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Preface

This book includes the proceedings of the International Conference on Artificial
Neural Networks (ICANN 2007) held during September 9-13, 2007 in Porto, Por-
tugal, with tutorials being presented on September 9, the main conference taking
place during September 10-12 and accompanying workshops held on September
13, 2007. The ICANN conference is organized annually by the European Neural
Network Society in co-operation with the International Neural Network Society,
the Japanese Neural Network Society, and the IEEE Computational Intelligence
Society. It is the premier European event covering all topics related to neural
networks and cognitive systems. The ICANN series of conferences was initiated
in 1991 and soon became the major European gathering for experts in these
fields. In 2007 the ICANN conference was organized by the Biomedical Engi-
neering Institute (INEB - Instituto de Engenharia Biomédica), Porto, Portugal,
with the collaboration of the University of Beira Interior (UBI - Universidade
da Beira Interior), Covilha, Portugal and ISEP, Polytechnic Engineering School,
Porto, Portugal. From 376 papers submitted to the conference, 197 papers were
selected for publication and presentation, following a blind peer-review process
involving the Program Chairs and International Program Committee; 27 papers
were presented in oral special sessions; 123 papers were presented in oral reg-
ular sessions; 47 papers were presented in poster sessions. The quality of the
papers received was very high; as a consequence, it was not possible to accept
and include in the conference program many papers of good quality. A variety
of topics constituted the focus of paper submissions. In regular sessions, pa-
pers addressed the following topics: computational neuroscience and neurocog-
nitive studies, applications in biomedicine and bioinformatics, spiking neural
networks, data clustering, signal and times series processing, learning theory,
advances in neural network learning methods, advances in neural network archi-
tectures, data analysis, neural dynamics and complex systems, ensemble learn-
ing, self-organization, robotics and control, pattern recognition, text mining and
Internet applications, vision and image processing. Special sessions, organized
by distinguished researchers, focused on significant aspects of current research,
namely: emotion and attention, understanding and creating cognitive systems,
temporal synchronization and nonlinear dynamics in neural networks, complex-
valued neural networks. Papers presented in poster sessions were organized in
the following topics: real-world applications, signal and time series processing,
advances in neural network architectures, advances in neural network training,
meta learning, independent component analysis, graphs, evolutionary comput-
ing, estimation, spatial and spatio-temporal learning. Prominent lecturers gave
six keynote speeches at the conference. Moreover, well-known researchers pre-
sented seven tutorials on state-of-the-art topics. Four post-conference workshops,
entitled “Cognitive Systems”, “Neural Networks in Biomedical Engineering and



VI Preface

Bioinformatics”, “What It Means to Communicate” and “Neural Networks of the
Future?”, concluded the focus of ICANN 2007 on the state-of-the-art research
on neural networks and intelligent technologies. An in-depth discussion was held
on the prospects and future developments both in theory and practice in those
important topics. We would like to thank all the members of the local committee
for their contribution to the organization of ICANN 2007. A special thanks to
Alexandra Oliveira whose dedication and work quality were a major guarantee
of the success of ICANN 2007. We also wish to thank Alfred Hofmann and the
LNCS team from Springer for their help and collaboration in the publication of
the ICANN 2007 proceedings.

July 2007 Joaquim Marques de S&
Luis A. Alexandre
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A Marker-Based Model for the Ontogenesis
of Routing Circuits

Philipp Wolfrum® and Christoph von der Malsburg+2
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Abstract. We present a model for the ontogenesis of information routing archi-
tectures in the brain based on chemical markers guiding axon growth. The model
produces all-to-all connectivity between given populations of input and output
nodes using a minimum of cortical resources (links and intermediate nodes). The
resulting structures are similar to architectures proposed in the literature, but with
interesting qualitative differences making them biologically more plausible.

Keywords: Information routing, shifter circuits, dynamic links, visual cortex.

1 Introduction

An important part of brain function is the routing of information between different ar-
eas. The routes along which information flows cannot be static, but must be adaptable
to the current requirements. The most prominent example for this necessity is visual
attention, where a certain mechanism ensures that only a selected portion of the visual
input reaches higher visual “target areas” like inferotemporal cortex (IT). Other exam-
ples in which information routing may be very useful include pitch-invariant recogni-
tion of melodies, or our ability to combine arbitrary words into grammatically correct
sentences. Such abilities require routing structures that provide physical connections
between all locations in a certain input region and all locations of a target area.

The necessity for dynamic information routing was appreciated early on [1]], and
models for its use in object recognition [2]] and for frame-of-reference transforms
have been put forward. All-to-all routing between large cortical areas has to happen via
intermediate stages to be biologically plausible (see problem definition in Sect.2land [4]
for a detailed discussion). Several architectures for such a multi-stage routing have been
proposed, like Shifter Circuits [3]], the SCAN model [6], or the minimal architecture of
[4]. What has been missing so far are models explaining the ontogenetic development
of routing structures in the brain.

2 Routing Structures

Let us pose the information routing problem as follows:

— Given are an input layer and an output layer both consisting of N feature nodes
(or simply nodes). We are looking for a routing network that establishes all-to-all
connectivity between those layers.

J. Marques de Sd et al. (Eds.): ICANN 2007, Part II, LNCS 4669, pp. 1381 2007.
(© Springer-Verlag Berlin Heidelberg 2007
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— The routing happens via i — 1 intermediate layers of /N nodes each.

— Nodes of adjacent feature layers can be connected by links. For connecting the
K + 1 feature layers, K stages of links are required, every stage containing N2
potential links.

Several anatomically plausible architectures have been proposed that meet these re-
quirements. The most prominent one is the so called Shifter Circuit [Sl]. While Shifter
Circuits implement a redundant connectivity between input and output, in [4] we pro-
pose an architecture that provides full connectivity while requiring the minimally pos-
sible number of feature nodes and links. A one-dimensional version of this connectivity
is shown in Fig.[1l

3 -
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<\
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0 5 10 15 20 25 30
nodes

Fig. 1. Routing architecture from [4]]. The N = 27 nodes of the input layer O are connected to
all 27 nodes of output layer 3 via 2 intermediate layers and K = 3 stages of links. Note that this
connectivity requires “wrap-around’ links, i.e. links between one end of the presynaptic layer and
the opposite end of the postsynaptic layer.

3 Ontogenetic Dynamics

How can ontogeny produce such routing circuits in the brain? Especially the large gaps
necessary between links on higher stages are difficult to explain with traditional learn-
ing rules. Here we will investigate whether chemical markers can help forming such
structures.

It is well known that axonal growth follows chemical gradients [7]]. It was hypoth-
esized early that chemical markers could help forming the point-to-point retinotopic
mapping that exists between retina and the tectum [8]], and Willshaw and von der Mals-
burg [9] presented a model that realizes the retinotectal mapping on the basis of a limited
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number of chemical markers present in the retina. Recent studies [L0] have shown that
the mechanisms by which axons detect these gradients are much more sensitive than
previously assumed, allowing the question whether even more complicated patterns
than the retinotectal map can arise from chemical marker interaction.

We here present a model that explains the development of routing structures based
on chemical markers. For simplicity and ease of visualization we restrict ourselves here
to the case of one-dimensional feature layers. Let C’i’fj denote the strength of the link
between node 7 in layer & to node j of layer k + 1. C’i’f ; can vary between 0 and 1, with
0 representing an absent link and 1 a fully grown one. We will refer to all links of one
stage by the N x N matrix C*. When we make a statement that refers to the links of
all K stages we will leave out the superscript k (this also applies for other variables
introduced below).

We describe the growth of the links not directly in terms of C' but of an unbounded
variable U, which codes for the real links via the sigmoid function

1

C:
14 e-sU’

ey
where s defines the steepness of the sigmoid. We let U start out at a homogeneous
negative value with some noise added (see Sect. [ for a discussion of robustness to
noise), so that all links C are initially close to 0. The growth of U then follows the
differential equation

U — prom o Fmarker % Ftop’ )

where X denotes elementwise multiplication. The three terms have the roles of restrain-
ing local growth of connections (F™°™), keeping similarity of chemical markers on both
sides of a link low (F™¥*) and introducing topologic interactions (F'°P). Thanks to
the multiplicative combination, no “tuning” of the relative contributions of the terms is
required; the mechanism works for different network sizes without need for adjusting
many parameters.

The term

From = d — Z C;s 3)
J

is a factor that tends to keep the sum of all efferent links from any position ¢ close to a
desired value d. Once the combined link strengths exceed d, F"°™ turns negative, thus
letting the respective link shrink.

The term F™¥*" makes a link’s change sensitive to the similarity of chemical mark-
ers in the two nodes it connects. These markers are channeled from the input layer to
higher levels by the very connectivity C' whose growth in turn they influence. We as-
sume each node of the input layer to contain a different type of chemical marker ¢;
(for a discussion of the plausibility of this and possible alternatives, see Sect. [3). In
matrix notation this means that the marker distribution in layer O is the identity ma-
trix, MY = Inxn, with the marker types on the 1st and the node location on the 2nd
dimension. Markers are then transported to higher layers via the existing links C"

MEFL — ArRok (4)
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To calculate F'™@*er e first define a similarity term

FleJmk - ZMtkz(Mtkjl = CE M), ®
t

which is the similarity (dot product) of the marker vector on the presynaptic side with
that portion of the marker vector on the postsynaptic side that was not carried there
by the link itself. Therefore, the similarity term signals to the link how well the routes
between the part of input space it “sees” and its target node are already being served
by other links (see Fig.[2). The role of F™¥*< is to let a link grow only if its similarity
term is not too large. We therefore set

marker sim
N =1-H(F — a), (6)

with H () denoting the Heaviside function and a fixed parameter «.

E

e o o
csD

Y °®

°® Y
A B

Fig. 2. Role of the similarity term. Already well-established links (solid lines) carry markers from
input nodes A and B to intermediate nodes C and D, and from D to E. Therefore, a weak link C-E
(dotted line) finds a marker distribution at its target E that is similar to the one at its origin C. This
similarity keeps it from growing. Functionally, this mechanism prevents formation of redundant
alternative routes between two points.

The term
F7 = B(Ciz1j-1 + Ciprj41) + Gij @

i,J

combines two different topological influences, their relative strength weighted by the
parameter (3. The first part adds cooperation between parallel neighboring links. The
second term G favors the growth of links to the corresponding position in the next
layer (i.e. = = j) over links to faraway positions. We assume it here to be a bounded
hyperbolic function of position difference of the two end nodes: G; ; = Ii—gl oy with
~ defining the steepness (see Fig.[3). G is necessary to tell the ontogenetic mechanism
how to align the coordinate systems of the layers it is connecting. A possible way of
implementing this term is to first allow development of a point-to-point mapping (e.g.
through the mechanism presented in [9]), which then serves as a guidance for the growth
of a routing connectivity.
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Fig. 3. The term G helps to align the coordinate systems of subsequent layers by favoring links
between nodes with corresponding positions (middle diagonal) over links between distant nodes.
~ = 0.6 like in the simulations of Sect. dl

4 Results

We chose to investigate the growth of networks containing K = 3 link stages. Equation
(@) was integrated using the Euler method and the following parameter settings: s = 30
(steepness of sigmoid), & = 0.5 (threshold for marker similarity), 5 = 0.6 (strength of
neighbor interaction), v = 0.6 (steepness of the hyperbolic term G). A delayed onset
of growth at higher stages improves the final results. We chose a delay of 15% and 30%
of overall simulation time for the middle and the highest stage, respectively.

First, we assumed d = 3 as target number of links per node (see (3)). With K = 3
link stages, this means that N = d® = 27 input and output nodes can be connected.
The network resulting from the ontogenetic mechanism for these parameter settings
is shown in Fig. @l Note how the distance between links increases from 1 to 3 to 9
from bottom to top, thus producing non-redundant full connectivity. We can see in
Fig. that the resulting network differs qualitatively from the manually produced
one of Fig.[I} There are no wrap-around links (i.e. links from a node on one side of the
feature layer to the opposite side of the next layer). Instead, these links appear on the
other side of the central link (cf. Fig.[A(b)). Interestingly, this new structure produces the
same perfect all-to-all connectivity as the one arising from theoretical considerations in
(4], while being biologically more plausible.

The mechanism can also grow routing structures between larger feature layers. For
this we only have to adjust the target number of links per node d, without changing any
of the other parameters. Fig.[5 shows simulation results for d = 5,i.e. N = d® = 125
nodes per layer. We see that qualitatively the resulting structure is similar to the one
obtained for d = 3, except that now each node makes 5 connections to the next layer,
with appropriate spacings of 1, 5, and 25 nodes.

However, we also see that the structure in Fig.[Blis not as clean as the one in Fig.[d]
with several links not going to the “correct” targets. This results in an overall input-
output connectivity that is not perfectly homogeneous, i.e. some input-output pairs are
connected by two different routes, while others have no connection. For the structure
shown in Fig. [3 the strengths of the input-output connections have mean value and
standard deviation of x =~ 1 and o ~ 0.15.

The reason for the uneven final structure lies in the noise that was introduced to
the initial link strengths: We chose the initial values of U randomly from the interval
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Fig. 4. Results for N = 27 nodes per layer and a target number of links d = 3
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Fig. 5. Resulting connection matrices C* for N = 125 nodes per layer and a target number of
links d = 5. The initial values of U contained 10% of additive noise.

[-16.5.. — 15], which means that they contain 10% of additive uniformly distributed
noise. Further simulations have shown that the mechanism generally results in a flaw-
less connectivity only if the initial conditions contain less than ~ 5% of noise. The
growth of smaller networks is far less sensitive to noise: For N = 27, up to 20%

of additive noise in the initial conditions practically always results in the correct final
connectivity.

5 Conclusion

One assumption crucial for the model as presented here is that there be a unique chemi-
cal marker for every input node. This is very unlikely to be the case in the brain. Future
work will address the question how the N different chemical markers can be replaced
by a small number of marker gradients spread evenly over the input layer. Also, it is
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possible to replace the unique markers assumed here by stochastic, uncorrelated signals
produced by the different input nodes. Since these signals are orthogonal, their linear
superpositions arising at higher layers could still be decomposed and, most notably, the
scalar product of such superpositions would give exactly the same similarity term as as-
sumed in the model here. This would yield an activity-based instead of a marker-based
mechanism following the same mathematical model.

We have presented a neurally plausible ontogenetic mechanism modeling the for-
mation of routing circuits in the brain. The mechanism requires only signals that are
available locally at source and/or target of the respective connection. While the mecha-
nism may be important for understanding the development of certain wiring structures
of the brain, it may also turn out to have technological applications like the automatic
wiring of computer networks.
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Abstract. It is well documented that superior colliculus (SC) neurons integrate
stimuli of different modalities (e.g., visual and auditory). In this work, a mathe-
matical model of the integrative response of SC neurons is presented, to gain a
deeper insight into the possible mechanisms implicated. The model includes
two unimodal areas (auditory and visual, respectively) sending information to a
third area (in the SC) responsible for multisensory integration. Each neuron is
represented via a sigmoidal relationship and a first-order dynamic. Neurons in
the same area interact via lateral synapses. Simulations show that the model can
mimic various responses to different combinations of stimuli: i) an increase in
the neuron response in presence of multisensory stimulation, ii) the inverse ef-
fectiveness principle; iii) the existence of within- and cross-modality suppres-
sion between spatially disparate stimuli. The model suggests that non linearities
in neural responses and synaptic connections can explain several aspects of
multisensory integration.

Keywords: Superior colliculus, multimodal integration, inverse effectiveness,
cross-modality and within-modality suppression.

1 Introduction

Integration of stimuli from different sensory modalities (visual, auditive, tactile) plays
a fundamental role in the correct perception of the external world and in determining
the suitable behaviour of individuals towards external events [1]. The presence of
multisensory neurons, able to integrate different sensory modalities into a complex re-
sponse, is well documented in various structures of the mammalian brain outside the
primary sensory areas [1]. An important locus of multisensory interaction is a layered
midbrain structure, the superior colliculus (SC). Many neurons in the deep layers of
the SC receive converging visual, auditory and somatosensory afferents from various
subcortical and extraprimary cortical sources [2]. Responses of such neurons to a
combination of modality-specific stimuli differ significantly from those evoked by
any of their unisensory inputs in a way that substantially facilitates the role of the SC
in controlling attentive and orientation behaviour [3].

J. Marques de Sd et al. (Eds.): ICANN 2007, Part I, LNCS 4669, pp. /18] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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Many studies have been carried out to characterize how multisensory neurons in
the SC integrate their unimodal inputs, and a consistent amount of physiological data
has been gathered on their response to a variety of stimuli [4] [5] [6] [7]. These stud-
ies, which record single-unit activity in anesthetized animals, show that the responses
of multimodal neurons in the SC are characterized by significant non-linear phenom-
ena, which make their qualitative analysis extremely difficult without the help of
mathematical quantitative tools. First, a multisensory SC neuron has multiple recep-
tive fields (RFs), one for each of its sensory modalities. When two different sensory
stimuli (e.g., auditory and visual) are present at close spatial proximity (as it occurs
when they derive from the same event), their combination is typically synergistic pro-
ducing a neuron’s response which is significantly greater than that evoked by the most
effective of the two unimodal inputs individually (multisensory enhancement) [1] [5]
[8]. On the other hand, when the two stimuli are presented at different locations (i.e.
they likely derive from different events) two alternative results can be observed: ei-
ther no interaction occurs or the neuron’s response to the within-field stimulus is con-
siderably depressed (multisensory depression) [4] [9].

Multisensory enhancement is accompanied by another well known integrative
principle called inverse effectiveness: combinations of weakly effective stimuli pro-
duce proportionally greater multisensory enhancement than more effective stimuli [1]
[10]. Inverse effectiveness has functional sense in behavioural situations: the prob-
ability to detect a weak stimulus benefits more from multisensory enhancement than a
high-intensity stimulus which is easily detected by a single modality alone [3] [11].

Despite the great number of experimental results on multisensory SC response
which has been gathered in recent years, we are not aware of mathematical models
and neural networks able to encompass these data into a coherent theoretical structure.
It is reasonable to expect that the properties of multi-modal integration do not only
depend on neuronal individual characteristics, but above all reflect the organization of
the circuitry that processes unimodal stimuli and conveys these stimuli toward multi-
Sensory neurons.

A fundamental contribution to identify the mechanisms of multisensory integration
in SC can be obtained with the use of neural networks and computer simulations.
These models can be of value not only to provide putative explanation for existing
data, but also to suggest new experiments and to provide some rules for artificial rec-
ognition systems.

The aim of this work is to develop an original neural network model, based on
neurobiologically plausible mechanisms, able to reproduce and explain in-vivo results
on multisensory integration in the SC. The model includes three neural networks,
which communicate via synaptic connections. Two of them are unimodal and repre-
sent neurons coding visual and auditory stimuli, respectively; a downstream network,
representing multimodal neurons in the SC, receives information from the upstream
networks via feedforward synapses and integrates these information to produce the fi-
nal response. Furthermore, neurons in each network are interconnected via lateral syn-
apses. By adopting the previous structure and by using a single set of parameters, the
model is able to reproduce a cluster of within- and cross-modality interactions in ac-
cordance with experimental data in the literature.
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2 Method

In this section we will describe the general structure of the model and we will discuss
parameter assignment, on the basis of existing data in the literature.

2.1 General Model Structure

e The model is composed of 3 areas (see Figure 1). Elements of each area are or-
ganized in NxM dimension matrices, so that the structure keeps a spatial and
geometrical similarity with the external world: neurons of each area respond only
to stimuli coming from a limited zone of the space. Neurons normally are in a si-
lent state (or exhibit just a mild basal activity) and can be activated if stimulated
by a sufficiently high input. Furthermore, each neuron exhibits a sigmoidal rela-
tionship (with lower threshold and upper saturation) and a first order dynamics
(with a given time constant). The 2 upstream areas are unimodal, and respond to
auditory and visual stimuli, respectively. A third downstream area represents
neurons in the Superior Colliculus responsible for multisensory integration.
These three areas have a topological organisation, i.e., proximal neurons respond
to stimuli in proximal position of the space.

Fig. 1. Schematic diagram describing the general structure of the network. Each grey circle
represents a neuron. Neurons are organized into 3 distinct areas of 40x40 elements. Each
neuron of these areas (V: visual, A: auditory and SC: multimodal in the superior colliculus)
is connected with other elements in the same area via lateral excitatory and inhibitory intra-
area synapses (arrows L,, and L;, within the area). Neurons of the unimodal areas send feed-
forward excitatory inter-area synapses to multimodal neurons in the superior colliculus area
located in the same position (arrows K). Multimodal neurons, in turn, send excitatory feed-
back inter-area connections to neurons of the unisensory areas (arrows F) (see text for
details).
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e  Each element of the unisensory areas has its own receptive field (RF) that can be
partially superimposed on that of the other elements of the same area. The ele-
ments of the same unisensory area interact via lateral synapses, which can be
both excitatory and inhibitory. These synapses are arranged according to a Mexi-
can hat disposition (i.e., a circular excitatory region surrounded by a larger in-
hibitory annulus).

e The elements of the multisensory area in the Superior Colliculus receive inputs
from the two neurons in the upstream areas (visual and auditory) located in the
same spatial position. Moreover, elements in the SC are connected by long range
lateral synapses.

e The multimodal neurons in the SC send back a feedback excitatory input to the
unimodal neurons located in the same spatial position, i.e., detection of a multi-
modal stimulus may help reinforcement of the unisensory stimuli in the upstream
areas.

2.2 Mathematical Description

In the following, quantities which refer to neurons in the auditory, visual or multisen-
sory areas will be denoted with the superscripts a, v and m, respectively. The spatial
position of individual neurons will be described by the subscripts ij.

The Receptive Fields of Unisensory Areas. In the present version we assume that
each area is composed by 40x40 neurons (i.e.. N=40; M=40), to reduce the
computational complexity of the computer implementation. Neurons in each area
differ in the position of their receptive fields by 2.25 deg. Hence, each area covers 90
deg in the visual, acoustic or multisensory space. In the following, we will denote
with x' and y the center of the RF of a generic neuron ij. The receptive field (say
R’j(x, y)) of neuron ij in the unisensory area s (s = a, v) is described with a gaussian
function. The standard deviation of this function has been given so that the receptive
fields of the visual neurons are approximately 10-15 deg in diameter, and those of
acoustic neurons approximately 20-25 deg, according to data reported in literature [5].
The amplitudes of the Gaussian functions are set to 1, to establish a scale for the
strength of the inputs generated by the external stimuli. According to the previous
description of the RF, an external stimulus excites not only the neuron centered in that
zone, but also the proximal neurons whose receptive fields cover such position.

The Activity in the Unisensory Areas. Unisensory neurons are stimulated not only
from external inputs, but also by connections with other elements in the same area and
by a feedback connection from multisensory neurons in the downstream layer. Hence,
the overall input for neuron in position ij can be written as follows:

wi()=r O+ 50+ 7 0) 5 s=av. 0

r'; represents the input that reaches the neuron ij in presence of a sensory stimulus;
this is computed as the inner product of the stimulus and the RF. The term ls,-j is the
input coming from connections with other neurons in the same area. Synapses repre-
senting these connections are symmetrical and arranged according to a “Mexican hat”
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function. Parameters which establish the extension and the strength of lateral synapses
in the unimodal areas have been assigned to simultaneously satisfy several criteria: 1)
the presence of an external stimulus produces an activation bubble of neurons which
approximately coincide with the dimension of the receptive field; ii) according to data
reported in [4] we assumed that the surrounding inhibitory area is much larger than the
activation bubble; iii) inhibition strength must be strong enough to avoid instability; iv)
stimulating the suppressive region with a second stimulus can induce within-modality
suppression greater than 50%. To avoid undesired border effects, synapses have been
realized by a circular structure so that every neuron of each area receives the same
number of side connections. Finally, f,] is the input to unisensory neurons induced by
the feedback from the Superior Colliculus. Such connections exclusively link neurons
placed in the same ij-position in the Colliculus and the unisensory area. Finally, neuron
activity is computed from its inputs, through a static sigmoidal relationship and a first-
order dynamic. This is described via the following differential equation:

d . ) '
T x5 (0)==x()+ (p(u] (r)). )

The time constants, 7;, which determines the speed of the answer to the stimulus,
agrees with values (a few milliseconds) normally used in deterministic mean-field
equations [12]. ¢ represents a static sigmoidal relationship, described by the following

equation
o ())=—— 7 (3)

I+e™ Usals

where ¢ defines the threshold and p’ sets the slope at the central point. These 2 pa-
rameters have been assigned to have negligible neuron activity in basal condition (i.e.,
when the input is zero), and to have a reliable transition from silence to saturation in
response to unimodal and cross-modal inputs. Such function identifies 3 regions of
work, depending on the intensity of the input: the under-threshold behaviour of a neu-
ron, an approximately linear region, and a saturation region. According to the previ-
ous equation, the maximal neuron activity is conventionally set at 1 (i.e., all neuron
activities are normalized to the maximum).

The Activity in the Multisensory Area. Neurons in this area are stimulated by the
activities of the neurons in the two unisensory areas located in the same ij-position.
This choice has been adopted since, according to experimental data, the auditory and
visual RFs of a multisensory neuron are in spatial register [4], i.e., they represent
similar regions in space. Furthermore, neurons in the superior colliculus also receive
lateral synapses from other elements in the same area.

We assumed that synapses in the multisensory area have a Mexican hat disposition,
but they join only spatially distant neurons. This disposition of synapses has been
adopted since data in the literature suggest the absence of within-modality integration
of proximal stimuli, and cross-modal suppression between distal stimuli. Hence, the
overall input, (say u";) to a multisensory neuron is computed as the sum of two
elements: a feedforward term from upstream unimodal areas and lateral feedback
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from distal neurons in the same area. Then, the activity of a multisensory neuron is
computed from its input by using equations similar to Egs. (2) and (3).

3 Results

The steady state responses of an SC neuron vs. the magnitude of the input stimulus
are reported in Fig. 2, for an auditory (pointed line), a visual (dashed line) and a mul-
tisensory (continuous line) stimulation. These responses have been obtained by using
either a single stimulus (auditory or visual), of increasing strength, or two paired
stimuli (visual + auditory) located at the centre of the RF. From these curves, the dy-
namical range (defined according to the literature [6] as the difference in neuron ac-
tivity at saturation and at threshold) can easily been computed. Furthermore, by way
of comparison the sum of the two unisensory responses is also presented in the same
figure. Two aspects of these curves are of interest: first, the dynamical range to mul-
tisensory stimulation is much greater than the dynamical range to a single stimulus.
Second, the neuron exhibits a superadditive behaviour (i.e. the response to a multisen-
sory stimulus is greater than the sum of the two unimodal responses) at low values of
the input stimuli (just above threshold), while the behaviour tends to become simply
additive (i.e. the multisensory response is equal to the sum of the unisensory re-
sponses) at high stimulation levels (close to saturation). In order to quantitatively
evaluate the multisensory integration we computed the so-called “interactive index”
[6]. This is a measure of the augmentation of the response induced by two stimuli of
different modality compared with a single stimulus, and is defined as follows:

Mr—Ur,
———— M 1.100.
» } @)

Interactive Index = {
max

where Mr (multisensory response) is the response evoked by the combined-modality
stimulus, and Ur,,, (unisensory response) is the response evoked by the most

1.00
0.75-
0.50

0.25+

SCN normalized activity

0.00

Fig. 2. Analysis of the response of multimodal neuron to unimodal and crossmodal stimuli. The
responses were assessed stimulating the model with an acouStiC (uupuuea)s @ ViSUAl (== == =)
and two paired multisensory (=) stimuli with increasing intensity. By way of compari-
son, the sum of the two unisensory responses (=== = =) is also presented in this figure. The
stimulus was presented at the center of the RF of the observed SC neuron.
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Fig. 3. Analysis of the interactive index vs. the intensity of the multimodal input, that under-
lines the phenomenon of the Enhancement and the inverse effectiveness principle. Interactive
index (D %) is computed as the per cent increase of the multisensory response compared to the
maximum unisensory response.
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Fig. 4. Effect of the distance between two stimuli on the integrative response of the multisen-
sory SC neurons. A first visual stimulus was located at the center of the RF of the observed
neuron. A second stimulus, either of the same modality (dashed line) or of a different modality
(continuous line), is progressively moved from the center of the RF to the periphery. The dis-
tance between the two stimuli is shown in the x-axis.

effective unisensory stimulus. Fig. 3 displays the interactive index computed at differ-
ent values of the input stimuli. According to the principle of inverse effectiveness,
this index decreases from more than 500% in case of small stimuli (just above the
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threshold, input = 8 - 12) down to 75% in case of strong stimuli. Finally, Fig. 4 ana-
lyzes the role of the distance between two stimuli on the integrated response. In these
simulations a visual stimulus is located at the center of the RF, and either a second
visual stimulus (within-modality interaction) or a second auditory stimulus (cross-
modality interaction) is moved from the center to the periphery. Results confirm that a
second stimulus of a different modality located within the receptive field causes sig-
nificant cross-modal enhancement, whereas within-modality enhancement is mild
(i.e., a second stimulus of the same modality, located inside the RF does not evoke a
significantly greater response). If the second stimulus is moved away from the RF,
one can observe significant within-modality suppression as well as significant cross-
modality suppression. Within modality suppression is strong in both modalities (audi-
tory and visual) leading to almost 70% reduction in the SC response. The suppressive
regions are quite large (25-30 deg) in accordance with physiological data [4].

4 Discussion

The present work was designed to elucidate possible neural mechanisms involved in
multisensory integration in the Superior Colliculus. To this end, we developed a sim-
ple neural circuit which encompasses several mechanisms, still maintaining a moder-
ate level of complexity. Actually, the model aspires to represent a good compromise
between completeness, on one hand, and conceptual (and computational) simplicity
on the other. The basic idea of this model is that multimodal neurons in the Superior
Colliculus receive their inputs from two upstream unimodal areas, i.e., one area de-
voted to a topological organisation of visual stimuli and another area devoted to a
topological organisation of auditory stimuli. However, the exact location of these ar-
eas is not established in our model, i.e., we did not look for a definite anatomical
counterpart. Experimental data suggest that multisensory neurons are created by the
convergence of modality-specific afferents coming from different sources [2]. For the
sake of simplicity, in this model somatosensory stimuli are neglected, i.e., we con-
sider only the problem of audio-visual integration. By incorporating the previous
mechanisms, and using a single set of parameters, the model was able to make several
predictions, which can be compared with experimental data. In the following, the
main simulation results are critically commented:

1) Inverse effectiveness — As it is evident in Figs. 2 and 3, the capacity of multisensory
neurons to integrate cross-modal stimuli strongly depends on the intensity of the in-
put. In the present work the facilitatory interaction has been quantified using the in-
teractive index, which relates the multisensory response to the larger of the two
unisensory responses. This index is affected by the intensity of the stimuli, and exhib-
its a significant decrease if stimulus intensity is progressively raised. This behaviour,
which is known as “inverse effectiveness”, is a consequence of the non-linear charac-
teristic of neurons, and can be explained looking at the position of the working point
on the sigmoidal relationship after application of the more effective input. First, let us
consider the case in which, after application of the more effective stimulus, the
SC neuron works in the lower portion of its sigmoidal relationship, close to the
threshold. Then, application of a second stimulus may move the working point into
the linear portion of the curve, thus causing a disproportionate increase in the
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response compared with that evoked by the first input (superadditivity, enhancement
greater than 100%). By contrast, if the neuron works in the central (quasi-linear) re-
gion, the effect of a second stimulus is simply additive. Finally, if the upper saturation
region is approached one can have sub-additivity, since a second stimulus can induce
only a minor increase in neuron activity. The last case is not simulated in this work
since, with the present value of feedforward synapses, a single stimulus cannot move
the working point close to the upper saturation region. Sub-additivity, however, can
be mimicked by increasing the feedforward synapses.

it) Dynamic range — The multisensory dynamic range of multimodal neurons is
greater than the unisensory dynamical range [6]. This signifies that the maximal re-
sponse evoked by a combination of auditory and visual stimuli in close spatial and
temporal register is greater than the maximal response evoked by a single stimulus of
either modality [6]. Such a property is explained in our model by the presence of two
sigmoidal relationships, disposed in a series arrangement. Let us consider a single
stimulus and progressively increase its intensity: in our model, the maximal response
in the SC (see Fig. 2) is determined by the upper saturation of neurons in the upstream
uni-modal area, and by the strength of the feedforward synapses linking this unimodal
neuron to the downstream (multimodal) neuron. This input does not lead multimodal
neurons to saturation. Consequently, if we apply a combination of a visual and an
auditory stimulus and progressively increase their intensity (multisensory dynamic
range), the downstream multimodal neuron can be driven closer to its upper saturation
and exhibits a greater response.

iii) Cross-modality vs. within modality integration — According to the literature [1] in
our model a combination of two cross-modal stimuli within the RF results in signifi-
cant enhancement of the SC response, but the same effect is not visible when the two
stimuli are presented as within-modality pairs. A second within-modality stimulus ap-
plied within the RF causes just a mild enhancement (Fig. 4). This result is the conse-
quence of the absence of lateral excitation between multi-modal neurons.

iv) Spatial relationship between two (within-modal or cross-modal) stimuli — In
agreement with experimental data [4], our model shows that, when the spatial dis-
tance between two stimuli is increased, the integration performed by multimodal neu-
rons changes from enhancement to suppression. In the present model the suppressive
effect is evident both using within-modality and cross-modality stimuli. Similar ex-
empla are reported in [4].
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Abstract. Neurotransmitter fields differ from neural fields in the underlying
principle that the state variables are not the neuron action potentials, but the
chemical concentration of neurotransmitters in the extracellular space. The
dendritic arbor of a new electro-chemical neuron model performs a
computation on the surrounding field of neurotransmitters. These fields may
represent quantities such as position, force, momentum, or energy. Any
computation performed by a neural network has a direct analog to a
neurotransmitter field computation. While models that use action potentials as
state variables may form associations using matrix operations on a large
vector of neuron outputs, the neurotransmitter state model makes it possible
for a small number of neurons, even a single neuron, to establish an
association between an arbitrary pattern in the input field and an arbitrary
output pattern. A single layer of neurons, in effect, performs the computation
of a two-layer neural network.

Keywords: Computational neuroscience, signal processing, pattern recognition,
mathematical models, natural intelligence, neural fields.

1 Introduction

Neural fields have been studied for a long time [1]-[4] and comprehensively reviewed
by several authors [5], [6]. This approach models the behavior of a large number of
neurons by taking the continuum limit of discrete neural networks where the
continuous state variables are a function in space representing the mean firing rates.

The distinction between neural fields and neurotransmitter fields is the physical
quantity under consideration. Neural fields attempt to model the spatial distribution of
mean neuron-firing rates as real-valued function, while neurotransmitter fields model
the concentration of neurotransmitters in the extracellular space as a real-valued
function. The localization of neurotransmitters to the space within the synaptic cleft is
seen as an evolutionary adaptation that limits diffusion and increases the efficiency.

In order to develop the theory, we put forth a single proposition: the neurotransmitter
cloud hypothesis. Empirical evidence and deductive arguments are provided which
support this proposition, but verification will require further investigation and analysis.
Acceptance of the hypotheses, like including an additional mathematical axiom, allows
us to explore a new computational model that characterizes the electro-chemical
properties of the neuron.

J. Marques de Sd et al. (Eds.): ICANN 2007, Part II, LNCS 4669, pp. 19 2007.
© Springer-Verlag Berlin Heidelberg 2007
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1.1 Evolution of the Nervous System

Although the evolution of the senses and the central nervous system was a complex
process that occurred over an extended time interval [7], we can attempt to understand
some of the general constraints that may have influenced its development. One of
these constraints was the need to evaluate the current state of the body and its
immediate environment. This required the creation of internal representations that
could be equated with physical quantities defined over the continuous variables of
space, time, and frequency. These quantities included mass (external world), position
(location of the body surface), energy (visible light and sound vibrations), and force
(pressure on the body surface and the tension on the muscle cross-sections).

In the standard neural network model, a synapse is characterized mathematically
by a single real-valued weight representing the effect one neuron has on another. The
products of the weights times the activation values of the input neurons are summed,
and a nonlinear transfer function is applied to the result [8]. This model describes
electrical and chemical synapses uniformly, that is, by a single real value. Examining
the difference between electrical and chemical synapses, we note that electrical
synapses, which may have a weighted response proportional to the number of ion
channels connecting the pre- and postsynaptic neuron, are more than ten times faster.
They are also more efficient, since they do not require the metabolism of
neurotransmitters, or the mechanics of chemical signaling. However, chemical
synapses are found almost exclusively throughout the central nervous systems of
vertebrates. This raises the question: Given a time interval of several hundred million
years, and the wide range of species involved, why has nature consistently retained
the cumbersome chemical synapses and not replaced them with electrical synapses?

We note that neurotransmitters, the core component of chemical synapses, are
actually located outside the neuron cell walls in the extracellular space. Moreover, the
chemical signaling often occurs in multiple-synapse boutons such as the one shown in
Fig. 1. Within these complex synapses, which connect the axons and dendritic spines
of many adjacent neurons, the density of neurotransmitter is equal to the sum of the
contributions from each of the individual axons.

Another constraint during the course of evolution was the limited amount of
processing power available. Solutions that required more than a very small number of
neurons were not feasible. In addition, the space within the organism that could be
devoted to representing physical quantities was limited, so small, compact
representations were preferable.

If we leave the confines of the standard neuron model and consider the density of
neurotransmitters as the state variables, we discover a number of advantages. The first
is higher resolution; billions of small molecules can fit in the space occupied by a single
neuron. The second is energy consumption; the concentration of neurotransmitters, like
the concentration of ink on a sheet of paper, is passive and can store information
indefinitely without expending energy. In contrast, action potentials require the
continuous expenditure of energy in order to maintain state. Another advantage is that a
very high-resolution representation can be maintained with only a few processing
elements. For example, the terminal arbor of a single neuron that encodes a joint angle
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can support a high-resolution model describing the location of the surface of the limb in
space. This collection of related concepts results in the following conjecture.

The Neurotransmitter Cloud Hypothesis. When multicellular fauna first appeared,
organisms began to represent quantities such as mass, force, energy and position by
the chemical concentration of identifiable molecules in the extracellular space. The
basic principles of operation developed during this period still govern the central
nervous system today.

Dendrite 1

Dendrite 2

Fig. 1. This idealized view of multi-synapse boutons shows how the concentration of
neurotransmitter perceived by multiple dendrites is the summation of that produced by three
separate axon terminals. The summation occurs in the extracellular space and is separated from
the intracellular summation by the nonlinear responses of the cell membranes.

The basic laws of physics are based on quantities defined in space, time, and
frequency, which can be internally represented by the chemical concentration of
neurotransmitters in three-dimensional space.

Neurotransmitter clouds in early metazoa would have suffered from two problems:
chemical diffusion of the molecules and chemical inertia due to the large amounts of
neurotransmitter required to fill in the extracellular space. As a result, evolutionary
adaptation would have favored neural structures where the neurotransmitters
remained confined to the small regions in the synaptic clefts between the pre- and
postsynaptic neurons.

In order to visualize how a computation can be performed on a neurotransmitter
cloud, imagine the dendritic arbor of a neuron as a leafless tree with its branches
inside of the cloud. The surface of the tree is “painted” with a shade of gray that
corresponds to its sensitivity to a particular neurotransmitter. When multiplied by the
actual concentration of neurotransmitter present in the extracellular space, and
integrated over a region of space that contains the dendritic tree, the result is a first-
order approximation of the neuron’s response. We can mathematically represent the
“shade of gray” that corresponds to the sensitivity of a neuron’s dendritic arbor in
physical space by a function g(x,y,z).
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2 Neurotransmitter Field Theory

The mathematical formulation of neurotransmitter fields subsumes the functionality
of the neural networks. That is, for every neural network, there exists a corresponding
neurotransmitter field computation that generates an identical result.

2.1 Inner Products

The standard projection neural network calculation is based on the inner product of
two vectors, a vector of input values, and a weight vector. Hilbert spaces generalize
the inner product operation to continuous domains by replacing the summation of the
products of the vector coefficients, with the integral of the product of two functions
[9]. One of these two functions, f4(x,y,z), is used to represent the sensitivity of the
dendritic arbor and is analogous to the weight vector.

Let H be the space occupied by the neurotransmitter cloud, and let A(x,y,z) be a
field corresponding to the density of transmitter in the extracellular space. To permit
the use of Dirac delta (impulse) functions we use the Lebesgue integral and define
M(x,y,z) as a signed measure [9], [10]. Using the Lebesgue integral, instead of the
conventional Riemann integral, allows us to model neurons that are able to
discriminate neurotransmitter concentration at a single point, but may also exhibit
sensitivity over entire regions. We conceptually model the operation of a neuron as an
abstract Processing Element (PE).

The dendritic arbor computation of the PE, which is analogous to the vector inner
product, is defined by the integral of 4 and with respect to u

response = jh(x, v,2)du(x,y,2) . (D)

H

To demonstrate why a neurotransmitter field calculation subsumes the
functionality of the standard neural network model, we examine the computation
performed by a single-layer network with a single output node. For an m-dimensional
input vector u = (uy, uy, ..., um)T, a weight vector w = (w;, ws, ..., w,,,)T, and a transfer
function g, the output v of a single-layer projection neural network is given by

v=o(w'u)= G(i wkukj . 2)
=1

To construct an analogous neurotransmitter field computation, identify the input
vector u with any set of m distinct points {(x, ¥, zx); | £k < m } in H, and let the
input vector coefficients u;, = h(x;, y, zx) be defined by a function he L*(H). Let
{&} be the set of three-dimensional Dirac delta functions (product measures)
defined by

5k 25(x—xk)5(y—yk)5(1—zk) . (3)
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For a single PE, let the transfer function o be the same as the one used for the
neural network. Setting

1=3ws, @)
k=1

we have

o Jhd,u =0 Jh(x,y,z)(iwkdé'k] :6(iwkh(xk,yk,zk)j=v (5)
k=1

k=1
H H

Thus, a PE with the measure & performs the same calculation as the single-layer
neural network. The biological meaning of the measure 4 defined above is a
mathematical model of a neuron with m points (idealized synapses) each with
sensitivity wy and located at the spatial positions (x, Vi, zx) on the dendritic surface.
Since the calculations may be carried out by cells other than neurons, we use the term
computational manifold to refer to the generalization of discrete neural networks to
continuous spaces.

2.2 Computational Manifolds

In addition to the dendritic arbor, each neuron also has an axonal tree, or terminal
arbor, which releases neurotransmitter into the extracellular space. Let 7(x,y,z) denote
the function that quantitatively describes the output of a neuron in terms of the spatial
distribution of chemical transmitter it generates.

We use the index i to enumerate the set of neurons {N;}. Each PE, N,, has a unique
dendritic arbor g and a unique terminal arbor 7. Mathematically the neurotransmitter
“clouds” are three-dimensional manifolds which we illustrate diagrammatically as
rectangular blocks such as the input manifold A and the output manifold G shown in
Fig. 2. To distinguish between the input and output spaces, we substitute the
parameters (& 7,{) for (x,y,z) in the input manifold H.

Each processing element, V;, such as the one shown in Fig. 2 consists of a receptor
measure, (&n,{), a nonlinear cell-body-transfer function, o, and a transmitter
function 7(x,y,z). The receptor measure 4 models the shape and sensitivity the
dendritic arbor in the input manifold H, while transmitter function 7 models the signal
distribution in the terminal arbor and the concomitant release of neurotransmitters into
the output manifold G.

The inherent nonlinear relationship between the concentration of neurotransmitter
in the extracellular space and the gating of the ion channels on the dendritic surface is
characterized by the dendritic-cell-membrane-transfer function ), At some point,
increasing the concentration of neurotransmitter has a diminishing effect on the ion
channels. Consequently, ¥, is nonlinear. Similarly, the axonal-cell-membrane-transfer
function },, characterizes intrinsic nonlinear response corresponding to the release of
neurotransmitters by the axons terminals as a function of the neuron firing rate. The
two transfer functions, y,; and y,, as well as the cell-body-transfer function ¢ are
analogous to a sigmoid transfer function, such as 1/(1+exp(-x) or the hyperbolic
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tangent function, used in neural networks. We model the spatial variations in the
responses of each processing element N; using #; and 7 and assume that }, and %, are
fixed functions of a single real variable which are uniform throughout all cells.

Fig. 2. The processing element N; models the operation of a single neuron. The receptor
measure [I; converts the continuous distribution of neurotransmitter in the input manifold H to a
single real value, while the transmitter function T; converts a single real value to a continuous
distribution of neurotransmitter in the output manifold G. The operation ¢ models the
nonlinear response of the cell to the dendritic inputs. The nonlinear response of the dendrite-
cell membrane and the axon-cell membrane are represented by ¥, and ¥, respectively.

The transformation from a discrete real value back to a continuous field results
from scaling the output of the nonlinear transfer function o by the transmitter
function 7,(x, y,z) . Taking into account the cell-membrane transfer functions and
summing over all of the PEs gives the complete output function g.

g6y, )= 2|0 J}td(h(f,ﬂ,é“))dﬂi(f,ﬂ,é“) T,(X,,2) (6)

H

The receptor measures and the transmitter functions perform the complementary
operations of converting back and forth between fields defined on continuous
manifolds and discrete real values.

2.3 Basis Functions

The continuous version of a projection neural network defined by (6) can be extended
by generalizing the notion of radial basis functions [11] to computational manifolds.
For discrete neural networks, a set of pattern vectors {u,, } and a radial basis function €
form the discriminate functions &(|lu—u,|). The real-valued function 6(z) has its
maximum at the origin and the properties €(x)>0 and 6(x) —>0as |x| — oo,
Typically, 6(z) is the Gaussian, exp(—x”/207) , or a similar function.
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To construct the analogous continuous basis functions, we replace the discrete
pattern vectors u, with a continuous field p, Each of the functions p,(&7,0)
represents a “pattern” density defined on the input manifold. If we wish, we can
associate a particular “target” function g,(x,y,z) in the output manifold with each
input pattern p,. Assuming that there are several PEs available for each pattern, we
assign a particular pattern to each N; which we label p;.

The equation corresponding to a basis-function neural network can be obtained by
substituting either 8( y,(h) — x4 p;)) or the less complex 8( h — p;) for y,(h) in (6)

g(X,y,Z)=ZZa o Je(h_p[)d;u, -T,.(X,y,z) (7)

H

where we have omitted the variables of integration (&,7,¢) for h, p, and 4.

Each processing element now has an additional property p;, which represents the
pattern to which it is the most sensitive. For each PE, the integral inside (7) is
maximum when & = p; over the region of integration. This in turn maximizes the
coefficient for the transmitter function 7. The sum of the transmitter functions {7}
associated with a particular input pattern p, can then be defined to approximate the
desired target function g,, thereby creating the required associations.

The measures g in (7) can identify the regions where the pattern p; is the most
sensitive. For example, we can imagine photographs of two different animals that
appear very similar except for a few key features. The photographs, representing two
patterns p; and p,, are approximately equal, but the measures can be trained so that
their value where the patterns are the same is small, but in the key regions where the
patterns differ, they have much larger values. In this way, even though the two image
patterns are almost the same, the output functions g, that result from the integrals in
Equation (7) could be very different.

2.4 Computational Equivalence

While models that use action potentials as state variables can form associations by
using matrix operations on a large vector of neuron outputs, equation (7) shows the
neurotransmitter state model makes it possible for a small number of neurons, even a
single neuron, to establish an association between an arbitrary input pattern p(&,7,4)
and an arbitrary output pattern g ,(x,y,z).

A two-layer discrete neural network and a continuous computational manifold are
shown in Fig. 3. As we have seen, the measures {4} in the computational manifolds
can replace the weights {w;} in the neural network; the corresponding summation
takes place inside the cell. Since the transmitter functions { 7;} can extend over a large
area, even the entire output manifold, many different processing elements may
contribute to the concentration of neurotransmitter at any particular point (x,y,z).
Consequently, the summations in (6) and (7) are equivalent to the summations in a
neural network where the weights correspond to the values of the transmitter
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functions at a given point. This summation takes place outside the cell, as illustrated
in Fig. 1.

Both the integrals with respect to the measures f;, and the summations over the
transmitter functions 7, in effect perform operations analogous to the inner product
with a weight vector in a single-layer neural network. Consequently, together they
perform an operation analogous to a two-layer neural network.

Input Layer Hidden Layer Output Layer

B O L N; T e

G

Fig. 3. A neural network (A) transforms discrete vectors, while a computational manifold (B)
transforms continuous fields. Neurons are points in the function space Ny g. Since there are
effectively two summations, one in the intracellular space and one in the extracellular space, the
receptor measure /4, together with the transmitter function 7, allow a single layer of neurons to
perform the equivalent computation of a two-layer neural network.

The collection of transmitter functions and receptor measures that comprise the
synapses within a single neurotransmitter cloud can also be viewed as a two-layer
neural network. In this formulation, a two-layer back propagation algorithm now
takes place between the pre- and postsynaptic neurons, inside a single manifold, with
the errors propagating back from the receptor measures to the transmitter functions.

Computation manifolds are useful for describing a wide range of cognitive
operations [12]. In particular, the architecture outlined in Fig. 3, with processing
elements incorporating the patterns densities defined by (7), is well suited for
generating stable, recursive associations on spectral manifolds [13].
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2.5 Function Spaces

The nodes of the neural network shown in Fig. 3A are partitioned into the input layer,
the hidden layer, and the output layer. In the computational manifold model, the input
layer is analogous to the input manifold H, and the output layer is analogous to the
output manifold G. Both H and G represent the continuous distribution of
neurotransmitters in physical space. The “hidden” layer is the space Nyg, which
equals the Cartesian product of two function spaces: the space of all possible
(receptor) measures on H, and the space all possible output (transmitter) functions on
G. The individual neurons N; are points in this infinite-dimensional product space.

When samples of a continuous function defined on a high-dimensional space are
arranged in a lower dimensional space, the samples will in general appear to be
discontinuous. Consequently, when a collection of processing elements, {N,},
representing samples taken from the infinite-dimensional function space Nyq are
arranged in three-dimensional physical space, the outputs will seem discontinuous.
The resulting firing rates may appear to be stochastic when in fact they are
deterministic. Moreover, realistic neural field models that attempt to describe the
observed firing rates of large groups of neurons as a continuous function in physical
space will be difficult or impossible to create.

Equations (6) and (7) express the computations of a neuron that is sensitive to a
single neurotransmitter. Given the number of different chemicals that act as
neurotransmitters, both inhibitory and excitatory, we clearly need to extend the model
to account for their effects. If we have n different chemicals of interest in the
extracellular space, we can model their concentration at each point as vector h(x,y,z) =
(h1(x,y,2), ha(x,y,2), ... , hy(x,y,2)). Any nonlinear interactions between the various
neurotransmitters in the dendritic arbor will require the appropriate modifications to
the integral equations on the input manifold.

3 Neuroglia

In the central nervous system of vertebrates, there are 10 to 50 times more glial cells
than neurons [14]. Astrocytes, the most common type of neuroglia, are receptive to
potassium ions and take up neurotransmitters in synaptic zones. Glial cells have also
been shown to release neurotransmitters.

Unlike neurons, glial cells do not generate action potentials. Consequently, if state
is encoded in the firing of neurons, glia are relegated to a support role. However, in a
neurotransmitter-centric model, glia can take a central position along side neurons.
They may participate in both short-term and long-term memory as well as
computations. However, since they lack action potentials, glial cells transmit the
results of their computations more slowly.

4 Conclusion

In the standard neural network model, the state variables are the neuron action
potentials, and a synapse corresponds to a single weight that represents the effect the
presynaptic neuron has on the postsynaptic neuron. In the neurotransmitter field
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model, the state variables are the concentrations of neurotransmitters in the
extracellular space. In this formulation, a single layer of neurons is able to perform
the computation of a two-layer neural network. One set of weights corresponds to the
sensitivity of the dendritic arbor and the second set of weights corresponds to the
amount of neurotransmitter released by the terminal arbor. The second summation
occurs on the neurotransmitters in the extracellular space and remains separated from
the intracellular summation by the nonlinear responses of the cell membranes.

Compared to a neuron action-potential model, a neurotransmitter-centric model
presents a broader and more comprehensive view of natural intelligence. It allows the
chemical reactions that take place in many types of cells, including neuroglia, to be
incorporated into a general framework of memory and computation.

Acknowledgments. The author would like to thank Professor M. Tuceryan for his
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pending by General Manifolds LLC, http://www.gmanif.com/ip.
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Abstract. Motivated by a better understanding of cerebral information process-
ing, a lot of work has been done recently in bringing together connectionist
numerical models and symbolic cognitive frameworks, allowing for a better
modelling of some cerebral mechanisms. However, a gap still exists between
models that describe functionally small neural populations and cognitive archi-
tectures that are used to predict cerebral activity. The model presented here tries
to fill partly this gap. It uses existing knowledge of the brain structure to describe
neuroimaging data in terms of interacting functional units. Its merits rely on an
explicit handling of neural populations proximity in the brain, relating it to simi-
larity between the pieces of information processed.

1 Introduction

Activation studies, where subjects are asked to perform a specific task while data of their
brain functioning are collected through functional neuroimaging, have shown that sen-
sorimotor or cognitive functions are the offspring of the activity of large-scale networks
of anatomically connected cerebral areas [1I]. However, knowing the cerebral substra-
tum of a cognitive function is necessary, although not sufficient, to be able to make the
accurate prognosis of the clinical aftermath of a lesion or the precise assessment of a re-
habSect.ilitation procedure. The main point is to interpret functional neuroimaging data
as the result of cerebral information processing, which can be tricky, even in the case of
a basic function such as categorisation [2]]. This is worsen by the fact that neuroimaging
data are very indirect measures of the neuronal activity, e.g. the whole brain electrical
activity “seen” by each electrode in EEG, or the haemodynamic response to neuronal
energy demand provided by fMRI. Our long-term goal is to be able to predict the cog-
nitive behaviour from neuroimaging data, which are an indirect evidence of the real,
unknown, activity of the cerebral substratum. Currently, three main, and somehow inde-
pendent, approaches tackle partly the problem. Statistical methods focus on the analysis
of neuroimaging data that they relate loosely to cognitive functions through simplified
(e.g. “additive”) task models [3]]. The other two approaches relate cerebral activity to
cognitive functions. Top-down modelling relies usually on a functional decomposition
of the large-scale networks components. The coarseness of the decomposition depends
on how strongly the models make use of high-level symbolic tools [45]]. Computational
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neuroscience is based on the idea that the function performed by a single region emerges
from the activity of the neural network underpinning it [6]. The problem with this latter
approach is that even in such an accurate model of a functional unit, it is likely that
it will not inform us on how information is processed, due to the massive distribution
of information representation and processing throughout the whole network. Related to
the issue of explaining neuroimaging data, is the problem of information representa-
tion. Mukamel et al. [[7] have shown that neuroimaging activation patterns are strongly
correlated to the firing rates of the neurons. However when integrating activity over a
neural population, the spatial activation pattern is lost. Moreover the widespread topical
organisation of cerebral regions [8] and the possible modulation of the neural sensitiv-
ity to stimuli [9] are in favour of a symbolic component of information that we think is
related to these activation patterns.

To address this challenge, we propose a preliminary model, called SimBa, that takes
into account both overall populations firing rates (as a numerical component) and spatial
activation patterns (as a fuzzy symbolic component). We hope that it will eventually
help to interpret the cerebral networks revealed by clinical functional neuroimaging in
terms of cognitive functions.

SectionPlpresents the SimBa modelling framework itself while Sect3]briefly presents
two applications illustrating each components of the model. Section [4] discusses some
other related models before concluding in Sect[3l

2 Presentation of SimBa

This section presents a model based on the causal connectivity paradigm that represents
large-scale cerebral networks as neuroanatomy-based networks of functional units. Pro-
cessed information is both numerical and symbolic and interactions between symbolic
and numerical aspects occur inside each functional component.

2.1 Causal Connectivity and Information Representation

The causal connectivity approach [10] characterises the information processing that oc-
curs in one functional unit along both symbolic and numerical aspects. This approach
inspired probabilistic [T1]] and information’s similarity-based [12]] models (though the
latter contains also probabilistic aspects). The main idea is to consider each functional
unit as an information processor and the connections between them (i.e. axon bundles
linking together neural populations) as information transmitters. The information itself
is represented as two-dimensional data: i) a numerical component, called magnitude,
stands for the overall activation of the neuronal population that processed this piece of
information (thus allowing comparisons with neuroimaging data), and ii) a symbolic
component, called type, that qualifies the pattern of the firing neurons in the popula-
tion. Note that we do not manipulate rule-generated symbols that would then have to
be grounded, but we rather give a symbolic label to a pattern of activation. While the
model describes low-level functions, like sensory processing, those labels can be given
a semantic meaning based on the topic organisation of the primary cortex areas [8].
Information transmission has two modes since the numerical part is propagated us-
ing a dynamic Bayesian formalism quite similar as in [11]], while the symbolic part
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is just passed along the numerical part, without modifications between the processors.
We describe now how information is processed by the functional units, where the two
components of information will really interact.

2.2 Pattern Categorisation

A functional unit is characterised by the function it performs on the incoming infor-
mation. This function depends on the role of this population in the network (whether it
is inhibition, categorisation, etc.). In this we do not depart from the traditional view of
causal connectivity [10]. As for the symbolic component, it will act as a way to modify
this action. It is well known that the primary cortex is functionally organised accord-
ing to the stimuli it receives [8]]. For example, the auditory cortex presents a tonotopy,
meaning anatomically localised populations will have a receptive field centred on a
small interval of sound frequencies. Moreover, two overlapping populations will have
overlapping receptive fields. This kind of topic organisation appears in every primary
cortices and in fact can be generalised this way : similar stimuli trigger similar cere-
bral activation, i.e. activation of spatially-close neuronal populations. This suggests
that similarity between stimuli can be represented in terms of spatial proximity of neu-
ral population responding to them, this without restriction on the modality of the stimuli
(i.e. auditory, visual, etc.). From experimental observations [8] comes the main hypoth-
esis motivating this model, that this is true not only in the primary cortex but also in the
rest of the brain. Let us see in the next section how this will be practically used in the
model.

2.3 System Workflow and Formalism

Patterns and fuzzy sets. The symbolic component of information is represented by
a discrete fuzzy set, the core of which being the symbolic label of the population that
produced this piece of information and the support being composed of the symbolic
labels of populations known to be close to the producing one (see Fig[I). The single
symbol in the core of a fuzzy set characterises the set and is called its centre. When
processing incoming information, a functional unit compares its symbolic component
(i.e. its type) with the receptive field of the unit. This receptive field is represented as a
set of fuzzy set prototypes. This allows an easy comparison with the incoming type in
terms of similarity.

Notation conventions. Time is discretised, with a time step At of usually 1 ms (this
is sufficient regarding the time resolution of neural populations). An information is a
couple (M, T') where M is the magnitude and T', the type. T is a fuzzy set defined on the

discrete domain Dy. When considering a functional unit, (M, ® T(i)) is the incoming

in ) Tin

information on input ¢ and (M ¢, Tout) the outgoing information.

Spatial integration. Since a functional unit can receive several inputs, spatial integra-
tion is needed. This is where excitatory or inhibitory signals will be handled differently
and where the different modalities will be combined either linearly or not depending of
the role of the unit. For the magnitude, the combination uses classical addition and mul-
tiplication, whereas for the type, classical fuzzy operators are used [13]]. For example,



32 J. Erny, J. Pastor, and H. Prade

orange red purple

Fig. 1. A fuzzy set centred on the colour “red”. If “orange” belongs to the core of another set, the
patterns that get activated by “red” and “orange” are similar, meaning that they share neurons.

the following operators can be defined: (i) An operator AND (/) used to aggregate two
sets defined on two distinct domains : let A and B be two fuzzy sets defined on D 4 and
Dp, then Vo = (za,2p) € Dy x Dp, (A A B)(x) = min(A(x4), B(zp)). (i) An
operator OR (V) used to aggregate two sets defined on the same domains : let A; and
A be defined on D4, then Vo € Da, (A1 V A2)(z) = max(Aq(z), A2(x)). (1ii) A
function one used to make a set neutral for A and absorbent for V : let A be defined on
D4, then Vo € Dy, one(A)(x) = 1. (iv) A function zero used to make a set neutral for
V and absorbent for A : let A be defined on D4, then YV € Dy, zero(A)(x) = 0. The
use of these two later functions will not be illustrated for the sake of brevity, however
they play a noticeable role in the treatment of inhibition. Two aggregating functions are
constructed using these operators, as shown below (since all variables refer to the same
time step, it is omitted):

(T.00) = (fapar(Th =+ T00), Gt (M- MG ) (M)
where u is a random variable that stands for numerical errors and non-modelled influ-
ences.

Temporal integration. To get the kind of graded response that is expected from a
stimulated neural population, a temporal integration is necessary. Moreover, by com-
paring the new incoming information with the previously processed one, habituation
can be simulated. This is a property of neural populations that can be described as,
when a stimulus is presented repeatedly, the overall activity of the population will de-
crease over time due to a lowering of activation thresholds and to fewer neurons being
recruited [14].

Magnitude. The magnitude M (¢) got after temporal integration is the combination of
M (t — At), discounted by a discrepancy factor (i.e. a forgetting factor), and M (t)
given by (@). M (t) is also discounted by a factor that represents both the compatibility
between T'(t — At) and T(t) and the fact that M (¢) is presented during only one time
step. This is shown in ).

M(t) = kg.a(t).M(t) + kp.M(t — At) (2)
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where a(t) = max mingep,.p, (T(t— At)(z), T (t)(x)) is fuzzy-set consistency [13].
3.At
kg and ky, can be related to respectively a response time 7 (kg =1 — ¢ "r )and a

relaxation time 77, (kr, = e 3"?) in a transfer function. Note also that the magnitude
is bounded if M is bounded : if Vi, o(t) = 1 (its maximum value), then M, =
Mmam~ IEJZL -

Type. Temporally integrating the type means to construct a new type based on the type
at t — At and on the new incoming one T(t) On the one hand, (i) the importance that
the latter should have in the combination depends on its consistency with the former
(the more consistent it is, the more impact it has) but on the other hand, (ii) a repeatedly
inconsistent incoming information should, after some time, trigger a shift of priority
and make the incoming information paramount. Also, (iii) T(t) being representative of
only one time step should have much less influence on the combination than T'(t — At)
which accounts for all the previous time steps. Finally, (iv) note that a high M is as-
sociated with a change in the information, hence the update should be more efficient.
(iii) suggests the use of a weighted disjunctive combination, while (i) and (ii) suggest
a prioritised combination with a priority depending on the evolution of the consistency
between 7" and T'. The expression of a consistency-driven prioritised disjunction can be
found in [[13]], here modified into an additive/multiplicative context. We define Z as an
inconsistency indicator. If 7 is the centre of a fuzzy set T', then:

if 7 < threshold, Yoz € D\ {zr@—an

T(t)(w) = T(t — At)(w) + [T(t)(z) — T(t — At)(Nm)].a.s(J\;[) 3)
I=T+7T@t)(xr)—T(t— At)(zr)].c.s5(M) 4)

else Vo € D\ {7},
T(t)(x) = T(t)(x) + [T(t — At)(z) — T(t)(x)].a.s(M) )
T-0 )

Function s is increasing with the magnitude M, and should tend toward 0 (resp. 1) when
M tends toward 0 (resp. its maximum). These equations may look fairly complicated to
understand and Fig. Plillustrates their behaviour on an example. The idea is quite simple
though : at each time step ¢, T'(t — At) is modified slightly in the direction of T'(t). If
the centre of T'(t — At) is to be modified, Z is incremented by the same value instead.
Whenever Z goes above a certain threshold, T(t) becomes dominant, the priority is
shifted and 7 is set to O for another cycle to begin.

Once the inputs are integrated both spatially and temporally, the result is compared
to the set of prototypes that represents the population receptive field.

Comparison and decision. The receptive field of a functional population is composed
of a set of prototypes { P; }i¢[1,... ;) defined on the same domain than the incoming in-
formation. Each of these P; is associated with an output type E; defined on D°“!, The
centre of this pattern is the outgoing type characterised by the activation of the proto-
type P;, while the other elements of the support are output types that are similar (i.e.
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Incoherence 4
(| E— 1f- (| E—

0 T 0 T 0 Tl’

orange red purple orange red purple orange red purple
T(t — At) + T(t) — T(t)

Fig. 2. The fuzzy set T'(t — At) is modified by 7'(t), meaning that the values for “orange” and
“purple” are moved in the direction of T'(t), while the value for “red” is unchanged to keep the
result normalised. However, to reflect the inconsistency between the two types, the incoherence
value is increased.

types whose associated prototypes share neurons, see Fig[T)). By comparing T' with each
prototype, we can determine which patterns of neurons get activated by the incoming
information. Compatibility a; between T and P; is a; = max,ep min(7'(x), P;(x))
(time is omitted since all variables are taken at the same time). Using then the simi-
larities contained in the {E;};c1,... p), We can determine how overlapping patterns can
influence each other activation. Let b; be the total activation of F;, namelly,

p
bi = Ei(x;).ax (7)
k=1

Once the activation of all patterns is known, the “winner-takes-all” principle is applied
as a decision process, this is to account to the widespread lateral local inhibitions. The
type of the output is then E;,4, such that by,,4, = max;e,... p)(b;). Meanwhile, the
output magnitude M,,,; is being calculated in the following way:

Moy = g((,lu)t (ﬂ7nax)~g((>2u)t(M7 U) ®)

1)

our 18 @ function from R to [0, 1] which ensures that a badly recognised type

will generate a low output magnitude, and where g(()i)t is a function defined from R to
R which depends on the function of the unit in the network. v is a random variable
modelling the stochastic nature of the neuronal signal.

This new model is now illustrated on two small scale applications.

where ¢

3 Applications

The first application is designed to illustrate how the handling of similarity between
patterns in our model can be used to account for a well-known perceptive illusion : the
McGurk effect [16]]. The second application focuses on using magnitude processing to
reproduce synthetic neuroimaging results coming from an experimental study [17].
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3.1 McGurk Effect

The McGurk effect is an illusion affecting language perception where a mismatch
between a visual cue (lips articulating a phoneme) and an auditory cue (an actual
phoneme) strongly modifies auditory perception. For example, hearing the sound [ba]
while seing someone say [ga] results in the illusory perception of [da]. For this model,
we use the articulatory theory of language that characterises a phoneme by the way we
produce it. Table [ represents a simplified French phonologic system. The second line
of the table, and the fact that only the articulation locus can be considered a visual fea-
ture, hint towards a similarity-based interpolation between [b] and [g] to perceive [d].
Consider a phoneme discriminatory component, that takes as its inputs an auditory ar-
ticulation mode M 4, an auditory articulation locus L 4 and visual locus Ly . The spatial
integration of these inputs is a linear pondered combination of L 4 and Ly (Ly is given
slightly more importance in the combination than L 4 for the locus is primarily a visual
cue), that is then non-linearly combined with M 4. The output domain is constituted by
the different consonants. Similarity between the different output elements is also en-
coded (e.g. [d] is similar to both [b] and [g]) and the similarities between the different
articulation modes and loci are transported by the inputs. While L 4 and Ly are con-
gruent in saying the locus is “labial”, there is no problem, the combination will activate
the prototype associated to [b] straightforwardly. However, if L 4 and Lg carry different
pieces of information (say “labial” and “velar”), then both prototypes associated to [b]
and [g] will be activated, along with the prototype associated with [d] by means of the
similarity between “dental” and “labial” and between “dental” and “velar”. When then
applying (@), providing [d] is similar enough to [b] and [g], [d] can easily be the most
activated pattern and win. This is an informal description of how our model, which in
several respects is close to the one used in [12]], can yield the expected output and thus
simulate the McGurk effect. Moreover it is important to notice that here the similarities
have not to be set by the programmer but could rather be learned by the system (see

Sect[).

Table 1. Consonants in French phonologic system

W labial dental velar
locus

plosive voiceless  p t k
plosive b d g
nasal m n

3.2 Visual Primary Cortex Response to a Simple Stimulus

The aim of this application is to replicate simulation results obtained by Pastor et al. [10]]
in modelling data coming from a PET (Positron Emission Tomography) study by Fox
and Raichle [17]. In this study, a visual stimulus was repeatedly presented to partici-
pants while a PET camera was recording visual primary cortex activity. Different fre-
quencies for stimuli presentation were used. The results (an increase of activity along
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with the frequency, then a decrease) let the authors of [17] with different possible ex-
planations. By modelling the functional network involved, Pastor et al. [10] managed
to support one of this hypothesis. This is only a partial illustration of our model since
the symbolic part of information is actually unnecessary here. Its aim is to illustrate that
SimBa also keeps the same modelling power compared to homologous models with re-
spect to magnitude. We have used the same functional network than in (see Fig ).
The Total node is used to sum over time all activities coming from In.. This can be
compared to the activity detected by the PET camera, provided it is scaled appropriately.
The scaled output of T'otal (given by (8)) is compared to activation data from and
to simulation results from in Fig[l

It lacks though a real large-scale application that will make use of its similarity-based
categorisation. This is discussed in the next section.

Activation
Thalamic
. 35
Visual Cortex structure
30

15

10

Ui

0 Hz

1.0 3.8 7.8 155 33.1 61

Fig.3. A pre-processed information from FExt is Fig.4. Results of SimBa simulation
passed to the input gate In.. Out. stands for the (black on the right) are plotted for the
output gate. A cortico-thalamic loop allows dy- different frequencies, along with the re-
namic threshold, hence habituation. Local inhibi- sults appearing in (gray on the left)

tions are modelled with Inhib and the influence of and in [T0] (light gray in the middle)
Out. on In. represents a refractory period. T'otal
sums all activation in In. to relate it to PET results.

4 Related Works and Discussion

This section discusses the model in the light of other related approaches. There are sev-
eral recent models that try to model cognitive cerebral functions while relating them to
their structure in the brain. For example, Randall O’Reilly [18] is interested in mod-
elling high-level cognitive function in a biologically plausible way. Although quite
similar in the general principles underlying his approach to cerebral modelling, and
letting aside the differences regarding the studied systems (high-level functions [19],
automatised perceptions for SimBa), SimBa relate neural activity to interacting simple
functional primitives (thanks to similarity-based model), while O’Reilly’s models pre-
cisely describes the functional roles of small neural populations. The neural blackboard
architecture proposed in seems also to tackle the same issues that SimBa, but the
difference lies in that the former tries to solve some cognitive fundamental problems
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(such as the binding and grounding problems) using neural-like computation, while
Simba starts from the neural architecture to explain the cerebral information process-
ing. We can also mention the ACT-R cognitive model that has been used quite recently
to predict fMRI results [3]], though in this case the modelling framework is not moti-
vated by knowledge of the cerebral structure but was designed long ago as a cognitive
architecture. SimBa is more strongly related to [12] but we claim that the model pro-
posed here involves a much smaller number of parameters for obtaining results that are
as good for the McGurk effect (the second illustration is not considered by [12]]). In
short, SimBa is not intented as a concurrent to any of these approaches, but more as
providing a complementary angle of work, dealing with problems like similarity be-
tween patterns that have not been thoroughly explored yet, while including functional
models that can describe neuroimaging data as cognitive processes.

SimBa still lacks learning ability, a property quite necessary to model cerebral net-
works. It can be incorporated by adjoining some simple mechanisms to the current
framework. The learning can be resumed in an auto-organisation of the prototypes in
every node according to incoming information. Several simple processes are involved
to manage the set of prototypes : (i) introduction of a new prototype when the current
information was unknown, (ii) fusion of prototypes that are too similar, (iii) forgetting
of prototypes not used anymore. In addition to that, a way to learn similarities between
output symbols is necessary. This relies on the observation that when two different pro-
totypes are activated by an incoming information they must be somehow similar. Hence
(iv) the similarity of their associated outputs is increased accordingly. Conversely, (v)
when a prototype is activated alone, the similarity of its output with other outputs is
decreased. Balancing these five mechanisms, the set of prototypes is build gradually
according to the incoming information.

5 Conclusion

A framework for modelling large-scale networks as they appear in neuroimaging studies
has been presented. Information is being represented as a numerical/symbolic couple.
The numerical component relates to the integrated firing rates of neural populations
while the symbolic one relates to the spatial configuration of the firing neurons in the
same populations. The ability of the model to describe the links between the proxim-
ity of neural populations and the similarity of the information they process has been
demonstrated on a simple application. Although some important features, like learning
abilities, are still missing, as well as a large-scale modelling of real experimental data
that could validate more strongly the approach, this model has interesting aspects and
promising behaviour, in particular when it comes to cerebral categorisation.
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Abstract. We investigate human motor learning in an unknown envi-
ronment using a force measurement as the input to a computer controlled
plant. We propose to use the Feedback Error Learning (FEL) framework
to model the overt behavior of motor response to unexpected changes
in plant parameters. This framework assumes a specific feedforward and
feedback structure. The feedforward component predicts the required
motor commands given the reference trajectory, and the feedback com-
ponent stabilizes the system in case of imprecise estimates and initial
conditions. To estimate the feedback gain, we employ a novel technique
in which we probe the stability properties of the system by artificially
inducing a time delay in the sensory feedback pathway. By altering the
pole location of the plant during a sinusoidal tracking task, a feedforward
learning bandwidth was computed for each subject which measures the
ability to adaptively track time-varying changes in the plant dynamics.
Lastly, we use the learning bandwidth to compute a learning rate with
respect to the FEL model. This learning rate reflects the ability of the
subjects’ internal model to adapt to changes in an unknown environment.

1 Introduction

In this note, we will be concerned with the macroscopic level of brain-motor
control during a visuo-motor tracking task, in which we will estimate the two
macroscopic parameters: feedback gain and learning rate. The critical assump-
tions that we make are as follows: 1) the central nervous system (CNS) utilizes
internal models in the control of movement, 2) the CNS realizes a feedback sys-
tem with constant gains, and 3) neuronal plasticity is a fundamental mechanism
that allows that adaptive behavior of internal models.

The first assumption is a highly debated topic in the field of motor control.
Nevetheless the internal model concept is gaining ground as the results of various
experimental and theoretical results (see [1]). Roughly speaking, internal models
are ‘neural mechanisms that can mimic the input/output characteristics, or their
inverses, of the motor apparatus ’[I]. Consistent with these assumptions is the
Feedback Error Learning (FEL) framework originally proposed by Kawato [2] as
a model for lateral cerebellum. This model is shown in Fig. [l
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Fig. 1. Feedback Error Learning Block Diagram. The desired trajectory is generated
in planning areas of cortex such as supplementary motor area (SMA), and premotor
area (PMA). This command is then relayed to lateral cerebellum (D1 and D2 areas.
See [3]) via internal capsule and pontine nuclei in brainstem.

The Task: We choose visuomotor tracking in an unknown, time-varying environ-
ment as the appropriate venue to explore the macroscopic parameters which we
hope may characterize human motor behavior.

The FEL algorithm in [2] is:

W =I'¢(qq) (up)" (1)

where W is a weight matrix, ¢(gq) is the basis function network, wuy, is the
feedback control signal, and I" is the learning rate.

We propose to use the FEL framework to model the motor response of human
subjects during a tracking task. Our goal is to estimate each subject’s learning
rate, I', associated with the training of the feedforward component under FEL.
To accomplish this goal, we first estimate the feedback gain, K, by artificially
inducing time delays in the sensory feedback pathway, and observe the resulting
motor response. Then, by varying the plant parameter sinusoidally, we compute
the performance error and estimate the learning rate.

2 Materials and Methods

5 adults (age 22-30 years; two males and three females) with no known motor
disorders participated in this study. Each subject gave written informed con-
sent after the consent forms and study protocol were approved by the Stanford
University Institutional Review Board.

2.1 Experimental Setup

Subjects were comfortably seated in a Biodex”™ chair in front of a large com-
puter screen. Shoulder, chest, and leg straps were applied to restrict upper body
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Seore: 92

Fig. 2. Example of the feedback display during the baseline task

motion. The preferred arm was placed in a custom built device with the purpose
of fixating the upper arm in a plane perpendicular to the floor, and with the
elbow in a 90 degrees angle, such that the hand would point upwards. The
device was setup individually for each subject according to his or her arm length
and shoulder height. The lower arm was placed in a cup 2 inches below the
wrist and tightened by a strap. A force sensor (Interface, Inc. 1500ASK-50 load
cell) placed between the cup and the device allowed for a measurement of force
between device and the subject’s arm, which could be converted in a differential
torque measure. The output of the force sensor was sampled at 1 kHz using
a commercially available digital to analog interface (CED Technologies Inc.,
Manchester, UK) in connection with custom written software in Microsoft Visual
C++. The filtered signal was then sent over a local area network using the
Win32 named pipes protocol to another computer that simulated the plant and
displayed the sensory feedback. The graphics were programmed in OPENGL.
To guarantee a constant framerate, three separate threads were used for data
collection, graphics display, and experiment control. This was important since
we required precise control over the artificially induced delay in the sensory
feedback pathway. All signals were stored for off-line analysis.

The measured signal was displayed on the screen by a torus. The subjects
were instructed to keep the torus within the path at all times. The path was
displayed by thin three dimensional rectangles that resembled a maze with right
angled turns. The horizontal position of the torus moved at a constant velocity,
while the vertical position of the torus was determined by the output of the
plant. The plant was a first order linear, time-invariant system. An example of
the feedback display is shown in Fig. 2
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Ezperimental Procedure
The experiment was divided into three separate parts discussed below.

1. Baseline: The first part entailed the learning of the baseline plant. It con-
sisted of at least three trials through the path as depicted in Fig.

2. Probing the Feedback Gain: This part consisted of eight separate trials in the
same path used for baseline. During each trial, an artificial sensory feedback
delay between 50 ms and 400 ms was introduced. The delays were arranged
in a pseudo-random order. Additionally, the delay started at a time between
0 and 15 seconds on each trial. The rational for introducing time delays in
explained in the next section.

3. Probing Internal Model Learning: The last part of the experiment consisted of
tracking a sinusoidal desired trajectory. This consisted of six separate trials.
During each trial, the pole of the plant was varied according to ag(t) = 2(0.5+
0.4 sin(?wfit)), where fo = 0, f1 = 005, f2 = 0.1, fg = 0.157 f4 = 0.2, f5 =
0.4. A typical performance observed will be shown in the following section.

2.2 Probing the Feedback Gain

We now discuss the second part of the experiment in more detail. We will assume
that since the baseline trials were performed successfully, the subject has learned
an adequate inverse internal model of the plant. Consider an nth order linear time
invariant plant with fixed feedback delays in position (7,) and velocity (T5,). Let

Bns™ + -+ + by
s+ ap_15" L+ +ag

P(s) = (2)
be a minimum phase, strictly stable plant, that is, the poles and zeros are in
open left half complex plane.

The constant feedback controller is given by: K = diag(K,; K,). It can be
shown that the closed loop transfer function is given by:

Hi(s) =
Kb s™ T 4+ (Kpbym+Kybm—1)s™ 4+ (Kpb1+ Ky bo)s+Kpbo
(8" +an_18""14-Fag)+(Kpe TP +sK,e=5Tv) (b s™+---+bg) (3)

+ s"tan_15" " tag
(s 4an_15" 14 tao)+(Kpe TP +5K,e=5Tv) (b s™ +---+bo)

In the experiment, we simplify the analysis by considering the case when
n = 1, and K, = 0. The closed loop poles corresponding to the homogenous
solution, are the zeros of Z(s) = s + ag + Kpboe *Tv. If the delay, T}, = 0, then
the system has a closed loop pole at —ag < 0. For T}, > 0, there are an infinite
number of closed loop poles. It is well known that time delays can introduce
instability by shifting the poles to the right. Indeed, in this case, as 7T}, increases,
the poles begin to cross the jw axis two poles at a time. We will be interested in
the first pair of poles to reach the jw axis as this will result in resonance of the
closed loop system. This resonant frequency, w., will depend on the open loop
parameters, the feedback gain, and the time delay.
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Consider poles on the imaginary axis at s = iw for w € R. Thus, w must
satisfy: Z(iw) = iw + agp + Kpboe_i‘*’Tp = 0. At w = w,, we have: ksin Tpw, = w,
and kcosTpw. = —ag for Trw. € [g + 2nm, T+ 2n7r] where n = 0,1,2,--- and
k = Kpby. If given a critical frequency, w,, and ag, then we can determine the
corresponding position feedback time delay, T}, and feedback gain, K, (assuming
bo) is known. Thus, our approach to determine the feedback gain is to randomly
introduce time delays, and determine the critical frequency of oscillation.

2.3 Probing Internal Model Learning

Having determined the feedback gain, K, we proceed to determine the learning
rate. We begin by considering in detail FEL applied to the first order linear plant.
We will assume that the pole of the system is unknown. The open loop dynamics
are given by: ¥ + agy = bou. The ideal inverse dynamics satisfy: u* F= bf; +
H(r)ao, where H(r) = r/by. We assume that the actual feedforward command
is given by: uysy = bi) + H(r)ag, where ag is an estimate of ag. Applying the FEL
algorithm (), the update rule is given by

ap =~H(r)Ke (4)

Since we do not know the subjects’ learning rate, v, we cannot directly solve for

ao. However, conside the relation: u = uyy +upy = Ke + l:; + H(r)ap. Solving

for ag, we get

u— Ke—1/by
H(r)

Notice that we have all the neccesary signals to compute ag. We measure the
signal, u, the input to the plant. Since we determined K in the previous step,
we can compute the feedback term, Ke. We also know 7 /by and H (r), since we
implement by and r.

(5)

apg =

Computing the Learning Bandwidth and Learning Rate: The learning rate, v, in
() reflects the ability of the feedforward component to track parameter changes
in the plant. A high learning rate will allow the feedforward component to track
plant parameters that change rapidly, however, will be more susceptible to noise.
A lower learning rate will reject parameter variation due to noise, but may be
unable to track fast parameter changes in the plant.

Thus, as an indirect measure of learning rate, we can observe the the ability
of the estimated parameters to track the time-varying plant parameters. In our
analysis, we will assume no noise is present in any signal loop. Since our goal is
to analyze the performance of the parameter estimate (output) to time-varying
changes in the plant parameters (input), we view the closed loop system as the
input-output system depicted in Fig.

As the system depicted in Fig. ([@]). is a fairly complicated linear, time-varying
system, we approximate it by the frequency domain relation as

Ao(j(w) = T(jw)Ao(jw) (6)



44 A.K. Ishihara, J. van Doornik, and T.D. Sanger

ao

T(jw)

Fig. 3. In this figure, we recast the original framework to emphasize that we are viewing
the plant parameter variation, ag(t), as the input to a linear, time-varying system where
the parameter estimate, ao(t), is considered as the output

That is, T'(jw) is the approximate bode plot of the closed loop system considering
ap(t) as the input, and ao(¢) as the output. To compute T'(jw), we use sinusoidal
inputs. Since the input is a sinusoid, the output will be given by \Ao(jwi)| =
|T(jw;)|, and thus we can construct a magnitude bode diagram. The procedure
is summarized as follows:

1. Select the frequency, f;, for the input sinusoid ag(t) in the system given in
Fig.

2. Compute the parameter estimate, ao(t) using ().

Compute the FFT of do(t) and evaluate the peak magnitude at f; Hz.

4. Fit the Bode plot to e_ﬁ, where A is defined to be the learning bandwidth.

©w

There is a clear relationship between the learning bandwidth, A, and learn-
ing rate, v. The simulations suggests that a high learning rate results in a high
learning bandwidth. Unfortunately, a closed form expression relating these two
parameters is not easily determined for a general reference trajectoryl. Never-
theless, we may compute numerically the learning rate as a function of learning
bandwidth for the specific parameters implementedg in the experiment, namely
ap(t), by and r(t).

3 Experimental Results

To illustrate the methods, we show and discuss the input-output data of a typical
subject during the different phases of the experiment.

! Asymptotic methods may be applicable when there exists a sufficient time-scale
separation between the learning rate, plant dynamics, and reference trajectory.

2 Note that the learning rate - learning bandwidth relationship also depends on the
value of K which is determined, not implemented, by the methods described in
section [2.21
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Fig. 4. The top left figure shows the input-output data for the case f; = 0.05. In the
top right figure, we show the subjects input-output data at f; = 0.15 Hz. In the bottom
left figure, we plot equation () using our estimate of the feedback gain. The plant pole
was varied at f; = 0.05 Hz. In the top subplot, we show the true parameter, ag, in
dotted, and the subject’s estimated parameter, ao, in solid. In the bottom subplot, we
compute the magnitude of the FTT of ao. We observe a peak magnitude at 0.05 Hz.
In the bottom right figure, we plot equation (B for the case, f; = 0.15 Hz. In this case,
we observe a decrease in parameter tracking performance. In the bottom subplot, a
magnitude peak at 0.15 Hz is observed. However, notice that there are more additional
frequencies present than in the previous case (bottom left). Also note that the peak
amplitude at f; = 0.15 Hz is lower than the peak amplitude at f; = 0.05 Hz on bottom
left.

Probing the Feedback Gain: For this subject, we found the critical time delay to
be 300 ms corresponding to a frequency of instability of 0.625 Hz. At this delay,
the observed frequency corresponded to a feedback gain of K = 0.43.

Probing the Learning Bandwidth: In Fig.Hl, we show the subjects input-output
data and parameter estimates at f; = 0.05 and f; = 0.15 Hz. The top left figure
shows the input-output data for the case f; = 0.05. The dotted line indicates
the desired trajectory, while the solid line indicates the subject’s performance.



46 A.K. Ishihara, J. van Doornik, and T.D. Sanger

11000

L o Simulation Data
10000 * * Subject Data
T Simulation Data Fit
9000 — Subject DataFit
80001 k..
7000 -
9

6000 -
5000 -
4000 -
3000
2000 . . . . . . .

0 0.05 01 0.15 02 0.25 03 0.35 04

Frequency (Hz)

Fig.5. Subject Bode Plot and Simulation Bode Plot Comparison: We observe a rel-
atively good agreement between the two curves. Notice the similarity in the relative
magnitude changes at each frequency. Subject Bode Plot: The peak magnitudes are

1
indicated by stars. In solid, we fit the exponential, C'e™ | to determine the subjects
learning bandwidth, A. In this case, A was found to be 0.30401.

Table 1. Table of feedback gain, learning bandwidth, and learning rate

Table of Results
Subject Feedback Gain Learning Bandwidth Learning Rate

A 0.43 0.304 0.642
B 0.43 0.3711 0.835
C 0.64 0.6542 1.15
D 0.73 0.73 1.2145
E 0.67 2.733 2.06

We also indicate the upper and lower bounds where points were deducted if
the trajectory exceeded these bounds. Notice, that nearly perfect tracking is
achieved while an oscillatory component of about 0.05 Hz is observed in the
control signal. In the top right figure, we show the subjects input-output data at
fi = 0.15 Hz. In this case, we observe an increase in errors in the output as the
subject is not able to compensate as well for the increase in frequency of the pole
variation. The subjects control input reflect this variation, but also appears to
contain frequencies which depend on the the increase in performance error. In the
bottom left figure, we plot equation () using our estimate of the feedback gain.
The plant pole was varied at f; = 0.05 Hz. In the top subplot, we show the true
parameter, ag, in dotted, and the subject’s estimated parameter, dg, in solid. In
the bottom subplot, we compute the magnitude of the FTT of ay. We observe a
peak magnitude at 0.05 Hz. In the bottom right figure, we plot equation () for
the case, f; = 0.15 Hz. In this case, we observe a decrease in parameter tracking
performance. In the bottom subplot, a magnitude peak at 0.15 Hz is observed.
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Fig. 6. Comparision of Subject A data with the FEL model based on the estimated
parameters: In the left column, we plot the true input in solid and the simulated input
in dotted. In the middle column, we plot the true output in solid, and the simulated
output in dotted. In the far right column, we plot the subject’s estimated parameter
in solid using equation (f]), and the parameter estimate obtained via simulation using
equation (@) in dotted. The rows, (A-C), (D-F), and (G-I) correspond to pole frequency
of 0 Hz, 0.1 Hz, and 0.2 Hz, respectively.

However, notice that there are more additional frequencies present than in the
previous case (bottom left). Also note that the peak amplitude at f; = 0.15 Hz
is lower than the peak amplitude at f; = 0.05 Hz on bottome left.

The Bode plot of T'(jw) in equation (@) is shown in Fig. Bl It was constructed
by taking the peak magnitudes of |A0 (jw)| at the corresponding input frequen-
cies, f;. The peak magnitudes are indicated by stars. In solid, we fit the expo-
nential, Ce™ ];7 to determine the subjects learning bandwidth, A. In this case, A
was found to be 0.30401. Having determines the subjects learning bandwidth, A,
and feedback gain, K, we can now numerically compute the feedforward learning
rate. Given the specific learning bandwidth, v is determined by linear interpo-
lation between the data points. In this case, we found v = 0.64.

Having determined all the required parameters in the FEL model, we can
now go back and simulate equation (@) using the subject parameters K and .
In Fig. B, we compare the simulation Bode plot, and the subject’s Bode plot.
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Notice the similarity in the relative magnitude changes at each frequency. In
Fig. B, we compare the input-output data as well as the parameter estimates.
That is, we compare the real subject data with the simulation based on the
measured parameters determined previously. In the left column, we plot the
subject’s input to the plant, and the estimated input based on the measured
learning rate and feedback gain. The true input is plotted in solid while the
simulated input is plotted in dotted. In the middle column, we plot the true
output in solid, and the simulated output in dotted. In the far right column,
we plot the subject’s estimated parameter in solid, and the parameter estimate
obtained via simulation in dotted. Subplots (A-C) correspond to f; = 0 Hz,
(D-F) correspond to f; = 0.1 Hz, and (G-I) correspond to f; = 0.2 Hz.

4 Conclusion

In this study, we characterized feedforward motor learning by probing the human
neuro-controller in an unknown time-varying environment. We assumed a sim-
ple yet powerful adaptive model known as Feedback Error Learning. We utilized
a novel time delay analysis technique to estimate the subjects’ feedback gains
during a step tracking task. With the estimated feedback gains, we were able to
construct a learning bandwidth by probing the system at various frequencies. An
approximate Bode plot was constructed and used to determine the bandwidth.
The learning rate was then numerically computed from the learning bandwidth.
To validate our results, we simulated the FEL model with the estimated param-
eters compared the results with the subject’s actual performance.
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Abstract. Many episodes are acquired in the hippocampus. An episode
is expressed by a sequence of elements that are perceived in an event.
Episodes are associated each other by events that contain information
shared among the episodes. Sequences must be recalled individually, even
if the sequences are overlapped at some representations. Therefore, se-
quence disambiguation is an essential function to dissociate overlapped
sequences. In this study, we especially focus on the location-dependencies
of the STDP effects on synaptic summation and the expression of AMPA
receptor. We firstly show that the hippocampal CA3 is divided into two
regions in which one region has spatial selectivity and the other has
temporal selectivity. Moreover, we confirm that the divided CA3 could
generate a code for sequence disambiguation in computer simulations.
Consequently, we suggest that the CA3 can be divided into two regions
characterized by their selectivity, and the divided CA3 contributes to
sequence disambiguation.

1 Introduction

Eichenbaum suggested that daily episodes are memorized as a relational network
in the hippocampus [I]. In the relational network, an episode is expressed by a
sequence of elements that are perceived in an event. Episodes are associated
each other by events that contain information shared among the episodes. For
example, let the hippocampus compose a simple relational network from these
two episodes, one is composed of events: A, B and C (A—B—C), the other
is composed of D, B and E (D—B—E), where the event B associates the two
episodes (C and E). Then, it is difficult to decide which pattern (C or E) should
be retrieved from event B. Such ambiguity of sequences becomes a problem for
retrieval. Thus, sequence disambiguation is an essential function for retrieving
original episodes.

J. Marques de S& et al. (Eds.): ICANN 2007, Part II, LNCS 4669, pp. 49-[58] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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In the hippocampus, the CA3 region has unique recursive axons that are
called recurrent collaterals (RCs). Because of its uniqueness, many researchers fo-
cused on it and proposed many computational models of the CA3. Samura et al.
suggested that the CA3 can be divided into autoassociative and heteroassocia-
tive memory [2] and the functional division of the CA3 contributes to sequence
disambiguation [3]. They derived the hypothesis from location-dependencies of
RCs and Spike-Timing Dependent Plasticity (STDP), which is a rule of changing
synaptic weights. The former is that the projection of RCs differs according to
the subregional location of a neuron (CA3a, b and c) [4]. The later is that the
profiles of STDP differ depending on dendritic location of a synapse [5].

In addition to the above location-dependencies, we also incorporate two
location-dependencies into our study. The first one is that the effect of STDP on
synaptic summation differs according to the dendritic location of a synapse [6].
The second one is that the expression of AMPA receptor (AMPAR),which me-
diates fast synaptic transmission, also shows the dendritic location-dependency
[7]. The new location-dependencies affect the selectivity of a neuron to inputs.
In view of all location-dependencies, neurons, which have spatial or temporal
selectivity to inputs, concentrate in the specific subregions of the CA3. Conse-
quently, we suggest that the CA3 can be divided into two regions where there
are spatial or temporal selectivity, rather than autoassociative and heteroassocia-
tive memory. Moreover, we show that the divided CA3 contributes to sequence
disambiguation by computer simulations.

2 Anatomical and Physiological Backgrounds of
Hippocampus

2.1 Structure of Hippocampal CA3

The hippocampus is divided into three regions: Dentate Gyrus (DG), CA3 and
CA1l. The CA3 is segmented into three subregions: CA3a (nearer CA1), CA3b
and CA3c (nearer DG) (Figlla)). The CA3 connects with DG and Entorhinal
Cortex (EC) that works as an interface between the cortex and the hippocampus.
DG connects to all CA3 subregions and EC connects to only CA3a and CA3b

(Fig(a)) 18]

2.2 Subregional Location-Dependencies

The CA3 neurons are connected recursively to other neurons by RCs. Fig[li(b)
shows the relationship between the location of a neuron and the projection of
its RCs []. First, the RCs of CA3c neurons are limited to the area surrounding
them. Second, the RCs of CA3b neurons are widely spread. Projections onto
CA3c become more temporal locations than their sources. Conversely, those
onto CA3a become more septal locations. Finally, the RCs of CA3a neurons
are limited to CA3a and CA3b. Projections onto CA3b become more temporal
locations. In addition to the location-dependency of the projection, the dendritic
locations of RCs depend on the relative positions between pre- and postsynaptic
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Fig. 1. Structure of the CA3. (a) Connections within the CA3 and its dendritic lo-
cations (inverse triangle : soma, forked line: dendrite, dashed line: RCs, chain line:
connections from external regions). (b) Projections of RCs (circle: source neuron, el-
lipse: projection of circled neuron in it).

neurons [4]. As shown Fig[l{a), CA3a and CA3b neurons tend to receive RCs
near a soma, while CA3c neurons tend to receive them remote from a soma.
However, they receive RCs from CA3c near a soma.

2.3 Dendritic Location-Dependencies

In the hippocampus, STDP was observed as a rule of changing synaptic weights.
STDP determines the magnitude of a synaptic change and its polarity (LTP:long-
term potentiation or LTD:long-term depression) according to an interval between
pre- and postsynaptic spikes. Additionally, recent study suggested that STDP
turns asymmetric profile to symmetric one depending on the density of inhibitory
interneurons [5]. Symmetric profile STDP (SSTDP) was observed from a high-
density area near a soma, while asymmetric profile STDP (ASTDP) was observed
from a low-density area remote from a soma. Therefore, the change of STDP
profile correlates with a synaptic location in a dendrite. In other words, STDP
shows the dendritic location-dependency.

Furthermore, STDP(in fact LTP or LTD) location-dependently modulates
synaptic summation. Generally, synaptic summation is divided into two types.
The one is spatial summation under which a neuron can fire when inputs arrive
coincidentally. The other is temporal summation under which a neuron can fire
without simultaneous inputs. Xu et al. suggested that distal dendrite enhances
their activity when inputs arrive within a narrow time window (< 5ms) after
LTP induction. While proximal dendrite enhances their activity when inputs
arrive within a long time window (< 20ms) after that [6]. Consequently, after
repeat of LTP, distal dendrite shows spatial summation and proximal one shows
temporal summation.

Moreover, the expression of AMPAR also shows dendritic location-dependency
and supports the dendritic location-dependency of synaptic summation. It was
suggested that AMPAR expression becomes higher in distal stratum radiatum



52 T. Samura, M. Hattori, and S. Ishizaki

than proximal one, but the expression of NMDA receptor (NMDAR) show no
location-dependency [7]. These receptors mediate EPSP. However, they differ in
the time constant of EPSP. The EPSP time constant of AMPAR is shorter than
the one of NMDAR. Then, the time constant of EPSP relates to the summation
type of a synapse. A short time constant fits to spatial summation and a long time
one fits to temporal summation. Thus, the predominance of AMPAR in distal
dendrite means that distal dendrite suits for spatial summation, while the inferior
of AMPAR in proximal dendrite suits for temporal summation. Additionally,
the time constant of AMPAR and NMDAR, especially their rising time of EPSP
(AMPAR: ~ 5ms, NMDAR: 8 ~ 20ms) [9] is similar to the above time window.
Therefore, these findings are consistent with the dendritic location-dependency
of synaptic summation.

3 Spatial and Temporal Selectivity in Hippocampal CA3

Firstly, the type of synaptic summation affects temporal tendency to fire a neu-
ron. Under the temporal summation, neurons can fire when they receive inputs
within a long time windows. Conversely, under the spatial summation, neurons
can fire when they receive inputs within a short time window.

Moreover, the profiles of STDP also affects tendency to fire a neuron. Un-
der SSTDP, simultaneous firing leads to potentiation, and time lag leads to
depression. Neurons firing simultaneously are mapped onto synaptic weights as
a firing pattern of a network. Thus, when a postsynaptic neuron receives in-
puts from neurons that compose the same firing pattern as the postsynaptic
neuron, the postsynaptic one is likely to be activated regardless of the firing
order of these neurons. In contrast, ASTDP potentiates synapses when postsy-
naptic neurons fire after presynaptic firings. Conversely, if their firing orders are
reversed, synapses between them are depressed. As a result, synaptic weights
reflect the order of firing. Therefore, when a neuron receives inputs from presy-
naptic neurons through potentiated synapses in the memorized order, the neuron
is likely to be activated.

Here, we integrate the location-dependencies of the CA3. In CA3a and CA3b
where neurons receive RCs at proximal dendrites, temporal summation and
SSTDP coexist. Thus, neurons in CA3a and CA3b can fire when they receives
inputs from the memorized set of neurons regardless of the coincidence and order
of inputs. These regions are sensitive only to spatial information of inputs. While
spatial summation and ASTDP coexist in CA3c where neurons receive RCs at
distal dendrites, neurons in CA3c can fire when they coincidentally receives in-
puts from the memorized set of neurons in the memorized order. This region
is sensitive to temporal information of inputs. Consequently, the CA3 region is
divided into two regions where there are the spatial or temporal selectivity to
inputs.
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4 Hippocampal CA3 Model

4.1 Neuron Model

We revised a simple model that was suggested by Izhikevich [I0] and the pro-
posed hippocampal CA3 model consists of the neuron models. The following
equation shows the membrane potential of the ith CA3 neuron at time ¢.

dv; (t
PO k{ouft) — ) ((0) ) ~ua(t) + L0, (1)
where C' is the membrane capacitance, v, is the resting membrane potential, v
is the instantaneous threshold potential, u is the recovery current, and I denotes
the sum of excitatory postsynaptic potential (EPSP) evoked by inputs. The
recovery current of the ith neuron at time ¢ is defined as follow:

duz(t) o L o
@ a{b(vz Ur) UZ(t)}ﬂ (2)

where a is the recovery time constant, b is the effect of © on v. When the mem-
brane potential exceeds the threshold vP®?% the cell fires and the membrane
potential is reset to ¢ and the recovery current is also reset to u;(t) + d, where d
means the total amount of outward minus inward currents. The total EPSP of
the ith neuron at time ¢ is defined as follow:

Li(t) = BPSPO(8) + EFY(2), 3)

where, EPSEC(t) and EFA3(t) are the sum of EPSP evoked by inputs during a
period from the last spike timing of the ith neuron to present time ¢. They are
calculated as follows:

EPOEC(t) = ZaPO B0 (¢ — ¢¥), (4)

where wP%FC is the synaptic weight from DG or EC to CA3, (¢t — t*) denotes
the present amplitude of EPSP evoked by the kth spike during the period, t* is
the spike timing of the kth spike.

EiCAS(t) = ZjEkwij(tf + 6ij)€(t — t;? — 6ij), (5)

where w;; (t;C +6;;) means the synaptic weight of RC between the ith and the jth
neuron when the kth spike of the jth neuron at time té? arrived at the ith neuron
with axonal delay 6;;, e(t — t;? — 6;5) is the present amplitude of EPSP evoked
by the kth spike of the jth neuron during the period. The following equation
shows the amplitude of single EPSP at elapsed time ¢’ since a spike arrived at a

neuron,
!/

e(t) =" ep( ), (6)

where « is the amplitude of EPSP and 7 is the time constant of EPSP. These
parameters differ according to the receptor type of a synapse.
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4.2 Synaptic Formation

First of all, as shown in Fig[2(a), we consider CA3 as two dimensional map
and defined x-axis and y-axis as CA3a—CA3c direction (the maximum value
is W) and septal—temporal direction (the maximum value is H) respectively.
We assume that neurons are located on each x—y integral coordinate. Then,
the existing probability of a synapse between presynaptic neuron (x;,y;) and
postsynaptic one (z;,y;) is given by equation below.

— ox {(y; — yi)CosO + (x; — ;) Sind}>
P =exp ( LR(x;)

{(zj —x;)CosO + (y; — yi)Sin9}2>

+ kR(z;)

(7)
where R(x) is the projection range defined according to x-coordinate of presy-
naptic neuron. It is given as follow:

1
(@) = Amin + Amax (1 + exp(z — 1.5W)> ' ®)
where Ay 1S the minimum range and Ay is the maximum range.

As shown Figl2l a neuron projects its RCs to other neurons (Figl2l(c)) on the
basis of the existing probability (Fig(b)). Then, the synaptic weights are ran-
domly set as 0 < w;; < winis. Moreover, the axonal delay and the receptor type
of each synapse are defined. The axonal delay of a synapse between presynaptic
neuron (z;,y;) and postsynaptic one (x;,y;) is calculated as follow:

(i — ;)% + (yi — ;)
6ij =10+ 6max\/ ;_12 + w2 ’ ) (9)

where dpax is the maximum delay. The receptor type of a synapse is defined
according to the dendritic location of a synapse. In this study, we simply suppose
that AMPAR is predominant in distal dendrite and NMDAR is predominant in
proximal one. Thus, the receptor type of RCs is set as NMDAR (7nmpa) in the
CA3a (z; < W/3) and CA3b (W/3 < z; < W/1.5). Conversely, the receptor
type of RCs is set as AMPAR (Tampa) in the CA3c (W/1.5 < z;), but the
receptor type of CA3c-CA3c connections is set as NMDAR, (7nmpa )-

4.3 Learning Rules

Each synaptic weight of RCs is changed by ASTDP or SSTDP. Spike interval
At between the ith postsynaptic neuron and the jth presynaptic neuron is given
by

Aty = (T; = T;) —n, (10)

where T; and T denote the spike time of the ¢th postsynaptic neuron and that of
the jth presynaptic one, respectively. 1) is defined in consideration of the activity
of receptors that underlies STDP.
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Fig. 2. Formation of RCs. (a) Definition of x—y axis. (b) Existing probability of sypase
from the neuron (11,18) on the map (21 x 35) (cell: synapse, gray scale: the probability).
(c) Existence of synapses from the neuron (11,18) (black cell: existence of synapse).

In this study, we employ the semi-nearest-neighbor manner for pairing spikes
[11]. That is, for each presynaptic spike, we consider only one preceding postsy-
naptic spike and ignore all earlier spikes. All postsynaptic spikes subsequent to
the presynaptic spike are also considered. For each pre-/postsynaptic spike pair,
the synaptic weight is updated as follows:

2
Awij =0 {10— y (0.12Atij)2} exp <_ (0122At”) ) ’ (11)

wij (t+ At) = wij (t) + Awij, (12)

where 3 is the maximum modification width, v shows the time constant of STDP.
In CA3c, a synapse is updated between the ith postsynaptic neuron and the jth
presynaptic one by ASTDP, the constant is defined by

>
L {0.01 Ati; >0 (13)

0.65 Atij < 0.

While a synapse is updated by SSTDP in CA3a and CA3b, the constant is always
set to 0.65. In this study, if the total synaptic weight of a neuron exceeds wWmax,
the neuron suspends potentiation of its synapses. After the suspension, if the
total synaptic weight of the neuron falls below wnax, potentiation is resumed.
Conversely, a synaptic weight becomes less than wyyiy, it is set to wmin-

4.4 Learning Phase and Retrieving Phase

We defined two phases (learning and retrieving) for this model. The model learns
the input sequences by changing synaptic weights during learning phase. Then,
the model suspends calculating equation () for memorizing smoothly. On the
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other hands, the model retrieves memorized patterns from inputs during re-
trieving phase. The connections from DG to CA3 contribute to memorization,
while those from EC to the CA3 are required for retrieval and EC connects only
to CA3a and CA3b [12]. Thus, during this period, inputs are limited to them.
Furthermore synaptic modification is suspended. During both phases, input se-
quences are applied to the model by the conventional input procedure [3].

5 Computer Simulations

5.1 Conditions

In this simulation, we set parameters as shown in Table 1 and constructed the
proposed model from 735 neuron models. Next, we defined 9 fixed patterns (A-I)
and random patterns (*). Each fixed pattern was represented by the activation
of 60 neurons and there were no overlap among them. The random patterns
were represented by the activation of 5% neurons selected randomly. Using above
patterns, we defined two overlapped sequences (sequence I and IT). The sequence
I was *~>A—B—C—D—E—* and the other was *—-F—-G—C—H—I—*. Each
sequence was applied to the model three times. Then the model memorized
them (learning phase). Following the memorization, we applied a part of each
sequence:*—A—B—C or *->F—G—C into the model (retrieving phase). Then,
we confirmed that the model could discriminate between the pattern C of the
sequence I and the pattern C of the sequence II by using a difference between the
sequences. For the confirmation, we evaluated a similarity given by the direction
cosine between the model output and a fixed pattern in each subregion.

Table 1. Parameters for the simulation

w 21 H 35 k 1.75 v -55.0 vy -40.0 C 80
a 0.021 b -1.7 ¢ =380 d 190.0 vP°** 10.0 wmin 1.0 x 1077
Wmax 7.1 wP9FC 60 0 0251 300 K 6 Amin 05
Amax 2.5 mcasa 0 mcass 0 ncase 10 Smax 10 S 0.08
anmpa 66.0 7wmpa 5.0 aampa 72.5 Tampa 1.5

5.2 Results

Figs. Bla) and (b) show the similarity in each sequence. At the beginning of
the cycle, random pattern was inputted to CA3a and CA3b. After that, next
patterns were applied to them every 10 unit times in the order of each sequence.
Although each pattern was applied only once in the cycle, as shown in these
figures, they showed periodic activation of fixed patterns in CA3a and CA3b.
Then, we compared the similarity of CA3c output in two sequences. As shown
in the Fig. Bla), when pattern C was applied to the model, CA3c outputted
pattern D. When pattern C of sequence II was applied, CA3c outputted pattern
H (Fig.BI(b)). This means that the proposed model generated different activities
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Fig. 3. Similarity in each subregion. Gray level of each cell means similarity between
a retrieved pattern and a source pattern. (a) The similarity in the sequence I. (b) The
similarity in the sequence II.

according to the differences between the sequences in spite of the same pattern
C. The differences become a code for sequence disambiguation.

6 Conclusion

In this paper, we have focused on the location-dependencies elucidated from the
anatomical findings and the physiological findings. On the basis of the findings,
we have firstly suggested that CA3a and CA3b show temporal summation with
SSTDP, which fits to spatial selectivity, while CA3c shows spatial summation
with ASTDP, which fits to temporal selectivity. Consequently, we have suggested
that the CA3 is divided into two regions characterized by their selectivity. More-
over, we have shown that the divided CA3 could generate a code for sequence
disambiguation in the computer simulation. In the proposed model, previously
inputted patterns were periodically retrieved in CA3a and CA3b. Thus, the
model could buffer the differences between sequences. Then the information in
the buffer was transmitted to CA3c through the connections, which are sensitive
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to temporal information. Therefore, the difference in the buffer caused the differ-
ence of retrieved pattern in CA3c. In other words, a code which dissociates same
pattern in sequences was generated by the divided hippocampal CA3 model ac-
cording to the difference of previous inputs. Consequently, we have suggested
that the hippocampal CA3 is divided into two regions in which one region has
spatial selectivity and the other has temporal selectivity and the divided CA3
contributes to sequence disambiguation.
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Abstract. Lateral and elastic interactions are known to build a topol-
ogy in different systems. We demonstrate how the models with weak
lateral interactions can be reduced to the models with corresponding
weak elastic interactions. Namely, the batch version of soft topology-
preserving map can be rigorously reduced to the elastic net. Owing to
the latter, both models produce similar behaviour when applied to the
TSP. Unlike, the incremental (online) version of soft topology-preserving
map is reduced to the cortical map only in the limit of low tempera-
ture, which makes their behaviours different when applied to the ocular
dominance formation.

1 Introduction

Competitive learning neural nets that utilize lateral interactions to perform a
mapping from the stimulus space to the response space with preserving neigh-
bourhood relations are called topology-preserving maps [I]. Well-known example
of the above is Kohonen’s self-organizing map that became a standard unsuper-
vised learning algorithm [2].

It is known that elastic synaptic interactions can forge the topology as well.
An elastic net was first applied to solve the travelling salesman problem (TSP)
[3]. Another application of elastic synaptic interactions is the preservation of
topology in cortical mappings [4L[5L[6].

We already demonstrated the benefits of using both lateral and elastic inter-
actions for controlling the receptive field patterns [5l6]. In [7], we considered the
model utilizing only lateral interactions, which, unlike elastic ones, are biologi-
cally plausible, and applied it to the problems previously solved only with elastic
interactions. We proved that cortical map and elastic net can be derived from
the incremental (online) and batch soft topology-preserving map respectively [§].
Applied to the TSP, the equivalence of the batch topology-preserving map and
the elastic net was demonstrated.

In this paper, we consider the relations between lateral and elastic interac-
tions further. First, we derive the free energy function for an unsupervised net
of stochastic neurons with lateral interactions. The temperature incorporated in
this function serves as control parameter in the annealing schedule. Then, we
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consider the incremental and batch modes of learning resulting in correspond-
ing versions of soft topology-preserving mapping. The mapping utilizes only
weak lateral interactions that can be, therefore, approximated by the nearest-
neighbour ones. Considering the weight vector of a neuron as a “particle” mov-
ing in the space-time of imposed patterns, we decompose this particle trajectory
over these patterns. Using the decomposition for incremental and batch modes
of soft topology-preserving map, we derive the cortical map and the elastic net
respectively. We show that the batch version of soft topology-preserving map
is rigourously reduced to the corresponding elastic net. Unlike, the incremental
version of soft topology-preserving map is reduced to the cortical map only in
the low temperature limit. We tested the models on the relevant to them tasks:
the TSP and the development of visual cortex topology, namely the formation
of retinotopy and ocular dominance. The difference in derivation of the latter
systems results into the difference in their behaviour: the batch soft topology-
preserving map and the elastic net produce similar outputs whereas the incre-
mental soft topology-preserving map and the cortical map behave differently.

2 Topology-Preserving Maps

We consider a one-dimensional net of n stochastic neurons trained by N patterns.
The energy of this net, for a given stimulus, is

1 n
Ei(n) = 5 > hijla, — w,|?, (1)
j=1

where x,, is a given sample pattern, w; are the weight vectors, and h(i, j) is the
neighbourhood function.

Throughout, we consider weak, quickly decaying in the space, lateral interac-
tions. The latter give us the opportunity to consider nearest-neighbour interac-
tions only:

1, 1=J;
hij =97 li—jl=1 (2)
0, li —j| > 2,

with 0 <y < 1.
Instead of the “hard” assignment of Kohonen’s original algorithm with an
unique winner, we assume a “soft” assignment where every i-th neuron is as-

signed to a given p-th pattern with a probability p;(1); >, pi(p) = 1 [QUIOUEIGIT].
The assignment probabilities minimizing free energy of the system (that is a
composite of the averaged energy and thermal noise energy) are found to be

e*ﬁEi
pl(ﬂ) = Zz:l e—BEy’ (3)

which gives the minimal free energy [9}10}5]6L7]

Fu) = _;m(ieﬁ&). ()
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Incremental (online) learning strategies are derived through the steepest de-
scent minimization of function (). The dynamics follows the free energy gradi-
ent, which result in the soft topology-preserving mapping [56}7]:

OF -
Aw; = oy 1Y pilphi; (@ — w;). (5)
=1

Soft mapping is based on soft competition, which allows all neurons to adjust
their weights with probabilities proportional to their topographic distortion. This
makes the weights move more gradually to the presented patterns. The strength
of the competition is adjusted by a temperature. The underlying mechanism,
deterministic annealing, is derived from statistical physics: it mimics an ordering
process during a system cooling. At high temperatures, the competition is weak
and the original energy landscape is smoothed by the noise, which helps to
eliminate local minima at the beginning of the ordering phase. On reducing the
temperature, the competition becomes stronger, the smoothing effect gradually
disappears, and the free energy landscape resembles the original one.

At low temperatures (3 — o0), equation () reduces to Kohonen’s map with
only nearest-neighbour interactions:

oF

AUJ]‘ :—ﬁawA =
J

nhj- (@ — w;), (6)
where 7* is the winning unit.

The batch learning mode, when the updating rule is averaged over the set of
training patterns before changing the weights, gives the following free energy:

(F) = _5%7\7 f: In (ie—ﬂEi). (7)
p=1 i=1

Minimization of energy () results in the batch version of soft topology-
preserving map:

AF) 1 u
Awj = —1) w, = N ;;pi(u)hij (@) — w;), (8)

where 7 is the learning rate.

At low temperatures (8 — o0), () reduces to the batch mode of the Koho-
nen map. Goodhill applied the latter model with the special lateral interaction
function to modelling the formation of topography and ocular dominance in the
visual cortex [I1].

3 Cortical Maps

Neural receptive fields of visual systems are ordered. The projections from retina
to optic tectum (in lower vertebrates), and from retina to lateral geniculate
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nucleus, then to primary visual cortex (in mammals) are topographic. The latter
means that neighbouring point in the retina are mapped to neighbouring points
in the cortex (tectum). The development of such continuous topographic map-
ping is called retinotopy. This order guarantees improvement of the recognition
abilities and, hence, facilitates the species survival. Indeed, without ordering
slight external or internal (neural) noise can results in absolutely unpredictable
(and possibly completely wrong) outcome, whereas the ordered receptive field
guarantees the recognition of a prototype that is, perhaps, not exactly the same,
but very similar to the stimulus. The development of neural receptive fields in a
way that they mimic stimulus distribution and become ordered is, thus, biolog-
ically meaningful. Together with retinotopy, ocular dominance and orientation
preference are developed.

Mammalian primary visual cortex is naturally binocularly innervated. During
development of many, though not all, mammalian species, each part of the visual
cortex becomes more densely innervated by one eye and less densely innervated
by the other. Eventually, so-called ocular dominance stripes, that are reminiscent
of the zebra stripe pattern, are developed. Moreover, exact details of the stripes
(their shape, spacing of the pattern, etc) are determined dynamically during
development rather than by genetics.

During development the visual cortex cells become largely respond to some
preferred orientations. Like ocular dominance, orientation selectivity forms its
own pattern: cells with the same orientation preference group to the same do-
main.

The idea of cortex as a dimension-reducing map from high-dimensional stim-
ulus space to its two-dimensional surface has proved to be fruitful [I2,[]. The
backward projection of each position on the cortex sheet to the position in stim-
ulus space is a convenient way to consider cortex self-organization — the way
in which it fills stimulus space defines the receptive field properties. Perform-
ing such a mapping induces two conflicting tendencies: (i) the cortical surface
should pass through the representative points in stimulus space; (ii) the area
of the sheet should be kept a minimum. This ensures the formation of smooth
receptive fields and, hence, the minimal “wiring” interconnecting the cortical
cells, which, in turn, ensures the closeness of the cortical cells representing simi-
lar stimuli. The stripes and patches seen within cortical areas have been argued
to be adaptations that allow the efficient wiring by such structures [I3].

In cortical mappings, the topological order usually develops by elastic synaptic
interactions [4]. Let us derive cortical map from a topology-preserving map.

Taking the Taylor series expansion (in power of ) results in

F=— ;IHZGXP(— g\mu—wﬁ)
=1

n—1
y
+ > pi(w) (| — wica]? + [, — wiga [?). 9)
=2
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Fig. 1. Weight vector distribution of the cortical chain: (a) initial, (b) and (c) after
applying mapping ([I2) with 8y = 200 and 1000 respectively (see other details in the

text). Stimuli and weight vectors are marked by open and filled circles respectively.
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Consider the weight vector as a “particle” moving in space-time x and de-
compose this particle trajectory:

w; = p;(v)T,. (10)

Applying decomposition ([I0) to free energy (@) and taking the low tempera-
ture limit yield

n n—1
1 s gl
F:—ﬂln;e){p(— Q\wu—wi\2)+2;\wi+1—wi\2. (11)
Minimization of free energy function (1) results in the cortical mapping:
OF . .
Awj=-n, = U(pj(u)(w‘ —wj) +y(wjt1 — 2w; + U’j—l))v (12)
J

where 5
exp(— b |z# —w;[?)

pi(p) = (13)

Sy exp(—§ o — wyf2)
is the reduction of p;(i) to the case of lateral-free interactions.

We apply mapping ([I2)) to modelling the development of retinotopy and ocular
dominance. Throughout, the training is cyclic with fixed sequence, i.e. before
learning starts a particular order of pattern presentation is fixed. The simulations
are performed for 32 cortical neurons with initial uniform random distribution
of the weight vectors within [—0.0667,0.0667] x [—1,1] rectangular (Fig. 1(a)).
The stimuli are placed regularly within the two columns of 16 units each at the
left and right boundary of the rectangular, which represent left and right “eye”
respectively. The ratio of the separation units between retinae to the separation
of neighbouring units within a retina defines the correlation of retinal units,
which is &~ 1. The lateral interactions are allowed to decrease linearly with time:
v = (1l —t/T) with 79 = 0.03 and ¢ = 0,..,7. The learning rate linearly
decreases too: n = no(l — t/T") with gy = 1. Let us look at evolution of the
weight vector distribution when the inverse temperature increases from 3y = 4
to different values of 3y in steps of 0.01. For 3; exceeding some threshold but
remaining relatively small, the weight vectors become distributed on the line
exactly between the left and right eye. For larger 3y, the clusters consisting two
weight vectors are formed on this line (Fig. 1(b)). Increasing 8y further leads to
breaking the spatial symmetry with one weight vector in a cluster moving toward
the left eye and another weight vector moving toward the right eye. Thus, the
retinotopy and ocular dominance simultaneously formed (Fig. 1(c)).

Unlike the considered cortical map, incremental soft topology-preserving map-
ping (B doesn’t produce satisfactory results being applied to this problem.

4 Elastic Nets

The elastic net is based on elastic, diffusion-type, interactions [3]. This algorithm
works like an rubber ring: it gradually drags points on the ring towards the
“cities” and an elastic force keeps neighbouring points close to one another.
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Earlier, Simic showed the relationship between the Hopfied network and the
elastic net: it derived the latter from Hopfield’s objective function for the TSP
[T4[15]. Let us show how to derive the elastic net from the batch version of soft
topology-preserving map.

Taking the Taylor series expansion (in power of ) results in

N n
1 B
F)=- ﬂN;ln;eXP(_ 2\:2# —wi|2)
n—1 N

ZZPZ ‘wu_wz 1‘ +|w,u_wz+1‘ ) (14)

12,u1

Consider the weight vector as a “particle” moving in space-time x and de-
compose this particle trajectory:

N
w; = (x(j)) = Y pi()z., (15)

where (x(j)) are the expected position of the particle at time j.
Applying decomposition ([[3]) to free energy ([I4) yields

N n n-1
1 B gl
F)==,y ;len ;:1 exp (= | —wil”) + ;:1 wi1 —wil®. (16)

Minimization of free energy function (@) results in the elastic net algorithm:
Aw; = _”aw (ZPJ —wj) +y(wj1 — 2w; + wj,l)). (17)

Defining § = 2 with the Gaussian distribution width o, energy (0] takes
the exact form of the Durbin-Willshow elastic net energy [3]. Shrinking the
distribution width is, thus, equivalent to decreasing the system temperature.

Let us demonstrate how different algorithms work for the TSP. The simu-
lations are performed for 64 “cities” that are sites on a 8 x 8 regular square.
The elastic ring has 128 points. The training is cyclic with fixed sequence. The
inverse temperature 3 increases from 2 to 200 in steps of 0.01. The learning rate
is linearly decreasing function of time, i.e. § = \n = fo(1 — t/T) with Ay = 1
and t = 0,..,T. Let us take v = 0.06. Initially, the weight vectors are distributed
equidistantly on the unit radius circle (Fig. 2(a)). The batch topology-preserving
map (8) applied to the task produces one of the possible optimal tours (Fig.
2(b)). For the elastic net ([I7)), its elastic strength is allowed to decrease with
time passing: v = vo(1 — ¢/T") with 9 = 0.06 , which can provide a finer pattern
than one for fixed v [I]. Fig. 2(c) demonstrates the result. Thus, both lateral
and elastic interactions produce not the same but equally optimal tours for the
given task.
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5 Conclusion

Researchers always paid attention to the similarity of neural patterns produced
by lateral and elastic interactions, but not providing any rigorous proof of such
relationship [ILI6LI7,[I8LT2]. This paper is aimed to provide this proof.

First, we demonstrated that the weak lateral interactions can be transformed
into the elastic ones. As result, the cortical map and the elastic net are derived
from the incremental and the batch soft topology-preserving maps respectively.
The temperature of the above maps is transformed into the Gaussian variance of
the cortical map and the elastic net. This fact elucidates indirect incorporation
of soft competition and deterministic annealing into the cortical map and the
elastic net, which makes them to be very powerful neurocomputational models.

Second, we analyzed the relevant models by applying them to the same task.
Application of the incremental soft topology-preserving map and the cortical
map to the development of the visual cortex revels their differences. Indeed,
these models are equivalent only in the low temperature limit. As known, at the
beginning of learning process when the temperature is high, the state trajectory
is very sensitive to any changes in the system and can take, therefore, any possible
direction.

Unlike the above, the batch soft topology-preserving map and the elastic net
are proved to be equivalent for all temperatures. As results, both models are
appeared to be equally successful in solving the TSP.
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Abstract. The objective of this paper is to introduce briefly the various soft
computing methodologies and to present various applications in medicine. The
scope is to demonstrate the possibilities of applying soft computing to medicine
related problems. The recent published knowledge about use of soft computing
in medicine is observed from the literature surveyed and reviewed. This study
detects which methodology or methodologies of soft computing are used
frequently together to solve the special problems of medicine. According to
database searches, the rates of preference of soft computing methodologies in
medicine are found as 70% of fuzzy logic-neural networks, 27% of neural
networks-genetic algorithms and 3% of fuzzy logic-genetic algorithms in our
study results. So far, fuzzy logic-neural networks methodology was
significantly used in clinical science of medicine. On the other hand neural
networks-genetic algorithms and fuzzy logic-genetic algorithms methodologies
were mostly preferred by basic science of medicine. The study showed that
there is undeniable interest in studying soft computing methodologies in
genetics, physiology, radiology, cardiology, and neurology disciplines.

Keywords: Soft computing, Fuzzy-Neural systems, Fuzzy-Genetic algorithms,
Neural-Genetic Algorithms, Probabilistic reasoning.

1 Introduction

Although computers were already used in medicine and the early medical systems
appeared at about the same time as the seminal article by Zadeh - almost four decades
ago - there was little communication between these research fields for many years [1,4].
But for the last two decades the situation has changed. A major transformation has
occurred in the field of knowledge engineering and also medicine has been affected by
this transformation. Many researchers had a bold vision of the way knowledge
engineering would revolutionize medicine, and push the frontiers of technology
forward. There are now numerous systems that use fuzzy logic (FL), neural networks
(NNs), genetic algorithm (GA), and other techniques in approximate reasoning.

Many of the early efforts to apply artificial intelligence to medical reasoning problems
have primarily used rule-based systems [S]. Until the late 1980s, the practice of building
knowledge-intensive systems was viewed uniformly as "extracting" rules from
application experts, and putting those rules into an expert-system shell. Such programs
are typically easy to create, because their knowledge is catalogued in the form of if-then
rules. Developers built systems rule by rule, attempting to mimic with their rule bases the

J. Marques de S4 et al. (Eds.): ICANN 2007, Part II, LNCS 4669, pp. 69 2007.
© Springer-Verlag Berlin Heidelberg 2007
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problem-solving behaviours that application experts seemed to display. In relatively well-
constrained domain such programs show skilled behaviour. But this "knowledge mining"
view has many weaknesses, as Clancey [6] showed in his analysis of the MYCIN
(Knowledge-based Medical Expert System) system. Firstly, it is generally impossible to
elicit from professionals in a given application area an adequate set of rules for all but
trivial tasks. This elicitation problem has been called the "knowledge acquisition
bottleneck," a mournful phrase that has been repeated so often in literature that it almost
has become trite. In real-life situations, there is considerable degradation of performance
due to both presence of ambiguity and incomplete information as well as inadequate
modeling of the diseases by the rules. It is difficult to construct automatic systems to
provide classification or pattern recognition tools or help specialists make a decision.
Second, the resulting knowledge- based systems are generally difficult to maintain:
Adding one more rule can change the behaviour dramatically. Other conventional
methods like Bayes classifier and flow charts are also unable to deal with most complex
clinical decision making problems. The choice of a method to solve this problem depends
on the nature of problem like classification, automatic diagnosis, decision support. But
usually it is not possible to solve the problem completely by using just one methodology.
It is necessary to use different methodologies together in various combinations which are
chosen appropriate to the nature of the problem. At this point the importance of soft
computing (SC) methodologies is to come out.

This paper surveys the use of SC in medicine based on searches in medical data
base MEDLINE. The complementarities of FL, NNs and Probabilistic Reasoning
(PR) have an important consequence: in many cases a problem can be solved most
effectively by using FL, NN and PR in combination rather than exclusively. This is
also one of our purposes in this paper: to present SC methodologies available to
represent and manage imperfect knowledge in medicine.

2 Literature Review

We have already mentioned that one of the important goals of this paper is to survey
the use of SC in medicine. Searches are based on MEDLINE medical and engineering
database. The keywords used to search were based on the logical linguistic pattern;

1. “fuzzy logic and neural networks and biomedical or medicine”

2. “fuzzy logic and genetic algorithm and biomedical or medicine”

3. “neural networks and genetic algorithm and biomedical or medicine”

4. “fuzzy logic and neural networks and genetic algorithm and biomedical or
medicine”.

These linguistic patterns are suitable to find publications which contain SC
methodologies. By using these patterns we also classify the publications in accordance
with methodologies combinations. The search results show us popularity and
applicability of the methodology combinations. To compare these results to the use of
singular methodologies in studies, “fuzzy logic and biomedical or medicine”, “neural
network and biomedical or medicine” and “genetic algorithms and biomedical or
medicine” logical linguistic patterns are also searched in MEDLINE and results are

showed in a separate graphics.
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Observing the former studies which survey on the use of artificial intelligence (Al)
methodologies in medicine, the database search was restricted for the last decade and
especially the last five years need to be highlighted. The articles of Abbod et al.[7,8] and
Mahfouf et al.[9] have a good coverage for the use of fuzzy logic, smart and adaptive
engineering systems in medicine until the year 2001. All papers survey the use of fuzzy
logic and adaptive systems in diagnosis, therapy and imaging areas of medicine.

3 The Use of Soft Computing in Medicine

Medicine is a diverse field. It consists of various specialized sub-branches. Roughly
we can divide it into four broad fields as follows: basic science, diagnostic science,
clinical science and surgical science. Each of these fields can be further sub-
classified. In the following sections, a brief description is given of key contributions
which soft computing methodologies have made in each of the sub topics which have
been identified in the literature search. Table 1 shows the separately distribution of
soft computing studies as FL-NN, NN-GA and FL-GA, on medicine field. Please note
that this table is prepared by considering only the last five years 2001-2006 studies.

3.1 Basic Science

According to MEDLINE database search results the use of SC methodologies in basic
science of medicine is significantly increasing. Basic science is very suitable to all SC
methodologies. For example, in biochemistry field there is a variety of phenomena
with many complex chemical reactions, in which many genes and proteins affect
transcription or enzyme activity of others. It is difficult to analyze and estimate many
of these phenomena using conventional mathematical models. So, NNs, Fuzzy NN,
and the NN-GAs, have been applied to analysis in a variety of research fields.
Especially biochemistry, biostatistics, genetics, physiology and pharmacology
branches have applied to use of SC methodologies. Biochemistry, cytology, histology
and pathology are the other branches which have applied to SC in their studies.

FL-NN Applications in Basic Science

The literature search results on the use of FL-NN methodologies in basic science of
medicine take us to sub-branches like as cytology, physiology, genetics and
biostatistics. In cytology, Ma et al. [10] have developed an application for cell slice
image segmentation by using modern and traditional image segmentation technology.
Because of the complex structure of cell and cell slice image it is always difficult to
generally segmentate any kind of biological cell slice image. The study achieved to
obtain good results for morphological image segmentation, which includes edge
detection and regional segmentation, wavelet transform, by using fuzzy algorithms
and artificial neural networks.

When we look at physiology branch studies, we can easily say that the complexity
of biological signals to push the researchers to use FL-NN systems to solve the
physiological problems and get acceptable results. Das et al. [11] proves this
determination with their study. Because of the complexity of signals and in order to
improve the reliability of the recognition of diagnostic system they have preferred to
use hybrid fuzzy logic neural network methodology for recognition of swallow



72 A. Yardimci

acceleration signals from artifacts. They train two fuzzy logic-committee networks
(FCN); FCN-I and FCN-II. While the first one was used to recognize dysphagic
swallow from artifacts, the second was used to recognize normal swallow from
artifacts. Their evaluation results revealed that FCN correctly identified artifacts and
swallows. Also they highlighted at the end of the study that the use of hybrid
intelligent system consisting FL. and NN provides a reliable tool for recognition and
classification of biological signals. Catto et al. [12] and Futschik et al. [13] have used
to FL-NN combining methodology to predict cancer tissue from gene expression data.
Because of the poor accuracy of statistical analysis to prediction of tumor behaviors
they preferred to use FL-NN methodology in their genetic science based studies.
Knowledge-based neurocomputing was used by Futschik to contribute fuzzy rules
which point to genes that are strongly associated with specific types of cancer.

NN-GA Applications in Basic Science

This category is the most preferred one for basic sciences disciplines. Biochemistry,
biostatistics, genetics, histology, pathology, pharmacology and physiology are the
disciplines which have some NN-GA applications.

Agatonovic-Kustrin et al. [14-16] have done some studies on pharmacology by
using NN-GA 9combining methodologies. Agatonovic-Kustrin [15] developed a
simple model for prediction of corneal permeability of structurally different drugs as a
function of calculated molecular descriptors using artificial NNs. They used a set of
45 compounds with experimentally derived values to describe corneal permeability
(log C). A genetic algorithm was used to select a subset of descriptors that best
describe corneal permeability coefficient log C and a supervised network with radial
basis transfer function was used to correlate calculated molecular descriptors with
experimentally derived measure of corneal permeability. Their developed model was
useful for the rapid prediction of the corneal permeability of candidate drugs based on
molecular structure.

Most drugs are excreted into breast milk to some extent and are bioavailable to the
infant. The ability to predict the approximate amount of drug that might be present in
milk from the drug structure is very useful in the clinical setting. This mission is
studied by Agatonovic-Kustrin et al. [16]. They used GA and NN for to simplify and
upgrade their previously developed model for prediction of the milk to plasma (M/P)
concentration ratio, given only the molecular structure of the drug. As mentioned
befo9re in their previous study GA was used for a same aim, to select a subset of the
descriptors that best describe the drug transfer into breast milk and NN to correlate
selected descriptors with them M/P ratio and developed a quantitative structure-
activity relationships (QSAR). The averaged literature M/P values were used as the
artificial neural networks’s (ANN) output and calculated molecular descriptors as the
inputs. Before each training run, data sets were split randomly into three separate
groups and both weights and biases were initialized with random values. As a result
unlike previously reported models, this developed model does not require
experimental parameters and useful prediction of M/P ratio of new drugs and reduce
the need for actual compound synthesis and M/P ratio measurements.

Rask et al. [17] used GA to design NN structure in their automatic error reduction
study for the real time dynamic biomechanical model of the human elbow joint with
NN-GA combining methodology. They achieve the result of the GA networks
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reduced the error standard deviation across all subjects. Ogihara et al. [18] developed
an anatomically and physiologically based neuro-musculo-skeletal model using NNs
by optimized GA, to emulate the actual neuro-control mechanism of human bipedal
locomotion. These two studies were given as a sample to application of NN-GA
combining methodologies on physiology science.

3.2 Diagnostic Science

Diagnostic science mainly includes clinical laboratory sciences and radiology sciences.
Database search results show that the almost SC application studies done in radiology
especially for interventional radiology. Interventional radiology is concerned with using
imaging of the human body, usually from CT, ultrasound, or fluoroscopy, to do
biopsies, place certain tubes, and perform intravascular procedures.

If we compare to prefer and use of SC methodologies we clearly see that FL-NN
applications is the first and nearly unique one for diagnostic science area. There are
some applications which were done with NN-GA but these are very few when compare
them to FL-NN applications.

Image segmentation is one of the most important steps leading to the analysis of
digital images, its main goal being to divide an image into parts that have a strong
correlation with objects or areas of the real world. Image segmentation is an indispens-
able process in the visualization of human tissues, particularly during clinical analysis of
magnetic resonance (MR) images. But, MR images always contain a significant amount
of noise caused by operator performance, equipment, and the environment, which can
lead to serious inaccuracies with segmentation. Shen et al. [19], Meyer-Baese et al. [20]
and Wismuller et al. [21] have used FL-NN methodology in their recent studies to solve
magnetic resonance imaging (MRI) problems. These studies are also good examples to
use FL-NN and NN-GA methodologies.

3.3 Clinical Disciplines

MEDLINE database search results showed that the clinical sciences are the most
popular and suitable area for the SC methodology applications in medicine. So far, 60%
of SC methodology applications were done for clinical science disciplines. Although the
studies shows a regular dispersion to all sub-branches of clinical science, according to
search results evaluation it is obvious that the cardiology, neurology, critical care
medicine, anesthesiology and physical medicine and rehabilitation are the most
preferred disciplines. When we compare to preference of SC methodologies we clearly
see that the FL-NN methodology is significantly the most preferred one. This result also
shows parallelism with a result of the preference of SC methodologies in medicine.
Another important result related to the use of SC in the clinical science is there is not
any study that has used FL-GA methodology so far.

FL-NN Studies in Clinical Science

Anesthesiology. Anesthesia is defined as the loss of sensation resulting from pharma-
logical depression of nerve function or from neurological dysfunction [8]. There are
some good examples of the use of adaptive systems for controlling blood pressure,
analgesia, paralysis, unconsciousness and septic shock in the field of anesthesia.
Zhang et al. [22] and Allen and Smith [23] have studied modeling and controlling
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depth of anesthesia (DOA). In anesthesia, two approaches are being considered for
measuring the DOA: indirect or direct [8]. The indirect method is achieved by
monitoring clinical signs of anesthesia such as blood pressure and heart rate which are
affected by the infused drugs. In contrast, the direct method measures anesthesia
move directly from the nerves or the brain, such as in the muscle relaxation and
evoked responses of the brain [8]. Allen and Smith have investigated utility of the
auditory evoked potential (AEP) as a feedback signal for the automatic closed-loop
control of general anesthesia using FL-NN methodology. A simple back-propagation
NN was trained for AEP and its output used to FL infusion controller for the
administration of anesthetic drugs.

Cardiology. Cardiology is concerned with the heart and cardiovascular system and
their diseases. The majority of work done on the utilization of adaptive systems has
been to adaptive pacemakers. Recently, Ubeyli and Guler [24] have introduced a
successful tool which is an adaptive neuro-fuzzy inference system for detection of
internal carotid artery stenosis and occlusion. The internal carotid arterial Doppler
signals recorded from 130 subjects and internal carotid artery conditions were
detected by three adaptive neuro-fuzzy inference system (ANFIS) classifiers. In spite of
spectral analysis of the Doppler signals produced information concerning the blood
flow in the arteries, NNs may offer a potentially superior method of Doppler signal
analysis to the spectral analysis methods. The predictions of the tree ANFIS classifier
were combined by the fourth ANFIS classifier. Study results showed that accuracy
rates of the ANFIS model were found to be higher than that of the stand-alone NN
model and indicate that the proposed ANFIS model has some potential in detecting
internal carotid artery stenosis and occlusion.

The other literature works done successfully in cardiology discipline are; Kashihara
et al. [25] have studied an automated drug infusion system using FL-NN methodology
to control mean arterial pressure (MAP) in acute hypotension. Shyu et al. [26] proposed
a method for detecting ventricular premature contraction (VPC) from the Holter system
using wavelet transform and fuzzy neural network (FNN). Serhatlioglu et al. [27] have
investigated the effects of diabetes mellitus on carotid artery by using a neurofuzzy
system.

Critical Care Medicine. Critical care is concerned with the therapy of patients with
serious and life-threatening disease or injury. Intensive care medicine employs invasive
diagnostic techniques and temporary replacement of organ functions by technical
means. Critical care applications are close to anesthesia and pulmunology in their
medical function. Blood pressure and respiration regulation, electroencephalogram
(EEG) monitoring and pain relief are the main application areas of critical care
medicine.

Artificial ventilation of the lungs is one of the the major components of intensive
care therapy. The aim is to deliver oxygen to the tissues and to remove carbon dioxide
when the patient’s lungs are not able to function adequately [28]. The clinicians in the
critical care unit adjust the various ventilator settings in order to achieve a reasonable
level of oxygenation in the blood. Clinicians make these decisions based upon
knowledge of the pathophysiology of the lungs and the patient’s condition and the
past medical history [28]. Kwok et al. [28] have developed an ANFIS and multilayer
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perceptron (MLP) in rule-base derivation for ventilator control and tested it with
closed-loop simulations. The developed ANFIS model was a Sugeno-type fuzzy
inference system which had three inputs and one output. The consequent parts were
constants. Firstly clustering was applied to the training data using MATLAB toolbox.
A hybrid algorithm (gradient descent and the least-square estimation algorithms) was
used for training. Using the same data training dataset they developed a feed-forward
MLP. It has same inputs and output as for the ANFIS model. The performance of
these two models was compared to that of FAVeM which is a previously developed
fuzzy advisor for ventilator management [29]. As a result the use of adaptive neuro-
fuzzy systems can facilitate the modeling of the clinicians’ knowledge in the
development of intelligent advisors for intensive care ventilators. Both the ANFIS and
MLP were shown to be able to model clinicians’ decision-making accurately.
However, the ANFIS is more interpretable than the MLP.

Neurology. Neurology is concerned with the diagnosis and treatment of nervous systems
(central, peripheral, autonomic, neuromuscular junction and muscle) diseases.

Most of the neurology studies were focused on sleep analysis, EEG and
electromyogram (EMG) analysis subjects. Using nonlinear adaptive fuzzy approximator
(NAFA), Zhang et al. [30] achieved to provide efficient nonlinear separation of single-
sweep evoked potentials (EPs), which allows for quantitative examination of the cross-
trial variability of clinical EPs. The NAFA is characterized by concise representation of
structured knowledge, fast learning capability, as well as universal approximation
property. It was applied to forecast the non-stationary EEG time-series and to estimate
single-sweep EPs.

In an unusual study, Palaniappan and co-workers [31] used neural network
architecture for incremental supervised learning of analog multidimensional maps
(fuzzy ARTMAP) and NNs for to design a new brain-computer interface (BCI). They
aim was to classify the best three of five available mental tasks for each subject using
power spectral density (PSD) values of EEG signals. They tested the system with ten
experiments; employing different triplets of mental tasks for each subject. Their
findings showed that the average BCI- fuzzy ARTMAP outputs for four subjects gave
less than 6% of error using the best triplets of mental tasks identified from the
classification performances of fuzzy ARTMAP. This clearly implies that the BCI-
fuzzy ARTMAP can be successfully used with a tri-state switching device.

4 Results and Discussion

An overview of different SC techniques is presented in this paper along with the review
of important medicine applications. The proficiency of SC techniques has been explored
in almost every field of medicine. Based on this study future developments of SC
technology in medicine can be tentatively forecast. Table 1 summary the number of
applications of SC methodologies in medicine on a yearly basis. FL, NN and GA based
search results are given here to help reader understand the situation and compare the
number of cited SC based papers in medicine.
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Table 1. The number of applications of SC methodologies in medicine on a yearly basis

Publication year Total
1995-1999 2000 2001 2002 2003 2004 2005

*FL 184 41 81 44 45 58 42 495
NN 641 160 171 172 192 239 194 1769
GA 43 20 18 17 14 28 29 169
FL-NN 29 6 23 13 14 8 101
NN-GA 17 2 5 5 6 6 46
FL-GA 3 1 - 1 - 7
FL-NN-GA 1 - - 1 1 1 - 4

* FL:Fuzzy logic, NN:Neural networks, GA:Genetic algorithms, FL-NN:Fuzzy logic-Neural networks,
NN-GA:Neural networks-Genetic Algorithms, FL-GA:Fuzzylogic-Genetic Algorithms,
FL-NN-GA: Fuzzy logic-Neural networks-Genetic algorithms.

MM-GA applications in medicine

Ly )

FL-GA applications in medicine

FL-MM applications in medicine

& A

OPasic Science O Clhnical Science 8 Diagnostic Saence O Surgical Science

Fig. 1. Comparison of the use of SC methods in medicine and sub-branches of medicine

Especially radiology and neurology disciplines were used SC in classification and
diagnosis studies. It should be noted that radiology, imaging and diagnosis studies are
always related to other disciplines of medicine such as neurology, dermatology,
pulmonology and oncology. To prevent to repeat one study in two areas and to find to
correct group for study, all publications examined carefully.

The preference of SC methodologies in medicine is illustrated in Figure 1. The
mostly used methodology is FL-NN 70% then NN-GA 27% and FL-GA 3%. As far
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FL-NN methodology is significantly used in clinical science of medicine. 60% of
cited FL-NN studies are related clinical science. On the other hand NN-GA and FL-
GA methodologies were mostly preferred by basic science of medicine.

The main findings of the study are:

a. In genetics, physiology, interventional radiology, anesthesiology, cardiology, and
neurology disciplines there are undeniable interest in studying SC methodologies.
It proves to be very fruitful to study SC in these disciplines.

b. In the field of clinical laboratory science and surgical science, there are no
specific applications to date.

c. SC methodologies give birth to new ideas in neighboring disciplines in medicine.

The last point which we got from search results is that the SC term is not used well
enough as a keyword in studies. Hybrid systems, combining systems, fuzzy-neural,
fuzzy GAs, neural GAs terms are mostly preferred instead of SC.

There is a growing interest in SC tools in medicine, which are used to handle
imprecision and uncertainty, and to build flexibility and context adaptability into
intelligent systems. It is obvious that the SC methodologies will be most preferred
tools in medicine in the near future with its flexible information processing capability
for handling real life ambiguous situations. A number of SC methods and theirs
applications in medicine have been described in this paper. This paper can be used as
a guide for future studies. The situation of present studies and virgin sub-branches of
medicine may help researchers to orientate their study areas and to choose
methodologies for their studies.
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Abstract. Exploratory matrix factorization methods like ICA and
LNMF are applied to identify marker genes and classify gene expression
data sets into different categories for diagnostic purposes or group genes
into functional categories for further investigation of related regulatory
pathways. Gene expression levels of either human breast cancer (HBC) cell
lines [5] mediating bone metastasis or cell lines from Niemann Pick C pa-
tients monitoring monocyte - macrophage differentiation are considered.

1 Introduction

The transcriptom comprises all cellular units and molecules needed to read out
the genetic information encoded in the DNA. Among others, the level of messen-
ger RNA (mRNA), specific to each gene, depends on environmental stimuli or
the internal state of the cell and represents the gene expression profile (GEP) of
the cell. High-throughput genome-wide measurements of gene transcript levels
have become available with the recent development of microarray technology [IJ.
Microarray data sets are characterized by many variables (the GEPs) on only
few observations (environmental conditions). Traditionally two strategies exist
to analyze such data sets: a) Supervised approaches can identify gene expression
patterns, called features, specific to each class but also classify new samples. b)
Unsupervised approaches like PCA [3], ICA or NMF [2] represent exploratory
matrix decomposition techniques for microarray analysis. Both approaches can
be joined to build classifiers which allow to classify GEPs into different classes.
We apply PCA, ICA and NMF to two well-characterized microarray data sets
to identify marker genes and classify the data sets according to the diagnostic
classes they represent.

2 The Data Sets

2.1 Breast Cancer Cell Lines - Bone Metastasis
The data set was taken from the supplemental data to [B]. The study investigated
the ability of human breast cancer (BC) cells (MDA-MB-231 cell line) to form

J. Marques de S& et al. (Eds.): ICANN 2007, Part II, LNCS 4669, pp. 80-83 2007.
© Springer-Verlag Berlin Heidelberg 2007



Exploiting Blind Matrix Decomposition Techniques 81

bone metastasis. Data set 1 comprised 14 samples; experiments 1-8 showed weak
(7 and 8 mild) metastasis ability, while experiments 9-14 were highly active.
Data set 2 consists of 11 experiments, 5 among them of high and 6 showing weak
metastasis ability. Both data sets carry measured expression levels of 22283 genes
using the Affymetrix Ul33a chip. For each measurement, the flags A(absent) or
P(present) are provided. All genes showing more than 40% absent calls in one
of the two data sets were removed. The remaining data sets contained the same
10529 genes. The authors published a list of 16 potential marker genes, 14 of
which were still contained in the reduced data set.

2.2 Monocyte - Macrophage

For the monocyte - macrophage (MoMa) data set the gene-chip results from
three different experiments were combined. In each experiment human periph-
eral blood monocytes were isolated from healthy donors (experiment 1 and 2)
and from donors with Niemann-Pick type C disease (experiment 3). Mono-
cytes were differentiated to macrophages for 4 days in the presence of M-CSF
(50 ng/ml,R&D Systems). Differentiation was confirmed by phase contrast mi-
croscopy. Gene expression profiles were determined using Affymetrix HG-U133A
(experiment 1 and 2) and HG-U133plus2.0 (experiment 3) Gene Chips covering
22215 probe sets and about 18400 transcripts (HG-U133A). Probe sets only
covered by HG-U133plus2.0 array were excluded from further analysis. In ex-
periment 1 pooled RNA was used for hybridization whereas in experiment 2
and 3 RNA from single donors were used. The final data set consisted of seven
monocyte and seven macrophage expression profiles and contained 22215 probe
sets. After filtering out probe sets which had at least one absent call 5969 probe
sets remained for further analysis.

3 Data Analysis

The gene expression profiles are represented by an (N x M) data matrix X =
[x7 - - - xps] with each column x,,, representing the expression levels of all genes in
one of the M experiments conducted. Note that the data matrix is non-square
with N ~ 103 - M typically. This renders a transposition of the data matrix
necessary when techniques like PCA and ICA are applied. Hence ICA follows
the data model X7 = AS. Thus in the data matrix each row represents the
expression profile of all genes within one experiment, the rows of S contain the
nearly independent component expression profiles, called expression modes, and
the columns of A the corresponding basis vectors. In this study the JADE-
algorithm [4] was used throughout, though with the natural gradient and the
fastICA algorithm equivalent results were obtained. With NMF, a decomposition
is sought according to X = WH which is not unique, of course, and needs further
specification. The columns of W are usually called metagenes and the rows of H
are called meta-experiments. The locaNMF (LNMF) algorithm [7] was applied
in this study.
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3.1 ICA - Analysis

We propose a method based on basic properties of the matrix decomposition
model as well as on available diagnostic information to build a classifier. ICA
essentially seeks a decomposition X7 = AS of the data matrix. Column a,,
of A can be associated with ezpression mode s,,, representing the m-th row of
S. The m-th row of the matrix A contains the weights with which the £k < M
expression levels of each of the N genes, forming the columns of S, contribute
to the m-th observed expression profile. Hence a concise analysis of matrix A
hopefully provides insights into the structure of the data set.

Each microarray data set investigated here represents at least two different
diagnostic classes. If the M expression profiles of X7 are grouped together ac-
cording to their class labels, this assignment is also valid for the rows of A. Sup-
pose one of the independent expression modes s, is characteristic of a putative
cellular gene regulation process, which is related to the difference between the
classes. Then in all experiments, this characteristic profile should only contribute
substantially to experiments of one class and less so to the experiments of the
other class (or vice versa). Since the m-th column of A contains the weights with
which s, contributes to all observations, this column should show large/small
entries according to their class labels. In contrast to the method used by [6], the
clinical diagnosis of the experiments is taken into account. The strategy con-
centrates on the identification of a column of A, which shows a class specific
signature. The expression mode related to that column is assumed to provide
a good candidate for further class specific analysis. Informative columns were
identified using the correlation of each column vector of A with a design vector
d whose m-th entry is d,, = 1, according to the class label of experiment x;.

3.2 Local NMF - Analysis

With NMF, each column of X comprises the expression profile resulting from
one experiment. After applying the LNMF- algorithm [7], at least one column
of W, called a metagene is expected to be characteristic of a regulatory process,
which is related to the class specific signature of the experiments. Its contribu-
tion to the observed expression profiles is contained in a corresponding row of
matrix H, called a meta-ezperiment. Once an informative meta-experiment is
identified, further analysis can be focussed on the genes contained in the corre-
sponding metagene. As before all experiments are labeled according to known
diagnostics. The correlation coefficients c¢(h?, d) between every meta-experiment
h/ and d are then computed. Empirically, |c| > 0.9 signifies a satisfactory simi-
larity between a meta-experiment and the design vector. The number of extracted
basis components k, i.e. the metagenes, controls the structure of W and H. For
several decompositions X = WH using different numbers k of metagenes, the
rows of H are studied with respect to their correlation with the design vector.
A metagene is considered informative only if all entries of the corresponding
meta-experiment which belong to class 1 are smaller than all other entries of
that meta-experiment (or vice versa). After 5000 iterations, the cost function
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of the LNMF algorithm did not show noticeable changes with any of the data
sets investigated. For k = 2,...,49, ten separate simulations were carried out
and only the simulation showing the smallest reconstruction error was stored.
Further matrix decompositions with £ = 50, ...,400 metagenes were examined.
In the latter case, three simulations were performed only for each k.

4 Results

4.1 Breast Cancer Data Set

In order to test the classification algorithms for diagnostic purposes we first
selected the set of expression profiles from bone metastasis mediating breast
cancer cell lines provided by [5].

- 3|
I III 4

s o 10 11 12 15 14

Fig. 1. Left: Entries of the 9-th column of matrix A as estimated with JADE, Right:
Matrix H using k = 4 as estimated with LNMF. Row 3 and 4 show a clear separation
between columns 1,...,8 and columns 9, ..., 14.

ICA Analysis. The analysis of the 14 x 14 matrix A identified one column with
a correlation coefficient of 0.89 (see Fig.[I]). Hence sg should contain genes which
provide diagnostic markers for the metastasis forming ability of the cell lines
considered. In [5], a list of 16 putatively informative genes is provided. As shown
in Table[ the expression levels (taken from S) across all M experiments of many
of these genes exhibit a high correlation with the design vector d indicating a
rather high single discriminative power. Many of the genes belong to the most
negatively expressed genes of expression mode 9.

An even more revealing picture appears if one divides componentwise the rows
of the data matrix by the weighted row of the informative expression mode. The
resulting diagram marks genes which contribute most to the observation. Many
of the genes listed by [5] stick out as informative here (see Fig. 2]).

NMF Analysis. The same data set was also analyzed using the LNMF algo-
rithm. The decomposition is very robust and highly accurate. Considering the
correlation between any row of matrix H and the design vector d, the decom-
positions into k = 4,20,45,47 and k = 120,230,400 metagenes are suggested as
being most informative. Considering the case k = 4, two of the four rows of the
4 x 14 matrix H show excellent correlations to the design vector (weak/strong),
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Table 1. The correlation |c| of the gene vector s, with the design vector d for the 16
genes suggested by [5]. number denotes the column index in the data set X, gene name

denotes the affymetrix-ids, — genes missing in the reduced data set.

number affymetrix-id gene name c-value number affymetrix-id gene name c-value

3611 204749-at NAPIL3  -0.96 3694 204948-s-at FST -0.89
1586 201859-at PRG1 -0.95 10480 222162-s-at ADAMTS1 -0.86
5007 209101-at CTGF -0.94 6133 211919-s-at CXCR4 -0.81
4311 207345-at FST -0.93 4233 206926-s-at  1L11 -0.57
1585 201858-s-at PRG1 -0.92 3469 204475-at MMP1 -0.47
4529 208378-x-at FGF5 -0.92 4232 206924-at IL11 -0.43
5532 209949-at NCF2 -0.92 —- 210310-s-at FGF5
860 201041-s-at DUSP1 -0.89 —- 209201-x-at CXCRA4
50
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Fig. 2. Componentwise ratio of row x9 with angse. The genes of [5] are marked with
crosses.

see Fig. [[l with coefficients ¢(row 3,d) = —0.91 and c(row 4,d) = 0.91, respec-
tively. Thus, a decomposition in a comparatively small set of metagenes perfectly
displays the diagnostic structure of the breast cancer data set. For the sake of
comparison, a decomposition into k£ = 20 metagenes revealed four informative
meta-experiments and their related metagenes. A comparison of the ten most ex-
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pressed genes in each of the four identified metagenes shows, that 5 genes were
also identified in case of k = 4, while 7 genes were also identified with ICA and
9 genes were identified with a SVM [§] approach as well. These genes are spread
over all four metagenes.

4.2 Monocyte - Macrophage Data Set

4.3 ICA Analysis

Using a decomposition into k = M = 14 independent expression modes, column
a7 of the resulting mixing matrix A showed a moderately strong correlation
|c] = 0.7 with the design vector dy with components d; = —1,4 = 1,...,7 and

d; = 1,i = 8,...,14 to discriminate GEPs taken from monocytes from those
taken from macrophages. Column 1 showed a correlation coefficient |¢| = —0.95
with design vector do with components d; = 1,7 = 1,...,4 and 7 = 8,..., 11,

while d; = —1,7=05,...,7and 12,...,14. These signatures are shown in Fig. Bl
The signature of column 7 is not very clear cut. Hence a systematic investigation

—zo0 |

—aco |

—eoo |

—soo |

—1000 |

closz

Fig. 3. Signature of column 7 (left) related with the discrimination monocyte vs
macrophage (case 1) and column 1 (right) related with the discrimination healthy
vs diseased (case 2) for k = M = 14 extracted ezpression modes

Table 2. Ten most strongly expressed genes in source 3 related with case 2 and in
source 6 related with case 1; * detected by ICA, k = 3, ** detected by ICA, k =8

3neg 3pos 6neg 6pos
gene loki-id gene loki-id gene loki-id gene loki-id
1 4546 OAZ1* 5834 3GM2A 752 NFKBIA 530 GPNMB*
2 4257 C6orf62 5863 STAB1* 1780 SI00A9 1914 MMP9
3 2592 ARPC2* 3901 GM2A 1495 1L8* 304 CTSB
4 3552 RPLT* 4490 HLA-A 2191 FCN1 1485 FUCAT1*
5 1634 S100A4 4482 SOD2 1525 S100A8* 958 LIPA
6 4686 ITM2B 752 NFKBIA 5675 CSPG2 160 CD63
7 619 ARHGDIB 1495 IL8* 1392 TNFAIP3 788 LAMP1
8 4588 TMSB4X* 2892 HLA-B 464 DUSP1 2601 TFRC
9 1973 ALOX5AP 3237 SAT 965 PRG1 572 CSTB
10 2750 HLA-DRA* 332 PSAP* 2176 FPR1 3855 K-ALPHA-1
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Fig. 4. Signatures of columns 1 & 3 (left) for £ = 3 and columns 3 & 6 (right) for
k = 8 related to cases 1 (monocyte vs macrophage) and 2 (healthy vs diseased)
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Fig. 5. Signature of row 28 of Hy—29 (meta-experiment 28) and corresponding column
k = 28 of Wy—29 (metagene 28)

of the structure of the mixing matrices was carried out while increasing the
extracted number of expression modes from k = 2, ..., 14. The resulting maximal
correlation coefficients |c(k)| showed little variation in both cases with average
values (Jc1|) = 0.79 and (Je1]) = 0.94. The maxima occur at k = 3 in case 1
and at k = 8 in case 2. The corresponding column signatures are also shown in
Fig. Bl A list of the 10 most strongly expressed genes in each case is given in
Table 2l Note that the dimension reduction can be done during the whitening
step of the JADE algorithm. The information loss is not critical in any case as
the first three principal components cover 96, 1% of the variance.
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4.4 LNMF Analysis

Monocyte vs. Macrophage. A LNMF analysis was also performed on the 14
experiments of the MoMa data set. Again the number k of extracted metagenes
was varied systematically to identify an optimal decomposition of the N x M data
matrix X. For every k, the correlation coefficients between the meta-experiments
and the design vectors d;,i = 1,2 were computed. For k£ > 100, several meta-
experiments showing small entries for all monocytes < entries for the macrophage
experiments, indicated by a correlation of ¢ > 0.9. Up to & = 90 mostly one
significant meta-experiment was observed, for k > 90, except k = 120,170 and
190, at least two significant meta-experiments were detected. Rows of H related
to the reverse case of macrophage < monocyte do not appear at a comparable
level of correlation to the design vector. Figure Bl exhibits the signature of row
28 of Hi—29 and the related metagene.

Healthy vs. Diseased. In this case, the number of meta-experiments with
a strong correlation with the design vector reflecting over-expressed genes in

Table 3. The 10 most expressed genes in metagene 28; * detected by ICA, k = 3, **
detected by ICA, k =8

metagene 28

k gene id k gene-nr. loki-id
1 530 *GPNMB** 6 2968 *HLA-DRB1
2 2511 *HLA-DRB1 7 2109 HLA-DRBI1
3 3068 *CDT74 8 170 GRN
4 3237 * SAT 9 3901 GM2A
5 327 *PSAP 10 4550 GRN
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Table 4. The 10 most expressed genes in metagene 13

metagene 13
k gene loki-id  k gene loki-id
12641 SAP18 6 954 NEDDS8
2 3179 — 7 95 RPS25
3 2450 RAB1A 8 1501 ATP6V1C1
4 2657 SUMO1 9 5368 CHMP5
54713 RAB31 10 5594 TSPYL1

case of cell lines taken from Niemann Pick C patients increases nearly linearly
with increasing k. In case of under-expressed metagenes related to the disease,
only a few significant meta-experiments appear for £ > 60. As an example, a
decomposition in k£ = 370 metagenes is considered. Meta-experiment 13 yields
¢ = —0.98 with respect to the separation between the classes "healthy” and
"diseased” (see figure ). The 10 most strongly expressed genes in metagene 13
which qualify as marker genes for the discrimination between healthy subjects
and Niemann Pick C patients are listed in Table [l

5 Conclusion

The application of matrix decomposition techniques like ICA and NMF to mi-
croarray data explores the possibility to extract features like statistically inde-
pendent expression modes or strictly positive and sparsely encoded metagenes
which might offer a more favorable and intuitive interpretation of the underlying
regulatory processes. Combined with a design function, reflecting the experimen-
tal protocol, biomedical knowledge is incorporated into the data analysis task
which allows to construct a classifier for diagnostic purposes based on a global
analysis of the whole data set rather than a statistical analysis based on sin-
gle gene properties. This global analysis is based on the columns (ICA) or rows
(NMF) of a matrix which contains the weights with which the underlying expres-
sion modes or metagenes contribute to any given observation in response to an
applied environmental stimulus. If the signature of these column or row vectors
matches the experimental design vector, the related expression mode or metagene
contains genes with a high discriminative power which can be used as biomarkers
for diagnostic purposes. Furthermore a detailed statistical analysis of these infor-
mative genes combined with a data bank search for their functional annotations
might reveal underlying gene regulatory networks and can help elucidate the
processes at the roots of the disease investigated. In any case knowledge of such
marker genes allows to construct a simple and cheap chip for diagnostic purposes.
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Abstract. In todays bioinformatics, Mass spectrometry (MS) is the key
technique for the identification of proteins. A prediction of spectrum peak
intensities from pre computed molecular features would pave the way to
better understanding of spectrometry data and improved spectrum eval-
uation. We propose a neural network architecture of Local Linear Map
(LLM)-type for peptide prototyping and learning locally tuned regression
functions for peak intensity prediction in MALDI-TOF mass spectra. We
obtain results comparable to those obtained by v-Support Vector Regres-
sion and show how the LLM learning architecture provides a basis for
peptide feature profiling and visualisation.

1 Introduction

In todays bioinformatics, Mass spectrometry (MS) is the key technique for the
identification of proteins. Matrix-assisted laser desorption ionization (MALDI)
is one of the most often used technique for the analysis of whole cell proteomes
in high-throughput experiments. There are different applicatio