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Abstract. We present a new learning algorithm for feed-forward neu-
ral networks based on the standard Backpropagation method using an
adaptive global learning rate. The adaption is based on the evolution of
the error criteria but in contrast to most other approaches, our method
uses the error measured on the validation set instead of the training set
to dynamically adjust the global learning rate. At no time the examples
of the validation set are directly used for training the network in order to
maintain its original purpose of validating the training and to perform
”early stopping”. The proposed algorithm is a heuristic method consist-
ing of two phases. In the first phase the learning rate is adjusted after
each iteration such that a minimum of the error criteria on the validation
set is quickly attained. In the second phase, this search is refined by re-
peatedly reverting to previous weight configurations and decreasing the
global learning rate. We experimentally show that the proposed method
rapidly converges and that it outperforms standard Backpropagation in
terms of generalization when the size of the training set is reduced.

1 Introduction

The Backpropagation (BP) algorithm [1] is probably the most popular learn-
ing algorithm for multilayer perceptron (MLP)-type neural architectures due to
its simplicity and effectiveness. However, the choice of the learning rate used
when updating the weights is crucial for the successful convergence and the
generalization capacity of the network. A too small learning rate leads to slow
convergence and a too high learning rate to divergence. Moreover, in the latter
case the network is likely to overfit to the training data when using an online
Backpropagation algorithm as it might specialize to the examples presented at
the beginning of the training. Numerous solutions for the dynamic adaptation
of the learning rate have been proposed in the literature. Most of them focus on
the acceleration of the training process rather than their generalization perfor-
mance. They can roughly be divided into two groups: global and local adaption
techniques. The former is referring to methods adjusting an overall learning rate
for the whole network and the latter to the adaptation of independent learning
rates for each weight.

A method for global adaptation has been proposed by Chan et al. [2] where the
angle between the last weight update and the current gradient is calculated. If it
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is less than 90◦ the learning rate is increased otherwise it is decreased. Salomon
et al. [3] proposed an evolutionary based adaption of the learning rate. At each
iteration, two weight updates, one with increased and with decreased learning
rate, are performed separately. The resulting network that performs better is
retained and used as a starting point for the next iteration. A heuristic method,
the so-called ”bold driver” method, has been employed by Battiti et al. [4] and
Vogl et al. [5]. Here the learning rate is adjusted according to the evolution of the
error criteria E. If E decreases the learning rate is slightly increased, otherwise
it is drastically decreased. Hsin et al. [6] propose to use a weighted average
of the cosines between successive weight updates, and Plagianakos et al. [7]
calculate a two point approximation to the secant equation underlying quasi-
Newton methods in order to obtain a dynamic learning rate and additionally
make use of an acceptability condition to ensure convergence. LeCun et al. [8]
calculate a global learning rate by an online estimation of the largest eigenvalue
of the Hessian matrix. They show that the optimal learning rate is approximately
the inverse of this largest eigenvalue. Finally, the approach of Magoulas et al. [9]
estimate the local shape of the error surface by the Lipschitz constant and set
the learning rate accordingly. They also applied this technique to calculate a
separate dynamic learning rate for each weight [10].

Local learning rate adjustment methods have been very popular due to their
efficiency and generally higher convergence speed. A very well-know technique is
the Delta-Bar-Delta method introduces by Jacobs et al. [11]. Here, the learning
rates are adjusted according to sign changes of the exponential averaged gradient.
Similarly, Silva and Almeida [12] proposed a method where the learning rates
are increased if the respective gradients of the last two iterations have the same
size and decreased otherwise. The RPROP method introduced by Riedmiller et
al. [13] uses a step size which doesn’t depend on the gradient magnitude but
which is increased or decreased according to gradient sign changes.

Finally, many methods do not use an explicit learning rate but first calculate
a descent gradient direction and then perform a line search such that the error
criteria is minimized in the direction of the gradient [14, 15, 16].

Note that most of the existing adaptive learning algorithms are batch learning
algorithms, i.e. the weights are updated after all examples have been presented
to the network. On the other hand, online algorithms update the weights af-
ter the presentation of each example. They generally converge faster when the
input space is large compared to the number of examples (e.g. in image process-
ing tasks) or in more complex architectures like convolutional neural networks
(CNN) that use shared weights. Thus, for many real world applications the on-
line Backpropagation algorithm or its variants are still the best choice. There
are also some adaptive online algorithms in the literature. For example Schrau-
dolph [17], Harmon et al. [18] and Almeida et al. [19] proposed methods similar
to the Incremental Delta-Bar-Delta approach introduced by Sutton et al. [20],
an extension of the Delta-Bar-Delta technique for stochastic training. However,
these algorithms mainly aim at a faster convergence rather than an increased
generalization capacity.
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We present a heuristic learning algorithm that improves generalization capac-
ity and shows good convergence speed. It is an online Backpropagation method
with adaptive global learning rate. The learning rate adaption is based on the
idea of the so-called ”bold driver” method [5, 4], i.e. the learning rate is initialised
with a very small value and increased or decreased according to the evolution
of the error criteria E of the past iterations. The main difference with respect
to previous works is that the error is not measured on the training but on the
validation set. Some further optimizations have been made in order to ensure
fast convergence. The aim of this heuristic approach is not only to accelerate
convergence compared to standard online Backpropagation but also to improve
generalization.

The remainder of this paper is organized as follows: Section 2 describes the
training algorithm with its two phases. In section 3, experimental results are
presented and finally in section 4 we draw our conclusions.

2 The Training Algorithm

The proposed training method is an extension of the standard Backpropagation
algorithm [1]. Backpropagation is a gradient descent technique that minimizes
an error criteria E which is usually the mean squared error (MSE) of the N
output values oij with respect to its desired values dij of the neural network:

E =
1

NP

P∑

j=1

N∑

i=1

(oij − dij)2 , (1)

where P is the number of examples in the training set.
Training is performed online, i.e. the weights of the neural network are up-

dated after presentation of each training example. Classically, at iteration t a
given weight wij(t) is updated by adding a Δwij(t) to it:

Δwij(t) = −ε(t) · ∂E(t)
∂wij(t)

, (2)

where ε is the learning rate.
The training database is usually divided into a training set and a validation

set. The training, i.e. the Backpropagation, is only performed on the training set.
The purpose of the validation set is to determine when to stop training in order
to obtain a neural network that generalizes sufficiently well. This technique is
commonly known as ”early stopping”. In the proposed algorithm the validation
set has a second role. It is used to control the adjustment of the learning rate
ε(t) after each training iteration t. Note, that the learning rate adjustment is
performed only once per iteration. Our approach basically consists of two phases:

1. the main learning phase and
2. the refinement phase.

In the following sections we will detail these steps.
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2.1 The Main Learning Phase

The adaption of the learning rate in our approach is similar to the ”bold driver”
method [5, 4] where the learning rate is initialized with a very small value
(e.g. 10−10) and adjusted after each training iteration according the difference
of the error criteria E between the current and the preceding iteration.

The proposed method applies this idea to the validation set instead of the
training set in order to reduce overfitting. Moreover, the procedure is slightly
modified to be more tolerant to error increases as the validation error is more
likely to oscillate than the training error. Let us consider the typical runs of the
error curves of a training and validation set when using standard Backpropaga-
tion. Fig. 1 illustrates this in a simplified manner. When applying the technique

training error

validation error

iteration

error

tmin

Fig. 1. The typical evolution of the error criteria evaluated on the training and vali-
dation set

of ”early stopping” the weight configuration at iteration tmin, i.e. where the val-
idation error is minimal, is retained as the network is supposed to show the
highest generalization performance at this point. Further training likely leads to
overfitting. The purpose of the first phase of the proposed algorithm is thus to
reach the point tmin more quickly.

To this end, the normalized difference between the error criteria of the current
and the preceding iteration is calculated:

δ(t) =
Ev(t) − Ev(t − 1)

Ev(t)
. (3)

Ev(t) is the error criteria at iteration t calculated on the whole validation set
(cf. Eqn. 1).

The algorithm further requires a running average δ̄(t) of the preceding values
of δ:

δ̄(t) = α · δ(t) + (1 − α) · δ̄(t − 1) , (4)

where 0 < α ≤ 1 (e.g. α = 0.1).
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The principal learning rate updating rule is the following:

ε(t) =

{
d · ε(t − 1) if δ(t) · δ̄(t − 1) < 0 and |δ̄(t − 1)| > θ ,

u · ε(t − 1) otherwise .
(5)

where u and d are positive constants, 0 < d < 1 < u, and θ is a threshold to
allow for small error oscillations. In our experiments we used u = 1.1, d = 0.5
and θ = 0.01. Thus, the learning rate adaption is based on the signs of the
error differences of the current and the preceding iterations. If the sign changes
the learning rate is decreased otherwise it is increased. The principle of this
procedure is similar to the Delta-Bar-Delta method [11] but the calculation is
not based on gradients.

2.2 Refinement Phase

If the training has passed iteration tmin where Ev is minimal the network is
likely to overtrain. In fact, as the gradient descent is performed in discrete steps
the actual minimum Emin of the error surface of the validation set is likely to
be missed and lies between the weight configurations of two successive training
iterations. Fig. 2 illustrates this. Clearly, there are two cases to differentiate:

iterationtmin − 1 tminEmin

Ev

(a) The actual minimum has been missed
before iteration tmin

iterationtmin tmin + 1Emin

Ev

(b) The actual minimum has been missed
after iteration tmin

Fig. 2. The two possible cases that can occur when the minimum on the validation set
is reached

either the minimum Emin has been missed before or after iteration tmin. Now we
assume that the validation error surface is relatively smooth and that no other
local minimum lies between iterations tmin − 1 and tmin or between iterations
tmin and tmin + 1 respectively. In order to try to attain a smaller error the
network reverts to the weight configuration at iteration tmin − 1, decreases the
learning rate and training is continued. Note that for training only the examples
of the training set are used. Thus, it is uncertain if the actual minimum can
be attained at all. If no smaller error has been found for a certain number of
iterations T the ”real” minimum is more likely to have occurred ”after” iteration
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tmin, (see Fig. 2(b)). In this case, the network reverts to iteration tmin, the
learning rate is again decreased and training continues. If a smaller error is
reached during this process the temporary minimum is retained and the training
continues normally. Otherwise the reverting procedure is repeated while always
retaining the absolute minimum and the respective weight configuration found
so far. Algorithm 1 summarizes the overall training procedure. Note that the
computational overhead of the algorithm compared to standard backpropagation
with fixed learning rate is negligible as the error on the validation set needs to
be calculated anyway to do the ”early stopping”.

Fig.3 illustrates a typical evolution of the error criteria Ev(t) during the train-
ing process using the proposed learning algorithm. Because of the initialization
with a very small value the error stays nearly constant at the beginning but
drops very quickly at some point due to the exponential increase of the learning
rate, and finally it converges to a minimum. In general, the main part of the
minimization is done in the first phase and the error decrease in the refinement
phase is relatively small.

Algorithm 1. The basic learning algorithm
1: Initialize weights and individual learning rates
2: Set ε(0) := 10−10, δ(0) := 0 and δ̄(0) := 0
3: Calculate Ev(0)
4: t := 0
5: repeat
6: Do one training iteration
7: t := t + 1
8: Calculate δ(t) = Ev(t)−Ev(t−1)

Ev(t)

9: if δ(t) · δ̄(t − 1) < 0 and |δ̄(t − 1)| > θ then
10: ε(t) = d · ε(t − 1)
11: else
12: ε(t) = u · ε(t − 1)
13: end if
14: δ̄(t) = α · δ(t) + (1 − α) · δ̄(t − 1)
15: if Ev(t) < Emin(t) then
16: save the current weight configuration
17: tmin := t

18: end if
19: if t − tmin > T then
20: Revert to weight configuration at tmin − 1 (or tmin)
21: end if
22: until t = tmax
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Fig. 3. A typical evolution of the error criteria on the validation set using the proposed
learning algorithm

3 Experimental Results

We evaluated the proposed learning algorithm on a MLP trained to classify the
examples of the well-known NIST database of handwritten digits. The database
contains 3823 training and 1797 test examples of 8x8 matrices. From the training
set 500 examples were selected randomly and used for validation. The MLP we
used for the experiments had 64 input, 10 hidden and 10 output neurons, fully
inter-connected. The neurons all had sigmoid activation functions.

To ensure that the neural network is well-conditioned we additionally use
fixed local learning rates that are distributed stepwise from the last layer to
the first layer according to the incoming connections of each neuron. Thus, the
output neuron(s) have the highest and the input the lowest local learning rate.
The overall learning rate is just the product of the fixed local and the dynamic
global learning rate.

In the first experiment, we compare the convergence properties of the pro-
posed algorithm to the ones of standard Backpropagation. Fig. 4 shows the
resulting error curves evaluated on the validation set. The different curves for
the Backpropagation algorithm have been obtained by using different global
learning rates (10−3, 10−4 and 10−5). The global learning rate of the proposed
method was initialized with the value 10−7. Note that our approach converges
more slowly at the beginning but catches up quickly and finishes stable on the
same level or even lower than Backpropagation.

Fig. 5 illustrates 0that our method is not sensitive to different initializations
of the global learning rate. The curves show the validation error curves for three
different runs with initial learning rates of 10−6, 10−8 and 10−10 respectively. Note
that the point of time where the minimum is reach increases only linearly when
the initial learning rate is decreased exponentially. This is another side effect of
the exponential learning rate update rule. All the runs converge to approximately
the same solution, and the recognition rates are about the same for all networks.
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Fig. 4. The evolution of the validation error on the NIST database using Backpropa-
gation and the proposed algorithm
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Fig. 5. The validation error curves with different initial global learning rates

The final experiment demonstrates that the algorithm not only converges
faster but also improves the generalization performance of the resulting neural
networks. To this end the training set was gradually reduced and the respective
recognition rates on the test set were calculated and compared to the standard
Backpropagation as well as to the bold driver method [5, 4]. Table 1 shows
the overall results. One can see that the proposed method performs slightly
better with training set sizes 3323 and 1000 and clearly outperforms the other
algorithms when only 600 and 100 training examples are used.

Table 2 shows the respective results with a neural network with 40 hidden
neurons. The recognition rates of the proposed method are slightly better then
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Table 1. Recognition rate (in %) with varying training set size (10 hidden neurons)

training set size 3323 1000 600 100
algorithm

Backpropagation 94.30 93.42 78.31 73.88
bold driver [5, 4] 93.41 91.32 83.74 72.75
proposed algorithm 94.50 93.71 85.29 78.10

Table 2. Recognition rate (in %) with varying training set size (40 hidden neurons)

training set size 3323 1000 600 100
algorithm

Backpropagation 95.71 93.89 86.58 80.31
bold driver [5, 4] 94.97 93.20 86.45 79.96
proposed algorithm 95.77 93.81 87.06 80.47

for the other algorithms albeit the difference is less significant. However, conver-
gence speed is still superior as illustrated in Fig. 4.

4 Conclusion

We presented a learning algorithm with adaptive global learning rate based on
the online Backpropagation method. The adaption is performed in two successive
phases, the main learning and a refinement phase. In the main learning phase
the learning rate is increased or decreased according to the evolution of the
validation error. This leads to a fast and robust convergence to the minimum
where ”early stopping” is performed. In the second phase the network reverts
to preceding weight configurations in order to find a minimum close to the one
found in the first step. We experimentally show that this method converges faster
than Backpropagation while exhibiting a superior generalization capacity.
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