various abilities and 
characteristics separately. Then there is also a distinction between global self-esteem 
and more temporary emotional states, arising from positive or negative feedback. These 
are referred to as feelings of self-worth or as state self-esteem. 

Thus, we can view self-esteem as a specific appraisal that consists of the assessment 
of a discrepancy between two values of self-esteem, one (semi)permanent and the other 
temporary. This appraisal could result in an anger response or one of embarrassment, 
possibly dependent on a later appraisal of coping potential. In case of a highly appraised 
coping potential and an anger response, the ensuing (aggressive) behaviour can be seen 
as an attempt to restore self-esteem by standing up to whatever it was that caused the 
reduction of self-esteem in the first place, either in reality or imagination. 

3   Depression 

A neuroscientific notion that has often been connected to self-esteem (or a lack 
thereof) is depression. We can find numerous sources of a connection between the 
two [4] but here we must also be careful to take into account the more finely tuned 
distinctions involved. [7] find that it is a discrepancy between implicit and explicit 
self-esteem that is a correlate of depression, (again) not low self-esteem per se. In any 
case, it is not unlikely that if there is a neurally distinct mechanism for the maintenance 
of self-esteem, its disruption would play a part in the causes of depression. 

On the neuroscientific side, numerous findings from postmortem as well as structural 
and functional neuroimaging methods have implied involvement of the subgenual 
cingulate gyrus, orbitofrontal cortex, dorsolateral and ventrolateral prefrontal cortex and 
amygdala in depression [8]. 
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Recently, there have been advances in the treatment of patients with depression 
resistant to other treatments such as medication and psychotherapy, by application of 
chronic deep brain stimulation (DBS) to the subgenual cingulate region (Brodmann area 
25) [9]. This area has been shown to be hyperactive in treatment resistant depression, 
and DBS was shown to counteract this hyperactivity in this structure as well as reduce 
activity in several other areas of the brain (e.g. orbitofrontal cortex, medial frontal 
cortex) and increase activity in several others (e.g. dorsal cingulate) in four out of six 
patients. The treatment had both direct and long-term effects in terms of sensations 
reported by the patients and measured improvements in interest, motor speed, activity 
level and depression test scores. Depression has also been treated through lesioning of 
the anterior cingulate region [8]. 

Mayberg et al. [9] distinguish between several regions of the cingulate that appear to 
have different roles in depression. The subgenual cingulate (Brodmann area 25), a 
relatively dorsal region, is stimulated in DBS, and is hyperactive in depression. More 
anterior regions (BA 24) they find to be hypoactive in depression. In a different paper, 
Seminowicz et al. [10] present a path modeling analysis of the areas involved, using 
PET data and Structural Equation Modeling.  

4   Architecture 

We have created a neural model (see figure 1 for the basic structure of the model) 
consisting of a small number of graded nodes, each containing a single sigmoid 
response function, that produces an emotional response when a stimulus reducing the 
current value of self-esteem is perceived. This output then continues until the conflict 
between the remembered, internal value of global self-esteem and the more variable, 
current value is resolved by the perception of a stimulus that increases the value of 
self-esteem. We thereby propose that an emotional response is a (primitive) behaviour 
with as its goal the maintenance of ones value of self-esteem. 

 

Fig. 1. Schematic outline of the model. Closed arrows represent excitatory connections, open 
arrows inhibitory ones. The diamond shaped node represents modulation of w.  
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In this model, we have assumed the existence of a representation of the current 
value of self-esteem, encoded in the orbitofrontal cortex (OFC) analogous to state 
self-esteem as described above. The OFC has been associated with representations of 
value in a multitude of ways: OFC activation has been shown to represent the value of 
predicted reward/punishment in primates (see [11] as well as [12] for a ‘minireview’), 
and similar results have been found in the human brain through neuroimaging of 
reward learning [13]. The OFC has close anatomical interconnections with the 
amygdala, and is often activated in a similar if subtly different manner [14]. Therefore, 
the amygdala may also play a role in the representation of current self-esteem. 

We have also assumed the existence of a more permanent value of self-esteem 
encoded in long-term memory (LTM), analogous to global self-esteem. This could 
consist of some representation of episodic self-related memories, where we could 
think of separate nodes for memories related to specific characteristics of the self 
together representing the global self-image. This representation could reside in the 
medial prefrontal cortex, based on results obtained by [15], who found differential 
activation for self-referential judgement of trait adjectives when compared to other-
referential judgments. However, the neural location of this function might also lie in 
the medial temporal lobe, which is more traditionally regarded as the locus of 
episodic memory[16]. It is also possible that this representation of global self-esteem 
is not directly related to episodic memory but rather to a value attached to the concept 
of self, in which case it might reside in the OFC, or that this representation is 
distributed over several areas. Because of this uncertainty as to the neural correlate of 
global self-esteem, we will refer to this node as LTM rather than assign an analogous 
area in the brain. 

In addition to this, the model contains a node representing the cingulate gyrus 
(CG), monitoring the difference between these two values of self-esteem. Cingulate 
cortex activation has been found to correlate with monitoring functions [17], more 
specifically in Error Related Negativity, the ERP signal following error trials of 
almost any kind, and the cingulate is known to play a role in decision making as well 
as emotional processing. As mentioned above, this area is also highly involved in 
depression [9], as well as the voluntary suppression of negative affect [18]. 

The fourth node in the simulation spontaneously inhibits the LTM node. We could 
propose regions of the cingulate as a neural correlate for this node, but this is highly 
speculative. We will elaborate on this in the discussion. 

When a self-esteem related stimulus comes in, this will activate the LTM. The input 
reaching the LTM is not valenced, meaning that it is excitatory in response to any 
stimulus pertaining to self-esteem, regardless of whether this is negative (e.g. insult) or 
positive (e.g. compliment). 

The LTM in turn activates the OFC. A comparison between the two values takes 
place in the CG where, if the new value is lower than the old one (by a certain 
threshold), an emotional response will be initiated and the spontaneous inhibition node 
will be inhibited, thereby allowing the LTM to remain activated through its recurrent 
connectivity. If the new self-esteem value is not lower than the remembered value, the 
CG will not be activated and the spontaneous inhibition will continue to deactivate the 
LTM. So we have a system where any self-esteem related input to LTM will provoke a 
comparison (in CG) between the current value of self-esteem (represented by OFC 
activation) and its permanent, remembered value (LTM). If the new value is lower, 
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disinhibition of the LTM (via SI) will then cause all three modules (LTM, OFC and CG) 
to remain active until this difference in self-esteem values is changed. 

In order for this difference in self-esteem values to arise (or be resolved), and the 
recurrent activity in the system to start or stop, the value of the OFC will have to be 
changed. This occurs through changes in the recurrent weight of the OFC (w), caused 
by the valence of the self-esteem related input. So, if the input is negative, the recurrent 
activity of the OFC node will be reduced, thereby creating a difference in the CG and 
producing an emotional response and disinhibiting the LTM. This activation (and thus 
the emotional response) will continue until the OFC weight is increased again. This 
could occur either by a positive input from the outside world, or possibly by the creation 
of a coping strategy and thereby an internal re-evaluation. 

This model was created using Matlab Simulink, with a fixed step size of 0.01 and 
appying the Euler method of integration. In table 1, we describe the internal structure of 
each node in more detail, as well as weights and other parameters. Each neuron in the 
model performs a simple linear addition of all incoming signals and passes the summed 
activity x through a sigmoid response function y, where y(x) = 1/(1+e-x) – 0.5. The 
recurrent weight in the OFC node, w, consists of a continuous integration of the 
valenced inputs, with a maximum output of 1.05 and a minimum of 0.7, then multiplied 
by a constant (4). 

Table 1. Detailed description of nodes and parameters 

Node Function Weights Other 
parameters 

Input Produce 50 ms pulses, all positive (to 
LTM) or positive/negative dependent 
on valence (to w). 

to LTM: 1  

LTM Integrate excitatory input pulses with 
recurrent excitation and SI inhibition 

recurrent: 5 
to OFC: 1.1 
to CG: 1 

 

OFC Recurrent weight w is changed where 
OFC = y (OFC*w*c + LTM) where y is 
sigmoidal and c = (see also text) 

recurrent: w 
to CG: 0.8 

 
  

CG Ongoing comparison between OFC and 
LTM activation where CG = y (LTM – 
OFC – threshold) if LTM – OFC – 
threshold > 0. 

to SI: 4  

SI Spontaneous inhibition of LTM, unless 
inhibited by CG so SI = y (c – CG)  

to LTM: 1 spontaneous 
exc. (c): 0.8 

Summarizing the functionality of this architecture: when a stimulus is perceived that is 
both relevant to self-esteem (input to LTM) and negative (input to w), the representation 
of the current value of self-esteem in OFC is reduced, leading to a mismatch between the 
value of global self-esteem (in LTM) and of current self-esteem, represented in the CG. 
This mismatch causes an emotional response, and this response continues to be produced 
until the discrepancy is resolved through a positive input, restoring the value of current 
self-esteem. This process of mismatch analysis could be viewed as an appraisal, since it 
is a continuous monitoring, resulting in an emotional response. 
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5   Results 

As can be seen in figure 2, a negative input results in expected activations (CG, OFC, 
LTM) and deactivations (SI) of the nodes in the model. These nodes remain active / 
deactivated until a positive stimulus comes in to restore the value of self-esteem. OFC 
has a baseline activation (low stable state) and a higher activation while the LTM is 
active, reflecting the self-esteem value. 

 

Fig. 2. Activations for OFC, CG (left), LTM and SI (right) nodes with a negative (at time 0.5) 
and a positive (at time 3) 50 ms input pulse 

  

Fig. 3. Activations in the model when spontaneous activation constant of the SI node is 
increased to 1.4 (left) or at its normal value of 0.8 (right), with two negative (t = 0.5 and 3) and 
two positive (t = 5.5 and 8) 50 ms input pulses. In the right hand figure, the negative input at t = 
0.5 causes activation of CG as well as increased activation of OFC, where a reduction of OFC 
activation causes an increase in CG activation. In the left hand figure, the negative input at t = 
0.5 causes a deactivation of OFC, and a second negative input is needed at t = 3 to boost the 
system into activation. CG shows activity from t = 3 to 5.5. These activations were omitted for 
purposes of clarity. 

Thus, we have proposed a mechanism by which an ongoing emotional response is 
produced when a negatively valenced stimulus pertaining to self-esteem is perceived, 
and a positive input is needed to stop this response. We assume that, in depression, this 
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system is disregulated in some way. We hypothesize that this occurs through a 
hyperactivity of the SI node, which represents the subgenual cingulate, shown to be 
hyperactive in depression [9]. Figure 3 shows that this hyperactivity causes a failure to 
activate the CG and LTM as well as a deactivation of the OFC to the extent that it can 
be turned off completely, instead of retaining its normal low stable state. In a ‘healthy’ 
version of the model, negative input causes an increase in activation of the CG and 
LTM, instead of a decrease, which puts the OFC into its high activity state. Behavioural 
symptoms of depression seem to be in agreement with this pattern of activations and 
deactivations. A reduction in activity can be explained by the lack of CG output and 
feelings of worthlessness are in agreement with the reduced levels of both global (LTM) 
and current (OFC) self-esteem. This fits in with the data concerning DBS of the 
subgenual cingulate (CG 24) as a treatment for depression, if we assume that this region 
is the neural correlate of the SI node. A deactivation of this area by DBS would reduce 
its hyperactivity. 

In order to determine if the SI module is the only structure in the model that could be 
analogous to the hyperactive subgenual cingulate in depression, we have looked at the 
effects of increased activation of the other modules as well. However, for CG and LTM 
this results in an increased CG output, which would result in increased responses to 
stimuli rather than the reduced emotionality that is found in depression. Changes in the 
weight between the CG and SI node could also decrease CG output initially, but a value 
of w low enough to activate the CG can still be reached with a large amount of negative 
input. 

6   Discussion 

We have presented a model in which a self-esteem related stimulus evokes an emotional 
response through a neurally based architecture. The assessment in the CG node of the 
model of the discrepancy between global and current self-esteem could be viewed as an 
appraisal of implication. Since the information that the stimulus is relevant is already 
avaiable in the input, we can take the appraisal of relevance to have gone before. The 
appraisal of coping potential would logically follow, where an adjustment might be 
made as to the kind of emotional response: with a high coping potential, an anger 
response could be justified, whereas with a low coping potential sadness or 
embarrassment may be more appropriate. In this way, we incorporate aspects of 
appraisal, the neuroscience of emotion and the psychological and neuroscientific aspects 
of depression in one simple model.  

However, this simplicity is also a weakness. The view presented in this paper may be 
somewhat oversimplified, in the sense that emotional processes in the brain form a 
highly intricate system, in which various different components continuously interact, 
and the processes after our cingulate output still have an influence on what goes on 
inside the model. Having just the one output module may seem like a bit of a stretch. 

We do feel that this can partly be justified because the cingulate gyrus does appear to 
play a large and deciding role in producing and regulating affective states [2] and action 
generation [19]. Projections of this area include amygdala and ventral striatum, known 
to be important areas in the generation of emotions. Phan et al [18] find that activity 
within the dorsal anterior cingulate is inversely related to intensity of negative effect in a 
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task where the subjects were instructed to suppress this affect. This may provide support 
for our tentative proposition of the subgenual cingulate as an inhibitory area, analogous 
to the SI in our model. We intend to extend the model to incorporate more of this 
functionality in the future. Another function we intent to add in future simulations is that 
of positive emotion when self-esteem is increased. 
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Abstract. In this paper, we will address the endeavors of three disci-
plines, Psychology, Neuroscience, and Artificial Neural Network (ANN)
modeling, in explaining how the mind perceives and attends information.
More precisely, we will shed some light on the efforts to understand the
allocation of attentional resources to the processing of emotional stim-
uli. This review aims at informing the three disciplines about converging
points of their research and to provide a starting point for discussion.
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1 Introduction

In this paper, we address the endeavors of three disciplines, Psychology, Neu-
roscience, and Artificial Neural Network (ANN) modeling, in explaining how
the mind perceives and attends information. More precisely, we address the
efforts to understand the allocation of attentional resources to the processing
of emotional stimuli. By bringing the three disciplines together, we aim at in-
forming researchers about some of the recent advances in the other disciplines:
whereas temporal attention and emotion are often studied separately, and with
very disciplinary approaches, we argue that advances in one domain can help
to refine the others. We further argue that the interplay between Psychology,
Neuroscience, and ANN modeling lies in the constraints that each discipline can
impose on the others, offering converging evidence towards one common goal.
To focus our enterprise, we will address results from studies investigating the
modulation of temporal attention by emotional stimuli. Temporal attention con-
trasts with other types of attention, like spatial attention, by setting the focus
on the unfolding allocation of attentional resources to the processing of stimuli
over time, and the underlying processing dynamics. Studies addressing tempo-
ral attention use experimental paradigms like Rapid Serial Visual Presentations
(RSVP), for which it has been shown that emotional stimuli elicit particular
patterns of response. Our paper is structured as follows. In the next section, we
present the recent theoretical advances in emotion psychology with regards to
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the modulation of temporal attention by emotion. The third section describes
the brain mechanisms highlighted by neuroscience, pointing out the key areas
of the brain involved in the cognitive functions of attention and emotion, and
the brain mechanisms underlying their interaction. In the fourth section, we will
briefly present some of the ANN modeling proposed to account for the modula-
tion of temporal attention. We will conclude by highlighting some of the issues
an interaction between Psychology, Neuroscience, and ANN modeling can help
to resolve.

2 Psychological Perspectives on Pre-attentive Processes
and Emotion

Psychology plays a major role in preparing the stage for the interplay between
the disciplines. In this section, we will first describe the modulation of temporal
attention by emotion, along with some of the behavioral results issued from
experimental psychology. We will then introduce two sets of theories that have
a special interest in describing the unfolding dynamics underlying the allocation
of attentional resources to the processing of emotional stimuli.

2.1 The Modulation of Temporal Attention by Emotion

In a typical RSVP experiment, participants are presented with rapidly flowing
images (presented at a frequency ±10 Hz), one replacing the other at the same
spatial location on the screen. Participants are asked to spot and perform tasks
on one or more targets embedded within distracting images. Varying the time
interval between two targets renders it possible to indirectly measure the amount
of resources that is allocated to the processing of targets: results in a typical
dual task experiment indeed show that the perception and processing of a first
target (T1) hinders the perception and processing of a second target (T2) if
it appears within 200-400 milliseconds after T1 (Figure 1). This phenomena
has been rhetorically named an ”Attentional Blink” (AB) [13]. Interestingly,
emotional targets seem to benefit from a processing bias, alleviating the blink.
If extensive research has been done on temporal attention, surprisingly little has
been devoted to the modulation of temporal attention by emotion.

In an early study, Anderson and Phelps [1] showed that, not only did negative
words alleviate the typical blink response compared to neutral words, but also
that the amygdala was critical to benefit from the emotional significance of the
words. These authors concluded that a critical function of the human amygdala is
to enhance the perception of stimuli that have emotional significance. As we will
discuss in the next section of the paper, the amygdala seems to play an important
role in the interaction between attention and emotion. The modulation of the
blink by the intrinsic significance of the targets has also been reported in a study
showing that participants did not experience an AB for their own names but
did for either other names or nouns [18]. Equivalent results have been reported
when T2 targets were familiar faces compared to unfamiliar faces, the former
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Fig. 1. Panel a. Ilustration of the RSVP, T1 was a white letter, T2 was the black letter
”X”. Panel b. Group mean % of trials in which T2 was correctly detected, after correct
identification of T1, plotted as a function of the relative serial position after T1 [13],
with permission, copyright American Psychology Association 2007.

alleviating the blink [8]. The latter results have been shown to be sensitive to
trait personality differences, like trait anxiety.

In the remain of this section, we will provide the reader with accounts from
current theoretical frameworks of emotion psychology. In the landscape of emo-
tion theories, two sets of theories have a particular interest in describing the
unfolding dynamics underlying the genesis of emotions, and the allocation of
attentional and cognitive resources to the processing of emotional stimuli.

2.2 Accounts by “Basic Emotions” Theories

The concept of basic emotions refers to the postulate that there is a small num-
ber of emotions, fundamentally distinct from one another [5, e.g.]. As a result of
this perspective, some emotions have been studied more thoroughly than others,
as in the case of fear for which several models are proposed. In this theoreti-
cal thread, Öhman and colleagues [12] proposed an evolved module of fear and
fear learning. Shaped by evolutionary pressure, this so-called fear module would
have become specialized in the solving of potentially harmful situations for the
species, like snakes, spiders or particular social encounters. The authors fur-
ther argue that a dysfunction of this module would explain the selective anxiety
disorders that are commonly described, like snake phobias, spider phobias, or
social phobias, respectively [11]. The authors describe this module as being selec-
tive, automatic, encapsulated, and implemented in a dedicated cerebral circuit
centered on the amygdala. This module is related to the research on fear condi-
tioning in rats by LeDoux [10], who showed evidence for two routes involved in
the processing of fearful stimuli, emphasizing the role of the amygdala in early
stages of the processing. Interestingly, this last model has been computationally
modeled using plausible ANN [2], offering converging evidence that responses to
fear conditioning could occur even without the impulse from primary auditory
cortices.
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2.3 Accounts by Appraisal Theories of Emotions

The theoretical framework offered by the appraisal theories of emotions posits
that emotions result from cognitive appraisals that individuals make about oc-
curring events. Unlike the theories previously described, these theories suggest
common mechanisms to the genesis of all emotions. These mechanisms can take
the form of rapid, automatic, unconscious, cognitive appraisals evaluating stim-
uli against particular criteria. In other words, the process causally linking a
stimulus to an emotional response is divided into multiple cognitive processes,
which are common to every emotions, and that, in turn, evaluate the stimulus
against a finite number of criteria. The result of this appraisal process yields
to the genesis of a particular emotion. Several appraisal theories are available
[16, for a review], out of which we selected Scherer’s Component Process Model
[15] for being sufficiently detailed to allow precise predictions, and sufficiently
general to encompass a fair number of phenomena.

The Component Process Model defines an emotion as an episode of interre-
lated, synchronized changes in the states of all or most of the five subsystems
classically described in the emotion literature, in response to the evaluation of an
external or internal stimulus event as relevant to major concerns of the organism.
More precisely, Scherer defines the nature and the functions of the cognitive eval-
uations yielding to the genesis of an emotion. These evaluations are described
in terms of cognitive appraisals, named Stimulus Evaluation Checks, allowing
the genesis of differentiate emotions. One can see checks as devoted processes
evaluating the stimulus in regards to a specific criteria. The concept of relevance
is at the core of the theory, being the first step in the sequence of appraisals [15].
It is also of particular importance in our endeavor as this first appraisal process
is believed to determine the amount of cognitive resources to be allocated to the
further processing of the perceived stimulus. This mechanism is evolutionarily
justified in that it provides the organism with the economy of available resources,
only allocating processing resources to important stimuli.

In general, any stimulus that could potentially influence the goals, or maintain
the individual, in a sustained level of well-being is considered relevant. From
this first appraisal unfold the orienting of the attention towards the stimulus
event, the allocation of cognitive resources to its further processing, and the
preparation of the organism to a behavioral response. A facial expression of
fear or anger, for instance, will both represent a relevant information for the
individual, signaling the occurrence of a negative event, obstructing the goals
of the individual, or a potential danger. The degree to which the individual
will process this information, allocating more or less attentional resources to its
processing, attributing to it a particular emotional value, and adequately choose
a line of reaction will depend on his goals, his needs, or the context in which the
stimulus appeared. As will be discussed in the next section, the amygdala may
be a potential candidate for implementing some kind of relevance detector [14].

To summarize, both sets of theories emphasize the role of pre-attentive pro-
cessing mechanisms in the unfolding of temporal attention and allocation of
resources to cognitive processing. Whereas the predictions from the ”basic emo-
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tions” theories are mainly focused on threat-related stimuli, the predictions from
the appraisal theories of emotion extend to any stimulus which is relevant to the
organism, for any of many different reasons. Finally, both sets of theories em-
phasize the role of subcortical brain areas, like the amygdala, in subserving these
mechanisms. Therefore, we suggest that the influence of emotion over temporal
attention can occur in a pre-attentive scenario, as soon as the perceived, relevant
stimuli enters the thalamo-amygdala circuitry.

3 Pre-attentive Processes and Emotion in the Light of
Neuroscience

The knowledge gained from Neuroscience is of two kinds. Using very different
technologies, researchers either describe the topography of the brain networks
involved in specific tasks, or the temporal dynamics at play in these networks of
structures. In this section, we will set a particular emphasis on the description
of the dynamics involved in the modulation of both attention, and temporal
attention, by emotion.

3.1 Brain Mechanisms Underlying the Modulation of Attention by
Emotion

Endogenous modulation of attention (e.g., spatial attention) by emotion, is of-
ten described in terms of top-down bias effects from one region of the brain in
favor of other, lower level, regions of the brain [20]. Many neuroscience studies
have indeed shown enhanced responses to emotional stimuli relative to neutral
stimuli, and researchers suggest that direct top-down signals might be emitted
not only from fronto-parietal regions (e.g., Pre-Frontal Cortices, PFC), but also
from subcortical regions like the amygdala. As discussed in the previous section,
the amygdala, in particular, is known to be crucial in fear processing and fear
learning [10]. Its position in the processing stream of perceptual information
makes it a perfect candidate to potentially influence many cortical and subcor-
tical regions. However, if two routes have reliably been identified in rats, there
is still some debate about the precise circuitry involving the amygdala in hu-
mans. Regardless of the hypothesis advanced, researchers agree nonetheless to
attribute an initial appraisal of emotional significance to this structure, based
on limited information, early in the processing stream. This influence could take
the form of direct feedback to sensory cortices, but also as indirect modulation of
parietal and frontal regions (e.g., PFC). This latter signals would then produce
a cascade of events which would signal emotional significance.

3.2 Brain Mechanisms Underlying the Modulation of Temporal
Attention by Emotion

Dehaene and colleagues used recordings of event-related potentials (ERP) to
compare the temporal dynamics of seen and unseen (blinked) words in a typ-
ical AB experiment [4,17]. Describing the cortical activations of unseen words,
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the authors report a drop in the waveform of components peaking around 300
milliseconds, which correlated with behavioral visibility ratings. Whereas ERP
methodology cannot be used to make unambiguous inferences about brain local-
izations, estimations techniques allow to roughly determine the sources of corti-
cal electrical activity. Using this approach, the authors report that seen words,
compared to unseen words, initiated an intense spread of activation within left
temporal and inferior frontal regions (about 300 milliseconds after stimulus on-
set), which would then spread to lateral prefrontal and anterior cingulate cortices
(about 440 milliseconds), before extending in more posterior regions (about 580
milliseconds). In their interpretation, the authors introduce the concept of a
global workspace, which refers to the notion that the different high-level, special-
ized, brain areas involved in the processing of visual stimuli interconnect to each
other, to form a global workspace processing the stimuli into a unitary assem-
bly supporting conscious reportability. Perceived stimuli would thus compete to
recruit this global workspace that, once activated, only affords exclusive access,
yielding to the inability to process subsequent stimuli for a transient period of
time. Areas in the global workspace theoretically map onto the description of
the processing streams involved in visual perception, from perceptual areas to
higher associative areas of temporal, parietal, frontal, and cingulate cortex [4].
Which is to say that the bottleneck described in AB studies would therefore lay
in such top-down influence of higher-level areas, like the PFC or more parietal
areas, over the lower-level areas involved in the visual streams.

A second scenario has been proposed by Hommel and colleagues in an article
reviewing evidence from numerous imaging techniques [7]. In this article, the
authors present a neurocognitive model of the AB, which situates the process-
ing bottleneck reported in behavioral results in the rendering of an intrinsically
parallel system into effectively serial dynamics: after nonselective processing in
specialized perceptual cortices, stimuli are fed to object-specific temporal areas,
where they are matched against long-term knowledge and, consequently, iden-
tified. Identified objects are then maintained in frontal working memory, and
receive support by means of the synchronization of the relevant structures in
frontal and parietal cortices. By closing a perceptual window, this synchroniza-
tion stabilizes the representation maintained in working memory, increasing the
likelihood that the target be reported, and preventing other stimuli from entering
further processing.

If these two scenarios have received considerable interest from the research
community and, being somehow complementary, do provide consistent explana-
tions about the dynamics underlying temporal attention, and its modulation by
top-down processes, none explicitly takes into account the modulation of tempo-
ral attention by emotion, and no better account is being offered as of today. To
summarize, both representative scenarios start from the assumption that the pro-
cessing of perceived stimuli is initiated in perceptual cortices, which then feed
into fronto-parietal systems processed and aggregated feature-representations.
These systems then complete the processing of the stimuli, whilst preventing
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other stimuli to interfere with the processing by one means or another. We there-
fore suggest that emotion may modulate temporal attention by means of top-
down enhancing signals emitted very early in the processing stream, mediated
by the amygdala, for instance.

4 ANN Modeling of Temporal Attention and Emotion

Because attention in general, and the AB in particular, represent fairly con-
strained and well described phenomena, a reasonable number of ANN models
are available, compared to other phenomena, each emphasizing a different aspect
of the findings. Out of the few models that exist, we selected three models for
representing the range of focus ANN models can entail. This range of focus is
best appreciated at the light of the abstraction level emphasized by each ANN
model. In that sense, the first model we describe focuses on the high-level in-
terpretation of the findings of behavioral experiments, whereas the second and
third models set a special emphasis on the low-level neurobiological plausibility
of the network and the dynamics involved. We discuss the appropriate balance
between these levels in the conclusion of this manuscript.

In a recent effort to converge the different findings of the literature into a
unifying theory of the AB, Bowman & Wyble [3] presented a model of tem-
poral attention and working memory encapsulating 5 principles that represent
the main effects described in psychology literature. This model, called the Si-
multaneous Type, Serial Token (ST2) model, is modeled using several layers
and explicit mechanisms closely mapping the effects that are described in the
literature. Whereas results obtained with this model provide a good fit with
the results reported in the literature, the authors acknowledge that their am-
bition was to provide a ”cognitive-level explanation of the AB, and temporal
attention in general”, rather than a plausible implementation of the mechanisms
described in Neuroscience studies. Therefore, we argue that it is unclear to what
extent this data-driven implementation can fully explain the dynamics underly-
ing the interaction between temporal attention and emotion, even though some
of the principles this model rely on do refer to emotional significance, at least
semantically.

A competing ANN model is provided by Dehaene and colleagues [4]. Unlike
the previous ANN model, the authors based their model on the neurobiology
of neural pathways from early sensory regions (Areas A and B) to higher as-
sociation areas (Areas C and D). The global workspace, as described in the
previous section, lays in the interconnections of the nodes in higher areas C and
D (Figure 2, panel a). In addition, the basic brick from which they built the
model closely models a thalamo-cortical column, reproducing the laminar dis-
tribution of projections between excitatory and inhibitory spiking neurons. In
doing so, they reproduced the basic computational unit that can be found in neu-
ral pathways, and managed to explicitly compare results from their model with
actual neuroimaging data, providing converging evidence for a global workspace
hypothesis. However, if their implementation closely models some aspects of
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neurobiology, it neglects other aspects that have been highlighted in Neuro-
science research, and described in the previous section: one of which being the
close interaction between subcortical and cortical structures in the processing of
visual stimuli. Furthermore, their model does not provide any mechanism from
which a modulation of temporal attention by emotion could arise.

Fig. 2. Panel a. Schematic architecture of the global workspace model. Areas A and
B represent the perceptual pathways leading to the global workspace, areas C and D
implement the global workspace including fronto-parietal regions [4]. Adapted with
permission, copyright National Academy of Science of U. S. A. 2007. Panel b. CODAM
architecture extended by Amygdala and Orbito-Frontal Cortex to address emotional
influences on attention [9]. Adapted with permission, copyright Elsevier 2007.

A third attempt at modeling temporal attention has been made by Taylor and
colleagues [20,6] in the COrollary Discharge of Attention Movement (CODAM)
model. This model was developed by analogy to models of motor controls applied
to attention [20,19,9] in which the creation of the attention modulation signal
is emitted from a controller structure onto separate modules where activations
are to be modulated (Figure 2, panel b). The CODAM model is based on the
descriptions provided by Neuroscience, both in terms of the structure of the
network and of the dynamics implemented. As such, it contains input pathways
leading to a working memory that can be influenced by the conjunction of several
signals, both exogenous and endogenous. Critical to this approach is the Inverse
Model Controller (IMC), which boosts the representation of perceived stimuli.
This attentional boost is required for stimuli to reach working memory, and thus
be reported. In conjunction with a conflict monitor, the IMC interferes with
subsequent stimuli if the first stimuli has not yet reached the working memory.
As a result, the monitor will suppress the second stimulus in the IMC, and
thus withhold its attentional boost, hindering its successful encoding in working
memory (i.e., yielding to an AB). This model also contains modules representing
subcortical structures, like the amygdala. Input to the amygdala comes from
crude, early signals directly from the input module, representing posterior sites



The Link Between Temporal Attention and Emotion 867

in the brain. It also interacts with the OFC module, which encodes the value of
stimuli and can influence attention via top-down activations.

5 Conclusion

In this paper, we addressed the perspectives of three disciplines in explaining
temporal attention, and its modulation by emotion. We highlighted concepts
issued from Psychology that are now being rediscovered by Neuroscience. The
concept of relevance, for instance, central in the appraisal theories of emotion
[15] seems to play a major role in the definition of the functional domain of the
amygdala [14]. We then introduced several scenarios proposed by neuroscien-
tists to account for the unfolding of temporal attention. Finally, we described
examples of ANN models accounting for the AB, and some of the mechanisms
implemented to underlie a modulation by emotional stimuli. However, ANN ap-
proaches are very different, depending on the abstraction level that modelers
choose to pursue. The ST2 model, for instance, only semantically represents the
computations that could be implemented in the brain and, even though it pro-
vides a good fit with behavioral results, it does not, however, offer plausible
converging evidence as to how emotional stimuli modulate temporal attention
in the brain. The CODAM model, on the other hand, is structured on the basis
of what has been described in the Neuroscience literature. By doing so, the au-
thors had to fill in the blanks by making a number of assumptions. For instance,
they introduced the notion of corollary discharge mediated by an Inverse Model
Controller for which there is only indirect evidence. This offers new tracks to
explore to both psychologists and neuroscientists.

In the introduction of this paper, we proposed that advances in one discipline
could help to refine the other disciplines. We further argued that the interplay
between the disciplines lied in the constraints that each discipline can impose on
the others. These constraints can be expressed in the form of the goodness-of-fit
between the models proposed by each discipline. In other words, by providing the
three disciplines with a common goal, i.e. the modulation of temporal attention
by emotion, we argue that the findings in one discipline should be able to address
the findings in the others. Taking this interdisciplinary view, we raise a number
of questions:

– Most of what is known about the modulation of temporal attention by emo-
tion has been investigated using threat-material. What is the effect of posi-
tive relevant stimuli over the unfolding process of attention?

– If relevance is subjectively determined by the appraised propensity of stimuli
to affect the goals, the needs of the individual, how do inter-individual or
personality factors modulate the unfolding process of attention? How could
this be accounted for in Neuroscience, and in plausible ANN models?

– If mechanisms like the corollary discharge have proven useful in modeling the
modulation of temporal attention by emotion [6], how do these mechanisms
relate to recent findings in Neuroscience? In what way can we model the
perceptual window described by Hommel et al. [7]?
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11. Öhman, A.: Psychology. conditioned fear of a face: a prelude to ethnic enmity?

Science 309(5735), 711–713 (2005)
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Abstract. Over the last few years, functional Magnetic Resonance
Imaging (fMRI) has emerged as a new and powerful method to map
the cognitive states of a human subject to specific functional areas of the
subject brain. Although fMRI has been widely used to determine aver-
age activation in different brain regions, the problem of automatically
decoding the cognitive state from instantaneous brain activations has
received little attention. In this paper, we study this prediction problem
on a complex time-series dataset that relates fMRI data (brain images)
with the corresponding cognitive states of the subjects while watching
three 20 minute movies. This work describes the process we used to re-
duce the extremely high-dimensional feature space and a comparison of
the models used for prediction. To solve the prediction task we explored
a standard linear model frequently used by neuroscientists, as well as
a k-nearest neighbor model, that now are the state-of-art in this area.
Finally, we provide experimental evidence that non-linear models such
as multi-layer perceptron and especially recurrent neural networks are
significantly better.

1 Introduction

Thanks to the advent of functional Magnetic Resonance Imaging (fMRI), neuro-
scientists received impressive help in studying the functionalities of the human
brain. This fMRI technology enables detailed analysis of neural activity by pro-
viding the means to collect brain activation data at high spatial and temporal
resolution. Thanks to this, many studies identify regions of brain activated when
humans perform specific cognitive tasks. Although traditionally fMRI scans have
been used by neuroscientists to identify brain regions correlated with external
conditions such as sense stimuli, there is burgeoning interest in adopting the
reverse view, i.e., to use pattern recognition techniques and machine learning to
predict external stimuli based on fMRI data [1].

Preliminary studies have shown that it is possible to decode visual perception
cognition [2] looking at the brain state image acquired through an fMRI scan.
The same approach is currently being extended to infer further high level cog-
nitive functions [3]. The challenge of decoding mental states has been defined
as a learning problem. The goal is to train a classifier that given an fMRI brain
image, the mental state, predicts the associated cognitive state [4].
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The machine learning community addressed the brain interpretation mainly
using linear models and achieving controversial results. Previous works [5] indi-
cate that support vector machines (SVMs) outperform Gaussian näıve Bayes and
a k-nearest neighbor classifiers (k-NN ). On the other hand, more recently [6],
it has been provided empirical evidence where a k-NN classifier outperformed a
linear kernel model.

The above empirical analyses have been performed on datasets determined
with cognitive experiments designed to address a single stimulus, i.e., the inter-
pretation issue are just discriminative tasks between two alternative cognitive
states. While this way of proceeding is effective from the point of view of neuro-
scientists that are looking for brain mapping, it affects the generality of empirical
analysis on learning models since the evaluation is restricted to a single cognitive
function.

In 2006, a team of neuroscientists organized a competition on decoding of men-
tal states, the Pittsburgh Brain Activity Interpretation Competition (PBAIC)1.
They provided fMRI data collected from three subjects while they were watching
three 20 minutes movie segments from a television show. The subjects themselves
later annotated the movies with respect to several ratings (e.g., language, atten-
tion, amusement etc.). The competition consisted in predicting the ratings of the
third movie for all three subjects from the functional data, using the annotated
ratings for the first two movies as training.

The contribution of this work is a report of our winning entry in the above
competition, and an investigation of the use of non-linear learning model as feed
forward neural networks and recurrent neural networks for the task of brain
image interpretation. We provide empirical results on the dataset of PBAIC
competition that provides the labeling of many different cognitive functions on
the same brain scans.

In Section 2 we describe fMRI and feature ratings data in detail and define
the prediction task. Section 3 is devoted to the description of our approach to
preprocessing. In Section 4 we present the models used to predict the cognitive
state of the subject from the brain images. Finally, Section 5 presents the result
and in Section 6 conclusions are drawn.

2 Description of the Task

The task consists on the analysis of fMRI brain data of human subjects watching
movie segments of a tv-series. The data was produced by the neuroscience group
at the University of Pittsburgh for a competition held in 2006. Each movie
segment is rated by the subjects themselves with multi-valued categories, such
as the presence of faces, tools, sadness, arousal, individual actors, language,
music, etc2. The challenge is to interpret the brain activity of the human subject
allowing predicting what he/she is experiencing.
1 http://www.ebc.pitt.edu/2006/competition.html
2 The subject cognitive experience is made of 13 feature ratings, 3 actor presence

ratings and 3 location ratings.
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In more detail, the same segments of movie were shown to three subjects
(2 male and 1 female, with mean age of 26 years) that afterwards rated the
movies with their personal impressions3. Both fMRI data and features ratings
were sampled at a frame-rate of one frame every 1.75 seconds.

Each frame of the fMRI data is a 3-dimensional image made of 64x64x34
voxels. The intensity of the voxel represents the amount of blood arriving at the
particular area of the brain measured using blood-oxygen-level dependant fMRI
contrast. This is an indirect measure of the brain activity in the corresponding
area. The image sequences were preprocessed for motion correction, slice time
correction, linear trend removal, and spatial normalization. Each brain image
has an associated vector of ratings provided by the human subjects (the target
of our task). These ratings were temporally convolved with a hemodynamic filter
that makes these features real-valued4. The features scored in the competition
are of two types:

Content: body parts, environmental sounds, faces, food, language,
laughter, motion, music, and tools;

Reaction: amusement, attention, arousal, and sadness;

but there were also other optional scores which were, actors and locations. We
refer the reader to [7] for a more detailed description of the task and the data.

For the remaining part of the paper, we evaluated the proposed models using
a subset of the available features: Amusement, Body parts, Faces, Language, and
Motion. The reason is that for these ratings the evaluation of the quality of the
used models is more robust. All the discarded ratings are characterized by the
absence of a significant number of positive samples, hence the model evaluation
are not as robust as for those ratings well sampled that we selected.

3 Image Processing and Dimensionality Reduction

The fMRI data and the corresponding ratings that we used for the experiments
in the present paper are made of two movies collected in a total time span of
40 minutes at the frame-rate of 1.75 seconds. Hence, the sum of the temporal
sequences is made of about 103 brain images and rating samples. From these
sequences, we have to select training and testing sets. In addition, each of these
3-D brain images are extremely noisy and high dimensional (105 voxels). This
suggests that these images need to be reduced in their dimensionality both from
a computational standpoint as well as to alleviate the loss of prediction accuracy
due to the curse of dimensionality. In the remainder of this section, we describe
the process of image feature attribute generation. The main idea is to select
3 The ratings given by the subjects resulted to have high discrepancies, i.e., the cor-

relations between the ratings of different subjects were sometimes very low.
4 The reason for this convolution is the need for temporal realignment of the fMRI

sequences with the events in the movies. The blood flow increases in the interested
brain area few seconds after the area activity. This delay is well studied and the
hemodynamic filter compensates this delay.
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the most informative voxels in the brain and then to cluster the voxels with
similar behavior in time. Each cluster then is used to extract one image feature
attribute.

3.1 Noise Removal

We observed that the variation of intensity of a voxel over time has much higher
frequency components than the feature ratings. Therefore, the first step in the
preprocessing phase consists on the filtering of high frequency noise for all voxels
in the brain images by a low pass filter, i.e., a moving average window. The
dimension of the moving window was 5 time steps. The reason for the choice of
this window size is that it preserves the important part of the signal without
losing those frequencies that also appear on the ratings (see Fig. 1 for an example
of signal smoothing).

Fig. 1. The top graph describe the temporal behavior of a voxel randomly selected
in the brain. The middle graph describes the temporal trend of the Language feature
rating. The bottom graph is the result of low-pass filtering applied to the top graph.

3.2 Feature Selection

The second preprocessing step is the selection of the most informative voxels in
order to discard all the voxels not informative for the task. We adopted the mu-
tual information measure to evaluate the informativeness of a voxel with respect
to the desired target. The feature extraction was conducted as follows. For each
feature rating, we found its mutual information to the value at every voxel in
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Fig. 2. Mutual information of some slices of brain image of subject 1 against Language
feature ratings. The scale goes from 0.0 (bright voxels) to 0.4 (dark voxels). Notice
the evident highlight of the hearing center in the temporal lobe of both left and right
hemispheres

the image5, separately for every subject. For each subject and feature rating,
we ranked the voxels according to their mutual information and we selected the
best 10% voxels obtaining a subject-feature mask of approximately 104 voxels.
Figure 2 shows an example of the values of mutual information computed for
the voxels in some slices of a brain image.

3.3 Features Extraction with Voxel Clustering

The third step in the preprocessing phase consisted in a further reduction of the
dimension of the brain representation from 104 to 200 attributes. This reduction
is obtained by grouping the voxels into a smaller set of representatives. To obtain
these representatives we clustered the voxels with a simple k-means algorithm.
However, in the neuroscience community there is still a debate about whether
the cognitive processes are centered in a few specific and well-organized areas of
the brain, or are distributed in many smaller and sparse agglomerates of neurons.
Hence, we decided to adopt a measure of similarity taking into account these
two possibilities. Our clustering algorithm therefore is designed to group voxels
which are both near in space and similar in the temporal trend. This is obtained
adopting a distance measure able to combine these two kinds of information:

d = dα
spatial(1 − rtemporal)1−α, (1)

5 To compute mutual information between the time-course of each voxel and a given
feature rating we quantized both signals (50 steps for voxels and 16 steps for feature
rating) and estimated probabilities with the help of Laplace smoothing. The choice
of the quantization grids has been motivated by two opposite factors: representing
signals without losing relevant information and reducing estimation problems.
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Fig. 3. Example of an important cluster (with approximately 300 voxels). The voxels
are organized into sparse small agglomerates.

Fig. 4. The dark black line is the average behavior of all the voxels belonging to a
cluster

which is a geometric mean of a standard Euclidean distance (dspatial) that
uses the 3D coordinates in the brain, and the Pearson’s correlation over time
(rtemporal). The weighting factor α can be used to give priority to space or corre-
lation. With α = 1 only the Euclidean distance is used, hence a spatial clustering
is performed. On the contrary, with α = 0 only correlation is used, performing
in this way a sort of temporal clustering. In our experiments we gave the same
importance to spatial distance and correlation (i.e., α = 0.5).

In both movies there are some scenes lasting for a few seconds each, where
nothing was projected on the screen6. Since the location of these blank sections
was known, we decided to remove these parts from the brain image sequences
while computing the correlation. This was done to eliminate noise due to the
possibly random states of the brain during these blank sections.

6 These “blank” parts were used during data collection to refine the calibration of the
MRI machine.
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Each cluster is therefore a spatio-temporally proximal set of “informative”
voxels. Figure 3 shows an example of a cluster of voxels determined with the
above processing. The example shows that the voxels in the cluster are sparse
agglomerates in the brain. At the end, the representation of the brain at a given
time instance, i.e., an fMRI volume, was reduced to 200 features. These features
were computed as the average intensity of all the voxels in the image associated
to the corresponding cluster (Figure 4 shows an example of how the voxels in a
cluster participate to the creation of a unique average feature). We constructed
the feature attribute datasets for each subject and feature rating.

After preprocessing, the data was normalized to improve the quality of the
models. We decided to perform a linear scaling of the feature ratings to the
interval [0, 1]. The brain data was, instead, normalized according to mean and
variance7. For each of the 200 features, the mean was forced to 0 and the variance
to 1.

4 The Prediction Models

As previously mentioned our intention was to let the “data do the talking”, i.e.,
to let the data determine whether it was possible to find useful dependencies
between brain activation and cognitive states. Therefore, excluding the spatio-
temporal assumption made for “data compression” during clustering, we made
no any other particular assumption on the distribution of data or on the depen-
dencies between brain activation and stimuli. Starting from this hypothesis, we
did not know whether there exists any linear or non-linear dependence between
the brain activations and the desired output. For this reason, we preferred to
select a non-linear model. Clearly, the drawback was that a bad choice of the
model complexity (i.e. the number of free parameters) can cause a severe over-
fitting of the model on the given data if the data is not as complex as the model.
Our choice went to Neural Networks, even considering that these models cannot
help to identify the regions of interest in the brain (regions devoted to specific
cognition tasks).

Moreover, in the data there are at least two kinds of temporal dependencies
inherent in the above brain activation sequences. The first kind of dependence
is what we like to call “latency” (or “inertia” of the scenes). Since the subjects
are watching a video, there are few drastic changes in the scene from one frame
to the next. We can assume that the features appearing in a scene of the movie
(music, a face, a location, some food, etc.) have some persistence, i.e., they will
last for a certain time in the movie. Hence, the “instantaneous” forecasting given
the current input can be reinforced by the hypothesis made in the past scenes.

The second kind of dependence encoded within the sequence can be referred
to as “adaptivity” of the brain. When a stimulus or a combination of stimuli
arrives to a subject, his/her brain is activated in certain locations according
to the cognitive process. These locations and the strength of activity, however,
change in time according to changes in the cognitive process. For example, the
7 All 200 features were normalized with x′ = x−x̄

σ
.
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first time that a subject sees an actor in a movie his/her brain may be involved
in solving several cognitive problems (identifying who is the actor, comparing
the appearance with respect to his/her memory of past movies, memorizing the
face if unknown, and many other specific unconscious activities). As far the actor
continuously appears in the movie, the cognitive efforts change in time, maybe
reducing to just recognizing the character. The idea is that the brain activation
can slowly change in time for the same stimulus.

Both the above-described varieties of dependence motivate a temporal analysis
of the data. Hence, we believe recurrent neural networks (RNN ) to be appropri-
ate models both because of the ease with which time dependence can be modeled
as well as their ease of learning or estimation.

As comparison versus RNN we also tested other linear and non-linear models.
The first obvious choice was to compare the RNN versus the multi-layer per-
ceptron (MLP). This was necessary to see whether the hypotheses on temporal
dependencies were sustained by experiments. Then we decided to evaluate also
a very simple general linear model (GLM ) described by linear equations:

Y = XA (2)

where the parameters A are determined with an ordinary least squares esti-
mation. The reason for this evaluation is that this is a reference model in the
neuroscience community; hence, it was quite natural to consider it as a baseline.

The other model we tested is a k-NN that, together with SVMs, is considered
the state-of-art for the current application. Many authors showed that for the
current task k-NN frequently gives better results than SVMs.

4.1 Experimental Setting

We used the data of the two movies both for training and for testing adopting a
cross-validation approach. Since each movie is composed of segments separated
by intervals of blank video, we used these blank intervals to split the two movies
into 12 consistent segments (6 for each movie). Each of these segments is made
of approximately 100 temporally ordered samples. Then we performed the leave-
one-segment-out training on all possible combinations of 11 segments, iterating
the test set over all the 12 segments. Each feature rating was predicted separately
with preprocessing of data and training of the model performed separately for
that rating.

Independently of the model one of the major problems of the neural networks
is the choice of the network topology (i.e., the number of free parameters). During
our experiments we observed that very few hidden units were usually enough to
create overfitting problems both for RNN and MLP. Hence, to avoid overfitting
we decide to adopt cross-validation as stopping criterion. From the 11 training
segments, we were holding-out 2 randomly selected segments used to stop the
back-prop training algorithm on the remaining 9 segments. In particular RNNs
were trained with a standard back-propagation through time. Both networks were
using the hyperbolic tangent output function for hidden units and the logistic
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output function for the output unit. The recurrences in RNNs were only on the
hidden layer. Weights were randomly initialized in the interval [-0.05, 0.05] and
updated with a dynamic learning parameter and with moment.

The evaluation of the results was done using the Pearson’s correlation between
estimated and real feature ratings as suggested by the competition guidelines.
The reason for this measure of correctness is that we have sequences of real values
to compare. In this case, there is not any kind of correctness but just similarity;
hence, it was not possible to determine a standard precision/error evaluation.
The NNs models, due to their indeterministic behavior, were experimented with
5 trials and the results were then averaged.

5 Results and Discussion

Both MLP and RNN were tested with 4 hidden units, still having severe prob-
lems of overfitting. Regarding k-NN, since this is a regression problem, we have
seen that the best solution was to average the ratings of the most similar k brain
activations. Aalmost all studies of k-NN applied to this task are designed on con-
trolled experiments, were the subjects are repeatedly presented with a controlled
set of stimuli (usually positive and negative). In this task, however, there is not
control on the sequence and the combination of stimuli, because they are con-
sequence of a real experience (watching a movie). Hence, a lot of noise appears
in the brain signals. For this reason, the best solution was to smooth the noise
averaging the best k ranked elements. The average was weighted with values
inversely proportional to the corresponding Euclidean distances. In particular,
we discovered that for all features the best results were with 115 ≤ K ≤ 120.
We chosen K = 118.

In Tab. 1 are shown the average results of the different models for the 5 differ-
ent feature ratings. Apparently, non-linear models are always better than linear
models. Moreover, the exploitation of temporal autocorrelation, as expected,
gives a little improvement in the quality of results.

Table 1. The results of the 4 models over all feature rating and their average

Amusement Body parts Faces Language Motion Average

GLM 0.209 0.327 0.311 0.426 0.381 0.331

k-NN 0.087 0.334 0.394 0.439 0.446 0.340

MLP 0.285 0.432 0.468 0.605 0.506 0.459

RNN 0.306 0.446 0.480 0.621 0.543 0.479

6 Conclusion

The PBAIC team provided an extremely rich data set that includes complex spa-
tial and temporal dependencies among brain voxels and cognitive states. For the
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first time it was possible to evaluate the performance of a learning model across
many and cognitive functions. Our preliminary study shows that non-linear mod-
els as feed-forward and recurrent neural networks are effective in dealing with
the complex task of decoding brain states as acquired by fMRI scan. The be-
havior has been shown quite stable with respect to different classes of cognitive
tasks.

The slight enhancement introduced by the recurrent neural networks suggests
that the extraction of relational knowledge, both at temporal and spatial level,
remains an open challenge. Anyway, it is still not clear whether the temporal
response of the brain is different with respect to concurrent stimuli rather than
a single stimulus.
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Abstract. Attention and emotion are closely interlinked and recent results have 
shown some of the neuro-physiological details of the effects of attention on 
emotion through the distractor devaluation (DD) effect. We develop a possible 
neural attention control architecture to explain the DD effect, and show by 
specific simulation how the N2pc (an early component of attention movement) 
can be encoded to produce encoding of devaluation of distractors.  

Keywords: Attention, Emotion, Competition, Feedback, Devaluation by 
Inhibition, Orbito-Frontal Cortex, Face Processing. 

1   Introduction  

Attention is now appreciated as acting as a filter on complex environments so as to 
reduce the effects of distractors. The manner in which such distractors are handled 
under attention has been explored recently through analyses of the early signals 
associated with the N200, an indicator of specific brain activations at about 180-
300msecs after a stimulus input. For stimulus inputs which are roughly symmetrical 
across the midline, a distinct increase in inhibition has been detected contralateral to 
the target or alternatively to the distractors (if salient enough) as part of the N200 
signal [1, 2, 3]. The difference between the contralateral and ipsilateral activations is 
termed the N2pc (standing for ‘N2 posterior contralateral’), and has been suggested to 
be an indicator of the initial focussing of attention [4, 5]. As such this signal is of 
great interest in understanding in more detail the dynamics of attention, either as 
arising through amplification of the target activity, or by means of distractor 
inhibition or from both forms of activity. 

In association with the distractor inhibition interpretation of the N2pc there has 
been discovered a change in emotional valuation of the distractor stimulus [6, 7]. 
Subjects were shown a pair of faces, one of which had to be selected as being of a 
particular gender and then its colour reported on. The trustworthiness of the distractor 
face was found, on a subsequent test, to be reduced compared to the target. Numerous 
experiments have duplicated this effect (termed distractor devaluation or DD for 
short), although some of its characteristics still need to be uncovered. 

Recently data on the N2pc were analysed in relation to such devaluation [8], so as 
to help develop a model of the underlying mechanism of the devaluation process. The 
data involved not only observations of the N2pc arising from processing of a target 
(as a face of a specific gender) and a distractor face, but also of the correlation of the 
size of the N2pc with later evaluation of trustworthiness of the distractor face: the 
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larger the N2pc, the larger the devaluation of the distractor. This result thereby 
provides an important experimental clue as to how the devaluation process might be 
occurring in the brain. 

In this paper we will develop a simple neural architecture to begin to model the 
N2pc itself, as well as propose its extension to be able to handle the more delicate 
question of encoding the level of distractor inhibition in appropriate parts of the brain 
so as to produce a devaluing effect of the encoded inhibition. At the same time we are 
interested in the mere exposure ((ME) effect [9]), for which there is very recent 
relevant data in [10]. Several conjectures have to be made here, beyond 
simplifications assumed in the visual architecture, in order to model the N2pc and the 
associated distractor devaluation. These conjectures lead to questions/predictions 
concerning the manner in which limbic system value codes can be manipulated by use 
of the inhibition activated during attention search. We can obtain a rough fit to the 
empirical data of [8] but considerably more experimental work must be done to 
answer some of our questions and allow the model to be suitably refined. 

2   Methods 

2.1   General Architecture 

The modules involved in attention control are known to be in parietal and pre-frontal 
sites. Brain imaging results indicate the goal-nature of the pre-frontal cortical activity, 
with the attention control signal being generated, for spatial attention movement, in 
the parietal cortex, very likely in the superior parietal lobe (SPL) [11, 12, 13]. For 
feature/object based attention nearby sites, such as the temporo-parietal junction (TPJ) 
have been observed active under feature-based attention control [14]. The stimulus 
representations are well known to be created in occipital and temporal cortices. At the 
same time trustworthiness evaluation is expected to involve limbic sites in orbito-
frontal cortex and amygdala, as well as components such as insula and superior 
temporal lobe [15]. 

The simplest attention control architecture is thus that of ballistic control, in which 
there is a goal region (in prefrontal cortex) biasing stimulus input (in a spatially 
independent manner (associated with face representations) so as to generate (in 
superior parietal lobe, fed by the spatial maps of the face inputs) feedback to cause 
attention amplification/inhibition of posterior cortical activity of stimulus 
representations in occipital and temporal cortices in a spatially dependent manner. 
The information flow in this ballistic model is: 
 
Goal module→ Attention signal generator → Posterior cortex (stimulus activity) (1) 

 
In this flow diagram the goal module receives its activation as arising 

endogenously from earlier task conditions, so that suitable goal nodes will have been 
activated prior to the stimulus input so as to prepare the overall system for suitable 
target inputs. In the face input case, there will be a node for the suitable face gender 
active, so biasing, by the feedback in (1), the input to lower level cortex of stimulus 
input. Since the side on which the target face is to be presented is only specified once 
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the input enters, there will also be bottom-up control of the spatial focus of attention, 
as studied, for example, in [16]. This will activate top-down attention control in the 
posterior parietal cortex (PPC) [17, 12] biased by the spatial positions of the faces, so 
as to provide an attention feedback which generates hemispheric asymmetry in the 
processing at the level of posterior cortex (which we take here to be V4). Finally we 
include value maps that are negatively influenced by the endogenously driven 
attention to the distractor nodes in V4 through attention feedback, as shown in (2) and 
discussed in more detail later. Thus the more complete architecture for this mixed 
endogenous/exogenous attention paradigm is as in the flow diagram (2) below: 

 
→ Value maps    

Object goal module    〈 → Object attention control → Feature maps (2) 
  Spatial attention control ↔ Feature maps  

2.2   Experimental Paradigm 

The detailed paradigm to which we are applying the above architecture is that of [8]: a 
sequence of face pairs is presented to each subject for 200 msecs while they are 
fixating centrally, with each face on either side of the central fixation cross. The 
subject is required to attend to the faces so as to determine which face has a particular 
pre-assigned gender (M or F), and then to report the colour of the chosen face. At a 
later stage, 1200 msecs after the gender response, they are shown a copy of a face 
(either M or F) and asked to rate its level of trustworthiness for them, on a scale from 
1 to 5). It was observed in [8] that there was an N2pc in relation to the distractor 
faces, which was well correlated to the level of trustworthiness, with a low value 
(more untrustworthy) corresponded to a larger N2pc. 

This result could be interpreted, as noted by [8], to there being a larger inhibition 
created by the more untrustworthy (distractor) faces, as evidenced by the size of the 
N2pc. The N2pc was thereby acting as an indicator of the inhibition needed to prevent 
distractor interference, and this inhibition resulting in reducing the value attached to 
the distractor face. 

2.3   Specific Architecture  

The overall architecture of the model is based on substantial volume of research on 
the perceptual and attention systems and a reasonable amount of research on the 
emotion system. The links between the perception/attention system and the emotion 
system in the model are also broadly based on the known anatomical connectivity 
from both primate and human neuroanatomy. However, we have made a number of 
assumptions regarding the more detailed characteristics of these links that were 
motivated mainly by the extant literature on the DD effect that, itself, provides 
primarily behavioural results. As such, the model goes beyond a mere reproduction of 
the extant results from the DD effect studies by proposing a range of predictions that 
can be tested experimentally both behaviourally and neuroscientifically. 

The attention control system needs to be influenced by the stimulus input so as to 
achieve the goal. This latter is endogenous: ‘to detect the appropriate gendered face  
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and then report its colour.’ We assume this detection proceeds by using bottom-up 
guidance of spatial attention biased by a top-down influence from the prefrontal 
cortex (PFC) (as schematise in (2) above), and given in more detail along the lines of 
figure 1. 
 

 

Fig. 1. The overall architecture of the DD model. Solid lines correspond to excitatory 
connections while dashed lines correspond to inhibitory connections. Double lines indicate 
connections with weight adaptation according to modified hebbian described in main text. The 
blobs with biological gender-symbols correspond to face-gender-feature-sensitive neurons (V4) 
or face-gender-sensitive neurons (FFA, PFC, OFC). Blobs with letter L(R) correspond to 
left(right)-hemisphere-sensitive neurons while blobs with T(D) letters correspond to 
target(distractor)-coding neurons. OFC blobs with Rew(Pun) arched above them are coding for 
reward(punishment) of blob object. V4 module has left and right hemispheric components 
indicated by L and R dotted-line-defined groups. For details of nature of coding in various 
modules see main text above. 

The various levels of encoding in the various modules of figure 1 are as follows: 

1) The visual area 4 (V4) module consists of a left-hemisphere and a right-
hemisphere part that each process the contralateral face (ilpsilateral activations can be 
neglected for simplicity). Each hemispheric part contains three neurons, one coding 
for male features, one for female features and one for non-gender-specific or 
ambiguous features. In figure 1 the latter is represented by a superposition of the male 
and female biological symbols whereas the male-feature–coding neurons are 
represented by the male biological symbol and the female-feature-coding neurons by 
the female one. We choose here only one node for each of these, but note that these 
nodes represent a cluster of living neurons. Such single node representations should 
therefore act as graded neurons and not spiking neurons, since we are averaging over 
the responses of thousands of neurons at a time. A second set of nodes also code more 
generally for faces without any gender specificity (the hermaphrodites); these are also 
included in the module. 
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2) The neurons in the fusiform face area (FFA) module are coding for gender 
only, as a cluster responding to male of female faces (so denoted by the male and 
female biological symbols respectively). They have receptive field of the whole 
display (across both hemispheres). They feedback additively to the gender-sensitive 
nodes in V4. This feedback is both excitatory to same-gender sensitive nodes in V4 
and inhibitory to all other nodes in V4 of any sort, with greatest inhibition to those 
nodes representing the opposite gender. 

3) The neurons at PFC level code in a similar way to those in the face fusiform 
area (FFA) only for gender; there are thus only two nodes (also denoted by the male 
and female biological symbols respectively) in each module PFC, FFA, with no 
spatial specificity. These feed back additively to the gender-sensitive nodes of the 
same gender in FFA, together with inhibitory feedback to all other nodes of any sort. 

4) The PPC module for the attention feedback signal, codes only for spatial 
position, so is composed only of the two nodes denoted L and R. 

5) The orbitofrontal cortex (OFC) module has two neurons for each gender, one 
coding for reward and the other for punishment [18], although it could still be that 
there is only one node for each gender coding for its overall value, and that these lie 
only in one or other of the regions distinguished by [18] as coding for reward or 
punishment separately. We discuss this coding in more detail later. 

We note that there is lateral feedback inhibition both from the PFC nodes to those 
coding for the complimentary gender from PFC to FFA and from a given hemisphere 
to the opposite one from PPC to V4 with spatial topography. There is also lateral 
inhibition in V4 between nodes coding for the features of a given gender. In real 
brains, this would be achieved by local inhibitory interneurons activated by the 
neurons coding for the opposite gender features. In our model, there is simply an 
inhibitory input to any node of the network that can be driven by other nodes either 
within or across modules. There may also exist lateral inhibition between the left and 
right nodes of the PPC module; however, we haven’t included this in our model at the 
time, as the contralateral feedback inhibition generated by these nodes was sufficient 
to achieve target-distractor discrimination. Finally, we must note that suitable delays 
have been added in the model between the input and the V4 and FFA modules to 
simulate the known ventral visual path latencies reported in the relevant literature. 
Further delays could be added between the other modules as well; however, the 
graded response neurons we used for these simulations are not particularly sensitive 
to small inter-modular delays so they were left out at this point. If the model was 
implemented using more detailed spiking neurons, more care would have to be taken 
with the signal delays across the various modules and subtle differences such as the 
ipsilateral versus contralateral (interhemispheric) signal delays should be considered 
and accounted for.   

2.4   Interpreting the N2pc 

Due to ambiguities of uncovering the underlying neural activity from surface-
measured ERPs (related to vertical flows in multi-layered cortical sheets as well as 
variations in the cortical surface with respect to the skull), we therefore do not attempt 
to model the signs of the appropriate ERPs, but only their magnitude. The mechanism 
for the N2pc is as follows. The target gender goal in PFC sends spatially independent 
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feedback to lower levels, and most specifically to V4 (either directly or through FFA). 
In the scenario of [8] distractor shapes could be all possible faces or orientation 
conjunctions of importance in face detection for the opposite gender. 

A further important contribution to the competition arises from PPC to direct the 
spatial attention focus, in an exogenous manner, to the site of nodes in V4 coding for 
the target face, together with inhibition to the opposite hemisphere; this contribution 
will be spatially asymmetric, whereas the feedback from PFC/FFA is spatially 
symmetric. The resulting competition on V4, spatially biased by feedback from PPC 
and gender-wise from PFC/FFA, will involve the outputs from the target-contributing 
node, in either hemisphere, being sent from V4 to PPC (and back to V4 by 
recurrence). The target-contributing nodes in V4 will be boosted by the PPC attention 
feedback, the others in V4 on the opposite hemisphere being inhibited. 

The N2pc will therefore be created through the excess of activation in V4 in the 
target hemisphere as compared to that on the opposite hemisphere, as brought about 
by the target-representing nodes on the target side winning the overall competition in 
their modules, being boosted recurrently by the nodes in PPC coding the spatial co-
ordinates of the target face, with larger inhibition to the hemisphere containing the 
distractor face (which is not helped by the endogenous excitatory bias from 
PFC/FFA). 

To conclude, the hemispheric activity difference suggested as being at the base of 
the N2pc is that brought about by the excess of feedback inhibition over excitation 
from PPC to V4 in a given hemisphere, through the greater extent of the feedback 
inhibition from the target side of PPC as compared to the inhibition on V4 from the 
distractor side of PPC to the target hemisphere. This asymmetry is boosted by 
feedback excitation to V4 from the target face goal nodes in PFC/FFA; this is 
spatially symmetric, but helps bias the excitatory feedback from PPC to the target side 
of V4. 

2.5   Detailed Mechanism of Devaluation  

To develop a devaluation mechanism we must note that the evaluation phase takes 
place under quite different attention conditions as compared to the initial target search 
phase. In the evaluation phase only the distractor is presented as a stimulus, so that 
there will not be any lateral competition on PPC. Nor is the stimulus to be valued in 
the same spatial position, it now being at fixation as compared to its previously being 
to left or right of fixation. Thus valuation encoding of inhibition to the distractor face 
representation must have occurred in a spatially-independent or spatially-spread 
manner. It would thus be expected to arise from ventral inhibition, say at PFC or FFA 
level, but be encoded, say in OFC, where spatially invariant values of stimuli are 
stored. Such inhibition was in any case supposed to be the source of the N2pc, so it is 
the level of that inhibition which must somehow drive the devaluation process, and 
explain the correlation between the size of the N2pc and the DD level. 

We take the relevant inhibition to arise from PFC, with inhibition onto the 
distractor node in FFA or V4, say, from the target node in PFC. These will determine 
the level of relative bias given to the target and distractor nodes in V4, hence the level 
of the N2pc. At the same time this inhibition is encoded as a modification of value (so 
trustworthiness) in OFC. 
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We assume that the value of a stimulus is encoded in OFC by stimulus input to an 
excitatory node, whose output is determined by the predicted reward available form 
the stimulus. Associated with the excitatory node is an inhibitory one, which can 
reduce the level of output of the excitatory node as appropriate from later experience. 

Using this pair of nodes coding for reward, it is possible to achieve distractor 
devaluation by either an ‘active’ mechanism or an ‘adaptive’ one. The former uses the 
continued activity of the inhibitory inter-neuron in OFC so that it feeds continually to 
its relevant excitatory stimulus node so as to lower its value; on a later trustworthiness 
evaluation the value reported, being modulated by the inhibitory input, will thereby be 
reduced. On the other hand for the adaptive mechanism it is assumed there is some 
longer term modification (increase) of synaptic weights to the inhibitory input, so 
producing a devaluation of trustworthiness in later testing. These two mechanisms are 
quite different at cellular level, and also could, we expect, be differentiated by testing 
the time course of the DD effect as the lag between the attention task and the 
valuation task is increased from the initial 1200 msecs in [8], say to several hours or 
days (when the continued inhibitory node activity will be expected to have abated). 
We present results below for only the synaptic learning mechanism. 

We assume these long range axons from PFC to FFA or V4, which have collaterals 
going to an inhibitory interneuron accessing the M or F node in V4, also send their 
collaterals to the similarly coded nodes in OFC. This could arise by correlated signals 
in V4 and OFC occurring when either the M or F face is presented, so helping modify 
the connections onto OFC in the present paradigm. Thus when the representation of 
the distractor suffers inhibition in V4 a similar learning of this reduced reward will 
occur by learnt increase of the synaptic strength from the PFC target node onto that 
inhibiting the distractor-coded node in OFC; this will devalue the distractor, as 
required. 

Details of the longer-term adaptation mechanism assumed to be at the basis of the 
DD effect are by the information flows: 
 

Long range axon collateral 
from FFA 

→ Inhibitory node in 
OFC 

→ excitatory output node in 
OFC 

(3) 

 
We denote by w the connection strength of the input from FFA to the inhibitory node 
in OFC. Then the long-term synaptic modification equation is taken to be of simple 
Hebbian form: 
 

τ dw/dt = -w + Hebbian term (4) 
 
where the Hebbian term is proportional to product of the input to the inhibitory 
neuron and its output. The resulting increase in w due to the inhibition of the 
distractor will cause an increase in w (by equation (4)) and hence bring about DD by 
greater inhibition of the relevant OFC excitatory output node. 

The model can be extended to take into account the trial-to-trial variations caused 
by individual stimuli by addition of noise to the input nodes. 
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2.6   Detailed Mechanism of the ME 

We have also extended the model to incorporate the mere exposure effect (ME). This 
is achieved by use of a similar Hebbian learning to (4) for the connection weights of 
activity arriving from given inputs onto the FFA. These will be biased to be a larger 
increase under attention for the target and a smaller on for the distractor, so will lead 
to larger inputs for targets than distractors; this will be expected to lead to easier 
processing and hence an increased familiarity effect [9]. 

3   Results 

We are able to reproduce N2pc size variation leading to DD size variation as in [8]. In 
figure 2 are presented the dynamical flows of activity in V4 for the two different 
values of the inhibitory feedback strength of 0.2 and 0.8; in table 1 we give the N2pc 
levels (the middle line) for the inhibitory strengths of 0.2, 0.4, 0.6 and 0.8. We see 
that in each of figure 2 there is a faster and higher peak of such activity on the 
contralateral side to the target, as reported in [8].  

 

Fig. 2. N2pc for ventral attention inhibition strength 0.2 (left) and 0.8 (right) 

 
Fig. 3. Weight adaptation for distractor devaluation (left) and mere exposure (right) 
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In figure 3 (left) is plotted the temporal development of the inhibitory weights onto 
the relevant OFC nodes for the two extreme feedback inhibition strengths to V4 used 
in figure 2. In figure 3 (right) we present the weight adaptation for mere exposure for 
the two cases of stimulus only on for 200 msecs or on until response. Finally the main 
results are presented in tabular form in Table 1, with a clear correlation between the 
N2pc and the DD for the range of inhibitory feedback values. We assume that these 
strengths vary across the subjects, so fitting with the variations observed in [8].We 
note that the results presented here depend heavily not only on the general 
architecture but also on parameters chosen for the simulations. More experimental 
data is needed to be able to refine these choices. 

Table 1. Simulation results for different values of ventral attention feedback inhibition strength 

Ventral Attention Feedback Inhibition Strength 0.2 0.4 0.6 0.8 
Contralateral – Ipsilateral activations 0.035 0.045 0.060 0.085 

Distractor Devaluation Weight at Evaluation 1.309 1.338 1.555 2.075 

4   Conclusion 

We have presented a simulation architecture enabling a recent important result on the 
relation between attention and emotion to be simulated. The relation of distractor 
devaluation is robust, and has been tested in a variety of paradigms. We have had to 
make several assumptions. 
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Abstract. Taking neuromodulation as a mechanism underlying emo-
tions, this paper investigates how such a mechanism can bias an artificial
neural network towards exploration of new courses of action, as seems to
be the case in positive emotions, or exploitation of known possibilities,
as in negative emotions such as predatory fear. We use neural networks
of spiking leaky integrate-and-fire neurons acting as minimal disturbance
systems, and test them with continuous actions. The networks have to
balance the activations of all their output neurons concurrently. We have
found that having the middle layer modulate the output layer helps bal-
ance the activations of the output neurons. A second discovery is that
when the network is modulated in this way, it performs better at tasks
requiring the exploitation of actions that are found to be rewarding.
This is complementary to previous findings where having the input layer
modulate the middle layer biases the network towards exploration of al-
ternative actions. We conclude that a network can be biased towards
either exploration of exploitation depending on which layers are being
modulated.

1 Introduction

In the brain, different levels of neuro-active substances modulate the sensitivity-
to-input of neurons that have receptors for them [1, page 94]. Fellous [2] proposes
that emotion can be seen as continuous patterns of neuromodulation of certain
brain structures. Kelley [3] argues that in their broadest possible sense, emo-
tions are required for any organism or species to survive. They allow animals
to satisfy needs and act more effectively within their environment. She argues
that emotions are derived from neurochemically coded systems. These systems
have been present in one form or another throughout our evolutionary history.
Emotions can be influenced by altering the levels of these neuromodulators in
the nervous system.

Emotions also help the reasoning process [4]. Evans puts this idea in a game-
theoretical framework in his search hypothesis [5], according to which, in a ra-
tional agent confronted to an open-ended and partially unknown environment,
emotions constrain the range of outcomes to be considered and subjectively ap-
plies a utility to each. The search hypothesis can be seen as an example of an
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agent moving from exploration of possible outcomes to an exploitation of the ac-
tion providing the current expected highest expected utility. However, the best
course of action does not need to be learnt through experience. Nesse [6] defines
emotions as specialised states of operation that give an evolutionary advantage
to an agent in particular situations. LeDoux [7] describes a distinguishing char-
acteristic of cognitive processing as flexibility of response to the environment.
Emotions provide a counter-balance to this by narrowing the response of an
agent in ways that have a greater evolutionary fitness. As an example, predator
avoidance driven by fear is an ideal behaviour to be selected for and optimised
by evolution. It is a behaviour that needs to be maintained until the prey reaches
assured safety regardless of whether it is able to continually sense the predator or
not [8]. Nor will the prey benefit from being distracted by less important sensory
input while it is still in danger. Successful fleeing behaviour might not require
exploration of different actions when instead, exploitation of known strategies
for a successful escape should be given priority. On the contrary, positive emo-
tional states are thought to promote openness to the world and exploration of
new courses of actions [9].

2 The Agent

We have used the simplest possible agent to test the effect of neuromodulation
when applied to an artificial neural network, an agent that cannot directly sense
its external environment. It can only sense two critical resources of its simulated
body which it must maximise. These resources are referred to here as ’energy’ and
’water’. The agent can execute a set of actions that either increase or decrease by
a given amount the energy or water level in the body, plus two neutral actions.
Neutral actions are useful because if they are used differently to each other then
it throws doubt on how well the agent is adapting. The ’inactive’ action is used by
default when an agent does not choose for itself. This can happen if no activation
reaches the output neurons of its neural network. It results in each resource of
the agent being reduced by the maximum cost. The effect of this is more costly
to the agent than if it deliberately chose the most costly action available to it as
that would only result in a reduction of one resource.

2.1 The Neural Network

The agent adapts using a feed forward neural network of spiking leaky integrate-
and-fire neurons based on the model described in [10] and [1, page 339]. The
network learns which outputs should be most frequently and strongly fired to
minimise the subsequent level of input signal in the next turn. Each neural
network is made up of three distinct layers; input, middle and output layer. The
network is iterated over a fixed number of times within a single turn.

For each resource, the input layer has two neurons that output to the middle
layer. One neuron signals the need for the resource and the other neuron signals
the satisfaction of that need. There are situations in which an effective behaviour
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for an agent may be to decrease a need but not satisfy it. Alternatively there
may be situations in which an agent needs to store more resources than it is
used to doing. In these experiments the agent is tasked only with maximising its
resources.

There is one output neuron per action. The action performed by the agent
directly and immediately alters the level of a resource. This consequently de-
termines the strength of the corresponding input signal fed to the network in
the next turn. This is fed via the input neurons corresponding to the resource
effected by the action. In this way the network acts as a minimal disturbance
system [11] as it settles upon actions that reduce its total input activation.

2.2 The Neuron

Spiking neurons were used in the neural network, each one acting as a capacitor
to integrate and contain the charge delivered by synaptic input. This charge
slowly leaks away over time. The neurons have a fixed voltage threshold and
base leakage which are genetically determined.

The neurons also have an adaptive leakage to account for how frequently
they have recently spiked. If a neuron spikes then its leakage is increased by a
genetically determined amount. If the neuron does not spike then the leakage
is decreased by that same amount. Leakage is constrained within the range
[0, 1]. The spiking threshold is the same for all neurons in the network and
is constant. The neurons are stochastic so that once the spiking threshold has
been reached, there is a random chance that a spike will be transmitted along
the output weights; either way the cell loses its activation. The neurons send
out a stereotypical spike. This is implemented as a binary output. The weights
connecting the neurons are constrained within the range [0, 1]. The learning rule
employed uses spike timing-dependent plasticity (STDP). The rule used here
is implemented using a two-coincidence-detector model [12] Each neuron has
its own post-synaptic recording function that is incremented when the neuron
spikes and which decays over time in-between spikes. This is compared to the pre-
synaptic recording function of the neuron that has transmitted the activation.
Each layer of neurons has its own increment and decay rates determined prior
to testing via automated parameter optimisation.

2.3 Modulators

Several variants of the network were created; either modulating or non-
modulating. Used here, a modulator is a global signal that can influence the
behaviour of a neuron if that neuron has receptors for it. The signal decays over
time, specified by the re-uptake rate, and can be increased by firing neurons that
have secretors for it.

Neurons that are to be modulated are given a random number of receptors.
These can be modulated by neurons in other layers that have secretors for those
modulators. The receptors modulate either the neuron’s sensitivity to input or
probability of firing. The effect of this modulation is determined by the level of
the associated modulator and whether the receptor is inhibitory or excitatory.
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Neurons can also have secretors. These increase the level of an associated
modulator. The modulator re-uptake rate, the modulation rate of the receptors
and the increment rate of the secretors is determined by artificial evolution along
with many other parameters of the neural network before the model is tested.

2.4 Parameter Optimisation

The parameters of the networks were initially optimised using artificial evolu-
tion so as to make a fair comparison. Once these constrained evolutionary runs
were finished the parameters were hard-coded and tested as a population of 450
agents in order to determine the average performance of the neural network.
An average fitness is required because the mapping from genotype to phenotype
is stochastic. This is due to the randomisation of weights and the connectivity
between neurons. The fitness function used during parameter optimisation was
Energy + Water + Age − absolute(Energy − Water).

The absolute difference between the energy and water resource was subtracted
from the fitness as both resources were essential for the agent to stay alive. The
age was only used for the fitness function during the evolutionary runs and not
used afterwards when comparing the average performance of agents with the
optimised architectures. This is because agents would generally only die at the
beginning of an evolutionary run before the architecture had been optimised.

3 Discrete and Continuous Actions

Modulating and non-modulating versions of the network were implemented and
compared in [13]. In all the networks a winner-takes-all selection scheme was
used. A single action was chosen each turn by determining the output neuron
that had the strongest average activation over multiple iterations of the network.
The difference in activation strength between the winning output neuron and the
losing neurons was of no consequence. Nor did it matter how strongly the losing
output neurons were activated.

If the network is to be used to drive the motors of a robot, or to provide
input signals to other neural networks, then it needs to be able to balance the
activations of all of its output neurons concurrently.

The previous experiments have used actions that each have one single dis-
crete effect. In the experiments described here, the networks are provided with
continuous actions whose effect depend upon the level of activation of the cor-
responding output neuron. The stronger the activation the greater the effect
provided by the continuous action.

In a robot, discrete actions would be the equivalent of motors that either ran
at full speed or were switched off. Continuous actions would be the equivalent
of motors that ran at a speed determined by the level of the activation they
received. The networks have to learn to provide the correct activation to all of
the output neurons concurrently rather than only be concerned about which
neuron is more strongly activated than all the others.
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3.1 Exploratory Two-Modulator Network Optimised for Use with
Discrete Actions

The modulating network analysed in [14] and [13] had two modulators, one to
signal hunger and another to signal thirst. The neurons in the input layer each
had a secretor for the modulator that corresponded to the resource the input
neuron pertained to. The neurons in the middle layer had a random number of
excitatory or inhibitory receptors for these modulators, see Fig.1a).
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Fig. 1. The agent consists of a body that contains water and energy levels. A) Two-
modulator agent: Hunger (and thirst) neurons increase the strength of the hunger (or
thirst) modulator when they fire. Neurons in the middle layer have a random number
of inhibitory receptors for these modulators. B) Single-modulator agent: Neurons in
the middle layer increase the strength of a single modulator when they fire. Neurons
in the output layer have a random number of excitatory receptors for this modulator.

Having the input layer modulate the middle layer was shown to increase ex-
ploration. As a consequence of this the performance of the modulating agent
was slightly below that of the non-modulating network. Actions that were costly
or neutral were less likely to be ignored throughout the evaluation period. But
conversely, the modulating network was more able to adapt when the effect of
actions changed.

3.2 Networks Optimised for Use with Continuous Actions

Many different variants of the network were implemented and tested. The aim
was to find the best way of modulating a minimal disturbance network for use
with continuous actions. Permutations included having the input layer modulate
the output layer, using between one and four modulators and having layers
modulate themselves. The parameter sets were optimised for use with continuous
actions using artificial evolution. If the architecture performed particularly well
then the parameters were hard-coded and tested more thoroughly.
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Fig. 2. Fitness, energy and water levels of the different architectures. In order of perfor-
mance: single modulator (middle to output layer), non-modulating and two modulators
(input to middle layer).

The best performing design used a single modulator secreted by the middle
layer to modulate neurons in the output layer, see Fig.1b). The non-modulating
and two-modulator architectures, originally optimised for use with discrete ac-
tions, were re-optimised for use with continuous actions. The parameters of
all three architectures were hard-coded and tested using a population of 450
agents. The average fitness, energy and water levels for each architecture can
be seen in Fig.2. The explorative behaviour of the two-modulator architecture
carries a cost in performance when used in relatively stable environments as
the agent tries other actions that have not necessarily proven successful in the
past.

4 Adaptive Performance of the Networks

The synaptic weights between the input and the middle layer of the network can
be thought of as providing ’activity diffraction’ to allow the input signals to filter
through the system at different speeds. The synaptic weights between the middle
layer and the output layer can be thought of as providing ’activity integration’,
integrating those signals back into combinations that allow particular output
neurons to fire more frequently than others.

Because activity filters through the network at different speeds, some output
neurons will fire earlier than others. If an action is rewarding and subsequently
reduces the input signal to the network, synaptic activity will be reduced for
the other neurons and therefore will be less likely to fire. If an action is not
rewarding, the input signal is not reduced, other neurons will eventually fire and
other actions will be tried instead.
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4.1 Input to Middle Layer Modulation

The hunger and thirst modulators of the two-modulator agent optimised for use
with discrete actions inhibit the neurons in the middle layer. The strongest fir-
ing neurons have more activation to lose when being inhibited. These are also
the neurons more likely to be firing the output neurons that lead to actions
that reduce total input activity into the network. So by inhibiting the neurons
in the middle layer the ’diffraction’ of activation throughout the network is re-
duced and other actions have a greater chance of being performed. This increases
exploratory behaviour.

4.2 Middle to Output Layer Modulation

The most successful network optimised for use with continuous actions has the
middle layer modulating the output layer. The receptors of the output layer for
the single-modulator network have all evolved to be excitatory. This suggests
that modulation is used to excite output neurons that lead to rewarding actions.
In other words, modulation is used to balance the outputs of the neural network.

Evidence for this comes from using the single-modulator network with dis-
crete actions even though it has been optimised for use with continuous actions.
It performs better than a non-modulating network optimised for use with dis-
crete actions. Not only does the single-modulating network achieve greater av-
erage energy and water resource levels (energy=853, water=853) than the non-
modulating network (energy=790, water=757), it also manages to avoid having
more of one resource than the other.

With the non-modulating network, the more rewarding an action, the stronger
the activation of the corresponding output neuron. In contrast, the single-
modulating network only fires the outputs leading to rewarding actions and
ignores the neutral ones even when there is no need to do so, (see Table 1).

Table 1. The average frequency of discrete actions chosen by a population of 450
agents. Two architectures are compared, the non-modulating architecture optimised
for use with discrete actions, and the single-modulator architecture optimised for use
with continuous actions.

Action Amt Resource Non-mod freq. Single-mod freq.

Inactive -2&-2 E&W 0.0131111% 0.0948889%

Cost -2 E 1.32978% 0.944%
Cost -1 E 1.30733% 0.960889%
Neutral 0 E 2.42911% 0.994889%
Reward +1 E 7.15533% 5.92333%
Reward +2 E 37.9384% 41.2469%
Cost -2 W 1.53378% 0.922667%
Cost -1 W 1.652% 0.956222%
Neutral 0 W 2.60533% 1.00356%
Reward +1 W 7.57089% 5.59422%
Reward +2 W 36.4649% 41.3584%
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This suggests that the single-modulating network provides reduced activations
for all of its output neurons by default and uses modulation to excite the output
neurons which are rewarding.

5 Exploitation vs. Exploration

Having the middle layer modulate the output layer helps the agent exploit the
actions that are found to be the most rewarding whilst ignoring those actions
that are neutral or costly. To further demonstrate this, the networks were tested
using discrete cost / reward actions modified to work on the principle of ’use-
it-or-lose-it’. This gives exploitative agents an advantage. The actions work as
follows:

– If an action is performed for the first time then it provides its maximum
effect.

– If the agent continues to perform that action then the it will continue to
provide its maximum effect.

– If another action is performed then the potential effect of the original action
will decrease each turn until it reaches a minimum regardless of whether
the agent uses it or not. The minimum potential effect is anything less than
1 resource point. After the action reaches this minimum it will return to
providing its maximum effect when used.

If an agent explores other actions and returns to the original action found to be
the most rewarding so far, the effect of that action will be reduced for each turn
that the agent performed other actions. If the agent continues to use that action
thereafter, the effect will continue to be reduced each turn until it reaches a min-
imum. At this point the action returns to providing its maximum effect again.

Each network was tested using a population of 450 agents. They were tested
102 times; for each evaluation the ratio of the action’s previous effect being
retained was incremented by 0.01. For example, at a ratio of 0.5 the potential
effect that an action can provide is halved each round once the agent stops
exploiting it continuously. The actions are discrete so the agents can only pick
one action per turn. This is the action whose corresponding output neuron has
the strongest average activation.

The performance of the three architectures can be compared in Fig.3. It can
be seen that the performance of each architecture declines as the ratio reaches
0.99. This is because once the agent stops using an action, it takes longer for the
potential effect of using that action to reduce to the minimum before returning
to its maximum level again. When the ratio reaches 1 the performance of all
three architectures reverts to the same level as at 0. It is not plotted here for
the sake of clarity.

The single-modulator architecture is the best performer with each agent in
the population increasing their energy and water levels by the highest average
amount each time. At a ratio of 0.99, the single-modulator architecture performs
as well as the non-modulating architecture but the performance increases as
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Fig. 3. Testing the networks using discrete use-it-or-lose-it actions show how well they
cope with tasks benefitting from exploitative behaviour. The single-modulator network
performs significantly better. The two-modulator network, previously shown to perform
better at tasks benefitting from explorative behaviour, performs worst of all.

the ratio decreases. The two-modulator architecture performs worst of all. Its
performance at a ratio of 0.99 is significantly below that of the other two.

6 Conclusion

Taking modulation as a mechanism underlying emotions, we have investigated
how such a mechanism can bias an artificial neural network towards exploration
of new courses of action, as seems to be the case in positive emotions, or ex-
ploitation of known possibilities, as in negative emotions such as predatory fear.
Modulation can be used to both concurrently provide the correct activation to
each neuron in the output layer, and to bias a network towards either exploration
or exploitation.

If an emotion is merely a particular subset of neural functions found by evolu-
tion to provide the optimal behaviour for an agent given a certain environmental
or bodily state, then those neural substrates need to be activated concurrently.
Each neural function may also require a different degree of activation. This means
that we may need a single neural network to find the optimal balance of acti-
vation for each of its output neurons so that it can later be used to drive other
neural networks.

Further work is required to determine whether exploration and exploitation
networks should be driven by a third, arbitrating neural network, and whether
the correct network can be selected using neuromodulators. It may also be the
case that a single neural network can be biased towards either exploitation or
exploration at runtime, as in [9], by modulating the re-uptake rate.
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Abstract. We discuss evidence for the existence of mirror systems in
the brain, including recent experimental results that demonstrate the
use of shared pathways for the observation and execution of reaching
and grasping actions. We then describe a brain based model of observa-
tional learning that explains the similarities and differences in levels of
activation of brain regions during observation and execution of actions.
We simulate a very simple paradigm whereby an actor performs an ac-
tion which is observed and then repeated by the simulated animal. We
discuss the implications and possible extensions of our model.

1 Background

1.1 Mirror Systems in the Brain

There is considerable evidence for the existence of “mirror systems” in the pri-
mate brain - areas activated both in the production of actions and observation
of those actions in others [5,12]. These were first discovered in the F5 region of
the monkey cortex (known to be involved in formation of grasping movements)
and inferior parietal and thought to be confined to those areas.

More recent studies [11] (and unpublished data) have shown that mirror ac-
tivity in the brain is widespread, and substantial parts of the action execution
pathway are activated during observation tasks. In particular, the primary mo-
tor and somatosensory cortices (M1 and S1) are activated during observation of
movements. This suggests that our understanding of the motor actions of oth-
ers requires us to “mentally simulate” those actions using parts of cortical (and
possibly sub-cortical) circuitry that would be used for the production of these
actions [13].

While single cell recording studies examine monkeys, there is evidence from
imaging studies that similar mirror systems exist in the human brain - for exam-
ple, substantial evidence that viewing hand movements activates sensory cortex
[1] and that viewing of speech activates speech production regions [15].

1.2 Existing Models of Imitation

There are a number of existing models of imitation/observational learning.
Broadly, we can divide these models into two categories - those involving
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machine learning approaches and those that involve coupled forward and inverse
models for motor control. The models often address mirror neurons specifically,
rather than a particular focus on observational learning, but provide valuable
insight nonetheless.

Of the machine learning variety, examples include [14] which uses a dynamical
systems approach to organise observation and execution of dynamical actions
and examines how these can share components, and [2], which uses evolutionary
algorithms to develop behaviour of agents which react to teaching agents by
generating outputs. For more details of computational mirror neuron models,
see [10] for a recent summary.

The coupled inverse/forward model approach is popular since it extends ex-
isting attempts to understand motor learning - see [16], [4], [8], [3] for details
of how brain based motor control might operate. For examples of this type of
model see [6], the Mosaic model which is a well developed motor control model
extended to mirror neurons/imitation and [9] a model of infant grasp learn-
ing that makes use of motor control circuitry. The coordinate systems between
which these models transform are often not entirely clear. Some models suggest
a transformation from Euclidean space coordinates to joint angle coordinates
taking place in premotor/parietal areas, however experimental evidence for this
is lacking, and most data seem to suggest that coding in premotor cortices is
related to direction of action in Euclidean space [7].

Another interpretation of the concept of internal models is that, rather than
always necessitating a conversion from physical to muscle/joint space coordi-
nates, they are involved with the transformation of goal and current state to the
action necessary to achieve that goal. In this case, some of the role of premo-
tor/parietal regions in the transformation of current hand/arm state and desired
affordances on an object into direction vectors for movement could be considered
to be part of an inverse model system.

1.3 Problems to Address

The biggest questions to be answered by a model of neural activation during
observation are:

Why is there so much activation of brain regions associated with the execution
of movement during observation of those same movements?

In particular, how is S1, the primary somatosensory cortex, activated during
observation (since this area involves sensorimotor feedback, which is obviously
not present during observation)?

It seems reasonable to assume that part of the reason for extensive
co-activation of motor pathways during action and observation is that attempt-
ing to understand the movement observed requires use of the same circuitry for
executing movements. This may also explain why activation of motor regions is
not always seen during observation of reaching movements, since unless there
is sufficient reason to attempt to understand the movements, the brain circuitry
is not recruited.
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The activation of S1 is in some sense more puzzling, since it is considered to
be activated primarily by proprioceptive feedback from muscles, which does not
occur without execution of movements. One possible suggestion is that the region
is involved with preservation of “sense of self” during observation of movement
and general attribution of agency, but this does not explain how it is activated.
For there to be S1 activation during observation of movement, something must
be providing a substitute for proprioception, since muscles are not active. The
neural projection from M1 to S1 is a candidate for filling this role, and we suggest
this as a reason for the activation, as we will see below.

2 Model Details

Our model comprises several modules, here we describe their individual func-
tion. A diagram of the model can be seen in Figure 1. Some of these modules
correspond to clearly identifiable brain regions (the visual system, M1 and S1 for
example), others, such as sensorimotor integration and extraction of affordances
correspond to several related areas.

Visual system. We assume that considerable low level visual processing takes
place before input to our system, such that inputs occur as processed spatial
coordinates. The visual system then allows observation of actions, determi-
nation of goal end points and observation of instructions to perform actions.

IMC

Vision

Visual Processing

S1

Proprioception

FM

M1

Muscles

Go signal

Action drive

WM

       Object
 representation

Sensorimotor
   integration

Affordances

Fig. 1. Model structure details showing the connectivity of the regions used in the
model
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Object representations. Input from the visual system activates an object rep-
resentation in this module, each possible object occurring as a dedicated
single node (graded neuron).

Working memory. The WM serves to store the coordinates observed contact
points in physical space during observation of actions.

Action drive. The action drive provides the reason for which the simulated
animal performs an action. The drive arises from some presumed association
of goal end points with food rewards (based on previous training). The action
drive is modelled as a single graded neuron that is activated by the go signal.

Affordances. This module is involved in extracting affordances from objects,
based on the way the object is to be used, and the observed actions on the
objects. In this simple simulation, we assume that affordances take the form
of a contact point on the button to be pressed.

Sensorimotor integration. Here the target of movement (the contact point
generated by the affordances module) is integrated with sensory feedback
about the current position of the hand to form a motor plan to reach the
target. This output takes the form of a direction vector for movement to
M1.

M1. The primary motor cortex receives a movement plan from the IMC and
activates the IMC which generates suitable muscle movements from the plan.
We model it using a small population of graded neurons that can encode a
direction vector.

S1. Primary sensory cortex. It receives input from proprioceptive feedback (via
the forward model) to update the position of the arm based on known move-
ments. It also receives an efferent copy of the motor plan from M1. Like M1,
it is modelled using a population of graded neurons.

IMC. In the Inverse Model Controller a target direction vector in physical space
is converted into the muscle space movements necessary to carry out the
planned movement. This involves a conversion from the direction vector in-
put from M1 (coded in Euclidean space) to a code involving the joint angles
necessary to perform the movement.

FM. The forward model (FM) takes proprioceptive feedback from the muscles
and calculates how this updates the position of the arm. This information is
passed to the sensorimotor integration module via S1 so that it can update
the motor plan, involving a transformation from joint angle coordinates to
the consequent movement of the arm in physical space.

We can use the activation of the parts of the system modelled as graded neu-
rons to compare to experimental results (specifically M1, S1, the object represen-
tations, action drive and the affordances extraction network). It is more difficult
to make comparisons with non-neural simulated components (the sensorimotor
integration module, working memory and inverse and forward models), but we
can record when these components are used and generate activation levels based
on this usage.
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2.1 Identification of Brain Regions Modelled

We can consider which brain regions might correspond to some of the compo-
nents of our model. This allows us to compare to imaging data which include
activations, and also to make predictions. We can see these allocations in Table 1.

Table 1. Identification of model components with brain regions

Model area Brain region

Working memory Prefrontal cortex (PFC), parietal lobe
Object representations Superior Temporal Sulcus (STS), temporal lobe (TL)
Affordances Parietal lobe
Sensorimotor integration F5 and other premotor areas
IMC and FM Brainstem (possibly also cerebellar/striatal network)

3 Simulation Paradigm

We consider initially a very simple simulation paradigm. The environment con-
sists of an actor which contributes only by performing actions which can be
observed by the simulated learner. Both actor and learner have a simple rod-like
arm with a single joint of variable angle. The environment also contains a button
object which can be reached by both actor and learner by arm movement. We
assume that this object has some previously associated value (such as associa-
tion with a food reward) which causes it to be of interest to the learner. When
this joint reaches a certain angle θ, the arm is in contact with the button object
and is considered to have reached it.

The simulation then consists of two stages:

Stage 1: The actor makes an arm movement terminating at the location of
the button. This action is observed by the learner, and we record the
activation of the various model regions. The learner also registers the
location of the button and the point of contact used.

Stage 2: The learner repeats the previously observed movement, terminating
at the button. Again we record activation of the model regions which
we can then compare to the observation phase.

The simulation sees the teacher’s actions from the point of view of the learner.
We assume that because our very simple model consists of a single arm only,
the issue of translating the actor’s movement into an egocentric perspective is
absorbed into some stage of visual processing.

These stages can be seen in Figure 2.

3.1 The Simulation During Observation

During observation of action, the visual system passes on the observed object
to the object representation module, and the contact points to the working
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learner

button

x,y - contact point, observed

teacher

learner

button

teacher

Stage 1: Teacher’s arm movement observed by learner

Stage 2: Learner repeats observed movement to goal

Fig. 2. Explanation of paradigm stages showing the simple actor and learner compo-
nents and the action involved

memory. The contact points from the working memory are integrated with those
generated by previous association of the object, and the result passes to the
sensorimotor integration module. This output from this is fed both to M1 (where
it is insufficient to actually cause muscle activation) which also activates S1.

3.2 The Simulation During Execution

During execution, the observed go signal is processed by the visual system and
then used to activate both the action drive and the goal module. The visual
system also activates the object representation module. The sensorimotor inte-
gration module combines information about the spatial location of the contact
points with sensory feedback about the current position of the arm and pro-
duces a direction vector for movement (by performing a target - hand position
calculation). This is passed to M1 and onwards to the IMC which converts it to
a suitable set of impulses to muscles. Sensory feedback from muscles returns to
the forward model, which calculates the change in arm position implied by the
proprioception, and passes this information to the sensorimotor feedback module
so the motor plan can be updated.

4 Results

To gain some idea of how well the model replicates experimental data, we can
examine activation levels of both M1 and S1 during observation and execution
phases. Since these are modelled as graded neurons, we can examine their acti-
vation levels to give an indication of that region’s output. Each of these has a
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short “rise time”, where the initial inactivity in the model M1 and S1 neurons is
raised by the periodic input from the sensorimotor feedback module, whenever
it recalculates the motor plan.

We are interested in comparing our results to those showing activations of
M1 and S1 under observation/execution, which can be found in [11] and are
reproduced here in Figure 3.

Fig. 3. Cortical activity of S1 and M1 during both observation and execution (showing
percentage differences in activation) of reach-to-grasp movements, taken from [11]. A:
Maps of activations in M1 (left) and S1 (right) showing execution of grasping (Er)
and observation of grasping (Or) compared to biological motion control (Cm). B: Per-
cent differences in activation over the anterior-posterior extent of M1 and S1 where
-10 is the anterior crown, +10 the posterior crown and 0 the fundus. Data use local
cerebral glucose utilisation (LGCU) values, and were recorded with the quantitative
14C-deoxyglucose method.

4.1 M1

In Figure 4 we see how activation of M1 during execution of the action is higher
than activation during observation. Each 250ms, the motor plan is recalculated
and the direction vectors for movement are fed to M1 causing activation, this
being smoothed by the neuron’s response time. The higher activation during
execution occurs as a result of the action signal fed to M1.
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Fig. 4. Activation of our simulated M1 during both action observation and action
execution showing activity against time

4.2 S1

Figure 5 shows a similar pattern of activation for S1. S1 receives proprioceptive
feedback from muscles (via the forward model), which is why it is activated more
strongly during execution of actions.

Fig. 5. Activation of S1 during observation and execution phases showing activity
against time

4.3 Sensorimotor Integration

We can consider what activation we expect from our sensorimotor region, by
considering its activation to increase when it performs a calculation, then to
decay exponentially over time between these events. We can see the results of
this process in Figure 6 - the peak activation level is similar during execution
to integration, although it begins earlier (due to the timing of movement versus
observation of that movement), and persists for longer.
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Fig. 6. Activation of sensorimotor region during observation and execution phases
showing activity against time

4.4 Summary

The results demonstrate activation of both M1 and S1 during the execution
phase of the simulation (as would be expected). They also show activations of
both M1 and S1 (at lower levels to the execution case) during the observation
phase, a more surprising result. These activations arise from the nature of the
model’s connectivity (which in turn provides predictions for experiment), as we
shall now discuss.

5 Discussion

An important component of the model is the capacity to simulate the sensory
consequences of an action that is being observed. This is the reason why activa-
tion of S1 occurs in our model during observation (a non-obvious result!), and
why there is greater activation during execution, since the input from simulation
of the action is added to proprioceptive feedback from muscles.

5.1 Comparison with Experiment - What Our Results Show

The primary areas we use for comparison here are the M1 and S1 regions. As
discussed previously, experimental results on monkeys show partial activation
of both M1 and S1 during observation of reaching and grasping movements. In
these results, M1 and S1 both show significant (above threshold) activity during
observation, as we can see in Figure 3. When we compare these to Figures 4 and
5 we see that our model also demonstrates similar lower (but above threshold)
activations for M1 and S1 during observation.

It is important to consider what the nontrivial aspects of the results are. Ac-
tivation of both M1 and S1 during observation of movement is an inherently
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surprising result and one replicated in our model. Although the reasons these
occur (the projection from M1 to S1 to activate S1, and the activation of the
sensorimotor system during observation) are relatively simple, they provide pre-
dictions for experimental verification (as we describe below).

5.2 Model Predictions

Since one of the key components of our model is the use of the projection from
M1 to S1 to activate S1 during the observation stage, we can consider what
might happen if that connection were interfered with. In particular, we predict
that no activation of S1 would occur during observation.

Another prediction given by our model is that the action drive signal is crucial
for the difference between activation of muscles during actual movement and
activation that does not cause movement during observation. This is our current
answer to the question of why no movement occurs during observation of actions
(since motor cortex is activated) - without the action drive there is insufficient.
Another possible explanation is that actual movement is inhibited in some way
(although since something must be causing this inhibition, these explanations
are similar in basic concept, although differ in mechanism).

5.3 Unanswered Questions and Extensions

Some data show that activation of M1 and S1 does not always occur for pure
reaching movements. Why this is the case is unclear. One possible explanation
is that, unless the movement is of interest (perhaps important to observe since
repetition will aid in obtaining a food reward), no attention is paid to the mo-
ment. This provokes an interesting question as to how attention interacts with
the system, which is an interesting direction for further study.

As mentioned above, we suggest the action drive as an explanation for cause
of actual movement. This explanation raises questions as to what controls this
action drive and to whether is operates directly by providing stimulation to
muscle controllers, or indirectly by releasing inhibition on muscles.

The existing model is very simple and open to several avenues of extension,
in particular more neurophysiologically realistic modelling of the sensorimotor
integration module. Currently this performs non-neural calculations based on
deriving the target vector from the target contact points and information about
current hand position. It may be possible to use a trainable network here, al-
though that would add a large degree of complexity. The F5 region of the brain
is thought to be involved (possibly along with other premotor areas) in the tar-
get - hand calculation, and it may be possible to examine further biological data
here to suggest suitable mechanisms.

Another possibility for extension is to a more complicated paradigm - a sim-
ple reach to a button position provides a basic demonstration of the model’s
operation. However, there is some question as to the difference in motor/sensory
cortex activation during the observation of reaching and grasping (vs. purely
reaching) movements. A paradigm involving full reaching and grasping (as sep-
arate movements) would allow us to cover this situation.



A Simple Model of Cortical Activations 909

6 Conclusion

Our approach is that of “functional modelling”, in that we assume certain func-
tional modules are needed for the overall process, and then relate to brain sci-
ence results to locate these functional modules in connected sets of brain mod-
ules. The set of modules are then simulated and compared to further details of
experiment.

In our model, the activation of M1 and S1 during both action and observa-
tion arises because the same cortical circuitry is activated in both situations
from visual input coupled with a need to understand the nature of the observed
movement. S1 is activated during observation because of the projection from
M1 (which is active as part of the process of observing movement in a manner
intended to extract information. Actual motor action occurs because an action
drive signal is necessary to provide sufficient motor cortex activity (and possibly
also to release inhibition of actual movement).

Our model extends existing research by providing an explanation for the un-
expected activation of motor and sensory cortices during observation of reaching
and grasping movements. We also provide a very simple experimentally testable
mechanism for the production of the activation of S1 during observation of
movements.
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A Appendix

A.1 Model Details

Parameters involved are given fully in Table 2.
The simulated M1 and S1 consist of simple graded neurons with membrane

potential obeying the equation:

C
dV

dt
= gleak(V − Vleak) + I, (1)

where I is the neuron’s input current. Their output is sigmoidal in form:

1
1 + exp(−V/Vscale)

(2)

where Vscale scales the rate of change of the sigmoid function.
The sensorimotor integration module is represented by a calculating machine

that provides a constant activation level when performing a calculation. When it
integrates the goal contact points with current sensory information, its activation
level is set to Actsmi. It performs this transformation every tsmi ms, and when
it does so, its output becomes SMIout for tcalc ms.

The action drive provides a constant current output Iaction when active. When
performing a movement, the muscles have a proprioceptive feedback signal that
translates to a current equal to Iproprio which is fed to S1.

A.2 Table of Parameters

Table 2 shows the parameters used in the model with units where applicable.

Table 2. Values of constants

Variable name Value units

Vleak -70 mV
C 25 nF
gleak 0.025 μS
Iaction 10 nA
Iproprio 15 nA
tsmi 100 ms
tcalc 50 ms
SMIout 5 nA
Actsmi 1 n/a
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Abstract. It is well known that our prior knowledge and experiences affect how
we learn new concepts. Although several formal modeling attempts have been
made to quantitatively describe the mechanisms about how prior knowledge in-
fluences concept learning behaviors, the underlying cognitive mechanisms that
give rise to the prior knowledge effects remains unclear. In this paper, we intro-
duce a computational cognitive modeling framework that is intended to describe
how prior knowledge and experiences influence learning behaviors. In particular,
we assume that it is not simply the prior knowledge stored in our memory trace
influencing our behaviors, but it is also the learning strategies acquired through
previous learning experiences that affect our learning behaviors. Two simulation
studies were conducted and the results showed promising outcomes.

1 Introduction

A body of empirical studies in human concept acquisition indicates that our learning be-
haviors are strongly influenced by our own prior knowledge and experiences (e.g.[1]).
Several formal modeling attempts have been made to quantitatively evaluate hypotheses
about how our prior knowledge influences our cognitive behaviors associated with con-
cept learning (e.g. [2]). Yet, most of them take the form of a retrospective model only
allowing post-hoc data fitting, a model that does not offer a priori predictions about the
observed effects of prior knowledge (but see [3]). Furthermore, these models of prior
knowledge tend to emphasize the forward processes (i.e., how stored information is
used) without specifying any learning algorithms (i.e., how information is updated) and
thus cannot describe the underlying cognitive mechanisms that yield prior knowledge
effects.

In the paper, we introduce a computational cognitive model with a learning algorithm
that is intended to describe how prior knowledge and experiences influence learning be-
haviors. One unique contribution of our work is that we apply a hybrid meta-heuristic
optimization method to describe how prior knowledge affects biases in acquired knowl-
edge as well as biases in learning strategies (e.g. biases in hypothesis generation). Our
new cognitive model, PIKCLE (PrIor Knowledge on Concept LEarning), integrates the
effect of prior knowledge on concept learning. A novel characteristic of PICKLE is its
assumption that it is not simply the prior knowledge stored in our memory trace in-
fluencing our learning behaviors, but it is also the learning strategies acquired through
previous learning experiences that affects our learning behaviors. Another significant
aspect of PICKLE is that it may generate insightful a priori predictions about the role
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of prior learning experiences on subsequent learning, as we demonstrate in the current
simulation studies.

Note that the terms “category learning” and “concept learning” will be used inter-
changeably throughout this paper, because conceptual knowledge is considered to be
categorically organized.

2 Categorization Algorithm

Rather than introducing new forward algorithms we chose to apply PIKCLE’s learning
processes to SUPERSET’s [4] [5] categorization processes, because our main objective
is to introduce a learning model that explains the effects of prior knowledge on concept
acquisition. SUPERSET is a computational model of category learning based on the
assumption that humans have a very flexible knowledge representation system, capable
of adapting a situationally “optimal” representation scheme (e.g. rules, prototypes, or
exemplars).

Unlike previous modeling approaches to category learning research which modify
a single notion (i.e., a single complete set of coefficients, θn: {wn,Dn,Cn} ∈ θn),
SUPERSET maintains, modifies, and combines a set of notions. The idea of having a
population of notions (as opposed to having a single notion) is important because it
allows not only the selection and concept combination in learning, but also the creation
of diverse notions, making learning more robust. Thus, unlike previous categorization
models, SUPERSET assumes that humans have the potential to maintain a range of no-
tions and are able to apply a notion that is most suitable for a particular set of situational
characteristics.

The SUPERSET framework, like several other models of the human categorization
process, assumes that humans hold memorized internal reference points (i.e., rules, pro-
totypes, or exemplars) and utilize similarities or conformities between the input stim-
ulus and the reference points as evidence to probabilistically assign the input stimulus
to an appropriate category. The similarity (i.e., sj) between input x and j-th reference
point (i.e., Rj) in SUPERSET are formulated as:

sn
j (x)=exp

[
−β

[
I∑

i=1

(Rn
ji − xi)2

1 + exp
(
−Dn

ji

) +
I−1∑

i=1

I∑

m=i+1

2Cn
jim[Rn

ji − xi][Rn
jm − xm]

]]

(1)
where Dj and Cj are Rj’s dimensional and correlational selective attention, respec-
tively. A free parameter β defines an overall similarity gradient. Superscript n is an
index for different notions. Subscripts i and m indicate feature dimensions, and I is the
number of feature dimensions. Note that it is assumed that Cjim = Cjmi, C2

jim ≤
(
1 + exp

(
−Dn

ji

))−1 ·
(
1 + exp

(
−Dn

jm

))−1
. The correlational attention weights can

take a negative value, where its signum indicates direction of attention field while its
magnitude indicates the strength of attention.

The psychological similarities are fed forward to the output category nodes using the
following function:

On
k (x) =

∑
j
wn

kjs
n
j (x) (2)
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where wkj is a learnable association weight between reference point j and category
node k. The probability that x being classified as category A is calculated using the
following choice rule:

P (A|x) =
exp (φ · Oo

A(x))∑
k exp (φ · Oo

k(x))
(3)

where φ controls decisiveness of classification response, and superscript o indicates the
notion adopted to make a categorization response (i.e., the most useful notion).

3 PIKCLE

3.1 Qualitative Descriptions of Learning Mechanisms

PIKCLE assumes that human learning involves the consideration of multiple notions
according to their usefulness in a given task. Each of these notions determines which
aspects of the categories are psychologically salient and which can be ignored. PICKLE
assumes that the definition of the learning objective is not based solely on the accuracy
of knowledge, but also on the subjectively and contextually determined utility of knowl-
edge being acquired.

PIKCLE’s learning algorithm is built on the basis of the Evolution Strategy (ES) op-
timization method. PIKCLE, as in a typical ES application, assumes three key processes
in learning: crossover, mutation, and (survivor) selection. In the crossover process, the
randomly selected notions (i.e., one complete set of SUPERSET coefficients indicated
by superscript n) form a pair and exchange elements (i.e. coefficients) of notions, cre-
ating a new notion. In human cognition, the crossover process can be interpreted as
conceptual combination, where new notions are created based on merging ideas from
existing effective notions. In the mutation process, each element of notion (i.e., coef-
ficient) is pseudo randomly altered (see section below for detail). A mutation can be
considered as a modification of a notion by randomly generating a new hypothesis.
Note that each element of a notion (i.e., SUPERSET’s coefficient) is associated with
a unique dynamically altering random hypothesis generator function, allowing it to be
sensitive to the topology of the hypersurface of objective function (e.g., searching within
a smaller area if coefficients are close to an optimum). In the selection process, a certain
number of notions are deterministically selected on the basis of their fitness in relation
to the environment for survival. Those selected notions (i.e., a set of coefficient) will
be kept in PIKCLE’s memory trace, while non-selected notions become obsolete or are
forgotten.

However, unlike typical ES application, PIKCLE also assume a systematic bias
caused by prior knowledge and experiences in concept modification. That is, while
there is still a stochastic process involved in the knowledge mutation process, there is
a force or momentum created by prior experiences that systematically influences the
likelihood of particular patterns of notions (coefficient configurations) to emerge in the
process.

3.2 PIKCLE Learning Algorithm

For the sake of simplicity, we use the following notation {wn,Dn,Cn} ∈ θn.
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Knowledge Combinations. In PIKCLE, randomly selected pairs of notions exchange
information to combine notions. In particular, PIKCLE utilizes the discrete recombina-
tion of SUPESET coefficients. Thus, parent notions θp1 and θp2 produce a child notion
θc or

θc
l =

{
θp1

l if UNI ≤ 0.5
θp2

l otherwise
(4)

where UNI is a random number drawn from the Uniform distribution. This combination
process continues until the number of children notions produced reaches the memory
capacity of PIKCLE.

In PICKLE, self-adapting strategy coefficients denoted by σn
l , which define the

widths of random search areas for SUPERSET’s coefficients, are also combined during
this stage. Unlike θn, the intermediate crossover method is used for the self-adapting
strategy coefficients. Thus, σc

l = 0.5 · (σp1
l + σp2

l ).

Knowledge Modifications. Two separate hypothesis generation mechanisms are in-
volved in PIKCLE’ knowledge modification phase. One is a traditional stochastic mod-
ification process, modifying each coefficient with a random number drawn from the
Gaussian distribution (i.e., last term in Eq.5). The other is systematic hypothesis gen-
eration (i.e. middle term in Eq. 5) that takes relationships among different types of
knowledge in its memory trace into account (e.g. interaction between attention weighs
allocated to feature dimensions 1 and 2, i.e., Dj1&Dj2). Specifically, one element of
notion θn

l at time t + 1 is updated as follows:

θn
l (t + 1) = (1 − η)θn

l (t) + ηA(v,u, θn(t)) + N(0, σn
l (t + 1)) (5)

where t indicates time, A is a simple autoassociative network with one hidden layer
causing a systematic bias in knowledge modification, a free parameter η controls the
relative influence of the systematic bias, and N(0, σl) is a random number drawn from
the Gaussian distribution with the corresponding parameters. The random search width
for notion element l is given as:

σn
l (t + 1) = σn

l (t) · exp (NG(0, γG)) + Nl(0, γl)) (6)

where NG(0, γG) is a random number drawn from the Gaussian distribution with the
corresponding parameters that is applicable to all knowledge elements within a notion
(G stands for Global) where a free parameter γG is fixed for all knowledge elements
within and across notions. Nl(0, γl) is another random number drawn from the Gaus-
sian distribution that is only applicable to notion element l. Unlike γG, γl varies across
knowledge elements, and thus each knowledge element (i.e., θl) has its own unique
tendency of thoroughness in a hypothesis search process. Specifically, since we assume
that useful knowledge elements would usually take non-zero values across a variety
of knowledge types, we define γl to be a mean the absolute value of corresponding
coefficients amalgamating all prior experiences. For example, if a person experienced
that information on feature dimension “color” has been more useful than feature di-
mension “size” in classifying several different categories in the past, then the person is
more likely to have thorough knowledge modification on the basis of the applicability
of “color” than “size” of input stimuli in new categorization tasks.
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The other important element of notion modification (Eq. 5) is a systematic bias given
below:

Al(v,u, θn(t)) =
∑

h
vlh

[
1 + exp

(
−

∑
l
uhlθ

n
l (t)

)]−1
(7)

Equation 7 is a simple autoassociative network (AAN) with one nonlinear hidden layer.
The fundamental idea behind integrating AAN in the notion modification phase is that
even with some stochastic changes in notions resulting from the random knowledge
recombination process (i.e., Eq. 4) and the stochastic notion modification process (i.e.,
Eq. 6), PIKCLE has a tendency to update notions such that the configural pattern of a
new notion set is similar to that of previously acquired and applied notions; it is influ-
enced by successful prior experiences. Note that AAN can be considered as a form of
data reduction system (e.g. PCA), and thus, through this ANN, PIKCLE might acquire
“eigen-notions” that are applicable to various type of concepts and categoriesto some
extent.

The coefficients within ANN (i.e., v,u) are learned using a standard online version
of gradient descent. We incorporate a pseudorehearsal method [6] for learning in ANN,
assuming that this ANN serves as long term memory units in the PIKCLE framework.
This allows ANN to avoid catastrophic forgetting (e.g. [7] [8]).

In summary, two separate notion modification processes are involved in the knowl-
edge modification phase in PIKCLE. Those two processes are influenced by prior
knowledge and experiences acquired in previous concept learning tasks; but the ways in
which prior knowledge affect the two processes are different. One type of notion mod-
ification is stochastic updating in which previously useful notion elements (i.e. model
coefficients) are more thoroughly searched in a current learning task. The other type is
systematic updating that–with the influence of previously acquired knowledge–causes
PIKCLE to generate new notion sets that resembles previously acquired effective
notions.

Selection of Surviving Knowledge. After creating new sets of notions, PIKCLE se-
lects a limited number of notions to be maintained in its memory. In PIKCLE, the
survivor selection is achieved deterministically, selecting best notions on the basis of
estimated utility of concepts or knowledge. The function defining utility of knowledge
is described in the next section.

3.3 Estimating Utility

The utility of each notion or a set of coefficients determines the selection process in
PIKCLE, which occurs twice. During categorization, PIKCLE selects a single notion
with the highest predicted utility to make a categorization response (referred to as con-
cept utility for response or UR hereafter). During learning, PIKCLE selects best fit
notions to update its knowledge (utility for learning or UL hereafter). In both selec-
tion processes, the notion utility is subjectively and contextually defined, and a general
function is as follows:

U(θn) = Υ (E(θn), Q1(θn), ..., QL(θn)) (8)
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where Υ is a function that takes concept inaccuracy (i.e., E) and L contextual factors
(i.e., Q) and returns an estimated utility value for a corresponding notion (Note that
PIKCLE’s learning is framed as a minimization problem). There are virtually infinite
contextual functions appropriately defined for Eq. 8 (e.g. concept abstraction, domain
expertise and knowledge commonality). For example, in ordinary situations, humans
prefer simpler notions (e.g. requiring a smaller amount of diagnostic information to be
processed) to complex ones, as long as both are sufficiently accurate, whereas in highly
critical tasks (e.g. medical diagnosis), many might choose a notion with the highest
accuracy disregarding complexity.

Note that functions for UR and UL do not have to be the same. For example, domain
experts often know multiple approaches to categorize objects. This ability appears to
be a very important characteristic and thus be a part of their UL. However, ”knowledge
diversity” is only relevant for selecting a population of notions (for survival), but not
for selection of a particular notion to make a categorization response. Thus, knowledge
diversity should not be considered for UR.

In PIKCLE, the predicted (in)accuracy of a notion during categorization is estimated
based on a retrospective verification function [9], which assumes that humans estimate
the accuracies of the notions by applying the current notions to previously encountered
instances with a memory decay mechanism. Thus,

E (θn) =
G∑

g=1

K∑

k=1

⎛

⎜⎝

∑
∀i|x(i)=x(g)

(τ (i) + 1)−δ

∑
∀i|x(i)=x(0)

(τ (i) + 1)−δ

⎞

⎟⎠
(
d
(g)
k − O

(n)
k

(
x(g)

))2
(9)

where g indicates particular training exemplars, G is the number of unique training ex-
emplars, the last term is the sum of squared error with d being the desired output, and
the middle term within a parenthesis is the (training) exemplar retention function defin-
ing the strength of the retaining training exemplar x(g) [10]. Memory decay parameter,
δ, in the exemplar retention function controls speed of memory decay, and τ indicates
how many instances were presented since x(g) appeared, with the current training be-
ing represented with “0.” Thus, τ = 1 indicates x(g) appeared one instance before the
current trial. The denominator in the exemplar retaining function normalizes retention
strengths, and thus it controls the relative effect of training exemplar, x(g), in evaluating
the accuracy of knowledge or concept. E(θ) is strongly influenced by more recently
encountered training exemplars in early training trials, but it evenly accounts for vari-
ous exemplars in later training trials, simultaneously accounting for the Power Law of
Forgetting and the Power Law of Learning [10].

4 Simulations

In order to investigate the capability of PIKCLE to exhibit cognitive behaviors that
resemble real people, two simulation studies were conducted. We created two cate-
gory structures shown in Table I. There are three binary feature dimensions in those
categories.
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Table 1. Schematic representation of stimulus set used in Simulation Study

Stimulus Set
Dim1 Dim2 Dim3 Label - Set 1A Label - Set 1B Label - Set 2A Label - Set 2B

1 1 1 A C E G
1 1 2 A C E H
1 2 1 A C F H
1 2 2 A D F G
2 1 1 B C F G
2 1 2 B C F H
2 2 1 B D E H
2 2 2 B D E G

4.1 Simulation 1

Previous empirical studies indicate that prior knowledge can strongly interfere with the
acquisition of new concepts[11] [12]. For example, learning linearly separable cate-
gories can become a difficult task when people are informed that categories that are
about to learn can be potentially linearly non-separable [12]. In Simulation 1, we se-
quentially organized two hypothetical concept learning tasks. Our simulated subjects
learned Set1A where information on Dim 1 provides sufficient evidence of perfect clas-
sification, followed by learning of Set1B. Set 1B would require our simulated subjects
to pay attention to all feature dimensions in order to classify all exemplars correctly.

Methods: There were three types of PIKCLE learners involved in the present simula-
tion study, namely BP who has a bias in generating new hypotheses on the basis of prior
knowledge and experience in concept learning (η = 0.2 in Eq. 5) and maintains acquired
knowledge; FP who does not have the bias (η = 0.0) but still possesses previously ac-
quired knowledge in their memory trace; and FF who does not have the bias and forgets
acquired notions. For the sake of simplicity, we omitted correlational attention weights
from SUPERSET (see Eq. 1). In addition, we also assumed that Dji = Dli, ∀j&l. Fur-
thermore, as in typical SUPERSET implementation [4] [5], we defined the knowledge
utility function for BP, FP, and FF to be:

U(θn) = E(θn)+λw

∑
k

∑
j
(wn

kj)
2+λα

∑
i

[
1 + (αn

i )−2 ·
∑I

l
(αn

l )2
]−1

(10)

where E(θn) is as given in Eq.9, and αn
i = (1 + exp (−Dn

i ))−1. The second term
(i.e., a weight decay function regularizing w) and the third term (i.e., the relative at-
tention elimination function reducing the number of dimensions attended) regularize
SUPERSET’s knowledge complexity. λ’s are constant free parameters weighting dif-
ferent regularizing factors.

All BP, FP, and FF were run in a simulated training procedure to learn the correct
classification responses for the stimuli with corrective feedback. For each category set,
there were a total of 10 training blocks, each of which was organized as a random pre-
sentation of the eight unique exemplars. The model parameters were selected arbitrarily;
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Table 2. Results of Simulation 1

Set 1A Set 1B
Types Acc Attn D1 Attn D2 Attn D3 Acc Attn D1 Attn D2 Attn D3

BP 0.968 0.709 0.133 0.158 0.743 0.531 0.271 0.198
FP 0.969 0.686 0.149 0.165 0.895 0.402 0.413 0.185
FF 0.970 0.712 0.140 0.147 0.951 0.237 0.550 0.184

c = 5, φ = 5, δ = 1,γG = 0.2, λw = 0.1, λα = 1. Note that the same parameter values were
used for all three types of learners, except η. The identical parameter configuration was
applied to learning of Set1A and Set1B. The memory sizes for the two models were 10
(i.e., possessing 10 notions at a time). There were a total of 100 simulated subjects for
both models.

Predictions: We predict that all three type of learners will be able to learn Set1A very
accurately in a similar manner. However, we predict that BP is more likely to be fixated
at Dim 1 in the Set1B task, managing only mediocre accuracy performance. FP and FF,
on the other hand, would shift his/her attention to Dim 2, thus resulting in a relatively
highly accuracy rate.

Results: The results of Simulation 1 are shown in Table 2. As we predicted, all three
types of learners resulted in similar accuracies and attention allocation patterns for the
Set1A task. For the Set1B task, BP performed the worst, followed by FP then FF. And,
as predicted, BP, because of the interference by prior knowledge, paid the most attention
to Dim1 which was less diagnostic than Dim2. FP paid more attention to Dim 2 which
was imperfect (but the most diagnostic dimension), but it also paid a similar amount
of attention to Dim 1. FF paid the most attention to Dim2 and equally less attention to
Dims 1 and 3, allowing it to be the best performer for the Set1B task. Note that although
FF performed the best in Set1B, this does not necessarily mean that it is the best model
in terms of the objective of the present research. Rather, it is probably the worst model,
unable to exhibit the interference effect of prior knowledge [11] [12]. Instead, BP’s
prediction is most consistent with the results of previous empirical studies.

4.2 Simulation 2

Previous empirical studies indicate that expectation and context affect our concept
learning behaviors [11] [12] [13]. In Simulation 2, we let PIKCLE learn hypothetical
learning tasks with two hypothetical contextual elements and then observed a knowl-
edge generalization pattern.

Methods: Table 1 shows a schematic representation of category structure used in
Simulation 2. There are two category types, Set 2A and Set 2B, both of which are de-
fined by three a feature dimension plus one additional dimension (Dim 4, not shown)
representing situational characteristics. Dim 4 was fixed at “1” for the Set2A task and
“2” for the Set2B task. Note that both Set2A and Set2B are simple XOR-logic type cate-
gories (Dim1&Dim2 for Set2A and Dim2&Dim3 for Set2B). After successful learning,
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we gave PIKCLE a generalization tasks to see how situational characteristic influence
the choice of notion to be manifested. In particular, we estimated the amount of at-
tention allocated to correlations between the key feature dimensions (Dim1&Dim2 for
Set2A and Dim2&Dim3 for Set2B).

There were two types of PIKCLE learners involved in the present simulation study,
namely BP and FF. The basic simulation method follows that of Simulation 1, except
that there were a total of 50 training blocks; and that we applied a none-restrictive
version of SUPERSET. There were a total of four conditions - BP learning Set2A first
followed by Set 2B (i.e., BPA condition); BP learning Set2B first (BPB); FF learning
Set2A first (FFA); FF learning Set2B first (FFB).

Results & Discussion. For both FFA and FFB, there was a very strong recency effect
in that this particular PIKCLE implementation was not sensitive to situational charac-
teristics and was “too adaptive.” A recency effect was also observed in BPA (0.11) and
BPB (0.09) conditions, but the magnitudes were much smaller. BP was shown to be
affected by prior knowledge and experiences and sensitive to situational characteristics
(i.e., in PIKCLE, BP paid attention to the covariation between Dim1 & Dim2 when
the situational characteristic or Dim4 is “1”, while it paid attention to the covariation
between Dim2 & Dim3 when Dim4 is “2”). The results also indicate that BP is capable
of maintaining diverse effective notions.

Although this simulation result seems easily anticipated and perhaps too simplistic
given that PIKCLE contains an autoassociative network, it is worth noting that most
computational models of concept learning take a form of radial basis function network,
which usually does not allow different types of notional elements to directly interact
with each other (e.g. predicting association weight between basis unit j and output unit
k using association weight between l and m). PIKCLE, on the other hand, allows direct
interaction among elements in a notion by integrating the effect of prior knowledge on
concept learning.

5 Conclusion

It is well known that our prior knowledge and experiences affect how we learn new
concepts (e.g.[1] [2]). However, the cognitive mechanisms that give rise to the prior
knowledge effects remains unclear. In the present paper, we introduced a computational
cognitive modeling framework that is intended to describe how prior knowledge and
experiences influence learning behaviors. Our new model’s main contribution is that it
is not simply the prior knowledge stored in our memory trace that influences our learn-
ing behaviors, but it is also the learning strategies acquired through previous learning
experiences that affect our learning behaviors.

In addition, our new model PIKCLE can acquire general knowledge called “eigen-
notions” that are applicable to various type of concepts and categories along with sen-
sitivity to situational characteristics. There is an interesting psychological phenomenon
called ad-hoc categories [14], i.e., people can instantaneously and spontaneously cre-
ate a category, typically in the service of some goal [15]. The cognitive mechanism
underlying the creation of ad-hoc categories may be described by the “eigen-notions.”
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Abstract. The paper discusses a novel model for concept learning and represen-
tation. Two levels of representation are used: exemplars and (generalized con-
cepts) prototypes. The internal structure of the model is based on a semantic 
network using spreading activation. Categorisation and addition operations are 
supported in parallel. Forgetting of learned concepts is used in order to track 
dynamic and novel environments. The model is inspired by the corresponding 
psychological theories of exemplars and prototypes. Simulation results support 
the formulation of the model. 

1   Introduction 

According to [1] there are three levels of representation: the associationist, the con-
ceptual and the symbolic. Concepts belong to the sub-symbolic level and they repre-
sent a good comprise between compression of information, so as to avoid representing 
every possible stimulus with a unique class, and resolution of information so as to al-
low differentiating between different things in the world.  

The purpose of this paper is to present a new concept system model, which com-
bines seamlessly aspects from two main classes of psychological theories of concepts. 
The first class is called the exemplar-view and it assumes that concept classification 
and learning is based on storing (learning) and using individual objects as representa-
tions of the general class. The second class of theories is called prototype-view and 
assumes that people somehow build more general representations than that of individ-
ual concrete members of the class. Thus the category in this case represents a sum-
mary representation of all known examples of the class. There is finally a third-view, 
which assumes that concepts are more complex knowledge structures, this view is 
known as the theory-theory or knowledge-view, with the belief that there are general 
relations that hold between the attributes of a concept. Declarative knowledge about 
the physical world of the form “all material bodies have volume” is an example of the 
latter view and makes hard to devise concept representations that are easily fused with 
the representations of the other two views. Psychological evidence suggests that each 
of the aforementioned class of theories has support, advantages and disadvantages in 
particular areas of psychological interest, e.g. concept formation, categorisation, con-
cept combination, language & semantics, etc. For further discussions see [2]. 

Our approach is based on the exemplar and prototype theories. We develop a  
computational model for use in autonomous agents, such as in robotics or software 
agents. The structure of the paper is organised as follows: In section 2 we provide a 
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brief discussion on the basic ideas of the aforementioned theories. In section 3 we de-
velop a computational model based on the previous ideas. In section 4 we provide 
simulation results that support the current model formulation. In section 5 we con-
clude with a summary of its main characteristics and a discussion about future exten-
sions of the current model. 

2   Background on the Psychology of Concepts 

2.1   Concept  Properties and Formation 

Assume that a sensory signal s(t)=(s1, s2, …, sN) ∈ RN is given which carries informa-
tion from a number, N, of input channels at a time instance t. The input channels  
represent external and internal sources of information. We might call this signal the 
native state. We also assume the presence of a perceptual system, which is responsi-
ble for extracting features out of the incoming sensory signal. Thus the following 
transformation takes place in general: 

f(t) = P(s(t)) (1) 

where, f(t) represents the derived feature vector which in general is in a space RM. P 
corresponds to the perceptual system transformation. 

The feature vector f(t) corresponds then to an instance of a class and also 
represents a concrete object in the world. The components of feature vectors 
correspond to attributes. Now we can state the general concept formation problem: 
Given feature vectors of concrete objects in the world develop an internal representa-
tion that groups these objects according to a similarity criterion and preserve the re-
lation of such objects with other objects that belong to the same or to a different class 
in a manner such that the corresponding concepts continue to have a relation that is 
isomorphic to the one observed in the instances.  

We provide here a number of properties of concepts found by psychological re-
search:  

• O1. Concepts form incrementally; 
• O2. There are typicality effects present; 
• O3. Concepts depend on context, i.e. their essential features change depending on 

the context of use; 
• O4. A given instance may belong at the same time to a given concept and a more 

abstract one but also not have a lot of commonalities with other members of the 
abstract class (goal-derived concepts); 

• O5. Transitive inference might not always hold; 
• O6. Concepts combine to produce new concepts with emergent properties that 

might not be predicted by the knowledge of properties of the constituent concepts. 

Due to lack of space we will not provide any examples and explanations of the 
above properties here. The interested reader should consult [2]. 
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2.2   Review of Exemplar Theory 

According to Exemplar theory concept formation takes place by memorising observed 
instances. Consequently instance classification takes place by comparing the new in-
stance to the set of stored instances. In practice there are many Exemplar theories, as 
each one specifies different rules as to which instances are stored, how many are re-
tained, and what is the set of instances that the new input compares against. Deficien-
cies of the exemplar theory include the lack of prototypes and thus difficulty in con-
structing abstractions and concept combinations. It has been found experimentally 
that there are people that use an exemplar-based strategy in classification tasks. 

2.3   Review of Prototype Theory 

Prototype theory suggests the existence of summary representations, which encode 
the general information about the class, which is not necessary present in any given 
instance. The theory assumes that a schema structure is often in place. Schema is a 
data structure with a number of slots (called frames); each one of them corresponding 
to a feature of the schema. The feature values of the instances are stored in the 
corresponding frame of the schema. Usually information regarding the probability 
distribution out of which the values are drawn is stored as well in each frame. 

This type of theory is strong in explaining abstractions and at least some cases of 
concept combination effects. However, the schema approach cannot easily 
incorporate constrains and correlations among the frame values, nor it can easily 
provide a set of prototypes when multiple values are common for each schema 
feature. See [2], chapter 2 for further information. 

2.4   Typicality and Context Effects 

It has been observed experimentally that there are instances that are somehow more 
typical than others as representatives of a class, while others seem to be almost border 
cases between two classes. To account for these phenomena psychologists have 
postulated the existence of suitable metric spaces (which we will call conceptual 
spaces) where the notion of a distance function between two instances can be 
represented. Assuming for the moment that the feature vectors consist only from 
numerical1 variables, one can easily use a Euclidean distance function as a possible 
distance measure: 

∑ −=
k

jkik xxjiD 2)(),(                                    (2) 

where, xik and xjk are the components of the features vectors xi and xj corresponding 
respectively to instances i and j. The feature vectors xi and xj are derived by use of (1) 
and correspond to dinstinct values of the perceptual transformation P. Contextual 
effects can be explained by assuming a suitable weighting for the component 
domains, i.e. for the Euclidean metric: 

                                                           
1 I.e. not categorical variables. 
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∑ −=
k

jkikk xxwjiD 2)(*),(                                    (3) 

where the coefficients wk are called attention coefficients (in the psychological 
literature) and they encode the relative importance of the various components. 
Different sets of the attention coefficients represent different contexts. This naturally 
leads us to consider the notion of similarity between any two instances. It has been 
proposed that similarity is a function of distance of any two instances. Usually it is 
assumed to be a Gaussian or (negative) exponential function as in (4) and (5): 

           )),(*exp( 2jiDcs ij −=                           (4) 

or 

)),(*exp( jiDcs ij −=                                  (5) 

where c is a variable, called specificity, that controls the effective size of the 
neighbourhood in which any two instances are considered similar enough. 

It is now easy to explain how typicality effects arise. Assume that somehow we 
have some instances (or prototypes) that are considered representative of a class. As 
closer as an instance is to a prototype the more easily it will be recalled. For example, 
when one recalls birds usually consider first (as a typical prototype) a robin rather 
than a penguin. 

3   Computational Details 

3.1   Exemplar Representation 

Let us start with the issue of exemplar representation. The idea that we use is related 
to the work of J. McClelland [3]. Figure 1 presents a simplified version of the repre-
sentation of an exemplar.  

Let us consider objects with three features, such as Colour, Shape and Size infor-
mation. The set of all features is called Feature Space. A node inside any feature set 
represents an actual measurement (we assume a mixture of numerical and nominal 
variables, e.g. Colour and Shape information are of nominal type while Size is of nu-
merical type). All nodes inside a feature set are linked with bi-directional links so as 
to inhibit each other; in the simplest case we use a common weight, I, for these links. 
Assuming that we have observed Object 1 {Colour=”BLUE”, Shape=”Stick”, 
Size=20} we see that there are links from the corresponding feature value nodes to the 
exemplar node of Object 1. The value “Stick” for the Shape feature can be treated as a 
linguistic label but this is not necessary; for example it could be a vector of activa-
tions in a suitable neural network model for vision. Each one of the four semantic 
nodes (3 for the feature values, 1 for the exemplar) has associated variables of Activa-
tion, Input and Effect. With the arrival of a new feature vector the activations of all 
nodes change. 
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Fig. 1. An instantiation of the Concept System. View of the Exemplar level of representation. 

The activation is calculated as follows: 

∑∑ −+=
j

ij
j

ijii iIeEtobetInput **)(Pr)(                                        (6) 

0)(),(*))(()( ≥−= tInputtInputtActMtEffect iii                                         (7a) 

or 

0)(),(*))(()( <−= tInputtInputmtActtEffect iiii                                      (7b) 

and 

))((*)(
)(

RtActDtEffect
dt

tdAct
ii

i −−=                                                    (8) 

where in the above relations Inputi(t), Effecti(t) and Acti(t) is the net input, the effect 
and the activation of each semantic node respectively. Probei(t) represents a contribu-
tion arising by incoming percepts. This term in effect calculates a similarity function 
that is defined in analogy with (4) as: 

)))(,(*exp(*)(Pr tpiDistcAtobei −=                                                      (9) 

where in (9) “attention weights” are included in the distance function. A is the 
magnitude of activation for the similarity function with value of A=1.0 and we use a 
negative exponential for the Distance function between the node (i) and the probe p at 
time t. Typical values of the “attention weights” and “specificity”are wi=0.3 and c=10 
respectively. The distance function in (9) is defined both for nominal and numerical 
values. It takes values in [0,1] and it is given by (10): 
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jijiDist alno ≠= ,1),(min    or                                      (10a) 

                                       jijiDist alno == ,0),(min  

and 

range

ji
jiDistnumerical

||
),(

−=                                         (10b) 

where we have defined in (10a) the distance function for nominal and in (10b) for 
numerical variables respectively. In (10b) the range is defined as range=max-min for 
all encountered instances. For further details for these and other heterogeneous dis-
tance function definitions see [4]. 

Formulae (6)-(8) define a spreading activation mechanism, which is used to calcu-
late the activation of exemplar nodes from presentation of a given percept. The pa-
rameters which appear have the following values E=0.05 (excitatory weight), I=0.03 
(inhibitory weight), M=1 (maximum activation), m=-0.2 (minimum activation), 
D=0.1 (decay coefficient) and R=0 (resting level). eij and iij correspond to excitatory 
and inhibitory activations from other nodes j respectively. The activation is called ex-
citatory if it is greater or equal to zero and the activating node is in another set. All 
nodes that coexist in the same set and have activation greater than zero provide inhibi-
tory excitation to the node in question. 

On the presentation of a new percept we collect its feature vector and we use as 
probes its components to the corresponding feature set. Using (9) we calculate the in-
put due to the probe in all values inside a set. Next, using (6)-(8) we calculate the ac-
tivation of all nodes in each feature set and the exemplar set. Before any new activa-
tion calculation we initialise the activations of all nodes in random values in the 
interval [m, 0]. We allow the activation of a probe to persist in each iteration. We al-
low a number of iterations of equations (6)-(8) until the activations reach an equilib-
rium state. Typically 1000 iterations suffice to reach equilibrium. 

3.2   Prototype Representation 

The same spreading activation mechanism, described in section 3.1, is also in place in 
the Prototype Representation. Thus the same form of representation is used. The same 
parameter values are used as well. In this level we apply the probes to the (summary) 
feature values, calculate the effect on each (summary) feature value, which in turn in-
fluences the activation of the concept nodes. At the end some concept nodes are acti-
vated more than others and assuming a decision threshold one returns a set of acti-
vated concept nodes as the reply of the system to the incoming percept. Figure 2 
shows an instantiation of the Prototype level corresponding to that of figure 1. On the 
reception of a new percept a classification process takes place. Classification starts at 
the Prototype Level using the mechanism of equations (6)-(8) to calculate the activa-
tions of the concept nodes. If these activations are less than a threshold, say T1=0.7, 
then a second classification takes place in the Exemplar Level in the same manner. If 
the classification succeeds, then a concept update process takes place. If the activa-
tions of Exemplars nodes are less than a second threshold, e.g. T2=0.56, then we enter 
in the phase of concept formation which is described in section 3.3. In case that the 
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activations of Exemplar nodes are in [T3, T1], where T3 is a third threshold, say 
T3=0.6, we assume that the percept describes an existing exemplar that needs to be 
modified slightly or new information to be added to it, such as a new feature. This 
will be discussed in section 3.4 together with the update process of the Prototype 
Level. 

 

Fig. 2. Prototype level representation 

3.3   Adding a New Concept 

If our two-stage classification procedure fails to return any activated nodes we pro-
ceed on adding the new percept to the concept system as a new concept. The main 
idea is that we use a dual representation using both exemplars and prototype nodes. 
Some percepts will be represented as exemplars; others will only influence the (sum-
mary) feature values for the features of a prototype and they will not have explicit 
nodes created for them. The set of exemplars that is linked to a given prototype node 
corresponds to the supporting set of the concept, which is represented by the proto-
type node. The whole process consists of four steps. These are described below: 

Step1 (Exemplar Insertion): In this step we add in the Exemplar and Feature Spaces 
nodes that represent the corresponding feature components of the percept as well its 
related exemplar node. The exemplar node forms links with the newly created feature 
value nodes assuming a weight of 1 for each link. The exemplar and the feature nodes 
also form links with other exemplar or feature nodes in their including sets. These 
links also carry a weight of 1. If a component exists in the percept that does not corre-
spond to an existing feature set in the Feature Space, then a new feature set is created 
where the component value is entered as its first value node. When an exemplar node  
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is inserted in the Exemplars set an internal variable called LifeTime is initialised as  
in (11): 

∑ −
−

=

j
j

i
i ValueR

ValueR
LifeTime )0(                                               (11) 

i.e. it is the relative R-value of the exemplar inside the supporting set. R-Value is the 
reinforcement value of an item. The lifetime variable is used in order to control the 
time that the exemplar will be stored in the concept system. Every time that an Exem-
plar classification takes place, the winning Exemplar increases its lifetime according 
to (12a) while all other loosing exemplars reduce theirs according to (12b): 

21 )(),0(*)( TtActLifeTimeDtLifeTime iii ≥=Δ                     (12a) 

or 

22 )(),0(*)( TtActLifeTimeDtLifeTime iii <−=Δ                         (12b) 

Typical values for D1 and D2 are D1 = 0.1 and for D2=0.01. 

Step2 (Concept Insertion): In this step we also add nodes in the concept (or proto-
type) set and the corresponding summary feature sets. If a new feature set is required 
then it is created as needed. Links between the concept node and its corresponding 
summary feature value nodes are created. Finally competitive links of the new nodes 
with other nodes in their including sets are also formed. 

Step3 (Deriving the Summary Values):  Having formed already nodes for the fea-
tures of an exemplar we need to specify how these nodes, as well as the correspond-
ing summary value nodes, are initialised. In the Exemplar Representation, the feature 
value nodes take the value of the corresponding component in the percept. However, 
in the case of the corresponding summary node, its value is the average of the percept 
component value and the “centre of gravity” value of the other values present already 
in the summary feature set. In the case of nominal variables, the above-described nu-
merical procedure does not obviously work. In this case the summary values are the 
same with the corresponding feature values.  

Setp4 (Linking Exemplars to Concepts):  In the final step links are formed between 
the newly created exemplar and the concept nodes present in the concept space. These 
links use weights that are given by a Hebbian-like rule, more specifically of 
ARTMAP style (see [5] for details) (13): 

))()(*(*)(*
)(

tActtWtAct
dt

tdW
cece

ec +−= δγ                   (13) 

This rule builds correlations between the exemplar node (e) and the concept node (c) 
for all concept nodes. In (13) Wec is the weight of the link connecting the exemplar to 
the concept node. Acte and Actc are the corresponding activations. The parameters γ 
and δ have the values of 0.1 and 0.02 respectively. All weights start with zero value 
and by use of (13) evolve over time to stable values (assuming a stationary 
environment).  
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3.4   Incremental Change of a Concept 

In this section we discuss the related problem of how an existing concept can change 
given new percepts. There are two principal ways in which this can be accomplished. 
The first is by change of the summary feature values corresponding to a concept node. 
The second relates to the “amendment” of an exemplar node 

Change of Summary Feature Values: If a new percept is successfully classified in 
the first stage of Prototype Representation then a change process in the (summary) 
feature values of all activated concepts (above T1) takes place. This process in effect 
creates the “average” values for the features of the concept. We use an incremental 
SOM algorithm to achieve this, even though there are other ways to achieve the same 
effect. However, we believe that a SOM-based approach is both more biologically 
plausible as well as it provides nice topology preserving properties for the maps of the 
various feature sets. 

Change of Exemplars: It is also possible that a new percept will be successfully rec-
ognised in the Exemplar stage and the activations of the resulting exemplars will be in 
the interval of [T3, T1]. In this case we assume that the activated exemplars closely 
resemble the percept, so the percept should be a “noisy” encoding of the activated ex-
emplar(s). In this case, some adjustment takes place for the feature values of the ex-
emplar(s) based on the newly observed features. Section 3.3 – Step1 described the 
process, covering also the case of novel features. For features that are of numerical 
nature we assume that the “amended” value is the mean of the two values (of the ex-
emplar’s and the percept’s corresponding values), while for features of nominal na-
ture we use, between the two values, the one which has the higher probability. 

3.5   Controlling the Capacity of the Supporting Sets 

Each supporting set has a capacity, which is determined dynamically. Capacity is de-
fined as the number of exemplars that are retained in the set. We assume initially that 
there is a fixed maximum number of exemplars that can be stored dynamically inside 
the system. Let us call this number K. Assuming that in the system currently exist L < 
K exemplars and that these are partitioned in C classes then the capacity for the sup-
porting set of concept c is given by (14): 

∑
=

c
c

c
c Utility

Utility
KCapacity *                                    (14a) 

)( c
j

c
jc PIEValueRUtility −−= ∑                               (14b) 

i.e. it is the ratio of the set’s Utility, against all other set Utilities. For cases where an 
exemplar might be linked to more than one concept we count its contribution to the 
concept for which its link has the highest weight. R-Valuej

c  is the reinforcement value 
of the exemplar j which belongs to concept c. IE is the information entropy of the dis-
tribution of exemplars belonging to class c, see equation (15) below: 
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∑−=
j

jj PPPIE )(log*)( 2                                      (15) 

Equation (15) holds strictly for a discrete distribution, Pj, but a straightforward gener-
alisation to an integral can be made for continuous distributions. The usefulness of 
(15) lies in the fact that it can be applied to both numerical and nominal distributions, 
while use of standard deviation only works on numerical distributions. 

4   Simulation Results 

In this section we will explain the operation of the system using two test cases, which 
also provide simulation evidence for the model. We assume that we have initialised 
the system with the five exemplars present in table 1, (Ex1-5). We test the system us-
ing unobserved instances (Pr1), and missing values from the feature vector of a previ-
ously known exemplar (Pr2). Due to lack of space we discuss only the exemplar level 
classification process. Elsewhere we will discuss more fully the operation in all other 
modes, such as concept formation, classification in the prototype level, etc. Table 2 
provides activations of the five exemplars when two different probes are used. 

Table 1. Exemplars used for initialisation of the system. Probes are used for testing. 

Exemplar Features 
ID Tail Legs Arms Fins Peak Color Weight Size Class 
Ex1 1 2  2 1 Black 20 80 PENGUIN 
Ex2  2 2   Black 75 190 HUMAN 
Ex3 1 4    Grey 180 150 LION 
Ex4 1 3    Brown 40 75 DOG 
Ex5 1 4    White 5 40 CAT 
Pr1  2 1   Yellow 60 170 HUMAN 
Pr2  3    Brown 40  DOG 

 

Table 2. Activation of exemplars due to presentation of probes 

Exemplar Activations 
 Ex1 Ex2 Ex3 Ex4 Ex5 
Pr1 0.38 0.67 0.22 0.29 0.11 
Pr2 0.20 0.18 0.21 0.61 0.24 

 
Note the fact that in the first probe we have an one-armed man, while in the second 

one two out of five attributes are missing. The last column in table 1 provides the 
hypothetical class of the object in question and it is not used in the calculation. It 
serves only to provide context. 

4.1   Testing with Novel Values 

The first test uses probe 1 that describes a human, which is somewhat smaller in size 
and weight from that of exemplar 2, and he has only one arm. As it is expected the 
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highest activation takes place for exemplar 2. The value is somewhat lower than the 
maximum one due to the lack of matching in other shared attributes. The closer ani-
mal is a penguin, which due to sharing two legs and “medium” distance on the height 
and weight attributes comes with reasonable activation.  

4.2   Testing with Missing Values 

In the next testing task, we used as a probe an existing exemplar but with missing val-
ues in some of the attributes (that of exemplar 4). As it is also expected the best match 
took place with the correct exemplar but at a reduced activation due to lack of pres-
ence of values for two of the original attributes. The other animals in the exemplar set 
had rather low-level activations. 

4.3   Details of Simulation 

The simulations took place using the similarity function (9) while using functions (10) 
for calculation of distance per component depending on its type. The attention 
weights in (9) were kept fixed at value 0.125 for each component that entered in the 
calculations. We allowed 500 steps for reaching equilibrium of activations and the ini-
tial activation values were set randomly with a uniform distribution in the interval     
[-0.2, 0]. Ten simulation experiments took place in each case using different initial 
conditions for activations. Table 2 shows the average activations that were calculated 
on the basis of the individual experiments. The specificity value used was c=10 and 
the values for all parameters were set to the corresponding numbers that were given in 
previous sections. None of the above parameter values are critical for the proper op-
eration of the concept system. The values of the parameters were determined initially 
by using guidance from the literature [1, 2] and by modifying them afterwards 
through trial and error. No misclassifications took place with this set of parameter 
values.  

5   Conclusion 

In this paper we have presented our proposal for a concept system that closely follows 
ideas from human concept research and provides enhanced flexibility. The system 
does not only allow the insertion of new concepts, with variable feature information 
between observations, but also the incremental update of the created concepts. It also 
allows for forgetting of rarely used or unimportant concepts. In this way it can track 
dynamic environments and transient situations. We have also presented a scheme that 
allows one to form “summary” level representations for feature values of more 
abstract (general) entities from the corresponding values of more concrete entities. 
The concept system uses the idea of similarity for classification of new precepts to 
existing concepts and uses a spreading activation mechanism for calculating the 
classification answer. It allows in essence a multi-concept answer supporting thus a 
fuzzy interpretation of the results. It also distinguishes between “typical” cases, that 
are used to update a concept’s (summary) feature values and which are consequently 
discarded, from “boundary” cases (exemplars), which are maintained inside the 
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system. The boundary cases might belong to different concepts albeit with different 
degrees of membership. In this paper we have demonstrated with simulations results, 
that in classification tasks the system can return answers even in cases where feature 
information is missing, but other provided features are similar enough to existing 
concepts. In this case, it also supplies back “default” values for the missing 
components of a probe. Due to lack of space we could not provide further simulation 
results on other aspects of the system. This evidence will be presented elsewhere. 

The system borrows heavily from human concept research and it shows promise 
for supporting and developing flexible enough concept representations bringing to-
gether ideas from two out of the three dominant psychological theories of concepts. 
The disadvantage of the system is its relative complexity, but this is a fact that should 
be expected for increased flexibility. Obviously the future effort will concentrate on 
introducing further simplifications, while increasing the classification and concept 
learning capability. Paramount to this work is to explore in an extensive manner the 
complex relations of the various system parameters and devise ways in which these 
can be specified in a semi-automatic setting. An obvious idea is to link the classifica-
tion thresholds to a cost function for dynamic adjustment of the thresholds. An impor-
tant part of the future work will be to devise action representations so as to allow the 
linking of object concepts with affordances. Another future research direction in-
cludes basic linguistic capabilities, as it is expected that the more direct use of lan-
guage will speed up the process of developing (summary) feature values for concept 
nodes, as in the case of joint attention between infant and caretaker. Finally a thor-
ough investigation of the influence of the various parameters’ values on the success of 
classification tasks will take place. 
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Abstract. We present a model of a recurrent neural network, embod-
ied in a minimalist articulated agent with a single link and joint. The
configuration of the agent defined by one angle (degree of freedom), is
determined by the activation state of the neural network. This is done by
contracting a muscle with many muscular fibers, whose contraction state
needs to be coordinated to generate high amplitude link displacements.
In networks without homeostasic (self-regulatory) mechanism the neural
state dynamics and the configuration state dynamics converges to a fixed
point. Introduction of random noise, shows that fixed points are meta-
stable. When neural units are endowed with homeostasic mechanisms
in the form of threshold adjustment, the dynamics of the configuration
angle and neural state becomes aperiodic. Learning mechanisms foster
functional and structural cluster formation, and modifies the distribution
of the kinetic energy of the network. We also present a meta-model of
embodied neural agents, that identifies self-perturbation as a mechanism
for neural development without a teacher.

1 Introduction

Motivated by concepts and ideas from autopoetic philosophy, ecological psy-
chology, complex systems theory, and situated artificial intelligence research, we
present a recurrent neural network model [1] to study how a minimalist embod-
ied agent can be made to develop basic sensori-motor coordination skills. The
agent consists of a link and a rotational joint in a 2D plane. The agent con-
figuration is fully determined by a single degree of freedom — the joint angle.
Attached to the link is a muscle whose contraction/distension produces an an-
gular displacement of the link. The activity of the neural units determine the
level of contraction of the muscle. The units in our neural model are endowed
with homeostasis modeled as an adaptive threshold adjustment. Our goal is to
study what neural and behavioral mechanisms are required for the emergence of
effective movement of body limbs in humans and high-order animals. In partic-
ular, we want to explore if self-perturbation — perceptual input generate by the
agents own action, is an effective mechanism to guide neural development. In

J. Marques de Sá et al. (Eds.): ICANN 2007, Part II, LNCS 4669, pp. 934–942, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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this article we present preliminary results related to the dynamics of the neural
controller, looking both at neural state and resulting configuration state.

Below, we present first a meta-model for embodied neural agents (section 2).
Next, we describe the particular embodied neural agent model studied in this
article (section 3), and present the results of several computational experiments
using the model (section 4). Section 5 presents related work and discusses sim-
ulation results.

2 A Meta-model for Embodied Neural Agents

To study self-organization in embodied neural agents and the development of
sensori-motor skills, we have made an abstract characterization of this type of
agent models. [See [2] for another characterization of embodied developmental
agents].

Agents are characterized at two levels: the macro-level and the micro-level.
The macro-level is defined by the configuration state — a formal description of
the agents body posture in space, as seen by an external observer or as made
apparent to the agent through self-perception. A small number of degrees of
freedom is often required to describe an agent at this level. The micro-level is a
characterization of the state of its neural controller. This includes the activation
level of neural units (e.g. mean firing rate), units thresholds, and neural connec-
tions weights. Usually, the micro-level requires a much higher number of degrees
of freedom to be fully described than the macro-level, since an agent with few
links and joints may have a controller with many neural units. Interfacing the
micro and macro-levels, agent descriptions include the way the neural controller
is connected to the agents body — both in muscular connections (efferent) and
in the way sensation-perception cells/inputs impinge in the neural controller.

Agents are often situated in some environment, in such a way that its be-
havior and interaction with the environment may be observed by some external
observer. In fig. 1left), we make a sketch representation of the relation between
the agent, its environment, the external observer, and the two levels of descrip-
tion.

A key aspect of natural agents, is that the mapping from the (micro) neu-
ral level and the (macro) configuration level is not one-to-one. The coordinated
action of a large number of neurons and muscular cells is usually required to gen-
erate strong and high-amplitude body movements. Additionally, many different
neural states may mandate the same body configuration.

Because agents have units sensitive to environmental and body state (the
sensation-perception inputs), agents can sense the effects of their own actions.
Thus the micro and macro level are connected in a two-way causality loop. The
state of the micro-level determines the body configuration (apart from external
mechanical perturbations of the agent body, such as gravity and social manip-
ulation), and the body configuration perturbates the internal dynamics of the
neural controller. Fig. 1right), represents the causality loops in agent behavior
according to our meta-model. X represent the state of the neural controller of
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Fig. 1. Meta-Model of Embodied Neural Agents: left): conceptual diagram of the
agent, the external observer, the environment, the macro-level and the micro-level
descriptions; right): schematic block diagram of agent-agent and agent-environment
functional dependencies

the agent (part of micro-level or internal state), and Cag represents the body
configuration of the agent (the macro-level or external state).

3 A Model of a Minimalist Embodied Neural Agent

We model an embodied agent with a single link and a single joint. The joint angle
ψ fully defines the body configuration of the agent. The joint angle is determined
by the contraction of a simplified muscle that works like a mechanical lever. The
muscle has a large number of muscular units mi. The contraction/extension of a
muscular unit mi produces a spatial displacement Δsi, and the summation of all
displacements determines the joint angle. Formally, ψ = f(

∑
i Δsi), where f is a

function of the detailed geometry of the agent.We assume that the contraction of
a single neural units produces a relatively small link displacement. In particular,
the simultaneous contraction of a large proportion of muscular units is required
to generate maximum displacement of the link. Moreover, the joint angle ψ
is always constrained to lie within a maximum amplitude interval [− pi

2 , pi
2 ]. In

figure 2, we show the abstract design of the agent (left), and the graphical design
as visualized in our simulator (right).

Muscle contraction (and thus body configuration) is controlled by a neural
population with Nm units, whose activation/excitation state we represent by the
vector Xm ≡ [x1, . . . , xi, . . . , xNm ]. We make a simple attachment between this
motor control neural population and the muscle units, by making the number of
muscular units equal to the number of neural units, and connecting them one-
to-one (unidirectional). When all units are in a rest/natural activation value φ
takes value 0 (the link is horizontal).

Neural units are connected in a network/graph as a fully recurrent neural
network (all units connect to all) [1]. Connection strengths are represented with
a connectivity matrix M, where element cij represents the connection strength
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Fig. 2. Body Configuration of Minimalist Articulated Agent (one degree of freedom,
one set of muscular units): (left): abstract design; (right): visualization in neural
simulator

or weight between unit i and j. In the simulation results presented below we
experiment both with fixed connection weights, and with time varying connection
weights that change continuously as the system runs. There is no separation
between learning phase and performance/test phase (as is often the case in
traditional connectionist models [3]).

Neural unit are assumed to be initially connected in random weights, using
a normal distribution with mean value 0 and variance σ2(M). When learning
is used, weights are modified in a single direction. Positive/excitatory weights
can only be increased, and negative/inhibitory weights can only be decreased.
Learning is modeled as an hebbian-like learning rule for positive connections,
and an anti-hebbian-like learning rule for negative connections.

Neural units have an adaptive threshold that is used to maintain units in a
sensitive state. This is equivalent to cellular homeostasis mechanisms in biologi-
cal neural networks [4]. For unit i we represent its threshold as θi. When a unit’s
activation is very high, a slow adaptation process takes place that gradually
moves the activation value to a rest or natural activation value x0. Likewise,
when units activation value is low the same adaptation process takes place to
raise activation level to x0.

The operation of units is formally defined using two ordinary first-order dif-
ferential equations [approximate by the Euler method in the simulations below].
The first equation below describes the (fast) dynamics of individual units ac-
tivation. The second equation describes the (slower) dynamics of homeostasis.
The learning dynamics is modelled by the third equation presented below.

⎧
⎨

⎩

τ1ẋi = −xi + x0 + f(
∑

j cjixi + ciπi − θi) + ξ

τ2θ̇i = xi − x0
τ3ċji = sign(cji) · g(xmax − xi)g(xmax − xj),

above τ1, τ2, and tau3, with τ1 << τ2, are constants for the characteristic times
of the neural processes modelled. x0 is the resting or natural activation of units.
f is a activation gain function. We use a constant gain G. Units activation xi is
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constrained to be in the interval [xmin, xmax], where xmax is the saturation value
and xmin is the lowest/depression value. ξ is a normally distributed random noise
value. πi represent the current value of the self-perturbation input for unit i and
ci is a fixed input gain. Only for units in Xp is πi non-zero. g is an auxiliary
function that produces higher values when the argument is close to 0. Its used
to implement the (anti-)hebbian learning function. sign is the standard sign
function.

Solving for equilibrium in the first equation shows that at rest xi = x0 +
f(

∑
j cjixi + ciπi − θi) + ξ, which is a fast quiescent/rest state. Solving for

equilibrium for the second equation show that at rest xi = x0, which is a slow
quiescent/rest state (since τ1 << τ2).

4 Experimental Results

Embodied recurrent neural networks in articulated agents have receive modest
attention in the research community [5,6]. Thus, we have made some preliminary
explorations in the dynamics of our model, before moving to complex model set-
ting. We present the simulation results in increasing level of complexity, starting
with a stripped/simplified version of the neural model and progressively increas-
ing the number of model elements at work.

The simplest operation regime for the system is when neural units are not con-
nected, that is, the connection matrix M is null. In this case, network dynamics
is governed by the internal noise variables ξi and, if units homeostasis is turned
off, the body configuration angle ψ takes values normally distributed around 0.
[The dynamics of the proprio-perceptive population Xp in not considered here.]
Fig.3 show the distribution of angle φ and the time-series of φ in one particular
simulation run (with 500 steps) with a high value of σ2(ξ). The distribution
is clearly bell-shaped (given some sampling error). This is the expected result
since ξi is normally distributed, and link displacement is proportional to units
activation. All simulation runs without connections produce similar results. The
standard deviation of φ is a monotonic increasing function of the standard devi-
ation of ξ since units activation values are statistically independent. If units are
set to have homeostasis, fluctuation around φ = 0 can be made arbitrarily low
by reducing σ2(ξ) and reducing the characteristic time for homeostasis τ2.

When units are connected according to some random weight matrix M, with
mean 0 and variance σ2(M), and weights are fixed (no learning), the behavior
of the system changes. If noise is removed and homeostasis is also removed, the
activation state and the configuration angle converges in most simulation runs
(with different random matrices) to a fixed point. In the fixed point most units
are either fully saturated or fully depressed. Different random matrices produce
different fixed points. Fig.4left) shows the evolution of the neural state over 100
time steps. High activation of units is color coded as red, low activation as blue,
and values near x0 as green1. Also in fig.4left) we show the evolution of the
1 We use this color code since red can be associated with heat produced by cells’

activity, and blue with cold.
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Fig. 3. Distribution and time-series of ψ when units are not connected and units are
not homeostasic (σ2(ξ) = 10,N = 16)

X_

t

X

0 20 40 60 80

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

C_

t

ψ

X_

t

X

0 50 100 150 200

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

C_

t
ψ

Fig. 4. Typical system’s behavior with random matrix (σ2(M) = 1) and no homeostasis
(τ2 = ∞): left) no noise (σ2(ξ) = 0): Convergence to a fixed point with most units
saturated or depressed (N = 16); right) high noise (σ2(ξ) = 5): Convergence to a
small region of the state state (meta-stable)

configuration state for the same simulation run. In a set of 10 consecutive runs
with the same settings, the results obtained where qualitatively the same. Anal-
ysis of the Hopfield energy function of neural states, Et(X) = − 1

2

∑
i,j cijxixj ,

showed that energy values do not always reach a global minimum, which is ex-
pected because connections are not symmetric [1].

Fig.4right) show the system evolution when noise is added to the system
of a typical simulation run. The results show that the neural and configura-
tion state converges to a small region of state space, and remain in that region
(the region is meta-stable). [The results were qualitatively the same for a set
of 10 consecutive runs.] This suggests that fixed points in the previous case (no
noise) are Lyapunov stable (neural states tend to stay within a small distance
of a fixed point when perturbed). Most units remain for most of the time close
to saturation or depressive points (red and blue colors). Fluctuations of ψ are
small. Fluctuations of ψ around a mid-point can not be assumed to be normally
distributed since units are interconnected.

When units use homeostasis, the behavior of the system changes considerably.
The proportion of time units are not saturated or depressed increases, as inspec-
tion of the differential equation for the threshold above would suggest. However,
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learning, moderate noise (σ2(ξ) = 0.2), and homeostasis (τ2 = τ1

5 ): The system exhibits
non-periodic behavior (N = 30). top)evolution of neural state; bottom)Distribution
of configuration angle ψ, and kinetic energy.

most units do not remain with an activation value near x0 all the time since
they are taken away from homeostasis due to interconnection with other units.
Fig. 5 shows a qualitatively typical simulation run (from a set of 10 consecutive
runs). [Noise was set to a moderate level (σ2(ξ) = 0.2, when compared with
the set maximum activation level (xmax = 3).] The system state does not con-
verge to any attractor, but exhibits non-periodic behavior due to threshold
adjustments. The distribution of the configuration angle and the kinetic energy
of the units is better fitted by a power-law pr(ψ) ∝ ψ−λ (one for each side of the
distribution), than by a Gaussian curve since values near x0 are more likely than
would be expected in a Gaussian curve2. This shows that threshold adjustment
is a valuable mechanism for generating complex patterns in neural controllers’
activity, preventing the system to become locked in a fixed-point.

When the learning rule is used to modify connection weights, the system be-
havior remains non-periodic but now units form high-connectivity clusters that
produce correlated activity. We measure this by using a structural clustering

2 We are currently working on further simulations to obtain reliable statistics for
the λ exponents. In this particular run, the sum of squared errors for the best
fitting parameters was one order of magnitude lower for the power-law than for the
Gaussian.
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index; right) distribution of configuration angle ψ

index defined as Kc = 1
NMmax

·
∑

ijk cijcikcjk (only positive connections consid-
ered). Fig. 6 shows that Kc and the absolute value of connections increases till
the learning capability of the network is reached. The clusters formed have the
effect of increasing the average kinetic energy, and breaking the symmetry of
the configuration angle distribution. Low angle values (corresponding to many
depressed units) are less likely than higher values (corresponding to many sat-
urated units). Configuration angles are also more likely to take extreme values
(thus changing the λ exponent in the power-law). This is the result of simulate-
nous activity of units is the formed clusters. Making connections weights change
to be in one direction only helps the learning process in the initial phase, but
is a contributing factor in limiting the network ability for continuous learning.
We are currently investigating ways to extend networks’ ability for continuous
learning.

5 Summary Discussion, Related Work, and Conclusions

We have presented a model of a recurrent neural network with homeostasic
units, for an embodied agent with a single degree of freedom. Activity of neural
cells generates muscular contraction, and determines the configuration angle of
the agent. The neural model is motivated by a meta-model of embodied neural
agents, whose goal is to inspire the design of agents that learn without a teacher
using the mechanism of self-perturbation — that is, perceptual input generated
by the agents own actions. Simulation work realize so far enabled us to arrive
at some preparatory and preliminary conclusions. Homeostasis in neural cells
allow neural controller to “escape” fixed points and allow the agent to explore
its configuration space. Homeostasic mechanisms have been identified in the bi-
ological neural networks literature [4],and its behavioral relevance is starting to
be explored [7]. The presented results are along this direction. Connections be-
tween neural units produces aperiodic behavior in our neural model. This as been
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previously advanced in the neural networks literature [8] and fits known empirical
data about animal and human brain activity [9]. Our simulation results replicate
these findings. Learning mechanisms foster functional clusters formation and in-
creases average kinetic energy of units. Configuration angle and kinetic energy
distribution is better characterized by a power-law rather than a Gaussian —
because homeostasis brings connections to rest activity, and clusters allow ag-
gregates of units to move far from the rest activation level. Similar activation
distribution has been reported in empirical data about activity of human brain
[10]. We are currently working to improve the statistical robustness of our results,
using multiple simulation runs and networks with a higher number of units. The
role of self-perception as a driving force in neural and behavior development is
another focus of our current experimental work. In particular, we are studying
how neural dynamics and learning are affected by self-perturbation. Theoreti-
cal and experimental advances in robotics research have identified complexity
theory as a promising tool to understand how neural agents can self-organize to
produce adaptive behavior [11]. Recent work on developmental robotics has been
proposing candidate mechanisms for understanding the development of embod-
ied agents [2]. Our work in self-perturbation is a further step in this direction.
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Abstract. Language skills are dominantly implemented in one hemi-
sphere (usually the left), with the pre-frontal areas playing a critical part
(the inferior frontal area of Broca and the superior temporal area of Wer-
nicke), but a network of additional regions in the brain, including some
from the non-dominant hemisphere, are necessary for complete language
functionality. This paper presents a neural architecture built on spiking
neurons which implements a mechanism of associating representations of
concepts in different modalities; as well as integrating sequential language
input into a coherent representation/interpretation of an instruction. It
follows the paradigm of temporal binding, namely synchronisation and
phase locking of distributed representations in nested gamma-theta os-
cillations. The functionality of the architecture is presented in a set of
experiments of language instructions given to a real robot.

1 Introduction

Sound and vision are processed in different parts of the brain. Nevertheless, a
spoken word describing an object and an object present in the visual field would
raise activity in the brain which leads to a coherent representation of the object
associating the interpretation of the sound and vision, as well as features related
to other modalities, e.g. affordances related to possible actions (Shtyrov et al.,
2004; Arbib, 2005; Arbib and Bota, 2003). In the context of language process-
ing, the cortex can be seen as a multimodal information-merging computational
device which uses neurons representing and processing information from various
sensory and motor modalities. Similar to the brain, where language processing is
related to actual interaction with the environment and is performed in conjunc-
tion with internal constraints, computational language systems should be able
to associate objects and actions with their perceptions and affordances. Con-
sequently, a growing number of computational models of language processing
are being based on multi-modal associations (Burns et al., 2003; Oates, 2001;
Siskind, 2000).

The development of the neural architectures presented here follow the above
arguments for language representations and processing in the brain. It is based
on the view that concepts are represented by distributed cell assemblies across
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multiple areas of different modalities, with objects activating neurons in both
auditory and visual areas, and actions activating neurons in auditory and motor
areas.

Different mechanisms have been considered for the task of associating/binding
distributed representation (features) into one coherent pattern of activity. The
temporal correlation hypothesis, first proposed by von der Malsburg (1981), pos-
tulates that features are bound into complex representations based on the tem-
poral correlation of the activity patterns of the neurons representing them. It
is based on neurophysiological studies showing that neurons driven by a single
stimulus respond synchronously with oscillations in the 30-70 Hz range. Such
synchronous oscillation have also been observed between different sensory and
motor regions (Roelfsema et al., 1997; Bressler et al., 1993). Temporal binding
for a language processing task has been discussed in a number of experimen-
tal and modelling studies, including the slot-filler model presented by Sougné
(1999) which was evaluated and found to have similar to human performance in
a range of reasoning tasks: such as in short-term memory span, serial effects of
STM, similarity effects of STM, double dissociation between STM and LTM, in
the negation effects of conditional reasoning, and the effects related to multiple
instantiation. Although, in most models temporal binding has been based on
synchronous activity, the principles of the idea can also be applied in a more
general form where the condition is a phase-locked activity of the neurons repre-
senting the individual features. Such an approach is taken in the development of
part of the model presented here. It introduces binding across different modali-
ties via associative connections trained using Spike-Timing Dependent Plasticity
(STDP), implements a working memory model, and in further work (not covered
by this paper) incorporates it into an embodiment platform for evaluation in a
real world environment and tasks.

2 Overall Model

The overall objective of the work, part of which is presented in this paper, is
to build a spiking neural network architecture for robot control using language
instructions. The robot moves in an environment with objects of different shape
and colour. A spiking neural network controls the robot in avoiding any obstacles
while navigating around the environment within a suitably constrained scenario
of finding and picking objects. The network also implements the recognition and
execution of language instructions for: direct navigation, finding and recognising
objects, and moving objects in the environment. The lexicon includes the words:
go, stop, turn, left, right, back for navigation; find, grab, drop for object manip-
ulation; and red, green, blue, ball, box, cone for describing the 9 objects on the
scene. The set of instructions that can be given to the robot includes short (1-3
word) phrases, such as go, turn left or find red ball.

The work involves modelling of primary sensory areas - auditory, visual and tac-
tile, higher cognitive functions areas - languageprocessing/understanding,working
memory, and motor control areas (Panchev and Wermter, 2006; Panchev, 2006).
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Fig. 1. Multi-modal ADDS spiking neural network architecture for robot control

The overall architecture is presented in figure 1. It consists of four main inter-
connected modules: the auditory (A0, A1, A2 and AW), the visual (LGN, V1,
V4, IT, VF, VC and VS), the motor control (T0, M0, M11 and M12) and the
central associative and working memory modules (CA, CV, CM and C1). All
areas are implemented using (Active Dendrites and Dynamic Synapses (ADDS)
spiking neurons (Panchev, 2005). The rest of this paper will concentrate on the
detailed description of the architecture and functionality of the (central) working
memory areas which implement the multimodal integration of language input in
an neural circuit with nested gamma-theta oscillations.

3 Multi-modal Sensory-Motor Integration and Working
Memory

3.1 Architecture

The Working Memory (Central) modules (figure 2) implement three main func-
tions: (1) The networks in the Central module of the model (the AW-CA-C cir-
cuit in particular) implement the simple grammar of the robot’s instruction set
and the integration of a sequence of words into a phrase (object and/or instruc-
tion); (2) The neural circuits from the Working Memory (CA-C1a and CA-C1o)
maintain the instructions given to the robots for the period necessary for their
execution; and (3) Neurons from the central modules (CA-C1a-CM, CA-C1o-C1
and CA-C1o-C2) are the points of integration and transfer of information across
the different modalities.
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Fig. 2. Architecture of the Central (Working Memory) module. For clarity only some
inhibitory connections from AW to CA and from C1a,o to CA are shown.

The central areas (CA, C1a, C1o, CV1, CV2 and CM) include small clusters
of neurons representing each of the words in the robot’s lexicon. C1a is a sub-area
for action words and C1o is a sub-area for object words. Lateral and feed-back
connections implement the relationship between the words in an instruction. The
inhibitory connections are setup so that high inhibition prevents the neurons
from firing whereas low inhibition delays their firing. The strong inhibition from
AW to CA connects neurons representing words which have the same order
position in the instructions. The weak inhibition from C to CA connects neurons
representing words in successive position in the instruction phrases. The central
layers (C1a and C1o) interact with the other modules via neurons in area CA
for auditory, areas CV1,2 for the visual and area CM for the motor areas. The
connectivity pattern of the WM module was hard-wired with the strength of
the inhibitory synapses fixed and the weights of the excitatory synapses trained
using the STDP-type synaptic plasticity protocol presented in (Panchev et al.,
2002; Panchev, 2007).

Each concept recognised by the robot is represented by distributed cell assem-
blies across different modalities. For example the representation of go includes
neurons from the AW, CA, C1a, CM and M12 areas, and entities such as box
activate neurons from AW, CA, C1o, CV and VF (and possibly for colour and
spatial location also including the VC and VS) areas.
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3.2 Language Understanding: Recognising Sequences of Words

The main constraints considered during the design and implementation of the
computational architecture for language processing presented here are: (1) The
words forming an instruction would arrive in a sequence, and the mechanism
should support gradual build up of the semantic information contained in the
sequence under a set of syntactic and semantic constraints; (2) The temporal
structure of a spoken sequence of words contains relatively high levels of noise,
more specifically, the interval between two consecutive words can range from
a few hundred milliseconds to a few seconds. The proposed neural mechanism
should cope with such fluctuations; (3) The mechanism should allow for inser-
tions such as adjectives. For example, the instructions find box and find red box
should lead to the same behaviour of the robot if there is a red box in front of it.

Part of the architecture presented here is influenced by a model presented
by Lisman and Jensen (Lisman and Idiart, 1995; Idiart and Lisman, 1995;
Jensen and Lisman, 2005). It is implemented with the CA-C1a,o circuit run-
ning two nested oscillations. The main difference here is the implementation
of the neuronal mechanisms supporting the oscillations. While in the original
model it relies on activity-dependent changes of membrane excitability (mainly
the membrane after-depolarisation effect), the current model uses long range
circuits (implemented by the recurrent CA-C1 connection) and lateral excita-
tion (implemented by the lateral C1-C1 connections) forming reverberatory cell
assembly activity as proposed by Hebb (1949). The oscillation representing a
phrase runs at 10 Hz. Within each cycle of this theta oscillation, the cell as-
semblies representing each of the currently active concepts spike in a sequence
forming a 30 Hz oscillation (figure 3).

Each cycle of the theta oscillation can include one phrase (instruction). The
start of the cycle is marked by a Central Pattern Generator (CPG) neuron in

Fig. 3. CA-C1a,o circuit implements nested oscillations where each word in the in-
struction is represented within a subsequent cycle of a high-frequency oscillation. The
instruction is repeated in each cycle of a low frequency oscillation.
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Fig. 4. Working memory activity in processing the instruction go given at time 0. (A)
At approximately 250 milliseconds the word is recognised and activates the AW neuron
representing go. The spike burst from AW activates the neurons in CA and thereby the
working memory oscillation C1a-CA. (B) Zoom in the oscillation after the activation
pattern has stabilised.
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Fig. 5. Working memory activity in processing the instruction turn left given as a
sequence of the words turn at time 0 sec and left at 1.66 sec. (A) At approximately
250 milliseconds the first word is recognised and activates the AW neuron representing
turn. The spike burst from AW activates the neurons in CA and thereby the working
memory oscillation C1a-CA. At approximately 2 sec the word left is recognised an
enters the working memory oscillation after turn (B) Zoom in the oscillation after the
activation pattern has stabilised.
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Fig. 6. Working memory activity in processing the instruction find red box (top) and
find box red (bottom). In both cases the pattern of the final stable oscillation represents
the sequence find red box.

area C1 that spikes at 10 Hz and sends signals to all C1 neurons representing
words which can appear at the beginning of a phrase. These signals generate sub-
threshold membrane potentials at the C1 neurons and alone are not sufficient to
activate the assemblies. Additional input from the neurons in CA is required for
these neurons to spike. The CA and C1 neurons in a cell assembly representing
a particular concept have recurrent connections and formulate a reverberating
oscillatory activity between the two areas. Thus, activation of a single word
constituting an instruction (or being the first word of an instruction), e.g. go,
would be as follows (figure 4): upon recognition of the auditory input stream as
the word go the AW neurons for that word will respond with a decaying spike
burst causing several spikes in the CA neurons for go. In parallel the inhibition
from AW to CA will shut down any oscillatory activity of a word which can take
the same place as go, e.g. stop or find. Being the first word, this will remove
any instruction currently held in CA-C. The combined input from CPG and CA
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Fig. 7. Correcting the target in the instruction: Working memory activity in processing
the instruction find blue ball followed by the word green. The final activation pattern
of the working memory is the sequence find green ball.

neurons will activate the neurons representing go in C1a. In return, the neurons
from C1a will activate (with some delay) the CA again as well as motor control
neurons in CM and M12. Following the propagation of activity, the CA-C1a
neurons for the word go will oscillate with a precise frequency led by the spikes
from CPG and maintain this activity while subsequent words come in and/or
the instruction is being executed.

The processing of words taking second and third position in the instruction
phrases follows a similar activation patter (figure 5). The main difference is that
instead of receiving inputs from CPG, the neurons representing such words in
area C1 receive lateral inputs from the C1 neurons representing words which can
precede them in a valid instruction. For example the C1a neurons representing
left receive lateral excitatory connections from the C1a neurons representing go
and turn. In addition, the CA neurons for the word left will also receive low
strength fast inhibition from the C1a neurons of go and turn. This inhibition is
not sufficient to prevent the CA neurons from firing but rather delays their firing
and facilitates the order of activation in the CA-C1 oscillations. Critically, the
weak inhibition from C1 to CA ensures that when new words come as input, they
enter the CA-C1 oscillation at the appropriate place, i.e. after the word which
should precede them. This is in contrast with some earlier working memory
models based on oscillation, where the new items join the oscillation at the
front, e.g. (Lisman and Idiart, 1995).

This architecture supports a gradual build up of the current context which
allows a wide range of fluctuations in the intervals between the consecutive
words in the input stream, including insertions. The CA-C1 oscillation maintains
the current context until the next word arrives. Upon arriving of a word from
the auditory stream (that is activation in AW), the new entity is included at
the appropriate place in the current context in accordance with the semantic
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and syntactic constraints in the robot’s dictionary. For example, if the current
context is find red and the new input word is box, the new oscillation will be a
sequential firing of the assemblies for find red box (figure 6 top), whereas if the
current context is find box, a subsequent input word red will be included in just
before box and again lead to the representation of find red box (figure 6 bottom).

4 Conclusion

The paper presented a neural architecture implementing association of object de-
scriptions and actions represented in different perceptual and motor modalities
and constructing a short language instruction. The architecture follows the tem-
poral binding paradigm, and implemented a synchrony binding of multimodal
distributed representations of the same concept and phase locking for binding
language entities from an instruction - both running in nested gamma and theta
oscillations respectively. Furthermore, the language instruction was maintained
in the working memory during its execution by the robot. The architecture was
implemented using ADDS spiking neurons and the excitatory connections were
trained using STDP learning algorithm. The model was able to correctly recog-
nise the instructions given to the robot and in further studies was shown to
achieve good performance in executing the required actions. Although imple-
mented with a simple grammar and in a relatively constrained environment, the
results from the model showed that the architecture and mechanisms on which it
is based have the potential to play a role in the higher level cognitive processes in
the brain as well as in computational models integrating such processes. Further
modelling and experimental work will accommodate higher number of words,
more complex grammar and robot’s environment, and will allow further evalua-
tion of the mechanisms and principles employed in this architecture.
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Sougné, J.P.: INFERNET: A Neurocomputational Model of Binding and Inference.
PhD thesis, Université de Liège (1999)
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Abstract. Neurocognitive processes responsible for representation of meaning 
and understanding of words are investigated. First a review of current knowl-
edge about word representation, recent experiments linking it to associative 
memory and to right hemisphere synchronous activity is presented. Various 
conjectures on how meaning arises and how reasoning and problem solving is 
done are presented. These inspirations are used to make systematic approxima-
tion to spreading activation in semantic memory networks. Using hierarchical 
ontologies representations of short texts are enhanced and it is shown that high-
dimensional vector models may be treated as a snapshot approximation of the 
neural activity. Clustering short medical texts into different categories is greatly 
enhanced by this process, thus facilitating understanding of the text. 

1   Introduction 

Low-level cognitive functions involving perception and motor control have reason-
able neural models at different level of complexity, from sophisticated spiking neuron 
biophysical models to quite approximate Hopfield-like and self-organized networks 
that provide qualitative ideas rather than detailed explanations. Unfortunately, despite 
great progress in neuroscience, the higher cognitive functions: language, thinking, 
reasoning, planning, problem solving, creativity, understanding of visual scenes are 
all poorly understood and lack good working models. Great progress in neuroimaging 
has not elucidated the precise mechanisms of high-level cognitive functions, because 
they depend on synchronization of processes at a single neuron or a microcircuit 
level. Attempts to elucidate such processes at present must be speculative. Even if 
they prove ultimately too simplistic they may still be fruitful by helping to formulate 
neurocognitive models of various higher cognitive functions. 

In this paper neurolinguistic insights are used to elucidate the process of text  
understanding and to find useful approximations to the spreading of brain activity 
during text comprehension. The connectionist approach to natural language has been 
introduced already in [1], where it was used to explain qualitatively a few linguistic 
phenomena. The only known system that can deal with linguistic structures is the hu-
man brain. The neurocognitive approach to linguistics “is an attempt to understand the 
linguistic system of the human brain, the system that makes it possible for us to speak 
and write, to understand speech and writing, to think using language …” [2].  

2007 
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Although this approach has been quite fruitful for understanding neuropsychological, 
language-related problems, it is relatively unknown in the natural language processing 
(NLP) community; no practical algorithms for large-scale text analysis have been 
derived from it.  

The basic assumption of neurocognitive computing is that words activate micro- 
feature-based associative networks and that the activation spreads to other parts of the 
network, which increases the probability of priming dynamic activations of states that 
facilitate semantic interpretation of words, concepts, sentences and episodes. Basic 
words and concepts label the action-perception subnetworks, acquiring the meaning 
directly through references to actions in the environment [3-4]. Constrained spreading 
activation techniques have recently been applied in information retrieval [5], semantic 
search techniques [6] and word sense disambiguation [7], although their application is 
still quite limited.  

A brief introduction to the putative neurocognitive processes behind higher cogni-
tive functions is presented in the next section. The section focuses on the use of words 
and symbols, analysis of priming experiments with pairwise word associations, and 
recent observations of insight states in the brain. Various approximations of the 
spreading activation processes in brain networks are discussed and related to the 
methods used in natural language processing. The challenge is to create approxima-
tions that could be used in large-scale, practical NLP projects. An example of how 
hierarchical ontologies can enhance the representation of short medical texts (sum-
mary discharges) illustrates the usefulness of simple approximations. Discussion of 
the results and their wider implications closes this paper. 

2   Representation of Words and Meanings 

Linguists have employed symbol manipulation, grammars and parsing techniques, 
trying to understand languages in conceptual terms. Progress in understanding lan-
guages in this way has been rather slow, which has led to the use of statistical tech-
niques to study patterns of language use in large corpora [8]. Although language is 
based on symbols, logical linguistic analysis may provide only an awkward approxi-
mation of the spreading activation and associative processes in the brain. The neuro-
cognitive approach to language draws its inspiration from brain research in trying to 
understand the processes that make language understanding and production possible. 

Sensory systems transform incoming stimuli by extracting from auditory and visual 
streams such basic quantized elements as phonemes in speech or edges with high  
contrast in vision. These elementary building blocks form larger patterns, building 
discrete representations of words and shapes, and in a hierarchical way filling the 
working memory with information about whole scenes and complex objects, some of 
them abstract and not even directly related to activation of sensory cortices [9]. The 
cortex has a layered, modular structure, with columns of about 105 densely intercon-
nected neurons, which communicate with other cortical columns in the neighborhood 
and sometimes also in quite distant areas across the brain, including the opposite 
hemisphere. Each column contains thousands of microcircuits with different proper-
ties (due to the different type of neurons, neurotransmitters and neuromodulators), 
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acting as local resonators that may respond to sensory signals, converting them into 
intricate patterns of excitations.  

Hearing words activates a strongly linked subnetwork of microcircuits that bind ar-
ticulatory and acoustic representations of a spoken word. Such patterns of activation 
are localized in most brains in the left temporal cortex, with different word categories 
coded in the anterior and posterior parts [8-10]. Psycholinguistic experiments show 
that acoustic speech input is quickly changed into categorical, phonological represen-
tation. A small set of phonemes, quantized building blocks of phonological represen-
tations are linked together in an ordered string by a resonant state representing word 
form, and extended to include other microcircuits defining the semantic concept. 
From the N200 feature of auditory event-related potentials, it has been conjectured 
that phonological processing precedes semantic activations by about 90 ms [4]. 
Words seem to be organized in a lexicon, with similar phonological forms activating 
adjacent resonant microcircuits. Upon hearing a word, a string of connected resona-
tors is activated, creating representation of a series of phonemes that is categorized as 
a word. Spoken language has a number of syllables and longer chunks of sounds 
(morphemes) that are strongly associated with each other. They are easily activated 
when only part of the word is heard, creating the illusion that the whole word has 
been heard. Categorical auditory perception enables understanding of speaker-
independent speech and has clear advantages in a noisy environment, providing 
speaker-independent speech representation. Strong associations sometimes lead to 
activation of wrong representations. For example, when only a part of some personal 
name is heard, often a more common name is substituted. 

Phonological representations of words activate an extended network that binds 
symbols with related perceptions and actions, grounding the meaning of each word in 
a perception/action network. Various neuroimaging techniques confirm the existence 
of semantically extended phonological networks, which lends this model of word rep-
resentation strong experimental support [3,4,10,11]. Symbols in the brain are thus 
composed of several representations: their sound patterns, pronunciation (vocal motor 
programs), and their visual and motor associations. This does not resemble the tradi-
tional idea of a representation. Learning new concepts prompts minimal changes 
(convergence) of neural connections that assure unique dynamical states that have the 
correct relational properties. Hearing a word activates a string of phonemes, increas-
ing the activity (priming) of all candidate words and non-word combinations. A 
polysemic word probably has a single phonological representation that differs only in 
its semantic extensions. This encoding automatically ensures that many similarity 
relations between words, phonological as well as semantic, may automatically be re-
trieved. Meanings are stored as activations of associative subnetworks that may be 
categorized and processed further by other areas of the brain. Context priming selects 
an extended subnetwork corresponding to a unique word meaning, while competition 
and inhibition in the winner-takes-all processes leaves only the most active candidate 
networks. The meanings of concepts listed in thesauri or dictionaries are only ap-
proximations, because the actual meaning is always modified by the context. Over-
lapping patterns of brain activations for subnetworks coding word representations 
lead to strong transition probabilities between the words, and thus to semantic and 
phonological associations that easily “come to mind”. 
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During text comprehension, background knowledge stored in the semantic memory 
is activated, resulting in brain states that contain unique interpretations. Two ap-
proaches to knowledge representation prompted by semantic memory are 
Collins/Loftus spreading activation model [12], and Collins/Quillian’s hierarchical 
semantic memory model [13]. The first has been used in connectionist models of lan-
guage [1]; the second is the basis for various ontologies. No large-scale semantic net-
works capturing commonsense knowledge have been built for practical applications, 
although considerable theoretical work has been done in this area [14,15]. Collecting 
knowledge for semantic networks that would approximate associative processes in the 
brain has proved to be quite difficult, since lexical resources such as Wordnet [16] do 
not contain structural descriptions of concepts. Statistical approaches to context 
analysis are insufficient in this area because most common sense knowledge is ac-
quired through embodiment and perception, and is so obvious that it is never written 
down. Recent attempts to analyze machine-readable sources for the creation of large-
scale semantic memories have been examined in [17], and the use of word games and 
active dialogues to extend and correct such knowledge is promising [18]. Ontologies, 
on the other hand, though they offer taxonomies of concepts [19] that are useful for 
experts, do not reflect common sense knowledge and lateral associations.  

3   Words and Creative Processes 

Understanding of words can be regarded as a simple version of problem solving. Re-
cent experiments using the EEG and functional MRI techniques on the “Aha!” insight 
experience that accompanies some solutions have contrasted insight with analytical 
problem solving that does not require insight [20,21]. An increased activity in the 
right hemisphere anterior superior temporal gyrus (RH-aSTG) has been observed dur-
ing initial solving efforts and during insights. This area is probably involved in 
higher-level abstractions that can facilitate indirect associations. About 300 ms before 
insight, a burst of gamma activity was observed. This has been interpreted as “making 
connections across distantly related information during comprehension (…) that allow 
them to see connections that previously eluded them” [21]. Bowden et al. [20] per-
formed a series of experiments that confirmed the EEG results using fMRI tech-
niques. It is probable that the initial impasse in problem solving is due to the inability 
of the processes in the left hemisphere, focused on the precise representation of the 
problem, to make progress. This deadlock is removed when less-focused right hemi-
sphere projects back relevant activations, allowing new dynamical associations to be 
formed. An emotional component is needed to increase the plasticity of the brain and 
remember these associations. The “Aha!” experience may thus result from the activa-
tion of larger left hemisphere areas by the right hemisphere, with a gamma burst win-
ning the competition for working memory access and thus reaching consciousness. 
This process occurs more often when the activation of the left hemisphere decreases 
(giving up conscious efforts to solve the problem), perhaps leading to a short period 
of knowing that the solution has been found although it has not yet been formulated in 
symbolic terms. This last step requires synchronization between states in the left 
hemisphere, defining the transition from the start to the goal through intermediate 
states. 
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Such observations may be used as inspirations for neurocognitive models. The LH 
network codes phonological and visual representations in the visual word form area 
(VWFA) in the left unimodal occipitotemporal sulcus area. The adjacent lateral in-
ferotemporal multimodal area (LIMA) reacts to both auditory and visual stimulation, 
and has cross-modal phonemic and lexical links [22]. Extended representations reach 
to the sensory, motor and premotor cortices [3-4]. Distal connections between the left 
and right hemispheres require long projections, and therefore neurons in the right 
hemisphere may generalize over similar concepts and their relations. Most of these 
RH activations do not have phonological components; the activations result from di-
verse associations, temporal dependencies and statistical correlations that create cer-
tain expectations. For example, hearing the word “left lung” may activate several RH 
cortical areas that react to all concepts related to lungs and the left side of the upper 
part of the body, including the heart; hearing “left nose” or “left head” creates a 
strange feeling. It is not clear what brain mechanism is behind the signaling of this 
lack of familiarity, but one can assume that interpretation of text is greatly enhanced 
by “large receptive fields” in the RH, which can constrain possible interpretations, 
help in the disambiguation of concepts and provide ample stereotypes and prototypes 
that generate various expectations.  

Distributed activations in the right hemisphere also form configurations that acti-
vate larger regions of the left hemisphere. High-activity gamma bursts projected to the 
LH prime its subnetworks with sufficient strength to allow for synchronization of 
groups of neurons that create distant associations. In problem solving, this synchroni-
zation links the initial description D with partial or final solutions S. Such solutions 
may initially be difficult to justify, they become clear only when all intermediate 
states Tk between D and S are transversed. If each step from Tk to Tk+1 is an easy asso-
ciation, a series of such steps is accepted as an explanation. An RH gamma burst acti-
vates emotions, increasing the plasticity of the cortex and facilitating the formation of 
new associations between initially distal states. The same neural processes should be 
involved in sentence understanding, problem solving and creative thinking.  

According to these ideas, approximation of the spreading activation in the brain 
during language processing should require at least two networks activating each other. 
Given the word w = (wf,ws) with phonological/visual component wf and extended se-
mantic representation ws, and the context Cont, the meaning of the word results from 
spreading activation in the left semantic network LH coupled with the right semantic 
network RH, establishing a global state Ψ(w,Cont). This state changes with each new 
word received in sequence, with quasi-stationary states formed after each sentence is 
understood. It is quite difficult to decompose the Ψ(w,Cont) state into components, 
because the semantic representation ws is strongly modified by the context. The state 
Ψ(w,Cont) may be regarded as a quasi-stationary wave, with its core component cen-
tered on the phonological/visual brain activations wf and with quite variable extended 
representation ws. As a result the same word in a different sentence creates quite dif-
ferent states of activation, and the lexicographical meaning of the word may be only 
an approximation of an almost continuous process. To relate states Ψ(w,Cont) to lexi-
cographical meanings, one can clusterize all such states using dendrograms and use 
different cutoffs to define prototypes for different meanings.  
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4   Approximations to Brain States 

The high-dimensional vector model of language is a very crude approximation that 
does not reflect essential properties of the perception-action-naming activity of the 
brain [3-4]. The process of understanding words (spoken or read) starts from activa-
tion of the phonological or grapheme representations that stimulate networks contain-
ing prior knowledge used for disambiguation of meanings. This continuous process 
may be approximated through a series of snapshots of microcircuit activations 
φi(w,Cont) that may be treated as basis functions for the expansion of the state 
Ψ(w,Cont) = Σi αi φi(w,Cont), where the summation extends over all microcircuits that 
show significant activity resulting from presentation of the word w. The high-
dimensional vector model used in NLP measures only the co-occurrence of words Vij 
= 〈V(wi),V(wj)〉 in some window, averaged over all contexts. A better approximation 
of the brain processes involved in understanding words should be based on the over-
lap between waves 〈Ψ(w1,Cont) | Ψ(w2,Cont)〉 = Σij αi αj  〈φi(w1,Cont) | φj(w2,Cont)〉 
that depends on time. Systematic study of transformations between the two bases: 
activation of microcircuits φi and activation of complex patterns V(wi), has not yet 
been done. The use of waves to describe states makes this formalism similar to that 
used in quantum mechanics, although no real quantum effects are implied here. 

Spreading activation in semantic networks should provide enhanced representa-
tions that involve concepts not found directly in the text. Approximations of this 
process are of great practical and theoretical interest. The model should reflect activa-
tions of various concepts in the brain of an expert reading such texts. A few crude 
approximations to this process may be defined. First, semantic networks that capture 
many types of relations among different meanings of words and expressions may pro-
vide space on which words are projected and activation spread. Each node w in the 
semantic network represents the whole state Ψ(w,Cont) with various contexts cluster-
ized, leading to a collection of links that capture the particular meaning of the con-
cept. Usually only the main differences among the meanings of the words with the 
same phonological representation are represented in semantic networks (meanings 
listed in thesauruses), but the fine granularity of the meanings resulting from different 
contexts may be captured in the clusterization process and can be related to the 
weights of connections in semantic networks. The spreading activation process should 
involve excitation and inhibition, and “the winner takes most” processes. Current 
models of semantic networks used in NLP are only vaguely inspired by the associa-
tive processes in the brain and do not capture such details [14,15].  

Quite crude approximation to the spreading activation processes leads to enhance-
ment of the initial text being analyzed by adding new concepts linked by semantic or 
hierarchical ontological relations. Inhibition between concepts arising from the same 
phonological word forms should then lead to formation of graphs of consistent con-
cepts, applied recently to disambiguate concepts in medical domain [23]. The en-
hanced representations are very useful in document clusterization and categorization, 
as is illustrated using short medical texts in the next section. Vector models may  
be related to semantic networks by looking at snapshots of the activation of nodes 
after several steps of spreading the initial activations through the network. In view of 
the remarks about the role of the right hemisphere, larger “receptive fields” in the 
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linguistic domain should be defined and used to enhance text representations. This is 
much more difficult because many of these processes have no phonological compo-
nent and thus have representations that are less constrained and have no directly iden-
tifiable meaning. Internal representations formed by neural networks are also not 
meaningful to us, as only the final result of information processing or decision mak-
ing can be interpreted in symbolic terms. Defining prototypes for different categories 
of texts, clusterizing topics or adding prototypes that capture some a priori knowledge 
useful in document categorization [24], is a process that goes in the same direction.  

Relationships between creativity and associative memory processes have been no-
ticed long ago [25]. Further experimental support for the ideas described above may 
be found in pairwise word association experiments using different priming conditions. 
In [26] puzzling results from using nonsensical words were observed for people with 
high compared to those with low creativity levels. Analysis of these experiments pro-
vided in [27] reinforces the idea that creativity relies on associative memory, and in 
particular on the ability to link distant concepts together. Adding neural noise by pre-
senting nonsensical words in priming leads to activation of more brain circuits and 
facilitates in a stochastic resonance-like way a formation of distal connections for not 
obvious associations. This is possible only if weak connections through chains involv-
ing several synaptic links exist, as is presumably the case in creative brains. For sim-
ple associations the opposite effect is expected, with strong local activations requiring 
longer times for the inhibitory processes to form consistent interpretations. Such ex-
periments show that some effects cannot be captured at the symbolic level. It is thus 
quite likely that language comprehension and creative processes both require sub-
symbolic models of neural processes realized in the space of neural activities, reflect-
ing relations in some experiential domain, and therefore cannot be modeled using 
semantic networks with nodes representing whole concepts. Recent results on creation 
of novel words [27] give hope that some of this process can be approximated by sta-
tistical techniques at the morphological level. 

5   Visualization of Semantic Similarity 

The time-dependent state of the brain Ψ(wi,Cont) that arises after reading or hearing 
texts that are understood by the experts should show high similarity for documents of 
the same category and should be different if documents from other categories are 
processed. Documents have usually quite sparse representation; for example, hospital 
discharge summaries by different specialties, but for the same disease, may use com-
pletely different vocabularies. Therefore, agglomerative hierarchical clustering meth-
ods will show a poor performance in document clustering. The simplest extension is 
to replace single words (terms) by associations based on synonyms, for example by 
using the Wordnet synsets [16]. This simulates some of the spreading activation proc-
esses in the brain increasing the similarity of documents that use different words to 
describe the same topic. However, synsets are not useful for very specific concepts 
that have no synonyms, such as medical concepts used in discharge summaries. To 
avoid problems with shared common words, only specific concepts that belong to 
selected semantic types may be used – the process presumably facilitated by the RH. 
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A better approximation to spreading activation in brain networks is afforded by soft 
evaluation of the similarity of different terms. Distributional hypothesis assumes that 
similarity of terms results from similar linguistic contexts [8]. However, in the medical 
domain and other specialized areas it may be quite difficult to estimate similarity relia-
bly on the basis of co-occurrence, because there are so many specific concepts that 
there will never be sufficient data to do that. Statistical approaches cannot replace sys-
tematic, structured knowledge describing medical concepts. To illustrate that process, 
two-steps of spreading activation have been made in a network built from ontological 
relations found in the Systematized Nomenclature of Medicine –Clinical Terms 
(SNOMED CT) section of the National Library of Medicine’s Unified Medical Lan-
guage System (UMLS) [19]. Discharge summaries for 10 initial diagnoses are repre-
sented by a carefully selected semantic feature space (described in [24]). Figs. 1-3 
show Multidimensional Scaling (MDS) visualization of records from three strongly 
overlapping classes only to improve legibility: pneumonia (class 1, 609 records), juve-
nile rheumatoid arthritis (class 6, 41 records) and otitis media (class 9, 493 records).  

 
 

       Fig. 1. MDS for original data                          Fig. 2. MDS after first enhancement 

 
Initial feature space is composed from 488 SNOMED CT concepts with high fea-

ture-class correlation coefficient (CC>0.5). Visualization of these documents using 
multi-dimensional scaling (Fig. 1) shows great mixing of documents. A single step of 
spreading activation through the network, followed by feature selection based on CC 
> 0.27 extends the feature space to 761 concepts. MDS in this space (Fig. 2) already 
shows a clear cluster structure. The second iteration with CC>0.5 increases the space 
to 1138 features and shows even more detailed and fine-grained structure, identifying 
different subclusters within each category (Fig. 3). For example, bacterial infections 
may come from Yersinia, Salmonella, Streptococcal and other infections, increasing 
similarity of all diseases caused by bacteria. In the extended spaces accuracy of classi-
fication is also greatly improved – for the 3 classes presented here from about 81% to 
87% and 88±4% in crossvalidation tests using linear SVM (for the 10-class case the 
improvement is on more than 20%). Even quite simple approximations of the spread-
ing of neural activation leads to a significantly improved accuracy in classification. 
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Fig. 3. MDS on medical discharge summaries after two enhancement steps 

6   Conclusion 

Although linguistic processes are not yet completely understood, following neurolin-
guistic inspirations may be quite fruitful, allowing one to formulate some crude mod-
els of the processes that are responsible for text understanding in real brains. Various 
approximations to the putative brain processes responsible for language comprehen-
sion have been considered, leading to useful algorithms for text analysis. Vector rep-
resentations of concepts may be regarded as a snapshot of activity patterns, defining 
connections with other concepts. Relations between spreading activation in neural and 
in semantic networks, and the vector model of concepts have been elucidated. The 
role of the right hemisphere, which constrains and guides the spreading activation 
processes by providing “large receptive fields” for concepts, has been discussed. 

It is perhaps surprising that even a crude approximation using two steps of spread-
ing activation with feedback loops leads to such good clusterization and to great im-
provement in classification on a very difficult problem of summary discharge catego-
rization [24]. Background knowledge has been derived here from synsets, statistical 
co-occurrences and ontologies. In [24] prototypes of concepts representing a priori 
medical knowledge were used, providing crude approximation of the activity of neu-
ral cell assemblies in the brain of a medical expert who thinks about a particular dis-
ease. Creating numerical representations of various concepts that may be useful in 
large-scale NLP applications is an interesting challenge. Neurocognitive inspirations 
lead here to many ideas that will be explored in future work. 
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Abstract. The purpose of this study is to construct a computational
model of the metaphor understanding process. This study assumes that
metaphor understanding consists of two processes. The first is a cate-
gorization process; a target is assigned to an ad hoc category of which
the vehicle is a prototypical member. The second is a dynamic inter-
action process; the target assigned to the ad hoc category is influenced
by dynamic interaction among features. Feature emergence is extracted
through this dynamic interaction. In this study, a model of metaphor
understanding is constructed based on this assumption by applying a
statistical analysis of large-scale corpus. Further a psychological experi-
ment is conducted in order to verify the psychological validity of the con-
structed model of metaphor understanding. Reflecting the fact that the
constructed model represents more appropriate features of a metaphor
than a model incorporating only the categorization process, the experi-
mental results support its validity.

1 Introduction

The purpose of this study is to construct a computational model of the metaphor
understanding process. Metaphorical expressions are frequently used in daily
conversation. But, generally it is difficult for people who do not share the lan-
guage and culture of a metaphor to fully understand the appropriate meaning
of the metaphor. It is particularly noteworthy that even when the meaning of
each word within a metaphor is explained, it is not easy for the strangers to
that language and culture to understand the metaphor. As Kusumi [1] observes,
this highlights the linguistically and culturally bound nature of the knowledge
structure required for metaphor understanding. It is, therefore, quite hard for
Japanese language learners or children who have grown up outside of Japanese
culture to understand some Japanese metaphors, due to differences in terms of
knowledge structures. For example, the Japanese language has the metaphorical
expression “cheeks like apples”, which is quite difficult for Europeans to under-
stand. For Europeans, apples are typically objects with the features of green and
small. On the other hand, Japanese apples are generally red and big and round in
shape. Thus, the Japanese metaphorical expression “cheeks like apples” means
red colored and round shaped cheeks. This example clearly underscores the need
to construct a system which can provide detailed meanings for metaphorical
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expressions. In other words, a system that is able to decompose metaphorical
expressions into their elements of meaning would be highly useful for both lan-
guage learners and children. This paper constructs a computational model which
realizes the understanding process of metaphorical expression, represented in the
form of “A like B”, as a first step toward such a system.

There are two theories that seek to account for the understanding process of
similes (“A is like B”) and metaphors (“A is B”) in psychology. One is the com-
parison theory, which holds that metaphor understanding is realized by aligning
similar elements between the target and the vehicle with each other [2]. For
example, in comprehending the metaphor “Socrates is like a midwife”, the un-
derstanding process is realized when similar elements relating to “helpfulness”
are identified in both “Socrates” and “midwife” and are mutually aligned. In
other words, this metaphor is comprehensible when one notices that Socrates
was someone who “helped” his students to grasp certain ideas and that a mid-
wife is someone who “helps” a pregnant woman in giving birth to a child. How-
ever, this theory faces difficulties in distinguishing between targets and vehicles.
The second theory is the categorization theory. Here, metaphor understanding
is explained in terms of class-inclusion statements, where a target is regarded as
a member of an ad hoc category of which the vehicle is a prototypical member
[3]. For example, in comprehending the metaphor of “Socrates is like midwife”,
the target of “Socrates” is considered as belonging to a “helpful” category which
could be typically represented by a vehicle like “midwife”.

A computational model of metaphor understanding based on these theories re-
quires a numerically-represented knowledge structure. Some models using knowl-
edge structures obtained from psychological experiments have been developed
[4][5]. However, it is not practically feasible to collect sufficient data to cover
enough concepts by such psychological methods alone, because participants can-
not rate all of the vast range of concepts that are commonly used in metaphorical
expressions within limited time frames. Accordingly, a model based only on psy-
chological experimentation cannot be extended to computational systems (e.g.,
a search engine).

There are some computational models of metaphor understanding based on a
knowledge structure for concepts obtained from language corpora [6][7]. Kintsch’s
model[6], based on the categorization theory, employs a knowledge structure esti-
mated by Latent Semantic Analysis (LSA) (Deerwester, et al. [8]). Also utilizing
LSA, Utsumi[7] constructs two models; one based on categorization theory, with
an identical algorithm to Kintsch’s, and one based on comparison theory. Even
though the meanings of concepts are represented by vectors in LSA, each dimen-
sion of the vectors does not have a meaning in itself. Therefore, the meaning of a
metaphor represented by a particular vector must be generally defined in terms of
the cosines of angles existing between other vectors according to the LSA method.
This aspect of LSA makes it quite difficult to interpret metaphors represented by
vectors.

Terai & Nakagawa [9] constructed a model using a knowledge structure esti-
mated from the statistical language analysis developed by Kameya & Sato [10].
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The meanings of concepts estimated from the statistical language analysis are
represented by conditional probabilities of concepts given features. A concept
is represented by a vector, that is, a set of the conditinal probabilities of the
concept given features. In this case, each dimension of the vector has its own
meaning as a feature. This makes it easier to determine the estimated meaning of
a metaphor than with the LSA approach. In this context, it is worth noting that
some studies have reported on low-salient features of a target and a vehicle being
emphasized in the process of metaphor understanding; a phenomenon referred
to as feature emergence [11][12]. Terai & Nakagawa’s model implements the phe-
nomenon of feature emergence by using a recurrent neural network to represent
the dynamic interaction among features with the metaphor understanding pro-
cess. However, the model suffers somewhat in its inability to distinguish targets
and vehicles because it is based on the comparison theory.

In order to overcome these problematic aspects with previous models, this
study assumes that metaphor understanding is realized through two processes.
The first is a categorization process; a target is assigned to an ad hoc category of
which the vehicle is a prototypical member. The second is a dynamic interaction
process; the target assigned to the ad hoc category is influenced by dynamic
interaction among features. Feature emergence is realized through this dynamic
interaction. Based on this assumption, the procedure for constructing the model
is as follows:

– Step 1: Knowledge structure of concepts is estimated using statistical lan-
guage analysis [10].

– Step 2: The assigned meaning of a target to an ad-hoc category of a vehicle
is computed within the knowledge structure.

– Step 3: The recurrent neural network model, representing the dynamic in-
teraction among features, estimates the meaning of the metaphor based on
the assigned meaning of the target in Step 2.

– Step 4: A psychological experiment is conducted in order to verify the psy-
chological validity of the constructed model.

2 Statistical Language Analysis

Knowledge structure has been estimated using LSA in previous models [6][7].
However, the LSA approach has some problems in addition to the central prob-
lem of defining meaning. In particular, LSA is susceptible to noise due to function
words and to the data sparseness problem. The Tf-idf method and stop-word
lists are often used with LSA in order to avoid the noise of function words. How-
ever, such avoidance strategies are based on procedures that must be manually
implemented. In order to solve these problems, this study applies a statistical
method developed by Kameya & Sato [10], using extracted frequency data for
adjective-noun modifications. The noise problem associated with function words
is effectively eliminated by this method.

The statistical method assumes that the co-occurrence probabilities of a term
ni(noun) and a term aj(adjective), P (ni,aj) can be computed using the following
formula (1):
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P (ni, aj) =
∑

k

P (ni|ck)P (aj |ck)P (ck), (1)

where ck indicates a latent semantic class assumed in the method. When θ
represents the parameter vector for P (ni|ck), P (aj |ck) and P (ck), and D denotes
the data, the likelihood of the data is represented using formula (2):

P (D|θ) =
∑

i,j

F (ni, aj)logP (ni, aj), (2)

where F (ni,aj) is the co-occurrence frequency of the term ni and the term aj .
The parameter vector θ is estimated as the value that maximizes the likelihood of
co-occurrence data using the EM algorithm. In order to avoid the data sparseness
problem, the prior distribution of θ is assumed to be a Dirichlet distribution.

P (θ) = γ
∏

k

P (ck)α1(
∏

i

P (ni|ck)α2)(
∏

j

P (aj |ck)α3), (3)

where, γ indicates a normalization constant, and α1, α2, α3 are the hyper-
parameters of the Dirichlet distribution.

In order to estimate the meaning of a concept, the conditional probability of
an adjective given a particular noun, P (aj |ni) is computed. The probabilities are
computed using function (4) for P (ni|ck), P (aj |ck) and P (ck) based on Bayes
theory:

P (aj |ni) =
∑

k P (ni|ck)P (aj |ck)P (ck)∑
k P (ni|ck)P (ck)

. (4)

Extracted frequency data for adjective-noun modifications was used for this
analysis. The data was extracted from the Japanese newspaper “MAINICHI
SHINBUN” for the period 1993-2002 using a modification analysis tool called
“Cabocha” [13]. The number of semantic classes in the statistical analysis was
fixed at 70. The relationship between the hyper-parameters and latent classes is
such that if the hyper-parameter values are larger, then fewer latent classes are
estimated. If one assumes that α1 = α2 = α3, then the largest value for them
will be 0.12 in the case of 70 latent classes.

These conditional probabilities are computed based on the newspaper corpus
reflecting the characteristics of newspaper writing. One concern here is that a
noun’s most basic meaning may only rarely be expressed in a newspaper. For
example, even though ice is naturally cold, the expression “cold ice” is rather un-
likely to appear in a newspaper, because newspaper articles would not normally
state such natural and obvious facts. Thus, P (cold|ice) has a low value. In or-
der to overcome this problem, the conditional probabilities of the basic meaning
given the noun are revised based on a dictionary [14] as follows. If an adjective
(aj) appears more than once in the dictionary explanation of a noun (ni), it is
assumed that the adjective represents a basic meaning of the noun (ni). The
set of these adjectives is represented by Dic(ni). The conditional probabilities
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Table 1. Meaning vectors computed from the language statistical analysis for “work”,
“mountain”, “teacher”, and “demon”. The component values of the vectors are shown
in parentheses.

work like a mountain a teacher like a demon

Vj(work) Vj(mountain) Vj(teacher) Vj(demon)

1 important (0.0659) high (1.0714) young (0.0968) awful (0.8814)
2 new (0.0628) deep (0.0403) good (0.0318) mysterious (0.0465)
3 main (0.0373) low (0.0400) favorite (0.0292) white (0.0400)
4 good (0.0282) wide (0.0337) strict (0.0269) high (0.0255)
5 bad (0.0214) beautiful (0.0330) weak (0.0204) enormos (0.0252)
6 strict (0.0202) near (0.0305) bad (0.0202) black (0.2119)
7 favorite (0.0194) bright (0.0212) inconvenient (0.0141) red (0.0209)
8 able (0.0190) narrow (0.0209) happy (0.0132) strange (0.0194)
9 various (0.0186) white (0.0137) famous (0.0128) beautiful (0.0186)

10 novel (0.0174) many (0.0136) strong (0.0122) blue (0.0156)

are then replaced by the derived value and the meaning vector of the concept
(V (ni)) is computed from the following formula (5):

Vj(ni) =

{
P (aj |ni) + maxi,j(P (aj |ni)) if aj ∈ Dic(ni)
P (aj |ni) else,

(5)

where Vj(ni) indicates the jth component of the vector which means the concept
ni. Dimensions of the vectors represent features (adjectives). Knowledge struc-
ture is constructed based on estimations of the meaning vectors for a concept.

In this study, “work like a mountain” in Japanese, meaning “a mountainous
load of work”, and “a teacher like a demon” are used as examples. The meaning
vectors for “work”, “mountain”, “teacher”, “demon” are shown in Table 1. The
listed features are ordered according to their respective values for P (aj |work),
P (aj |mountain), P (aj |teacher), and P (aj |demon).

3 The Metaphor Understanding Model

The model consists of two kinds of process. One is the categorization process
and the other is the dynamic interaction process.

3.1 The Categorization Process

A vector, representing an assigned target as a member of an ad hoc category of
a vehicle, is estimated based on categorization theory using the meaning vectors
of concepts. The algorithm for the categorization process is as follows.

First, the semantic neighborhood (N(ni)) of a vehicle of size s1 is computed
on the basis of similarity to the vehicle, which is represented by the cosine of
angles existing between meaning vectors using the following formula (6):

sim(ni, nh) =
V (ni) · V (nh)

‖V (ni)‖‖V (nh)‖ , (6)
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where sim(ni, nh) indicates the similarity between concept ni and concept nh.
Next, L concepts are selected from the semantic neighborhood (N(ni)) of the
vehicle on the basis of similarity to the target. Finally, a vector (V (M)) is com-
puted as the centroid of the meaning vectors of the target, the vehicle and the
selected L concepts (n′

l: l = 1, 2, .., L). The computed vector (V (M)) indicates
the assigned meaning of the target as a member of the ad-hoc category of the
vehicle concerning the metaphor M . V (M) is computed using the formula (7):

V (M) =
∑

l V (n′
l) + V (target) + V (vehicle)

L + 2
, (7)

where n′
l indicates the lth selected concepts and L denotes the number of the

selected concepts.
This algorithm is the same as Kintsch’s [6] algorithm and that of Utsumifs

categorization model [7]. The category consisting of the vehicle and the selected
k concepts is considered to be an ad hoc category of which the vehicle is a
prototypical member.

3.2 The Dynamic Interaction Process

The meaning of the metaphor is computed using the vector estimated by the cat-
egorization process model (V (M)) by applying the dynamic interaction process
model. The algorithm for the dynamic interaction process is as follows.

First, features are selected if Vj(M) exceeds the threshold ζ. These selected
features are related to metaphor understanding. Next, the recurrent neural net-
work model is constructed using the selected features (Fig. 1). Each node corre-
sponds to the selected feature. These nodes have both inputs and outputs.

high deep low strict simple
・・・

few
・・・

transparent

outputs

)(1 MI )(2 MI )(3 MI )(MIQ)(1 MIq+)(MIq)(1 MIq−

)(1 MO )(2 MO )(3 MO )(MOQ)(1 MOq+)(MOq)(1 MOq−

inputs

high deep low strict simple
・・・

few
・・・

transparent

outputs

)(1 MI )(2 MI )(3 MI )(MIQ)(1 MIq+)(MIq)(1 MIq−

)(1 MO )(2 MO )(3 MO )(MOQ)(1 MOq+)(MOq)(1 MOq−

inputs

Fig. 1. Architecture of the model for “work like a mountain” (M=“work like a moun-
tain”). The nodes represent the selected features. These are both input and output
nodes.

The dynamics of the network are based on the following set of simultaneous
differential equations (8):

dxq(t)
dt

= −xq(t) + f(β
∑

r

wqrxr(t) + Iq(M)), (8)
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where xq(t) represents the activation strength of the qth node at time t and
where the function f is a logistic function. The range is between -1 and 1. When
dxq/dt = 0, the node outputs Oq(M) = xq(t). The vector (O(M)), which is a
set of Oq(M), represents the meaning of the metaphor M . Iq(M) represents the
input value of the qth node concerning the metaphor M . A normalization of
the Vj(q)(M) is used as input value Iq(M), because the domain of the function
f include minus value although each value of Vj(q)(M) is positive. Iq(M) is
computed using formula (9):

Iq(M) =
Vj(q)(M) − V ′(M)

SD′(M)
,

V ′(M) =

∑
q Vj(q)(M)

Q
,

SD′(M) =

√√√√
∑

q

(
Vj(q)(M) − V ′(M)

)2

Q − 1
,

(9)

where Vj(q)(M) indicates the jth components of V (M), the meaning of the
jth dimension corresponds to the meaning of the qth node, and Q means the
number of the selected features. In the formula (8), β denotes the influences of the
dynamic interaction among features. wqr denotes the weight of the connection
from the rth to the qth node and is the correlation coefficient among the qth and
rth features related to the sibling concepts of the target and the vehicle. A sibling
neighborhood (Ns(vehicle)) for a vehicle of size s2 and a sibling neighborhood
(Ns(target)) for a vehicle of size s2 are computed on the basis of similarity.
The concepts included in Ns(vehicle) and Ns(target) are regarded as sibling
concepts.

Thus, the mutual and symmetric connections among nodes (wqr) represent
interaction among features in the metaphor understanding. If the metaphor is
changed, then the weights of connection between the same pair of features may
change. For example, in the case of “a dog like a cloud”, “white” and “puffy”
should be connected strongly. On the other hand, in the case of “skin like snow”,
“white” and “puffy” should only be weakly connected. Therefore, each weight
for the mutual connections between nodes is estimated using the correlation
coefficient between the two features.

3.3 Model Simulation

In this study, the model is simulated using the parameters s1 = 250, L = 5,
s2 = 100, ζ = 0.0029 (= 10/the number of adjectives)), β = 0.5. The model
simulation results for the metaphors of “work like a mountain” and “a teacher
like a demon” are shown in Table 2. The results of the categorization pro-
cess model (Vj(M)) and the results of the dynamic interaction process model
(Oq(M)) are shown. Features with relatively strong values for Vj(M) and Oq(M)
respectively can be regarded as meanings of the vectors.

Reflecting the influence of revision based on the dictionary, the first values in
the categorization model are very high. The results of both models (CPM and
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Table 2. Metaphor meaning computed by the categorization process model and the
two-process model (“work like a mountain”, “a teacher like a demon”). The output
values are shown in parentheses.(CPM:categorization process model, TPM:two-process
model).

M = work like a mountain M = a teacher like a demon

CPM (Vj(M)) TPM (Oq(M)) CPM (Vj(M)) TPM (Oq(M))

1 high (0.2290) high (0.9761) awful (0.1310) awful (0.9954)
2 low (0.0409) many (0.9196) mysterious (0.0382) young (0.9950)
3 many (0.0229) strict (0.7148) young (0.0239) natural (0.9943)
4 near (0.0197) near (0.6776) strange (0.0158) horrible (0.9869)
5 new (0.0189) wonderful (0.5901) good (0.0154) good (0.9793)
6 good (0.0180) new (0.5676) high (0.0143) powerful (0.9766)
7 important (0.0164) important (0.5033) horrible (0.0099) strong (0.9766)
8 strict (0.0150) possible (0.4724) favorite (0.0095) special (0.9695)
9 main (0.0101) various (0.4707) natural (0.0095) beautiful (0.9677)

10 bad (0.0096) hard (0.4678) bad (0.0092) black (0.9570)

TPM) seem to be appropriate. However, in order to verify which model is more
appropriate and to examine the validity of the two-process model, the following
psychological experimentation is needed.

4 Psychological Experiment

In order to examine the validity of the model, a psychological experiment was
conducted.

The participants were 31 undergraduates. The metaphorical expressions used
in the psychological experiment were “work like a mountain” and “a teacher
like a demon”. First, the target (“work” or “teacher”), the vehicle (“mountain”
or “demon”) and the metaphor (“work like a mountain” or “a teacher like a
demon”) were presented to the participants. Next, they were asked to respond
with appropriate features of the target, of the vehicle and of the metaphor in
the form of adjectives.

Table 3 lists features that were given by two or more participants when the
metaphor (“work like a mountain” or “a teacher like a demon”), the vehicle
(“mountain” or “demon”) and the target (“work” or “teacher”) were presented.

Features of “work like a mountain”, such as “many”, “hard” and “strict”,
which were given by two or more participants in the experiment, were success-
fully estimated by the two-process model although “hard” can not be estimated
by the categorization process model. The results of the experiment indicate the
existence of emergent features, especially in the cases of “many”, “hard”, “chal-
lenging”, “never ending”, “troublesome” and “strict”. The constructed model
also emphasizes the emergent features of “many” and “hard”, which were given
by more than two participants, in the dynamic interaction process. Similarly, fea-
tures of “a teacher like a demon”, such as “horrible” and “strong”, which were
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Table 3. The results of the psychological experiment (“work like a mountain”, “a
teacher like a demon”). The numbers of the participants who responded with a partic-
ular feature are shown in parentheses.

work like a mountain a teacher like a demon

work mountain work teacher demon a teacher
like a mountain like a demon

bitter (10) big (9) many (20) gentle (10) horrible (19) horrible (20)
happy (9) high (8) busy (8) awful (8) strong (12) strict (16)
busy (7) beautiful (4) bitter (8) strict (5) big (9) strong (7)

troublesome (5) cold (3) hard (7) irritable (3) awful(6) irritable (3)
difficult (3) wide (2) difficult (3) great (2) red (4) violent (2)

stiff (2) challenging (3) wise (2) muscular (2) big (2)
important (2) never ending (2) beautiful (2) blue (2)

toilsome (2) troublesome (2) wonderful (2)
strict (2)

given by multiple participants in the experiment, were successfully estimated by
the model although “strong” can not be estimated by the categorization process
model. The results of the experiment support that the two-process model is more
appropriate than the categorization process model and suggests the psychologi-
cal validity of the constructed model.

5 Discussion

In this study, it is assumed that a target assigned as a member of the ad-hoc
category of a vehicle in the categorization process is influenced by the dynamic
interaction among features. The present model is constructed based on this as-
sumption. First, the knowledge structure of concepts is estimated using a sta-
tistical language analysis [10]. Next, the meaning of a target as a member of
the ad-hoc category of a vehicle is computed within the knowledge structure by
applying Kintsch’s algorithm. Third, the recurrent neural network model, which
represents the dynamic interaction among features, estimates the meaning of the
metaphor using the assigned meaning of the target. Finally, the validity of the
model was examined by a psychological experiment. The results of the model
were found to be more appropriate than the results for the categorization pro-
cess model which uses the same algorithm as Kintsch’s model. The present model
also implements the dynamic interaction process that leads to the emergence of
features in the metaphor. The emergent features estimated by this model are
also validated by the psychological expriment.

In order to avoid the biases inherent in newspaper corpora, the current study
revised the knowledge structure by supplementing the statistical analysis with
dictionary data. While this undoubtedly enhanced the linguistic analysis, this
procedure alone is still insufficient to realize an ideal knowledge structure, be-
cause even dictionaries do not contain very obvious information beyond the
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simplest definitions (e.g., “yellow tiger”). In order to realize even more sophisti-
cated knowledge structures, statistical analysis for very large-scale corpora need
to be carried out (e.g., literature and school books). Furthermore, in oreder
to examine more clealy the psychological validity of the model, more detailed
psychological experiment have to be conducted.
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Abstract. We develop a model of a set of novelty and familiarity detectors in 
the hippocampus which possess unique properties, and have been recently 
reported in [1]. The model uses both inhibition and disinhibition, together with 
a suitable output function of prefrontal object representations, to create the 
separate novelty and familiarity detectors with the observed properties. We 
conclude the paper with a discussion of the relation of this novelty system with 
that presented by numerous other techniques.   

Keywords: Familiarity, hippocampus, prefrontal cortex, object representations, 
inhibition, disinhibition. 

1   Introduction 

Novelty detection is an important faculty for any information system required to 
venture efficiently into new environments and improve its repertoire of responses. 
In order to do that in the presence of novel objects affordances for these objects 
must be constructed so as to enable them to be manipulated most efficiently. These 
affordances involve novelty detection and then gradual learning of the associated 
visual and motor responses to an object, such as the grasps that can be made to  
it [2].  

There have been numerous novelty detectors created through use of various 
neural network architectures. Methods include: multi-layer perceptrons [3], support 
vector machines [4], radial basis functions [5], auto-associator networks [6], 
Hopfield networks [7], self-organising maps (SOMs) [8], and adaptive resonance 
theory (ART) [9]. The paper of [1] has shown that in the hippocampus (HC) there 
exist, amongst others, two sorts of memory-based neurons: novelty detectors (ND) 
and familiarity detectors (FD). The ND are turned on by novel stimuli but not by 
familiar ones. The FD are turned on by familiar stimuli, but not by novel ones. 
Moreover the FD are not stimulus specific, but respond to any of a large category of 
input stimuli that had been seen half an hour previously. It is these two classes that 
we proposed to simulate.  

We discuss the data in more detail in the next section, and present a model 
architecture in the following one. Results of simulations are presented in section 4. 
The paper finishes with a conclusion. 
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2   Discussion of Rutishauser et al. Data [1] 

Rutishauser and colleagues [1] recorded single cell activity from neurons in the 
hippocampal-amygdala complex in the medial temporal lobe (MTL). Subjects were 

presented with familiar and novel objects. In 
the learning phase all stimuli were novel, the 
learning set was composed of 12 objects 
presented on a computer screen only once in a 
random quadrant, it is not clear whether a 
central fixation point was present. Subjects 
needed to remember both the object and 
location. The recognition phase occurred ~30 
minutes later, where the data set included 
objects that were familiar (i.e. had been 
included in the learning phase) or novel. 
Subjects had to indicate if the stimulus was 
novel or familiar and for familiar objects 
indicate which quadrant the object had 
previously been presented; in all cases the 
recognition data set was presented at the 
centre of the computer screen. Novel and 
familiar objects were identified with high 
accuracy 88.5% ± 2.8%, whilst the location 
for familiar stimuli was correctly identified 
49.5% ± 8.0%. Hence correct identification of 
stimuli as familiar or novel did not depend on 

correct recall of spatial location. If a central fixation point is not present this might 
account for the lower accuracy in recalling the location information, since the subjects 
will quickly fixate on the presented stimulus. They were able to classify neurons as 
either NDs or FDs, depending on how their activity altered in comparing responses in 
novel and familiar trials. NDs showed an increase in activation for those trials 
involving novel stimuli versus those of familiar objects. It was found that one-shot 
learning could occur, with firing rate changes: if during the recognition phase a novel 
object was presented then a node classified as ND would be active, but at the next 
presentation of that same stimulus it was a node classified as FD that was active and 
the ND node was now silent. Fig. 1 shows the response of a single hippocampal 
neuron (from [1]) during the recognition phase, this node however did not respond in 
a significant manner during the initial presentation of the objects.  

3   Architecture 

To simplify the architecture we do not model the ventral stream of the visual pathway. 
Object representations are based on simulated TE responses to different objects 
previously reported elsewhere [10], and input to the inferior frontal gyrus (IFG) in the 
pre-frontal cortex (PFC). The IFG is a known target of the ventral visual stream, and 
the model can easily be extended with the addition of a suitable visual model (such as 
[10]). We propose the architecture of fig. 2 as a possible manner that object 

Fig. 1. Taken from [1] their fig. 2e.  
Response of a hippocampal neuron 
neuron during presentation of a familiar 
stimulus. Stimulus presentation from 
2000-6000ms. Raster plot for individual 
presentation is at top; bottom: binned 
histograms are across all trials and inset 
is the spike waveform. 
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representations, with FD and ND neurons could interact to generate similar results to 
[1]. Here the IFG is composed of four nodes, three of which are preferentially 
responsive to one of three familiar objects (such as: square, triangle and circle), the 
fourth will be used for learning a novel object. The FD and ND regions are modelled 
as a single node each, since the experimental results show that these neurons respond 
in a general manner to the group of familiar objects and novel objects, respectively, 
rather than to a specific object (known or unknown). A further region that is 
inhibitory (INHIB) acts upon the ND node. Reciprocal inhibitory connections 
between the FD and ND generally produce a ‘winner-take-all’ response, though this 
can vary due to the noise in the system. The FD to ND inhibitory weight is important 
during the presentation of a familiar stimulus, with the reverse connection useful 
during learning. Weight values are indicated in table I, these can vary substantially.  

Table 1. Simulation connection strengths 

Connection Strength 
IFG →FD 0.8*10-10 
ND→FD -5*10-12 
INHIB→ND -40*10-12 
IFG→INHIB -2.4*10-12 
FD→ND -2.5*10-12 

 
The basis of the model is based on assessment of the IFG activity brought about by 

a given input stimulus. The basis of the model is in terms of:  

1) If a familiar stimulus is input to the system one or more of the IFG goal nodes are 
activated by the input to a good level (exceeding some threshold). 
2) If a novel stimulus is input there will be low-level activation of many (if not all) of 
the IFG goal nodes, but none of these activations will be close to that caused by a 
familiar input stimulus. 

The difference of responses of IFG neurons to the two different classes of stimuli is 
most clearly given by the maximum operator MAX applied to the IFG nodes (though 
only for an excitatory projection to the FD): 

1) For a familiar stimulus: MAX(IFG activity) ≥ threshold=>IFG output ~ 1 
2) A novel stimulus: IFG < threshold, and hence MAX(IFG) ~ 0, zero output to FD. 

A familiarity detector FD can be created most simply by: 

MAX(IFG activity) > threshold → Excitatory input onto FD neuron. 

A novelty detector ND can be created simply by: 

(IFG (activity) < threshold) → Inhibitory input onto a spontaneously active neuron 
(INHIB) → inhibitory input onto ND neuron (also spontaneously active, when 
inhibition is released). However, for this structure any IFG activity that is sufficiently 
strong will release the ND from inhibition whether the stimulus is novel or familiar. 
Adding an inhibitory connection from the FD to ND will reduce any ND activation in 
the case where the stimulus is familiar. Hence the following states apply: 
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1) For a familiar input => MAX(IFG) ~ 1 => FD ~ 1 and ND ~ 0 
2) For a novel input => MAX(IFG) ~ 0 => FD ~ 0 and ND ~ 1, as required for ND. 

However it is necessary to prevent 
the spontaneously active ND from 
firing when no stimuli are present 
hence the need for the INHIB input 
that must be present, under 
contextual control. This results in the 
final architecture of fig. 2. 

The experimental data of [1] 
results from tests performed by 
adults. In these subjects whilst the 
total form of the input stimulus is 
novel the component parts are not. 
There will be responses at V2 to 
angles formed by pairs of bars, V4 
will respond to more complex 
combinations of 3 or more lines, 
similarly TEO, TE and IFG will 
have firing rates increased from 
spontaneous rates. Indeed a 
simulation of occlusion, [10] which 
combined 2 known (square and 
triangle) objects into a composite 
novel object, showed firing rates 

within the IFG nodes of up to 40Hz for the new input. This was reduced from the 
responses of the nodes to their preferred input (which were >80Hz), but increased form 
spontaneous levels. The connectivity from IFG to the INHIB region is such that a single 
modelled IFG node firing at ~10Hz will generate a response from the ND node, the FD 
neuron will remain at spontaneous levels since all IFG nodes have firing rates below the 
threshold of the MAX function.  

All nodes are leaky-integrate-and-fire neurons with potentials defined by: 
 

noiseIIVVIVVVVg
dt

dV
C irtrinsicGABAshuntexcitmleakleakm ++−+−+−−= )()()(  (1) 

 
where V(t) is the potential, Cm is the neuron capacitance set to 5*10-10 F, Vleak is the 
resting potential of –70mV, gleak =2.5*10-8 S, Iexcit is the total excitatory input, IGABA is 
the total inhibitory input, Vshunt is the shunting potential of –80mV, Vm is set to 0mV. 
The spiking threshold is set to –52mV, Iintrinsic is an intrinsic current present for INHIB 
and ND to generate spontaneous firing rates of 30Hz and 10Hz, respectively.  

Output from IFG to the FD node is controlled by a MAX function, as indicated by 
our earlier discussion. To cause a non-zero response the MAX detector requires that 
the IFG nodes fire at 80 Hz or greater within a moving time-window of 50ms (4 
spikes or more within the time-window). Hence the first inputs to the FD node occur 
after a delay of ~50ms, before such spikes are integrated at the FD synapse. Hence 
only when an IFG node is strongly activated by the presence of a familiar input will 
the FD node become active. 

Fig. 2. Model architecture.  Open arrow-heads 
indicate excitatory weights and closed arrow-
heads are inhibitory.  In the IFG those nodes that 
are preferentially responsive to an object are 
unfilled whilst a node that currently is not 
responsive to any of the current known objects is 
filled in black.  
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Noise is added to the IFG and INHIB nodes in the form of inputs from 800 nodes 
firing with a Poisson spike-train of 3Hz. Increasing the population size of each region to 
give distributed representations as well as extending the noise to the ND and FD nodes 
should give the model the variability seen in the experimental results [1], where incorrect 
decisions are made, i.e. a novel input is misclassified as a familiar one and with a more 
complex IFG by including inhibitory inter-neurons causing misclassifications of familiar 
inputs. We hope to consider this elsewhere.  

Learning a novel stimulus uses the unclassified IFG node. Learning is initiated by the 
activation of the ND, which allows the model to learn the connectivities from TE to  
the unclassified node, whose weights are initialized as non-zero. To prevent learning to 
the other IFG nodes these can be inhibited, or learning can be directed to a specific node 
by the presence of some neuro-transmitter. A simple causal Hebbian learning rule is used 
with a time-window of 50ms, and high learning rate to accomplish one-shot learning. We 
have assumed that a novel representation is learnt during a single presentation, since the 
experimental regime [1] includes a distracting cognitively demanding task during the 30 
minute delay phase between learning and recognition phases that is designed to prevent 
rehearsal. The experimental results do not show a change of response during a learning 
trial from an ND to an FD. This is where the inhibitory synapse from the modelled ND to 
FD is important, by preventing FD response even when learning has reached a level to 
satisfy the MAX function for IFG output to the FD, since the experimental results [1] do 
not show a change in responses from ND to FD during learning of a novel input. For this 
reason the connection strength from ND to FD is double that of the reverse weight, this 
results from spike timing issues which are only present in reduced models, if the FD and 
ND were modelled as populations the weights could be equal. The MAX function is, as 
previously, set to 80Hz, though could be set at a lower threshold and learnt as the new 
IFG representation improves with learning.  

4   Simulation Results 

The simulations are run over 5000ms, with the inputs (novel and familiar) being 
presented for 4000ms with a stimulus onset time of 500ms. For the familiar objects 
(square, triangle and circle from [10]) one IFG node fires at ~85Hz (this is the node 
that is preferentially responsive to the current input) whilst the two other nodes 
(which prefer the two non-presented objects) have firing rates of ~70 and 45 Hz. 
Table 2 shows the mean number of spikes of the IFG nodes, within the moving 50ms 
time-window along with the standard deviations (SD), that respond to the known 
inputs. The unclassified IFG node fires at ~8Hz. Hence only the IFG node 
preferentially responsive to the input has a sufficient firing rate to turn-on an IFG to 
FD synapse, in this case IFG node 1 the mean number of spikes throughout the 
presentation of the input is > 4, this satisfies the MAX function which requires a 
firing rate of 80Hz hence 4 spikes per 50ms bin. The results for a familiar object are 
shown in fig. 3 (only the first 1000ms of the trial is shown), where only the IFG 
neuron shown in fig. 3a has sufficient activity to excite the FD node. 

The familiar input leads to the activation of the FD node, as well as inhibiting the 
INHIB node. In the absence of any input (either familiar or novel) only the INHIB node 
of the disinhibitory route from IFG → INHIB → ND is active. Whilst the INHIB and 
ND nodes both have intrinsic currents the greater firing rate of the INHIB node 
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dominates the ND, keeping the latter silent. In the presence of a familiar or novel input 
the INHIB region is silenced by IFG output, releasing the ND node. For the case of a 
familiar object the FD node is active and this takes over the inhibition of the ND from 
the INHIB region. Hence only the FD node becomes active, firing at 16 Hz (fig. 3e) 
whilst the ND remains silent (fig. 3f), inhibited by the INHIB node in the absence of 
any input initially and later by the FD node as it becomes active in response to the 
familiar object. The responses of the FD and ND agree with the results of [1] shown in 
their fig. 2, where for a familiar stimulus only the FD has a response that increases from 
the spontaneous levels, whilst the ND response remains at the spontaneous levels. 

 

 

Fig. 3. Responses of the model neurons to a familiar stimulus (the first 1000ms of a trial is 
shown). Plots a), b) and c) show the potentials of the 3 IFG nodes only the first fires at >80Hz 
to the familiar input, d) INHIB node, e) FD node, f) ND node. 

 

Presentation of a novel object generates IFG firing rates of: ~70, 70 and 45 Hz for 
the classified IFG nodes and again 8Hz for the unclassified node. Hence all IFG nodes 
have firing rates below the threshold to activate the IFG to FD synapses. The neuron  
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Fig. 4. Plots of neuronal potentials for a novel input.  Plot a) IFG neuron that previously spiked 
at >80Hz; all 3 IFG nodes fire below 80Hz (the other two IFG nodes have firing rates and 
patterns as shown in fig. 3 b and c.  Plot b) is the INHIB node, c) the FD and d) the ND. 

potential plots for a novel input are shown in fig. 4 (again only the first 1000ms); for 
this particular case the learning has been turned off. 

Table 2. IFG mean number of spikes in the 50ms time-window (figures in brackets are mean 
firing rates calculated over 4 seconds of presentation) 

IFG node 1 IFG node 2 IFG node 3 
4.110±0.019 (85Hz) 3.457±0.021 (70Hz) 2.169±0.021 (45Hz) 

 
Since all three IFG nodes with a preference have firing rates below 80Hz (only one 

shown in fig. 4 a, the other two have the same response as shown in fig 3 b and c), the 
FD is not activated (fig. 4c) and as before the INHIB node (fig 4 b) is inhibited by the 
IFG activations (only one of the IFG nodes actually needs be active to achieve this 
inhibition). Turning off the INHIB node releases the ND node (fig 4d) from its 
inhibited state and since in this case the FD is silent (due to the MAX function not 
being relevant), the ND begins firing at a rate of 16Hz. 

It should be noted that the INHIB node is not useful in determining whether a 
given input is novel or familiar since it has similar firing patterns for both input types, 
as it is always inhibited by the IFG for both novel and familiar stimuli (figs. 3d, 4b). 

We show the results for a novel stimulus (the same as used for fig. 4) with the 
learning (of Hebbian form, and from the temporal lobe input onto the novel node in 
IFG) now turned on in fig. 5. The initial response of the new IFG node (the first 
1000ms of the trial) is shown in fig 5a. The responses during this period of the  
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Fig. 5. Responses of the new IFG node during the early (a) and late (b) period of stimulus 
presentation of a novel object with learning.  The later period for the INHIB node (c), the FD 
node (d) and ND node (e) are shown.  Note that although the firing rate of the IFG node 
exceeds 80 Hz around 4300ms, and leads to an excitatory input to the FD the inhibition from 
the active ND prevents any activation. 
 
 

INHIB, FD and ND nodes are as in fig. 4 b, c and d, respectively. We also show the 
final 700ms starting at 4000ms for new IFG node, INHIB, FD and ND in fig 4 b, c, d 
and e, respectively. The firing rate of the new IFG node has increased substantially 
during the presentation of the novel stimulus, the learning being sufficiently fast that 
the firing rate exceeds 80Hz at ~ 4300ms of trial time. This allows output from this 
IFG node via the MAX function to the FD. However since the ND is active inhibition 
to the FD prevents it firing. The next presentation of this same stimulus is shown in 
fig. 6. In this case the new IFG node (fig 6a) satisfies the MAX function (with the 
other three IFG nodes all being sub-threshold) and the FD node (fig 6b) is now 
activated which inhibits any possible spiking of the ND. Hence a representation of the  
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Fig. 6. Presentation of the same stimulus used in training for fig. 5.  The new IFG node (a) now 
responds strongly to the input easily exceeding the 80Hz threshold for excitatory output to the 
FD (b), which becomes active.  The FD keeps the ND (c) inhibited. Hence on the second 
presentation of a previously novel input it is now defined as familiar. 

 
novel stimulus was learnt during its first presentation (fig. 5) when it was defined as 
novel allowing learning to be turned on by the activation of the ND node and at the 
subsequent presentation it is now recognized as familiar.   

5   Conclusion 

We have shown that a simple structure can be used to produce simulated results that 
are similar to experimental single cell recordings [1], in that distinct groups of 
neurons that define whether a stimulus is novel or familiar can be hard-wired, where 
in the latter case a familiar stimulus activates a FD node but not a ND node. By 
including learning, of a causal Hebbian one-shot form, an object seen for the first time 
and so novel activates the ND but then on subsequent presentations the stimulus now 
activates FD, also replicating the experimental results of [1]. From the data of [1] it 
appears that with one presentation of a novel stimulus, 30 minutes later there is a 
stored representation that now indicates that the object is familiar. This is what is to 
be expected in a HC with one-(or a few)-shot learning. The addition of a dorsal visual 
stream (the ‘where’ route) would allow for further investigation of the experimental 
results of [1], and the authors’ suggestion that contextual information is not 
necessarily required for novelty and familiarity distinction, it is unclear whether a 
fixation point was included in the experimental paradigm which could affect the 
single-cell recording results. Such an architecture could be based on the proposed 
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functional organisation of memory system of the MTL [11], where the information 
from the ventral visual stream enters the HC via the perirhinal and lateral entorhinal 
cortex, whilst the path of the dorsal stream is via the parahippocampal and medial 
entorhinal cortex and finally the HC. Hence the pathways are kept separate and are 
only integrated at the HC. The addition of the lower cortical regions of the ventral 
stream, perhaps using the model of [10], will also require learning to be extended 
certainly as far as forward projections to TE and TEO from V2 and V4.  

Using the architecture described above, lesions affecting the MAX operator would 
potentially lead to familiar stimuli being mis-identified as novel by the NDs and FDs. 
The thresholded IFG output would not reach the FD, leaving it silent, whilst, as we 
have seen, the INHIB node is always inhibited (fig. 3 d and fig. 4 b) which releases 
the ND node which without inhibition from an active FD will begin to spike. Hence 
the object could be identified correctly within higher regions of the ventral visual 
pathway and also IFG but then defined as being novel. It would be interesting to 
know whether such results occur within any patient groups. 

We note that there are several theories as to the role of the PFC. One is that the 
PFC does not store information long-term, but has a more ‘write and erase’ adaptive 
structure [12]. Neuronal responses are then dependent on what is pertinent for 
completion of the current task. These tasks are often trained for long periods of time, 
indeed the subjects may be over-trained. Other results especially with recognition of 
faces have shown that PFC does have memory sites [13].  

Finally, to compare the model presented in the paper with that of others, we can 
consider the visual input to IFG as giving a distance or confidence measure as to how 
the current input compares with the learnt and hence familiar object representations. 
There is the structure on top of this including the MAX function to further help 
interpret the IFG firing rates as familiar or novel. For the specific models mentioned 
in section 1: a number have a non-neural basis or require post-processing that is non-
neural only the SOM (using a distance measure) and ART (comparison measure) 
approaches are similar. There is a certain level of similarity in a number of previous 
schemes for novelty detection, but few have separate FD & ND nodes as in fig. 2. 

Acknowledgments. NRT would like to thank EPSRC, JGT would like to thank the 
EC, under the GNOSYS (FP6-003835) project. 
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González, Javier I-727
Graves, Alex I-549, II-220

Greer, Douglas S. II-19
Grim, Jǐŕı I-129
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I-707
Varsamis, Dimitris N. II-120
Veeramachaneni, Sriharsha II-869
Veredas, Francisco J. I-539, II-349
Verschure, Paul F.M.J. II-129
Verstraeten, David I-471
Vicen-Bueno, Raul II-690
Vicente, Raul I-904
Vigário, Ricardo I-944
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