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Abstract. Reservoir Computing (RC) is a recent research area, in which
a untrained recurrent network of nodes is used for the recognition of tem-
poral patterns. Contrary to Recurrent Neural Networks (RNN), where
the weights of the connections between the nodes are trained, only a lin-
ear output layer is trained. We will introduce three different time-scales
and show that the performance and computational complexity are highly
dependent on these time-scales. This is demonstrated on an isolated spo-
ken digits task.

1 Introduction

Many real-world difficult tasks that one would like to solve using machine learn-
ing are temporal in nature. In the field of neural networks, several approaches
have been proposed that introduce the notion of time into the basic concept of
stateless, feed-forward networks, where the main objective is of course to give
the network access to information from the past as well as the present. One well
known method is to feed the signals of interest through a delay line, which is
then used as input to the network (Time Delay Neural Networks). These how-
ever introduce additional parameters into the model and impose an artificial
constraint on the time window. A more natural way of dealing with temporal
input signals is the introduction of recurrent, delayed connections in the net-
work, which allow the network to store information internally. These Recurrent
Neural Networks (RNN) are a theoretically very powerful framework, capable of
approximating arbitrary finite state automata [1] or even Turing machines [2].
Still, wide-scale deployment of these networks is hindered by the difficult and
computationally costly training, caused in part by the fact that the temporal
gradient information gets washed out as it is back-propagated into the past [3].

Reservoir Computing (RC) offers an intuitive methodology for using the tem-
poral processing power of RNN without the hassle of training them. Originally
introduced independently as the Liquid State Machine [4] or Echo State Net-
works [5], the basic concept is to randomly construct an RNN and to leave the
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weights unchanged. A separate linear regression function is trained on the re-
sponse of the reservoir to the input signals using pseudo-inverse. The underlying
idea is that a randomly constructed reservoir offers a complex nonlinear dy-
namic transformation of the input signals which allows the readout to extract
the desired output using a simple linear mapping.

Evidently, the temporal nonlinear mapping done by the reservoir is of key
importance for its performance. One of the appealing properties of this type of
networks is the fact that they are governed by only a few global parameters.
Generally, when solving a task using RC, the search for optimal reservoir dy-
namics is done by adjusting global scaling parameters such as the input scaling
or spectral radius1. However, as we will show, optimizing the temporal proper-
ties of the entire system can also be very influential to the performance and the
computational complexity. Since a reservoir is a dynamic system that operates
at a certain time-scale, the precise adjustment of the internal temporal behavior
of the reservoir to both the input signal and the desired output signal is im-
portant. In this contribution, we present an overview of the different ways in
which the dynamic behavior of reservoirs has been described in literature, and
we investigate the interplay between different temporal parameters for each of
these models when applied to signal classification tasks.

2 Reservoir Computing and Time-Scales

Although there exist some variations on the global description of an RC system,
we use this setup:

x [t + 1] = f
(
W res

res x [t] + W res
inpu [t]

)

ŷ [t + 1] = W out
res x [t + 1] + W out

inp u [t] + W out
bias,

with u [t] denoting the input, x [t + 1] the reservoir state, y [t + 1] the expected
output, and ŷ [t + 1] the actual output2. All weights matrices to the reservoir
(W res

� ) are initialized at random, while all connections to the output (W out
� ) are

trained. The non-linearity f is a hyperbolic tangent.
In this system we can define three different time-scales: the time-scale of the

input, the internal state, and the output. Traditionally these are all the same,
but in this paper we will show that performance can be improved and that
computational demands can be decreased by setting these time-scales correctly.

2.1 Input Time-Scale and Integrator Nodes

In [6], the notion of input time-scales and the link to node integration was
introduced. In this contribution we will look at three ways to add an integrator
to a node: after the non-linearity (as used in [6]), before the non-linearity (as

1 The largest absolute eigenvalue of the connection matrix.
2 We denote discrete time with [t] and continuous time with (t).
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used in continuous time RNN), and over the non-linearity (which we introduce).
We will first discuss the integrator after the non-linearity.

The input time-scale and integrator can be introduced by starting from a
continuous time differential equation:

ẋ =
1
c

(
−ax + f

(
W res

inpu + W res
res x

))

where a denotes the retainment rate (which in this work we set to 1, meaning that
no information is leaked), and c is a scaling factor for the temporal dynamics. If
this is discretely approximated by using Euler discretization we get:

x((t + 1)δ2) = (1 − λ)x(tδ2) + λf
(
W res

inpu(tδ2) + W res
res x(tδ2)

)

where δ2 is the Euler step and λ = δ2/c. Note that the Euler time step δ2
determines the sample rate of the input, while c can be used to scale the speed
of the dynamics.

Although the retainment rate was the major research topic of [6] and λ was
ignored, this work focuses on λ and sets the retainment rate to 1. This is because
that parameter was previously not thoroughly investigated, and when changing
λ the effective spectral radius of the reservoir does not change, while, when
changing a, it does. When changing the spectral radius, the dynamic regime
of the reservoir, which is very important for the performance of the reservoir,
changes. This coupling between time-scale settings and dynamic regime settings
is not desired.

When the integrator is placed before the non-linearity, which is common prac-
tice in continuous time RNN, we end up with these equations:

z((t + 1)δ2) = (1 − λ)z(tδ2) + λ
(
W res

inpu(tδ2) + W res
res x(tδ2)

)

x((t + 1)δ2) = f(z((t + 1)δ2)).

This has the advantage of being stable: if an integrator starts to blow up, it is
constrained by the non-linearity, which is not the case in the previous model.

Yet another, empirical model, is possible by placing the integrator over the
non-linearity:

x((t + 1)δ2) = f
(
(1 − λ)x(tδ2) + λ

(
W res

inpu(tδ2) + W res
res x(tδ2)

))
.

The advantage of this is that an integrator can never blow up and that it has
no computational overhead since the integrators can be incorporated in the W
matrix by increasing the diagonal elements. But a drawback is that the integrator
does leak away even with a = 1. The leak is due to the contracting property
of the non-linear mapping of the hyperbolic tangent upon itself. This has as a
consequence that the overall amplitude of the reservoir dynamics scales down
when λ goes to 0.

Theoretically there are some strong and weak points concerning these three
possible models, but we will have to experimentally investigate which of these is
somehow ‘optimal’.
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The input of the reservoir is in practice always a sampled signal. We denote
the sampling time-scale of the input δ1. The resampling factor from input to in-
ternal time-scale is thus equal to δ2/δ1. This resampling should approximate the
ideal Nyquist, non-aliasing resampling operation. We use the Matlab resample
operation for this.

2.2 Output Time-Scale

In this work we also introduce an output time-scale

ŷ((t + 1)δ3) = W out
res x((t + 1)δ3) + W out

inp u(tδ3) + W out
bias.

The reservoir states and inputs are thus resampled to this new time-scale before
training and applying the linear readout. The resampling factor from internal to
output is δ3/δ2. We will call this reservoir resampling.

At a first glance this time-scale does not seem to be very important, but as we
will show in the experiments, changing this time-scale can have a drastic effect
on performance.

3 Experimental Setup and Results

For all of the following experiments, we used the Reservoir Computing Toolbox3

[7], which allows us to do all the simulations in the Matlab environment. With
this toolbox, we will study the task of speech recognition of isolated digits. The
Lyon passive ear model [8] is used to frequency-convert the spoken digits into
77 frequency channels. The task of recognizing isolated spoken digits by RC has
already been studied [7], and the results have been very positive. The dataset we
will use (a subset of the TI48 dataset) contains 500 spoken isolated digits, the
digits 0 to 9, where every digit is spoken 10 times by 5 female speakers. We can
evaluate the performance of the reservoir by calculating the Word Error Rate
(WER), which is the fraction of incorrectly classified words as a percentage of
the total number of presented words. Because of the randomness of the reser-
voirs, we will do every simulation 20 times with different stochastically generated
reservoirs, and use 10-fold cross validation to obtain a decent statistical result.

Ridge regression (least squares optimization where the norm of the weights
is added as a penalty) was used to train the readout, where the regularization
parameter was set by doing a grid search. To classify the ten different digits, ten
outputs are trained which should be 1 when the digit is uttered, -1 if not. The
temporal mean of the ten classifiers is taken over the complete sample, and a
Winner-Take-All is applied to this. The winner output represents the classified
digit.

The settings of the reservoir, like reservoir size which is 200 and spectral
radius which is 0.7, are in this paper intentionally chosen to be non-optimal so
3 Which is an open-source Matlab toolbox for Reservoir Computing, freely available

at http://www.elis.ugent.be/rct .
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Table 1. Minimal classification errors for all cases

input resampling reservoir resampling
integrator after non-linearity 2.15% 0.48%
integrator before non-linearity 2.32% 0.48%
integrator over non-linearity 1.36% 0.40%

we still have a margin of error left to evaluate the resampling techniques on. If
everything is set optimally we can very easily get zero training error!

In [6] the intricate interplay between optimal values of a and the spectral
radius is investigated. When changing λ, we notices that there is no such intri-
cate dependency to the spectral radius. The optimal spectral radius is not very
dependent on the value of λ.

3.1 Input Resampling vs. Integration

First we will study the influence of input resampling versus integration for the
different integrator options on the performance of the reservoir. To be able to
handle a broad range of parameters, we vary both these parameters in a loga-
rithmic way, with base 10. Figure 1 shows the results of this experiment.

For these experiments, the internal time-scale δ2 is set to 1 and the input
time-scale δ1 is changed. This is similar to keeping δ1 constant and changing δ2.
Note that when keeping λ constant and changing δ2, c changes. We can observe
a diagonal area on Figure 1 which corresponds to an optimal performance. This
optimal performance is actually achieved with a fixed value of c, but we perceive
it as a λ value which changes linearly with δ1, but this is due to the fact that
log10(λ) = log10(δ2)/ log10(c).

For all three integrator cases we see that the optimal performance is attained
with the least resampling (bottom of the plots). However, if we resample more,
the error only slightly increases. This creates a trade-off between computational
complexity and performance.

The optimal performance for the three different integrator settings are given
in Table 1. We see that the integrator over the non-linearity performs optimally,
which is nice, because this introduces no extra computational requirements.

3.2 Reservoir Resampling vs. Integration

The second experiment studies the output time-scale compared to the internal
integrator. The results of this experiment are shown in Figure 2. For these exper-
iments, the input time-scale is set to log10(δ1) = −2 and the internal time-scale
δ1 = 1. The setting of the input time-scale is not critical since the conclusions
of the results also apply to other input time-scale settings.

These figures are a bit more complex to interpret. The upper part, with
log10(δ3) = 0, has no reservoir resampling and is thus equal to a slice of Figure 1
where log10(δ1) = −2. When increasing the resampling of the reservoir states,
we see that for the region of low integration (close to 0) there is a significant
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Fig. 1. WER results for input resampling versus integration for the three integrator
options. The small squares denote minimal error.



The Introduction of Time-Scales in Reservoir Computing 477

−4
−2

0

0

1

2

0

0.02

0.04

0.06

0.08

0.1

log(δ
3
)

log(λ)

Testing error

W
E

R

Testing error

log(λ)

lo
g(

δ 3)

−4−3−2−10

0

0.5

1

1.5

2

(a) integrator after the non-linearity

−4
−2

0

0

1

2

0

0.02

0.04

0.06

0.08

0.1

log(δ
3
)

Testing error

log(λ)

W
E

R

Testing error

log(λ)

lo
g(

δ 3)

−4−3−2−10

0

0.5

1

1.5

2

(b) integrator before the non-linearity

−4

−2

0

0

1

2

0

0.02

0.04

0.06

0.08

0.1

log(δ
3
)

Testing error

log(λ)

W
E

R

Testing error

log(λ)

lo
g(

δ 3)

−4−3−2−10

0

0.5

1

1.5

2

(c) integrator over the non-linearity

Fig. 2. WER results for reservoir resampling versus integration for the three integrator
options. The small squares denote minimal error.
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Fig. 3. Classification error for a signal classification task with respect to the output
time-scale. Note that the time-scale is not logarithmic in this figure.

decrease of the error. But in the region where the integration is optimal there is
initially no improvement.

The bottom part of the figures show a drastic drop in performance when
log10(δ3) is larger than 1.5. With such a high input and reservoir resampling,
there is actually just one time step left! For this task we thus have optimal
performance when reducing all the reservoir’s dynamics to a single point in
state space: the centroid of the dynamics in state space. This is not completely
awkward since the post-processing of the linear classifier’s output is anyway by
taking its temporal mean before applying Winner-Take-All. The major drawback
of this drastic reservoir resampling is that all temporal information is lost. With
less reservoir resampling, the reservoir is able to already give a prediction of the
uttered word even if it is for example only partially uttered. We thus trade-off
performance to the ability of on-line computation.

One might think that when averaging out all the reservoir’s dynamics, it has
no real purpose. But when training a linear classifier to operate on the temporal
average of the frequency-transformed input, so without using a reservoir, we end
up with an error of 3%. This is quite good, but still an order of a magnitude
worse than when using a reservoir of only 200 neurons.

These conclusions are, however, partly due to the fact that here the desired
class output remains constant during the whole input signal. Figure 3 shows that
this is not generally the case. Here, the task is to do signal classification, whereby
the input signal is constructed by concatenating short signal pieces of 50 time
steps, whereby every piece is either a noisy sawtooth or a noisy square wave
with the same period. The task is then to classify the signal type at every time
step. As the results show, in this case there is a trade-off between the amount of
resampling of the reservoir responses and the amount of information available
to the linear readout to do the classification. In this case only a small amount of
reservoir resampling is needed to attain optimal performance. In state space this
can be seen as taking the centroid of a small temporal region of the trajectory.
This temporal averaging out of the dynamics seems to significantly increase the
classification performance of the RC system.
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4 Conclusion and Future Work

It was previously already mentioned that setting input time-scales is possible
[6], however, in this work we show that setting this time-scale is critical for
getting optimal performance. We showed that there is a clear link between node
integration and resampling. When using input resampling the computational
complexity decreases linearly with resampling, while only slightly influencing
the performance. We introduced three types of node integration and showed
how they perform on an isolated spoken digits classification task. The integrator
scheme introduced in this work performs optimally and can be implemented
without overhead.

Next we showed that an output time-scale can also be introduced. Although
that initially this might not seem to be influential on performance, we experimen-
tally show that a large performance gain can be achieved by optimally setting
this resampling. Here we get a speed-up and an improvement in performance.
This result suggests that for classification tasks it is not the actual precise dy-
namics that are important, but more the temporally filtered dynamics which is
the local centroid of the dynamics in state space.

There are many other options for future research based on this work. We will
investigate how this resampling scheme is applicable to more complex tasks like
continuous speech, where classification needs to be performed on-line, and where
there are multiple time-scales presents. To solve this we might need to introduce
hierarchical or heterogeneous reservoirs with different parts working at different
time-scales. Ultimately these temporal modules should be created autonomously.
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